xref: /openbmc/linux/virt/kvm/kvm_main.c (revision ff6defa6)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 /*
70  * Ordering of locks:
71  *
72  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73  */
74 
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78 
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82 
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85 
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87 
88 struct dentry *kvm_debugfs_dir;
89 
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 			   unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 				  unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98 
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100 
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 				    struct kvm_memory_slot *memslot, gfn_t gfn);
104 
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107 
108 static bool largepages_enabled = true;
109 
110 bool kvm_is_reserved_pfn(pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return PageReserved(pfn_to_page(pfn));
114 
115 	return true;
116 }
117 
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 
125 	if (mutex_lock_killable(&vcpu->mutex))
126 		return -EINTR;
127 	cpu = get_cpu();
128 	preempt_notifier_register(&vcpu->preempt_notifier);
129 	kvm_arch_vcpu_load(vcpu, cpu);
130 	put_cpu();
131 	return 0;
132 }
133 
134 void vcpu_put(struct kvm_vcpu *vcpu)
135 {
136 	preempt_disable();
137 	kvm_arch_vcpu_put(vcpu);
138 	preempt_notifier_unregister(&vcpu->preempt_notifier);
139 	preempt_enable();
140 	mutex_unlock(&vcpu->mutex);
141 }
142 
143 static void ack_flush(void *_completed)
144 {
145 }
146 
147 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
148 {
149 	int i, cpu, me;
150 	cpumask_var_t cpus;
151 	bool called = true;
152 	struct kvm_vcpu *vcpu;
153 
154 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
155 
156 	me = get_cpu();
157 	kvm_for_each_vcpu(i, vcpu, kvm) {
158 		kvm_make_request(req, vcpu);
159 		cpu = vcpu->cpu;
160 
161 		/* Set ->requests bit before we read ->mode */
162 		smp_mb();
163 
164 		if (cpus != NULL && cpu != -1 && cpu != me &&
165 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
166 			cpumask_set_cpu(cpu, cpus);
167 	}
168 	if (unlikely(cpus == NULL))
169 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
170 	else if (!cpumask_empty(cpus))
171 		smp_call_function_many(cpus, ack_flush, NULL, 1);
172 	else
173 		called = false;
174 	put_cpu();
175 	free_cpumask_var(cpus);
176 	return called;
177 }
178 
179 void kvm_flush_remote_tlbs(struct kvm *kvm)
180 {
181 	long dirty_count = kvm->tlbs_dirty;
182 
183 	smp_mb();
184 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
185 		++kvm->stat.remote_tlb_flush;
186 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
187 }
188 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
189 
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194 
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199 
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204 
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 	struct page *page;
208 	int r;
209 
210 	mutex_init(&vcpu->mutex);
211 	vcpu->cpu = -1;
212 	vcpu->kvm = kvm;
213 	vcpu->vcpu_id = id;
214 	vcpu->pid = NULL;
215 	init_waitqueue_head(&vcpu->wq);
216 	kvm_async_pf_vcpu_init(vcpu);
217 
218 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 	if (!page) {
220 		r = -ENOMEM;
221 		goto fail;
222 	}
223 	vcpu->run = page_address(page);
224 
225 	kvm_vcpu_set_in_spin_loop(vcpu, false);
226 	kvm_vcpu_set_dy_eligible(vcpu, false);
227 	vcpu->preempted = false;
228 
229 	r = kvm_arch_vcpu_init(vcpu);
230 	if (r < 0)
231 		goto fail_free_run;
232 	return 0;
233 
234 fail_free_run:
235 	free_page((unsigned long)vcpu->run);
236 fail:
237 	return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240 
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 	put_pid(vcpu->pid);
244 	kvm_arch_vcpu_uninit(vcpu);
245 	free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248 
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 	return container_of(mn, struct kvm, mmu_notifier);
253 }
254 
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 					     struct mm_struct *mm,
257 					     unsigned long address)
258 {
259 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 	int need_tlb_flush, idx;
261 
262 	/*
263 	 * When ->invalidate_page runs, the linux pte has been zapped
264 	 * already but the page is still allocated until
265 	 * ->invalidate_page returns. So if we increase the sequence
266 	 * here the kvm page fault will notice if the spte can't be
267 	 * established because the page is going to be freed. If
268 	 * instead the kvm page fault establishes the spte before
269 	 * ->invalidate_page runs, kvm_unmap_hva will release it
270 	 * before returning.
271 	 *
272 	 * The sequence increase only need to be seen at spin_unlock
273 	 * time, and not at spin_lock time.
274 	 *
275 	 * Increasing the sequence after the spin_unlock would be
276 	 * unsafe because the kvm page fault could then establish the
277 	 * pte after kvm_unmap_hva returned, without noticing the page
278 	 * is going to be freed.
279 	 */
280 	idx = srcu_read_lock(&kvm->srcu);
281 	spin_lock(&kvm->mmu_lock);
282 
283 	kvm->mmu_notifier_seq++;
284 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 	/* we've to flush the tlb before the pages can be freed */
286 	if (need_tlb_flush)
287 		kvm_flush_remote_tlbs(kvm);
288 
289 	spin_unlock(&kvm->mmu_lock);
290 
291 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
292 
293 	srcu_read_unlock(&kvm->srcu, idx);
294 }
295 
296 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
297 					struct mm_struct *mm,
298 					unsigned long address,
299 					pte_t pte)
300 {
301 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
302 	int idx;
303 
304 	idx = srcu_read_lock(&kvm->srcu);
305 	spin_lock(&kvm->mmu_lock);
306 	kvm->mmu_notifier_seq++;
307 	kvm_set_spte_hva(kvm, address, pte);
308 	spin_unlock(&kvm->mmu_lock);
309 	srcu_read_unlock(&kvm->srcu, idx);
310 }
311 
312 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
313 						    struct mm_struct *mm,
314 						    unsigned long start,
315 						    unsigned long end)
316 {
317 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
318 	int need_tlb_flush = 0, idx;
319 
320 	idx = srcu_read_lock(&kvm->srcu);
321 	spin_lock(&kvm->mmu_lock);
322 	/*
323 	 * The count increase must become visible at unlock time as no
324 	 * spte can be established without taking the mmu_lock and
325 	 * count is also read inside the mmu_lock critical section.
326 	 */
327 	kvm->mmu_notifier_count++;
328 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
329 	need_tlb_flush |= kvm->tlbs_dirty;
330 	/* we've to flush the tlb before the pages can be freed */
331 	if (need_tlb_flush)
332 		kvm_flush_remote_tlbs(kvm);
333 
334 	spin_unlock(&kvm->mmu_lock);
335 	srcu_read_unlock(&kvm->srcu, idx);
336 }
337 
338 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
339 						  struct mm_struct *mm,
340 						  unsigned long start,
341 						  unsigned long end)
342 {
343 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
344 
345 	spin_lock(&kvm->mmu_lock);
346 	/*
347 	 * This sequence increase will notify the kvm page fault that
348 	 * the page that is going to be mapped in the spte could have
349 	 * been freed.
350 	 */
351 	kvm->mmu_notifier_seq++;
352 	smp_wmb();
353 	/*
354 	 * The above sequence increase must be visible before the
355 	 * below count decrease, which is ensured by the smp_wmb above
356 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
357 	 */
358 	kvm->mmu_notifier_count--;
359 	spin_unlock(&kvm->mmu_lock);
360 
361 	BUG_ON(kvm->mmu_notifier_count < 0);
362 }
363 
364 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
365 					      struct mm_struct *mm,
366 					      unsigned long start,
367 					      unsigned long end)
368 {
369 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
370 	int young, idx;
371 
372 	idx = srcu_read_lock(&kvm->srcu);
373 	spin_lock(&kvm->mmu_lock);
374 
375 	young = kvm_age_hva(kvm, start, end);
376 	if (young)
377 		kvm_flush_remote_tlbs(kvm);
378 
379 	spin_unlock(&kvm->mmu_lock);
380 	srcu_read_unlock(&kvm->srcu, idx);
381 
382 	return young;
383 }
384 
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 				       struct mm_struct *mm,
387 				       unsigned long address)
388 {
389 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 	int young, idx;
391 
392 	idx = srcu_read_lock(&kvm->srcu);
393 	spin_lock(&kvm->mmu_lock);
394 	young = kvm_test_age_hva(kvm, address);
395 	spin_unlock(&kvm->mmu_lock);
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return young;
399 }
400 
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 				     struct mm_struct *mm)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 	int idx;
406 
407 	idx = srcu_read_lock(&kvm->srcu);
408 	kvm_arch_flush_shadow_all(kvm);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 }
411 
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
414 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
415 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
416 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
417 	.test_young		= kvm_mmu_notifier_test_young,
418 	.change_pte		= kvm_mmu_notifier_change_pte,
419 	.release		= kvm_mmu_notifier_release,
420 };
421 
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427 
428 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429 
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 	return 0;
433 }
434 
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436 
437 static void kvm_init_memslots_id(struct kvm *kvm)
438 {
439 	int i;
440 	struct kvm_memslots *slots = kvm->memslots;
441 
442 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
443 		slots->id_to_index[i] = slots->memslots[i].id = i;
444 }
445 
446 static struct kvm *kvm_create_vm(unsigned long type)
447 {
448 	int r, i;
449 	struct kvm *kvm = kvm_arch_alloc_vm();
450 
451 	if (!kvm)
452 		return ERR_PTR(-ENOMEM);
453 
454 	r = kvm_arch_init_vm(kvm, type);
455 	if (r)
456 		goto out_err_no_disable;
457 
458 	r = hardware_enable_all();
459 	if (r)
460 		goto out_err_no_disable;
461 
462 #ifdef CONFIG_HAVE_KVM_IRQFD
463 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
464 #endif
465 
466 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
467 
468 	r = -ENOMEM;
469 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
470 	if (!kvm->memslots)
471 		goto out_err_no_srcu;
472 
473 	/*
474 	 * Init kvm generation close to the maximum to easily test the
475 	 * code of handling generation number wrap-around.
476 	 */
477 	kvm->memslots->generation = -150;
478 
479 	kvm_init_memslots_id(kvm);
480 	if (init_srcu_struct(&kvm->srcu))
481 		goto out_err_no_srcu;
482 	if (init_srcu_struct(&kvm->irq_srcu))
483 		goto out_err_no_irq_srcu;
484 	for (i = 0; i < KVM_NR_BUSES; i++) {
485 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 					GFP_KERNEL);
487 		if (!kvm->buses[i])
488 			goto out_err;
489 	}
490 
491 	spin_lock_init(&kvm->mmu_lock);
492 	kvm->mm = current->mm;
493 	atomic_inc(&kvm->mm->mm_count);
494 	kvm_eventfd_init(kvm);
495 	mutex_init(&kvm->lock);
496 	mutex_init(&kvm->irq_lock);
497 	mutex_init(&kvm->slots_lock);
498 	atomic_set(&kvm->users_count, 1);
499 	INIT_LIST_HEAD(&kvm->devices);
500 
501 	r = kvm_init_mmu_notifier(kvm);
502 	if (r)
503 		goto out_err;
504 
505 	spin_lock(&kvm_lock);
506 	list_add(&kvm->vm_list, &vm_list);
507 	spin_unlock(&kvm_lock);
508 
509 	return kvm;
510 
511 out_err:
512 	cleanup_srcu_struct(&kvm->irq_srcu);
513 out_err_no_irq_srcu:
514 	cleanup_srcu_struct(&kvm->srcu);
515 out_err_no_srcu:
516 	hardware_disable_all();
517 out_err_no_disable:
518 	for (i = 0; i < KVM_NR_BUSES; i++)
519 		kfree(kvm->buses[i]);
520 	kfree(kvm->memslots);
521 	kvm_arch_free_vm(kvm);
522 	return ERR_PTR(r);
523 }
524 
525 /*
526  * Avoid using vmalloc for a small buffer.
