1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 bool kvm_is_mmio_pfn(pfn_t pfn) 104 { 105 if (pfn_valid(pfn)) 106 return PageReserved(pfn_to_page(pfn)); 107 108 return true; 109 } 110 111 /* 112 * Switches to specified vcpu, until a matching vcpu_put() 113 */ 114 int vcpu_load(struct kvm_vcpu *vcpu) 115 { 116 int cpu; 117 118 if (mutex_lock_killable(&vcpu->mutex)) 119 return -EINTR; 120 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 121 /* The thread running this VCPU changed. */ 122 struct pid *oldpid = vcpu->pid; 123 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 124 rcu_assign_pointer(vcpu->pid, newpid); 125 synchronize_rcu(); 126 put_pid(oldpid); 127 } 128 cpu = get_cpu(); 129 preempt_notifier_register(&vcpu->preempt_notifier); 130 kvm_arch_vcpu_load(vcpu, cpu); 131 put_cpu(); 132 return 0; 133 } 134 135 void vcpu_put(struct kvm_vcpu *vcpu) 136 { 137 preempt_disable(); 138 kvm_arch_vcpu_put(vcpu); 139 preempt_notifier_unregister(&vcpu->preempt_notifier); 140 preempt_enable(); 141 mutex_unlock(&vcpu->mutex); 142 } 143 144 static void ack_flush(void *_completed) 145 { 146 } 147 148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 149 { 150 int i, cpu, me; 151 cpumask_var_t cpus; 152 bool called = true; 153 struct kvm_vcpu *vcpu; 154 155 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 156 157 me = get_cpu(); 158 kvm_for_each_vcpu(i, vcpu, kvm) { 159 kvm_make_request(req, vcpu); 160 cpu = vcpu->cpu; 161 162 /* Set ->requests bit before we read ->mode */ 163 smp_mb(); 164 165 if (cpus != NULL && cpu != -1 && cpu != me && 166 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 167 cpumask_set_cpu(cpu, cpus); 168 } 169 if (unlikely(cpus == NULL)) 170 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 171 else if (!cpumask_empty(cpus)) 172 smp_call_function_many(cpus, ack_flush, NULL, 1); 173 else 174 called = false; 175 put_cpu(); 176 free_cpumask_var(cpus); 177 return called; 178 } 179 180 void kvm_flush_remote_tlbs(struct kvm *kvm) 181 { 182 long dirty_count = kvm->tlbs_dirty; 183 184 smp_mb(); 185 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 186 ++kvm->stat.remote_tlb_flush; 187 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 188 } 189 190 void kvm_reload_remote_mmus(struct kvm *kvm) 191 { 192 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 193 } 194 195 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 196 { 197 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 198 } 199 200 void kvm_make_scan_ioapic_request(struct kvm *kvm) 201 { 202 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 203 } 204 205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 206 { 207 struct page *page; 208 int r; 209 210 mutex_init(&vcpu->mutex); 211 vcpu->cpu = -1; 212 vcpu->kvm = kvm; 213 vcpu->vcpu_id = id; 214 vcpu->pid = NULL; 215 init_waitqueue_head(&vcpu->wq); 216 kvm_async_pf_vcpu_init(vcpu); 217 218 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 219 if (!page) { 220 r = -ENOMEM; 221 goto fail; 222 } 223 vcpu->run = page_address(page); 224 225 kvm_vcpu_set_in_spin_loop(vcpu, false); 226 kvm_vcpu_set_dy_eligible(vcpu, false); 227 vcpu->preempted = false; 228 229 r = kvm_arch_vcpu_init(vcpu); 230 if (r < 0) 231 goto fail_free_run; 232 return 0; 233 234 fail_free_run: 235 free_page((unsigned long)vcpu->run); 236 fail: 237 return r; 238 } 239 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 240 241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 242 { 243 put_pid(vcpu->pid); 244 kvm_arch_vcpu_uninit(vcpu); 245 free_page((unsigned long)vcpu->run); 246 } 247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 248 249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 251 { 252 return container_of(mn, struct kvm, mmu_notifier); 253 } 254 255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 256 struct mm_struct *mm, 257 unsigned long address) 258 { 259 struct kvm *kvm = mmu_notifier_to_kvm(mn); 260 int need_tlb_flush, idx; 261 262 /* 263 * When ->invalidate_page runs, the linux pte has been zapped 264 * already but the page is still allocated until 265 * ->invalidate_page returns. So if we increase the sequence 266 * here the kvm page fault will notice if the spte can't be 267 * established because the page is going to be freed. If 268 * instead the kvm page fault establishes the spte before 269 * ->invalidate_page runs, kvm_unmap_hva will release it 270 * before returning. 271 * 272 * The sequence increase only need to be seen at spin_unlock 273 * time, and not at spin_lock time. 274 * 275 * Increasing the sequence after the spin_unlock would be 276 * unsafe because the kvm page fault could then establish the 277 * pte after kvm_unmap_hva returned, without noticing the page 278 * is going to be freed. 279 */ 280 idx = srcu_read_lock(&kvm->srcu); 281 spin_lock(&kvm->mmu_lock); 282 283 kvm->mmu_notifier_seq++; 284 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 285 /* we've to flush the tlb before the pages can be freed */ 286 if (need_tlb_flush) 287 kvm_flush_remote_tlbs(kvm); 288 289 spin_unlock(&kvm->mmu_lock); 290 srcu_read_unlock(&kvm->srcu, idx); 291 } 292 293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 294 struct mm_struct *mm, 295 unsigned long address, 296 pte_t pte) 297 { 298 struct kvm *kvm = mmu_notifier_to_kvm(mn); 299 int idx; 300 301 idx = srcu_read_lock(&kvm->srcu); 302 spin_lock(&kvm->mmu_lock); 303 kvm->mmu_notifier_seq++; 304 kvm_set_spte_hva(kvm, address, pte); 305 spin_unlock(&kvm->mmu_lock); 306 srcu_read_unlock(&kvm->srcu, idx); 307 } 308 309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 310 struct mm_struct *mm, 311 unsigned long start, 312 unsigned long end) 313 { 314 struct kvm *kvm = mmu_notifier_to_kvm(mn); 315 int need_tlb_flush = 0, idx; 316 317 idx = srcu_read_lock(&kvm->srcu); 318 spin_lock(&kvm->mmu_lock); 319 /* 320 * The count increase must become visible at unlock time as no 321 * spte can be established without taking the mmu_lock and 322 * count is also read inside the mmu_lock critical section. 323 */ 324 kvm->mmu_notifier_count++; 325 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 326 need_tlb_flush |= kvm->tlbs_dirty; 327 /* we've to flush the tlb before the pages can be freed */ 328 if (need_tlb_flush) 329 kvm_flush_remote_tlbs(kvm); 330 331 spin_unlock(&kvm->mmu_lock); 332 srcu_read_unlock(&kvm->srcu, idx); 333 } 334 335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 336 struct mm_struct *mm, 337 unsigned long start, 338 unsigned long end) 339 { 340 struct kvm *kvm = mmu_notifier_to_kvm(mn); 341 342 spin_lock(&kvm->mmu_lock); 343 /* 344 * This sequence increase will notify the kvm page fault that 345 * the page that is going to be mapped in the spte could have 346 * been freed. 347 */ 348 kvm->mmu_notifier_seq++; 349 smp_wmb(); 350 /* 351 * The above sequence increase must be visible before the 352 * below count decrease, which is ensured by the smp_wmb above 353 * in conjunction with the smp_rmb in mmu_notifier_retry(). 354 */ 355 kvm->mmu_notifier_count--; 356 spin_unlock(&kvm->mmu_lock); 357 358 BUG_ON(kvm->mmu_notifier_count < 0); 359 } 360 361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 362 struct mm_struct *mm, 363 unsigned long address) 364 { 365 struct kvm *kvm = mmu_notifier_to_kvm(mn); 366 int young, idx; 367 368 idx = srcu_read_lock(&kvm->srcu); 369 spin_lock(&kvm->mmu_lock); 370 371 young = kvm_age_hva(kvm, address); 372 if (young) 373 kvm_flush_remote_tlbs(kvm); 374 375 spin_unlock(&kvm->mmu_lock); 376 srcu_read_unlock(&kvm->srcu, idx); 377 378 return young; 379 } 380 381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 382 struct mm_struct *mm, 383 unsigned long address) 384 { 385 struct kvm *kvm = mmu_notifier_to_kvm(mn); 386 int young, idx; 387 388 idx = srcu_read_lock(&kvm->srcu); 389 spin_lock(&kvm->mmu_lock); 390 young = kvm_test_age_hva(kvm, address); 391 spin_unlock(&kvm->mmu_lock); 392 srcu_read_unlock(&kvm->srcu, idx); 393 394 return young; 395 } 396 397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 398 struct mm_struct *mm) 399 { 400 struct kvm *kvm = mmu_notifier_to_kvm(mn); 401 int idx; 402 403 idx = srcu_read_lock(&kvm->srcu); 404 kvm_arch_flush_shadow_all(kvm); 405 srcu_read_unlock(&kvm->srcu, idx); 406 } 407 408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 409 .invalidate_page = kvm_mmu_notifier_invalidate_page, 410 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 411 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 412 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 413 .test_young = kvm_mmu_notifier_test_young, 414 .change_pte = kvm_mmu_notifier_change_pte, 415 .release = kvm_mmu_notifier_release, 416 }; 417 418 static int kvm_init_mmu_notifier(struct kvm *kvm) 419 { 420 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 421 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 422 } 423 424 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 425 426 static int kvm_init_mmu_notifier(struct kvm *kvm) 427 { 428 return 0; 429 } 430 431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 432 433 static void kvm_init_memslots_id(struct kvm *kvm) 434 { 435 int i; 436 struct kvm_memslots *slots = kvm->memslots; 437 438 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 439 slots->id_to_index[i] = slots->memslots[i].id = i; 440 } 441 442 static struct kvm *kvm_create_vm(unsigned long type) 443 { 444 int r, i; 445 struct kvm *kvm = kvm_arch_alloc_vm(); 446 447 if (!kvm) 448 return ERR_PTR(-ENOMEM); 449 450 r = kvm_arch_init_vm(kvm, type); 451 if (r) 452 goto out_err_nodisable; 453 454 r = hardware_enable_all(); 455 if (r) 456 goto out_err_nodisable; 457 458 #ifdef CONFIG_HAVE_KVM_IRQCHIP 459 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 460 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 461 #endif 462 463 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 464 465 r = -ENOMEM; 466 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 467 if (!kvm->memslots) 468 goto out_err_nosrcu; 469 kvm_init_memslots_id(kvm); 470 if (init_srcu_struct(&kvm->srcu)) 471 goto out_err_nosrcu; 472 for (i = 0; i < KVM_NR_BUSES; i++) { 473 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 474 GFP_KERNEL); 475 if (!kvm->buses[i]) 476 goto out_err; 477 } 478 479 spin_lock_init(&kvm->mmu_lock); 480 kvm->mm = current->mm; 481 atomic_inc(&kvm->mm->mm_count); 482 kvm_eventfd_init(kvm); 483 mutex_init(&kvm->lock); 484 mutex_init(&kvm->irq_lock); 485 mutex_init(&kvm->slots_lock); 486 atomic_set(&kvm->users_count, 1); 487 INIT_LIST_HEAD(&kvm->devices); 488 489 r = kvm_init_mmu_notifier(kvm); 490 if (r) 491 goto out_err; 492 493 raw_spin_lock(&kvm_lock); 494 list_add(&kvm->vm_list, &vm_list); 495 raw_spin_unlock(&kvm_lock); 496 497 return kvm; 498 499 out_err: 500 cleanup_srcu_struct(&kvm->srcu); 501 out_err_nosrcu: 502 hardware_disable_all(); 503 out_err_nodisable: 504 for (i = 0; i < KVM_NR_BUSES; i++) 505 kfree(kvm->buses[i]); 506 kfree(kvm->memslots); 507 kvm_arch_free_vm(kvm); 508 return ERR_PTR(r); 509 } 510 511 /* 512 * Avoid using vmalloc for a small buffer. 