xref: /openbmc/linux/virt/kvm/kvm_main.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #include <trace/events/ipi.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69 
70 #include <linux/kvm_dirty_ring.h>
71 
72 
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83 
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88 
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93 
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 
99 /*
100  * Ordering of locks:
101  *
102  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104 
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107 
108 static struct kmem_cache *kvm_vcpu_cache;
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static const struct file_operations stat_fops_per_vm;
117 
118 static struct file_operations kvm_chardev_ops;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154 
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163 {
164 }
165 
166 bool kvm_is_zone_device_page(struct page *page)
167 {
168 	/*
169 	 * The metadata used by is_zone_device_page() to determine whether or
170 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
172 	 * page_count() is zero to help detect bad usage of this helper.
173 	 */
174 	if (WARN_ON_ONCE(!page_count(page)))
175 		return false;
176 
177 	return is_zone_device_page(page);
178 }
179 
180 /*
181  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
182  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
183  * is likely incomplete, it has been compiled purely through people wanting to
184  * back guest with a certain type of memory and encountering issues.
185  */
186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
187 {
188 	struct page *page;
189 
190 	if (!pfn_valid(pfn))
191 		return NULL;
192 
193 	page = pfn_to_page(pfn);
194 	if (!PageReserved(page))
195 		return page;
196 
197 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
198 	if (is_zero_pfn(pfn))
199 		return page;
200 
201 	/*
202 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
203 	 * perspective they are "normal" pages, albeit with slightly different
204 	 * usage rules.
205 	 */
206 	if (kvm_is_zone_device_page(page))
207 		return page;
208 
209 	return NULL;
210 }
211 
212 /*
213  * Switches to specified vcpu, until a matching vcpu_put()
214  */
215 void vcpu_load(struct kvm_vcpu *vcpu)
216 {
217 	int cpu = get_cpu();
218 
219 	__this_cpu_write(kvm_running_vcpu, vcpu);
220 	preempt_notifier_register(&vcpu->preempt_notifier);
221 	kvm_arch_vcpu_load(vcpu, cpu);
222 	put_cpu();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_load);
225 
226 void vcpu_put(struct kvm_vcpu *vcpu)
227 {
228 	preempt_disable();
229 	kvm_arch_vcpu_put(vcpu);
230 	preempt_notifier_unregister(&vcpu->preempt_notifier);
231 	__this_cpu_write(kvm_running_vcpu, NULL);
232 	preempt_enable();
233 }
234 EXPORT_SYMBOL_GPL(vcpu_put);
235 
236 /* TODO: merge with kvm_arch_vcpu_should_kick */
237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
238 {
239 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
240 
241 	/*
242 	 * We need to wait for the VCPU to reenable interrupts and get out of
243 	 * READING_SHADOW_PAGE_TABLES mode.
244 	 */
245 	if (req & KVM_REQUEST_WAIT)
246 		return mode != OUTSIDE_GUEST_MODE;
247 
248 	/*
249 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
250 	 */
251 	return mode == IN_GUEST_MODE;
252 }
253 
254 static void ack_kick(void *_completed)
255 {
256 }
257 
258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
259 {
260 	if (cpumask_empty(cpus))
261 		return false;
262 
263 	smp_call_function_many(cpus, ack_kick, NULL, wait);
264 	return true;
265 }
266 
267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
268 				  struct cpumask *tmp, int current_cpu)
269 {
270 	int cpu;
271 
272 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
273 		__kvm_make_request(req, vcpu);
274 
275 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276 		return;
277 
278 	/*
279 	 * Note, the vCPU could get migrated to a different pCPU at any point
280 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
281 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
282 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
283 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
284 	 * after this point is also OK, as the requirement is only that KVM wait
285 	 * for vCPUs that were reading SPTEs _before_ any changes were
286 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
287 	 */
288 	if (kvm_request_needs_ipi(vcpu, req)) {
289 		cpu = READ_ONCE(vcpu->cpu);
290 		if (cpu != -1 && cpu != current_cpu)
291 			__cpumask_set_cpu(cpu, tmp);
292 	}
293 }
294 
295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
296 				 unsigned long *vcpu_bitmap)
297 {
298 	struct kvm_vcpu *vcpu;
299 	struct cpumask *cpus;
300 	int i, me;
301 	bool called;
302 
303 	me = get_cpu();
304 
305 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
306 	cpumask_clear(cpus);
307 
308 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309 		vcpu = kvm_get_vcpu(kvm, i);
310 		if (!vcpu)
311 			continue;
312 		kvm_make_vcpu_request(vcpu, req, cpus, me);
313 	}
314 
315 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316 	put_cpu();
317 
318 	return called;
319 }
320 
321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322 				      struct kvm_vcpu *except)
323 {
324 	struct kvm_vcpu *vcpu;
325 	struct cpumask *cpus;
326 	unsigned long i;
327 	bool called;
328 	int me;
329 
330 	me = get_cpu();
331 
332 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
333 	cpumask_clear(cpus);
334 
335 	kvm_for_each_vcpu(i, vcpu, kvm) {
336 		if (vcpu == except)
337 			continue;
338 		kvm_make_vcpu_request(vcpu, req, cpus, me);
339 	}
340 
341 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342 	put_cpu();
343 
344 	return called;
345 }
346 
347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
348 {
349 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
350 }
351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
352 
353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
354 void kvm_flush_remote_tlbs(struct kvm *kvm)
355 {
356 	++kvm->stat.generic.remote_tlb_flush_requests;
357 
358 	/*
359 	 * We want to publish modifications to the page tables before reading
360 	 * mode. Pairs with a memory barrier in arch-specific code.
361 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
362 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
363 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
364 	 *
365 	 * There is already an smp_mb__after_atomic() before
366 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
367 	 * barrier here.
368 	 */
369 	if (!kvm_arch_flush_remote_tlb(kvm)
370 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
371 		++kvm->stat.generic.remote_tlb_flush;
372 }
373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
374 #endif
375 
376 static void kvm_flush_shadow_all(struct kvm *kvm)
377 {
378 	kvm_arch_flush_shadow_all(kvm);
379 	kvm_arch_guest_memory_reclaimed(kvm);
380 }
381 
382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
384 					       gfp_t gfp_flags)
385 {
386 	gfp_flags |= mc->gfp_zero;
387 
388 	if (mc->kmem_cache)
389 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
390 	else
391 		return (void *)__get_free_page(gfp_flags);
392 }
393 
394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
395 {
396 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
397 	void *obj;
398 
399 	if (mc->nobjs >= min)
400 		return 0;
401 
402 	if (unlikely(!mc->objects)) {
403 		if (WARN_ON_ONCE(!capacity))
404 			return -EIO;
405 
406 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
407 		if (!mc->objects)
408 			return -ENOMEM;
409 
410 		mc->capacity = capacity;
411 	}
412 
413 	/* It is illegal to request a different capacity across topups. */
414 	if (WARN_ON_ONCE(mc->capacity != capacity))
415 		return -EIO;
416 
417 	while (mc->nobjs < mc->capacity) {
418 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
419 		if (!obj)
420 			return mc->nobjs >= min ? 0 : -ENOMEM;
421 		mc->objects[mc->nobjs++] = obj;
422 	}
423 	return 0;
424 }
425 
426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
427 {
428 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
429 }
430 
431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
432 {
433 	return mc->nobjs;
434 }
435 
436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
437 {
438 	while (mc->nobjs) {
439 		if (mc->kmem_cache)
440 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
441 		else
442 			free_page((unsigned long)mc->objects[--mc->nobjs]);
443 	}
444 
445 	kvfree(mc->objects);
446 
447 	mc->objects = NULL;
448 	mc->capacity = 0;
449 }
450 
451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
452 {
453 	void *p;
454 
455 	if (WARN_ON(!mc->nobjs))
456 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
457 	else
458 		p = mc->objects[--mc->nobjs];
459 	BUG_ON(!p);
460 	return p;
461 }
462 #endif
463 
464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
465 {
466 	mutex_init(&vcpu->mutex);
467 	vcpu->cpu = -1;
468 	vcpu->kvm = kvm;
469 	vcpu->vcpu_id = id;
470 	vcpu->pid = NULL;
471 #ifndef __KVM_HAVE_ARCH_WQP
472 	rcuwait_init(&vcpu->wait);
473 #endif
474 	kvm_async_pf_vcpu_init(vcpu);
475 
476 	kvm_vcpu_set_in_spin_loop(vcpu, false);
477 	kvm_vcpu_set_dy_eligible(vcpu, false);
478 	vcpu->preempted = false;
479 	vcpu->ready = false;
480 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
481 	vcpu->last_used_slot = NULL;
482 
483 	/* Fill the stats id string for the vcpu */
484 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
485 		 task_pid_nr(current), id);
486 }
487 
488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
489 {
490 	kvm_arch_vcpu_destroy(vcpu);
491 	kvm_dirty_ring_free(&vcpu->dirty_ring);
492 
493 	/*
494 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
495 	 * the vcpu->pid pointer, and at destruction time all file descriptors
496 	 * are already gone.
497 	 */
498 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
499 
500 	free_page((unsigned long)vcpu->run);
501 	kmem_cache_free(kvm_vcpu_cache, vcpu);
502 }
503 
504 void kvm_destroy_vcpus(struct kvm *kvm)
505 {
506 	unsigned long i;
507 	struct kvm_vcpu *vcpu;
508 
509 	kvm_for_each_vcpu(i, vcpu, kvm) {
510 		kvm_vcpu_destroy(vcpu);
511 		xa_erase(&kvm->vcpu_array, i);
512 	}
513 
514 	atomic_set(&kvm->online_vcpus, 0);
515 }
516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
517 
518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
520 {
521 	return container_of(mn, struct kvm, mmu_notifier);
522 }
523 
524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
525 					      struct mm_struct *mm,
526 					      unsigned long start, unsigned long end)
527 {
528 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 	int idx;
530 
531 	idx = srcu_read_lock(&kvm->srcu);
532 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
533 	srcu_read_unlock(&kvm->srcu, idx);
534 }
535 
536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
537 
538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
539 			     unsigned long end);
540 
541 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
542 
543 struct kvm_hva_range {
544 	unsigned long start;
545 	unsigned long end;
546 	pte_t pte;
547 	hva_handler_t handler;
548 	on_lock_fn_t on_lock;
549 	on_unlock_fn_t on_unlock;
550 	bool flush_on_ret;
551 	bool may_block;
552 };
553 
554 /*
555  * Use a dedicated stub instead of NULL to indicate that there is no callback
556  * function/handler.  The compiler technically can't guarantee that a real
557  * function will have a non-zero address, and so it will generate code to
558  * check for !NULL, whereas comparing against a stub will be elided at compile
559  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
560  */
561 static void kvm_null_fn(void)
562 {
563 
564 }
565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
566 
567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
569 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
570 	     node;							     \
571 	     node = interval_tree_iter_next(node, start, last))	     \
572 
573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
574 						  const struct kvm_hva_range *range)
575 {
576 	bool ret = false, locked = false;
577 	struct kvm_gfn_range gfn_range;
578 	struct kvm_memory_slot *slot;
579 	struct kvm_memslots *slots;
580 	int i, idx;
581 
582 	if (WARN_ON_ONCE(range->end <= range->start))
583 		return 0;
584 
585 	/* A null handler is allowed if and only if on_lock() is provided. */
586 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
587 			 IS_KVM_NULL_FN(range->handler)))
588 		return 0;
589 
590 	idx = srcu_read_lock(&kvm->srcu);
591 
592 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
593 		struct interval_tree_node *node;
594 
595 		slots = __kvm_memslots(kvm, i);
596 		kvm_for_each_memslot_in_hva_range(node, slots,
597 						  range->start, range->end - 1) {
598 			unsigned long hva_start, hva_end;
599 
600 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
601 			hva_start = max(range->start, slot->userspace_addr);
602 			hva_end = min(range->end, slot->userspace_addr +
603 						  (slot->npages << PAGE_SHIFT));
604 
605 			/*
606 			 * To optimize for the likely case where the address
607 			 * range is covered by zero or one memslots, don't
608 			 * bother making these conditional (to avoid writes on
609 			 * the second or later invocation of the handler).
610 			 */
611 			gfn_range.pte = range->pte;
612 			gfn_range.may_block = range->may_block;
613 
614 			/*
615 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
616 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617 			 */
618 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620 			gfn_range.slot = slot;
621 
622 			if (!locked) {
623 				locked = true;
624 				KVM_MMU_LOCK(kvm);
625 				if (!IS_KVM_NULL_FN(range->on_lock))
626 					range->on_lock(kvm, range->start, range->end);
627 				if (IS_KVM_NULL_FN(range->handler))
628 					break;
629 			}
630 			ret |= range->handler(kvm, &gfn_range);
631 		}
632 	}
633 
634 	if (range->flush_on_ret && ret)
635 		kvm_flush_remote_tlbs(kvm);
636 
637 	if (locked) {
638 		KVM_MMU_UNLOCK(kvm);
639 		if (!IS_KVM_NULL_FN(range->on_unlock))
640 			range->on_unlock(kvm);
641 	}
642 
643 	srcu_read_unlock(&kvm->srcu, idx);
644 
645 	/* The notifiers are averse to booleans. :-( */
646 	return (int)ret;
647 }
648 
649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
650 						unsigned long start,
651 						unsigned long end,
652 						pte_t pte,
653 						hva_handler_t handler)
654 {
655 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
656 	const struct kvm_hva_range range = {
657 		.start		= start,
658 		.end		= end,
659 		.pte		= pte,
660 		.handler	= handler,
661 		.on_lock	= (void *)kvm_null_fn,
662 		.on_unlock	= (void *)kvm_null_fn,
663 		.flush_on_ret	= true,
664 		.may_block	= false,
665 	};
666 
667 	return __kvm_handle_hva_range(kvm, &range);
668 }
669 
670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
671 							 unsigned long start,
672 							 unsigned long end,
673 							 hva_handler_t handler)
674 {
675 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
676 	const struct kvm_hva_range range = {
677 		.start		= start,
678 		.end		= end,
679 		.pte		= __pte(0),
680 		.handler	= handler,
681 		.on_lock	= (void *)kvm_null_fn,
682 		.on_unlock	= (void *)kvm_null_fn,
683 		.flush_on_ret	= false,
684 		.may_block	= false,
685 	};
686 
687 	return __kvm_handle_hva_range(kvm, &range);
688 }
689 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
690 					struct mm_struct *mm,
691 					unsigned long address,
692 					pte_t pte)
693 {
694 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
695 
696 	trace_kvm_set_spte_hva(address);
697 
698 	/*
699 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
700 	 * If mmu_invalidate_in_progress is zero, then no in-progress
701 	 * invalidations, including this one, found a relevant memslot at
702 	 * start(); rechecking memslots here is unnecessary.  Note, a false
703 	 * positive (count elevated by a different invalidation) is sub-optimal
704 	 * but functionally ok.
705 	 */
706 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
707 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
708 		return;
709 
710 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
711 }
712 
713 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
714 			      unsigned long end)
715 {
716 	/*
717 	 * The count increase must become visible at unlock time as no
718 	 * spte can be established without taking the mmu_lock and
719 	 * count is also read inside the mmu_lock critical section.
720 	 */
721 	kvm->mmu_invalidate_in_progress++;
722 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
723 		kvm->mmu_invalidate_range_start = start;
724 		kvm->mmu_invalidate_range_end = end;
725 	} else {
726 		/*
727 		 * Fully tracking multiple concurrent ranges has diminishing
728 		 * returns. Keep things simple and just find the minimal range
729 		 * which includes the current and new ranges. As there won't be
730 		 * enough information to subtract a range after its invalidate
731 		 * completes, any ranges invalidated concurrently will
732 		 * accumulate and persist until all outstanding invalidates
733 		 * complete.
734 		 */
735 		kvm->mmu_invalidate_range_start =
736 			min(kvm->mmu_invalidate_range_start, start);
737 		kvm->mmu_invalidate_range_end =
738 			max(kvm->mmu_invalidate_range_end, end);
739 	}
740 }
741 
742 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
743 					const struct mmu_notifier_range *range)
744 {
745 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
746 	const struct kvm_hva_range hva_range = {
747 		.start		= range->start,
748 		.end		= range->end,
749 		.pte		= __pte(0),
750 		.handler	= kvm_unmap_gfn_range,
751 		.on_lock	= kvm_mmu_invalidate_begin,
752 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
753 		.flush_on_ret	= true,
754 		.may_block	= mmu_notifier_range_blockable(range),
755 	};
756 
757 	trace_kvm_unmap_hva_range(range->start, range->end);
758 
759 	/*
760 	 * Prevent memslot modification between range_start() and range_end()
761 	 * so that conditionally locking provides the same result in both
762 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
763 	 * adjustments will be imbalanced.
764 	 *
765 	 * Pairs with the decrement in range_end().
766 	 */
767 	spin_lock(&kvm->mn_invalidate_lock);
768 	kvm->mn_active_invalidate_count++;
769 	spin_unlock(&kvm->mn_invalidate_lock);
770 
771 	/*
772 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
773 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
774 	 * each cache's lock.  There are relatively few caches in existence at
775 	 * any given time, and the caches themselves can check for hva overlap,
776 	 * i.e. don't need to rely on memslot overlap checks for performance.
777 	 * Because this runs without holding mmu_lock, the pfn caches must use
778 	 * mn_active_invalidate_count (see above) instead of
779 	 * mmu_invalidate_in_progress.
780 	 */
781 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
782 					  hva_range.may_block);
783 
784 	__kvm_handle_hva_range(kvm, &hva_range);
785 
786 	return 0;
787 }
788 
789 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
790 			    unsigned long end)
791 {
792 	/*
793 	 * This sequence increase will notify the kvm page fault that
794 	 * the page that is going to be mapped in the spte could have
795 	 * been freed.
796 	 */
797 	kvm->mmu_invalidate_seq++;
798 	smp_wmb();
799 	/*
800 	 * The above sequence increase must be visible before the
801 	 * below count decrease, which is ensured by the smp_wmb above
802 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
803 	 */
804 	kvm->mmu_invalidate_in_progress--;
805 }
806 
807 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
808 					const struct mmu_notifier_range *range)
809 {
810 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
811 	const struct kvm_hva_range hva_range = {
812 		.start		= range->start,
813 		.end		= range->end,
814 		.pte		= __pte(0),
815 		.handler	= (void *)kvm_null_fn,
816 		.on_lock	= kvm_mmu_invalidate_end,
817 		.on_unlock	= (void *)kvm_null_fn,
818 		.flush_on_ret	= false,
819 		.may_block	= mmu_notifier_range_blockable(range),
820 	};
821 	bool wake;
822 
823 	__kvm_handle_hva_range(kvm, &hva_range);
824 
825 	/* Pairs with the increment in range_start(). */
826 	spin_lock(&kvm->mn_invalidate_lock);
827 	wake = (--kvm->mn_active_invalidate_count == 0);
828 	spin_unlock(&kvm->mn_invalidate_lock);
829 
830 	/*
831 	 * There can only be one waiter, since the wait happens under
832 	 * slots_lock.
833 	 */
834 	if (wake)
835 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
836 
837 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
838 }
839 
840 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
841 					      struct mm_struct *mm,
842 					      unsigned long start,
843 					      unsigned long end)
844 {
845 	trace_kvm_age_hva(start, end);
846 
847 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
848 }
849 
850 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
851 					struct mm_struct *mm,
852 					unsigned long start,
853 					unsigned long end)
854 {
855 	trace_kvm_age_hva(start, end);
856 
857 	/*
858 	 * Even though we do not flush TLB, this will still adversely
859 	 * affect performance on pre-Haswell Intel EPT, where there is
860 	 * no EPT Access Bit to clear so that we have to tear down EPT
861 	 * tables instead. If we find this unacceptable, we can always
862 	 * add a parameter to kvm_age_hva so that it effectively doesn't
863 	 * do anything on clear_young.
864 	 *
865 	 * Also note that currently we never issue secondary TLB flushes
866 	 * from clear_young, leaving this job up to the regular system
867 	 * cadence. If we find this inaccurate, we might come up with a
868 	 * more sophisticated heuristic later.
869 	 */
870 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
871 }
872 
873 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
874 				       struct mm_struct *mm,
875 				       unsigned long address)
876 {
877 	trace_kvm_test_age_hva(address);
878 
879 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
880 					     kvm_test_age_gfn);
881 }
882 
883 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
884 				     struct mm_struct *mm)
885 {
886 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
887 	int idx;
888 
889 	idx = srcu_read_lock(&kvm->srcu);
890 	kvm_flush_shadow_all(kvm);
891 	srcu_read_unlock(&kvm->srcu, idx);
892 }
893 
894 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
895 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
896 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
897 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
898 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
899 	.clear_young		= kvm_mmu_notifier_clear_young,
900 	.test_young		= kvm_mmu_notifier_test_young,
901 	.change_pte		= kvm_mmu_notifier_change_pte,
902 	.release		= kvm_mmu_notifier_release,
903 };
904 
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
909 }
910 
911 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
912 
913 static int kvm_init_mmu_notifier(struct kvm *kvm)
914 {
915 	return 0;
916 }
917 
918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
919 
920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921 static int kvm_pm_notifier_call(struct notifier_block *bl,
922 				unsigned long state,
923 				void *unused)
924 {
925 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
926 
927 	return kvm_arch_pm_notifier(kvm, state);
928 }
929 
930 static void kvm_init_pm_notifier(struct kvm *kvm)
931 {
932 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
934 	kvm->pm_notifier.priority = INT_MAX;
935 	register_pm_notifier(&kvm->pm_notifier);
936 }
937 
938 static void kvm_destroy_pm_notifier(struct kvm *kvm)
939 {
940 	unregister_pm_notifier(&kvm->pm_notifier);
941 }
942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943 static void kvm_init_pm_notifier(struct kvm *kvm)
944 {
945 }
946 
947 static void kvm_destroy_pm_notifier(struct kvm *kvm)
948 {
949 }
950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
951 
952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
953 {
954 	if (!memslot->dirty_bitmap)
955 		return;
956 
957 	kvfree(memslot->dirty_bitmap);
958 	memslot->dirty_bitmap = NULL;
959 }
960 
961 /* This does not remove the slot from struct kvm_memslots data structures */
962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
963 {
964 	kvm_destroy_dirty_bitmap(slot);
965 
966 	kvm_arch_free_memslot(kvm, slot);
967 
968 	kfree(slot);
969 }
970 
971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
972 {
973 	struct hlist_node *idnode;
974 	struct kvm_memory_slot *memslot;
975 	int bkt;
976 
977 	/*
978 	 * The same memslot objects live in both active and inactive sets,
979 	 * arbitrarily free using index '1' so the second invocation of this
980 	 * function isn't operating over a structure with dangling pointers
981 	 * (even though this function isn't actually touching them).
