xref: /openbmc/openbmc/poky/bitbake/lib/ply/yacc.py (revision a221e432)
1# -----------------------------------------------------------------------------
2# ply: yacc.py
3#
4# Copyright (C) 2001-2009,
5# David M. Beazley (Dabeaz LLC)
6# All rights reserved.
7#
8# Redistribution and use in source and binary forms, with or without
9# modification, are permitted provided that the following conditions are
10# met:
11#
12# * Redistributions of source code must retain the above copyright notice,
13#   this list of conditions and the following disclaimer.
14# * Redistributions in binary form must reproduce the above copyright notice,
15#   this list of conditions and the following disclaimer in the documentation
16#   and/or other materials provided with the distribution.
17# * Neither the name of the David Beazley or Dabeaz LLC may be used to
18#   endorse or promote products derived from this software without
19#  specific prior written permission.
20#
21# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32# -----------------------------------------------------------------------------
33#
34# This implements an LR parser that is constructed from grammar rules defined
35# as Python functions. The grammer is specified by supplying the BNF inside
36# Python documentation strings.  The inspiration for this technique was borrowed
37# from John Aycock's Spark parsing system.  PLY might be viewed as cross between
38# Spark and the GNU bison utility.
39#
40# The current implementation is only somewhat object-oriented. The
41# LR parser itself is defined in terms of an object (which allows multiple
42# parsers to co-exist).  However, most of the variables used during table
43# construction are defined in terms of global variables.  Users shouldn't
44# notice unless they are trying to define multiple parsers at the same
45# time using threads (in which case they should have their head examined).
46#
47# This implementation supports both SLR and LALR(1) parsing.  LALR(1)
48# support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu),
49# using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles,
50# Techniques, and Tools" (The Dragon Book).  LALR(1) has since been replaced
51# by the more efficient DeRemer and Pennello algorithm.
52#
53# :::::::: WARNING :::::::
54#
55# Construction of LR parsing tables is fairly complicated and expensive.
56# To make this module run fast, a *LOT* of work has been put into
57# optimization---often at the expensive of readability and what might
58# consider to be good Python "coding style."   Modify the code at your
59# own risk!
60# ----------------------------------------------------------------------------
61
62__version__    = "3.3"
63__tabversion__ = "3.2"       # Table version
64
65#-----------------------------------------------------------------------------
66#                     === User configurable parameters ===
67#
68# Change these to modify the default behavior of yacc (if you wish)
69#-----------------------------------------------------------------------------
70
71yaccdebug   = 0                # Debugging mode.  If set, yacc generates a
72                               # a 'parser.out' file in the current directory
73
74debug_file  = 'parser.out'     # Default name of the debugging file
75tab_module  = 'parsetab'       # Default name of the table module
76default_lr  = 'LALR'           # Default LR table generation method
77
78error_count = 3                # Number of symbols that must be shifted to leave recovery mode
79
80yaccdevel   = 0                # Set to True if developing yacc.  This turns off optimized
81                               # implementations of certain functions.
82
83resultlimit = 40               # Size limit of results when running in debug mode.
84
85pickle_protocol = 0            # Protocol to use when writing pickle files
86
87import re, types, sys, os.path
88
89# Compatibility function for python 2.6/3.0
90if sys.version_info[0] < 3:
91    def func_code(f):
92        return f.func_code
93else:
94    def func_code(f):
95        return f.__code__
96
97# Compatibility
98try:
99    MAXINT = sys.maxint
100except AttributeError:
101    MAXINT = sys.maxsize
102
103# Python 2.x/3.0 compatibility.
104def load_ply_lex():
105    if sys.version_info[0] < 3:
106        import lex
107    else:
108        import ply.lex as lex
109    return lex
110
111# This object is a stand-in for a logging object created by the
112# logging module.   PLY will use this by default to create things
113# such as the parser.out file.  If a user wants more detailed
114# information, they can create their own logging object and pass
115# it into PLY.
116
117class PlyLogger(object):
118    def __init__(self,f):
119        self.f = f
120    def debug(self,msg,*args,**kwargs):
121        self.f.write((msg % args) + "\n")
122    info     = debug
123
124    def warning(self,msg,*args,**kwargs):
125        self.f.write("WARNING: "+ (msg % args) + "\n")
126
127    def error(self,msg,*args,**kwargs):
128        self.f.write("ERROR: " + (msg % args) + "\n")
129
130    critical = debug
131
132# Null logger is used when no output is generated. Does nothing.
133class NullLogger(object):
134    def __getattribute__(self,name):
135        return self
136    def __call__(self,*args,**kwargs):
137        return self
138
139# Exception raised for yacc-related errors
140class YaccError(Exception):   pass
141
142# Format the result message that the parser produces when running in debug mode.
143def format_result(r):
144    repr_str = repr(r)
145    if '\n' in repr_str: repr_str = repr(repr_str)
146    if len(repr_str) > resultlimit:
147        repr_str = repr_str[:resultlimit]+" ..."
148    result = "<%s @ 0x%x> (%s)" % (type(r).__name__,id(r),repr_str)
149    return result
150
151
152# Format stack entries when the parser is running in debug mode
153def format_stack_entry(r):
154    repr_str = repr(r)
155    if '\n' in repr_str: repr_str = repr(repr_str)
156    if len(repr_str) < 16:
157        return repr_str
158    else:
159        return "<%s @ 0x%x>" % (type(r).__name__,id(r))
160
161#-----------------------------------------------------------------------------
162#                        ===  LR Parsing Engine ===
163#
164# The following classes are used for the LR parser itself.  These are not
165# used during table construction and are independent of the actual LR
166# table generation algorithm
167#-----------------------------------------------------------------------------
168
169# This class is used to hold non-terminal grammar symbols during parsing.
170# It normally has the following attributes set:
171#        .type       = Grammar symbol type
172#        .value      = Symbol value
173#        .lineno     = Starting line number
174#        .endlineno  = Ending line number (optional, set automatically)
175#        .lexpos     = Starting lex position
176#        .endlexpos  = Ending lex position (optional, set automatically)
177
178class YaccSymbol:
179    def __str__(self):    return self.type
180    def __repr__(self):   return str(self)
181
182# This class is a wrapper around the objects actually passed to each
183# grammar rule.   Index lookup and assignment actually assign the
184# .value attribute of the underlying YaccSymbol object.
185# The lineno() method returns the line number of a given
186# item (or 0 if not defined).   The linespan() method returns
187# a tuple of (startline,endline) representing the range of lines
188# for a symbol.  The lexspan() method returns a tuple (lexpos,endlexpos)
189# representing the range of positional information for a symbol.
190
191class YaccProduction:
192    def __init__(self,s,stack=None):
193        self.slice = s
194        self.stack = stack
195        self.lexer = None
196        self.parser= None
197    def __getitem__(self,n):
198        if isinstance(n,slice):
199            return [self[i] for i in range(*(n.indices(len(self.slice))))]
200        if n >= 0: return self.slice[n].value
201        else: return self.stack[n].value
202
203    def __setitem__(self,n,v):
204        self.slice[n].value = v
205
206    def __getslice__(self,i,j):
207        return [s.value for s in self.slice[i:j]]
208
209    def __len__(self):
210        return len(self.slice)
211
212    def lineno(self,n):
213        return getattr(self.slice[n],"lineno",0)
214
215    def set_lineno(self,n,lineno):
216        self.slice[n].lineno = lineno
217
218    def linespan(self,n):
219        startline = getattr(self.slice[n],"lineno",0)
220        endline = getattr(self.slice[n],"endlineno",startline)
221        return startline,endline
222
223    def lexpos(self,n):
224        return getattr(self.slice[n],"lexpos",0)
225
226    def lexspan(self,n):
227        startpos = getattr(self.slice[n],"lexpos",0)
228        endpos = getattr(self.slice[n],"endlexpos",startpos)
229        return startpos,endpos
230
231    def error(self):
232       raise SyntaxError
233
234
235# -----------------------------------------------------------------------------
236#                               == LRParser ==
237#
238# The LR Parsing engine.
239# -----------------------------------------------------------------------------
240
241class LRParser:
242    def __init__(self,lrtab,errorf):
243        self.productions = lrtab.lr_productions
244        self.action      = lrtab.lr_action
245        self.goto        = lrtab.lr_goto
246        self.errorfunc   = errorf
247
248    def errok(self):
249        self.errorok     = 1
250
251    def restart(self):
252        del self.statestack[:]
253        del self.symstack[:]
254        sym = YaccSymbol()
255        sym.type = '$end'
256        self.symstack.append(sym)
257        self.statestack.append(0)
258
259    def parse(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
260        if debug or yaccdevel:
261            if isinstance(debug,int):
262                debug = PlyLogger(sys.stderr)
263            return self.parsedebug(input,lexer,debug,tracking,tokenfunc)
264        elif tracking:
265            return self.parseopt(input,lexer,debug,tracking,tokenfunc)
266        else:
267            return self.parseopt_notrack(input,lexer,debug,tracking,tokenfunc)
268
269
270    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
271    # parsedebug().
272    #
273    # This is the debugging enabled version of parse().  All changes made to the
274    # parsing engine should be made here.   For the non-debugging version,
275    # copy this code to a method parseopt() and delete all of the sections
276    # enclosed in:
277    #
278    #      #--! DEBUG
279    #      statements
280    #      #--! DEBUG
281    #
282    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
283
284    def parsedebug(self,input=None,lexer=None,debug=None,tracking=0,tokenfunc=None):
285        lookahead = None                 # Current lookahead symbol
286        lookaheadstack = [ ]             # Stack of lookahead symbols
287        actions = self.action            # Local reference to action table (to avoid lookup on self.)
288        goto    = self.goto              # Local reference to goto table (to avoid lookup on self.)
289        prod    = self.productions       # Local reference to production list (to avoid lookup on self.)
290        pslice  = YaccProduction(None)   # Production object passed to grammar rules
291        errorcount = 0                   # Used during error recovery
292
293        # --! DEBUG
294        debug.info("PLY: PARSE DEBUG START")
295        # --! DEBUG
296
297        # If no lexer was given, we will try to use the lex module
298        if not lexer:
299            lex = load_ply_lex()
300            lexer = lex.lexer
301
302        # Set up the lexer and parser objects on pslice
303        pslice.lexer = lexer
304        pslice.parser = self
305
306        # If input was supplied, pass to lexer
307        if input is not None:
308            lexer.input(input)
309
310        if tokenfunc is None:
311           # Tokenize function
312           get_token = lexer.token
313        else:
314           get_token = tokenfunc
315
316        # Set up the state and symbol stacks
317
318        statestack = [ ]                # Stack of parsing states
319        self.statestack = statestack
320        symstack   = [ ]                # Stack of grammar symbols
321        self.symstack = symstack
322
323        pslice.stack = symstack         # Put in the production
324        errtoken   = None               # Err token
325
326        # The start state is assumed to be (0,$end)
327
328        statestack.append(0)
329        sym = YaccSymbol()
330        sym.type = "$end"
331        symstack.append(sym)
332        state = 0
333        while 1:
334            # Get the next symbol on the input.  If a lookahead symbol
335            # is already set, we just use that. Otherwise, we'll pull
336            # the next token off of the lookaheadstack or from the lexer
337
338            # --! DEBUG
339            debug.debug('')
340            debug.debug('State  : %s', state)
341            # --! DEBUG
342
343            if not lookahead:
344                if not lookaheadstack:
345                    lookahead = get_token()     # Get the next token
346                else:
347                    lookahead = lookaheadstack.pop()
348                if not lookahead:
349                    lookahead = YaccSymbol()
350                    lookahead.type = "$end"
351
352            # --! DEBUG
353            debug.debug('Stack  : %s',
354                        ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
355            # --! DEBUG
356
357            # Check the action table
358            ltype = lookahead.type
359            t = actions[state].get(ltype)
360
361            if t is not None:
362                if t > 0:
363                    # shift a symbol on the stack
364                    statestack.append(t)
365                    state = t
366
367                    # --! DEBUG
368                    debug.debug("Action : Shift and goto state %s", t)
369                    # --! DEBUG
370
371                    symstack.append(lookahead)
372                    lookahead = None
373
374                    # Decrease error count on successful shift
375                    if errorcount: errorcount -=1
376                    continue
377
378                if t < 0:
379                    # reduce a symbol on the stack, emit a production
380                    p = prod[-t]
381                    pname = p.name
382                    plen  = p.len
383
384                    # Get production function
385                    sym = YaccSymbol()
386                    sym.type = pname       # Production name
387                    sym.value = None
388
389                    # --! DEBUG
390                    if plen:
391                        debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, "["+",".join([format_stack_entry(_v.value) for _v in symstack[-plen:]])+"]",-t)
392                    else:
393                        debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, [],-t)
394
395                    # --! DEBUG
396
397                    if plen:
398                        targ = symstack[-plen-1:]
399                        targ[0] = sym
400
401                        # --! TRACKING
402                        if tracking:
403                           t1 = targ[1]
404                           sym.lineno = t1.lineno
405                           sym.lexpos = t1.lexpos
406                           t1 = targ[-1]
407                           sym.endlineno = getattr(t1,"endlineno",t1.lineno)
408                           sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos)
409
410                        # --! TRACKING
411
412                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
413                        # The code enclosed in this section is duplicated
414                        # below as a performance optimization.  Make sure
415                        # changes get made in both locations.
