1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 127 128 __visible bool kvm_rebooting; 129 EXPORT_SYMBOL_GPL(kvm_rebooting); 130 131 static bool largepages_enabled = true; 132 133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 134 { 135 if (pfn_valid(pfn)) 136 return PageReserved(pfn_to_page(pfn)); 137 138 return true; 139 } 140 141 /* 142 * Switches to specified vcpu, until a matching vcpu_put() 143 */ 144 int vcpu_load(struct kvm_vcpu *vcpu) 145 { 146 int cpu; 147 148 if (mutex_lock_killable(&vcpu->mutex)) 149 return -EINTR; 150 cpu = get_cpu(); 151 preempt_notifier_register(&vcpu->preempt_notifier); 152 kvm_arch_vcpu_load(vcpu, cpu); 153 put_cpu(); 154 return 0; 155 } 156 EXPORT_SYMBOL_GPL(vcpu_load); 157 158 void vcpu_put(struct kvm_vcpu *vcpu) 159 { 160 preempt_disable(); 161 kvm_arch_vcpu_put(vcpu); 162 preempt_notifier_unregister(&vcpu->preempt_notifier); 163 preempt_enable(); 164 mutex_unlock(&vcpu->mutex); 165 } 166 EXPORT_SYMBOL_GPL(vcpu_put); 167 168 /* TODO: merge with kvm_arch_vcpu_should_kick */ 169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 170 { 171 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 172 173 /* 174 * We need to wait for the VCPU to reenable interrupts and get out of 175 * READING_SHADOW_PAGE_TABLES mode. 176 */ 177 if (req & KVM_REQUEST_WAIT) 178 return mode != OUTSIDE_GUEST_MODE; 179 180 /* 181 * Need to kick a running VCPU, but otherwise there is nothing to do. 182 */ 183 return mode == IN_GUEST_MODE; 184 } 185 186 static void ack_flush(void *_completed) 187 { 188 } 189 190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 191 { 192 int i, cpu, me; 193 cpumask_var_t cpus; 194 bool called = true; 195 bool wait = req & KVM_REQUEST_WAIT; 196 struct kvm_vcpu *vcpu; 197 198 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 199 200 me = get_cpu(); 201 kvm_for_each_vcpu(i, vcpu, kvm) { 202 kvm_make_request(req, vcpu); 203 cpu = vcpu->cpu; 204 205 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 206 continue; 207 208 if (cpus != NULL && cpu != -1 && cpu != me && 209 kvm_request_needs_ipi(vcpu, req)) 210 cpumask_set_cpu(cpu, cpus); 211 } 212 if (unlikely(cpus == NULL)) 213 smp_call_function_many(cpu_online_mask, ack_flush, NULL, wait); 214 else if (!cpumask_empty(cpus)) 215 smp_call_function_many(cpus, ack_flush, NULL, wait); 216 else 217 called = false; 218 put_cpu(); 219 free_cpumask_var(cpus); 220 return called; 221 } 222 223 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 224 void kvm_flush_remote_tlbs(struct kvm *kvm) 225 { 226 /* 227 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 228 * kvm_make_all_cpus_request. 229 */ 230 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 231 232 /* 233 * We want to publish modifications to the page tables before reading 234 * mode. Pairs with a memory barrier in arch-specific code. 235 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 236 * and smp_mb in walk_shadow_page_lockless_begin/end. 237 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 238 * 239 * There is already an smp_mb__after_atomic() before 240 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 241 * barrier here. 242 */ 243 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 244 ++kvm->stat.remote_tlb_flush; 245 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 246 } 247 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 248 #endif 249 250 void kvm_reload_remote_mmus(struct kvm *kvm) 251 { 252 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 253 } 254 255 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 256 { 257 struct page *page; 258 int r; 259 260 mutex_init(&vcpu->mutex); 261 vcpu->cpu = -1; 262 vcpu->kvm = kvm; 263 vcpu->vcpu_id = id; 264 vcpu->pid = NULL; 265 init_swait_queue_head(&vcpu->wq); 266 kvm_async_pf_vcpu_init(vcpu); 267 268 vcpu->pre_pcpu = -1; 269 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 270 271 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 272 if (!page) { 273 r = -ENOMEM; 274 goto fail; 275 } 276 vcpu->run = page_address(page); 277 278 kvm_vcpu_set_in_spin_loop(vcpu, false); 279 kvm_vcpu_set_dy_eligible(vcpu, false); 280 vcpu->preempted = false; 281 282 r = kvm_arch_vcpu_init(vcpu); 283 if (r < 0) 284 goto fail_free_run; 285 return 0; 286 287 fail_free_run: 288 free_page((unsigned long)vcpu->run); 289 fail: 290 return r; 291 } 292 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 293 294 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 295 { 296 put_pid(vcpu->pid); 297 kvm_arch_vcpu_uninit(vcpu); 298 free_page((unsigned long)vcpu->run); 299 } 300 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 301 302 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 303 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 304 { 305 return container_of(mn, struct kvm, mmu_notifier); 306 } 307 308 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 309 struct mm_struct *mm, 310 unsigned long address) 311 { 312 struct kvm *kvm = mmu_notifier_to_kvm(mn); 313 int need_tlb_flush, idx; 314 315 /* 316 * When ->invalidate_page runs, the linux pte has been zapped 317 * already but the page is still allocated until 318 * ->invalidate_page returns. So if we increase the sequence 319 * here the kvm page fault will notice if the spte can't be 320 * established because the page is going to be freed. If 321 * instead the kvm page fault establishes the spte before 322 * ->invalidate_page runs, kvm_unmap_hva will release it 323 * before returning. 324 * 325 * The sequence increase only need to be seen at spin_unlock 326 * time, and not at spin_lock time. 327 * 328 * Increasing the sequence after the spin_unlock would be 329 * unsafe because the kvm page fault could then establish the 330 * pte after kvm_unmap_hva returned, without noticing the page 331 * is going to be freed. 332 */ 333 idx = srcu_read_lock(&kvm->srcu); 334 spin_lock(&kvm->mmu_lock); 335 336 kvm->mmu_notifier_seq++; 337 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 338 /* we've to flush the tlb before the pages can be freed */ 339 if (need_tlb_flush) 340 kvm_flush_remote_tlbs(kvm); 341 342 spin_unlock(&kvm->mmu_lock); 343 344 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 345 346 srcu_read_unlock(&kvm->srcu, idx); 347 } 348 349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 350 struct mm_struct *mm, 351 unsigned long address, 352 pte_t pte) 353 { 354 struct kvm *kvm = mmu_notifier_to_kvm(mn); 355 int idx; 356 357 idx = srcu_read_lock(&kvm->srcu); 358 spin_lock(&kvm->mmu_lock); 359 kvm->mmu_notifier_seq++; 360 kvm_set_spte_hva(kvm, address, pte); 361 spin_unlock(&kvm->mmu_lock); 362 srcu_read_unlock(&kvm->srcu, idx); 363 } 364 365 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 366 struct mm_struct *mm, 367 unsigned long start, 368 unsigned long end) 369 { 370 struct kvm *kvm = mmu_notifier_to_kvm(mn); 371 int need_tlb_flush = 0, idx; 372 373 idx = srcu_read_lock(&kvm->srcu); 374 spin_lock(&kvm->mmu_lock); 375 /* 376 * The count increase must become visible at unlock time as no 377 * spte can be established without taking the mmu_lock and 378 * count is also read inside the mmu_lock critical section. 379 */ 380 kvm->mmu_notifier_count++; 381 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 382 need_tlb_flush |= kvm->tlbs_dirty; 383 /* we've to flush the tlb before the pages can be freed */ 384 if (need_tlb_flush) 385 kvm_flush_remote_tlbs(kvm); 386 387 spin_unlock(&kvm->mmu_lock); 388 srcu_read_unlock(&kvm->srcu, idx); 389 } 390 391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 392 struct mm_struct *mm, 393 unsigned long start, 394 unsigned long end) 395 { 396 struct kvm *kvm = mmu_notifier_to_kvm(mn); 397 398 spin_lock(&kvm->mmu_lock); 399 /* 400 * This sequence increase will notify the kvm page fault that 401 * the page that is going to be mapped in the spte could have 402 * been freed. 403 */ 404 kvm->mmu_notifier_seq++; 405 smp_wmb(); 406 /* 407 * The above sequence increase must be visible before the 408 * below count decrease, which is ensured by the smp_wmb above 409 * in conjunction with the smp_rmb in mmu_notifier_retry(). 410 */ 411 kvm->mmu_notifier_count--; 412 spin_unlock(&kvm->mmu_lock); 413 414 BUG_ON(kvm->mmu_notifier_count < 0); 415 } 416 417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 418 struct mm_struct *mm, 419 unsigned long start, 420 unsigned long end) 421 { 422 struct kvm *kvm = mmu_notifier_to_kvm(mn); 423 int young, idx; 424 425 idx = srcu_read_lock(&kvm->srcu); 426 spin_lock(&kvm->mmu_lock); 427 428 young = kvm_age_hva(kvm, start, end); 429 if (young) 430 kvm_flush_remote_tlbs(kvm); 431 432 spin_unlock(&kvm->mmu_lock); 433 srcu_read_unlock(&kvm->srcu, idx); 434 435 return young; 436 } 437 438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 439 struct mm_struct *mm, 440 unsigned long start, 441 unsigned long end) 442 { 443 struct kvm *kvm = mmu_notifier_to_kvm(mn); 444 int young, idx; 445 446 idx = srcu_read_lock(&kvm->srcu); 447 spin_lock(&kvm->mmu_lock); 448 /* 449 * Even though we do not flush TLB, this will still adversely 450 * affect performance on pre-Haswell Intel EPT, where there is 451 * no EPT Access Bit to clear so that we have to tear down EPT 452 * tables instead. If we find this unacceptable, we can always 453 * add a parameter to kvm_age_hva so that it effectively doesn't 454 * do anything on clear_young. 455 * 456 * Also note that currently we never issue secondary TLB flushes 457 * from clear_young, leaving this job up to the regular system 458 * cadence. If we find this inaccurate, we might come up with a 459 * more sophisticated heuristic later. 460 */ 461 young = kvm_age_hva(kvm, start, end); 462 spin_unlock(&kvm->mmu_lock); 463 srcu_read_unlock(&kvm->srcu, idx); 464 465 return young; 466 } 467 468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 469 struct mm_struct *mm, 470 unsigned long address) 471 { 472 struct kvm *kvm = mmu_notifier_to_kvm(mn); 473 int young, idx; 474 475 idx = srcu_read_lock(&kvm->srcu); 476 spin_lock(&kvm->mmu_lock); 477 young = kvm_test_age_hva(kvm, address); 478 spin_unlock(&kvm->mmu_lock); 479 srcu_read_unlock(&kvm->srcu, idx); 480 481 return young; 482 } 483 484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 485 struct mm_struct *mm) 486 { 487 struct kvm *kvm = mmu_notifier_to_kvm(mn); 488 int idx; 489 490 idx = srcu_read_lock(&kvm->srcu); 491 kvm_arch_flush_shadow_all(kvm); 492 srcu_read_unlock(&kvm->srcu, idx); 493 } 494 495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 496 .invalidate_page = kvm_mmu_notifier_invalidate_page, 497 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 498 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 499 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 500 .clear_young = kvm_mmu_notifier_clear_young, 501 .test_young = kvm_mmu_notifier_test_young, 502 .change_pte = kvm_mmu_notifier_change_pte, 503 .release = kvm_mmu_notifier_release, 504 }; 505 506 static int kvm_init_mmu_notifier(struct kvm *kvm) 507 { 508 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 509 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 510 } 511 512 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 513 514 static int kvm_init_mmu_notifier(struct kvm *kvm) 515 { 516 return 0; 517 } 518 519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 520 521 static struct kvm_memslots *kvm_alloc_memslots(void) 522 { 523 int i; 524 struct kvm_memslots *slots; 525 526 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 527 if (!slots) 528 return NULL; 529 530 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 531 slots->id_to_index[i] = slots->memslots[i].id = i; 532 533 return slots; 534 } 535 536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 537 { 538 if (!memslot->dirty_bitmap) 539 return; 540 541 kvfree(memslot->dirty_bitmap); 542 memslot->dirty_bitmap = NULL; 543 } 544 545 /* 546 * Free any memory in @free but not in @dont. 547 */ 548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 549 struct kvm_memory_slot *dont) 550 { 551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 552 kvm_destroy_dirty_bitmap(free); 553 554 kvm_arch_free_memslot(kvm, free, dont); 555 556 free->npages = 0; 557 } 558 559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 560 { 561 struct kvm_memory_slot *memslot; 562 563 if (!slots) 564 return; 565 566 kvm_for_each_memslot(memslot, slots) 567 kvm_free_memslot(kvm, memslot, NULL); 568 569 kvfree(slots); 570 } 571 572 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 573 { 574 int i; 575 576 if (!kvm->debugfs_dentry) 577 return; 578 579 debugfs_remove_recursive(kvm->debugfs_dentry); 580 581 if (kvm->debugfs_stat_data) { 582 for (i = 0; i < kvm_debugfs_num_entries; i++) 583 kfree(kvm->debugfs_stat_data[i]); 584 kfree(kvm->debugfs_stat_data); 585 } 586 } 587 588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 589 { 590 char dir_name[ITOA_MAX_LEN * 2]; 591 struct kvm_stat_data *stat_data; 592 struct kvm_stats_debugfs_item *p; 593 594 if (!debugfs_initialized()) 595 return 0; 596 597 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 598 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 599 kvm_debugfs_dir); 600 if (!kvm->debugfs_dentry) 601 return -ENOMEM; 602 603 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 604 sizeof(*kvm->debugfs_stat_data), 605 GFP_KERNEL); 606 if (!kvm->debugfs_stat_data) 607 return -ENOMEM; 608 609 for (p = debugfs_entries; p->name; p++) { 610 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 611 if (!stat_data) 612 return -ENOMEM; 613 614 stat_data->kvm = kvm; 615 stat_data->offset = p->offset; 616 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 617 if (!debugfs_create_file(p->name, 0644, 618 kvm->debugfs_dentry, 619 stat_data, 620 stat_fops_per_vm[p->kind])) 621 return -ENOMEM; 622 } 623 return 0; 624 } 625 626 static struct kvm *kvm_create_vm(unsigned long type) 627 { 628 int r, i; 629 struct kvm *kvm = kvm_arch_alloc_vm(); 630 631 if (!kvm) 632 return ERR_PTR(-ENOMEM); 633 634 spin_lock_init(&kvm->mmu_lock); 635 mmgrab(current->mm); 636 kvm->mm = current->mm; 637 kvm_eventfd_init(kvm); 638 mutex_init(&kvm->lock); 639 mutex_init(&kvm->irq_lock); 640 mutex_init(&kvm->slots_lock); 641 refcount_set(&kvm->users_count, 1); 642 INIT_LIST_HEAD(&kvm->devices); 643 644 r = kvm_arch_init_vm(kvm, type); 645 if (r) 646 goto out_err_no_disable; 647 648 r = hardware_enable_all(); 649 if (r) 650 goto out_err_no_disable; 651 652 #ifdef CONFIG_HAVE_KVM_IRQFD 653 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 654 #endif 655 656 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 657 658 r = -ENOMEM; 659 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 660 struct kvm_memslots *slots = kvm_alloc_memslots(); 661 if (!slots) 662 goto out_err_no_srcu; 663 /* 664 * Generations must be different for each address space. 