xref: /openbmc/linux/virt/kvm/kvm_main.c (revision fb8d6c8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109 
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
126 				unsigned long arg) { return -EINVAL; }
127 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
128 #endif
129 static int hardware_enable_all(void);
130 static void hardware_disable_all(void);
131 
132 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
133 
134 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
135 
136 __visible bool kvm_rebooting;
137 EXPORT_SYMBOL_GPL(kvm_rebooting);
138 
139 static bool largepages_enabled = true;
140 
141 #define KVM_EVENT_CREATE_VM 0
142 #define KVM_EVENT_DESTROY_VM 1
143 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
144 static unsigned long long kvm_createvm_count;
145 static unsigned long long kvm_active_vms;
146 
147 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
148 		unsigned long start, unsigned long end, bool blockable)
149 {
150 	return 0;
151 }
152 
153 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
154 {
155 	if (pfn_valid(pfn))
156 		return PageReserved(pfn_to_page(pfn));
157 
158 	return true;
159 }
160 
161 /*
162  * Switches to specified vcpu, until a matching vcpu_put()
163  */
164 void vcpu_load(struct kvm_vcpu *vcpu)
165 {
166 	int cpu = get_cpu();
167 	preempt_notifier_register(&vcpu->preempt_notifier);
168 	kvm_arch_vcpu_load(vcpu, cpu);
169 	put_cpu();
170 }
171 EXPORT_SYMBOL_GPL(vcpu_load);
172 
173 void vcpu_put(struct kvm_vcpu *vcpu)
174 {
175 	preempt_disable();
176 	kvm_arch_vcpu_put(vcpu);
177 	preempt_notifier_unregister(&vcpu->preempt_notifier);
178 	preempt_enable();
179 }
180 EXPORT_SYMBOL_GPL(vcpu_put);
181 
182 /* TODO: merge with kvm_arch_vcpu_should_kick */
183 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
184 {
185 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
186 
187 	/*
188 	 * We need to wait for the VCPU to reenable interrupts and get out of
189 	 * READING_SHADOW_PAGE_TABLES mode.
190 	 */
191 	if (req & KVM_REQUEST_WAIT)
192 		return mode != OUTSIDE_GUEST_MODE;
193 
194 	/*
195 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
196 	 */
197 	return mode == IN_GUEST_MODE;
198 }
199 
200 static void ack_flush(void *_completed)
201 {
202 }
203 
204 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
205 {
206 	if (unlikely(!cpus))
207 		cpus = cpu_online_mask;
208 
209 	if (cpumask_empty(cpus))
210 		return false;
211 
212 	smp_call_function_many(cpus, ack_flush, NULL, wait);
213 	return true;
214 }
215 
216 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
217 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
218 {
219 	int i, cpu, me;
220 	struct kvm_vcpu *vcpu;
221 	bool called;
222 
223 	me = get_cpu();
224 
225 	kvm_for_each_vcpu(i, vcpu, kvm) {
226 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
227 			continue;
228 
229 		kvm_make_request(req, vcpu);
230 		cpu = vcpu->cpu;
231 
232 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
233 			continue;
234 
235 		if (tmp != NULL && cpu != -1 && cpu != me &&
236 		    kvm_request_needs_ipi(vcpu, req))
237 			__cpumask_set_cpu(cpu, tmp);
238 	}
239 
240 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
241 	put_cpu();
242 
243 	return called;
244 }
245 
246 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
247 {
248 	cpumask_var_t cpus;
249 	bool called;
250 
251 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
252 
253 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
254 
255 	free_cpumask_var(cpus);
256 	return called;
257 }
258 
259 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
260 void kvm_flush_remote_tlbs(struct kvm *kvm)
261 {
262 	/*
263 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
264 	 * kvm_make_all_cpus_request.
265 	 */
266 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
267 
268 	/*
269 	 * We want to publish modifications to the page tables before reading
270 	 * mode. Pairs with a memory barrier in arch-specific code.
271 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
272 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
273 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
274 	 *
275 	 * There is already an smp_mb__after_atomic() before
276 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
277 	 * barrier here.
278 	 */
279 	if (!kvm_arch_flush_remote_tlb(kvm)
280 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
281 		++kvm->stat.remote_tlb_flush;
282 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
283 }
284 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
285 #endif
286 
287 void kvm_reload_remote_mmus(struct kvm *kvm)
288 {
289 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
290 }
291 
292 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
293 {
294 	struct page *page;
295 	int r;
296 
297 	mutex_init(&vcpu->mutex);
298 	vcpu->cpu = -1;
299 	vcpu->kvm = kvm;
300 	vcpu->vcpu_id = id;
301 	vcpu->pid = NULL;
302 	init_swait_queue_head(&vcpu->wq);
303 	kvm_async_pf_vcpu_init(vcpu);
304 
305 	vcpu->pre_pcpu = -1;
306 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
307 
308 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
309 	if (!page) {
310 		r = -ENOMEM;
311 		goto fail;
312 	}
313 	vcpu->run = page_address(page);
314 
315 	kvm_vcpu_set_in_spin_loop(vcpu, false);
316 	kvm_vcpu_set_dy_eligible(vcpu, false);
317 	vcpu->preempted = false;
318 	vcpu->ready = false;
319 
320 	r = kvm_arch_vcpu_init(vcpu);
321 	if (r < 0)
322 		goto fail_free_run;
323 	return 0;
324 
325 fail_free_run:
326 	free_page((unsigned long)vcpu->run);
327 fail:
328 	return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331 
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334 	/*
335 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
336 	 * will change the vcpu->pid pointer and on uninit all file
337 	 * descriptors are already gone.
338 	 */
339 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
340 	kvm_arch_vcpu_uninit(vcpu);
341 	free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344 
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348 	return container_of(mn, struct kvm, mmu_notifier);
349 }
350 
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352 					struct mm_struct *mm,
353 					unsigned long address,
354 					pte_t pte)
355 {
356 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
357 	int idx;
358 
359 	idx = srcu_read_lock(&kvm->srcu);
360 	spin_lock(&kvm->mmu_lock);
361 	kvm->mmu_notifier_seq++;
362 
363 	if (kvm_set_spte_hva(kvm, address, pte))
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371 					const struct mmu_notifier_range *range)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int need_tlb_flush = 0, idx;
375 	int ret;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 	/*
380 	 * The count increase must become visible at unlock time as no
381 	 * spte can be established without taking the mmu_lock and
382 	 * count is also read inside the mmu_lock critical section.
383 	 */
384 	kvm->mmu_notifier_count++;
385 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386 	need_tlb_flush |= kvm->tlbs_dirty;
387 	/* we've to flush the tlb before the pages can be freed */
388 	if (need_tlb_flush)
389 		kvm_flush_remote_tlbs(kvm);
390 
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394 					range->end,
395 					mmu_notifier_range_blockable(range));
396 
397 	srcu_read_unlock(&kvm->srcu, idx);
398 
399 	return ret;
400 }
401 
402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
403 					const struct mmu_notifier_range *range)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 
407 	spin_lock(&kvm->mmu_lock);
408 	/*
409 	 * This sequence increase will notify the kvm page fault that
410 	 * the page that is going to be mapped in the spte could have
411 	 * been freed.
412 	 */
413 	kvm->mmu_notifier_seq++;
414 	smp_wmb();
415 	/*
416 	 * The above sequence increase must be visible before the
417 	 * below count decrease, which is ensured by the smp_wmb above
418 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
419 	 */
420 	kvm->mmu_notifier_count--;
421 	spin_unlock(&kvm->mmu_lock);
422 
423 	BUG_ON(kvm->mmu_notifier_count < 0);
424 }
425 
426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
427 					      struct mm_struct *mm,
428 					      unsigned long start,
429 					      unsigned long end)
430 {
431 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
432 	int young, idx;
433 
434 	idx = srcu_read_lock(&kvm->srcu);
435 	spin_lock(&kvm->mmu_lock);
436 
437 	young = kvm_age_hva(kvm, start, end);
438 	if (young)
439 		kvm_flush_remote_tlbs(kvm);
440 
441 	spin_unlock(&kvm->mmu_lock);
442 	srcu_read_unlock(&kvm->srcu, idx);
443 
444 	return young;
445 }
446 
447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
448 					struct mm_struct *mm,
449 					unsigned long start,
450 					unsigned long end)
451 {
452 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 	int young, idx;
454 
455 	idx = srcu_read_lock(&kvm->srcu);
456 	spin_lock(&kvm->mmu_lock);
457 	/*
458 	 * Even though we do not flush TLB, this will still adversely
459 	 * affect performance on pre-Haswell Intel EPT, where there is
460 	 * no EPT Access Bit to clear so that we have to tear down EPT
461 	 * tables instead. If we find this unacceptable, we can always
462 	 * add a parameter to kvm_age_hva so that it effectively doesn't
463 	 * do anything on clear_young.
464 	 *
465 	 * Also note that currently we never issue secondary TLB flushes
466 	 * from clear_young, leaving this job up to the regular system
467 	 * cadence. If we find this inaccurate, we might come up with a
468 	 * more sophisticated heuristic later.
469 	 */
470 	young = kvm_age_hva(kvm, start, end);
471 	spin_unlock(&kvm->mmu_lock);
472 	srcu_read_unlock(&kvm->srcu, idx);
473 
474 	return young;
475 }
476 
477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
478 				       struct mm_struct *mm,
479 				       unsigned long address)
480 {
481 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
482 	int young, idx;
483 
484 	idx = srcu_read_lock(&kvm->srcu);
485 	spin_lock(&kvm->mmu_lock);
486 	young = kvm_test_age_hva(kvm, address);
487 	spin_unlock(&kvm->mmu_lock);
488 	srcu_read_unlock(&kvm->srcu, idx);
489 
490 	return young;
491 }
492 
493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
494 				     struct mm_struct *mm)
495 {
496 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
497 	int idx;
498 
499 	idx = srcu_read_lock(&kvm->srcu);
500 	kvm_arch_flush_shadow_all(kvm);
501 	srcu_read_unlock(&kvm->srcu, idx);
502 }
503 
504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
505 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
506 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
507 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
508 	.clear_young		= kvm_mmu_notifier_clear_young,
509 	.test_young		= kvm_mmu_notifier_test_young,
510 	.change_pte		= kvm_mmu_notifier_change_pte,
511 	.release		= kvm_mmu_notifier_release,
512 };
513 
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
517 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
518 }
519 
520 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
521 
522 static int kvm_init_mmu_notifier(struct kvm *kvm)
523 {
524 	return 0;
525 }
526 
527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
528 
529 static struct kvm_memslots *kvm_alloc_memslots(void)
530 {
531 	int i;
532 	struct kvm_memslots *slots;
533 
534 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
535 	if (!slots)
536 		return NULL;
537 
538 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
539 		slots->id_to_index[i] = slots->memslots[i].id = i;
540 
541 	return slots;
542 }
543 
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546 	if (!memslot->dirty_bitmap)
547 		return;
548 
549 	kvfree(memslot->dirty_bitmap);
550 	memslot->dirty_bitmap = NULL;
551 }
552 
553 /*
554  * Free any memory in @free but not in @dont.
555  */
556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
557 			      struct kvm_memory_slot *dont)
558 {
559 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560 		kvm_destroy_dirty_bitmap(free);
561 
562 	kvm_arch_free_memslot(kvm, free, dont);
563 
564 	free->npages = 0;
565 }
566 
567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
568 {
569 	struct kvm_memory_slot *memslot;
570 
571 	if (!slots)
572 		return;
573 
574 	kvm_for_each_memslot(memslot, slots)
575 		kvm_free_memslot(kvm, memslot, NULL);
576 
577 	kvfree(slots);
578 }
579 
580 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
581 {
582 	int i;
583 
584 	if (!kvm->debugfs_dentry)
585 		return;
586 
587 	debugfs_remove_recursive(kvm->debugfs_dentry);
588 
589 	if (kvm->debugfs_stat_data) {
590 		for (i = 0; i < kvm_debugfs_num_entries; i++)
591 			kfree(kvm->debugfs_stat_data[i]);
592 		kfree(kvm->debugfs_stat_data);
593 	}
594 }
595 
596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
597 {
598 	char dir_name[ITOA_MAX_LEN * 2];
599 	struct kvm_stat_data *stat_data;
600 	struct kvm_stats_debugfs_item *p;
601 
602 	if (!debugfs_initialized())
603 		return 0;
604 
605 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
606 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
607 
608 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
609 					 sizeof(*kvm->debugfs_stat_data),
610 					 GFP_KERNEL_ACCOUNT);
611 	if (!kvm->debugfs_stat_data)
612 		return -ENOMEM;
613 
614 	for (p = debugfs_entries; p->name; p++) {
615 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
616 		if (!stat_data)
617 			return -ENOMEM;
618 
619 		stat_data->kvm = kvm;
620 		stat_data->offset = p->offset;
621 		stat_data->mode = p->mode ? p->mode : 0644;
622 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
623 		debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
624 				    stat_data, stat_fops_per_vm[p->kind]);
625 	}
626 	return 0;
627 }
628 
629 /*
630  * Called after the VM is otherwise initialized, but just before adding it to
631  * the vm_list.
632  */
633 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
634 {
635 	return 0;
636 }
637 
638 /*
639  * Called just after removing the VM from the vm_list, but before doing any
640  * other destruction.
641  */
642 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
643 {
644 }
645 
646 static struct kvm *kvm_create_vm(unsigned long type)
647 {
648 	struct kvm *kvm = kvm_arch_alloc_vm();
649 	int r = -ENOMEM;
650 	int i;
651 
652 	if (!kvm)
653 		return ERR_PTR(-ENOMEM);
654 
655 	spin_lock_init(&kvm->mmu_lock);
656 	mmgrab(current->mm);
657 	kvm->mm = current->mm;
658 	kvm_eventfd_init(kvm);
659 	mutex_init(&kvm->lock);
660 	mutex_init(&kvm->irq_lock);
661 	mutex_init(&kvm->slots_lock);
662 	INIT_LIST_HEAD(&kvm->devices);
663 
664 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
665 
666 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
667 		struct kvm_memslots *slots = kvm_alloc_memslots();
668 
669 		if (!slots)
670 			goto out_err_no_arch_destroy_vm;
671 		/* Generations must be different for each address space. */
672 		slots->generation = i;
673 		rcu_assign_pointer(kvm->memslots[i], slots);
674 	}
675 
676 	for (i = 0; i < KVM_NR_BUSES; i++) {
677 		rcu_assign_pointer(kvm->buses[i],
678 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
679 		if (!kvm->buses[i])
680 			goto out_err_no_arch_destroy_vm;
681 	}
682 
683 	refcount_set(&kvm->users_count, 1);
684 	r = kvm_arch_init_vm(kvm, type);
685 	if (r)
686 		goto out_err_no_arch_destroy_vm;
687 
688 	r = hardware_enable_all();
689 	if (r)
690 		goto out_err_no_disable;
691 
692 #ifdef CONFIG_HAVE_KVM_IRQFD
693 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
694 #endif
695 
696 	if (init_srcu_struct(&kvm->srcu))
697 		goto out_err_no_srcu;
698 	if (init_srcu_struct(&kvm->irq_srcu))
699 		goto out_err_no_irq_srcu;
700 
701 	r = kvm_init_mmu_notifier(kvm);
702 	if (r)
703 		goto out_err_no_mmu_notifier;
704 
705 	r = kvm_arch_post_init_vm(kvm);
706 	if (r)
707 		goto out_err;
708 
709 	mutex_lock(&kvm_lock);
710 	list_add(&kvm->vm_list, &vm_list);
711 	mutex_unlock(&kvm_lock);
712 
713 	preempt_notifier_inc();
714 
715 	return kvm;
716 
717 out_err:
718 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
719 	if (kvm->mmu_notifier.ops)
720 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
721 #endif
722 out_err_no_mmu_notifier:
723 	cleanup_srcu_struct(&kvm->irq_srcu);
724 out_err_no_irq_srcu:
725 	cleanup_srcu_struct(&kvm->srcu);
726 out_err_no_srcu:
727 	hardware_disable_all();
728 out_err_no_disable:
729 	kvm_arch_destroy_vm(kvm);
730 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
731 out_err_no_arch_destroy_vm:
732 	for (i = 0; i < KVM_NR_BUSES; i++)
733 		kfree(kvm_get_bus(kvm, i));
734 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
735 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
736 	kvm_arch_free_vm(kvm);
737 	mmdrop(current->mm);
738 	return ERR_PTR(r);
739 }
740 
741 static void kvm_destroy_devices(struct kvm *kvm)
742 {
743 	struct kvm_device *dev, *tmp;
744 
745 	/*
746 	 * We do not need to take the kvm->lock here, because nobody else
747 	 * has a reference to the struct kvm at this point and therefore
748 	 * cannot access the devices list anyhow.
