xref: /openbmc/linux/virt/kvm/kvm_main.c (revision f7d84fa7)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135 	if (pfn_valid(pfn))
136 		return PageReserved(pfn_to_page(pfn));
137 
138 	return true;
139 }
140 
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146 	int cpu;
147 
148 	if (mutex_lock_killable(&vcpu->mutex))
149 		return -EINTR;
150 	cpu = get_cpu();
151 	preempt_notifier_register(&vcpu->preempt_notifier);
152 	kvm_arch_vcpu_load(vcpu, cpu);
153 	put_cpu();
154 	return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157 
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160 	preempt_disable();
161 	kvm_arch_vcpu_put(vcpu);
162 	preempt_notifier_unregister(&vcpu->preempt_notifier);
163 	preempt_enable();
164 	mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167 
168 /* TODO: merge with kvm_arch_vcpu_should_kick */
169 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
170 {
171 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
172 
173 	/*
174 	 * We need to wait for the VCPU to reenable interrupts and get out of
175 	 * READING_SHADOW_PAGE_TABLES mode.
176 	 */
177 	if (req & KVM_REQUEST_WAIT)
178 		return mode != OUTSIDE_GUEST_MODE;
179 
180 	/*
181 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
182 	 */
183 	return mode == IN_GUEST_MODE;
184 }
185 
186 static void ack_flush(void *_completed)
187 {
188 }
189 
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
191 {
192 	int i, cpu, me;
193 	cpumask_var_t cpus;
194 	bool called = true;
195 	bool wait = req & KVM_REQUEST_WAIT;
196 	struct kvm_vcpu *vcpu;
197 
198 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
199 
200 	me = get_cpu();
201 	kvm_for_each_vcpu(i, vcpu, kvm) {
202 		kvm_make_request(req, vcpu);
203 		cpu = vcpu->cpu;
204 
205 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
206 			continue;
207 
208 		if (cpus != NULL && cpu != -1 && cpu != me &&
209 		    kvm_request_needs_ipi(vcpu, req))
210 			cpumask_set_cpu(cpu, cpus);
211 	}
212 	if (unlikely(cpus == NULL))
213 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, wait);
214 	else if (!cpumask_empty(cpus))
215 		smp_call_function_many(cpus, ack_flush, NULL, wait);
216 	else
217 		called = false;
218 	put_cpu();
219 	free_cpumask_var(cpus);
220 	return called;
221 }
222 
223 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
224 void kvm_flush_remote_tlbs(struct kvm *kvm)
225 {
226 	/*
227 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
228 	 * kvm_make_all_cpus_request.
229 	 */
230 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
231 
232 	/*
233 	 * We want to publish modifications to the page tables before reading
234 	 * mode. Pairs with a memory barrier in arch-specific code.
235 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
236 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
237 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
238 	 *
239 	 * There is already an smp_mb__after_atomic() before
240 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
241 	 * barrier here.
242 	 */
243 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
244 		++kvm->stat.remote_tlb_flush;
245 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
246 }
247 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
248 #endif
249 
250 void kvm_reload_remote_mmus(struct kvm *kvm)
251 {
252 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
253 }
254 
255 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
256 {
257 	struct page *page;
258 	int r;
259 
260 	mutex_init(&vcpu->mutex);
261 	vcpu->cpu = -1;
262 	vcpu->kvm = kvm;
263 	vcpu->vcpu_id = id;
264 	vcpu->pid = NULL;
265 	init_swait_queue_head(&vcpu->wq);
266 	kvm_async_pf_vcpu_init(vcpu);
267 
268 	vcpu->pre_pcpu = -1;
269 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
270 
271 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
272 	if (!page) {
273 		r = -ENOMEM;
274 		goto fail;
275 	}
276 	vcpu->run = page_address(page);
277 
278 	kvm_vcpu_set_in_spin_loop(vcpu, false);
279 	kvm_vcpu_set_dy_eligible(vcpu, false);
280 	vcpu->preempted = false;
281 
282 	r = kvm_arch_vcpu_init(vcpu);
283 	if (r < 0)
284 		goto fail_free_run;
285 	return 0;
286 
287 fail_free_run:
288 	free_page((unsigned long)vcpu->run);
289 fail:
290 	return r;
291 }
292 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
293 
294 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
295 {
296 	put_pid(vcpu->pid);
297 	kvm_arch_vcpu_uninit(vcpu);
298 	free_page((unsigned long)vcpu->run);
299 }
300 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
301 
302 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
303 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
304 {
305 	return container_of(mn, struct kvm, mmu_notifier);
306 }
307 
308 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
309 					     struct mm_struct *mm,
310 					     unsigned long address)
311 {
312 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 	int need_tlb_flush, idx;
314 
315 	/*
316 	 * When ->invalidate_page runs, the linux pte has been zapped
317 	 * already but the page is still allocated until
318 	 * ->invalidate_page returns. So if we increase the sequence
319 	 * here the kvm page fault will notice if the spte can't be
320 	 * established because the page is going to be freed. If
321 	 * instead the kvm page fault establishes the spte before
322 	 * ->invalidate_page runs, kvm_unmap_hva will release it
323 	 * before returning.
324 	 *
325 	 * The sequence increase only need to be seen at spin_unlock
326 	 * time, and not at spin_lock time.
327 	 *
328 	 * Increasing the sequence after the spin_unlock would be
329 	 * unsafe because the kvm page fault could then establish the
330 	 * pte after kvm_unmap_hva returned, without noticing the page
331 	 * is going to be freed.
332 	 */
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 
336 	kvm->mmu_notifier_seq++;
337 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
338 	/* we've to flush the tlb before the pages can be freed */
339 	if (need_tlb_flush)
340 		kvm_flush_remote_tlbs(kvm);
341 
342 	spin_unlock(&kvm->mmu_lock);
343 
344 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
345 
346 	srcu_read_unlock(&kvm->srcu, idx);
347 }
348 
349 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
350 					struct mm_struct *mm,
351 					unsigned long address,
352 					pte_t pte)
353 {
354 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
355 	int idx;
356 
357 	idx = srcu_read_lock(&kvm->srcu);
358 	spin_lock(&kvm->mmu_lock);
359 	kvm->mmu_notifier_seq++;
360 	kvm_set_spte_hva(kvm, address, pte);
361 	spin_unlock(&kvm->mmu_lock);
362 	srcu_read_unlock(&kvm->srcu, idx);
363 }
364 
365 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 						    struct mm_struct *mm,
367 						    unsigned long start,
368 						    unsigned long end)
369 {
370 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 	int need_tlb_flush = 0, idx;
372 
373 	idx = srcu_read_lock(&kvm->srcu);
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * The count increase must become visible at unlock time as no
377 	 * spte can be established without taking the mmu_lock and
378 	 * count is also read inside the mmu_lock critical section.
379 	 */
380 	kvm->mmu_notifier_count++;
381 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
382 	need_tlb_flush |= kvm->tlbs_dirty;
383 	/* we've to flush the tlb before the pages can be freed */
384 	if (need_tlb_flush)
385 		kvm_flush_remote_tlbs(kvm);
386 
387 	spin_unlock(&kvm->mmu_lock);
388 	srcu_read_unlock(&kvm->srcu, idx);
389 }
390 
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392 						  struct mm_struct *mm,
393 						  unsigned long start,
394 						  unsigned long end)
395 {
396 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 
398 	spin_lock(&kvm->mmu_lock);
399 	/*
400 	 * This sequence increase will notify the kvm page fault that
401 	 * the page that is going to be mapped in the spte could have
402 	 * been freed.
403 	 */
404 	kvm->mmu_notifier_seq++;
405 	smp_wmb();
406 	/*
407 	 * The above sequence increase must be visible before the
408 	 * below count decrease, which is ensured by the smp_wmb above
409 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
410 	 */
411 	kvm->mmu_notifier_count--;
412 	spin_unlock(&kvm->mmu_lock);
413 
414 	BUG_ON(kvm->mmu_notifier_count < 0);
415 }
416 
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418 					      struct mm_struct *mm,
419 					      unsigned long start,
420 					      unsigned long end)
421 {
422 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 	int young, idx;
424 
425 	idx = srcu_read_lock(&kvm->srcu);
426 	spin_lock(&kvm->mmu_lock);
427 
428 	young = kvm_age_hva(kvm, start, end);
429 	if (young)
430 		kvm_flush_remote_tlbs(kvm);
431 
432 	spin_unlock(&kvm->mmu_lock);
433 	srcu_read_unlock(&kvm->srcu, idx);
434 
435 	return young;
436 }
437 
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439 					struct mm_struct *mm,
440 					unsigned long start,
441 					unsigned long end)
442 {
443 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
444 	int young, idx;
445 
446 	idx = srcu_read_lock(&kvm->srcu);
447 	spin_lock(&kvm->mmu_lock);
448 	/*
449 	 * Even though we do not flush TLB, this will still adversely
450 	 * affect performance on pre-Haswell Intel EPT, where there is
451 	 * no EPT Access Bit to clear so that we have to tear down EPT
452 	 * tables instead. If we find this unacceptable, we can always
453 	 * add a parameter to kvm_age_hva so that it effectively doesn't
454 	 * do anything on clear_young.
455 	 *
456 	 * Also note that currently we never issue secondary TLB flushes
457 	 * from clear_young, leaving this job up to the regular system
458 	 * cadence. If we find this inaccurate, we might come up with a
459 	 * more sophisticated heuristic later.
460 	 */
461 	young = kvm_age_hva(kvm, start, end);
462 	spin_unlock(&kvm->mmu_lock);
463 	srcu_read_unlock(&kvm->srcu, idx);
464 
465 	return young;
466 }
467 
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469 				       struct mm_struct *mm,
470 				       unsigned long address)
471 {
472 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 	int young, idx;
474 
475 	idx = srcu_read_lock(&kvm->srcu);
476 	spin_lock(&kvm->mmu_lock);
477 	young = kvm_test_age_hva(kvm, address);
478 	spin_unlock(&kvm->mmu_lock);
479 	srcu_read_unlock(&kvm->srcu, idx);
480 
481 	return young;
482 }
483 
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485 				     struct mm_struct *mm)
486 {
487 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
488 	int idx;
489 
490 	idx = srcu_read_lock(&kvm->srcu);
491 	kvm_arch_flush_shadow_all(kvm);
492 	srcu_read_unlock(&kvm->srcu, idx);
493 }
494 
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
497 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
498 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
499 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
500 	.clear_young		= kvm_mmu_notifier_clear_young,
501 	.test_young		= kvm_mmu_notifier_test_young,
502 	.change_pte		= kvm_mmu_notifier_change_pte,
503 	.release		= kvm_mmu_notifier_release,
504 };
505 
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
507 {
508 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
510 }
511 
512 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
513 
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516 	return 0;
517 }
518 
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
520 
521 static struct kvm_memslots *kvm_alloc_memslots(void)
522 {
523 	int i;
524 	struct kvm_memslots *slots;
525 
526 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
527 	if (!slots)
528 		return NULL;
529 
530 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531 		slots->id_to_index[i] = slots->memslots[i].id = i;
532 
533 	return slots;
534 }
535 
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538 	if (!memslot->dirty_bitmap)
539 		return;
540 
541 	kvfree(memslot->dirty_bitmap);
542 	memslot->dirty_bitmap = NULL;
543 }
544 
545 /*
546  * Free any memory in @free but not in @dont.
547  */
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549 			      struct kvm_memory_slot *dont)
550 {
551 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 		kvm_destroy_dirty_bitmap(free);
553 
554 	kvm_arch_free_memslot(kvm, free, dont);
555 
556 	free->npages = 0;
557 }
558 
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
560 {
561 	struct kvm_memory_slot *memslot;
562 
563 	if (!slots)
564 		return;
565 
566 	kvm_for_each_memslot(memslot, slots)
567 		kvm_free_memslot(kvm, memslot, NULL);
568 
569 	kvfree(slots);
570 }
571 
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
573 {
574 	int i;
575 
576 	if (!kvm->debugfs_dentry)
577 		return;
578 
579 	debugfs_remove_recursive(kvm->debugfs_dentry);
580 
581 	if (kvm->debugfs_stat_data) {
582 		for (i = 0; i < kvm_debugfs_num_entries; i++)
583 			kfree(kvm->debugfs_stat_data[i]);
584 		kfree(kvm->debugfs_stat_data);
585 	}
586 }
587 
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
589 {
590 	char dir_name[ITOA_MAX_LEN * 2];
591 	struct kvm_stat_data *stat_data;
592 	struct kvm_stats_debugfs_item *p;
593 
594 	if (!debugfs_initialized())
595 		return 0;
596 
597 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
599 						 kvm_debugfs_dir);
600 	if (!kvm->debugfs_dentry)
601 		return -ENOMEM;
602 
603 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 					 sizeof(*kvm->debugfs_stat_data),
605 					 GFP_KERNEL);
606 	if (!kvm->debugfs_stat_data)
607 		return -ENOMEM;
608 
609 	for (p = debugfs_entries; p->name; p++) {
610 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611 		if (!stat_data)
612 			return -ENOMEM;
613 
614 		stat_data->kvm = kvm;
615 		stat_data->offset = p->offset;
616 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617 		if (!debugfs_create_file(p->name, 0644,
618 					 kvm->debugfs_dentry,
619 					 stat_data,
620 					 stat_fops_per_vm[p->kind]))
621 			return -ENOMEM;
622 	}
623 	return 0;
624 }
625 
626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628 	int r, i;
629 	struct kvm *kvm = kvm_arch_alloc_vm();
630 
631 	if (!kvm)
632 		return ERR_PTR(-ENOMEM);
633 
634 	spin_lock_init(&kvm->mmu_lock);
635 	mmgrab(current->mm);
636 	kvm->mm = current->mm;
637 	kvm_eventfd_init(kvm);
638 	mutex_init(&kvm->lock);
639 	mutex_init(&kvm->irq_lock);
640 	mutex_init(&kvm->slots_lock);
641 	refcount_set(&kvm->users_count, 1);
642 	INIT_LIST_HEAD(&kvm->devices);
643 
644 	r = kvm_arch_init_vm(kvm, type);
645 	if (r)
646 		goto out_err_no_disable;
647 
648 	r = hardware_enable_all();
649 	if (r)
650 		goto out_err_no_disable;
651 
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655 
656 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657 
658 	r = -ENOMEM;
659 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 		struct kvm_memslots *slots = kvm_alloc_memslots();
661 		if (!slots)
662 			goto out_err_no_srcu;
663 		/*
664 		 * Generations must be different for each address space.