665 * Init kvm generation close to the maximum to easily test the 666 * code of handling generation number wrap-around. 667 */ 668 slots->generation = i * 2 - 150; 669 rcu_assign_pointer(kvm->memslots[i], slots); 670 } 671 672 if (init_srcu_struct(&kvm->srcu)) 673 goto out_err_no_srcu; 674 if (init_srcu_struct(&kvm->irq_srcu)) 675 goto out_err_no_irq_srcu; 676 for (i = 0; i < KVM_NR_BUSES; i++) { 677 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 678 GFP_KERNEL); 679 if (!kvm->buses[i]) 680 goto out_err; 681 } 682 683 r = kvm_init_mmu_notifier(kvm); 684 if (r) 685 goto out_err; 686 687 spin_lock(&kvm_lock); 688 list_add(&kvm->vm_list, &vm_list); 689 spin_unlock(&kvm_lock); 690 691 preempt_notifier_inc(); 692 693 return kvm; 694 695 out_err: 696 cleanup_srcu_struct(&kvm->irq_srcu); 697 out_err_no_irq_srcu: 698 cleanup_srcu_struct(&kvm->srcu); 699 out_err_no_srcu: 700 hardware_disable_all(); 701 out_err_no_disable: 702 for (i = 0; i < KVM_NR_BUSES; i++) 703 kfree(kvm->buses[i]); 704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 705 kvm_free_memslots(kvm, kvm->memslots[i]); 706 kvm_arch_free_vm(kvm); 707 mmdrop(current->mm); 708 return ERR_PTR(r); 709 } 710 711 static void kvm_destroy_devices(struct kvm *kvm) 712 { 713 struct kvm_device *dev, *tmp; 714 715 /* 716 * We do not need to take the kvm->lock here, because nobody else 717 * has a reference to the struct kvm at this point and therefore 718 * cannot access the devices list anyhow. 719 */ 720 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 721 list_del(&dev->vm_node); 722 dev->ops->destroy(dev); 723 } 724 } 725 726 static void kvm_destroy_vm(struct kvm *kvm) 727 { 728 int i; 729 struct mm_struct *mm = kvm->mm; 730 731 kvm_destroy_vm_debugfs(kvm); 732 kvm_arch_sync_events(kvm); 733 spin_lock(&kvm_lock); 734 list_del(&kvm->vm_list); 735 spin_unlock(&kvm_lock); 736 kvm_free_irq_routing(kvm); 737 for (i = 0; i < KVM_NR_BUSES; i++) { 738 if (kvm->buses[i]) 739 kvm_io_bus_destroy(kvm->buses[i]); 740 kvm->buses[i] = NULL; 741 } 742 kvm_coalesced_mmio_free(kvm); 743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 745 #else 746 kvm_arch_flush_shadow_all(kvm); 747 #endif 748 kvm_arch_destroy_vm(kvm); 749 kvm_destroy_devices(kvm); 750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 751 kvm_free_memslots(kvm, kvm->memslots[i]); 752 cleanup_srcu_struct(&kvm->irq_srcu); 753 cleanup_srcu_struct(&kvm->srcu); 754 kvm_arch_free_vm(kvm); 755 preempt_notifier_dec(); 756 hardware_disable_all(); 757 mmdrop(mm); 758 } 759 760 void kvm_get_kvm(struct kvm *kvm) 761 { 762 refcount_inc(&kvm->users_count); 763 } 764 EXPORT_SYMBOL_GPL(kvm_get_kvm); 765 766 void kvm_put_kvm(struct kvm *kvm) 767 { 768 if (refcount_dec_and_test(&kvm->users_count)) 769 kvm_destroy_vm(kvm); 770 } 771 EXPORT_SYMBOL_GPL(kvm_put_kvm); 772 773 774 static int kvm_vm_release(struct inode *inode, struct file *filp) 775 { 776 struct kvm *kvm = filp->private_data; 777 778 kvm_irqfd_release(kvm); 779 780 kvm_put_kvm(kvm); 781 return 0; 782 } 783 784 /* 785 * Allocation size is twice as large as the actual dirty bitmap size. 786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 787 */ 788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 789 { 790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 791 792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 793 if (!memslot->dirty_bitmap) 794 return -ENOMEM; 795 796 return 0; 797 } 798 799 /* 800 * Insert memslot and re-sort memslots based on their GFN, 801 * so binary search could be used to lookup GFN. 802 * Sorting algorithm takes advantage of having initially 803 * sorted array and known changed memslot position. 804 */ 805 static void update_memslots(struct kvm_memslots *slots, 806 struct kvm_memory_slot *new) 807 { 808 int id = new->id; 809 int i = slots->id_to_index[id]; 810 struct kvm_memory_slot *mslots = slots->memslots; 811 812 WARN_ON(mslots[i].id != id); 813 if (!new->npages) { 814 WARN_ON(!mslots[i].npages); 815 if (mslots[i].npages) 816 slots->used_slots--; 817 } else { 818 if (!mslots[i].npages) 819 slots->used_slots++; 820 } 821 822 while (i < KVM_MEM_SLOTS_NUM - 1 && 823 new->base_gfn <= mslots[i + 1].base_gfn) { 824 if (!mslots[i + 1].npages) 825 break; 826 mslots[i] = mslots[i + 1]; 827 slots->id_to_index[mslots[i].id] = i; 828 i++; 829 } 830 831 /* 832 * The ">=" is needed when creating a slot with base_gfn == 0, 833 * so that it moves before all those with base_gfn == npages == 0. 834 * 835 * On the other hand, if new->npages is zero, the above loop has 836 * already left i pointing to the beginning of the empty part of 837 * mslots, and the ">=" would move the hole backwards in this 838 * case---which is wrong. So skip the loop when deleting a slot. 839 */ 840 if (new->npages) { 841 while (i > 0 && 842 new->base_gfn >= mslots[i - 1].base_gfn) { 843 mslots[i] = mslots[i - 1]; 844 slots->id_to_index[mslots[i].id] = i; 845 i--; 846 } 847 } else 848 WARN_ON_ONCE(i != slots->used_slots); 849 850 mslots[i] = *new; 851 slots->id_to_index[mslots[i].id] = i; 852 } 853 854 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 855 { 856 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 857 858 #ifdef __KVM_HAVE_READONLY_MEM 859 valid_flags |= KVM_MEM_READONLY; 860 #endif 861 862 if (mem->flags & ~valid_flags) 863 return -EINVAL; 864 865 return 0; 866 } 867 868 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 869 int as_id, struct kvm_memslots *slots) 870 { 871 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 872 873 /* 874 * Set the low bit in the generation, which disables SPTE caching 875 * until the end of synchronize_srcu_expedited. 876 */ 877 WARN_ON(old_memslots->generation & 1); 878 slots->generation = old_memslots->generation + 1; 879 880 rcu_assign_pointer(kvm->memslots[as_id], slots); 881 synchronize_srcu_expedited(&kvm->srcu); 882 883 /* 884 * Increment the new memslot generation a second time. This prevents 885 * vm exits that race with memslot updates from caching a memslot 886 * generation that will (potentially) be valid forever. 887 * 888 * Generations must be unique even across address spaces. We do not need 889 * a global counter for that, instead the generation space is evenly split 890 * across address spaces. For example, with two address spaces, address 891 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 892 * use generations 2, 6, 10, 14, ... 893 */ 894 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 895 896 kvm_arch_memslots_updated(kvm, slots); 897 898 return old_memslots; 899 } 900 901 /* 902 * Allocate some memory and give it an address in the guest physical address 903 * space. 904 * 905 * Discontiguous memory is allowed, mostly for framebuffers. 906 * 907 * Must be called holding kvm->slots_lock for write. 908 */ 909 int __kvm_set_memory_region(struct kvm *kvm, 910 const struct kvm_userspace_memory_region *mem) 911 { 912 int r; 913 gfn_t base_gfn; 914 unsigned long npages; 915 struct kvm_memory_slot *slot; 916 struct kvm_memory_slot old, new; 917 struct kvm_memslots *slots = NULL, *old_memslots; 918 int as_id, id; 919 enum kvm_mr_change change; 920 921 r = check_memory_region_flags(mem); 922 if (r) 923 goto out; 924 925 r = -EINVAL; 926 as_id = mem->slot >> 16; 927 id = (u16)mem->slot; 928 929 /* General sanity checks */ 930 if (mem->memory_size & (PAGE_SIZE - 1)) 931 goto out; 932 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 933 goto out; 934 /* We can read the guest memory with __xxx_user() later on. */ 935 if ((id < KVM_USER_MEM_SLOTS) && 936 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 937 !access_ok(VERIFY_WRITE, 938 (void __user *)(unsigned long)mem->userspace_addr, 939 mem->memory_size))) 940 goto out; 941 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 942 goto out; 943 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 944 goto out; 945 946 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 947 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 948 npages = mem->memory_size >> PAGE_SHIFT; 949 950 if (npages > KVM_MEM_MAX_NR_PAGES) 951 goto out; 952 953 new = old = *slot; 954 955 new.id = id; 956 new.base_gfn = base_gfn; 957 new.npages = npages; 958 new.flags = mem->flags; 959 960 if (npages) { 961 if (!old.npages) 962 change = KVM_MR_CREATE; 963 else { /* Modify an existing slot. */ 964 if ((mem->userspace_addr != old.userspace_addr) || 965 (npages != old.npages) || 966 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 967 goto out; 968 969 if (base_gfn != old.base_gfn) 970 change = KVM_MR_MOVE; 971 else if (new.flags != old.flags) 972 change = KVM_MR_FLAGS_ONLY; 973 else { /* Nothing to change. */ 974 r = 0; 975 goto out; 976 } 977 } 978 } else { 979 if (!old.npages) 980 goto out; 981 982 change = KVM_MR_DELETE; 983 new.base_gfn = 0; 984 new.flags = 0; 985 } 986 987 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 988 /* Check for overlaps */ 989 r = -EEXIST; 990 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 991 if ((slot->id >= KVM_USER_MEM_SLOTS) || 992 (slot->id == id)) 993 continue; 994 if (!((base_gfn + npages <= slot->base_gfn) || 995 (base_gfn >= slot->base_gfn + slot->npages))) 996 goto out; 997 } 998 } 999 1000 /* Free page dirty bitmap if unneeded */ 1001 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1002 new.dirty_bitmap = NULL; 1003 1004 r = -ENOMEM; 1005 if (change == KVM_MR_CREATE) { 1006 new.userspace_addr = mem->userspace_addr; 1007 1008 if (kvm_arch_create_memslot(kvm, &new, npages)) 1009 goto out_free; 1010 } 1011 1012 /* Allocate page dirty bitmap if needed */ 1013 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1014 if (kvm_create_dirty_bitmap(&new) < 0) 1015 goto out_free; 1016 } 1017 1018 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1019 if (!slots) 1020 goto out_free; 1021 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1022 1023 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1024 slot = id_to_memslot(slots, id); 1025 slot->flags |= KVM_MEMSLOT_INVALID; 1026 1027 old_memslots = install_new_memslots(kvm, as_id, slots); 1028 1029 /* From this point no new shadow pages pointing to a deleted, 1030 * or moved, memslot will be created. 1031 * 1032 * validation of sp->gfn happens in: 1033 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1034 * - kvm_is_visible_gfn (mmu_check_roots) 1035 */ 1036 kvm_arch_flush_shadow_memslot(kvm, slot); 1037 1038 /* 1039 * We can re-use the old_memslots from above, the only difference 1040 * from the currently installed memslots is the invalid flag. This 1041 * will get overwritten by update_memslots anyway. 