749 	 */
750 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
751 		list_del(&dev->vm_node);
752 		dev->ops->destroy(dev);
753 	}
754 }
755 
756 static void kvm_destroy_vm(struct kvm *kvm)
757 {
758 	int i;
759 	struct mm_struct *mm = kvm->mm;
760 
761 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
762 	kvm_destroy_vm_debugfs(kvm);
763 	kvm_arch_sync_events(kvm);
764 	mutex_lock(&kvm_lock);
765 	list_del(&kvm->vm_list);
766 	mutex_unlock(&kvm_lock);
767 	kvm_arch_pre_destroy_vm(kvm);
768 
769 	kvm_free_irq_routing(kvm);
770 	for (i = 0; i < KVM_NR_BUSES; i++) {
771 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
772 
773 		if (bus)
774 			kvm_io_bus_destroy(bus);
775 		kvm->buses[i] = NULL;
776 	}
777 	kvm_coalesced_mmio_free(kvm);
778 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
779 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
780 #else
781 	kvm_arch_flush_shadow_all(kvm);
782 #endif
783 	kvm_arch_destroy_vm(kvm);
784 	kvm_destroy_devices(kvm);
785 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
786 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
787 	cleanup_srcu_struct(&kvm->irq_srcu);
788 	cleanup_srcu_struct(&kvm->srcu);
789 	kvm_arch_free_vm(kvm);
790 	preempt_notifier_dec();
791 	hardware_disable_all();
792 	mmdrop(mm);
793 }
794 
795 void kvm_get_kvm(struct kvm *kvm)
796 {
797 	refcount_inc(&kvm->users_count);
798 }
799 EXPORT_SYMBOL_GPL(kvm_get_kvm);
800 
801 void kvm_put_kvm(struct kvm *kvm)
802 {
803 	if (refcount_dec_and_test(&kvm->users_count))
804 		kvm_destroy_vm(kvm);
805 }
806 EXPORT_SYMBOL_GPL(kvm_put_kvm);
807 
808 
809 static int kvm_vm_release(struct inode *inode, struct file *filp)
810 {
811 	struct kvm *kvm = filp->private_data;
812 
813 	kvm_irqfd_release(kvm);
814 
815 	kvm_put_kvm(kvm);
816 	return 0;
817 }
818 
819 /*
820  * Allocation size is twice as large as the actual dirty bitmap size.
821  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
822  */
823 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
824 {
825 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
826 
827 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
828 	if (!memslot->dirty_bitmap)
829 		return -ENOMEM;
830 
831 	return 0;
832 }
833 
834 /*
835  * Insert memslot and re-sort memslots based on their GFN,
836  * so binary search could be used to lookup GFN.
837  * Sorting algorithm takes advantage of having initially
838  * sorted array and known changed memslot position.
839  */
840 static void update_memslots(struct kvm_memslots *slots,
841 			    struct kvm_memory_slot *new,
842 			    enum kvm_mr_change change)
843 {
844 	int id = new->id;
845 	int i = slots->id_to_index[id];
846 	struct kvm_memory_slot *mslots = slots->memslots;
847 
848 	WARN_ON(mslots[i].id != id);
849 	switch (change) {
850 	case KVM_MR_CREATE:
851 		slots->used_slots++;
852 		WARN_ON(mslots[i].npages || !new->npages);
853 		break;
854 	case KVM_MR_DELETE:
855 		slots->used_slots--;
856 		WARN_ON(new->npages || !mslots[i].npages);
857 		break;
858 	default:
859 		break;
860 	}
861 
862 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
863 	       new->base_gfn <= mslots[i + 1].base_gfn) {
864 		if (!mslots[i + 1].npages)
865 			break;
866 		mslots[i] = mslots[i + 1];
867 		slots->id_to_index[mslots[i].id] = i;
868 		i++;
869 	}
870 
871 	/*
872 	 * The ">=" is needed when creating a slot with base_gfn == 0,
873 	 * so that it moves before all those with base_gfn == npages == 0.
874 	 *
875 	 * On the other hand, if new->npages is zero, the above loop has
876 	 * already left i pointing to the beginning of the empty part of
877 	 * mslots, and the ">=" would move the hole backwards in this
878 	 * case---which is wrong.  So skip the loop when deleting a slot.
879 	 */
880 	if (new->npages) {
881 		while (i > 0 &&
882 		       new->base_gfn >= mslots[i - 1].base_gfn) {
883 			mslots[i] = mslots[i - 1];
884 			slots->id_to_index[mslots[i].id] = i;
885 			i--;
886 		}
887 	} else
888 		WARN_ON_ONCE(i != slots->used_slots);
889 
890 	mslots[i] = *new;
891 	slots->id_to_index[mslots[i].id] = i;
892 }
893 
894 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
895 {
896 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
897 
898 #ifdef __KVM_HAVE_READONLY_MEM
899 	valid_flags |= KVM_MEM_READONLY;
900 #endif
901 
902 	if (mem->flags & ~valid_flags)
903 		return -EINVAL;
904 
905 	return 0;
906 }
907 
908 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
909 		int as_id, struct kvm_memslots *slots)
910 {
911 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
912 	u64 gen = old_memslots->generation;
913 
914 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
915 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
916 
917 	rcu_assign_pointer(kvm->memslots[as_id], slots);
918 	synchronize_srcu_expedited(&kvm->srcu);
919 
920 	/*
921 	 * Increment the new memslot generation a second time, dropping the
922 	 * update in-progress flag and incrementing then generation based on
923 	 * the number of address spaces.  This provides a unique and easily
924 	 * identifiable generation number while the memslots are in flux.
925 	 */
926 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
927 
928 	/*
929 	 * Generations must be unique even across address spaces.  We do not need
930 	 * a global counter for that, instead the generation space is evenly split
931 	 * across address spaces.  For example, with two address spaces, address
932 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
933 	 * use generations 1, 3, 5, ...
934 	 */
935 	gen += KVM_ADDRESS_SPACE_NUM;
936 
937 	kvm_arch_memslots_updated(kvm, gen);
938 
939 	slots->generation = gen;
940 
941 	return old_memslots;
942 }
943 
944 /*
945  * Allocate some memory and give it an address in the guest physical address
946  * space.
947  *
948  * Discontiguous memory is allowed, mostly for framebuffers.
949  *
950  * Must be called holding kvm->slots_lock for write.
951  */
952 int __kvm_set_memory_region(struct kvm *kvm,
953 			    const struct kvm_userspace_memory_region *mem)
954 {
955 	int r;
956 	gfn_t base_gfn;
957 	unsigned long npages;
958 	struct kvm_memory_slot *slot;
959 	struct kvm_memory_slot old, new;
960 	struct kvm_memslots *slots = NULL, *old_memslots;
961 	int as_id, id;
962 	enum kvm_mr_change change;
963 
964 	r = check_memory_region_flags(mem);
965 	if (r)
966 		goto out;
967 
968 	r = -EINVAL;
969 	as_id = mem->slot >> 16;
970 	id = (u16)mem->slot;
971 
972 	/* General sanity checks */
973 	if (mem->memory_size & (PAGE_SIZE - 1))
974 		goto out;
975 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
976 		goto out;
977 	/* We can read the guest memory with __xxx_user() later on. */
978 	if ((id < KVM_USER_MEM_SLOTS) &&
979 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
980 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
981 			mem->memory_size)))
982 		goto out;
983 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
984 		goto out;
985 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
986 		goto out;
987 
988 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
989 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
990 	npages = mem->memory_size >> PAGE_SHIFT;
991 
992 	if (npages > KVM_MEM_MAX_NR_PAGES)
993 		goto out;
994 
995 	new = old = *slot;
996 
997 	new.id = id;
998 	new.base_gfn = base_gfn;
999 	new.npages = npages;
1000 	new.flags = mem->flags;
1001 
1002 	if (npages) {
1003 		if (!old.npages)
1004 			change = KVM_MR_CREATE;
1005 		else { /* Modify an existing slot. */
1006 			if ((mem->userspace_addr != old.userspace_addr) ||
1007 			    (npages != old.npages) ||
1008 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1009 				goto out;
1010 
1011 			if (base_gfn != old.base_gfn)
1012 				change = KVM_MR_MOVE;
1013 			else if (new.flags != old.flags)
1014 				change = KVM_MR_FLAGS_ONLY;
1015 			else { /* Nothing to change. */
1016 				r = 0;
1017 				goto out;
1018 			}
1019 		}
1020 	} else {
1021 		if (!old.npages)
1022 			goto out;
1023 
1024 		change = KVM_MR_DELETE;
1025 		new.base_gfn = 0;
1026 		new.flags = 0;
1027 	}
1028 
1029 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1030 		/* Check for overlaps */
1031 		r = -EEXIST;
1032 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1033 			if (slot->id == id)
1034 				continue;
1035 			if (!((base_gfn + npages <= slot->base_gfn) ||
1036 			      (base_gfn >= slot->base_gfn + slot->npages)))
1037 				goto out;
1038 		}
1039 	}
1040 
1041 	/* Free page dirty bitmap if unneeded */
1042 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1043 		new.dirty_bitmap = NULL;
1044 
1045 	r = -ENOMEM;
1046 	if (change == KVM_MR_CREATE) {
1047 		new.userspace_addr = mem->userspace_addr;
1048 
1049 		if (kvm_arch_create_memslot(kvm, &new, npages))
1050 			goto out_free;
1051 	}
1052 
1053 	/* Allocate page dirty bitmap if needed */
1054 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1055 		if (kvm_create_dirty_bitmap(&new) < 0)
1056 			goto out_free;
1057 	}
1058 
1059 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1060 	if (!slots)
1061 		goto out_free;
1062 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1063 
1064 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1065 		slot = id_to_memslot(slots, id);
1066 		slot->flags |= KVM_MEMSLOT_INVALID;
1067 
1068 		old_memslots = install_new_memslots(kvm, as_id, slots);
1069 
1070 		/* From this point no new shadow pages pointing to a deleted,
1071 		 * or moved, memslot will be created.
1072 		 *
1073 		 * validation of sp->gfn happens in:
1074 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1075 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1076 		 */
1077 		kvm_arch_flush_shadow_memslot(kvm, slot);
1078 
1079 		/*
1080 		 * We can re-use the old_memslots from above, the only difference
1081 		 * from the currently installed memslots is the invalid flag.  This
1082 		 * will get overwritten by update_memslots anyway.
1083 		 */
1084 		slots = old_memslots;
1085 	}
1086 
1087 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1088 	if (r)
1089 		goto out_slots;
1090 
1091 	/* actual memory is freed via old in kvm_free_memslot below */
1092 	if (change == KVM_MR_DELETE) {
1093 		new.dirty_bitmap = NULL;
1094 		memset(&new.arch, 0, sizeof(new.arch));
1095 	}
1096 
1097 	update_memslots(slots, &new, change);
1098 	old_memslots = install_new_memslots(kvm, as_id, slots);
1099 
1100 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1101 
1102 	kvm_free_memslot(kvm, &old, &new);
1103 	kvfree(old_memslots);
1104 	return 0;
1105 
1106 out_slots:
1107 	kvfree(slots);
1108 out_free:
1109 	kvm_free_memslot(kvm, &new, &old);
1110 out:
1111 	return r;
1112 }
1113 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1114 
1115 int kvm_set_memory_region(struct kvm *kvm,
1116 			  const struct kvm_userspace_memory_region *mem)
1117 {
1118 	int r;
1119 
1120 	mutex_lock(&kvm->slots_lock);
1121 	r = __kvm_set_memory_region(kvm, mem);
1122 	mutex_unlock(&kvm->slots_lock);
1123 	return r;
1124 }
1125 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1126 
1127 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1128 					  struct kvm_userspace_memory_region *mem)
1129 {
1130 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1131 		return -EINVAL;
1132 
1133 	return kvm_set_memory_region(kvm, mem);
1134 }
1135 
1136 int kvm_get_dirty_log(struct kvm *kvm,
1137 			struct kvm_dirty_log *log, int *is_dirty)
1138 {
1139 	struct kvm_memslots *slots;
1140 	struct kvm_memory_slot *memslot;
1141 	int i, as_id, id;
1142 	unsigned long n;
1143 	unsigned long any = 0;
1144 
1145 	as_id = log->slot >> 16;
1146 	id = (u16)log->slot;
1147 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1148 		return -EINVAL;
1149 
1150 	slots = __kvm_memslots(kvm, as_id);
1151 	memslot = id_to_memslot(slots, id);
1152 	if (!memslot->dirty_bitmap)
1153 		return -ENOENT;
1154 
1155 	n = kvm_dirty_bitmap_bytes(memslot);
1156 
1157 	for (i = 0; !any && i < n/sizeof(long); ++i)
1158 		any = memslot->dirty_bitmap[i];
1159 
1160 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1161 		return -EFAULT;
1162 
1163 	if (any)
1164 		*is_dirty = 1;
1165 	return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1168 
1169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1170 /**
1171  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1172  *	and reenable dirty page tracking for the corresponding pages.
1173  * @kvm:	pointer to kvm instance
1174  * @log:	slot id and address to which we copy the log
1175  * @flush:	true if TLB flush is needed by caller
1176  *
1177  * We need to keep it in mind that VCPU threads can write to the bitmap
1178  * concurrently. So, to avoid losing track of dirty pages we keep the
1179  * following order:
1180  *
1181  *    1. Take a snapshot of the bit and clear it if needed.
1182  *    2. Write protect the corresponding page.
1183  *    3. Copy the snapshot to the userspace.
1184  *    4. Upon return caller flushes TLB's if needed.