416
417                        pslice.slice = targ
418
419                        try:
420                            # Call the grammar rule with our special slice object
421                            del symstack[-plen:]
422                            del statestack[-plen:]
423                            p.callable(pslice)
424                            # --! DEBUG
425                            debug.info("Result : %s", format_result(pslice[0]))
426                            # --! DEBUG
427                            symstack.append(sym)
428                            state = goto[statestack[-1]][pname]
429                            statestack.append(state)
430                        except SyntaxError:
431                            # If an error was set. Enter error recovery state
432                            lookaheadstack.append(lookahead)
433                            symstack.pop()
434                            statestack.pop()
435                            state = statestack[-1]
436                            sym.type = 'error'
437                            lookahead = sym
438                            errorcount = error_count
439                            self.errorok = 0
440                        continue
441                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
442
443                    else:
444
445                        # --! TRACKING
446                        if tracking:
447                           sym.lineno = lexer.lineno
448                           sym.lexpos = lexer.lexpos
449                        # --! TRACKING
450
451                        targ = [ sym ]
452
453                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
454                        # The code enclosed in this section is duplicated
455                        # above as a performance optimization.  Make sure
456                        # changes get made in both locations.
457
458                        pslice.slice = targ
459
460                        try:
461                            # Call the grammar rule with our special slice object
462                            p.callable(pslice)
463                            # --! DEBUG
464                            debug.info("Result : %s", format_result(pslice[0]))
465                            # --! DEBUG
466                            symstack.append(sym)
467                            state = goto[statestack[-1]][pname]
468                            statestack.append(state)
469                        except SyntaxError:
470                            # If an error was set. Enter error recovery state
471                            lookaheadstack.append(lookahead)
472                            symstack.pop()
473                            statestack.pop()
474                            state = statestack[-1]
475                            sym.type = 'error'
476                            lookahead = sym
477                            errorcount = error_count
478                            self.errorok = 0
479                        continue
480                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
481
482                if t == 0:
483                    n = symstack[-1]
484                    result = getattr(n,"value",None)
485                    # --! DEBUG
486                    debug.info("Done   : Returning %s", format_result(result))
487                    debug.info("PLY: PARSE DEBUG END")
488                    # --! DEBUG
489                    return result
490
491            if t is None:
492
493                # --! DEBUG
494                debug.error('Error  : %s',
495                            ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
496                # --! DEBUG
497
498                # We have some kind of parsing error here.  To handle
499                # this, we are going to push the current token onto
500                # the tokenstack and replace it with an 'error' token.
501                # If there are any synchronization rules, they may
502                # catch it.
503                #
504                # In addition to pushing the error token, we call call
505                # the user defined p_error() function if this is the
506                # first syntax error.  This function is only called if
507                # errorcount == 0.
508                if errorcount == 0 or self.errorok:
509                    errorcount = error_count
510                    self.errorok = 0
511                    errtoken = lookahead
512                    if errtoken.type == "$end":
513                        errtoken = None               # End of file!
514                    if self.errorfunc:
515                        global errok,token,restart
516                        errok = self.errok        # Set some special functions available in error recovery
517                        token = get_token
518                        restart = self.restart
519                        if errtoken and not hasattr(errtoken,'lexer'):
520                            errtoken.lexer = lexer
521                        tok = self.errorfunc(errtoken)
522                        del errok, token, restart   # Delete special functions
523
524                        if self.errorok:
525                            # User must have done some kind of panic
526                            # mode recovery on their own.  The
527                            # returned token is the next lookahead
528                            lookahead = tok
529                            errtoken = None
530                            continue
531                    else:
532                        if errtoken:
533                            if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
534                            else: lineno = 0
535                            if lineno:
536                                sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
537                            else:
538                                sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
539                        else:
540                            sys.stderr.write("yacc: Parse error in input. EOF\n")
541                            return
542
543                else:
544                    errorcount = error_count
545
546                # case 1:  the statestack only has 1 entry on it.  If we're in this state, the
547                # entire parse has been rolled back and we're completely hosed.   The token is
548                # discarded and we just keep going.
549
550                if len(statestack) <= 1 and lookahead.type != "$end":
551                    lookahead = None
552                    errtoken = None
553                    state = 0
554                    # Nuke the pushback stack
555                    del lookaheadstack[:]
556                    continue
557
558                # case 2: the statestack has a couple of entries on it, but we're
559                # at the end of the file. nuke the top entry and generate an error token
560
561                # Start nuking entries on the stack
562                if lookahead.type == "$end":
563                    # Whoa. We're really hosed here. Bail out
564                    return
565
566                if lookahead.type != 'error':
567                    sym = symstack[-1]
568                    if sym.type == 'error':
569                        # Hmmm. Error is on top of stack, we'll just nuke input
570                        # symbol and continue
571                        lookahead = None
572                        continue
573                    t = YaccSymbol()
574                    t.type = 'error'
575                    if hasattr(lookahead,"lineno"):
576                        t.lineno = lookahead.lineno
577                    t.value = lookahead
578                    lookaheadstack.append(lookahead)
579                    lookahead = t
580                else:
581                    symstack.pop()
582                    statestack.pop()
583                    state = statestack[-1]       # Potential bug fix
584
585                continue
586
587            # Call an error function here
588            raise RuntimeError("yacc: internal parser error!!!\n")
589
590    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
591    # parseopt().
592    #
593    # Optimized version of parse() method.  DO NOT EDIT THIS CODE DIRECTLY.
594    # Edit the debug version above, then copy any modifications to the method
595    # below while removing #--! DEBUG sections.
596    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
597
598
599    def parseopt(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
600        lookahead = None                 # Current lookahead symbol
601        lookaheadstack = [ ]             # Stack of lookahead symbols
602        actions = self.action            # Local reference to action table (to avoid lookup on self.)
603        goto    = self.goto              # Local reference to goto table (to avoid lookup on self.)
604        prod    = self.productions       # Local reference to production list (to avoid lookup on self.)
605        pslice  = YaccProduction(None)   # Production object passed to grammar rules
606        errorcount = 0                   # Used during error recovery
607
608        # If no lexer was given, we will try to use the lex module
609        if not lexer:
610            lex = load_ply_lex()
611            lexer = lex.lexer
612
613        # Set up the lexer and parser objects on pslice
614        pslice.lexer = lexer
615        pslice.parser = self
616
617        # If input was supplied, pass to lexer
618        if input is not None:
619            lexer.input(input)
620
621        if tokenfunc is None:
622           # Tokenize function
623           get_token = lexer.token
624        else:
625           get_token = tokenfunc
626
627        # Set up the state and symbol stacks
628
629        statestack = [ ]                # Stack of parsing states
630        self.statestack = statestack
631        symstack   = [ ]                # Stack of grammar symbols
632        self.symstack = symstack
633
634        pslice.stack = symstack         # Put in the production
635        errtoken   = None               # Err token
636
637        # The start state is assumed to be (0,$end)
638
639        statestack.append(0)
640        sym = YaccSymbol()
641        sym.type = '$end'
642        symstack.append(sym)
643        state = 0
644        while 1:
645            # Get the next symbol on the input.  If a lookahead symbol
646            # is already set, we just use that. Otherwise, we'll pull
647            # the next token off of the lookaheadstack or from the lexer
648
649            if not lookahead:
650                if not lookaheadstack:
651                    lookahead = get_token()     # Get the next token
652                else:
653                    lookahead = lookaheadstack.pop()
654                if not lookahead:
655                    lookahead = YaccSymbol()
656                    lookahead.type = '$end'
657
658            # Check the action table
659            ltype = lookahead.type
660            t = actions[state].get(ltype)
661
662            if t is not None:
663                if t > 0:
664                    # shift a symbol on the stack
665                    statestack.append(t)
666                    state = t
667
668                    symstack.append(lookahead)
669                    lookahead = None
670
671                    # Decrease error count on successful shift
672                    if errorcount: errorcount -=1
673                    continue
674
675                if t < 0:
676                    # reduce a symbol on the stack, emit a production
677                    p = prod[-t]
678                    pname = p.name
679                    plen  = p.len
680
681                    # Get production function
682                    sym = YaccSymbol()
683                    sym.type = pname       # Production name
684                    sym.value = None
685
686                    if plen:
687                        targ = symstack[-plen-1:]
688                        targ[0] = sym
689
690                        # --! TRACKING
691                        if tracking:
692                           t1 = targ[1]
693                           sym.lineno = t1.lineno
694                           sym.lexpos = t1.lexpos
695                           t1 = targ[-1]
696                           sym.endlineno = getattr(t1,"endlineno",t1.lineno)
697                           sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos)
698
699                        # --! TRACKING
700
701                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
702                        # The code enclosed in this section is duplicated
703                        # below as a performance optimization.  Make sure
704                        # changes get made in both locations.
705
706                        pslice.slice = targ
707
708                        try:
709                            # Call the grammar rule with our special slice object
710                            del symstack[-plen:]
711                            del statestack[-plen:]
712                            p.callable(pslice)
713                            symstack.append(sym)
714                            state = goto[statestack[-1]][pname]
715                            statestack.append(state)
716                        except SyntaxError:
717                            # If an error was set. Enter error recovery state
718                            lookaheadstack.append(lookahead)
719                            symstack.pop()
720                            statestack.pop()
721                            state = statestack[-1]
722                            sym.type = 'error'
723                            lookahead = sym
724                            errorcount = error_count
725                            self.errorok = 0
726                        continue
727                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
728
729                    else:
730
731                        # --! TRACKING
732                        if tracking:
733                           sym.lineno = lexer.lineno
734                           sym.lexpos = lexer.lexpos
735                        # --! TRACKING
736
737                        targ = [ sym ]
738
739                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
740                        # The code enclosed in this section is duplicated
741                        # above as a performance optimization.  Make sure
742                        # changes get made in both locations.
743
744                        pslice.slice = targ
745
746                        try:
747                            # Call the grammar rule with our special slice object
748                            p.callable(pslice)
749                            symstack.append(sym)
750                            state = goto[statestack[-1]][pname]
751                            statestack.append(state)
752                        except SyntaxError:
753                            # If an error was set. Enter error recovery state
754                            lookaheadstack.append(lookahead)
755                            symstack.pop()
756                            statestack.pop()
757                            state = statestack[-1]
758                            sym.type = 'error'
759                            lookahead = sym
760                            errorcount = error_count
761                            self.errorok = 0
762                        continue
763                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
764
765                if t == 0:
766                    n = symstack[-1]
767                    return getattr(n,"value",None)
768
769            if t is None:
770
771                # We have some kind of parsing error here.  To handle
772                # this, we are going to push the current token onto
773                # the tokenstack and replace it with an 'error' token.
774                # If there are any synchronization rules, they may
775                # catch it.
776                #
777                # In addition to pushing the error token, we call call
778                # the user defined p_error() function if this is the
779                # first syntax error.  This function is only called if
780                # errorcount == 0.
781                if errorcount == 0 or self.errorok:
782                    errorcount = error_count
783                    self.errorok = 0
784                    errtoken = lookahead
785                    if errtoken.type == '$end':
786                        errtoken = None               # End of file!
787                    if self.errorfunc:
788                        global errok,token,restart
789                        errok = self.errok        # Set some special functions available in error recovery
790                        token = get_token
791                        restart = self.restart
792                        if errtoken and not hasattr(errtoken,'lexer'):
793                            errtoken.lexer = lexer
794                        tok = self.errorfunc(errtoken)
795                        del errok, token, restart   # Delete special functions
796
797                        if self.errorok:
798                            # User must have done some kind of panic
799                            # mode recovery on their own.  The
800                            # returned token is the next lookahead
801                            lookahead = tok
802                            errtoken = None
803                            continue
804                    else:
805                        if errtoken:
806                            if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
807                            else: lineno = 0
808                            if lineno:
809                                sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
810                            else:
811                                sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
812                        else:
813                            sys.stderr.write("yacc: Parse error in input. EOF\n")
814                            return
815
816                else:
817                    errorcount = error_count
818
819                # case 1:  the statestack only has 1 entry on it.  If we're in this state, the
820                # entire parse has been rolled back and we're completely hosed.   The token is
821                # discarded and we just keep going.
822
823                if len(statestack) <= 1 and lookahead.type != '$end':
824                    lookahead = None
825                    errtoken = None
826                    state = 0
827                    # Nuke the pushback stack
828                    del lookaheadstack[:]
829                    continue
830
831                # case 2: the statestack has a couple of entries on it, but we're
832                # at the end of the file. nuke the top entry and generate an error token
833
834                # Start nuking entries on the stack
835                if lookahead.type == '$end':
836                    # Whoa. We're really hosed here. Bail out
837                    return
838
839                if lookahead.type != 'error':
840                    sym = symstack[-1]
841                    if sym.type == 'error':
842                        # Hmmm. Error is on top of stack, we'll just nuke input
843                        # symbol and continue
844                        lookahead = None
845                        continue
846                    t = YaccSymbol()
847                    t.type = 'error'
848                    if hasattr(lookahead,"lineno"):
849                        t.lineno = lookahead.lineno
850                    t.value = lookahead
851                    lookaheadstack.append(lookahead)
852                    lookahead = t
853                else:
854                    symstack.pop()
855                    statestack.pop()
856                    state = statestack[-1]       # Potential bug fix
857
858                continue
859
860            # Call an error function here
861            raise RuntimeError("yacc: internal parser error!!!\n")
862
863    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
864    # parseopt_notrack().
865    #
866    # Optimized version of parseopt() with line number tracking removed.
867    # DO NOT EDIT THIS CODE DIRECTLY. Copy the optimized version and remove
868    # code in the #--! TRACKING sections
869    # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
870
871    def parseopt_notrack(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
872        lookahead = None                 # Current lookahead symbol
873        lookaheadstack = [ ]             # Stack of lookahead symbols
874        actions = self.action            # Local reference to action table (to avoid lookup on self.)
875        goto    = self.goto              # Local reference to goto table (to avoid lookup on self.)
876        prod    = self.productions       # Local reference to production list (to avoid lookup on self.)