982 	 */
983 	if (!slots->node_idx)
984 		return;
985 
986 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
987 		kvm_free_memslot(kvm, memslot);
988 }
989 
990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
991 {
992 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993 	case KVM_STATS_TYPE_INSTANT:
994 		return 0444;
995 	case KVM_STATS_TYPE_CUMULATIVE:
996 	case KVM_STATS_TYPE_PEAK:
997 	default:
998 		return 0644;
999 	}
1000 }
1001 
1002 
1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1004 {
1005 	int i;
1006 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007 				      kvm_vcpu_stats_header.num_desc;
1008 
1009 	if (IS_ERR(kvm->debugfs_dentry))
1010 		return;
1011 
1012 	debugfs_remove_recursive(kvm->debugfs_dentry);
1013 
1014 	if (kvm->debugfs_stat_data) {
1015 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1016 			kfree(kvm->debugfs_stat_data[i]);
1017 		kfree(kvm->debugfs_stat_data);
1018 	}
1019 }
1020 
1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1022 {
1023 	static DEFINE_MUTEX(kvm_debugfs_lock);
1024 	struct dentry *dent;
1025 	char dir_name[ITOA_MAX_LEN * 2];
1026 	struct kvm_stat_data *stat_data;
1027 	const struct _kvm_stats_desc *pdesc;
1028 	int i, ret = -ENOMEM;
1029 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030 				      kvm_vcpu_stats_header.num_desc;
1031 
1032 	if (!debugfs_initialized())
1033 		return 0;
1034 
1035 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1036 	mutex_lock(&kvm_debugfs_lock);
1037 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1038 	if (dent) {
1039 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1040 		dput(dent);
1041 		mutex_unlock(&kvm_debugfs_lock);
1042 		return 0;
1043 	}
1044 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045 	mutex_unlock(&kvm_debugfs_lock);
1046 	if (IS_ERR(dent))
1047 		return 0;
1048 
1049 	kvm->debugfs_dentry = dent;
1050 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051 					 sizeof(*kvm->debugfs_stat_data),
1052 					 GFP_KERNEL_ACCOUNT);
1053 	if (!kvm->debugfs_stat_data)
1054 		goto out_err;
1055 
1056 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057 		pdesc = &kvm_vm_stats_desc[i];
1058 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1059 		if (!stat_data)
1060 			goto out_err;
1061 
1062 		stat_data->kvm = kvm;
1063 		stat_data->desc = pdesc;
1064 		stat_data->kind = KVM_STAT_VM;
1065 		kvm->debugfs_stat_data[i] = stat_data;
1066 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067 				    kvm->debugfs_dentry, stat_data,
1068 				    &stat_fops_per_vm);
1069 	}
1070 
1071 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072 		pdesc = &kvm_vcpu_stats_desc[i];
1073 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1074 		if (!stat_data)
1075 			goto out_err;
1076 
1077 		stat_data->kvm = kvm;
1078 		stat_data->desc = pdesc;
1079 		stat_data->kind = KVM_STAT_VCPU;
1080 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1081 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1082 				    kvm->debugfs_dentry, stat_data,
1083 				    &stat_fops_per_vm);
1084 	}
1085 
1086 	ret = kvm_arch_create_vm_debugfs(kvm);
1087 	if (ret)
1088 		goto out_err;
1089 
1090 	return 0;
1091 out_err:
1092 	kvm_destroy_vm_debugfs(kvm);
1093 	return ret;
1094 }
1095 
1096 /*
1097  * Called after the VM is otherwise initialized, but just before adding it to
1098  * the vm_list.
1099  */
1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1101 {
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Called just after removing the VM from the vm_list, but before doing any
1107  * other destruction.
1108  */
1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1110 {
1111 }
1112 
1113 /*
1114  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1115  * be setup already, so we can create arch-specific debugfs entries under it.
1116  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117  * a per-arch destroy interface is not needed.
1118  */
1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1120 {
1121 	return 0;
1122 }
1123 
1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1125 {
1126 	struct kvm *kvm = kvm_arch_alloc_vm();
1127 	struct kvm_memslots *slots;
1128 	int r = -ENOMEM;
1129 	int i, j;
1130 
1131 	if (!kvm)
1132 		return ERR_PTR(-ENOMEM);
1133 
1134 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135 	__module_get(kvm_chardev_ops.owner);
1136 
1137 	KVM_MMU_LOCK_INIT(kvm);
1138 	mmgrab(current->mm);
1139 	kvm->mm = current->mm;
1140 	kvm_eventfd_init(kvm);
1141 	mutex_init(&kvm->lock);
1142 	mutex_init(&kvm->irq_lock);
1143 	mutex_init(&kvm->slots_lock);
1144 	mutex_init(&kvm->slots_arch_lock);
1145 	spin_lock_init(&kvm->mn_invalidate_lock);
1146 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147 	xa_init(&kvm->vcpu_array);
1148 
1149 	INIT_LIST_HEAD(&kvm->gpc_list);
1150 	spin_lock_init(&kvm->gpc_lock);
1151 
1152 	INIT_LIST_HEAD(&kvm->devices);
1153 	kvm->max_vcpus = KVM_MAX_VCPUS;
1154 
1155 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156 
1157 	/*
1158 	 * Force subsequent debugfs file creations to fail if the VM directory
1159 	 * is not created (by kvm_create_vm_debugfs()).
1160 	 */
1161 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162 
1163 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164 		 task_pid_nr(current));
1165 
1166 	if (init_srcu_struct(&kvm->srcu))
1167 		goto out_err_no_srcu;
1168 	if (init_srcu_struct(&kvm->irq_srcu))
1169 		goto out_err_no_irq_srcu;
1170 
1171 	refcount_set(&kvm->users_count, 1);
1172 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173 		for (j = 0; j < 2; j++) {
1174 			slots = &kvm->__memslots[i][j];
1175 
1176 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177 			slots->hva_tree = RB_ROOT_CACHED;
1178 			slots->gfn_tree = RB_ROOT;
1179 			hash_init(slots->id_hash);
1180 			slots->node_idx = j;
1181 
1182 			/* Generations must be different for each address space. */
1183 			slots->generation = i;
1184 		}
1185 
1186 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1187 	}
1188 
1189 	for (i = 0; i < KVM_NR_BUSES; i++) {
1190 		rcu_assign_pointer(kvm->buses[i],
1191 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1192 		if (!kvm->buses[i])
1193 			goto out_err_no_arch_destroy_vm;
1194 	}
1195 
1196 	r = kvm_arch_init_vm(kvm, type);
1197 	if (r)
1198 		goto out_err_no_arch_destroy_vm;
1199 
1200 	r = hardware_enable_all();
1201 	if (r)
1202 		goto out_err_no_disable;
1203 
1204 #ifdef CONFIG_HAVE_KVM_IRQFD
1205 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1206 #endif
1207 
1208 	r = kvm_init_mmu_notifier(kvm);
1209 	if (r)
1210 		goto out_err_no_mmu_notifier;
1211 
1212 	r = kvm_coalesced_mmio_init(kvm);
1213 	if (r < 0)
1214 		goto out_no_coalesced_mmio;
1215 
1216 	r = kvm_create_vm_debugfs(kvm, fdname);
1217 	if (r)
1218 		goto out_err_no_debugfs;
1219 
1220 	r = kvm_arch_post_init_vm(kvm);
1221 	if (r)
1222 		goto out_err;
1223 
1224 	mutex_lock(&kvm_lock);
1225 	list_add(&kvm->vm_list, &vm_list);
1226 	mutex_unlock(&kvm_lock);
1227 
1228 	preempt_notifier_inc();
1229 	kvm_init_pm_notifier(kvm);
1230 
1231 	return kvm;
1232 
1233 out_err:
1234 	kvm_destroy_vm_debugfs(kvm);
1235 out_err_no_debugfs:
1236 	kvm_coalesced_mmio_free(kvm);
1237 out_no_coalesced_mmio:
1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239 	if (kvm->mmu_notifier.ops)
1240 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1241 #endif
1242 out_err_no_mmu_notifier:
1243 	hardware_disable_all();
1244 out_err_no_disable:
1245 	kvm_arch_destroy_vm(kvm);
1246 out_err_no_arch_destroy_vm:
1247 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1248 	for (i = 0; i < KVM_NR_BUSES; i++)
1249 		kfree(kvm_get_bus(kvm, i));
1250 	cleanup_srcu_struct(&kvm->irq_srcu);
1251 out_err_no_irq_srcu:
1252 	cleanup_srcu_struct(&kvm->srcu);
1253 out_err_no_srcu:
1254 	kvm_arch_free_vm(kvm);
1255 	mmdrop(current->mm);
1256 	module_put(kvm_chardev_ops.owner);
1257 	return ERR_PTR(r);
1258 }
1259 
1260 static void kvm_destroy_devices(struct kvm *kvm)
1261 {
1262 	struct kvm_device *dev, *tmp;
1263 
1264 	/*
1265 	 * We do not need to take the kvm->lock here, because nobody else
1266 	 * has a reference to the struct kvm at this point and therefore
1267 	 * cannot access the devices list anyhow.
1268 	 */
1269 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270 		list_del(&dev->vm_node);
1271 		dev->ops->destroy(dev);
1272 	}
1273 }
1274 
1275 static void kvm_destroy_vm(struct kvm *kvm)
1276 {
1277 	int i;
1278 	struct mm_struct *mm = kvm->mm;
1279 
1280 	kvm_destroy_pm_notifier(kvm);
1281 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1282 	kvm_destroy_vm_debugfs(kvm);
1283 	kvm_arch_sync_events(kvm);
1284 	mutex_lock(&kvm_lock);
1285 	list_del(&kvm->vm_list);
1286 	mutex_unlock(&kvm_lock);
1287 	kvm_arch_pre_destroy_vm(kvm);
1288 
1289 	kvm_free_irq_routing(kvm);
1290 	for (i = 0; i < KVM_NR_BUSES; i++) {
1291 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1292 
1293 		if (bus)
1294 			kvm_io_bus_destroy(bus);
1295 		kvm->buses[i] = NULL;
1296 	}
1297 	kvm_coalesced_mmio_free(kvm);
1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1300 	/*
1301 	 * At this point, pending calls to invalidate_range_start()
1302 	 * have completed but no more MMU notifiers will run, so
1303 	 * mn_active_invalidate_count may remain unbalanced.
1304 	 * No threads can be waiting in kvm_swap_active_memslots() as the
1305 	 * last reference on KVM has been dropped, but freeing
1306 	 * memslots would deadlock without this manual intervention.
1307 	 */
1308 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309 	kvm->mn_active_invalidate_count = 0;
1310 #else
1311 	kvm_flush_shadow_all(kvm);
1312 #endif
1313 	kvm_arch_destroy_vm(kvm);
1314 	kvm_destroy_devices(kvm);
1315 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1318 	}
1319 	cleanup_srcu_struct(&kvm->irq_srcu);
1320 	cleanup_srcu_struct(&kvm->srcu);
1321 	kvm_arch_free_vm(kvm);
1322 	preempt_notifier_dec();
1323 	hardware_disable_all();
1324 	mmdrop(mm);
1325 	module_put(kvm_chardev_ops.owner);
1326 }
1327 
1328 void kvm_get_kvm(struct kvm *kvm)
1329 {
1330 	refcount_inc(&kvm->users_count);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1333 
1334 /*
1335  * Make sure the vm is not during destruction, which is a safe version of
1336  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1337  */
1338 bool kvm_get_kvm_safe(struct kvm *kvm)
1339 {
1340 	return refcount_inc_not_zero(&kvm->users_count);
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1343 
1344 void kvm_put_kvm(struct kvm *kvm)
1345 {
1346 	if (refcount_dec_and_test(&kvm->users_count))
1347 		kvm_destroy_vm(kvm);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1350 
1351 /*
1352  * Used to put a reference that was taken on behalf of an object associated
1353  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354  * of the new file descriptor fails and the reference cannot be transferred to
1355  * its final owner.  In such cases, the caller is still actively using @kvm and
1356  * will fail miserably if the refcount unexpectedly hits zero.
1357  */
1358 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1359 {
1360 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1363 
1364 static int kvm_vm_release(struct inode *inode, struct file *filp)
1365 {
1366 	struct kvm *kvm = filp->private_data;
1367 
1368 	kvm_irqfd_release(kvm);
1369 
1370 	kvm_put_kvm(kvm);
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Allocation size is twice as large as the actual dirty bitmap size.
1376  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1377  */
1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1379 {
1380 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1381 
1382 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1383 	if (!memslot->dirty_bitmap)
1384 		return -ENOMEM;
1385 
1386 	return 0;
1387 }
1388 
1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1390 {
1391 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392 	int node_idx_inactive = active->node_idx ^ 1;
1393 
1394 	return &kvm->__memslots[as_id][node_idx_inactive];
1395 }
1396 
1397 /*
1398  * Helper to get the address space ID when one of memslot pointers may be NULL.
1399  * This also serves as a sanity that at least one of the pointers is non-NULL,
1400  * and that their address space IDs don't diverge.
1401  */
1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403 				  struct kvm_memory_slot *b)
1404 {
1405 	if (WARN_ON_ONCE(!a && !b))
1406 		return 0;
1407 
1408 	if (!a)
1409 		return b->as_id;
1410 	if (!b)
1411 		return a->as_id;
1412 
1413 	WARN_ON_ONCE(a->as_id != b->as_id);
1414 	return a->as_id;
1415 }
1416 
1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418 				struct kvm_memory_slot *slot)
1419 {
1420 	struct rb_root *gfn_tree = &slots->gfn_tree;
1421 	struct rb_node **node, *parent;
1422 	int idx = slots->node_idx;
1423 
1424 	parent = NULL;
1425 	for (node = &gfn_tree->rb_node; *node; ) {
1426 		struct kvm_memory_slot *tmp;
1427 
1428 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1429 		parent = *node;
1430 		if (slot->base_gfn < tmp->base_gfn)
1431 			node = &(*node)->rb_left;
1432 		else if (slot->base_gfn > tmp->base_gfn)
1433 			node = &(*node)->rb_right;
1434 		else
1435 			BUG();
1436 	}
1437 
1438 	rb_link_node(&slot->gfn_node[idx], parent, node);
1439 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1440 }
1441 
1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443 			       struct kvm_memory_slot *slot)
1444 {
1445 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1446 }
1447 
1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449 				 struct kvm_memory_slot *old,
1450 				 struct kvm_memory_slot *new)
1451 {
1452 	int idx = slots->node_idx;
1453 
1454 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1455 
1456 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1457 			&slots->gfn_tree);
1458 }
1459 
1460 /*
1461  * Replace @old with @new in the inactive memslots.
1462  *
1463  * With NULL @old this simply adds @new.
1464  * With NULL @new this simply removes @old.
1465  *
1466  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1467  * appropriately.
1468  */
1469 static void kvm_replace_memslot(struct kvm *kvm,
1470 				struct kvm_memory_slot *old,
1471 				struct kvm_memory_slot *new)
1472 {
1473 	int as_id = kvm_memslots_get_as_id(old, new);
1474 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475 	int idx = slots->node_idx;
1476 
1477 	if (old) {
1478 		hash_del(&old->id_node[idx]);
1479 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1480 
1481 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1482 			atomic_long_set(&slots->last_used_slot, (long)new);
1483 
1484 		if (!new) {
1485 			kvm_erase_gfn_node(slots, old);
1486 			return;
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * Initialize @new's hva range.  Do this even when replacing an @old
1492 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1493 	 */
1494 	new->hva_node[idx].start = new->userspace_addr;
1495 	new->hva_node[idx].last = new->userspace_addr +
1496 				  (new->npages << PAGE_SHIFT) - 1;
1497 
1498 	/*
1499 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1500 	 * hva_node needs to be swapped with remove+insert even though hva can't
1501 	 * change when replacing an existing slot.
1502 	 */
1503 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1505 
1506 	/*
1507 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508 	 * switch the node in the gfn tree instead of removing the old and
1509 	 * inserting the new as two separate operations. Replacement is a
1510 	 * single O(1) operation versus two O(log(n)) operations for
1511 	 * remove+insert.
1512 	 */
1513 	if (old && old->base_gfn == new->base_gfn) {
1514 		kvm_replace_gfn_node(slots, old, new);
1515 	} else {
1516 		if (old)
1517 			kvm_erase_gfn_node(slots, old);
1518 		kvm_insert_gfn_node(slots, new);
1519 	}
1520 }
1521 
1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1523 {
1524 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1525 
1526 #ifdef __KVM_HAVE_READONLY_MEM
1527 	valid_flags |= KVM_MEM_READONLY;
1528 #endif
1529 
1530 	if (mem->flags & ~valid_flags)
1531 		return -EINVAL;
1532 
1533 	return 0;
1534 }
1535 
1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1537 {
1538 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1539 
1540 	/* Grab the generation from the activate memslots. */
1541 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1542 
1543 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1545 
1546 	/*
1547 	 * Do not store the new memslots while there are invalidations in
1548 	 * progress, otherwise the locking in invalidate_range_start and
1549 	 * invalidate_range_end will be unbalanced.
1550 	 */
1551 	spin_lock(&kvm->mn_invalidate_lock);
1552 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553 	while (kvm->mn_active_invalidate_count) {
1554 		set_current_state(TASK_UNINTERRUPTIBLE);
1555 		spin_unlock(&kvm->mn_invalidate_lock);
1556 		schedule();
1557 		spin_lock(&kvm->mn_invalidate_lock);
1558 	}
1559 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1561 	spin_unlock(&kvm->mn_invalidate_lock);
1562 
1563 	/*
1564 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1565 	 * SRCU below in order to avoid deadlock with another thread
1566 	 * acquiring the slots_arch_lock in an srcu critical section.
1567 	 */
1568 	mutex_unlock(&kvm->slots_arch_lock);
1569 
1570 	synchronize_srcu_expedited(&kvm->srcu);
1571 
1572 	/*
1573 	 * Increment the new memslot generation a second time, dropping the
1574 	 * update in-progress flag and incrementing the generation based on
1575 	 * the number of address spaces.  This provides a unique and easily
1576 	 * identifiable generation number while the memslots are in flux.
1577 	 */
1578 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1579 
1580 	/*
1581 	 * Generations must be unique even across address spaces.  We do not need
1582 	 * a global counter for that, instead the generation space is evenly split
1583 	 * across address spaces.  For example, with two address spaces, address
1584 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585 	 * use generations 1, 3, 5, ...
1586 	 */
1587 	gen += KVM_ADDRESS_SPACE_NUM;
1588 
1589 	kvm_arch_memslots_updated(kvm, gen);
1590 
1591 	slots->generation = gen;
1592 }
1593 
1594 static int kvm_prepare_memory_region(struct kvm *kvm,
1595 				     const struct kvm_memory_slot *old,
1596 				     struct kvm_memory_slot *new,
1597 				     enum kvm_mr_change change)
1598 {
1599 	int r;
1600 
1601 	/*
1602 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603 	 * will be freed on "commit".  If logging is enabled in both old and
1604 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1605 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1606 	 * new bitmap.
1607 	 */
1608 	if (change != KVM_MR_DELETE) {
1609 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610 			new->dirty_bitmap = NULL;
1611 		else if (old && old->dirty_bitmap)
1612 			new->dirty_bitmap = old->dirty_bitmap;
1613 		else if (kvm_use_dirty_bitmap(kvm)) {
1614 			r = kvm_alloc_dirty_bitmap(new);
1615 			if (r)
1616 				return r;
1617 
1618 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1620 		}
1621 	}
1622 
1623 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1624 
1625 	/* Free the bitmap on failure if it was allocated above. */
1626 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1627 		kvm_destroy_dirty_bitmap(new);
1628 
1629 	return r;
1630 }
1631 
1632 static void kvm_commit_memory_region(struct kvm *kvm,
1633 				     struct kvm_memory_slot *old,
1634 				     const struct kvm_memory_slot *new,
1635 				     enum kvm_mr_change change)
1636 {
1637 	int old_flags = old ? old->flags : 0;
1638 	int new_flags = new ? new->flags : 0;
1639 	/*
1640 	 * Update the total number of memslot pages before calling the arch
1641 	 * hook so that architectures can consume the result directly.