527  * Should not be used when the size is statically known.
528  */
529 void *kvm_kvzalloc(unsigned long size)
530 {
531 	if (size > PAGE_SIZE)
532 		return vzalloc(size);
533 	else
534 		return kzalloc(size, GFP_KERNEL);
535 }
536 
537 void kvm_kvfree(const void *addr)
538 {
539 	if (is_vmalloc_addr(addr))
540 		vfree(addr);
541 	else
542 		kfree(addr);
543 }
544 
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 	if (!memslot->dirty_bitmap)
548 		return;
549 
550 	kvm_kvfree(memslot->dirty_bitmap);
551 	memslot->dirty_bitmap = NULL;
552 }
553 
554 /*
555  * Free any memory in @free but not in @dont.
556  */
557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
558 				  struct kvm_memory_slot *dont)
559 {
560 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 		kvm_destroy_dirty_bitmap(free);
562 
563 	kvm_arch_free_memslot(kvm, free, dont);
564 
565 	free->npages = 0;
566 }
567 
568 static void kvm_free_physmem(struct kvm *kvm)
569 {
570 	struct kvm_memslots *slots = kvm->memslots;
571 	struct kvm_memory_slot *memslot;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_physmem_slot(kvm, memslot, NULL);
575 
576 	kfree(kvm->memslots);
577 }
578 
579 static void kvm_destroy_devices(struct kvm *kvm)
580 {
581 	struct list_head *node, *tmp;
582 
583 	list_for_each_safe(node, tmp, &kvm->devices) {
584 		struct kvm_device *dev =
585 			list_entry(node, struct kvm_device, vm_node);
586 
587 		list_del(node);
588 		dev->ops->destroy(dev);
589 	}
590 }
591 
592 static void kvm_destroy_vm(struct kvm *kvm)
593 {
594 	int i;
595 	struct mm_struct *mm = kvm->mm;
596 
597 	kvm_arch_sync_events(kvm);
598 	spin_lock(&kvm_lock);
599 	list_del(&kvm->vm_list);
600 	spin_unlock(&kvm_lock);
601 	kvm_free_irq_routing(kvm);
602 	for (i = 0; i < KVM_NR_BUSES; i++)
603 		kvm_io_bus_destroy(kvm->buses[i]);
604 	kvm_coalesced_mmio_free(kvm);
605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
606 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
607 #else
608 	kvm_arch_flush_shadow_all(kvm);
609 #endif
610 	kvm_arch_destroy_vm(kvm);
611 	kvm_destroy_devices(kvm);
612 	kvm_free_physmem(kvm);
613 	cleanup_srcu_struct(&kvm->irq_srcu);
614 	cleanup_srcu_struct(&kvm->srcu);
615 	kvm_arch_free_vm(kvm);
616 	hardware_disable_all();
617 	mmdrop(mm);
618 }
619 
620 void kvm_get_kvm(struct kvm *kvm)
621 {
622 	atomic_inc(&kvm->users_count);
623 }
624 EXPORT_SYMBOL_GPL(kvm_get_kvm);
625 
626 void kvm_put_kvm(struct kvm *kvm)
627 {
628 	if (atomic_dec_and_test(&kvm->users_count))
629 		kvm_destroy_vm(kvm);
630 }
631 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632 
633 
634 static int kvm_vm_release(struct inode *inode, struct file *filp)
635 {
636 	struct kvm *kvm = filp->private_data;
637 
638 	kvm_irqfd_release(kvm);
639 
640 	kvm_put_kvm(kvm);
641 	return 0;
642 }
643 
644 /*
645  * Allocation size is twice as large as the actual dirty bitmap size.
646  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
647  */
648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
649 {
650 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
651 
652 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
653 	if (!memslot->dirty_bitmap)
654 		return -ENOMEM;
655 
656 	return 0;
657 }
658 
659 /*
660  * Insert memslot and re-sort memslots based on their GFN,
661  * so binary search could be used to lookup GFN.
662  * Sorting algorithm takes advantage of having initially
663  * sorted array and known changed memslot position.
664  */
665 static void update_memslots(struct kvm_memslots *slots,
666 			    struct kvm_memory_slot *new)
667 {
668 	int id = new->id;
669 	int i = slots->id_to_index[id];
670 	struct kvm_memory_slot *mslots = slots->memslots;
671 
672 	WARN_ON(mslots[i].id != id);
673 	if (!new->npages) {
674 		new->base_gfn = 0;
675 		if (mslots[i].npages)
676 			slots->used_slots--;
677 	} else {
678 		if (!mslots[i].npages)
679 			slots->used_slots++;
680 	}
681 
682 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
683 	       new->base_gfn <= mslots[i + 1].base_gfn) {
684 		if (!mslots[i + 1].npages)
685 			break;
686 		mslots[i] = mslots[i + 1];
687 		slots->id_to_index[mslots[i].id] = i;
688 		i++;
689 	}
690 	while (i > 0 &&
691 	       new->base_gfn > mslots[i - 1].base_gfn) {
692 		mslots[i] = mslots[i - 1];
693 		slots->id_to_index[mslots[i].id] = i;
694 		i--;
695 	}
696 
697 	mslots[i] = *new;
698 	slots->id_to_index[mslots[i].id] = i;
699 }
700 
701 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
702 {
703 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
704 
705 #ifdef __KVM_HAVE_READONLY_MEM
706 	valid_flags |= KVM_MEM_READONLY;
707 #endif
708 
709 	if (mem->flags & ~valid_flags)
710 		return -EINVAL;
711 
712 	return 0;
713 }
714 
715 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
716 		struct kvm_memslots *slots)
717 {
718 	struct kvm_memslots *old_memslots = kvm->memslots;
719 
720 	/*
721 	 * Set the low bit in the generation, which disables SPTE caching
722 	 * until the end of synchronize_srcu_expedited.
723 	 */
724 	WARN_ON(old_memslots->generation & 1);
725 	slots->generation = old_memslots->generation + 1;
726 
727 	rcu_assign_pointer(kvm->memslots, slots);
728 	synchronize_srcu_expedited(&kvm->srcu);
729 
730 	/*
731 	 * Increment the new memslot generation a second time. This prevents
732 	 * vm exits that race with memslot updates from caching a memslot
733 	 * generation that will (potentially) be valid forever.
734 	 */
735 	slots->generation++;
736 
737 	kvm_arch_memslots_updated(kvm);
738 
739 	return old_memslots;
740 }
741 
742 /*
743  * Allocate some memory and give it an address in the guest physical address
744  * space.
745  *
746  * Discontiguous memory is allowed, mostly for framebuffers.
747  *
748  * Must be called holding kvm->slots_lock for write.
749  */
750 int __kvm_set_memory_region(struct kvm *kvm,
751 			    struct kvm_userspace_memory_region *mem)
752 {
753 	int r;
754 	gfn_t base_gfn;
755 	unsigned long npages;
756 	struct kvm_memory_slot *slot;
757 	struct kvm_memory_slot old, new;
758 	struct kvm_memslots *slots = NULL, *old_memslots;
759 	enum kvm_mr_change change;
760 
761 	r = check_memory_region_flags(mem);
762 	if (r)
763 		goto out;
764 
765 	r = -EINVAL;
766 	/* General sanity checks */
767 	if (mem->memory_size & (PAGE_SIZE - 1))
768 		goto out;
769 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
770 		goto out;
771 	/* We can read the guest memory with __xxx_user() later on. */
772 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
773 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
774 	     !access_ok(VERIFY_WRITE,
775 			(void __user *)(unsigned long)mem->userspace_addr,
776 			mem->memory_size)))
777 		goto out;
778 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
779 		goto out;
780 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
781 		goto out;
782 
783 	slot = id_to_memslot(kvm->memslots, mem->slot);
784 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
785 	npages = mem->memory_size >> PAGE_SHIFT;
786 
787 	if (npages > KVM_MEM_MAX_NR_PAGES)
788 		goto out;
789 
790 	if (!npages)
791 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
792 
793 	new = old = *slot;
794 
795 	new.id = mem->slot;
796 	new.base_gfn = base_gfn;
797 	new.npages = npages;
798 	new.flags = mem->flags;
799 
800 	if (npages) {
801 		if (!old.npages)
802 			change = KVM_MR_CREATE;
803 		else { /* Modify an existing slot. */
804 			if ((mem->userspace_addr != old.userspace_addr) ||
805 			    (npages != old.npages) ||
806 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
807 				goto out;
808 
809 			if (base_gfn != old.base_gfn)
810 				change = KVM_MR_MOVE;
811 			else if (new.flags != old.flags)
812 				change = KVM_MR_FLAGS_ONLY;
813 			else { /* Nothing to change. */
814 				r = 0;
815 				goto out;
816 			}
817 		}
818 	} else if (old.npages) {
819 		change = KVM_MR_DELETE;
820 	} else /* Modify a non-existent slot: disallowed. */
821 		goto out;
822 
823 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
824 		/* Check for overlaps */
825 		r = -EEXIST;
826 		kvm_for_each_memslot(slot, kvm->memslots) {
827 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
828 			    (slot->id == mem->slot))
829 				continue;
830 			if (!((base_gfn + npages <= slot->base_gfn) ||
831 			      (base_gfn >= slot->base_gfn + slot->npages)))
832 				goto out;
833 		}
834 	}
835 
836 	/* Free page dirty bitmap if unneeded */
837 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
838 		new.dirty_bitmap = NULL;
839 
840 	r = -ENOMEM;
841 	if (change == KVM_MR_CREATE) {
842 		new.userspace_addr = mem->userspace_addr;
843 
844 		if (kvm_arch_create_memslot(kvm, &new, npages))
845 			goto out_free;
846 	}
847 
848 	/* Allocate page dirty bitmap if needed */
849 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
850 		if (kvm_create_dirty_bitmap(&new) < 0)
851 			goto out_free;
852 	}
853 
854 	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
855 			GFP_KERNEL);
856 	if (!slots)
857 		goto out_free;
858 
859 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
860 		slot = id_to_memslot(slots, mem->slot);
861 		slot->flags |= KVM_MEMSLOT_INVALID;
862 
863 		old_memslots = install_new_memslots(kvm, slots);
864 
865 		/* slot was deleted or moved, clear iommu mapping */
866 		kvm_iommu_unmap_pages(kvm, &old);
867 		/* From this point no new shadow pages pointing to a deleted,
868 		 * or moved, memslot will be created.
869 		 *
870 		 * validation of sp->gfn happens in:
871 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
872 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
873 		 */
874 		kvm_arch_flush_shadow_memslot(kvm, slot);
875 
876 		/*
877 		 * We can re-use the old_memslots from above, the only difference
878 		 * from the currently installed memslots is the invalid flag.  This
879 		 * will get overwritten by update_memslots anyway.