877        pslice  = YaccProduction(None)   # Production object passed to grammar rules
878        errorcount = 0                   # Used during error recovery
879
880        # If no lexer was given, we will try to use the lex module
881        if not lexer:
882            lex = load_ply_lex()
883            lexer = lex.lexer
884
885        # Set up the lexer and parser objects on pslice
886        pslice.lexer = lexer
887        pslice.parser = self
888
889        # If input was supplied, pass to lexer
890        if input is not None:
891            lexer.input(input)
892
893        if tokenfunc is None:
894           # Tokenize function
895           get_token = lexer.token
896        else:
897           get_token = tokenfunc
898
899        # Set up the state and symbol stacks
900
901        statestack = [ ]                # Stack of parsing states
902        self.statestack = statestack
903        symstack   = [ ]                # Stack of grammar symbols
904        self.symstack = symstack
905
906        pslice.stack = symstack         # Put in the production
907        errtoken   = None               # Err token
908
909        # The start state is assumed to be (0,$end)
910
911        statestack.append(0)
912        sym = YaccSymbol()
913        sym.type = '$end'
914        symstack.append(sym)
915        state = 0
916        while 1:
917            # Get the next symbol on the input.  If a lookahead symbol
918            # is already set, we just use that. Otherwise, we'll pull
919            # the next token off of the lookaheadstack or from the lexer
920
921            if not lookahead:
922                if not lookaheadstack:
923                    lookahead = get_token()     # Get the next token
924                else:
925                    lookahead = lookaheadstack.pop()
926                if not lookahead:
927                    lookahead = YaccSymbol()
928                    lookahead.type = '$end'
929
930            # Check the action table
931            ltype = lookahead.type
932            t = actions[state].get(ltype)
933
934            if t is not None:
935                if t > 0:
936                    # shift a symbol on the stack
937                    statestack.append(t)
938                    state = t
939
940                    symstack.append(lookahead)
941                    lookahead = None
942
943                    # Decrease error count on successful shift
944                    if errorcount: errorcount -=1
945                    continue
946
947                if t < 0:
948                    # reduce a symbol on the stack, emit a production
949                    p = prod[-t]
950                    pname = p.name
951                    plen  = p.len
952
953                    # Get production function
954                    sym = YaccSymbol()
955                    sym.type = pname       # Production name
956                    sym.value = None
957
958                    if plen:
959                        targ = symstack[-plen-1:]
960                        targ[0] = sym
961
962                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
963                        # The code enclosed in this section is duplicated
964                        # below as a performance optimization.  Make sure
965                        # changes get made in both locations.
966
967                        pslice.slice = targ
968
969                        try:
970                            # Call the grammar rule with our special slice object
971                            del symstack[-plen:]
972                            del statestack[-plen:]
973                            p.callable(pslice)
974                            symstack.append(sym)
975                            state = goto[statestack[-1]][pname]
976                            statestack.append(state)
977                        except SyntaxError:
978                            # If an error was set. Enter error recovery state
979                            lookaheadstack.append(lookahead)
980                            symstack.pop()
981                            statestack.pop()
982                            state = statestack[-1]
983                            sym.type = 'error'
984                            lookahead = sym
985                            errorcount = error_count
986                            self.errorok = 0
987                        continue
988                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
989
990                    else:
991
992                        targ = [ sym ]
993
994                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
995                        # The code enclosed in this section is duplicated
996                        # above as a performance optimization.  Make sure
997                        # changes get made in both locations.
998
999                        pslice.slice = targ
1000
1001                        try:
1002                            # Call the grammar rule with our special slice object
1003                            p.callable(pslice)
1004                            symstack.append(sym)
1005                            state = goto[statestack[-1]][pname]
1006                            statestack.append(state)
1007                        except SyntaxError:
1008                            # If an error was set. Enter error recovery state
1009                            lookaheadstack.append(lookahead)
1010                            symstack.pop()
1011                            statestack.pop()
1012                            state = statestack[-1]
1013                            sym.type = 'error'
1014                            lookahead = sym
1015                            errorcount = error_count
1016                            self.errorok = 0
1017                        continue
1018                        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1019
1020                if t == 0:
1021                    n = symstack[-1]
1022                    return getattr(n,"value",None)
1023
1024            if t is None:
1025
1026                # We have some kind of parsing error here.  To handle
1027                # this, we are going to push the current token onto
1028                # the tokenstack and replace it with an 'error' token.
1029                # If there are any synchronization rules, they may
1030                # catch it.
1031                #
1032                # In addition to pushing the error token, we call call
1033                # the user defined p_error() function if this is the
1034                # first syntax error.  This function is only called if
1035                # errorcount == 0.
1036                if errorcount == 0 or self.errorok:
1037                    errorcount = error_count
1038                    self.errorok = 0
1039                    errtoken = lookahead
1040                    if errtoken.type == '$end':
1041                        errtoken = None               # End of file!
1042                    if self.errorfunc:
1043                        global errok,token,restart
1044                        errok = self.errok        # Set some special functions available in error recovery
1045                        token = get_token
1046                        restart = self.restart
1047                        if errtoken and not hasattr(errtoken,'lexer'):
1048                            errtoken.lexer = lexer
1049                        tok = self.errorfunc(errtoken)
1050                        del errok, token, restart   # Delete special functions
1051
1052                        if self.errorok:
1053                            # User must have done some kind of panic
1054                            # mode recovery on their own.  The
1055                            # returned token is the next lookahead
1056                            lookahead = tok
1057                            errtoken = None
1058                            continue
1059                    else:
1060                        if errtoken:
1061                            if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
1062                            else: lineno = 0
1063                            if lineno:
1064                                sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
1065                            else:
1066                                sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
1067                        else:
1068                            sys.stderr.write("yacc: Parse error in input. EOF\n")
1069                            return
1070
1071                else:
1072                    errorcount = error_count
1073
1074                # case 1:  the statestack only has 1 entry on it.  If we're in this state, the
1075                # entire parse has been rolled back and we're completely hosed.   The token is
1076                # discarded and we just keep going.
1077
1078                if len(statestack) <= 1 and lookahead.type != '$end':
1079                    lookahead = None
1080                    errtoken = None
1081                    state = 0
1082                    # Nuke the pushback stack
1083                    del lookaheadstack[:]
1084                    continue
1085
1086                # case 2: the statestack has a couple of entries on it, but we're
1087                # at the end of the file. nuke the top entry and generate an error token
1088
1089                # Start nuking entries on the stack
1090                if lookahead.type == '$end':
1091                    # Whoa. We're really hosed here. Bail out
1092                    return
1093
1094                if lookahead.type != 'error':
1095                    sym = symstack[-1]
1096                    if sym.type == 'error':
1097                        # Hmmm. Error is on top of stack, we'll just nuke input
1098                        # symbol and continue
1099                        lookahead = None
1100                        continue
1101                    t = YaccSymbol()
1102                    t.type = 'error'
1103                    if hasattr(lookahead,"lineno"):
1104                        t.lineno = lookahead.lineno
1105                    t.value = lookahead
1106                    lookaheadstack.append(lookahead)
1107                    lookahead = t
1108                else:
1109                    symstack.pop()
1110                    statestack.pop()
1111                    state = statestack[-1]       # Potential bug fix
1112
1113                continue
1114
1115            # Call an error function here
1116            raise RuntimeError("yacc: internal parser error!!!\n")
1117
1118# -----------------------------------------------------------------------------
1119#                          === Grammar Representation ===
1120#
1121# The following functions, classes, and variables are used to represent and
1122# manipulate the rules that make up a grammar.
1123# -----------------------------------------------------------------------------
1124
1125import re
1126
1127# regex matching identifiers
1128_is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$')
1129
1130# -----------------------------------------------------------------------------
1131# class Production:
1132#
1133# This class stores the raw information about a single production or grammar rule.
1134# A grammar rule refers to a specification such as this:
1135#
1136#       expr : expr PLUS term
1137#
1138# Here are the basic attributes defined on all productions
1139#
1140#       name     - Name of the production.  For example 'expr'
1141#       prod     - A list of symbols on the right side ['expr','PLUS','term']
1142#       prec     - Production precedence level
1143#       number   - Production number.
1144#       func     - Function that executes on reduce
1145#       file     - File where production function is defined
1146#       lineno   - Line number where production function is defined
1147#
1148# The following attributes are defined or optional.
1149#
1150#       len       - Length of the production (number of symbols on right hand side)
1151#       usyms     - Set of unique symbols found in the production
1152# -----------------------------------------------------------------------------
1153
1154class Production(object):
1155    reduced = 0
1156    def __init__(self,number,name,prod,precedence=('right',0),func=None,file='',line=0):
1157        self.name     = name
1158        self.prod     = tuple(prod)
1159        self.number   = number
1160        self.func     = func
1161        self.callable = None
1162        self.file     = file
1163        self.line     = line
1164        self.prec     = precedence
1165
1166        # Internal settings used during table construction
1167
1168        self.len  = len(self.prod)   # Length of the production
1169
1170        # Create a list of unique production symbols used in the production
1171        self.usyms = [ ]
1172        for s in self.prod:
1173            if s not in self.usyms:
1174                self.usyms.append(s)
1175
1176        # List of all LR items for the production
1177        self.lr_items = []
1178        self.lr_next = None
1179
1180        # Create a string representation
1181        if self.prod:
1182            self.str = "%s -> %s" % (self.name," ".join(self.prod))
1183        else:
1184            self.str = "%s -> <empty>" % self.name
1185
1186    def __str__(self):
1187        return self.str
1188
1189    def __repr__(self):
1190        return "Production("+str(self)+")"
1191
1192    def __len__(self):
1193        return len(self.prod)
1194
1195    def __nonzero__(self):
1196        return 1
1197
1198    def __getitem__(self,index):
1199        return self.prod[index]
1200
1201    # Return the nth lr_item from the production (or None if at the end)
1202    def lr_item(self,n):
1203        if n > len(self.prod): return None
1204        p = LRItem(self,n)
1205
1206        # Precompute the list of productions immediately following.  Hack. Remove later
1207        try:
1208            p.lr_after = self.Prodnames[p.prod[n+1]]
1209        except (IndexError,KeyError):
1210            p.lr_after = []
1211        try:
1212            p.lr_before = p.prod[n-1]
1213        except IndexError:
1214            p.lr_before = None
1215
1216        return p
1217
1218    # Bind the production function name to a callable
1219    def bind(self,pdict):
1220        if self.func:
1221            self.callable = pdict[self.func]
1222
1223# This class serves as a minimal standin for Production objects when
1224# reading table data from files.   It only contains information
1225# actually used by the LR parsing engine, plus some additional
1226# debugging information.
1227class MiniProduction(object):
1228    def __init__(self,str,name,len,func,file,line):
1229        self.name     = name
1230        self.len      = len
1231        self.func     = func
1232        self.callable = None
1233        self.file     = file
1234        self.line     = line
1235        self.str      = str
1236    def __str__(self):
1237        return self.str
1238    def __repr__(self):
1239        return "MiniProduction(%s)" % self.str
1240
1241    # Bind the production function name to a callable
1242    def bind(self,pdict):
1243        if self.func:
1244            self.callable = pdict[self.func]
1245
1246
1247# -----------------------------------------------------------------------------
1248# class LRItem
1249#
1250# This class represents a specific stage of parsing a production rule.  For
1251# example:
1252#
1253#       expr : expr . PLUS term
1254#
1255# In the above, the "." represents the current location of the parse.  Here
1256# basic attributes:
1257#
1258#       name       - Name of the production.  For example 'expr'
1259#       prod       - A list of symbols on the right side ['expr','.', 'PLUS','term']
1260#       number     - Production number.
1261#
1262#       lr_next      Next LR item. Example, if we are ' expr -> expr . PLUS term'
1263#                    then lr_next refers to 'expr -> expr PLUS . term'
1264#       lr_index   - LR item index (location of the ".") in the prod list.
1265#       lookaheads - LALR lookahead symbols for this item
1266#       len        - Length of the production (number of symbols on right hand side)
1267#       lr_after    - List of all productions that immediately follow
1268#       lr_before   - Grammar symbol immediately before
1269# -----------------------------------------------------------------------------
1270
1271class LRItem(object):
1272    def __init__(self,p,n):
1273        self.name       = p.name
1274        self.prod       = list(p.prod)
1275        self.number     = p.number
1276        self.lr_index   = n
1277        self.lookaheads = { }
1278        self.prod.insert(n,".")
1279        self.prod       = tuple(self.prod)
1280        self.len        = len(self.prod)
1281        self.usyms      = p.usyms
1282
1283    def __str__(self):
1284        if self.prod:
1285            s = "%s -> %s" % (self.name," ".join(self.prod))
1286        else:
1287            s = "%s -> <empty>" % self.name
1288        return s
1289
1290    def __repr__(self):
1291        return "LRItem("+str(self)+")"
1292
1293# -----------------------------------------------------------------------------
1294# rightmost_terminal()
1295#
1296# Return the rightmost terminal from a list of symbols.  Used in add_production()
1297# -----------------------------------------------------------------------------
1298def rightmost_terminal(symbols, terminals):
1299    i = len(symbols) - 1
1300    while i >= 0:
1301        if symbols[i] in terminals:
1302            return symbols[i]
1303        i -= 1
1304    return None
1305
1306# -----------------------------------------------------------------------------
1307#                           === GRAMMAR CLASS ===
1308#
1309# The following class represents the contents of the specified grammar along
1310# with various computed properties such as first sets, follow sets, LR items, etc.
1311# This data is used for critical parts of the table generation process later.
1312# -----------------------------------------------------------------------------
1313
1314class GrammarError(YaccError): pass
1315
1316class Grammar(object):
1317    def __init__(self,terminals):
1318        self.Productions  = [None]  # A list of all of the productions.  The first
1319                                    # entry is always reserved for the purpose of
1320                                    # building an augmented grammar
1321
1322        self.Prodnames    = { }     # A dictionary mapping the names of nonterminals to a list of all
1323                                    # productions of that nonterminal.
1324
1325        self.Prodmap      = { }     # A dictionary that is only used to detect duplicate
1326                                    # productions.
1327
1328        self.Terminals    = { }     # A dictionary mapping the names of terminal symbols to a
1329                                    # list of the rules where they are used.