1185  *
1186  * Between 2 and 4, the guest may write to the page using the remaining TLB
1187  * entry.  This is not a problem because the page is reported dirty using
1188  * the snapshot taken before and step 4 ensures that writes done after
1189  * exiting to userspace will be logged for the next call.
1190  *
1191  */
1192 int kvm_get_dirty_log_protect(struct kvm *kvm,
1193 			struct kvm_dirty_log *log, bool *flush)
1194 {
1195 	struct kvm_memslots *slots;
1196 	struct kvm_memory_slot *memslot;
1197 	int i, as_id, id;
1198 	unsigned long n;
1199 	unsigned long *dirty_bitmap;
1200 	unsigned long *dirty_bitmap_buffer;
1201 
1202 	as_id = log->slot >> 16;
1203 	id = (u16)log->slot;
1204 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1205 		return -EINVAL;
1206 
1207 	slots = __kvm_memslots(kvm, as_id);
1208 	memslot = id_to_memslot(slots, id);
1209 
1210 	dirty_bitmap = memslot->dirty_bitmap;
1211 	if (!dirty_bitmap)
1212 		return -ENOENT;
1213 
1214 	n = kvm_dirty_bitmap_bytes(memslot);
1215 	*flush = false;
1216 	if (kvm->manual_dirty_log_protect) {
1217 		/*
1218 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1219 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1220 		 * is some code duplication between this function and
1221 		 * kvm_get_dirty_log, but hopefully all architecture
1222 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1223 		 * can be eliminated.
1224 		 */
1225 		dirty_bitmap_buffer = dirty_bitmap;
1226 	} else {
1227 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1228 		memset(dirty_bitmap_buffer, 0, n);
1229 
1230 		spin_lock(&kvm->mmu_lock);
1231 		for (i = 0; i < n / sizeof(long); i++) {
1232 			unsigned long mask;
1233 			gfn_t offset;
1234 
1235 			if (!dirty_bitmap[i])
1236 				continue;
1237 
1238 			*flush = true;
1239 			mask = xchg(&dirty_bitmap[i], 0);
1240 			dirty_bitmap_buffer[i] = mask;
1241 
1242 			offset = i * BITS_PER_LONG;
1243 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1244 								offset, mask);
1245 		}
1246 		spin_unlock(&kvm->mmu_lock);
1247 	}
1248 
1249 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1250 		return -EFAULT;
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1254 
1255 /**
1256  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1257  *	and reenable dirty page tracking for the corresponding pages.
1258  * @kvm:	pointer to kvm instance
1259  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1260  * @flush:	true if TLB flush is needed by caller
1261  */
1262 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1263 				struct kvm_clear_dirty_log *log, bool *flush)
1264 {
1265 	struct kvm_memslots *slots;
1266 	struct kvm_memory_slot *memslot;
1267 	int as_id, id;
1268 	gfn_t offset;
1269 	unsigned long i, n;
1270 	unsigned long *dirty_bitmap;
1271 	unsigned long *dirty_bitmap_buffer;
1272 
1273 	as_id = log->slot >> 16;
1274 	id = (u16)log->slot;
1275 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1276 		return -EINVAL;
1277 
1278 	if (log->first_page & 63)
1279 		return -EINVAL;
1280 
1281 	slots = __kvm_memslots(kvm, as_id);
1282 	memslot = id_to_memslot(slots, id);
1283 
1284 	dirty_bitmap = memslot->dirty_bitmap;
1285 	if (!dirty_bitmap)
1286 		return -ENOENT;
1287 
1288 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1289 
1290 	if (log->first_page > memslot->npages ||
1291 	    log->num_pages > memslot->npages - log->first_page ||
1292 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1293 	    return -EINVAL;
1294 
1295 	*flush = false;
1296 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1297 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1298 		return -EFAULT;
1299 
1300 	spin_lock(&kvm->mmu_lock);
1301 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1302 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1303 	     i++, offset += BITS_PER_LONG) {
1304 		unsigned long mask = *dirty_bitmap_buffer++;
1305 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1306 		if (!mask)
1307 			continue;
1308 
1309 		mask &= atomic_long_fetch_andnot(mask, p);
1310 
1311 		/*
1312 		 * mask contains the bits that really have been cleared.  This
1313 		 * never includes any bits beyond the length of the memslot (if
1314 		 * the length is not aligned to 64 pages), therefore it is not
1315 		 * a problem if userspace sets them in log->dirty_bitmap.
1316 		*/
1317 		if (mask) {
1318 			*flush = true;
1319 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1320 								offset, mask);
1321 		}
1322 	}
1323 	spin_unlock(&kvm->mmu_lock);
1324 
1325 	return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1328 #endif
1329 
1330 bool kvm_largepages_enabled(void)
1331 {
1332 	return largepages_enabled;
1333 }
1334 
1335 void kvm_disable_largepages(void)
1336 {
1337 	largepages_enabled = false;
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1340 
1341 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1342 {
1343 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1344 }
1345 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1346 
1347 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1348 {
1349 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1350 }
1351 
1352 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1353 {
1354 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1355 
1356 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1357 	      memslot->flags & KVM_MEMSLOT_INVALID)
1358 		return false;
1359 
1360 	return true;
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1363 
1364 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1365 {
1366 	struct vm_area_struct *vma;
1367 	unsigned long addr, size;
1368 
1369 	size = PAGE_SIZE;
1370 
1371 	addr = gfn_to_hva(kvm, gfn);
1372 	if (kvm_is_error_hva(addr))
1373 		return PAGE_SIZE;
1374 
1375 	down_read(&current->mm->mmap_sem);
1376 	vma = find_vma(current->mm, addr);
1377 	if (!vma)
1378 		goto out;
1379 
1380 	size = vma_kernel_pagesize(vma);
1381 
1382 out:
1383 	up_read(&current->mm->mmap_sem);
1384 
1385 	return size;
1386 }
1387 
1388 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1389 {
1390 	return slot->flags & KVM_MEM_READONLY;
1391 }
1392 
1393 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1394 				       gfn_t *nr_pages, bool write)
1395 {
1396 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1397 		return KVM_HVA_ERR_BAD;
1398 
1399 	if (memslot_is_readonly(slot) && write)
1400 		return KVM_HVA_ERR_RO_BAD;
1401 
1402 	if (nr_pages)
1403 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1404 
1405 	return __gfn_to_hva_memslot(slot, gfn);
1406 }
1407 
1408 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1409 				     gfn_t *nr_pages)
1410 {
1411 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1412 }
1413 
1414 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1415 					gfn_t gfn)
1416 {
1417 	return gfn_to_hva_many(slot, gfn, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1420 
1421 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1422 {
1423 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1424 }
1425 EXPORT_SYMBOL_GPL(gfn_to_hva);
1426 
1427 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1428 {
1429 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1430 }
1431 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1432 
1433 /*
1434  * Return the hva of a @gfn and the R/W attribute if possible.
1435  *
1436  * @slot: the kvm_memory_slot which contains @gfn
1437  * @gfn: the gfn to be translated
1438  * @writable: used to return the read/write attribute of the @slot if the hva
1439  * is valid and @writable is not NULL
1440  */
1441 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1442 				      gfn_t gfn, bool *writable)
1443 {
1444 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1445 
1446 	if (!kvm_is_error_hva(hva) && writable)
1447 		*writable = !memslot_is_readonly(slot);
1448 
1449 	return hva;
1450 }
1451 
1452 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1453 {
1454 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1455 
1456 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1457 }
1458 
1459 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1460 {
1461 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1462 
1463 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1464 }
1465 
1466 static inline int check_user_page_hwpoison(unsigned long addr)
1467 {
1468 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1469 
1470 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1471 	return rc == -EHWPOISON;
1472 }
1473 
1474 /*
1475  * The fast path to get the writable pfn which will be stored in @pfn,
1476  * true indicates success, otherwise false is returned.  It's also the
1477  * only part that runs if we can are in atomic context.
1478  */
1479 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1480 			    bool *writable, kvm_pfn_t *pfn)
1481 {
1482 	struct page *page[1];
1483 	int npages;
1484 
1485 	/*
1486 	 * Fast pin a writable pfn only if it is a write fault request
1487 	 * or the caller allows to map a writable pfn for a read fault
1488 	 * request.
1489 	 */
1490 	if (!(write_fault || writable))
1491 		return false;
1492 
1493 	npages = __get_user_pages_fast(addr, 1, 1, page);
1494 	if (npages == 1) {
1495 		*pfn = page_to_pfn(page[0]);
1496 
1497 		if (writable)
1498 			*writable = true;
1499 		return true;
1500 	}
1501 
1502 	return false;
1503 }
1504 
1505 /*
1506  * The slow path to get the pfn of the specified host virtual address,
1507  * 1 indicates success, -errno is returned if error is detected.
1508  */
1509 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1510 			   bool *writable, kvm_pfn_t *pfn)
1511 {
1512 	unsigned int flags = FOLL_HWPOISON;
1513 	struct page *page;
1514 	int npages = 0;
1515 
1516 	might_sleep();
1517 
1518 	if (writable)
1519 		*writable = write_fault;
1520 
1521 	if (write_fault)
1522 		flags |= FOLL_WRITE;
1523 	if (async)
1524 		flags |= FOLL_NOWAIT;
1525 
1526 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1527 	if (npages != 1)
1528 		return npages;
1529 
1530 	/* map read fault as writable if possible */
1531 	if (unlikely(!write_fault) && writable) {
1532 		struct page *wpage;
1533 
1534 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1535 			*writable = true;
1536 			put_page(page);
1537 			page = wpage;
1538 		}
1539 	}
1540 	*pfn = page_to_pfn(page);
1541 	return npages;
1542 }
1543 
1544 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1545 {
1546 	if (unlikely(!(vma->vm_flags & VM_READ)))
1547 		return false;
1548 
1549 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1550 		return false;
1551 
1552 	return true;
1553 }
1554 
1555 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1556 			       unsigned long addr, bool *async,
1557 			       bool write_fault, bool *writable,
1558 			       kvm_pfn_t *p_pfn)
1559 {
1560 	unsigned long pfn;
1561 	int r;
1562 
1563 	r = follow_pfn(vma, addr, &pfn);
1564 	if (r) {
1565 		/*
1566 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1567 		 * not call the fault handler, so do it here.
1568 		 */
1569 		bool unlocked = false;
1570 		r = fixup_user_fault(current, current->mm, addr,
1571 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1572 				     &unlocked);
1573 		if (unlocked)
1574 			return -EAGAIN;
1575 		if (r)
1576 			return r;
1577 
1578 		r = follow_pfn(vma, addr, &pfn);
1579 		if (r)
1580 			return r;
1581 
1582 	}
1583 
1584 	if (writable)
1585 		*writable = true;
1586 
1587 	/*
1588 	 * Get a reference here because callers of *hva_to_pfn* and
1589 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1590 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1591 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1592 	 * simply do nothing for reserved pfns.
1593 	 *
1594 	 * Whoever called remap_pfn_range is also going to call e.g.
1595 	 * unmap_mapping_range before the underlying pages are freed,
1596 	 * causing a call to our MMU notifier.
1597 	 */
1598 	kvm_get_pfn(pfn);
1599 
1600 	*p_pfn = pfn;
1601 	return 0;
1602 }
1603 
1604 /*
1605  * Pin guest page in memory and return its pfn.
1606  * @addr: host virtual address which maps memory to the guest
1607  * @atomic: whether this function can sleep
1608  * @async: whether this function need to wait IO complete if the
1609  *         host page is not in the memory
1610  * @write_fault: whether we should get a writable host page
1611  * @writable: whether it allows to map a writable host page for !@write_fault
1612  *
1613  * The function will map a writable host page for these two cases:
1614  * 1): @write_fault = true
1615  * 2): @write_fault = false && @writable, @writable will tell the caller
1616  *     whether the mapping is writable.