513 * Should not be used when the size is statically known. 514 */ 515 void *kvm_kvzalloc(unsigned long size) 516 { 517 if (size > PAGE_SIZE) 518 return vzalloc(size); 519 else 520 return kzalloc(size, GFP_KERNEL); 521 } 522 523 void kvm_kvfree(const void *addr) 524 { 525 if (is_vmalloc_addr(addr)) 526 vfree(addr); 527 else 528 kfree(addr); 529 } 530 531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 532 { 533 if (!memslot->dirty_bitmap) 534 return; 535 536 kvm_kvfree(memslot->dirty_bitmap); 537 memslot->dirty_bitmap = NULL; 538 } 539 540 /* 541 * Free any memory in @free but not in @dont. 542 */ 543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 544 struct kvm_memory_slot *dont) 545 { 546 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 547 kvm_destroy_dirty_bitmap(free); 548 549 kvm_arch_free_memslot(free, dont); 550 551 free->npages = 0; 552 } 553 554 void kvm_free_physmem(struct kvm *kvm) 555 { 556 struct kvm_memslots *slots = kvm->memslots; 557 struct kvm_memory_slot *memslot; 558 559 kvm_for_each_memslot(memslot, slots) 560 kvm_free_physmem_slot(memslot, NULL); 561 562 kfree(kvm->memslots); 563 } 564 565 static void kvm_destroy_devices(struct kvm *kvm) 566 { 567 struct list_head *node, *tmp; 568 569 list_for_each_safe(node, tmp, &kvm->devices) { 570 struct kvm_device *dev = 571 list_entry(node, struct kvm_device, vm_node); 572 573 list_del(node); 574 dev->ops->destroy(dev); 575 } 576 } 577 578 static void kvm_destroy_vm(struct kvm *kvm) 579 { 580 int i; 581 struct mm_struct *mm = kvm->mm; 582 583 kvm_arch_sync_events(kvm); 584 raw_spin_lock(&kvm_lock); 585 list_del(&kvm->vm_list); 586 raw_spin_unlock(&kvm_lock); 587 kvm_free_irq_routing(kvm); 588 for (i = 0; i < KVM_NR_BUSES; i++) 589 kvm_io_bus_destroy(kvm->buses[i]); 590 kvm_coalesced_mmio_free(kvm); 591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 592 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 593 #else 594 kvm_arch_flush_shadow_all(kvm); 595 #endif 596 kvm_arch_destroy_vm(kvm); 597 kvm_destroy_devices(kvm); 598 kvm_free_physmem(kvm); 599 cleanup_srcu_struct(&kvm->srcu); 600 kvm_arch_free_vm(kvm); 601 hardware_disable_all(); 602 mmdrop(mm); 603 } 604 605 void kvm_get_kvm(struct kvm *kvm) 606 { 607 atomic_inc(&kvm->users_count); 608 } 609 EXPORT_SYMBOL_GPL(kvm_get_kvm); 610 611 void kvm_put_kvm(struct kvm *kvm) 612 { 613 if (atomic_dec_and_test(&kvm->users_count)) 614 kvm_destroy_vm(kvm); 615 } 616 EXPORT_SYMBOL_GPL(kvm_put_kvm); 617 618 619 static int kvm_vm_release(struct inode *inode, struct file *filp) 620 { 621 struct kvm *kvm = filp->private_data; 622 623 kvm_irqfd_release(kvm); 624 625 kvm_put_kvm(kvm); 626 return 0; 627 } 628 629 /* 630 * Allocation size is twice as large as the actual dirty bitmap size. 631 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 632 */ 633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 634 { 635 #ifndef CONFIG_S390 636 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 637 638 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 639 if (!memslot->dirty_bitmap) 640 return -ENOMEM; 641 642 #endif /* !CONFIG_S390 */ 643 return 0; 644 } 645 646 static int cmp_memslot(const void *slot1, const void *slot2) 647 { 648 struct kvm_memory_slot *s1, *s2; 649 650 s1 = (struct kvm_memory_slot *)slot1; 651 s2 = (struct kvm_memory_slot *)slot2; 652 653 if (s1->npages < s2->npages) 654 return 1; 655 if (s1->npages > s2->npages) 656 return -1; 657 658 return 0; 659 } 660 661 /* 662 * Sort the memslots base on its size, so the larger slots 663 * will get better fit. 664 */ 665 static void sort_memslots(struct kvm_memslots *slots) 666 { 667 int i; 668 669 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 670 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 671 672 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 673 slots->id_to_index[slots->memslots[i].id] = i; 674 } 675 676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, 677 u64 last_generation) 678 { 679 if (new) { 680 int id = new->id; 681 struct kvm_memory_slot *old = id_to_memslot(slots, id); 682 unsigned long npages = old->npages; 683 684 *old = *new; 685 if (new->npages != npages) 686 sort_memslots(slots); 687 } 688 689 slots->generation = last_generation + 1; 690 } 691 692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 693 { 694 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 695 696 #ifdef KVM_CAP_READONLY_MEM 697 valid_flags |= KVM_MEM_READONLY; 698 #endif 699 700 if (mem->flags & ~valid_flags) 701 return -EINVAL; 702 703 return 0; 704 } 705 706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 707 struct kvm_memslots *slots, struct kvm_memory_slot *new) 708 { 709 struct kvm_memslots *old_memslots = kvm->memslots; 710 711 update_memslots(slots, new, kvm->memslots->generation); 712 rcu_assign_pointer(kvm->memslots, slots); 713 synchronize_srcu_expedited(&kvm->srcu); 714 715 kvm_arch_memslots_updated(kvm); 716 717 return old_memslots; 718 } 719 720 /* 721 * Allocate some memory and give it an address in the guest physical address 722 * space. 723 * 724 * Discontiguous memory is allowed, mostly for framebuffers. 725 * 726 * Must be called holding mmap_sem for write. 727 */ 728 int __kvm_set_memory_region(struct kvm *kvm, 729 struct kvm_userspace_memory_region *mem) 730 { 731 int r; 732 gfn_t base_gfn; 733 unsigned long npages; 734 struct kvm_memory_slot *slot; 735 struct kvm_memory_slot old, new; 736 struct kvm_memslots *slots = NULL, *old_memslots; 737 enum kvm_mr_change change; 738 739 r = check_memory_region_flags(mem); 740 if (r) 741 goto out; 742 743 r = -EINVAL; 744 /* General sanity checks */ 745 if (mem->memory_size & (PAGE_SIZE - 1)) 746 goto out; 747 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 748 goto out; 749 /* We can read the guest memory with __xxx_user() later on. */ 750 if ((mem->slot < KVM_USER_MEM_SLOTS) && 751 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 752 !access_ok(VERIFY_WRITE, 753 (void __user *)(unsigned long)mem->userspace_addr, 754 mem->memory_size))) 755 goto out; 756 if (mem->slot >= KVM_MEM_SLOTS_NUM) 757 goto out; 758 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 759 goto out; 760 761 slot = id_to_memslot(kvm->memslots, mem->slot); 762 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 763 npages = mem->memory_size >> PAGE_SHIFT; 764 765 r = -EINVAL; 766 if (npages > KVM_MEM_MAX_NR_PAGES) 767 goto out; 768 769 if (!npages) 770 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 771 772 new = old = *slot; 773 774 new.id = mem->slot; 775 new.base_gfn = base_gfn; 776 new.npages = npages; 777 new.flags = mem->flags; 778 779 r = -EINVAL; 780 if (npages) { 781 if (!old.npages) 782 change = KVM_MR_CREATE; 783 else { /* Modify an existing slot. */ 784 if ((mem->userspace_addr != old.userspace_addr) || 785 (npages != old.npages) || 786 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 787 goto out; 788 789 if (base_gfn != old.base_gfn) 790 change = KVM_MR_MOVE; 791 else if (new.flags != old.flags) 792 change = KVM_MR_FLAGS_ONLY; 793 else { /* Nothing to change. */ 794 r = 0; 795 goto out; 796 } 797 } 798 } else if (old.npages) { 799 change = KVM_MR_DELETE; 800 } else /* Modify a non-existent slot: disallowed. */ 801 goto out; 802 803 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 804 /* Check for overlaps */ 805 r = -EEXIST; 806 kvm_for_each_memslot(slot, kvm->memslots) { 807 if ((slot->id >= KVM_USER_MEM_SLOTS) || 808 (slot->id == mem->slot)) 809 continue; 810 if (!((base_gfn + npages <= slot->base_gfn) || 811 (base_gfn >= slot->base_gfn + slot->npages))) 812 goto out; 813 } 814 } 815 816 /* Free page dirty bitmap if unneeded */ 817 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 818 new.dirty_bitmap = NULL; 819 820 r = -ENOMEM; 821 if (change == KVM_MR_CREATE) { 822 new.userspace_addr = mem->userspace_addr; 823 824 if (kvm_arch_create_memslot(&new, npages)) 825 goto out_free; 826 } 827 828 /* Allocate page dirty bitmap if needed */ 829 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 830 if (kvm_create_dirty_bitmap(&new) < 0) 831 goto out_free; 832 } 833 834 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 835 r = -ENOMEM; 836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 837 GFP_KERNEL); 838 if (!slots) 839 goto out_free; 840 slot = id_to_memslot(slots, mem->slot); 841 slot->flags |= KVM_MEMSLOT_INVALID; 842 843 old_memslots = install_new_memslots(kvm, slots, NULL); 844 845 /* slot was deleted or moved, clear iommu mapping */ 846 kvm_iommu_unmap_pages(kvm, &old); 847 /* From this point no new shadow pages pointing to a deleted, 848 * or moved, memslot will be created. 849 * 850 * validation of sp->gfn happens in: 851 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 852 * - kvm_is_visible_gfn (mmu_check_roots) 853 */ 854 kvm_arch_flush_shadow_memslot(kvm, slot); 855 slots = old_memslots; 856 } 857 858 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 859 if (r) 860 goto out_slots; 861 862 r = -ENOMEM; 863 /* 864 * We can re-use the old_memslots from above, the only difference 865 * from the currently installed memslots is the invalid flag. This 866 * will get overwritten by update_memslots anyway. 867 */ 868 if (!slots) { 869 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 870 GFP_KERNEL); 871 if (!slots) 872 goto out_free; 873 } 874 875 /* 876 * IOMMU mapping: New slots need to be mapped. Old slots need to be 877 * un-mapped and re-mapped if their base changes. Since base change 878 * unmapping is handled above with slot deletion, mapping alone is 879 * needed here. Anything else the iommu might care about for existing 880 * slots (size changes, userspace addr changes and read-only flag 881 * changes) is disallowed above, so any other attribute changes getting 882 * here can be skipped. 