1330
1331        for term in terminals:
1332            self.Terminals[term] = []
1333
1334        self.Terminals['error'] = []
1335
1336        self.Nonterminals = { }     # A dictionary mapping names of nonterminals to a list
1337                                    # of rule numbers where they are used.
1338
1339        self.First        = { }     # A dictionary of precomputed FIRST(x) symbols
1340
1341        self.Follow       = { }     # A dictionary of precomputed FOLLOW(x) symbols
1342
1343        self.Precedence   = { }     # Precedence rules for each terminal. Contains tuples of the
1344                                    # form ('right',level) or ('nonassoc', level) or ('left',level)
1345
1346        self.UsedPrecedence = { }   # Precedence rules that were actually used by the grammer.
1347                                    # This is only used to provide error checking and to generate
1348                                    # a warning about unused precedence rules.
1349
1350        self.Start = None           # Starting symbol for the grammar
1351
1352
1353    def __len__(self):
1354        return len(self.Productions)
1355
1356    def __getitem__(self,index):
1357        return self.Productions[index]
1358
1359    # -----------------------------------------------------------------------------
1360    # set_precedence()
1361    #
1362    # Sets the precedence for a given terminal. assoc is the associativity such as
1363    # 'left','right', or 'nonassoc'.  level is a numeric level.
1364    #
1365    # -----------------------------------------------------------------------------
1366
1367    def set_precedence(self,term,assoc,level):
1368        assert self.Productions == [None],"Must call set_precedence() before add_production()"
1369        if term in self.Precedence:
1370            raise GrammarError("Precedence already specified for terminal '%s'" % term)
1371        if assoc not in ['left','right','nonassoc']:
1372            raise GrammarError("Associativity must be one of 'left','right', or 'nonassoc'")
1373        self.Precedence[term] = (assoc,level)
1374
1375    # -----------------------------------------------------------------------------
1376    # add_production()
1377    #
1378    # Given an action function, this function assembles a production rule and
1379    # computes its precedence level.
1380    #
1381    # The production rule is supplied as a list of symbols.   For example,
1382    # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and
1383    # symbols ['expr','PLUS','term'].
1384    #
1385    # Precedence is determined by the precedence of the right-most non-terminal
1386    # or the precedence of a terminal specified by %prec.
1387    #
1388    # A variety of error checks are performed to make sure production symbols
1389    # are valid and that %prec is used correctly.
1390    # -----------------------------------------------------------------------------
1391
1392    def add_production(self,prodname,syms,func=None,file='',line=0):
1393
1394        if prodname in self.Terminals:
1395            raise GrammarError("%s:%d: Illegal rule name '%s'. Already defined as a token" % (file,line,prodname))
1396        if prodname == 'error':
1397            raise GrammarError("%s:%d: Illegal rule name '%s'. error is a reserved word" % (file,line,prodname))
1398        if not _is_identifier.match(prodname):
1399            raise GrammarError("%s:%d: Illegal rule name '%s'" % (file,line,prodname))
1400
1401        # Look for literal tokens
1402        for n,s in enumerate(syms):
1403            if s[0] in "'\"":
1404                 try:
1405                     c = eval(s)
1406                     if (len(c) > 1):
1407                          raise GrammarError("%s:%d: Literal token %s in rule '%s' may only be a single character" % (file,line,s, prodname))
1408                     if not c in self.Terminals:
1409                          self.Terminals[c] = []
1410                     syms[n] = c
1411                     continue
1412                 except SyntaxError:
1413                     pass
1414            if not _is_identifier.match(s) and s != '%prec':
1415                raise GrammarError("%s:%d: Illegal name '%s' in rule '%s'" % (file,line,s, prodname))
1416
1417        # Determine the precedence level
1418        if '%prec' in syms:
1419            if syms[-1] == '%prec':
1420                raise GrammarError("%s:%d: Syntax error. Nothing follows %%prec" % (file,line))
1421            if syms[-2] != '%prec':
1422                raise GrammarError("%s:%d: Syntax error. %%prec can only appear at the end of a grammar rule" % (file,line))
1423            precname = syms[-1]
1424            prodprec = self.Precedence.get(precname,None)
1425            if not prodprec:
1426                raise GrammarError("%s:%d: Nothing known about the precedence of '%s'" % (file,line,precname))
1427            else:
1428                self.UsedPrecedence[precname] = 1
1429            del syms[-2:]     # Drop %prec from the rule
1430        else:
1431            # If no %prec, precedence is determined by the rightmost terminal symbol
1432            precname = rightmost_terminal(syms,self.Terminals)
1433            prodprec = self.Precedence.get(precname,('right',0))
1434
1435        # See if the rule is already in the rulemap
1436        map = "%s -> %s" % (prodname,syms)
1437        if map in self.Prodmap:
1438            m = self.Prodmap[map]
1439            raise GrammarError("%s:%d: Duplicate rule %s. " % (file,line, m) +
1440                               "Previous definition at %s:%d" % (m.file, m.line))
1441
1442        # From this point on, everything is valid.  Create a new Production instance
1443        pnumber  = len(self.Productions)
1444        if not prodname in self.Nonterminals:
1445            self.Nonterminals[prodname] = [ ]
1446
1447        # Add the production number to Terminals and Nonterminals
1448        for t in syms:
1449            if t in self.Terminals:
1450                self.Terminals[t].append(pnumber)
1451            else:
1452                if not t in self.Nonterminals:
1453                    self.Nonterminals[t] = [ ]
1454                self.Nonterminals[t].append(pnumber)
1455
1456        # Create a production and add it to the list of productions
1457        p = Production(pnumber,prodname,syms,prodprec,func,file,line)
1458        self.Productions.append(p)
1459        self.Prodmap[map] = p
1460
1461        # Add to the global productions list
1462        try:
1463            self.Prodnames[prodname].append(p)
1464        except KeyError:
1465            self.Prodnames[prodname] = [ p ]
1466        return 0
1467
1468    # -----------------------------------------------------------------------------
1469    # set_start()
1470    #
1471    # Sets the starting symbol and creates the augmented grammar.  Production
1472    # rule 0 is S' -> start where start is the start symbol.
1473    # -----------------------------------------------------------------------------
1474
1475    def set_start(self,start=None):
1476        if not start:
1477            start = self.Productions[1].name
1478        if start not in self.Nonterminals:
1479            raise GrammarError("start symbol %s undefined" % start)
1480        self.Productions[0] = Production(0,"S'",[start])
1481        self.Nonterminals[start].append(0)
1482        self.Start = start
1483
1484    # -----------------------------------------------------------------------------
1485    # find_unreachable()
1486    #
1487    # Find all of the nonterminal symbols that can't be reached from the starting
1488    # symbol.  Returns a list of nonterminals that can't be reached.
1489    # -----------------------------------------------------------------------------
1490
1491    def find_unreachable(self):
1492
1493        # Mark all symbols that are reachable from a symbol s
1494        def mark_reachable_from(s):
1495            if reachable[s]:
1496                # We've already reached symbol s.
1497                return
1498            reachable[s] = 1
1499            for p in self.Prodnames.get(s,[]):
1500                for r in p.prod:
1501                    mark_reachable_from(r)
1502
1503        reachable   = { }
1504        for s in list(self.Terminals) + list(self.Nonterminals):
1505            reachable[s] = 0
1506
1507        mark_reachable_from( self.Productions[0].prod[0] )
1508
1509        return [s for s in list(self.Nonterminals)
1510                        if not reachable[s]]
1511
1512    # -----------------------------------------------------------------------------
1513    # infinite_cycles()
1514    #
1515    # This function looks at the various parsing rules and tries to detect
1516    # infinite recursion cycles (grammar rules where there is no possible way
1517    # to derive a string of only terminals).
1518    # -----------------------------------------------------------------------------
1519
1520    def infinite_cycles(self):
1521        terminates = {}
1522
1523        # Terminals:
1524        for t in self.Terminals:
1525            terminates[t] = 1
1526
1527        terminates['$end'] = 1
1528
1529        # Nonterminals:
1530
1531        # Initialize to false:
1532        for n in self.Nonterminals:
1533            terminates[n] = 0
1534
1535        # Then propagate termination until no change:
1536        while 1:
1537            some_change = 0
1538            for (n,pl) in self.Prodnames.items():
1539                # Nonterminal n terminates iff any of its productions terminates.
1540                for p in pl:
1541                    # Production p terminates iff all of its rhs symbols terminate.
1542                    for s in p.prod:
1543                        if not terminates[s]:
1544                            # The symbol s does not terminate,
1545                            # so production p does not terminate.
1546                            p_terminates = 0
1547                            break
1548                    else:
1549                        # didn't break from the loop,
1550                        # so every symbol s terminates
1551                        # so production p terminates.
1552                        p_terminates = 1
1553
1554                    if p_terminates:
1555                        # symbol n terminates!
1556                        if not terminates[n]:
1557                            terminates[n] = 1
1558                            some_change = 1
1559                        # Don't need to consider any more productions for this n.
1560                        break
1561
1562            if not some_change:
1563                break
1564
1565        infinite = []
1566        for (s,term) in terminates.items():
1567            if not term:
1568                if not s in self.Prodnames and not s in self.Terminals and s != 'error':
1569                    # s is used-but-not-defined, and we've already warned of that,
1570                    # so it would be overkill to say that it's also non-terminating.
1571                    pass
1572                else:
1573                    infinite.append(s)
1574
1575        return infinite
1576
1577
1578    # -----------------------------------------------------------------------------
1579    # undefined_symbols()
1580    #
1581    # Find all symbols that were used the grammar, but not defined as tokens or
1582    # grammar rules.  Returns a list of tuples (sym, prod) where sym in the symbol
1583    # and prod is the production where the symbol was used.
1584    # -----------------------------------------------------------------------------
1585    def undefined_symbols(self):
1586        result = []
1587        for p in self.Productions:
1588            if not p: continue
1589
1590            for s in p.prod:
1591                if not s in self.Prodnames and not s in self.Terminals and s != 'error':
1592                    result.append((s,p))
1593        return result
1594
1595    # -----------------------------------------------------------------------------
1596    # unused_terminals()
1597    #
1598    # Find all terminals that were defined, but not used by the grammar.  Returns
1599    # a list of all symbols.
1600    # -----------------------------------------------------------------------------
1601    def unused_terminals(self):
1602        unused_tok = []
1603        for s,v in self.Terminals.items():
1604            if s != 'error' and not v:
1605                unused_tok.append(s)
1606
1607        return unused_tok
1608
1609    # ------------------------------------------------------------------------------
1610    # unused_rules()
1611    #
1612    # Find all grammar rules that were defined,  but not used (maybe not reachable)
1613    # Returns a list of productions.
1614    # ------------------------------------------------------------------------------
1615
1616    def unused_rules(self):
1617        unused_prod = []
1618        for s,v in self.Nonterminals.items():
1619            if not v:
1620                p = self.Prodnames[s][0]
1621                unused_prod.append(p)
1622        return unused_prod
1623
1624    # -----------------------------------------------------------------------------
1625    # unused_precedence()
1626    #
1627    # Returns a list of tuples (term,precedence) corresponding to precedence
1628    # rules that were never used by the grammar.  term is the name of the terminal
1629    # on which precedence was applied and precedence is a string such as 'left' or
1630    # 'right' corresponding to the type of precedence.
1631    # -----------------------------------------------------------------------------
1632
1633    def unused_precedence(self):
1634        unused = []
1635        for termname in self.Precedence:
1636            if not (termname in self.Terminals or termname in self.UsedPrecedence):
1637                unused.append((termname,self.Precedence[termname][0]))
1638
1639        return unused
1640
1641    # -------------------------------------------------------------------------
1642    # _first()
1643    #
1644    # Compute the value of FIRST1(beta) where beta is a tuple of symbols.
1645    #
1646    # During execution of compute_first1, the result may be incomplete.
1647    # Afterward (e.g., when called from compute_follow()), it will be complete.
1648    # -------------------------------------------------------------------------
1649    def _first(self,beta):
1650
1651        # We are computing First(x1,x2,x3,...,xn)
1652        result = [ ]
1653        for x in beta:
1654            x_produces_empty = 0
1655
1656            # Add all the non-<empty> symbols of First[x] to the result.
1657            for f in self.First[x]:
1658                if f == '<empty>':
1659                    x_produces_empty = 1
1660                else:
1661                    if f not in result: result.append(f)
1662
1663            if x_produces_empty:
1664                # We have to consider the next x in beta,
1665                # i.e. stay in the loop.
1666                pass
1667            else:
1668                # We don't have to consider any further symbols in beta.
1669                break
1670        else:
1671            # There was no 'break' from the loop,
1672            # so x_produces_empty was true for all x in beta,
1673            # so beta produces empty as well.
1674            result.append('<empty>')
1675
1676        return result
1677
1678    # -------------------------------------------------------------------------
1679    # compute_first()
1680    #
1681    # Compute the value of FIRST1(X) for all symbols
1682    # -------------------------------------------------------------------------
1683    def compute_first(self):
1684        if self.First:
1685            return self.First
1686
1687        # Terminals:
1688        for t in self.Terminals:
1689            self.First[t] = [t]
1690
1691        self.First['$end'] = ['$end']
1692
1693        # Nonterminals:
1694
1695        # Initialize to the empty set:
1696        for n in self.Nonterminals:
1697            self.First[n] = []
1698
1699        # Then propagate symbols until no change:
1700        while 1:
1701            some_change = 0
1702            for n in self.Nonterminals:
1703                for p in self.Prodnames[n]:
1704                    for f in self._first(p.prod):
1705                        if f not in self.First[n]:
1706                            self.First[n].append( f )
1707                            some_change = 1
1708            if not some_change:
1709                break
1710
1711        return self.First
1712
1713    # ---------------------------------------------------------------------
1714    # compute_follow()
1715    #
1716    # Computes all of the follow sets for every non-terminal symbol.  The
1717    # follow set is the set of all symbols that might follow a given
1718    # non-terminal.  See the Dragon book, 2nd Ed. p. 189.
