xref: /openbmc/linux/virt/kvm/kvm_main.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 				unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127 
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129 
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131 
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134 
135 static bool largepages_enabled = true;
136 
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142 
143 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 		unsigned long start, unsigned long end)
145 {
146 }
147 
148 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
149 {
150 	if (pfn_valid(pfn))
151 		return PageReserved(pfn_to_page(pfn));
152 
153 	return true;
154 }
155 
156 /*
157  * Switches to specified vcpu, until a matching vcpu_put()
158  */
159 void vcpu_load(struct kvm_vcpu *vcpu)
160 {
161 	int cpu = get_cpu();
162 	preempt_notifier_register(&vcpu->preempt_notifier);
163 	kvm_arch_vcpu_load(vcpu, cpu);
164 	put_cpu();
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167 
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170 	preempt_disable();
171 	kvm_arch_vcpu_put(vcpu);
172 	preempt_notifier_unregister(&vcpu->preempt_notifier);
173 	preempt_enable();
174 }
175 EXPORT_SYMBOL_GPL(vcpu_put);
176 
177 /* TODO: merge with kvm_arch_vcpu_should_kick */
178 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
179 {
180 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
181 
182 	/*
183 	 * We need to wait for the VCPU to reenable interrupts and get out of
184 	 * READING_SHADOW_PAGE_TABLES mode.
185 	 */
186 	if (req & KVM_REQUEST_WAIT)
187 		return mode != OUTSIDE_GUEST_MODE;
188 
189 	/*
190 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
191 	 */
192 	return mode == IN_GUEST_MODE;
193 }
194 
195 static void ack_flush(void *_completed)
196 {
197 }
198 
199 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
200 {
201 	if (unlikely(!cpus))
202 		cpus = cpu_online_mask;
203 
204 	if (cpumask_empty(cpus))
205 		return false;
206 
207 	smp_call_function_many(cpus, ack_flush, NULL, wait);
208 	return true;
209 }
210 
211 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
212 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
213 {
214 	int i, cpu, me;
215 	struct kvm_vcpu *vcpu;
216 	bool called;
217 
218 	me = get_cpu();
219 
220 	kvm_for_each_vcpu(i, vcpu, kvm) {
221 		if (!test_bit(i, vcpu_bitmap))
222 			continue;
223 
224 		kvm_make_request(req, vcpu);
225 		cpu = vcpu->cpu;
226 
227 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228 			continue;
229 
230 		if (tmp != NULL && cpu != -1 && cpu != me &&
231 		    kvm_request_needs_ipi(vcpu, req))
232 			__cpumask_set_cpu(cpu, tmp);
233 	}
234 
235 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
236 	put_cpu();
237 
238 	return called;
239 }
240 
241 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
242 {
243 	cpumask_var_t cpus;
244 	bool called;
245 	static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
246 		= {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
247 
248 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
249 
250 	called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
251 
252 	free_cpumask_var(cpus);
253 	return called;
254 }
255 
256 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
257 void kvm_flush_remote_tlbs(struct kvm *kvm)
258 {
259 	/*
260 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
261 	 * kvm_make_all_cpus_request.
262 	 */
263 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
264 
265 	/*
266 	 * We want to publish modifications to the page tables before reading
267 	 * mode. Pairs with a memory barrier in arch-specific code.
268 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
269 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
270 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
271 	 *
272 	 * There is already an smp_mb__after_atomic() before
273 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
274 	 * barrier here.
275 	 */
276 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 		++kvm->stat.remote_tlb_flush;
278 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282 
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287 
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 	struct page *page;
291 	int r;
292 
293 	mutex_init(&vcpu->mutex);
294 	vcpu->cpu = -1;
295 	vcpu->kvm = kvm;
296 	vcpu->vcpu_id = id;
297 	vcpu->pid = NULL;
298 	init_swait_queue_head(&vcpu->wq);
299 	kvm_async_pf_vcpu_init(vcpu);
300 
301 	vcpu->pre_pcpu = -1;
302 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303 
304 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 	if (!page) {
306 		r = -ENOMEM;
307 		goto fail;
308 	}
309 	vcpu->run = page_address(page);
310 
311 	kvm_vcpu_set_in_spin_loop(vcpu, false);
312 	kvm_vcpu_set_dy_eligible(vcpu, false);
313 	vcpu->preempted = false;
314 
315 	r = kvm_arch_vcpu_init(vcpu);
316 	if (r < 0)
317 		goto fail_free_run;
318 	return 0;
319 
320 fail_free_run:
321 	free_page((unsigned long)vcpu->run);
322 fail:
323 	return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326 
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 	/*
330 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 	 * will change the vcpu->pid pointer and on uninit all file
332 	 * descriptors are already gone.
333 	 */
334 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 	kvm_arch_vcpu_uninit(vcpu);
336 	free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339 
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 	return container_of(mn, struct kvm, mmu_notifier);
344 }
345 
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 					struct mm_struct *mm,
348 					unsigned long address,
349 					pte_t pte)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 	int idx;
353 
354 	idx = srcu_read_lock(&kvm->srcu);
355 	spin_lock(&kvm->mmu_lock);
356 	kvm->mmu_notifier_seq++;
357 	kvm_set_spte_hva(kvm, address, pte);
358 	spin_unlock(&kvm->mmu_lock);
359 	srcu_read_unlock(&kvm->srcu, idx);
360 }
361 
362 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363 						    struct mm_struct *mm,
364 						    unsigned long start,
365 						    unsigned long end)
366 {
367 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
368 	int need_tlb_flush = 0, idx;
369 
370 	idx = srcu_read_lock(&kvm->srcu);
371 	spin_lock(&kvm->mmu_lock);
372 	/*
373 	 * The count increase must become visible at unlock time as no
374 	 * spte can be established without taking the mmu_lock and
375 	 * count is also read inside the mmu_lock critical section.
376 	 */
377 	kvm->mmu_notifier_count++;
378 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
379 	need_tlb_flush |= kvm->tlbs_dirty;
380 	/* we've to flush the tlb before the pages can be freed */
381 	if (need_tlb_flush)
382 		kvm_flush_remote_tlbs(kvm);
383 
384 	spin_unlock(&kvm->mmu_lock);
385 
386 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
387 
388 	srcu_read_unlock(&kvm->srcu, idx);
389 }
390 
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392 						  struct mm_struct *mm,
393 						  unsigned long start,
394 						  unsigned long end)
395 {
396 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 
398 	spin_lock(&kvm->mmu_lock);
399 	/*
400 	 * This sequence increase will notify the kvm page fault that
401 	 * the page that is going to be mapped in the spte could have
402 	 * been freed.
403 	 */
404 	kvm->mmu_notifier_seq++;
405 	smp_wmb();
406 	/*
407 	 * The above sequence increase must be visible before the
408 	 * below count decrease, which is ensured by the smp_wmb above
409 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
410 	 */
411 	kvm->mmu_notifier_count--;
412 	spin_unlock(&kvm->mmu_lock);
413 
414 	BUG_ON(kvm->mmu_notifier_count < 0);
415 }
416 
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418 					      struct mm_struct *mm,
419 					      unsigned long start,
420 					      unsigned long end)
421 {
422 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 	int young, idx;
424 
425 	idx = srcu_read_lock(&kvm->srcu);
426 	spin_lock(&kvm->mmu_lock);
427 
428 	young = kvm_age_hva(kvm, start, end);
429 	if (young)
430 		kvm_flush_remote_tlbs(kvm);
431 
432 	spin_unlock(&kvm->mmu_lock);
433 	srcu_read_unlock(&kvm->srcu, idx);
434 
435 	return young;
436 }
437 
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439 					struct mm_struct *mm,
440 					unsigned long start,
441 					unsigned long end)
442 {
443 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
444 	int young, idx;
445 
446 	idx = srcu_read_lock(&kvm->srcu);
447 	spin_lock(&kvm->mmu_lock);
448 	/*
449 	 * Even though we do not flush TLB, this will still adversely
450 	 * affect performance on pre-Haswell Intel EPT, where there is
451 	 * no EPT Access Bit to clear so that we have to tear down EPT
452 	 * tables instead. If we find this unacceptable, we can always
453 	 * add a parameter to kvm_age_hva so that it effectively doesn't
454 	 * do anything on clear_young.
455 	 *
456 	 * Also note that currently we never issue secondary TLB flushes
457 	 * from clear_young, leaving this job up to the regular system
458 	 * cadence. If we find this inaccurate, we might come up with a
459 	 * more sophisticated heuristic later.
460 	 */
461 	young = kvm_age_hva(kvm, start, end);
462 	spin_unlock(&kvm->mmu_lock);
463 	srcu_read_unlock(&kvm->srcu, idx);
464 
465 	return young;
466 }
467 
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469 				       struct mm_struct *mm,
470 				       unsigned long address)
471 {
472 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 	int young, idx;
474 
475 	idx = srcu_read_lock(&kvm->srcu);
476 	spin_lock(&kvm->mmu_lock);
477 	young = kvm_test_age_hva(kvm, address);
478 	spin_unlock(&kvm->mmu_lock);
479 	srcu_read_unlock(&kvm->srcu, idx);
480 
481 	return young;
482 }
483 
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485 				     struct mm_struct *mm)
486 {
487 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
488 	int idx;
489 
490 	idx = srcu_read_lock(&kvm->srcu);
491 	kvm_arch_flush_shadow_all(kvm);
492 	srcu_read_unlock(&kvm->srcu, idx);
493 }
494 
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496 	.flags			= MMU_INVALIDATE_DOES_NOT_BLOCK,
497 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
498 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
499 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
500 	.clear_young		= kvm_mmu_notifier_clear_young,
501 	.test_young		= kvm_mmu_notifier_test_young,
502 	.change_pte		= kvm_mmu_notifier_change_pte,
503 	.release		= kvm_mmu_notifier_release,
504 };
505 
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
507 {
508 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
510 }
511 
512 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
513 
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516 	return 0;
517 }
518 
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
520 
521 static struct kvm_memslots *kvm_alloc_memslots(void)
522 {
523 	int i;
524 	struct kvm_memslots *slots;
525 
526 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
527 	if (!slots)
528 		return NULL;
529 
530 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531 		slots->id_to_index[i] = slots->memslots[i].id = i;
532 
533 	return slots;
534 }
535 
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538 	if (!memslot->dirty_bitmap)
539 		return;
540 
541 	kvfree(memslot->dirty_bitmap);
542 	memslot->dirty_bitmap = NULL;
543 }
544 
545 /*
546  * Free any memory in @free but not in @dont.
547  */
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549 			      struct kvm_memory_slot *dont)
550 {
551 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552 		kvm_destroy_dirty_bitmap(free);
553 
554 	kvm_arch_free_memslot(kvm, free, dont);
555 
556 	free->npages = 0;
557 }
558 
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
560 {
561 	struct kvm_memory_slot *memslot;
562 
563 	if (!slots)
564 		return;
565 
566 	kvm_for_each_memslot(memslot, slots)
567 		kvm_free_memslot(kvm, memslot, NULL);
568 
569 	kvfree(slots);
570 }
571 
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
573 {
574 	int i;
575 
576 	if (!kvm->debugfs_dentry)
577 		return;
578 
579 	debugfs_remove_recursive(kvm->debugfs_dentry);
580 
581 	if (kvm->debugfs_stat_data) {
582 		for (i = 0; i < kvm_debugfs_num_entries; i++)
583 			kfree(kvm->debugfs_stat_data[i]);
584 		kfree(kvm->debugfs_stat_data);
585 	}
586 }
587 
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
589 {
590 	char dir_name[ITOA_MAX_LEN * 2];
591 	struct kvm_stat_data *stat_data;
592 	struct kvm_stats_debugfs_item *p;
593 
594 	if (!debugfs_initialized())
595 		return 0;
596 
597 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
599 
600 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
601 					 sizeof(*kvm->debugfs_stat_data),
602 					 GFP_KERNEL);
603 	if (!kvm->debugfs_stat_data)
604 		return -ENOMEM;
605 
606 	for (p = debugfs_entries; p->name; p++) {
607 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
608 		if (!stat_data)
609 			return -ENOMEM;
610 
611 		stat_data->kvm = kvm;
612 		stat_data->offset = p->offset;
613 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
614 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
615 				    stat_data, stat_fops_per_vm[p->kind]);
616 	}
617 	return 0;
618 }
619 
620 static struct kvm *kvm_create_vm(unsigned long type)
621 {
622 	int r, i;
623 	struct kvm *kvm = kvm_arch_alloc_vm();
624 
625 	if (!kvm)
626 		return ERR_PTR(-ENOMEM);
627 
628 	spin_lock_init(&kvm->mmu_lock);
629 	mmgrab(current->mm);
630 	kvm->mm = current->mm;
631 	kvm_eventfd_init(kvm);
632 	mutex_init(&kvm->lock);
633 	mutex_init(&kvm->irq_lock);
634 	mutex_init(&kvm->slots_lock);
635 	refcount_set(&kvm->users_count, 1);
636 	INIT_LIST_HEAD(&kvm->devices);
637 
638 	r = kvm_arch_init_vm(kvm, type);
639 	if (r)
640 		goto out_err_no_disable;
641 
642 	r = hardware_enable_all();
643 	if (r)
644 		goto out_err_no_disable;
645 
646 #ifdef CONFIG_HAVE_KVM_IRQFD
647 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
648 #endif
649 
650 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
651 
652 	r = -ENOMEM;
653 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
654 		struct kvm_memslots *slots = kvm_alloc_memslots();
655 		if (!slots)
656 			goto out_err_no_srcu;
657 		/*
658 		 * Generations must be different for each address space.
