xref: /openbmc/linux/virt/kvm/kvm_main.c (revision f7e47677)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 static struct kmem_cache *kvm_vcpu_cache;
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 		unsigned long start, unsigned long end, bool blockable)
160 {
161 	return 0;
162 }
163 
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166 	/*
167 	 * The metadata used by is_zone_device_page() to determine whether or
168 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
170 	 * page_count() is zero to help detect bad usage of this helper.
171 	 */
172 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 		return false;
174 
175 	return is_zone_device_page(pfn_to_page(pfn));
176 }
177 
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180 	/*
181 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 	 * perspective they are "normal" pages, albeit with slightly different
183 	 * usage rules.
184 	 */
185 	if (pfn_valid(pfn))
186 		return PageReserved(pfn_to_page(pfn)) &&
187 		       !is_zero_pfn(pfn) &&
188 		       !kvm_is_zone_device_pfn(pfn);
189 
190 	return true;
191 }
192 
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195 	struct page *page = pfn_to_page(pfn);
196 
197 	if (!PageTransCompoundMap(page))
198 		return false;
199 
200 	return is_transparent_hugepage(compound_head(page));
201 }
202 
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208 	int cpu = get_cpu();
209 
210 	__this_cpu_write(kvm_running_vcpu, vcpu);
211 	preempt_notifier_register(&vcpu->preempt_notifier);
212 	kvm_arch_vcpu_load(vcpu, cpu);
213 	put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216 
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219 	preempt_disable();
220 	kvm_arch_vcpu_put(vcpu);
221 	preempt_notifier_unregister(&vcpu->preempt_notifier);
222 	__this_cpu_write(kvm_running_vcpu, NULL);
223 	preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226 
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231 
232 	/*
233 	 * We need to wait for the VCPU to reenable interrupts and get out of
234 	 * READING_SHADOW_PAGE_TABLES mode.
235 	 */
236 	if (req & KVM_REQUEST_WAIT)
237 		return mode != OUTSIDE_GUEST_MODE;
238 
239 	/*
240 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 	 */
242 	return mode == IN_GUEST_MODE;
243 }
244 
245 static void ack_flush(void *_completed)
246 {
247 }
248 
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251 	if (unlikely(!cpus))
252 		cpus = cpu_online_mask;
253 
254 	if (cpumask_empty(cpus))
255 		return false;
256 
257 	smp_call_function_many(cpus, ack_flush, NULL, wait);
258 	return true;
259 }
260 
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262 				 struct kvm_vcpu *except,
263 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 {
265 	int i, cpu, me;
266 	struct kvm_vcpu *vcpu;
267 	bool called;
268 
269 	me = get_cpu();
270 
271 	kvm_for_each_vcpu(i, vcpu, kvm) {
272 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
273 		    vcpu == except)
274 			continue;
275 
276 		kvm_make_request(req, vcpu);
277 		cpu = vcpu->cpu;
278 
279 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 			continue;
281 
282 		if (tmp != NULL && cpu != -1 && cpu != me &&
283 		    kvm_request_needs_ipi(vcpu, req))
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 
287 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288 	put_cpu();
289 
290 	return called;
291 }
292 
293 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
294 				      struct kvm_vcpu *except)
295 {
296 	cpumask_var_t cpus;
297 	bool called;
298 
299 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300 
301 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
302 
303 	free_cpumask_var(cpus);
304 	return called;
305 }
306 
307 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308 {
309 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 }
311 
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315 	/*
316 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 	 * kvm_make_all_cpus_request.
318 	 */
319 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320 
321 	/*
322 	 * We want to publish modifications to the page tables before reading
323 	 * mode. Pairs with a memory barrier in arch-specific code.
324 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 	 *
328 	 * There is already an smp_mb__after_atomic() before
329 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 	 * barrier here.
331 	 */
332 	if (!kvm_arch_flush_remote_tlb(kvm)
333 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 		++kvm->stat.remote_tlb_flush;
335 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339 
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344 
345 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
346 {
347 	mutex_init(&vcpu->mutex);
348 	vcpu->cpu = -1;
349 	vcpu->kvm = kvm;
350 	vcpu->vcpu_id = id;
351 	vcpu->pid = NULL;
352 	init_swait_queue_head(&vcpu->wq);
353 	kvm_async_pf_vcpu_init(vcpu);
354 
355 	vcpu->pre_pcpu = -1;
356 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
357 
358 	kvm_vcpu_set_in_spin_loop(vcpu, false);
359 	kvm_vcpu_set_dy_eligible(vcpu, false);
360 	vcpu->preempted = false;
361 	vcpu->ready = false;
362 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
363 }
364 
365 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367 	kvm_arch_vcpu_destroy(vcpu);
368 
369 	/*
370 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
371 	 * the vcpu->pid pointer, and at destruction time all file descriptors
372 	 * are already gone.
373 	 */
374 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
375 
376 	free_page((unsigned long)vcpu->run);
377 	kmem_cache_free(kvm_vcpu_cache, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
380 
381 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
382 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
383 {
384 	return container_of(mn, struct kvm, mmu_notifier);
385 }
386 
387 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
388 					struct mm_struct *mm,
389 					unsigned long address,
390 					pte_t pte)
391 {
392 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 	int idx;
394 
395 	idx = srcu_read_lock(&kvm->srcu);
396 	spin_lock(&kvm->mmu_lock);
397 	kvm->mmu_notifier_seq++;
398 
399 	if (kvm_set_spte_hva(kvm, address, pte))
400 		kvm_flush_remote_tlbs(kvm);
401 
402 	spin_unlock(&kvm->mmu_lock);
403 	srcu_read_unlock(&kvm->srcu, idx);
404 }
405 
406 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
407 					const struct mmu_notifier_range *range)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int need_tlb_flush = 0, idx;
411 	int ret;
412 
413 	idx = srcu_read_lock(&kvm->srcu);
414 	spin_lock(&kvm->mmu_lock);
415 	/*
416 	 * The count increase must become visible at unlock time as no
417 	 * spte can be established without taking the mmu_lock and
418 	 * count is also read inside the mmu_lock critical section.
419 	 */
420 	kvm->mmu_notifier_count++;
421 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
422 	need_tlb_flush |= kvm->tlbs_dirty;
423 	/* we've to flush the tlb before the pages can be freed */
424 	if (need_tlb_flush)
425 		kvm_flush_remote_tlbs(kvm);
426 
427 	spin_unlock(&kvm->mmu_lock);
428 
429 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
430 					range->end,
431 					mmu_notifier_range_blockable(range));
432 
433 	srcu_read_unlock(&kvm->srcu, idx);
434 
435 	return ret;
436 }
437 
438 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
439 					const struct mmu_notifier_range *range)
440 {
441 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
442 
443 	spin_lock(&kvm->mmu_lock);
444 	/*
445 	 * This sequence increase will notify the kvm page fault that
446 	 * the page that is going to be mapped in the spte could have
447 	 * been freed.
448 	 */
449 	kvm->mmu_notifier_seq++;
450 	smp_wmb();
451 	/*
452 	 * The above sequence increase must be visible before the
453 	 * below count decrease, which is ensured by the smp_wmb above
454 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
455 	 */
456 	kvm->mmu_notifier_count--;
457 	spin_unlock(&kvm->mmu_lock);
458 
459 	BUG_ON(kvm->mmu_notifier_count < 0);
460 }
461 
462 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
463 					      struct mm_struct *mm,
464 					      unsigned long start,
465 					      unsigned long end)
466 {
467 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
468 	int young, idx;
469 
470 	idx = srcu_read_lock(&kvm->srcu);
471 	spin_lock(&kvm->mmu_lock);
472 
473 	young = kvm_age_hva(kvm, start, end);
474 	if (young)
475 		kvm_flush_remote_tlbs(kvm);
476 
477 	spin_unlock(&kvm->mmu_lock);
478 	srcu_read_unlock(&kvm->srcu, idx);
479 
480 	return young;
481 }
482 
483 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
484 					struct mm_struct *mm,
485 					unsigned long start,
486 					unsigned long end)
487 {
488 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
489 	int young, idx;
490 
491 	idx = srcu_read_lock(&kvm->srcu);
492 	spin_lock(&kvm->mmu_lock);
493 	/*
494 	 * Even though we do not flush TLB, this will still adversely
495 	 * affect performance on pre-Haswell Intel EPT, where there is
496 	 * no EPT Access Bit to clear so that we have to tear down EPT
497 	 * tables instead. If we find this unacceptable, we can always
498 	 * add a parameter to kvm_age_hva so that it effectively doesn't
499 	 * do anything on clear_young.
500 	 *
501 	 * Also note that currently we never issue secondary TLB flushes
502 	 * from clear_young, leaving this job up to the regular system
503 	 * cadence. If we find this inaccurate, we might come up with a
504 	 * more sophisticated heuristic later.
505 	 */
506 	young = kvm_age_hva(kvm, start, end);
507 	spin_unlock(&kvm->mmu_lock);
508 	srcu_read_unlock(&kvm->srcu, idx);
509 
510 	return young;
511 }
512 
513 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
514 				       struct mm_struct *mm,
515 				       unsigned long address)
516 {
517 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
518 	int young, idx;
519 
520 	idx = srcu_read_lock(&kvm->srcu);
521 	spin_lock(&kvm->mmu_lock);
522 	young = kvm_test_age_hva(kvm, address);
523 	spin_unlock(&kvm->mmu_lock);
524 	srcu_read_unlock(&kvm->srcu, idx);
525 
526 	return young;
527 }
528 
529 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
530 				     struct mm_struct *mm)
531 {
532 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
533 	int idx;
534 
535 	idx = srcu_read_lock(&kvm->srcu);
536 	kvm_arch_flush_shadow_all(kvm);
537 	srcu_read_unlock(&kvm->srcu, idx);
538 }
539 
540 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
541 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
542 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
543 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
544 	.clear_young		= kvm_mmu_notifier_clear_young,
545 	.test_young		= kvm_mmu_notifier_test_young,
546 	.change_pte		= kvm_mmu_notifier_change_pte,
547 	.release		= kvm_mmu_notifier_release,
548 };
549 
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
553 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
554 }
555 
556 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
557 
558 static int kvm_init_mmu_notifier(struct kvm *kvm)
559 {
560 	return 0;
561 }
562 
563 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564 
565 static struct kvm_memslots *kvm_alloc_memslots(void)
566 {
567 	int i;
568 	struct kvm_memslots *slots;
569 
570 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
571 	if (!slots)
572 		return NULL;
573 
574 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
575 		slots->id_to_index[i] = -1;
576 
577 	return slots;
578 }
579 
580 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
581 {
582 	if (!memslot->dirty_bitmap)
583 		return;
584 
585 	kvfree(memslot->dirty_bitmap);
586 	memslot->dirty_bitmap = NULL;
587 }
588 
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
590 {
591 	kvm_destroy_dirty_bitmap(slot);
592 
593 	kvm_arch_free_memslot(kvm, slot);
594 
595 	slot->flags = 0;
596 	slot->npages = 0;
597 }
598 
599 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
600 {
601 	struct kvm_memory_slot *memslot;
602 
603 	if (!slots)
604 		return;
605 
606 	kvm_for_each_memslot(memslot, slots)
607 		kvm_free_memslot(kvm, memslot);
608 
609 	kvfree(slots);
610 }
611 
612 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
613 {
614 	int i;
615 
616 	if (!kvm->debugfs_dentry)
617 		return;
618 
619 	debugfs_remove_recursive(kvm->debugfs_dentry);
620 
621 	if (kvm->debugfs_stat_data) {
622 		for (i = 0; i < kvm_debugfs_num_entries; i++)
623 			kfree(kvm->debugfs_stat_data[i]);
624 		kfree(kvm->debugfs_stat_data);
625 	}
626 }
627 
628 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
629 {
630 	char dir_name[ITOA_MAX_LEN * 2];
631 	struct kvm_stat_data *stat_data;
632 	struct kvm_stats_debugfs_item *p;
633 
634 	if (!debugfs_initialized())
635 		return 0;
636 
637 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
638 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
639 
640 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
641 					 sizeof(*kvm->debugfs_stat_data),
642 					 GFP_KERNEL_ACCOUNT);
643 	if (!kvm->debugfs_stat_data)
644 		return -ENOMEM;
645 
646 	for (p = debugfs_entries; p->name; p++) {
647 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
648 		if (!stat_data)
649 			return -ENOMEM;
650 
651 		stat_data->kvm = kvm;
652 		stat_data->dbgfs_item = p;
653 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
654 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
655 				    kvm->debugfs_dentry, stat_data,
656 				    &stat_fops_per_vm);
657 	}
658 	return 0;
659 }
660 
661 /*
662  * Called after the VM is otherwise initialized, but just before adding it to
663  * the vm_list.
664  */
665 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
666 {
667 	return 0;
668 }
669 
670 /*
671  * Called just after removing the VM from the vm_list, but before doing any
672  * other destruction.
673  */
674 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
675 {
676 }
677 
678 static struct kvm *kvm_create_vm(unsigned long type)
679 {
680 	struct kvm *kvm = kvm_arch_alloc_vm();
681 	int r = -ENOMEM;
682 	int i;
683 
684 	if (!kvm)
685 		return ERR_PTR(-ENOMEM);
686 
687 	spin_lock_init(&kvm->mmu_lock);
688 	mmgrab(current->mm);
689 	kvm->mm = current->mm;
690 	kvm_eventfd_init(kvm);
691 	mutex_init(&kvm->lock);
692 	mutex_init(&kvm->irq_lock);
693 	mutex_init(&kvm->slots_lock);
694 	INIT_LIST_HEAD(&kvm->devices);
695 
696 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697 
698 	if (init_srcu_struct(&kvm->srcu))
699 		goto out_err_no_srcu;
700 	if (init_srcu_struct(&kvm->irq_srcu))
701 		goto out_err_no_irq_srcu;
702 
703 	refcount_set(&kvm->users_count, 1);
704 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
705 		struct kvm_memslots *slots = kvm_alloc_memslots();
706 
707 		if (!slots)
708 			goto out_err_no_arch_destroy_vm;
709 		/* Generations must be different for each address space. */
710 		slots->generation = i;
711 		rcu_assign_pointer(kvm->memslots[i], slots);
712 	}
713 
714 	for (i = 0; i < KVM_NR_BUSES; i++) {
715 		rcu_assign_pointer(kvm->buses[i],
716 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
717 		if (!kvm->buses[i])
718 			goto out_err_no_arch_destroy_vm;
719 	}
720 
721 	r = kvm_arch_init_vm(kvm, type);
722 	if (r)
723 		goto out_err_no_arch_destroy_vm;
724 
725 	r = hardware_enable_all();
726 	if (r)
727 		goto out_err_no_disable;
728 
729 #ifdef CONFIG_HAVE_KVM_IRQFD
730 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
731 #endif
732 
733 	r = kvm_init_mmu_notifier(kvm);
734 	if (r)
735 		goto out_err_no_mmu_notifier;
736 
737 	r = kvm_arch_post_init_vm(kvm);
738 	if (r)
739 		goto out_err;
740 
741 	mutex_lock(&kvm_lock);
742 	list_add(&kvm->vm_list, &vm_list);
743 	mutex_unlock(&kvm_lock);
744 
745 	preempt_notifier_inc();
746 
747 	return kvm;
748 
749 out_err:
750 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
751 	if (kvm->mmu_notifier.ops)
752 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
753 #endif
754 out_err_no_mmu_notifier:
755 	hardware_disable_all();
756 out_err_no_disable:
757 	kvm_arch_destroy_vm(kvm);
758 out_err_no_arch_destroy_vm:
759 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
760 	for (i = 0; i < KVM_NR_BUSES; i++)
761 		kfree(kvm_get_bus(kvm, i));
762 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
763 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
764 	cleanup_srcu_struct(&kvm->irq_srcu);
765 out_err_no_irq_srcu:
766 	cleanup_srcu_struct(&kvm->srcu);
767 out_err_no_srcu:
768 	kvm_arch_free_vm(kvm);
769 	mmdrop(current->mm);
770 	return ERR_PTR(r);
771 }
772 
773 static void kvm_destroy_devices(struct kvm *kvm)
774 {
775 	struct kvm_device *dev, *tmp;
776 
777 	/*
778 	 * We do not need to take the kvm->lock here, because nobody else
779 	 * has a reference to the struct kvm at this point and therefore
780 	 * cannot access the devices list anyhow.