1719    # ---------------------------------------------------------------------
1720    def compute_follow(self,start=None):
1721        # If already computed, return the result
1722        if self.Follow:
1723            return self.Follow
1724
1725        # If first sets not computed yet, do that first.
1726        if not self.First:
1727            self.compute_first()
1728
1729        # Add '$end' to the follow list of the start symbol
1730        for k in self.Nonterminals:
1731            self.Follow[k] = [ ]
1732
1733        if not start:
1734            start = self.Productions[1].name
1735
1736        self.Follow[start] = [ '$end' ]
1737
1738        while 1:
1739            didadd = 0
1740            for p in self.Productions[1:]:
1741                # Here is the production set
1742                for i in range(len(p.prod)):
1743                    B = p.prod[i]
1744                    if B in self.Nonterminals:
1745                        # Okay. We got a non-terminal in a production
1746                        fst = self._first(p.prod[i+1:])
1747                        hasempty = 0
1748                        for f in fst:
1749                            if f != '<empty>' and f not in self.Follow[B]:
1750                                self.Follow[B].append(f)
1751                                didadd = 1
1752                            if f == '<empty>':
1753                                hasempty = 1
1754                        if hasempty or i == (len(p.prod)-1):
1755                            # Add elements of follow(a) to follow(b)
1756                            for f in self.Follow[p.name]:
1757                                if f not in self.Follow[B]:
1758                                    self.Follow[B].append(f)
1759                                    didadd = 1
1760            if not didadd: break
1761        return self.Follow
1762
1763
1764    # -----------------------------------------------------------------------------
1765    # build_lritems()
1766    #
1767    # This function walks the list of productions and builds a complete set of the
1768    # LR items.  The LR items are stored in two ways:  First, they are uniquely
1769    # numbered and placed in the list _lritems.  Second, a linked list of LR items
1770    # is built for each production.  For example:
1771    #
1772    #   E -> E PLUS E
1773    #
1774    # Creates the list
1775    #
1776    #  [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ]
1777    # -----------------------------------------------------------------------------
1778
1779    def build_lritems(self):
1780        for p in self.Productions:
1781            lastlri = p
1782            i = 0
1783            lr_items = []
1784            while 1:
1785                if i > len(p):
1786                    lri = None
1787                else:
1788                    lri = LRItem(p,i)
1789                    # Precompute the list of productions immediately following
1790                    try:
1791                        lri.lr_after = self.Prodnames[lri.prod[i+1]]
1792                    except (IndexError,KeyError):
1793                        lri.lr_after = []
1794                    try:
1795                        lri.lr_before = lri.prod[i-1]
1796                    except IndexError:
1797                        lri.lr_before = None
1798
1799                lastlri.lr_next = lri
1800                if not lri: break
1801                lr_items.append(lri)
1802                lastlri = lri
1803                i += 1
1804            p.lr_items = lr_items
1805
1806# -----------------------------------------------------------------------------
1807#                            == Class LRTable ==
1808#
1809# This basic class represents a basic table of LR parsing information.
1810# Methods for generating the tables are not defined here.  They are defined
1811# in the derived class LRGeneratedTable.
1812# -----------------------------------------------------------------------------
1813
1814class VersionError(YaccError): pass
1815
1816class LRTable(object):
1817    def __init__(self):
1818        self.lr_action = None
1819        self.lr_goto = None
1820        self.lr_productions = None
1821        self.lr_method = None
1822
1823    def read_table(self,module):
1824        if isinstance(module,types.ModuleType):
1825            parsetab = module
1826        else:
1827            if sys.version_info[0] < 3:
1828                exec("import %s as parsetab" % module)
1829            else:
1830                env = { }
1831                exec("import %s as parsetab" % module, env, env)
1832                parsetab = env['parsetab']
1833
1834        if parsetab._tabversion != __tabversion__:
1835            raise VersionError("yacc table file version is out of date")
1836
1837        self.lr_action = parsetab._lr_action
1838        self.lr_goto = parsetab._lr_goto
1839
1840        self.lr_productions = []
1841        for p in parsetab._lr_productions:
1842            self.lr_productions.append(MiniProduction(*p))
1843
1844        self.lr_method = parsetab._lr_method
1845        return parsetab._lr_signature
1846
1847    def read_pickle(self,filename):
1848        try:
1849            import cPickle as pickle
1850        except ImportError:
1851            import pickle
1852
1853        in_f = open(filename,"rb")
1854
1855        tabversion = pickle.load(in_f)
1856        if tabversion != __tabversion__:
1857            raise VersionError("yacc table file version is out of date")
1858        self.lr_method = pickle.load(in_f)
1859        signature      = pickle.load(in_f)
1860        self.lr_action = pickle.load(in_f)
1861        self.lr_goto   = pickle.load(in_f)
1862        productions    = pickle.load(in_f)
1863
1864        self.lr_productions = []
1865        for p in productions:
1866            self.lr_productions.append(MiniProduction(*p))
1867
1868        in_f.close()
1869        return signature
1870
1871    # Bind all production function names to callable objects in pdict
1872    def bind_callables(self,pdict):
1873        for p in self.lr_productions:
1874            p.bind(pdict)
1875
1876# -----------------------------------------------------------------------------
1877#                           === LR Generator ===
1878#
1879# The following classes and functions are used to generate LR parsing tables on
1880# a grammar.
1881# -----------------------------------------------------------------------------
1882
1883# -----------------------------------------------------------------------------
1884# digraph()
1885# traverse()
1886#
1887# The following two functions are used to compute set valued functions
1888# of the form:
1889#
1890#     F(x) = F'(x) U U{F(y) | x R y}
1891#
1892# This is used to compute the values of Read() sets as well as FOLLOW sets
1893# in LALR(1) generation.
1894#
1895# Inputs:  X    - An input set
1896#          R    - A relation
1897#          FP   - Set-valued function
1898# ------------------------------------------------------------------------------
1899
1900def digraph(X,R,FP):
1901    N = { }
1902    for x in X:
1903       N[x] = 0
1904    stack = []
1905    F = { }
1906    for x in X:
1907        if N[x] == 0: traverse(x,N,stack,F,X,R,FP)
1908    return F
1909
1910def traverse(x,N,stack,F,X,R,FP):
1911    stack.append(x)
1912    d = len(stack)
1913    N[x] = d
1914    F[x] = FP(x)             # F(X) <- F'(x)
1915
1916    rel = R(x)               # Get y's related to x
1917    for y in rel:
1918        if N[y] == 0:
1919             traverse(y,N,stack,F,X,R,FP)
1920        N[x] = min(N[x],N[y])
1921        for a in F.get(y,[]):
1922            if a not in F[x]: F[x].append(a)
1923    if N[x] == d:
1924       N[stack[-1]] = MAXINT
1925       F[stack[-1]] = F[x]
1926       element = stack.pop()
1927       while element != x:
1928           N[stack[-1]] = MAXINT
1929           F[stack[-1]] = F[x]
1930           element = stack.pop()
1931
1932class LALRError(YaccError): pass
1933
1934# -----------------------------------------------------------------------------
1935#                             == LRGeneratedTable ==
1936#
1937# This class implements the LR table generation algorithm.  There are no
1938# public methods except for write()
1939# -----------------------------------------------------------------------------
1940
1941class LRGeneratedTable(LRTable):
1942    def __init__(self,grammar,method='LALR',log=None):
1943        if method not in ['SLR','LALR']:
1944            raise LALRError("Unsupported method %s" % method)
1945
1946        self.grammar = grammar
1947        self.lr_method = method
1948
1949        # Set up the logger
1950        if not log:
1951            log = NullLogger()
1952        self.log = log
1953
1954        # Internal attributes
1955        self.lr_action     = {}        # Action table
1956        self.lr_goto       = {}        # Goto table
1957        self.lr_productions  = grammar.Productions    # Copy of grammar Production array
1958        self.lr_goto_cache = {}        # Cache of computed gotos
1959        self.lr0_cidhash   = {}        # Cache of closures
1960
1961        self._add_count    = 0         # Internal counter used to detect cycles
1962
1963        # Diagonistic information filled in by the table generator
1964        self.sr_conflict   = 0
1965        self.rr_conflict   = 0
1966        self.conflicts     = []        # List of conflicts
1967
1968        self.sr_conflicts  = []
1969        self.rr_conflicts  = []
1970
1971        # Build the tables
1972        self.grammar.build_lritems()
1973        self.grammar.compute_first()
1974        self.grammar.compute_follow()
1975        self.lr_parse_table()
1976
1977    # Compute the LR(0) closure operation on I, where I is a set of LR(0) items.
1978
1979    def lr0_closure(self,I):
1980        self._add_count += 1
1981
1982        # Add everything in I to J
1983        J = I[:]
1984        didadd = 1
1985        while didadd:
1986            didadd = 0
1987            for j in J:
1988                for x in j.lr_after:
1989                    if getattr(x,"lr0_added",0) == self._add_count: continue
1990                    # Add B --> .G to J
1991                    J.append(x.lr_next)
1992                    x.lr0_added = self._add_count
1993                    didadd = 1
1994
1995        return J
1996
1997    # Compute the LR(0) goto function goto(I,X) where I is a set
1998    # of LR(0) items and X is a grammar symbol.   This function is written
1999    # in a way that guarantees uniqueness of the generated goto sets
2000    # (i.e. the same goto set will never be returned as two different Python
2001    # objects).  With uniqueness, we can later do fast set comparisons using
2002    # id(obj) instead of element-wise comparison.
2003
2004    def lr0_goto(self,I,x):
2005        # First we look for a previously cached entry
2006        g = self.lr_goto_cache.get((id(I),x),None)
2007        if g: return g
2008
2009        # Now we generate the goto set in a way that guarantees uniqueness
2010        # of the result
2011
2012        s = self.lr_goto_cache.get(x,None)
2013        if not s:
2014            s = { }
2015            self.lr_goto_cache[x] = s
2016
2017        gs = [ ]
2018        for p in I:
2019            n = p.lr_next
2020            if n and n.lr_before == x:
2021                s1 = s.get(id(n),None)
2022                if not s1:
2023                    s1 = { }
2024                    s[id(n)] = s1
2025                gs.append(n)
2026                s = s1
2027        g = s.get('$end',None)
2028        if not g:
2029            if gs:
2030                g = self.lr0_closure(gs)
2031                s['$end'] = g
2032            else:
2033                s['$end'] = gs
2034        self.lr_goto_cache[(id(I),x)] = g
2035        return g
2036
2037    # Compute the LR(0) sets of item function
2038    def lr0_items(self):
2039
2040        C = [ self.lr0_closure([self.grammar.Productions[0].lr_next]) ]
2041        i = 0
2042        for I in C:
2043            self.lr0_cidhash[id(I)] = i
2044            i += 1
2045
2046        # Loop over the items in C and each grammar symbols
2047        i = 0
2048        while i < len(C):
2049            I = C[i]
2050            i += 1
2051
2052            # Collect all of the symbols that could possibly be in the goto(I,X) sets
2053            asyms = { }
2054            for ii in I:
2055                for s in ii.usyms:
2056                    asyms[s] = None
2057
2058            for x in asyms:
2059                g = self.lr0_goto(I,x)
2060                if not g:  continue
2061                if id(g) in self.lr0_cidhash: continue
2062                self.lr0_cidhash[id(g)] = len(C)
2063                C.append(g)
2064
2065        return C
2066
2067    # -----------------------------------------------------------------------------
2068    #                       ==== LALR(1) Parsing ====
2069    #
2070    # LALR(1) parsing is almost exactly the same as SLR except that instead of
2071    # relying upon Follow() sets when performing reductions, a more selective
2072    # lookahead set that incorporates the state of the LR(0) machine is utilized.
2073    # Thus, we mainly just have to focus on calculating the lookahead sets.
2074    #
2075    # The method used here is due to DeRemer and Pennelo (1982).
2076    #
2077    # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
2078    #     Lookahead Sets", ACM Transactions on Programming Languages and Systems,
2079    #     Vol. 4, No. 4, Oct. 1982, pp. 615-649
2080    #
2081    # Further details can also be found in:
2082    #
2083    #  J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
2084    #      McGraw-Hill Book Company, (1985).
2085    #
2086    # -----------------------------------------------------------------------------
2087
2088    # -----------------------------------------------------------------------------
2089    # compute_nullable_nonterminals()
2090    #
2091    # Creates a dictionary containing all of the non-terminals that might produce
2092    # an empty production.
2093    # -----------------------------------------------------------------------------
2094
2095    def compute_nullable_nonterminals(self):
2096        nullable = {}
2097        num_nullable = 0
2098        while 1:
2099           for p in self.grammar.Productions[1:]:
2100               if p.len == 0:
2101                    nullable[p.name] = 1
2102                    continue
2103               for t in p.prod:
2104                    if not t in nullable: break
2105               else:
2106                    nullable[p.name] = 1
2107           if len(nullable) == num_nullable: break
2108           num_nullable = len(nullable)
2109        return nullable
2110
2111    # -----------------------------------------------------------------------------
2112    # find_nonterminal_trans(C)
2113    #
2114    # Given a set of LR(0) items, this functions finds all of the non-terminal
2115    # transitions.    These are transitions in which a dot appears immediately before
2116    # a non-terminal.   Returns a list of tuples of the form (state,N) where state
2117    # is the state number and N is the nonterminal symbol.
2118    #
2119    # The input C is the set of LR(0) items.