1642 	 */
1643 	if (change == KVM_MR_DELETE)
1644 		kvm->nr_memslot_pages -= old->npages;
1645 	else if (change == KVM_MR_CREATE)
1646 		kvm->nr_memslot_pages += new->npages;
1647 
1648 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650 		atomic_set(&kvm->nr_memslots_dirty_logging,
1651 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1652 	}
1653 
1654 	kvm_arch_commit_memory_region(kvm, old, new, change);
1655 
1656 	switch (change) {
1657 	case KVM_MR_CREATE:
1658 		/* Nothing more to do. */
1659 		break;
1660 	case KVM_MR_DELETE:
1661 		/* Free the old memslot and all its metadata. */
1662 		kvm_free_memslot(kvm, old);
1663 		break;
1664 	case KVM_MR_MOVE:
1665 	case KVM_MR_FLAGS_ONLY:
1666 		/*
1667 		 * Free the dirty bitmap as needed; the below check encompasses
1668 		 * both the flags and whether a ring buffer is being used)
1669 		 */
1670 		if (old->dirty_bitmap && !new->dirty_bitmap)
1671 			kvm_destroy_dirty_bitmap(old);
1672 
1673 		/*
1674 		 * The final quirk.  Free the detached, old slot, but only its
1675 		 * memory, not any metadata.  Metadata, including arch specific
1676 		 * data, may be reused by @new.
1677 		 */
1678 		kfree(old);
1679 		break;
1680 	default:
1681 		BUG();
1682 	}
1683 }
1684 
1685 /*
1686  * Activate @new, which must be installed in the inactive slots by the caller,
1687  * by swapping the active slots and then propagating @new to @old once @old is
1688  * unreachable and can be safely modified.
1689  *
1690  * With NULL @old this simply adds @new to @active (while swapping the sets).
1691  * With NULL @new this simply removes @old from @active and frees it
1692  * (while also swapping the sets).
1693  */
1694 static void kvm_activate_memslot(struct kvm *kvm,
1695 				 struct kvm_memory_slot *old,
1696 				 struct kvm_memory_slot *new)
1697 {
1698 	int as_id = kvm_memslots_get_as_id(old, new);
1699 
1700 	kvm_swap_active_memslots(kvm, as_id);
1701 
1702 	/* Propagate the new memslot to the now inactive memslots. */
1703 	kvm_replace_memslot(kvm, old, new);
1704 }
1705 
1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707 			     const struct kvm_memory_slot *src)
1708 {
1709 	dest->base_gfn = src->base_gfn;
1710 	dest->npages = src->npages;
1711 	dest->dirty_bitmap = src->dirty_bitmap;
1712 	dest->arch = src->arch;
1713 	dest->userspace_addr = src->userspace_addr;
1714 	dest->flags = src->flags;
1715 	dest->id = src->id;
1716 	dest->as_id = src->as_id;
1717 }
1718 
1719 static void kvm_invalidate_memslot(struct kvm *kvm,
1720 				   struct kvm_memory_slot *old,
1721 				   struct kvm_memory_slot *invalid_slot)
1722 {
1723 	/*
1724 	 * Mark the current slot INVALID.  As with all memslot modifications,
1725 	 * this must be done on an unreachable slot to avoid modifying the
1726 	 * current slot in the active tree.
1727 	 */
1728 	kvm_copy_memslot(invalid_slot, old);
1729 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730 	kvm_replace_memslot(kvm, old, invalid_slot);
1731 
1732 	/*
1733 	 * Activate the slot that is now marked INVALID, but don't propagate
1734 	 * the slot to the now inactive slots. The slot is either going to be
1735 	 * deleted or recreated as a new slot.
1736 	 */
1737 	kvm_swap_active_memslots(kvm, old->as_id);
1738 
1739 	/*
1740 	 * From this point no new shadow pages pointing to a deleted, or moved,
1741 	 * memslot will be created.  Validation of sp->gfn happens in:
1742 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743 	 *	- kvm_is_visible_gfn (mmu_check_root)
1744 	 */
1745 	kvm_arch_flush_shadow_memslot(kvm, old);
1746 	kvm_arch_guest_memory_reclaimed(kvm);
1747 
1748 	/* Was released by kvm_swap_active_memslots(), reacquire. */
1749 	mutex_lock(&kvm->slots_arch_lock);
1750 
1751 	/*
1752 	 * Copy the arch-specific field of the newly-installed slot back to the
1753 	 * old slot as the arch data could have changed between releasing
1754 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1755 	 * above.  Writers are required to retrieve memslots *after* acquiring
1756 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1757 	 */
1758 	old->arch = invalid_slot->arch;
1759 }
1760 
1761 static void kvm_create_memslot(struct kvm *kvm,
1762 			       struct kvm_memory_slot *new)
1763 {
1764 	/* Add the new memslot to the inactive set and activate. */
1765 	kvm_replace_memslot(kvm, NULL, new);
1766 	kvm_activate_memslot(kvm, NULL, new);
1767 }
1768 
1769 static void kvm_delete_memslot(struct kvm *kvm,
1770 			       struct kvm_memory_slot *old,
1771 			       struct kvm_memory_slot *invalid_slot)
1772 {
1773 	/*
1774 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1775 	 * the "new" slot, and for the invalid version in the active slots.
1776 	 */
1777 	kvm_replace_memslot(kvm, old, NULL);
1778 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1779 }
1780 
1781 static void kvm_move_memslot(struct kvm *kvm,
1782 			     struct kvm_memory_slot *old,
1783 			     struct kvm_memory_slot *new,
1784 			     struct kvm_memory_slot *invalid_slot)
1785 {
1786 	/*
1787 	 * Replace the old memslot in the inactive slots, and then swap slots
1788 	 * and replace the current INVALID with the new as well.
1789 	 */
1790 	kvm_replace_memslot(kvm, old, new);
1791 	kvm_activate_memslot(kvm, invalid_slot, new);
1792 }
1793 
1794 static void kvm_update_flags_memslot(struct kvm *kvm,
1795 				     struct kvm_memory_slot *old,
1796 				     struct kvm_memory_slot *new)
1797 {
1798 	/*
1799 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800 	 * an intermediate step. Instead, the old memslot is simply replaced
1801 	 * with a new, updated copy in both memslot sets.
1802 	 */
1803 	kvm_replace_memslot(kvm, old, new);
1804 	kvm_activate_memslot(kvm, old, new);
1805 }
1806 
1807 static int kvm_set_memslot(struct kvm *kvm,
1808 			   struct kvm_memory_slot *old,
1809 			   struct kvm_memory_slot *new,
1810 			   enum kvm_mr_change change)
1811 {
1812 	struct kvm_memory_slot *invalid_slot;
1813 	int r;
1814 
1815 	/*
1816 	 * Released in kvm_swap_active_memslots().
1817 	 *
1818 	 * Must be held from before the current memslots are copied until after
1819 	 * the new memslots are installed with rcu_assign_pointer, then
1820 	 * released before the synchronize srcu in kvm_swap_active_memslots().
1821 	 *
1822 	 * When modifying memslots outside of the slots_lock, must be held
1823 	 * before reading the pointer to the current memslots until after all
1824 	 * changes to those memslots are complete.
1825 	 *
1826 	 * These rules ensure that installing new memslots does not lose
1827 	 * changes made to the previous memslots.
1828 	 */
1829 	mutex_lock(&kvm->slots_arch_lock);
1830 
1831 	/*
1832 	 * Invalidate the old slot if it's being deleted or moved.  This is
1833 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1834 	 * continue running by ensuring there are no mappings or shadow pages
1835 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1836 	 * (and without a lock), a window would exist between effecting the
1837 	 * delete/move and committing the changes in arch code where KVM or a
1838 	 * guest could access a non-existent memslot.
1839 	 *
1840 	 * Modifications are done on a temporary, unreachable slot.  The old
1841 	 * slot needs to be preserved in case a later step fails and the
1842 	 * invalidation needs to be reverted.
1843 	 */
1844 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846 		if (!invalid_slot) {
1847 			mutex_unlock(&kvm->slots_arch_lock);
1848 			return -ENOMEM;
1849 		}
1850 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1851 	}
1852 
1853 	r = kvm_prepare_memory_region(kvm, old, new, change);
1854 	if (r) {
1855 		/*
1856 		 * For DELETE/MOVE, revert the above INVALID change.  No
1857 		 * modifications required since the original slot was preserved
1858 		 * in the inactive slots.  Changing the active memslots also
1859 		 * release slots_arch_lock.
1860 		 */
1861 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862 			kvm_activate_memslot(kvm, invalid_slot, old);
1863 			kfree(invalid_slot);
1864 		} else {
1865 			mutex_unlock(&kvm->slots_arch_lock);
1866 		}
1867 		return r;
1868 	}
1869 
1870 	/*
1871 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1872 	 * version of the old slot.  MOVE is particularly special as it reuses
1873 	 * the old slot and returns a copy of the old slot (in working_slot).
1874 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1875 	 * old slot is detached but otherwise preserved.
1876 	 */
1877 	if (change == KVM_MR_CREATE)
1878 		kvm_create_memslot(kvm, new);
1879 	else if (change == KVM_MR_DELETE)
1880 		kvm_delete_memslot(kvm, old, invalid_slot);
1881 	else if (change == KVM_MR_MOVE)
1882 		kvm_move_memslot(kvm, old, new, invalid_slot);
1883 	else if (change == KVM_MR_FLAGS_ONLY)
1884 		kvm_update_flags_memslot(kvm, old, new);
1885 	else
1886 		BUG();
1887 
1888 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1889 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890 		kfree(invalid_slot);
1891 
1892 	/*
1893 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1894 	 * will directly hit the final, active memslot.  Architectures are
1895 	 * responsible for knowing that new->arch may be stale.
1896 	 */
1897 	kvm_commit_memory_region(kvm, old, new, change);
1898 
1899 	return 0;
1900 }
1901 
1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903 				      gfn_t start, gfn_t end)
1904 {
1905 	struct kvm_memslot_iter iter;
1906 
1907 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908 		if (iter.slot->id != id)
1909 			return true;
1910 	}
1911 
1912 	return false;
1913 }
1914 
1915 /*
1916  * Allocate some memory and give it an address in the guest physical address
1917  * space.
1918  *
1919  * Discontiguous memory is allowed, mostly for framebuffers.
1920  *
1921  * Must be called holding kvm->slots_lock for write.
1922  */
1923 int __kvm_set_memory_region(struct kvm *kvm,
1924 			    const struct kvm_userspace_memory_region *mem)
1925 {
1926 	struct kvm_memory_slot *old, *new;
1927 	struct kvm_memslots *slots;
1928 	enum kvm_mr_change change;
1929 	unsigned long npages;
1930 	gfn_t base_gfn;
1931 	int as_id, id;
1932 	int r;
1933 
1934 	r = check_memory_region_flags(mem);
1935 	if (r)
1936 		return r;
1937 
1938 	as_id = mem->slot >> 16;
1939 	id = (u16)mem->slot;
1940 
1941 	/* General sanity checks */
1942 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943 	    (mem->memory_size != (unsigned long)mem->memory_size))
1944 		return -EINVAL;
1945 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1946 		return -EINVAL;
1947 	/* We can read the guest memory with __xxx_user() later on. */
1948 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1949 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1950 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1951 			mem->memory_size))
1952 		return -EINVAL;
1953 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1954 		return -EINVAL;
1955 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1956 		return -EINVAL;
1957 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1958 		return -EINVAL;
1959 
1960 	slots = __kvm_memslots(kvm, as_id);
1961 
1962 	/*
1963 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1964 	 * and/or destroyed by kvm_set_memslot().
1965 	 */
1966 	old = id_to_memslot(slots, id);
1967 
1968 	if (!mem->memory_size) {
1969 		if (!old || !old->npages)
1970 			return -EINVAL;
1971 
1972 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1973 			return -EIO;
1974 
1975 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1976 	}
1977 
1978 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979 	npages = (mem->memory_size >> PAGE_SHIFT);
1980 
1981 	if (!old || !old->npages) {
1982 		change = KVM_MR_CREATE;
1983 
1984 		/*
1985 		 * To simplify KVM internals, the total number of pages across
1986 		 * all memslots must fit in an unsigned long.
1987 		 */
1988 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1989 			return -EINVAL;
1990 	} else { /* Modify an existing slot. */
1991 		if ((mem->userspace_addr != old->userspace_addr) ||
1992 		    (npages != old->npages) ||
1993 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1994 			return -EINVAL;
1995 
1996 		if (base_gfn != old->base_gfn)
1997 			change = KVM_MR_MOVE;
1998 		else if (mem->flags != old->flags)
1999 			change = KVM_MR_FLAGS_ONLY;
2000 		else /* Nothing to change. */
2001 			return 0;
2002 	}
2003 
2004 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2005 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2006 		return -EEXIST;
2007 
2008 	/* Allocate a slot that will persist in the memslot. */
2009 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2010 	if (!new)
2011 		return -ENOMEM;
2012 
2013 	new->as_id = as_id;
2014 	new->id = id;
2015 	new->base_gfn = base_gfn;
2016 	new->npages = npages;
2017 	new->flags = mem->flags;
2018 	new->userspace_addr = mem->userspace_addr;
2019 
2020 	r = kvm_set_memslot(kvm, old, new, change);
2021 	if (r)
2022 		kfree(new);
2023 	return r;
2024 }
2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2026 
2027 int kvm_set_memory_region(struct kvm *kvm,
2028 			  const struct kvm_userspace_memory_region *mem)
2029 {
2030 	int r;
2031 
2032 	mutex_lock(&kvm->slots_lock);
2033 	r = __kvm_set_memory_region(kvm, mem);
2034 	mutex_unlock(&kvm->slots_lock);
2035 	return r;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2038 
2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040 					  struct kvm_userspace_memory_region *mem)
2041 {
2042 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2043 		return -EINVAL;
2044 
2045 	return kvm_set_memory_region(kvm, mem);
2046 }
2047 
2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2049 /**
2050  * kvm_get_dirty_log - get a snapshot of dirty pages
2051  * @kvm:	pointer to kvm instance
2052  * @log:	slot id and address to which we copy the log
2053  * @is_dirty:	set to '1' if any dirty pages were found
2054  * @memslot:	set to the associated memslot, always valid on success
2055  */
2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057 		      int *is_dirty, struct kvm_memory_slot **memslot)
2058 {
2059 	struct kvm_memslots *slots;
2060 	int i, as_id, id;
2061 	unsigned long n;
2062 	unsigned long any = 0;
2063 
2064 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2065 	if (!kvm_use_dirty_bitmap(kvm))
2066 		return -ENXIO;
2067 
2068 	*memslot = NULL;
2069 	*is_dirty = 0;
2070 
2071 	as_id = log->slot >> 16;
2072 	id = (u16)log->slot;
2073 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2074 		return -EINVAL;
2075 
2076 	slots = __kvm_memslots(kvm, as_id);
2077 	*memslot = id_to_memslot(slots, id);
2078 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2079 		return -ENOENT;
2080 
2081 	kvm_arch_sync_dirty_log(kvm, *memslot);
2082 
2083 	n = kvm_dirty_bitmap_bytes(*memslot);
2084 
2085 	for (i = 0; !any && i < n/sizeof(long); ++i)
2086 		any = (*memslot)->dirty_bitmap[i];
2087 
2088 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2089 		return -EFAULT;
2090 
2091 	if (any)
2092 		*is_dirty = 1;
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2096 
2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2098 /**
2099  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2100  *	and reenable dirty page tracking for the corresponding pages.
2101  * @kvm:	pointer to kvm instance
2102  * @log:	slot id and address to which we copy the log
2103  *
2104  * We need to keep it in mind that VCPU threads can write to the bitmap
2105  * concurrently. So, to avoid losing track of dirty pages we keep the
2106  * following order:
2107  *
2108  *    1. Take a snapshot of the bit and clear it if needed.
2109  *    2. Write protect the corresponding page.
2110  *    3. Copy the snapshot to the userspace.
2111  *    4. Upon return caller flushes TLB's if needed.
2112  *
2113  * Between 2 and 4, the guest may write to the page using the remaining TLB
2114  * entry.  This is not a problem because the page is reported dirty using
2115  * the snapshot taken before and step 4 ensures that writes done after
2116  * exiting to userspace will be logged for the next call.
2117  *
2118  */
2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2120 {
2121 	struct kvm_memslots *slots;
2122 	struct kvm_memory_slot *memslot;
2123 	int i, as_id, id;
2124 	unsigned long n;
2125 	unsigned long *dirty_bitmap;
2126 	unsigned long *dirty_bitmap_buffer;
2127 	bool flush;
2128 
2129 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2130 	if (!kvm_use_dirty_bitmap(kvm))
2131 		return -ENXIO;
2132 
2133 	as_id = log->slot >> 16;
2134 	id = (u16)log->slot;
2135 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2136 		return -EINVAL;
2137 
2138 	slots = __kvm_memslots(kvm, as_id);
2139 	memslot = id_to_memslot(slots, id);
2140 	if (!memslot || !memslot->dirty_bitmap)
2141 		return -ENOENT;
2142 
2143 	dirty_bitmap = memslot->dirty_bitmap;
2144 
2145 	kvm_arch_sync_dirty_log(kvm, memslot);
2146 
2147 	n = kvm_dirty_bitmap_bytes(memslot);
2148 	flush = false;
2149 	if (kvm->manual_dirty_log_protect) {
2150 		/*
2151 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2152 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2153 		 * is some code duplication between this function and
2154 		 * kvm_get_dirty_log, but hopefully all architecture
2155 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156 		 * can be eliminated.
2157 		 */
2158 		dirty_bitmap_buffer = dirty_bitmap;
2159 	} else {
2160 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161 		memset(dirty_bitmap_buffer, 0, n);
2162 
2163 		KVM_MMU_LOCK(kvm);
2164 		for (i = 0; i < n / sizeof(long); i++) {
2165 			unsigned long mask;
2166 			gfn_t offset;
2167 
2168 			if (!dirty_bitmap[i])
2169 				continue;
2170 
2171 			flush = true;
2172 			mask = xchg(&dirty_bitmap[i], 0);
2173 			dirty_bitmap_buffer[i] = mask;
2174 
2175 			offset = i * BITS_PER_LONG;
2176 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2177 								offset, mask);
2178 		}
2179 		KVM_MMU_UNLOCK(kvm);
2180 	}
2181 
2182 	if (flush)
2183 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2184 
2185 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2186 		return -EFAULT;
2187 	return 0;
2188 }
2189 
2190 
2191 /**
2192  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193  * @kvm: kvm instance
2194  * @log: slot id and address to which we copy the log
2195  *
2196  * Steps 1-4 below provide general overview of dirty page logging. See
2197  * kvm_get_dirty_log_protect() function description for additional details.
2198  *
2199  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200  * always flush the TLB (step 4) even if previous step failed  and the dirty
2201  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203  * writes will be marked dirty for next log read.
2204  *
2205  *   1. Take a snapshot of the bit and clear it if needed.
2206  *   2. Write protect the corresponding page.
2207  *   3. Copy the snapshot to the userspace.
2208  *   4. Flush TLB's if needed.
2209  */
2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211 				      struct kvm_dirty_log *log)
2212 {
2213 	int r;
2214 
2215 	mutex_lock(&kvm->slots_lock);
2216 
2217 	r = kvm_get_dirty_log_protect(kvm, log);
2218 
2219 	mutex_unlock(&kvm->slots_lock);
2220 	return r;
2221 }
2222 
2223 /**
2224  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225  *	and reenable dirty page tracking for the corresponding pages.
2226  * @kvm:	pointer to kvm instance
2227  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2228  */
2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230 				       struct kvm_clear_dirty_log *log)
2231 {
2232 	struct kvm_memslots *slots;
2233 	struct kvm_memory_slot *memslot;
2234 	int as_id, id;
2235 	gfn_t offset;
2236 	unsigned long i, n;
2237 	unsigned long *dirty_bitmap;
2238 	unsigned long *dirty_bitmap_buffer;
2239 	bool flush;
2240 
2241 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2242 	if (!kvm_use_dirty_bitmap(kvm))
2243 		return -ENXIO;
2244 
2245 	as_id = log->slot >> 16;
2246 	id = (u16)log->slot;
2247 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2248 		return -EINVAL;
2249 
2250 	if (log->first_page & 63)
2251 		return -EINVAL;
2252 
2253 	slots = __kvm_memslots(kvm, as_id);
2254 	memslot = id_to_memslot(slots, id);
2255 	if (!memslot || !memslot->dirty_bitmap)
2256 		return -ENOENT;
2257 
2258 	dirty_bitmap = memslot->dirty_bitmap;
2259 
2260 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2261 
2262 	if (log->first_page > memslot->npages ||
2263 	    log->num_pages > memslot->npages - log->first_page ||
2264 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2265 	    return -EINVAL;
2266 
2267 	kvm_arch_sync_dirty_log(kvm, memslot);
2268 
2269 	flush = false;
2270 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2272 		return -EFAULT;
2273 
2274 	KVM_MMU_LOCK(kvm);
2275 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2277 	     i++, offset += BITS_PER_LONG) {
2278 		unsigned long mask = *dirty_bitmap_buffer++;
2279 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2280 		if (!mask)
2281 			continue;
2282 
2283 		mask &= atomic_long_fetch_andnot(mask, p);
2284 
2285 		/*
2286 		 * mask contains the bits that really have been cleared.  This
2287 		 * never includes any bits beyond the length of the memslot (if
2288 		 * the length is not aligned to 64 pages), therefore it is not
2289 		 * a problem if userspace sets them in log->dirty_bitmap.