781 	 */
782 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
783 		list_del(&dev->vm_node);
784 		dev->ops->destroy(dev);
785 	}
786 }
787 
788 static void kvm_destroy_vm(struct kvm *kvm)
789 {
790 	int i;
791 	struct mm_struct *mm = kvm->mm;
792 
793 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
794 	kvm_destroy_vm_debugfs(kvm);
795 	kvm_arch_sync_events(kvm);
796 	mutex_lock(&kvm_lock);
797 	list_del(&kvm->vm_list);
798 	mutex_unlock(&kvm_lock);
799 	kvm_arch_pre_destroy_vm(kvm);
800 
801 	kvm_free_irq_routing(kvm);
802 	for (i = 0; i < KVM_NR_BUSES; i++) {
803 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
804 
805 		if (bus)
806 			kvm_io_bus_destroy(bus);
807 		kvm->buses[i] = NULL;
808 	}
809 	kvm_coalesced_mmio_free(kvm);
810 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
811 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
812 #else
813 	kvm_arch_flush_shadow_all(kvm);
814 #endif
815 	kvm_arch_destroy_vm(kvm);
816 	kvm_destroy_devices(kvm);
817 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
818 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
819 	cleanup_srcu_struct(&kvm->irq_srcu);
820 	cleanup_srcu_struct(&kvm->srcu);
821 	kvm_arch_free_vm(kvm);
822 	preempt_notifier_dec();
823 	hardware_disable_all();
824 	mmdrop(mm);
825 }
826 
827 void kvm_get_kvm(struct kvm *kvm)
828 {
829 	refcount_inc(&kvm->users_count);
830 }
831 EXPORT_SYMBOL_GPL(kvm_get_kvm);
832 
833 void kvm_put_kvm(struct kvm *kvm)
834 {
835 	if (refcount_dec_and_test(&kvm->users_count))
836 		kvm_destroy_vm(kvm);
837 }
838 EXPORT_SYMBOL_GPL(kvm_put_kvm);
839 
840 /*
841  * Used to put a reference that was taken on behalf of an object associated
842  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
843  * of the new file descriptor fails and the reference cannot be transferred to
844  * its final owner.  In such cases, the caller is still actively using @kvm and
845  * will fail miserably if the refcount unexpectedly hits zero.
846  */
847 void kvm_put_kvm_no_destroy(struct kvm *kvm)
848 {
849 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
850 }
851 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
852 
853 static int kvm_vm_release(struct inode *inode, struct file *filp)
854 {
855 	struct kvm *kvm = filp->private_data;
856 
857 	kvm_irqfd_release(kvm);
858 
859 	kvm_put_kvm(kvm);
860 	return 0;
861 }
862 
863 /*
864  * Allocation size is twice as large as the actual dirty bitmap size.
865  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
866  */
867 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
868 {
869 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
870 
871 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
872 	if (!memslot->dirty_bitmap)
873 		return -ENOMEM;
874 
875 	return 0;
876 }
877 
878 /*
879  * Delete a memslot by decrementing the number of used slots and shifting all
880  * other entries in the array forward one spot.
881  */
882 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
883 				      struct kvm_memory_slot *memslot)
884 {
885 	struct kvm_memory_slot *mslots = slots->memslots;
886 	int i;
887 
888 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
889 		return;
890 
891 	slots->used_slots--;
892 
893 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
894 		atomic_set(&slots->lru_slot, 0);
895 
896 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
897 		mslots[i] = mslots[i + 1];
898 		slots->id_to_index[mslots[i].id] = i;
899 	}
900 	mslots[i] = *memslot;
901 	slots->id_to_index[memslot->id] = -1;
902 }
903 
904 /*
905  * "Insert" a new memslot by incrementing the number of used slots.  Returns
906  * the new slot's initial index into the memslots array.
907  */
908 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
909 {
910 	return slots->used_slots++;
911 }
912 
913 /*
914  * Move a changed memslot backwards in the array by shifting existing slots
915  * with a higher GFN toward the front of the array.  Note, the changed memslot
916  * itself is not preserved in the array, i.e. not swapped at this time, only
917  * its new index into the array is tracked.  Returns the changed memslot's
918  * current index into the memslots array.
919  */
920 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
921 					    struct kvm_memory_slot *memslot)
922 {
923 	struct kvm_memory_slot *mslots = slots->memslots;
924 	int i;
925 
926 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
927 	    WARN_ON_ONCE(!slots->used_slots))
928 		return -1;
929 
930 	/*
931 	 * Move the target memslot backward in the array by shifting existing
932 	 * memslots with a higher GFN (than the target memslot) towards the
933 	 * front of the array.
934 	 */
935 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
936 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
937 			break;
938 
939 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
940 
941 		/* Shift the next memslot forward one and update its index. */
942 		mslots[i] = mslots[i + 1];
943 		slots->id_to_index[mslots[i].id] = i;
944 	}
945 	return i;
946 }
947 
948 /*
949  * Move a changed memslot forwards in the array by shifting existing slots with
950  * a lower GFN toward the back of the array.  Note, the changed memslot itself
951  * is not preserved in the array, i.e. not swapped at this time, only its new
952  * index into the array is tracked.  Returns the changed memslot's final index
953  * into the memslots array.
954  */
955 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
956 					   struct kvm_memory_slot *memslot,
957 					   int start)
958 {
959 	struct kvm_memory_slot *mslots = slots->memslots;
960 	int i;
961 
962 	for (i = start; i > 0; i--) {
963 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
964 			break;
965 
966 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
967 
968 		/* Shift the next memslot back one and update its index. */
969 		mslots[i] = mslots[i - 1];
970 		slots->id_to_index[mslots[i].id] = i;
971 	}
972 	return i;
973 }
974 
975 /*
976  * Re-sort memslots based on their GFN to account for an added, deleted, or
977  * moved memslot.  Sorting memslots by GFN allows using a binary search during
978  * memslot lookup.
979  *
980  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
981  * at memslots[0] has the highest GFN.
982  *
983  * The sorting algorithm takes advantage of having initially sorted memslots
984  * and knowing the position of the changed memslot.  Sorting is also optimized
985  * by not swapping the updated memslot and instead only shifting other memslots
986  * and tracking the new index for the update memslot.  Only once its final
987  * index is known is the updated memslot copied into its position in the array.
988  *
989  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
990  *    the end of the array.
991  *
992  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
993  *    end of the array and then it forward to its correct location.
994  *
995  *  - When moving a memslot, the algorithm first moves the updated memslot
996  *    backward to handle the scenario where the memslot's GFN was changed to a
997  *    lower value.  update_memslots() then falls through and runs the same flow
998  *    as creating a memslot to move the memslot forward to handle the scenario
999  *    where its GFN was changed to a higher value.
1000  *
1001  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1002  * historical reasons.  Originally, invalid memslots where denoted by having
1003  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1004  * to the end of the array.  The current algorithm uses dedicated logic to
1005  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1006  *
1007  * The other historical motiviation for highest->lowest was to improve the
1008  * performance of memslot lookup.  KVM originally used a linear search starting
1009  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1010  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1011  * single memslot above the 4gb boundary.  As the largest memslot is also the
1012  * most likely to be referenced, sorting it to the front of the array was
1013  * advantageous.  The current binary search starts from the middle of the array
1014  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1015  */
1016 static void update_memslots(struct kvm_memslots *slots,
1017 			    struct kvm_memory_slot *memslot,
1018 			    enum kvm_mr_change change)
1019 {
1020 	int i;
1021 
1022 	if (change == KVM_MR_DELETE) {
1023 		kvm_memslot_delete(slots, memslot);
1024 	} else {
1025 		if (change == KVM_MR_CREATE)
1026 			i = kvm_memslot_insert_back(slots);
1027 		else
1028 			i = kvm_memslot_move_backward(slots, memslot);
1029 		i = kvm_memslot_move_forward(slots, memslot, i);
1030 
1031 		/*
1032 		 * Copy the memslot to its new position in memslots and update
1033 		 * its index accordingly.
1034 		 */
1035 		slots->memslots[i] = *memslot;
1036 		slots->id_to_index[memslot->id] = i;
1037 	}
1038 }
1039 
1040 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1041 {
1042 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1043 
1044 #ifdef __KVM_HAVE_READONLY_MEM
1045 	valid_flags |= KVM_MEM_READONLY;
1046 #endif
1047 
1048 	if (mem->flags & ~valid_flags)
1049 		return -EINVAL;
1050 
1051 	return 0;
1052 }
1053 
1054 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1055 		int as_id, struct kvm_memslots *slots)
1056 {
1057 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1058 	u64 gen = old_memslots->generation;
1059 
1060 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1061 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1062 
1063 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1064 	synchronize_srcu_expedited(&kvm->srcu);
1065 
1066 	/*
1067 	 * Increment the new memslot generation a second time, dropping the
1068 	 * update in-progress flag and incrementing the generation based on
1069 	 * the number of address spaces.  This provides a unique and easily
1070 	 * identifiable generation number while the memslots are in flux.
1071 	 */
1072 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1073 
1074 	/*
1075 	 * Generations must be unique even across address spaces.  We do not need
1076 	 * a global counter for that, instead the generation space is evenly split
1077 	 * across address spaces.  For example, with two address spaces, address
1078 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1079 	 * use generations 1, 3, 5, ...
1080 	 */
1081 	gen += KVM_ADDRESS_SPACE_NUM;
1082 
1083 	kvm_arch_memslots_updated(kvm, gen);
1084 
1085 	slots->generation = gen;
1086 
1087 	return old_memslots;
1088 }
1089 
1090 /*
1091  * Note, at a minimum, the current number of used slots must be allocated, even
1092  * when deleting a memslot, as we need a complete duplicate of the memslots for
1093  * use when invalidating a memslot prior to deleting/moving the memslot.
1094  */
1095 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1096 					     enum kvm_mr_change change)
1097 {
1098 	struct kvm_memslots *slots;
1099 	size_t old_size, new_size;
1100 
1101 	old_size = sizeof(struct kvm_memslots) +
1102 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1103 
1104 	if (change == KVM_MR_CREATE)
1105 		new_size = old_size + sizeof(struct kvm_memory_slot);
1106 	else
1107 		new_size = old_size;
1108 
1109 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1110 	if (likely(slots))
1111 		memcpy(slots, old, old_size);
1112 
1113 	return slots;
1114 }
1115 
1116 static int kvm_set_memslot(struct kvm *kvm,
1117 			   const struct kvm_userspace_memory_region *mem,
1118 			   struct kvm_memory_slot *old,
1119 			   struct kvm_memory_slot *new, int as_id,
1120 			   enum kvm_mr_change change)
1121 {
1122 	struct kvm_memory_slot *slot;
1123 	struct kvm_memslots *slots;
1124 	int r;
1125 
1126 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1127 	if (!slots)
1128 		return -ENOMEM;
1129 
1130 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1131 		/*
1132 		 * Note, the INVALID flag needs to be in the appropriate entry
1133 		 * in the freshly allocated memslots, not in @old or @new.
1134 		 */
1135 		slot = id_to_memslot(slots, old->id);
1136 		slot->flags |= KVM_MEMSLOT_INVALID;
1137 
1138 		/*
1139 		 * We can re-use the old memslots, the only difference from the
1140 		 * newly installed memslots is the invalid flag, which will get
1141 		 * dropped by update_memslots anyway.  We'll also revert to the
1142 		 * old memslots if preparing the new memory region fails.
1143 		 */
1144 		slots = install_new_memslots(kvm, as_id, slots);
1145 
1146 		/* From this point no new shadow pages pointing to a deleted,
1147 		 * or moved, memslot will be created.
1148 		 *
1149 		 * validation of sp->gfn happens in:
1150 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1151 		 *	- kvm_is_visible_gfn (mmu_check_root)
1152 		 */
1153 		kvm_arch_flush_shadow_memslot(kvm, slot);
1154 	}
1155 
1156 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1157 	if (r)
1158 		goto out_slots;
1159 
1160 	update_memslots(slots, new, change);
1161 	slots = install_new_memslots(kvm, as_id, slots);
1162 
1163 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1164 
1165 	kvfree(slots);
1166 	return 0;
1167 
1168 out_slots:
1169 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1170 		slots = install_new_memslots(kvm, as_id, slots);
1171 	kvfree(slots);
1172 	return r;
1173 }
1174 
1175 static int kvm_delete_memslot(struct kvm *kvm,
1176 			      const struct kvm_userspace_memory_region *mem,
1177 			      struct kvm_memory_slot *old, int as_id)
1178 {
1179 	struct kvm_memory_slot new;
1180 	int r;
1181 
1182 	if (!old->npages)
1183 		return -EINVAL;
1184 
1185 	memset(&new, 0, sizeof(new));
1186 	new.id = old->id;
1187 
1188 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1189 	if (r)
1190 		return r;
1191 
1192 	kvm_free_memslot(kvm, old);
1193 	return 0;
1194 }
1195 
1196 /*
1197  * Allocate some memory and give it an address in the guest physical address
1198  * space.
1199  *
1200  * Discontiguous memory is allowed, mostly for framebuffers.
1201  *
1202  * Must be called holding kvm->slots_lock for write.
1203  */
1204 int __kvm_set_memory_region(struct kvm *kvm,
1205 			    const struct kvm_userspace_memory_region *mem)
1206 {
1207 	struct kvm_memory_slot old, new;
1208 	struct kvm_memory_slot *tmp;
1209 	enum kvm_mr_change change;
1210 	int as_id, id;
1211 	int r;
1212 
1213 	r = check_memory_region_flags(mem);
1214 	if (r)
1215 		return r;
1216 
1217 	as_id = mem->slot >> 16;
1218 	id = (u16)mem->slot;
1219 
1220 	/* General sanity checks */
1221 	if (mem->memory_size & (PAGE_SIZE - 1))
1222 		return -EINVAL;
1223 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1224 		return -EINVAL;
1225 	/* We can read the guest memory with __xxx_user() later on. */
1226 	if ((id < KVM_USER_MEM_SLOTS) &&
1227 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1228 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1229 			mem->memory_size)))
1230 		return -EINVAL;
1231 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1232 		return -EINVAL;
1233 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1234 		return -EINVAL;
1235 
1236 	/*
1237 	 * Make a full copy of the old memslot, the pointer will become stale
1238 	 * when the memslots are re-sorted by update_memslots(), and the old
1239 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1240 	 * to free its resources and for arch specific behavior.