2120    # -----------------------------------------------------------------------------
2121
2122    def find_nonterminal_transitions(self,C):
2123         trans = []
2124         for state in range(len(C)):
2125             for p in C[state]:
2126                 if p.lr_index < p.len - 1:
2127                      t = (state,p.prod[p.lr_index+1])
2128                      if t[1] in self.grammar.Nonterminals:
2129                            if t not in trans: trans.append(t)
2130             state = state + 1
2131         return trans
2132
2133    # -----------------------------------------------------------------------------
2134    # dr_relation()
2135    #
2136    # Computes the DR(p,A) relationships for non-terminal transitions.  The input
2137    # is a tuple (state,N) where state is a number and N is a nonterminal symbol.
2138    #
2139    # Returns a list of terminals.
2140    # -----------------------------------------------------------------------------
2141
2142    def dr_relation(self,C,trans,nullable):
2143        dr_set = { }
2144        state,N = trans
2145        terms = []
2146
2147        g = self.lr0_goto(C[state],N)
2148        for p in g:
2149           if p.lr_index < p.len - 1:
2150               a = p.prod[p.lr_index+1]
2151               if a in self.grammar.Terminals:
2152                   if a not in terms: terms.append(a)
2153
2154        # This extra bit is to handle the start state
2155        if state == 0 and N == self.grammar.Productions[0].prod[0]:
2156           terms.append('$end')
2157
2158        return terms
2159
2160    # -----------------------------------------------------------------------------
2161    # reads_relation()
2162    #
2163    # Computes the READS() relation (p,A) READS (t,C).
2164    # -----------------------------------------------------------------------------
2165
2166    def reads_relation(self,C, trans, empty):
2167        # Look for empty transitions
2168        rel = []
2169        state, N = trans
2170
2171        g = self.lr0_goto(C[state],N)
2172        j = self.lr0_cidhash.get(id(g),-1)
2173        for p in g:
2174            if p.lr_index < p.len - 1:
2175                 a = p.prod[p.lr_index + 1]
2176                 if a in empty:
2177                      rel.append((j,a))
2178
2179        return rel
2180
2181    # -----------------------------------------------------------------------------
2182    # compute_lookback_includes()
2183    #
2184    # Determines the lookback and includes relations
2185    #
2186    # LOOKBACK:
2187    #
2188    # This relation is determined by running the LR(0) state machine forward.
2189    # For example, starting with a production "N : . A B C", we run it forward
2190    # to obtain "N : A B C ."   We then build a relationship between this final
2191    # state and the starting state.   These relationships are stored in a dictionary
2192    # lookdict.
2193    #
2194    # INCLUDES:
2195    #
2196    # Computes the INCLUDE() relation (p,A) INCLUDES (p',B).
2197    #
2198    # This relation is used to determine non-terminal transitions that occur
2199    # inside of other non-terminal transition states.   (p,A) INCLUDES (p', B)
2200    # if the following holds:
2201    #
2202    #       B -> LAT, where T -> epsilon and p' -L-> p
2203    #
2204    # L is essentially a prefix (which may be empty), T is a suffix that must be
2205    # able to derive an empty string.  State p' must lead to state p with the string L.
2206    #
2207    # -----------------------------------------------------------------------------
2208
2209    def compute_lookback_includes(self,C,trans,nullable):
2210
2211        lookdict = {}          # Dictionary of lookback relations
2212        includedict = {}       # Dictionary of include relations
2213
2214        # Make a dictionary of non-terminal transitions
2215        dtrans = {}
2216        for t in trans:
2217            dtrans[t] = 1
2218
2219        # Loop over all transitions and compute lookbacks and includes
2220        for state,N in trans:
2221            lookb = []
2222            includes = []
2223            for p in C[state]:
2224                if p.name != N: continue
2225
2226                # Okay, we have a name match.  We now follow the production all the way
2227                # through the state machine until we get the . on the right hand side
2228
2229                lr_index = p.lr_index
2230                j = state
2231                while lr_index < p.len - 1:
2232                     lr_index = lr_index + 1
2233                     t = p.prod[lr_index]
2234
2235                     # Check to see if this symbol and state are a non-terminal transition
2236                     if (j,t) in dtrans:
2237                           # Yes.  Okay, there is some chance that this is an includes relation
2238                           # the only way to know for certain is whether the rest of the
2239                           # production derives empty
2240
2241                           li = lr_index + 1
2242                           while li < p.len:
2243                                if p.prod[li] in self.grammar.Terminals: break      # No forget it
2244                                if not p.prod[li] in nullable: break
2245                                li = li + 1
2246                           else:
2247                                # Appears to be a relation between (j,t) and (state,N)
2248                                includes.append((j,t))
2249
2250                     g = self.lr0_goto(C[j],t)               # Go to next set
2251                     j = self.lr0_cidhash.get(id(g),-1)     # Go to next state
2252
2253                # When we get here, j is the final state, now we have to locate the production
2254                for r in C[j]:
2255                     if r.name != p.name: continue
2256                     if r.len != p.len:   continue
2257                     i = 0
2258                     # This look is comparing a production ". A B C" with "A B C ."
2259                     while i < r.lr_index:
2260                          if r.prod[i] != p.prod[i+1]: break
2261                          i = i + 1
2262                     else:
2263                          lookb.append((j,r))
2264            for i in includes:
2265                 if not i in includedict: includedict[i] = []
2266                 includedict[i].append((state,N))
2267            lookdict[(state,N)] = lookb
2268
2269        return lookdict,includedict
2270
2271    # -----------------------------------------------------------------------------
2272    # compute_read_sets()
2273    #
2274    # Given a set of LR(0) items, this function computes the read sets.
2275    #
2276    # Inputs:  C        =  Set of LR(0) items
2277    #          ntrans   = Set of nonterminal transitions
2278    #          nullable = Set of empty transitions
2279    #
2280    # Returns a set containing the read sets
2281    # -----------------------------------------------------------------------------
2282
2283    def compute_read_sets(self,C, ntrans, nullable):
2284        FP = lambda x: self.dr_relation(C,x,nullable)
2285        R =  lambda x: self.reads_relation(C,x,nullable)
2286        F = digraph(ntrans,R,FP)
2287        return F
2288
2289    # -----------------------------------------------------------------------------
2290    # compute_follow_sets()
2291    #
2292    # Given a set of LR(0) items, a set of non-terminal transitions, a readset,
2293    # and an include set, this function computes the follow sets
2294    #
2295    # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
2296    #
2297    # Inputs:
2298    #            ntrans     = Set of nonterminal transitions
2299    #            readsets   = Readset (previously computed)
2300    #            inclsets   = Include sets (previously computed)
2301    #
2302    # Returns a set containing the follow sets
2303    # -----------------------------------------------------------------------------
2304
2305    def compute_follow_sets(self,ntrans,readsets,inclsets):
2306         FP = lambda x: readsets[x]
2307         R  = lambda x: inclsets.get(x,[])
2308         F = digraph(ntrans,R,FP)
2309         return F
2310
2311    # -----------------------------------------------------------------------------
2312    # add_lookaheads()
2313    #
2314    # Attaches the lookahead symbols to grammar rules.
2315    #
2316    # Inputs:    lookbacks         -  Set of lookback relations
2317    #            followset         -  Computed follow set
2318    #
2319    # This function directly attaches the lookaheads to productions contained
2320    # in the lookbacks set
2321    # -----------------------------------------------------------------------------
2322
2323    def add_lookaheads(self,lookbacks,followset):
2324        for trans,lb in lookbacks.items():
2325            # Loop over productions in lookback
2326            for state,p in lb:
2327                 if not state in p.lookaheads:
2328                      p.lookaheads[state] = []
2329                 f = followset.get(trans,[])
2330                 for a in f:
2331                      if a not in p.lookaheads[state]: p.lookaheads[state].append(a)
2332
2333    # -----------------------------------------------------------------------------
2334    # add_lalr_lookaheads()
2335    #
2336    # This function does all of the work of adding lookahead information for use
2337    # with LALR parsing
2338    # -----------------------------------------------------------------------------
2339
2340    def add_lalr_lookaheads(self,C):
2341        # Determine all of the nullable nonterminals
2342        nullable = self.compute_nullable_nonterminals()
2343
2344        # Find all non-terminal transitions
2345        trans = self.find_nonterminal_transitions(C)
2346
2347        # Compute read sets
2348        readsets = self.compute_read_sets(C,trans,nullable)
2349
2350        # Compute lookback/includes relations
2351        lookd, included = self.compute_lookback_includes(C,trans,nullable)
2352
2353        # Compute LALR FOLLOW sets
2354        followsets = self.compute_follow_sets(trans,readsets,included)
2355
2356        # Add all of the lookaheads
2357        self.add_lookaheads(lookd,followsets)
2358
2359    # -----------------------------------------------------------------------------
2360    # lr_parse_table()
2361    #
2362    # This function constructs the parse tables for SLR or LALR
2363    # -----------------------------------------------------------------------------
2364    def lr_parse_table(self):
2365        Productions = self.grammar.Productions
2366        Precedence  = self.grammar.Precedence
2367        goto   = self.lr_goto         # Goto array
2368        action = self.lr_action       # Action array
2369        log    = self.log             # Logger for output
2370
2371        actionp = { }                 # Action production array (temporary)
2372
2373        log.info("Parsing method: %s", self.lr_method)
2374
2375        # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
2376        # This determines the number of states
2377
2378        C = self.lr0_items()
2379
2380        if self.lr_method == 'LALR':
2381            self.add_lalr_lookaheads(C)
2382
2383        # Build the parser table, state by state
2384        st = 0
2385        for I in C:
2386            # Loop over each production in I
2387            actlist = [ ]              # List of actions
2388            st_action  = { }
2389            st_actionp = { }
2390            st_goto    = { }
2391            log.info("")
2392            log.info("state %d", st)
2393            log.info("")
2394            for p in I:
2395                log.info("    (%d) %s", p.number, str(p))
2396            log.info("")
2397
2398            for p in I:
2399                    if p.len == p.lr_index + 1:
2400                        if p.name == "S'":
2401                            # Start symbol. Accept!
2402                            st_action["$end"] = 0
2403                            st_actionp["$end"] = p
2404                        else:
2405                            # We are at the end of a production.  Reduce!
2406                            if self.lr_method == 'LALR':
2407                                laheads = p.lookaheads[st]
2408                            else:
2409                                laheads = self.grammar.Follow[p.name]
2410                            for a in laheads:
2411                                actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p)))
2412                                r = st_action.get(a,None)
2413                                if r is not None:
2414                                    # Whoa. Have a shift/reduce or reduce/reduce conflict
2415                                    if r > 0:
2416                                        # Need to decide on shift or reduce here
2417                                        # By default we favor shifting. Need to add
2418                                        # some precedence rules here.
2419                                        sprec,slevel = Productions[st_actionp[a].number].prec
2420                                        rprec,rlevel = Precedence.get(a,('right',0))
2421                                        if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')):
2422                                            # We really need to reduce here.
2423                                            st_action[a] = -p.number
2424                                            st_actionp[a] = p
2425                                            if not slevel and not rlevel:
2426                                                log.info("  ! shift/reduce conflict for %s resolved as reduce",a)
2427                                                self.sr_conflicts.append((st,a,'reduce'))
2428                                            Productions[p.number].reduced += 1
2429                                        elif (slevel == rlevel) and (rprec == 'nonassoc'):
2430                                            st_action[a] = None
2431                                        else:
2432                                            # Hmmm. Guess we'll keep the shift
2433                                            if not rlevel:
2434                                                log.info("  ! shift/reduce conflict for %s resolved as shift",a)
2435                                                self.sr_conflicts.append((st,a,'shift'))
2436                                    elif r < 0:
2437                                        # Reduce/reduce conflict.   In this case, we favor the rule
2438                                        # that was defined first in the grammar file
2439                                        oldp = Productions[-r]
2440                                        pp = Productions[p.number]
2441                                        if oldp.line > pp.line:
2442                                            st_action[a] = -p.number
2443                                            st_actionp[a] = p
2444                                            chosenp,rejectp = pp,oldp
2445                                            Productions[p.number].reduced += 1
2446                                            Productions[oldp.number].reduced -= 1
2447                                        else:
2448                                            chosenp,rejectp = oldp,pp
2449                                        self.rr_conflicts.append((st,chosenp,rejectp))
2450                                        log.info("  ! reduce/reduce conflict for %s resolved using rule %d (%s)", a,st_actionp[a].number, st_actionp[a])
2451                                    else:
2452                                        raise LALRError("Unknown conflict in state %d" % st)
2453                                else:
2454                                    st_action[a] = -p.number
2455                                    st_actionp[a] = p
2456                                    Productions[p.number].reduced += 1
2457                    else:
2458                        i = p.lr_index
2459                        a = p.prod[i+1]       # Get symbol right after the "."
2460                        if a in self.grammar.Terminals:
2461                            g = self.lr0_goto(I,a)
2462                            j = self.lr0_cidhash.get(id(g),-1)
2463                            if j >= 0:
2464                                # We are in a shift state
2465                                actlist.append((a,p,"shift and go to state %d" % j))
2466                                r = st_action.get(a,None)
2467                                if r is not None:
2468                                    # Whoa have a shift/reduce or shift/shift conflict
2469                                    if r > 0:
2470                                        if r != j:
2471                                            raise LALRError("Shift/shift conflict in state %d" % st)
2472                                    elif r < 0:
2473                                        # Do a precedence check.
2474                                        #   -  if precedence of reduce rule is higher, we reduce.
2475                                        #   -  if precedence of reduce is same and left assoc, we reduce.