1042 */ 1043 slots = old_memslots; 1044 } 1045 1046 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1047 if (r) 1048 goto out_slots; 1049 1050 /* actual memory is freed via old in kvm_free_memslot below */ 1051 if (change == KVM_MR_DELETE) { 1052 new.dirty_bitmap = NULL; 1053 memset(&new.arch, 0, sizeof(new.arch)); 1054 } 1055 1056 update_memslots(slots, &new); 1057 old_memslots = install_new_memslots(kvm, as_id, slots); 1058 1059 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1060 1061 kvm_free_memslot(kvm, &old, &new); 1062 kvfree(old_memslots); 1063 return 0; 1064 1065 out_slots: 1066 kvfree(slots); 1067 out_free: 1068 kvm_free_memslot(kvm, &new, &old); 1069 out: 1070 return r; 1071 } 1072 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1073 1074 int kvm_set_memory_region(struct kvm *kvm, 1075 const struct kvm_userspace_memory_region *mem) 1076 { 1077 int r; 1078 1079 mutex_lock(&kvm->slots_lock); 1080 r = __kvm_set_memory_region(kvm, mem); 1081 mutex_unlock(&kvm->slots_lock); 1082 return r; 1083 } 1084 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1085 1086 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1087 struct kvm_userspace_memory_region *mem) 1088 { 1089 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1090 return -EINVAL; 1091 1092 return kvm_set_memory_region(kvm, mem); 1093 } 1094 1095 int kvm_get_dirty_log(struct kvm *kvm, 1096 struct kvm_dirty_log *log, int *is_dirty) 1097 { 1098 struct kvm_memslots *slots; 1099 struct kvm_memory_slot *memslot; 1100 int i, as_id, id; 1101 unsigned long n; 1102 unsigned long any = 0; 1103 1104 as_id = log->slot >> 16; 1105 id = (u16)log->slot; 1106 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1107 return -EINVAL; 1108 1109 slots = __kvm_memslots(kvm, as_id); 1110 memslot = id_to_memslot(slots, id); 1111 if (!memslot->dirty_bitmap) 1112 return -ENOENT; 1113 1114 n = kvm_dirty_bitmap_bytes(memslot); 1115 1116 for (i = 0; !any && i < n/sizeof(long); ++i) 1117 any = memslot->dirty_bitmap[i]; 1118 1119 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1120 return -EFAULT; 1121 1122 if (any) 1123 *is_dirty = 1; 1124 return 0; 1125 } 1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1127 1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1129 /** 1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1131 * are dirty write protect them for next write. 1132 * @kvm: pointer to kvm instance 1133 * @log: slot id and address to which we copy the log 1134 * @is_dirty: flag set if any page is dirty 1135 * 1136 * We need to keep it in mind that VCPU threads can write to the bitmap 1137 * concurrently. So, to avoid losing track of dirty pages we keep the 1138 * following order: 1139 * 1140 * 1. Take a snapshot of the bit and clear it if needed. 1141 * 2. Write protect the corresponding page. 1142 * 3. Copy the snapshot to the userspace. 1143 * 4. Upon return caller flushes TLB's if needed. 1144 * 1145 * Between 2 and 4, the guest may write to the page using the remaining TLB 1146 * entry. This is not a problem because the page is reported dirty using 1147 * the snapshot taken before and step 4 ensures that writes done after 1148 * exiting to userspace will be logged for the next call. 1149 * 1150 */ 1151 int kvm_get_dirty_log_protect(struct kvm *kvm, 1152 struct kvm_dirty_log *log, bool *is_dirty) 1153 { 1154 struct kvm_memslots *slots; 1155 struct kvm_memory_slot *memslot; 1156 int i, as_id, id; 1157 unsigned long n; 1158 unsigned long *dirty_bitmap; 1159 unsigned long *dirty_bitmap_buffer; 1160 1161 as_id = log->slot >> 16; 1162 id = (u16)log->slot; 1163 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1164 return -EINVAL; 1165 1166 slots = __kvm_memslots(kvm, as_id); 1167 memslot = id_to_memslot(slots, id); 1168 1169 dirty_bitmap = memslot->dirty_bitmap; 1170 if (!dirty_bitmap) 1171 return -ENOENT; 1172 1173 n = kvm_dirty_bitmap_bytes(memslot); 1174 1175 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1176 memset(dirty_bitmap_buffer, 0, n); 1177 1178 spin_lock(&kvm->mmu_lock); 1179 *is_dirty = false; 1180 for (i = 0; i < n / sizeof(long); i++) { 1181 unsigned long mask; 1182 gfn_t offset; 1183 1184 if (!dirty_bitmap[i]) 1185 continue; 1186 1187 *is_dirty = true; 1188 1189 mask = xchg(&dirty_bitmap[i], 0); 1190 dirty_bitmap_buffer[i] = mask; 1191 1192 if (mask) { 1193 offset = i * BITS_PER_LONG; 1194 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1195 offset, mask); 1196 } 1197 } 1198 1199 spin_unlock(&kvm->mmu_lock); 1200 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1201 return -EFAULT; 1202 return 0; 1203 } 1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1205 #endif 1206 1207 bool kvm_largepages_enabled(void) 1208 { 1209 return largepages_enabled; 1210 } 1211 1212 void kvm_disable_largepages(void) 1213 { 1214 largepages_enabled = false; 1215 } 1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1217 1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1219 { 1220 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1221 } 1222 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1223 1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1225 { 1226 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1227 } 1228 1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1230 { 1231 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1232 1233 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1234 memslot->flags & KVM_MEMSLOT_INVALID) 1235 return false; 1236 1237 return true; 1238 } 1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1240 1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1242 { 1243 struct vm_area_struct *vma; 1244 unsigned long addr, size; 1245 1246 size = PAGE_SIZE; 1247 1248 addr = gfn_to_hva(kvm, gfn); 1249 if (kvm_is_error_hva(addr)) 1250 return PAGE_SIZE; 1251 1252 down_read(¤t->mm->mmap_sem); 1253 vma = find_vma(current->mm, addr); 1254 if (!vma) 1255 goto out; 1256 1257 size = vma_kernel_pagesize(vma); 1258 1259 out: 1260 up_read(¤t->mm->mmap_sem); 1261 1262 return size; 1263 } 1264 1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1266 { 1267 return slot->flags & KVM_MEM_READONLY; 1268 } 1269 1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1271 gfn_t *nr_pages, bool write) 1272 { 1273 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1274 return KVM_HVA_ERR_BAD; 1275 1276 if (memslot_is_readonly(slot) && write) 1277 return KVM_HVA_ERR_RO_BAD; 1278 1279 if (nr_pages) 1280 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1281 1282 return __gfn_to_hva_memslot(slot, gfn); 1283 } 1284 1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1286 gfn_t *nr_pages) 1287 { 1288 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1289 } 1290 1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1292 gfn_t gfn) 1293 { 1294 return gfn_to_hva_many(slot, gfn, NULL); 1295 } 1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1297 1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1299 { 1300 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1301 } 1302 EXPORT_SYMBOL_GPL(gfn_to_hva); 1303 1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1305 { 1306 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1307 } 1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1309 1310 /* 1311 * If writable is set to false, the hva returned by this function is only 1312 * allowed to be read. 1313 */ 1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1315 gfn_t gfn, bool *writable) 1316 { 1317 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1318 1319 if (!kvm_is_error_hva(hva) && writable) 1320 *writable = !memslot_is_readonly(slot); 1321 1322 return hva; 1323 } 1324 1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1326 { 1327 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1328 1329 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1330 } 1331 1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1333 { 1334 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1335 1336 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1337 } 1338 1339 static int get_user_page_nowait(unsigned long start, int write, 1340 struct page **page) 1341 { 1342 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1343 1344 if (write) 1345 flags |= FOLL_WRITE; 1346 1347 return get_user_pages(start, 1, flags, page, NULL); 1348 } 1349 1350 static inline int check_user_page_hwpoison(unsigned long addr) 1351 { 1352 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1353 1354 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1355 return rc == -EHWPOISON; 1356 } 1357 1358 /* 1359 * The atomic path to get the writable pfn which will be stored in @pfn, 1360 * true indicates success, otherwise false is returned. 1361 */ 1362 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1363 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1364 { 1365 struct page *page[1]; 1366 int npages; 1367 1368 if (!(async || atomic)) 1369 return false; 1370 1371 /* 1372 * Fast pin a writable pfn only if it is a write fault request 1373 * or the caller allows to map a writable pfn for a read fault 1374 * request. 1375 */ 1376 if (!(write_fault || writable)) 1377 return false; 1378 1379 npages = __get_user_pages_fast(addr, 1, 1, page); 1380 if (npages == 1) { 1381 *pfn = page_to_pfn(page[0]); 1382 1383 if (writable) 1384 *writable = true; 1385 return true; 1386 } 1387 1388 return false; 1389 } 1390 1391 /* 1392 * The slow path to get the pfn of the specified host virtual address, 1393 * 1 indicates success, -errno is returned if error is detected. 1394 */ 1395 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1396 bool *writable, kvm_pfn_t *pfn) 1397 { 1398 struct page *page[1]; 1399 int npages = 0; 1400 1401 might_sleep(); 1402 1403 if (writable) 1404 *writable = write_fault; 1405 1406 if (async) { 1407 down_read(¤t->mm->mmap_sem); 1408 npages = get_user_page_nowait(addr, write_fault, page); 1409 up_read(¤t->mm->mmap_sem); 1410 } else { 1411 unsigned int flags = FOLL_HWPOISON; 1412 1413 if (write_fault) 1414 flags |= FOLL_WRITE; 1415 1416 npages = get_user_pages_unlocked(addr, 1, page, flags); 1417 } 1418 if (npages != 1) 1419 return npages; 1420 1421 /* map read fault as writable if possible */ 1422 if (unlikely(!write_fault) && writable) { 1423 struct page *wpage[1]; 1424 1425 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1426 if (npages == 1) { 1427 *writable = true; 1428 put_page(page[0]); 1429 page[0] = wpage[0]; 1430 } 1431 1432 npages = 1; 1433 } 1434 *pfn = page_to_pfn(page[0]); 1435 return npages; 1436 } 1437 1438 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1439 { 1440 if (unlikely(!(vma->vm_flags & VM_READ))) 1441 return false; 1442 1443 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1444 return false; 1445 1446 return true; 1447 } 1448 1449 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1450 unsigned long addr, bool *async, 1451 bool write_fault, kvm_pfn_t *p_pfn) 1452 { 1453 unsigned long pfn; 1454 int r; 1455 1456 r = follow_pfn(vma, addr, &pfn); 1457 if (r) { 1458 /* 1459 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1460 * not call the fault handler, so do it here. 1461 */ 1462 bool unlocked = false; 1463 r = fixup_user_fault(current, current->mm, addr, 1464 (write_fault ? FAULT_FLAG_WRITE : 0), 1465 &unlocked); 1466 if (unlocked) 1467 return -EAGAIN; 1468 if (r) 1469 return r; 1470 1471 r = follow_pfn(vma, addr, &pfn); 1472 if (r) 1473 return r; 1474 1475 } 1476 1477 1478 /* 1479 * Get a reference here because callers of *hva_to_pfn* and 1480 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1481 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1482 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1483 * simply do nothing for reserved pfns. 1484 * 1485 * Whoever called remap_pfn_range is also going to call e.g. 1486 * unmap_mapping_range before the underlying pages are freed, 1487 * causing a call to our MMU notifier. 1488 */ 1489 kvm_get_pfn(pfn); 1490 1491 *p_pfn = pfn; 1492 return 0; 1493 } 1494 1495 /* 1496 * Pin guest page in memory and return its pfn. 1497 * @addr: host virtual address which maps memory to the guest 1498 * @atomic: whether this function can sleep 1499 * @async: whether this function need to wait IO complete if the 1500 * host page is not in the memory 1501 * @write_fault: whether we should get a writable host page 1502 * @writable: whether it allows to map a writable host page for !@write_fault 1503 * 1504 * The function will map a writable host page for these two cases: 1505 * 1): @write_fault = true 1506 * 2): @write_fault = false && @writable, @writable will tell the caller 1507 * whether the mapping is writable. 