1241 	 */
1242 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1243 	if (tmp) {
1244 		old = *tmp;
1245 		tmp = NULL;
1246 	} else {
1247 		memset(&old, 0, sizeof(old));
1248 		old.id = id;
1249 	}
1250 
1251 	if (!mem->memory_size)
1252 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1253 
1254 	new.id = id;
1255 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1256 	new.npages = mem->memory_size >> PAGE_SHIFT;
1257 	new.flags = mem->flags;
1258 	new.userspace_addr = mem->userspace_addr;
1259 
1260 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1261 		return -EINVAL;
1262 
1263 	if (!old.npages) {
1264 		change = KVM_MR_CREATE;
1265 		new.dirty_bitmap = NULL;
1266 		memset(&new.arch, 0, sizeof(new.arch));
1267 	} else { /* Modify an existing slot. */
1268 		if ((new.userspace_addr != old.userspace_addr) ||
1269 		    (new.npages != old.npages) ||
1270 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1271 			return -EINVAL;
1272 
1273 		if (new.base_gfn != old.base_gfn)
1274 			change = KVM_MR_MOVE;
1275 		else if (new.flags != old.flags)
1276 			change = KVM_MR_FLAGS_ONLY;
1277 		else /* Nothing to change. */
1278 			return 0;
1279 
1280 		/* Copy dirty_bitmap and arch from the current memslot. */
1281 		new.dirty_bitmap = old.dirty_bitmap;
1282 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1283 	}
1284 
1285 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1286 		/* Check for overlaps */
1287 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1288 			if (tmp->id == id)
1289 				continue;
1290 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1291 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1292 				return -EEXIST;
1293 		}
1294 	}
1295 
1296 	/* Allocate/free page dirty bitmap as needed */
1297 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1298 		new.dirty_bitmap = NULL;
1299 	else if (!new.dirty_bitmap) {
1300 		r = kvm_alloc_dirty_bitmap(&new);
1301 		if (r)
1302 			return r;
1303 
1304 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1305 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1306 	}
1307 
1308 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1309 	if (r)
1310 		goto out_bitmap;
1311 
1312 	if (old.dirty_bitmap && !new.dirty_bitmap)
1313 		kvm_destroy_dirty_bitmap(&old);
1314 	return 0;
1315 
1316 out_bitmap:
1317 	if (new.dirty_bitmap && !old.dirty_bitmap)
1318 		kvm_destroy_dirty_bitmap(&new);
1319 	return r;
1320 }
1321 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1322 
1323 int kvm_set_memory_region(struct kvm *kvm,
1324 			  const struct kvm_userspace_memory_region *mem)
1325 {
1326 	int r;
1327 
1328 	mutex_lock(&kvm->slots_lock);
1329 	r = __kvm_set_memory_region(kvm, mem);
1330 	mutex_unlock(&kvm->slots_lock);
1331 	return r;
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1334 
1335 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1336 					  struct kvm_userspace_memory_region *mem)
1337 {
1338 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1339 		return -EINVAL;
1340 
1341 	return kvm_set_memory_region(kvm, mem);
1342 }
1343 
1344 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1345 /**
1346  * kvm_get_dirty_log - get a snapshot of dirty pages
1347  * @kvm:	pointer to kvm instance
1348  * @log:	slot id and address to which we copy the log
1349  * @is_dirty:	set to '1' if any dirty pages were found
1350  * @memslot:	set to the associated memslot, always valid on success
1351  */
1352 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1353 		      int *is_dirty, struct kvm_memory_slot **memslot)
1354 {
1355 	struct kvm_memslots *slots;
1356 	int i, as_id, id;
1357 	unsigned long n;
1358 	unsigned long any = 0;
1359 
1360 	*memslot = NULL;
1361 	*is_dirty = 0;
1362 
1363 	as_id = log->slot >> 16;
1364 	id = (u16)log->slot;
1365 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1366 		return -EINVAL;
1367 
1368 	slots = __kvm_memslots(kvm, as_id);
1369 	*memslot = id_to_memslot(slots, id);
1370 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1371 		return -ENOENT;
1372 
1373 	kvm_arch_sync_dirty_log(kvm, *memslot);
1374 
1375 	n = kvm_dirty_bitmap_bytes(*memslot);
1376 
1377 	for (i = 0; !any && i < n/sizeof(long); ++i)
1378 		any = (*memslot)->dirty_bitmap[i];
1379 
1380 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1381 		return -EFAULT;
1382 
1383 	if (any)
1384 		*is_dirty = 1;
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1388 
1389 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1390 /**
1391  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1392  *	and reenable dirty page tracking for the corresponding pages.
1393  * @kvm:	pointer to kvm instance
1394  * @log:	slot id and address to which we copy the log
1395  *
1396  * We need to keep it in mind that VCPU threads can write to the bitmap
1397  * concurrently. So, to avoid losing track of dirty pages we keep the
1398  * following order:
1399  *
1400  *    1. Take a snapshot of the bit and clear it if needed.
1401  *    2. Write protect the corresponding page.
1402  *    3. Copy the snapshot to the userspace.
1403  *    4. Upon return caller flushes TLB's if needed.
1404  *
1405  * Between 2 and 4, the guest may write to the page using the remaining TLB
1406  * entry.  This is not a problem because the page is reported dirty using
1407  * the snapshot taken before and step 4 ensures that writes done after
1408  * exiting to userspace will be logged for the next call.
1409  *
1410  */
1411 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1412 {
1413 	struct kvm_memslots *slots;
1414 	struct kvm_memory_slot *memslot;
1415 	int i, as_id, id;
1416 	unsigned long n;
1417 	unsigned long *dirty_bitmap;
1418 	unsigned long *dirty_bitmap_buffer;
1419 	bool flush;
1420 
1421 	as_id = log->slot >> 16;
1422 	id = (u16)log->slot;
1423 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1424 		return -EINVAL;
1425 
1426 	slots = __kvm_memslots(kvm, as_id);
1427 	memslot = id_to_memslot(slots, id);
1428 	if (!memslot || !memslot->dirty_bitmap)
1429 		return -ENOENT;
1430 
1431 	dirty_bitmap = memslot->dirty_bitmap;
1432 
1433 	kvm_arch_sync_dirty_log(kvm, memslot);
1434 
1435 	n = kvm_dirty_bitmap_bytes(memslot);
1436 	flush = false;
1437 	if (kvm->manual_dirty_log_protect) {
1438 		/*
1439 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1440 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1441 		 * is some code duplication between this function and
1442 		 * kvm_get_dirty_log, but hopefully all architecture
1443 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1444 		 * can be eliminated.
1445 		 */
1446 		dirty_bitmap_buffer = dirty_bitmap;
1447 	} else {
1448 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1449 		memset(dirty_bitmap_buffer, 0, n);
1450 
1451 		spin_lock(&kvm->mmu_lock);
1452 		for (i = 0; i < n / sizeof(long); i++) {
1453 			unsigned long mask;
1454 			gfn_t offset;
1455 
1456 			if (!dirty_bitmap[i])
1457 				continue;
1458 
1459 			flush = true;
1460 			mask = xchg(&dirty_bitmap[i], 0);
1461 			dirty_bitmap_buffer[i] = mask;
1462 
1463 			offset = i * BITS_PER_LONG;
1464 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1465 								offset, mask);
1466 		}
1467 		spin_unlock(&kvm->mmu_lock);
1468 	}
1469 
1470 	if (flush)
1471 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1472 
1473 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1474 		return -EFAULT;
1475 	return 0;
1476 }
1477 
1478 
1479 /**
1480  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1481  * @kvm: kvm instance
1482  * @log: slot id and address to which we copy the log
1483  *
1484  * Steps 1-4 below provide general overview of dirty page logging. See
1485  * kvm_get_dirty_log_protect() function description for additional details.
1486  *
1487  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1488  * always flush the TLB (step 4) even if previous step failed  and the dirty
1489  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1490  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1491  * writes will be marked dirty for next log read.
1492  *
1493  *   1. Take a snapshot of the bit and clear it if needed.
1494  *   2. Write protect the corresponding page.
1495  *   3. Copy the snapshot to the userspace.
1496  *   4. Flush TLB's if needed.
1497  */
1498 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1499 				      struct kvm_dirty_log *log)
1500 {
1501 	int r;
1502 
1503 	mutex_lock(&kvm->slots_lock);
1504 
1505 	r = kvm_get_dirty_log_protect(kvm, log);
1506 
1507 	mutex_unlock(&kvm->slots_lock);
1508 	return r;
1509 }
1510 
1511 /**
1512  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1513  *	and reenable dirty page tracking for the corresponding pages.
1514  * @kvm:	pointer to kvm instance
1515  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1516  */
1517 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1518 				       struct kvm_clear_dirty_log *log)
1519 {
1520 	struct kvm_memslots *slots;
1521 	struct kvm_memory_slot *memslot;
1522 	int as_id, id;
1523 	gfn_t offset;
1524 	unsigned long i, n;
1525 	unsigned long *dirty_bitmap;
1526 	unsigned long *dirty_bitmap_buffer;
1527 	bool flush;
1528 
1529 	as_id = log->slot >> 16;
1530 	id = (u16)log->slot;
1531 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1532 		return -EINVAL;
1533 
1534 	if (log->first_page & 63)
1535 		return -EINVAL;
1536 
1537 	slots = __kvm_memslots(kvm, as_id);
1538 	memslot = id_to_memslot(slots, id);
1539 	if (!memslot || !memslot->dirty_bitmap)
1540 		return -ENOENT;
1541 
1542 	dirty_bitmap = memslot->dirty_bitmap;
1543 
1544 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1545 
1546 	if (log->first_page > memslot->npages ||
1547 	    log->num_pages > memslot->npages - log->first_page ||
1548 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1549 	    return -EINVAL;
1550 
1551 	kvm_arch_sync_dirty_log(kvm, memslot);
1552 
1553 	flush = false;
1554 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1555 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1556 		return -EFAULT;
1557 
1558 	spin_lock(&kvm->mmu_lock);
1559 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1560 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1561 	     i++, offset += BITS_PER_LONG) {
1562 		unsigned long mask = *dirty_bitmap_buffer++;
1563 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1564 		if (!mask)
1565 			continue;
1566 
1567 		mask &= atomic_long_fetch_andnot(mask, p);
1568 
1569 		/*
1570 		 * mask contains the bits that really have been cleared.  This
1571 		 * never includes any bits beyond the length of the memslot (if
1572 		 * the length is not aligned to 64 pages), therefore it is not
1573 		 * a problem if userspace sets them in log->dirty_bitmap.
1574 		*/
1575 		if (mask) {
1576 			flush = true;
1577 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1578 								offset, mask);
1579 		}
1580 	}
1581 	spin_unlock(&kvm->mmu_lock);
1582 
1583 	if (flush)
1584 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1585 
1586 	return 0;
1587 }
1588 
1589 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1590 					struct kvm_clear_dirty_log *log)
1591 {
1592 	int r;
1593 
1594 	mutex_lock(&kvm->slots_lock);
1595 
1596 	r = kvm_clear_dirty_log_protect(kvm, log);
1597 
1598 	mutex_unlock(&kvm->slots_lock);
1599 	return r;
1600 }
1601 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1602 
1603 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1604 {
1605 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1608 
1609 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1610 {
1611 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1612 }
1613 
1614 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1615 {
1616 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1617 
1618 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1619 	      memslot->flags & KVM_MEMSLOT_INVALID)
1620 		return false;
1621 
1622 	return true;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1625 
1626 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1627 {
1628 	struct vm_area_struct *vma;
1629 	unsigned long addr, size;
1630 
1631 	size = PAGE_SIZE;
1632 
1633 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1634 	if (kvm_is_error_hva(addr))
1635 		return PAGE_SIZE;
1636 
1637 	down_read(&current->mm->mmap_sem);
1638 	vma = find_vma(current->mm, addr);
1639 	if (!vma)
1640 		goto out;
1641 
1642 	size = vma_kernel_pagesize(vma);
1643 
1644 out:
1645 	up_read(&current->mm->mmap_sem);
1646 
1647 	return size;
1648 }
1649 
1650 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1651 {
1652 	return slot->flags & KVM_MEM_READONLY;
1653 }
1654 
1655 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1656 				       gfn_t *nr_pages, bool write)
1657 {
1658 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1659 		return KVM_HVA_ERR_BAD;
1660 
1661 	if (memslot_is_readonly(slot) && write)
1662 		return KVM_HVA_ERR_RO_BAD;
1663 
1664 	if (nr_pages)
1665 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1666 
1667 	return __gfn_to_hva_memslot(slot, gfn);
1668 }
1669 
1670 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1671 				     gfn_t *nr_pages)
1672 {
1673 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1674 }
1675 
1676 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1677 					gfn_t gfn)
1678 {
1679 	return gfn_to_hva_many(slot, gfn, NULL);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1682 
1683 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1684 {
1685 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1686 }
1687 EXPORT_SYMBOL_GPL(gfn_to_hva);
1688 
1689 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1690 {
1691 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1694 
1695 /*
1696  * Return the hva of a @gfn and the R/W attribute if possible.
1697  *
1698  * @slot: the kvm_memory_slot which contains @gfn
1699  * @gfn: the gfn to be translated
1700  * @writable: used to return the read/write attribute of the @slot if the hva
1701  * is valid and @writable is not NULL
1702  */
1703 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1704 				      gfn_t gfn, bool *writable)
1705 {
1706 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1707 
1708 	if (!kvm_is_error_hva(hva) && writable)
1709 		*writable = !memslot_is_readonly(slot);
1710 
1711 	return hva;
1712 }
1713 
1714 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1715 {
1716 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1717 
1718 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1719 }
1720 
1721 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1722 {
1723 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1724 
1725 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1726 }
1727 
1728 static inline int check_user_page_hwpoison(unsigned long addr)
1729 {
1730 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1731 
1732 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1733 	return rc == -EHWPOISON;
1734 }
1735 
1736 /*
1737  * The fast path to get the writable pfn which will be stored in @pfn,
1738  * true indicates success, otherwise false is returned.  It's also the
1739  * only part that runs if we can in atomic context.
1740  */
1741 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1742 			    bool *writable, kvm_pfn_t *pfn)
1743 {
1744 	struct page *page[1];
1745 	int npages;
1746 
1747 	/*
1748 	 * Fast pin a writable pfn only if it is a write fault request
1749 	 * or the caller allows to map a writable pfn for a read fault
1750 	 * request.
1751 	 */
1752 	if (!(write_fault || writable))
1753 		return false;
1754 
1755 	npages = __get_user_pages_fast(addr, 1, 1, page);
1756 	if (npages == 1) {
1757 		*pfn = page_to_pfn(page[0]);
1758 
1759 		if (writable)
1760 			*writable = true;
1761 		return true;
1762 	}
1763 
1764 	return false;
1765 }
1766 
1767 /*
1768  * The slow path to get the pfn of the specified host virtual address,
1769  * 1 indicates success, -errno is returned if error is detected.
1770  */
1771 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1772 			   bool *writable, kvm_pfn_t *pfn)
1773 {
1774 	unsigned int flags = FOLL_HWPOISON;
1775 	struct page *page;
1776 	int npages = 0;
1777 
1778 	might_sleep();
1779 
1780 	if (writable)
1781 		*writable = write_fault;
1782 
1783 	if (write_fault)
1784 		flags |= FOLL_WRITE;
1785 	if (async)
1786 		flags |= FOLL_NOWAIT;
1787 
1788 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1789 	if (npages != 1)
1790 		return npages;
1791 
1792 	/* map read fault as writable if possible */
1793 	if (unlikely(!write_fault) && writable) {
1794 		struct page *wpage;
1795 
1796 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1797 			*writable = true;
1798 			put_page(page);
1799 			page = wpage;
1800 		}
1801 	}
1802 	*pfn = page_to_pfn(page);
1803 	return npages;
1804 }
1805 
1806 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1807 {
1808 	if (unlikely(!(vma->vm_flags & VM_READ)))
1809 		return false;
1810 
1811 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1812 		return false;
1813 
1814 	return true;
1815 }
1816 
1817 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1818 			       unsigned long addr, bool *async,
1819 			       bool write_fault, bool *writable,
1820 			       kvm_pfn_t *p_pfn)
1821 {
1822 	unsigned long pfn;
1823 	int r;
1824 
1825 	r = follow_pfn(vma, addr, &pfn);
1826 	if (r) {
1827 		/*
1828 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1829 		 * not call the fault handler, so do it here.
1830 		 */
1831 		bool unlocked = false;
1832 		r = fixup_user_fault(current, current->mm, addr,
1833 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1834 				     &unlocked);
1835 		if (unlocked)
1836 			return -EAGAIN;
1837 		if (r)
1838 			return r;
1839 
1840 		r = follow_pfn(vma, addr, &pfn);
1841 		if (r)
1842 			return r;
1843 
1844 	}
1845 
1846 	if (writable)
1847 		*writable = true;
1848 
1849 	/*
1850 	 * Get a reference here because callers of *hva_to_pfn* and
1851 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1852 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1853 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1854 	 * simply do nothing for reserved pfns.
1855 	 *
1856 	 * Whoever called remap_pfn_range is also going to call e.g.
1857 	 * unmap_mapping_range before the underlying pages are freed,
1858 	 * causing a call to our MMU notifier.
1859 	 */
1860 	kvm_get_pfn(pfn);
1861 
1862 	*p_pfn = pfn;
1863 	return 0;
1864 }
1865 
1866 /*
1867  * Pin guest page in memory and return its pfn.
1868  * @addr: host virtual address which maps memory to the guest
1869  * @atomic: whether this function can sleep
1870  * @async: whether this function need to wait IO complete if the
1871  *         host page is not in the memory
1872  * @write_fault: whether we should get a writable host page
1873  * @writable: whether it allows to map a writable host page for !@write_fault
1874  *
1875  * The function will map a writable host page for these two cases:
1876  * 1): @write_fault = true
1877  * 2): @write_fault = false && @writable, @writable will tell the caller
1878  *     whether the mapping is writable.