665 		 * Init kvm generation close to the maximum to easily test the
666 		 * code of handling generation number wrap-around.
667 		 */
668 		slots->generation = i * 2 - 150;
669 		rcu_assign_pointer(kvm->memslots[i], slots);
670 	}
671 
672 	if (init_srcu_struct(&kvm->srcu))
673 		goto out_err_no_srcu;
674 	if (init_srcu_struct(&kvm->irq_srcu))
675 		goto out_err_no_irq_srcu;
676 	for (i = 0; i < KVM_NR_BUSES; i++) {
677 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
678 					GFP_KERNEL);
679 		if (!kvm->buses[i])
680 			goto out_err;
681 	}
682 
683 	r = kvm_init_mmu_notifier(kvm);
684 	if (r)
685 		goto out_err;
686 
687 	spin_lock(&kvm_lock);
688 	list_add(&kvm->vm_list, &vm_list);
689 	spin_unlock(&kvm_lock);
690 
691 	preempt_notifier_inc();
692 
693 	return kvm;
694 
695 out_err:
696 	cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698 	cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700 	hardware_disable_all();
701 out_err_no_disable:
702 	for (i = 0; i < KVM_NR_BUSES; i++)
703 		kfree(kvm->buses[i]);
704 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705 		kvm_free_memslots(kvm, kvm->memslots[i]);
706 	kvm_arch_free_vm(kvm);
707 	mmdrop(current->mm);
708 	return ERR_PTR(r);
709 }
710 
711 static void kvm_destroy_devices(struct kvm *kvm)
712 {
713 	struct kvm_device *dev, *tmp;
714 
715 	/*
716 	 * We do not need to take the kvm->lock here, because nobody else
717 	 * has a reference to the struct kvm at this point and therefore
718 	 * cannot access the devices list anyhow.
719 	 */
720 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
721 		list_del(&dev->vm_node);
722 		dev->ops->destroy(dev);
723 	}
724 }
725 
726 static void kvm_destroy_vm(struct kvm *kvm)
727 {
728 	int i;
729 	struct mm_struct *mm = kvm->mm;
730 
731 	kvm_destroy_vm_debugfs(kvm);
732 	kvm_arch_sync_events(kvm);
733 	spin_lock(&kvm_lock);
734 	list_del(&kvm->vm_list);
735 	spin_unlock(&kvm_lock);
736 	kvm_free_irq_routing(kvm);
737 	for (i = 0; i < KVM_NR_BUSES; i++) {
738 		if (kvm->buses[i])
739 			kvm_io_bus_destroy(kvm->buses[i]);
740 		kvm->buses[i] = NULL;
741 	}
742 	kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 	kvm_arch_flush_shadow_all(kvm);
747 #endif
748 	kvm_arch_destroy_vm(kvm);
749 	kvm_destroy_devices(kvm);
750 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 		kvm_free_memslots(kvm, kvm->memslots[i]);
752 	cleanup_srcu_struct(&kvm->irq_srcu);
753 	cleanup_srcu_struct(&kvm->srcu);
754 	kvm_arch_free_vm(kvm);
755 	preempt_notifier_dec();
756 	hardware_disable_all();
757 	mmdrop(mm);
758 }
759 
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 	refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765 
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 	if (refcount_dec_and_test(&kvm->users_count))
769 		kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772 
773 
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 	struct kvm *kvm = filp->private_data;
777 
778 	kvm_irqfd_release(kvm);
779 
780 	kvm_put_kvm(kvm);
781 	return 0;
782 }
783 
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791 
792 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 	if (!memslot->dirty_bitmap)
794 		return -ENOMEM;
795 
796 	return 0;
797 }
798 
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806 			    struct kvm_memory_slot *new)
807 {
808 	int id = new->id;
809 	int i = slots->id_to_index[id];
810 	struct kvm_memory_slot *mslots = slots->memslots;
811 
812 	WARN_ON(mslots[i].id != id);
813 	if (!new->npages) {
814 		WARN_ON(!mslots[i].npages);
815 		if (mslots[i].npages)
816 			slots->used_slots--;
817 	} else {
818 		if (!mslots[i].npages)
819 			slots->used_slots++;
820 	}
821 
822 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
823 	       new->base_gfn <= mslots[i + 1].base_gfn) {
824 		if (!mslots[i + 1].npages)
825 			break;
826 		mslots[i] = mslots[i + 1];
827 		slots->id_to_index[mslots[i].id] = i;
828 		i++;
829 	}
830 
831 	/*
832 	 * The ">=" is needed when creating a slot with base_gfn == 0,
833 	 * so that it moves before all those with base_gfn == npages == 0.
834 	 *
835 	 * On the other hand, if new->npages is zero, the above loop has
836 	 * already left i pointing to the beginning of the empty part of
837 	 * mslots, and the ">=" would move the hole backwards in this
838 	 * case---which is wrong.  So skip the loop when deleting a slot.
839 	 */
840 	if (new->npages) {
841 		while (i > 0 &&
842 		       new->base_gfn >= mslots[i - 1].base_gfn) {
843 			mslots[i] = mslots[i - 1];
844 			slots->id_to_index[mslots[i].id] = i;
845 			i--;
846 		}
847 	} else
848 		WARN_ON_ONCE(i != slots->used_slots);
849 
850 	mslots[i] = *new;
851 	slots->id_to_index[mslots[i].id] = i;
852 }
853 
854 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
855 {
856 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
857 
858 #ifdef __KVM_HAVE_READONLY_MEM
859 	valid_flags |= KVM_MEM_READONLY;
860 #endif
861 
862 	if (mem->flags & ~valid_flags)
863 		return -EINVAL;
864 
865 	return 0;
866 }
867 
868 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
869 		int as_id, struct kvm_memslots *slots)
870 {
871 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
872 
873 	/*
874 	 * Set the low bit in the generation, which disables SPTE caching
875 	 * until the end of synchronize_srcu_expedited.
876 	 */
877 	WARN_ON(old_memslots->generation & 1);
878 	slots->generation = old_memslots->generation + 1;
879 
880 	rcu_assign_pointer(kvm->memslots[as_id], slots);
881 	synchronize_srcu_expedited(&kvm->srcu);
882 
883 	/*
884 	 * Increment the new memslot generation a second time. This prevents
885 	 * vm exits that race with memslot updates from caching a memslot
886 	 * generation that will (potentially) be valid forever.
887 	 *
888 	 * Generations must be unique even across address spaces.  We do not need
889 	 * a global counter for that, instead the generation space is evenly split
890 	 * across address spaces.  For example, with two address spaces, address
891 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
892 	 * use generations 2, 6, 10, 14, ...
893 	 */
894 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
895 
896 	kvm_arch_memslots_updated(kvm, slots);
897 
898 	return old_memslots;
899 }
900 
901 /*
902  * Allocate some memory and give it an address in the guest physical address
903  * space.
904  *
905  * Discontiguous memory is allowed, mostly for framebuffers.
906  *
907  * Must be called holding kvm->slots_lock for write.
908  */
909 int __kvm_set_memory_region(struct kvm *kvm,
910 			    const struct kvm_userspace_memory_region *mem)
911 {
912 	int r;
913 	gfn_t base_gfn;
914 	unsigned long npages;
915 	struct kvm_memory_slot *slot;
916 	struct kvm_memory_slot old, new;
917 	struct kvm_memslots *slots = NULL, *old_memslots;
918 	int as_id, id;
919 	enum kvm_mr_change change;
920 
921 	r = check_memory_region_flags(mem);
922 	if (r)
923 		goto out;
924 
925 	r = -EINVAL;
926 	as_id = mem->slot >> 16;
927 	id = (u16)mem->slot;
928 
929 	/* General sanity checks */
930 	if (mem->memory_size & (PAGE_SIZE - 1))
931 		goto out;
932 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
933 		goto out;
934 	/* We can read the guest memory with __xxx_user() later on. */
935 	if ((id < KVM_USER_MEM_SLOTS) &&
936 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
937 	     !access_ok(VERIFY_WRITE,
938 			(void __user *)(unsigned long)mem->userspace_addr,
939 			mem->memory_size)))
940 		goto out;
941 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
942 		goto out;
943 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
944 		goto out;
945 
946 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
947 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
948 	npages = mem->memory_size >> PAGE_SHIFT;
949 
950 	if (npages > KVM_MEM_MAX_NR_PAGES)
951 		goto out;
952 
953 	new = old = *slot;
954 
955 	new.id = id;
956 	new.base_gfn = base_gfn;
957 	new.npages = npages;
958 	new.flags = mem->flags;
959 
960 	if (npages) {
961 		if (!old.npages)
962 			change = KVM_MR_CREATE;
963 		else { /* Modify an existing slot. */
964 			if ((mem->userspace_addr != old.userspace_addr) ||
965 			    (npages != old.npages) ||
966 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
967 				goto out;
968 
969 			if (base_gfn != old.base_gfn)
970 				change = KVM_MR_MOVE;
971 			else if (new.flags != old.flags)
972 				change = KVM_MR_FLAGS_ONLY;
973 			else { /* Nothing to change. */
974 				r = 0;
975 				goto out;
976 			}
977 		}
978 	} else {
979 		if (!old.npages)
980 			goto out;
981 
982 		change = KVM_MR_DELETE;
983 		new.base_gfn = 0;
984 		new.flags = 0;
985 	}
986 
987 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
988 		/* Check for overlaps */
989 		r = -EEXIST;
990 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
991 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
992 			    (slot->id == id))
993 				continue;
994 			if (!((base_gfn + npages <= slot->base_gfn) ||
995 			      (base_gfn >= slot->base_gfn + slot->npages)))
996 				goto out;
997 		}
998 	}
999 
1000 	/* Free page dirty bitmap if unneeded */
1001 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1002 		new.dirty_bitmap = NULL;
1003 
1004 	r = -ENOMEM;
1005 	if (change == KVM_MR_CREATE) {
1006 		new.userspace_addr = mem->userspace_addr;
1007 
1008 		if (kvm_arch_create_memslot(kvm, &new, npages))
1009 			goto out_free;
1010 	}
1011 
1012 	/* Allocate page dirty bitmap if needed */
1013 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1014 		if (kvm_create_dirty_bitmap(&new) < 0)
1015 			goto out_free;
1016 	}
1017 
1018 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1019 	if (!slots)
1020 		goto out_free;
1021 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1022 
1023 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1024 		slot = id_to_memslot(slots, id);
1025 		slot->flags |= KVM_MEMSLOT_INVALID;
1026 
1027 		old_memslots = install_new_memslots(kvm, as_id, slots);
1028 
1029 		/* From this point no new shadow pages pointing to a deleted,
1030 		 * or moved, memslot will be created.
1031 		 *
1032 		 * validation of sp->gfn happens in:
1033 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1034 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1035 		 */
1036 		kvm_arch_flush_shadow_memslot(kvm, slot);
1037 
1038 		/*
1039 		 * We can re-use the old_memslots from above, the only difference
1040 		 * from the currently installed memslots is the invalid flag.  This
1041 		 * will get overwritten by update_memslots anyway.