659 		 * Init kvm generation close to the maximum to easily test the
660 		 * code of handling generation number wrap-around.
661 		 */
662 		slots->generation = i * 2 - 150;
663 		rcu_assign_pointer(kvm->memslots[i], slots);
664 	}
665 
666 	if (init_srcu_struct(&kvm->srcu))
667 		goto out_err_no_srcu;
668 	if (init_srcu_struct(&kvm->irq_srcu))
669 		goto out_err_no_irq_srcu;
670 	for (i = 0; i < KVM_NR_BUSES; i++) {
671 		rcu_assign_pointer(kvm->buses[i],
672 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
673 		if (!kvm->buses[i])
674 			goto out_err;
675 	}
676 
677 	r = kvm_init_mmu_notifier(kvm);
678 	if (r)
679 		goto out_err;
680 
681 	spin_lock(&kvm_lock);
682 	list_add(&kvm->vm_list, &vm_list);
683 	spin_unlock(&kvm_lock);
684 
685 	preempt_notifier_inc();
686 
687 	return kvm;
688 
689 out_err:
690 	cleanup_srcu_struct(&kvm->irq_srcu);
691 out_err_no_irq_srcu:
692 	cleanup_srcu_struct(&kvm->srcu);
693 out_err_no_srcu:
694 	hardware_disable_all();
695 out_err_no_disable:
696 	refcount_set(&kvm->users_count, 0);
697 	for (i = 0; i < KVM_NR_BUSES; i++)
698 		kfree(kvm_get_bus(kvm, i));
699 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
700 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
701 	kvm_arch_free_vm(kvm);
702 	mmdrop(current->mm);
703 	return ERR_PTR(r);
704 }
705 
706 static void kvm_destroy_devices(struct kvm *kvm)
707 {
708 	struct kvm_device *dev, *tmp;
709 
710 	/*
711 	 * We do not need to take the kvm->lock here, because nobody else
712 	 * has a reference to the struct kvm at this point and therefore
713 	 * cannot access the devices list anyhow.
714 	 */
715 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
716 		list_del(&dev->vm_node);
717 		dev->ops->destroy(dev);
718 	}
719 }
720 
721 static void kvm_destroy_vm(struct kvm *kvm)
722 {
723 	int i;
724 	struct mm_struct *mm = kvm->mm;
725 
726 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
727 	kvm_destroy_vm_debugfs(kvm);
728 	kvm_arch_sync_events(kvm);
729 	spin_lock(&kvm_lock);
730 	list_del(&kvm->vm_list);
731 	spin_unlock(&kvm_lock);
732 	kvm_free_irq_routing(kvm);
733 	for (i = 0; i < KVM_NR_BUSES; i++) {
734 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
735 
736 		if (bus)
737 			kvm_io_bus_destroy(bus);
738 		kvm->buses[i] = NULL;
739 	}
740 	kvm_coalesced_mmio_free(kvm);
741 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
742 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
743 #else
744 	kvm_arch_flush_shadow_all(kvm);
745 #endif
746 	kvm_arch_destroy_vm(kvm);
747 	kvm_destroy_devices(kvm);
748 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
749 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
750 	cleanup_srcu_struct(&kvm->irq_srcu);
751 	cleanup_srcu_struct(&kvm->srcu);
752 	kvm_arch_free_vm(kvm);
753 	preempt_notifier_dec();
754 	hardware_disable_all();
755 	mmdrop(mm);
756 }
757 
758 void kvm_get_kvm(struct kvm *kvm)
759 {
760 	refcount_inc(&kvm->users_count);
761 }
762 EXPORT_SYMBOL_GPL(kvm_get_kvm);
763 
764 void kvm_put_kvm(struct kvm *kvm)
765 {
766 	if (refcount_dec_and_test(&kvm->users_count))
767 		kvm_destroy_vm(kvm);
768 }
769 EXPORT_SYMBOL_GPL(kvm_put_kvm);
770 
771 
772 static int kvm_vm_release(struct inode *inode, struct file *filp)
773 {
774 	struct kvm *kvm = filp->private_data;
775 
776 	kvm_irqfd_release(kvm);
777 
778 	kvm_put_kvm(kvm);
779 	return 0;
780 }
781 
782 /*
783  * Allocation size is twice as large as the actual dirty bitmap size.
784  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
785  */
786 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
787 {
788 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
789 
790 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
791 	if (!memslot->dirty_bitmap)
792 		return -ENOMEM;
793 
794 	return 0;
795 }
796 
797 /*
798  * Insert memslot and re-sort memslots based on their GFN,
799  * so binary search could be used to lookup GFN.
800  * Sorting algorithm takes advantage of having initially
801  * sorted array and known changed memslot position.
802  */
803 static void update_memslots(struct kvm_memslots *slots,
804 			    struct kvm_memory_slot *new)
805 {
806 	int id = new->id;
807 	int i = slots->id_to_index[id];
808 	struct kvm_memory_slot *mslots = slots->memslots;
809 
810 	WARN_ON(mslots[i].id != id);
811 	if (!new->npages) {
812 		WARN_ON(!mslots[i].npages);
813 		if (mslots[i].npages)
814 			slots->used_slots--;
815 	} else {
816 		if (!mslots[i].npages)
817 			slots->used_slots++;
818 	}
819 
820 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
821 	       new->base_gfn <= mslots[i + 1].base_gfn) {
822 		if (!mslots[i + 1].npages)
823 			break;
824 		mslots[i] = mslots[i + 1];
825 		slots->id_to_index[mslots[i].id] = i;
826 		i++;
827 	}
828 
829 	/*
830 	 * The ">=" is needed when creating a slot with base_gfn == 0,
831 	 * so that it moves before all those with base_gfn == npages == 0.
832 	 *
833 	 * On the other hand, if new->npages is zero, the above loop has
834 	 * already left i pointing to the beginning of the empty part of
835 	 * mslots, and the ">=" would move the hole backwards in this
836 	 * case---which is wrong.  So skip the loop when deleting a slot.
837 	 */
838 	if (new->npages) {
839 		while (i > 0 &&
840 		       new->base_gfn >= mslots[i - 1].base_gfn) {
841 			mslots[i] = mslots[i - 1];
842 			slots->id_to_index[mslots[i].id] = i;
843 			i--;
844 		}
845 	} else
846 		WARN_ON_ONCE(i != slots->used_slots);
847 
848 	mslots[i] = *new;
849 	slots->id_to_index[mslots[i].id] = i;
850 }
851 
852 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
853 {
854 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
855 
856 #ifdef __KVM_HAVE_READONLY_MEM
857 	valid_flags |= KVM_MEM_READONLY;
858 #endif
859 
860 	if (mem->flags & ~valid_flags)
861 		return -EINVAL;
862 
863 	return 0;
864 }
865 
866 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
867 		int as_id, struct kvm_memslots *slots)
868 {
869 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
870 
871 	/*
872 	 * Set the low bit in the generation, which disables SPTE caching
873 	 * until the end of synchronize_srcu_expedited.
874 	 */
875 	WARN_ON(old_memslots->generation & 1);
876 	slots->generation = old_memslots->generation + 1;
877 
878 	rcu_assign_pointer(kvm->memslots[as_id], slots);
879 	synchronize_srcu_expedited(&kvm->srcu);
880 
881 	/*
882 	 * Increment the new memslot generation a second time. This prevents
883 	 * vm exits that race with memslot updates from caching a memslot
884 	 * generation that will (potentially) be valid forever.
885 	 *
886 	 * Generations must be unique even across address spaces.  We do not need
887 	 * a global counter for that, instead the generation space is evenly split
888 	 * across address spaces.  For example, with two address spaces, address
889 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
890 	 * use generations 2, 6, 10, 14, ...
891 	 */
892 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
893 
894 	kvm_arch_memslots_updated(kvm, slots);
895 
896 	return old_memslots;
897 }
898 
899 /*
900  * Allocate some memory and give it an address in the guest physical address
901  * space.
902  *
903  * Discontiguous memory is allowed, mostly for framebuffers.
904  *
905  * Must be called holding kvm->slots_lock for write.
906  */
907 int __kvm_set_memory_region(struct kvm *kvm,
908 			    const struct kvm_userspace_memory_region *mem)
909 {
910 	int r;
911 	gfn_t base_gfn;
912 	unsigned long npages;
913 	struct kvm_memory_slot *slot;
914 	struct kvm_memory_slot old, new;
915 	struct kvm_memslots *slots = NULL, *old_memslots;
916 	int as_id, id;
917 	enum kvm_mr_change change;
918 
919 	r = check_memory_region_flags(mem);
920 	if (r)
921 		goto out;
922 
923 	r = -EINVAL;
924 	as_id = mem->slot >> 16;
925 	id = (u16)mem->slot;
926 
927 	/* General sanity checks */
928 	if (mem->memory_size & (PAGE_SIZE - 1))
929 		goto out;
930 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
931 		goto out;
932 	/* We can read the guest memory with __xxx_user() later on. */
933 	if ((id < KVM_USER_MEM_SLOTS) &&
934 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
935 	     !access_ok(VERIFY_WRITE,
936 			(void __user *)(unsigned long)mem->userspace_addr,
937 			mem->memory_size)))
938 		goto out;
939 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
940 		goto out;
941 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
942 		goto out;
943 
944 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
945 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
946 	npages = mem->memory_size >> PAGE_SHIFT;
947 
948 	if (npages > KVM_MEM_MAX_NR_PAGES)
949 		goto out;
950 
951 	new = old = *slot;
952 
953 	new.id = id;
954 	new.base_gfn = base_gfn;
955 	new.npages = npages;
956 	new.flags = mem->flags;
957 
958 	if (npages) {
959 		if (!old.npages)
960 			change = KVM_MR_CREATE;
961 		else { /* Modify an existing slot. */
962 			if ((mem->userspace_addr != old.userspace_addr) ||
963 			    (npages != old.npages) ||
964 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
965 				goto out;
966 
967 			if (base_gfn != old.base_gfn)
968 				change = KVM_MR_MOVE;
969 			else if (new.flags != old.flags)
970 				change = KVM_MR_FLAGS_ONLY;
971 			else { /* Nothing to change. */
972 				r = 0;
973 				goto out;
974 			}
975 		}
976 	} else {
977 		if (!old.npages)
978 			goto out;
979 
980 		change = KVM_MR_DELETE;
981 		new.base_gfn = 0;
982 		new.flags = 0;
983 	}
984 
985 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
986 		/* Check for overlaps */
987 		r = -EEXIST;
988 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
989 			if (slot->id == id)
990 				continue;
991 			if (!((base_gfn + npages <= slot->base_gfn) ||
992 			      (base_gfn >= slot->base_gfn + slot->npages)))
993 				goto out;
994 		}
995 	}
996 
997 	/* Free page dirty bitmap if unneeded */
998 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
999 		new.dirty_bitmap = NULL;
1000 
1001 	r = -ENOMEM;
1002 	if (change == KVM_MR_CREATE) {
1003 		new.userspace_addr = mem->userspace_addr;
1004 
1005 		if (kvm_arch_create_memslot(kvm, &new, npages))
1006 			goto out_free;
1007 	}
1008 
1009 	/* Allocate page dirty bitmap if needed */
1010 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1011 		if (kvm_create_dirty_bitmap(&new) < 0)
1012 			goto out_free;
1013 	}
1014 
1015 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1016 	if (!slots)
1017 		goto out_free;
1018 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1019 
1020 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1021 		slot = id_to_memslot(slots, id);
1022 		slot->flags |= KVM_MEMSLOT_INVALID;
1023 
1024 		old_memslots = install_new_memslots(kvm, as_id, slots);
1025 
1026 		/* From this point no new shadow pages pointing to a deleted,
1027 		 * or moved, memslot will be created.
1028 		 *
1029 		 * validation of sp->gfn happens in:
1030 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1031 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1032 		 */
1033 		kvm_arch_flush_shadow_memslot(kvm, slot);
1034 
1035 		/*
1036 		 * We can re-use the old_memslots from above, the only difference
1037 		 * from the currently installed memslots is the invalid flag.  This
1038 		 * will get overwritten by update_memslots anyway.
1039 		 */
1040 		slots = old_memslots;
1041 	}
1042 
1043 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1044 	if (r)
1045 		goto out_slots;
1046 
1047 	/* actual memory is freed via old in kvm_free_memslot below */
1048 	if (change == KVM_MR_DELETE) {
1049 		new.dirty_bitmap = NULL;
1050 		memset(&new.arch, 0, sizeof(new.arch));
1051 	}
1052 
1053 	update_memslots(slots, &new);
1054 	old_memslots = install_new_memslots(kvm, as_id, slots);
1055 
1056 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1057 
1058 	kvm_free_memslot(kvm, &old, &new);
1059 	kvfree(old_memslots);
1060 	return 0;
1061 
1062 out_slots:
1063 	kvfree(slots);
1064 out_free:
1065 	kvm_free_memslot(kvm, &new, &old);
1066 out:
1067 	return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070 
1071 int kvm_set_memory_region(struct kvm *kvm,
1072 			  const struct kvm_userspace_memory_region *mem)
1073 {
1074 	int r;
1075 
1076 	mutex_lock(&kvm->slots_lock);
1077 	r = __kvm_set_memory_region(kvm, mem);
1078 	mutex_unlock(&kvm->slots_lock);
1079 	return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082 
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084 					  struct kvm_userspace_memory_region *mem)
1085 {
1086 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087 		return -EINVAL;
1088 
1089 	return kvm_set_memory_region(kvm, mem);
1090 }
1091 
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093 			struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095 	struct kvm_memslots *slots;
1096 	struct kvm_memory_slot *memslot;
1097 	int i, as_id, id;
1098 	unsigned long n;
1099 	unsigned long any = 0;
1100 
1101 	as_id = log->slot >> 16;
1102 	id = (u16)log->slot;
1103 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1104 		return -EINVAL;
1105 
1106 	slots = __kvm_memslots(kvm, as_id);
1107 	memslot = id_to_memslot(slots, id);
1108 	if (!memslot->dirty_bitmap)
1109 		return -ENOENT;
1110 
1111 	n = kvm_dirty_bitmap_bytes(memslot);
1112 
1113 	for (i = 0; !any && i < n/sizeof(long); ++i)
1114 		any = memslot->dirty_bitmap[i];
1115 
1116 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117 		return -EFAULT;
1118 
1119 	if (any)
1120 		*is_dirty = 1;
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1124 
1125 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1126 /**
1127  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1128  *	are dirty write protect them for next write.