1879  */
1880 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1881 			bool write_fault, bool *writable)
1882 {
1883 	struct vm_area_struct *vma;
1884 	kvm_pfn_t pfn = 0;
1885 	int npages, r;
1886 
1887 	/* we can do it either atomically or asynchronously, not both */
1888 	BUG_ON(atomic && async);
1889 
1890 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1891 		return pfn;
1892 
1893 	if (atomic)
1894 		return KVM_PFN_ERR_FAULT;
1895 
1896 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1897 	if (npages == 1)
1898 		return pfn;
1899 
1900 	down_read(&current->mm->mmap_sem);
1901 	if (npages == -EHWPOISON ||
1902 	      (!async && check_user_page_hwpoison(addr))) {
1903 		pfn = KVM_PFN_ERR_HWPOISON;
1904 		goto exit;
1905 	}
1906 
1907 retry:
1908 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1909 
1910 	if (vma == NULL)
1911 		pfn = KVM_PFN_ERR_FAULT;
1912 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1913 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1914 		if (r == -EAGAIN)
1915 			goto retry;
1916 		if (r < 0)
1917 			pfn = KVM_PFN_ERR_FAULT;
1918 	} else {
1919 		if (async && vma_is_valid(vma, write_fault))
1920 			*async = true;
1921 		pfn = KVM_PFN_ERR_FAULT;
1922 	}
1923 exit:
1924 	up_read(&current->mm->mmap_sem);
1925 	return pfn;
1926 }
1927 
1928 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1929 			       bool atomic, bool *async, bool write_fault,
1930 			       bool *writable)
1931 {
1932 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1933 
1934 	if (addr == KVM_HVA_ERR_RO_BAD) {
1935 		if (writable)
1936 			*writable = false;
1937 		return KVM_PFN_ERR_RO_FAULT;
1938 	}
1939 
1940 	if (kvm_is_error_hva(addr)) {
1941 		if (writable)
1942 			*writable = false;
1943 		return KVM_PFN_NOSLOT;
1944 	}
1945 
1946 	/* Do not map writable pfn in the readonly memslot. */
1947 	if (writable && memslot_is_readonly(slot)) {
1948 		*writable = false;
1949 		writable = NULL;
1950 	}
1951 
1952 	return hva_to_pfn(addr, atomic, async, write_fault,
1953 			  writable);
1954 }
1955 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1956 
1957 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1958 		      bool *writable)
1959 {
1960 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1961 				    write_fault, writable);
1962 }
1963 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1964 
1965 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1966 {
1967 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1968 }
1969 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1970 
1971 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1972 {
1973 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1974 }
1975 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1976 
1977 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1978 {
1979 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1982 
1983 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1984 {
1985 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1986 }
1987 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1988 
1989 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1990 {
1991 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1994 
1995 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1996 			    struct page **pages, int nr_pages)
1997 {
1998 	unsigned long addr;
1999 	gfn_t entry = 0;
2000 
2001 	addr = gfn_to_hva_many(slot, gfn, &entry);
2002 	if (kvm_is_error_hva(addr))
2003 		return -1;
2004 
2005 	if (entry < nr_pages)
2006 		return 0;
2007 
2008 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
2009 }
2010 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2011 
2012 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2013 {
2014 	if (is_error_noslot_pfn(pfn))
2015 		return KVM_ERR_PTR_BAD_PAGE;
2016 
2017 	if (kvm_is_reserved_pfn(pfn)) {
2018 		WARN_ON(1);
2019 		return KVM_ERR_PTR_BAD_PAGE;
2020 	}
2021 
2022 	return pfn_to_page(pfn);
2023 }
2024 
2025 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2026 {
2027 	kvm_pfn_t pfn;
2028 
2029 	pfn = gfn_to_pfn(kvm, gfn);
2030 
2031 	return kvm_pfn_to_page(pfn);
2032 }
2033 EXPORT_SYMBOL_GPL(gfn_to_page);
2034 
2035 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2036 {
2037 	if (pfn == 0)
2038 		return;
2039 
2040 	if (cache)
2041 		cache->pfn = cache->gfn = 0;
2042 
2043 	if (dirty)
2044 		kvm_release_pfn_dirty(pfn);
2045 	else
2046 		kvm_release_pfn_clean(pfn);
2047 }
2048 
2049 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2050 				 struct gfn_to_pfn_cache *cache, u64 gen)
2051 {
2052 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2053 
2054 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2055 	cache->gfn = gfn;
2056 	cache->dirty = false;
2057 	cache->generation = gen;
2058 }
2059 
2060 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2061 			 struct kvm_host_map *map,
2062 			 struct gfn_to_pfn_cache *cache,
2063 			 bool atomic)
2064 {
2065 	kvm_pfn_t pfn;
2066 	void *hva = NULL;
2067 	struct page *page = KVM_UNMAPPED_PAGE;
2068 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2069 	u64 gen = slots->generation;
2070 
2071 	if (!map)
2072 		return -EINVAL;
2073 
2074 	if (cache) {
2075 		if (!cache->pfn || cache->gfn != gfn ||
2076 			cache->generation != gen) {
2077 			if (atomic)
2078 				return -EAGAIN;
2079 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2080 		}
2081 		pfn = cache->pfn;
2082 	} else {
2083 		if (atomic)
2084 			return -EAGAIN;
2085 		pfn = gfn_to_pfn_memslot(slot, gfn);
2086 	}
2087 	if (is_error_noslot_pfn(pfn))
2088 		return -EINVAL;
2089 
2090 	if (pfn_valid(pfn)) {
2091 		page = pfn_to_page(pfn);
2092 		if (atomic)
2093 			hva = kmap_atomic(page);
2094 		else
2095 			hva = kmap(page);
2096 #ifdef CONFIG_HAS_IOMEM
2097 	} else if (!atomic) {
2098 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2099 	} else {
2100 		return -EINVAL;
2101 #endif
2102 	}
2103 
2104 	if (!hva)
2105 		return -EFAULT;
2106 
2107 	map->page = page;
2108 	map->hva = hva;
2109 	map->pfn = pfn;
2110 	map->gfn = gfn;
2111 
2112 	return 0;
2113 }
2114 
2115 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2116 		struct gfn_to_pfn_cache *cache, bool atomic)
2117 {
2118 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2119 			cache, atomic);
2120 }
2121 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2122 
2123 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2124 {
2125 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2126 		NULL, false);
2127 }
2128 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2129 
2130 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2131 			struct kvm_host_map *map,
2132 			struct gfn_to_pfn_cache *cache,
2133 			bool dirty, bool atomic)
2134 {
2135 	if (!map)
2136 		return;
2137 
2138 	if (!map->hva)
2139 		return;
2140 
2141 	if (map->page != KVM_UNMAPPED_PAGE) {
2142 		if (atomic)
2143 			kunmap_atomic(map->hva);
2144 		else
2145 			kunmap(map->page);
2146 	}
2147 #ifdef CONFIG_HAS_IOMEM
2148 	else if (!atomic)
2149 		memunmap(map->hva);
2150 	else
2151 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2152 #endif
2153 
2154 	if (dirty)
2155 		mark_page_dirty_in_slot(memslot, map->gfn);
2156 
2157 	if (cache)
2158 		cache->dirty |= dirty;
2159 	else
2160 		kvm_release_pfn(map->pfn, dirty, NULL);
2161 
2162 	map->hva = NULL;
2163 	map->page = NULL;
2164 }
2165 
2166 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2167 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2168 {
2169 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2170 			cache, dirty, atomic);
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2174 
2175 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2176 {
2177 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2178 			dirty, false);
2179 }
2180 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2181 
2182 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2183 {
2184 	kvm_pfn_t pfn;
2185 
2186 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2187 
2188 	return kvm_pfn_to_page(pfn);
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2191 
2192 void kvm_release_page_clean(struct page *page)
2193 {
2194 	WARN_ON(is_error_page(page));
2195 
2196 	kvm_release_pfn_clean(page_to_pfn(page));
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2199 
2200 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2201 {
2202 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2203 		put_page(pfn_to_page(pfn));
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2206 
2207 void kvm_release_page_dirty(struct page *page)
2208 {
2209 	WARN_ON(is_error_page(page));
2210 
2211 	kvm_release_pfn_dirty(page_to_pfn(page));
2212 }
2213 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2214 
2215 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2216 {
2217 	kvm_set_pfn_dirty(pfn);
2218 	kvm_release_pfn_clean(pfn);
2219 }
2220 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2221 
2222 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2223 {
2224 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2225 		SetPageDirty(pfn_to_page(pfn));
2226 }
2227 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2228 
2229 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2230 {
2231 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2232 		mark_page_accessed(pfn_to_page(pfn));
2233 }
2234 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2235 
2236 void kvm_get_pfn(kvm_pfn_t pfn)
2237 {
2238 	if (!kvm_is_reserved_pfn(pfn))
2239 		get_page(pfn_to_page(pfn));
2240 }
2241 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2242 
2243 static int next_segment(unsigned long len, int offset)
2244 {
2245 	if (len > PAGE_SIZE - offset)
2246 		return PAGE_SIZE - offset;
2247 	else
2248 		return len;
2249 }
2250 
2251 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2252 				 void *data, int offset, int len)
2253 {
2254 	int r;
2255 	unsigned long addr;
2256 
2257 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2258 	if (kvm_is_error_hva(addr))
2259 		return -EFAULT;
2260 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2261 	if (r)
2262 		return -EFAULT;
2263 	return 0;
2264 }
2265 
2266 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2267 			int len)
2268 {
2269 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2270 
2271 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2272 }
2273 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2274 
2275 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2276 			     int offset, int len)
2277 {
2278 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2279 
2280 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2283 
2284 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2285 {
2286 	gfn_t gfn = gpa >> PAGE_SHIFT;
2287 	int seg;
2288 	int offset = offset_in_page(gpa);
2289 	int ret;
2290 
2291 	while ((seg = next_segment(len, offset)) != 0) {
2292 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2293 		if (ret < 0)
2294 			return ret;
2295 		offset = 0;
2296 		len -= seg;
2297 		data += seg;
2298 		++gfn;
2299 	}
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_read_guest);
2303 
2304 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2305 {
2306 	gfn_t gfn = gpa >> PAGE_SHIFT;
2307 	int seg;
2308 	int offset = offset_in_page(gpa);
2309 	int ret;
2310 
2311 	while ((seg = next_segment(len, offset)) != 0) {
2312 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2313 		if (ret < 0)
2314 			return ret;
2315 		offset = 0;
2316 		len -= seg;
2317 		data += seg;
2318 		++gfn;
2319 	}
2320 	return 0;
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2323 
2324 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2325 			           void *data, int offset, unsigned long len)
2326 {
2327 	int r;
2328 	unsigned long addr;
2329 
2330 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2331 	if (kvm_is_error_hva(addr))
2332 		return -EFAULT;
2333 	pagefault_disable();
2334 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2335 	pagefault_enable();
2336 	if (r)
2337 		return -EFAULT;
2338 	return 0;
2339 }
2340 
2341 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2342 			       void *data, unsigned long len)
2343 {
2344 	gfn_t gfn = gpa >> PAGE_SHIFT;
2345 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2346 	int offset = offset_in_page(gpa);
2347 
2348 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2351 
2352 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2353 			          const void *data, int offset, int len)
2354 {
2355 	int r;
2356 	unsigned long addr;
2357 
2358 	addr = gfn_to_hva_memslot(memslot, gfn);
2359 	if (kvm_is_error_hva(addr))
2360 		return -EFAULT;
2361 	r = __copy_to_user((void __user *)addr + offset, data, len);
2362 	if (r)
2363 		return -EFAULT;
2364 	mark_page_dirty_in_slot(memslot, gfn);
2365 	return 0;
2366 }
2367 
2368 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2369 			 const void *data, int offset, int len)
2370 {
2371 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2372 
2373 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2374 }
2375 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2376 
2377 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2378 			      const void *data, int offset, int len)
2379 {
2380 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2381 
2382 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2383 }
2384 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2385 
2386 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2387 		    unsigned long len)
2388 {
2389 	gfn_t gfn = gpa >> PAGE_SHIFT;
2390 	int seg;
2391 	int offset = offset_in_page(gpa);
2392 	int ret;
2393 
2394 	while ((seg = next_segment(len, offset)) != 0) {
2395 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2396 		if (ret < 0)
2397 			return ret;
2398 		offset = 0;
2399 		len -= seg;
2400 		data += seg;
2401 		++gfn;
2402 	}
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL_GPL(kvm_write_guest);
2406 
2407 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2408 		         unsigned long len)
2409 {
2410 	gfn_t gfn = gpa >> PAGE_SHIFT;
2411 	int seg;
2412 	int offset = offset_in_page(gpa);
2413 	int ret;
2414 
2415 	while ((seg = next_segment(len, offset)) != 0) {
2416 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2417 		if (ret < 0)
2418 			return ret;
2419 		offset = 0;
2420 		len -= seg;
2421 		data += seg;
2422 		++gfn;
2423 	}
2424 	return 0;
2425 }
2426 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2427 
2428 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2429 				       struct gfn_to_hva_cache *ghc,
2430 				       gpa_t gpa, unsigned long len)
2431 {
2432 	int offset = offset_in_page(gpa);
2433 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2434 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2435 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2436 	gfn_t nr_pages_avail;
2437 
2438 	/* Update ghc->generation before performing any error checks. */
2439 	ghc->generation = slots->generation;
2440 
2441 	if (start_gfn > end_gfn) {
2442 		ghc->hva = KVM_HVA_ERR_BAD;
2443 		return -EINVAL;
2444 	}
2445 
2446 	/*
2447 	 * If the requested region crosses two memslots, we still
2448 	 * verify that the entire region is valid here.
2449 	 */
2450 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2451 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2452 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2453 					   &nr_pages_avail);
2454 		if (kvm_is_error_hva(ghc->hva))
2455 			return -EFAULT;
2456 	}
2457 
2458 	/* Use the slow path for cross page reads and writes. */
2459 	if (nr_pages_needed == 1)
2460 		ghc->hva += offset;
2461 	else
2462 		ghc->memslot = NULL;
2463 
2464 	ghc->gpa = gpa;
2465 	ghc->len = len;
2466 	return 0;
2467 }
2468 
2469 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2470 			      gpa_t gpa, unsigned long len)
2471 {
2472 	struct kvm_memslots *slots = kvm_memslots(kvm);
2473 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2474 }
2475 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2476 
2477 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2478 				  void *data, unsigned int offset,
2479 				  unsigned long len)
2480 {
2481 	struct kvm_memslots *slots = kvm_memslots(kvm);
2482 	int r;
2483 	gpa_t gpa = ghc->gpa + offset;
2484 
2485 	BUG_ON(len + offset > ghc->len);
2486 
2487 	if (slots->generation != ghc->generation) {
2488 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2489 			return -EFAULT;
2490 	}
2491 
2492 	if (kvm_is_error_hva(ghc->hva))
2493 		return -EFAULT;
2494 
2495 	if (unlikely(!ghc->memslot))
2496 		return kvm_write_guest(kvm, gpa, data, len);
2497 
2498 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2499 	if (r)
2500 		return -EFAULT;
2501 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2506 
2507 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2508 			   void *data, unsigned long len)
2509 {
2510 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2511 }
2512 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2513 
2514 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2515 			   void *data, unsigned long len)
2516 {
2517 	struct kvm_memslots *slots = kvm_memslots(kvm);
2518 	int r;
2519 
2520 	BUG_ON(len > ghc->len);
2521 
2522 	if (slots->generation != ghc->generation) {
2523 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2524 			return -EFAULT;
2525 	}
2526 
2527 	if (kvm_is_error_hva(ghc->hva))
2528 		return -EFAULT;
2529 
2530 	if (unlikely(!ghc->memslot))
2531 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2532 
2533 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2534 	if (r)
2535 		return -EFAULT;
2536 
2537 	return 0;
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2540 
2541 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2542 {
2543 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2544 
2545 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2546 }
2547 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2548 
2549 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2550 {
2551 	gfn_t gfn = gpa >> PAGE_SHIFT;
2552 	int seg;
2553 	int offset = offset_in_page(gpa);
2554 	int ret;
2555 
2556 	while ((seg = next_segment(len, offset)) != 0) {
2557 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2558 		if (ret < 0)
2559 			return ret;
2560 		offset = 0;
2561 		len -= seg;
2562 		++gfn;
2563 	}
2564 	return 0;
2565 }
2566 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2567 
2568 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2569 				    gfn_t gfn)
2570 {
2571 	if (memslot && memslot->dirty_bitmap) {
2572 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2573 
2574 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2575 	}
2576 }
2577 
2578 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2579 {
2580 	struct kvm_memory_slot *memslot;
2581 
2582 	memslot = gfn_to_memslot(kvm, gfn);
2583 	mark_page_dirty_in_slot(memslot, gfn);
2584 }
2585 EXPORT_SYMBOL_GPL(mark_page_dirty);
2586 
2587 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2588 {
2589 	struct kvm_memory_slot *memslot;
2590 
2591 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2592 	mark_page_dirty_in_slot(memslot, gfn);
2593 }
2594 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2595 
2596 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2597 {
2598 	if (!vcpu->sigset_active)
2599 		return;
2600 
2601 	/*
2602 	 * This does a lockless modification of ->real_blocked, which is fine
2603 	 * because, only current can change ->real_blocked and all readers of
2604 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2605 	 * of ->blocked.