1042 		 */
1043 		slots = old_memslots;
1044 	}
1045 
1046 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1047 	if (r)
1048 		goto out_slots;
1049 
1050 	/* actual memory is freed via old in kvm_free_memslot below */
1051 	if (change == KVM_MR_DELETE) {
1052 		new.dirty_bitmap = NULL;
1053 		memset(&new.arch, 0, sizeof(new.arch));
1054 	}
1055 
1056 	update_memslots(slots, &new);
1057 	old_memslots = install_new_memslots(kvm, as_id, slots);
1058 
1059 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1060 
1061 	kvm_free_memslot(kvm, &old, &new);
1062 	kvfree(old_memslots);
1063 	return 0;
1064 
1065 out_slots:
1066 	kvfree(slots);
1067 out_free:
1068 	kvm_free_memslot(kvm, &new, &old);
1069 out:
1070 	return r;
1071 }
1072 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1073 
1074 int kvm_set_memory_region(struct kvm *kvm,
1075 			  const struct kvm_userspace_memory_region *mem)
1076 {
1077 	int r;
1078 
1079 	mutex_lock(&kvm->slots_lock);
1080 	r = __kvm_set_memory_region(kvm, mem);
1081 	mutex_unlock(&kvm->slots_lock);
1082 	return r;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1085 
1086 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1087 					  struct kvm_userspace_memory_region *mem)
1088 {
1089 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1090 		return -EINVAL;
1091 
1092 	return kvm_set_memory_region(kvm, mem);
1093 }
1094 
1095 int kvm_get_dirty_log(struct kvm *kvm,
1096 			struct kvm_dirty_log *log, int *is_dirty)
1097 {
1098 	struct kvm_memslots *slots;
1099 	struct kvm_memory_slot *memslot;
1100 	int i, as_id, id;
1101 	unsigned long n;
1102 	unsigned long any = 0;
1103 
1104 	as_id = log->slot >> 16;
1105 	id = (u16)log->slot;
1106 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1107 		return -EINVAL;
1108 
1109 	slots = __kvm_memslots(kvm, as_id);
1110 	memslot = id_to_memslot(slots, id);
1111 	if (!memslot->dirty_bitmap)
1112 		return -ENOENT;
1113 
1114 	n = kvm_dirty_bitmap_bytes(memslot);
1115 
1116 	for (i = 0; !any && i < n/sizeof(long); ++i)
1117 		any = memslot->dirty_bitmap[i];
1118 
1119 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120 		return -EFAULT;
1121 
1122 	if (any)
1123 		*is_dirty = 1;
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127 
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131  *	are dirty write protect them for next write.
1132  * @kvm:	pointer to kvm instance
1133  * @log:	slot id and address to which we copy the log
1134  * @is_dirty:	flag set if any page is dirty
1135  *
1136  * We need to keep it in mind that VCPU threads can write to the bitmap
1137  * concurrently. So, to avoid losing track of dirty pages we keep the
1138  * following order:
1139  *
1140  *    1. Take a snapshot of the bit and clear it if needed.
1141  *    2. Write protect the corresponding page.
1142  *    3. Copy the snapshot to the userspace.
1143  *    4. Upon return caller flushes TLB's if needed.
1144  *
1145  * Between 2 and 4, the guest may write to the page using the remaining TLB
1146  * entry.  This is not a problem because the page is reported dirty using
1147  * the snapshot taken before and step 4 ensures that writes done after
1148  * exiting to userspace will be logged for the next call.
1149  *
1150  */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 			struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154 	struct kvm_memslots *slots;
1155 	struct kvm_memory_slot *memslot;
1156 	int i, as_id, id;
1157 	unsigned long n;
1158 	unsigned long *dirty_bitmap;
1159 	unsigned long *dirty_bitmap_buffer;
1160 
1161 	as_id = log->slot >> 16;
1162 	id = (u16)log->slot;
1163 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1164 		return -EINVAL;
1165 
1166 	slots = __kvm_memslots(kvm, as_id);
1167 	memslot = id_to_memslot(slots, id);
1168 
1169 	dirty_bitmap = memslot->dirty_bitmap;
1170 	if (!dirty_bitmap)
1171 		return -ENOENT;
1172 
1173 	n = kvm_dirty_bitmap_bytes(memslot);
1174 
1175 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1176 	memset(dirty_bitmap_buffer, 0, n);
1177 
1178 	spin_lock(&kvm->mmu_lock);
1179 	*is_dirty = false;
1180 	for (i = 0; i < n / sizeof(long); i++) {
1181 		unsigned long mask;
1182 		gfn_t offset;
1183 
1184 		if (!dirty_bitmap[i])
1185 			continue;
1186 
1187 		*is_dirty = true;
1188 
1189 		mask = xchg(&dirty_bitmap[i], 0);
1190 		dirty_bitmap_buffer[i] = mask;
1191 
1192 		if (mask) {
1193 			offset = i * BITS_PER_LONG;
1194 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1195 								offset, mask);
1196 		}
1197 	}
1198 
1199 	spin_unlock(&kvm->mmu_lock);
1200 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1201 		return -EFAULT;
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206 
1207 bool kvm_largepages_enabled(void)
1208 {
1209 	return largepages_enabled;
1210 }
1211 
1212 void kvm_disable_largepages(void)
1213 {
1214 	largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217 
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223 
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228 
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232 
1233 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 	      memslot->flags & KVM_MEMSLOT_INVALID)
1235 		return false;
1236 
1237 	return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240 
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243 	struct vm_area_struct *vma;
1244 	unsigned long addr, size;
1245 
1246 	size = PAGE_SIZE;
1247 
1248 	addr = gfn_to_hva(kvm, gfn);
1249 	if (kvm_is_error_hva(addr))
1250 		return PAGE_SIZE;
1251 
1252 	down_read(&current->mm->mmap_sem);
1253 	vma = find_vma(current->mm, addr);
1254 	if (!vma)
1255 		goto out;
1256 
1257 	size = vma_kernel_pagesize(vma);
1258 
1259 out:
1260 	up_read(&current->mm->mmap_sem);
1261 
1262 	return size;
1263 }
1264 
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267 	return slot->flags & KVM_MEM_READONLY;
1268 }
1269 
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 				       gfn_t *nr_pages, bool write)
1272 {
1273 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 		return KVM_HVA_ERR_BAD;
1275 
1276 	if (memslot_is_readonly(slot) && write)
1277 		return KVM_HVA_ERR_RO_BAD;
1278 
1279 	if (nr_pages)
1280 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1281 
1282 	return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284 
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286 				     gfn_t *nr_pages)
1287 {
1288 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290 
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292 					gfn_t gfn)
1293 {
1294 	return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297 
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303 
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309 
1310 /*
1311  * If writable is set to false, the hva returned by this function is only
1312  * allowed to be read.
1313  */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 				      gfn_t gfn, bool *writable)
1316 {
1317 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318 
1319 	if (!kvm_is_error_hva(hva) && writable)
1320 		*writable = !memslot_is_readonly(slot);
1321 
1322 	return hva;
1323 }
1324 
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328 
1329 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331 
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335 
1336 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338 
1339 static int get_user_page_nowait(unsigned long start, int write,
1340 		struct page **page)
1341 {
1342 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1343 
1344 	if (write)
1345 		flags |= FOLL_WRITE;
1346 
1347 	return get_user_pages(start, 1, flags, page, NULL);
1348 }
1349 
1350 static inline int check_user_page_hwpoison(unsigned long addr)
1351 {
1352 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1353 
1354 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1355 	return rc == -EHWPOISON;
1356 }
1357 
1358 /*
1359  * The atomic path to get the writable pfn which will be stored in @pfn,
1360  * true indicates success, otherwise false is returned.
1361  */
1362 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1363 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1364 {
1365 	struct page *page[1];
1366 	int npages;
1367 
1368 	if (!(async || atomic))
1369 		return false;
1370 
1371 	/*
1372 	 * Fast pin a writable pfn only if it is a write fault request
1373 	 * or the caller allows to map a writable pfn for a read fault
1374 	 * request.
1375 	 */
1376 	if (!(write_fault || writable))
1377 		return false;
1378 
1379 	npages = __get_user_pages_fast(addr, 1, 1, page);
1380 	if (npages == 1) {
1381 		*pfn = page_to_pfn(page[0]);
1382 
1383 		if (writable)
1384 			*writable = true;
1385 		return true;
1386 	}
1387 
1388 	return false;
1389 }
1390 
1391 /*
1392  * The slow path to get the pfn of the specified host virtual address,
1393  * 1 indicates success, -errno is returned if error is detected.
1394  */
1395 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1396 			   bool *writable, kvm_pfn_t *pfn)
1397 {
1398 	struct page *page[1];
1399 	int npages = 0;
1400 
1401 	might_sleep();
1402 
1403 	if (writable)
1404 		*writable = write_fault;
1405 
1406 	if (async) {
1407 		down_read(&current->mm->mmap_sem);
1408 		npages = get_user_page_nowait(addr, write_fault, page);
1409 		up_read(&current->mm->mmap_sem);
1410 	} else {
1411 		unsigned int flags = FOLL_HWPOISON;
1412 
1413 		if (write_fault)
1414 			flags |= FOLL_WRITE;
1415 
1416 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1417 	}
1418 	if (npages != 1)
1419 		return npages;
1420 
1421 	/* map read fault as writable if possible */
1422 	if (unlikely(!write_fault) && writable) {
1423 		struct page *wpage[1];
1424 
1425 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1426 		if (npages == 1) {
1427 			*writable = true;
1428 			put_page(page[0]);
1429 			page[0] = wpage[0];
1430 		}
1431 
1432 		npages = 1;
1433 	}
1434 	*pfn = page_to_pfn(page[0]);
1435 	return npages;
1436 }
1437 
1438 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1439 {
1440 	if (unlikely(!(vma->vm_flags & VM_READ)))
1441 		return false;
1442 
1443 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1444 		return false;
1445 
1446 	return true;
1447 }
1448 
1449 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1450 			       unsigned long addr, bool *async,
1451 			       bool write_fault, kvm_pfn_t *p_pfn)
1452 {
1453 	unsigned long pfn;
1454 	int r;
1455 
1456 	r = follow_pfn(vma, addr, &pfn);
1457 	if (r) {
1458 		/*
1459 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1460 		 * not call the fault handler, so do it here.
1461 		 */
1462 		bool unlocked = false;
1463 		r = fixup_user_fault(current, current->mm, addr,
1464 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1465 				     &unlocked);
1466 		if (unlocked)
1467 			return -EAGAIN;
1468 		if (r)
1469 			return r;
1470 
1471 		r = follow_pfn(vma, addr, &pfn);
1472 		if (r)
1473 			return r;
1474 
1475 	}
1476 
1477 
1478 	/*
1479 	 * Get a reference here because callers of *hva_to_pfn* and
1480 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1481 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1482 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1483 	 * simply do nothing for reserved pfns.
1484 	 *
1485 	 * Whoever called remap_pfn_range is also going to call e.g.
1486 	 * unmap_mapping_range before the underlying pages are freed,
1487 	 * causing a call to our MMU notifier.
1488 	 */
1489 	kvm_get_pfn(pfn);
1490 
1491 	*p_pfn = pfn;
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Pin guest page in memory and return its pfn.
1497  * @addr: host virtual address which maps memory to the guest
1498  * @atomic: whether this function can sleep
1499  * @async: whether this function need to wait IO complete if the
1500  *         host page is not in the memory
1501  * @write_fault: whether we should get a writable host page
1502  * @writable: whether it allows to map a writable host page for !@write_fault
1503  *
1504  * The function will map a writable host page for these two cases:
1505  * 1): @write_fault = true
1506  * 2): @write_fault = false && @writable, @writable will tell the caller
1507  *     whether the mapping is writable.