1508 */ 1509 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1510 bool write_fault, bool *writable) 1511 { 1512 struct vm_area_struct *vma; 1513 kvm_pfn_t pfn = 0; 1514 int npages, r; 1515 1516 /* we can do it either atomically or asynchronously, not both */ 1517 BUG_ON(atomic && async); 1518 1519 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1520 return pfn; 1521 1522 if (atomic) 1523 return KVM_PFN_ERR_FAULT; 1524 1525 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1526 if (npages == 1) 1527 return pfn; 1528 1529 down_read(¤t->mm->mmap_sem); 1530 if (npages == -EHWPOISON || 1531 (!async && check_user_page_hwpoison(addr))) { 1532 pfn = KVM_PFN_ERR_HWPOISON; 1533 goto exit; 1534 } 1535 1536 retry: 1537 vma = find_vma_intersection(current->mm, addr, addr + 1); 1538 1539 if (vma == NULL) 1540 pfn = KVM_PFN_ERR_FAULT; 1541 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1542 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1543 if (r == -EAGAIN) 1544 goto retry; 1545 if (r < 0) 1546 pfn = KVM_PFN_ERR_FAULT; 1547 } else { 1548 if (async && vma_is_valid(vma, write_fault)) 1549 *async = true; 1550 pfn = KVM_PFN_ERR_FAULT; 1551 } 1552 exit: 1553 up_read(¤t->mm->mmap_sem); 1554 return pfn; 1555 } 1556 1557 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1558 bool atomic, bool *async, bool write_fault, 1559 bool *writable) 1560 { 1561 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1562 1563 if (addr == KVM_HVA_ERR_RO_BAD) { 1564 if (writable) 1565 *writable = false; 1566 return KVM_PFN_ERR_RO_FAULT; 1567 } 1568 1569 if (kvm_is_error_hva(addr)) { 1570 if (writable) 1571 *writable = false; 1572 return KVM_PFN_NOSLOT; 1573 } 1574 1575 /* Do not map writable pfn in the readonly memslot. */ 1576 if (writable && memslot_is_readonly(slot)) { 1577 *writable = false; 1578 writable = NULL; 1579 } 1580 1581 return hva_to_pfn(addr, atomic, async, write_fault, 1582 writable); 1583 } 1584 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1585 1586 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1587 bool *writable) 1588 { 1589 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1590 write_fault, writable); 1591 } 1592 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1593 1594 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1595 { 1596 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1597 } 1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1599 1600 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1601 { 1602 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1603 } 1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1605 1606 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1607 { 1608 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1609 } 1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1611 1612 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1613 { 1614 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1615 } 1616 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1617 1618 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1619 { 1620 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1621 } 1622 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1623 1624 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1625 { 1626 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1627 } 1628 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1629 1630 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1631 struct page **pages, int nr_pages) 1632 { 1633 unsigned long addr; 1634 gfn_t entry; 1635 1636 addr = gfn_to_hva_many(slot, gfn, &entry); 1637 if (kvm_is_error_hva(addr)) 1638 return -1; 1639 1640 if (entry < nr_pages) 1641 return 0; 1642 1643 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1644 } 1645 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1646 1647 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1648 { 1649 if (is_error_noslot_pfn(pfn)) 1650 return KVM_ERR_PTR_BAD_PAGE; 1651 1652 if (kvm_is_reserved_pfn(pfn)) { 1653 WARN_ON(1); 1654 return KVM_ERR_PTR_BAD_PAGE; 1655 } 1656 1657 return pfn_to_page(pfn); 1658 } 1659 1660 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1661 { 1662 kvm_pfn_t pfn; 1663 1664 pfn = gfn_to_pfn(kvm, gfn); 1665 1666 return kvm_pfn_to_page(pfn); 1667 } 1668 EXPORT_SYMBOL_GPL(gfn_to_page); 1669 1670 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1671 { 1672 kvm_pfn_t pfn; 1673 1674 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1675 1676 return kvm_pfn_to_page(pfn); 1677 } 1678 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1679 1680 void kvm_release_page_clean(struct page *page) 1681 { 1682 WARN_ON(is_error_page(page)); 1683 1684 kvm_release_pfn_clean(page_to_pfn(page)); 1685 } 1686 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1687 1688 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1689 { 1690 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1691 put_page(pfn_to_page(pfn)); 1692 } 1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1694 1695 void kvm_release_page_dirty(struct page *page) 1696 { 1697 WARN_ON(is_error_page(page)); 1698 1699 kvm_release_pfn_dirty(page_to_pfn(page)); 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1702 1703 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1704 { 1705 kvm_set_pfn_dirty(pfn); 1706 kvm_release_pfn_clean(pfn); 1707 } 1708 1709 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1710 { 1711 if (!kvm_is_reserved_pfn(pfn)) { 1712 struct page *page = pfn_to_page(pfn); 1713 1714 if (!PageReserved(page)) 1715 SetPageDirty(page); 1716 } 1717 } 1718 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1719 1720 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1721 { 1722 if (!kvm_is_reserved_pfn(pfn)) 1723 mark_page_accessed(pfn_to_page(pfn)); 1724 } 1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1726 1727 void kvm_get_pfn(kvm_pfn_t pfn) 1728 { 1729 if (!kvm_is_reserved_pfn(pfn)) 1730 get_page(pfn_to_page(pfn)); 1731 } 1732 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1733 1734 static int next_segment(unsigned long len, int offset) 1735 { 1736 if (len > PAGE_SIZE - offset) 1737 return PAGE_SIZE - offset; 1738 else 1739 return len; 1740 } 1741 1742 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1743 void *data, int offset, int len) 1744 { 1745 int r; 1746 unsigned long addr; 1747 1748 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1749 if (kvm_is_error_hva(addr)) 1750 return -EFAULT; 1751 r = __copy_from_user(data, (void __user *)addr + offset, len); 1752 if (r) 1753 return -EFAULT; 1754 return 0; 1755 } 1756 1757 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1758 int len) 1759 { 1760 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1761 1762 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1763 } 1764 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1765 1766 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1767 int offset, int len) 1768 { 1769 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1770 1771 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1772 } 1773 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1774 1775 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1776 { 1777 gfn_t gfn = gpa >> PAGE_SHIFT; 1778 int seg; 1779 int offset = offset_in_page(gpa); 1780 int ret; 1781 1782 while ((seg = next_segment(len, offset)) != 0) { 1783 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1784 if (ret < 0) 1785 return ret; 1786 offset = 0; 1787 len -= seg; 1788 data += seg; 1789 ++gfn; 1790 } 1791 return 0; 1792 } 1793 EXPORT_SYMBOL_GPL(kvm_read_guest); 1794 1795 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1796 { 1797 gfn_t gfn = gpa >> PAGE_SHIFT; 1798 int seg; 1799 int offset = offset_in_page(gpa); 1800 int ret; 1801 1802 while ((seg = next_segment(len, offset)) != 0) { 1803 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1804 if (ret < 0) 1805 return ret; 1806 offset = 0; 1807 len -= seg; 1808 data += seg; 1809 ++gfn; 1810 } 1811 return 0; 1812 } 1813 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1814 1815 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1816 void *data, int offset, unsigned long len) 1817 { 1818 int r; 1819 unsigned long addr; 1820 1821 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1822 if (kvm_is_error_hva(addr)) 1823 return -EFAULT; 1824 pagefault_disable(); 1825 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1826 pagefault_enable(); 1827 if (r) 1828 return -EFAULT; 1829 return 0; 1830 } 1831 1832 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1833 unsigned long len) 1834 { 1835 gfn_t gfn = gpa >> PAGE_SHIFT; 1836 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1837 int offset = offset_in_page(gpa); 1838 1839 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1840 } 1841 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1842 1843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1844 void *data, unsigned long len) 1845 { 1846 gfn_t gfn = gpa >> PAGE_SHIFT; 1847 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1848 int offset = offset_in_page(gpa); 1849 1850 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1851 } 1852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1853 1854 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1855 const void *data, int offset, int len) 1856 { 1857 int r; 1858 unsigned long addr; 1859 1860 addr = gfn_to_hva_memslot(memslot, gfn); 1861 if (kvm_is_error_hva(addr)) 1862 return -EFAULT; 1863 r = __copy_to_user((void __user *)addr + offset, data, len); 1864 if (r) 1865 return -EFAULT; 1866 mark_page_dirty_in_slot(memslot, gfn); 1867 return 0; 1868 } 1869 1870 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1871 const void *data, int offset, int len) 1872 { 1873 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1874 1875 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1876 } 1877 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1878 1879 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1880 const void *data, int offset, int len) 1881 { 1882 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1883 1884 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1885 } 1886 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1887 1888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1889 unsigned long len) 1890 { 1891 gfn_t gfn = gpa >> PAGE_SHIFT; 1892 int seg; 1893 int offset = offset_in_page(gpa); 1894 int ret; 1895 1896 while ((seg = next_segment(len, offset)) != 0) { 1897 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1898 if (ret < 0) 1899 return ret; 1900 offset = 0; 1901 len -= seg; 1902 data += seg; 1903 ++gfn; 1904 } 1905 return 0; 1906 } 1907 EXPORT_SYMBOL_GPL(kvm_write_guest); 1908 1909 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1910 unsigned long len) 1911 { 1912 gfn_t gfn = gpa >> PAGE_SHIFT; 1913 int seg; 1914 int offset = offset_in_page(gpa); 1915 int ret; 1916 1917 while ((seg = next_segment(len, offset)) != 0) { 1918 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1919 if (ret < 0) 1920 return ret; 1921 offset = 0; 1922 len -= seg; 1923 data += seg; 1924 ++gfn; 1925 } 1926 return 0; 1927 } 1928 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1929 1930 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1931 struct gfn_to_hva_cache *ghc, 1932 gpa_t gpa, unsigned long len) 1933 { 1934 int offset = offset_in_page(gpa); 1935 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1936 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1937 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1938 gfn_t nr_pages_avail; 1939 1940 ghc->gpa = gpa; 1941 ghc->generation = slots->generation; 1942 ghc->len = len; 1943 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1944 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1945 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1946 ghc->hva += offset; 1947 } else { 1948 /* 1949 * If the requested region crosses two memslots, we still 1950 * verify that the entire region is valid here. 1951 */ 1952 while (start_gfn <= end_gfn) { 1953 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1954 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1955 &nr_pages_avail); 1956 if (kvm_is_error_hva(ghc->hva)) 1957 return -EFAULT; 1958 start_gfn += nr_pages_avail; 1959 } 1960 /* Use the slow path for cross page reads and writes. */ 1961 ghc->memslot = NULL; 1962 } 1963 return 0; 1964 } 1965 1966 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1967 gpa_t gpa, unsigned long len) 1968 { 1969 struct kvm_memslots *slots = kvm_memslots(kvm); 1970 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1971 } 1972 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1973 1974 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1975 void *data, int offset, unsigned long len) 1976 { 1977 struct kvm_memslots *slots = kvm_memslots(kvm); 1978 int r; 1979 gpa_t gpa = ghc->gpa + offset; 1980 1981 BUG_ON(len + offset > ghc->len); 1982 1983 if (slots->generation != ghc->generation) 1984 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1985 1986 if (unlikely(!ghc->memslot)) 1987 return kvm_write_guest(kvm, gpa, data, len); 1988 1989 if (kvm_is_error_hva(ghc->hva)) 1990 return -EFAULT; 1991 1992 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1993 if (r) 1994 return -EFAULT; 1995 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1996 1997 return 0; 1998 } 1999 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2000 2001 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2002 void *data, unsigned long len) 2003 { 2004 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2005 } 2006 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2007 2008 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2009 void *data, unsigned long len) 2010 { 2011 struct kvm_memslots *slots = kvm_memslots(kvm); 2012 int r; 2013 2014 BUG_ON(len > ghc->len); 2015 2016 if (slots->generation != ghc->generation) 2017 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2018 2019 if (unlikely(!ghc->memslot)) 2020 return kvm_read_guest(kvm, ghc->gpa, data, len); 2021 2022 if (kvm_is_error_hva(ghc->hva)) 2023 return -EFAULT; 2024 2025 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2026 if (r) 2027 return -EFAULT; 2028 2029 return 0; 2030 } 2031 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2032 2033 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2034 { 2035 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2036 2037 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2038 } 2039 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2040 2041 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2042 { 2043 gfn_t gfn = gpa >> PAGE_SHIFT; 2044 int seg; 2045 int offset = offset_in_page(gpa); 2046 int ret; 2047 2048 while ((seg = next_segment(len, offset)) != 0) { 2049 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2050 if (ret < 0) 2051 return ret; 2052 offset = 0; 2053 len -= seg; 2054 ++gfn; 2055 } 2056 return 0; 2057 } 2058 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2059 2060 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2061 gfn_t gfn) 2062 { 2063 if (memslot && memslot->dirty_bitmap) { 2064 unsigned long rel_gfn = gfn - memslot->base_gfn; 2065 2066 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2067 } 2068 } 2069 2070 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2071 { 2072 struct kvm_memory_slot *memslot; 2073 2074 memslot = gfn_to_memslot(kvm, gfn); 2075 mark_page_dirty_in_slot(memslot, gfn); 2076 } 2077 EXPORT_SYMBOL_GPL(mark_page_dirty); 2078 2079 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2080 { 2081 struct kvm_memory_slot *memslot; 2082 2083 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2084 mark_page_dirty_in_slot(memslot, gfn); 2085 } 2086 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2087 2088 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2089 { 2090 unsigned int old, val, grow; 2091 2092 old = val = vcpu->halt_poll_ns; 2093 grow = READ_ONCE(halt_poll_ns_grow); 2094 /* 10us base */ 2095 if (val == 0 && grow) 2096 val = 10000; 2097 else 2098 val *= grow; 2099 2100 if (val > halt_poll_ns) 2101 val = halt_poll_ns; 2102 2103 vcpu->halt_poll_ns = val; 2104 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2105 } 2106 2107 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2108 { 2109 unsigned int old, val, shrink; 2110 2111 old = val = vcpu->halt_poll_ns; 2112 shrink = READ_ONCE(halt_poll_ns_shrink); 2113 if (shrink == 0) 2114 val = 0; 2115 else 2116 val /= shrink; 2117 2118 vcpu->halt_poll_ns = val; 2119 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2120 } 2121 2122 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2123 { 2124 if (kvm_arch_vcpu_runnable(vcpu)) { 2125 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2126 return -EINTR; 2127 } 2128 if (kvm_cpu_has_pending_timer(vcpu)) 2129 return -EINTR; 2130 if (signal_pending(current)) 2131 return -EINTR; 2132 2133 return 0; 2134 } 2135 2136 /* 2137 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2138 */ 2139 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2140 { 2141 ktime_t start, cur; 2142 DECLARE_SWAITQUEUE(wait); 2143 bool waited = false; 2144 u64 block_ns; 2145 2146 start = cur = ktime_get(); 2147 if (vcpu->halt_poll_ns) { 2148 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2149 2150 ++vcpu->stat.halt_attempted_poll; 2151 do { 2152 /* 2153 * This sets KVM_REQ_UNHALT if an interrupt 2154 * arrives. 2155 */ 2156 if (kvm_vcpu_check_block(vcpu) < 0) { 2157 ++vcpu->stat.halt_successful_poll; 2158 if (!vcpu_valid_wakeup(vcpu)) 2159 ++vcpu->stat.halt_poll_invalid; 2160 goto out; 2161 } 2162 cur = ktime_get(); 2163 } while (single_task_running() && ktime_before(cur, stop)); 2164 } 2165 2166 kvm_arch_vcpu_blocking(vcpu); 2167 2168 for (;;) { 2169 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2170 2171 if (kvm_vcpu_check_block(vcpu) < 0) 2172 break; 2173 2174 waited = true; 2175 schedule(); 2176 } 2177 2178 finish_swait(&vcpu->wq, &wait); 2179 cur = ktime_get(); 2180 2181 kvm_arch_vcpu_unblocking(vcpu); 2182 out: 2183 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2184 2185 if (!vcpu_valid_wakeup(vcpu)) 2186 shrink_halt_poll_ns(vcpu); 2187 else if (halt_poll_ns) { 2188 if (block_ns <= vcpu->halt_poll_ns) 2189 ; 2190 /* we had a long block, shrink polling */ 2191 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2192 shrink_halt_poll_ns(vcpu); 2193 /* we had a short halt and our poll time is too small */ 2194 else if (vcpu->halt_poll_ns < halt_poll_ns && 2195 block_ns < halt_poll_ns) 2196 grow_halt_poll_ns(vcpu); 2197 } else 2198 vcpu->halt_poll_ns = 0; 2199 2200 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2201 kvm_arch_vcpu_block_finish(vcpu); 2202 } 2203 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2204 2205 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2206 { 2207 struct swait_queue_head *wqp; 2208 2209 wqp = kvm_arch_vcpu_wq(vcpu); 2210 if (swait_active(wqp)) { 2211 swake_up(wqp); 2212 ++vcpu->stat.halt_wakeup; 2213 return true; 2214 } 2215 2216 return false; 2217 } 2218 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2219 2220 #ifndef CONFIG_S390 2221 /* 2222 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2223 */ 2224 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2225 { 2226 int me; 2227 int cpu = vcpu->cpu; 2228 2229 if (kvm_vcpu_wake_up(vcpu)) 2230 return; 2231 2232 me = get_cpu(); 2233 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2234 if (kvm_arch_vcpu_should_kick(vcpu)) 2235 smp_send_reschedule(cpu); 2236 put_cpu(); 2237 } 2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2239 #endif /* !CONFIG_S390 */ 2240 2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2242 { 2243 struct pid *pid; 2244 struct task_struct *task = NULL; 2245 int ret = 0; 2246 2247 rcu_read_lock(); 2248 pid = rcu_dereference(target->pid); 2249 if (pid) 2250 task = get_pid_task(pid, PIDTYPE_PID); 2251 rcu_read_unlock(); 2252 if (!task) 2253 return ret; 2254 ret = yield_to(task, 1); 2255 put_task_struct(task); 2256 2257 return ret; 2258 } 2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2260 2261 /* 2262 * Helper that checks whether a VCPU is eligible for directed yield. 2263 * Most eligible candidate to yield is decided by following heuristics: 2264 * 2265 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2266 * (preempted lock holder), indicated by @in_spin_loop. 2267 * Set at the beiginning and cleared at the end of interception/PLE handler. 2268 * 2269 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2270 * chance last time (mostly it has become eligible now since we have probably 2271 * yielded to lockholder in last iteration. This is done by toggling 2272 * @dy_eligible each time a VCPU checked for eligibility.) 2273 * 2274 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2275 * to preempted lock-holder could result in wrong VCPU selection and CPU 2276 * burning. Giving priority for a potential lock-holder increases lock 2277 * progress. 2278 * 2279 * Since algorithm is based on heuristics, accessing another VCPU data without 2280 * locking does not harm. It may result in trying to yield to same VCPU, fail 2281 * and continue with next VCPU and so on. 2282 */ 2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2284 { 2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2286 bool eligible; 2287 2288 eligible = !vcpu->spin_loop.in_spin_loop || 2289 vcpu->spin_loop.dy_eligible; 2290 2291 if (vcpu->spin_loop.in_spin_loop) 2292 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2293 2294 return eligible; 2295 #else 2296 return true; 2297 #endif 2298 } 2299 2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2301 { 2302 struct kvm *kvm = me->kvm; 2303 struct kvm_vcpu *vcpu; 2304 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2305 int yielded = 0; 2306 int try = 3; 2307 int pass; 2308 int i; 2309 2310 kvm_vcpu_set_in_spin_loop(me, true); 2311 /* 2312 * We boost the priority of a VCPU that is runnable but not 2313 * currently running, because it got preempted by something 2314 * else and called schedule in __vcpu_run. Hopefully that 2315 * VCPU is holding the lock that we need and will release it. 2316 * We approximate round-robin by starting at the last boosted VCPU. 2317 */ 2318 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2319 kvm_for_each_vcpu(i, vcpu, kvm) { 2320 if (!pass && i <= last_boosted_vcpu) { 2321 i = last_boosted_vcpu; 2322 continue; 2323 } else if (pass && i > last_boosted_vcpu) 2324 break; 2325 if (!ACCESS_ONCE(vcpu->preempted)) 2326 continue; 2327 if (vcpu == me) 2328 continue; 2329 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2330 continue; 2331 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2332 continue; 2333 2334 yielded = kvm_vcpu_yield_to(vcpu); 2335 if (yielded > 0) { 2336 kvm->last_boosted_vcpu = i; 2337 break; 2338 } else if (yielded < 0) { 2339 try--; 2340 if (!try) 2341 break; 2342 } 2343 } 2344 } 2345 kvm_vcpu_set_in_spin_loop(me, false); 2346 2347 /* Ensure vcpu is not eligible during next spinloop */ 2348 kvm_vcpu_set_dy_eligible(me, false); 2349 } 2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2351 2352 static int kvm_vcpu_fault(struct vm_fault *vmf) 2353 { 2354 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2355 struct page *page; 2356 2357 if (vmf->pgoff == 0) 2358 page = virt_to_page(vcpu->run); 2359 #ifdef CONFIG_X86 2360 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2361 page = virt_to_page(vcpu->arch.pio_data); 2362 #endif 2363 #ifdef CONFIG_KVM_MMIO 2364 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2365 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2366 #endif 2367 else 2368 return kvm_arch_vcpu_fault(vcpu, vmf); 2369 get_page(page); 2370 vmf->page = page; 2371 return 0; 2372 } 2373 2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2375 .fault = kvm_vcpu_fault, 2376 }; 2377 2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2379 { 2380 vma->vm_ops = &kvm_vcpu_vm_ops; 2381 return 0; 2382 } 2383 2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2385 { 2386 struct kvm_vcpu *vcpu = filp->private_data; 2387 2388 debugfs_remove_recursive(vcpu->debugfs_dentry); 2389 kvm_put_kvm(vcpu->kvm); 2390 return 0; 2391 } 2392 2393 static struct file_operations kvm_vcpu_fops = { 2394 .release = kvm_vcpu_release, 2395 .unlocked_ioctl = kvm_vcpu_ioctl, 2396 #ifdef CONFIG_KVM_COMPAT 2397 .compat_ioctl = kvm_vcpu_compat_ioctl, 2398 #endif 2399 .mmap = kvm_vcpu_mmap, 2400 .llseek = noop_llseek, 2401 }; 2402 2403 /* 2404 * Allocates an inode for the vcpu. 2405 */ 2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2407 { 2408 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2409 } 2410 2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2412 { 2413 char dir_name[ITOA_MAX_LEN * 2]; 2414 int ret; 2415 2416 if (!kvm_arch_has_vcpu_debugfs()) 2417 return 0; 2418 2419 if (!debugfs_initialized()) 2420 return 0; 2421 2422 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2423 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2424 vcpu->kvm->debugfs_dentry); 2425 if (!vcpu->debugfs_dentry) 2426 return -ENOMEM; 2427 2428 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2429 if (ret < 0) { 2430 debugfs_remove_recursive(vcpu->debugfs_dentry); 2431 return ret; 2432 } 2433 2434 return 0; 2435 } 2436 2437 /* 2438 * Creates some virtual cpus. Good luck creating more than one. 2439 */ 2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2441 { 2442 int r; 2443 struct kvm_vcpu *vcpu; 2444 2445 if (id >= KVM_MAX_VCPU_ID) 2446 return -EINVAL; 2447 2448 mutex_lock(&kvm->lock); 2449 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2450 mutex_unlock(&kvm->lock); 2451 return -EINVAL; 2452 } 2453 2454 kvm->created_vcpus++; 2455 mutex_unlock(&kvm->lock); 2456 2457 vcpu = kvm_arch_vcpu_create(kvm, id); 2458 if (IS_ERR(vcpu)) { 2459 r = PTR_ERR(vcpu); 2460 goto vcpu_decrement; 2461 } 2462 2463 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2464 2465 r = kvm_arch_vcpu_setup(vcpu); 2466 if (r) 2467 goto vcpu_destroy; 2468 2469 r = kvm_create_vcpu_debugfs(vcpu); 2470 if (r) 2471 goto vcpu_destroy; 2472 2473 mutex_lock(&kvm->lock); 2474 if (kvm_get_vcpu_by_id(kvm, id)) { 2475 r = -EEXIST; 2476 goto unlock_vcpu_destroy; 2477 } 2478 2479 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2480 2481 /* Now it's all set up, let userspace reach it */ 2482 kvm_get_kvm(kvm); 2483 r = create_vcpu_fd(vcpu); 2484 if (r < 0) { 2485 kvm_put_kvm(kvm); 2486 goto unlock_vcpu_destroy; 2487 } 2488 2489 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2490 2491 /* 2492 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2493 * before kvm->online_vcpu's incremented value. 