2606 	 */
2607 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2608 }
2609 
2610 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2611 {
2612 	if (!vcpu->sigset_active)
2613 		return;
2614 
2615 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2616 	sigemptyset(&current->real_blocked);
2617 }
2618 
2619 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2620 {
2621 	unsigned int old, val, grow, grow_start;
2622 
2623 	old = val = vcpu->halt_poll_ns;
2624 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2625 	grow = READ_ONCE(halt_poll_ns_grow);
2626 	if (!grow)
2627 		goto out;
2628 
2629 	val *= grow;
2630 	if (val < grow_start)
2631 		val = grow_start;
2632 
2633 	if (val > halt_poll_ns)
2634 		val = halt_poll_ns;
2635 
2636 	vcpu->halt_poll_ns = val;
2637 out:
2638 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2639 }
2640 
2641 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2642 {
2643 	unsigned int old, val, shrink;
2644 
2645 	old = val = vcpu->halt_poll_ns;
2646 	shrink = READ_ONCE(halt_poll_ns_shrink);
2647 	if (shrink == 0)
2648 		val = 0;
2649 	else
2650 		val /= shrink;
2651 
2652 	vcpu->halt_poll_ns = val;
2653 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2654 }
2655 
2656 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2657 {
2658 	int ret = -EINTR;
2659 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2660 
2661 	if (kvm_arch_vcpu_runnable(vcpu)) {
2662 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2663 		goto out;
2664 	}
2665 	if (kvm_cpu_has_pending_timer(vcpu))
2666 		goto out;
2667 	if (signal_pending(current))
2668 		goto out;
2669 
2670 	ret = 0;
2671 out:
2672 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2673 	return ret;
2674 }
2675 
2676 /*
2677  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2678  */
2679 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2680 {
2681 	ktime_t start, cur;
2682 	DECLARE_SWAITQUEUE(wait);
2683 	bool waited = false;
2684 	u64 block_ns;
2685 
2686 	kvm_arch_vcpu_blocking(vcpu);
2687 
2688 	start = cur = ktime_get();
2689 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2690 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2691 
2692 		++vcpu->stat.halt_attempted_poll;
2693 		do {
2694 			/*
2695 			 * This sets KVM_REQ_UNHALT if an interrupt
2696 			 * arrives.
2697 			 */
2698 			if (kvm_vcpu_check_block(vcpu) < 0) {
2699 				++vcpu->stat.halt_successful_poll;
2700 				if (!vcpu_valid_wakeup(vcpu))
2701 					++vcpu->stat.halt_poll_invalid;
2702 				goto out;
2703 			}
2704 			cur = ktime_get();
2705 		} while (single_task_running() && ktime_before(cur, stop));
2706 	}
2707 
2708 	for (;;) {
2709 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2710 
2711 		if (kvm_vcpu_check_block(vcpu) < 0)
2712 			break;
2713 
2714 		waited = true;
2715 		schedule();
2716 	}
2717 
2718 	finish_swait(&vcpu->wq, &wait);
2719 	cur = ktime_get();
2720 out:
2721 	kvm_arch_vcpu_unblocking(vcpu);
2722 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2723 
2724 	if (!kvm_arch_no_poll(vcpu)) {
2725 		if (!vcpu_valid_wakeup(vcpu)) {
2726 			shrink_halt_poll_ns(vcpu);
2727 		} else if (halt_poll_ns) {
2728 			if (block_ns <= vcpu->halt_poll_ns)
2729 				;
2730 			/* we had a long block, shrink polling */
2731 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2732 				shrink_halt_poll_ns(vcpu);
2733 			/* we had a short halt and our poll time is too small */
2734 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2735 				block_ns < halt_poll_ns)
2736 				grow_halt_poll_ns(vcpu);
2737 		} else {
2738 			vcpu->halt_poll_ns = 0;
2739 		}
2740 	}
2741 
2742 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2743 	kvm_arch_vcpu_block_finish(vcpu);
2744 }
2745 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2746 
2747 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2748 {
2749 	struct swait_queue_head *wqp;
2750 
2751 	wqp = kvm_arch_vcpu_wq(vcpu);
2752 	if (swq_has_sleeper(wqp)) {
2753 		swake_up_one(wqp);
2754 		WRITE_ONCE(vcpu->ready, true);
2755 		++vcpu->stat.halt_wakeup;
2756 		return true;
2757 	}
2758 
2759 	return false;
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2762 
2763 #ifndef CONFIG_S390
2764 /*
2765  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2766  */
2767 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2768 {
2769 	int me;
2770 	int cpu = vcpu->cpu;
2771 
2772 	if (kvm_vcpu_wake_up(vcpu))
2773 		return;
2774 
2775 	me = get_cpu();
2776 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2777 		if (kvm_arch_vcpu_should_kick(vcpu))
2778 			smp_send_reschedule(cpu);
2779 	put_cpu();
2780 }
2781 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2782 #endif /* !CONFIG_S390 */
2783 
2784 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2785 {
2786 	struct pid *pid;
2787 	struct task_struct *task = NULL;
2788 	int ret = 0;
2789 
2790 	rcu_read_lock();
2791 	pid = rcu_dereference(target->pid);
2792 	if (pid)
2793 		task = get_pid_task(pid, PIDTYPE_PID);
2794 	rcu_read_unlock();
2795 	if (!task)
2796 		return ret;
2797 	ret = yield_to(task, 1);
2798 	put_task_struct(task);
2799 
2800 	return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2803 
2804 /*
2805  * Helper that checks whether a VCPU is eligible for directed yield.
2806  * Most eligible candidate to yield is decided by following heuristics:
2807  *
2808  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2809  *  (preempted lock holder), indicated by @in_spin_loop.
2810  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2811  *
2812  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2813  *  chance last time (mostly it has become eligible now since we have probably
2814  *  yielded to lockholder in last iteration. This is done by toggling
2815  *  @dy_eligible each time a VCPU checked for eligibility.)
2816  *
2817  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2818  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2819  *  burning. Giving priority for a potential lock-holder increases lock
2820  *  progress.
2821  *
2822  *  Since algorithm is based on heuristics, accessing another VCPU data without
2823  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2824  *  and continue with next VCPU and so on.
2825  */
2826 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2827 {
2828 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2829 	bool eligible;
2830 
2831 	eligible = !vcpu->spin_loop.in_spin_loop ||
2832 		    vcpu->spin_loop.dy_eligible;
2833 
2834 	if (vcpu->spin_loop.in_spin_loop)
2835 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2836 
2837 	return eligible;
2838 #else
2839 	return true;
2840 #endif
2841 }
2842 
2843 /*
2844  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2845  * a vcpu_load/vcpu_put pair.  However, for most architectures
2846  * kvm_arch_vcpu_runnable does not require vcpu_load.
2847  */
2848 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2849 {
2850 	return kvm_arch_vcpu_runnable(vcpu);
2851 }
2852 
2853 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2854 {
2855 	if (kvm_arch_dy_runnable(vcpu))
2856 		return true;
2857 
2858 #ifdef CONFIG_KVM_ASYNC_PF
2859 	if (!list_empty_careful(&vcpu->async_pf.done))
2860 		return true;
2861 #endif
2862 
2863 	return false;
2864 }
2865 
2866 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2867 {
2868 	struct kvm *kvm = me->kvm;
2869 	struct kvm_vcpu *vcpu;
2870 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2871 	int yielded = 0;
2872 	int try = 3;
2873 	int pass;
2874 	int i;
2875 
2876 	kvm_vcpu_set_in_spin_loop(me, true);
2877 	/*
2878 	 * We boost the priority of a VCPU that is runnable but not
2879 	 * currently running, because it got preempted by something
2880 	 * else and called schedule in __vcpu_run.  Hopefully that
2881 	 * VCPU is holding the lock that we need and will release it.
2882 	 * We approximate round-robin by starting at the last boosted VCPU.
2883 	 */
2884 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2885 		kvm_for_each_vcpu(i, vcpu, kvm) {
2886 			if (!pass && i <= last_boosted_vcpu) {
2887 				i = last_boosted_vcpu;
2888 				continue;
2889 			} else if (pass && i > last_boosted_vcpu)
2890 				break;
2891 			if (!READ_ONCE(vcpu->ready))
2892 				continue;
2893 			if (vcpu == me)
2894 				continue;
2895 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2896 				continue;
2897 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2898 				!kvm_arch_vcpu_in_kernel(vcpu))
2899 				continue;
2900 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2901 				continue;
2902 
2903 			yielded = kvm_vcpu_yield_to(vcpu);
2904 			if (yielded > 0) {
2905 				kvm->last_boosted_vcpu = i;
2906 				break;
2907 			} else if (yielded < 0) {
2908 				try--;
2909 				if (!try)
2910 					break;
2911 			}
2912 		}
2913 	}
2914 	kvm_vcpu_set_in_spin_loop(me, false);
2915 
2916 	/* Ensure vcpu is not eligible during next spinloop */
2917 	kvm_vcpu_set_dy_eligible(me, false);
2918 }
2919 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2920 
2921 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2922 {
2923 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2924 	struct page *page;
2925 
2926 	if (vmf->pgoff == 0)
2927 		page = virt_to_page(vcpu->run);
2928 #ifdef CONFIG_X86
2929 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2930 		page = virt_to_page(vcpu->arch.pio_data);
2931 #endif
2932 #ifdef CONFIG_KVM_MMIO
2933 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2934 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2935 #endif
2936 	else
2937 		return kvm_arch_vcpu_fault(vcpu, vmf);
2938 	get_page(page);
2939 	vmf->page = page;
2940 	return 0;
2941 }
2942 
2943 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2944 	.fault = kvm_vcpu_fault,
2945 };
2946 
2947 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2948 {
2949 	vma->vm_ops = &kvm_vcpu_vm_ops;
2950 	return 0;
2951 }
2952 
2953 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2954 {
2955 	struct kvm_vcpu *vcpu = filp->private_data;
2956 
2957 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2958 	kvm_put_kvm(vcpu->kvm);
2959 	return 0;
2960 }
2961 
2962 static struct file_operations kvm_vcpu_fops = {
2963 	.release        = kvm_vcpu_release,
2964 	.unlocked_ioctl = kvm_vcpu_ioctl,
2965 	.mmap           = kvm_vcpu_mmap,
2966 	.llseek		= noop_llseek,
2967 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2968 };
2969 
2970 /*
2971  * Allocates an inode for the vcpu.
2972  */
2973 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2974 {
2975 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2976 
2977 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2978 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2979 }
2980 
2981 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2982 {
2983 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2984 	char dir_name[ITOA_MAX_LEN * 2];
2985 
2986 	if (!debugfs_initialized())
2987 		return;
2988 
2989 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2990 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2991 						  vcpu->kvm->debugfs_dentry);
2992 
2993 	kvm_arch_create_vcpu_debugfs(vcpu);
2994 #endif
2995 }
2996 
2997 /*
2998  * Creates some virtual cpus.  Good luck creating more than one.
2999  */
3000 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3001 {
3002 	int r;
3003 	struct kvm_vcpu *vcpu;
3004 	struct page *page;
3005 
3006 	if (id >= KVM_MAX_VCPU_ID)
3007 		return -EINVAL;
3008 
3009 	mutex_lock(&kvm->lock);
3010 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3011 		mutex_unlock(&kvm->lock);
3012 		return -EINVAL;
3013 	}
3014 
3015 	kvm->created_vcpus++;
3016 	mutex_unlock(&kvm->lock);
3017 
3018 	r = kvm_arch_vcpu_precreate(kvm, id);
3019 	if (r)
3020 		goto vcpu_decrement;
3021 
3022 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3023 	if (!vcpu) {
3024 		r = -ENOMEM;
3025 		goto vcpu_decrement;
3026 	}
3027 
3028 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3029 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3030 	if (!page) {
3031 		r = -ENOMEM;
3032 		goto vcpu_free;
3033 	}
3034 	vcpu->run = page_address(page);
3035 
3036 	kvm_vcpu_init(vcpu, kvm, id);
3037 
3038 	r = kvm_arch_vcpu_create(vcpu);
3039 	if (r)
3040 		goto vcpu_free_run_page;
3041 
3042 	kvm_create_vcpu_debugfs(vcpu);
3043 
3044 	mutex_lock(&kvm->lock);
3045 	if (kvm_get_vcpu_by_id(kvm, id)) {
3046 		r = -EEXIST;
3047 		goto unlock_vcpu_destroy;
3048 	}
3049 
3050 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3051 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3052 
3053 	/* Now it's all set up, let userspace reach it */
3054 	kvm_get_kvm(kvm);
3055 	r = create_vcpu_fd(vcpu);
3056 	if (r < 0) {
3057 		kvm_put_kvm_no_destroy(kvm);
3058 		goto unlock_vcpu_destroy;
3059 	}
3060 
3061 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3062 
3063 	/*
3064 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3065 	 * before kvm->online_vcpu's incremented value.
3066 	 */
3067 	smp_wmb();
3068 	atomic_inc(&kvm->online_vcpus);
3069 
3070 	mutex_unlock(&kvm->lock);
3071 	kvm_arch_vcpu_postcreate(vcpu);
3072 	return r;
3073 
3074 unlock_vcpu_destroy:
3075 	mutex_unlock(&kvm->lock);
3076 	debugfs_remove_recursive(vcpu->debugfs_dentry);
3077 	kvm_arch_vcpu_destroy(vcpu);
3078 vcpu_free_run_page:
3079 	free_page((unsigned long)vcpu->run);
3080 vcpu_free:
3081 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3082 vcpu_decrement:
3083 	mutex_lock(&kvm->lock);
3084 	kvm->created_vcpus--;
3085 	mutex_unlock(&kvm->lock);
3086 	return r;
3087 }
3088 
3089 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3090 {
3091 	if (sigset) {
3092 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3093 		vcpu->sigset_active = 1;
3094 		vcpu->sigset = *sigset;
3095 	} else
3096 		vcpu->sigset_active = 0;
3097 	return 0;
3098 }
3099 
3100 static long kvm_vcpu_ioctl(struct file *filp,
3101 			   unsigned int ioctl, unsigned long arg)
3102 {
3103 	struct kvm_vcpu *vcpu = filp->private_data;
3104 	void __user *argp = (void __user *)arg;
3105 	int r;
3106 	struct kvm_fpu *fpu = NULL;
3107 	struct kvm_sregs *kvm_sregs = NULL;
3108 
3109 	if (vcpu->kvm->mm != current->mm)
3110 		return -EIO;
3111 
3112 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3113 		return -EINVAL;
3114 
3115 	/*
3116 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3117 	 * execution; mutex_lock() would break them.