2290 		*/
2291 		if (mask) {
2292 			flush = true;
2293 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294 								offset, mask);
2295 		}
2296 	}
2297 	KVM_MMU_UNLOCK(kvm);
2298 
2299 	if (flush)
2300 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2301 
2302 	return 0;
2303 }
2304 
2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306 					struct kvm_clear_dirty_log *log)
2307 {
2308 	int r;
2309 
2310 	mutex_lock(&kvm->slots_lock);
2311 
2312 	r = kvm_clear_dirty_log_protect(kvm, log);
2313 
2314 	mutex_unlock(&kvm->slots_lock);
2315 	return r;
2316 }
2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2318 
2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2320 {
2321 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2322 }
2323 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2324 
2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2326 {
2327 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2328 	u64 gen = slots->generation;
2329 	struct kvm_memory_slot *slot;
2330 
2331 	/*
2332 	 * This also protects against using a memslot from a different address space,
2333 	 * since different address spaces have different generation numbers.
2334 	 */
2335 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336 		vcpu->last_used_slot = NULL;
2337 		vcpu->last_used_slot_gen = gen;
2338 	}
2339 
2340 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2341 	if (slot)
2342 		return slot;
2343 
2344 	/*
2345 	 * Fall back to searching all memslots. We purposely use
2346 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2347 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2348 	 */
2349 	slot = search_memslots(slots, gfn, false);
2350 	if (slot) {
2351 		vcpu->last_used_slot = slot;
2352 		return slot;
2353 	}
2354 
2355 	return NULL;
2356 }
2357 
2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2359 {
2360 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2361 
2362 	return kvm_is_visible_memslot(memslot);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2365 
2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 {
2368 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369 
2370 	return kvm_is_visible_memslot(memslot);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2373 
2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2375 {
2376 	struct vm_area_struct *vma;
2377 	unsigned long addr, size;
2378 
2379 	size = PAGE_SIZE;
2380 
2381 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2382 	if (kvm_is_error_hva(addr))
2383 		return PAGE_SIZE;
2384 
2385 	mmap_read_lock(current->mm);
2386 	vma = find_vma(current->mm, addr);
2387 	if (!vma)
2388 		goto out;
2389 
2390 	size = vma_kernel_pagesize(vma);
2391 
2392 out:
2393 	mmap_read_unlock(current->mm);
2394 
2395 	return size;
2396 }
2397 
2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2399 {
2400 	return slot->flags & KVM_MEM_READONLY;
2401 }
2402 
2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2404 				       gfn_t *nr_pages, bool write)
2405 {
2406 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2407 		return KVM_HVA_ERR_BAD;
2408 
2409 	if (memslot_is_readonly(slot) && write)
2410 		return KVM_HVA_ERR_RO_BAD;
2411 
2412 	if (nr_pages)
2413 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2414 
2415 	return __gfn_to_hva_memslot(slot, gfn);
2416 }
2417 
2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2419 				     gfn_t *nr_pages)
2420 {
2421 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2422 }
2423 
2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2425 					gfn_t gfn)
2426 {
2427 	return gfn_to_hva_many(slot, gfn, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2430 
2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2432 {
2433 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_hva);
2436 
2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2438 {
2439 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2442 
2443 /*
2444  * Return the hva of a @gfn and the R/W attribute if possible.
2445  *
2446  * @slot: the kvm_memory_slot which contains @gfn
2447  * @gfn: the gfn to be translated
2448  * @writable: used to return the read/write attribute of the @slot if the hva
2449  * is valid and @writable is not NULL
2450  */
2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452 				      gfn_t gfn, bool *writable)
2453 {
2454 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2455 
2456 	if (!kvm_is_error_hva(hva) && writable)
2457 		*writable = !memslot_is_readonly(slot);
2458 
2459 	return hva;
2460 }
2461 
2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2463 {
2464 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2465 
2466 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2467 }
2468 
2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2470 {
2471 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2472 
2473 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2474 }
2475 
2476 static inline int check_user_page_hwpoison(unsigned long addr)
2477 {
2478 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2479 
2480 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2481 	return rc == -EHWPOISON;
2482 }
2483 
2484 /*
2485  * The fast path to get the writable pfn which will be stored in @pfn,
2486  * true indicates success, otherwise false is returned.  It's also the
2487  * only part that runs if we can in atomic context.
2488  */
2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490 			    bool *writable, kvm_pfn_t *pfn)
2491 {
2492 	struct page *page[1];
2493 
2494 	/*
2495 	 * Fast pin a writable pfn only if it is a write fault request
2496 	 * or the caller allows to map a writable pfn for a read fault
2497 	 * request.
2498 	 */
2499 	if (!(write_fault || writable))
2500 		return false;
2501 
2502 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2503 		*pfn = page_to_pfn(page[0]);
2504 
2505 		if (writable)
2506 			*writable = true;
2507 		return true;
2508 	}
2509 
2510 	return false;
2511 }
2512 
2513 /*
2514  * The slow path to get the pfn of the specified host virtual address,
2515  * 1 indicates success, -errno is returned if error is detected.
2516  */
2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2518 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2519 {
2520 	unsigned int flags = FOLL_HWPOISON;
2521 	struct page *page;
2522 	int npages;
2523 
2524 	might_sleep();
2525 
2526 	if (writable)
2527 		*writable = write_fault;
2528 
2529 	if (write_fault)
2530 		flags |= FOLL_WRITE;
2531 	if (async)
2532 		flags |= FOLL_NOWAIT;
2533 	if (interruptible)
2534 		flags |= FOLL_INTERRUPTIBLE;
2535 
2536 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2537 	if (npages != 1)
2538 		return npages;
2539 
2540 	/* map read fault as writable if possible */
2541 	if (unlikely(!write_fault) && writable) {
2542 		struct page *wpage;
2543 
2544 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2545 			*writable = true;
2546 			put_page(page);
2547 			page = wpage;
2548 		}
2549 	}
2550 	*pfn = page_to_pfn(page);
2551 	return npages;
2552 }
2553 
2554 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2555 {
2556 	if (unlikely(!(vma->vm_flags & VM_READ)))
2557 		return false;
2558 
2559 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2560 		return false;
2561 
2562 	return true;
2563 }
2564 
2565 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2566 {
2567 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2568 
2569 	if (!page)
2570 		return 1;
2571 
2572 	return get_page_unless_zero(page);
2573 }
2574 
2575 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2576 			       unsigned long addr, bool write_fault,
2577 			       bool *writable, kvm_pfn_t *p_pfn)
2578 {
2579 	kvm_pfn_t pfn;
2580 	pte_t *ptep;
2581 	spinlock_t *ptl;
2582 	int r;
2583 
2584 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2585 	if (r) {
2586 		/*
2587 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2588 		 * not call the fault handler, so do it here.
2589 		 */
2590 		bool unlocked = false;
2591 		r = fixup_user_fault(current->mm, addr,
2592 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2593 				     &unlocked);
2594 		if (unlocked)
2595 			return -EAGAIN;
2596 		if (r)
2597 			return r;
2598 
2599 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2600 		if (r)
2601 			return r;
2602 	}
2603 
2604 	if (write_fault && !pte_write(*ptep)) {
2605 		pfn = KVM_PFN_ERR_RO_FAULT;
2606 		goto out;
2607 	}
2608 
2609 	if (writable)
2610 		*writable = pte_write(*ptep);
2611 	pfn = pte_pfn(*ptep);
2612 
2613 	/*
2614 	 * Get a reference here because callers of *hva_to_pfn* and
2615 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2616 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2617 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2618 	 * simply do nothing for reserved pfns.
2619 	 *
2620 	 * Whoever called remap_pfn_range is also going to call e.g.
2621 	 * unmap_mapping_range before the underlying pages are freed,
2622 	 * causing a call to our MMU notifier.
2623 	 *
2624 	 * Certain IO or PFNMAP mappings can be backed with valid
2625 	 * struct pages, but be allocated without refcounting e.g.,
2626 	 * tail pages of non-compound higher order allocations, which
2627 	 * would then underflow the refcount when the caller does the
2628 	 * required put_page. Don't allow those pages here.
2629 	 */
2630 	if (!kvm_try_get_pfn(pfn))
2631 		r = -EFAULT;
2632 
2633 out:
2634 	pte_unmap_unlock(ptep, ptl);
2635 	*p_pfn = pfn;
2636 
2637 	return r;
2638 }
2639 
2640 /*
2641  * Pin guest page in memory and return its pfn.
2642  * @addr: host virtual address which maps memory to the guest
2643  * @atomic: whether this function can sleep
2644  * @interruptible: whether the process can be interrupted by non-fatal signals
2645  * @async: whether this function need to wait IO complete if the
2646  *         host page is not in the memory
2647  * @write_fault: whether we should get a writable host page
2648  * @writable: whether it allows to map a writable host page for !@write_fault
2649  *
2650  * The function will map a writable host page for these two cases:
2651  * 1): @write_fault = true
2652  * 2): @write_fault = false && @writable, @writable will tell the caller
2653  *     whether the mapping is writable.
2654  */
2655 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2656 		     bool *async, bool write_fault, bool *writable)
2657 {
2658 	struct vm_area_struct *vma;
2659 	kvm_pfn_t pfn;
2660 	int npages, r;
2661 
2662 	/* we can do it either atomically or asynchronously, not both */
2663 	BUG_ON(atomic && async);
2664 
2665 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2666 		return pfn;
2667 
2668 	if (atomic)
2669 		return KVM_PFN_ERR_FAULT;
2670 
2671 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2672 				 writable, &pfn);
2673 	if (npages == 1)
2674 		return pfn;
2675 	if (npages == -EINTR)
2676 		return KVM_PFN_ERR_SIGPENDING;
2677 
2678 	mmap_read_lock(current->mm);
2679 	if (npages == -EHWPOISON ||
2680 	      (!async && check_user_page_hwpoison(addr))) {
2681 		pfn = KVM_PFN_ERR_HWPOISON;
2682 		goto exit;
2683 	}
2684 
2685 retry:
2686 	vma = vma_lookup(current->mm, addr);
2687 
2688 	if (vma == NULL)
2689 		pfn = KVM_PFN_ERR_FAULT;
2690 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2691 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2692 		if (r == -EAGAIN)
2693 			goto retry;
2694 		if (r < 0)
2695 			pfn = KVM_PFN_ERR_FAULT;
2696 	} else {
2697 		if (async && vma_is_valid(vma, write_fault))
2698 			*async = true;
2699 		pfn = KVM_PFN_ERR_FAULT;
2700 	}
2701 exit:
2702 	mmap_read_unlock(current->mm);
2703 	return pfn;
2704 }
2705 
2706 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2707 			       bool atomic, bool interruptible, bool *async,
2708 			       bool write_fault, bool *writable, hva_t *hva)
2709 {
2710 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2711 
2712 	if (hva)
2713 		*hva = addr;
2714 
2715 	if (addr == KVM_HVA_ERR_RO_BAD) {
2716 		if (writable)
2717 			*writable = false;
2718 		return KVM_PFN_ERR_RO_FAULT;
2719 	}
2720 
2721 	if (kvm_is_error_hva(addr)) {
2722 		if (writable)
2723 			*writable = false;
2724 		return KVM_PFN_NOSLOT;
2725 	}
2726 
2727 	/* Do not map writable pfn in the readonly memslot. */
2728 	if (writable && memslot_is_readonly(slot)) {
2729 		*writable = false;
2730 		writable = NULL;
2731 	}
2732 
2733 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2734 			  writable);
2735 }
2736 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2737 
2738 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2739 		      bool *writable)
2740 {
2741 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2742 				    NULL, write_fault, writable, NULL);
2743 }
2744 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2745 
2746 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2747 {
2748 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2749 				    NULL, NULL);
2750 }
2751 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2752 
2753 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2754 {
2755 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2756 				    NULL, NULL);
2757 }
2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2759 
2760 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2761 {
2762 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2765 
2766 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2767 {
2768 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2769 }
2770 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2771 
2772 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2773 {
2774 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2775 }
2776 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2777 
2778 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2779 			    struct page **pages, int nr_pages)
2780 {
2781 	unsigned long addr;
2782 	gfn_t entry = 0;
2783 
2784 	addr = gfn_to_hva_many(slot, gfn, &entry);
2785 	if (kvm_is_error_hva(addr))
2786 		return -1;
2787 
2788 	if (entry < nr_pages)
2789 		return 0;
2790 
2791 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2792 }
2793 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2794 
2795 /*
2796  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2797  * backed by 'struct page'.  A valid example is if the backing memslot is
2798  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2799  * been elevated by gfn_to_pfn().
2800  */
2801 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2802 {
2803 	struct page *page;
2804 	kvm_pfn_t pfn;
2805 
2806 	pfn = gfn_to_pfn(kvm, gfn);
2807 
2808 	if (is_error_noslot_pfn(pfn))
2809 		return KVM_ERR_PTR_BAD_PAGE;
2810 
2811 	page = kvm_pfn_to_refcounted_page(pfn);
2812 	if (!page)
2813 		return KVM_ERR_PTR_BAD_PAGE;
2814 
2815 	return page;
2816 }
2817 EXPORT_SYMBOL_GPL(gfn_to_page);
2818 
2819 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2820 {
2821 	if (dirty)
2822 		kvm_release_pfn_dirty(pfn);
2823 	else
2824 		kvm_release_pfn_clean(pfn);
2825 }
2826 
2827 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2828 {
2829 	kvm_pfn_t pfn;
2830 	void *hva = NULL;
2831 	struct page *page = KVM_UNMAPPED_PAGE;
2832 
2833 	if (!map)
2834 		return -EINVAL;
2835 
2836 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2837 	if (is_error_noslot_pfn(pfn))
2838 		return -EINVAL;
2839 
2840 	if (pfn_valid(pfn)) {
2841 		page = pfn_to_page(pfn);
2842 		hva = kmap(page);
2843 #ifdef CONFIG_HAS_IOMEM
2844 	} else {
2845 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2846 #endif
2847 	}
2848 
2849 	if (!hva)
2850 		return -EFAULT;
2851 
2852 	map->page = page;
2853 	map->hva = hva;
2854 	map->pfn = pfn;
2855 	map->gfn = gfn;
2856 
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2860 
2861 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2862 {
2863 	if (!map)
2864 		return;
2865 
2866 	if (!map->hva)
2867 		return;
2868 
2869 	if (map->page != KVM_UNMAPPED_PAGE)
2870 		kunmap(map->page);
2871 #ifdef CONFIG_HAS_IOMEM
2872 	else
2873 		memunmap(map->hva);
2874 #endif
2875 
2876 	if (dirty)
2877 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2878 
2879 	kvm_release_pfn(map->pfn, dirty);
2880 
2881 	map->hva = NULL;
2882 	map->page = NULL;
2883 }
2884 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2885 
2886 static bool kvm_is_ad_tracked_page(struct page *page)
2887 {
2888 	/*
2889 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2890 	 * touched (e.g. set dirty) except by its owner".
2891 	 */
2892 	return !PageReserved(page);
2893 }
2894 
2895 static void kvm_set_page_dirty(struct page *page)
2896 {
2897 	if (kvm_is_ad_tracked_page(page))
2898 		SetPageDirty(page);
2899 }
2900 
2901 static void kvm_set_page_accessed(struct page *page)
2902 {
2903 	if (kvm_is_ad_tracked_page(page))
2904 		mark_page_accessed(page);
2905 }
2906 
2907 void kvm_release_page_clean(struct page *page)
2908 {
2909 	WARN_ON(is_error_page(page));
2910 
2911 	kvm_set_page_accessed(page);
2912 	put_page(page);
2913 }
2914 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2915 
2916 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2917 {
2918 	struct page *page;
2919 
2920 	if (is_error_noslot_pfn(pfn))
2921 		return;
2922 
2923 	page = kvm_pfn_to_refcounted_page(pfn);
2924 	if (!page)
2925 		return;
2926 
2927 	kvm_release_page_clean(page);
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2930 
2931 void kvm_release_page_dirty(struct page *page)
2932 {
2933 	WARN_ON(is_error_page(page));
2934 
2935 	kvm_set_page_dirty(page);
2936 	kvm_release_page_clean(page);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2939 
2940 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2941 {
2942 	struct page *page;
2943 
2944 	if (is_error_noslot_pfn(pfn))
2945 		return;
2946 
2947 	page = kvm_pfn_to_refcounted_page(pfn);
2948 	if (!page)
2949 		return;
2950 
2951 	kvm_release_page_dirty(page);
2952 }
2953 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2954 
2955 /*
2956  * Note, checking for an error/noslot pfn is the caller's responsibility when
2957  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2958  * "set" helpers are not to be used when the pfn might point at garbage.
2959  */
2960 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2961 {
2962 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2963 		return;
2964 
2965 	if (pfn_valid(pfn))
2966 		kvm_set_page_dirty(pfn_to_page(pfn));
2967 }
2968 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2969 
2970 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2971 {
2972 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2973 		return;
2974 
2975 	if (pfn_valid(pfn))
2976 		kvm_set_page_accessed(pfn_to_page(pfn));
2977 }
2978 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2979 
2980 static int next_segment(unsigned long len, int offset)
2981 {
2982 	if (len > PAGE_SIZE - offset)
2983 		return PAGE_SIZE - offset;
2984 	else
2985 		return len;
2986 }
2987 
2988 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2989 				 void *data, int offset, int len)
2990 {
2991 	int r;
2992 	unsigned long addr;
2993 
2994 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2995 	if (kvm_is_error_hva(addr))
2996 		return -EFAULT;
2997 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2998 	if (r)
2999 		return -EFAULT;
3000 	return 0;
3001 }
3002 
3003 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3004 			int len)
3005 {
3006 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3007 
3008 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3009 }
3010 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3011 
3012 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3013 			     int offset, int len)
3014 {
3015 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3016 
3017 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3018 }
3019 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3020 
3021 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3022 {
3023 	gfn_t gfn = gpa >> PAGE_SHIFT;
3024 	int seg;
3025 	int offset = offset_in_page(gpa);
3026 	int ret;
3027 
3028 	while ((seg = next_segment(len, offset)) != 0) {
3029 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3030 		if (ret < 0)
3031 			return ret;
3032 		offset = 0;
3033 		len -= seg;
3034 		data += seg;
3035 		++gfn;
3036 	}
3037 	return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(kvm_read_guest);
3040 
3041 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3042 {
3043 	gfn_t gfn = gpa >> PAGE_SHIFT;
3044 	int seg;
3045 	int offset = offset_in_page(gpa);
3046 	int ret;
3047 
3048 	while ((seg = next_segment(len, offset)) != 0) {
3049 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3050 		if (ret < 0)
3051 			return ret;
3052 		offset = 0;
3053 		len -= seg;
3054 		data += seg;
3055 		++gfn;
3056 	}
3057 	return 0;
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3060 
3061 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3062 			           void *data, int offset, unsigned long len)
3063 {
3064 	int r;
3065 	unsigned long addr;
3066 
3067 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3068 	if (kvm_is_error_hva(addr))
3069 		return -EFAULT;
3070 	pagefault_disable();
3071 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3072 	pagefault_enable();
3073 	if (r)
3074 		return -EFAULT;
3075 	return 0;
3076 }
3077 
3078 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3079 			       void *data, unsigned long len)
3080 {
3081 	gfn_t gfn = gpa >> PAGE_SHIFT;
3082 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3083 	int offset = offset_in_page(gpa);
3084 
3085 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3086 }
3087 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3088 
3089 static int __kvm_write_guest_page(struct kvm *kvm,
3090 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3091 			          const void *data, int offset, int len)
3092 {
3093 	int r;
3094 	unsigned long addr;
3095 
3096 	addr = gfn_to_hva_memslot(memslot, gfn);
3097 	if (kvm_is_error_hva(addr))
3098 		return -EFAULT;
3099 	r = __copy_to_user((void __user *)addr + offset, data, len);
3100 	if (r)
3101 		return -EFAULT;
3102 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3103 	return 0;
3104 }
3105 
3106 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3107 			 const void *data, int offset, int len)
3108 {
3109 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3110 
3111 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3112 }
3113 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3114 
3115 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3116 			      const void *data, int offset, int len)
3117 {
3118 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3119 
3120 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3121 }
3122 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3123 
3124 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3125 		    unsigned long len)
3126 {
3127 	gfn_t gfn = gpa >> PAGE_SHIFT;
3128 	int seg;
3129 	int offset = offset_in_page(gpa);
3130 	int ret;
3131 
3132 	while ((seg = next_segment(len, offset)) != 0) {
3133 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3134 		if (ret < 0)
3135 			return ret;
3136 		offset = 0;
3137 		len -= seg;
3138 		data += seg;
3139 		++gfn;
3140 	}
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL_GPL(kvm_write_guest);
3144 
3145 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3146 		         unsigned long len)
3147 {
3148 	gfn_t gfn = gpa >> PAGE_SHIFT;
3149 	int seg;
3150 	int offset = offset_in_page(gpa);
3151 	int ret;
3152 
3153 	while ((seg = next_segment(len, offset)) != 0) {
3154 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3155 		if (ret < 0)
3156 			return ret;
3157 		offset = 0;
3158 		len -= seg;
3159 		data += seg;
3160 		++gfn;
3161 	}
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3165 
3166 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3167 				       struct gfn_to_hva_cache *ghc,
3168 				       gpa_t gpa, unsigned long len)
3169 {
3170 	int offset = offset_in_page(gpa);
3171 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3172 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3173 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3174 	gfn_t nr_pages_avail;
3175 
3176 	/* Update ghc->generation before performing any error checks. */
3177 	ghc->generation = slots->generation;
3178 
3179 	if (start_gfn > end_gfn) {
3180 		ghc->hva = KVM_HVA_ERR_BAD;
3181 		return -EINVAL;
3182 	}
3183 
3184 	/*
3185 	 * If the requested region crosses two memslots, we still
3186 	 * verify that the entire region is valid here.