2494 */ 2495 smp_wmb(); 2496 atomic_inc(&kvm->online_vcpus); 2497 2498 mutex_unlock(&kvm->lock); 2499 kvm_arch_vcpu_postcreate(vcpu); 2500 return r; 2501 2502 unlock_vcpu_destroy: 2503 mutex_unlock(&kvm->lock); 2504 debugfs_remove_recursive(vcpu->debugfs_dentry); 2505 vcpu_destroy: 2506 kvm_arch_vcpu_destroy(vcpu); 2507 vcpu_decrement: 2508 mutex_lock(&kvm->lock); 2509 kvm->created_vcpus--; 2510 mutex_unlock(&kvm->lock); 2511 return r; 2512 } 2513 2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2515 { 2516 if (sigset) { 2517 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2518 vcpu->sigset_active = 1; 2519 vcpu->sigset = *sigset; 2520 } else 2521 vcpu->sigset_active = 0; 2522 return 0; 2523 } 2524 2525 static long kvm_vcpu_ioctl(struct file *filp, 2526 unsigned int ioctl, unsigned long arg) 2527 { 2528 struct kvm_vcpu *vcpu = filp->private_data; 2529 void __user *argp = (void __user *)arg; 2530 int r; 2531 struct kvm_fpu *fpu = NULL; 2532 struct kvm_sregs *kvm_sregs = NULL; 2533 2534 if (vcpu->kvm->mm != current->mm) 2535 return -EIO; 2536 2537 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2538 return -EINVAL; 2539 2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2541 /* 2542 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2543 * so vcpu_load() would break it. 2544 */ 2545 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2546 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2547 #endif 2548 2549 2550 r = vcpu_load(vcpu); 2551 if (r) 2552 return r; 2553 switch (ioctl) { 2554 case KVM_RUN: 2555 r = -EINVAL; 2556 if (arg) 2557 goto out; 2558 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2559 /* The thread running this VCPU changed. */ 2560 struct pid *oldpid = vcpu->pid; 2561 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2562 2563 rcu_assign_pointer(vcpu->pid, newpid); 2564 if (oldpid) 2565 synchronize_rcu(); 2566 put_pid(oldpid); 2567 } 2568 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2569 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2570 break; 2571 case KVM_GET_REGS: { 2572 struct kvm_regs *kvm_regs; 2573 2574 r = -ENOMEM; 2575 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2576 if (!kvm_regs) 2577 goto out; 2578 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2579 if (r) 2580 goto out_free1; 2581 r = -EFAULT; 2582 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2583 goto out_free1; 2584 r = 0; 2585 out_free1: 2586 kfree(kvm_regs); 2587 break; 2588 } 2589 case KVM_SET_REGS: { 2590 struct kvm_regs *kvm_regs; 2591 2592 r = -ENOMEM; 2593 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2594 if (IS_ERR(kvm_regs)) { 2595 r = PTR_ERR(kvm_regs); 2596 goto out; 2597 } 2598 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2599 kfree(kvm_regs); 2600 break; 2601 } 2602 case KVM_GET_SREGS: { 2603 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2604 r = -ENOMEM; 2605 if (!kvm_sregs) 2606 goto out; 2607 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2608 if (r) 2609 goto out; 2610 r = -EFAULT; 2611 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2612 goto out; 2613 r = 0; 2614 break; 2615 } 2616 case KVM_SET_SREGS: { 2617 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2618 if (IS_ERR(kvm_sregs)) { 2619 r = PTR_ERR(kvm_sregs); 2620 kvm_sregs = NULL; 2621 goto out; 2622 } 2623 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2624 break; 2625 } 2626 case KVM_GET_MP_STATE: { 2627 struct kvm_mp_state mp_state; 2628 2629 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2630 if (r) 2631 goto out; 2632 r = -EFAULT; 2633 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2634 goto out; 2635 r = 0; 2636 break; 2637 } 2638 case KVM_SET_MP_STATE: { 2639 struct kvm_mp_state mp_state; 2640 2641 r = -EFAULT; 2642 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2643 goto out; 2644 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2645 break; 2646 } 2647 case KVM_TRANSLATE: { 2648 struct kvm_translation tr; 2649 2650 r = -EFAULT; 2651 if (copy_from_user(&tr, argp, sizeof(tr))) 2652 goto out; 2653 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2654 if (r) 2655 goto out; 2656 r = -EFAULT; 2657 if (copy_to_user(argp, &tr, sizeof(tr))) 2658 goto out; 2659 r = 0; 2660 break; 2661 } 2662 case KVM_SET_GUEST_DEBUG: { 2663 struct kvm_guest_debug dbg; 2664 2665 r = -EFAULT; 2666 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2667 goto out; 2668 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2669 break; 2670 } 2671 case KVM_SET_SIGNAL_MASK: { 2672 struct kvm_signal_mask __user *sigmask_arg = argp; 2673 struct kvm_signal_mask kvm_sigmask; 2674 sigset_t sigset, *p; 2675 2676 p = NULL; 2677 if (argp) { 2678 r = -EFAULT; 2679 if (copy_from_user(&kvm_sigmask, argp, 2680 sizeof(kvm_sigmask))) 2681 goto out; 2682 r = -EINVAL; 2683 if (kvm_sigmask.len != sizeof(sigset)) 2684 goto out; 2685 r = -EFAULT; 2686 if (copy_from_user(&sigset, sigmask_arg->sigset, 2687 sizeof(sigset))) 2688 goto out; 2689 p = &sigset; 2690 } 2691 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2692 break; 2693 } 2694 case KVM_GET_FPU: { 2695 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2696 r = -ENOMEM; 2697 if (!fpu) 2698 goto out; 2699 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2700 if (r) 2701 goto out; 2702 r = -EFAULT; 2703 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2704 goto out; 2705 r = 0; 2706 break; 2707 } 2708 case KVM_SET_FPU: { 2709 fpu = memdup_user(argp, sizeof(*fpu)); 2710 if (IS_ERR(fpu)) { 2711 r = PTR_ERR(fpu); 2712 fpu = NULL; 2713 goto out; 2714 } 2715 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2716 break; 2717 } 2718 default: 2719 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2720 } 2721 out: 2722 vcpu_put(vcpu); 2723 kfree(fpu); 2724 kfree(kvm_sregs); 2725 return r; 2726 } 2727 2728 #ifdef CONFIG_KVM_COMPAT 2729 static long kvm_vcpu_compat_ioctl(struct file *filp, 2730 unsigned int ioctl, unsigned long arg) 2731 { 2732 struct kvm_vcpu *vcpu = filp->private_data; 2733 void __user *argp = compat_ptr(arg); 2734 int r; 2735 2736 if (vcpu->kvm->mm != current->mm) 2737 return -EIO; 2738 2739 switch (ioctl) { 2740 case KVM_SET_SIGNAL_MASK: { 2741 struct kvm_signal_mask __user *sigmask_arg = argp; 2742 struct kvm_signal_mask kvm_sigmask; 2743 compat_sigset_t csigset; 2744 sigset_t sigset; 2745 2746 if (argp) { 2747 r = -EFAULT; 2748 if (copy_from_user(&kvm_sigmask, argp, 2749 sizeof(kvm_sigmask))) 2750 goto out; 2751 r = -EINVAL; 2752 if (kvm_sigmask.len != sizeof(csigset)) 2753 goto out; 2754 r = -EFAULT; 2755 if (copy_from_user(&csigset, sigmask_arg->sigset, 2756 sizeof(csigset))) 2757 goto out; 2758 sigset_from_compat(&sigset, &csigset); 2759 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2760 } else 2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2762 break; 2763 } 2764 default: 2765 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2766 } 2767 2768 out: 2769 return r; 2770 } 2771 #endif 2772 2773 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2774 int (*accessor)(struct kvm_device *dev, 2775 struct kvm_device_attr *attr), 2776 unsigned long arg) 2777 { 2778 struct kvm_device_attr attr; 2779 2780 if (!accessor) 2781 return -EPERM; 2782 2783 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2784 return -EFAULT; 2785 2786 return accessor(dev, &attr); 2787 } 2788 2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2790 unsigned long arg) 2791 { 2792 struct kvm_device *dev = filp->private_data; 2793 2794 switch (ioctl) { 2795 case KVM_SET_DEVICE_ATTR: 2796 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2797 case KVM_GET_DEVICE_ATTR: 2798 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2799 case KVM_HAS_DEVICE_ATTR: 2800 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2801 default: 2802 if (dev->ops->ioctl) 2803 return dev->ops->ioctl(dev, ioctl, arg); 2804 2805 return -ENOTTY; 2806 } 2807 } 2808 2809 static int kvm_device_release(struct inode *inode, struct file *filp) 2810 { 2811 struct kvm_device *dev = filp->private_data; 2812 struct kvm *kvm = dev->kvm; 2813 2814 kvm_put_kvm(kvm); 2815 return 0; 2816 } 2817 2818 static const struct file_operations kvm_device_fops = { 2819 .unlocked_ioctl = kvm_device_ioctl, 2820 #ifdef CONFIG_KVM_COMPAT 2821 .compat_ioctl = kvm_device_ioctl, 2822 #endif 2823 .release = kvm_device_release, 2824 }; 2825 2826 struct kvm_device *kvm_device_from_filp(struct file *filp) 2827 { 2828 if (filp->f_op != &kvm_device_fops) 2829 return NULL; 2830 2831 return filp->private_data; 2832 } 2833 2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2835 #ifdef CONFIG_KVM_MPIC 2836 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2837 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2838 #endif 2839 }; 2840 2841 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2842 { 2843 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2844 return -ENOSPC; 2845 2846 if (kvm_device_ops_table[type] != NULL) 2847 return -EEXIST; 2848 2849 kvm_device_ops_table[type] = ops; 2850 return 0; 2851 } 2852 2853 void kvm_unregister_device_ops(u32 type) 2854 { 2855 if (kvm_device_ops_table[type] != NULL) 2856 kvm_device_ops_table[type] = NULL; 2857 } 2858 2859 static int kvm_ioctl_create_device(struct kvm *kvm, 2860 struct kvm_create_device *cd) 2861 { 2862 struct kvm_device_ops *ops = NULL; 2863 struct kvm_device *dev; 2864 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2865 int ret; 2866 2867 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2868 return -ENODEV; 2869 2870 ops = kvm_device_ops_table[cd->type]; 2871 if (ops == NULL) 2872 return -ENODEV; 2873 2874 if (test) 2875 return 0; 2876 2877 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2878 if (!dev) 2879 return -ENOMEM; 2880 2881 dev->ops = ops; 2882 dev->kvm = kvm; 2883 2884 mutex_lock(&kvm->lock); 2885 ret = ops->create(dev, cd->type); 2886 if (ret < 0) { 2887 mutex_unlock(&kvm->lock); 2888 kfree(dev); 2889 return ret; 2890 } 2891 list_add(&dev->vm_node, &kvm->devices); 2892 mutex_unlock(&kvm->lock); 2893 2894 if (ops->init) 2895 ops->init(dev); 2896 2897 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2898 if (ret < 0) { 2899 mutex_lock(&kvm->lock); 2900 list_del(&dev->vm_node); 2901 mutex_unlock(&kvm->lock); 2902 ops->destroy(dev); 2903 return ret; 2904 } 2905 2906 kvm_get_kvm(kvm); 2907 cd->fd = ret; 2908 return 0; 2909 } 2910 2911 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2912 { 2913 switch (arg) { 2914 case KVM_CAP_USER_MEMORY: 2915 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2916 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2917 case KVM_CAP_INTERNAL_ERROR_DATA: 2918 #ifdef CONFIG_HAVE_KVM_MSI 2919 case KVM_CAP_SIGNAL_MSI: 2920 #endif 2921 #ifdef CONFIG_HAVE_KVM_IRQFD 2922 case KVM_CAP_IRQFD: 2923 case KVM_CAP_IRQFD_RESAMPLE: 2924 #endif 2925 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2926 case KVM_CAP_CHECK_EXTENSION_VM: 2927 return 1; 2928 #ifdef CONFIG_KVM_MMIO 2929 case KVM_CAP_COALESCED_MMIO: 2930 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2931 #endif 2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2933 case KVM_CAP_IRQ_ROUTING: 2934 return KVM_MAX_IRQ_ROUTES; 2935 #endif 2936 #if KVM_ADDRESS_SPACE_NUM > 1 2937 case KVM_CAP_MULTI_ADDRESS_SPACE: 2938 return KVM_ADDRESS_SPACE_NUM; 2939 #endif 2940 case KVM_CAP_MAX_VCPU_ID: 2941 return KVM_MAX_VCPU_ID; 2942 default: 2943 break; 2944 } 2945 return kvm_vm_ioctl_check_extension(kvm, arg); 2946 } 2947 2948 static long kvm_vm_ioctl(struct file *filp, 2949 unsigned int ioctl, unsigned long arg) 2950 { 2951 struct kvm *kvm = filp->private_data; 2952 void __user *argp = (void __user *)arg; 2953 int r; 2954 2955 if (kvm->mm != current->mm) 2956 return -EIO; 2957 switch (ioctl) { 2958 case KVM_CREATE_VCPU: 2959 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2960 break; 2961 case KVM_SET_USER_MEMORY_REGION: { 2962 struct kvm_userspace_memory_region kvm_userspace_mem; 2963 2964 r = -EFAULT; 2965 if (copy_from_user(&kvm_userspace_mem, argp, 2966 sizeof(kvm_userspace_mem))) 2967 goto out; 2968 2969 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2970 break; 2971 } 2972 case KVM_GET_DIRTY_LOG: { 2973 struct kvm_dirty_log log; 2974 2975 r = -EFAULT; 2976 if (copy_from_user(&log, argp, sizeof(log))) 2977 goto out; 2978 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2979 break; 2980 } 2981 #ifdef CONFIG_KVM_MMIO 2982 case KVM_REGISTER_COALESCED_MMIO: { 2983 struct kvm_coalesced_mmio_zone zone; 2984 2985 r = -EFAULT; 2986 if (copy_from_user(&zone, argp, sizeof(zone))) 2987 goto out; 2988 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2989 break; 2990 } 2991 case KVM_UNREGISTER_COALESCED_MMIO: { 2992 struct kvm_coalesced_mmio_zone zone; 2993 2994 r = -EFAULT; 2995 if (copy_from_user(&zone, argp, sizeof(zone))) 2996 goto out; 2997 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2998 break; 2999 } 3000 #endif 3001 case KVM_IRQFD: { 3002 struct kvm_irqfd data; 3003 3004 r = -EFAULT; 3005 if (copy_from_user(&data, argp, sizeof(data))) 3006 goto out; 3007 r = kvm_irqfd(kvm, &data); 3008 