883 */ 884 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 885 r = kvm_iommu_map_pages(kvm, &new); 886 if (r) 887 goto out_slots; 888 } 889 890 /* actual memory is freed via old in kvm_free_physmem_slot below */ 891 if (change == KVM_MR_DELETE) { 892 new.dirty_bitmap = NULL; 893 memset(&new.arch, 0, sizeof(new.arch)); 894 } 895 896 old_memslots = install_new_memslots(kvm, slots, &new); 897 898 kvm_arch_commit_memory_region(kvm, mem, &old, change); 899 900 kvm_free_physmem_slot(&old, &new); 901 kfree(old_memslots); 902 903 return 0; 904 905 out_slots: 906 kfree(slots); 907 out_free: 908 kvm_free_physmem_slot(&new, &old); 909 out: 910 return r; 911 } 912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 913 914 int kvm_set_memory_region(struct kvm *kvm, 915 struct kvm_userspace_memory_region *mem) 916 { 917 int r; 918 919 mutex_lock(&kvm->slots_lock); 920 r = __kvm_set_memory_region(kvm, mem); 921 mutex_unlock(&kvm->slots_lock); 922 return r; 923 } 924 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 925 926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 927 struct kvm_userspace_memory_region *mem) 928 { 929 if (mem->slot >= KVM_USER_MEM_SLOTS) 930 return -EINVAL; 931 return kvm_set_memory_region(kvm, mem); 932 } 933 934 int kvm_get_dirty_log(struct kvm *kvm, 935 struct kvm_dirty_log *log, int *is_dirty) 936 { 937 struct kvm_memory_slot *memslot; 938 int r, i; 939 unsigned long n; 940 unsigned long any = 0; 941 942 r = -EINVAL; 943 if (log->slot >= KVM_USER_MEM_SLOTS) 944 goto out; 945 946 memslot = id_to_memslot(kvm->memslots, log->slot); 947 r = -ENOENT; 948 if (!memslot->dirty_bitmap) 949 goto out; 950 951 n = kvm_dirty_bitmap_bytes(memslot); 952 953 for (i = 0; !any && i < n/sizeof(long); ++i) 954 any = memslot->dirty_bitmap[i]; 955 956 r = -EFAULT; 957 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 958 goto out; 959 960 if (any) 961 *is_dirty = 1; 962 963 r = 0; 964 out: 965 return r; 966 } 967 968 bool kvm_largepages_enabled(void) 969 { 970 return largepages_enabled; 971 } 972 973 void kvm_disable_largepages(void) 974 { 975 largepages_enabled = false; 976 } 977 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 978 979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 980 { 981 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 982 } 983 EXPORT_SYMBOL_GPL(gfn_to_memslot); 984 985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 986 { 987 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 988 989 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 990 memslot->flags & KVM_MEMSLOT_INVALID) 991 return 0; 992 993 return 1; 994 } 995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 996 997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 998 { 999 struct vm_area_struct *vma; 1000 unsigned long addr, size; 1001 1002 size = PAGE_SIZE; 1003 1004 addr = gfn_to_hva(kvm, gfn); 1005 if (kvm_is_error_hva(addr)) 1006 return PAGE_SIZE; 1007 1008 down_read(¤t->mm->mmap_sem); 1009 vma = find_vma(current->mm, addr); 1010 if (!vma) 1011 goto out; 1012 1013 size = vma_kernel_pagesize(vma); 1014 1015 out: 1016 up_read(¤t->mm->mmap_sem); 1017 1018 return size; 1019 } 1020 1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1022 { 1023 return slot->flags & KVM_MEM_READONLY; 1024 } 1025 1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1027 gfn_t *nr_pages, bool write) 1028 { 1029 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1030 return KVM_HVA_ERR_BAD; 1031 1032 if (memslot_is_readonly(slot) && write) 1033 return KVM_HVA_ERR_RO_BAD; 1034 1035 if (nr_pages) 1036 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1037 1038 return __gfn_to_hva_memslot(slot, gfn); 1039 } 1040 1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1042 gfn_t *nr_pages) 1043 { 1044 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1045 } 1046 1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1048 gfn_t gfn) 1049 { 1050 return gfn_to_hva_many(slot, gfn, NULL); 1051 } 1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1053 1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1055 { 1056 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1057 } 1058 EXPORT_SYMBOL_GPL(gfn_to_hva); 1059 1060 /* 1061 * If writable is set to false, the hva returned by this function is only 1062 * allowed to be read. 1063 */ 1064 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1065 { 1066 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1067 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1068 1069 if (!kvm_is_error_hva(hva) && writable) 1070 *writable = !memslot_is_readonly(slot); 1071 1072 return hva; 1073 } 1074 1075 static int kvm_read_hva(void *data, void __user *hva, int len) 1076 { 1077 return __copy_from_user(data, hva, len); 1078 } 1079 1080 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1081 { 1082 return __copy_from_user_inatomic(data, hva, len); 1083 } 1084 1085 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1086 unsigned long start, int write, struct page **page) 1087 { 1088 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1089 1090 if (write) 1091 flags |= FOLL_WRITE; 1092 1093 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1094 } 1095 1096 static inline int check_user_page_hwpoison(unsigned long addr) 1097 { 1098 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1099 1100 rc = __get_user_pages(current, current->mm, addr, 1, 1101 flags, NULL, NULL, NULL); 1102 return rc == -EHWPOISON; 1103 } 1104 1105 /* 1106 * The atomic path to get the writable pfn which will be stored in @pfn, 1107 * true indicates success, otherwise false is returned. 1108 */ 1109 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1110 bool write_fault, bool *writable, pfn_t *pfn) 1111 { 1112 struct page *page[1]; 1113 int npages; 1114 1115 if (!(async || atomic)) 1116 return false; 1117 1118 /* 1119 * Fast pin a writable pfn only if it is a write fault request 1120 * or the caller allows to map a writable pfn for a read fault 1121 * request. 1122 */ 1123 if (!(write_fault || writable)) 1124 return false; 1125 1126 npages = __get_user_pages_fast(addr, 1, 1, page); 1127 if (npages == 1) { 1128 *pfn = page_to_pfn(page[0]); 1129 1130 if (writable) 1131 *writable = true; 1132 return true; 1133 } 1134 1135 return false; 1136 } 1137 1138 /* 1139 * The slow path to get the pfn of the specified host virtual address, 1140 * 1 indicates success, -errno is returned if error is detected. 1141 */ 1142 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1143 bool *writable, pfn_t *pfn) 1144 { 1145 struct page *page[1]; 1146 int npages = 0; 1147 1148 might_sleep(); 1149 1150 if (writable) 1151 *writable = write_fault; 1152 1153 if (async) { 1154 down_read(¤t->mm->mmap_sem); 1155 npages = get_user_page_nowait(current, current->mm, 1156 addr, write_fault, page); 1157 up_read(¤t->mm->mmap_sem); 1158 } else 1159 npages = get_user_pages_fast(addr, 1, write_fault, 1160 page); 1161 if (npages != 1) 1162 return npages; 1163 1164 /* map read fault as writable if possible */ 1165 if (unlikely(!write_fault) && writable) { 1166 struct page *wpage[1]; 1167 1168 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1169 if (npages == 1) { 1170 *writable = true; 1171 put_page(page[0]); 1172 page[0] = wpage[0]; 1173 } 1174 1175 npages = 1; 1176 } 1177 *pfn = page_to_pfn(page[0]); 1178 return npages; 1179 } 1180 1181 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1182 { 1183 if (unlikely(!(vma->vm_flags & VM_READ))) 1184 return false; 1185 1186 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1187 return false; 1188 1189 return true; 1190 } 1191 1192 /* 1193 * Pin guest page in memory and return its pfn. 1194 * @addr: host virtual address which maps memory to the guest 1195 * @atomic: whether this function can sleep 1196 * @async: whether this function need to wait IO complete if the 1197 * host page is not in the memory 1198 * @write_fault: whether we should get a writable host page 1199 * @writable: whether it allows to map a writable host page for !@write_fault 1200 * 1201 * The function will map a writable host page for these two cases: 1202 * 1): @write_fault = true 1203 * 2): @write_fault = false && @writable, @writable will tell the caller 1204 * whether the mapping is writable. 1205 */ 1206 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1207 bool write_fault, bool *writable) 1208 { 1209 struct vm_area_struct *vma; 1210 pfn_t pfn = 0; 1211 int npages; 1212 1213 /* we can do it either atomically or asynchronously, not both */ 1214 BUG_ON(atomic && async); 1215 1216 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1217 return pfn; 1218 1219 if (atomic) 1220 return KVM_PFN_ERR_FAULT; 1221 1222 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1223 if (npages == 1) 1224 return pfn; 1225 1226 down_read(¤t->mm->mmap_sem); 1227 if (npages == -EHWPOISON || 1228 (!async && check_user_page_hwpoison(addr))) { 1229 pfn = KVM_PFN_ERR_HWPOISON; 1230 goto exit; 1231 } 1232 1233 vma = find_vma_intersection(current->mm, addr, addr + 1); 1234 1235 if (vma == NULL) 1236 pfn = KVM_PFN_ERR_FAULT; 1237 else if ((vma->vm_flags & VM_PFNMAP)) { 1238 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1239 vma->vm_pgoff; 1240 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1241 } else { 1242 if (async && vma_is_valid(vma, write_fault)) 1243 *async = true; 1244 pfn = KVM_PFN_ERR_FAULT; 1245 } 1246 exit: 1247 up_read(¤t->mm->mmap_sem); 1248 return pfn; 1249 } 1250 1251 static pfn_t 1252 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1253 bool *async, bool write_fault, bool *writable) 1254 { 1255 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1256 1257 if (addr == KVM_HVA_ERR_RO_BAD) 1258 return KVM_PFN_ERR_RO_FAULT; 1259 1260 if (kvm_is_error_hva(addr)) 1261 return KVM_PFN_NOSLOT; 1262 1263 /* Do not map writable pfn in the readonly memslot. */ 1264 if (writable && memslot_is_readonly(slot)) { 1265 *writable = false; 1266 writable = NULL; 1267 } 1268 1269 return hva_to_pfn(addr, atomic, async, write_fault, 1270 writable); 1271 } 1272 1273 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1274 bool write_fault, bool *writable) 1275 { 1276 struct kvm_memory_slot *slot; 1277 1278 if (async) 1279 *async = false; 1280 1281 slot = gfn_to_memslot(kvm, gfn); 1282 1283 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1284 writable); 1285 } 1286 1287 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1288 { 1289 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1290 } 1291 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1292 1293 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1294 bool write_fault, bool *writable) 1295 { 1296 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1297 } 1298 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1299 1300 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1301 { 1302 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1303 } 1304 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1305 1306 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1307 bool *writable) 1308 { 1309 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1310 } 1311 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1312 1313 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1314 { 1315 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1316 } 1317 1318 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1319 { 1320 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1321 } 1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1323 1324 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1325 int nr_pages) 1326 { 1327 unsigned long addr; 1328 gfn_t entry; 1329 1330 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1331 if (kvm_is_error_hva(addr)) 1332 return -1; 1333 1334 if (entry < nr_pages) 1335 return 0; 1336 1337 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1338 } 1339 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1340 1341 static struct page *kvm_pfn_to_page(pfn_t pfn) 1342 { 1343 if (is_error_noslot_pfn(pfn)) 1344 return KVM_ERR_PTR_BAD_PAGE; 1345 1346 if (kvm_is_mmio_pfn(pfn)) { 1347 WARN_ON(1); 1348 return KVM_ERR_PTR_BAD_PAGE; 1349 } 1350 1351 return pfn_to_page(pfn); 1352 } 1353 1354 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1355 { 1356 pfn_t pfn; 1357 1358 pfn = gfn_to_pfn(kvm, gfn); 1359 1360 return kvm_pfn_to_page(pfn); 1361 } 1362 1363 EXPORT_SYMBOL_GPL(gfn_to_page); 1364 1365 void kvm_release_page_clean(struct page *page) 1366 { 1367 WARN_ON(is_error_page(page)); 1368 1369 kvm_release_pfn_clean(page_to_pfn(page)); 1370 } 1371 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1372 1373 void kvm_release_pfn_clean(pfn_t pfn) 1374 { 1375 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1376 put_page(pfn_to_page(pfn)); 1377 } 1378 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1379 1380 void kvm_release_page_dirty(struct page *page) 1381 { 1382 WARN_ON(is_error_page(page)); 1383 1384 kvm_release_pfn_dirty(page_to_pfn(page)); 1385 } 1386 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1387 1388 void kvm_release_pfn_dirty(pfn_t pfn) 1389 { 1390 kvm_set_pfn_dirty(pfn); 1391 kvm_release_pfn_clean(pfn); 1392 } 1393 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1394 1395 void kvm_set_page_dirty(struct page *page) 1396 { 1397 kvm_set_pfn_dirty(page_to_pfn(page)); 1398 } 1399 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1400 1401 void kvm_set_pfn_dirty(pfn_t pfn) 1402 { 1403 if (!kvm_is_mmio_pfn(pfn)) { 1404 struct page *page = pfn_to_page(pfn); 1405 if (!PageReserved(page)) 1406 SetPageDirty(page); 1407 } 1408 } 1409 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1410 1411 void kvm_set_pfn_accessed(pfn_t pfn) 1412 { 1413 if (!kvm_is_mmio_pfn(pfn)) 1414 mark_page_accessed(pfn_to_page(pfn)); 1415 } 1416 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1417 1418 void kvm_get_pfn(pfn_t pfn) 1419 { 1420 if (!kvm_is_mmio_pfn(pfn)) 1421 get_page(pfn_to_page(pfn)); 1422 } 1423 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1424 1425 static int next_segment(unsigned long len, int offset) 1426 { 1427 if (len > PAGE_SIZE - offset) 1428 return PAGE_SIZE - offset; 1429 else 1430 return len; 1431 } 1432 1433 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1434 int len) 1435 { 1436 int r; 1437 unsigned long addr; 1438 1439 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1440 if (kvm_is_error_hva(addr)) 1441 return -EFAULT; 1442 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1443 if (r) 1444 return -EFAULT; 1445 return 0; 1446 } 1447 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1448 1449 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1450 { 1451 gfn_t gfn = gpa >> PAGE_SHIFT; 1452 int seg; 1453 int offset = offset_in_page(gpa); 1454 int ret; 1455 1456 while ((seg = next_segment(len, offset)) != 0) { 1457 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1458 if (ret < 0) 1459 return ret; 1460 offset = 0; 1461 len -= seg; 1462 data += seg; 1463 ++gfn; 1464 } 1465 return 0; 1466 } 1467 EXPORT_SYMBOL_GPL(kvm_read_guest); 1468 1469 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1470 unsigned long len) 1471 { 1472 int r; 1473 unsigned long addr; 1474 gfn_t gfn = gpa >> PAGE_SHIFT; 1475 int offset = offset_in_page(gpa); 1476 1477 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1478 if (kvm_is_error_hva(addr)) 1479 return -EFAULT; 1480 pagefault_disable(); 1481 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1482 pagefault_enable(); 1483 if (r) 1484 return -EFAULT; 1485 return 0; 1486 } 1487 EXPORT_SYMBOL(kvm_read_guest_atomic); 1488 1489 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1490 int offset, int len) 1491 { 1492 int r; 1493 unsigned long addr; 1494 1495 addr = gfn_to_hva(kvm, gfn); 1496 if (kvm_is_error_hva(addr)) 1497 return -EFAULT; 1498 r = __copy_to_user((void __user *)addr + offset, data, len); 1499 if (r) 1500 return -EFAULT; 1501 mark_page_dirty(kvm, gfn); 1502 return 0; 1503 } 1504 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1505 1506 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1507 unsigned long len) 1508 { 1509 gfn_t gfn = gpa >> PAGE_SHIFT; 1510 int seg; 1511 int offset = offset_in_page(gpa); 1512 int ret; 1513 1514 while ((seg = next_segment(len, offset)) != 0) { 1515 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1516 if (ret < 0) 1517 return ret; 1518 offset = 0; 1519 len -= seg; 1520 data += seg; 1521 ++gfn; 1522 } 1523 return 0; 1524 } 1525 1526 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1527 gpa_t gpa, unsigned long len) 1528 { 1529 struct kvm_memslots *slots = kvm_memslots(kvm); 1530 int offset = offset_in_page(gpa); 1531 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1532 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1533 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1534 gfn_t nr_pages_avail; 1535 1536 ghc->gpa = gpa; 1537 ghc->generation = slots->generation; 1538 ghc->len = len; 1539 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1540 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1541 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1542 ghc->hva += offset; 1543 } else { 1544 /* 1545 * If the requested region crosses two memslots, we still 1546 * verify that the entire region is valid here. 1547 */ 1548 while (start_gfn <= end_gfn) { 1549 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1550 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1551 &nr_pages_avail); 1552 if (kvm_is_error_hva(ghc->hva)) 1553 return -EFAULT; 1554 start_gfn += nr_pages_avail; 1555 } 1556 /* Use the slow path for cross page reads and writes. */ 1557 ghc->memslot = NULL; 1558 } 1559 return 0; 1560 } 1561 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1562 1563 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1564 void *data, unsigned long len) 1565 { 1566 struct kvm_memslots *slots = kvm_memslots(kvm); 1567 int r; 1568 1569 BUG_ON(len > ghc->len); 1570 1571 if (slots->generation != ghc->generation) 1572 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1573 1574 if (unlikely(!ghc->memslot)) 1575 return kvm_write_guest(kvm, ghc->gpa, data, len); 1576 1577 if (kvm_is_error_hva(ghc->hva)) 1578 return -EFAULT; 1579 1580 r = __copy_to_user((void __user *)ghc->hva, data, len); 1581 if (r) 1582 return -EFAULT; 1583 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1584 1585 return 0; 1586 } 1587 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1588 1589 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1590 void *data, unsigned long len) 1591 { 1592 struct kvm_memslots *slots = kvm_memslots(kvm); 1593 int r; 1594 1595 BUG_ON(len > ghc->len); 1596 1597 if (slots->generation != ghc->generation) 1598 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1599 1600 if (unlikely(!ghc->memslot)) 1601 return kvm_read_guest(kvm, ghc->gpa, data, len); 1602 1603 if (kvm_is_error_hva(ghc->hva)) 1604 return -EFAULT; 1605 1606 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1607 if (r) 1608 return -EFAULT; 1609 1610 return 0; 1611 } 1612 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1613 1614 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1615 { 1616 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1617 offset, len); 1618 } 1619 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1620 1621 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1622 { 1623 gfn_t gfn = gpa >> PAGE_SHIFT; 1624 int seg; 1625 int offset = offset_in_page(gpa); 1626 int ret; 1627 1628 while ((seg = next_segment(len, offset)) != 0) { 1629 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1630 if (ret < 0) 1631 return ret; 1632 offset = 0; 1633 len -= seg; 1634 ++gfn; 1635 } 1636 return 0; 1637 } 1638 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1639 1640 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1641 gfn_t gfn) 1642 { 1643 if (memslot && memslot->dirty_bitmap) { 1644 unsigned long rel_gfn = gfn - memslot->base_gfn; 1645 1646 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1647 } 1648 } 1649 1650 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1651 { 1652 struct kvm_memory_slot *memslot; 1653 1654 memslot = gfn_to_memslot(kvm, gfn); 1655 mark_page_dirty_in_slot(kvm, memslot, gfn); 1656 } 1657 1658 /* 1659 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1660 */ 1661 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1662 { 1663 DEFINE_WAIT(wait); 1664 1665 for (;;) { 1666 