1617  */
1618 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1619 			bool write_fault, bool *writable)
1620 {
1621 	struct vm_area_struct *vma;
1622 	kvm_pfn_t pfn = 0;
1623 	int npages, r;
1624 
1625 	/* we can do it either atomically or asynchronously, not both */
1626 	BUG_ON(atomic && async);
1627 
1628 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1629 		return pfn;
1630 
1631 	if (atomic)
1632 		return KVM_PFN_ERR_FAULT;
1633 
1634 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1635 	if (npages == 1)
1636 		return pfn;
1637 
1638 	down_read(&current->mm->mmap_sem);
1639 	if (npages == -EHWPOISON ||
1640 	      (!async && check_user_page_hwpoison(addr))) {
1641 		pfn = KVM_PFN_ERR_HWPOISON;
1642 		goto exit;
1643 	}
1644 
1645 retry:
1646 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1647 
1648 	if (vma == NULL)
1649 		pfn = KVM_PFN_ERR_FAULT;
1650 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1651 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1652 		if (r == -EAGAIN)
1653 			goto retry;
1654 		if (r < 0)
1655 			pfn = KVM_PFN_ERR_FAULT;
1656 	} else {
1657 		if (async && vma_is_valid(vma, write_fault))
1658 			*async = true;
1659 		pfn = KVM_PFN_ERR_FAULT;
1660 	}
1661 exit:
1662 	up_read(&current->mm->mmap_sem);
1663 	return pfn;
1664 }
1665 
1666 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1667 			       bool atomic, bool *async, bool write_fault,
1668 			       bool *writable)
1669 {
1670 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1671 
1672 	if (addr == KVM_HVA_ERR_RO_BAD) {
1673 		if (writable)
1674 			*writable = false;
1675 		return KVM_PFN_ERR_RO_FAULT;
1676 	}
1677 
1678 	if (kvm_is_error_hva(addr)) {
1679 		if (writable)
1680 			*writable = false;
1681 		return KVM_PFN_NOSLOT;
1682 	}
1683 
1684 	/* Do not map writable pfn in the readonly memslot. */
1685 	if (writable && memslot_is_readonly(slot)) {
1686 		*writable = false;
1687 		writable = NULL;
1688 	}
1689 
1690 	return hva_to_pfn(addr, atomic, async, write_fault,
1691 			  writable);
1692 }
1693 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1694 
1695 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1696 		      bool *writable)
1697 {
1698 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1699 				    write_fault, writable);
1700 }
1701 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1702 
1703 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1704 {
1705 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1706 }
1707 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1708 
1709 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1710 {
1711 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1712 }
1713 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1714 
1715 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1716 {
1717 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1718 }
1719 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1720 
1721 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1722 {
1723 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1726 
1727 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1728 {
1729 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1730 }
1731 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1732 
1733 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1734 {
1735 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1738 
1739 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1740 			    struct page **pages, int nr_pages)
1741 {
1742 	unsigned long addr;
1743 	gfn_t entry = 0;
1744 
1745 	addr = gfn_to_hva_many(slot, gfn, &entry);
1746 	if (kvm_is_error_hva(addr))
1747 		return -1;
1748 
1749 	if (entry < nr_pages)
1750 		return 0;
1751 
1752 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1753 }
1754 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1755 
1756 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1757 {
1758 	if (is_error_noslot_pfn(pfn))
1759 		return KVM_ERR_PTR_BAD_PAGE;
1760 
1761 	if (kvm_is_reserved_pfn(pfn)) {
1762 		WARN_ON(1);
1763 		return KVM_ERR_PTR_BAD_PAGE;
1764 	}
1765 
1766 	return pfn_to_page(pfn);
1767 }
1768 
1769 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1770 {
1771 	kvm_pfn_t pfn;
1772 
1773 	pfn = gfn_to_pfn(kvm, gfn);
1774 
1775 	return kvm_pfn_to_page(pfn);
1776 }
1777 EXPORT_SYMBOL_GPL(gfn_to_page);
1778 
1779 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1780 			 struct kvm_host_map *map)
1781 {
1782 	kvm_pfn_t pfn;
1783 	void *hva = NULL;
1784 	struct page *page = KVM_UNMAPPED_PAGE;
1785 
1786 	if (!map)
1787 		return -EINVAL;
1788 
1789 	pfn = gfn_to_pfn_memslot(slot, gfn);
1790 	if (is_error_noslot_pfn(pfn))
1791 		return -EINVAL;
1792 
1793 	if (pfn_valid(pfn)) {
1794 		page = pfn_to_page(pfn);
1795 		hva = kmap(page);
1796 #ifdef CONFIG_HAS_IOMEM
1797 	} else {
1798 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1799 #endif
1800 	}
1801 
1802 	if (!hva)
1803 		return -EFAULT;
1804 
1805 	map->page = page;
1806 	map->hva = hva;
1807 	map->pfn = pfn;
1808 	map->gfn = gfn;
1809 
1810 	return 0;
1811 }
1812 
1813 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1814 {
1815 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1818 
1819 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1820 		    bool dirty)
1821 {
1822 	if (!map)
1823 		return;
1824 
1825 	if (!map->hva)
1826 		return;
1827 
1828 	if (map->page != KVM_UNMAPPED_PAGE)
1829 		kunmap(map->page);
1830 #ifdef CONFIG_HAS_IOMEM
1831 	else
1832 		memunmap(map->hva);
1833 #endif
1834 
1835 	if (dirty) {
1836 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1837 		kvm_release_pfn_dirty(map->pfn);
1838 	} else {
1839 		kvm_release_pfn_clean(map->pfn);
1840 	}
1841 
1842 	map->hva = NULL;
1843 	map->page = NULL;
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1846 
1847 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1848 {
1849 	kvm_pfn_t pfn;
1850 
1851 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1852 
1853 	return kvm_pfn_to_page(pfn);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1856 
1857 void kvm_release_page_clean(struct page *page)
1858 {
1859 	WARN_ON(is_error_page(page));
1860 
1861 	kvm_release_pfn_clean(page_to_pfn(page));
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1864 
1865 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1866 {
1867 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1868 		put_page(pfn_to_page(pfn));
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1871 
1872 void kvm_release_page_dirty(struct page *page)
1873 {
1874 	WARN_ON(is_error_page(page));
1875 
1876 	kvm_release_pfn_dirty(page_to_pfn(page));
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1879 
1880 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1881 {
1882 	kvm_set_pfn_dirty(pfn);
1883 	kvm_release_pfn_clean(pfn);
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1886 
1887 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1888 {
1889 	if (!kvm_is_reserved_pfn(pfn)) {
1890 		struct page *page = pfn_to_page(pfn);
1891 
1892 		SetPageDirty(page);
1893 	}
1894 }
1895 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1896 
1897 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1898 {
1899 	if (!kvm_is_reserved_pfn(pfn))
1900 		mark_page_accessed(pfn_to_page(pfn));
1901 }
1902 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1903 
1904 void kvm_get_pfn(kvm_pfn_t pfn)
1905 {
1906 	if (!kvm_is_reserved_pfn(pfn))
1907 		get_page(pfn_to_page(pfn));
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1910 
1911 static int next_segment(unsigned long len, int offset)
1912 {
1913 	if (len > PAGE_SIZE - offset)
1914 		return PAGE_SIZE - offset;
1915 	else
1916 		return len;
1917 }
1918 
1919 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1920 				 void *data, int offset, int len)
1921 {
1922 	int r;
1923 	unsigned long addr;
1924 
1925 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1926 	if (kvm_is_error_hva(addr))
1927 		return -EFAULT;
1928 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1929 	if (r)
1930 		return -EFAULT;
1931 	return 0;
1932 }
1933 
1934 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1935 			int len)
1936 {
1937 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1938 
1939 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1942 
1943 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1944 			     int offset, int len)
1945 {
1946 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1947 
1948 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1951 
1952 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1953 {
1954 	gfn_t gfn = gpa >> PAGE_SHIFT;
1955 	int seg;
1956 	int offset = offset_in_page(gpa);
1957 	int ret;
1958 
1959 	while ((seg = next_segment(len, offset)) != 0) {
1960 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1961 		if (ret < 0)
1962 			return ret;
1963 		offset = 0;
1964 		len -= seg;
1965 		data += seg;
1966 		++gfn;
1967 	}
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_read_guest);
1971 
1972 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1973 {
1974 	gfn_t gfn = gpa >> PAGE_SHIFT;
1975 	int seg;
1976 	int offset = offset_in_page(gpa);
1977 	int ret;
1978 
1979 	while ((seg = next_segment(len, offset)) != 0) {
1980 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1981 		if (ret < 0)
1982 			return ret;
1983 		offset = 0;
1984 		len -= seg;
1985 		data += seg;
1986 		++gfn;
1987 	}
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1991 
1992 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1993 			           void *data, int offset, unsigned long len)
1994 {
1995 	int r;
1996 	unsigned long addr;
1997 
1998 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1999 	if (kvm_is_error_hva(addr))
2000 		return -EFAULT;
2001 	pagefault_disable();
2002 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2003 	pagefault_enable();
2004 	if (r)
2005 		return -EFAULT;
2006 	return 0;
2007 }
2008 
2009 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2010 			  unsigned long len)
2011 {
2012 	gfn_t gfn = gpa >> PAGE_SHIFT;
2013 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2014 	int offset = offset_in_page(gpa);
2015 
2016 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2019 
2020 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2021 			       void *data, unsigned long len)
2022 {
2023 	gfn_t gfn = gpa >> PAGE_SHIFT;
2024 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2025 	int offset = offset_in_page(gpa);
2026 
2027 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2030 
2031 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2032 			          const void *data, int offset, int len)
2033 {
2034 	int r;
2035 	unsigned long addr;
2036 
2037 	addr = gfn_to_hva_memslot(memslot, gfn);
2038 	if (kvm_is_error_hva(addr))
2039 		return -EFAULT;
2040 	r = __copy_to_user((void __user *)addr + offset, data, len);
2041 	if (r)
2042 		return -EFAULT;
2043 	mark_page_dirty_in_slot(memslot, gfn);
2044 	return 0;
2045 }
2046 
2047 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2048 			 const void *data, int offset, int len)
2049 {
2050 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2051 
2052 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2055 
2056 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2057 			      const void *data, int offset, int len)
2058 {
2059 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2060 
2061 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2064 
2065 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2066 		    unsigned long len)
2067 {
2068 	gfn_t gfn = gpa >> PAGE_SHIFT;
2069 	int seg;
2070 	int offset = offset_in_page(gpa);
2071 	int ret;
2072 
2073 	while ((seg = next_segment(len, offset)) != 0) {
2074 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2075 		if (ret < 0)
2076 			return ret;
2077 		offset = 0;
2078 		len -= seg;
2079 		data += seg;
2080 		++gfn;
2081 	}
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_write_guest);
2085 
2086 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2087 		         unsigned long len)
2088 {
2089 	gfn_t gfn = gpa >> PAGE_SHIFT;
2090 	int seg;
2091 	int offset = offset_in_page(gpa);
2092 	int ret;
2093 
2094 	while ((seg = next_segment(len, offset)) != 0) {
2095 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2096 		if (ret < 0)
2097 			return ret;
2098 		offset = 0;
2099 		len -= seg;
2100 		data += seg;
2101 		++gfn;
2102 	}
2103 	return 0;
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2106 
2107 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2108 				       struct gfn_to_hva_cache *ghc,
2109 				       gpa_t gpa, unsigned long len)
2110 {
2111 	int offset = offset_in_page(gpa);
2112 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2113 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2114 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2115 	gfn_t nr_pages_avail;
2116 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2117 
2118 	ghc->gpa = gpa;
2119 	ghc->generation = slots->generation;
2120 	ghc->len = len;
2121 	ghc->hva = KVM_HVA_ERR_BAD;
2122 
2123 	/*
2124 	 * If the requested region crosses two memslots, we still
2125 	 * verify that the entire region is valid here.
2126 	 */
2127 	while (!r && start_gfn <= end_gfn) {
2128 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2129 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2130 					   &nr_pages_avail);
2131 		if (kvm_is_error_hva(ghc->hva))
2132 			r = -EFAULT;
2133 		start_gfn += nr_pages_avail;
2134 	}
2135 
2136 	/* Use the slow path for cross page reads and writes. */
2137 	if (!r && nr_pages_needed == 1)
2138 		ghc->hva += offset;
2139 	else
2140 		ghc->memslot = NULL;
2141 
2142 	return r;
2143 }
2144 
2145 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2146 			      gpa_t gpa, unsigned long len)
2147 {
2148 	struct kvm_memslots *slots = kvm_memslots(kvm);
2149 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2152 
2153 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2154 				  void *data, unsigned int offset,
2155 				  unsigned long len)
2156 {
2157 	struct kvm_memslots *slots = kvm_memslots(kvm);
2158 	int r;
2159 	gpa_t gpa = ghc->gpa + offset;
2160 
2161 	BUG_ON(len + offset > ghc->len);
2162 
2163 	if (slots->generation != ghc->generation)
2164 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165 
2166 	if (unlikely(!ghc->memslot))
2167 		return kvm_write_guest(kvm, gpa, data, len);
2168 
2169 	if (kvm_is_error_hva(ghc->hva))
2170 		return -EFAULT;
2171 
2172 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2173 	if (r)
2174 		return -EFAULT;
2175 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2176 
2177 	return 0;
2178 }
2179 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2180 
2181 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2182 			   void *data, unsigned long len)
2183 {
2184 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2187 
2188 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2189 			   void *data, unsigned long len)
2190 {
2191 	struct kvm_memslots *slots = kvm_memslots(kvm);
2192 	int r;
2193 
2194 	BUG_ON(len > ghc->len);
2195 
2196 	if (slots->generation != ghc->generation)
2197 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2198 
2199 	if (unlikely(!ghc->memslot))
2200 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2201 
2202 	if (kvm_is_error_hva(ghc->hva))
2203 		return -EFAULT;
2204 
2205 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2206 	if (r)
2207 		return -EFAULT;
2208 
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2212 
2213 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2214 {
2215 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2216 
2217 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2220 
2221 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2222 {
2223 	gfn_t gfn = gpa >> PAGE_SHIFT;
2224 	int seg;
2225 	int offset = offset_in_page(gpa);
2226 	int ret;
2227 
2228 	while ((seg = next_segment(len, offset)) != 0) {
2229 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2230 		if (ret < 0)
2231 			return ret;
2232 		offset = 0;
2233 		len -= seg;
2234 		++gfn;
2235 	}
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2239 
2240 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2241 				    gfn_t gfn)
2242 {
2243 	if (memslot && memslot->dirty_bitmap) {
2244 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2245 
2246 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2247 	}
2248 }
2249 
2250 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2251 {
2252 	struct kvm_memory_slot *memslot;
2253 
2254 	memslot = gfn_to_memslot(kvm, gfn);
2255 	mark_page_dirty_in_slot(memslot, gfn);
2256 }
2257 EXPORT_SYMBOL_GPL(mark_page_dirty);
2258 
2259 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2260 {
2261 	struct kvm_memory_slot *memslot;
2262 
2263 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2264 	mark_page_dirty_in_slot(memslot, gfn);
2265 }
2266 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2267 
2268 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2269 {
2270 	if (!vcpu->sigset_active)
2271 		return;
2272 
2273 	/*
2274 	 * This does a lockless modification of ->real_blocked, which is fine
2275 	 * because, only current can change ->real_blocked and all readers of
2276 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2277 	 * of ->blocked.
2278 	 */
2279 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2280 }
2281 
2282 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2283 {
2284 	if (!vcpu->sigset_active)
2285 		return;
2286 
2287 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2288 	sigemptyset(&current->real_blocked);
2289 }
2290 
2291 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2292 {
2293 	unsigned int old, val, grow, grow_start;
2294 
2295 	old = val = vcpu->halt_poll_ns;
2296 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2297 	grow = READ_ONCE(halt_poll_ns_grow);
2298 	if (!grow)
2299 		goto out;
2300 
2301 	val *= grow;
2302 	if (val < grow_start)
2303 		val = grow_start;
2304 
2305 	if (val > halt_poll_ns)
2306 		val = halt_poll_ns;
2307 
2308 	vcpu->halt_poll_ns = val;
2309 out:
2310 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2311 }
2312 
2313 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2314 {
2315 	unsigned int old, val, shrink;
2316 
2317 	old = val = vcpu->halt_poll_ns;
2318 	shrink = READ_ONCE(halt_poll_ns_shrink);
2319 	if (shrink == 0)
2320 		val = 0;
2321 	else
2322 		val /= shrink;
2323 
2324 	vcpu->halt_poll_ns = val;
2325 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2326 }
2327 
2328 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2329 {
2330 	int ret = -EINTR;
2331 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2332 
2333 	if (kvm_arch_vcpu_runnable(vcpu)) {
2334 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2335 		goto out;
2336 	}
2337 	if (kvm_cpu_has_pending_timer(vcpu))
2338 		goto out;
2339 	if (signal_pending(current))
2340 		goto out;
2341 
2342 	ret = 0;
2343 out:
2344 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2345 	return ret;
2346 }
2347 
2348 /*
2349  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2350  */
2351 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2352 {
2353 	ktime_t start, cur;
2354 	DECLARE_SWAITQUEUE(wait);
2355 	bool waited = false;
2356 	u64 block_ns;
2357 
2358 	kvm_arch_vcpu_blocking(vcpu);
2359 
2360 	start = cur = ktime_get();
2361 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2362 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2363 
2364 		++vcpu->stat.halt_attempted_poll;
2365 		do {
2366 			/*
2367 			 * This sets KVM_REQ_UNHALT if an interrupt
2368 			 * arrives.