880 		 */
881 		slots = old_memslots;
882 	}
883 
884 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
885 	if (r)
886 		goto out_slots;
887 
888 	/* actual memory is freed via old in kvm_free_physmem_slot below */
889 	if (change == KVM_MR_DELETE) {
890 		new.dirty_bitmap = NULL;
891 		memset(&new.arch, 0, sizeof(new.arch));
892 	}
893 
894 	update_memslots(slots, &new);
895 	old_memslots = install_new_memslots(kvm, slots);
896 
897 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
898 
899 	kvm_free_physmem_slot(kvm, &old, &new);
900 	kfree(old_memslots);
901 
902 	/*
903 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
904 	 * un-mapped and re-mapped if their base changes.  Since base change
905 	 * unmapping is handled above with slot deletion, mapping alone is
906 	 * needed here.  Anything else the iommu might care about for existing
907 	 * slots (size changes, userspace addr changes and read-only flag
908 	 * changes) is disallowed above, so any other attribute changes getting
909 	 * here can be skipped.
910 	 */
911 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
912 		r = kvm_iommu_map_pages(kvm, &new);
913 		return r;
914 	}
915 
916 	return 0;
917 
918 out_slots:
919 	kfree(slots);
920 out_free:
921 	kvm_free_physmem_slot(kvm, &new, &old);
922 out:
923 	return r;
924 }
925 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
926 
927 int kvm_set_memory_region(struct kvm *kvm,
928 			  struct kvm_userspace_memory_region *mem)
929 {
930 	int r;
931 
932 	mutex_lock(&kvm->slots_lock);
933 	r = __kvm_set_memory_region(kvm, mem);
934 	mutex_unlock(&kvm->slots_lock);
935 	return r;
936 }
937 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
938 
939 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
940 					  struct kvm_userspace_memory_region *mem)
941 {
942 	if (mem->slot >= KVM_USER_MEM_SLOTS)
943 		return -EINVAL;
944 	return kvm_set_memory_region(kvm, mem);
945 }
946 
947 int kvm_get_dirty_log(struct kvm *kvm,
948 			struct kvm_dirty_log *log, int *is_dirty)
949 {
950 	struct kvm_memory_slot *memslot;
951 	int r, i;
952 	unsigned long n;
953 	unsigned long any = 0;
954 
955 	r = -EINVAL;
956 	if (log->slot >= KVM_USER_MEM_SLOTS)
957 		goto out;
958 
959 	memslot = id_to_memslot(kvm->memslots, log->slot);
960 	r = -ENOENT;
961 	if (!memslot->dirty_bitmap)
962 		goto out;
963 
964 	n = kvm_dirty_bitmap_bytes(memslot);
965 
966 	for (i = 0; !any && i < n/sizeof(long); ++i)
967 		any = memslot->dirty_bitmap[i];
968 
969 	r = -EFAULT;
970 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
971 		goto out;
972 
973 	if (any)
974 		*is_dirty = 1;
975 
976 	r = 0;
977 out:
978 	return r;
979 }
980 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
981 
982 bool kvm_largepages_enabled(void)
983 {
984 	return largepages_enabled;
985 }
986 
987 void kvm_disable_largepages(void)
988 {
989 	largepages_enabled = false;
990 }
991 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
992 
993 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
994 {
995 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
996 }
997 EXPORT_SYMBOL_GPL(gfn_to_memslot);
998 
999 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1000 {
1001 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1002 
1003 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1004 	      memslot->flags & KVM_MEMSLOT_INVALID)
1005 		return 0;
1006 
1007 	return 1;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1010 
1011 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1012 {
1013 	struct vm_area_struct *vma;
1014 	unsigned long addr, size;
1015 
1016 	size = PAGE_SIZE;
1017 
1018 	addr = gfn_to_hva(kvm, gfn);
1019 	if (kvm_is_error_hva(addr))
1020 		return PAGE_SIZE;
1021 
1022 	down_read(&current->mm->mmap_sem);
1023 	vma = find_vma(current->mm, addr);
1024 	if (!vma)
1025 		goto out;
1026 
1027 	size = vma_kernel_pagesize(vma);
1028 
1029 out:
1030 	up_read(&current->mm->mmap_sem);
1031 
1032 	return size;
1033 }
1034 
1035 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1036 {
1037 	return slot->flags & KVM_MEM_READONLY;
1038 }
1039 
1040 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1041 				       gfn_t *nr_pages, bool write)
1042 {
1043 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1044 		return KVM_HVA_ERR_BAD;
1045 
1046 	if (memslot_is_readonly(slot) && write)
1047 		return KVM_HVA_ERR_RO_BAD;
1048 
1049 	if (nr_pages)
1050 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1051 
1052 	return __gfn_to_hva_memslot(slot, gfn);
1053 }
1054 
1055 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1056 				     gfn_t *nr_pages)
1057 {
1058 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1059 }
1060 
1061 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1062 					gfn_t gfn)
1063 {
1064 	return gfn_to_hva_many(slot, gfn, NULL);
1065 }
1066 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1067 
1068 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1069 {
1070 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1071 }
1072 EXPORT_SYMBOL_GPL(gfn_to_hva);
1073 
1074 /*
1075  * If writable is set to false, the hva returned by this function is only
1076  * allowed to be read.
1077  */
1078 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1079 				      gfn_t gfn, bool *writable)
1080 {
1081 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1082 
1083 	if (!kvm_is_error_hva(hva) && writable)
1084 		*writable = !memslot_is_readonly(slot);
1085 
1086 	return hva;
1087 }
1088 
1089 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1090 {
1091 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1092 
1093 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1094 }
1095 
1096 static int kvm_read_hva(void *data, void __user *hva, int len)
1097 {
1098 	return __copy_from_user(data, hva, len);
1099 }
1100 
1101 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1102 {
1103 	return __copy_from_user_inatomic(data, hva, len);
1104 }
1105 
1106 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1107 	unsigned long start, int write, struct page **page)
1108 {
1109 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1110 
1111 	if (write)
1112 		flags |= FOLL_WRITE;
1113 
1114 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1115 }
1116 
1117 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1118 			 unsigned long addr, bool write_fault,
1119 			 struct page **pagep)
1120 {
1121 	int npages;
1122 	int locked = 1;
1123 	int flags = FOLL_TOUCH | FOLL_HWPOISON |
1124 		    (pagep ? FOLL_GET : 0) |
1125 		    (write_fault ? FOLL_WRITE : 0);
1126 
1127 	/*
1128 	 * If retrying the fault, we get here *not* having allowed the filemap
1129 	 * to wait on the page lock. We should now allow waiting on the IO with
1130 	 * the mmap semaphore released.
1131 	 */
1132 	down_read(&mm->mmap_sem);
1133 	npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1134 				  &locked);
1135 	if (!locked) {
1136 		VM_BUG_ON(npages);
1137 
1138 		if (!pagep)
1139 			return 0;
1140 
1141 		/*
1142 		 * The previous call has now waited on the IO. Now we can
1143 		 * retry and complete. Pass TRIED to ensure we do not re
1144 		 * schedule async IO (see e.g. filemap_fault).
1145 		 */
1146 		down_read(&mm->mmap_sem);
1147 		npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1148 					  pagep, NULL, NULL);
1149 	}
1150 	up_read(&mm->mmap_sem);
1151 	return npages;
1152 }
1153 
1154 static inline int check_user_page_hwpoison(unsigned long addr)
1155 {
1156 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1157 
1158 	rc = __get_user_pages(current, current->mm, addr, 1,
1159 			      flags, NULL, NULL, NULL);
1160 	return rc == -EHWPOISON;
1161 }
1162 
1163 /*
1164  * The atomic path to get the writable pfn which will be stored in @pfn,
1165  * true indicates success, otherwise false is returned.
1166  */
1167 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1168 			    bool write_fault, bool *writable, pfn_t *pfn)
1169 {
1170 	struct page *page[1];
1171 	int npages;
1172 
1173 	if (!(async || atomic))
1174 		return false;
1175 
1176 	/*
1177 	 * Fast pin a writable pfn only if it is a write fault request
1178 	 * or the caller allows to map a writable pfn for a read fault
1179 	 * request.
1180 	 */
1181 	if (!(write_fault || writable))
1182 		return false;
1183 
1184 	npages = __get_user_pages_fast(addr, 1, 1, page);
1185 	if (npages == 1) {
1186 		*pfn = page_to_pfn(page[0]);
1187 
1188 		if (writable)
1189 			*writable = true;
1190 		return true;
1191 	}
1192 
1193 	return false;
1194 }
1195 
1196 /*
1197  * The slow path to get the pfn of the specified host virtual address,
1198  * 1 indicates success, -errno is returned if error is detected.
1199  */
1200 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1201 			   bool *writable, pfn_t *pfn)
1202 {
1203 	struct page *page[1];
1204 	int npages = 0;
1205 
1206 	might_sleep();
1207 
1208 	if (writable)
1209 		*writable = write_fault;
1210 
1211 	if (async) {
1212 		down_read(&current->mm->mmap_sem);
1213 		npages = get_user_page_nowait(current, current->mm,
1214 					      addr, write_fault, page);
1215 		up_read(&current->mm->mmap_sem);
1216 	} else {
1217 		/*
1218 		 * By now we have tried gup_fast, and possibly async_pf, and we
1219 		 * are certainly not atomic. Time to retry the gup, allowing
1220 		 * mmap semaphore to be relinquished in the case of IO.
1221 		 */
1222 		npages = kvm_get_user_page_io(current, current->mm, addr,
1223 					      write_fault, page);
1224 	}
1225 	if (npages != 1)
1226 		return npages;
1227 
1228 	/* map read fault as writable if possible */
1229 	if (unlikely(!write_fault) && writable) {
1230 		struct page *wpage[1];
1231 
1232 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1233 		if (npages == 1) {
1234 			*writable = true;
1235 			put_page(page[0]);
1236 			page[0] = wpage[0];
1237 		}
1238 
1239 		npages = 1;
1240 	}
1241 	*pfn = page_to_pfn(page[0]);
1242 	return npages;
1243 }
1244 
1245 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1246 {
1247 	if (unlikely(!(vma->vm_flags & VM_READ)))
1248 		return false;
1249 
1250 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1251 		return false;
1252 
1253 	return true;
1254 }
1255 
1256 /*
1257  * Pin guest page in memory and return its pfn.
1258  * @addr: host virtual address which maps memory to the guest
1259  * @atomic: whether this function can sleep
1260  * @async: whether this function need to wait IO complete if the
1261  *         host page is not in the memory
1262  * @write_fault: whether we should get a writable host page
1263  * @writable: whether it allows to map a writable host page for !@write_fault
1264  *
1265  * The function will map a writable host page for these two cases:
1266  * 1): @write_fault = true
1267  * 2): @write_fault = false && @writable, @writable will tell the caller
1268  *     whether the mapping is writable.