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1667 1668 if (kvm_arch_vcpu_runnable(vcpu)) { 1669 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1670 break; 1671 } 1672 if (kvm_cpu_has_pending_timer(vcpu)) 1673 break; 1674 if (signal_pending(current)) 1675 break; 1676 1677 schedule(); 1678 } 1679 1680 finish_wait(&vcpu->wq, &wait); 1681 } 1682 1683 #ifndef CONFIG_S390 1684 /* 1685 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1686 */ 1687 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1688 { 1689 int me; 1690 int cpu = vcpu->cpu; 1691 wait_queue_head_t *wqp; 1692 1693 wqp = kvm_arch_vcpu_wq(vcpu); 1694 if (waitqueue_active(wqp)) { 1695 wake_up_interruptible(wqp); 1696 ++vcpu->stat.halt_wakeup; 1697 } 1698 1699 me = get_cpu(); 1700 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1701 if (kvm_arch_vcpu_should_kick(vcpu)) 1702 smp_send_reschedule(cpu); 1703 put_cpu(); 1704 } 1705 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1706 #endif /* !CONFIG_S390 */ 1707 1708 void kvm_resched(struct kvm_vcpu *vcpu) 1709 { 1710 if (!need_resched()) 1711 return; 1712 cond_resched(); 1713 } 1714 EXPORT_SYMBOL_GPL(kvm_resched); 1715 1716 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1717 { 1718 struct pid *pid; 1719 struct task_struct *task = NULL; 1720 bool ret = false; 1721 1722 rcu_read_lock(); 1723 pid = rcu_dereference(target->pid); 1724 if (pid) 1725 task = get_pid_task(target->pid, PIDTYPE_PID); 1726 rcu_read_unlock(); 1727 if (!task) 1728 return ret; 1729 if (task->flags & PF_VCPU) { 1730 put_task_struct(task); 1731 return ret; 1732 } 1733 ret = yield_to(task, 1); 1734 put_task_struct(task); 1735 1736 return ret; 1737 } 1738 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1739 1740 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1741 /* 1742 * Helper that checks whether a VCPU is eligible for directed yield. 1743 * Most eligible candidate to yield is decided by following heuristics: 1744 * 1745 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1746 * (preempted lock holder), indicated by @in_spin_loop. 1747 * Set at the beiginning and cleared at the end of interception/PLE handler. 1748 * 1749 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1750 * chance last time (mostly it has become eligible now since we have probably 1751 * yielded to lockholder in last iteration. This is done by toggling 1752 * @dy_eligible each time a VCPU checked for eligibility.) 1753 * 1754 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1755 * to preempted lock-holder could result in wrong VCPU selection and CPU 1756 * burning. Giving priority for a potential lock-holder increases lock 1757 * progress. 1758 * 1759 * Since algorithm is based on heuristics, accessing another VCPU data without 1760 * locking does not harm. It may result in trying to yield to same VCPU, fail 1761 * and continue with next VCPU and so on. 1762 */ 1763 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1764 { 1765 bool eligible; 1766 1767 eligible = !vcpu->spin_loop.in_spin_loop || 1768 (vcpu->spin_loop.in_spin_loop && 1769 vcpu->spin_loop.dy_eligible); 1770 1771 if (vcpu->spin_loop.in_spin_loop) 1772 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1773 1774 return eligible; 1775 } 1776 #endif 1777 1778 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1779 { 1780 struct kvm *kvm = me->kvm; 1781 struct kvm_vcpu *vcpu; 1782 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1783 int yielded = 0; 1784 int try = 3; 1785 int pass; 1786 int i; 1787 1788 kvm_vcpu_set_in_spin_loop(me, true); 1789 /* 1790 * We boost the priority of a VCPU that is runnable but not 1791 * currently running, because it got preempted by something 1792 * else and called schedule in __vcpu_run. Hopefully that 1793 * VCPU is holding the lock that we need and will release it. 1794 * We approximate round-robin by starting at the last boosted VCPU. 1795 */ 1796 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1797 kvm_for_each_vcpu(i, vcpu, kvm) { 1798 if (!pass && i <= last_boosted_vcpu) { 1799 i = last_boosted_vcpu; 1800 continue; 1801 } else if (pass && i > last_boosted_vcpu) 1802 break; 1803 if (!ACCESS_ONCE(vcpu->preempted)) 1804 continue; 1805 if (vcpu == me) 1806 continue; 1807 if (waitqueue_active(&vcpu->wq)) 1808 continue; 1809 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1810 continue; 1811 1812 yielded = kvm_vcpu_yield_to(vcpu); 1813 if (yielded > 0) { 1814 kvm->last_boosted_vcpu = i; 1815 break; 1816 } else if (yielded < 0) { 1817 try--; 1818 if (!try) 1819 break; 1820 } 1821 } 1822 } 1823 kvm_vcpu_set_in_spin_loop(me, false); 1824 1825 /* Ensure vcpu is not eligible during next spinloop */ 1826 kvm_vcpu_set_dy_eligible(me, false); 1827 } 1828 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1829 1830 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1831 { 1832 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1833 struct page *page; 1834 1835 if (vmf->pgoff == 0) 1836 page = virt_to_page(vcpu->run); 1837 #ifdef CONFIG_X86 1838 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1839 page = virt_to_page(vcpu->arch.pio_data); 1840 #endif 1841 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1842 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1843 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1844 #endif 1845 else 1846 return kvm_arch_vcpu_fault(vcpu, vmf); 1847 get_page(page); 1848 vmf->page = page; 1849 return 0; 1850 } 1851 1852 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1853 .fault = kvm_vcpu_fault, 1854 }; 1855 1856 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1857 { 1858 vma->vm_ops = &kvm_vcpu_vm_ops; 1859 return 0; 1860 } 1861 1862 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1863 { 1864 struct kvm_vcpu *vcpu = filp->private_data; 1865 1866 kvm_put_kvm(vcpu->kvm); 1867 return 0; 1868 } 1869 1870 static struct file_operations kvm_vcpu_fops = { 1871 .release = kvm_vcpu_release, 1872 .unlocked_ioctl = kvm_vcpu_ioctl, 1873 #ifdef CONFIG_COMPAT 1874 .compat_ioctl = kvm_vcpu_compat_ioctl, 1875 #endif 1876 .mmap = kvm_vcpu_mmap, 1877 .llseek = noop_llseek, 1878 }; 1879 1880 /* 1881 * Allocates an inode for the vcpu. 1882 */ 1883 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1884 { 1885 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 1886 } 1887 1888 /* 1889 * Creates some virtual cpus. Good luck creating more than one. 1890 */ 1891 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1892 { 1893 int r; 1894 struct kvm_vcpu *vcpu, *v; 1895 1896 vcpu = kvm_arch_vcpu_create(kvm, id); 1897 if (IS_ERR(vcpu)) 1898 return PTR_ERR(vcpu); 1899 1900 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1901 1902 r = kvm_arch_vcpu_setup(vcpu); 1903 if (r) 1904 goto vcpu_destroy; 1905 1906 mutex_lock(&kvm->lock); 1907 if (!kvm_vcpu_compatible(vcpu)) { 1908 r = -EINVAL; 1909 goto unlock_vcpu_destroy; 1910 } 1911 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1912 r = -EINVAL; 1913 goto unlock_vcpu_destroy; 1914 } 1915 1916 kvm_for_each_vcpu(r, v, kvm) 1917 if (v->vcpu_id == id) { 1918 r = -EEXIST; 1919 goto unlock_vcpu_destroy; 1920 } 1921 1922 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1923 1924 /* Now it's all set up, let userspace reach it */ 1925 kvm_get_kvm(kvm); 1926 r = create_vcpu_fd(vcpu); 1927 if (r < 0) { 1928 kvm_put_kvm(kvm); 1929 goto unlock_vcpu_destroy; 1930 } 1931 1932 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1933 smp_wmb(); 1934 atomic_inc(&kvm->online_vcpus); 1935 1936 mutex_unlock(&kvm->lock); 1937 kvm_arch_vcpu_postcreate(vcpu); 1938 return r; 1939 1940 unlock_vcpu_destroy: 1941 mutex_unlock(&kvm->lock); 1942 vcpu_destroy: 1943 kvm_arch_vcpu_destroy(vcpu); 1944 return r; 1945 } 1946 1947 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1948 { 1949 if (sigset) { 1950 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1951 vcpu->sigset_active = 1; 1952 vcpu->sigset = *sigset; 1953 } else 1954 vcpu->sigset_active = 0; 1955 return 0; 1956 } 1957 1958 static long kvm_vcpu_ioctl(struct file *filp, 1959 unsigned int ioctl, unsigned long arg) 1960 { 1961 struct kvm_vcpu *vcpu = filp->private_data; 1962 void __user *argp = (void __user *)arg; 1963 int r; 1964 struct kvm_fpu *fpu = NULL; 1965 struct kvm_sregs *kvm_sregs = NULL; 1966 1967 if (vcpu->kvm->mm != current->mm) 1968 return -EIO; 1969 1970 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1971 /* 1972 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1973 * so vcpu_load() would break it. 1974 */ 1975 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1976 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1977 #endif 1978 1979 1980 r = vcpu_load(vcpu); 1981 if (r) 1982 return r; 1983 switch (ioctl) { 1984 case KVM_RUN: 1985 r = -EINVAL; 1986 if (arg) 1987 goto out; 1988 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1989 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1990 break; 1991 case KVM_GET_REGS: { 1992 struct kvm_regs *kvm_regs; 1993 1994 r = -ENOMEM; 1995 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1996 if (!kvm_regs) 1997 goto out; 1998 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1999 if (r) 2000 goto out_free1; 2001 r = -EFAULT; 2002 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2003 goto out_free1; 2004 r = 0; 2005 out_free1: 2006 kfree(kvm_regs); 2007 break; 2008 } 2009 case KVM_SET_REGS: { 2010 struct kvm_regs *kvm_regs; 2011 2012 r = -ENOMEM; 2013 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2014 if (IS_ERR(kvm_regs)) { 2015 r = PTR_ERR(kvm_regs); 2016 goto out; 2017 } 2018 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2019 kfree(kvm_regs); 2020 break; 2021 } 2022 case KVM_GET_SREGS: { 2023 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2024 r = -ENOMEM; 2025 if (!kvm_sregs) 2026 goto out; 2027 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2028 if (r) 2029 goto out; 2030 r = -EFAULT; 2031 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2032 goto out; 2033 r = 0; 2034 break; 2035 } 2036 case KVM_SET_SREGS: { 2037 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2038 if (IS_ERR(kvm_sregs)) { 2039 r = PTR_ERR(kvm_sregs); 2040 kvm_sregs = NULL; 2041 goto out; 2042 } 2043 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2044 break; 2045 } 2046 case KVM_GET_MP_STATE: { 2047 struct kvm_mp_state