2369 			 */
2370 			if (kvm_vcpu_check_block(vcpu) < 0) {
2371 				++vcpu->stat.halt_successful_poll;
2372 				if (!vcpu_valid_wakeup(vcpu))
2373 					++vcpu->stat.halt_poll_invalid;
2374 				goto out;
2375 			}
2376 			cur = ktime_get();
2377 		} while (single_task_running() && ktime_before(cur, stop));
2378 	}
2379 
2380 	for (;;) {
2381 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2382 
2383 		if (kvm_vcpu_check_block(vcpu) < 0)
2384 			break;
2385 
2386 		waited = true;
2387 		schedule();
2388 	}
2389 
2390 	finish_swait(&vcpu->wq, &wait);
2391 	cur = ktime_get();
2392 out:
2393 	kvm_arch_vcpu_unblocking(vcpu);
2394 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2395 
2396 	if (!kvm_arch_no_poll(vcpu)) {
2397 		if (!vcpu_valid_wakeup(vcpu)) {
2398 			shrink_halt_poll_ns(vcpu);
2399 		} else if (halt_poll_ns) {
2400 			if (block_ns <= vcpu->halt_poll_ns)
2401 				;
2402 			/* we had a long block, shrink polling */
2403 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2404 				shrink_halt_poll_ns(vcpu);
2405 			/* we had a short halt and our poll time is too small */
2406 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2407 				block_ns < halt_poll_ns)
2408 				grow_halt_poll_ns(vcpu);
2409 		} else {
2410 			vcpu->halt_poll_ns = 0;
2411 		}
2412 	}
2413 
2414 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2415 	kvm_arch_vcpu_block_finish(vcpu);
2416 }
2417 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2418 
2419 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2420 {
2421 	struct swait_queue_head *wqp;
2422 
2423 	wqp = kvm_arch_vcpu_wq(vcpu);
2424 	if (swq_has_sleeper(wqp)) {
2425 		swake_up_one(wqp);
2426 		WRITE_ONCE(vcpu->ready, true);
2427 		++vcpu->stat.halt_wakeup;
2428 		return true;
2429 	}
2430 
2431 	return false;
2432 }
2433 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2434 
2435 #ifndef CONFIG_S390
2436 /*
2437  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2438  */
2439 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2440 {
2441 	int me;
2442 	int cpu = vcpu->cpu;
2443 
2444 	if (kvm_vcpu_wake_up(vcpu))
2445 		return;
2446 
2447 	me = get_cpu();
2448 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2449 		if (kvm_arch_vcpu_should_kick(vcpu))
2450 			smp_send_reschedule(cpu);
2451 	put_cpu();
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2454 #endif /* !CONFIG_S390 */
2455 
2456 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2457 {
2458 	struct pid *pid;
2459 	struct task_struct *task = NULL;
2460 	int ret = 0;
2461 
2462 	rcu_read_lock();
2463 	pid = rcu_dereference(target->pid);
2464 	if (pid)
2465 		task = get_pid_task(pid, PIDTYPE_PID);
2466 	rcu_read_unlock();
2467 	if (!task)
2468 		return ret;
2469 	ret = yield_to(task, 1);
2470 	put_task_struct(task);
2471 
2472 	return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2475 
2476 /*
2477  * Helper that checks whether a VCPU is eligible for directed yield.
2478  * Most eligible candidate to yield is decided by following heuristics:
2479  *
2480  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2481  *  (preempted lock holder), indicated by @in_spin_loop.
2482  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2483  *
2484  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2485  *  chance last time (mostly it has become eligible now since we have probably
2486  *  yielded to lockholder in last iteration. This is done by toggling
2487  *  @dy_eligible each time a VCPU checked for eligibility.)
2488  *
2489  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2490  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2491  *  burning. Giving priority for a potential lock-holder increases lock
2492  *  progress.
2493  *
2494  *  Since algorithm is based on heuristics, accessing another VCPU data without
2495  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2496  *  and continue with next VCPU and so on.
2497  */
2498 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2499 {
2500 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2501 	bool eligible;
2502 
2503 	eligible = !vcpu->spin_loop.in_spin_loop ||
2504 		    vcpu->spin_loop.dy_eligible;
2505 
2506 	if (vcpu->spin_loop.in_spin_loop)
2507 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2508 
2509 	return eligible;
2510 #else
2511 	return true;
2512 #endif
2513 }
2514 
2515 /*
2516  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2517  * a vcpu_load/vcpu_put pair.  However, for most architectures
2518  * kvm_arch_vcpu_runnable does not require vcpu_load.
2519  */
2520 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2521 {
2522 	return kvm_arch_vcpu_runnable(vcpu);
2523 }
2524 
2525 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2526 {
2527 	if (kvm_arch_dy_runnable(vcpu))
2528 		return true;
2529 
2530 #ifdef CONFIG_KVM_ASYNC_PF
2531 	if (!list_empty_careful(&vcpu->async_pf.done))
2532 		return true;
2533 #endif
2534 
2535 	return false;
2536 }
2537 
2538 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2539 {
2540 	struct kvm *kvm = me->kvm;
2541 	struct kvm_vcpu *vcpu;
2542 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2543 	int yielded = 0;
2544 	int try = 3;
2545 	int pass;
2546 	int i;
2547 
2548 	kvm_vcpu_set_in_spin_loop(me, true);
2549 	/*
2550 	 * We boost the priority of a VCPU that is runnable but not
2551 	 * currently running, because it got preempted by something
2552 	 * else and called schedule in __vcpu_run.  Hopefully that
2553 	 * VCPU is holding the lock that we need and will release it.
2554 	 * We approximate round-robin by starting at the last boosted VCPU.
2555 	 */
2556 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2557 		kvm_for_each_vcpu(i, vcpu, kvm) {
2558 			if (!pass && i <= last_boosted_vcpu) {
2559 				i = last_boosted_vcpu;
2560 				continue;
2561 			} else if (pass && i > last_boosted_vcpu)
2562 				break;
2563 			if (!READ_ONCE(vcpu->ready))
2564 				continue;
2565 			if (vcpu == me)
2566 				continue;
2567 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2568 				continue;
2569 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2570 				!kvm_arch_vcpu_in_kernel(vcpu))
2571 				continue;
2572 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2573 				continue;
2574 
2575 			yielded = kvm_vcpu_yield_to(vcpu);
2576 			if (yielded > 0) {
2577 				kvm->last_boosted_vcpu = i;
2578 				break;
2579 			} else if (yielded < 0) {
2580 				try--;
2581 				if (!try)
2582 					break;
2583 			}
2584 		}
2585 	}
2586 	kvm_vcpu_set_in_spin_loop(me, false);
2587 
2588 	/* Ensure vcpu is not eligible during next spinloop */
2589 	kvm_vcpu_set_dy_eligible(me, false);
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2592 
2593 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2594 {
2595 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2596 	struct page *page;
2597 
2598 	if (vmf->pgoff == 0)
2599 		page = virt_to_page(vcpu->run);
2600 #ifdef CONFIG_X86
2601 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2602 		page = virt_to_page(vcpu->arch.pio_data);
2603 #endif
2604 #ifdef CONFIG_KVM_MMIO
2605 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2606 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2607 #endif
2608 	else
2609 		return kvm_arch_vcpu_fault(vcpu, vmf);
2610 	get_page(page);
2611 	vmf->page = page;
2612 	return 0;
2613 }
2614 
2615 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2616 	.fault = kvm_vcpu_fault,
2617 };
2618 
2619 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2620 {
2621 	vma->vm_ops = &kvm_vcpu_vm_ops;
2622 	return 0;
2623 }
2624 
2625 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2626 {
2627 	struct kvm_vcpu *vcpu = filp->private_data;
2628 
2629 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2630 	kvm_put_kvm(vcpu->kvm);
2631 	return 0;
2632 }
2633 
2634 static struct file_operations kvm_vcpu_fops = {
2635 	.release        = kvm_vcpu_release,
2636 	.unlocked_ioctl = kvm_vcpu_ioctl,
2637 	.mmap           = kvm_vcpu_mmap,
2638 	.llseek		= noop_llseek,
2639 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2640 };
2641 
2642 /*
2643  * Allocates an inode for the vcpu.
2644  */
2645 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2646 {
2647 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2648 
2649 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2650 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2651 }
2652 
2653 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2654 {
2655 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2656 	char dir_name[ITOA_MAX_LEN * 2];
2657 
2658 	if (!debugfs_initialized())
2659 		return;
2660 
2661 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2662 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2663 						  vcpu->kvm->debugfs_dentry);
2664 
2665 	kvm_arch_create_vcpu_debugfs(vcpu);
2666 #endif
2667 }
2668 
2669 /*
2670  * Creates some virtual cpus.  Good luck creating more than one.
2671  */
2672 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2673 {
2674 	int r;
2675 	struct kvm_vcpu *vcpu;
2676 
2677 	if (id >= KVM_MAX_VCPU_ID)
2678 		return -EINVAL;
2679 
2680 	mutex_lock(&kvm->lock);
2681 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2682 		mutex_unlock(&kvm->lock);
2683 		return -EINVAL;
2684 	}
2685 
2686 	kvm->created_vcpus++;
2687 	mutex_unlock(&kvm->lock);
2688 
2689 	vcpu = kvm_arch_vcpu_create(kvm, id);
2690 	if (IS_ERR(vcpu)) {
2691 		r = PTR_ERR(vcpu);
2692 		goto vcpu_decrement;
2693 	}
2694 
2695 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2696 
2697 	r = kvm_arch_vcpu_setup(vcpu);
2698 	if (r)
2699 		goto vcpu_destroy;
2700 
2701 	kvm_create_vcpu_debugfs(vcpu);
2702 
2703 	mutex_lock(&kvm->lock);
2704 	if (kvm_get_vcpu_by_id(kvm, id)) {
2705 		r = -EEXIST;
2706 		goto unlock_vcpu_destroy;
2707 	}
2708 
2709 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2710 
2711 	/* Now it's all set up, let userspace reach it */
2712 	kvm_get_kvm(kvm);
2713 	r = create_vcpu_fd(vcpu);
2714 	if (r < 0) {
2715 		kvm_put_kvm(kvm);
2716 		goto unlock_vcpu_destroy;
2717 	}
2718 
2719 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2720 
2721 	/*
2722 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2723 	 * before kvm->online_vcpu's incremented value.
2724 	 */
2725 	smp_wmb();
2726 	atomic_inc(&kvm->online_vcpus);
2727 
2728 	mutex_unlock(&kvm->lock);
2729 	kvm_arch_vcpu_postcreate(vcpu);
2730 	return r;
2731 
2732 unlock_vcpu_destroy:
2733 	mutex_unlock(&kvm->lock);
2734 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2735 vcpu_destroy:
2736 	kvm_arch_vcpu_destroy(vcpu);
2737 vcpu_decrement:
2738 	mutex_lock(&kvm->lock);
2739 	kvm->created_vcpus--;
2740 	mutex_unlock(&kvm->lock);
2741 	return r;
2742 }
2743 
2744 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2745 {
2746 	if (sigset) {
2747 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2748 		vcpu->sigset_active = 1;
2749 		vcpu->sigset = *sigset;
2750 	} else
2751 		vcpu->sigset_active = 0;
2752 	return 0;
2753 }
2754 
2755 static long kvm_vcpu_ioctl(struct file *filp,
2756 			   unsigned int ioctl, unsigned long arg)
2757 {
2758 	struct kvm_vcpu *vcpu = filp->private_data;
2759 	void __user *argp = (void __user *)arg;
2760 	int r;
2761 	struct kvm_fpu *fpu = NULL;
2762 	struct kvm_sregs *kvm_sregs = NULL;
2763 
2764 	if (vcpu->kvm->mm != current->mm)
2765 		return -EIO;
2766 
2767 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2768 		return -EINVAL;
2769 
2770 	/*
2771 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2772 	 * execution; mutex_lock() would break them.