1269  */
1270 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1271 			bool write_fault, bool *writable)
1272 {
1273 	struct vm_area_struct *vma;
1274 	pfn_t pfn = 0;
1275 	int npages;
1276 
1277 	/* we can do it either atomically or asynchronously, not both */
1278 	BUG_ON(atomic && async);
1279 
1280 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1281 		return pfn;
1282 
1283 	if (atomic)
1284 		return KVM_PFN_ERR_FAULT;
1285 
1286 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1287 	if (npages == 1)
1288 		return pfn;
1289 
1290 	down_read(&current->mm->mmap_sem);
1291 	if (npages == -EHWPOISON ||
1292 	      (!async && check_user_page_hwpoison(addr))) {
1293 		pfn = KVM_PFN_ERR_HWPOISON;
1294 		goto exit;
1295 	}
1296 
1297 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1298 
1299 	if (vma == NULL)
1300 		pfn = KVM_PFN_ERR_FAULT;
1301 	else if ((vma->vm_flags & VM_PFNMAP)) {
1302 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1303 			vma->vm_pgoff;
1304 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1305 	} else {
1306 		if (async && vma_is_valid(vma, write_fault))
1307 			*async = true;
1308 		pfn = KVM_PFN_ERR_FAULT;
1309 	}
1310 exit:
1311 	up_read(&current->mm->mmap_sem);
1312 	return pfn;
1313 }
1314 
1315 static pfn_t
1316 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1317 		     bool *async, bool write_fault, bool *writable)
1318 {
1319 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1320 
1321 	if (addr == KVM_HVA_ERR_RO_BAD)
1322 		return KVM_PFN_ERR_RO_FAULT;
1323 
1324 	if (kvm_is_error_hva(addr))
1325 		return KVM_PFN_NOSLOT;
1326 
1327 	/* Do not map writable pfn in the readonly memslot. */
1328 	if (writable && memslot_is_readonly(slot)) {
1329 		*writable = false;
1330 		writable = NULL;
1331 	}
1332 
1333 	return hva_to_pfn(addr, atomic, async, write_fault,
1334 			  writable);
1335 }
1336 
1337 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1338 			  bool write_fault, bool *writable)
1339 {
1340 	struct kvm_memory_slot *slot;
1341 
1342 	if (async)
1343 		*async = false;
1344 
1345 	slot = gfn_to_memslot(kvm, gfn);
1346 
1347 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1348 				    writable);
1349 }
1350 
1351 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1352 {
1353 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1354 }
1355 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1356 
1357 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1358 		       bool write_fault, bool *writable)
1359 {
1360 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1361 }
1362 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1363 
1364 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1365 {
1366 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1367 }
1368 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1369 
1370 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1371 		      bool *writable)
1372 {
1373 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1374 }
1375 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1376 
1377 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1378 {
1379 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1380 }
1381 
1382 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1383 {
1384 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1385 }
1386 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1387 
1388 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1389 								  int nr_pages)
1390 {
1391 	unsigned long addr;
1392 	gfn_t entry;
1393 
1394 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1395 	if (kvm_is_error_hva(addr))
1396 		return -1;
1397 
1398 	if (entry < nr_pages)
1399 		return 0;
1400 
1401 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1402 }
1403 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1404 
1405 static struct page *kvm_pfn_to_page(pfn_t pfn)
1406 {
1407 	if (is_error_noslot_pfn(pfn))
1408 		return KVM_ERR_PTR_BAD_PAGE;
1409 
1410 	if (kvm_is_reserved_pfn(pfn)) {
1411 		WARN_ON(1);
1412 		return KVM_ERR_PTR_BAD_PAGE;
1413 	}
1414 
1415 	return pfn_to_page(pfn);
1416 }
1417 
1418 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1419 {
1420 	pfn_t pfn;
1421 
1422 	pfn = gfn_to_pfn(kvm, gfn);
1423 
1424 	return kvm_pfn_to_page(pfn);
1425 }
1426 
1427 EXPORT_SYMBOL_GPL(gfn_to_page);
1428 
1429 void kvm_release_page_clean(struct page *page)
1430 {
1431 	WARN_ON(is_error_page(page));
1432 
1433 	kvm_release_pfn_clean(page_to_pfn(page));
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1436 
1437 void kvm_release_pfn_clean(pfn_t pfn)
1438 {
1439 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1440 		put_page(pfn_to_page(pfn));
1441 }
1442 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1443 
1444 void kvm_release_page_dirty(struct page *page)
1445 {
1446 	WARN_ON(is_error_page(page));
1447 
1448 	kvm_release_pfn_dirty(page_to_pfn(page));
1449 }
1450 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1451 
1452 static void kvm_release_pfn_dirty(pfn_t pfn)
1453 {
1454 	kvm_set_pfn_dirty(pfn);
1455 	kvm_release_pfn_clean(pfn);
1456 }
1457 
1458 void kvm_set_pfn_dirty(pfn_t pfn)
1459 {
1460 	if (!kvm_is_reserved_pfn(pfn)) {
1461 		struct page *page = pfn_to_page(pfn);
1462 		if (!PageReserved(page))
1463 			SetPageDirty(page);
1464 	}
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1467 
1468 void kvm_set_pfn_accessed(pfn_t pfn)
1469 {
1470 	if (!kvm_is_reserved_pfn(pfn))
1471 		mark_page_accessed(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1474 
1475 void kvm_get_pfn(pfn_t pfn)
1476 {
1477 	if (!kvm_is_reserved_pfn(pfn))
1478 		get_page(pfn_to_page(pfn));
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1481 
1482 static int next_segment(unsigned long len, int offset)
1483 {
1484 	if (len > PAGE_SIZE - offset)
1485 		return PAGE_SIZE - offset;
1486 	else
1487 		return len;
1488 }
1489 
1490 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1491 			int len)
1492 {
1493 	int r;
1494 	unsigned long addr;
1495 
1496 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1497 	if (kvm_is_error_hva(addr))
1498 		return -EFAULT;
1499 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1500 	if (r)
1501 		return -EFAULT;
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1505 
1506 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1507 {
1508 	gfn_t gfn = gpa >> PAGE_SHIFT;
1509 	int seg;
1510 	int offset = offset_in_page(gpa);
1511 	int ret;
1512 
1513 	while ((seg = next_segment(len, offset)) != 0) {
1514 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1515 		if (ret < 0)
1516 			return ret;
1517 		offset = 0;
1518 		len -= seg;
1519 		data += seg;
1520 		++gfn;
1521 	}
1522 	return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_read_guest);
1525 
1526 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1527 			  unsigned long len)
1528 {
1529 	int r;
1530 	unsigned long addr;
1531 	gfn_t gfn = gpa >> PAGE_SHIFT;
1532 	int offset = offset_in_page(gpa);
1533 
1534 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1535 	if (kvm_is_error_hva(addr))
1536 		return -EFAULT;
1537 	pagefault_disable();
1538 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1539 	pagefault_enable();
1540 	if (r)
1541 		return -EFAULT;
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL(kvm_read_guest_atomic);
1545 
1546 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1547 			 int offset, int len)
1548 {
1549 	int r;
1550 	unsigned long addr;
1551 
1552 	addr = gfn_to_hva(kvm, gfn);
1553 	if (kvm_is_error_hva(addr))
1554 		return -EFAULT;
1555 	r = __copy_to_user((void __user *)addr + offset, data, len);
1556 	if (r)
1557 		return -EFAULT;
1558 	mark_page_dirty(kvm, gfn);
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1562 
1563 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1564 		    unsigned long len)
1565 {
1566 	gfn_t gfn = gpa >> PAGE_SHIFT;
1567 	int seg;
1568 	int offset = offset_in_page(gpa);
1569 	int ret;
1570 
1571 	while ((seg = next_segment(len, offset)) != 0) {
1572 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1573 		if (ret < 0)
1574 			return ret;
1575 		offset = 0;
1576 		len -= seg;
1577 		data += seg;
1578 		++gfn;
1579 	}
1580 	return 0;
1581 }
1582 
1583 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1584 			      gpa_t gpa, unsigned long len)
1585 {
1586 	struct kvm_memslots *slots = kvm_memslots(kvm);
1587 	int offset = offset_in_page(gpa);
1588 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1589 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1590 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1591 	gfn_t nr_pages_avail;
1592 
1593 	ghc->gpa = gpa;
1594 	ghc->generation = slots->generation;
1595 	ghc->len = len;
1596 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1597 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1598 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1599 		ghc->hva += offset;
1600 	} else {
1601 		/*
1602 		 * If the requested region crosses two memslots, we still
1603 		 * verify that the entire region is valid here.
1604 		 */
1605 		while (start_gfn <= end_gfn) {
1606 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1607 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1608 						   &nr_pages_avail);
1609 			if (kvm_is_error_hva(ghc->hva))
1610 				return -EFAULT;
1611 			start_gfn += nr_pages_avail;
1612 		}
1613 		/* Use the slow path for cross page reads and writes. */
1614 		ghc->memslot = NULL;
1615 	}
1616 	return 0;
1617 }
1618 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1619 
1620 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1621 			   void *data, unsigned long len)
1622 {
1623 	struct kvm_memslots *slots = kvm_memslots(kvm);
1624 	int r;
1625 
1626 	BUG_ON(len > ghc->len);
1627 
1628 	if (slots->generation != ghc->generation)
1629 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1630 
1631 	if (unlikely(!ghc->memslot))
1632 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1633 
1634 	if (kvm_is_error_hva(ghc->hva))
1635 		return -EFAULT;
1636 
1637 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1638 	if (r)
1639 		return -EFAULT;
1640 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1641 
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1645 
1646 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1647 			   void *data, unsigned long len)
1648 {
1649 	struct kvm_memslots *slots = kvm_memslots(kvm);
1650 	int r;
1651 
1652 	BUG_ON(len > ghc->len);
1653 
1654 	if (slots->generation != ghc->generation)
1655 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1656 
1657 	if (unlikely(!ghc->memslot))
1658 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1659 
1660 	if (kvm_is_error_hva(ghc->hva))
1661 		return -EFAULT;
1662 
1663 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1664 	if (r)
1665 		return -EFAULT;
1666 
1667 	return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1670 
1671 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1672 {
1673 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1674 
1675 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1678 
1679 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1680 {
1681 	gfn_t gfn = gpa >> PAGE_SHIFT;
1682 	int seg;
1683 	int offset = offset_in_page(gpa);
1684 	int ret;
1685 
1686         while ((seg = next_segment(len, offset)) != 0) {
1687 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1688 		if (ret < 0)
1689 			return ret;
1690 		offset = 0;
1691 		len -= seg;
1692 		++gfn;
1693 	}
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1697 
1698 static void mark_page_dirty_in_slot(struct kvm *kvm,
1699 				    struct kvm_memory_slot *memslot,
1700 				    gfn_t gfn)
1701 {
1702 	if (memslot && memslot->dirty_bitmap) {
1703 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1704 
1705 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1706 	}
1707 }
1708 
1709 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1710 {
1711 	struct kvm_memory_slot *memslot;
1712 
1713 	memslot = gfn_to_memslot(kvm, gfn);
1714 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1715 }
1716 EXPORT_SYMBOL_GPL(mark_page_dirty);
1717 
1718 /*
1719  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1720  */
1721 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1722 {
1723 	DEFINE_WAIT(wait);
1724 
1725 	for (;;) {
1726 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1727 
1728 		if (kvm_arch_vcpu_runnable(vcpu)) {
1729 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1730 			break;
1731 		}
1732 		if (kvm_cpu_has_pending_timer(vcpu))
1733 			break;
1734 		if (signal_pending(current))
1735 			break;
1736 
1737 		schedule();
1738 	}
1739 
1740 	finish_wait(&vcpu->wq, &wait);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1743 
1744 #ifndef CONFIG_S390
1745 /*
1746  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1747  */
1748 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1749 {
1750 	int me;
1751 	int cpu = vcpu->cpu;
1752 	wait_queue_head_t *wqp;
1753 
1754 	wqp = kvm_arch_vcpu_wq(vcpu);
1755 	if (waitqueue_active(wqp)) {
1756 		wake_up_interruptible(wqp);
1757 		++vcpu->stat.halt_wakeup;
1758 	}
1759 
1760 	me = get_cpu();
1761 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1762 		if (kvm_arch_vcpu_should_kick(vcpu))
1763 			smp_send_reschedule(cpu);
1764 	put_cpu();
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1767 #endif /* !CONFIG_S390 */
1768 
1769 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1770 {
1771 	struct pid *pid;
1772 	struct task_struct *task = NULL;
1773 	int ret = 0;
1774 
1775 	rcu_read_lock();
1776 	pid = rcu_dereference(target->pid);
1777 	if (pid)
1778 		task = get_pid_task(pid, PIDTYPE_PID);
1779 	rcu_read_unlock();
1780 	if (!task)
1781 		return ret;
1782 	ret = yield_to(task, 1);
1783 	put_task_struct(task);
1784 
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1788 
1789 /*
1790  * Helper that checks whether a VCPU is eligible for directed yield.