mp_state; 2048 2049 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2050 if (r) 2051 goto out; 2052 r = -EFAULT; 2053 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2054 goto out; 2055 r = 0; 2056 break; 2057 } 2058 case KVM_SET_MP_STATE: { 2059 struct kvm_mp_state mp_state; 2060 2061 r = -EFAULT; 2062 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2063 goto out; 2064 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2065 break; 2066 } 2067 case KVM_TRANSLATE: { 2068 struct kvm_translation tr; 2069 2070 r = -EFAULT; 2071 if (copy_from_user(&tr, argp, sizeof tr)) 2072 goto out; 2073 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2074 if (r) 2075 goto out; 2076 r = -EFAULT; 2077 if (copy_to_user(argp, &tr, sizeof tr)) 2078 goto out; 2079 r = 0; 2080 break; 2081 } 2082 case KVM_SET_GUEST_DEBUG: { 2083 struct kvm_guest_debug dbg; 2084 2085 r = -EFAULT; 2086 if (copy_from_user(&dbg, argp, sizeof dbg)) 2087 goto out; 2088 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2089 break; 2090 } 2091 case KVM_SET_SIGNAL_MASK: { 2092 struct kvm_signal_mask __user *sigmask_arg = argp; 2093 struct kvm_signal_mask kvm_sigmask; 2094 sigset_t sigset, *p; 2095 2096 p = NULL; 2097 if (argp) { 2098 r = -EFAULT; 2099 if (copy_from_user(&kvm_sigmask, argp, 2100 sizeof kvm_sigmask)) 2101 goto out; 2102 r = -EINVAL; 2103 if (kvm_sigmask.len != sizeof sigset) 2104 goto out; 2105 r = -EFAULT; 2106 if (copy_from_user(&sigset, sigmask_arg->sigset, 2107 sizeof sigset)) 2108 goto out; 2109 p = &sigset; 2110 } 2111 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2112 break; 2113 } 2114 case KVM_GET_FPU: { 2115 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2116 r = -ENOMEM; 2117 if (!fpu) 2118 goto out; 2119 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2120 if (r) 2121 goto out; 2122 r = -EFAULT; 2123 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2124 goto out; 2125 r = 0; 2126 break; 2127 } 2128 case KVM_SET_FPU: { 2129 fpu = memdup_user(argp, sizeof(*fpu)); 2130 if (IS_ERR(fpu)) { 2131 r = PTR_ERR(fpu); 2132 fpu = NULL; 2133 goto out; 2134 } 2135 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2136 break; 2137 } 2138 default: 2139 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2140 } 2141 out: 2142 vcpu_put(vcpu); 2143 kfree(fpu); 2144 kfree(kvm_sregs); 2145 return r; 2146 } 2147 2148 #ifdef CONFIG_COMPAT 2149 static long kvm_vcpu_compat_ioctl(struct file *filp, 2150 unsigned int ioctl, unsigned long arg) 2151 { 2152 struct kvm_vcpu *vcpu = filp->private_data; 2153 void __user *argp = compat_ptr(arg); 2154 int r; 2155 2156 if (vcpu->kvm->mm != current->mm) 2157 return -EIO; 2158 2159 switch (ioctl) { 2160 case KVM_SET_SIGNAL_MASK: { 2161 struct kvm_signal_mask __user *sigmask_arg = argp; 2162 struct kvm_signal_mask kvm_sigmask; 2163 compat_sigset_t csigset; 2164 sigset_t sigset; 2165 2166 if (argp) { 2167 r = -EFAULT; 2168 if (copy_from_user(&kvm_sigmask, argp, 2169 sizeof kvm_sigmask)) 2170 goto out; 2171 r = -EINVAL; 2172 if (kvm_sigmask.len != sizeof csigset) 2173 goto out; 2174 r = -EFAULT; 2175 if (copy_from_user(&csigset, sigmask_arg->sigset, 2176 sizeof csigset)) 2177 goto out; 2178 sigset_from_compat(&sigset, &csigset); 2179 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2180 } else 2181 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2182 break; 2183 } 2184 default: 2185 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2186 } 2187 2188 out: 2189 return r; 2190 } 2191 #endif 2192 2193 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2194 int (*accessor)(struct kvm_device *dev, 2195 struct kvm_device_attr *attr), 2196 unsigned long arg) 2197 { 2198 struct kvm_device_attr attr; 2199 2200 if (!accessor) 2201 return -EPERM; 2202 2203 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2204 return -EFAULT; 2205 2206 return accessor(dev, &attr); 2207 } 2208 2209 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2210 unsigned long arg) 2211 { 2212 struct kvm_device *dev = filp->private_data; 2213 2214 switch (ioctl) { 2215 case KVM_SET_DEVICE_ATTR: 2216 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2217 case KVM_GET_DEVICE_ATTR: 2218 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2219 case KVM_HAS_DEVICE_ATTR: 2220 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2221 default: 2222 if (dev->ops->ioctl) 2223 return dev->ops->ioctl(dev, ioctl, arg); 2224 2225 return -ENOTTY; 2226 } 2227 } 2228 2229 static int kvm_device_release(struct inode *inode, struct file *filp) 2230 { 2231 struct kvm_device *dev = filp->private_data; 2232 struct kvm *kvm = dev->kvm; 2233 2234 kvm_put_kvm(kvm); 2235 return 0; 2236 } 2237 2238 static const struct file_operations kvm_device_fops = { 2239 .unlocked_ioctl = kvm_device_ioctl, 2240 #ifdef CONFIG_COMPAT 2241 .compat_ioctl = kvm_device_ioctl, 2242 #endif 2243 .release = kvm_device_release, 2244 }; 2245 2246 struct kvm_device *kvm_device_from_filp(struct file *filp) 2247 { 2248 if (filp->f_op != &kvm_device_fops) 2249 return NULL; 2250 2251 return filp->private_data; 2252 } 2253 2254 static int kvm_ioctl_create_device(struct kvm *kvm, 2255 struct kvm_create_device *cd) 2256 { 2257 struct kvm_device_ops *ops = NULL; 2258 struct kvm_device *dev; 2259 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2260 int ret; 2261 2262 switch (cd->type) { 2263 #ifdef CONFIG_KVM_MPIC 2264 case KVM_DEV_TYPE_FSL_MPIC_20: 2265 case KVM_DEV_TYPE_FSL_MPIC_42: 2266 ops = &kvm_mpic_ops; 2267 break; 2268 #endif 2269 #ifdef CONFIG_KVM_XICS 2270 case KVM_DEV_TYPE_XICS: 2271 ops = &kvm_xics_ops; 2272 break; 2273 #endif 2274 default: 2275 return -ENODEV; 2276 } 2277 2278 if (test) 2279 return 0; 2280 2281 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2282 if (!dev) 2283 return -ENOMEM; 2284 2285 dev->ops = ops; 2286 dev->kvm = kvm; 2287 2288 ret = ops->create(dev, cd->type); 2289 if (ret < 0) { 2290 kfree(dev); 2291 return ret; 2292 } 2293 2294 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2295 if (ret < 0) { 2296 ops->destroy(dev); 2297 return ret; 2298 } 2299 2300 list_add(&dev->vm_node, &kvm->devices); 2301 kvm_get_kvm(kvm); 2302 cd->fd = ret; 2303 return 0; 2304 } 2305 2306 static long kvm_vm_ioctl(struct file *filp, 2307 unsigned int ioctl, unsigned long arg) 2308 { 2309 struct kvm *kvm = filp->private_data; 2310 void __user *argp = (void __user *)arg; 2311 int r; 2312 2313 if (kvm->mm != current->mm) 2314 return -EIO; 2315 switch (ioctl) { 2316 case KVM_CREATE_VCPU: 2317 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2318 break; 2319 case KVM_SET_USER_MEMORY_REGION: { 2320 struct kvm_userspace_memory_region kvm_userspace_mem; 2321 2322 r = -EFAULT; 2323 if (copy_from_user(&kvm_userspace_mem, argp, 2324 sizeof kvm_userspace_mem)) 2325 goto out; 2326 2327 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2328 break; 2329 } 2330 case KVM_GET_DIRTY_LOG: { 2331 struct kvm_dirty_log log; 2332 2333 r = -EFAULT; 2334 if (copy_from_user(&log, argp, sizeof log)) 2335 goto out; 2336 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2337 break; 2338 } 2339 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2340 case KVM_REGISTER_COALESCED_MMIO: { 2341 struct kvm_coalesced_mmio_zone zone; 2342 r = -EFAULT; 2343 if (copy_from_user(&zone, argp, sizeof zone)) 2344 goto out; 2345 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2346 break; 2347 } 2348 case KVM_UNREGISTER_COALESCED_MMIO: { 2349 struct kvm_coalesced_mmio_zone zone; 2350 r = -EFAULT; 2351 if (copy_from_user(&zone, argp, sizeof zone)) 2352 goto out; 2353 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2354 break; 2355 } 2356 #endif 2357 case KVM_IRQFD: { 2358 struct kvm_irqfd data; 2359 2360 r = -EFAULT; 2361 if (copy_from_user(&data, argp, sizeof data)) 2362 goto out; 2363 r = kvm_irqfd(kvm, &data); 2364 break; 2365 } 2366 case KVM_IOEVENTFD: { 2367 struct kvm_ioeventfd data; 2368 2369 r = -EFAULT; 2370 if (copy_from_user(&data, argp, sizeof data)) 2371 goto out; 2372 r = kvm_ioeventfd(kvm, &data); 2373 break; 2374 } 2375 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2376 case KVM_SET_BOOT_CPU_ID: 2377 r = 0; 2378 mutex_lock(&kvm->lock); 2379 if (atomic_read(&kvm->online_vcpus) != 0) 2380 r = -EBUSY; 2381 else 2382 kvm->bsp_vcpu_id = arg; 2383 mutex_unlock(&kvm->lock); 2384 break; 2385 #endif 2386 #ifdef CONFIG_HAVE_KVM_MSI 2387 case KVM_SIGNAL_MSI: { 2388 struct kvm_msi msi; 2389 2390 r = -EFAULT; 2391 if (copy_from_user(&msi, argp, sizeof msi)) 2392 goto out; 2393 r = kvm_send_userspace_msi(kvm, &msi); 2394 break; 2395 } 2396 #endif 2397 #ifdef __KVM_HAVE_IRQ_LINE 2398 case KVM_IRQ_LINE_STATUS: 2399 case KVM_IRQ_LINE: { 2400 struct kvm_irq_level irq_event; 2401 2402 r = -EFAULT; 2403 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2404 goto out; 2405 2406 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2407 ioctl == KVM_IRQ_LINE_STATUS); 2408 if (r) 2409 goto out; 2410 2411 r = -EFAULT; 2412 if (ioctl == KVM_IRQ_LINE_STATUS) { 2413 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2414 goto out; 2415 } 2416 2417 r = 0; 2418 break; 2419 } 2420 #endif 2421 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2422 case KVM_SET_GSI_ROUTING: { 2423 struct kvm_irq_routing routing; 2424 struct kvm_irq_routing __user *urouting; 2425 struct kvm_irq_routing_entry *entries; 2426 2427 r = -EFAULT; 2428 if (copy_from_user(&routing, argp, sizeof(routing))) 2429 goto out; 2430 r = -EINVAL; 2431 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2432 goto out; 2433 if (routing.flags) 2434 goto out; 2435 r = -ENOMEM; 2436 entries = vmalloc(routing.nr * sizeof(*entries)); 2437 if (!entries) 2438 goto out; 2439 r = -EFAULT; 2440 urouting = argp; 2441 if (copy_from_user(entries, urouting->entries, 2442 routing.nr * sizeof(*entries))) 2443 goto out_free_irq_routing; 2444 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2445 routing.flags); 2446 out_free_irq_routing: 2447 vfree(entries); 2448 break; 2449 } 2450 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2451 case KVM_CREATE_DEVICE: { 2452 struct kvm_create_device cd; 2453 2454 r = -EFAULT; 2455 if (copy_from_user(&cd, argp, sizeof(cd))) 2456 goto out; 2457 2458 r = kvm_ioctl_create_device(kvm, &cd); 2459 if (r) 2460 goto out; 2461 2462 r = -EFAULT; 2463 if (copy_to_user(argp, &cd, sizeof(cd))) 2464 goto out; 