1129  * @kvm:	pointer to kvm instance
1130  * @log:	slot id and address to which we copy the log
1131  * @is_dirty:	flag set if any page is dirty
1132  *
1133  * We need to keep it in mind that VCPU threads can write to the bitmap
1134  * concurrently. So, to avoid losing track of dirty pages we keep the
1135  * following order:
1136  *
1137  *    1. Take a snapshot of the bit and clear it if needed.
1138  *    2. Write protect the corresponding page.
1139  *    3. Copy the snapshot to the userspace.
1140  *    4. Upon return caller flushes TLB's if needed.
1141  *
1142  * Between 2 and 4, the guest may write to the page using the remaining TLB
1143  * entry.  This is not a problem because the page is reported dirty using
1144  * the snapshot taken before and step 4 ensures that writes done after
1145  * exiting to userspace will be logged for the next call.
1146  *
1147  */
1148 int kvm_get_dirty_log_protect(struct kvm *kvm,
1149 			struct kvm_dirty_log *log, bool *is_dirty)
1150 {
1151 	struct kvm_memslots *slots;
1152 	struct kvm_memory_slot *memslot;
1153 	int i, as_id, id;
1154 	unsigned long n;
1155 	unsigned long *dirty_bitmap;
1156 	unsigned long *dirty_bitmap_buffer;
1157 
1158 	as_id = log->slot >> 16;
1159 	id = (u16)log->slot;
1160 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1161 		return -EINVAL;
1162 
1163 	slots = __kvm_memslots(kvm, as_id);
1164 	memslot = id_to_memslot(slots, id);
1165 
1166 	dirty_bitmap = memslot->dirty_bitmap;
1167 	if (!dirty_bitmap)
1168 		return -ENOENT;
1169 
1170 	n = kvm_dirty_bitmap_bytes(memslot);
1171 
1172 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1173 	memset(dirty_bitmap_buffer, 0, n);
1174 
1175 	spin_lock(&kvm->mmu_lock);
1176 	*is_dirty = false;
1177 	for (i = 0; i < n / sizeof(long); i++) {
1178 		unsigned long mask;
1179 		gfn_t offset;
1180 
1181 		if (!dirty_bitmap[i])
1182 			continue;
1183 
1184 		*is_dirty = true;
1185 
1186 		mask = xchg(&dirty_bitmap[i], 0);
1187 		dirty_bitmap_buffer[i] = mask;
1188 
1189 		if (mask) {
1190 			offset = i * BITS_PER_LONG;
1191 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1192 								offset, mask);
1193 		}
1194 	}
1195 
1196 	spin_unlock(&kvm->mmu_lock);
1197 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198 		return -EFAULT;
1199 	return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1202 #endif
1203 
1204 bool kvm_largepages_enabled(void)
1205 {
1206 	return largepages_enabled;
1207 }
1208 
1209 void kvm_disable_largepages(void)
1210 {
1211 	largepages_enabled = false;
1212 }
1213 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1214 
1215 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1216 {
1217 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1218 }
1219 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1220 
1221 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1222 {
1223 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1224 }
1225 
1226 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1227 {
1228 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1229 
1230 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1231 	      memslot->flags & KVM_MEMSLOT_INVALID)
1232 		return false;
1233 
1234 	return true;
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1237 
1238 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1239 {
1240 	struct vm_area_struct *vma;
1241 	unsigned long addr, size;
1242 
1243 	size = PAGE_SIZE;
1244 
1245 	addr = gfn_to_hva(kvm, gfn);
1246 	if (kvm_is_error_hva(addr))
1247 		return PAGE_SIZE;
1248 
1249 	down_read(&current->mm->mmap_sem);
1250 	vma = find_vma(current->mm, addr);
1251 	if (!vma)
1252 		goto out;
1253 
1254 	size = vma_kernel_pagesize(vma);
1255 
1256 out:
1257 	up_read(&current->mm->mmap_sem);
1258 
1259 	return size;
1260 }
1261 
1262 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1263 {
1264 	return slot->flags & KVM_MEM_READONLY;
1265 }
1266 
1267 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1268 				       gfn_t *nr_pages, bool write)
1269 {
1270 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1271 		return KVM_HVA_ERR_BAD;
1272 
1273 	if (memslot_is_readonly(slot) && write)
1274 		return KVM_HVA_ERR_RO_BAD;
1275 
1276 	if (nr_pages)
1277 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1278 
1279 	return __gfn_to_hva_memslot(slot, gfn);
1280 }
1281 
1282 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1283 				     gfn_t *nr_pages)
1284 {
1285 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1286 }
1287 
1288 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1289 					gfn_t gfn)
1290 {
1291 	return gfn_to_hva_many(slot, gfn, NULL);
1292 }
1293 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1294 
1295 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1296 {
1297 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1298 }
1299 EXPORT_SYMBOL_GPL(gfn_to_hva);
1300 
1301 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1302 {
1303 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1306 
1307 /*
1308  * If writable is set to false, the hva returned by this function is only
1309  * allowed to be read.
1310  */
1311 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1312 				      gfn_t gfn, bool *writable)
1313 {
1314 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1315 
1316 	if (!kvm_is_error_hva(hva) && writable)
1317 		*writable = !memslot_is_readonly(slot);
1318 
1319 	return hva;
1320 }
1321 
1322 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1323 {
1324 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1325 
1326 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1327 }
1328 
1329 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1330 {
1331 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1332 
1333 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1334 }
1335 
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1337 {
1338 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1339 
1340 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341 	return rc == -EHWPOISON;
1342 }
1343 
1344 /*
1345  * The atomic path to get the writable pfn which will be stored in @pfn,
1346  * true indicates success, otherwise false is returned.
1347  */
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1350 {
1351 	struct page *page[1];
1352 	int npages;
1353 
1354 	if (!(async || atomic))
1355 		return false;
1356 
1357 	/*
1358 	 * Fast pin a writable pfn only if it is a write fault request
1359 	 * or the caller allows to map a writable pfn for a read fault
1360 	 * request.
1361 	 */
1362 	if (!(write_fault || writable))
1363 		return false;
1364 
1365 	npages = __get_user_pages_fast(addr, 1, 1, page);
1366 	if (npages == 1) {
1367 		*pfn = page_to_pfn(page[0]);
1368 
1369 		if (writable)
1370 			*writable = true;
1371 		return true;
1372 	}
1373 
1374 	return false;
1375 }
1376 
1377 /*
1378  * The slow path to get the pfn of the specified host virtual address,
1379  * 1 indicates success, -errno is returned if error is detected.
1380  */
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382 			   bool *writable, kvm_pfn_t *pfn)
1383 {
1384 	unsigned int flags = FOLL_HWPOISON;
1385 	struct page *page;
1386 	int npages = 0;
1387 
1388 	might_sleep();
1389 
1390 	if (writable)
1391 		*writable = write_fault;
1392 
1393 	if (write_fault)
1394 		flags |= FOLL_WRITE;
1395 	if (async)
1396 		flags |= FOLL_NOWAIT;
1397 
1398 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1399 	if (npages != 1)
1400 		return npages;
1401 
1402 	/* map read fault as writable if possible */
1403 	if (unlikely(!write_fault) && writable) {
1404 		struct page *wpage;
1405 
1406 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1407 			*writable = true;
1408 			put_page(page);
1409 			page = wpage;
1410 		}
1411 	}
1412 	*pfn = page_to_pfn(page);
1413 	return npages;
1414 }
1415 
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418 	if (unlikely(!(vma->vm_flags & VM_READ)))
1419 		return false;
1420 
1421 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422 		return false;
1423 
1424 	return true;
1425 }
1426 
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428 			       unsigned long addr, bool *async,
1429 			       bool write_fault, bool *writable,
1430 			       kvm_pfn_t *p_pfn)
1431 {
1432 	unsigned long pfn;
1433 	int r;
1434 
1435 	r = follow_pfn(vma, addr, &pfn);
1436 	if (r) {
1437 		/*
1438 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439 		 * not call the fault handler, so do it here.
1440 		 */
1441 		bool unlocked = false;
1442 		r = fixup_user_fault(current, current->mm, addr,
1443 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1444 				     &unlocked);
1445 		if (unlocked)
1446 			return -EAGAIN;
1447 		if (r)
1448 			return r;
1449 
1450 		r = follow_pfn(vma, addr, &pfn);
1451 		if (r)
1452 			return r;
1453 
1454 	}
1455 
1456 	if (writable)
1457 		*writable = true;
1458 
1459 	/*
1460 	 * Get a reference here because callers of *hva_to_pfn* and
1461 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1462 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1463 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1464 	 * simply do nothing for reserved pfns.
1465 	 *
1466 	 * Whoever called remap_pfn_range is also going to call e.g.
1467 	 * unmap_mapping_range before the underlying pages are freed,
1468 	 * causing a call to our MMU notifier.
1469 	 */
1470 	kvm_get_pfn(pfn);
1471 
1472 	*p_pfn = pfn;
1473 	return 0;
1474 }
1475 
1476 /*
1477  * Pin guest page in memory and return its pfn.
1478  * @addr: host virtual address which maps memory to the guest
1479  * @atomic: whether this function can sleep
1480  * @async: whether this function need to wait IO complete if the
1481  *         host page is not in the memory
1482  * @write_fault: whether we should get a writable host page
1483  * @writable: whether it allows to map a writable host page for !@write_fault
1484  *
1485  * The function will map a writable host page for these two cases:
1486  * 1): @write_fault = true
1487  * 2): @write_fault = false && @writable, @writable will tell the caller
1488  *     whether the mapping is writable.