1508  */
1509 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1510 			bool write_fault, bool *writable)
1511 {
1512 	struct vm_area_struct *vma;
1513 	kvm_pfn_t pfn = 0;
1514 	int npages, r;
1515 
1516 	/* we can do it either atomically or asynchronously, not both */
1517 	BUG_ON(atomic && async);
1518 
1519 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1520 		return pfn;
1521 
1522 	if (atomic)
1523 		return KVM_PFN_ERR_FAULT;
1524 
1525 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1526 	if (npages == 1)
1527 		return pfn;
1528 
1529 	down_read(&current->mm->mmap_sem);
1530 	if (npages == -EHWPOISON ||
1531 	      (!async && check_user_page_hwpoison(addr))) {
1532 		pfn = KVM_PFN_ERR_HWPOISON;
1533 		goto exit;
1534 	}
1535 
1536 retry:
1537 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1538 
1539 	if (vma == NULL)
1540 		pfn = KVM_PFN_ERR_FAULT;
1541 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1542 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1543 		if (r == -EAGAIN)
1544 			goto retry;
1545 		if (r < 0)
1546 			pfn = KVM_PFN_ERR_FAULT;
1547 	} else {
1548 		if (async && vma_is_valid(vma, write_fault))
1549 			*async = true;
1550 		pfn = KVM_PFN_ERR_FAULT;
1551 	}
1552 exit:
1553 	up_read(&current->mm->mmap_sem);
1554 	return pfn;
1555 }
1556 
1557 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1558 			       bool atomic, bool *async, bool write_fault,
1559 			       bool *writable)
1560 {
1561 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1562 
1563 	if (addr == KVM_HVA_ERR_RO_BAD) {
1564 		if (writable)
1565 			*writable = false;
1566 		return KVM_PFN_ERR_RO_FAULT;
1567 	}
1568 
1569 	if (kvm_is_error_hva(addr)) {
1570 		if (writable)
1571 			*writable = false;
1572 		return KVM_PFN_NOSLOT;
1573 	}
1574 
1575 	/* Do not map writable pfn in the readonly memslot. */
1576 	if (writable && memslot_is_readonly(slot)) {
1577 		*writable = false;
1578 		writable = NULL;
1579 	}
1580 
1581 	return hva_to_pfn(addr, atomic, async, write_fault,
1582 			  writable);
1583 }
1584 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1585 
1586 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1587 		      bool *writable)
1588 {
1589 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1590 				    write_fault, writable);
1591 }
1592 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1593 
1594 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1595 {
1596 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1599 
1600 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1601 {
1602 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1605 
1606 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1607 {
1608 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1611 
1612 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1613 {
1614 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1617 
1618 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1619 {
1620 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1621 }
1622 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1623 
1624 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1629 
1630 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1631 			    struct page **pages, int nr_pages)
1632 {
1633 	unsigned long addr;
1634 	gfn_t entry;
1635 
1636 	addr = gfn_to_hva_many(slot, gfn, &entry);
1637 	if (kvm_is_error_hva(addr))
1638 		return -1;
1639 
1640 	if (entry < nr_pages)
1641 		return 0;
1642 
1643 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1644 }
1645 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1646 
1647 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1648 {
1649 	if (is_error_noslot_pfn(pfn))
1650 		return KVM_ERR_PTR_BAD_PAGE;
1651 
1652 	if (kvm_is_reserved_pfn(pfn)) {
1653 		WARN_ON(1);
1654 		return KVM_ERR_PTR_BAD_PAGE;
1655 	}
1656 
1657 	return pfn_to_page(pfn);
1658 }
1659 
1660 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1661 {
1662 	kvm_pfn_t pfn;
1663 
1664 	pfn = gfn_to_pfn(kvm, gfn);
1665 
1666 	return kvm_pfn_to_page(pfn);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_page);
1669 
1670 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1671 {
1672 	kvm_pfn_t pfn;
1673 
1674 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1675 
1676 	return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1679 
1680 void kvm_release_page_clean(struct page *page)
1681 {
1682 	WARN_ON(is_error_page(page));
1683 
1684 	kvm_release_pfn_clean(page_to_pfn(page));
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1687 
1688 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1689 {
1690 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1691 		put_page(pfn_to_page(pfn));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1694 
1695 void kvm_release_page_dirty(struct page *page)
1696 {
1697 	WARN_ON(is_error_page(page));
1698 
1699 	kvm_release_pfn_dirty(page_to_pfn(page));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1702 
1703 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1704 {
1705 	kvm_set_pfn_dirty(pfn);
1706 	kvm_release_pfn_clean(pfn);
1707 }
1708 
1709 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1710 {
1711 	if (!kvm_is_reserved_pfn(pfn)) {
1712 		struct page *page = pfn_to_page(pfn);
1713 
1714 		if (!PageReserved(page))
1715 			SetPageDirty(page);
1716 	}
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1719 
1720 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1721 {
1722 	if (!kvm_is_reserved_pfn(pfn))
1723 		mark_page_accessed(pfn_to_page(pfn));
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1726 
1727 void kvm_get_pfn(kvm_pfn_t pfn)
1728 {
1729 	if (!kvm_is_reserved_pfn(pfn))
1730 		get_page(pfn_to_page(pfn));
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1733 
1734 static int next_segment(unsigned long len, int offset)
1735 {
1736 	if (len > PAGE_SIZE - offset)
1737 		return PAGE_SIZE - offset;
1738 	else
1739 		return len;
1740 }
1741 
1742 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1743 				 void *data, int offset, int len)
1744 {
1745 	int r;
1746 	unsigned long addr;
1747 
1748 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1749 	if (kvm_is_error_hva(addr))
1750 		return -EFAULT;
1751 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1752 	if (r)
1753 		return -EFAULT;
1754 	return 0;
1755 }
1756 
1757 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1758 			int len)
1759 {
1760 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1761 
1762 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1765 
1766 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1767 			     int offset, int len)
1768 {
1769 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1770 
1771 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1772 }
1773 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1774 
1775 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1776 {
1777 	gfn_t gfn = gpa >> PAGE_SHIFT;
1778 	int seg;
1779 	int offset = offset_in_page(gpa);
1780 	int ret;
1781 
1782 	while ((seg = next_segment(len, offset)) != 0) {
1783 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1784 		if (ret < 0)
1785 			return ret;
1786 		offset = 0;
1787 		len -= seg;
1788 		data += seg;
1789 		++gfn;
1790 	}
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_read_guest);
1794 
1795 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1796 {
1797 	gfn_t gfn = gpa >> PAGE_SHIFT;
1798 	int seg;
1799 	int offset = offset_in_page(gpa);
1800 	int ret;
1801 
1802 	while ((seg = next_segment(len, offset)) != 0) {
1803 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1804 		if (ret < 0)
1805 			return ret;
1806 		offset = 0;
1807 		len -= seg;
1808 		data += seg;
1809 		++gfn;
1810 	}
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1814 
1815 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1816 			           void *data, int offset, unsigned long len)
1817 {
1818 	int r;
1819 	unsigned long addr;
1820 
1821 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1822 	if (kvm_is_error_hva(addr))
1823 		return -EFAULT;
1824 	pagefault_disable();
1825 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1826 	pagefault_enable();
1827 	if (r)
1828 		return -EFAULT;
1829 	return 0;
1830 }
1831 
1832 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1833 			  unsigned long len)
1834 {
1835 	gfn_t gfn = gpa >> PAGE_SHIFT;
1836 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1837 	int offset = offset_in_page(gpa);
1838 
1839 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1842 
1843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1844 			       void *data, unsigned long len)
1845 {
1846 	gfn_t gfn = gpa >> PAGE_SHIFT;
1847 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1848 	int offset = offset_in_page(gpa);
1849 
1850 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1853 
1854 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1855 			          const void *data, int offset, int len)
1856 {
1857 	int r;
1858 	unsigned long addr;
1859 
1860 	addr = gfn_to_hva_memslot(memslot, gfn);
1861 	if (kvm_is_error_hva(addr))
1862 		return -EFAULT;
1863 	r = __copy_to_user((void __user *)addr + offset, data, len);
1864 	if (r)
1865 		return -EFAULT;
1866 	mark_page_dirty_in_slot(memslot, gfn);
1867 	return 0;
1868 }
1869 
1870 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1871 			 const void *data, int offset, int len)
1872 {
1873 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1874 
1875 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1878 
1879 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1880 			      const void *data, int offset, int len)
1881 {
1882 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1883 
1884 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1887 
1888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1889 		    unsigned long len)
1890 {
1891 	gfn_t gfn = gpa >> PAGE_SHIFT;
1892 	int seg;
1893 	int offset = offset_in_page(gpa);
1894 	int ret;
1895 
1896 	while ((seg = next_segment(len, offset)) != 0) {
1897 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1898 		if (ret < 0)
1899 			return ret;
1900 		offset = 0;
1901 		len -= seg;
1902 		data += seg;
1903 		++gfn;
1904 	}
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_write_guest);
1908 
1909 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1910 		         unsigned long len)
1911 {
1912 	gfn_t gfn = gpa >> PAGE_SHIFT;
1913 	int seg;
1914 	int offset = offset_in_page(gpa);
1915 	int ret;
1916 
1917 	while ((seg = next_segment(len, offset)) != 0) {
1918 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1919 		if (ret < 0)
1920 			return ret;
1921 		offset = 0;
1922 		len -= seg;
1923 		data += seg;
1924 		++gfn;
1925 	}
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1929 
1930 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1931 				       struct gfn_to_hva_cache *ghc,
1932 				       gpa_t gpa, unsigned long len)
1933 {
1934 	int offset = offset_in_page(gpa);
1935 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1936 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1937 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1938 	gfn_t nr_pages_avail;
1939 
1940 	ghc->gpa = gpa;
1941 	ghc->generation = slots->generation;
1942 	ghc->len = len;
1943 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1945 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1946 		ghc->hva += offset;
1947 	} else {
1948 		/*
1949 		 * If the requested region crosses two memslots, we still
1950 		 * verify that the entire region is valid here.
1951 		 */
1952 		while (start_gfn <= end_gfn) {
1953 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1954 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1955 						   &nr_pages_avail);
1956 			if (kvm_is_error_hva(ghc->hva))
1957 				return -EFAULT;
1958 			start_gfn += nr_pages_avail;
1959 		}
1960 		/* Use the slow path for cross page reads and writes. */
1961 		ghc->memslot = NULL;
1962 	}
1963 	return 0;
1964 }
1965 
1966 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1967 			      gpa_t gpa, unsigned long len)
1968 {
1969 	struct kvm_memslots *slots = kvm_memslots(kvm);
1970 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1973 
1974 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1975 			   void *data, int offset, unsigned long len)
1976 {
1977 	struct kvm_memslots *slots = kvm_memslots(kvm);
1978 	int r;
1979 	gpa_t gpa = ghc->gpa + offset;
1980 
1981 	BUG_ON(len + offset > ghc->len);
1982 
1983 	if (slots->generation != ghc->generation)
1984 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1985 
1986 	if (unlikely(!ghc->memslot))
1987 		return kvm_write_guest(kvm, gpa, data, len);
1988 
1989 	if (kvm_is_error_hva(ghc->hva))
1990 		return -EFAULT;
1991 
1992 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1993 	if (r)
1994 		return -EFAULT;
1995 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1996 
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2000 
2001 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 			   void *data, unsigned long len)
2003 {
2004 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2007 
2008 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2009 			   void *data, unsigned long len)
2010 {
2011 	struct kvm_memslots *slots = kvm_memslots(kvm);
2012 	int r;
2013 
2014 	BUG_ON(len > ghc->len);
2015 
2016 	if (slots->generation != ghc->generation)
2017 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2018 
2019 	if (unlikely(!ghc->memslot))
2020 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2021 
2022 	if (kvm_is_error_hva(ghc->hva))
2023 		return -EFAULT;
2024 
2025 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2026 	if (r)
2027 		return -EFAULT;
2028 
2029 	return 0;
2030 }
2031 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2032 
2033 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2034 {
2035 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2036 
2037 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2040 
2041 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2042 {
2043 	gfn_t gfn = gpa >> PAGE_SHIFT;
2044 	int seg;
2045 	int offset = offset_in_page(gpa);
2046 	int ret;
2047 
2048 	while ((seg = next_segment(len, offset)) != 0) {
2049 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2050 		if (ret < 0)
2051 			return ret;
2052 		offset = 0;
2053 		len -= seg;
2054 		++gfn;
2055 	}
2056 	return 0;
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2059 
2060 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2061 				    gfn_t gfn)
2062 {
2063 	if (memslot && memslot->dirty_bitmap) {
2064 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2065 
2066 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2067 	}
2068 }
2069 
2070 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2071 {
2072 	struct kvm_memory_slot *memslot;
2073 
2074 	memslot = gfn_to_memslot(kvm, gfn);
2075 	mark_page_dirty_in_slot(memslot, gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(mark_page_dirty);
2078 
2079 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2080 {
2081 	struct kvm_memory_slot *memslot;
2082 
2083 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2084 	mark_page_dirty_in_slot(memslot, gfn);
2085 }
2086 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2087 
2088 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2089 {
2090 	unsigned int old, val, grow;
2091 
2092 	old = val = vcpu->halt_poll_ns;
2093 	grow = READ_ONCE(halt_poll_ns_grow);
2094 	/* 10us base */
2095 	if (val == 0 && grow)
2096 		val = 10000;
2097 	else
2098 		val *= grow;
2099 
2100 	if (val > halt_poll_ns)
2101 		val = halt_poll_ns;
2102 
2103 	vcpu->halt_poll_ns = val;
2104 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2105 }
2106 
2107 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2108 {
2109 	unsigned int old, val, shrink;
2110 
2111 	old = val = vcpu->halt_poll_ns;
2112 	shrink = READ_ONCE(halt_poll_ns_shrink);
2113 	if (shrink == 0)
2114 		val = 0;
2115 	else
2116 		val /= shrink;
2117 
2118 	vcpu->halt_poll_ns = val;
2119 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2120 }
2121 
2122 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2123 {
2124 	if (kvm_arch_vcpu_runnable(vcpu)) {
2125 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2126 		return -EINTR;
2127 	}
2128 	if (kvm_cpu_has_pending_timer(vcpu))
2129 		return -EINTR;
2130 	if (signal_pending(current))
2131 		return -EINTR;
2132 
2133 	return 0;
2134 }
2135 
2136 /*
2137  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2138  */
2139 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2140 {
2141 	ktime_t start, cur;
2142 	DECLARE_SWAITQUEUE(wait);
2143 	bool waited = false;
2144 	u64 block_ns;
2145 
2146 	start = cur = ktime_get();
2147 	if (vcpu->halt_poll_ns) {
2148 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2149 
2150 		++vcpu->stat.halt_attempted_poll;
2151 		do {
2152 			/*
2153 			 * This sets KVM_REQ_UNHALT if an interrupt
2154 			 * arrives.