2476                                        #   -  otherwise we shift
2477                                        rprec,rlevel = Productions[st_actionp[a].number].prec
2478                                        sprec,slevel = Precedence.get(a,('right',0))
2479                                        if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')):
2480                                            # We decide to shift here... highest precedence to shift
2481                                            Productions[st_actionp[a].number].reduced -= 1
2482                                            st_action[a] = j
2483                                            st_actionp[a] = p
2484                                            if not rlevel:
2485                                                log.info("  ! shift/reduce conflict for %s resolved as shift",a)
2486                                                self.sr_conflicts.append((st,a,'shift'))
2487                                        elif (slevel == rlevel) and (rprec == 'nonassoc'):
2488                                            st_action[a] = None
2489                                        else:
2490                                            # Hmmm. Guess we'll keep the reduce
2491                                            if not slevel and not rlevel:
2492                                                log.info("  ! shift/reduce conflict for %s resolved as reduce",a)
2493                                                self.sr_conflicts.append((st,a,'reduce'))
2494
2495                                    else:
2496                                        raise LALRError("Unknown conflict in state %d" % st)
2497                                else:
2498                                    st_action[a] = j
2499                                    st_actionp[a] = p
2500
2501            # Print the actions associated with each terminal
2502            _actprint = { }
2503            for a,p,m in actlist:
2504                if a in st_action:
2505                    if p is st_actionp[a]:
2506                        log.info("    %-15s %s",a,m)
2507                        _actprint[(a,m)] = 1
2508            log.info("")
2509            # Print the actions that were not used. (debugging)
2510            not_used = 0
2511            for a,p,m in actlist:
2512                if a in st_action:
2513                    if p is not st_actionp[a]:
2514                        if not (a,m) in _actprint:
2515                            log.debug("  ! %-15s [ %s ]",a,m)
2516                            not_used = 1
2517                            _actprint[(a,m)] = 1
2518            if not_used:
2519                log.debug("")
2520
2521            # Construct the goto table for this state
2522
2523            nkeys = { }
2524            for ii in I:
2525                for s in ii.usyms:
2526                    if s in self.grammar.Nonterminals:
2527                        nkeys[s] = None
2528            for n in nkeys:
2529                g = self.lr0_goto(I,n)
2530                j = self.lr0_cidhash.get(id(g),-1)
2531                if j >= 0:
2532                    st_goto[n] = j
2533                    log.info("    %-30s shift and go to state %d",n,j)
2534
2535            action[st] = st_action
2536            actionp[st] = st_actionp
2537            goto[st] = st_goto
2538            st += 1
2539
2540
2541    # -----------------------------------------------------------------------------
2542    # write()
2543    #
2544    # This function writes the LR parsing tables to a file
2545    # -----------------------------------------------------------------------------
2546
2547    def write_table(self,modulename,outputdir='',signature=""):
2548        basemodulename = modulename.split(".")[-1]
2549        filename = os.path.join(outputdir,basemodulename) + ".py"
2550        try:
2551            f = open(filename,"w")
2552
2553            f.write("""
2554# %s
2555# This file is automatically generated. Do not edit.
2556_tabversion = %r
2557
2558_lr_method = %r
2559
2560_lr_signature = %r
2561    """ % (filename, __tabversion__, self.lr_method, signature))
2562
2563            # Change smaller to 0 to go back to original tables
2564            smaller = 1
2565
2566            # Factor out names to try and make smaller
2567            if smaller:
2568                items = { }
2569
2570                for s,nd in self.lr_action.items():
2571                   for name,v in nd.items():
2572                      i = items.get(name)
2573                      if not i:
2574                         i = ([],[])
2575                         items[name] = i
2576                      i[0].append(s)
2577                      i[1].append(v)
2578
2579                f.write("\n_lr_action_items = {")
2580                for k,v in items.items():
2581                    f.write("%r:([" % k)
2582                    for i in v[0]:
2583                        f.write("%r," % i)
2584                    f.write("],[")
2585                    for i in v[1]:
2586                        f.write("%r," % i)
2587
2588                    f.write("]),")
2589                f.write("}\n")
2590
2591                f.write("""
2592_lr_action = { }
2593for _k, _v in _lr_action_items.items():
2594   for _x,_y in zip(_v[0],_v[1]):
2595      if not _x in _lr_action:  _lr_action[_x] = { }
2596      _lr_action[_x][_k] = _y
2597del _lr_action_items
2598""")
2599
2600            else:
2601                f.write("\n_lr_action = { ");
2602                for k,v in self.lr_action.items():
2603                    f.write("(%r,%r):%r," % (k[0],k[1],v))
2604                f.write("}\n");
2605
2606            if smaller:
2607                # Factor out names to try and make smaller
2608                items = { }
2609
2610                for s,nd in self.lr_goto.items():
2611                   for name,v in nd.items():
2612                      i = items.get(name)
2613                      if not i:
2614                         i = ([],[])
2615                         items[name] = i
2616                      i[0].append(s)
2617                      i[1].append(v)
2618
2619                f.write("\n_lr_goto_items = {")
2620                for k,v in items.items():
2621                    f.write("%r:([" % k)
2622                    for i in v[0]:
2623                        f.write("%r," % i)
2624                    f.write("],[")
2625                    for i in v[1]:
2626                        f.write("%r," % i)
2627
2628                    f.write("]),")
2629                f.write("}\n")
2630
2631                f.write("""
2632_lr_goto = { }
2633for _k, _v in _lr_goto_items.items():
2634   for _x,_y in zip(_v[0],_v[1]):
2635       if not _x in _lr_goto: _lr_goto[_x] = { }
2636       _lr_goto[_x][_k] = _y
2637del _lr_goto_items
2638""")
2639            else:
2640                f.write("\n_lr_goto = { ");
2641                for k,v in self.lr_goto.items():
2642                    f.write("(%r,%r):%r," % (k[0],k[1],v))
2643                f.write("}\n");
2644
2645            # Write production table
2646            f.write("_lr_productions = [\n")
2647            for p in self.lr_productions:
2648                if p.func:
2649                    f.write("  (%r,%r,%d,%r,%r,%d),\n" % (p.str,p.name, p.len, p.func,p.file,p.line))
2650                else:
2651                    f.write("  (%r,%r,%d,None,None,None),\n" % (str(p),p.name, p.len))
2652            f.write("]\n")
2653            f.close()
2654
2655        except IOError:
2656            e = sys.exc_info()[1]
2657            sys.stderr.write("Unable to create '%s'\n" % filename)
2658            sys.stderr.write(str(e)+"\n")
2659            return
2660
2661
2662    # -----------------------------------------------------------------------------
2663    # pickle_table()
2664    #
2665    # This function pickles the LR parsing tables to a supplied file object
2666    # -----------------------------------------------------------------------------
2667
2668    def pickle_table(self,filename,signature=""):
2669        try:
2670            import cPickle as pickle
2671        except ImportError:
2672            import pickle
2673        outf = open(filename,"wb")
2674        pickle.dump(__tabversion__,outf,pickle_protocol)
2675        pickle.dump(self.lr_method,outf,pickle_protocol)
2676        pickle.dump(signature,outf,pickle_protocol)
2677        pickle.dump(self.lr_action,outf,pickle_protocol)
2678        pickle.dump(self.lr_goto,outf,pickle_protocol)
2679
2680        outp = []
2681        for p in self.lr_productions:
2682            if p.func:
2683                outp.append((p.str,p.name, p.len, p.func,p.file,p.line))
2684            else:
2685                outp.append((str(p),p.name,p.len,None,None,None))
2686        pickle.dump(outp,outf,pickle_protocol)
2687        outf.close()
2688
2689# -----------------------------------------------------------------------------
2690#                            === INTROSPECTION ===
2691#
2692# The following functions and classes are used to implement the PLY
2693# introspection features followed by the yacc() function itself.
2694# -----------------------------------------------------------------------------
2695
2696# -----------------------------------------------------------------------------
2697# get_caller_module_dict()
2698#
2699# This function returns a dictionary containing all of the symbols defined within
2700# a caller further down the call stack.  This is used to get the environment
2701# associated with the yacc() call if none was provided.
2702# -----------------------------------------------------------------------------
2703
2704def get_caller_module_dict(levels):
2705    try:
2706        raise RuntimeError
2707    except RuntimeError:
2708        e,b,t = sys.exc_info()
2709        f = t.tb_frame
2710        while levels > 0:
2711            f = f.f_back
2712            levels -= 1
2713        ldict = f.f_globals.copy()
2714        if f.f_globals != f.f_locals:
2715            ldict.update(f.f_locals)
2716
2717        return ldict
2718
2719# -----------------------------------------------------------------------------
2720# parse_grammar()
2721#
2722# This takes a raw grammar rule string and parses it into production data
2723# -----------------------------------------------------------------------------
2724def parse_grammar(doc,file,line):
2725    grammar = []
2726    # Split the doc string into lines
2727    pstrings = doc.splitlines()
2728    lastp = None
2729    dline = line
2730    for ps in pstrings:
2731        dline += 1
2732        p = ps.split()
2733        if not p: continue
2734        try:
2735            if p[0] == '|':
2736                # This is a continuation of a previous rule
2737                if not lastp:
2738                    raise SyntaxError("%s:%d: Misplaced '|'" % (file,dline))
2739                prodname = lastp
2740                syms = p[1:]
2741            else:
2742                prodname = p[0]
2743                lastp = prodname
2744                syms   = p[2:]
2745                assign = p[1]
2746                if assign != ':' and assign != '::=':
2747                    raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (file,dline))
2748
2749            grammar.append((file,dline,prodname,syms))
2750        except SyntaxError:
2751            raise
2752        except Exception:
2753            raise SyntaxError("%s:%d: Syntax error in rule '%s'" % (file,dline,ps.strip()))
2754
2755    return grammar
2756
2757# -----------------------------------------------------------------------------
2758# ParserReflect()
2759#
2760# This class represents information extracted for building a parser including
2761# start symbol, error function, tokens, precedence list, action functions,
2762# etc.
2763# -----------------------------------------------------------------------------
2764class ParserReflect(object):
2765    def __init__(self,pdict,log=None):
2766        self.pdict      = pdict
2767        self.start      = None
2768        self.error_func = None
2769        self.tokens     = None
2770        self.files      = {}
2771        self.grammar    = []
2772        self.error      = 0
2773
2774        if log is None:
2775            self.log = PlyLogger(sys.stderr)
2776        else:
2777            self.log = log
2778
2779    # Get all of the basic information
2780    def get_all(self):
2781        self.get_start()
2782        self.get_error_func()
2783        self.get_tokens()
2784        self.get_precedence()
2785        self.get_pfunctions()
2786
2787    # Validate all of the information
2788    def validate_all(self):
2789        self.validate_start()
2790        self.validate_error_func()
2791        self.validate_tokens()
2792        self.validate_precedence()
2793        self.validate_pfunctions()
2794        self.validate_files()
2795        return self.error
2796
2797    # Compute a signature over the grammar
2798    def signature(self):
2799        try:
2800            import hashlib
2801        except ImportError:
2802            raise RuntimeError("Unable to import hashlib")
2803        try:
2804            sig = hashlib.new('MD5', usedforsecurity=False)
2805        except TypeError:
2806            # Some configurations don't appear to support two arguments
2807            sig = hashlib.new('MD5')
2808        try:
2809            if self.start:
2810                sig.update(self.start.encode('latin-1'))
2811            if self.prec:
2812                sig.update("".join(["".join(p) for p in self.prec]).encode('latin-1'))
2813            if self.tokens:
2814                sig.update(" ".join(self.tokens).encode('latin-1'))
2815            for f in self.pfuncs:
2816                if f[3]:
2817                    sig.update(f[3].encode('latin-1'))
2818        except (TypeError,ValueError):
2819            pass
2820        return sig.digest()
2821
2822    # -----------------------------------------------------------------------------
2823    # validate_file()
2824    #
2825    # This method checks to see if there are duplicated p_rulename() functions
2826    # in the parser module file.  Without this function, it is really easy for
2827    # users to make mistakes by cutting and pasting code fragments (and it's a real
2828    # bugger to try and figure out why the resulting parser doesn't work).  Therefore,
2829    # we just do a little regular expression pattern matching of def statements
2830    # to try and detect duplicates.
2831    # -----------------------------------------------------------------------------
2832
2833    def validate_files(self):
2834        # Match def p_funcname(
2835        fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(')
2836
2837        for filename in self.files.keys():
2838            base,ext = os.path.splitext(filename)
2839            if ext != '.py': return 1          # No idea. Assume it's okay.
2840
2841            try:
2842                f = open(filename)
2843                lines = f.readlines()
2844                f.close()
2845            except IOError:
2846                continue
2847
2848            counthash = { }
2849            for linen,l in enumerate(lines):
2850                linen += 1
2851                m = fre.match(l)
2852                if m:
2853                    name = m.group(1)
2854                    prev = counthash.get(name)
2855                    if not prev:
2856                        counthash[name] = linen
2857                    else:
2858                        self.log.warning("%s:%d: Function %s redefined. Previously defined on line %d", filename,linen,name,prev)
2859
2860    # Get the start symbol
2861    def get_start(self):
2862        self.start = self.pdict.get('start')
2863
2864    # Validate the start symbol
2865    def validate_start(self):
2866        if self.start is not None:
2867            if not isinstance(self.start,str):
2868                self.log.error("'start' must be a string")
2869
2870    # Look for error handler
2871    def get_error_func(self):
2872        self.error_func = self.pdict.get('p_error')
2873
2874    # Validate the error function
2875    def validate_error_func(self):
2876        if self.error_func:
2877            if isinstance(self.error_func,types.FunctionType):
2878                ismethod = 0
2879            elif isinstance(self.error_func, types.MethodType):
2880                ismethod = 1
2881            else:
2882                self.log.error("'p_error' defined, but is not a function or method")
2883                self.error = 1
2884                return
2885
2886            eline = func_code(self.error_func).co_firstlineno
2887            efile = func_code(self.error_func).co_filename
2888            self.files[efile] = 1
2889
2890            if (func_code(self.error_func).co_argcount != 1+ismethod):
2891                self.log.error("%s:%d: p_error() requires 1 argument",efile,eline)
2892                self.error = 1
2893
2894    # Get the tokens map
2895    def get_tokens(self):
2896        tokens = self.pdict.get("tokens",None)
2897        if not tokens:
2898            self.log.error("No token list is defined")
2899            self.error = 1
2900            return
2901
2902        if not isinstance(tokens,(list, tuple)):
2903            self.log.error("tokens must be a list or tuple")
2904            self.error = 1
2905            return
2906
2907        if not tokens:
2908            self.log.error("tokens is empty")
2909            self.error = 1
2910            return
2911
2912        self.tokens = tokens
2913
2914    # Validate the tokens
2915    def validate_tokens(self):
2916        # Validate the tokens.