1489  */
1490 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1491 			bool write_fault, bool *writable)
1492 {
1493 	struct vm_area_struct *vma;
1494 	kvm_pfn_t pfn = 0;
1495 	int npages, r;
1496 
1497 	/* we can do it either atomically or asynchronously, not both */
1498 	BUG_ON(atomic && async);
1499 
1500 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1501 		return pfn;
1502 
1503 	if (atomic)
1504 		return KVM_PFN_ERR_FAULT;
1505 
1506 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1507 	if (npages == 1)
1508 		return pfn;
1509 
1510 	down_read(&current->mm->mmap_sem);
1511 	if (npages == -EHWPOISON ||
1512 	      (!async && check_user_page_hwpoison(addr))) {
1513 		pfn = KVM_PFN_ERR_HWPOISON;
1514 		goto exit;
1515 	}
1516 
1517 retry:
1518 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1519 
1520 	if (vma == NULL)
1521 		pfn = KVM_PFN_ERR_FAULT;
1522 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1523 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1524 		if (r == -EAGAIN)
1525 			goto retry;
1526 		if (r < 0)
1527 			pfn = KVM_PFN_ERR_FAULT;
1528 	} else {
1529 		if (async && vma_is_valid(vma, write_fault))
1530 			*async = true;
1531 		pfn = KVM_PFN_ERR_FAULT;
1532 	}
1533 exit:
1534 	up_read(&current->mm->mmap_sem);
1535 	return pfn;
1536 }
1537 
1538 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1539 			       bool atomic, bool *async, bool write_fault,
1540 			       bool *writable)
1541 {
1542 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1543 
1544 	if (addr == KVM_HVA_ERR_RO_BAD) {
1545 		if (writable)
1546 			*writable = false;
1547 		return KVM_PFN_ERR_RO_FAULT;
1548 	}
1549 
1550 	if (kvm_is_error_hva(addr)) {
1551 		if (writable)
1552 			*writable = false;
1553 		return KVM_PFN_NOSLOT;
1554 	}
1555 
1556 	/* Do not map writable pfn in the readonly memslot. */
1557 	if (writable && memslot_is_readonly(slot)) {
1558 		*writable = false;
1559 		writable = NULL;
1560 	}
1561 
1562 	return hva_to_pfn(addr, atomic, async, write_fault,
1563 			  writable);
1564 }
1565 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1566 
1567 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1568 		      bool *writable)
1569 {
1570 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1571 				    write_fault, writable);
1572 }
1573 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1574 
1575 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1576 {
1577 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1578 }
1579 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1580 
1581 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1582 {
1583 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1584 }
1585 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1586 
1587 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1588 {
1589 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1590 }
1591 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1592 
1593 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1594 {
1595 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1598 
1599 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1600 {
1601 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1604 
1605 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1606 {
1607 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1610 
1611 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1612 			    struct page **pages, int nr_pages)
1613 {
1614 	unsigned long addr;
1615 	gfn_t entry = 0;
1616 
1617 	addr = gfn_to_hva_many(slot, gfn, &entry);
1618 	if (kvm_is_error_hva(addr))
1619 		return -1;
1620 
1621 	if (entry < nr_pages)
1622 		return 0;
1623 
1624 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1625 }
1626 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1627 
1628 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1629 {
1630 	if (is_error_noslot_pfn(pfn))
1631 		return KVM_ERR_PTR_BAD_PAGE;
1632 
1633 	if (kvm_is_reserved_pfn(pfn)) {
1634 		WARN_ON(1);
1635 		return KVM_ERR_PTR_BAD_PAGE;
1636 	}
1637 
1638 	return pfn_to_page(pfn);
1639 }
1640 
1641 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1642 {
1643 	kvm_pfn_t pfn;
1644 
1645 	pfn = gfn_to_pfn(kvm, gfn);
1646 
1647 	return kvm_pfn_to_page(pfn);
1648 }
1649 EXPORT_SYMBOL_GPL(gfn_to_page);
1650 
1651 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1652 {
1653 	kvm_pfn_t pfn;
1654 
1655 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1656 
1657 	return kvm_pfn_to_page(pfn);
1658 }
1659 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1660 
1661 void kvm_release_page_clean(struct page *page)
1662 {
1663 	WARN_ON(is_error_page(page));
1664 
1665 	kvm_release_pfn_clean(page_to_pfn(page));
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1668 
1669 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1670 {
1671 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1672 		put_page(pfn_to_page(pfn));
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1675 
1676 void kvm_release_page_dirty(struct page *page)
1677 {
1678 	WARN_ON(is_error_page(page));
1679 
1680 	kvm_release_pfn_dirty(page_to_pfn(page));
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1683 
1684 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1685 {
1686 	kvm_set_pfn_dirty(pfn);
1687 	kvm_release_pfn_clean(pfn);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1690 
1691 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1692 {
1693 	if (!kvm_is_reserved_pfn(pfn)) {
1694 		struct page *page = pfn_to_page(pfn);
1695 
1696 		if (!PageReserved(page))
1697 			SetPageDirty(page);
1698 	}
1699 }
1700 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1701 
1702 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1703 {
1704 	if (!kvm_is_reserved_pfn(pfn))
1705 		mark_page_accessed(pfn_to_page(pfn));
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1708 
1709 void kvm_get_pfn(kvm_pfn_t pfn)
1710 {
1711 	if (!kvm_is_reserved_pfn(pfn))
1712 		get_page(pfn_to_page(pfn));
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1715 
1716 static int next_segment(unsigned long len, int offset)
1717 {
1718 	if (len > PAGE_SIZE - offset)
1719 		return PAGE_SIZE - offset;
1720 	else
1721 		return len;
1722 }
1723 
1724 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1725 				 void *data, int offset, int len)
1726 {
1727 	int r;
1728 	unsigned long addr;
1729 
1730 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1731 	if (kvm_is_error_hva(addr))
1732 		return -EFAULT;
1733 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1734 	if (r)
1735 		return -EFAULT;
1736 	return 0;
1737 }
1738 
1739 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1740 			int len)
1741 {
1742 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1743 
1744 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1745 }
1746 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1747 
1748 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1749 			     int offset, int len)
1750 {
1751 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1752 
1753 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1756 
1757 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1758 {
1759 	gfn_t gfn = gpa >> PAGE_SHIFT;
1760 	int seg;
1761 	int offset = offset_in_page(gpa);
1762 	int ret;
1763 
1764 	while ((seg = next_segment(len, offset)) != 0) {
1765 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1766 		if (ret < 0)
1767 			return ret;
1768 		offset = 0;
1769 		len -= seg;
1770 		data += seg;
1771 		++gfn;
1772 	}
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_read_guest);
1776 
1777 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1778 {
1779 	gfn_t gfn = gpa >> PAGE_SHIFT;
1780 	int seg;
1781 	int offset = offset_in_page(gpa);
1782 	int ret;
1783 
1784 	while ((seg = next_segment(len, offset)) != 0) {
1785 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1786 		if (ret < 0)
1787 			return ret;
1788 		offset = 0;
1789 		len -= seg;
1790 		data += seg;
1791 		++gfn;
1792 	}
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1796 
1797 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1798 			           void *data, int offset, unsigned long len)
1799 {
1800 	int r;
1801 	unsigned long addr;
1802 
1803 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1804 	if (kvm_is_error_hva(addr))
1805 		return -EFAULT;
1806 	pagefault_disable();
1807 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1808 	pagefault_enable();
1809 	if (r)
1810 		return -EFAULT;
1811 	return 0;
1812 }
1813 
1814 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1815 			  unsigned long len)
1816 {
1817 	gfn_t gfn = gpa >> PAGE_SHIFT;
1818 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1819 	int offset = offset_in_page(gpa);
1820 
1821 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1824 
1825 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1826 			       void *data, unsigned long len)
1827 {
1828 	gfn_t gfn = gpa >> PAGE_SHIFT;
1829 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1830 	int offset = offset_in_page(gpa);
1831 
1832 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1835 
1836 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1837 			          const void *data, int offset, int len)
1838 {
1839 	int r;
1840 	unsigned long addr;
1841 
1842 	addr = gfn_to_hva_memslot(memslot, gfn);
1843 	if (kvm_is_error_hva(addr))
1844 		return -EFAULT;
1845 	r = __copy_to_user((void __user *)addr + offset, data, len);
1846 	if (r)
1847 		return -EFAULT;
1848 	mark_page_dirty_in_slot(memslot, gfn);
1849 	return 0;
1850 }
1851 
1852 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1853 			 const void *data, int offset, int len)
1854 {
1855 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1856 
1857 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1860 
1861 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1862 			      const void *data, int offset, int len)
1863 {
1864 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1865 
1866 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1869 
1870 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1871 		    unsigned long len)
1872 {
1873 	gfn_t gfn = gpa >> PAGE_SHIFT;
1874 	int seg;
1875 	int offset = offset_in_page(gpa);
1876 	int ret;
1877 
1878 	while ((seg = next_segment(len, offset)) != 0) {
1879 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1880 		if (ret < 0)
1881 			return ret;
1882 		offset = 0;
1883 		len -= seg;
1884 		data += seg;
1885 		++gfn;
1886 	}
1887 	return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_write_guest);
1890 
1891 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1892 		         unsigned long len)
1893 {
1894 	gfn_t gfn = gpa >> PAGE_SHIFT;
1895 	int seg;
1896 	int offset = offset_in_page(gpa);
1897 	int ret;
1898 
1899 	while ((seg = next_segment(len, offset)) != 0) {
1900 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1901 		if (ret < 0)
1902 			return ret;
1903 		offset = 0;
1904 		len -= seg;
1905 		data += seg;
1906 		++gfn;
1907 	}
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1911 
1912 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1913 				       struct gfn_to_hva_cache *ghc,
1914 				       gpa_t gpa, unsigned long len)
1915 {
1916 	int offset = offset_in_page(gpa);
1917 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1918 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1919 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1920 	gfn_t nr_pages_avail;
1921 
1922 	ghc->gpa = gpa;
1923 	ghc->generation = slots->generation;
1924 	ghc->len = len;
1925 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1926 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1927 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1928 		ghc->hva += offset;
1929 	} else {
1930 		/*
1931 		 * If the requested region crosses two memslots, we still
1932 		 * verify that the entire region is valid here.
1933 		 */
1934 		while (start_gfn <= end_gfn) {
1935 			nr_pages_avail = 0;
1936 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1937 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1938 						   &nr_pages_avail);
1939 			if (kvm_is_error_hva(ghc->hva))
1940 				return -EFAULT;
1941 			start_gfn += nr_pages_avail;
1942 		}
1943 		/* Use the slow path for cross page reads and writes. */
1944 		ghc->memslot = NULL;
1945 	}
1946 	return 0;
1947 }
1948 
1949 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1950 			      gpa_t gpa, unsigned long len)
1951 {
1952 	struct kvm_memslots *slots = kvm_memslots(kvm);
1953 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1954 }
1955 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1956 
1957 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1958 			   void *data, int offset, unsigned long len)
1959 {
1960 	struct kvm_memslots *slots = kvm_memslots(kvm);
1961 	int r;
1962 	gpa_t gpa = ghc->gpa + offset;
1963 
1964 	BUG_ON(len + offset > ghc->len);
1965 
1966 	if (slots->generation != ghc->generation)
1967 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1968 
1969 	if (unlikely(!ghc->memslot))
1970 		return kvm_write_guest(kvm, gpa, data, len);
1971 
1972 	if (kvm_is_error_hva(ghc->hva))
1973 		return -EFAULT;
1974 
1975 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1976 	if (r)
1977 		return -EFAULT;
1978 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1979 
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1983 
1984 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1985 			   void *data, unsigned long len)
1986 {
1987 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1990 
1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992 			   void *data, unsigned long len)
1993 {
1994 	struct kvm_memslots *slots = kvm_memslots(kvm);
1995 	int r;
1996 
1997 	BUG_ON(len > ghc->len);
1998 
1999 	if (slots->generation != ghc->generation)
2000 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2001 
2002 	if (unlikely(!ghc->memslot))
2003 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2004 
2005 	if (kvm_is_error_hva(ghc->hva))
2006 		return -EFAULT;
2007 
2008 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2009 	if (r)
2010 		return -EFAULT;
2011 
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2015 
2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2017 {
2018 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2019 
2020 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2023 
2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2025 {
2026 	gfn_t gfn = gpa >> PAGE_SHIFT;
2027 	int seg;
2028 	int offset = offset_in_page(gpa);
2029 	int ret;
2030 
2031 	while ((seg = next_segment(len, offset)) != 0) {
2032 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2033 		if (ret < 0)
2034 			return ret;
2035 		offset = 0;
2036 		len -= seg;
2037 		++gfn;
2038 	}
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2042 
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2044 				    gfn_t gfn)
2045 {
2046 	if (memslot && memslot->dirty_bitmap) {
2047 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2048 
2049 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2050 	}
2051 }
2052 
2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2054 {
2055 	struct kvm_memory_slot *memslot;
2056 
2057 	memslot = gfn_to_memslot(kvm, gfn);
2058 	mark_page_dirty_in_slot(memslot, gfn);
2059 }
2060 EXPORT_SYMBOL_GPL(mark_page_dirty);
2061 
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2063 {
2064 	struct kvm_memory_slot *memslot;
2065 
2066 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067 	mark_page_dirty_in_slot(memslot, gfn);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2070 
2071 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2072 {
2073 	if (!vcpu->sigset_active)
2074 		return;
2075 
2076 	/*
2077 	 * This does a lockless modification of ->real_blocked, which is fine
2078 	 * because, only current can change ->real_blocked and all readers of
2079 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2080 	 * of ->blocked.
2081 	 */
2082 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2083 }
2084 
2085 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2086 {
2087 	if (!vcpu->sigset_active)
2088 		return;
2089 
2090 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2091 	sigemptyset(&current->real_blocked);
2092 }
2093 
2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2095 {
2096 	unsigned int old, val, grow;
2097 
2098 	old = val = vcpu->halt_poll_ns;
2099 	grow = READ_ONCE(halt_poll_ns_grow);
2100 	/* 10us base */
2101 	if (val == 0 && grow)
2102 		val = 10000;
2103 	else
2104 		val *= grow;
2105 
2106 	if (val > halt_poll_ns)
2107 		val = halt_poll_ns;
2108 
2109 	vcpu->halt_poll_ns = val;
2110 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2111 }
2112 
2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2114 {
2115 	unsigned int old, val, shrink;
2116 
2117 	old = val = vcpu->halt_poll_ns;
2118 	shrink = READ_ONCE(halt_poll_ns_shrink);
2119 	if (shrink == 0)
2120 		val = 0;
2121 	else
2122 		val /= shrink;
2123 
2124 	vcpu->halt_poll_ns = val;
2125 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2126 }
2127 
2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2129 {
2130 	if (kvm_arch_vcpu_runnable(vcpu)) {
2131 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2132 		return -EINTR;
2133 	}
2134 	if (kvm_cpu_has_pending_timer(vcpu))
2135 		return -EINTR;
2136 	if (signal_pending(current))
2137 		return -EINTR;
2138 
2139 	return 0;
2140 }
2141 
2142 /*
2143  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2144  */
2145 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2146 {
2147 	ktime_t start, cur;
2148 	DECLARE_SWAITQUEUE(wait);
2149 	bool waited = false;
2150 	u64 block_ns;
2151 
2152 	start = cur = ktime_get();
2153 	if (vcpu->halt_poll_ns) {
2154 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2155 
2156 		++vcpu->stat.halt_attempted_poll;
2157 		do {
2158 			/*
2159 			 * This sets KVM_REQ_UNHALT if an interrupt
2160 			 * arrives.