3118 	 */
3119 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3120 	if (r != -ENOIOCTLCMD)
3121 		return r;
3122 
3123 	if (mutex_lock_killable(&vcpu->mutex))
3124 		return -EINTR;
3125 	switch (ioctl) {
3126 	case KVM_RUN: {
3127 		struct pid *oldpid;
3128 		r = -EINVAL;
3129 		if (arg)
3130 			goto out;
3131 		oldpid = rcu_access_pointer(vcpu->pid);
3132 		if (unlikely(oldpid != task_pid(current))) {
3133 			/* The thread running this VCPU changed. */
3134 			struct pid *newpid;
3135 
3136 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3137 			if (r)
3138 				break;
3139 
3140 			newpid = get_task_pid(current, PIDTYPE_PID);
3141 			rcu_assign_pointer(vcpu->pid, newpid);
3142 			if (oldpid)
3143 				synchronize_rcu();
3144 			put_pid(oldpid);
3145 		}
3146 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
3147 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3148 		break;
3149 	}
3150 	case KVM_GET_REGS: {
3151 		struct kvm_regs *kvm_regs;
3152 
3153 		r = -ENOMEM;
3154 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3155 		if (!kvm_regs)
3156 			goto out;
3157 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3158 		if (r)
3159 			goto out_free1;
3160 		r = -EFAULT;
3161 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3162 			goto out_free1;
3163 		r = 0;
3164 out_free1:
3165 		kfree(kvm_regs);
3166 		break;
3167 	}
3168 	case KVM_SET_REGS: {
3169 		struct kvm_regs *kvm_regs;
3170 
3171 		r = -ENOMEM;
3172 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3173 		if (IS_ERR(kvm_regs)) {
3174 			r = PTR_ERR(kvm_regs);
3175 			goto out;
3176 		}
3177 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3178 		kfree(kvm_regs);
3179 		break;
3180 	}
3181 	case KVM_GET_SREGS: {
3182 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3183 				    GFP_KERNEL_ACCOUNT);
3184 		r = -ENOMEM;
3185 		if (!kvm_sregs)
3186 			goto out;
3187 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3188 		if (r)
3189 			goto out;
3190 		r = -EFAULT;
3191 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3192 			goto out;
3193 		r = 0;
3194 		break;
3195 	}
3196 	case KVM_SET_SREGS: {
3197 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3198 		if (IS_ERR(kvm_sregs)) {
3199 			r = PTR_ERR(kvm_sregs);
3200 			kvm_sregs = NULL;
3201 			goto out;
3202 		}
3203 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3204 		break;
3205 	}
3206 	case KVM_GET_MP_STATE: {
3207 		struct kvm_mp_state mp_state;
3208 
3209 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3210 		if (r)
3211 			goto out;
3212 		r = -EFAULT;
3213 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3214 			goto out;
3215 		r = 0;
3216 		break;
3217 	}
3218 	case KVM_SET_MP_STATE: {
3219 		struct kvm_mp_state mp_state;
3220 
3221 		r = -EFAULT;
3222 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3223 			goto out;
3224 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3225 		break;
3226 	}
3227 	case KVM_TRANSLATE: {
3228 		struct kvm_translation tr;
3229 
3230 		r = -EFAULT;
3231 		if (copy_from_user(&tr, argp, sizeof(tr)))
3232 			goto out;
3233 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3234 		if (r)
3235 			goto out;
3236 		r = -EFAULT;
3237 		if (copy_to_user(argp, &tr, sizeof(tr)))
3238 			goto out;
3239 		r = 0;
3240 		break;
3241 	}
3242 	case KVM_SET_GUEST_DEBUG: {
3243 		struct kvm_guest_debug dbg;
3244 
3245 		r = -EFAULT;
3246 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3247 			goto out;
3248 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3249 		break;
3250 	}
3251 	case KVM_SET_SIGNAL_MASK: {
3252 		struct kvm_signal_mask __user *sigmask_arg = argp;
3253 		struct kvm_signal_mask kvm_sigmask;
3254 		sigset_t sigset, *p;
3255 
3256 		p = NULL;
3257 		if (argp) {
3258 			r = -EFAULT;
3259 			if (copy_from_user(&kvm_sigmask, argp,
3260 					   sizeof(kvm_sigmask)))
3261 				goto out;
3262 			r = -EINVAL;
3263 			if (kvm_sigmask.len != sizeof(sigset))
3264 				goto out;
3265 			r = -EFAULT;
3266 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3267 					   sizeof(sigset)))
3268 				goto out;
3269 			p = &sigset;
3270 		}
3271 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3272 		break;
3273 	}
3274 	case KVM_GET_FPU: {
3275 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3276 		r = -ENOMEM;
3277 		if (!fpu)
3278 			goto out;
3279 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3280 		if (r)
3281 			goto out;
3282 		r = -EFAULT;
3283 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3284 			goto out;
3285 		r = 0;
3286 		break;
3287 	}
3288 	case KVM_SET_FPU: {
3289 		fpu = memdup_user(argp, sizeof(*fpu));
3290 		if (IS_ERR(fpu)) {
3291 			r = PTR_ERR(fpu);
3292 			fpu = NULL;
3293 			goto out;
3294 		}
3295 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3296 		break;
3297 	}
3298 	default:
3299 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3300 	}
3301 out:
3302 	mutex_unlock(&vcpu->mutex);
3303 	kfree(fpu);
3304 	kfree(kvm_sregs);
3305 	return r;
3306 }
3307 
3308 #ifdef CONFIG_KVM_COMPAT
3309 static long kvm_vcpu_compat_ioctl(struct file *filp,
3310 				  unsigned int ioctl, unsigned long arg)
3311 {
3312 	struct kvm_vcpu *vcpu = filp->private_data;
3313 	void __user *argp = compat_ptr(arg);
3314 	int r;
3315 
3316 	if (vcpu->kvm->mm != current->mm)
3317 		return -EIO;
3318 
3319 	switch (ioctl) {
3320 	case KVM_SET_SIGNAL_MASK: {
3321 		struct kvm_signal_mask __user *sigmask_arg = argp;
3322 		struct kvm_signal_mask kvm_sigmask;
3323 		sigset_t sigset;
3324 
3325 		if (argp) {
3326 			r = -EFAULT;
3327 			if (copy_from_user(&kvm_sigmask, argp,
3328 					   sizeof(kvm_sigmask)))
3329 				goto out;
3330 			r = -EINVAL;
3331 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3332 				goto out;
3333 			r = -EFAULT;
3334 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3335 				goto out;
3336 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3337 		} else
3338 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3339 		break;
3340 	}
3341 	default:
3342 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3343 	}
3344 
3345 out:
3346 	return r;
3347 }
3348 #endif
3349 
3350 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3351 {
3352 	struct kvm_device *dev = filp->private_data;
3353 
3354 	if (dev->ops->mmap)
3355 		return dev->ops->mmap(dev, vma);
3356 
3357 	return -ENODEV;
3358 }
3359 
3360 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3361 				 int (*accessor)(struct kvm_device *dev,
3362 						 struct kvm_device_attr *attr),
3363 				 unsigned long arg)
3364 {
3365 	struct kvm_device_attr attr;
3366 
3367 	if (!accessor)
3368 		return -EPERM;
3369 
3370 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3371 		return -EFAULT;
3372 
3373 	return accessor(dev, &attr);
3374 }
3375 
3376 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3377 			     unsigned long arg)
3378 {
3379 	struct kvm_device *dev = filp->private_data;
3380 
3381 	if (dev->kvm->mm != current->mm)
3382 		return -EIO;
3383 
3384 	switch (ioctl) {
3385 	case KVM_SET_DEVICE_ATTR:
3386 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3387 	case KVM_GET_DEVICE_ATTR:
3388 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3389 	case KVM_HAS_DEVICE_ATTR:
3390 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3391 	default:
3392 		if (dev->ops->ioctl)
3393 			return dev->ops->ioctl(dev, ioctl, arg);
3394 
3395 		return -ENOTTY;
3396 	}
3397 }
3398 
3399 static int kvm_device_release(struct inode *inode, struct file *filp)
3400 {
3401 	struct kvm_device *dev = filp->private_data;
3402 	struct kvm *kvm = dev->kvm;
3403 
3404 	if (dev->ops->release) {
3405 		mutex_lock(&kvm->lock);
3406 		list_del(&dev->vm_node);
3407 		dev->ops->release(dev);
3408 		mutex_unlock(&kvm->lock);
3409 	}
3410 
3411 	kvm_put_kvm(kvm);
3412 	return 0;
3413 }
3414 
3415 static const struct file_operations kvm_device_fops = {
3416 	.unlocked_ioctl = kvm_device_ioctl,
3417 	.release = kvm_device_release,
3418 	KVM_COMPAT(kvm_device_ioctl),
3419 	.mmap = kvm_device_mmap,
3420 };
3421 
3422 struct kvm_device *kvm_device_from_filp(struct file *filp)
3423 {
3424 	if (filp->f_op != &kvm_device_fops)
3425 		return NULL;
3426 
3427 	return filp->private_data;
3428 }
3429 
3430 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3431 #ifdef CONFIG_KVM_MPIC
3432 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3433 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3434 #endif
3435 };
3436 
3437 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3438 {
3439 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3440 		return -ENOSPC;
3441 
3442 	if (kvm_device_ops_table[type] != NULL)
3443 		return -EEXIST;
3444 
3445 	kvm_device_ops_table[type] = ops;
3446 	return 0;
3447 }
3448 
3449 void kvm_unregister_device_ops(u32 type)
3450 {
3451 	if (kvm_device_ops_table[type] != NULL)
3452 		kvm_device_ops_table[type] = NULL;
3453 }
3454 
3455 static int kvm_ioctl_create_device(struct kvm *kvm,
3456 				   struct kvm_create_device *cd)
3457 {
3458 	const struct kvm_device_ops *ops = NULL;
3459 	struct kvm_device *dev;
3460 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3461 	int type;
3462 	int ret;
3463 
3464 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3465 		return -ENODEV;
3466 
3467 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3468 	ops = kvm_device_ops_table[type];
3469 	if (ops == NULL)
3470 		return -ENODEV;
3471 
3472 	if (test)
3473 		return 0;
3474 
3475 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3476 	if (!dev)
3477 		return -ENOMEM;
3478 
3479 	dev->ops = ops;
3480 	dev->kvm = kvm;
3481 
3482 	mutex_lock(&kvm->lock);
3483 	ret = ops->create(dev, type);
3484 	if (ret < 0) {
3485 		mutex_unlock(&kvm->lock);
3486 		kfree(dev);
3487 		return ret;
3488 	}
3489 	list_add(&dev->vm_node, &kvm->devices);
3490 	mutex_unlock(&kvm->lock);
3491 
3492 	if (ops->init)
3493 		ops->init(dev);
3494 
3495 	kvm_get_kvm(kvm);
3496 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3497 	if (ret < 0) {
3498 		kvm_put_kvm_no_destroy(kvm);
3499 		mutex_lock(&kvm->lock);
3500 		list_del(&dev->vm_node);
3501 		mutex_unlock(&kvm->lock);
3502 		ops->destroy(dev);
3503 		return ret;
3504 	}
3505 
3506 	cd->fd = ret;
3507 	return 0;
3508 }
3509 
3510 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3511 {
3512 	switch (arg) {
3513 	case KVM_CAP_USER_MEMORY:
3514 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3515 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3516 	case KVM_CAP_INTERNAL_ERROR_DATA:
3517 #ifdef CONFIG_HAVE_KVM_MSI
3518 	case KVM_CAP_SIGNAL_MSI:
3519 #endif
3520 #ifdef CONFIG_HAVE_KVM_IRQFD
3521 	case KVM_CAP_IRQFD:
3522 	case KVM_CAP_IRQFD_RESAMPLE:
3523 #endif
3524 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3525 	case KVM_CAP_CHECK_EXTENSION_VM:
3526 	case KVM_CAP_ENABLE_CAP_VM:
3527 		return 1;
3528 #ifdef CONFIG_KVM_MMIO
3529 	case KVM_CAP_COALESCED_MMIO:
3530 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3531 	case KVM_CAP_COALESCED_PIO:
3532 		return 1;
3533 #endif
3534 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3535 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3536 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3537 #endif
3538 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3539 	case KVM_CAP_IRQ_ROUTING:
3540 		return KVM_MAX_IRQ_ROUTES;
3541 #endif
3542 #if KVM_ADDRESS_SPACE_NUM > 1
3543 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3544 		return KVM_ADDRESS_SPACE_NUM;
3545 #endif
3546 	case KVM_CAP_NR_MEMSLOTS:
3547 		return KVM_USER_MEM_SLOTS;
3548 	default:
3549 		break;
3550 	}
3551 	return kvm_vm_ioctl_check_extension(kvm, arg);
3552 }
3553 
3554 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3555 						  struct kvm_enable_cap *cap)
3556 {
3557 	return -EINVAL;
3558 }
3559 
3560 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3561 					   struct kvm_enable_cap *cap)
3562 {
3563 	switch (cap->cap) {
3564 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3565 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3566 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3567 
3568 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3569 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3570 
3571 		if (cap->flags || (cap->args[0] & ~allowed_options))
3572 			return -EINVAL;
3573 		kvm->manual_dirty_log_protect = cap->args[0];
3574 		return 0;
3575 	}
3576 #endif
3577 	default:
3578 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3579 	}
3580 }
3581 
3582 static long kvm_vm_ioctl(struct file *filp,
3583 			   unsigned int ioctl, unsigned long arg)
3584 {
3585 	struct kvm *kvm = filp->private_data;
3586 	void __user *argp = (void __user *)arg;
3587 	int r;
3588 
3589 	if (kvm->mm != current->mm)
3590 		return -EIO;
3591 	switch (ioctl) {
3592 	case KVM_CREATE_VCPU:
3593 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3594 		break;
3595 	case KVM_ENABLE_CAP: {
3596 		struct kvm_enable_cap cap;
3597 
3598 		r = -EFAULT;
3599 		if (copy_from_user(&cap, argp, sizeof(cap)))
3600 			goto out;
3601 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3602 		break;
3603 	}
3604 	case KVM_SET_USER_MEMORY_REGION: {
3605 		struct kvm_userspace_memory_region kvm_userspace_mem;
3606 
3607 		r = -EFAULT;
3608 		if (copy_from_user(&kvm_userspace_mem, argp,
3609 						sizeof(kvm_userspace_mem)))
3610 			goto out;
3611 
3612 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3613 		break;
3614 	}
3615 	case KVM_GET_DIRTY_LOG: {
3616 		struct kvm_dirty_log log;
3617 
3618 		r = -EFAULT;
3619 		if (copy_from_user(&log, argp, sizeof(log)))
3620 			goto out;
3621 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3622 		break;
3623 	}
3624 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3625 	case KVM_CLEAR_DIRTY_LOG: {
3626 		struct kvm_clear_dirty_log log;
3627 
3628 		r = -EFAULT;
3629 		if (copy_from_user(&log, argp, sizeof(log)))
3630 			goto out;
3631 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3632 		break;
3633 	}
3634 #endif
3635 #ifdef CONFIG_KVM_MMIO
3636 	case KVM_REGISTER_COALESCED_MMIO: {
3637 		struct kvm_coalesced_mmio_zone zone;
3638 
3639 		r = -EFAULT;
3640 		if (copy_from_user(&zone, argp, sizeof(zone)))
3641 			goto out;
3642 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3643 		break;
3644 	}
3645 	case KVM_UNREGISTER_COALESCED_MMIO: {
3646 		struct kvm_coalesced_mmio_zone zone;
3647 
3648 		r = -EFAULT;
3649 		if (copy_from_user(&zone, argp, sizeof(zone)))
3650 			goto out;
3651 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3652 		break;
3653 	}
3654 #endif
3655 	case KVM_IRQFD: {
3656 		struct kvm_irqfd data;
3657 
3658 		r = -EFAULT;
3659 		if (copy_from_user(&data, argp, sizeof(data)))
3660 			goto out;
3661 		r = kvm_irqfd(kvm, &data);
3662 		break;
3663 	}
3664 	case KVM_IOEVENTFD: {
3665 		struct kvm_ioeventfd data;
3666 
3667 		r = -EFAULT;
3668 		if (copy_from_user(&data, argp, sizeof(data)))
3669 			goto out;
3670 		r = kvm_ioeventfd(kvm, &data);
3671 		break;
3672 	}
3673 #ifdef CONFIG_HAVE_KVM_MSI
3674 	case KVM_SIGNAL_MSI: {
3675 		struct kvm_msi msi;
3676 
3677 		r = -EFAULT;
3678 		if (copy_from_user(&msi, argp, sizeof(msi)))
3679 			goto out;
3680 		r = kvm_send_userspace_msi(kvm, &msi);
3681 		break;
3682 	}
3683 #endif
3684 #ifdef __KVM_HAVE_IRQ_LINE
3685 	case KVM_IRQ_LINE_STATUS:
3686 	case KVM_IRQ_LINE: {
3687 		struct kvm_irq_level irq_event;
3688 
3689 		r = -EFAULT;
3690 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3691 			goto out;
3692 
3693 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3694 					ioctl == KVM_IRQ_LINE_STATUS);
3695 		if (r)
3696 			goto out;
3697 
3698 		r = -EFAULT;
3699 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3700 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3701 				goto out;
3702 		}
3703 
3704 		r = 0;
3705 		break;
3706 	}
3707 #endif
3708 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3709 	case KVM_SET_GSI_ROUTING: {
3710 		struct kvm_irq_routing routing;
3711 		struct kvm_irq_routing __user *urouting;
3712 		struct kvm_irq_routing_entry *entries = NULL;
3713 
3714 		r = -EFAULT;
3715 		if (copy_from_user(&routing, argp, sizeof(routing)))
3716 			goto out;
3717 		r = -EINVAL;
3718 		if (!kvm_arch_can_set_irq_routing(kvm))
3719 			goto out;
3720 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3721 			goto out;
3722 		if (routing.flags)
3723 			goto out;
3724 		if (routing.nr) {
3725 			r = -ENOMEM;
3726 			entries = vmalloc(array_size(sizeof(*entries),
3727 						     routing.nr));
3728 			if (!entries)
3729 				goto out;
3730 			r = -EFAULT;
3731 			urouting = argp;
3732 			if (copy_from_user(entries, urouting->entries,
3733 					   routing.nr * sizeof(*entries)))
3734 				goto out_free_irq_routing;
3735 		}
3736 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3737 					routing.flags);
3738 out_free_irq_routing:
3739 		vfree(entries);
3740 		break;
3741 	}
3742 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3743 	case KVM_CREATE_DEVICE: {
3744 		struct kvm_create_device cd;
3745 
3746 		r = -EFAULT;
3747 		if (copy_from_user(&cd, argp, sizeof(cd)))
3748 			goto out;
3749 
3750 		r = kvm_ioctl_create_device(kvm, &cd);
3751 		if (r)
3752 			goto out;
3753 
3754 		r = -EFAULT;
3755 		if (copy_to_user(argp, &cd, sizeof(cd)))
3756 			goto out;
3757 
3758 		r = 0;
3759 		break;
3760 	}
3761 	case KVM_CHECK_EXTENSION:
3762 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3763 		break;
3764 	default:
3765 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3766 	}
3767 out:
3768 	return r;
3769 }
3770 
3771 #ifdef CONFIG_KVM_COMPAT
3772 struct compat_kvm_dirty_log {
3773 	__u32 slot;
3774 	__u32 padding1;
3775 	union {
3776 		compat_uptr_t dirty_bitmap; /* one bit per page */
3777 		__u64 padding2;
3778 	};
3779 };
3780 
3781 static long kvm_vm_compat_ioctl(struct file *filp,
3782 			   unsigned int ioctl, unsigned long arg)
3783 {
3784 	struct kvm *kvm = filp->private_data;
3785 	int r;
3786 
3787 	if (kvm->mm != current->mm)
3788 		return -EIO;
3789 	switch (ioctl) {
3790 	case KVM_GET_DIRTY_LOG: {
3791 		struct compat_kvm_dirty_log compat_log;
3792 		struct kvm_dirty_log log;
3793 
3794 		if (copy_from_user(&compat_log, (void __user *)arg,
3795 				   sizeof(compat_log)))
3796 			return -EFAULT;
3797 		log.slot	 = compat_log.slot;
3798 		log.padding1	 = compat_log.padding1;
3799 		log.padding2	 = compat_log.padding2;
3800 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3801 
3802 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3803 		break;
3804 	}
3805 	default:
3806 		r = kvm_vm_ioctl(filp, ioctl, arg);
3807 	}
3808 	return r;
3809 }
3810 #endif
3811 
3812 static struct file_operations kvm_vm_fops = {
3813 	.release        = kvm_vm_release,
3814 	.unlocked_ioctl = kvm_vm_ioctl,
3815 	.llseek		= noop_llseek,
3816 	KVM_COMPAT(kvm_vm_compat_ioctl),
3817 };
3818 
3819 static int kvm_dev_ioctl_create_vm(unsigned long type)
3820 {
3821 	int r;
3822 	struct kvm *kvm;
3823 	struct file *file;
3824 
3825 	kvm = kvm_create_vm(type);
3826 	if (IS_ERR(kvm))
3827 		return PTR_ERR(kvm);
3828 #ifdef CONFIG_KVM_MMIO
3829 	r = kvm_coalesced_mmio_init(kvm);
3830 	if (r < 0)
3831 		goto put_kvm;
3832 #endif
3833 	r = get_unused_fd_flags(O_CLOEXEC);
3834 	if (r < 0)
3835 		goto put_kvm;
3836 
3837 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3838 	if (IS_ERR(file)) {
3839 		put_unused_fd(r);
3840 		r = PTR_ERR(file);
3841 		goto put_kvm;
3842 	}
3843 
3844 	/*
3845 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3846 	 * already set, with ->release() being kvm_vm_release().  In error
3847 	 * cases it will be called by the final fput(file) and will take
3848 	 * care of doing kvm_put_kvm(kvm).