3187 	 */
3188 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3189 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3190 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3191 					   &nr_pages_avail);
3192 		if (kvm_is_error_hva(ghc->hva))
3193 			return -EFAULT;
3194 	}
3195 
3196 	/* Use the slow path for cross page reads and writes. */
3197 	if (nr_pages_needed == 1)
3198 		ghc->hva += offset;
3199 	else
3200 		ghc->memslot = NULL;
3201 
3202 	ghc->gpa = gpa;
3203 	ghc->len = len;
3204 	return 0;
3205 }
3206 
3207 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3208 			      gpa_t gpa, unsigned long len)
3209 {
3210 	struct kvm_memslots *slots = kvm_memslots(kvm);
3211 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3212 }
3213 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3214 
3215 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3216 				  void *data, unsigned int offset,
3217 				  unsigned long len)
3218 {
3219 	struct kvm_memslots *slots = kvm_memslots(kvm);
3220 	int r;
3221 	gpa_t gpa = ghc->gpa + offset;
3222 
3223 	if (WARN_ON_ONCE(len + offset > ghc->len))
3224 		return -EINVAL;
3225 
3226 	if (slots->generation != ghc->generation) {
3227 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3228 			return -EFAULT;
3229 	}
3230 
3231 	if (kvm_is_error_hva(ghc->hva))
3232 		return -EFAULT;
3233 
3234 	if (unlikely(!ghc->memslot))
3235 		return kvm_write_guest(kvm, gpa, data, len);
3236 
3237 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3238 	if (r)
3239 		return -EFAULT;
3240 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3241 
3242 	return 0;
3243 }
3244 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3245 
3246 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3247 			   void *data, unsigned long len)
3248 {
3249 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3252 
3253 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3254 				 void *data, unsigned int offset,
3255 				 unsigned long len)
3256 {
3257 	struct kvm_memslots *slots = kvm_memslots(kvm);
3258 	int r;
3259 	gpa_t gpa = ghc->gpa + offset;
3260 
3261 	if (WARN_ON_ONCE(len + offset > ghc->len))
3262 		return -EINVAL;
3263 
3264 	if (slots->generation != ghc->generation) {
3265 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3266 			return -EFAULT;
3267 	}
3268 
3269 	if (kvm_is_error_hva(ghc->hva))
3270 		return -EFAULT;
3271 
3272 	if (unlikely(!ghc->memslot))
3273 		return kvm_read_guest(kvm, gpa, data, len);
3274 
3275 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3276 	if (r)
3277 		return -EFAULT;
3278 
3279 	return 0;
3280 }
3281 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3282 
3283 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3284 			  void *data, unsigned long len)
3285 {
3286 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3289 
3290 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3291 {
3292 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3293 	gfn_t gfn = gpa >> PAGE_SHIFT;
3294 	int seg;
3295 	int offset = offset_in_page(gpa);
3296 	int ret;
3297 
3298 	while ((seg = next_segment(len, offset)) != 0) {
3299 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3300 		if (ret < 0)
3301 			return ret;
3302 		offset = 0;
3303 		len -= seg;
3304 		++gfn;
3305 	}
3306 	return 0;
3307 }
3308 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3309 
3310 void mark_page_dirty_in_slot(struct kvm *kvm,
3311 			     const struct kvm_memory_slot *memslot,
3312 		 	     gfn_t gfn)
3313 {
3314 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3315 
3316 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3317 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3318 		return;
3319 
3320 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3321 #endif
3322 
3323 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3324 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3325 		u32 slot = (memslot->as_id << 16) | memslot->id;
3326 
3327 		if (kvm->dirty_ring_size && vcpu)
3328 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3329 		else if (memslot->dirty_bitmap)
3330 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3331 	}
3332 }
3333 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3334 
3335 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3336 {
3337 	struct kvm_memory_slot *memslot;
3338 
3339 	memslot = gfn_to_memslot(kvm, gfn);
3340 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3341 }
3342 EXPORT_SYMBOL_GPL(mark_page_dirty);
3343 
3344 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3345 {
3346 	struct kvm_memory_slot *memslot;
3347 
3348 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3349 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3350 }
3351 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3352 
3353 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3354 {
3355 	if (!vcpu->sigset_active)
3356 		return;
3357 
3358 	/*
3359 	 * This does a lockless modification of ->real_blocked, which is fine
3360 	 * because, only current can change ->real_blocked and all readers of
3361 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3362 	 * of ->blocked.
3363 	 */
3364 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3365 }
3366 
3367 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3368 {
3369 	if (!vcpu->sigset_active)
3370 		return;
3371 
3372 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3373 	sigemptyset(&current->real_blocked);
3374 }
3375 
3376 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3377 {
3378 	unsigned int old, val, grow, grow_start;
3379 
3380 	old = val = vcpu->halt_poll_ns;
3381 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3382 	grow = READ_ONCE(halt_poll_ns_grow);
3383 	if (!grow)
3384 		goto out;
3385 
3386 	val *= grow;
3387 	if (val < grow_start)
3388 		val = grow_start;
3389 
3390 	vcpu->halt_poll_ns = val;
3391 out:
3392 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3393 }
3394 
3395 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3396 {
3397 	unsigned int old, val, shrink, grow_start;
3398 
3399 	old = val = vcpu->halt_poll_ns;
3400 	shrink = READ_ONCE(halt_poll_ns_shrink);
3401 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3402 	if (shrink == 0)
3403 		val = 0;
3404 	else
3405 		val /= shrink;
3406 
3407 	if (val < grow_start)
3408 		val = 0;
3409 
3410 	vcpu->halt_poll_ns = val;
3411 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3412 }
3413 
3414 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3415 {
3416 	int ret = -EINTR;
3417 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3418 
3419 	if (kvm_arch_vcpu_runnable(vcpu))
3420 		goto out;
3421 	if (kvm_cpu_has_pending_timer(vcpu))
3422 		goto out;
3423 	if (signal_pending(current))
3424 		goto out;
3425 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3426 		goto out;
3427 
3428 	ret = 0;
3429 out:
3430 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3431 	return ret;
3432 }
3433 
3434 /*
3435  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3436  * pending.  This is mostly used when halting a vCPU, but may also be used
3437  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3438  */
3439 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3440 {
3441 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3442 	bool waited = false;
3443 
3444 	vcpu->stat.generic.blocking = 1;
3445 
3446 	preempt_disable();
3447 	kvm_arch_vcpu_blocking(vcpu);
3448 	prepare_to_rcuwait(wait);
3449 	preempt_enable();
3450 
3451 	for (;;) {
3452 		set_current_state(TASK_INTERRUPTIBLE);
3453 
3454 		if (kvm_vcpu_check_block(vcpu) < 0)
3455 			break;
3456 
3457 		waited = true;
3458 		schedule();
3459 	}
3460 
3461 	preempt_disable();
3462 	finish_rcuwait(wait);
3463 	kvm_arch_vcpu_unblocking(vcpu);
3464 	preempt_enable();
3465 
3466 	vcpu->stat.generic.blocking = 0;
3467 
3468 	return waited;
3469 }
3470 
3471 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3472 					  ktime_t end, bool success)
3473 {
3474 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3475 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3476 
3477 	++vcpu->stat.generic.halt_attempted_poll;
3478 
3479 	if (success) {
3480 		++vcpu->stat.generic.halt_successful_poll;
3481 
3482 		if (!vcpu_valid_wakeup(vcpu))
3483 			++vcpu->stat.generic.halt_poll_invalid;
3484 
3485 		stats->halt_poll_success_ns += poll_ns;
3486 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3487 	} else {
3488 		stats->halt_poll_fail_ns += poll_ns;
3489 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3490 	}
3491 }
3492 
3493 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3494 {
3495 	struct kvm *kvm = vcpu->kvm;
3496 
3497 	if (kvm->override_halt_poll_ns) {
3498 		/*
3499 		 * Ensure kvm->max_halt_poll_ns is not read before
3500 		 * kvm->override_halt_poll_ns.
3501 		 *
3502 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3503 		 */
3504 		smp_rmb();
3505 		return READ_ONCE(kvm->max_halt_poll_ns);
3506 	}
3507 
3508 	return READ_ONCE(halt_poll_ns);
3509 }
3510 
3511 /*
3512  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3513  * polling is enabled, busy wait for a short time before blocking to avoid the
3514  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3515  * is halted.
3516  */
3517 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3518 {
3519 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3520 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3521 	ktime_t start, cur, poll_end;
3522 	bool waited = false;
3523 	bool do_halt_poll;
3524 	u64 halt_ns;
3525 
3526 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3527 		vcpu->halt_poll_ns = max_halt_poll_ns;
3528 
3529 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3530 
3531 	start = cur = poll_end = ktime_get();
3532 	if (do_halt_poll) {
3533 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3534 
3535 		do {
3536 			if (kvm_vcpu_check_block(vcpu) < 0)
3537 				goto out;
3538 			cpu_relax();
3539 			poll_end = cur = ktime_get();
3540 		} while (kvm_vcpu_can_poll(cur, stop));
3541 	}
3542 
3543 	waited = kvm_vcpu_block(vcpu);
3544 
3545 	cur = ktime_get();
3546 	if (waited) {
3547 		vcpu->stat.generic.halt_wait_ns +=
3548 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3549 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3550 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3551 	}
3552 out:
3553 	/* The total time the vCPU was "halted", including polling time. */
3554 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3555 
3556 	/*
3557 	 * Note, halt-polling is considered successful so long as the vCPU was
3558 	 * never actually scheduled out, i.e. even if the wake event arrived
3559 	 * after of the halt-polling loop itself, but before the full wait.
3560 	 */
3561 	if (do_halt_poll)
3562 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3563 
3564 	if (halt_poll_allowed) {
3565 		/* Recompute the max halt poll time in case it changed. */
3566 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3567 
3568 		if (!vcpu_valid_wakeup(vcpu)) {
3569 			shrink_halt_poll_ns(vcpu);
3570 		} else if (max_halt_poll_ns) {
3571 			if (halt_ns <= vcpu->halt_poll_ns)
3572 				;
3573 			/* we had a long block, shrink polling */
3574 			else if (vcpu->halt_poll_ns &&
3575 				 halt_ns > max_halt_poll_ns)
3576 				shrink_halt_poll_ns(vcpu);
3577 			/* we had a short halt and our poll time is too small */
3578 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3579 				 halt_ns < max_halt_poll_ns)
3580 				grow_halt_poll_ns(vcpu);
3581 		} else {
3582 			vcpu->halt_poll_ns = 0;
3583 		}
3584 	}
3585 
3586 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3587 }
3588 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3589 
3590 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3591 {
3592 	if (__kvm_vcpu_wake_up(vcpu)) {
3593 		WRITE_ONCE(vcpu->ready, true);
3594 		++vcpu->stat.generic.halt_wakeup;
3595 		return true;
3596 	}
3597 
3598 	return false;
3599 }
3600 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3601 
3602 #ifndef CONFIG_S390
3603 /*
3604  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3605  */
3606 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3607 {
3608 	int me, cpu;
3609 
3610 	if (kvm_vcpu_wake_up(vcpu))
3611 		return;
3612 
3613 	me = get_cpu();
3614 	/*
3615 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3616 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3617 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3618 	 * within the vCPU thread itself.
3619 	 */
3620 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3621 		if (vcpu->mode == IN_GUEST_MODE)
3622 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3623 		goto out;
3624 	}
3625 
3626 	/*
3627 	 * Note, the vCPU could get migrated to a different pCPU at any point
3628 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3629 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3630 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3631 	 * vCPU also requires it to leave IN_GUEST_MODE.
3632 	 */
3633 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3634 		cpu = READ_ONCE(vcpu->cpu);
3635 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3636 			smp_send_reschedule(cpu);
3637 	}
3638 out:
3639 	put_cpu();
3640 }
3641 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3642 #endif /* !CONFIG_S390 */
3643 
3644 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3645 {
3646 	struct pid *pid;
3647 	struct task_struct *task = NULL;
3648 	int ret = 0;
3649 
3650 	rcu_read_lock();
3651 	pid = rcu_dereference(target->pid);
3652 	if (pid)
3653 		task = get_pid_task(pid, PIDTYPE_PID);
3654 	rcu_read_unlock();
3655 	if (!task)
3656 		return ret;
3657 	ret = yield_to(task, 1);
3658 	put_task_struct(task);
3659 
3660 	return ret;
3661 }
3662 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3663 
3664 /*
3665  * Helper that checks whether a VCPU is eligible for directed yield.
3666  * Most eligible candidate to yield is decided by following heuristics:
3667  *
3668  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3669  *  (preempted lock holder), indicated by @in_spin_loop.
3670  *  Set at the beginning and cleared at the end of interception/PLE handler.
3671  *
3672  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3673  *  chance last time (mostly it has become eligible now since we have probably
3674  *  yielded to lockholder in last iteration. This is done by toggling
3675  *  @dy_eligible each time a VCPU checked for eligibility.)
3676  *
3677  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3678  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3679  *  burning. Giving priority for a potential lock-holder increases lock
3680  *  progress.
3681  *
3682  *  Since algorithm is based on heuristics, accessing another VCPU data without
3683  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3684  *  and continue with next VCPU and so on.
3685  */
3686 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3687 {
3688 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3689 	bool eligible;
3690 
3691 	eligible = !vcpu->spin_loop.in_spin_loop ||
3692 		    vcpu->spin_loop.dy_eligible;
3693 
3694 	if (vcpu->spin_loop.in_spin_loop)
3695 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3696 
3697 	return eligible;
3698 #else
3699 	return true;
3700 #endif
3701 }
3702 
3703 /*
3704  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3705  * a vcpu_load/vcpu_put pair.  However, for most architectures
3706  * kvm_arch_vcpu_runnable does not require vcpu_load.
3707  */
3708 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3709 {
3710 	return kvm_arch_vcpu_runnable(vcpu);
3711 }
3712 
3713 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3714 {
3715 	if (kvm_arch_dy_runnable(vcpu))
3716 		return true;
3717 
3718 #ifdef CONFIG_KVM_ASYNC_PF
3719 	if (!list_empty_careful(&vcpu->async_pf.done))
3720 		return true;
3721 #endif
3722 
3723 	return false;
3724 }
3725 
3726 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3727 {
3728 	return false;
3729 }
3730 
3731 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3732 {
3733 	struct kvm *kvm = me->kvm;
3734 	struct kvm_vcpu *vcpu;
3735 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3736 	unsigned long i;
3737 	int yielded = 0;
3738 	int try = 3;
3739 	int pass;
3740 
3741 	kvm_vcpu_set_in_spin_loop(me, true);
3742 	/*
3743 	 * We boost the priority of a VCPU that is runnable but not
3744 	 * currently running, because it got preempted by something
3745 	 * else and called schedule in __vcpu_run.  Hopefully that
3746 	 * VCPU is holding the lock that we need and will release it.
3747 	 * We approximate round-robin by starting at the last boosted VCPU.
3748 	 */
3749 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3750 		kvm_for_each_vcpu(i, vcpu, kvm) {
3751 			if (!pass && i <= last_boosted_vcpu) {
3752 				i = last_boosted_vcpu;
3753 				continue;
3754 			} else if (pass && i > last_boosted_vcpu)
3755 				break;
3756 			if (!READ_ONCE(vcpu->ready))
3757 				continue;
3758 			if (vcpu == me)
3759 				continue;
3760 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3761 				continue;
3762 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3763 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3764 			    !kvm_arch_vcpu_in_kernel(vcpu))
3765 				continue;
3766 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3767 				continue;
3768 
3769 			yielded = kvm_vcpu_yield_to(vcpu);
3770 			if (yielded > 0) {
3771 				kvm->last_boosted_vcpu = i;
3772 				break;
3773 			} else if (yielded < 0) {
3774 				try--;
3775 				if (!try)
3776 					break;
3777 			}
3778 		}
3779 	}
3780 	kvm_vcpu_set_in_spin_loop(me, false);
3781 
3782 	/* Ensure vcpu is not eligible during next spinloop */
3783 	kvm_vcpu_set_dy_eligible(me, false);
3784 }
3785 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3786 
3787 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3788 {
3789 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3790 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3791 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3792 	     kvm->dirty_ring_size / PAGE_SIZE);
3793 #else
3794 	return false;
3795 #endif
3796 }
3797 
3798 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3799 {
3800 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3801 	struct page *page;
3802 
3803 	if (vmf->pgoff == 0)
3804 		page = virt_to_page(vcpu->run);
3805 #ifdef CONFIG_X86
3806 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3807 		page = virt_to_page(vcpu->arch.pio_data);
3808 #endif
3809 #ifdef CONFIG_KVM_MMIO
3810 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3811 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3812 #endif
3813 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3814 		page = kvm_dirty_ring_get_page(
3815 		    &vcpu->dirty_ring,
3816 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3817 	else
3818 		return kvm_arch_vcpu_fault(vcpu, vmf);
3819 	get_page(page);
3820 	vmf->page = page;
3821 	return 0;
3822 }
3823 
3824 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3825 	.fault = kvm_vcpu_fault,
3826 };
3827 
3828 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3829 {
3830 	struct kvm_vcpu *vcpu = file->private_data;
3831 	unsigned long pages = vma_pages(vma);
3832 
3833 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3834 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3835 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3836 		return -EINVAL;
3837 
3838 	vma->vm_ops = &kvm_vcpu_vm_ops;
3839 	return 0;
3840 }
3841 
3842 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3843 {
3844 	struct kvm_vcpu *vcpu = filp->private_data;
3845 
3846 	kvm_put_kvm(vcpu->kvm);
3847 	return 0;
3848 }
3849 
3850 static const struct file_operations kvm_vcpu_fops = {
3851 	.release        = kvm_vcpu_release,
3852 	.unlocked_ioctl = kvm_vcpu_ioctl,
3853 	.mmap           = kvm_vcpu_mmap,
3854 	.llseek		= noop_llseek,
3855 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3856 };
3857 
3858 /*
3859  * Allocates an inode for the vcpu.
3860  */
3861 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3862 {
3863 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3864 
3865 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3866 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3867 }
3868 
3869 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3870 static int vcpu_get_pid(void *data, u64 *val)
3871 {
3872 	struct kvm_vcpu *vcpu = data;
3873 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3874 	return 0;
3875 }
3876 
3877 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3878 
3879 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3880 {
3881 	struct dentry *debugfs_dentry;
3882 	char dir_name[ITOA_MAX_LEN * 2];
3883 
3884 	if (!debugfs_initialized())
3885 		return;
3886 
3887 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3888 	debugfs_dentry = debugfs_create_dir(dir_name,
3889 					    vcpu->kvm->debugfs_dentry);
3890 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3891 			    &vcpu_get_pid_fops);
3892 
3893 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3894 }
3895 #endif
3896 
3897 /*
3898  * Creates some virtual cpus.  Good luck creating more than one.
3899  */
3900 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3901 {
3902 	int r;
3903 	struct kvm_vcpu *vcpu;
3904 	struct page *page;
3905 
3906 	if (id >= KVM_MAX_VCPU_IDS)
3907 		return -EINVAL;
3908 
3909 	mutex_lock(&kvm->lock);
3910 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3911 		mutex_unlock(&kvm->lock);
3912 		return -EINVAL;
3913 	}
3914 
3915 	r = kvm_arch_vcpu_precreate(kvm, id);
3916 	if (r) {
3917 		mutex_unlock(&kvm->lock);
3918 		return r;
3919 	}
3920 
3921 	kvm->created_vcpus++;
3922 	mutex_unlock(&kvm->lock);
3923 
3924 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3925 	if (!vcpu) {
3926 		r = -ENOMEM;
3927 		goto vcpu_decrement;
3928 	}
3929 
3930 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3931 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3932 	if (!page) {
3933 		r = -ENOMEM;
3934 		goto vcpu_free;
3935 	}
3936 	vcpu->run = page_address(page);
3937 
3938 	kvm_vcpu_init(vcpu, kvm, id);
3939 
3940 	r = kvm_arch_vcpu_create(vcpu);
3941 	if (r)
3942 		goto vcpu_free_run_page;
3943 
3944 	if (kvm->dirty_ring_size) {
3945 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3946 					 id, kvm->dirty_ring_size);
3947 		if (r)
3948 			goto arch_vcpu_destroy;
3949 	}
3950 
3951 	mutex_lock(&kvm->lock);
3952 
3953 #ifdef CONFIG_LOCKDEP
3954 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3955 	mutex_lock(&vcpu->mutex);
3956 	mutex_unlock(&vcpu->mutex);
3957 #endif
3958 
3959 	if (kvm_get_vcpu_by_id(kvm, id)) {
3960 		r = -EEXIST;
3961 		goto unlock_vcpu_destroy;
3962 	}
3963 
3964 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3965 	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
3966 	if (r)
3967 		goto unlock_vcpu_destroy;
3968 
3969 	/* Now it's all set up, let userspace reach it */
3970 	kvm_get_kvm(kvm);
3971 	r = create_vcpu_fd(vcpu);
3972 	if (r < 0)
3973 		goto kvm_put_xa_release;
3974 
3975 	if (KVM_BUG_ON(!!xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
3976 		r = -EINVAL;
3977 		goto kvm_put_xa_release;
3978 	}
3979 
3980 	/*
3981 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3982 	 * pointer before kvm->online_vcpu's incremented value.