2155 			 */
2156 			if (kvm_vcpu_check_block(vcpu) < 0) {
2157 				++vcpu->stat.halt_successful_poll;
2158 				if (!vcpu_valid_wakeup(vcpu))
2159 					++vcpu->stat.halt_poll_invalid;
2160 				goto out;
2161 			}
2162 			cur = ktime_get();
2163 		} while (single_task_running() && ktime_before(cur, stop));
2164 	}
2165 
2166 	kvm_arch_vcpu_blocking(vcpu);
2167 
2168 	for (;;) {
2169 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2170 
2171 		if (kvm_vcpu_check_block(vcpu) < 0)
2172 			break;
2173 
2174 		waited = true;
2175 		schedule();
2176 	}
2177 
2178 	finish_swait(&vcpu->wq, &wait);
2179 	cur = ktime_get();
2180 
2181 	kvm_arch_vcpu_unblocking(vcpu);
2182 out:
2183 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2184 
2185 	if (!vcpu_valid_wakeup(vcpu))
2186 		shrink_halt_poll_ns(vcpu);
2187 	else if (halt_poll_ns) {
2188 		if (block_ns <= vcpu->halt_poll_ns)
2189 			;
2190 		/* we had a long block, shrink polling */
2191 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2192 			shrink_halt_poll_ns(vcpu);
2193 		/* we had a short halt and our poll time is too small */
2194 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2195 			block_ns < halt_poll_ns)
2196 			grow_halt_poll_ns(vcpu);
2197 	} else
2198 		vcpu->halt_poll_ns = 0;
2199 
2200 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2201 	kvm_arch_vcpu_block_finish(vcpu);
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2204 
2205 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2206 {
2207 	struct swait_queue_head *wqp;
2208 
2209 	wqp = kvm_arch_vcpu_wq(vcpu);
2210 	if (swait_active(wqp)) {
2211 		swake_up(wqp);
2212 		++vcpu->stat.halt_wakeup;
2213 		return true;
2214 	}
2215 
2216 	return false;
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2219 
2220 #ifndef CONFIG_S390
2221 /*
2222  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2223  */
2224 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2225 {
2226 	int me;
2227 	int cpu = vcpu->cpu;
2228 
2229 	if (kvm_vcpu_wake_up(vcpu))
2230 		return;
2231 
2232 	me = get_cpu();
2233 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2234 		if (kvm_arch_vcpu_should_kick(vcpu))
2235 			smp_send_reschedule(cpu);
2236 	put_cpu();
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2239 #endif /* !CONFIG_S390 */
2240 
2241 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2242 {
2243 	struct pid *pid;
2244 	struct task_struct *task = NULL;
2245 	int ret = 0;
2246 
2247 	rcu_read_lock();
2248 	pid = rcu_dereference(target->pid);
2249 	if (pid)
2250 		task = get_pid_task(pid, PIDTYPE_PID);
2251 	rcu_read_unlock();
2252 	if (!task)
2253 		return ret;
2254 	ret = yield_to(task, 1);
2255 	put_task_struct(task);
2256 
2257 	return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2260 
2261 /*
2262  * Helper that checks whether a VCPU is eligible for directed yield.
2263  * Most eligible candidate to yield is decided by following heuristics:
2264  *
2265  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2266  *  (preempted lock holder), indicated by @in_spin_loop.
2267  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2268  *
2269  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2270  *  chance last time (mostly it has become eligible now since we have probably
2271  *  yielded to lockholder in last iteration. This is done by toggling
2272  *  @dy_eligible each time a VCPU checked for eligibility.)
2273  *
2274  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2275  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2276  *  burning. Giving priority for a potential lock-holder increases lock
2277  *  progress.
2278  *
2279  *  Since algorithm is based on heuristics, accessing another VCPU data without
2280  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2281  *  and continue with next VCPU and so on.
2282  */
2283 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2284 {
2285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2286 	bool eligible;
2287 
2288 	eligible = !vcpu->spin_loop.in_spin_loop ||
2289 		    vcpu->spin_loop.dy_eligible;
2290 
2291 	if (vcpu->spin_loop.in_spin_loop)
2292 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2293 
2294 	return eligible;
2295 #else
2296 	return true;
2297 #endif
2298 }
2299 
2300 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2301 {
2302 	struct kvm *kvm = me->kvm;
2303 	struct kvm_vcpu *vcpu;
2304 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2305 	int yielded = 0;
2306 	int try = 3;
2307 	int pass;
2308 	int i;
2309 
2310 	kvm_vcpu_set_in_spin_loop(me, true);
2311 	/*
2312 	 * We boost the priority of a VCPU that is runnable but not
2313 	 * currently running, because it got preempted by something
2314 	 * else and called schedule in __vcpu_run.  Hopefully that
2315 	 * VCPU is holding the lock that we need and will release it.
2316 	 * We approximate round-robin by starting at the last boosted VCPU.
2317 	 */
2318 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2319 		kvm_for_each_vcpu(i, vcpu, kvm) {
2320 			if (!pass && i <= last_boosted_vcpu) {
2321 				i = last_boosted_vcpu;
2322 				continue;
2323 			} else if (pass && i > last_boosted_vcpu)
2324 				break;
2325 			if (!ACCESS_ONCE(vcpu->preempted))
2326 				continue;
2327 			if (vcpu == me)
2328 				continue;
2329 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2330 				continue;
2331 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2332 				continue;
2333 
2334 			yielded = kvm_vcpu_yield_to(vcpu);
2335 			if (yielded > 0) {
2336 				kvm->last_boosted_vcpu = i;
2337 				break;
2338 			} else if (yielded < 0) {
2339 				try--;
2340 				if (!try)
2341 					break;
2342 			}
2343 		}
2344 	}
2345 	kvm_vcpu_set_in_spin_loop(me, false);
2346 
2347 	/* Ensure vcpu is not eligible during next spinloop */
2348 	kvm_vcpu_set_dy_eligible(me, false);
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2351 
2352 static int kvm_vcpu_fault(struct vm_fault *vmf)
2353 {
2354 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2355 	struct page *page;
2356 
2357 	if (vmf->pgoff == 0)
2358 		page = virt_to_page(vcpu->run);
2359 #ifdef CONFIG_X86
2360 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2361 		page = virt_to_page(vcpu->arch.pio_data);
2362 #endif
2363 #ifdef CONFIG_KVM_MMIO
2364 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2365 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2366 #endif
2367 	else
2368 		return kvm_arch_vcpu_fault(vcpu, vmf);
2369 	get_page(page);
2370 	vmf->page = page;
2371 	return 0;
2372 }
2373 
2374 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2375 	.fault = kvm_vcpu_fault,
2376 };
2377 
2378 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2379 {
2380 	vma->vm_ops = &kvm_vcpu_vm_ops;
2381 	return 0;
2382 }
2383 
2384 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2385 {
2386 	struct kvm_vcpu *vcpu = filp->private_data;
2387 
2388 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2389 	kvm_put_kvm(vcpu->kvm);
2390 	return 0;
2391 }
2392 
2393 static struct file_operations kvm_vcpu_fops = {
2394 	.release        = kvm_vcpu_release,
2395 	.unlocked_ioctl = kvm_vcpu_ioctl,
2396 #ifdef CONFIG_KVM_COMPAT
2397 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2398 #endif
2399 	.mmap           = kvm_vcpu_mmap,
2400 	.llseek		= noop_llseek,
2401 };
2402 
2403 /*
2404  * Allocates an inode for the vcpu.
2405  */
2406 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2407 {
2408 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2409 }
2410 
2411 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2412 {
2413 	char dir_name[ITOA_MAX_LEN * 2];
2414 	int ret;
2415 
2416 	if (!kvm_arch_has_vcpu_debugfs())
2417 		return 0;
2418 
2419 	if (!debugfs_initialized())
2420 		return 0;
2421 
2422 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2423 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2424 								vcpu->kvm->debugfs_dentry);
2425 	if (!vcpu->debugfs_dentry)
2426 		return -ENOMEM;
2427 
2428 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2429 	if (ret < 0) {
2430 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2431 		return ret;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 /*
2438  * Creates some virtual cpus.  Good luck creating more than one.
2439  */
2440 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2441 {
2442 	int r;
2443 	struct kvm_vcpu *vcpu;
2444 
2445 	if (id >= KVM_MAX_VCPU_ID)
2446 		return -EINVAL;
2447 
2448 	mutex_lock(&kvm->lock);
2449 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2450 		mutex_unlock(&kvm->lock);
2451 		return -EINVAL;
2452 	}
2453 
2454 	kvm->created_vcpus++;
2455 	mutex_unlock(&kvm->lock);
2456 
2457 	vcpu = kvm_arch_vcpu_create(kvm, id);
2458 	if (IS_ERR(vcpu)) {
2459 		r = PTR_ERR(vcpu);
2460 		goto vcpu_decrement;
2461 	}
2462 
2463 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2464 
2465 	r = kvm_arch_vcpu_setup(vcpu);
2466 	if (r)
2467 		goto vcpu_destroy;
2468 
2469 	r = kvm_create_vcpu_debugfs(vcpu);
2470 	if (r)
2471 		goto vcpu_destroy;
2472 
2473 	mutex_lock(&kvm->lock);
2474 	if (kvm_get_vcpu_by_id(kvm, id)) {
2475 		r = -EEXIST;
2476 		goto unlock_vcpu_destroy;
2477 	}
2478 
2479 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2480 
2481 	/* Now it's all set up, let userspace reach it */
2482 	kvm_get_kvm(kvm);
2483 	r = create_vcpu_fd(vcpu);
2484 	if (r < 0) {
2485 		kvm_put_kvm(kvm);
2486 		goto unlock_vcpu_destroy;
2487 	}
2488 
2489 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2490 
2491 	/*
2492 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2493 	 * before kvm->online_vcpu's incremented value.
2494 	 */
2495 	smp_wmb();
2496 	atomic_inc(&kvm->online_vcpus);
2497 
2498 	mutex_unlock(&kvm->lock);
2499 	kvm_arch_vcpu_postcreate(vcpu);
2500 	return r;
2501 
2502 unlock_vcpu_destroy:
2503 	mutex_unlock(&kvm->lock);
2504 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2505 vcpu_destroy:
2506 	kvm_arch_vcpu_destroy(vcpu);
2507 vcpu_decrement:
2508 	mutex_lock(&kvm->lock);
2509 	kvm->created_vcpus--;
2510 	mutex_unlock(&kvm->lock);
2511 	return r;
2512 }
2513 
2514 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2515 {
2516 	if (sigset) {
2517 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2518 		vcpu->sigset_active = 1;
2519 		vcpu->sigset = *sigset;
2520 	} else
2521 		vcpu->sigset_active = 0;
2522 	return 0;
2523 }
2524 
2525 static long kvm_vcpu_ioctl(struct file *filp,
2526 			   unsigned int ioctl, unsigned long arg)
2527 {
2528 	struct kvm_vcpu *vcpu = filp->private_data;
2529 	void __user *argp = (void __user *)arg;
2530 	int r;
2531 	struct kvm_fpu *fpu = NULL;
2532 	struct kvm_sregs *kvm_sregs = NULL;
2533 
2534 	if (vcpu->kvm->mm != current->mm)
2535 		return -EIO;
2536 
2537 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2538 		return -EINVAL;
2539 
2540 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2541 	/*
2542 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2543 	 * so vcpu_load() would break it.