2161 			 */
2162 			if (kvm_vcpu_check_block(vcpu) < 0) {
2163 				++vcpu->stat.halt_successful_poll;
2164 				if (!vcpu_valid_wakeup(vcpu))
2165 					++vcpu->stat.halt_poll_invalid;
2166 				goto out;
2167 			}
2168 			cur = ktime_get();
2169 		} while (single_task_running() && ktime_before(cur, stop));
2170 	}
2171 
2172 	kvm_arch_vcpu_blocking(vcpu);
2173 
2174 	for (;;) {
2175 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2176 
2177 		if (kvm_vcpu_check_block(vcpu) < 0)
2178 			break;
2179 
2180 		waited = true;
2181 		schedule();
2182 	}
2183 
2184 	finish_swait(&vcpu->wq, &wait);
2185 	cur = ktime_get();
2186 
2187 	kvm_arch_vcpu_unblocking(vcpu);
2188 out:
2189 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2190 
2191 	if (!vcpu_valid_wakeup(vcpu))
2192 		shrink_halt_poll_ns(vcpu);
2193 	else if (halt_poll_ns) {
2194 		if (block_ns <= vcpu->halt_poll_ns)
2195 			;
2196 		/* we had a long block, shrink polling */
2197 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2198 			shrink_halt_poll_ns(vcpu);
2199 		/* we had a short halt and our poll time is too small */
2200 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2201 			block_ns < halt_poll_ns)
2202 			grow_halt_poll_ns(vcpu);
2203 	} else
2204 		vcpu->halt_poll_ns = 0;
2205 
2206 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2207 	kvm_arch_vcpu_block_finish(vcpu);
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2210 
2211 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2212 {
2213 	struct swait_queue_head *wqp;
2214 
2215 	wqp = kvm_arch_vcpu_wq(vcpu);
2216 	if (swq_has_sleeper(wqp)) {
2217 		swake_up(wqp);
2218 		++vcpu->stat.halt_wakeup;
2219 		return true;
2220 	}
2221 
2222 	return false;
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2225 
2226 #ifndef CONFIG_S390
2227 /*
2228  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2229  */
2230 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2231 {
2232 	int me;
2233 	int cpu = vcpu->cpu;
2234 
2235 	if (kvm_vcpu_wake_up(vcpu))
2236 		return;
2237 
2238 	me = get_cpu();
2239 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2240 		if (kvm_arch_vcpu_should_kick(vcpu))
2241 			smp_send_reschedule(cpu);
2242 	put_cpu();
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2245 #endif /* !CONFIG_S390 */
2246 
2247 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2248 {
2249 	struct pid *pid;
2250 	struct task_struct *task = NULL;
2251 	int ret = 0;
2252 
2253 	rcu_read_lock();
2254 	pid = rcu_dereference(target->pid);
2255 	if (pid)
2256 		task = get_pid_task(pid, PIDTYPE_PID);
2257 	rcu_read_unlock();
2258 	if (!task)
2259 		return ret;
2260 	ret = yield_to(task, 1);
2261 	put_task_struct(task);
2262 
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2266 
2267 /*
2268  * Helper that checks whether a VCPU is eligible for directed yield.
2269  * Most eligible candidate to yield is decided by following heuristics:
2270  *
2271  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2272  *  (preempted lock holder), indicated by @in_spin_loop.
2273  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2274  *
2275  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2276  *  chance last time (mostly it has become eligible now since we have probably
2277  *  yielded to lockholder in last iteration. This is done by toggling
2278  *  @dy_eligible each time a VCPU checked for eligibility.)
2279  *
2280  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2281  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2282  *  burning. Giving priority for a potential lock-holder increases lock
2283  *  progress.
2284  *
2285  *  Since algorithm is based on heuristics, accessing another VCPU data without
2286  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2287  *  and continue with next VCPU and so on.
2288  */
2289 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2290 {
2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2292 	bool eligible;
2293 
2294 	eligible = !vcpu->spin_loop.in_spin_loop ||
2295 		    vcpu->spin_loop.dy_eligible;
2296 
2297 	if (vcpu->spin_loop.in_spin_loop)
2298 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2299 
2300 	return eligible;
2301 #else
2302 	return true;
2303 #endif
2304 }
2305 
2306 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2307 {
2308 	struct kvm *kvm = me->kvm;
2309 	struct kvm_vcpu *vcpu;
2310 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2311 	int yielded = 0;
2312 	int try = 3;
2313 	int pass;
2314 	int i;
2315 
2316 	kvm_vcpu_set_in_spin_loop(me, true);
2317 	/*
2318 	 * We boost the priority of a VCPU that is runnable but not
2319 	 * currently running, because it got preempted by something
2320 	 * else and called schedule in __vcpu_run.  Hopefully that
2321 	 * VCPU is holding the lock that we need and will release it.
2322 	 * We approximate round-robin by starting at the last boosted VCPU.
2323 	 */
2324 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2325 		kvm_for_each_vcpu(i, vcpu, kvm) {
2326 			if (!pass && i <= last_boosted_vcpu) {
2327 				i = last_boosted_vcpu;
2328 				continue;
2329 			} else if (pass && i > last_boosted_vcpu)
2330 				break;
2331 			if (!READ_ONCE(vcpu->preempted))
2332 				continue;
2333 			if (vcpu == me)
2334 				continue;
2335 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2336 				continue;
2337 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2338 				continue;
2339 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2340 				continue;
2341 
2342 			yielded = kvm_vcpu_yield_to(vcpu);
2343 			if (yielded > 0) {
2344 				kvm->last_boosted_vcpu = i;
2345 				break;
2346 			} else if (yielded < 0) {
2347 				try--;
2348 				if (!try)
2349 					break;
2350 			}
2351 		}
2352 	}
2353 	kvm_vcpu_set_in_spin_loop(me, false);
2354 
2355 	/* Ensure vcpu is not eligible during next spinloop */
2356 	kvm_vcpu_set_dy_eligible(me, false);
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2359 
2360 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2361 {
2362 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2363 	struct page *page;
2364 
2365 	if (vmf->pgoff == 0)
2366 		page = virt_to_page(vcpu->run);
2367 #ifdef CONFIG_X86
2368 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2369 		page = virt_to_page(vcpu->arch.pio_data);
2370 #endif
2371 #ifdef CONFIG_KVM_MMIO
2372 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2373 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2374 #endif
2375 	else
2376 		return kvm_arch_vcpu_fault(vcpu, vmf);
2377 	get_page(page);
2378 	vmf->page = page;
2379 	return 0;
2380 }
2381 
2382 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2383 	.fault = kvm_vcpu_fault,
2384 };
2385 
2386 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2387 {
2388 	vma->vm_ops = &kvm_vcpu_vm_ops;
2389 	return 0;
2390 }
2391 
2392 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2393 {
2394 	struct kvm_vcpu *vcpu = filp->private_data;
2395 
2396 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2397 	kvm_put_kvm(vcpu->kvm);
2398 	return 0;
2399 }
2400 
2401 static struct file_operations kvm_vcpu_fops = {
2402 	.release        = kvm_vcpu_release,
2403 	.unlocked_ioctl = kvm_vcpu_ioctl,
2404 	.mmap           = kvm_vcpu_mmap,
2405 	.llseek		= noop_llseek,
2406 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2407 };
2408 
2409 /*
2410  * Allocates an inode for the vcpu.
2411  */
2412 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2413 {
2414 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2415 
2416 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2417 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2418 }
2419 
2420 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2421 {
2422 	char dir_name[ITOA_MAX_LEN * 2];
2423 	int ret;
2424 
2425 	if (!kvm_arch_has_vcpu_debugfs())
2426 		return 0;
2427 
2428 	if (!debugfs_initialized())
2429 		return 0;
2430 
2431 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2432 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2433 								vcpu->kvm->debugfs_dentry);
2434 	if (!vcpu->debugfs_dentry)
2435 		return -ENOMEM;
2436 
2437 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2438 	if (ret < 0) {
2439 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2440 		return ret;
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 /*
2447  * Creates some virtual cpus.  Good luck creating more than one.
2448  */
2449 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2450 {
2451 	int r;
2452 	struct kvm_vcpu *vcpu;
2453 
2454 	if (id >= KVM_MAX_VCPU_ID)
2455 		return -EINVAL;
2456 
2457 	mutex_lock(&kvm->lock);
2458 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2459 		mutex_unlock(&kvm->lock);
2460 		return -EINVAL;
2461 	}
2462 
2463 	kvm->created_vcpus++;
2464 	mutex_unlock(&kvm->lock);
2465 
2466 	vcpu = kvm_arch_vcpu_create(kvm, id);
2467 	if (IS_ERR(vcpu)) {
2468 		r = PTR_ERR(vcpu);
2469 		goto vcpu_decrement;
2470 	}
2471 
2472 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2473 
2474 	r = kvm_arch_vcpu_setup(vcpu);
2475 	if (r)
2476 		goto vcpu_destroy;
2477 
2478 	r = kvm_create_vcpu_debugfs(vcpu);
2479 	if (r)
2480 		goto vcpu_destroy;
2481 
2482 	mutex_lock(&kvm->lock);
2483 	if (kvm_get_vcpu_by_id(kvm, id)) {
2484 		r = -EEXIST;
2485 		goto unlock_vcpu_destroy;
2486 	}
2487 
2488 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2489 
2490 	/* Now it's all set up, let userspace reach it */
2491 	kvm_get_kvm(kvm);
2492 	r = create_vcpu_fd(vcpu);
2493 	if (r < 0) {
2494 		kvm_put_kvm(kvm);
2495 		goto unlock_vcpu_destroy;
2496 	}
2497 
2498 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2499 
2500 	/*
2501 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2502 	 * before kvm->online_vcpu's incremented value.
2503 	 */
2504 	smp_wmb();
2505 	atomic_inc(&kvm->online_vcpus);
2506 
2507 	mutex_unlock(&kvm->lock);
2508 	kvm_arch_vcpu_postcreate(vcpu);
2509 	return r;
2510 
2511 unlock_vcpu_destroy:
2512 	mutex_unlock(&kvm->lock);
2513 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2514 vcpu_destroy:
2515 	kvm_arch_vcpu_destroy(vcpu);
2516 vcpu_decrement:
2517 	mutex_lock(&kvm->lock);
2518 	kvm->created_vcpus--;
2519 	mutex_unlock(&kvm->lock);
2520 	return r;
2521 }
2522 
2523 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2524 {
2525 	if (sigset) {
2526 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2527 		vcpu->sigset_active = 1;
2528 		vcpu->sigset = *sigset;
2529 	} else
2530 		vcpu->sigset_active = 0;
2531 	return 0;
2532 }
2533 
2534 static long kvm_vcpu_ioctl(struct file *filp,
2535 			   unsigned int ioctl, unsigned long arg)
2536 {
2537 	struct kvm_vcpu *vcpu = filp->private_data;
2538 	void __user *argp = (void __user *)arg;
2539 	int r;
2540 	struct kvm_fpu *fpu = NULL;
2541 	struct kvm_sregs *kvm_sregs = NULL;
2542 
2543 	if (vcpu->kvm->mm != current->mm)
2544 		return -EIO;
2545 
2546 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2547 		return -EINVAL;
2548 
2549 	/*
2550 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2551 	 * execution; mutex_lock() would break them.