2465 2466 r = 0; 2467 break; 2468 } 2469 default: 2470 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2471 if (r == -ENOTTY) 2472 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2473 } 2474 out: 2475 return r; 2476 } 2477 2478 #ifdef CONFIG_COMPAT 2479 struct compat_kvm_dirty_log { 2480 __u32 slot; 2481 __u32 padding1; 2482 union { 2483 compat_uptr_t dirty_bitmap; /* one bit per page */ 2484 __u64 padding2; 2485 }; 2486 }; 2487 2488 static long kvm_vm_compat_ioctl(struct file *filp, 2489 unsigned int ioctl, unsigned long arg) 2490 { 2491 struct kvm *kvm = filp->private_data; 2492 int r; 2493 2494 if (kvm->mm != current->mm) 2495 return -EIO; 2496 switch (ioctl) { 2497 case KVM_GET_DIRTY_LOG: { 2498 struct compat_kvm_dirty_log compat_log; 2499 struct kvm_dirty_log log; 2500 2501 r = -EFAULT; 2502 if (copy_from_user(&compat_log, (void __user *)arg, 2503 sizeof(compat_log))) 2504 goto out; 2505 log.slot = compat_log.slot; 2506 log.padding1 = compat_log.padding1; 2507 log.padding2 = compat_log.padding2; 2508 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2509 2510 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2511 break; 2512 } 2513 default: 2514 r = kvm_vm_ioctl(filp, ioctl, arg); 2515 } 2516 2517 out: 2518 return r; 2519 } 2520 #endif 2521 2522 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2523 { 2524 struct page *page[1]; 2525 unsigned long addr; 2526 int npages; 2527 gfn_t gfn = vmf->pgoff; 2528 struct kvm *kvm = vma->vm_file->private_data; 2529 2530 addr = gfn_to_hva(kvm, gfn); 2531 if (kvm_is_error_hva(addr)) 2532 return VM_FAULT_SIGBUS; 2533 2534 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2535 NULL); 2536 if (unlikely(npages != 1)) 2537 return VM_FAULT_SIGBUS; 2538 2539 vmf->page = page[0]; 2540 return 0; 2541 } 2542 2543 static const struct vm_operations_struct kvm_vm_vm_ops = { 2544 .fault = kvm_vm_fault, 2545 }; 2546 2547 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2548 { 2549 vma->vm_ops = &kvm_vm_vm_ops; 2550 return 0; 2551 } 2552 2553 static struct file_operations kvm_vm_fops = { 2554 .release = kvm_vm_release, 2555 .unlocked_ioctl = kvm_vm_ioctl, 2556 #ifdef CONFIG_COMPAT 2557 .compat_ioctl = kvm_vm_compat_ioctl, 2558 #endif 2559 .mmap = kvm_vm_mmap, 2560 .llseek = noop_llseek, 2561 }; 2562 2563 static int kvm_dev_ioctl_create_vm(unsigned long type) 2564 { 2565 int r; 2566 struct kvm *kvm; 2567 2568 kvm = kvm_create_vm(type); 2569 if (IS_ERR(kvm)) 2570 return PTR_ERR(kvm); 2571 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2572 r = kvm_coalesced_mmio_init(kvm); 2573 if (r < 0) { 2574 kvm_put_kvm(kvm); 2575 return r; 2576 } 2577 #endif 2578 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2579 if (r < 0) 2580 kvm_put_kvm(kvm); 2581 2582 return r; 2583 } 2584 2585 static long kvm_dev_ioctl_check_extension_generic(long arg) 2586 { 2587 switch (arg) { 2588 case KVM_CAP_USER_MEMORY: 2589 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2590 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2591 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2592 case KVM_CAP_SET_BOOT_CPU_ID: 2593 #endif 2594 case KVM_CAP_INTERNAL_ERROR_DATA: 2595 #ifdef CONFIG_HAVE_KVM_MSI 2596 case KVM_CAP_SIGNAL_MSI: 2597 #endif 2598 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2599 case KVM_CAP_IRQFD_RESAMPLE: 2600 #endif 2601 return 1; 2602 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2603 case KVM_CAP_IRQ_ROUTING: 2604 return KVM_MAX_IRQ_ROUTES; 2605 #endif 2606 default: 2607 break; 2608 } 2609 return kvm_dev_ioctl_check_extension(arg); 2610 } 2611 2612 static long kvm_dev_ioctl(struct file *filp, 2613 unsigned int ioctl, unsigned long arg) 2614 { 2615 long r = -EINVAL; 2616 2617 switch (ioctl) { 2618 case KVM_GET_API_VERSION: 2619 r = -EINVAL; 2620 if (arg) 2621 goto out; 2622 r = KVM_API_VERSION; 2623 break; 2624 case KVM_CREATE_VM: 2625 r = kvm_dev_ioctl_create_vm(arg); 2626 break; 2627 case KVM_CHECK_EXTENSION: 2628 r = kvm_dev_ioctl_check_extension_generic(arg); 2629 break; 2630 case KVM_GET_VCPU_MMAP_SIZE: 2631 r = -EINVAL; 2632 if (arg) 2633 goto out; 2634 r = PAGE_SIZE; /* struct kvm_run */ 2635 #ifdef CONFIG_X86 2636 r += PAGE_SIZE; /* pio data page */ 2637 #endif 2638 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2639 r += PAGE_SIZE; /* coalesced mmio ring page */ 2640 #endif 2641 break; 2642 case KVM_TRACE_ENABLE: 2643 case KVM_TRACE_PAUSE: 2644 case KVM_TRACE_DISABLE: 2645 r = -EOPNOTSUPP; 2646 break; 2647 default: 2648 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2649 } 2650 out: 2651 return r; 2652 } 2653 2654 static struct file_operations kvm_chardev_ops = { 2655 .unlocked_ioctl = kvm_dev_ioctl, 2656 .compat_ioctl = kvm_dev_ioctl, 2657 .llseek = noop_llseek, 2658 }; 2659 2660 static struct miscdevice kvm_dev = { 2661 KVM_MINOR, 2662 "kvm", 2663 &kvm_chardev_ops, 2664 }; 2665 2666 static void hardware_enable_nolock(void *junk) 2667 { 2668 int cpu = raw_smp_processor_id(); 2669 int r; 2670 2671 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2672 return; 2673 2674 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2675 2676 r = kvm_arch_hardware_enable(NULL); 2677 2678 if (r) { 2679 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2680 atomic_inc(&hardware_enable_failed); 2681 printk(KERN_INFO "kvm: enabling virtualization on " 2682 "CPU%d failed\n", cpu); 2683 } 2684 } 2685 2686 static void hardware_enable(void *junk) 2687 { 2688 raw_spin_lock(&kvm_lock); 2689 hardware_enable_nolock(junk); 2690 raw_spin_unlock(&kvm_lock); 2691 } 2692 2693 static void hardware_disable_nolock(void *junk) 2694 { 2695 int cpu = raw_smp_processor_id(); 2696 2697 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2698 return; 2699 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2700 kvm_arch_hardware_disable(NULL); 2701 } 2702 2703 static void hardware_disable(void *junk) 2704 { 2705 raw_spin_lock(&kvm_lock); 2706 hardware_disable_nolock(junk); 2707 raw_spin_unlock(&kvm_lock); 2708 } 2709 2710 static void hardware_disable_all_nolock(void) 2711 { 2712 BUG_ON(!kvm_usage_count); 2713 2714 kvm_usage_count--; 2715 if (!kvm_usage_count) 2716 on_each_cpu(hardware_disable_nolock, NULL, 1); 2717 } 2718 2719 static void hardware_disable_all(void) 2720 { 2721 raw_spin_lock(&kvm_lock); 2722 hardware_disable_all_nolock(); 2723 raw_spin_unlock(&kvm_lock); 2724 } 2725 2726 static int hardware_enable_all(void) 2727 { 2728 int r = 0; 2729 2730 raw_spin_lock(&kvm_lock); 2731 2732 kvm_usage_count++; 2733 if (kvm_usage_count == 1) { 2734 atomic_set(&hardware_enable_failed, 0); 2735 on_each_cpu(hardware_enable_nolock, NULL, 1); 2736 2737 if (atomic_read(&hardware_enable_failed)) { 2738 hardware_disable_all_nolock(); 2739 r = -EBUSY; 2740 } 2741 } 2742 2743 raw_spin_unlock(&kvm_lock); 2744 2745 return r; 2746 } 2747 2748 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2749 void *v) 2750 { 2751 int cpu = (long)v; 2752 2753 if (!kvm_usage_count) 2754 return NOTIFY_OK; 2755 2756 val &= ~CPU_TASKS_FROZEN; 2757 switch (val) { 2758 case CPU_DYING: 2759 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2760 cpu); 2761 hardware_disable(NULL); 2762 break; 2763 case CPU_STARTING: 2764 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2765 cpu); 2766 hardware_enable(NULL); 2767 break; 2768 } 2769 return NOTIFY_OK; 2770 } 2771 2772 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2773 void *v) 2774 { 2775 /* 2776 * Some (well, at least mine) BIOSes hang on reboot if 2777 * in vmx root mode. 2778 * 2779 * And Intel TXT required VMX off for all cpu when system shutdown. 2780 */ 2781 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2782 kvm_rebooting = true; 2783 on_each_cpu(hardware_disable_nolock, NULL, 1); 2784 return NOTIFY_OK; 2785 } 2786 2787 static struct notifier_block kvm_reboot_notifier = { 2788 .notifier_call = kvm_reboot, 2789 .priority = 0, 2790 }; 2791 2792 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2793 { 2794 int i; 2795 2796 for (i = 0; i < bus->dev_count; i++) { 2797 struct kvm_io_device *pos = bus->range[i].dev; 2798 2799 kvm_iodevice_destructor(pos); 2800 } 2801 kfree(bus); 2802 } 2803 2804 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2805 const struct kvm_io_range *r2) 2806 { 2807 if (r1->addr < r2->addr) 2808 return -1; 2809 if (r1->addr + r1->len > r2->addr + r2->len) 2810 return 1; 2811 return 0; 2812 } 2813 2814 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2815 { 2816 return kvm_io_bus_cmp(p1, p2); 2817 } 2818 2819 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2820 gpa_t addr, int len) 2821 { 2822 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2823 .addr = addr, 2824 .len = len, 2825 .dev = dev, 2826 }; 2827 2828 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2829 kvm_io_bus_sort_cmp, NULL); 2830 2831 return 0; 2832 } 2833 2834 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2835 gpa_t addr, int len) 2836 { 2837 struct kvm_io_range *range, key; 2838 int off; 2839 2840 key = (struct kvm_io_range) { 2841 .addr = addr, 2842 .len = len, 2843 }; 2844 2845 range = bsearch(&key, bus->range, bus->dev_count, 2846 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2847 if (range == NULL) 2848 return -ENOENT; 2849 2850 off = range - bus->range; 2851 2852 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2853 off--; 2854 2855 return off; 2856 } 2857 2858 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 2859 struct kvm_io_range *range, const void *val) 2860 { 2861 int idx; 2862 2863 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2864 if (idx < 0) 2865 return -EOPNOTSUPP; 2866 2867 while (idx < bus->dev_count && 2868 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2869 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 2870 range->len, val)) 2871 return idx; 2872 idx++; 2873 } 2874 2875 return -EOPNOTSUPP; 2876 } 2877 2878 /* kvm_io_bus_write - called under kvm->slots_lock */ 2879 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2880 int len, const void *val) 2881 { 2882 struct kvm_io_bus *bus; 2883 struct kvm_io_range range; 2884 int r; 2885 2886 range = (struct kvm_io_range) { 2887 .addr = addr, 2888 .len = len, 2889 }; 2890 2891 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2892 r = __kvm_io_bus_write(bus, &range, val); 2893 return r < 0 ? r : 0; 2894 } 2895 2896 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 2897 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2898 int len, const void *val, long cookie) 2899 { 2900 struct kvm_io_bus *bus; 2901 struct kvm_io_range range; 2902 2903 range = (struct kvm_io_range) { 2904 .addr = addr, 2905 .len = len, 2906 }; 2907 2908 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2909 2910 /* First try the device referenced by cookie. */ 2911 if ((cookie >= 0) && (cookie < bus->dev_count) && 2912 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2913 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 2914 val)) 2915 return cookie; 2916 2917 /* 2918 * cookie contained garbage; fall back to search and return the 2919 * correct cookie value. 