1791  * Most eligible candidate to yield is decided by following heuristics:
1792  *
1793  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1794  *  (preempted lock holder), indicated by @in_spin_loop.
1795  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1796  *
1797  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1798  *  chance last time (mostly it has become eligible now since we have probably
1799  *  yielded to lockholder in last iteration. This is done by toggling
1800  *  @dy_eligible each time a VCPU checked for eligibility.)
1801  *
1802  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1803  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1804  *  burning. Giving priority for a potential lock-holder increases lock
1805  *  progress.
1806  *
1807  *  Since algorithm is based on heuristics, accessing another VCPU data without
1808  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1809  *  and continue with next VCPU and so on.
1810  */
1811 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1812 {
1813 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1814 	bool eligible;
1815 
1816 	eligible = !vcpu->spin_loop.in_spin_loop ||
1817 		    vcpu->spin_loop.dy_eligible;
1818 
1819 	if (vcpu->spin_loop.in_spin_loop)
1820 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1821 
1822 	return eligible;
1823 #else
1824 	return true;
1825 #endif
1826 }
1827 
1828 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1829 {
1830 	struct kvm *kvm = me->kvm;
1831 	struct kvm_vcpu *vcpu;
1832 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1833 	int yielded = 0;
1834 	int try = 3;
1835 	int pass;
1836 	int i;
1837 
1838 	kvm_vcpu_set_in_spin_loop(me, true);
1839 	/*
1840 	 * We boost the priority of a VCPU that is runnable but not
1841 	 * currently running, because it got preempted by something
1842 	 * else and called schedule in __vcpu_run.  Hopefully that
1843 	 * VCPU is holding the lock that we need and will release it.
1844 	 * We approximate round-robin by starting at the last boosted VCPU.
1845 	 */
1846 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1847 		kvm_for_each_vcpu(i, vcpu, kvm) {
1848 			if (!pass && i <= last_boosted_vcpu) {
1849 				i = last_boosted_vcpu;
1850 				continue;
1851 			} else if (pass && i > last_boosted_vcpu)
1852 				break;
1853 			if (!ACCESS_ONCE(vcpu->preempted))
1854 				continue;
1855 			if (vcpu == me)
1856 				continue;
1857 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1858 				continue;
1859 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1860 				continue;
1861 
1862 			yielded = kvm_vcpu_yield_to(vcpu);
1863 			if (yielded > 0) {
1864 				kvm->last_boosted_vcpu = i;
1865 				break;
1866 			} else if (yielded < 0) {
1867 				try--;
1868 				if (!try)
1869 					break;
1870 			}
1871 		}
1872 	}
1873 	kvm_vcpu_set_in_spin_loop(me, false);
1874 
1875 	/* Ensure vcpu is not eligible during next spinloop */
1876 	kvm_vcpu_set_dy_eligible(me, false);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1879 
1880 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1881 {
1882 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1883 	struct page *page;
1884 
1885 	if (vmf->pgoff == 0)
1886 		page = virt_to_page(vcpu->run);
1887 #ifdef CONFIG_X86
1888 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1889 		page = virt_to_page(vcpu->arch.pio_data);
1890 #endif
1891 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1892 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1893 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1894 #endif
1895 	else
1896 		return kvm_arch_vcpu_fault(vcpu, vmf);
1897 	get_page(page);
1898 	vmf->page = page;
1899 	return 0;
1900 }
1901 
1902 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1903 	.fault = kvm_vcpu_fault,
1904 };
1905 
1906 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1907 {
1908 	vma->vm_ops = &kvm_vcpu_vm_ops;
1909 	return 0;
1910 }
1911 
1912 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1913 {
1914 	struct kvm_vcpu *vcpu = filp->private_data;
1915 
1916 	kvm_put_kvm(vcpu->kvm);
1917 	return 0;
1918 }
1919 
1920 static struct file_operations kvm_vcpu_fops = {
1921 	.release        = kvm_vcpu_release,
1922 	.unlocked_ioctl = kvm_vcpu_ioctl,
1923 #ifdef CONFIG_COMPAT
1924 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1925 #endif
1926 	.mmap           = kvm_vcpu_mmap,
1927 	.llseek		= noop_llseek,
1928 };
1929 
1930 /*
1931  * Allocates an inode for the vcpu.
1932  */
1933 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1934 {
1935 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1936 }
1937 
1938 /*
1939  * Creates some virtual cpus.  Good luck creating more than one.
1940  */
1941 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1942 {
1943 	int r;
1944 	struct kvm_vcpu *vcpu, *v;
1945 
1946 	if (id >= KVM_MAX_VCPUS)
1947 		return -EINVAL;
1948 
1949 	vcpu = kvm_arch_vcpu_create(kvm, id);
1950 	if (IS_ERR(vcpu))
1951 		return PTR_ERR(vcpu);
1952 
1953 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1954 
1955 	r = kvm_arch_vcpu_setup(vcpu);
1956 	if (r)
1957 		goto vcpu_destroy;
1958 
1959 	mutex_lock(&kvm->lock);
1960 	if (!kvm_vcpu_compatible(vcpu)) {
1961 		r = -EINVAL;
1962 		goto unlock_vcpu_destroy;
1963 	}
1964 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1965 		r = -EINVAL;
1966 		goto unlock_vcpu_destroy;
1967 	}
1968 
1969 	kvm_for_each_vcpu(r, v, kvm)
1970 		if (v->vcpu_id == id) {
1971 			r = -EEXIST;
1972 			goto unlock_vcpu_destroy;
1973 		}
1974 
1975 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1976 
1977 	/* Now it's all set up, let userspace reach it */
1978 	kvm_get_kvm(kvm);
1979 	r = create_vcpu_fd(vcpu);
1980 	if (r < 0) {
1981 		kvm_put_kvm(kvm);
1982 		goto unlock_vcpu_destroy;
1983 	}
1984 
1985 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1986 	smp_wmb();
1987 	atomic_inc(&kvm->online_vcpus);
1988 
1989 	mutex_unlock(&kvm->lock);
1990 	kvm_arch_vcpu_postcreate(vcpu);
1991 	return r;
1992 
1993 unlock_vcpu_destroy:
1994 	mutex_unlock(&kvm->lock);
1995 vcpu_destroy:
1996 	kvm_arch_vcpu_destroy(vcpu);
1997 	return r;
1998 }
1999 
2000 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2001 {
2002 	if (sigset) {
2003 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2004 		vcpu->sigset_active = 1;
2005 		vcpu->sigset = *sigset;
2006 	} else
2007 		vcpu->sigset_active = 0;
2008 	return 0;
2009 }
2010 
2011 static long kvm_vcpu_ioctl(struct file *filp,
2012 			   unsigned int ioctl, unsigned long arg)
2013 {
2014 	struct kvm_vcpu *vcpu = filp->private_data;
2015 	void __user *argp = (void __user *)arg;
2016 	int r;
2017 	struct kvm_fpu *fpu = NULL;
2018 	struct kvm_sregs *kvm_sregs = NULL;
2019 
2020 	if (vcpu->kvm->mm != current->mm)
2021 		return -EIO;
2022 
2023 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2024 		return -EINVAL;
2025 
2026 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2027 	/*
2028 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2029 	 * so vcpu_load() would break it.
2030 	 */
2031 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2032 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2033 #endif
2034 
2035 
2036 	r = vcpu_load(vcpu);
2037 	if (r)
2038 		return r;
2039 	switch (ioctl) {
2040 	case KVM_RUN:
2041 		r = -EINVAL;
2042 		if (arg)
2043 			goto out;
2044 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2045 			/* The thread running this VCPU changed. */
2046 			struct pid *oldpid = vcpu->pid;
2047 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2048 			rcu_assign_pointer(vcpu->pid, newpid);
2049 			if (oldpid)
2050 				synchronize_rcu();
2051 			put_pid(oldpid);
2052 		}
2053 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2054 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2055 		break;
2056 	case KVM_GET_REGS: {
2057 		struct kvm_regs *kvm_regs;
2058 
2059 		r = -ENOMEM;
2060 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2061 		if (!kvm_regs)
2062 			goto out;
2063 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2064 		if (r)
2065 			goto out_free1;
2066 		r = -EFAULT;
2067 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2068 			goto out_free1;
2069 		r = 0;
2070 out_free1:
2071 		kfree(kvm_regs);
2072 		break;
2073 	}
2074 	case KVM_SET_REGS: {
2075 		struct kvm_regs *kvm_regs;
2076 
2077 		r = -ENOMEM;
2078 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2079 		if (IS_ERR(kvm_regs)) {
2080 			r = PTR_ERR(kvm_regs);
2081 			goto out;
2082 		}
2083 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2084 		kfree(kvm_regs);
2085 		break;
2086 	}
2087 	case KVM_GET_SREGS: {
2088 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2089 		r = -ENOMEM;
2090 		if (!kvm_sregs)
2091 			goto out;
2092 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2093 		if (r)
2094 			goto out;
2095 		r = -EFAULT;
2096 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2097 			goto out;
2098 		r = 0;
2099 		break;
2100 	}
2101 	case KVM_SET_SREGS: {
2102 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2103 		if (IS_ERR(kvm_sregs)) {
2104 			r = PTR_ERR(kvm_sregs);
2105 			kvm_sregs = NULL;
2106 			goto out;
2107 		}
2108 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2109 		break;
2110 	}
2111 	case KVM_GET_MP_STATE: {
2112 		struct kvm_mp_state mp_state;
2113 
2114 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2115 		if (r)
2116 			goto out;
2117 		r = -EFAULT;
2118 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2119 			goto out;
2120 		r = 0;
2121 		break;
2122 	}
2123 	case KVM_SET_MP_STATE: {
2124 		struct kvm_mp_state mp_state;
2125 
2126 		r = -EFAULT;
2127 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2128 			goto out;
2129 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2130 		break;
2131 	}
2132 	case KVM_TRANSLATE: {
2133 		struct kvm_translation tr;
2134 
2135 		r = -EFAULT;
2136 		if (copy_from_user(&tr, argp, sizeof tr))
2137 			goto out;
2138 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2139 		if (r)
2140 			goto out;
2141 		r = -EFAULT;
2142 		if (copy_to_user(argp, &tr, sizeof tr))
2143 			goto out;
2144 		r = 0;
2145 		break;
2146 	}
2147 	case KVM_SET_GUEST_DEBUG: {
2148 		struct kvm_guest_debug dbg;
2149 
2150 		r = -EFAULT;
2151 		if (copy_from_user(&dbg, argp, sizeof dbg))
2152 			goto out;
2153 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2154 		break;
2155 	}
2156 	case KVM_SET_SIGNAL_MASK: {
2157 		struct kvm_signal_mask __user *sigmask_arg = argp;
2158 		struct kvm_signal_mask kvm_sigmask;
2159 		sigset_t sigset, *p;