2773 	 */
2774 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2775 	if (r != -ENOIOCTLCMD)
2776 		return r;
2777 
2778 	if (mutex_lock_killable(&vcpu->mutex))
2779 		return -EINTR;
2780 	switch (ioctl) {
2781 	case KVM_RUN: {
2782 		struct pid *oldpid;
2783 		r = -EINVAL;
2784 		if (arg)
2785 			goto out;
2786 		oldpid = rcu_access_pointer(vcpu->pid);
2787 		if (unlikely(oldpid != task_pid(current))) {
2788 			/* The thread running this VCPU changed. */
2789 			struct pid *newpid;
2790 
2791 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2792 			if (r)
2793 				break;
2794 
2795 			newpid = get_task_pid(current, PIDTYPE_PID);
2796 			rcu_assign_pointer(vcpu->pid, newpid);
2797 			if (oldpid)
2798 				synchronize_rcu();
2799 			put_pid(oldpid);
2800 		}
2801 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2802 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2803 		break;
2804 	}
2805 	case KVM_GET_REGS: {
2806 		struct kvm_regs *kvm_regs;
2807 
2808 		r = -ENOMEM;
2809 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2810 		if (!kvm_regs)
2811 			goto out;
2812 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2813 		if (r)
2814 			goto out_free1;
2815 		r = -EFAULT;
2816 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2817 			goto out_free1;
2818 		r = 0;
2819 out_free1:
2820 		kfree(kvm_regs);
2821 		break;
2822 	}
2823 	case KVM_SET_REGS: {
2824 		struct kvm_regs *kvm_regs;
2825 
2826 		r = -ENOMEM;
2827 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2828 		if (IS_ERR(kvm_regs)) {
2829 			r = PTR_ERR(kvm_regs);
2830 			goto out;
2831 		}
2832 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2833 		kfree(kvm_regs);
2834 		break;
2835 	}
2836 	case KVM_GET_SREGS: {
2837 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2838 				    GFP_KERNEL_ACCOUNT);
2839 		r = -ENOMEM;
2840 		if (!kvm_sregs)
2841 			goto out;
2842 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2843 		if (r)
2844 			goto out;
2845 		r = -EFAULT;
2846 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2847 			goto out;
2848 		r = 0;
2849 		break;
2850 	}
2851 	case KVM_SET_SREGS: {
2852 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2853 		if (IS_ERR(kvm_sregs)) {
2854 			r = PTR_ERR(kvm_sregs);
2855 			kvm_sregs = NULL;
2856 			goto out;
2857 		}
2858 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2859 		break;
2860 	}
2861 	case KVM_GET_MP_STATE: {
2862 		struct kvm_mp_state mp_state;
2863 
2864 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2865 		if (r)
2866 			goto out;
2867 		r = -EFAULT;
2868 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2869 			goto out;
2870 		r = 0;
2871 		break;
2872 	}
2873 	case KVM_SET_MP_STATE: {
2874 		struct kvm_mp_state mp_state;
2875 
2876 		r = -EFAULT;
2877 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2878 			goto out;
2879 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2880 		break;
2881 	}
2882 	case KVM_TRANSLATE: {
2883 		struct kvm_translation tr;
2884 
2885 		r = -EFAULT;
2886 		if (copy_from_user(&tr, argp, sizeof(tr)))
2887 			goto out;
2888 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2889 		if (r)
2890 			goto out;
2891 		r = -EFAULT;
2892 		if (copy_to_user(argp, &tr, sizeof(tr)))
2893 			goto out;
2894 		r = 0;
2895 		break;
2896 	}
2897 	case KVM_SET_GUEST_DEBUG: {
2898 		struct kvm_guest_debug dbg;
2899 
2900 		r = -EFAULT;
2901 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2902 			goto out;
2903 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2904 		break;
2905 	}
2906 	case KVM_SET_SIGNAL_MASK: {
2907 		struct kvm_signal_mask __user *sigmask_arg = argp;
2908 		struct kvm_signal_mask kvm_sigmask;
2909 		sigset_t sigset, *p;
2910 
2911 		p = NULL;
2912 		if (argp) {
2913 			r = -EFAULT;
2914 			if (copy_from_user(&kvm_sigmask, argp,
2915 					   sizeof(kvm_sigmask)))
2916 				goto out;
2917 			r = -EINVAL;
2918 			if (kvm_sigmask.len != sizeof(sigset))
2919 				goto out;
2920 			r = -EFAULT;
2921 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2922 					   sizeof(sigset)))
2923 				goto out;
2924 			p = &sigset;
2925 		}
2926 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2927 		break;
2928 	}
2929 	case KVM_GET_FPU: {
2930 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2931 		r = -ENOMEM;
2932 		if (!fpu)
2933 			goto out;
2934 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2935 		if (r)
2936 			goto out;
2937 		r = -EFAULT;
2938 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2939 			goto out;
2940 		r = 0;
2941 		break;
2942 	}
2943 	case KVM_SET_FPU: {
2944 		fpu = memdup_user(argp, sizeof(*fpu));
2945 		if (IS_ERR(fpu)) {
2946 			r = PTR_ERR(fpu);
2947 			fpu = NULL;
2948 			goto out;
2949 		}
2950 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2951 		break;
2952 	}
2953 	default:
2954 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2955 	}
2956 out:
2957 	mutex_unlock(&vcpu->mutex);
2958 	kfree(fpu);
2959 	kfree(kvm_sregs);
2960 	return r;
2961 }
2962 
2963 #ifdef CONFIG_KVM_COMPAT
2964 static long kvm_vcpu_compat_ioctl(struct file *filp,
2965 				  unsigned int ioctl, unsigned long arg)
2966 {
2967 	struct kvm_vcpu *vcpu = filp->private_data;
2968 	void __user *argp = compat_ptr(arg);
2969 	int r;
2970 
2971 	if (vcpu->kvm->mm != current->mm)
2972 		return -EIO;
2973 
2974 	switch (ioctl) {
2975 	case KVM_SET_SIGNAL_MASK: {
2976 		struct kvm_signal_mask __user *sigmask_arg = argp;
2977 		struct kvm_signal_mask kvm_sigmask;
2978 		sigset_t sigset;
2979 
2980 		if (argp) {
2981 			r = -EFAULT;
2982 			if (copy_from_user(&kvm_sigmask, argp,
2983 					   sizeof(kvm_sigmask)))
2984 				goto out;
2985 			r = -EINVAL;
2986 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2987 				goto out;
2988 			r = -EFAULT;
2989 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2990 				goto out;
2991 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2992 		} else
2993 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2994 		break;
2995 	}
2996 	default:
2997 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2998 	}
2999 
3000 out:
3001 	return r;
3002 }
3003 #endif
3004 
3005 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3006 {
3007 	struct kvm_device *dev = filp->private_data;
3008 
3009 	if (dev->ops->mmap)
3010 		return dev->ops->mmap(dev, vma);
3011 
3012 	return -ENODEV;
3013 }
3014 
3015 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3016 				 int (*accessor)(struct kvm_device *dev,
3017 						 struct kvm_device_attr *attr),
3018 				 unsigned long arg)
3019 {
3020 	struct kvm_device_attr attr;
3021 
3022 	if (!accessor)
3023 		return -EPERM;
3024 
3025 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3026 		return -EFAULT;
3027 
3028 	return accessor(dev, &attr);
3029 }
3030 
3031 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3032 			     unsigned long arg)
3033 {
3034 	struct kvm_device *dev = filp->private_data;
3035 
3036 	if (dev->kvm->mm != current->mm)
3037 		return -EIO;
3038 
3039 	switch (ioctl) {
3040 	case KVM_SET_DEVICE_ATTR:
3041 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3042 	case KVM_GET_DEVICE_ATTR:
3043 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3044 	case KVM_HAS_DEVICE_ATTR:
3045 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3046 	default:
3047 		if (dev->ops->ioctl)
3048 			return dev->ops->ioctl(dev, ioctl, arg);
3049 
3050 		return -ENOTTY;
3051 	}
3052 }
3053 
3054 static int kvm_device_release(struct inode *inode, struct file *filp)
3055 {
3056 	struct kvm_device *dev = filp->private_data;
3057 	struct kvm *kvm = dev->kvm;
3058 
3059 	if (dev->ops->release) {
3060 		mutex_lock(&kvm->lock);
3061 		list_del(&dev->vm_node);
3062 		dev->ops->release(dev);
3063 		mutex_unlock(&kvm->lock);
3064 	}
3065 
3066 	kvm_put_kvm(kvm);
3067 	return 0;
3068 }
3069 
3070 static const struct file_operations kvm_device_fops = {
3071 	.unlocked_ioctl = kvm_device_ioctl,
3072 	.release = kvm_device_release,
3073 	KVM_COMPAT(kvm_device_ioctl),
3074 	.mmap = kvm_device_mmap,
3075 };
3076 
3077 struct kvm_device *kvm_device_from_filp(struct file *filp)
3078 {
3079 	if (filp->f_op != &kvm_device_fops)
3080 		return NULL;
3081 
3082 	return filp->private_data;
3083 }
3084 
3085 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3086 #ifdef CONFIG_KVM_MPIC
3087 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3088 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3089 #endif
3090 };
3091 
3092 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3093 {
3094 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3095 		return -ENOSPC;
3096 
3097 	if (kvm_device_ops_table[type] != NULL)
3098 		return -EEXIST;
3099 
3100 	kvm_device_ops_table[type] = ops;
3101 	return 0;
3102 }
3103 
3104 void kvm_unregister_device_ops(u32 type)
3105 {
3106 	if (kvm_device_ops_table[type] != NULL)
3107 		kvm_device_ops_table[type] = NULL;
3108 }
3109 
3110 static int kvm_ioctl_create_device(struct kvm *kvm,
3111 				   struct kvm_create_device *cd)
3112 {
3113 	struct kvm_device_ops *ops = NULL;
3114 	struct kvm_device *dev;
3115 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3116 	int type;
3117 	int ret;
3118 
3119 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3120 		return -ENODEV;
3121 
3122 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3123 	ops = kvm_device_ops_table[type];
3124 	if (ops == NULL)
3125 		return -ENODEV;
3126 
3127 	if (test)
3128 		return 0;
3129 
3130 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3131 	if (!dev)
3132 		return -ENOMEM;
3133 
3134 	dev->ops = ops;
3135 	dev->kvm = kvm;
3136 
3137 	mutex_lock(&kvm->lock);
3138 	ret = ops->create(dev, type);
3139 	if (ret < 0) {
3140 		mutex_unlock(&kvm->lock);
3141 		kfree(dev);
3142 		return ret;
3143 	}
3144 	list_add(&dev->vm_node, &kvm->devices);
3145 	mutex_unlock(&kvm->lock);
3146 
3147 	if (ops->init)
3148 		ops->init(dev);
3149 
3150 	kvm_get_kvm(kvm);
3151 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3152 	if (ret < 0) {
3153 		kvm_put_kvm(kvm);
3154 		mutex_lock(&kvm->lock);
3155 		list_del(&dev->vm_node);
3156 		mutex_unlock(&kvm->lock);
3157 		ops->destroy(dev);
3158 		return ret;
3159 	}
3160 
3161 	cd->fd = ret;
3162 	return 0;
3163 }
3164 
3165 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3166 {
3167 	switch (arg) {
3168 	case KVM_CAP_USER_MEMORY:
3169 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3170 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3171 	case KVM_CAP_INTERNAL_ERROR_DATA:
3172 #ifdef CONFIG_HAVE_KVM_MSI
3173 	case KVM_CAP_SIGNAL_MSI:
3174 #endif
3175 #ifdef CONFIG_HAVE_KVM_IRQFD
3176 	case KVM_CAP_IRQFD:
3177 	case KVM_CAP_IRQFD_RESAMPLE:
3178 #endif
3179 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3180 	case KVM_CAP_CHECK_EXTENSION_VM:
3181 	case KVM_CAP_ENABLE_CAP_VM:
3182 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3183 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3184 #endif
3185 		return 1;
3186 #ifdef CONFIG_KVM_MMIO
3187 	case KVM_CAP_COALESCED_MMIO:
3188 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3189 	case KVM_CAP_COALESCED_PIO:
3190 		return 1;
3191 #endif
3192 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3193 	case KVM_CAP_IRQ_ROUTING:
3194 		return KVM_MAX_IRQ_ROUTES;
3195 #endif
3196 #if KVM_ADDRESS_SPACE_NUM > 1
3197 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3198 		return KVM_ADDRESS_SPACE_NUM;
3199 #endif
3200 	case KVM_CAP_NR_MEMSLOTS:
3201 		return KVM_USER_MEM_SLOTS;
3202 	default:
3203 		break;
3204 	}
3205 	return kvm_vm_ioctl_check_extension(kvm, arg);
3206 }
3207 
3208 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3209 						  struct kvm_enable_cap *cap)
3210 {
3211 	return -EINVAL;
3212 }
3213 
3214 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3215 					   struct kvm_enable_cap *cap)
3216 {
3217 	switch (cap->cap) {
3218 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3219 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3220 		if (cap->flags || (cap->args[0] & ~1))
3221 			return -EINVAL;
3222 		kvm->manual_dirty_log_protect = cap->args[0];
3223 		return 0;
3224 #endif
3225 	default:
3226 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3227 	}
3228 }
3229 
3230 static long kvm_vm_ioctl(struct file *filp,
3231 			   unsigned int ioctl, unsigned long arg)
3232 {
3233 	struct kvm *kvm = filp->private_data;
3234 	void __user *argp = (void __user *)arg;
3235 	int r;
3236 
3237 	if (kvm->mm != current->mm)
3238 		return -EIO;
3239 	switch (ioctl) {
3240 	case KVM_CREATE_VCPU:
3241 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3242 		break;
3243 	case KVM_ENABLE_CAP: {
3244 		struct kvm_enable_cap cap;
3245 
3246 		r = -EFAULT;
3247 		if (copy_from_user(&cap, argp, sizeof(cap)))
3248 			goto out;
3249 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3250 		break;
3251 	}
3252 	case KVM_SET_USER_MEMORY_REGION: {
3253 		struct kvm_userspace_memory_region kvm_userspace_mem;
3254 
3255 		r = -EFAULT;
3256 		if (copy_from_user(&kvm_userspace_mem, argp,
3257 						sizeof(kvm_userspace_mem)))
3258 			goto out;
3259 
3260 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3261 		break;
3262 	}
3263 	case KVM_GET_DIRTY_LOG: {
3264 		struct kvm_dirty_log log;
3265 
3266 		r = -EFAULT;
3267 		if (copy_from_user(&log, argp, sizeof(log)))
3268 			goto out;
3269 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3270 		break;
3271 	}
3272 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3273 	case KVM_CLEAR_DIRTY_LOG: {
3274 		struct kvm_clear_dirty_log log;
3275 
3276 		r = -EFAULT;
3277 		if (copy_from_user(&log, argp, sizeof(log)))
3278 			goto out;
3279 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3280 		break;
3281 	}
3282 #endif
3283 #ifdef CONFIG_KVM_MMIO
3284 	case KVM_REGISTER_COALESCED_MMIO: {
3285 		struct kvm_coalesced_mmio_zone zone;
3286 
3287 		r = -EFAULT;
3288 		if (copy_from_user(&zone, argp, sizeof(zone)))
3289 			goto out;
3290 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3291 		break;
3292 	}
3293 	case KVM_UNREGISTER_COALESCED_MMIO: {
3294 		struct kvm_coalesced_mmio_zone zone;
3295 
3296 		r = -EFAULT;
3297 		if (copy_from_user(&zone, argp, sizeof(zone)))
3298 			goto out;
3299 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3300 		break;
3301 	}
3302 #endif
3303 	case KVM_IRQFD: {
3304 		struct kvm_irqfd data;
3305 
3306 		r = -EFAULT;
3307 		if (copy_from_user(&data, argp, sizeof(data)))
3308 			goto out;
3309 		r = kvm_irqfd(kvm, &data);
3310 		break;
3311 	}
3312 	case KVM_IOEVENTFD: {
3313 		struct kvm_ioeventfd data;
3314 
3315 		r = -EFAULT;
3316 		if (copy_from_user(&data, argp, sizeof(data)))
3317 			goto out;
3318 		r = kvm_ioeventfd(kvm, &data);
3319 		break;
3320 	}
3321 #ifdef CONFIG_HAVE_KVM_MSI
3322 	case KVM_SIGNAL_MSI: {
3323 		struct kvm_msi msi;
3324 
3325 		r = -EFAULT;
3326 		if (copy_from_user(&msi, argp, sizeof(msi)))
3327 			goto out;
3328 		r = kvm_send_userspace_msi(kvm, &msi);
3329 		break;
3330 	}
3331 #endif
3332 #ifdef __KVM_HAVE_IRQ_LINE
3333 	case KVM_IRQ_LINE_STATUS:
3334 	case KVM_IRQ_LINE: {
3335 		struct kvm_irq_level irq_event;
3336 
3337 		r = -EFAULT;
3338 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3339 			goto out;
3340 
3341 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3342 					ioctl == KVM_IRQ_LINE_STATUS);
3343 		if (r)
3344 			goto out;
3345 
3346 		r = -EFAULT;
3347 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3348 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3349 				goto out;
3350 		}
3351 
3352 		r = 0;
3353 		break;
3354 	}
3355 #endif
3356 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3357 	case KVM_SET_GSI_ROUTING: {
3358 		struct kvm_irq_routing routing;
3359 		struct kvm_irq_routing __user *urouting;
3360 		struct kvm_irq_routing_entry *entries = NULL;
3361 
3362 		r = -EFAULT;
3363 		if (copy_from_user(&routing, argp, sizeof(routing)))
3364 			goto out;
3365 		r = -EINVAL;
3366 		if (!kvm_arch_can_set_irq_routing(kvm))
3367 			goto out;
3368 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3369 			goto out;
3370 		if (routing.flags)
3371 			goto out;
3372 		if (routing.nr) {
3373 			r = -ENOMEM;
3374 			entries = vmalloc(array_size(sizeof(*entries),
3375 						     routing.nr));
3376 			if (!entries)
3377 				goto out;
3378 			r = -EFAULT;
3379 			urouting = argp;
3380 			if (copy_from_user(entries, urouting->entries,
3381 					   routing.nr * sizeof(*entries)))
3382 				goto out_free_irq_routing;
3383 		}
3384 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3385 					routing.flags);
3386 out_free_irq_routing:
3387 		vfree(entries);
3388 		break;
3389 	}
3390 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3391 	case KVM_CREATE_DEVICE: {
3392 		struct kvm_create_device cd;
3393 
3394 		r = -EFAULT;
3395 		if (copy_from_user(&cd, argp, sizeof(cd)))
3396 			goto out;
3397 
3398 		r = kvm_ioctl_create_device(kvm, &cd);
3399 		if (r)
3400 			goto out;
3401 
3402 		r = -EFAULT;
3403 		if (copy_to_user(argp, &cd, sizeof(cd)))
3404 			goto out;
3405 
3406 		r = 0;
3407 		break;
3408 	}
3409 	case KVM_CHECK_EXTENSION:
3410 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3411 		break;
3412 	default:
3413 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3414 	}
3415 out:
3416 	return r;
3417 }
3418 
3419 #ifdef CONFIG_KVM_COMPAT
3420 struct compat_kvm_dirty_log {
3421 	__u32 slot;
3422 	__u32 padding1;
3423 	union {
3424 		compat_uptr_t dirty_bitmap; /* one bit per page */
3425 		__u64 padding2;
3426 	};
3427 };
3428 
3429 static long kvm_vm_compat_ioctl(struct file *filp,
3430 			   unsigned int ioctl, unsigned long arg)
3431 {
3432 	struct kvm *kvm = filp->private_data;
3433 	int r;
3434 
3435 	if (kvm->mm != current->mm)
3436 		return -EIO;
3437 	switch (ioctl) {
3438 	case KVM_GET_DIRTY_LOG: {
3439 		struct compat_kvm_dirty_log compat_log;
3440 		struct kvm_dirty_log log;
3441 
3442 		if (copy_from_user(&compat_log, (void __user *)arg,
3443 				   sizeof(compat_log)))
3444 			return -EFAULT;
3445 		log.slot	 = compat_log.slot;
3446 		log.padding1	 = compat_log.padding1;
3447 		log.padding2	 = compat_log.padding2;
3448 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3449 
3450 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3451 		break;
3452 	}
3453 	default:
3454 		r = kvm_vm_ioctl(filp, ioctl, arg);
3455 	}
3456 	return r;
3457 }
3458 #endif
3459 
3460 static struct file_operations kvm_vm_fops = {
3461 	.release        = kvm_vm_release,
3462 	.unlocked_ioctl = kvm_vm_ioctl,
3463 	.llseek		= noop_llseek,
3464 	KVM_COMPAT(kvm_vm_compat_ioctl),
3465 };
3466 
3467 static int kvm_dev_ioctl_create_vm(unsigned long type)
3468 {
3469 	int r;
3470 	struct kvm *kvm;
3471 	struct file *file;
3472 
3473 	kvm = kvm_create_vm(type);
3474 	if (IS_ERR(kvm))
3475 		return PTR_ERR(kvm);
3476 #ifdef CONFIG_KVM_MMIO
3477 	r = kvm_coalesced_mmio_init(kvm);
3478 	if (r < 0)
3479 		goto put_kvm;
3480 #endif
3481 	r = get_unused_fd_flags(O_CLOEXEC);
3482 	if (r < 0)
3483 		goto put_kvm;
3484 
3485 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3486 	if (IS_ERR(file)) {
3487 		put_unused_fd(r);
3488 		r = PTR_ERR(file);
3489 		goto put_kvm;
3490 	}
3491 
3492 	/*
3493 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3494 	 * already set, with ->release() being kvm_vm_release().  In error
3495 	 * cases it will be called by the final fput(file) and will take
3496 	 * care of doing kvm_put_kvm(kvm).