3849 	 */
3850 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3851 		put_unused_fd(r);
3852 		fput(file);
3853 		return -ENOMEM;
3854 	}
3855 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3856 
3857 	fd_install(r, file);
3858 	return r;
3859 
3860 put_kvm:
3861 	kvm_put_kvm(kvm);
3862 	return r;
3863 }
3864 
3865 static long kvm_dev_ioctl(struct file *filp,
3866 			  unsigned int ioctl, unsigned long arg)
3867 {
3868 	long r = -EINVAL;
3869 
3870 	switch (ioctl) {
3871 	case KVM_GET_API_VERSION:
3872 		if (arg)
3873 			goto out;
3874 		r = KVM_API_VERSION;
3875 		break;
3876 	case KVM_CREATE_VM:
3877 		r = kvm_dev_ioctl_create_vm(arg);
3878 		break;
3879 	case KVM_CHECK_EXTENSION:
3880 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3881 		break;
3882 	case KVM_GET_VCPU_MMAP_SIZE:
3883 		if (arg)
3884 			goto out;
3885 		r = PAGE_SIZE;     /* struct kvm_run */
3886 #ifdef CONFIG_X86
3887 		r += PAGE_SIZE;    /* pio data page */
3888 #endif
3889 #ifdef CONFIG_KVM_MMIO
3890 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3891 #endif
3892 		break;
3893 	case KVM_TRACE_ENABLE:
3894 	case KVM_TRACE_PAUSE:
3895 	case KVM_TRACE_DISABLE:
3896 		r = -EOPNOTSUPP;
3897 		break;
3898 	default:
3899 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3900 	}
3901 out:
3902 	return r;
3903 }
3904 
3905 static struct file_operations kvm_chardev_ops = {
3906 	.unlocked_ioctl = kvm_dev_ioctl,
3907 	.llseek		= noop_llseek,
3908 	KVM_COMPAT(kvm_dev_ioctl),
3909 };
3910 
3911 static struct miscdevice kvm_dev = {
3912 	KVM_MINOR,
3913 	"kvm",
3914 	&kvm_chardev_ops,
3915 };
3916 
3917 static void hardware_enable_nolock(void *junk)
3918 {
3919 	int cpu = raw_smp_processor_id();
3920 	int r;
3921 
3922 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3923 		return;
3924 
3925 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3926 
3927 	r = kvm_arch_hardware_enable();
3928 
3929 	if (r) {
3930 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3931 		atomic_inc(&hardware_enable_failed);
3932 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3933 	}
3934 }
3935 
3936 static int kvm_starting_cpu(unsigned int cpu)
3937 {
3938 	raw_spin_lock(&kvm_count_lock);
3939 	if (kvm_usage_count)
3940 		hardware_enable_nolock(NULL);
3941 	raw_spin_unlock(&kvm_count_lock);
3942 	return 0;
3943 }
3944 
3945 static void hardware_disable_nolock(void *junk)
3946 {
3947 	int cpu = raw_smp_processor_id();
3948 
3949 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3950 		return;
3951 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3952 	kvm_arch_hardware_disable();
3953 }
3954 
3955 static int kvm_dying_cpu(unsigned int cpu)
3956 {
3957 	raw_spin_lock(&kvm_count_lock);
3958 	if (kvm_usage_count)
3959 		hardware_disable_nolock(NULL);
3960 	raw_spin_unlock(&kvm_count_lock);
3961 	return 0;
3962 }
3963 
3964 static void hardware_disable_all_nolock(void)
3965 {
3966 	BUG_ON(!kvm_usage_count);
3967 
3968 	kvm_usage_count--;
3969 	if (!kvm_usage_count)
3970 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3971 }
3972 
3973 static void hardware_disable_all(void)
3974 {
3975 	raw_spin_lock(&kvm_count_lock);
3976 	hardware_disable_all_nolock();
3977 	raw_spin_unlock(&kvm_count_lock);
3978 }
3979 
3980 static int hardware_enable_all(void)
3981 {
3982 	int r = 0;
3983 
3984 	raw_spin_lock(&kvm_count_lock);
3985 
3986 	kvm_usage_count++;
3987 	if (kvm_usage_count == 1) {
3988 		atomic_set(&hardware_enable_failed, 0);
3989 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3990 
3991 		if (atomic_read(&hardware_enable_failed)) {
3992 			hardware_disable_all_nolock();
3993 			r = -EBUSY;
3994 		}
3995 	}
3996 
3997 	raw_spin_unlock(&kvm_count_lock);
3998 
3999 	return r;
4000 }
4001 
4002 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4003 		      void *v)
4004 {
4005 	/*
4006 	 * Some (well, at least mine) BIOSes hang on reboot if
4007 	 * in vmx root mode.
4008 	 *
4009 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4010 	 */
4011 	pr_info("kvm: exiting hardware virtualization\n");
4012 	kvm_rebooting = true;
4013 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4014 	return NOTIFY_OK;
4015 }
4016 
4017 static struct notifier_block kvm_reboot_notifier = {
4018 	.notifier_call = kvm_reboot,
4019 	.priority = 0,
4020 };
4021 
4022 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4023 {
4024 	int i;
4025 
4026 	for (i = 0; i < bus->dev_count; i++) {
4027 		struct kvm_io_device *pos = bus->range[i].dev;
4028 
4029 		kvm_iodevice_destructor(pos);
4030 	}
4031 	kfree(bus);
4032 }
4033 
4034 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4035 				 const struct kvm_io_range *r2)
4036 {
4037 	gpa_t addr1 = r1->addr;
4038 	gpa_t addr2 = r2->addr;
4039 
4040 	if (addr1 < addr2)
4041 		return -1;
4042 
4043 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4044 	 * accept any overlapping write.  Any order is acceptable for
4045 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4046 	 * we process all of them.
4047 	 */
4048 	if (r2->len) {
4049 		addr1 += r1->len;
4050 		addr2 += r2->len;
4051 	}
4052 
4053 	if (addr1 > addr2)
4054 		return 1;
4055 
4056 	return 0;
4057 }
4058 
4059 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4060 {
4061 	return kvm_io_bus_cmp(p1, p2);
4062 }
4063 
4064 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4065 			     gpa_t addr, int len)
4066 {
4067 	struct kvm_io_range *range, key;
4068 	int off;
4069 
4070 	key = (struct kvm_io_range) {
4071 		.addr = addr,
4072 		.len = len,
4073 	};
4074 
4075 	range = bsearch(&key, bus->range, bus->dev_count,
4076 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4077 	if (range == NULL)
4078 		return -ENOENT;
4079 
4080 	off = range - bus->range;
4081 
4082 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4083 		off--;
4084 
4085 	return off;
4086 }
4087 
4088 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4089 			      struct kvm_io_range *range, const void *val)
4090 {
4091 	int idx;
4092 
4093 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4094 	if (idx < 0)
4095 		return -EOPNOTSUPP;
4096 
4097 	while (idx < bus->dev_count &&
4098 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4099 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4100 					range->len, val))
4101 			return idx;
4102 		idx++;
4103 	}
4104 
4105 	return -EOPNOTSUPP;
4106 }
4107 
4108 /* kvm_io_bus_write - called under kvm->slots_lock */
4109 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4110 		     int len, const void *val)
4111 {
4112 	struct kvm_io_bus *bus;
4113 	struct kvm_io_range range;
4114 	int r;
4115 
4116 	range = (struct kvm_io_range) {
4117 		.addr = addr,
4118 		.len = len,
4119 	};
4120 
4121 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4122 	if (!bus)
4123 		return -ENOMEM;
4124 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4125 	return r < 0 ? r : 0;
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4128 
4129 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4130 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4131 			    gpa_t addr, int len, const void *val, long cookie)
4132 {
4133 	struct kvm_io_bus *bus;
4134 	struct kvm_io_range range;
4135 
4136 	range = (struct kvm_io_range) {
4137 		.addr = addr,
4138 		.len = len,
4139 	};
4140 
4141 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4142 	if (!bus)
4143 		return -ENOMEM;
4144 
4145 	/* First try the device referenced by cookie. */
4146 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4147 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4148 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4149 					val))
4150 			return cookie;
4151 
4152 	/*
4153 	 * cookie contained garbage; fall back to search and return the
4154 	 * correct cookie value.
4155 	 */
4156 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4157 }
4158 
4159 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4160 			     struct kvm_io_range *range, void *val)
4161 {
4162 	int idx;
4163 
4164 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4165 	if (idx < 0)
4166 		return -EOPNOTSUPP;
4167 
4168 	while (idx < bus->dev_count &&
4169 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4170 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4171 				       range->len, val))
4172 			return idx;
4173 		idx++;
4174 	}
4175 
4176 	return -EOPNOTSUPP;
4177 }
4178 
4179 /* kvm_io_bus_read - called under kvm->slots_lock */
4180 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4181 		    int len, void *val)
4182 {
4183 	struct kvm_io_bus *bus;
4184 	struct kvm_io_range range;
4185 	int r;
4186 
4187 	range = (struct kvm_io_range) {
4188 		.addr = addr,
4189 		.len = len,
4190 	};
4191 
4192 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4193 	if (!bus)
4194 		return -ENOMEM;
4195 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4196 	return r < 0 ? r : 0;
4197 }
4198 
4199 /* Caller must hold slots_lock. */
4200 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4201 			    int len, struct kvm_io_device *dev)
4202 {
4203 	int i;
4204 	struct kvm_io_bus *new_bus, *bus;
4205 	struct kvm_io_range range;
4206 
4207 	bus = kvm_get_bus(kvm, bus_idx);
4208 	if (!bus)
4209 		return -ENOMEM;
4210 
4211 	/* exclude ioeventfd which is limited by maximum fd */
4212 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4213 		return -ENOSPC;
4214 
4215 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4216 			  GFP_KERNEL_ACCOUNT);
4217 	if (!new_bus)
4218 		return -ENOMEM;
4219 
4220 	range = (struct kvm_io_range) {
4221 		.addr = addr,
4222 		.len = len,
4223 		.dev = dev,
4224 	};
4225 
4226 	for (i = 0; i < bus->dev_count; i++)
4227 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4228 			break;
4229 
4230 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4231 	new_bus->dev_count++;
4232 	new_bus->range[i] = range;
4233 	memcpy(new_bus->range + i + 1, bus->range + i,
4234 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4235 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4236 	synchronize_srcu_expedited(&kvm->srcu);
4237 	kfree(bus);
4238 
4239 	return 0;
4240 }
4241 
4242 /* Caller must hold slots_lock. */
4243 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4244 			       struct kvm_io_device *dev)
4245 {
4246 	int i;
4247 	struct kvm_io_bus *new_bus, *bus;
4248 
4249 	bus = kvm_get_bus(kvm, bus_idx);
4250 	if (!bus)
4251 		return;
4252 
4253 	for (i = 0; i < bus->dev_count; i++)
4254 		if (bus->range[i].dev == dev) {
4255 			break;
4256 		}
4257 
4258 	if (i == bus->dev_count)
4259 		return;
4260 
4261 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4262 			  GFP_KERNEL_ACCOUNT);
4263 	if (!new_bus)  {
4264 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4265 		goto broken;
4266 	}
4267 
4268 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4269 	new_bus->dev_count--;
4270 	memcpy(new_bus->range + i, bus->range + i + 1,
4271 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4272 
4273 broken:
4274 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4275 	synchronize_srcu_expedited(&kvm->srcu);
4276 	kfree(bus);
4277 	return;
4278 }
4279 
4280 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4281 					 gpa_t addr)
4282 {
4283 	struct kvm_io_bus *bus;
4284 	int dev_idx, srcu_idx;
4285 	struct kvm_io_device *iodev = NULL;
4286 
4287 	srcu_idx = srcu_read_lock(&kvm->srcu);
4288 
4289 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4290 	if (!bus)
4291 		goto out_unlock;
4292 
4293 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4294 	if (dev_idx < 0)
4295 		goto out_unlock;
4296 
4297 	iodev = bus->range[dev_idx].dev;
4298 
4299 out_unlock:
4300 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4301 
4302 	return iodev;
4303 }
4304 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4305 
4306 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4307 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4308 			   const char *fmt)
4309 {
4310 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4311 					  inode->i_private;
4312 
4313 	/* The debugfs files are a reference to the kvm struct which
4314 	 * is still valid when kvm_destroy_vm is called.
4315 	 * To avoid the race between open and the removal of the debugfs
4316 	 * directory we test against the users count.