2544 	 */
2545 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2546 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2547 #endif
2548 
2549 
2550 	r = vcpu_load(vcpu);
2551 	if (r)
2552 		return r;
2553 	switch (ioctl) {
2554 	case KVM_RUN:
2555 		r = -EINVAL;
2556 		if (arg)
2557 			goto out;
2558 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2559 			/* The thread running this VCPU changed. */
2560 			struct pid *oldpid = vcpu->pid;
2561 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2562 
2563 			rcu_assign_pointer(vcpu->pid, newpid);
2564 			if (oldpid)
2565 				synchronize_rcu();
2566 			put_pid(oldpid);
2567 		}
2568 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2569 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2570 		break;
2571 	case KVM_GET_REGS: {
2572 		struct kvm_regs *kvm_regs;
2573 
2574 		r = -ENOMEM;
2575 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2576 		if (!kvm_regs)
2577 			goto out;
2578 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2579 		if (r)
2580 			goto out_free1;
2581 		r = -EFAULT;
2582 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2583 			goto out_free1;
2584 		r = 0;
2585 out_free1:
2586 		kfree(kvm_regs);
2587 		break;
2588 	}
2589 	case KVM_SET_REGS: {
2590 		struct kvm_regs *kvm_regs;
2591 
2592 		r = -ENOMEM;
2593 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2594 		if (IS_ERR(kvm_regs)) {
2595 			r = PTR_ERR(kvm_regs);
2596 			goto out;
2597 		}
2598 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2599 		kfree(kvm_regs);
2600 		break;
2601 	}
2602 	case KVM_GET_SREGS: {
2603 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2604 		r = -ENOMEM;
2605 		if (!kvm_sregs)
2606 			goto out;
2607 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2608 		if (r)
2609 			goto out;
2610 		r = -EFAULT;
2611 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2612 			goto out;
2613 		r = 0;
2614 		break;
2615 	}
2616 	case KVM_SET_SREGS: {
2617 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2618 		if (IS_ERR(kvm_sregs)) {
2619 			r = PTR_ERR(kvm_sregs);
2620 			kvm_sregs = NULL;
2621 			goto out;
2622 		}
2623 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2624 		break;
2625 	}
2626 	case KVM_GET_MP_STATE: {
2627 		struct kvm_mp_state mp_state;
2628 
2629 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2630 		if (r)
2631 			goto out;
2632 		r = -EFAULT;
2633 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2634 			goto out;
2635 		r = 0;
2636 		break;
2637 	}
2638 	case KVM_SET_MP_STATE: {
2639 		struct kvm_mp_state mp_state;
2640 
2641 		r = -EFAULT;
2642 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2643 			goto out;
2644 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2645 		break;
2646 	}
2647 	case KVM_TRANSLATE: {
2648 		struct kvm_translation tr;
2649 
2650 		r = -EFAULT;
2651 		if (copy_from_user(&tr, argp, sizeof(tr)))
2652 			goto out;
2653 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2654 		if (r)
2655 			goto out;
2656 		r = -EFAULT;
2657 		if (copy_to_user(argp, &tr, sizeof(tr)))
2658 			goto out;
2659 		r = 0;
2660 		break;
2661 	}
2662 	case KVM_SET_GUEST_DEBUG: {
2663 		struct kvm_guest_debug dbg;
2664 
2665 		r = -EFAULT;
2666 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2667 			goto out;
2668 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2669 		break;
2670 	}
2671 	case KVM_SET_SIGNAL_MASK: {
2672 		struct kvm_signal_mask __user *sigmask_arg = argp;
2673 		struct kvm_signal_mask kvm_sigmask;
2674 		sigset_t sigset, *p;
2675 
2676 		p = NULL;
2677 		if (argp) {
2678 			r = -EFAULT;
2679 			if (copy_from_user(&kvm_sigmask, argp,
2680 					   sizeof(kvm_sigmask)))
2681 				goto out;
2682 			r = -EINVAL;
2683 			if (kvm_sigmask.len != sizeof(sigset))
2684 				goto out;
2685 			r = -EFAULT;
2686 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2687 					   sizeof(sigset)))
2688 				goto out;
2689 			p = &sigset;
2690 		}
2691 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2692 		break;
2693 	}
2694 	case KVM_GET_FPU: {
2695 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2696 		r = -ENOMEM;
2697 		if (!fpu)
2698 			goto out;
2699 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2700 		if (r)
2701 			goto out;
2702 		r = -EFAULT;
2703 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2704 			goto out;
2705 		r = 0;
2706 		break;
2707 	}
2708 	case KVM_SET_FPU: {
2709 		fpu = memdup_user(argp, sizeof(*fpu));
2710 		if (IS_ERR(fpu)) {
2711 			r = PTR_ERR(fpu);
2712 			fpu = NULL;
2713 			goto out;
2714 		}
2715 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2716 		break;
2717 	}
2718 	default:
2719 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2720 	}
2721 out:
2722 	vcpu_put(vcpu);
2723 	kfree(fpu);
2724 	kfree(kvm_sregs);
2725 	return r;
2726 }
2727 
2728 #ifdef CONFIG_KVM_COMPAT
2729 static long kvm_vcpu_compat_ioctl(struct file *filp,
2730 				  unsigned int ioctl, unsigned long arg)
2731 {
2732 	struct kvm_vcpu *vcpu = filp->private_data;
2733 	void __user *argp = compat_ptr(arg);
2734 	int r;
2735 
2736 	if (vcpu->kvm->mm != current->mm)
2737 		return -EIO;
2738 
2739 	switch (ioctl) {
2740 	case KVM_SET_SIGNAL_MASK: {
2741 		struct kvm_signal_mask __user *sigmask_arg = argp;
2742 		struct kvm_signal_mask kvm_sigmask;
2743 		compat_sigset_t csigset;
2744 		sigset_t sigset;
2745 
2746 		if (argp) {
2747 			r = -EFAULT;
2748 			if (copy_from_user(&kvm_sigmask, argp,
2749 					   sizeof(kvm_sigmask)))
2750 				goto out;
2751 			r = -EINVAL;
2752 			if (kvm_sigmask.len != sizeof(csigset))
2753 				goto out;
2754 			r = -EFAULT;
2755 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2756 					   sizeof(csigset)))
2757 				goto out;
2758 			sigset_from_compat(&sigset, &csigset);
2759 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2760 		} else
2761 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2762 		break;
2763 	}
2764 	default:
2765 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2766 	}
2767 
2768 out:
2769 	return r;
2770 }
2771 #endif
2772 
2773 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2774 				 int (*accessor)(struct kvm_device *dev,
2775 						 struct kvm_device_attr *attr),
2776 				 unsigned long arg)
2777 {
2778 	struct kvm_device_attr attr;
2779 
2780 	if (!accessor)
2781 		return -EPERM;
2782 
2783 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2784 		return -EFAULT;
2785 
2786 	return accessor(dev, &attr);
2787 }
2788 
2789 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2790 			     unsigned long arg)
2791 {
2792 	struct kvm_device *dev = filp->private_data;
2793 
2794 	switch (ioctl) {
2795 	case KVM_SET_DEVICE_ATTR:
2796 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2797 	case KVM_GET_DEVICE_ATTR:
2798 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2799 	case KVM_HAS_DEVICE_ATTR:
2800 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2801 	default:
2802 		if (dev->ops->ioctl)
2803 			return dev->ops->ioctl(dev, ioctl, arg);
2804 
2805 		return -ENOTTY;
2806 	}
2807 }
2808 
2809 static int kvm_device_release(struct inode *inode, struct file *filp)
2810 {
2811 	struct kvm_device *dev = filp->private_data;
2812 	struct kvm *kvm = dev->kvm;
2813 
2814 	kvm_put_kvm(kvm);
2815 	return 0;
2816 }
2817 
2818 static const struct file_operations kvm_device_fops = {
2819 	.unlocked_ioctl = kvm_device_ioctl,
2820 #ifdef CONFIG_KVM_COMPAT
2821 	.compat_ioctl = kvm_device_ioctl,
2822 #endif
2823 	.release = kvm_device_release,
2824 };
2825 
2826 struct kvm_device *kvm_device_from_filp(struct file *filp)
2827 {
2828 	if (filp->f_op != &kvm_device_fops)
2829 		return NULL;
2830 
2831 	return filp->private_data;
2832 }
2833 
2834 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2835 #ifdef CONFIG_KVM_MPIC
2836 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2837 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2838 #endif
2839 };
2840 
2841 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2842 {
2843 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2844 		return -ENOSPC;
2845 
2846 	if (kvm_device_ops_table[type] != NULL)
2847 		return -EEXIST;
2848 
2849 	kvm_device_ops_table[type] = ops;
2850 	return 0;
2851 }
2852 
2853 void kvm_unregister_device_ops(u32 type)
2854 {
2855 	if (kvm_device_ops_table[type] != NULL)
2856 		kvm_device_ops_table[type] = NULL;
2857 }
2858 
2859 static int kvm_ioctl_create_device(struct kvm *kvm,
2860 				   struct kvm_create_device *cd)
2861 {
2862 	struct kvm_device_ops *ops = NULL;
2863 	struct kvm_device *dev;
2864 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2865 	int ret;
2866 
2867 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2868 		return -ENODEV;
2869 
2870 	ops = kvm_device_ops_table[cd->type];
2871 	if (ops == NULL)
2872 		return -ENODEV;
2873 
2874 	if (test)
2875 		return 0;
2876 
2877 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2878 	if (!dev)
2879 		return -ENOMEM;
2880 
2881 	dev->ops = ops;
2882 	dev->kvm = kvm;
2883 
2884 	mutex_lock(&kvm->lock);
2885 	ret = ops->create(dev, cd->type);
2886 	if (ret < 0) {
2887 		mutex_unlock(&kvm->lock);
2888 		kfree(dev);
2889 		return ret;
2890 	}
2891 	list_add(&dev->vm_node, &kvm->devices);
2892 	mutex_unlock(&kvm->lock);
2893 
2894 	if (ops->init)
2895 		ops->init(dev);
2896 
2897 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2898 	if (ret < 0) {
2899 		mutex_lock(&kvm->lock);
2900 		list_del(&dev->vm_node);
2901 		mutex_unlock(&kvm->lock);
2902 		ops->destroy(dev);
2903 		return ret;
2904 	}
2905 
2906 	kvm_get_kvm(kvm);
2907 	cd->fd = ret;
2908 	return 0;
2909 }
2910 
2911 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2912 {
2913 	switch (arg) {
2914 	case KVM_CAP_USER_MEMORY:
2915 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2916 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2917 	case KVM_CAP_INTERNAL_ERROR_DATA:
2918 #ifdef CONFIG_HAVE_KVM_MSI
2919 	case KVM_CAP_SIGNAL_MSI:
2920 #endif
2921 #ifdef CONFIG_HAVE_KVM_IRQFD
2922 	case KVM_CAP_IRQFD:
2923 	case KVM_CAP_IRQFD_RESAMPLE:
2924 #endif
2925 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2926 	case KVM_CAP_CHECK_EXTENSION_VM:
2927 		return 1;
2928 #ifdef CONFIG_KVM_MMIO
2929 	case KVM_CAP_COALESCED_MMIO:
2930 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2931 #endif
2932 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2933 	case KVM_CAP_IRQ_ROUTING:
2934 		return KVM_MAX_IRQ_ROUTES;
2935 #endif
2936 #if KVM_ADDRESS_SPACE_NUM > 1
2937 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2938 		return KVM_ADDRESS_SPACE_NUM;
2939 #endif
2940 	case KVM_CAP_MAX_VCPU_ID:
2941 		return KVM_MAX_VCPU_ID;
2942 	default:
2943 		break;
2944 	}
2945 	return kvm_vm_ioctl_check_extension(kvm, arg);
2946 }
2947 
2948 static long kvm_vm_ioctl(struct file *filp,
2949 			   unsigned int ioctl, unsigned long arg)
2950 {
2951 	struct kvm *kvm = filp->private_data;
2952 	void __user *argp = (void __user *)arg;
2953 	int r;
2954 
2955 	if (kvm->mm != current->mm)
2956 		return -EIO;
2957 	switch (ioctl) {
2958 	case KVM_CREATE_VCPU:
2959 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2960 		break;
2961 	case KVM_SET_USER_MEMORY_REGION: {
2962 		struct kvm_userspace_memory_region kvm_userspace_mem;
2963 
2964 		r = -EFAULT;
2965 		if (copy_from_user(&kvm_userspace_mem, argp,
2966 						sizeof(kvm_userspace_mem)))
2967 			goto out;
2968 
2969 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2970 		break;
2971 	}
2972 	case KVM_GET_DIRTY_LOG: {
2973 		struct kvm_dirty_log log;
2974 
2975 		r = -EFAULT;
2976 		if (copy_from_user(&log, argp, sizeof(log)))
2977 			goto out;
2978 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2979 		break;
2980 	}
2981 #ifdef CONFIG_KVM_MMIO
2982 	case KVM_REGISTER_COALESCED_MMIO: {
2983 		struct kvm_coalesced_mmio_zone zone;
2984 
2985 		r = -EFAULT;
2986 		if (copy_from_user(&zone, argp, sizeof(zone)))
2987 			goto out;
2988 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2989 		break;
2990 	}
2991 	case KVM_UNREGISTER_COALESCED_MMIO: {
2992 		struct kvm_coalesced_mmio_zone zone;
2993 
2994 		r = -EFAULT;
2995 		if (copy_from_user(&zone, argp, sizeof(zone)))
2996 			goto out;
2997 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2998 		break;
2999 	}
3000 #endif
3001 	case KVM_IRQFD: {
3002 		struct kvm_irqfd data;
3003 
3004 		r = -EFAULT;
3005 		if (copy_from_user(&data, argp, sizeof(data)))
3006 			goto out;
3007 		r = kvm_irqfd(kvm, &data);