break; 3009 } 3010 case KVM_IOEVENTFD: { 3011 struct kvm_ioeventfd data; 3012 3013 r = -EFAULT; 3014 if (copy_from_user(&data, argp, sizeof(data))) 3015 goto out; 3016 r = kvm_ioeventfd(kvm, &data); 3017 break; 3018 } 3019 #ifdef CONFIG_HAVE_KVM_MSI 3020 case KVM_SIGNAL_MSI: { 3021 struct kvm_msi msi; 3022 3023 r = -EFAULT; 3024 if (copy_from_user(&msi, argp, sizeof(msi))) 3025 goto out; 3026 r = kvm_send_userspace_msi(kvm, &msi); 3027 break; 3028 } 3029 #endif 3030 #ifdef __KVM_HAVE_IRQ_LINE 3031 case KVM_IRQ_LINE_STATUS: 3032 case KVM_IRQ_LINE: { 3033 struct kvm_irq_level irq_event; 3034 3035 r = -EFAULT; 3036 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3037 goto out; 3038 3039 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3040 ioctl == KVM_IRQ_LINE_STATUS); 3041 if (r) 3042 goto out; 3043 3044 r = -EFAULT; 3045 if (ioctl == KVM_IRQ_LINE_STATUS) { 3046 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3047 goto out; 3048 } 3049 3050 r = 0; 3051 break; 3052 } 3053 #endif 3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3055 case KVM_SET_GSI_ROUTING: { 3056 struct kvm_irq_routing routing; 3057 struct kvm_irq_routing __user *urouting; 3058 struct kvm_irq_routing_entry *entries = NULL; 3059 3060 r = -EFAULT; 3061 if (copy_from_user(&routing, argp, sizeof(routing))) 3062 goto out; 3063 r = -EINVAL; 3064 if (!kvm_arch_can_set_irq_routing(kvm)) 3065 goto out; 3066 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3067 goto out; 3068 if (routing.flags) 3069 goto out; 3070 if (routing.nr) { 3071 r = -ENOMEM; 3072 entries = vmalloc(routing.nr * sizeof(*entries)); 3073 if (!entries) 3074 goto out; 3075 r = -EFAULT; 3076 urouting = argp; 3077 if (copy_from_user(entries, urouting->entries, 3078 routing.nr * sizeof(*entries))) 3079 goto out_free_irq_routing; 3080 } 3081 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3082 routing.flags); 3083 out_free_irq_routing: 3084 vfree(entries); 3085 break; 3086 } 3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3088 case KVM_CREATE_DEVICE: { 3089 struct kvm_create_device cd; 3090 3091 r = -EFAULT; 3092 if (copy_from_user(&cd, argp, sizeof(cd))) 3093 goto out; 3094 3095 r = kvm_ioctl_create_device(kvm, &cd); 3096 if (r) 3097 goto out; 3098 3099 r = -EFAULT; 3100 if (copy_to_user(argp, &cd, sizeof(cd))) 3101 goto out; 3102 3103 r = 0; 3104 break; 3105 } 3106 case KVM_CHECK_EXTENSION: 3107 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3108 break; 3109 default: 3110 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3111 } 3112 out: 3113 return r; 3114 } 3115 3116 #ifdef CONFIG_KVM_COMPAT 3117 struct compat_kvm_dirty_log { 3118 __u32 slot; 3119 __u32 padding1; 3120 union { 3121 compat_uptr_t dirty_bitmap; /* one bit per page */ 3122 __u64 padding2; 3123 }; 3124 }; 3125 3126 static long kvm_vm_compat_ioctl(struct file *filp, 3127 unsigned int ioctl, unsigned long arg) 3128 { 3129 struct kvm *kvm = filp->private_data; 3130 int r; 3131 3132 if (kvm->mm != current->mm) 3133 return -EIO; 3134 switch (ioctl) { 3135 case KVM_GET_DIRTY_LOG: { 3136 struct compat_kvm_dirty_log compat_log; 3137 struct kvm_dirty_log log; 3138 3139 if (copy_from_user(&compat_log, (void __user *)arg, 3140 sizeof(compat_log))) 3141 return -EFAULT; 3142 log.slot = compat_log.slot; 3143 log.padding1 = compat_log.padding1; 3144 log.padding2 = compat_log.padding2; 3145 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3146 3147 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3148 break; 3149 } 3150 default: 3151 r = kvm_vm_ioctl(filp, ioctl, arg); 3152 } 3153 return r; 3154 } 3155 #endif 3156 3157 static struct file_operations kvm_vm_fops = { 3158 .release = kvm_vm_release, 3159 .unlocked_ioctl = kvm_vm_ioctl, 3160 #ifdef CONFIG_KVM_COMPAT 3161 .compat_ioctl = kvm_vm_compat_ioctl, 3162 #endif 3163 .llseek = noop_llseek, 3164 }; 3165 3166 static int kvm_dev_ioctl_create_vm(unsigned long type) 3167 { 3168 int r; 3169 struct kvm *kvm; 3170 struct file *file; 3171 3172 kvm = kvm_create_vm(type); 3173 if (IS_ERR(kvm)) 3174 return PTR_ERR(kvm); 3175 #ifdef CONFIG_KVM_MMIO 3176 r = kvm_coalesced_mmio_init(kvm); 3177 if (r < 0) { 3178 kvm_put_kvm(kvm); 3179 return r; 3180 } 3181 #endif 3182 r = get_unused_fd_flags(O_CLOEXEC); 3183 if (r < 0) { 3184 kvm_put_kvm(kvm); 3185 return r; 3186 } 3187 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3188 if (IS_ERR(file)) { 3189 put_unused_fd(r); 3190 kvm_put_kvm(kvm); 3191 return PTR_ERR(file); 3192 } 3193 3194 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3195 put_unused_fd(r); 3196 fput(file); 3197 return -ENOMEM; 3198 } 3199 3200 fd_install(r, file); 3201 return r; 3202 } 3203 3204 static long kvm_dev_ioctl(struct file *filp, 3205 unsigned int ioctl, unsigned long arg) 3206 { 3207 long r = -EINVAL; 3208 3209 switch (ioctl) { 3210 case KVM_GET_API_VERSION: 3211 if (arg) 3212 goto out; 3213 r = KVM_API_VERSION; 3214 break; 3215 case KVM_CREATE_VM: 3216 r = kvm_dev_ioctl_create_vm(arg); 3217 break; 3218 case KVM_CHECK_EXTENSION: 3219 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3220 break; 3221 case KVM_GET_VCPU_MMAP_SIZE: 3222 if (arg) 3223 goto out; 3224 r = PAGE_SIZE; /* struct kvm_run */ 3225 #ifdef CONFIG_X86 3226 r += PAGE_SIZE; /* pio data page */ 3227 #endif 3228 #ifdef CONFIG_KVM_MMIO 3229 r += PAGE_SIZE; /* coalesced mmio ring page */ 3230 #endif 3231 break; 3232 case KVM_TRACE_ENABLE: 3233 case KVM_TRACE_PAUSE: 3234 case KVM_TRACE_DISABLE: 3235 r = -EOPNOTSUPP; 3236 break; 3237 default: 3238 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3239 } 3240 out: 3241 return r; 3242 } 3243 3244 static struct file_operations kvm_chardev_ops = { 3245 .unlocked_ioctl = kvm_dev_ioctl, 3246 .compat_ioctl = kvm_dev_ioctl, 3247 .llseek = noop_llseek, 3248 }; 3249 3250 static struct miscdevice kvm_dev = { 3251 KVM_MINOR, 3252 "kvm", 3253 &kvm_chardev_ops, 3254 }; 3255 3256 static void hardware_enable_nolock(void *junk) 3257 { 3258 int cpu = raw_smp_processor_id(); 3259 int r; 3260 3261 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3262 return; 3263 3264 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3265 3266 r = kvm_arch_hardware_enable(); 3267 3268 if (r) { 3269 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3270 atomic_inc(&hardware_enable_failed); 3271 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3272 } 3273 } 3274 3275 static int kvm_starting_cpu(unsigned int cpu) 3276 { 3277 raw_spin_lock(&kvm_count_lock); 3278 if (kvm_usage_count) 3279 hardware_enable_nolock(NULL); 3280 raw_spin_unlock(&kvm_count_lock); 3281 return 0; 3282 } 3283 3284 static void hardware_disable_nolock(void *junk) 3285 { 3286 int cpu = raw_smp_processor_id(); 3287 3288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3289 return; 3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3291 kvm_arch_hardware_disable(); 3292 } 3293 3294 static int kvm_dying_cpu(unsigned int cpu) 3295 { 3296 raw_spin_lock(&kvm_count_lock); 3297 if (kvm_usage_count) 3298 hardware_disable_nolock(NULL); 3299 raw_spin_unlock(&kvm_count_lock); 3300 return 0; 3301 } 3302 3303 static void hardware_disable_all_nolock(void) 3304 { 3305 BUG_ON(!kvm_usage_count); 3306 3307 kvm_usage_count--; 3308 if (!kvm_usage_count) 3309 on_each_cpu(hardware_disable_nolock, NULL, 1); 3310 } 3311 3312 static void hardware_disable_all(void) 3313 { 3314 raw_spin_lock(&kvm_count_lock); 3315 hardware_disable_all_nolock(); 3316 raw_spin_unlock(&kvm_count_lock); 3317 } 3318 3319 static int hardware_enable_all(void) 3320 { 3321 int r = 0; 3322 3323 raw_spin_lock(&kvm_count_lock); 3324 3325 kvm_usage_count++; 3326 if (kvm_usage_count == 1) { 3327 atomic_set(&hardware_enable_failed, 0); 3328 on_each_cpu(hardware_enable_nolock, NULL, 1); 3329 3330 if (atomic_read(&hardware_enable_failed)) { 3331 hardware_disable_all_nolock(); 3332 r = -EBUSY; 3333 } 3334 } 3335 3336 raw_spin_unlock(&kvm_count_lock); 3337 3338 return r; 3339 } 3340 3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3342 void *v) 3343 { 3344 /* 3345 * Some (well, at least mine) BIOSes hang on reboot if 3346 * in vmx root mode. 3347 * 3348 * And Intel TXT required VMX off for all cpu when system shutdown. 3349 */ 3350 pr_info("kvm: exiting hardware virtualization\n"); 3351 kvm_rebooting = true; 3352 on_each_cpu(hardware_disable_nolock, NULL, 1); 3353 return NOTIFY_OK; 3354 } 3355 3356 static struct notifier_block kvm_reboot_notifier = { 3357 .notifier_call = kvm_reboot, 3358 .priority = 0, 3359 }; 3360 3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3362 { 3363 int i; 3364 3365 for (i = 0; i < bus->dev_count; i++) { 3366 struct kvm_io_device *pos = bus->range[i].dev; 3367 3368 kvm_iodevice_destructor(pos); 3369 } 3370 kfree(bus); 3371 } 3372 3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3374 const struct kvm_io_range *r2) 3375 { 3376 gpa_t addr1 = r1->addr; 3377 gpa_t addr2 = r2->addr; 3378 3379 if (addr1 < addr2) 3380 return -1; 3381 3382 /* If r2->len == 0, match the exact address. If r2->len != 0, 3383 * accept any overlapping write. Any order is acceptable for 3384 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3385 * we process all of them. 3386 */ 3387 if (r2->len) { 3388 addr1 += r1->len; 3389 addr2 += r2->len; 3390 } 3391 3392 if (addr1 > addr2) 3393 return 1; 3394 3395 return 0; 3396 } 3397 3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3399 { 3400 return kvm_io_bus_cmp(p1, p2); 3401 } 3402 3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3404 gpa_t addr, int len) 3405 { 3406 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3407 .addr = addr, 3408 .len = len, 3409 .dev = dev, 3410 }; 3411 3412 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3413 kvm_io_bus_sort_cmp, NULL); 3414 3415 return 0; 3416 } 3417 3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3419 gpa_t addr, int len) 3420 { 3421 struct kvm_io_range *range, key; 3422 int off; 3423 3424 key = (struct kvm_io_range) { 3425 .addr = addr, 3426 .len = len, 3427 }; 3428 3429 range = bsearch(&key, bus->range, bus->dev_count, 3430 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3431 if (range == NULL) 3432 return -ENOENT; 3433 3434 off = range - bus->range; 3435 3436 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3437 off--; 3438 3439 return off; 3440 } 3441 3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3443 struct kvm_io_range *range, const void *val) 3444 { 3445 int idx; 3446 3447 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3448 if (idx < 0) 3449 return -EOPNOTSUPP; 3450 3451 while (idx < bus->dev_count && 3452 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3453 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3454 range->len, val)) 3455 return idx; 3456 idx++; 3457 } 3458 3459 return -EOPNOTSUPP; 3460 } 3461 3462 /* kvm_io_bus_write - called under kvm->slots_lock */ 3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3464 int len, const void *val) 3465 { 3466 struct kvm_io_bus *bus; 3467 struct kvm_io_range range; 3468 int r; 3469 3470 range = (struct kvm_io_range) { 3471 .addr = addr, 3472 .len = len, 3473 }; 3474 3475 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3476 if (!bus) 3477 return -ENOMEM; 3478 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3479 return r < 0 ? r : 0; 3480 } 3481 3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3484 gpa_t addr, int len, const void *val, long cookie) 3485 { 3486 struct kvm_io_bus *bus; 3487 struct kvm_io_range range; 3488 3489 range = (struct kvm_io_range) { 3490 .addr = addr, 3491 .len = len, 3492 }; 3493 3494 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3495 if (!bus) 3496 return -ENOMEM; 3497 3498 /* First try the device referenced by cookie. */ 3499 if ((cookie >= 0) && (cookie < bus->dev_count) && 3500 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3501 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3502 val)) 3503 return cookie; 3504 3505 /* 3506 * cookie contained garbage; fall back to search and return the 3507 * correct cookie value. 