3497 	 */
3498 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3499 		put_unused_fd(r);
3500 		fput(file);
3501 		return -ENOMEM;
3502 	}
3503 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3504 
3505 	fd_install(r, file);
3506 	return r;
3507 
3508 put_kvm:
3509 	kvm_put_kvm(kvm);
3510 	return r;
3511 }
3512 
3513 static long kvm_dev_ioctl(struct file *filp,
3514 			  unsigned int ioctl, unsigned long arg)
3515 {
3516 	long r = -EINVAL;
3517 
3518 	switch (ioctl) {
3519 	case KVM_GET_API_VERSION:
3520 		if (arg)
3521 			goto out;
3522 		r = KVM_API_VERSION;
3523 		break;
3524 	case KVM_CREATE_VM:
3525 		r = kvm_dev_ioctl_create_vm(arg);
3526 		break;
3527 	case KVM_CHECK_EXTENSION:
3528 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3529 		break;
3530 	case KVM_GET_VCPU_MMAP_SIZE:
3531 		if (arg)
3532 			goto out;
3533 		r = PAGE_SIZE;     /* struct kvm_run */
3534 #ifdef CONFIG_X86
3535 		r += PAGE_SIZE;    /* pio data page */
3536 #endif
3537 #ifdef CONFIG_KVM_MMIO
3538 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3539 #endif
3540 		break;
3541 	case KVM_TRACE_ENABLE:
3542 	case KVM_TRACE_PAUSE:
3543 	case KVM_TRACE_DISABLE:
3544 		r = -EOPNOTSUPP;
3545 		break;
3546 	default:
3547 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3548 	}
3549 out:
3550 	return r;
3551 }
3552 
3553 static struct file_operations kvm_chardev_ops = {
3554 	.unlocked_ioctl = kvm_dev_ioctl,
3555 	.llseek		= noop_llseek,
3556 	KVM_COMPAT(kvm_dev_ioctl),
3557 };
3558 
3559 static struct miscdevice kvm_dev = {
3560 	KVM_MINOR,
3561 	"kvm",
3562 	&kvm_chardev_ops,
3563 };
3564 
3565 static void hardware_enable_nolock(void *junk)
3566 {
3567 	int cpu = raw_smp_processor_id();
3568 	int r;
3569 
3570 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3571 		return;
3572 
3573 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3574 
3575 	r = kvm_arch_hardware_enable();
3576 
3577 	if (r) {
3578 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3579 		atomic_inc(&hardware_enable_failed);
3580 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3581 	}
3582 }
3583 
3584 static int kvm_starting_cpu(unsigned int cpu)
3585 {
3586 	raw_spin_lock(&kvm_count_lock);
3587 	if (kvm_usage_count)
3588 		hardware_enable_nolock(NULL);
3589 	raw_spin_unlock(&kvm_count_lock);
3590 	return 0;
3591 }
3592 
3593 static void hardware_disable_nolock(void *junk)
3594 {
3595 	int cpu = raw_smp_processor_id();
3596 
3597 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3598 		return;
3599 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3600 	kvm_arch_hardware_disable();
3601 }
3602 
3603 static int kvm_dying_cpu(unsigned int cpu)
3604 {
3605 	raw_spin_lock(&kvm_count_lock);
3606 	if (kvm_usage_count)
3607 		hardware_disable_nolock(NULL);
3608 	raw_spin_unlock(&kvm_count_lock);
3609 	return 0;
3610 }
3611 
3612 static void hardware_disable_all_nolock(void)
3613 {
3614 	BUG_ON(!kvm_usage_count);
3615 
3616 	kvm_usage_count--;
3617 	if (!kvm_usage_count)
3618 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3619 }
3620 
3621 static void hardware_disable_all(void)
3622 {
3623 	raw_spin_lock(&kvm_count_lock);
3624 	hardware_disable_all_nolock();
3625 	raw_spin_unlock(&kvm_count_lock);
3626 }
3627 
3628 static int hardware_enable_all(void)
3629 {
3630 	int r = 0;
3631 
3632 	raw_spin_lock(&kvm_count_lock);
3633 
3634 	kvm_usage_count++;
3635 	if (kvm_usage_count == 1) {
3636 		atomic_set(&hardware_enable_failed, 0);
3637 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3638 
3639 		if (atomic_read(&hardware_enable_failed)) {
3640 			hardware_disable_all_nolock();
3641 			r = -EBUSY;
3642 		}
3643 	}
3644 
3645 	raw_spin_unlock(&kvm_count_lock);
3646 
3647 	return r;
3648 }
3649 
3650 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3651 		      void *v)
3652 {
3653 	/*
3654 	 * Some (well, at least mine) BIOSes hang on reboot if
3655 	 * in vmx root mode.
3656 	 *
3657 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3658 	 */
3659 	pr_info("kvm: exiting hardware virtualization\n");
3660 	kvm_rebooting = true;
3661 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3662 	return NOTIFY_OK;
3663 }
3664 
3665 static struct notifier_block kvm_reboot_notifier = {
3666 	.notifier_call = kvm_reboot,
3667 	.priority = 0,
3668 };
3669 
3670 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3671 {
3672 	int i;
3673 
3674 	for (i = 0; i < bus->dev_count; i++) {
3675 		struct kvm_io_device *pos = bus->range[i].dev;
3676 
3677 		kvm_iodevice_destructor(pos);
3678 	}
3679 	kfree(bus);
3680 }
3681 
3682 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3683 				 const struct kvm_io_range *r2)
3684 {
3685 	gpa_t addr1 = r1->addr;
3686 	gpa_t addr2 = r2->addr;
3687 
3688 	if (addr1 < addr2)
3689 		return -1;
3690 
3691 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3692 	 * accept any overlapping write.  Any order is acceptable for
3693 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3694 	 * we process all of them.
3695 	 */
3696 	if (r2->len) {
3697 		addr1 += r1->len;
3698 		addr2 += r2->len;
3699 	}
3700 
3701 	if (addr1 > addr2)
3702 		return 1;
3703 
3704 	return 0;
3705 }
3706 
3707 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3708 {
3709 	return kvm_io_bus_cmp(p1, p2);
3710 }
3711 
3712 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3713 			     gpa_t addr, int len)
3714 {
3715 	struct kvm_io_range *range, key;
3716 	int off;
3717 
3718 	key = (struct kvm_io_range) {
3719 		.addr = addr,
3720 		.len = len,
3721 	};
3722 
3723 	range = bsearch(&key, bus->range, bus->dev_count,
3724 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3725 	if (range == NULL)
3726 		return -ENOENT;
3727 
3728 	off = range - bus->range;
3729 
3730 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3731 		off--;
3732 
3733 	return off;
3734 }
3735 
3736 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3737 			      struct kvm_io_range *range, const void *val)
3738 {
3739 	int idx;
3740 
3741 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3742 	if (idx < 0)
3743 		return -EOPNOTSUPP;
3744 
3745 	while (idx < bus->dev_count &&
3746 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3747 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3748 					range->len, val))
3749 			return idx;
3750 		idx++;
3751 	}
3752 
3753 	return -EOPNOTSUPP;
3754 }
3755 
3756 /* kvm_io_bus_write - called under kvm->slots_lock */
3757 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3758 		     int len, const void *val)
3759 {
3760 	struct kvm_io_bus *bus;
3761 	struct kvm_io_range range;
3762 	int r;
3763 
3764 	range = (struct kvm_io_range) {
3765 		.addr = addr,
3766 		.len = len,
3767 	};
3768 
3769 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3770 	if (!bus)
3771 		return -ENOMEM;
3772 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3773 	return r < 0 ? r : 0;
3774 }
3775 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3776 
3777 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3778 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3779 			    gpa_t addr, int len, const void *val, long cookie)
3780 {
3781 	struct kvm_io_bus *bus;
3782 	struct kvm_io_range range;
3783 
3784 	range = (struct kvm_io_range) {
3785 		.addr = addr,
3786 		.len = len,
3787 	};
3788 
3789 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3790 	if (!bus)
3791 		return -ENOMEM;
3792 
3793 	/* First try the device referenced by cookie. */
3794 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3795 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3796 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3797 					val))
3798 			return cookie;
3799 
3800 	/*
3801 	 * cookie contained garbage; fall back to search and return the
3802 	 * correct cookie value.
3803 	 */
3804 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3805 }
3806 
3807 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3808 			     struct kvm_io_range *range, void *val)
3809 {
3810 	int idx;
3811 
3812 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3813 	if (idx < 0)
3814 		return -EOPNOTSUPP;
3815 
3816 	while (idx < bus->dev_count &&
3817 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3818 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3819 				       range->len, val))
3820 			return idx;
3821 		idx++;
3822 	}
3823 
3824 	return -EOPNOTSUPP;
3825 }
3826 
3827 /* kvm_io_bus_read - called under kvm->slots_lock */
3828 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3829 		    int len, void *val)
3830 {
3831 	struct kvm_io_bus *bus;
3832 	struct kvm_io_range range;
3833 	int r;
3834 
3835 	range = (struct kvm_io_range) {
3836 		.addr = addr,
3837 		.len = len,
3838 	};
3839 
3840 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3841 	if (!bus)
3842 		return -ENOMEM;
3843 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3844 	return r < 0 ? r : 0;
3845 }
3846 
3847 /* Caller must hold slots_lock. */
3848 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3849 			    int len, struct kvm_io_device *dev)
3850 {
3851 	int i;
3852 	struct kvm_io_bus *new_bus, *bus;
3853 	struct kvm_io_range range;
3854 
3855 	bus = kvm_get_bus(kvm, bus_idx);
3856 	if (!bus)
3857 		return -ENOMEM;
3858 
3859 	/* exclude ioeventfd which is limited by maximum fd */
3860 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3861 		return -ENOSPC;
3862 
3863 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3864 			  GFP_KERNEL_ACCOUNT);
3865 	if (!new_bus)
3866 		return -ENOMEM;
3867 
3868 	range = (struct kvm_io_range) {
3869 		.addr = addr,
3870 		.len = len,
3871 		.dev = dev,
3872 	};
3873 
3874 	for (i = 0; i < bus->dev_count; i++)
3875 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3876 			break;
3877 
3878 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3879 	new_bus->dev_count++;
3880 	new_bus->range[i] = range;
3881 	memcpy(new_bus->range + i + 1, bus->range + i,
3882 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3883 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3884 	synchronize_srcu_expedited(&kvm->srcu);
3885 	kfree(bus);
3886 
3887 	return 0;
3888 }
3889 
3890 /* Caller must hold slots_lock. */
3891 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3892 			       struct kvm_io_device *dev)
3893 {
3894 	int i;
3895 	struct kvm_io_bus *new_bus, *bus;
3896 
3897 	bus = kvm_get_bus(kvm, bus_idx);
3898 	if (!bus)
3899 		return;
3900 
3901 	for (i = 0; i < bus->dev_count; i++)
3902 		if (bus->range[i].dev == dev) {
3903 			break;
3904 		}
3905 
3906 	if (i == bus->dev_count)
3907 		return;
3908 
3909 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3910 			  GFP_KERNEL_ACCOUNT);
3911 	if (!new_bus)  {
3912 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3913 		goto broken;
3914 	}
3915 
3916 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3917 	new_bus->dev_count--;
3918 	memcpy(new_bus->range + i, bus->range + i + 1,
3919 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3920 
3921 broken:
3922 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3923 	synchronize_srcu_expedited(&kvm->srcu);
3924 	kfree(bus);
3925 	return;
3926 }
3927 
3928 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3929 					 gpa_t addr)
3930 {
3931 	struct kvm_io_bus *bus;
3932 	int dev_idx, srcu_idx;
3933 	struct kvm_io_device *iodev = NULL;
3934 
3935 	srcu_idx = srcu_read_lock(&kvm->srcu);
3936 
3937 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3938 	if (!bus)
3939 		goto out_unlock;
3940 
3941 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3942 	if (dev_idx < 0)
3943 		goto out_unlock;
3944 
3945 	iodev = bus->range[dev_idx].dev;
3946 
3947 out_unlock:
3948 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3949 
3950 	return iodev;
3951 }
3952 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3953 
3954 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3955 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3956 			   const char *fmt)
3957 {
3958 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3959 					  inode->i_private;
3960 
3961 	/* The debugfs files are a reference to the kvm struct which
3962 	 * is still valid when kvm_destroy_vm is called.
3963 	 * To avoid the race between open and the removal of the debugfs
3964 	 * directory we test against the users count.