3008 		break;
3009 	}
3010 	case KVM_IOEVENTFD: {
3011 		struct kvm_ioeventfd data;
3012 
3013 		r = -EFAULT;
3014 		if (copy_from_user(&data, argp, sizeof(data)))
3015 			goto out;
3016 		r = kvm_ioeventfd(kvm, &data);
3017 		break;
3018 	}
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020 	case KVM_SIGNAL_MSI: {
3021 		struct kvm_msi msi;
3022 
3023 		r = -EFAULT;
3024 		if (copy_from_user(&msi, argp, sizeof(msi)))
3025 			goto out;
3026 		r = kvm_send_userspace_msi(kvm, &msi);
3027 		break;
3028 	}
3029 #endif
3030 #ifdef __KVM_HAVE_IRQ_LINE
3031 	case KVM_IRQ_LINE_STATUS:
3032 	case KVM_IRQ_LINE: {
3033 		struct kvm_irq_level irq_event;
3034 
3035 		r = -EFAULT;
3036 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3037 			goto out;
3038 
3039 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3040 					ioctl == KVM_IRQ_LINE_STATUS);
3041 		if (r)
3042 			goto out;
3043 
3044 		r = -EFAULT;
3045 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3046 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3047 				goto out;
3048 		}
3049 
3050 		r = 0;
3051 		break;
3052 	}
3053 #endif
3054 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3055 	case KVM_SET_GSI_ROUTING: {
3056 		struct kvm_irq_routing routing;
3057 		struct kvm_irq_routing __user *urouting;
3058 		struct kvm_irq_routing_entry *entries = NULL;
3059 
3060 		r = -EFAULT;
3061 		if (copy_from_user(&routing, argp, sizeof(routing)))
3062 			goto out;
3063 		r = -EINVAL;
3064 		if (!kvm_arch_can_set_irq_routing(kvm))
3065 			goto out;
3066 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3067 			goto out;
3068 		if (routing.flags)
3069 			goto out;
3070 		if (routing.nr) {
3071 			r = -ENOMEM;
3072 			entries = vmalloc(routing.nr * sizeof(*entries));
3073 			if (!entries)
3074 				goto out;
3075 			r = -EFAULT;
3076 			urouting = argp;
3077 			if (copy_from_user(entries, urouting->entries,
3078 					   routing.nr * sizeof(*entries)))
3079 				goto out_free_irq_routing;
3080 		}
3081 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3082 					routing.flags);
3083 out_free_irq_routing:
3084 		vfree(entries);
3085 		break;
3086 	}
3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3088 	case KVM_CREATE_DEVICE: {
3089 		struct kvm_create_device cd;
3090 
3091 		r = -EFAULT;
3092 		if (copy_from_user(&cd, argp, sizeof(cd)))
3093 			goto out;
3094 
3095 		r = kvm_ioctl_create_device(kvm, &cd);
3096 		if (r)
3097 			goto out;
3098 
3099 		r = -EFAULT;
3100 		if (copy_to_user(argp, &cd, sizeof(cd)))
3101 			goto out;
3102 
3103 		r = 0;
3104 		break;
3105 	}
3106 	case KVM_CHECK_EXTENSION:
3107 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3108 		break;
3109 	default:
3110 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3111 	}
3112 out:
3113 	return r;
3114 }
3115 
3116 #ifdef CONFIG_KVM_COMPAT
3117 struct compat_kvm_dirty_log {
3118 	__u32 slot;
3119 	__u32 padding1;
3120 	union {
3121 		compat_uptr_t dirty_bitmap; /* one bit per page */
3122 		__u64 padding2;
3123 	};
3124 };
3125 
3126 static long kvm_vm_compat_ioctl(struct file *filp,
3127 			   unsigned int ioctl, unsigned long arg)
3128 {
3129 	struct kvm *kvm = filp->private_data;
3130 	int r;
3131 
3132 	if (kvm->mm != current->mm)
3133 		return -EIO;
3134 	switch (ioctl) {
3135 	case KVM_GET_DIRTY_LOG: {
3136 		struct compat_kvm_dirty_log compat_log;
3137 		struct kvm_dirty_log log;
3138 
3139 		if (copy_from_user(&compat_log, (void __user *)arg,
3140 				   sizeof(compat_log)))
3141 			return -EFAULT;
3142 		log.slot	 = compat_log.slot;
3143 		log.padding1	 = compat_log.padding1;
3144 		log.padding2	 = compat_log.padding2;
3145 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3146 
3147 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3148 		break;
3149 	}
3150 	default:
3151 		r = kvm_vm_ioctl(filp, ioctl, arg);
3152 	}
3153 	return r;
3154 }
3155 #endif
3156 
3157 static struct file_operations kvm_vm_fops = {
3158 	.release        = kvm_vm_release,
3159 	.unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161 	.compat_ioctl   = kvm_vm_compat_ioctl,
3162 #endif
3163 	.llseek		= noop_llseek,
3164 };
3165 
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168 	int r;
3169 	struct kvm *kvm;
3170 	struct file *file;
3171 
3172 	kvm = kvm_create_vm(type);
3173 	if (IS_ERR(kvm))
3174 		return PTR_ERR(kvm);
3175 #ifdef CONFIG_KVM_MMIO
3176 	r = kvm_coalesced_mmio_init(kvm);
3177 	if (r < 0) {
3178 		kvm_put_kvm(kvm);
3179 		return r;
3180 	}
3181 #endif
3182 	r = get_unused_fd_flags(O_CLOEXEC);
3183 	if (r < 0) {
3184 		kvm_put_kvm(kvm);
3185 		return r;
3186 	}
3187 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188 	if (IS_ERR(file)) {
3189 		put_unused_fd(r);
3190 		kvm_put_kvm(kvm);
3191 		return PTR_ERR(file);
3192 	}
3193 
3194 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195 		put_unused_fd(r);
3196 		fput(file);
3197 		return -ENOMEM;
3198 	}
3199 
3200 	fd_install(r, file);
3201 	return r;
3202 }
3203 
3204 static long kvm_dev_ioctl(struct file *filp,
3205 			  unsigned int ioctl, unsigned long arg)
3206 {
3207 	long r = -EINVAL;
3208 
3209 	switch (ioctl) {
3210 	case KVM_GET_API_VERSION:
3211 		if (arg)
3212 			goto out;
3213 		r = KVM_API_VERSION;
3214 		break;
3215 	case KVM_CREATE_VM:
3216 		r = kvm_dev_ioctl_create_vm(arg);
3217 		break;
3218 	case KVM_CHECK_EXTENSION:
3219 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220 		break;
3221 	case KVM_GET_VCPU_MMAP_SIZE:
3222 		if (arg)
3223 			goto out;
3224 		r = PAGE_SIZE;     /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226 		r += PAGE_SIZE;    /* pio data page */
3227 #endif
3228 #ifdef CONFIG_KVM_MMIO
3229 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3230 #endif
3231 		break;
3232 	case KVM_TRACE_ENABLE:
3233 	case KVM_TRACE_PAUSE:
3234 	case KVM_TRACE_DISABLE:
3235 		r = -EOPNOTSUPP;
3236 		break;
3237 	default:
3238 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239 	}
3240 out:
3241 	return r;
3242 }
3243 
3244 static struct file_operations kvm_chardev_ops = {
3245 	.unlocked_ioctl = kvm_dev_ioctl,
3246 	.compat_ioctl   = kvm_dev_ioctl,
3247 	.llseek		= noop_llseek,
3248 };
3249 
3250 static struct miscdevice kvm_dev = {
3251 	KVM_MINOR,
3252 	"kvm",
3253 	&kvm_chardev_ops,
3254 };
3255 
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258 	int cpu = raw_smp_processor_id();
3259 	int r;
3260 
3261 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262 		return;
3263 
3264 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265 
3266 	r = kvm_arch_hardware_enable();
3267 
3268 	if (r) {
3269 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270 		atomic_inc(&hardware_enable_failed);
3271 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272 	}
3273 }
3274 
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277 	raw_spin_lock(&kvm_count_lock);
3278 	if (kvm_usage_count)
3279 		hardware_enable_nolock(NULL);
3280 	raw_spin_unlock(&kvm_count_lock);
3281 	return 0;
3282 }
3283 
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286 	int cpu = raw_smp_processor_id();
3287 
3288 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289 		return;
3290 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 	kvm_arch_hardware_disable();
3292 }
3293 
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296 	raw_spin_lock(&kvm_count_lock);
3297 	if (kvm_usage_count)
3298 		hardware_disable_nolock(NULL);
3299 	raw_spin_unlock(&kvm_count_lock);
3300 	return 0;
3301 }
3302 
3303 static void hardware_disable_all_nolock(void)
3304 {
3305 	BUG_ON(!kvm_usage_count);
3306 
3307 	kvm_usage_count--;
3308 	if (!kvm_usage_count)
3309 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311 
3312 static void hardware_disable_all(void)
3313 {
3314 	raw_spin_lock(&kvm_count_lock);
3315 	hardware_disable_all_nolock();
3316 	raw_spin_unlock(&kvm_count_lock);
3317 }
3318 
3319 static int hardware_enable_all(void)
3320 {
3321 	int r = 0;
3322 
3323 	raw_spin_lock(&kvm_count_lock);
3324 
3325 	kvm_usage_count++;
3326 	if (kvm_usage_count == 1) {
3327 		atomic_set(&hardware_enable_failed, 0);
3328 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3329 
3330 		if (atomic_read(&hardware_enable_failed)) {
3331 			hardware_disable_all_nolock();
3332 			r = -EBUSY;
3333 		}
3334 	}
3335 
3336 	raw_spin_unlock(&kvm_count_lock);
3337 
3338 	return r;
3339 }
3340 
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342 		      void *v)
3343 {
3344 	/*
3345 	 * Some (well, at least mine) BIOSes hang on reboot if
3346 	 * in vmx root mode.
3347 	 *
3348 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3349 	 */
3350 	pr_info("kvm: exiting hardware virtualization\n");
3351 	kvm_rebooting = true;
3352 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3353 	return NOTIFY_OK;
3354 }
3355 
3356 static struct notifier_block kvm_reboot_notifier = {
3357 	.notifier_call = kvm_reboot,
3358 	.priority = 0,
3359 };
3360 
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363 	int i;
3364 
3365 	for (i = 0; i < bus->dev_count; i++) {
3366 		struct kvm_io_device *pos = bus->range[i].dev;
3367 
3368 		kvm_iodevice_destructor(pos);
3369 	}
3370 	kfree(bus);
3371 }
3372 
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374 				 const struct kvm_io_range *r2)
3375 {
3376 	gpa_t addr1 = r1->addr;
3377 	gpa_t addr2 = r2->addr;
3378 
3379 	if (addr1 < addr2)
3380 		return -1;
3381 
3382 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3383 	 * accept any overlapping write.  Any order is acceptable for
3384 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385 	 * we process all of them.
3386 	 */
3387 	if (r2->len) {
3388 		addr1 += r1->len;
3389 		addr2 += r2->len;
3390 	}
3391 
3392 	if (addr1 > addr2)
3393 		return 1;
3394 
3395 	return 0;
3396 }
3397 
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400 	return kvm_io_bus_cmp(p1, p2);
3401 }
3402 
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404 			  gpa_t addr, int len)
3405 {
3406 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407 		.addr = addr,
3408 		.len = len,
3409 		.dev = dev,
3410 	};
3411 
3412 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413 		kvm_io_bus_sort_cmp, NULL);
3414 
3415 	return 0;
3416 }
3417 
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419 			     gpa_t addr, int len)
3420 {
3421 	struct kvm_io_range *range, key;
3422 	int off;
3423 
3424 	key = (struct kvm_io_range) {
3425 		.addr = addr,
3426 		.len = len,
3427 	};
3428 
3429 	range = bsearch(&key, bus->range, bus->dev_count,
3430 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431 	if (range == NULL)
3432 		return -ENOENT;
3433 
3434 	off = range - bus->range;
3435 
3436 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437 		off--;
3438 
3439 	return off;
3440 }
3441 
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443 			      struct kvm_io_range *range, const void *val)
3444 {
3445 	int idx;
3446 
3447 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448 	if (idx < 0)
3449 		return -EOPNOTSUPP;
3450 
3451 	while (idx < bus->dev_count &&
3452 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454 					range->len, val))
3455 			return idx;
3456 		idx++;
3457 	}
3458 
3459 	return -EOPNOTSUPP;
3460 }
3461 
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464 		     int len, const void *val)
3465 {
3466 	struct kvm_io_bus *bus;
3467 	struct kvm_io_range range;
3468 	int r;
3469 
3470 	range = (struct kvm_io_range) {
3471 		.addr = addr,
3472 		.len = len,
3473 	};
3474 
3475 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476 	if (!bus)
3477 		return -ENOMEM;
3478 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3479 	return r < 0 ? r : 0;
3480 }
3481 
3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3484 			    gpa_t addr, int len, const void *val, long cookie)
3485 {
3486 	struct kvm_io_bus *bus;
3487 	struct kvm_io_range range;
3488 
3489 	range = (struct kvm_io_range) {
3490 		.addr = addr,
3491 		.len = len,
3492 	};
3493 
3494 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495 	if (!bus)
3496 		return -ENOMEM;
3497 
3498 	/* First try the device referenced by cookie. */
3499 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3500 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3501 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3502 					val))
3503 			return cookie;
3504 
3505 	/*
3506 	 * cookie contained garbage; fall back to search and return the
3507 	 * correct cookie value.