3508 */ 3509 return __kvm_io_bus_write(vcpu, bus, &range, val); 3510 } 3511 3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3513 struct kvm_io_range *range, void *val) 3514 { 3515 int idx; 3516 3517 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3518 if (idx < 0) 3519 return -EOPNOTSUPP; 3520 3521 while (idx < bus->dev_count && 3522 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3523 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3524 range->len, val)) 3525 return idx; 3526 idx++; 3527 } 3528 3529 return -EOPNOTSUPP; 3530 } 3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3532 3533 /* kvm_io_bus_read - called under kvm->slots_lock */ 3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3535 int len, void *val) 3536 { 3537 struct kvm_io_bus *bus; 3538 struct kvm_io_range range; 3539 int r; 3540 3541 range = (struct kvm_io_range) { 3542 .addr = addr, 3543 .len = len, 3544 }; 3545 3546 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3547 if (!bus) 3548 return -ENOMEM; 3549 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3550 return r < 0 ? r : 0; 3551 } 3552 3553 3554 /* Caller must hold slots_lock. */ 3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3556 int len, struct kvm_io_device *dev) 3557 { 3558 struct kvm_io_bus *new_bus, *bus; 3559 3560 bus = kvm->buses[bus_idx]; 3561 if (!bus) 3562 return -ENOMEM; 3563 3564 /* exclude ioeventfd which is limited by maximum fd */ 3565 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3566 return -ENOSPC; 3567 3568 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3569 sizeof(struct kvm_io_range)), GFP_KERNEL); 3570 if (!new_bus) 3571 return -ENOMEM; 3572 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3573 sizeof(struct kvm_io_range))); 3574 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3575 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3576 synchronize_srcu_expedited(&kvm->srcu); 3577 kfree(bus); 3578 3579 return 0; 3580 } 3581 3582 /* Caller must hold slots_lock. */ 3583 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3584 struct kvm_io_device *dev) 3585 { 3586 int i; 3587 struct kvm_io_bus *new_bus, *bus; 3588 3589 bus = kvm->buses[bus_idx]; 3590 if (!bus) 3591 return; 3592 3593 for (i = 0; i < bus->dev_count; i++) 3594 if (bus->range[i].dev == dev) { 3595 break; 3596 } 3597 3598 if (i == bus->dev_count) 3599 return; 3600 3601 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3602 sizeof(struct kvm_io_range)), GFP_KERNEL); 3603 if (!new_bus) { 3604 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3605 goto broken; 3606 } 3607 3608 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3609 new_bus->dev_count--; 3610 memcpy(new_bus->range + i, bus->range + i + 1, 3611 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3612 3613 broken: 3614 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3615 synchronize_srcu_expedited(&kvm->srcu); 3616 kfree(bus); 3617 return; 3618 } 3619 3620 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3621 gpa_t addr) 3622 { 3623 struct kvm_io_bus *bus; 3624 int dev_idx, srcu_idx; 3625 struct kvm_io_device *iodev = NULL; 3626 3627 srcu_idx = srcu_read_lock(&kvm->srcu); 3628 3629 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3630 if (!bus) 3631 goto out_unlock; 3632 3633 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3634 if (dev_idx < 0) 3635 goto out_unlock; 3636 3637 iodev = bus->range[dev_idx].dev; 3638 3639 out_unlock: 3640 srcu_read_unlock(&kvm->srcu, srcu_idx); 3641 3642 return iodev; 3643 } 3644 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3645 3646 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3647 int (*get)(void *, u64 *), int (*set)(void *, u64), 3648 const char *fmt) 3649 { 3650 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3651 inode->i_private; 3652 3653 /* The debugfs files are a reference to the kvm struct which 3654 * is still valid when kvm_destroy_vm is called. 3655 * To avoid the race between open and the removal of the debugfs 3656 * directory we test against the users count. 3657 */ 3658 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3659 return -ENOENT; 3660 3661 if (simple_attr_open(inode, file, get, set, fmt)) { 3662 kvm_put_kvm(stat_data->kvm); 3663 return -ENOMEM; 3664 } 3665 3666 return 0; 3667 } 3668 3669 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3670 { 3671 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3672 inode->i_private; 3673 3674 simple_attr_release(inode, file); 3675 kvm_put_kvm(stat_data->kvm); 3676 3677 return 0; 3678 } 3679 3680 static int vm_stat_get_per_vm(void *data, u64 *val) 3681 { 3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3683 3684 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3685 3686 return 0; 3687 } 3688 3689 static int vm_stat_clear_per_vm(void *data, u64 val) 3690 { 3691 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3692 3693 if (val) 3694 return -EINVAL; 3695 3696 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3697 3698 return 0; 3699 } 3700 3701 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3702 { 3703 __simple_attr_check_format("%llu\n", 0ull); 3704 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3705 vm_stat_clear_per_vm, "%llu\n"); 3706 } 3707 3708 static const struct file_operations vm_stat_get_per_vm_fops = { 3709 .owner = THIS_MODULE, 3710 .open = vm_stat_get_per_vm_open, 3711 .release = kvm_debugfs_release, 3712 .read = simple_attr_read, 3713 .write = simple_attr_write, 3714 .llseek = no_llseek, 3715 }; 3716 3717 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3718 { 3719 int i; 3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3721 struct kvm_vcpu *vcpu; 3722 3723 *val = 0; 3724 3725 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3726 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3727 3728 return 0; 3729 } 3730 3731 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3732 { 3733 int i; 3734 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3735 struct kvm_vcpu *vcpu; 3736 3737 if (val) 3738 return -EINVAL; 3739 3740 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3741 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3742 3743 return 0; 3744 } 3745 3746 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3747 { 3748 __simple_attr_check_format("%llu\n", 0ull); 3749 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3750 vcpu_stat_clear_per_vm, "%llu\n"); 3751 } 3752 3753 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3754 .owner = THIS_MODULE, 3755 .open = vcpu_stat_get_per_vm_open, 3756 .release = kvm_debugfs_release, 3757 .read = simple_attr_read, 3758 .write = simple_attr_write, 3759 .llseek = no_llseek, 3760 }; 3761 3762 static const struct file_operations *stat_fops_per_vm[] = { 3763 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3764 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3765 }; 3766 3767 static int vm_stat_get(void *_offset, u64 *val) 3768 { 3769 unsigned offset = (long)_offset; 3770 struct kvm *kvm; 3771 struct kvm_stat_data stat_tmp = {.offset = offset}; 3772 u64 tmp_val; 3773 3774 *val = 0; 3775 spin_lock(&kvm_lock); 3776 list_for_each_entry(kvm, &vm_list, vm_list) { 3777 stat_tmp.kvm = kvm; 3778 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3779 *val += tmp_val; 3780 } 3781 spin_unlock(&kvm_lock); 3782 return 0; 3783 } 3784 3785 static int vm_stat_clear(void *_offset, u64 val) 3786 { 3787 unsigned offset = (long)_offset; 3788 struct kvm *kvm; 3789 struct kvm_stat_data stat_tmp = {.offset = offset}; 3790 3791 if (val) 3792 return -EINVAL; 3793 3794 spin_lock(&kvm_lock); 3795 list_for_each_entry(kvm, &vm_list, vm_list) { 3796 stat_tmp.kvm = kvm; 3797 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3798 } 3799 spin_unlock(&kvm_lock); 3800 3801 return 0; 3802 } 3803 3804 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3805 3806 static int vcpu_stat_get(void *_offset, u64 *val) 3807 { 3808 unsigned offset = (long)_offset; 3809 struct kvm *kvm; 3810 struct kvm_stat_data stat_tmp = {.offset = offset}; 3811 u64 tmp_val; 3812 3813 *val = 0; 3814 spin_lock(&kvm_lock); 3815 list_for_each_entry(kvm, &vm_list, vm_list) { 3816 stat_tmp.kvm = kvm; 3817 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3818 *val += tmp_val; 3819 } 3820 spin_unlock(&kvm_lock); 3821 return 0; 3822 } 3823 3824 static int vcpu_stat_clear(void *_offset, u64 val) 3825 { 3826 unsigned offset = (long)_offset; 3827 struct kvm *kvm; 3828 struct kvm_stat_data stat_tmp = {.offset = offset}; 3829 3830 if (val) 3831 return -EINVAL; 3832 3833 spin_lock(&kvm_lock); 3834 list_for_each_entry(kvm, &vm_list, vm_list) { 3835 stat_tmp.kvm = kvm; 3836 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3837 } 3838 spin_unlock(&kvm_lock); 3839 3840 return 0; 3841 } 3842 3843 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3844 "%llu\n"); 3845 3846 static const struct file_operations *stat_fops[] = { 3847 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3848 [KVM_STAT_VM] = &vm_stat_fops, 3849 }; 3850 3851 static int kvm_init_debug(void) 3852 { 3853 int r = -EEXIST; 3854 struct kvm_stats_debugfs_item *p; 3855 3856 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3857 if (kvm_debugfs_dir == NULL) 3858 goto out; 3859 3860 kvm_debugfs_num_entries = 0; 3861 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3862 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3863 (void *)(long)p->offset, 3864 stat_fops[p->kind])) 3865 goto out_dir; 3866 } 3867 3868 return 0; 3869 3870 out_dir: 3871 debugfs_remove_recursive(kvm_debugfs_dir); 3872 out: 3873 return r; 3874 } 3875 3876 static int kvm_suspend(void) 3877 { 3878 if (kvm_usage_count) 3879 hardware_disable_nolock(NULL); 3880 return 0; 3881 } 3882 3883 static void kvm_resume(void) 3884 { 3885 if (kvm_usage_count) { 3886 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3887 hardware_enable_nolock(NULL); 3888 } 3889 } 3890 3891 static struct syscore_ops kvm_syscore_ops = { 3892 .suspend = kvm_suspend, 3893 .resume = kvm_resume, 3894 }; 3895 3896 static inline 3897 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3898 { 3899 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3900 } 3901 3902 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3903 { 3904 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3905 3906 if (vcpu->preempted) 3907 vcpu->preempted = false; 3908 3909 kvm_arch_sched_in(vcpu, cpu); 3910 3911 kvm_arch_vcpu_load(vcpu, cpu); 3912 } 3913 3914 static void kvm_sched_out(struct preempt_notifier *pn, 3915 struct task_struct *next) 3916 { 3917 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3918 3919 if (current->state == TASK_RUNNING) 3920 vcpu->preempted = true; 3921 kvm_arch_vcpu_put(vcpu); 3922 } 3923 3924 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3925 struct module *module) 3926 { 3927 int r; 3928 int cpu; 3929 3930 r = kvm_arch_init(opaque); 3931 if (r) 3932 goto out_fail; 3933 3934 /* 3935 * kvm_arch_init makes sure there's at most one caller 3936 * for architectures that support multiple implementations, 3937 * like intel and amd on x86. 3938 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3939 * conflicts in case kvm is already setup for another implementation. 3940 */ 3941 r = kvm_irqfd_init(); 3942 if (r) 3943 goto out_irqfd; 3944 3945 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3946 r = -ENOMEM; 3947 goto out_free_0; 3948 } 3949 3950 r = kvm_arch_hardware_setup(); 3951 if (r < 0) 3952 goto out_free_0a; 3953 3954 for_each_online_cpu(cpu) { 3955 smp_call_function_single(cpu, 3956 kvm_arch_check_processor_compat, 3957 &r, 1); 3958 if (r < 0) 3959 goto out_free_1; 3960 } 3961 3962 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 3963 kvm_starting_cpu, kvm_dying_cpu); 3964 if (r) 3965 goto out_free_2; 3966 register_reboot_notifier(&kvm_reboot_notifier); 3967 3968 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3969 if (!vcpu_align) 3970 vcpu_align = __alignof__(struct kvm_vcpu); 3971 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3972 0, NULL); 3973 if (!kvm_vcpu_cache) { 3974 r = -ENOMEM; 3975 goto out_free_3; 3976 } 3977 3978 r = kvm_async_pf_init(); 3979 if (r) 3980 goto out_free; 3981 3982 kvm_chardev_ops.owner = module; 3983 kvm_vm_fops.owner = module; 3984 kvm_vcpu_fops.owner = module; 3985 3986 r = misc_register(&kvm_dev); 3987 if (r) { 3988 pr_err("kvm: misc device register failed\n"); 3989 goto out_unreg; 3990 } 3991 3992 register_syscore_ops(&kvm_syscore_ops); 3993 3994 kvm_preempt_ops.sched_in = kvm_sched_in; 3995 kvm_preempt_ops.sched_out = kvm_sched_out; 3996 3997 r = kvm_init_debug(); 3998 if (r) { 3999 pr_err("kvm: create debugfs files failed\n"); 4000 goto out_undebugfs; 4001 } 4002 4003 r = kvm_vfio_ops_init(); 4004 WARN_ON(r); 4005 4006 return 0; 4007 4008 out_undebugfs: 4009 unregister_syscore_ops(&kvm_syscore_ops); 4010 misc_deregister(&kvm_dev); 4011 out_unreg: 4012 kvm_async_pf_deinit(); 4013 out_free: 4014 kmem_cache_destroy(kvm_vcpu_cache); 4015 out_free_3: 4016 unregister_reboot_notifier(&kvm_reboot_notifier); 4017 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4018 out_free_2: 4019 out_free_1: 4020 kvm_arch_hardware_unsetup(); 4021 out_free_0a: 4022 free_cpumask_var(cpus_hardware_enabled); 4023 out_free_0: 4024 kvm_irqfd_exit(); 4025 out_irqfd: 4026 kvm_arch_exit(); 4027 out_fail: 4028 return r; 4029 } 4030 EXPORT_SYMBOL_GPL(kvm_init); 4031 4032 void kvm_exit(void) 4033 { 4034 debugfs_remove_recursive(kvm_debugfs_dir); 4035 misc_deregister(&kvm_dev); 4036 kmem_cache_destroy(kvm_vcpu_cache); 4037 kvm_async_pf_deinit(); 4038 unregister_syscore_ops(&kvm_syscore_ops); 4039 unregister_reboot_notifier(&kvm_reboot_notifier); 4040 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4041 on_each_cpu(hardware_disable_nolock, NULL, 1); 4042 kvm_arch_hardware_unsetup(); 4043 kvm_arch_exit(); 4044 kvm_irqfd_exit(); 4045 free_cpumask_var(cpus_hardware_enabled); 4046 kvm_vfio_ops_exit(); 4047 } 4048 EXPORT_SYMBOL_GPL(kvm_exit); 4049