2160 
2161 		p = NULL;
2162 		if (argp) {
2163 			r = -EFAULT;
2164 			if (copy_from_user(&kvm_sigmask, argp,
2165 					   sizeof kvm_sigmask))
2166 				goto out;
2167 			r = -EINVAL;
2168 			if (kvm_sigmask.len != sizeof sigset)
2169 				goto out;
2170 			r = -EFAULT;
2171 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2172 					   sizeof sigset))
2173 				goto out;
2174 			p = &sigset;
2175 		}
2176 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2177 		break;
2178 	}
2179 	case KVM_GET_FPU: {
2180 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2181 		r = -ENOMEM;
2182 		if (!fpu)
2183 			goto out;
2184 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2185 		if (r)
2186 			goto out;
2187 		r = -EFAULT;
2188 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2189 			goto out;
2190 		r = 0;
2191 		break;
2192 	}
2193 	case KVM_SET_FPU: {
2194 		fpu = memdup_user(argp, sizeof(*fpu));
2195 		if (IS_ERR(fpu)) {
2196 			r = PTR_ERR(fpu);
2197 			fpu = NULL;
2198 			goto out;
2199 		}
2200 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2201 		break;
2202 	}
2203 	default:
2204 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2205 	}
2206 out:
2207 	vcpu_put(vcpu);
2208 	kfree(fpu);
2209 	kfree(kvm_sregs);
2210 	return r;
2211 }
2212 
2213 #ifdef CONFIG_COMPAT
2214 static long kvm_vcpu_compat_ioctl(struct file *filp,
2215 				  unsigned int ioctl, unsigned long arg)
2216 {
2217 	struct kvm_vcpu *vcpu = filp->private_data;
2218 	void __user *argp = compat_ptr(arg);
2219 	int r;
2220 
2221 	if (vcpu->kvm->mm != current->mm)
2222 		return -EIO;
2223 
2224 	switch (ioctl) {
2225 	case KVM_SET_SIGNAL_MASK: {
2226 		struct kvm_signal_mask __user *sigmask_arg = argp;
2227 		struct kvm_signal_mask kvm_sigmask;
2228 		compat_sigset_t csigset;
2229 		sigset_t sigset;
2230 
2231 		if (argp) {
2232 			r = -EFAULT;
2233 			if (copy_from_user(&kvm_sigmask, argp,
2234 					   sizeof kvm_sigmask))
2235 				goto out;
2236 			r = -EINVAL;
2237 			if (kvm_sigmask.len != sizeof csigset)
2238 				goto out;
2239 			r = -EFAULT;
2240 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2241 					   sizeof csigset))
2242 				goto out;
2243 			sigset_from_compat(&sigset, &csigset);
2244 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2245 		} else
2246 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2247 		break;
2248 	}
2249 	default:
2250 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2251 	}
2252 
2253 out:
2254 	return r;
2255 }
2256 #endif
2257 
2258 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2259 				 int (*accessor)(struct kvm_device *dev,
2260 						 struct kvm_device_attr *attr),
2261 				 unsigned long arg)
2262 {
2263 	struct kvm_device_attr attr;
2264 
2265 	if (!accessor)
2266 		return -EPERM;
2267 
2268 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2269 		return -EFAULT;
2270 
2271 	return accessor(dev, &attr);
2272 }
2273 
2274 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2275 			     unsigned long arg)
2276 {
2277 	struct kvm_device *dev = filp->private_data;
2278 
2279 	switch (ioctl) {
2280 	case KVM_SET_DEVICE_ATTR:
2281 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2282 	case KVM_GET_DEVICE_ATTR:
2283 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2284 	case KVM_HAS_DEVICE_ATTR:
2285 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2286 	default:
2287 		if (dev->ops->ioctl)
2288 			return dev->ops->ioctl(dev, ioctl, arg);
2289 
2290 		return -ENOTTY;
2291 	}
2292 }
2293 
2294 static int kvm_device_release(struct inode *inode, struct file *filp)
2295 {
2296 	struct kvm_device *dev = filp->private_data;
2297 	struct kvm *kvm = dev->kvm;
2298 
2299 	kvm_put_kvm(kvm);
2300 	return 0;
2301 }
2302 
2303 static const struct file_operations kvm_device_fops = {
2304 	.unlocked_ioctl = kvm_device_ioctl,
2305 #ifdef CONFIG_COMPAT
2306 	.compat_ioctl = kvm_device_ioctl,
2307 #endif
2308 	.release = kvm_device_release,
2309 };
2310 
2311 struct kvm_device *kvm_device_from_filp(struct file *filp)
2312 {
2313 	if (filp->f_op != &kvm_device_fops)
2314 		return NULL;
2315 
2316 	return filp->private_data;
2317 }
2318 
2319 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2320 #ifdef CONFIG_KVM_MPIC
2321 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2322 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2323 #endif
2324 
2325 #ifdef CONFIG_KVM_XICS
2326 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2327 #endif
2328 };
2329 
2330 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2331 {
2332 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2333 		return -ENOSPC;
2334 
2335 	if (kvm_device_ops_table[type] != NULL)
2336 		return -EEXIST;
2337 
2338 	kvm_device_ops_table[type] = ops;
2339 	return 0;
2340 }
2341 
2342 void kvm_unregister_device_ops(u32 type)
2343 {
2344 	if (kvm_device_ops_table[type] != NULL)
2345 		kvm_device_ops_table[type] = NULL;
2346 }
2347 
2348 static int kvm_ioctl_create_device(struct kvm *kvm,
2349 				   struct kvm_create_device *cd)
2350 {
2351 	struct kvm_device_ops *ops = NULL;
2352 	struct kvm_device *dev;
2353 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2354 	int ret;
2355 
2356 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2357 		return -ENODEV;
2358 
2359 	ops = kvm_device_ops_table[cd->type];
2360 	if (ops == NULL)
2361 		return -ENODEV;
2362 
2363 	if (test)
2364 		return 0;
2365 
2366 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2367 	if (!dev)
2368 		return -ENOMEM;
2369 
2370 	dev->ops = ops;
2371 	dev->kvm = kvm;
2372 
2373 	ret = ops->create(dev, cd->type);
2374 	if (ret < 0) {
2375 		kfree(dev);
2376 		return ret;
2377 	}
2378 
2379 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2380 	if (ret < 0) {
2381 		ops->destroy(dev);
2382 		return ret;
2383 	}
2384 
2385 	list_add(&dev->vm_node, &kvm->devices);
2386 	kvm_get_kvm(kvm);
2387 	cd->fd = ret;
2388 	return 0;
2389 }
2390 
2391 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2392 {
2393 	switch (arg) {
2394 	case KVM_CAP_USER_MEMORY:
2395 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2396 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2397 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2398 	case KVM_CAP_SET_BOOT_CPU_ID:
2399 #endif
2400 	case KVM_CAP_INTERNAL_ERROR_DATA:
2401 #ifdef CONFIG_HAVE_KVM_MSI
2402 	case KVM_CAP_SIGNAL_MSI:
2403 #endif
2404 #ifdef CONFIG_HAVE_KVM_IRQFD
2405 	case KVM_CAP_IRQFD_RESAMPLE:
2406 #endif
2407 	case KVM_CAP_CHECK_EXTENSION_VM:
2408 		return 1;
2409 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2410 	case KVM_CAP_IRQ_ROUTING:
2411 		return KVM_MAX_IRQ_ROUTES;
2412 #endif
2413 	default:
2414 		break;
2415 	}
2416 	return kvm_vm_ioctl_check_extension(kvm, arg);
2417 }
2418 
2419 static long kvm_vm_ioctl(struct file *filp,
2420 			   unsigned int ioctl, unsigned long arg)
2421 {
2422 	struct kvm *kvm = filp->private_data;
2423 	void __user *argp = (void __user *)arg;
2424 	int r;
2425 
2426 	if (kvm->mm != current->mm)
2427 		return -EIO;
2428 	switch (ioctl) {
2429 	case KVM_CREATE_VCPU:
2430 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2431 		break;
2432 	case KVM_SET_USER_MEMORY_REGION: {
2433 		struct kvm_userspace_memory_region kvm_userspace_mem;
2434 
2435 		r = -EFAULT;
2436 		if (copy_from_user(&kvm_userspace_mem, argp,
2437 						sizeof kvm_userspace_mem))
2438 			goto out;
2439 
2440 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2441 		break;
2442 	}
2443 	case KVM_GET_DIRTY_LOG: {
2444 		struct kvm_dirty_log log;
2445 
2446 		r = -EFAULT;
2447 		if (copy_from_user(&log, argp, sizeof log))
2448 			goto out;
2449 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2450 		break;
2451 	}
2452 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2453 	case KVM_REGISTER_COALESCED_MMIO: {
2454 		struct kvm_coalesced_mmio_zone zone;
2455 		r = -EFAULT;
2456 		if (copy_from_user(&zone, argp, sizeof zone))
2457 			goto out;
2458 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2459 		break;
2460 	}
2461 	case KVM_UNREGISTER_COALESCED_MMIO: {
2462 		struct kvm_coalesced_mmio_zone zone;
2463 		r = -EFAULT;
2464 		if (copy_from_user(&zone, argp, sizeof zone))
2465 			goto out;
2466 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2467 		break;
2468 	}
2469 #endif
2470 	case KVM_IRQFD: {
2471 		struct kvm_irqfd data;
2472 
2473 		r = -EFAULT;
2474 		if (copy_from_user(&data, argp, sizeof data))
2475 			goto out;
2476 		r = kvm_irqfd(kvm, &data);
2477 		break;
2478 	}
2479 	case KVM_IOEVENTFD: {
2480 		struct kvm_ioeventfd data;
2481 
2482 		r = -EFAULT;
2483 		if (copy_from_user(&data, argp, sizeof data))
2484 			goto out;
2485 		r = kvm_ioeventfd(kvm, &data);
2486 		break;
2487 	}
2488 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2489 	case KVM_SET_BOOT_CPU_ID:
2490 		r = 0;
2491 		mutex_lock(&kvm->lock);
2492 		if (atomic_read(&kvm->online_vcpus) != 0)
2493 			r = -EBUSY;
2494 		else
2495 			kvm->bsp_vcpu_id = arg;
2496 		mutex_unlock(&kvm->lock);
2497 		break;
2498 #endif
2499 #ifdef CONFIG_HAVE_KVM_MSI
2500 	case KVM_SIGNAL_MSI: {
2501 		struct kvm_msi msi;
2502 
2503 		r = -EFAULT;
2504 		if (copy_from_user(&msi, argp, sizeof msi))
2505 			goto out;
2506 		r = kvm_send_userspace_msi(kvm, &msi);
2507 		break;
2508 	}
2509 #endif
2510 #ifdef __KVM_HAVE_IRQ_LINE
2511 	case KVM_IRQ_LINE_STATUS:
2512 	case KVM_IRQ_LINE: {
2513 		struct kvm_irq_level irq_event;
2514 
2515 		r = -EFAULT;
2516 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2517 			goto out;
2518 
2519 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2520 					ioctl == KVM_IRQ_LINE_STATUS);
2521 		if (r)
2522 			goto out;
2523 
2524 		r = -EFAULT;
2525 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2526 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2527 				goto out;
2528 		}
2529 
2530 		r = 0;
2531 		break;
2532 	}
2533 #endif
2534 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2535 	case KVM_SET_GSI_ROUTING: {
2536 		struct kvm_irq_routing routing;
2537 		struct kvm_irq_routing __user *urouting;
2538 		struct kvm_irq_routing_entry *entries;
2539 
2540 		r = -EFAULT;
2541 		if (copy_from_user(&routing, argp, sizeof(routing)))
2542 			goto out;
2543 		r = -EINVAL;
2544 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2545 			goto out;
2546 		if (routing.flags)
2547 			goto out;
2548 		r = -ENOMEM;
2549 		entries = vmalloc(routing.nr * sizeof(*entries));
2550 		if (!entries)
2551 			goto out;
2552 		r = -EFAULT;
2553 		urouting = argp;
2554 		if (copy_from_user(entries, urouting->entries,
2555 				   routing.nr * sizeof(*entries)))