2552 	 */
2553 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2554 	if (r != -ENOIOCTLCMD)
2555 		return r;
2556 
2557 	if (mutex_lock_killable(&vcpu->mutex))
2558 		return -EINTR;
2559 	switch (ioctl) {
2560 	case KVM_RUN: {
2561 		struct pid *oldpid;
2562 		r = -EINVAL;
2563 		if (arg)
2564 			goto out;
2565 		oldpid = rcu_access_pointer(vcpu->pid);
2566 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2567 			/* The thread running this VCPU changed. */
2568 			struct pid *newpid;
2569 
2570 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2571 			if (r)
2572 				break;
2573 
2574 			newpid = get_task_pid(current, PIDTYPE_PID);
2575 			rcu_assign_pointer(vcpu->pid, newpid);
2576 			if (oldpid)
2577 				synchronize_rcu();
2578 			put_pid(oldpid);
2579 		}
2580 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2581 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2582 		break;
2583 	}
2584 	case KVM_GET_REGS: {
2585 		struct kvm_regs *kvm_regs;
2586 
2587 		r = -ENOMEM;
2588 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2589 		if (!kvm_regs)
2590 			goto out;
2591 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2592 		if (r)
2593 			goto out_free1;
2594 		r = -EFAULT;
2595 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2596 			goto out_free1;
2597 		r = 0;
2598 out_free1:
2599 		kfree(kvm_regs);
2600 		break;
2601 	}
2602 	case KVM_SET_REGS: {
2603 		struct kvm_regs *kvm_regs;
2604 
2605 		r = -ENOMEM;
2606 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2607 		if (IS_ERR(kvm_regs)) {
2608 			r = PTR_ERR(kvm_regs);
2609 			goto out;
2610 		}
2611 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2612 		kfree(kvm_regs);
2613 		break;
2614 	}
2615 	case KVM_GET_SREGS: {
2616 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2617 		r = -ENOMEM;
2618 		if (!kvm_sregs)
2619 			goto out;
2620 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2621 		if (r)
2622 			goto out;
2623 		r = -EFAULT;
2624 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2625 			goto out;
2626 		r = 0;
2627 		break;
2628 	}
2629 	case KVM_SET_SREGS: {
2630 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2631 		if (IS_ERR(kvm_sregs)) {
2632 			r = PTR_ERR(kvm_sregs);
2633 			kvm_sregs = NULL;
2634 			goto out;
2635 		}
2636 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2637 		break;
2638 	}
2639 	case KVM_GET_MP_STATE: {
2640 		struct kvm_mp_state mp_state;
2641 
2642 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2643 		if (r)
2644 			goto out;
2645 		r = -EFAULT;
2646 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2647 			goto out;
2648 		r = 0;
2649 		break;
2650 	}
2651 	case KVM_SET_MP_STATE: {
2652 		struct kvm_mp_state mp_state;
2653 
2654 		r = -EFAULT;
2655 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2656 			goto out;
2657 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2658 		break;
2659 	}
2660 	case KVM_TRANSLATE: {
2661 		struct kvm_translation tr;
2662 
2663 		r = -EFAULT;
2664 		if (copy_from_user(&tr, argp, sizeof(tr)))
2665 			goto out;
2666 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2667 		if (r)
2668 			goto out;
2669 		r = -EFAULT;
2670 		if (copy_to_user(argp, &tr, sizeof(tr)))
2671 			goto out;
2672 		r = 0;
2673 		break;
2674 	}
2675 	case KVM_SET_GUEST_DEBUG: {
2676 		struct kvm_guest_debug dbg;
2677 
2678 		r = -EFAULT;
2679 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2680 			goto out;
2681 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2682 		break;
2683 	}
2684 	case KVM_SET_SIGNAL_MASK: {
2685 		struct kvm_signal_mask __user *sigmask_arg = argp;
2686 		struct kvm_signal_mask kvm_sigmask;
2687 		sigset_t sigset, *p;
2688 
2689 		p = NULL;
2690 		if (argp) {
2691 			r = -EFAULT;
2692 			if (copy_from_user(&kvm_sigmask, argp,
2693 					   sizeof(kvm_sigmask)))
2694 				goto out;
2695 			r = -EINVAL;
2696 			if (kvm_sigmask.len != sizeof(sigset))
2697 				goto out;
2698 			r = -EFAULT;
2699 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2700 					   sizeof(sigset)))
2701 				goto out;
2702 			p = &sigset;
2703 		}
2704 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2705 		break;
2706 	}
2707 	case KVM_GET_FPU: {
2708 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2709 		r = -ENOMEM;
2710 		if (!fpu)
2711 			goto out;
2712 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2713 		if (r)
2714 			goto out;
2715 		r = -EFAULT;
2716 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2717 			goto out;
2718 		r = 0;
2719 		break;
2720 	}
2721 	case KVM_SET_FPU: {
2722 		fpu = memdup_user(argp, sizeof(*fpu));
2723 		if (IS_ERR(fpu)) {
2724 			r = PTR_ERR(fpu);
2725 			fpu = NULL;
2726 			goto out;
2727 		}
2728 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2729 		break;
2730 	}
2731 	default:
2732 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2733 	}
2734 out:
2735 	mutex_unlock(&vcpu->mutex);
2736 	kfree(fpu);
2737 	kfree(kvm_sregs);
2738 	return r;
2739 }
2740 
2741 #ifdef CONFIG_KVM_COMPAT
2742 static long kvm_vcpu_compat_ioctl(struct file *filp,
2743 				  unsigned int ioctl, unsigned long arg)
2744 {
2745 	struct kvm_vcpu *vcpu = filp->private_data;
2746 	void __user *argp = compat_ptr(arg);
2747 	int r;
2748 
2749 	if (vcpu->kvm->mm != current->mm)
2750 		return -EIO;
2751 
2752 	switch (ioctl) {
2753 	case KVM_SET_SIGNAL_MASK: {
2754 		struct kvm_signal_mask __user *sigmask_arg = argp;
2755 		struct kvm_signal_mask kvm_sigmask;
2756 		sigset_t sigset;
2757 
2758 		if (argp) {
2759 			r = -EFAULT;
2760 			if (copy_from_user(&kvm_sigmask, argp,
2761 					   sizeof(kvm_sigmask)))
2762 				goto out;
2763 			r = -EINVAL;
2764 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2765 				goto out;
2766 			r = -EFAULT;
2767 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2768 				goto out;
2769 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2770 		} else
2771 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2772 		break;
2773 	}
2774 	default:
2775 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2776 	}
2777 
2778 out:
2779 	return r;
2780 }
2781 #endif
2782 
2783 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2784 				 int (*accessor)(struct kvm_device *dev,
2785 						 struct kvm_device_attr *attr),
2786 				 unsigned long arg)
2787 {
2788 	struct kvm_device_attr attr;
2789 
2790 	if (!accessor)
2791 		return -EPERM;
2792 
2793 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2794 		return -EFAULT;
2795 
2796 	return accessor(dev, &attr);
2797 }
2798 
2799 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2800 			     unsigned long arg)
2801 {
2802 	struct kvm_device *dev = filp->private_data;
2803 
2804 	switch (ioctl) {
2805 	case KVM_SET_DEVICE_ATTR:
2806 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2807 	case KVM_GET_DEVICE_ATTR:
2808 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2809 	case KVM_HAS_DEVICE_ATTR:
2810 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2811 	default:
2812 		if (dev->ops->ioctl)
2813 			return dev->ops->ioctl(dev, ioctl, arg);
2814 
2815 		return -ENOTTY;
2816 	}
2817 }
2818 
2819 static int kvm_device_release(struct inode *inode, struct file *filp)
2820 {
2821 	struct kvm_device *dev = filp->private_data;
2822 	struct kvm *kvm = dev->kvm;
2823 
2824 	kvm_put_kvm(kvm);
2825 	return 0;
2826 }
2827 
2828 static const struct file_operations kvm_device_fops = {
2829 	.unlocked_ioctl = kvm_device_ioctl,
2830 	.release = kvm_device_release,
2831 	KVM_COMPAT(kvm_device_ioctl),
2832 };
2833 
2834 struct kvm_device *kvm_device_from_filp(struct file *filp)
2835 {
2836 	if (filp->f_op != &kvm_device_fops)
2837 		return NULL;
2838 
2839 	return filp->private_data;
2840 }
2841 
2842 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2843 #ifdef CONFIG_KVM_MPIC
2844 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2845 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2846 #endif
2847 };
2848 
2849 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2850 {
2851 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2852 		return -ENOSPC;
2853 
2854 	if (kvm_device_ops_table[type] != NULL)
2855 		return -EEXIST;
2856 
2857 	kvm_device_ops_table[type] = ops;
2858 	return 0;
2859 }
2860 
2861 void kvm_unregister_device_ops(u32 type)
2862 {
2863 	if (kvm_device_ops_table[type] != NULL)
2864 		kvm_device_ops_table[type] = NULL;
2865 }
2866 
2867 static int kvm_ioctl_create_device(struct kvm *kvm,
2868 				   struct kvm_create_device *cd)
2869 {
2870 	struct kvm_device_ops *ops = NULL;
2871 	struct kvm_device *dev;
2872 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2873 	int ret;
2874 
2875 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2876 		return -ENODEV;
2877 
2878 	ops = kvm_device_ops_table[cd->type];
2879 	if (ops == NULL)
2880 		return -ENODEV;
2881 
2882 	if (test)
2883 		return 0;
2884 
2885 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2886 	if (!dev)
2887 		return -ENOMEM;
2888 
2889 	dev->ops = ops;
2890 	dev->kvm = kvm;
2891 
2892 	mutex_lock(&kvm->lock);
2893 	ret = ops->create(dev, cd->type);
2894 	if (ret < 0) {
2895 		mutex_unlock(&kvm->lock);
2896 		kfree(dev);
2897 		return ret;
2898 	}
2899 	list_add(&dev->vm_node, &kvm->devices);
2900 	mutex_unlock(&kvm->lock);
2901 
2902 	if (ops->init)
2903 		ops->init(dev);
2904 
2905 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2906 	if (ret < 0) {
2907 		mutex_lock(&kvm->lock);
2908 		list_del(&dev->vm_node);
2909 		mutex_unlock(&kvm->lock);
2910 		ops->destroy(dev);
2911 		return ret;
2912 	}
2913 
2914 	kvm_get_kvm(kvm);
2915 	cd->fd = ret;
2916 	return 0;
2917 }
2918 
2919 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2920 {
2921 	switch (arg) {
2922 	case KVM_CAP_USER_MEMORY:
2923 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2924 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2925 	case KVM_CAP_INTERNAL_ERROR_DATA:
2926 #ifdef CONFIG_HAVE_KVM_MSI
2927 	case KVM_CAP_SIGNAL_MSI:
2928 #endif
2929 #ifdef CONFIG_HAVE_KVM_IRQFD
2930 	case KVM_CAP_IRQFD:
2931 	case KVM_CAP_IRQFD_RESAMPLE:
2932 #endif
2933 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2934 	case KVM_CAP_CHECK_EXTENSION_VM:
2935 		return 1;
2936 #ifdef CONFIG_KVM_MMIO
2937 	case KVM_CAP_COALESCED_MMIO:
2938 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2939 #endif
2940 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2941 	case KVM_CAP_IRQ_ROUTING:
2942 		return KVM_MAX_IRQ_ROUTES;
2943 #endif
2944 #if KVM_ADDRESS_SPACE_NUM > 1
2945 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2946 		return KVM_ADDRESS_SPACE_NUM;
2947 #endif
2948 	case KVM_CAP_MAX_VCPU_ID:
2949 		return KVM_MAX_VCPU_ID;
2950 	default:
2951 		break;
2952 	}
2953 	return kvm_vm_ioctl_check_extension(kvm, arg);
2954 }
2955 
2956 static long kvm_vm_ioctl(struct file *filp,
2957 			   unsigned int ioctl, unsigned long arg)
2958 {
2959 	struct kvm *kvm = filp->private_data;
2960 	void __user *argp = (void __user *)arg;
2961 	int r;
2962 
2963 	if (kvm->mm != current->mm)
2964 		return -EIO;
2965 	switch (ioctl) {
2966 	case KVM_CREATE_VCPU:
2967 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2968 		break;
2969 	case KVM_SET_USER_MEMORY_REGION: {
2970 		struct kvm_userspace_memory_region kvm_userspace_mem;
2971 
2972 		r = -EFAULT;
2973 		if (copy_from_user(&kvm_userspace_mem, argp,
2974 						sizeof(kvm_userspace_mem)))
2975 			goto out;
2976 
2977 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2978 		break;
2979 	}
2980 	case KVM_GET_DIRTY_LOG: {
2981 		struct kvm_dirty_log log;
2982 
2983 		r = -EFAULT;
2984 		if (copy_from_user(&log, argp, sizeof(log)))
2985 			goto out;
2986 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2987 		break;
2988 	}
2989 #ifdef CONFIG_KVM_MMIO
2990 	case KVM_REGISTER_COALESCED_MMIO: {
2991 		struct kvm_coalesced_mmio_zone zone;
2992 
2993 		r = -EFAULT;
2994 		if (copy_from_user(&zone, argp, sizeof(zone)))
2995 			goto out;
2996 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2997 		break;
2998 	}
2999 	case KVM_UNREGISTER_COALESCED_MMIO: {
3000 		struct kvm_coalesced_mmio_zone zone;
3001 
3002 		r = -EFAULT;
3003 		if (copy_from_user(&zone, argp, sizeof(zone)))
3004 			goto out;
3005 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3006 		break;
3007 	}
3008 #endif
3009 	case KVM_IRQFD: {
3010 		struct kvm_irqfd data;
3011 
3012 		r = -EFAULT;
3013 		if (copy_from_user(&data, argp, sizeof(data)))
3014 			goto out;
3015 		r = kvm_irqfd(kvm, &data);
3016 		break;
3017 	}
3018 	case KVM_IOEVENTFD: {
3019 		struct kvm_ioeventfd data;
3020 
3021 		r = -EFAULT;
3022 		if (copy_from_user(&data, argp, sizeof(data)))
3023 			goto out;
3024 		r = kvm_ioeventfd(kvm, &data);
3025 		break;
3026 	}
3027 #ifdef CONFIG_HAVE_KVM_MSI
3028 	case KVM_SIGNAL_MSI: {
3029 		struct kvm_msi msi;
3030 
3031 		r = -EFAULT;
3032 		if (copy_from_user(&msi, argp, sizeof(msi)))
3033 			goto out;
3034 		r = kvm_send_userspace_msi(kvm, &msi);
3035 		break;
3036 	}
3037 #endif
3038 #ifdef __KVM_HAVE_IRQ_LINE
3039 	case KVM_IRQ_LINE_STATUS:
3040 	case KVM_IRQ_LINE: {
3041 		struct kvm_irq_level irq_event;
3042 
3043 		r = -EFAULT;
3044 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3045 			goto out;
3046 
3047 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3048 					ioctl == KVM_IRQ_LINE_STATUS);
3049 		if (r)
3050 			goto out;
3051 
3052 		r = -EFAULT;
3053 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3054 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3055 				goto out;
3056 		}
3057 
3058 		r = 0;
3059 		break;
3060 	}
3061 #endif
3062 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3063 	case KVM_SET_GSI_ROUTING: {
3064 		struct kvm_irq_routing routing;
3065 		struct kvm_irq_routing __user *urouting;
3066 		struct kvm_irq_routing_entry *entries = NULL;
3067 
3068 		r = -EFAULT;
3069 		if (copy_from_user(&routing, argp, sizeof(routing)))
3070 			goto out;
3071 		r = -EINVAL;
3072 		if (!kvm_arch_can_set_irq_routing(kvm))
3073 			goto out;
3074 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3075 			goto out;
3076 		if (routing.flags)
3077 			goto out;
3078 		if (routing.nr) {
3079 			r = -ENOMEM;
3080 			entries = vmalloc(array_size(sizeof(*entries),
3081 						     routing.nr));
3082 			if (!entries)
3083 				goto out;
3084 			r = -EFAULT;
3085 			urouting = argp;
3086 			if (copy_from_user(entries, urouting->entries,
3087 					   routing.nr * sizeof(*entries)))
3088 				goto out_free_irq_routing;
3089 		}
3090 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3091 					routing.flags);
3092 out_free_irq_routing:
3093 		vfree(entries);
3094 		break;
3095 	}
3096 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3097 	case KVM_CREATE_DEVICE: {
3098 		struct kvm_create_device cd;
3099 
3100 		r = -EFAULT;
3101 		if (copy_from_user(&cd, argp, sizeof(cd)))
3102 			goto out;
3103 
3104 		r = kvm_ioctl_create_device(kvm, &cd);
3105 		if (r)
3106 			goto out;
3107 
3108 		r = -EFAULT;
3109 		if (copy_to_user(argp, &cd, sizeof(cd)))
3110 			goto out;
3111 
3112 		r = 0;
3113 		break;
3114 	}
3115 	case KVM_CHECK_EXTENSION:
3116 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3117 		break;
3118 	default:
3119 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3120 	}
3121 out:
3122 	return r;
3123 }
3124 
3125 #ifdef CONFIG_KVM_COMPAT
3126 struct compat_kvm_dirty_log {
3127 	__u32 slot;
3128 	__u32 padding1;
3129 	union {
3130 		compat_uptr_t dirty_bitmap; /* one bit per page */
3131 		__u64 padding2;
3132 	};
3133 };
3134 
3135 static long kvm_vm_compat_ioctl(struct file *filp,
3136 			   unsigned int ioctl, unsigned long arg)
3137 {
3138 	struct kvm *kvm = filp->private_data;
3139 	int r;
3140 
3141 	if (kvm->mm != current->mm)
3142 		return -EIO;
3143 	switch (ioctl) {
3144 	case KVM_GET_DIRTY_LOG: {
3145 		struct compat_kvm_dirty_log compat_log;
3146 		struct kvm_dirty_log log;
3147 
3148 		if (copy_from_user(&compat_log, (void __user *)arg,
3149 				   sizeof(compat_log)))
3150 			return -EFAULT;
3151 		log.slot	 = compat_log.slot;
3152 		log.padding1	 = compat_log.padding1;
3153 		log.padding2	 = compat_log.padding2;
3154 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3155 
3156 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3157 		break;
3158 	}
3159 	default:
3160 		r = kvm_vm_ioctl(filp, ioctl, arg);
3161 	}
3162 	return r;
3163 }
3164 #endif
3165 
3166 static struct file_operations kvm_vm_fops = {
3167 	.release        = kvm_vm_release,
3168 	.unlocked_ioctl = kvm_vm_ioctl,
3169 	.llseek		= noop_llseek,
3170 	KVM_COMPAT(kvm_vm_compat_ioctl),
3171 };
3172 
3173 static int kvm_dev_ioctl_create_vm(unsigned long type)
3174 {
3175 	int r;
3176 	struct kvm *kvm;
3177 	struct file *file;
3178 
3179 	kvm = kvm_create_vm(type);
3180 	if (IS_ERR(kvm))
3181 		return PTR_ERR(kvm);
3182 #ifdef CONFIG_KVM_MMIO
3183 	r = kvm_coalesced_mmio_init(kvm);
3184 	if (r < 0)
3185 		goto put_kvm;
3186 #endif
3187 	r = get_unused_fd_flags(O_CLOEXEC);
3188 	if (r < 0)
3189 		goto put_kvm;
3190 
3191 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3192 	if (IS_ERR(file)) {
3193 		put_unused_fd(r);
3194 		r = PTR_ERR(file);
3195 		goto put_kvm;
3196 	}
3197 
3198 	/*
3199 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3200 	 * already set, with ->release() being kvm_vm_release().  In error
3201 	 * cases it will be called by the final fput(file) and will take
3202 	 * care of doing kvm_put_kvm(kvm).