2920 */ 2921 return __kvm_io_bus_write(bus, &range, val); 2922 } 2923 2924 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 2925 void *val) 2926 { 2927 int idx; 2928 2929 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2930 if (idx < 0) 2931 return -EOPNOTSUPP; 2932 2933 while (idx < bus->dev_count && 2934 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2935 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 2936 range->len, val)) 2937 return idx; 2938 idx++; 2939 } 2940 2941 return -EOPNOTSUPP; 2942 } 2943 2944 /* kvm_io_bus_read - called under kvm->slots_lock */ 2945 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2946 int len, void *val) 2947 { 2948 struct kvm_io_bus *bus; 2949 struct kvm_io_range range; 2950 int r; 2951 2952 range = (struct kvm_io_range) { 2953 .addr = addr, 2954 .len = len, 2955 }; 2956 2957 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2958 r = __kvm_io_bus_read(bus, &range, val); 2959 return r < 0 ? r : 0; 2960 } 2961 2962 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */ 2963 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2964 int len, void *val, long cookie) 2965 { 2966 struct kvm_io_bus *bus; 2967 struct kvm_io_range range; 2968 2969 range = (struct kvm_io_range) { 2970 .addr = addr, 2971 .len = len, 2972 }; 2973 2974 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2975 2976 /* First try the device referenced by cookie. */ 2977 if ((cookie >= 0) && (cookie < bus->dev_count) && 2978 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2979 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len, 2980 val)) 2981 return cookie; 2982 2983 /* 2984 * cookie contained garbage; fall back to search and return the 2985 * correct cookie value. 2986 */ 2987 return __kvm_io_bus_read(bus, &range, val); 2988 } 2989 2990 /* Caller must hold slots_lock. */ 2991 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2992 int len, struct kvm_io_device *dev) 2993 { 2994 struct kvm_io_bus *new_bus, *bus; 2995 2996 bus = kvm->buses[bus_idx]; 2997 /* exclude ioeventfd which is limited by maximum fd */ 2998 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 2999 return -ENOSPC; 3000 3001 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3002 sizeof(struct kvm_io_range)), GFP_KERNEL); 3003 if (!new_bus) 3004 return -ENOMEM; 3005 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3006 sizeof(struct kvm_io_range))); 3007 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3008 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3009 synchronize_srcu_expedited(&kvm->srcu); 3010 kfree(bus); 3011 3012 return 0; 3013 } 3014 3015 /* Caller must hold slots_lock. */ 3016 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3017 struct kvm_io_device *dev) 3018 { 3019 int i, r; 3020 struct kvm_io_bus *new_bus, *bus; 3021 3022 bus = kvm->buses[bus_idx]; 3023 r = -ENOENT; 3024 for (i = 0; i < bus->dev_count; i++) 3025 if (bus->range[i].dev == dev) { 3026 r = 0; 3027 break; 3028 } 3029 3030 if (r) 3031 return r; 3032 3033 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3034 sizeof(struct kvm_io_range)), GFP_KERNEL); 3035 if (!new_bus) 3036 return -ENOMEM; 3037 3038 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3039 new_bus->dev_count--; 3040 memcpy(new_bus->range + i, bus->range + i + 1, 3041 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3042 3043 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3044 synchronize_srcu_expedited(&kvm->srcu); 3045 kfree(bus); 3046 return r; 3047 } 3048 3049 static struct notifier_block kvm_cpu_notifier = { 3050 .notifier_call = kvm_cpu_hotplug, 3051 }; 3052 3053 static int vm_stat_get(void *_offset, u64 *val) 3054 { 3055 unsigned offset = (long)_offset; 3056 struct kvm *kvm; 3057 3058 *val = 0; 3059 raw_spin_lock(&kvm_lock); 3060 list_for_each_entry(kvm, &vm_list, vm_list) 3061 *val += *(u32 *)((void *)kvm + offset); 3062 raw_spin_unlock(&kvm_lock); 3063 return 0; 3064 } 3065 3066 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3067 3068 static int vcpu_stat_get(void *_offset, u64 *val) 3069 { 3070 unsigned offset = (long)_offset; 3071 struct kvm *kvm; 3072 struct kvm_vcpu *vcpu; 3073 int i; 3074 3075 *val = 0; 3076 raw_spin_lock(&kvm_lock); 3077 list_for_each_entry(kvm, &vm_list, vm_list) 3078 kvm_for_each_vcpu(i, vcpu, kvm) 3079 *val += *(u32 *)((void *)vcpu + offset); 3080 3081 raw_spin_unlock(&kvm_lock); 3082 return 0; 3083 } 3084 3085 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3086 3087 static const struct file_operations *stat_fops[] = { 3088 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3089 [KVM_STAT_VM] = &vm_stat_fops, 3090 }; 3091 3092 static int kvm_init_debug(void) 3093 { 3094 int r = -EFAULT; 3095 struct kvm_stats_debugfs_item *p; 3096 3097 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3098 if (kvm_debugfs_dir == NULL) 3099 goto out; 3100 3101 for (p = debugfs_entries; p->name; ++p) { 3102 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3103 (void *)(long)p->offset, 3104 stat_fops[p->kind]); 3105 if (p->dentry == NULL) 3106 goto out_dir; 3107 } 3108 3109 return 0; 3110 3111 out_dir: 3112 debugfs_remove_recursive(kvm_debugfs_dir); 3113 out: 3114 return r; 3115 } 3116 3117 static void kvm_exit_debug(void) 3118 { 3119 struct kvm_stats_debugfs_item *p; 3120 3121 for (p = debugfs_entries; p->name; ++p) 3122 debugfs_remove(p->dentry); 3123 debugfs_remove(kvm_debugfs_dir); 3124 } 3125 3126 static int kvm_suspend(void) 3127 { 3128 if (kvm_usage_count) 3129 hardware_disable_nolock(NULL); 3130 return 0; 3131 } 3132 3133 static void kvm_resume(void) 3134 { 3135 if (kvm_usage_count) { 3136 WARN_ON(raw_spin_is_locked(&kvm_lock)); 3137 hardware_enable_nolock(NULL); 3138 } 3139 } 3140 3141 static struct syscore_ops kvm_syscore_ops = { 3142 .suspend = kvm_suspend, 3143 .resume = kvm_resume, 3144 }; 3145 3146 static inline 3147 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3148 { 3149 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3150 } 3151 3152 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3153 { 3154 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3155 if (vcpu->preempted) 3156 vcpu->preempted = false; 3157 3158 kvm_arch_vcpu_load(vcpu, cpu); 3159 } 3160 3161 static void kvm_sched_out(struct preempt_notifier *pn, 3162 struct task_struct *next) 3163 { 3164 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3165 3166 if (current->state == TASK_RUNNING) 3167 vcpu->preempted = true; 3168 kvm_arch_vcpu_put(vcpu); 3169 } 3170 3171 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3172 struct module *module) 3173 { 3174 int r; 3175 int cpu; 3176 3177 r = kvm_arch_init(opaque); 3178 if (r) 3179 goto out_fail; 3180 3181 /* 3182 * kvm_arch_init makes sure there's at most one caller 3183 * for architectures that support multiple implementations, 3184 * like intel and amd on x86. 3185 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3186 * conflicts in case kvm is already setup for another implementation. 3187 */ 3188 r = kvm_irqfd_init(); 3189 if (r) 3190 goto out_irqfd; 3191 3192 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3193 r = -ENOMEM; 3194 goto out_free_0; 3195 } 3196 3197 r = kvm_arch_hardware_setup(); 3198 if (r < 0) 3199 goto out_free_0a; 3200 3201 for_each_online_cpu(cpu) { 3202 smp_call_function_single(cpu, 3203 kvm_arch_check_processor_compat, 3204 &r, 1); 3205 if (r < 0) 3206 goto out_free_1; 3207 } 3208 3209 r = register_cpu_notifier(&kvm_cpu_notifier); 3210 if (r) 3211 goto out_free_2; 3212 register_reboot_notifier(&kvm_reboot_notifier); 3213 3214 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3215 if (!vcpu_align) 3216 vcpu_align = __alignof__(struct kvm_vcpu); 3217 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3218 0, NULL); 3219 if (!kvm_vcpu_cache) { 3220 r = -ENOMEM; 3221 goto out_free_3; 3222 } 3223 3224 r = kvm_async_pf_init(); 3225 if (r) 3226 goto out_free; 3227 3228 kvm_chardev_ops.owner = module; 3229 kvm_vm_fops.owner = module; 3230 kvm_vcpu_fops.owner = module; 3231 3232 r = misc_register(&kvm_dev); 3233 if (r) { 3234 printk(KERN_ERR "kvm: misc device register failed\n"); 3235 goto out_unreg; 3236 } 3237 3238 register_syscore_ops(&kvm_syscore_ops); 3239 3240 kvm_preempt_ops.sched_in = kvm_sched_in; 3241 kvm_preempt_ops.sched_out = kvm_sched_out; 3242 3243 r = kvm_init_debug(); 3244 if (r) { 3245 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3246 goto out_undebugfs; 3247 } 3248 3249 return 0; 3250 3251 out_undebugfs: 3252 unregister_syscore_ops(&kvm_syscore_ops); 3253 misc_deregister(&kvm_dev); 3254 out_unreg: 3255 kvm_async_pf_deinit(); 3256 out_free: 3257 kmem_cache_destroy(kvm_vcpu_cache); 3258 out_free_3: 3259 unregister_reboot_notifier(&kvm_reboot_notifier); 3260 unregister_cpu_notifier(&kvm_cpu_notifier); 3261 out_free_2: 3262 out_free_1: 3263 kvm_arch_hardware_unsetup(); 3264 out_free_0a: 3265 free_cpumask_var(cpus_hardware_enabled); 3266 out_free_0: 3267 kvm_irqfd_exit(); 3268 out_irqfd: 3269 kvm_arch_exit(); 3270 out_fail: 3271 return r; 3272 } 3273 EXPORT_SYMBOL_GPL(kvm_init); 3274 3275 void kvm_exit(void) 3276 { 3277 kvm_exit_debug(); 3278 misc_deregister(&kvm_dev); 3279 kmem_cache_destroy(kvm_vcpu_cache); 3280 kvm_async_pf_deinit(); 3281 unregister_syscore_ops(&kvm_syscore_ops); 3282 unregister_reboot_notifier(&kvm_reboot_notifier); 3283 unregister_cpu_notifier(&kvm_cpu_notifier); 3284 on_each_cpu(hardware_disable_nolock, NULL, 1); 3285 kvm_arch_hardware_unsetup(); 3286 kvm_arch_exit(); 3287 kvm_irqfd_exit(); 3288 free_cpumask_var(cpus_hardware_enabled); 3289 } 3290 EXPORT_SYMBOL_GPL(kvm_exit); 3291