2556 			goto out_free_irq_routing;
2557 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2558 					routing.flags);
2559 	out_free_irq_routing:
2560 		vfree(entries);
2561 		break;
2562 	}
2563 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2564 	case KVM_CREATE_DEVICE: {
2565 		struct kvm_create_device cd;
2566 
2567 		r = -EFAULT;
2568 		if (copy_from_user(&cd, argp, sizeof(cd)))
2569 			goto out;
2570 
2571 		r = kvm_ioctl_create_device(kvm, &cd);
2572 		if (r)
2573 			goto out;
2574 
2575 		r = -EFAULT;
2576 		if (copy_to_user(argp, &cd, sizeof(cd)))
2577 			goto out;
2578 
2579 		r = 0;
2580 		break;
2581 	}
2582 	case KVM_CHECK_EXTENSION:
2583 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2584 		break;
2585 	default:
2586 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2587 	}
2588 out:
2589 	return r;
2590 }
2591 
2592 #ifdef CONFIG_COMPAT
2593 struct compat_kvm_dirty_log {
2594 	__u32 slot;
2595 	__u32 padding1;
2596 	union {
2597 		compat_uptr_t dirty_bitmap; /* one bit per page */
2598 		__u64 padding2;
2599 	};
2600 };
2601 
2602 static long kvm_vm_compat_ioctl(struct file *filp,
2603 			   unsigned int ioctl, unsigned long arg)
2604 {
2605 	struct kvm *kvm = filp->private_data;
2606 	int r;
2607 
2608 	if (kvm->mm != current->mm)
2609 		return -EIO;
2610 	switch (ioctl) {
2611 	case KVM_GET_DIRTY_LOG: {
2612 		struct compat_kvm_dirty_log compat_log;
2613 		struct kvm_dirty_log log;
2614 
2615 		r = -EFAULT;
2616 		if (copy_from_user(&compat_log, (void __user *)arg,
2617 				   sizeof(compat_log)))
2618 			goto out;
2619 		log.slot	 = compat_log.slot;
2620 		log.padding1	 = compat_log.padding1;
2621 		log.padding2	 = compat_log.padding2;
2622 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2623 
2624 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2625 		break;
2626 	}
2627 	default:
2628 		r = kvm_vm_ioctl(filp, ioctl, arg);
2629 	}
2630 
2631 out:
2632 	return r;
2633 }
2634 #endif
2635 
2636 static struct file_operations kvm_vm_fops = {
2637 	.release        = kvm_vm_release,
2638 	.unlocked_ioctl = kvm_vm_ioctl,
2639 #ifdef CONFIG_COMPAT
2640 	.compat_ioctl   = kvm_vm_compat_ioctl,
2641 #endif
2642 	.llseek		= noop_llseek,
2643 };
2644 
2645 static int kvm_dev_ioctl_create_vm(unsigned long type)
2646 {
2647 	int r;
2648 	struct kvm *kvm;
2649 
2650 	kvm = kvm_create_vm(type);
2651 	if (IS_ERR(kvm))
2652 		return PTR_ERR(kvm);
2653 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2654 	r = kvm_coalesced_mmio_init(kvm);
2655 	if (r < 0) {
2656 		kvm_put_kvm(kvm);
2657 		return r;
2658 	}
2659 #endif
2660 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2661 	if (r < 0)
2662 		kvm_put_kvm(kvm);
2663 
2664 	return r;
2665 }
2666 
2667 static long kvm_dev_ioctl(struct file *filp,
2668 			  unsigned int ioctl, unsigned long arg)
2669 {
2670 	long r = -EINVAL;
2671 
2672 	switch (ioctl) {
2673 	case KVM_GET_API_VERSION:
2674 		if (arg)
2675 			goto out;
2676 		r = KVM_API_VERSION;
2677 		break;
2678 	case KVM_CREATE_VM:
2679 		r = kvm_dev_ioctl_create_vm(arg);
2680 		break;
2681 	case KVM_CHECK_EXTENSION:
2682 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2683 		break;
2684 	case KVM_GET_VCPU_MMAP_SIZE:
2685 		if (arg)
2686 			goto out;
2687 		r = PAGE_SIZE;     /* struct kvm_run */
2688 #ifdef CONFIG_X86
2689 		r += PAGE_SIZE;    /* pio data page */
2690 #endif
2691 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2692 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2693 #endif
2694 		break;
2695 	case KVM_TRACE_ENABLE:
2696 	case KVM_TRACE_PAUSE:
2697 	case KVM_TRACE_DISABLE:
2698 		r = -EOPNOTSUPP;
2699 		break;
2700 	default:
2701 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2702 	}
2703 out:
2704 	return r;
2705 }
2706 
2707 static struct file_operations kvm_chardev_ops = {
2708 	.unlocked_ioctl = kvm_dev_ioctl,
2709 	.compat_ioctl   = kvm_dev_ioctl,
2710 	.llseek		= noop_llseek,
2711 };
2712 
2713 static struct miscdevice kvm_dev = {
2714 	KVM_MINOR,
2715 	"kvm",
2716 	&kvm_chardev_ops,
2717 };
2718 
2719 static void hardware_enable_nolock(void *junk)
2720 {
2721 	int cpu = raw_smp_processor_id();
2722 	int r;
2723 
2724 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2725 		return;
2726 
2727 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2728 
2729 	r = kvm_arch_hardware_enable();
2730 
2731 	if (r) {
2732 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2733 		atomic_inc(&hardware_enable_failed);
2734 		printk(KERN_INFO "kvm: enabling virtualization on "
2735 				 "CPU%d failed\n", cpu);
2736 	}
2737 }
2738 
2739 static void hardware_enable(void)
2740 {
2741 	raw_spin_lock(&kvm_count_lock);
2742 	if (kvm_usage_count)
2743 		hardware_enable_nolock(NULL);
2744 	raw_spin_unlock(&kvm_count_lock);
2745 }
2746 
2747 static void hardware_disable_nolock(void *junk)
2748 {
2749 	int cpu = raw_smp_processor_id();
2750 
2751 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2752 		return;
2753 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2754 	kvm_arch_hardware_disable();
2755 }
2756 
2757 static void hardware_disable(void)
2758 {
2759 	raw_spin_lock(&kvm_count_lock);
2760 	if (kvm_usage_count)
2761 		hardware_disable_nolock(NULL);
2762 	raw_spin_unlock(&kvm_count_lock);
2763 }
2764 
2765 static void hardware_disable_all_nolock(void)
2766 {
2767 	BUG_ON(!kvm_usage_count);
2768 
2769 	kvm_usage_count--;
2770 	if (!kvm_usage_count)
2771 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2772 }
2773 
2774 static void hardware_disable_all(void)
2775 {
2776 	raw_spin_lock(&kvm_count_lock);
2777 	hardware_disable_all_nolock();
2778 	raw_spin_unlock(&kvm_count_lock);
2779 }
2780 
2781 static int hardware_enable_all(void)
2782 {
2783 	int r = 0;
2784 
2785 	raw_spin_lock(&kvm_count_lock);
2786 
2787 	kvm_usage_count++;
2788 	if (kvm_usage_count == 1) {
2789 		atomic_set(&hardware_enable_failed, 0);
2790 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2791 
2792 		if (atomic_read(&hardware_enable_failed)) {
2793 			hardware_disable_all_nolock();
2794 			r = -EBUSY;
2795 		}
2796 	}
2797 
2798 	raw_spin_unlock(&kvm_count_lock);
2799 
2800 	return r;
2801 }
2802 
2803 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2804 			   void *v)
2805 {
2806 	int cpu = (long)v;
2807 
2808 	val &= ~CPU_TASKS_FROZEN;
2809 	switch (val) {
2810 	case CPU_DYING:
2811 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2812 		       cpu);
2813 		hardware_disable();
2814 		break;
2815 	case CPU_STARTING:
2816 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2817 		       cpu);
2818 		hardware_enable();
2819 		break;
2820 	}
2821 	return NOTIFY_OK;
2822 }
2823 
2824 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2825 		      void *v)
2826 {
2827 	/*
2828 	 * Some (well, at least mine) BIOSes hang on reboot if
2829 	 * in vmx root mode.
2830 	 *
2831 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2832 	 */
2833 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2834 	kvm_rebooting = true;
2835 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2836 	return NOTIFY_OK;
2837 }
2838 
2839 static struct notifier_block kvm_reboot_notifier = {
2840 	.notifier_call = kvm_reboot,
2841 	.priority = 0,
2842 };
2843 
2844 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2845 {
2846 	int i;
2847 
2848 	for (i = 0; i < bus->dev_count; i++) {
2849 		struct kvm_io_device *pos = bus->range[i].dev;
2850 
2851 		kvm_iodevice_destructor(pos);
2852 	}
2853 	kfree(bus);
2854 }
2855 
2856 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2857                                  const struct kvm_io_range *r2)
2858 {
2859 	if (r1->addr < r2->addr)
2860 		return -1;
2861 	if (r1->addr + r1->len > r2->addr + r2->len)
2862 		return 1;
2863 	return 0;
2864 }
2865 
2866 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2867 {
2868 	return kvm_io_bus_cmp(p1, p2);
2869 }
2870 
2871 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2872 			  gpa_t addr, int len)
2873 {
2874 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2875 		.addr = addr,
2876 		.len = len,
2877 		.dev = dev,
2878 	};
2879 
2880 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2881 		kvm_io_bus_sort_cmp, NULL);
2882 
2883 	return 0;
2884 }
2885 
2886 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2887 			     gpa_t addr, int len)
2888 {
2889 	struct kvm_io_range *range, key;
2890 	int off;
2891 
2892 	key = (struct kvm_io_range) {
2893 		.addr = addr,
2894 		.len = len,
2895 	};
2896 
2897 	range = bsearch(&key, bus->range, bus->dev_count,
2898 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2899 	if (range == NULL)
2900 		return -ENOENT;
2901 
2902 	off = range - bus->range;
2903 
2904 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2905 		off--;
2906 
2907 	return off;
2908 }
2909 
2910 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2911 			      struct kvm_io_range *range, const void *val)
2912 {
2913 	int idx;
2914 
2915 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2916 	if (idx < 0)
2917 		return -EOPNOTSUPP;
2918 
2919 	while (idx < bus->dev_count &&
2920 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2921 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2922 					range->len, val))
2923 			return idx;
2924 		idx++;
2925 	}
2926 
2927 	return -EOPNOTSUPP;
2928 }
2929 
2930 /* kvm_io_bus_write - called under kvm->slots_lock */
2931 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2932 		     int len, const void *val)
2933 {
2934 	struct kvm_io_bus *bus;
2935 	struct kvm_io_range range;
2936 	int r;
2937 
2938 	range = (struct kvm_io_range) {
2939 		.addr = addr,
2940 		.len = len,
2941 	};
2942 
2943 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2944 	r = __kvm_io_bus_write(bus, &range, val);
2945 	return r < 0 ? r : 0;
2946 }
2947 
2948 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2949 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2950 			    int len, const void *val, long cookie)
2951 {
2952 	struct kvm_io_bus *bus;
2953 	struct kvm_io_range range;
2954 
2955 	range = (struct kvm_io_range) {
2956 		.addr = addr,
2957 		.len = len,
2958 	};
2959 
2960 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2961 
2962 	/* First try the device referenced by cookie. */
2963 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2964 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2965 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2966 					val))
2967 			return cookie;
2968 
2969 	/*
2970 	 * cookie contained garbage; fall back to search and return the
2971 	 * correct cookie value.