2917        if 'error' in self.tokens:
2918            self.log.error("Illegal token name 'error'. Is a reserved word")
2919            self.error = 1
2920            return
2921
2922        terminals = {}
2923        for n in self.tokens:
2924            if n in terminals:
2925                self.log.warning("Token '%s' multiply defined", n)
2926            terminals[n] = 1
2927
2928    # Get the precedence map (if any)
2929    def get_precedence(self):
2930        self.prec = self.pdict.get("precedence",None)
2931
2932    # Validate and parse the precedence map
2933    def validate_precedence(self):
2934        preclist = []
2935        if self.prec:
2936            if not isinstance(self.prec,(list,tuple)):
2937                self.log.error("precedence must be a list or tuple")
2938                self.error = 1
2939                return
2940            for level,p in enumerate(self.prec):
2941                if not isinstance(p,(list,tuple)):
2942                    self.log.error("Bad precedence table")
2943                    self.error = 1
2944                    return
2945
2946                if len(p) < 2:
2947                    self.log.error("Malformed precedence entry %s. Must be (assoc, term, ..., term)",p)
2948                    self.error = 1
2949                    return
2950                assoc = p[0]
2951                if not isinstance(assoc,str):
2952                    self.log.error("precedence associativity must be a string")
2953                    self.error = 1
2954                    return
2955                for term in p[1:]:
2956                    if not isinstance(term,str):
2957                        self.log.error("precedence items must be strings")
2958                        self.error = 1
2959                        return
2960                    preclist.append((term,assoc,level+1))
2961        self.preclist = preclist
2962
2963    # Get all p_functions from the grammar
2964    def get_pfunctions(self):
2965        p_functions = []
2966        for name, item in self.pdict.items():
2967            if name[:2] != 'p_': continue
2968            if name == 'p_error': continue
2969            if isinstance(item,(types.FunctionType,types.MethodType)):
2970                line = func_code(item).co_firstlineno
2971                file = func_code(item).co_filename
2972                p_functions.append((line,file,name,item.__doc__))
2973
2974        # Sort all of the actions by line number
2975        p_functions.sort()
2976        self.pfuncs = p_functions
2977
2978
2979    # Validate all of the p_functions
2980    def validate_pfunctions(self):
2981        grammar = []
2982        # Check for non-empty symbols
2983        if len(self.pfuncs) == 0:
2984            self.log.error("no rules of the form p_rulename are defined")
2985            self.error = 1
2986            return
2987
2988        for line, file, name, doc in self.pfuncs:
2989            func = self.pdict[name]
2990            if isinstance(func, types.MethodType):
2991                reqargs = 2
2992            else:
2993                reqargs = 1
2994            if func_code(func).co_argcount > reqargs:
2995                self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,func.__name__)
2996                self.error = 1
2997            elif func_code(func).co_argcount < reqargs:
2998                self.log.error("%s:%d: Rule '%s' requires an argument",file,line,func.__name__)
2999                self.error = 1
3000            elif not func.__doc__:
3001                self.log.warning("%s:%d: No documentation string specified in function '%s' (ignored)",file,line,func.__name__)
3002            else:
3003                try:
3004                    parsed_g = parse_grammar(doc,file,line)
3005                    for g in parsed_g:
3006                        grammar.append((name, g))
3007                except SyntaxError:
3008                    e = sys.exc_info()[1]
3009                    self.log.error(str(e))
3010                    self.error = 1
3011
3012                # Looks like a valid grammar rule
3013                # Mark the file in which defined.
3014                self.files[file] = 1
3015
3016        # Secondary validation step that looks for p_ definitions that are not functions
3017        # or functions that look like they might be grammar rules.
3018
3019        for n,v in self.pdict.items():
3020            if n[0:2] == 'p_' and isinstance(v, (types.FunctionType, types.MethodType)): continue
3021            if n[0:2] == 't_': continue
3022            if n[0:2] == 'p_' and n != 'p_error':
3023                self.log.warning("'%s' not defined as a function", n)
3024            if ((isinstance(v,types.FunctionType) and func_code(v).co_argcount == 1) or
3025                (isinstance(v,types.MethodType) and func_code(v).co_argcount == 2)):
3026                try:
3027                    doc = v.__doc__.split(" ")
3028                    if doc[1] == ':':
3029                        self.log.warning("%s:%d: Possible grammar rule '%s' defined without p_ prefix",
3030                                         func_code(v).co_filename, func_code(v).co_firstlineno,n)
3031                except Exception:
3032                    pass
3033
3034        self.grammar = grammar
3035
3036# -----------------------------------------------------------------------------
3037# yacc(module)
3038#
3039# Build a parser
3040# -----------------------------------------------------------------------------
3041
3042def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, start=None,
3043         check_recursion=1, optimize=0, write_tables=1, debugfile=debug_file,outputdir='',
3044         debuglog=None, errorlog = None, picklefile=None):
3045
3046    global parse                 # Reference to the parsing method of the last built parser
3047
3048    # If pickling is enabled, table files are not created
3049
3050    if picklefile:
3051        write_tables = 0
3052
3053    if errorlog is None:
3054        errorlog = PlyLogger(sys.stderr)
3055
3056    # Get the module dictionary used for the parser
3057    if module:
3058        _items = [(k,getattr(module,k)) for k in dir(module)]
3059        pdict = dict(_items)
3060    else:
3061        pdict = get_caller_module_dict(2)
3062
3063    # Collect parser information from the dictionary
3064    pinfo = ParserReflect(pdict,log=errorlog)
3065    pinfo.get_all()
3066
3067    if pinfo.error:
3068        raise YaccError("Unable to build parser")
3069
3070    # Check signature against table files (if any)
3071    signature = pinfo.signature()
3072
3073    # Read the tables
3074    try:
3075        lr = LRTable()
3076        if picklefile:
3077            read_signature = lr.read_pickle(picklefile)
3078        else:
3079            read_signature = lr.read_table(tabmodule)
3080        if optimize or (read_signature == signature):
3081            try:
3082                lr.bind_callables(pinfo.pdict)
3083                parser = LRParser(lr,pinfo.error_func)
3084                parse = parser.parse
3085                return parser
3086            except Exception:
3087                e = sys.exc_info()[1]
3088                errorlog.warning("There was a problem loading the table file: %s", repr(e))
3089    except VersionError:
3090        e = sys.exc_info()
3091        errorlog.warning(str(e))
3092    except Exception:
3093        pass
3094
3095    if debuglog is None:
3096        if debug:
3097            debuglog = PlyLogger(open(debugfile,"w"))
3098        else:
3099            debuglog = NullLogger()
3100
3101    debuglog.info("Created by PLY version %s (http://www.dabeaz.com/ply)", __version__)
3102
3103
3104    errors = 0
3105
3106    # Validate the parser information
3107    if pinfo.validate_all():
3108        raise YaccError("Unable to build parser")
3109
3110    if not pinfo.error_func:
3111        errorlog.warning("no p_error() function is defined")
3112
3113    # Create a grammar object
3114    grammar = Grammar(pinfo.tokens)
3115
3116    # Set precedence level for terminals
3117    for term, assoc, level in pinfo.preclist:
3118        try:
3119            grammar.set_precedence(term,assoc,level)
3120        except GrammarError:
3121            e = sys.exc_info()[1]
3122            errorlog.warning("%s",str(e))
3123
3124    # Add productions to the grammar
3125    for funcname, gram in pinfo.grammar:
3126        file, line, prodname, syms = gram
3127        try:
3128            grammar.add_production(prodname,syms,funcname,file,line)
3129        except GrammarError:
3130            e = sys.exc_info()[1]
3131            errorlog.error("%s",str(e))
3132            errors = 1
3133
3134    # Set the grammar start symbols
3135    try:
3136        if start is None:
3137            grammar.set_start(pinfo.start)
3138        else:
3139            grammar.set_start(start)
3140    except GrammarError:
3141        e = sys.exc_info()[1]
3142        errorlog.error(str(e))
3143        errors = 1
3144
3145    if errors:
3146        raise YaccError("Unable to build parser")
3147
3148    # Verify the grammar structure
3149    undefined_symbols = grammar.undefined_symbols()
3150    for sym, prod in undefined_symbols:
3151        errorlog.error("%s:%d: Symbol '%s' used, but not defined as a token or a rule",prod.file,prod.line,sym)
3152        errors = 1
3153
3154    unused_terminals = grammar.unused_terminals()
3155    if unused_terminals:
3156        debuglog.info("")
3157        debuglog.info("Unused terminals:")
3158        debuglog.info("")
3159        for term in unused_terminals:
3160            errorlog.warning("Token '%s' defined, but not used", term)
3161            debuglog.info("    %s", term)
3162
3163    # Print out all productions to the debug log
3164    if debug:
3165        debuglog.info("")
3166        debuglog.info("Grammar")
3167        debuglog.info("")
3168        for n,p in enumerate(grammar.Productions):
3169            debuglog.info("Rule %-5d %s", n, p)
3170
3171    # Find unused non-terminals
3172    unused_rules = grammar.unused_rules()
3173    for prod in unused_rules:
3174        errorlog.warning("%s:%d: Rule '%s' defined, but not used", prod.file, prod.line, prod.name)
3175
3176    if len(unused_terminals) == 1:
3177        errorlog.warning("There is 1 unused token")
3178    if len(unused_terminals) > 1:
3179        errorlog.warning("There are %d unused tokens", len(unused_terminals))
3180
3181    if len(unused_rules) == 1:
3182        errorlog.warning("There is 1 unused rule")
3183    if len(unused_rules) > 1:
3184        errorlog.warning("There are %d unused rules", len(unused_rules))
3185
3186    if debug:
3187        debuglog.info("")
3188        debuglog.info("Terminals, with rules where they appear")
3189        debuglog.info("")
3190        terms = list(grammar.Terminals)
3191        terms.sort()
3192        for term in terms:
3193            debuglog.info("%-20s : %s", term, " ".join([str(s) for s in grammar.Terminals[term]]))
3194
3195        debuglog.info("")
3196        debuglog.info("Nonterminals, with rules where they appear")
3197        debuglog.info("")
3198        nonterms = list(grammar.Nonterminals)
3199        nonterms.sort()
3200        for nonterm in nonterms:
3201            debuglog.info("%-20s : %s", nonterm, " ".join([str(s) for s in grammar.Nonterminals[nonterm]]))
3202        debuglog.info("")
3203
3204    if check_recursion:
3205        unreachable = grammar.find_unreachable()
3206        for u in unreachable:
3207            errorlog.warning("Symbol '%s' is unreachable",u)
3208
3209        infinite = grammar.infinite_cycles()
3210        for inf in infinite:
3211            errorlog.error("Infinite recursion detected for symbol '%s'", inf)
3212            errors = 1
3213
3214    unused_prec = grammar.unused_precedence()
3215    for term, assoc in unused_prec:
3216        errorlog.error("Precedence rule '%s' defined for unknown symbol '%s'", assoc, term)
3217        errors = 1
3218
3219    if errors:
3220        raise YaccError("Unable to build parser")
3221
3222    # Run the LRGeneratedTable on the grammar
3223    if debug:
3224        errorlog.debug("Generating %s tables", method)
3225
3226    lr = LRGeneratedTable(grammar,method,debuglog)
3227
3228    if debug:
3229        num_sr = len(lr.sr_conflicts)
3230
3231        # Report shift/reduce and reduce/reduce conflicts
3232        if num_sr == 1:
3233            errorlog.warning("1 shift/reduce conflict")
3234        elif num_sr > 1:
3235            errorlog.warning("%d shift/reduce conflicts", num_sr)
3236
3237        num_rr = len(lr.rr_conflicts)
3238        if num_rr == 1:
3239            errorlog.warning("1 reduce/reduce conflict")
3240        elif num_rr > 1:
3241            errorlog.warning("%d reduce/reduce conflicts", num_rr)
3242
3243    # Write out conflicts to the output file
3244    if debug and (lr.sr_conflicts or lr.rr_conflicts):
3245        debuglog.warning("")
3246        debuglog.warning("Conflicts:")
3247        debuglog.warning("")
3248
3249        for state, tok, resolution in lr.sr_conflicts:
3250            debuglog.warning("shift/reduce conflict for %s in state %d resolved as %s",  tok, state, resolution)
3251
3252        already_reported = {}
3253        for state, rule, rejected in lr.rr_conflicts:
3254            if (state,id(rule),id(rejected)) in already_reported:
3255                continue
3256            debuglog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule)
3257            debuglog.warning("rejected rule (%s) in state %d", rejected,state)
3258            errorlog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule)
3259            errorlog.warning("rejected rule (%s) in state %d", rejected, state)
3260            already_reported[state,id(rule),id(rejected)] = 1
3261
3262        warned_never = []
3263        for state, rule, rejected in lr.rr_conflicts:
3264            if not rejected.reduced and (rejected not in warned_never):
3265                debuglog.warning("Rule (%s) is never reduced", rejected)
3266                errorlog.warning("Rule (%s) is never reduced", rejected)
3267                warned_never.append(rejected)
3268
3269    # Write the table file if requested
3270    if write_tables:
3271        lr.write_table(tabmodule,outputdir,signature)
3272
3273    # Write a pickled version of the tables
3274    if picklefile:
3275        lr.pickle_table(picklefile,signature)
3276
3277    # Build the parser
3278    lr.bind_callables(pinfo.pdict)
3279    parser = LRParser(lr,pinfo.error_func)
3280
3281    parse = parser.parse
3282    return parser
3283