3983 	 */
3984 	smp_wmb();
3985 	atomic_inc(&kvm->online_vcpus);
3986 
3987 	mutex_unlock(&kvm->lock);
3988 	kvm_arch_vcpu_postcreate(vcpu);
3989 	kvm_create_vcpu_debugfs(vcpu);
3990 	return r;
3991 
3992 kvm_put_xa_release:
3993 	kvm_put_kvm_no_destroy(kvm);
3994 	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
3995 unlock_vcpu_destroy:
3996 	mutex_unlock(&kvm->lock);
3997 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3998 arch_vcpu_destroy:
3999 	kvm_arch_vcpu_destroy(vcpu);
4000 vcpu_free_run_page:
4001 	free_page((unsigned long)vcpu->run);
4002 vcpu_free:
4003 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4004 vcpu_decrement:
4005 	mutex_lock(&kvm->lock);
4006 	kvm->created_vcpus--;
4007 	mutex_unlock(&kvm->lock);
4008 	return r;
4009 }
4010 
4011 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4012 {
4013 	if (sigset) {
4014 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4015 		vcpu->sigset_active = 1;
4016 		vcpu->sigset = *sigset;
4017 	} else
4018 		vcpu->sigset_active = 0;
4019 	return 0;
4020 }
4021 
4022 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4023 			      size_t size, loff_t *offset)
4024 {
4025 	struct kvm_vcpu *vcpu = file->private_data;
4026 
4027 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4028 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4029 			sizeof(vcpu->stat), user_buffer, size, offset);
4030 }
4031 
4032 static const struct file_operations kvm_vcpu_stats_fops = {
4033 	.read = kvm_vcpu_stats_read,
4034 	.llseek = noop_llseek,
4035 };
4036 
4037 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4038 {
4039 	int fd;
4040 	struct file *file;
4041 	char name[15 + ITOA_MAX_LEN + 1];
4042 
4043 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4044 
4045 	fd = get_unused_fd_flags(O_CLOEXEC);
4046 	if (fd < 0)
4047 		return fd;
4048 
4049 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4050 	if (IS_ERR(file)) {
4051 		put_unused_fd(fd);
4052 		return PTR_ERR(file);
4053 	}
4054 	file->f_mode |= FMODE_PREAD;
4055 	fd_install(fd, file);
4056 
4057 	return fd;
4058 }
4059 
4060 static long kvm_vcpu_ioctl(struct file *filp,
4061 			   unsigned int ioctl, unsigned long arg)
4062 {
4063 	struct kvm_vcpu *vcpu = filp->private_data;
4064 	void __user *argp = (void __user *)arg;
4065 	int r;
4066 	struct kvm_fpu *fpu = NULL;
4067 	struct kvm_sregs *kvm_sregs = NULL;
4068 
4069 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4070 		return -EIO;
4071 
4072 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4073 		return -EINVAL;
4074 
4075 	/*
4076 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4077 	 * execution; mutex_lock() would break them.
4078 	 */
4079 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4080 	if (r != -ENOIOCTLCMD)
4081 		return r;
4082 
4083 	if (mutex_lock_killable(&vcpu->mutex))
4084 		return -EINTR;
4085 	switch (ioctl) {
4086 	case KVM_RUN: {
4087 		struct pid *oldpid;
4088 		r = -EINVAL;
4089 		if (arg)
4090 			goto out;
4091 		oldpid = rcu_access_pointer(vcpu->pid);
4092 		if (unlikely(oldpid != task_pid(current))) {
4093 			/* The thread running this VCPU changed. */
4094 			struct pid *newpid;
4095 
4096 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4097 			if (r)
4098 				break;
4099 
4100 			newpid = get_task_pid(current, PIDTYPE_PID);
4101 			rcu_assign_pointer(vcpu->pid, newpid);
4102 			if (oldpid)
4103 				synchronize_rcu();
4104 			put_pid(oldpid);
4105 		}
4106 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4107 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4108 		break;
4109 	}
4110 	case KVM_GET_REGS: {
4111 		struct kvm_regs *kvm_regs;
4112 
4113 		r = -ENOMEM;
4114 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4115 		if (!kvm_regs)
4116 			goto out;
4117 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4118 		if (r)
4119 			goto out_free1;
4120 		r = -EFAULT;
4121 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4122 			goto out_free1;
4123 		r = 0;
4124 out_free1:
4125 		kfree(kvm_regs);
4126 		break;
4127 	}
4128 	case KVM_SET_REGS: {
4129 		struct kvm_regs *kvm_regs;
4130 
4131 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4132 		if (IS_ERR(kvm_regs)) {
4133 			r = PTR_ERR(kvm_regs);
4134 			goto out;
4135 		}
4136 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4137 		kfree(kvm_regs);
4138 		break;
4139 	}
4140 	case KVM_GET_SREGS: {
4141 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4142 				    GFP_KERNEL_ACCOUNT);
4143 		r = -ENOMEM;
4144 		if (!kvm_sregs)
4145 			goto out;
4146 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4147 		if (r)
4148 			goto out;
4149 		r = -EFAULT;
4150 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4151 			goto out;
4152 		r = 0;
4153 		break;
4154 	}
4155 	case KVM_SET_SREGS: {
4156 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4157 		if (IS_ERR(kvm_sregs)) {
4158 			r = PTR_ERR(kvm_sregs);
4159 			kvm_sregs = NULL;
4160 			goto out;
4161 		}
4162 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4163 		break;
4164 	}
4165 	case KVM_GET_MP_STATE: {
4166 		struct kvm_mp_state mp_state;
4167 
4168 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4169 		if (r)
4170 			goto out;
4171 		r = -EFAULT;
4172 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4173 			goto out;
4174 		r = 0;
4175 		break;
4176 	}
4177 	case KVM_SET_MP_STATE: {
4178 		struct kvm_mp_state mp_state;
4179 
4180 		r = -EFAULT;
4181 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4182 			goto out;
4183 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4184 		break;
4185 	}
4186 	case KVM_TRANSLATE: {
4187 		struct kvm_translation tr;
4188 
4189 		r = -EFAULT;
4190 		if (copy_from_user(&tr, argp, sizeof(tr)))
4191 			goto out;
4192 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4193 		if (r)
4194 			goto out;
4195 		r = -EFAULT;
4196 		if (copy_to_user(argp, &tr, sizeof(tr)))
4197 			goto out;
4198 		r = 0;
4199 		break;
4200 	}
4201 	case KVM_SET_GUEST_DEBUG: {
4202 		struct kvm_guest_debug dbg;
4203 
4204 		r = -EFAULT;
4205 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4206 			goto out;
4207 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4208 		break;
4209 	}
4210 	case KVM_SET_SIGNAL_MASK: {
4211 		struct kvm_signal_mask __user *sigmask_arg = argp;
4212 		struct kvm_signal_mask kvm_sigmask;
4213 		sigset_t sigset, *p;
4214 
4215 		p = NULL;
4216 		if (argp) {
4217 			r = -EFAULT;
4218 			if (copy_from_user(&kvm_sigmask, argp,
4219 					   sizeof(kvm_sigmask)))
4220 				goto out;
4221 			r = -EINVAL;
4222 			if (kvm_sigmask.len != sizeof(sigset))
4223 				goto out;
4224 			r = -EFAULT;
4225 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4226 					   sizeof(sigset)))
4227 				goto out;
4228 			p = &sigset;
4229 		}
4230 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4231 		break;
4232 	}
4233 	case KVM_GET_FPU: {
4234 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4235 		r = -ENOMEM;
4236 		if (!fpu)
4237 			goto out;
4238 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4239 		if (r)
4240 			goto out;
4241 		r = -EFAULT;
4242 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4243 			goto out;
4244 		r = 0;
4245 		break;
4246 	}
4247 	case KVM_SET_FPU: {
4248 		fpu = memdup_user(argp, sizeof(*fpu));
4249 		if (IS_ERR(fpu)) {
4250 			r = PTR_ERR(fpu);
4251 			fpu = NULL;
4252 			goto out;
4253 		}
4254 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4255 		break;
4256 	}
4257 	case KVM_GET_STATS_FD: {
4258 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4259 		break;
4260 	}
4261 	default:
4262 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4263 	}
4264 out:
4265 	mutex_unlock(&vcpu->mutex);
4266 	kfree(fpu);
4267 	kfree(kvm_sregs);
4268 	return r;
4269 }
4270 
4271 #ifdef CONFIG_KVM_COMPAT
4272 static long kvm_vcpu_compat_ioctl(struct file *filp,
4273 				  unsigned int ioctl, unsigned long arg)
4274 {
4275 	struct kvm_vcpu *vcpu = filp->private_data;
4276 	void __user *argp = compat_ptr(arg);
4277 	int r;
4278 
4279 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4280 		return -EIO;
4281 
4282 	switch (ioctl) {
4283 	case KVM_SET_SIGNAL_MASK: {
4284 		struct kvm_signal_mask __user *sigmask_arg = argp;
4285 		struct kvm_signal_mask kvm_sigmask;
4286 		sigset_t sigset;
4287 
4288 		if (argp) {
4289 			r = -EFAULT;
4290 			if (copy_from_user(&kvm_sigmask, argp,
4291 					   sizeof(kvm_sigmask)))
4292 				goto out;
4293 			r = -EINVAL;
4294 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4295 				goto out;
4296 			r = -EFAULT;
4297 			if (get_compat_sigset(&sigset,
4298 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4299 				goto out;
4300 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4301 		} else
4302 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4303 		break;
4304 	}
4305 	default:
4306 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4307 	}
4308 
4309 out:
4310 	return r;
4311 }
4312 #endif
4313 
4314 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4315 {
4316 	struct kvm_device *dev = filp->private_data;
4317 
4318 	if (dev->ops->mmap)
4319 		return dev->ops->mmap(dev, vma);
4320 
4321 	return -ENODEV;
4322 }
4323 
4324 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4325 				 int (*accessor)(struct kvm_device *dev,
4326 						 struct kvm_device_attr *attr),
4327 				 unsigned long arg)
4328 {
4329 	struct kvm_device_attr attr;
4330 
4331 	if (!accessor)
4332 		return -EPERM;
4333 
4334 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4335 		return -EFAULT;
4336 
4337 	return accessor(dev, &attr);
4338 }
4339 
4340 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4341 			     unsigned long arg)
4342 {
4343 	struct kvm_device *dev = filp->private_data;
4344 
4345 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4346 		return -EIO;
4347 
4348 	switch (ioctl) {
4349 	case KVM_SET_DEVICE_ATTR:
4350 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4351 	case KVM_GET_DEVICE_ATTR:
4352 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4353 	case KVM_HAS_DEVICE_ATTR:
4354 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4355 	default:
4356 		if (dev->ops->ioctl)
4357 			return dev->ops->ioctl(dev, ioctl, arg);
4358 
4359 		return -ENOTTY;
4360 	}
4361 }
4362 
4363 static int kvm_device_release(struct inode *inode, struct file *filp)
4364 {
4365 	struct kvm_device *dev = filp->private_data;
4366 	struct kvm *kvm = dev->kvm;
4367 
4368 	if (dev->ops->release) {
4369 		mutex_lock(&kvm->lock);
4370 		list_del(&dev->vm_node);
4371 		dev->ops->release(dev);
4372 		mutex_unlock(&kvm->lock);
4373 	}
4374 
4375 	kvm_put_kvm(kvm);
4376 	return 0;
4377 }
4378 
4379 static const struct file_operations kvm_device_fops = {
4380 	.unlocked_ioctl = kvm_device_ioctl,
4381 	.release = kvm_device_release,
4382 	KVM_COMPAT(kvm_device_ioctl),
4383 	.mmap = kvm_device_mmap,
4384 };
4385 
4386 struct kvm_device *kvm_device_from_filp(struct file *filp)
4387 {
4388 	if (filp->f_op != &kvm_device_fops)
4389 		return NULL;
4390 
4391 	return filp->private_data;
4392 }
4393 
4394 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4395 #ifdef CONFIG_KVM_MPIC
4396 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4397 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4398 #endif
4399 };
4400 
4401 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4402 {
4403 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4404 		return -ENOSPC;
4405 
4406 	if (kvm_device_ops_table[type] != NULL)
4407 		return -EEXIST;
4408 
4409 	kvm_device_ops_table[type] = ops;
4410 	return 0;
4411 }
4412 
4413 void kvm_unregister_device_ops(u32 type)
4414 {
4415 	if (kvm_device_ops_table[type] != NULL)
4416 		kvm_device_ops_table[type] = NULL;
4417 }
4418 
4419 static int kvm_ioctl_create_device(struct kvm *kvm,
4420 				   struct kvm_create_device *cd)
4421 {
4422 	const struct kvm_device_ops *ops;
4423 	struct kvm_device *dev;
4424 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4425 	int type;
4426 	int ret;
4427 
4428 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4429 		return -ENODEV;
4430 
4431 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4432 	ops = kvm_device_ops_table[type];
4433 	if (ops == NULL)
4434 		return -ENODEV;
4435 
4436 	if (test)
4437 		return 0;
4438 
4439 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4440 	if (!dev)
4441 		return -ENOMEM;
4442 
4443 	dev->ops = ops;
4444 	dev->kvm = kvm;
4445 
4446 	mutex_lock(&kvm->lock);
4447 	ret = ops->create(dev, type);
4448 	if (ret < 0) {
4449 		mutex_unlock(&kvm->lock);
4450 		kfree(dev);
4451 		return ret;
4452 	}
4453 	list_add(&dev->vm_node, &kvm->devices);
4454 	mutex_unlock(&kvm->lock);
4455 
4456 	if (ops->init)
4457 		ops->init(dev);
4458 
4459 	kvm_get_kvm(kvm);
4460 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4461 	if (ret < 0) {
4462 		kvm_put_kvm_no_destroy(kvm);
4463 		mutex_lock(&kvm->lock);
4464 		list_del(&dev->vm_node);
4465 		if (ops->release)
4466 			ops->release(dev);
4467 		mutex_unlock(&kvm->lock);
4468 		if (ops->destroy)
4469 			ops->destroy(dev);
4470 		return ret;
4471 	}
4472 
4473 	cd->fd = ret;
4474 	return 0;
4475 }
4476 
4477 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4478 {
4479 	switch (arg) {
4480 	case KVM_CAP_USER_MEMORY:
4481 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4482 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4483 	case KVM_CAP_INTERNAL_ERROR_DATA:
4484 #ifdef CONFIG_HAVE_KVM_MSI
4485 	case KVM_CAP_SIGNAL_MSI:
4486 #endif
4487 #ifdef CONFIG_HAVE_KVM_IRQFD
4488 	case KVM_CAP_IRQFD:
4489 #endif
4490 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4491 	case KVM_CAP_CHECK_EXTENSION_VM:
4492 	case KVM_CAP_ENABLE_CAP_VM:
4493 	case KVM_CAP_HALT_POLL:
4494 		return 1;
4495 #ifdef CONFIG_KVM_MMIO
4496 	case KVM_CAP_COALESCED_MMIO:
4497 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4498 	case KVM_CAP_COALESCED_PIO:
4499 		return 1;
4500 #endif
4501 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4502 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4503 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4504 #endif
4505 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4506 	case KVM_CAP_IRQ_ROUTING:
4507 		return KVM_MAX_IRQ_ROUTES;
4508 #endif
4509 #if KVM_ADDRESS_SPACE_NUM > 1
4510 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4511 		return KVM_ADDRESS_SPACE_NUM;
4512 #endif
4513 	case KVM_CAP_NR_MEMSLOTS:
4514 		return KVM_USER_MEM_SLOTS;
4515 	case KVM_CAP_DIRTY_LOG_RING:
4516 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4517 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4518 #else
4519 		return 0;
4520 #endif
4521 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4522 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4523 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4524 #else
4525 		return 0;
4526 #endif
4527 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4528 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4529 #endif
4530 	case KVM_CAP_BINARY_STATS_FD:
4531 	case KVM_CAP_SYSTEM_EVENT_DATA:
4532 		return 1;
4533 	default:
4534 		break;
4535 	}
4536 	return kvm_vm_ioctl_check_extension(kvm, arg);
4537 }
4538 
4539 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4540 {
4541 	int r;
4542 
4543 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4544 		return -EINVAL;
4545 
4546 	/* the size should be power of 2 */
4547 	if (!size || (size & (size - 1)))
4548 		return -EINVAL;
4549 
4550 	/* Should be bigger to keep the reserved entries, or a page */
4551 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4552 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4553 		return -EINVAL;
4554 
4555 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4556 	    sizeof(struct kvm_dirty_gfn))
4557 		return -E2BIG;
4558 
4559 	/* We only allow it to set once */
4560 	if (kvm->dirty_ring_size)
4561 		return -EINVAL;
4562 
4563 	mutex_lock(&kvm->lock);
4564 
4565 	if (kvm->created_vcpus) {
4566 		/* We don't allow to change this value after vcpu created */
4567 		r = -EINVAL;
4568 	} else {
4569 		kvm->dirty_ring_size = size;
4570 		r = 0;
4571 	}
4572 
4573 	mutex_unlock(&kvm->lock);
4574 	return r;
4575 }
4576 
4577 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4578 {
4579 	unsigned long i;
4580 	struct kvm_vcpu *vcpu;
4581 	int cleared = 0;
4582 
4583 	if (!kvm->dirty_ring_size)
4584 		return -EINVAL;
4585 
4586 	mutex_lock(&kvm->slots_lock);
4587 
4588 	kvm_for_each_vcpu(i, vcpu, kvm)
4589 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4590 
4591 	mutex_unlock(&kvm->slots_lock);
4592 
4593 	if (cleared)
4594 		kvm_flush_remote_tlbs(kvm);
4595 
4596 	return cleared;
4597 }
4598 
4599 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4600 						  struct kvm_enable_cap *cap)
4601 {
4602 	return -EINVAL;
4603 }
4604 
4605 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4606 {
4607 	int i;
4608 
4609 	lockdep_assert_held(&kvm->slots_lock);
4610 
4611 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4612 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4613 			return false;
4614 	}
4615 
4616 	return true;
4617 }
4618 
4619 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4620 					   struct kvm_enable_cap *cap)
4621 {
4622 	switch (cap->cap) {
4623 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4624 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4625 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4626 
4627 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4628 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4629 
4630 		if (cap->flags || (cap->args[0] & ~allowed_options))
4631 			return -EINVAL;
4632 		kvm->manual_dirty_log_protect = cap->args[0];
4633 		return 0;
4634 	}
4635 #endif
4636 	case KVM_CAP_HALT_POLL: {
4637 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4638 			return -EINVAL;
4639 
4640 		kvm->max_halt_poll_ns = cap->args[0];
4641 
4642 		/*
4643 		 * Ensure kvm->override_halt_poll_ns does not become visible
4644 		 * before kvm->max_halt_poll_ns.
4645 		 *
4646 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4647 		 */
4648 		smp_wmb();
4649 		kvm->override_halt_poll_ns = true;
4650 
4651 		return 0;
4652 	}
4653 	case KVM_CAP_DIRTY_LOG_RING:
4654 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4655 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4656 			return -EINVAL;
4657 
4658 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4659 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4660 		int r = -EINVAL;
4661 
4662 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4663 		    !kvm->dirty_ring_size || cap->flags)
4664 			return r;
4665 
4666 		mutex_lock(&kvm->slots_lock);
4667 
4668 		/*
4669 		 * For simplicity, allow enabling ring+bitmap if and only if
4670 		 * there are no memslots, e.g. to ensure all memslots allocate
4671 		 * a bitmap after the capability is enabled.