3203 	 */
3204 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3205 		put_unused_fd(r);
3206 		fput(file);
3207 		return -ENOMEM;
3208 	}
3209 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3210 
3211 	fd_install(r, file);
3212 	return r;
3213 
3214 put_kvm:
3215 	kvm_put_kvm(kvm);
3216 	return r;
3217 }
3218 
3219 static long kvm_dev_ioctl(struct file *filp,
3220 			  unsigned int ioctl, unsigned long arg)
3221 {
3222 	long r = -EINVAL;
3223 
3224 	switch (ioctl) {
3225 	case KVM_GET_API_VERSION:
3226 		if (arg)
3227 			goto out;
3228 		r = KVM_API_VERSION;
3229 		break;
3230 	case KVM_CREATE_VM:
3231 		r = kvm_dev_ioctl_create_vm(arg);
3232 		break;
3233 	case KVM_CHECK_EXTENSION:
3234 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3235 		break;
3236 	case KVM_GET_VCPU_MMAP_SIZE:
3237 		if (arg)
3238 			goto out;
3239 		r = PAGE_SIZE;     /* struct kvm_run */
3240 #ifdef CONFIG_X86
3241 		r += PAGE_SIZE;    /* pio data page */
3242 #endif
3243 #ifdef CONFIG_KVM_MMIO
3244 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3245 #endif
3246 		break;
3247 	case KVM_TRACE_ENABLE:
3248 	case KVM_TRACE_PAUSE:
3249 	case KVM_TRACE_DISABLE:
3250 		r = -EOPNOTSUPP;
3251 		break;
3252 	default:
3253 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3254 	}
3255 out:
3256 	return r;
3257 }
3258 
3259 static struct file_operations kvm_chardev_ops = {
3260 	.unlocked_ioctl = kvm_dev_ioctl,
3261 	.llseek		= noop_llseek,
3262 	KVM_COMPAT(kvm_dev_ioctl),
3263 };
3264 
3265 static struct miscdevice kvm_dev = {
3266 	KVM_MINOR,
3267 	"kvm",
3268 	&kvm_chardev_ops,
3269 };
3270 
3271 static void hardware_enable_nolock(void *junk)
3272 {
3273 	int cpu = raw_smp_processor_id();
3274 	int r;
3275 
3276 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3277 		return;
3278 
3279 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3280 
3281 	r = kvm_arch_hardware_enable();
3282 
3283 	if (r) {
3284 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3285 		atomic_inc(&hardware_enable_failed);
3286 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3287 	}
3288 }
3289 
3290 static int kvm_starting_cpu(unsigned int cpu)
3291 {
3292 	raw_spin_lock(&kvm_count_lock);
3293 	if (kvm_usage_count)
3294 		hardware_enable_nolock(NULL);
3295 	raw_spin_unlock(&kvm_count_lock);
3296 	return 0;
3297 }
3298 
3299 static void hardware_disable_nolock(void *junk)
3300 {
3301 	int cpu = raw_smp_processor_id();
3302 
3303 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3304 		return;
3305 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3306 	kvm_arch_hardware_disable();
3307 }
3308 
3309 static int kvm_dying_cpu(unsigned int cpu)
3310 {
3311 	raw_spin_lock(&kvm_count_lock);
3312 	if (kvm_usage_count)
3313 		hardware_disable_nolock(NULL);
3314 	raw_spin_unlock(&kvm_count_lock);
3315 	return 0;
3316 }
3317 
3318 static void hardware_disable_all_nolock(void)
3319 {
3320 	BUG_ON(!kvm_usage_count);
3321 
3322 	kvm_usage_count--;
3323 	if (!kvm_usage_count)
3324 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3325 }
3326 
3327 static void hardware_disable_all(void)
3328 {
3329 	raw_spin_lock(&kvm_count_lock);
3330 	hardware_disable_all_nolock();
3331 	raw_spin_unlock(&kvm_count_lock);
3332 }
3333 
3334 static int hardware_enable_all(void)
3335 {
3336 	int r = 0;
3337 
3338 	raw_spin_lock(&kvm_count_lock);
3339 
3340 	kvm_usage_count++;
3341 	if (kvm_usage_count == 1) {
3342 		atomic_set(&hardware_enable_failed, 0);
3343 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3344 
3345 		if (atomic_read(&hardware_enable_failed)) {
3346 			hardware_disable_all_nolock();
3347 			r = -EBUSY;
3348 		}
3349 	}
3350 
3351 	raw_spin_unlock(&kvm_count_lock);
3352 
3353 	return r;
3354 }
3355 
3356 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3357 		      void *v)
3358 {
3359 	/*
3360 	 * Some (well, at least mine) BIOSes hang on reboot if
3361 	 * in vmx root mode.
3362 	 *
3363 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3364 	 */
3365 	pr_info("kvm: exiting hardware virtualization\n");
3366 	kvm_rebooting = true;
3367 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3368 	return NOTIFY_OK;
3369 }
3370 
3371 static struct notifier_block kvm_reboot_notifier = {
3372 	.notifier_call = kvm_reboot,
3373 	.priority = 0,
3374 };
3375 
3376 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3377 {
3378 	int i;
3379 
3380 	for (i = 0; i < bus->dev_count; i++) {
3381 		struct kvm_io_device *pos = bus->range[i].dev;
3382 
3383 		kvm_iodevice_destructor(pos);
3384 	}
3385 	kfree(bus);
3386 }
3387 
3388 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3389 				 const struct kvm_io_range *r2)
3390 {
3391 	gpa_t addr1 = r1->addr;
3392 	gpa_t addr2 = r2->addr;
3393 
3394 	if (addr1 < addr2)
3395 		return -1;
3396 
3397 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3398 	 * accept any overlapping write.  Any order is acceptable for
3399 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3400 	 * we process all of them.
3401 	 */
3402 	if (r2->len) {
3403 		addr1 += r1->len;
3404 		addr2 += r2->len;
3405 	}
3406 
3407 	if (addr1 > addr2)
3408 		return 1;
3409 
3410 	return 0;
3411 }
3412 
3413 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3414 {
3415 	return kvm_io_bus_cmp(p1, p2);
3416 }
3417 
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419 			     gpa_t addr, int len)
3420 {
3421 	struct kvm_io_range *range, key;
3422 	int off;
3423 
3424 	key = (struct kvm_io_range) {
3425 		.addr = addr,
3426 		.len = len,
3427 	};
3428 
3429 	range = bsearch(&key, bus->range, bus->dev_count,
3430 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431 	if (range == NULL)
3432 		return -ENOENT;
3433 
3434 	off = range - bus->range;
3435 
3436 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437 		off--;
3438 
3439 	return off;
3440 }
3441 
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443 			      struct kvm_io_range *range, const void *val)
3444 {
3445 	int idx;
3446 
3447 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448 	if (idx < 0)
3449 		return -EOPNOTSUPP;
3450 
3451 	while (idx < bus->dev_count &&
3452 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454 					range->len, val))
3455 			return idx;
3456 		idx++;
3457 	}
3458 
3459 	return -EOPNOTSUPP;
3460 }
3461 
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464 		     int len, const void *val)
3465 {
3466 	struct kvm_io_bus *bus;
3467 	struct kvm_io_range range;
3468 	int r;
3469 
3470 	range = (struct kvm_io_range) {
3471 		.addr = addr,
3472 		.len = len,
3473 	};
3474 
3475 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476 	if (!bus)
3477 		return -ENOMEM;
3478 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3479 	return r < 0 ? r : 0;
3480 }
3481 
3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3484 			    gpa_t addr, int len, const void *val, long cookie)
3485 {
3486 	struct kvm_io_bus *bus;
3487 	struct kvm_io_range range;
3488 
3489 	range = (struct kvm_io_range) {
3490 		.addr = addr,
3491 		.len = len,
3492 	};
3493 
3494 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495 	if (!bus)
3496 		return -ENOMEM;
3497 
3498 	/* First try the device referenced by cookie. */
3499 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3500 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3501 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3502 					val))
3503 			return cookie;
3504 
3505 	/*
3506 	 * cookie contained garbage; fall back to search and return the
3507 	 * correct cookie value.
3508 	 */
3509 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3510 }
3511 
3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3513 			     struct kvm_io_range *range, void *val)
3514 {
3515 	int idx;
3516 
3517 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3518 	if (idx < 0)
3519 		return -EOPNOTSUPP;
3520 
3521 	while (idx < bus->dev_count &&
3522 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3523 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3524 				       range->len, val))
3525 			return idx;
3526 		idx++;
3527 	}
3528 
3529 	return -EOPNOTSUPP;
3530 }
3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3532 
3533 /* kvm_io_bus_read - called under kvm->slots_lock */
3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3535 		    int len, void *val)
3536 {
3537 	struct kvm_io_bus *bus;
3538 	struct kvm_io_range range;
3539 	int r;
3540 
3541 	range = (struct kvm_io_range) {
3542 		.addr = addr,
3543 		.len = len,
3544 	};
3545 
3546 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547 	if (!bus)
3548 		return -ENOMEM;
3549 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3550 	return r < 0 ? r : 0;
3551 }
3552 
3553 
3554 /* Caller must hold slots_lock. */
3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3556 			    int len, struct kvm_io_device *dev)
3557 {
3558 	int i;
3559 	struct kvm_io_bus *new_bus, *bus;
3560 	struct kvm_io_range range;
3561 
3562 	bus = kvm_get_bus(kvm, bus_idx);
3563 	if (!bus)
3564 		return -ENOMEM;
3565 
3566 	/* exclude ioeventfd which is limited by maximum fd */
3567 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3568 		return -ENOSPC;
3569 
3570 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3571 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3572 	if (!new_bus)
3573 		return -ENOMEM;
3574 
3575 	range = (struct kvm_io_range) {
3576 		.addr = addr,
3577 		.len = len,
3578 		.dev = dev,
3579 	};
3580 
3581 	for (i = 0; i < bus->dev_count; i++)
3582 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3583 			break;
3584 
3585 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3586 	new_bus->dev_count++;
3587 	new_bus->range[i] = range;
3588 	memcpy(new_bus->range + i + 1, bus->range + i,
3589 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3590 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3591 	synchronize_srcu_expedited(&kvm->srcu);
3592 	kfree(bus);
3593 
3594 	return 0;
3595 }
3596 
3597 /* Caller must hold slots_lock. */
3598 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3599 			       struct kvm_io_device *dev)
3600 {
3601 	int i;
3602 	struct kvm_io_bus *new_bus, *bus;
3603 
3604 	bus = kvm_get_bus(kvm, bus_idx);
3605 	if (!bus)
3606 		return;
3607 
3608 	for (i = 0; i < bus->dev_count; i++)
3609 		if (bus->range[i].dev == dev) {
3610 			break;
3611 		}
3612 
3613 	if (i == bus->dev_count)
3614 		return;
3615 
3616 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3617 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3618 	if (!new_bus)  {
3619 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3620 		goto broken;
3621 	}
3622 
3623 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3624 	new_bus->dev_count--;
3625 	memcpy(new_bus->range + i, bus->range + i + 1,
3626 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3627 
3628 broken:
3629 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3630 	synchronize_srcu_expedited(&kvm->srcu);
3631 	kfree(bus);
3632 	return;
3633 }
3634 
3635 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3636 					 gpa_t addr)
3637 {
3638 	struct kvm_io_bus *bus;
3639 	int dev_idx, srcu_idx;
3640 	struct kvm_io_device *iodev = NULL;
3641 
3642 	srcu_idx = srcu_read_lock(&kvm->srcu);
3643 
3644 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3645 	if (!bus)
3646 		goto out_unlock;
3647 
3648 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3649 	if (dev_idx < 0)
3650 		goto out_unlock;
3651 
3652 	iodev = bus->range[dev_idx].dev;
3653 
3654 out_unlock:
3655 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3656 
3657 	return iodev;
3658 }
3659 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3660 
3661 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3662 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3663 			   const char *fmt)
3664 {
3665 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3666 					  inode->i_private;
3667 
3668 	/* The debugfs files are a reference to the kvm struct which
3669 	 * is still valid when kvm_destroy_vm is called.