3965 	 */
3966 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3967 		return -ENOENT;
3968 
3969 	if (simple_attr_open(inode, file, get,
3970 			     stat_data->mode & S_IWUGO ? set : NULL,
3971 			     fmt)) {
3972 		kvm_put_kvm(stat_data->kvm);
3973 		return -ENOMEM;
3974 	}
3975 
3976 	return 0;
3977 }
3978 
3979 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3980 {
3981 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3982 					  inode->i_private;
3983 
3984 	simple_attr_release(inode, file);
3985 	kvm_put_kvm(stat_data->kvm);
3986 
3987 	return 0;
3988 }
3989 
3990 static int vm_stat_get_per_vm(void *data, u64 *val)
3991 {
3992 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3993 
3994 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3995 
3996 	return 0;
3997 }
3998 
3999 static int vm_stat_clear_per_vm(void *data, u64 val)
4000 {
4001 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4002 
4003 	if (val)
4004 		return -EINVAL;
4005 
4006 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4007 
4008 	return 0;
4009 }
4010 
4011 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4012 {
4013 	__simple_attr_check_format("%llu\n", 0ull);
4014 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4015 				vm_stat_clear_per_vm, "%llu\n");
4016 }
4017 
4018 static const struct file_operations vm_stat_get_per_vm_fops = {
4019 	.owner   = THIS_MODULE,
4020 	.open    = vm_stat_get_per_vm_open,
4021 	.release = kvm_debugfs_release,
4022 	.read    = simple_attr_read,
4023 	.write   = simple_attr_write,
4024 	.llseek  = no_llseek,
4025 };
4026 
4027 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4028 {
4029 	int i;
4030 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4031 	struct kvm_vcpu *vcpu;
4032 
4033 	*val = 0;
4034 
4035 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4036 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
4037 
4038 	return 0;
4039 }
4040 
4041 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4042 {
4043 	int i;
4044 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4045 	struct kvm_vcpu *vcpu;
4046 
4047 	if (val)
4048 		return -EINVAL;
4049 
4050 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4051 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4052 
4053 	return 0;
4054 }
4055 
4056 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4057 {
4058 	__simple_attr_check_format("%llu\n", 0ull);
4059 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4060 				 vcpu_stat_clear_per_vm, "%llu\n");
4061 }
4062 
4063 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4064 	.owner   = THIS_MODULE,
4065 	.open    = vcpu_stat_get_per_vm_open,
4066 	.release = kvm_debugfs_release,
4067 	.read    = simple_attr_read,
4068 	.write   = simple_attr_write,
4069 	.llseek  = no_llseek,
4070 };
4071 
4072 static const struct file_operations *stat_fops_per_vm[] = {
4073 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4074 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4075 };
4076 
4077 static int vm_stat_get(void *_offset, u64 *val)
4078 {
4079 	unsigned offset = (long)_offset;
4080 	struct kvm *kvm;
4081 	struct kvm_stat_data stat_tmp = {.offset = offset};
4082 	u64 tmp_val;
4083 
4084 	*val = 0;
4085 	mutex_lock(&kvm_lock);
4086 	list_for_each_entry(kvm, &vm_list, vm_list) {
4087 		stat_tmp.kvm = kvm;
4088 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4089 		*val += tmp_val;
4090 	}
4091 	mutex_unlock(&kvm_lock);
4092 	return 0;
4093 }
4094 
4095 static int vm_stat_clear(void *_offset, u64 val)
4096 {
4097 	unsigned offset = (long)_offset;
4098 	struct kvm *kvm;
4099 	struct kvm_stat_data stat_tmp = {.offset = offset};
4100 
4101 	if (val)
4102 		return -EINVAL;
4103 
4104 	mutex_lock(&kvm_lock);
4105 	list_for_each_entry(kvm, &vm_list, vm_list) {
4106 		stat_tmp.kvm = kvm;
4107 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4108 	}
4109 	mutex_unlock(&kvm_lock);
4110 
4111 	return 0;
4112 }
4113 
4114 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4115 
4116 static int vcpu_stat_get(void *_offset, u64 *val)
4117 {
4118 	unsigned offset = (long)_offset;
4119 	struct kvm *kvm;
4120 	struct kvm_stat_data stat_tmp = {.offset = offset};
4121 	u64 tmp_val;
4122 
4123 	*val = 0;
4124 	mutex_lock(&kvm_lock);
4125 	list_for_each_entry(kvm, &vm_list, vm_list) {
4126 		stat_tmp.kvm = kvm;
4127 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4128 		*val += tmp_val;
4129 	}
4130 	mutex_unlock(&kvm_lock);
4131 	return 0;
4132 }
4133 
4134 static int vcpu_stat_clear(void *_offset, u64 val)
4135 {
4136 	unsigned offset = (long)_offset;
4137 	struct kvm *kvm;
4138 	struct kvm_stat_data stat_tmp = {.offset = offset};
4139 
4140 	if (val)
4141 		return -EINVAL;
4142 
4143 	mutex_lock(&kvm_lock);
4144 	list_for_each_entry(kvm, &vm_list, vm_list) {
4145 		stat_tmp.kvm = kvm;
4146 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4147 	}
4148 	mutex_unlock(&kvm_lock);
4149 
4150 	return 0;
4151 }
4152 
4153 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4154 			"%llu\n");
4155 
4156 static const struct file_operations *stat_fops[] = {
4157 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4158 	[KVM_STAT_VM]   = &vm_stat_fops,
4159 };
4160 
4161 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4162 {
4163 	struct kobj_uevent_env *env;
4164 	unsigned long long created, active;
4165 
4166 	if (!kvm_dev.this_device || !kvm)
4167 		return;
4168 
4169 	mutex_lock(&kvm_lock);
4170 	if (type == KVM_EVENT_CREATE_VM) {
4171 		kvm_createvm_count++;
4172 		kvm_active_vms++;
4173 	} else if (type == KVM_EVENT_DESTROY_VM) {
4174 		kvm_active_vms--;
4175 	}
4176 	created = kvm_createvm_count;
4177 	active = kvm_active_vms;
4178 	mutex_unlock(&kvm_lock);
4179 
4180 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4181 	if (!env)
4182 		return;
4183 
4184 	add_uevent_var(env, "CREATED=%llu", created);
4185 	add_uevent_var(env, "COUNT=%llu", active);
4186 
4187 	if (type == KVM_EVENT_CREATE_VM) {
4188 		add_uevent_var(env, "EVENT=create");
4189 		kvm->userspace_pid = task_pid_nr(current);
4190 	} else if (type == KVM_EVENT_DESTROY_VM) {
4191 		add_uevent_var(env, "EVENT=destroy");
4192 	}
4193 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4194 
4195 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4196 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4197 
4198 		if (p) {
4199 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4200 			if (!IS_ERR(tmp))
4201 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4202 			kfree(p);
4203 		}
4204 	}
4205 	/* no need for checks, since we are adding at most only 5 keys */
4206 	env->envp[env->envp_idx++] = NULL;
4207 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4208 	kfree(env);
4209 }
4210 
4211 static void kvm_init_debug(void)
4212 {
4213 	struct kvm_stats_debugfs_item *p;
4214 
4215 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4216 
4217 	kvm_debugfs_num_entries = 0;
4218 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4219 		int mode = p->mode ? p->mode : 0644;
4220 		debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4221 				    (void *)(long)p->offset,
4222 				    stat_fops[p->kind]);
4223 	}
4224 }
4225 
4226 static int kvm_suspend(void)
4227 {
4228 	if (kvm_usage_count)
4229 		hardware_disable_nolock(NULL);
4230 	return 0;
4231 }
4232 
4233 static void kvm_resume(void)
4234 {
4235 	if (kvm_usage_count) {
4236 #ifdef CONFIG_LOCKDEP
4237 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4238 #endif
4239 		hardware_enable_nolock(NULL);
4240 	}
4241 }
4242 
4243 static struct syscore_ops kvm_syscore_ops = {
4244 	.suspend = kvm_suspend,
4245 	.resume = kvm_resume,
4246 };
4247 
4248 static inline
4249 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4250 {
4251 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4252 }
4253 
4254 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4255 {
4256 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4257 
4258 	WRITE_ONCE(vcpu->preempted, false);
4259 	WRITE_ONCE(vcpu->ready, false);
4260 
4261 	kvm_arch_sched_in(vcpu, cpu);
4262 
4263 	kvm_arch_vcpu_load(vcpu, cpu);
4264 }
4265 
4266 static void kvm_sched_out(struct preempt_notifier *pn,
4267 			  struct task_struct *next)
4268 {
4269 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4270 
4271 	if (current->state == TASK_RUNNING) {
4272 		WRITE_ONCE(vcpu->preempted, true);
4273 		WRITE_ONCE(vcpu->ready, true);
4274 	}
4275 	kvm_arch_vcpu_put(vcpu);
4276 }
4277 
4278 static void check_processor_compat(void *rtn)
4279 {
4280 	*(int *)rtn = kvm_arch_check_processor_compat();
4281 }
4282 
4283 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4284 		  struct module *module)
4285 {
4286 	int r;
4287 	int cpu;
4288 
4289 	r = kvm_arch_init(opaque);
4290 	if (r)
4291 		goto out_fail;
4292 
4293 	/*
4294 	 * kvm_arch_init makes sure there's at most one caller
4295 	 * for architectures that support multiple implementations,
4296 	 * like intel and amd on x86.
4297 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4298 	 * conflicts in case kvm is already setup for another implementation.
4299 	 */
4300 	r = kvm_irqfd_init();
4301 	if (r)
4302 		goto out_irqfd;
4303 
4304 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4305 		r = -ENOMEM;
4306 		goto out_free_0;
4307 	}
4308 
4309 	r = kvm_arch_hardware_setup();
4310 	if (r < 0)
4311 		goto out_free_0a;
4312 
4313 	for_each_online_cpu(cpu) {
4314 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4315 		if (r < 0)
4316 			goto out_free_1;
4317 	}
4318 
4319 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4320 				      kvm_starting_cpu, kvm_dying_cpu);
4321 	if (r)
4322 		goto out_free_2;
4323 	register_reboot_notifier(&kvm_reboot_notifier);
4324 
4325 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4326 	if (!vcpu_align)
4327 		vcpu_align = __alignof__(struct kvm_vcpu);
4328 	kvm_vcpu_cache =
4329 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4330 					   SLAB_ACCOUNT,
4331 					   offsetof(struct kvm_vcpu, arch),
4332 					   sizeof_field(struct kvm_vcpu, arch),
4333 					   NULL);
4334 	if (!kvm_vcpu_cache) {
4335 		r = -ENOMEM;
4336 		goto out_free_3;
4337 	}
4338 
4339 	r = kvm_async_pf_init();
4340 	if (r)
4341 		goto out_free;
4342 
4343 	kvm_chardev_ops.owner = module;
4344 	kvm_vm_fops.owner = module;
4345 	kvm_vcpu_fops.owner = module;
4346 
4347 	r = misc_register(&kvm_dev);
4348 	if (r) {
4349 		pr_err("kvm: misc device register failed\n");
4350 		goto out_unreg;
4351 	}
4352 
4353 	register_syscore_ops(&kvm_syscore_ops);
4354 
4355 	kvm_preempt_ops.sched_in = kvm_sched_in;
4356 	kvm_preempt_ops.sched_out = kvm_sched_out;
4357 
4358 	kvm_init_debug();
4359 
4360 	r = kvm_vfio_ops_init();
4361 	WARN_ON(r);
4362 
4363 	return 0;
4364 
4365 out_unreg:
4366 	kvm_async_pf_deinit();
4367 out_free:
4368 	kmem_cache_destroy(kvm_vcpu_cache);
4369 out_free_3:
4370 	unregister_reboot_notifier(&kvm_reboot_notifier);
4371 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4372 out_free_2:
4373 out_free_1:
4374 	kvm_arch_hardware_unsetup();
4375 out_free_0a:
4376 	free_cpumask_var(cpus_hardware_enabled);
4377 out_free_0:
4378 	kvm_irqfd_exit();
4379 out_irqfd:
4380 	kvm_arch_exit();
4381 out_fail:
4382 	return r;
4383 }
4384 EXPORT_SYMBOL_GPL(kvm_init);
4385 
4386 void kvm_exit(void)
4387 {
4388 	debugfs_remove_recursive(kvm_debugfs_dir);
4389 	misc_deregister(&kvm_dev);
4390 	kmem_cache_destroy(kvm_vcpu_cache);
4391 	kvm_async_pf_deinit();
4392 	unregister_syscore_ops(&kvm_syscore_ops);
4393 	unregister_reboot_notifier(&kvm_reboot_notifier);
4394 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4395 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4396 	kvm_arch_hardware_unsetup();
4397 	kvm_arch_exit();
4398 	kvm_irqfd_exit();
4399 	free_cpumask_var(cpus_hardware_enabled);
4400 	kvm_vfio_ops_exit();
4401 }
4402 EXPORT_SYMBOL_GPL(kvm_exit);
4403 
4404 struct kvm_vm_worker_thread_context {
4405 	struct kvm *kvm;
4406 	struct task_struct *parent;
4407 	struct completion init_done;
4408 	kvm_vm_thread_fn_t thread_fn;
4409 	uintptr_t data;
4410 	int err;
4411 };
4412 
4413 static int kvm_vm_worker_thread(void *context)
4414 {
4415 	/*
4416 	 * The init_context is allocated on the stack of the parent thread, so
4417 	 * we have to locally copy anything that is needed beyond initialization
4418 	 */
4419 	struct kvm_vm_worker_thread_context *init_context = context;
4420 	struct kvm *kvm = init_context->kvm;
4421 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4422 	uintptr_t data = init_context->data;
4423 	int err;
4424 
4425 	err = kthread_park(current);
4426 	/* kthread_park(current) is never supposed to return an error */
4427 	WARN_ON(err != 0);
4428 	if (err)
4429 		goto init_complete;
4430 
4431 	err = cgroup_attach_task_all(init_context->parent, current);
4432 	if (err) {
4433 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4434 			__func__, err);
4435 		goto init_complete;
4436 	}
4437 
4438 	set_user_nice(current, task_nice(init_context->parent));
4439 
4440 init_complete:
4441 	init_context->err = err;
4442 	complete(&init_context->init_done);
4443 	init_context = NULL;
4444 
4445 	if (err)
4446 		return err;
4447 
4448 	/* Wait to be woken up by the spawner before proceeding. */
4449 	kthread_parkme();
4450 
4451 	if (!kthread_should_stop())
4452 		err = thread_fn(kvm, data);
4453 
4454 	return err;
4455 }
4456 
4457 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4458 				uintptr_t data, const char *name,
4459 				struct task_struct **thread_ptr)
4460 {
4461 	struct kvm_vm_worker_thread_context init_context = {};
4462 	struct task_struct *thread;
4463 
4464 	*thread_ptr = NULL;
4465 	init_context.kvm = kvm;
4466 	init_context.parent = current;
4467 	init_context.thread_fn = thread_fn;
4468 	init_context.data = data;
4469 	init_completion(&init_context.init_done);
4470 
4471 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4472 			     "%s-%d", name, task_pid_nr(current));
4473 	if (IS_ERR(thread))
4474 		return PTR_ERR(thread);
4475 
4476 	/* kthread_run is never supposed to return NULL */
4477 	WARN_ON(thread == NULL);
4478 
4479 	wait_for_completion(&init_context.init_done);
4480 
4481 	if (!init_context.err)
4482 		*thread_ptr = thread;
4483 
4484 	return init_context.err;
4485 }
4486