4672 		 */
4673 		if (kvm_are_all_memslots_empty(kvm)) {
4674 			kvm->dirty_ring_with_bitmap = true;
4675 			r = 0;
4676 		}
4677 
4678 		mutex_unlock(&kvm->slots_lock);
4679 
4680 		return r;
4681 	}
4682 	default:
4683 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4684 	}
4685 }
4686 
4687 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4688 			      size_t size, loff_t *offset)
4689 {
4690 	struct kvm *kvm = file->private_data;
4691 
4692 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4693 				&kvm_vm_stats_desc[0], &kvm->stat,
4694 				sizeof(kvm->stat), user_buffer, size, offset);
4695 }
4696 
4697 static const struct file_operations kvm_vm_stats_fops = {
4698 	.read = kvm_vm_stats_read,
4699 	.llseek = noop_llseek,
4700 };
4701 
4702 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4703 {
4704 	int fd;
4705 	struct file *file;
4706 
4707 	fd = get_unused_fd_flags(O_CLOEXEC);
4708 	if (fd < 0)
4709 		return fd;
4710 
4711 	file = anon_inode_getfile("kvm-vm-stats",
4712 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4713 	if (IS_ERR(file)) {
4714 		put_unused_fd(fd);
4715 		return PTR_ERR(file);
4716 	}
4717 	file->f_mode |= FMODE_PREAD;
4718 	fd_install(fd, file);
4719 
4720 	return fd;
4721 }
4722 
4723 static long kvm_vm_ioctl(struct file *filp,
4724 			   unsigned int ioctl, unsigned long arg)
4725 {
4726 	struct kvm *kvm = filp->private_data;
4727 	void __user *argp = (void __user *)arg;
4728 	int r;
4729 
4730 	if (kvm->mm != current->mm || kvm->vm_dead)
4731 		return -EIO;
4732 	switch (ioctl) {
4733 	case KVM_CREATE_VCPU:
4734 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4735 		break;
4736 	case KVM_ENABLE_CAP: {
4737 		struct kvm_enable_cap cap;
4738 
4739 		r = -EFAULT;
4740 		if (copy_from_user(&cap, argp, sizeof(cap)))
4741 			goto out;
4742 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4743 		break;
4744 	}
4745 	case KVM_SET_USER_MEMORY_REGION: {
4746 		struct kvm_userspace_memory_region kvm_userspace_mem;
4747 
4748 		r = -EFAULT;
4749 		if (copy_from_user(&kvm_userspace_mem, argp,
4750 						sizeof(kvm_userspace_mem)))
4751 			goto out;
4752 
4753 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4754 		break;
4755 	}
4756 	case KVM_GET_DIRTY_LOG: {
4757 		struct kvm_dirty_log log;
4758 
4759 		r = -EFAULT;
4760 		if (copy_from_user(&log, argp, sizeof(log)))
4761 			goto out;
4762 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4763 		break;
4764 	}
4765 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4766 	case KVM_CLEAR_DIRTY_LOG: {
4767 		struct kvm_clear_dirty_log log;
4768 
4769 		r = -EFAULT;
4770 		if (copy_from_user(&log, argp, sizeof(log)))
4771 			goto out;
4772 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4773 		break;
4774 	}
4775 #endif
4776 #ifdef CONFIG_KVM_MMIO
4777 	case KVM_REGISTER_COALESCED_MMIO: {
4778 		struct kvm_coalesced_mmio_zone zone;
4779 
4780 		r = -EFAULT;
4781 		if (copy_from_user(&zone, argp, sizeof(zone)))
4782 			goto out;
4783 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4784 		break;
4785 	}
4786 	case KVM_UNREGISTER_COALESCED_MMIO: {
4787 		struct kvm_coalesced_mmio_zone zone;
4788 
4789 		r = -EFAULT;
4790 		if (copy_from_user(&zone, argp, sizeof(zone)))
4791 			goto out;
4792 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4793 		break;
4794 	}
4795 #endif
4796 	case KVM_IRQFD: {
4797 		struct kvm_irqfd data;
4798 
4799 		r = -EFAULT;
4800 		if (copy_from_user(&data, argp, sizeof(data)))
4801 			goto out;
4802 		r = kvm_irqfd(kvm, &data);
4803 		break;
4804 	}
4805 	case KVM_IOEVENTFD: {
4806 		struct kvm_ioeventfd data;
4807 
4808 		r = -EFAULT;
4809 		if (copy_from_user(&data, argp, sizeof(data)))
4810 			goto out;
4811 		r = kvm_ioeventfd(kvm, &data);
4812 		break;
4813 	}
4814 #ifdef CONFIG_HAVE_KVM_MSI
4815 	case KVM_SIGNAL_MSI: {
4816 		struct kvm_msi msi;
4817 
4818 		r = -EFAULT;
4819 		if (copy_from_user(&msi, argp, sizeof(msi)))
4820 			goto out;
4821 		r = kvm_send_userspace_msi(kvm, &msi);
4822 		break;
4823 	}
4824 #endif
4825 #ifdef __KVM_HAVE_IRQ_LINE
4826 	case KVM_IRQ_LINE_STATUS:
4827 	case KVM_IRQ_LINE: {
4828 		struct kvm_irq_level irq_event;
4829 
4830 		r = -EFAULT;
4831 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4832 			goto out;
4833 
4834 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4835 					ioctl == KVM_IRQ_LINE_STATUS);
4836 		if (r)
4837 			goto out;
4838 
4839 		r = -EFAULT;
4840 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4841 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4842 				goto out;
4843 		}
4844 
4845 		r = 0;
4846 		break;
4847 	}
4848 #endif
4849 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4850 	case KVM_SET_GSI_ROUTING: {
4851 		struct kvm_irq_routing routing;
4852 		struct kvm_irq_routing __user *urouting;
4853 		struct kvm_irq_routing_entry *entries = NULL;
4854 
4855 		r = -EFAULT;
4856 		if (copy_from_user(&routing, argp, sizeof(routing)))
4857 			goto out;
4858 		r = -EINVAL;
4859 		if (!kvm_arch_can_set_irq_routing(kvm))
4860 			goto out;
4861 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4862 			goto out;
4863 		if (routing.flags)
4864 			goto out;
4865 		if (routing.nr) {
4866 			urouting = argp;
4867 			entries = vmemdup_user(urouting->entries,
4868 					       array_size(sizeof(*entries),
4869 							  routing.nr));
4870 			if (IS_ERR(entries)) {
4871 				r = PTR_ERR(entries);
4872 				goto out;
4873 			}
4874 		}
4875 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4876 					routing.flags);
4877 		kvfree(entries);
4878 		break;
4879 	}
4880 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4881 	case KVM_CREATE_DEVICE: {
4882 		struct kvm_create_device cd;
4883 
4884 		r = -EFAULT;
4885 		if (copy_from_user(&cd, argp, sizeof(cd)))
4886 			goto out;
4887 
4888 		r = kvm_ioctl_create_device(kvm, &cd);
4889 		if (r)
4890 			goto out;
4891 
4892 		r = -EFAULT;
4893 		if (copy_to_user(argp, &cd, sizeof(cd)))
4894 			goto out;
4895 
4896 		r = 0;
4897 		break;
4898 	}
4899 	case KVM_CHECK_EXTENSION:
4900 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4901 		break;
4902 	case KVM_RESET_DIRTY_RINGS:
4903 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4904 		break;
4905 	case KVM_GET_STATS_FD:
4906 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4907 		break;
4908 	default:
4909 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4910 	}
4911 out:
4912 	return r;
4913 }
4914 
4915 #ifdef CONFIG_KVM_COMPAT
4916 struct compat_kvm_dirty_log {
4917 	__u32 slot;
4918 	__u32 padding1;
4919 	union {
4920 		compat_uptr_t dirty_bitmap; /* one bit per page */
4921 		__u64 padding2;
4922 	};
4923 };
4924 
4925 struct compat_kvm_clear_dirty_log {
4926 	__u32 slot;
4927 	__u32 num_pages;
4928 	__u64 first_page;
4929 	union {
4930 		compat_uptr_t dirty_bitmap; /* one bit per page */
4931 		__u64 padding2;
4932 	};
4933 };
4934 
4935 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4936 				     unsigned long arg)
4937 {
4938 	return -ENOTTY;
4939 }
4940 
4941 static long kvm_vm_compat_ioctl(struct file *filp,
4942 			   unsigned int ioctl, unsigned long arg)
4943 {
4944 	struct kvm *kvm = filp->private_data;
4945 	int r;
4946 
4947 	if (kvm->mm != current->mm || kvm->vm_dead)
4948 		return -EIO;
4949 
4950 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4951 	if (r != -ENOTTY)
4952 		return r;
4953 
4954 	switch (ioctl) {
4955 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4956 	case KVM_CLEAR_DIRTY_LOG: {
4957 		struct compat_kvm_clear_dirty_log compat_log;
4958 		struct kvm_clear_dirty_log log;
4959 
4960 		if (copy_from_user(&compat_log, (void __user *)arg,
4961 				   sizeof(compat_log)))
4962 			return -EFAULT;
4963 		log.slot	 = compat_log.slot;
4964 		log.num_pages	 = compat_log.num_pages;
4965 		log.first_page	 = compat_log.first_page;
4966 		log.padding2	 = compat_log.padding2;
4967 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4968 
4969 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4970 		break;
4971 	}
4972 #endif
4973 	case KVM_GET_DIRTY_LOG: {
4974 		struct compat_kvm_dirty_log compat_log;
4975 		struct kvm_dirty_log log;
4976 
4977 		if (copy_from_user(&compat_log, (void __user *)arg,
4978 				   sizeof(compat_log)))
4979 			return -EFAULT;
4980 		log.slot	 = compat_log.slot;
4981 		log.padding1	 = compat_log.padding1;
4982 		log.padding2	 = compat_log.padding2;
4983 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4984 
4985 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4986 		break;
4987 	}
4988 	default:
4989 		r = kvm_vm_ioctl(filp, ioctl, arg);
4990 	}
4991 	return r;
4992 }
4993 #endif
4994 
4995 static const struct file_operations kvm_vm_fops = {
4996 	.release        = kvm_vm_release,
4997 	.unlocked_ioctl = kvm_vm_ioctl,
4998 	.llseek		= noop_llseek,
4999 	KVM_COMPAT(kvm_vm_compat_ioctl),
5000 };
5001 
5002 bool file_is_kvm(struct file *file)
5003 {
5004 	return file && file->f_op == &kvm_vm_fops;
5005 }
5006 EXPORT_SYMBOL_GPL(file_is_kvm);
5007 
5008 static int kvm_dev_ioctl_create_vm(unsigned long type)
5009 {
5010 	char fdname[ITOA_MAX_LEN + 1];
5011 	int r, fd;
5012 	struct kvm *kvm;
5013 	struct file *file;
5014 
5015 	fd = get_unused_fd_flags(O_CLOEXEC);
5016 	if (fd < 0)
5017 		return fd;
5018 
5019 	snprintf(fdname, sizeof(fdname), "%d", fd);
5020 
5021 	kvm = kvm_create_vm(type, fdname);
5022 	if (IS_ERR(kvm)) {
5023 		r = PTR_ERR(kvm);
5024 		goto put_fd;
5025 	}
5026 
5027 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5028 	if (IS_ERR(file)) {
5029 		r = PTR_ERR(file);
5030 		goto put_kvm;
5031 	}
5032 
5033 	/*
5034 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5035 	 * already set, with ->release() being kvm_vm_release().  In error
5036 	 * cases it will be called by the final fput(file) and will take
5037 	 * care of doing kvm_put_kvm(kvm).
5038 	 */
5039 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5040 
5041 	fd_install(fd, file);
5042 	return fd;
5043 
5044 put_kvm:
5045 	kvm_put_kvm(kvm);
5046 put_fd:
5047 	put_unused_fd(fd);
5048 	return r;
5049 }
5050 
5051 static long kvm_dev_ioctl(struct file *filp,
5052 			  unsigned int ioctl, unsigned long arg)
5053 {
5054 	int r = -EINVAL;
5055 
5056 	switch (ioctl) {
5057 	case KVM_GET_API_VERSION:
5058 		if (arg)
5059 			goto out;
5060 		r = KVM_API_VERSION;
5061 		break;
5062 	case KVM_CREATE_VM:
5063 		r = kvm_dev_ioctl_create_vm(arg);
5064 		break;
5065 	case KVM_CHECK_EXTENSION:
5066 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5067 		break;
5068 	case KVM_GET_VCPU_MMAP_SIZE:
5069 		if (arg)
5070 			goto out;
5071 		r = PAGE_SIZE;     /* struct kvm_run */
5072 #ifdef CONFIG_X86
5073 		r += PAGE_SIZE;    /* pio data page */
5074 #endif
5075 #ifdef CONFIG_KVM_MMIO
5076 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5077 #endif
5078 		break;
5079 	case KVM_TRACE_ENABLE:
5080 	case KVM_TRACE_PAUSE:
5081 	case KVM_TRACE_DISABLE:
5082 		r = -EOPNOTSUPP;
5083 		break;
5084 	default:
5085 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5086 	}
5087 out:
5088 	return r;
5089 }
5090 
5091 static struct file_operations kvm_chardev_ops = {
5092 	.unlocked_ioctl = kvm_dev_ioctl,
5093 	.llseek		= noop_llseek,
5094 	KVM_COMPAT(kvm_dev_ioctl),
5095 };
5096 
5097 static struct miscdevice kvm_dev = {
5098 	KVM_MINOR,
5099 	"kvm",
5100 	&kvm_chardev_ops,
5101 };
5102 
5103 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5104 __visible bool kvm_rebooting;
5105 EXPORT_SYMBOL_GPL(kvm_rebooting);
5106 
5107 static DEFINE_PER_CPU(bool, hardware_enabled);
5108 static int kvm_usage_count;
5109 
5110 static int __hardware_enable_nolock(void)
5111 {
5112 	if (__this_cpu_read(hardware_enabled))
5113 		return 0;
5114 
5115 	if (kvm_arch_hardware_enable()) {
5116 		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5117 			raw_smp_processor_id());
5118 		return -EIO;
5119 	}
5120 
5121 	__this_cpu_write(hardware_enabled, true);
5122 	return 0;
5123 }
5124 
5125 static void hardware_enable_nolock(void *failed)
5126 {
5127 	if (__hardware_enable_nolock())
5128 		atomic_inc(failed);
5129 }
5130 
5131 static int kvm_online_cpu(unsigned int cpu)
5132 {
5133 	int ret = 0;
5134 
5135 	/*
5136 	 * Abort the CPU online process if hardware virtualization cannot
5137 	 * be enabled. Otherwise running VMs would encounter unrecoverable
5138 	 * errors when scheduled to this CPU.
5139 	 */
5140 	mutex_lock(&kvm_lock);
5141 	if (kvm_usage_count)
5142 		ret = __hardware_enable_nolock();
5143 	mutex_unlock(&kvm_lock);
5144 	return ret;
5145 }
5146 
5147 static void hardware_disable_nolock(void *junk)
5148 {
5149 	/*
5150 	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5151 	 * hardware, not just CPUs that successfully enabled hardware!
5152 	 */
5153 	if (!__this_cpu_read(hardware_enabled))
5154 		return;
5155 
5156 	kvm_arch_hardware_disable();
5157 
5158 	__this_cpu_write(hardware_enabled, false);
5159 }
5160 
5161 static int kvm_offline_cpu(unsigned int cpu)
5162 {
5163 	mutex_lock(&kvm_lock);
5164 	if (kvm_usage_count)
5165 		hardware_disable_nolock(NULL);
5166 	mutex_unlock(&kvm_lock);
5167 	return 0;
5168 }
5169 
5170 static void hardware_disable_all_nolock(void)
5171 {
5172 	BUG_ON(!kvm_usage_count);
5173 
5174 	kvm_usage_count--;
5175 	if (!kvm_usage_count)
5176 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5177 }
5178 
5179 static void hardware_disable_all(void)
5180 {
5181 	cpus_read_lock();
5182 	mutex_lock(&kvm_lock);
5183 	hardware_disable_all_nolock();
5184 	mutex_unlock(&kvm_lock);
5185 	cpus_read_unlock();
5186 }
5187 
5188 static int hardware_enable_all(void)
5189 {
5190 	atomic_t failed = ATOMIC_INIT(0);
5191 	int r;
5192 
5193 	/*
5194 	 * Do not enable hardware virtualization if the system is going down.
5195 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5196 	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5197 	 * after kvm_reboot() is called.  Note, this relies on system_state
5198 	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5199 	 * hook instead of registering a dedicated reboot notifier (the latter
5200 	 * runs before system_state is updated).
5201 	 */
5202 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5203 	    system_state == SYSTEM_RESTART)
5204 		return -EBUSY;
5205 
5206 	/*
5207 	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5208 	 * is called, and so on_each_cpu() between them includes the CPU that
5209 	 * is being onlined.  As a result, hardware_enable_nolock() may get
5210 	 * invoked before kvm_online_cpu(), which also enables hardware if the
5211 	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5212 	 * enable hardware multiple times.
5213 	 */
5214 	cpus_read_lock();
5215 	mutex_lock(&kvm_lock);
5216 
5217 	r = 0;
5218 
5219 	kvm_usage_count++;
5220 	if (kvm_usage_count == 1) {
5221 		on_each_cpu(hardware_enable_nolock, &failed, 1);
5222 
5223 		if (atomic_read(&failed)) {
5224 			hardware_disable_all_nolock();
5225 			r = -EBUSY;
5226 		}
5227 	}
5228 
5229 	mutex_unlock(&kvm_lock);
5230 	cpus_read_unlock();
5231 
5232 	return r;
5233 }
5234 
5235 static void kvm_shutdown(void)
5236 {
5237 	/*
5238 	 * Disable hardware virtualization and set kvm_rebooting to indicate
5239 	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5240 	 * that relevant errors and exceptions aren't entirely unexpected.
5241 	 * Some flavors of hardware virtualization need to be disabled before
5242 	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5243 	 * on x86, virtualization can block INIT interrupts, which are used by
5244 	 * firmware to pull APs back under firmware control.  Note, this path
5245 	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5246 	 * 100% comprehensive.
5247 	 */
5248 	pr_info("kvm: exiting hardware virtualization\n");
5249 	kvm_rebooting = true;
5250 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5251 }
5252 
5253 static int kvm_suspend(void)
5254 {
5255 	/*
5256 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5257 	 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5258 	 * is stable.  Assert that kvm_lock is not held to ensure the system
5259 	 * isn't suspended while KVM is enabling hardware.  Hardware enabling
5260 	 * can be preempted, but the task cannot be frozen until it has dropped
5261 	 * all locks (userspace tasks are frozen via a fake signal).
5262 	 */
5263 	lockdep_assert_not_held(&kvm_lock);
5264 	lockdep_assert_irqs_disabled();
5265 
5266 	if (kvm_usage_count)
5267 		hardware_disable_nolock(NULL);
5268 	return 0;
5269 }
5270 
5271 static void kvm_resume(void)
5272 {
5273 	lockdep_assert_not_held(&kvm_lock);
5274 	lockdep_assert_irqs_disabled();
5275 
5276 	if (kvm_usage_count)
5277 		WARN_ON_ONCE(__hardware_enable_nolock());
5278 }
5279 
5280 static struct syscore_ops kvm_syscore_ops = {
5281 	.suspend = kvm_suspend,
5282 	.resume = kvm_resume,
5283 	.shutdown = kvm_shutdown,
5284 };
5285 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5286 static int hardware_enable_all(void)
5287 {
5288 	return 0;
5289 }
5290 
5291 static void hardware_disable_all(void)
5292 {
5293 
5294 }
5295 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5296 
5297 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5298 {
5299 	int i;
5300 
5301 	for (i = 0; i < bus->dev_count; i++) {
5302 		struct kvm_io_device *pos = bus->range[i].dev;
5303 
5304 		kvm_iodevice_destructor(pos);
5305 	}
5306 	kfree(bus);
5307 }
5308 
5309 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5310 				 const struct kvm_io_range *r2)
5311 {
5312 	gpa_t addr1 = r1->addr;
5313 	gpa_t addr2 = r2->addr;
5314 
5315 	if (addr1 < addr2)
5316 		return -1;
5317 
5318 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5319 	 * accept any overlapping write.  Any order is acceptable for
5320 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5321 	 * we process all of them.
5322 	 */
5323 	if (r2->len) {
5324 		addr1 += r1->len;
5325 		addr2 += r2->len;
5326 	}
5327 
5328 	if (addr1 > addr2)
5329 		return 1;
5330 
5331 	return 0;
5332 }
5333 
5334 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5335 {
5336 	return kvm_io_bus_cmp(p1, p2);
5337 }
5338 
5339 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5340 			     gpa_t addr, int len)
5341 {
5342 	struct kvm_io_range *range, key;
5343 	int off;
5344 
5345 	key = (struct kvm_io_range) {
5346 		.addr = addr,
5347 		.len = len,
5348 	};
5349 
5350 	range = bsearch(&key, bus->range, bus->dev_count,
5351 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5352 	if (range == NULL)
5353 		return -ENOENT;
5354 
5355 	off = range - bus->range;
5356 
5357 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5358 		off--;
5359 
5360 	return off;
5361 }
5362 
5363 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5364 			      struct kvm_io_range *range, const void *val)
5365 {
5366 	int idx;
5367 
5368 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5369 	if (idx < 0)
5370 		return -EOPNOTSUPP;
5371 
5372 	while (idx < bus->dev_count &&
5373 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5374 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5375 					range->len, val))
5376 			return idx;
5377 		idx++;
5378 	}
5379 
5380 	return -EOPNOTSUPP;
5381 }
5382 
5383 /* kvm_io_bus_write - called under kvm->slots_lock */
5384 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5385 		     int len, const void *val)
5386 {
5387 	struct kvm_io_bus *bus;
5388 	struct kvm_io_range range;
5389 	int r;
5390 
5391 	range = (struct kvm_io_range) {
5392 		.addr = addr,
5393 		.len = len,
5394 	};
5395 
5396 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5397 	if (!bus)
5398 		return -ENOMEM;
5399 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5400 	return r < 0 ? r : 0;
5401 }
5402 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5403 
5404 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5405 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5406 			    gpa_t addr, int len, const void *val, long cookie)
5407 {
5408 	struct kvm_io_bus *bus;
5409 	struct kvm_io_range range;
5410 
5411 	range = (struct kvm_io_range) {
5412 		.addr = addr,
5413 		.len = len,
5414 	};
5415 
5416 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5417 	if (!bus)
5418 		return -ENOMEM;
5419 
5420 	/* First try the device referenced by cookie. */
5421 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5422 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5423 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5424 					val))
5425 			return cookie;
5426 
5427 	/*
5428 	 * cookie contained garbage; fall back to search and return the
5429 	 * correct cookie value.