3670 	 * To avoid the race between open and the removal of the debugfs
3671 	 * directory we test against the users count.
3672 	 */
3673 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3674 		return -ENOENT;
3675 
3676 	if (simple_attr_open(inode, file, get, set, fmt)) {
3677 		kvm_put_kvm(stat_data->kvm);
3678 		return -ENOMEM;
3679 	}
3680 
3681 	return 0;
3682 }
3683 
3684 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3685 {
3686 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3687 					  inode->i_private;
3688 
3689 	simple_attr_release(inode, file);
3690 	kvm_put_kvm(stat_data->kvm);
3691 
3692 	return 0;
3693 }
3694 
3695 static int vm_stat_get_per_vm(void *data, u64 *val)
3696 {
3697 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3698 
3699 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3700 
3701 	return 0;
3702 }
3703 
3704 static int vm_stat_clear_per_vm(void *data, u64 val)
3705 {
3706 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707 
3708 	if (val)
3709 		return -EINVAL;
3710 
3711 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3712 
3713 	return 0;
3714 }
3715 
3716 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3717 {
3718 	__simple_attr_check_format("%llu\n", 0ull);
3719 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3720 				vm_stat_clear_per_vm, "%llu\n");
3721 }
3722 
3723 static const struct file_operations vm_stat_get_per_vm_fops = {
3724 	.owner   = THIS_MODULE,
3725 	.open    = vm_stat_get_per_vm_open,
3726 	.release = kvm_debugfs_release,
3727 	.read    = simple_attr_read,
3728 	.write   = simple_attr_write,
3729 	.llseek  = no_llseek,
3730 };
3731 
3732 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3733 {
3734 	int i;
3735 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3736 	struct kvm_vcpu *vcpu;
3737 
3738 	*val = 0;
3739 
3740 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3741 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3742 
3743 	return 0;
3744 }
3745 
3746 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3747 {
3748 	int i;
3749 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3750 	struct kvm_vcpu *vcpu;
3751 
3752 	if (val)
3753 		return -EINVAL;
3754 
3755 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3756 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3757 
3758 	return 0;
3759 }
3760 
3761 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3762 {
3763 	__simple_attr_check_format("%llu\n", 0ull);
3764 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3765 				 vcpu_stat_clear_per_vm, "%llu\n");
3766 }
3767 
3768 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3769 	.owner   = THIS_MODULE,
3770 	.open    = vcpu_stat_get_per_vm_open,
3771 	.release = kvm_debugfs_release,
3772 	.read    = simple_attr_read,
3773 	.write   = simple_attr_write,
3774 	.llseek  = no_llseek,
3775 };
3776 
3777 static const struct file_operations *stat_fops_per_vm[] = {
3778 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3779 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3780 };
3781 
3782 static int vm_stat_get(void *_offset, u64 *val)
3783 {
3784 	unsigned offset = (long)_offset;
3785 	struct kvm *kvm;
3786 	struct kvm_stat_data stat_tmp = {.offset = offset};
3787 	u64 tmp_val;
3788 
3789 	*val = 0;
3790 	spin_lock(&kvm_lock);
3791 	list_for_each_entry(kvm, &vm_list, vm_list) {
3792 		stat_tmp.kvm = kvm;
3793 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3794 		*val += tmp_val;
3795 	}
3796 	spin_unlock(&kvm_lock);
3797 	return 0;
3798 }
3799 
3800 static int vm_stat_clear(void *_offset, u64 val)
3801 {
3802 	unsigned offset = (long)_offset;
3803 	struct kvm *kvm;
3804 	struct kvm_stat_data stat_tmp = {.offset = offset};
3805 
3806 	if (val)
3807 		return -EINVAL;
3808 
3809 	spin_lock(&kvm_lock);
3810 	list_for_each_entry(kvm, &vm_list, vm_list) {
3811 		stat_tmp.kvm = kvm;
3812 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3813 	}
3814 	spin_unlock(&kvm_lock);
3815 
3816 	return 0;
3817 }
3818 
3819 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3820 
3821 static int vcpu_stat_get(void *_offset, u64 *val)
3822 {
3823 	unsigned offset = (long)_offset;
3824 	struct kvm *kvm;
3825 	struct kvm_stat_data stat_tmp = {.offset = offset};
3826 	u64 tmp_val;
3827 
3828 	*val = 0;
3829 	spin_lock(&kvm_lock);
3830 	list_for_each_entry(kvm, &vm_list, vm_list) {
3831 		stat_tmp.kvm = kvm;
3832 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3833 		*val += tmp_val;
3834 	}
3835 	spin_unlock(&kvm_lock);
3836 	return 0;
3837 }
3838 
3839 static int vcpu_stat_clear(void *_offset, u64 val)
3840 {
3841 	unsigned offset = (long)_offset;
3842 	struct kvm *kvm;
3843 	struct kvm_stat_data stat_tmp = {.offset = offset};
3844 
3845 	if (val)
3846 		return -EINVAL;
3847 
3848 	spin_lock(&kvm_lock);
3849 	list_for_each_entry(kvm, &vm_list, vm_list) {
3850 		stat_tmp.kvm = kvm;
3851 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3852 	}
3853 	spin_unlock(&kvm_lock);
3854 
3855 	return 0;
3856 }
3857 
3858 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3859 			"%llu\n");
3860 
3861 static const struct file_operations *stat_fops[] = {
3862 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3863 	[KVM_STAT_VM]   = &vm_stat_fops,
3864 };
3865 
3866 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3867 {
3868 	struct kobj_uevent_env *env;
3869 	unsigned long long created, active;
3870 
3871 	if (!kvm_dev.this_device || !kvm)
3872 		return;
3873 
3874 	spin_lock(&kvm_lock);
3875 	if (type == KVM_EVENT_CREATE_VM) {
3876 		kvm_createvm_count++;
3877 		kvm_active_vms++;
3878 	} else if (type == KVM_EVENT_DESTROY_VM) {
3879 		kvm_active_vms--;
3880 	}
3881 	created = kvm_createvm_count;
3882 	active = kvm_active_vms;
3883 	spin_unlock(&kvm_lock);
3884 
3885 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3886 	if (!env)
3887 		return;
3888 
3889 	add_uevent_var(env, "CREATED=%llu", created);
3890 	add_uevent_var(env, "COUNT=%llu", active);
3891 
3892 	if (type == KVM_EVENT_CREATE_VM) {
3893 		add_uevent_var(env, "EVENT=create");
3894 		kvm->userspace_pid = task_pid_nr(current);
3895 	} else if (type == KVM_EVENT_DESTROY_VM) {
3896 		add_uevent_var(env, "EVENT=destroy");
3897 	}
3898 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3899 
3900 	if (kvm->debugfs_dentry) {
3901 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3902 
3903 		if (p) {
3904 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3905 			if (!IS_ERR(tmp))
3906 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3907 			kfree(p);
3908 		}
3909 	}
3910 	/* no need for checks, since we are adding at most only 5 keys */
3911 	env->envp[env->envp_idx++] = NULL;
3912 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3913 	kfree(env);
3914 }
3915 
3916 static void kvm_init_debug(void)
3917 {
3918 	struct kvm_stats_debugfs_item *p;
3919 
3920 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3921 
3922 	kvm_debugfs_num_entries = 0;
3923 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3924 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3925 				    (void *)(long)p->offset,
3926 				    stat_fops[p->kind]);
3927 	}
3928 }
3929 
3930 static int kvm_suspend(void)
3931 {
3932 	if (kvm_usage_count)
3933 		hardware_disable_nolock(NULL);
3934 	return 0;
3935 }
3936 
3937 static void kvm_resume(void)
3938 {
3939 	if (kvm_usage_count) {
3940 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3941 		hardware_enable_nolock(NULL);
3942 	}
3943 }
3944 
3945 static struct syscore_ops kvm_syscore_ops = {
3946 	.suspend = kvm_suspend,
3947 	.resume = kvm_resume,
3948 };
3949 
3950 static inline
3951 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3952 {
3953 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3954 }
3955 
3956 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3957 {
3958 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3959 
3960 	if (vcpu->preempted)
3961 		vcpu->preempted = false;
3962 
3963 	kvm_arch_sched_in(vcpu, cpu);
3964 
3965 	kvm_arch_vcpu_load(vcpu, cpu);
3966 }
3967 
3968 static void kvm_sched_out(struct preempt_notifier *pn,
3969 			  struct task_struct *next)
3970 {
3971 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3972 
3973 	if (current->state == TASK_RUNNING)
3974 		vcpu->preempted = true;
3975 	kvm_arch_vcpu_put(vcpu);
3976 }
3977 
3978 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3979 		  struct module *module)
3980 {
3981 	int r;
3982 	int cpu;
3983 
3984 	r = kvm_arch_init(opaque);
3985 	if (r)
3986 		goto out_fail;
3987 
3988 	/*
3989 	 * kvm_arch_init makes sure there's at most one caller
3990 	 * for architectures that support multiple implementations,
3991 	 * like intel and amd on x86.
3992 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3993 	 * conflicts in case kvm is already setup for another implementation.
3994 	 */
3995 	r = kvm_irqfd_init();
3996 	if (r)
3997 		goto out_irqfd;
3998 
3999 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4000 		r = -ENOMEM;
4001 		goto out_free_0;
4002 	}
4003 
4004 	r = kvm_arch_hardware_setup();
4005 	if (r < 0)
4006 		goto out_free_0a;
4007 
4008 	for_each_online_cpu(cpu) {
4009 		smp_call_function_single(cpu,
4010 				kvm_arch_check_processor_compat,
4011 				&r, 1);
4012 		if (r < 0)
4013 			goto out_free_1;
4014 	}
4015 
4016 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4017 				      kvm_starting_cpu, kvm_dying_cpu);
4018 	if (r)
4019 		goto out_free_2;
4020 	register_reboot_notifier(&kvm_reboot_notifier);
4021 
4022 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4023 	if (!vcpu_align)
4024 		vcpu_align = __alignof__(struct kvm_vcpu);
4025 	kvm_vcpu_cache =
4026 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4027 					   SLAB_ACCOUNT,
4028 					   offsetof(struct kvm_vcpu, arch),
4029 					   sizeof_field(struct kvm_vcpu, arch),
4030 					   NULL);
4031 	if (!kvm_vcpu_cache) {
4032 		r = -ENOMEM;
4033 		goto out_free_3;
4034 	}
4035 
4036 	r = kvm_async_pf_init();
4037 	if (r)
4038 		goto out_free;
4039 
4040 	kvm_chardev_ops.owner = module;
4041 	kvm_vm_fops.owner = module;
4042 	kvm_vcpu_fops.owner = module;
4043 
4044 	r = misc_register(&kvm_dev);
4045 	if (r) {
4046 		pr_err("kvm: misc device register failed\n");
4047 		goto out_unreg;
4048 	}
4049 
4050 	register_syscore_ops(&kvm_syscore_ops);
4051 
4052 	kvm_preempt_ops.sched_in = kvm_sched_in;
4053 	kvm_preempt_ops.sched_out = kvm_sched_out;
4054 
4055 	kvm_init_debug();
4056 
4057 	r = kvm_vfio_ops_init();
4058 	WARN_ON(r);
4059 
4060 	return 0;
4061 
4062 out_unreg:
4063 	kvm_async_pf_deinit();
4064 out_free:
4065 	kmem_cache_destroy(kvm_vcpu_cache);
4066 out_free_3:
4067 	unregister_reboot_notifier(&kvm_reboot_notifier);
4068 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4069 out_free_2:
4070 out_free_1:
4071 	kvm_arch_hardware_unsetup();
4072 out_free_0a:
4073 	free_cpumask_var(cpus_hardware_enabled);
4074 out_free_0:
4075 	kvm_irqfd_exit();
4076 out_irqfd:
4077 	kvm_arch_exit();
4078 out_fail:
4079 	return r;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_init);
4082 
4083 void kvm_exit(void)
4084 {
4085 	debugfs_remove_recursive(kvm_debugfs_dir);
4086 	misc_deregister(&kvm_dev);
4087 	kmem_cache_destroy(kvm_vcpu_cache);
4088 	kvm_async_pf_deinit();
4089 	unregister_syscore_ops(&kvm_syscore_ops);
4090 	unregister_reboot_notifier(&kvm_reboot_notifier);
4091 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4092 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4093 	kvm_arch_hardware_unsetup();
4094 	kvm_arch_exit();
4095 	kvm_irqfd_exit();
4096 	free_cpumask_var(cpus_hardware_enabled);
4097 	kvm_vfio_ops_exit();
4098 }
4099 EXPORT_SYMBOL_GPL(kvm_exit);
4100