4317 	 */
4318 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4319 		return -ENOENT;
4320 
4321 	if (simple_attr_open(inode, file, get,
4322 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4323 		    ? set : NULL,
4324 		    fmt)) {
4325 		kvm_put_kvm(stat_data->kvm);
4326 		return -ENOMEM;
4327 	}
4328 
4329 	return 0;
4330 }
4331 
4332 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4333 {
4334 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4335 					  inode->i_private;
4336 
4337 	simple_attr_release(inode, file);
4338 	kvm_put_kvm(stat_data->kvm);
4339 
4340 	return 0;
4341 }
4342 
4343 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4344 {
4345 	*val = *(ulong *)((void *)kvm + offset);
4346 
4347 	return 0;
4348 }
4349 
4350 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4351 {
4352 	*(ulong *)((void *)kvm + offset) = 0;
4353 
4354 	return 0;
4355 }
4356 
4357 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4358 {
4359 	int i;
4360 	struct kvm_vcpu *vcpu;
4361 
4362 	*val = 0;
4363 
4364 	kvm_for_each_vcpu(i, vcpu, kvm)
4365 		*val += *(u64 *)((void *)vcpu + offset);
4366 
4367 	return 0;
4368 }
4369 
4370 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4371 {
4372 	int i;
4373 	struct kvm_vcpu *vcpu;
4374 
4375 	kvm_for_each_vcpu(i, vcpu, kvm)
4376 		*(u64 *)((void *)vcpu + offset) = 0;
4377 
4378 	return 0;
4379 }
4380 
4381 static int kvm_stat_data_get(void *data, u64 *val)
4382 {
4383 	int r = -EFAULT;
4384 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4385 
4386 	switch (stat_data->dbgfs_item->kind) {
4387 	case KVM_STAT_VM:
4388 		r = kvm_get_stat_per_vm(stat_data->kvm,
4389 					stat_data->dbgfs_item->offset, val);
4390 		break;
4391 	case KVM_STAT_VCPU:
4392 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4393 					  stat_data->dbgfs_item->offset, val);
4394 		break;
4395 	}
4396 
4397 	return r;
4398 }
4399 
4400 static int kvm_stat_data_clear(void *data, u64 val)
4401 {
4402 	int r = -EFAULT;
4403 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4404 
4405 	if (val)
4406 		return -EINVAL;
4407 
4408 	switch (stat_data->dbgfs_item->kind) {
4409 	case KVM_STAT_VM:
4410 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4411 					  stat_data->dbgfs_item->offset);
4412 		break;
4413 	case KVM_STAT_VCPU:
4414 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4415 					    stat_data->dbgfs_item->offset);
4416 		break;
4417 	}
4418 
4419 	return r;
4420 }
4421 
4422 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4423 {
4424 	__simple_attr_check_format("%llu\n", 0ull);
4425 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4426 				kvm_stat_data_clear, "%llu\n");
4427 }
4428 
4429 static const struct file_operations stat_fops_per_vm = {
4430 	.owner = THIS_MODULE,
4431 	.open = kvm_stat_data_open,
4432 	.release = kvm_debugfs_release,
4433 	.read = simple_attr_read,
4434 	.write = simple_attr_write,
4435 	.llseek = no_llseek,
4436 };
4437 
4438 static int vm_stat_get(void *_offset, u64 *val)
4439 {
4440 	unsigned offset = (long)_offset;
4441 	struct kvm *kvm;
4442 	u64 tmp_val;
4443 
4444 	*val = 0;
4445 	mutex_lock(&kvm_lock);
4446 	list_for_each_entry(kvm, &vm_list, vm_list) {
4447 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4448 		*val += tmp_val;
4449 	}
4450 	mutex_unlock(&kvm_lock);
4451 	return 0;
4452 }
4453 
4454 static int vm_stat_clear(void *_offset, u64 val)
4455 {
4456 	unsigned offset = (long)_offset;
4457 	struct kvm *kvm;
4458 
4459 	if (val)
4460 		return -EINVAL;
4461 
4462 	mutex_lock(&kvm_lock);
4463 	list_for_each_entry(kvm, &vm_list, vm_list) {
4464 		kvm_clear_stat_per_vm(kvm, offset);
4465 	}
4466 	mutex_unlock(&kvm_lock);
4467 
4468 	return 0;
4469 }
4470 
4471 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4472 
4473 static int vcpu_stat_get(void *_offset, u64 *val)
4474 {
4475 	unsigned offset = (long)_offset;
4476 	struct kvm *kvm;
4477 	u64 tmp_val;
4478 
4479 	*val = 0;
4480 	mutex_lock(&kvm_lock);
4481 	list_for_each_entry(kvm, &vm_list, vm_list) {
4482 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4483 		*val += tmp_val;
4484 	}
4485 	mutex_unlock(&kvm_lock);
4486 	return 0;
4487 }
4488 
4489 static int vcpu_stat_clear(void *_offset, u64 val)
4490 {
4491 	unsigned offset = (long)_offset;
4492 	struct kvm *kvm;
4493 
4494 	if (val)
4495 		return -EINVAL;
4496 
4497 	mutex_lock(&kvm_lock);
4498 	list_for_each_entry(kvm, &vm_list, vm_list) {
4499 		kvm_clear_stat_per_vcpu(kvm, offset);
4500 	}
4501 	mutex_unlock(&kvm_lock);
4502 
4503 	return 0;
4504 }
4505 
4506 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4507 			"%llu\n");
4508 
4509 static const struct file_operations *stat_fops[] = {
4510 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4511 	[KVM_STAT_VM]   = &vm_stat_fops,
4512 };
4513 
4514 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4515 {
4516 	struct kobj_uevent_env *env;
4517 	unsigned long long created, active;
4518 
4519 	if (!kvm_dev.this_device || !kvm)
4520 		return;
4521 
4522 	mutex_lock(&kvm_lock);
4523 	if (type == KVM_EVENT_CREATE_VM) {
4524 		kvm_createvm_count++;
4525 		kvm_active_vms++;
4526 	} else if (type == KVM_EVENT_DESTROY_VM) {
4527 		kvm_active_vms--;
4528 	}
4529 	created = kvm_createvm_count;
4530 	active = kvm_active_vms;
4531 	mutex_unlock(&kvm_lock);
4532 
4533 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4534 	if (!env)
4535 		return;
4536 
4537 	add_uevent_var(env, "CREATED=%llu", created);
4538 	add_uevent_var(env, "COUNT=%llu", active);
4539 
4540 	if (type == KVM_EVENT_CREATE_VM) {
4541 		add_uevent_var(env, "EVENT=create");
4542 		kvm->userspace_pid = task_pid_nr(current);
4543 	} else if (type == KVM_EVENT_DESTROY_VM) {
4544 		add_uevent_var(env, "EVENT=destroy");
4545 	}
4546 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4547 
4548 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4549 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4550 
4551 		if (p) {
4552 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4553 			if (!IS_ERR(tmp))
4554 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4555 			kfree(p);
4556 		}
4557 	}
4558 	/* no need for checks, since we are adding at most only 5 keys */
4559 	env->envp[env->envp_idx++] = NULL;
4560 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4561 	kfree(env);
4562 }
4563 
4564 static void kvm_init_debug(void)
4565 {
4566 	struct kvm_stats_debugfs_item *p;
4567 
4568 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4569 
4570 	kvm_debugfs_num_entries = 0;
4571 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4572 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4573 				    kvm_debugfs_dir, (void *)(long)p->offset,
4574 				    stat_fops[p->kind]);
4575 	}
4576 }
4577 
4578 static int kvm_suspend(void)
4579 {
4580 	if (kvm_usage_count)
4581 		hardware_disable_nolock(NULL);
4582 	return 0;
4583 }
4584 
4585 static void kvm_resume(void)
4586 {
4587 	if (kvm_usage_count) {
4588 #ifdef CONFIG_LOCKDEP
4589 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4590 #endif
4591 		hardware_enable_nolock(NULL);
4592 	}
4593 }
4594 
4595 static struct syscore_ops kvm_syscore_ops = {
4596 	.suspend = kvm_suspend,
4597 	.resume = kvm_resume,
4598 };
4599 
4600 static inline
4601 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4602 {
4603 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4604 }
4605 
4606 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4607 {
4608 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4609 
4610 	WRITE_ONCE(vcpu->preempted, false);
4611 	WRITE_ONCE(vcpu->ready, false);
4612 
4613 	__this_cpu_write(kvm_running_vcpu, vcpu);
4614 	kvm_arch_sched_in(vcpu, cpu);
4615 	kvm_arch_vcpu_load(vcpu, cpu);
4616 }
4617 
4618 static void kvm_sched_out(struct preempt_notifier *pn,
4619 			  struct task_struct *next)
4620 {
4621 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4622 
4623 	if (current->state == TASK_RUNNING) {
4624 		WRITE_ONCE(vcpu->preempted, true);
4625 		WRITE_ONCE(vcpu->ready, true);
4626 	}
4627 	kvm_arch_vcpu_put(vcpu);
4628 	__this_cpu_write(kvm_running_vcpu, NULL);
4629 }
4630 
4631 /**
4632  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4633  *
4634  * We can disable preemption locally around accessing the per-CPU variable,
4635  * and use the resolved vcpu pointer after enabling preemption again,
4636  * because even if the current thread is migrated to another CPU, reading
4637  * the per-CPU value later will give us the same value as we update the
4638  * per-CPU variable in the preempt notifier handlers.
4639  */
4640 struct kvm_vcpu *kvm_get_running_vcpu(void)
4641 {
4642 	struct kvm_vcpu *vcpu;
4643 
4644 	preempt_disable();
4645 	vcpu = __this_cpu_read(kvm_running_vcpu);
4646 	preempt_enable();
4647 
4648 	return vcpu;
4649 }
4650 
4651 /**
4652  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4653  */
4654 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4655 {
4656         return &kvm_running_vcpu;
4657 }
4658 
4659 struct kvm_cpu_compat_check {
4660 	void *opaque;
4661 	int *ret;
4662 };
4663 
4664 static void check_processor_compat(void *data)
4665 {
4666 	struct kvm_cpu_compat_check *c = data;
4667 
4668 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4669 }
4670 
4671 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4672 		  struct module *module)
4673 {
4674 	struct kvm_cpu_compat_check c;
4675 	int r;
4676 	int cpu;
4677 
4678 	r = kvm_arch_init(opaque);
4679 	if (r)
4680 		goto out_fail;
4681 
4682 	/*
4683 	 * kvm_arch_init makes sure there's at most one caller
4684 	 * for architectures that support multiple implementations,
4685 	 * like intel and amd on x86.
4686 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4687 	 * conflicts in case kvm is already setup for another implementation.
4688 	 */
4689 	r = kvm_irqfd_init();
4690 	if (r)
4691 		goto out_irqfd;
4692 
4693 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4694 		r = -ENOMEM;
4695 		goto out_free_0;
4696 	}
4697 
4698 	r = kvm_arch_hardware_setup(opaque);
4699 	if (r < 0)
4700 		goto out_free_1;
4701 
4702 	c.ret = &r;
4703 	c.opaque = opaque;
4704 	for_each_online_cpu(cpu) {
4705 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4706 		if (r < 0)
4707 			goto out_free_2;
4708 	}
4709 
4710 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4711 				      kvm_starting_cpu, kvm_dying_cpu);
4712 	if (r)
4713 		goto out_free_2;
4714 	register_reboot_notifier(&kvm_reboot_notifier);
4715 
4716 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4717 	if (!vcpu_align)
4718 		vcpu_align = __alignof__(struct kvm_vcpu);
4719 	kvm_vcpu_cache =
4720 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4721 					   SLAB_ACCOUNT,
4722 					   offsetof(struct kvm_vcpu, arch),
4723 					   sizeof_field(struct kvm_vcpu, arch),
4724 					   NULL);
4725 	if (!kvm_vcpu_cache) {
4726 		r = -ENOMEM;
4727 		goto out_free_3;
4728 	}
4729 
4730 	r = kvm_async_pf_init();
4731 	if (r)
4732 		goto out_free;
4733 
4734 	kvm_chardev_ops.owner = module;
4735 	kvm_vm_fops.owner = module;
4736 	kvm_vcpu_fops.owner = module;
4737 
4738 	r = misc_register(&kvm_dev);
4739 	if (r) {
4740 		pr_err("kvm: misc device register failed\n");
4741 		goto out_unreg;
4742 	}
4743 
4744 	register_syscore_ops(&kvm_syscore_ops);
4745 
4746 	kvm_preempt_ops.sched_in = kvm_sched_in;
4747 	kvm_preempt_ops.sched_out = kvm_sched_out;
4748 
4749 	kvm_init_debug();
4750 
4751 	r = kvm_vfio_ops_init();
4752 	WARN_ON(r);
4753 
4754 	return 0;
4755 
4756 out_unreg:
4757 	kvm_async_pf_deinit();
4758 out_free:
4759 	kmem_cache_destroy(kvm_vcpu_cache);
4760 out_free_3:
4761 	unregister_reboot_notifier(&kvm_reboot_notifier);
4762 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4763 out_free_2:
4764 	kvm_arch_hardware_unsetup();
4765 out_free_1:
4766 	free_cpumask_var(cpus_hardware_enabled);
4767 out_free_0:
4768 	kvm_irqfd_exit();
4769 out_irqfd:
4770 	kvm_arch_exit();
4771 out_fail:
4772 	return r;
4773 }
4774 EXPORT_SYMBOL_GPL(kvm_init);
4775 
4776 void kvm_exit(void)
4777 {
4778 	debugfs_remove_recursive(kvm_debugfs_dir);
4779 	misc_deregister(&kvm_dev);
4780 	kmem_cache_destroy(kvm_vcpu_cache);
4781 	kvm_async_pf_deinit();
4782 	unregister_syscore_ops(&kvm_syscore_ops);
4783 	unregister_reboot_notifier(&kvm_reboot_notifier);
4784 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4785 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4786 	kvm_arch_hardware_unsetup();
4787 	kvm_arch_exit();
4788 	kvm_irqfd_exit();
4789 	free_cpumask_var(cpus_hardware_enabled);
4790 	kvm_vfio_ops_exit();
4791 }
4792 EXPORT_SYMBOL_GPL(kvm_exit);
4793 
4794 struct kvm_vm_worker_thread_context {
4795 	struct kvm *kvm;
4796 	struct task_struct *parent;
4797 	struct completion init_done;
4798 	kvm_vm_thread_fn_t thread_fn;
4799 	uintptr_t data;
4800 	int err;
4801 };
4802 
4803 static int kvm_vm_worker_thread(void *context)
4804 {
4805 	/*
4806 	 * The init_context is allocated on the stack of the parent thread, so
4807 	 * we have to locally copy anything that is needed beyond initialization
4808 	 */
4809 	struct kvm_vm_worker_thread_context *init_context = context;
4810 	struct kvm *kvm = init_context->kvm;
4811 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4812 	uintptr_t data = init_context->data;
4813 	int err;
4814 
4815 	err = kthread_park(current);
4816 	/* kthread_park(current) is never supposed to return an error */
4817 	WARN_ON(err != 0);
4818 	if (err)
4819 		goto init_complete;
4820 
4821 	err = cgroup_attach_task_all(init_context->parent, current);
4822 	if (err) {
4823 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4824 			__func__, err);
4825 		goto init_complete;
4826 	}
4827 
4828 	set_user_nice(current, task_nice(init_context->parent));
4829 
4830 init_complete:
4831 	init_context->err = err;
4832 	complete(&init_context->init_done);
4833 	init_context = NULL;
4834 
4835 	if (err)
4836 		return err;
4837 
4838 	/* Wait to be woken up by the spawner before proceeding. */
4839 	kthread_parkme();
4840 
4841 	if (!kthread_should_stop())
4842 		err = thread_fn(kvm, data);
4843 
4844 	return err;
4845 }
4846 
4847 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4848 				uintptr_t data, const char *name,
4849 				struct task_struct **thread_ptr)
4850 {
4851 	struct kvm_vm_worker_thread_context init_context = {};
4852 	struct task_struct *thread;
4853 
4854 	*thread_ptr = NULL;
4855 	init_context.kvm = kvm;
4856 	init_context.parent = current;
4857 	init_context.thread_fn = thread_fn;
4858 	init_context.data = data;
4859 	init_completion(&init_context.init_done);
4860 
4861 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4862 			     "%s-%d", name, task_pid_nr(current));
4863 	if (IS_ERR(thread))
4864 		return PTR_ERR(thread);
4865 
4866 	/* kthread_run is never supposed to return NULL */
4867 	WARN_ON(thread == NULL);
4868 
4869 	wait_for_completion(&init_context.init_done);
4870 
4871 	if (!init_context.err)
4872 		*thread_ptr = thread;
4873 
4874 	return init_context.err;
4875 }
4876