5430 	 */
5431 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5432 }
5433 
5434 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5435 			     struct kvm_io_range *range, void *val)
5436 {
5437 	int idx;
5438 
5439 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5440 	if (idx < 0)
5441 		return -EOPNOTSUPP;
5442 
5443 	while (idx < bus->dev_count &&
5444 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5445 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5446 				       range->len, val))
5447 			return idx;
5448 		idx++;
5449 	}
5450 
5451 	return -EOPNOTSUPP;
5452 }
5453 
5454 /* kvm_io_bus_read - called under kvm->slots_lock */
5455 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5456 		    int len, void *val)
5457 {
5458 	struct kvm_io_bus *bus;
5459 	struct kvm_io_range range;
5460 	int r;
5461 
5462 	range = (struct kvm_io_range) {
5463 		.addr = addr,
5464 		.len = len,
5465 	};
5466 
5467 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5468 	if (!bus)
5469 		return -ENOMEM;
5470 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5471 	return r < 0 ? r : 0;
5472 }
5473 
5474 /* Caller must hold slots_lock. */
5475 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5476 			    int len, struct kvm_io_device *dev)
5477 {
5478 	int i;
5479 	struct kvm_io_bus *new_bus, *bus;
5480 	struct kvm_io_range range;
5481 
5482 	bus = kvm_get_bus(kvm, bus_idx);
5483 	if (!bus)
5484 		return -ENOMEM;
5485 
5486 	/* exclude ioeventfd which is limited by maximum fd */
5487 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5488 		return -ENOSPC;
5489 
5490 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5491 			  GFP_KERNEL_ACCOUNT);
5492 	if (!new_bus)
5493 		return -ENOMEM;
5494 
5495 	range = (struct kvm_io_range) {
5496 		.addr = addr,
5497 		.len = len,
5498 		.dev = dev,
5499 	};
5500 
5501 	for (i = 0; i < bus->dev_count; i++)
5502 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5503 			break;
5504 
5505 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5506 	new_bus->dev_count++;
5507 	new_bus->range[i] = range;
5508 	memcpy(new_bus->range + i + 1, bus->range + i,
5509 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5510 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5511 	synchronize_srcu_expedited(&kvm->srcu);
5512 	kfree(bus);
5513 
5514 	return 0;
5515 }
5516 
5517 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5518 			      struct kvm_io_device *dev)
5519 {
5520 	int i, j;
5521 	struct kvm_io_bus *new_bus, *bus;
5522 
5523 	lockdep_assert_held(&kvm->slots_lock);
5524 
5525 	bus = kvm_get_bus(kvm, bus_idx);
5526 	if (!bus)
5527 		return 0;
5528 
5529 	for (i = 0; i < bus->dev_count; i++) {
5530 		if (bus->range[i].dev == dev) {
5531 			break;
5532 		}
5533 	}
5534 
5535 	if (i == bus->dev_count)
5536 		return 0;
5537 
5538 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5539 			  GFP_KERNEL_ACCOUNT);
5540 	if (new_bus) {
5541 		memcpy(new_bus, bus, struct_size(bus, range, i));
5542 		new_bus->dev_count--;
5543 		memcpy(new_bus->range + i, bus->range + i + 1,
5544 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5545 	}
5546 
5547 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5548 	synchronize_srcu_expedited(&kvm->srcu);
5549 
5550 	/* Destroy the old bus _after_ installing the (null) bus. */
5551 	if (!new_bus) {
5552 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5553 		for (j = 0; j < bus->dev_count; j++) {
5554 			if (j == i)
5555 				continue;
5556 			kvm_iodevice_destructor(bus->range[j].dev);
5557 		}
5558 	}
5559 
5560 	kfree(bus);
5561 	return new_bus ? 0 : -ENOMEM;
5562 }
5563 
5564 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5565 					 gpa_t addr)
5566 {
5567 	struct kvm_io_bus *bus;
5568 	int dev_idx, srcu_idx;
5569 	struct kvm_io_device *iodev = NULL;
5570 
5571 	srcu_idx = srcu_read_lock(&kvm->srcu);
5572 
5573 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5574 	if (!bus)
5575 		goto out_unlock;
5576 
5577 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5578 	if (dev_idx < 0)
5579 		goto out_unlock;
5580 
5581 	iodev = bus->range[dev_idx].dev;
5582 
5583 out_unlock:
5584 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5585 
5586 	return iodev;
5587 }
5588 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5589 
5590 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5591 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5592 			   const char *fmt)
5593 {
5594 	int ret;
5595 	struct kvm_stat_data *stat_data = inode->i_private;
5596 
5597 	/*
5598 	 * The debugfs files are a reference to the kvm struct which
5599         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5600         * avoids the race between open and the removal of the debugfs directory.
5601 	 */
5602 	if (!kvm_get_kvm_safe(stat_data->kvm))
5603 		return -ENOENT;
5604 
5605 	ret = simple_attr_open(inode, file, get,
5606 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5607 			       ? set : NULL, fmt);
5608 	if (ret)
5609 		kvm_put_kvm(stat_data->kvm);
5610 
5611 	return ret;
5612 }
5613 
5614 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5615 {
5616 	struct kvm_stat_data *stat_data = inode->i_private;
5617 
5618 	simple_attr_release(inode, file);
5619 	kvm_put_kvm(stat_data->kvm);
5620 
5621 	return 0;
5622 }
5623 
5624 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5625 {
5626 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5627 
5628 	return 0;
5629 }
5630 
5631 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5632 {
5633 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5634 
5635 	return 0;
5636 }
5637 
5638 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5639 {
5640 	unsigned long i;
5641 	struct kvm_vcpu *vcpu;
5642 
5643 	*val = 0;
5644 
5645 	kvm_for_each_vcpu(i, vcpu, kvm)
5646 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5647 
5648 	return 0;
5649 }
5650 
5651 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5652 {
5653 	unsigned long i;
5654 	struct kvm_vcpu *vcpu;
5655 
5656 	kvm_for_each_vcpu(i, vcpu, kvm)
5657 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5658 
5659 	return 0;
5660 }
5661 
5662 static int kvm_stat_data_get(void *data, u64 *val)
5663 {
5664 	int r = -EFAULT;
5665 	struct kvm_stat_data *stat_data = data;
5666 
5667 	switch (stat_data->kind) {
5668 	case KVM_STAT_VM:
5669 		r = kvm_get_stat_per_vm(stat_data->kvm,
5670 					stat_data->desc->desc.offset, val);
5671 		break;
5672 	case KVM_STAT_VCPU:
5673 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5674 					  stat_data->desc->desc.offset, val);
5675 		break;
5676 	}
5677 
5678 	return r;
5679 }
5680 
5681 static int kvm_stat_data_clear(void *data, u64 val)
5682 {
5683 	int r = -EFAULT;
5684 	struct kvm_stat_data *stat_data = data;
5685 
5686 	if (val)
5687 		return -EINVAL;
5688 
5689 	switch (stat_data->kind) {
5690 	case KVM_STAT_VM:
5691 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5692 					  stat_data->desc->desc.offset);
5693 		break;
5694 	case KVM_STAT_VCPU:
5695 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5696 					    stat_data->desc->desc.offset);
5697 		break;
5698 	}
5699 
5700 	return r;
5701 }
5702 
5703 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5704 {
5705 	__simple_attr_check_format("%llu\n", 0ull);
5706 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5707 				kvm_stat_data_clear, "%llu\n");
5708 }
5709 
5710 static const struct file_operations stat_fops_per_vm = {
5711 	.owner = THIS_MODULE,
5712 	.open = kvm_stat_data_open,
5713 	.release = kvm_debugfs_release,
5714 	.read = simple_attr_read,
5715 	.write = simple_attr_write,
5716 	.llseek = no_llseek,
5717 };
5718 
5719 static int vm_stat_get(void *_offset, u64 *val)
5720 {
5721 	unsigned offset = (long)_offset;
5722 	struct kvm *kvm;
5723 	u64 tmp_val;
5724 
5725 	*val = 0;
5726 	mutex_lock(&kvm_lock);
5727 	list_for_each_entry(kvm, &vm_list, vm_list) {
5728 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5729 		*val += tmp_val;
5730 	}
5731 	mutex_unlock(&kvm_lock);
5732 	return 0;
5733 }
5734 
5735 static int vm_stat_clear(void *_offset, u64 val)
5736 {
5737 	unsigned offset = (long)_offset;
5738 	struct kvm *kvm;
5739 
5740 	if (val)
5741 		return -EINVAL;
5742 
5743 	mutex_lock(&kvm_lock);
5744 	list_for_each_entry(kvm, &vm_list, vm_list) {
5745 		kvm_clear_stat_per_vm(kvm, offset);
5746 	}
5747 	mutex_unlock(&kvm_lock);
5748 
5749 	return 0;
5750 }
5751 
5752 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5753 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5754 
5755 static int vcpu_stat_get(void *_offset, u64 *val)
5756 {
5757 	unsigned offset = (long)_offset;
5758 	struct kvm *kvm;
5759 	u64 tmp_val;
5760 
5761 	*val = 0;
5762 	mutex_lock(&kvm_lock);
5763 	list_for_each_entry(kvm, &vm_list, vm_list) {
5764 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5765 		*val += tmp_val;
5766 	}
5767 	mutex_unlock(&kvm_lock);
5768 	return 0;
5769 }
5770 
5771 static int vcpu_stat_clear(void *_offset, u64 val)
5772 {
5773 	unsigned offset = (long)_offset;
5774 	struct kvm *kvm;
5775 
5776 	if (val)
5777 		return -EINVAL;
5778 
5779 	mutex_lock(&kvm_lock);
5780 	list_for_each_entry(kvm, &vm_list, vm_list) {
5781 		kvm_clear_stat_per_vcpu(kvm, offset);
5782 	}
5783 	mutex_unlock(&kvm_lock);
5784 
5785 	return 0;
5786 }
5787 
5788 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5789 			"%llu\n");
5790 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5791 
5792 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5793 {
5794 	struct kobj_uevent_env *env;
5795 	unsigned long long created, active;
5796 
5797 	if (!kvm_dev.this_device || !kvm)
5798 		return;
5799 
5800 	mutex_lock(&kvm_lock);
5801 	if (type == KVM_EVENT_CREATE_VM) {
5802 		kvm_createvm_count++;
5803 		kvm_active_vms++;
5804 	} else if (type == KVM_EVENT_DESTROY_VM) {
5805 		kvm_active_vms--;
5806 	}
5807 	created = kvm_createvm_count;
5808 	active = kvm_active_vms;
5809 	mutex_unlock(&kvm_lock);
5810 
5811 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5812 	if (!env)
5813 		return;
5814 
5815 	add_uevent_var(env, "CREATED=%llu", created);
5816 	add_uevent_var(env, "COUNT=%llu", active);
5817 
5818 	if (type == KVM_EVENT_CREATE_VM) {
5819 		add_uevent_var(env, "EVENT=create");
5820 		kvm->userspace_pid = task_pid_nr(current);
5821 	} else if (type == KVM_EVENT_DESTROY_VM) {
5822 		add_uevent_var(env, "EVENT=destroy");
5823 	}
5824 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5825 
5826 	if (!IS_ERR(kvm->debugfs_dentry)) {
5827 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5828 
5829 		if (p) {
5830 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5831 			if (!IS_ERR(tmp))
5832 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5833 			kfree(p);
5834 		}
5835 	}
5836 	/* no need for checks, since we are adding at most only 5 keys */
5837 	env->envp[env->envp_idx++] = NULL;
5838 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5839 	kfree(env);
5840 }
5841 
5842 static void kvm_init_debug(void)
5843 {
5844 	const struct file_operations *fops;
5845 	const struct _kvm_stats_desc *pdesc;
5846 	int i;
5847 
5848 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5849 
5850 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5851 		pdesc = &kvm_vm_stats_desc[i];
5852 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5853 			fops = &vm_stat_fops;
5854 		else
5855 			fops = &vm_stat_readonly_fops;
5856 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5857 				kvm_debugfs_dir,
5858 				(void *)(long)pdesc->desc.offset, fops);
5859 	}
5860 
5861 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5862 		pdesc = &kvm_vcpu_stats_desc[i];
5863 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5864 			fops = &vcpu_stat_fops;
5865 		else
5866 			fops = &vcpu_stat_readonly_fops;
5867 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5868 				kvm_debugfs_dir,
5869 				(void *)(long)pdesc->desc.offset, fops);
5870 	}
5871 }
5872 
5873 static inline
5874 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5875 {
5876 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5877 }
5878 
5879 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5880 {
5881 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5882 
5883 	WRITE_ONCE(vcpu->preempted, false);
5884 	WRITE_ONCE(vcpu->ready, false);
5885 
5886 	__this_cpu_write(kvm_running_vcpu, vcpu);
5887 	kvm_arch_sched_in(vcpu, cpu);
5888 	kvm_arch_vcpu_load(vcpu, cpu);
5889 }
5890 
5891 static void kvm_sched_out(struct preempt_notifier *pn,
5892 			  struct task_struct *next)
5893 {
5894 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5895 
5896 	if (current->on_rq) {
5897 		WRITE_ONCE(vcpu->preempted, true);
5898 		WRITE_ONCE(vcpu->ready, true);
5899 	}
5900 	kvm_arch_vcpu_put(vcpu);
5901 	__this_cpu_write(kvm_running_vcpu, NULL);
5902 }
5903 
5904 /**
5905  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5906  *
5907  * We can disable preemption locally around accessing the per-CPU variable,
5908  * and use the resolved vcpu pointer after enabling preemption again,
5909  * because even if the current thread is migrated to another CPU, reading
5910  * the per-CPU value later will give us the same value as we update the
5911  * per-CPU variable in the preempt notifier handlers.
5912  */
5913 struct kvm_vcpu *kvm_get_running_vcpu(void)
5914 {
5915 	struct kvm_vcpu *vcpu;
5916 
5917 	preempt_disable();
5918 	vcpu = __this_cpu_read(kvm_running_vcpu);
5919 	preempt_enable();
5920 
5921 	return vcpu;
5922 }
5923 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5924 
5925 /**
5926  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5927  */
5928 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5929 {
5930         return &kvm_running_vcpu;
5931 }
5932 
5933 #ifdef CONFIG_GUEST_PERF_EVENTS
5934 static unsigned int kvm_guest_state(void)
5935 {
5936 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5937 	unsigned int state;
5938 
5939 	if (!kvm_arch_pmi_in_guest(vcpu))
5940 		return 0;
5941 
5942 	state = PERF_GUEST_ACTIVE;
5943 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5944 		state |= PERF_GUEST_USER;
5945 
5946 	return state;
5947 }
5948 
5949 static unsigned long kvm_guest_get_ip(void)
5950 {
5951 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5952 
5953 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5954 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5955 		return 0;
5956 
5957 	return kvm_arch_vcpu_get_ip(vcpu);
5958 }
5959 
5960 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5961 	.state			= kvm_guest_state,
5962 	.get_ip			= kvm_guest_get_ip,
5963 	.handle_intel_pt_intr	= NULL,
5964 };
5965 
5966 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5967 {
5968 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5969 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5970 }
5971 void kvm_unregister_perf_callbacks(void)
5972 {
5973 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5974 }
5975 #endif
5976 
5977 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5978 {
5979 	int r;
5980 	int cpu;
5981 
5982 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5983 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5984 				      kvm_online_cpu, kvm_offline_cpu);
5985 	if (r)
5986 		return r;
5987 
5988 	register_syscore_ops(&kvm_syscore_ops);
5989 #endif
5990 
5991 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5992 	if (!vcpu_align)
5993 		vcpu_align = __alignof__(struct kvm_vcpu);
5994 	kvm_vcpu_cache =
5995 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5996 					   SLAB_ACCOUNT,
5997 					   offsetof(struct kvm_vcpu, arch),
5998 					   offsetofend(struct kvm_vcpu, stats_id)
5999 					   - offsetof(struct kvm_vcpu, arch),
6000 					   NULL);
6001 	if (!kvm_vcpu_cache) {
6002 		r = -ENOMEM;
6003 		goto err_vcpu_cache;
6004 	}
6005 
6006 	for_each_possible_cpu(cpu) {
6007 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6008 					    GFP_KERNEL, cpu_to_node(cpu))) {
6009 			r = -ENOMEM;
6010 			goto err_cpu_kick_mask;
6011 		}
6012 	}
6013 
6014 	r = kvm_irqfd_init();
6015 	if (r)
6016 		goto err_irqfd;
6017 
6018 	r = kvm_async_pf_init();
6019 	if (r)
6020 		goto err_async_pf;
6021 
6022 	kvm_chardev_ops.owner = module;
6023 
6024 	kvm_preempt_ops.sched_in = kvm_sched_in;
6025 	kvm_preempt_ops.sched_out = kvm_sched_out;
6026 
6027 	kvm_init_debug();
6028 
6029 	r = kvm_vfio_ops_init();
6030 	if (WARN_ON_ONCE(r))
6031 		goto err_vfio;
6032 
6033 	/*
6034 	 * Registration _must_ be the very last thing done, as this exposes
6035 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6036 	 */
6037 	r = misc_register(&kvm_dev);
6038 	if (r) {
6039 		pr_err("kvm: misc device register failed\n");
6040 		goto err_register;
6041 	}
6042 
6043 	return 0;
6044 
6045 err_register:
6046 	kvm_vfio_ops_exit();
6047 err_vfio:
6048 	kvm_async_pf_deinit();
6049 err_async_pf:
6050 	kvm_irqfd_exit();
6051 err_irqfd:
6052 err_cpu_kick_mask:
6053 	for_each_possible_cpu(cpu)
6054 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6055 	kmem_cache_destroy(kvm_vcpu_cache);
6056 err_vcpu_cache:
6057 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6058 	unregister_syscore_ops(&kvm_syscore_ops);
6059 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6060 #endif
6061 	return r;
6062 }
6063 EXPORT_SYMBOL_GPL(kvm_init);
6064 
6065 void kvm_exit(void)
6066 {
6067 	int cpu;
6068 
6069 	/*
6070 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6071 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6072 	 * to KVM while the module is being stopped.
6073 	 */
6074 	misc_deregister(&kvm_dev);
6075 
6076 	debugfs_remove_recursive(kvm_debugfs_dir);
6077 	for_each_possible_cpu(cpu)
6078 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6079 	kmem_cache_destroy(kvm_vcpu_cache);
6080 	kvm_vfio_ops_exit();
6081 	kvm_async_pf_deinit();
6082 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6083 	unregister_syscore_ops(&kvm_syscore_ops);
6084 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6085 #endif
6086 	kvm_irqfd_exit();
6087 }
6088 EXPORT_SYMBOL_GPL(kvm_exit);
6089 
6090 struct kvm_vm_worker_thread_context {
6091 	struct kvm *kvm;
6092 	struct task_struct *parent;
6093 	struct completion init_done;
6094 	kvm_vm_thread_fn_t thread_fn;
6095 	uintptr_t data;
6096 	int err;
6097 };
6098 
6099 static int kvm_vm_worker_thread(void *context)
6100 {
6101 	/*
6102 	 * The init_context is allocated on the stack of the parent thread, so
6103 	 * we have to locally copy anything that is needed beyond initialization
6104 	 */
6105 	struct kvm_vm_worker_thread_context *init_context = context;
6106 	struct task_struct *parent;
6107 	struct kvm *kvm = init_context->kvm;
6108 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6109 	uintptr_t data = init_context->data;
6110 	int err;
6111 
6112 	err = kthread_park(current);
6113 	/* kthread_park(current) is never supposed to return an error */
6114 	WARN_ON(err != 0);
6115 	if (err)
6116 		goto init_complete;
6117 
6118 	err = cgroup_attach_task_all(init_context->parent, current);
6119 	if (err) {
6120 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6121 			__func__, err);
6122 		goto init_complete;
6123 	}
6124 
6125 	set_user_nice(current, task_nice(init_context->parent));
6126 
6127 init_complete:
6128 	init_context->err = err;
6129 	complete(&init_context->init_done);
6130 	init_context = NULL;
6131 
6132 	if (err)
6133 		goto out;
6134 
6135 	/* Wait to be woken up by the spawner before proceeding. */
6136 	kthread_parkme();
6137 
6138 	if (!kthread_should_stop())
6139 		err = thread_fn(kvm, data);
6140 
6141 out:
6142 	/*
6143 	 * Move kthread back to its original cgroup to prevent it lingering in
6144 	 * the cgroup of the VM process, after the latter finishes its
6145 	 * execution.
6146 	 *
6147 	 * kthread_stop() waits on the 'exited' completion condition which is
6148 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6149 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6150 	 * called after the exit_mm(). This causes the kthread_stop() to return
6151 	 * before the kthread actually quits the cgroup.
6152 	 */
6153 	rcu_read_lock();
6154 	parent = rcu_dereference(current->real_parent);
6155 	get_task_struct(parent);
6156 	rcu_read_unlock();
6157 	cgroup_attach_task_all(parent, current);
6158 	put_task_struct(parent);
6159 
6160 	return err;
6161 }
6162 
6163 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6164 				uintptr_t data, const char *name,
6165 				struct task_struct **thread_ptr)
6166 {
6167 	struct kvm_vm_worker_thread_context init_context = {};
6168 	struct task_struct *thread;
6169 
6170 	*thread_ptr = NULL;
6171 	init_context.kvm = kvm;
6172 	init_context.parent = current;
6173 	init_context.thread_fn = thread_fn;
6174 	init_context.data = data;
6175 	init_completion(&init_context.init_done);
6176 
6177 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6178 			     "%s-%d", name, task_pid_nr(current));
6179 	if (IS_ERR(thread))
6180 		return PTR_ERR(thread);
6181 
6182 	/* kthread_run is never supposed to return NULL */
6183 	WARN_ON(thread == NULL);
6184 
6185 	wait_for_completion(&init_context.init_done);
6186 
6187 	if (!init_context.err)
6188 		*thread_ptr = thread;
6189 
6190 	return init_context.err;
6191 }
6192