2972 	 */
2973 	return __kvm_io_bus_write(bus, &range, val);
2974 }
2975 
2976 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2977 			     void *val)
2978 {
2979 	int idx;
2980 
2981 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2982 	if (idx < 0)
2983 		return -EOPNOTSUPP;
2984 
2985 	while (idx < bus->dev_count &&
2986 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2987 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2988 				       range->len, val))
2989 			return idx;
2990 		idx++;
2991 	}
2992 
2993 	return -EOPNOTSUPP;
2994 }
2995 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2996 
2997 /* kvm_io_bus_read - called under kvm->slots_lock */
2998 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2999 		    int len, void *val)
3000 {
3001 	struct kvm_io_bus *bus;
3002 	struct kvm_io_range range;
3003 	int r;
3004 
3005 	range = (struct kvm_io_range) {
3006 		.addr = addr,
3007 		.len = len,
3008 	};
3009 
3010 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3011 	r = __kvm_io_bus_read(bus, &range, val);
3012 	return r < 0 ? r : 0;
3013 }
3014 
3015 
3016 /* Caller must hold slots_lock. */
3017 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3018 			    int len, struct kvm_io_device *dev)
3019 {
3020 	struct kvm_io_bus *new_bus, *bus;
3021 
3022 	bus = kvm->buses[bus_idx];
3023 	/* exclude ioeventfd which is limited by maximum fd */
3024 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3025 		return -ENOSPC;
3026 
3027 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3028 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3029 	if (!new_bus)
3030 		return -ENOMEM;
3031 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3032 	       sizeof(struct kvm_io_range)));
3033 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3034 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3035 	synchronize_srcu_expedited(&kvm->srcu);
3036 	kfree(bus);
3037 
3038 	return 0;
3039 }
3040 
3041 /* Caller must hold slots_lock. */
3042 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3043 			      struct kvm_io_device *dev)
3044 {
3045 	int i, r;
3046 	struct kvm_io_bus *new_bus, *bus;
3047 
3048 	bus = kvm->buses[bus_idx];
3049 	r = -ENOENT;
3050 	for (i = 0; i < bus->dev_count; i++)
3051 		if (bus->range[i].dev == dev) {
3052 			r = 0;
3053 			break;
3054 		}
3055 
3056 	if (r)
3057 		return r;
3058 
3059 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3060 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3061 	if (!new_bus)
3062 		return -ENOMEM;
3063 
3064 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3065 	new_bus->dev_count--;
3066 	memcpy(new_bus->range + i, bus->range + i + 1,
3067 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3068 
3069 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3070 	synchronize_srcu_expedited(&kvm->srcu);
3071 	kfree(bus);
3072 	return r;
3073 }
3074 
3075 static struct notifier_block kvm_cpu_notifier = {
3076 	.notifier_call = kvm_cpu_hotplug,
3077 };
3078 
3079 static int vm_stat_get(void *_offset, u64 *val)
3080 {
3081 	unsigned offset = (long)_offset;
3082 	struct kvm *kvm;
3083 
3084 	*val = 0;
3085 	spin_lock(&kvm_lock);
3086 	list_for_each_entry(kvm, &vm_list, vm_list)
3087 		*val += *(u32 *)((void *)kvm + offset);
3088 	spin_unlock(&kvm_lock);
3089 	return 0;
3090 }
3091 
3092 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3093 
3094 static int vcpu_stat_get(void *_offset, u64 *val)
3095 {
3096 	unsigned offset = (long)_offset;
3097 	struct kvm *kvm;
3098 	struct kvm_vcpu *vcpu;
3099 	int i;
3100 
3101 	*val = 0;
3102 	spin_lock(&kvm_lock);
3103 	list_for_each_entry(kvm, &vm_list, vm_list)
3104 		kvm_for_each_vcpu(i, vcpu, kvm)
3105 			*val += *(u32 *)((void *)vcpu + offset);
3106 
3107 	spin_unlock(&kvm_lock);
3108 	return 0;
3109 }
3110 
3111 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3112 
3113 static const struct file_operations *stat_fops[] = {
3114 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3115 	[KVM_STAT_VM]   = &vm_stat_fops,
3116 };
3117 
3118 static int kvm_init_debug(void)
3119 {
3120 	int r = -EEXIST;
3121 	struct kvm_stats_debugfs_item *p;
3122 
3123 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3124 	if (kvm_debugfs_dir == NULL)
3125 		goto out;
3126 
3127 	for (p = debugfs_entries; p->name; ++p) {
3128 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3129 						(void *)(long)p->offset,
3130 						stat_fops[p->kind]);
3131 		if (p->dentry == NULL)
3132 			goto out_dir;
3133 	}
3134 
3135 	return 0;
3136 
3137 out_dir:
3138 	debugfs_remove_recursive(kvm_debugfs_dir);
3139 out:
3140 	return r;
3141 }
3142 
3143 static void kvm_exit_debug(void)
3144 {
3145 	struct kvm_stats_debugfs_item *p;
3146 
3147 	for (p = debugfs_entries; p->name; ++p)
3148 		debugfs_remove(p->dentry);
3149 	debugfs_remove(kvm_debugfs_dir);
3150 }
3151 
3152 static int kvm_suspend(void)
3153 {
3154 	if (kvm_usage_count)
3155 		hardware_disable_nolock(NULL);
3156 	return 0;
3157 }
3158 
3159 static void kvm_resume(void)
3160 {
3161 	if (kvm_usage_count) {
3162 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3163 		hardware_enable_nolock(NULL);
3164 	}
3165 }
3166 
3167 static struct syscore_ops kvm_syscore_ops = {
3168 	.suspend = kvm_suspend,
3169 	.resume = kvm_resume,
3170 };
3171 
3172 static inline
3173 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3174 {
3175 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3176 }
3177 
3178 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3179 {
3180 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3181 	if (vcpu->preempted)
3182 		vcpu->preempted = false;
3183 
3184 	kvm_arch_sched_in(vcpu, cpu);
3185 
3186 	kvm_arch_vcpu_load(vcpu, cpu);
3187 }
3188 
3189 static void kvm_sched_out(struct preempt_notifier *pn,
3190 			  struct task_struct *next)
3191 {
3192 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3193 
3194 	if (current->state == TASK_RUNNING)
3195 		vcpu->preempted = true;
3196 	kvm_arch_vcpu_put(vcpu);
3197 }
3198 
3199 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3200 		  struct module *module)
3201 {
3202 	int r;
3203 	int cpu;
3204 
3205 	r = kvm_arch_init(opaque);
3206 	if (r)
3207 		goto out_fail;
3208 
3209 	/*
3210 	 * kvm_arch_init makes sure there's at most one caller
3211 	 * for architectures that support multiple implementations,
3212 	 * like intel and amd on x86.
3213 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3214 	 * conflicts in case kvm is already setup for another implementation.
3215 	 */
3216 	r = kvm_irqfd_init();
3217 	if (r)
3218 		goto out_irqfd;
3219 
3220 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3221 		r = -ENOMEM;
3222 		goto out_free_0;
3223 	}
3224 
3225 	r = kvm_arch_hardware_setup();
3226 	if (r < 0)
3227 		goto out_free_0a;
3228 
3229 	for_each_online_cpu(cpu) {
3230 		smp_call_function_single(cpu,
3231 				kvm_arch_check_processor_compat,
3232 				&r, 1);
3233 		if (r < 0)
3234 			goto out_free_1;
3235 	}
3236 
3237 	r = register_cpu_notifier(&kvm_cpu_notifier);
3238 	if (r)
3239 		goto out_free_2;
3240 	register_reboot_notifier(&kvm_reboot_notifier);
3241 
3242 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3243 	if (!vcpu_align)
3244 		vcpu_align = __alignof__(struct kvm_vcpu);
3245 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3246 					   0, NULL);
3247 	if (!kvm_vcpu_cache) {
3248 		r = -ENOMEM;
3249 		goto out_free_3;
3250 	}
3251 
3252 	r = kvm_async_pf_init();
3253 	if (r)
3254 		goto out_free;
3255 
3256 	kvm_chardev_ops.owner = module;
3257 	kvm_vm_fops.owner = module;
3258 	kvm_vcpu_fops.owner = module;
3259 
3260 	r = misc_register(&kvm_dev);
3261 	if (r) {
3262 		printk(KERN_ERR "kvm: misc device register failed\n");
3263 		goto out_unreg;
3264 	}
3265 
3266 	register_syscore_ops(&kvm_syscore_ops);
3267 
3268 	kvm_preempt_ops.sched_in = kvm_sched_in;
3269 	kvm_preempt_ops.sched_out = kvm_sched_out;
3270 
3271 	r = kvm_init_debug();
3272 	if (r) {
3273 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3274 		goto out_undebugfs;
3275 	}
3276 
3277 	r = kvm_vfio_ops_init();
3278 	WARN_ON(r);
3279 
3280 	return 0;
3281 
3282 out_undebugfs:
3283 	unregister_syscore_ops(&kvm_syscore_ops);
3284 	misc_deregister(&kvm_dev);
3285 out_unreg:
3286 	kvm_async_pf_deinit();
3287 out_free:
3288 	kmem_cache_destroy(kvm_vcpu_cache);
3289 out_free_3:
3290 	unregister_reboot_notifier(&kvm_reboot_notifier);
3291 	unregister_cpu_notifier(&kvm_cpu_notifier);
3292 out_free_2:
3293 out_free_1:
3294 	kvm_arch_hardware_unsetup();
3295 out_free_0a:
3296 	free_cpumask_var(cpus_hardware_enabled);
3297 out_free_0:
3298 	kvm_irqfd_exit();
3299 out_irqfd:
3300 	kvm_arch_exit();
3301 out_fail:
3302 	return r;
3303 }
3304 EXPORT_SYMBOL_GPL(kvm_init);
3305 
3306 void kvm_exit(void)
3307 {
3308 	kvm_exit_debug();
3309 	misc_deregister(&kvm_dev);
3310 	kmem_cache_destroy(kvm_vcpu_cache);
3311 	kvm_async_pf_deinit();
3312 	unregister_syscore_ops(&kvm_syscore_ops);
3313 	unregister_reboot_notifier(&kvm_reboot_notifier);
3314 	unregister_cpu_notifier(&kvm_cpu_notifier);
3315 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3316 	kvm_arch_hardware_unsetup();
3317 	kvm_arch_exit();
3318 	kvm_irqfd_exit();
3319 	free_cpumask_var(cpus_hardware_enabled);
3320 	kvm_vfio_ops_exit();
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_exit);
3323