3508 	 */
3509 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3510 }
3511 
3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3513 			     struct kvm_io_range *range, void *val)
3514 {
3515 	int idx;
3516 
3517 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3518 	if (idx < 0)
3519 		return -EOPNOTSUPP;
3520 
3521 	while (idx < bus->dev_count &&
3522 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3523 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3524 				       range->len, val))
3525 			return idx;
3526 		idx++;
3527 	}
3528 
3529 	return -EOPNOTSUPP;
3530 }
3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3532 
3533 /* kvm_io_bus_read - called under kvm->slots_lock */
3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3535 		    int len, void *val)
3536 {
3537 	struct kvm_io_bus *bus;
3538 	struct kvm_io_range range;
3539 	int r;
3540 
3541 	range = (struct kvm_io_range) {
3542 		.addr = addr,
3543 		.len = len,
3544 	};
3545 
3546 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547 	if (!bus)
3548 		return -ENOMEM;
3549 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3550 	return r < 0 ? r : 0;
3551 }
3552 
3553 
3554 /* Caller must hold slots_lock. */
3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3556 			    int len, struct kvm_io_device *dev)
3557 {
3558 	struct kvm_io_bus *new_bus, *bus;
3559 
3560 	bus = kvm->buses[bus_idx];
3561 	if (!bus)
3562 		return -ENOMEM;
3563 
3564 	/* exclude ioeventfd which is limited by maximum fd */
3565 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3566 		return -ENOSPC;
3567 
3568 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3569 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3570 	if (!new_bus)
3571 		return -ENOMEM;
3572 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3573 	       sizeof(struct kvm_io_range)));
3574 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3575 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3576 	synchronize_srcu_expedited(&kvm->srcu);
3577 	kfree(bus);
3578 
3579 	return 0;
3580 }
3581 
3582 /* Caller must hold slots_lock. */
3583 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3584 			       struct kvm_io_device *dev)
3585 {
3586 	int i;
3587 	struct kvm_io_bus *new_bus, *bus;
3588 
3589 	bus = kvm->buses[bus_idx];
3590 	if (!bus)
3591 		return;
3592 
3593 	for (i = 0; i < bus->dev_count; i++)
3594 		if (bus->range[i].dev == dev) {
3595 			break;
3596 		}
3597 
3598 	if (i == bus->dev_count)
3599 		return;
3600 
3601 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3602 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3603 	if (!new_bus)  {
3604 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3605 		goto broken;
3606 	}
3607 
3608 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3609 	new_bus->dev_count--;
3610 	memcpy(new_bus->range + i, bus->range + i + 1,
3611 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3612 
3613 broken:
3614 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3615 	synchronize_srcu_expedited(&kvm->srcu);
3616 	kfree(bus);
3617 	return;
3618 }
3619 
3620 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3621 					 gpa_t addr)
3622 {
3623 	struct kvm_io_bus *bus;
3624 	int dev_idx, srcu_idx;
3625 	struct kvm_io_device *iodev = NULL;
3626 
3627 	srcu_idx = srcu_read_lock(&kvm->srcu);
3628 
3629 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3630 	if (!bus)
3631 		goto out_unlock;
3632 
3633 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3634 	if (dev_idx < 0)
3635 		goto out_unlock;
3636 
3637 	iodev = bus->range[dev_idx].dev;
3638 
3639 out_unlock:
3640 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3641 
3642 	return iodev;
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3645 
3646 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3647 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3648 			   const char *fmt)
3649 {
3650 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3651 					  inode->i_private;
3652 
3653 	/* The debugfs files are a reference to the kvm struct which
3654 	 * is still valid when kvm_destroy_vm is called.
3655 	 * To avoid the race between open and the removal of the debugfs
3656 	 * directory we test against the users count.
3657 	 */
3658 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3659 		return -ENOENT;
3660 
3661 	if (simple_attr_open(inode, file, get, set, fmt)) {
3662 		kvm_put_kvm(stat_data->kvm);
3663 		return -ENOMEM;
3664 	}
3665 
3666 	return 0;
3667 }
3668 
3669 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3670 {
3671 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3672 					  inode->i_private;
3673 
3674 	simple_attr_release(inode, file);
3675 	kvm_put_kvm(stat_data->kvm);
3676 
3677 	return 0;
3678 }
3679 
3680 static int vm_stat_get_per_vm(void *data, u64 *val)
3681 {
3682 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683 
3684 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3685 
3686 	return 0;
3687 }
3688 
3689 static int vm_stat_clear_per_vm(void *data, u64 val)
3690 {
3691 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3692 
3693 	if (val)
3694 		return -EINVAL;
3695 
3696 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3697 
3698 	return 0;
3699 }
3700 
3701 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3702 {
3703 	__simple_attr_check_format("%llu\n", 0ull);
3704 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3705 				vm_stat_clear_per_vm, "%llu\n");
3706 }
3707 
3708 static const struct file_operations vm_stat_get_per_vm_fops = {
3709 	.owner   = THIS_MODULE,
3710 	.open    = vm_stat_get_per_vm_open,
3711 	.release = kvm_debugfs_release,
3712 	.read    = simple_attr_read,
3713 	.write   = simple_attr_write,
3714 	.llseek  = no_llseek,
3715 };
3716 
3717 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3718 {
3719 	int i;
3720 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721 	struct kvm_vcpu *vcpu;
3722 
3723 	*val = 0;
3724 
3725 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3727 
3728 	return 0;
3729 }
3730 
3731 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3732 {
3733 	int i;
3734 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3735 	struct kvm_vcpu *vcpu;
3736 
3737 	if (val)
3738 		return -EINVAL;
3739 
3740 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3741 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3742 
3743 	return 0;
3744 }
3745 
3746 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3747 {
3748 	__simple_attr_check_format("%llu\n", 0ull);
3749 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3750 				 vcpu_stat_clear_per_vm, "%llu\n");
3751 }
3752 
3753 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3754 	.owner   = THIS_MODULE,
3755 	.open    = vcpu_stat_get_per_vm_open,
3756 	.release = kvm_debugfs_release,
3757 	.read    = simple_attr_read,
3758 	.write   = simple_attr_write,
3759 	.llseek  = no_llseek,
3760 };
3761 
3762 static const struct file_operations *stat_fops_per_vm[] = {
3763 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3764 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3765 };
3766 
3767 static int vm_stat_get(void *_offset, u64 *val)
3768 {
3769 	unsigned offset = (long)_offset;
3770 	struct kvm *kvm;
3771 	struct kvm_stat_data stat_tmp = {.offset = offset};
3772 	u64 tmp_val;
3773 
3774 	*val = 0;
3775 	spin_lock(&kvm_lock);
3776 	list_for_each_entry(kvm, &vm_list, vm_list) {
3777 		stat_tmp.kvm = kvm;
3778 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3779 		*val += tmp_val;
3780 	}
3781 	spin_unlock(&kvm_lock);
3782 	return 0;
3783 }
3784 
3785 static int vm_stat_clear(void *_offset, u64 val)
3786 {
3787 	unsigned offset = (long)_offset;
3788 	struct kvm *kvm;
3789 	struct kvm_stat_data stat_tmp = {.offset = offset};
3790 
3791 	if (val)
3792 		return -EINVAL;
3793 
3794 	spin_lock(&kvm_lock);
3795 	list_for_each_entry(kvm, &vm_list, vm_list) {
3796 		stat_tmp.kvm = kvm;
3797 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3798 	}
3799 	spin_unlock(&kvm_lock);
3800 
3801 	return 0;
3802 }
3803 
3804 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3805 
3806 static int vcpu_stat_get(void *_offset, u64 *val)
3807 {
3808 	unsigned offset = (long)_offset;
3809 	struct kvm *kvm;
3810 	struct kvm_stat_data stat_tmp = {.offset = offset};
3811 	u64 tmp_val;
3812 
3813 	*val = 0;
3814 	spin_lock(&kvm_lock);
3815 	list_for_each_entry(kvm, &vm_list, vm_list) {
3816 		stat_tmp.kvm = kvm;
3817 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3818 		*val += tmp_val;
3819 	}
3820 	spin_unlock(&kvm_lock);
3821 	return 0;
3822 }
3823 
3824 static int vcpu_stat_clear(void *_offset, u64 val)
3825 {
3826 	unsigned offset = (long)_offset;
3827 	struct kvm *kvm;
3828 	struct kvm_stat_data stat_tmp = {.offset = offset};
3829 
3830 	if (val)
3831 		return -EINVAL;
3832 
3833 	spin_lock(&kvm_lock);
3834 	list_for_each_entry(kvm, &vm_list, vm_list) {
3835 		stat_tmp.kvm = kvm;
3836 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3837 	}
3838 	spin_unlock(&kvm_lock);
3839 
3840 	return 0;
3841 }
3842 
3843 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3844 			"%llu\n");
3845 
3846 static const struct file_operations *stat_fops[] = {
3847 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3848 	[KVM_STAT_VM]   = &vm_stat_fops,
3849 };
3850 
3851 static int kvm_init_debug(void)
3852 {
3853 	int r = -EEXIST;
3854 	struct kvm_stats_debugfs_item *p;
3855 
3856 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3857 	if (kvm_debugfs_dir == NULL)
3858 		goto out;
3859 
3860 	kvm_debugfs_num_entries = 0;
3861 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3862 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3863 					 (void *)(long)p->offset,
3864 					 stat_fops[p->kind]))
3865 			goto out_dir;
3866 	}
3867 
3868 	return 0;
3869 
3870 out_dir:
3871 	debugfs_remove_recursive(kvm_debugfs_dir);
3872 out:
3873 	return r;
3874 }
3875 
3876 static int kvm_suspend(void)
3877 {
3878 	if (kvm_usage_count)
3879 		hardware_disable_nolock(NULL);
3880 	return 0;
3881 }
3882 
3883 static void kvm_resume(void)
3884 {
3885 	if (kvm_usage_count) {
3886 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3887 		hardware_enable_nolock(NULL);
3888 	}
3889 }
3890 
3891 static struct syscore_ops kvm_syscore_ops = {
3892 	.suspend = kvm_suspend,
3893 	.resume = kvm_resume,
3894 };
3895 
3896 static inline
3897 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3898 {
3899 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3900 }
3901 
3902 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3903 {
3904 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3905 
3906 	if (vcpu->preempted)
3907 		vcpu->preempted = false;
3908 
3909 	kvm_arch_sched_in(vcpu, cpu);
3910 
3911 	kvm_arch_vcpu_load(vcpu, cpu);
3912 }
3913 
3914 static void kvm_sched_out(struct preempt_notifier *pn,
3915 			  struct task_struct *next)
3916 {
3917 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3918 
3919 	if (current->state == TASK_RUNNING)
3920 		vcpu->preempted = true;
3921 	kvm_arch_vcpu_put(vcpu);
3922 }
3923 
3924 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3925 		  struct module *module)
3926 {
3927 	int r;
3928 	int cpu;
3929 
3930 	r = kvm_arch_init(opaque);
3931 	if (r)
3932 		goto out_fail;
3933 
3934 	/*
3935 	 * kvm_arch_init makes sure there's at most one caller
3936 	 * for architectures that support multiple implementations,
3937 	 * like intel and amd on x86.
3938 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3939 	 * conflicts in case kvm is already setup for another implementation.
3940 	 */
3941 	r = kvm_irqfd_init();
3942 	if (r)
3943 		goto out_irqfd;
3944 
3945 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3946 		r = -ENOMEM;
3947 		goto out_free_0;
3948 	}
3949 
3950 	r = kvm_arch_hardware_setup();
3951 	if (r < 0)
3952 		goto out_free_0a;
3953 
3954 	for_each_online_cpu(cpu) {
3955 		smp_call_function_single(cpu,
3956 				kvm_arch_check_processor_compat,
3957 				&r, 1);
3958 		if (r < 0)
3959 			goto out_free_1;
3960 	}
3961 
3962 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3963 				      kvm_starting_cpu, kvm_dying_cpu);
3964 	if (r)
3965 		goto out_free_2;
3966 	register_reboot_notifier(&kvm_reboot_notifier);
3967 
3968 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3969 	if (!vcpu_align)
3970 		vcpu_align = __alignof__(struct kvm_vcpu);
3971 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3972 					   0, NULL);
3973 	if (!kvm_vcpu_cache) {
3974 		r = -ENOMEM;
3975 		goto out_free_3;
3976 	}
3977 
3978 	r = kvm_async_pf_init();
3979 	if (r)
3980 		goto out_free;
3981 
3982 	kvm_chardev_ops.owner = module;
3983 	kvm_vm_fops.owner = module;
3984 	kvm_vcpu_fops.owner = module;
3985 
3986 	r = misc_register(&kvm_dev);
3987 	if (r) {
3988 		pr_err("kvm: misc device register failed\n");
3989 		goto out_unreg;
3990 	}
3991 
3992 	register_syscore_ops(&kvm_syscore_ops);
3993 
3994 	kvm_preempt_ops.sched_in = kvm_sched_in;
3995 	kvm_preempt_ops.sched_out = kvm_sched_out;
3996 
3997 	r = kvm_init_debug();
3998 	if (r) {
3999 		pr_err("kvm: create debugfs files failed\n");
4000 		goto out_undebugfs;
4001 	}
4002 
4003 	r = kvm_vfio_ops_init();
4004 	WARN_ON(r);
4005 
4006 	return 0;
4007 
4008 out_undebugfs:
4009 	unregister_syscore_ops(&kvm_syscore_ops);
4010 	misc_deregister(&kvm_dev);
4011 out_unreg:
4012 	kvm_async_pf_deinit();
4013 out_free:
4014 	kmem_cache_destroy(kvm_vcpu_cache);
4015 out_free_3:
4016 	unregister_reboot_notifier(&kvm_reboot_notifier);
4017 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4018 out_free_2:
4019 out_free_1:
4020 	kvm_arch_hardware_unsetup();
4021 out_free_0a:
4022 	free_cpumask_var(cpus_hardware_enabled);
4023 out_free_0:
4024 	kvm_irqfd_exit();
4025 out_irqfd:
4026 	kvm_arch_exit();
4027 out_fail:
4028 	return r;
4029 }
4030 EXPORT_SYMBOL_GPL(kvm_init);
4031 
4032 void kvm_exit(void)
4033 {
4034 	debugfs_remove_recursive(kvm_debugfs_dir);
4035 	misc_deregister(&kvm_dev);
4036 	kmem_cache_destroy(kvm_vcpu_cache);
4037 	kvm_async_pf_deinit();
4038 	unregister_syscore_ops(&kvm_syscore_ops);
4039 	unregister_reboot_notifier(&kvm_reboot_notifier);
4040 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4041 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4042 	kvm_arch_hardware_unsetup();
4043 	kvm_arch_exit();
4044 	kvm_irqfd_exit();
4045 	free_cpumask_var(cpus_hardware_enabled);
4046 	kvm_vfio_ops_exit();
4047 }
4048 EXPORT_SYMBOL_GPL(kvm_exit);
4049