xref: /openbmc/linux/virt/kvm/kvm_main.c (revision f7777dcc)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn))
106 		return PageReserved(pfn_to_page(pfn));
107 
108 	return true;
109 }
110 
111 /*
112  * Switches to specified vcpu, until a matching vcpu_put()
113  */
114 int vcpu_load(struct kvm_vcpu *vcpu)
115 {
116 	int cpu;
117 
118 	if (mutex_lock_killable(&vcpu->mutex))
119 		return -EINTR;
120 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
121 		/* The thread running this VCPU changed. */
122 		struct pid *oldpid = vcpu->pid;
123 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
124 		rcu_assign_pointer(vcpu->pid, newpid);
125 		synchronize_rcu();
126 		put_pid(oldpid);
127 	}
128 	cpu = get_cpu();
129 	preempt_notifier_register(&vcpu->preempt_notifier);
130 	kvm_arch_vcpu_load(vcpu, cpu);
131 	put_cpu();
132 	return 0;
133 }
134 
135 void vcpu_put(struct kvm_vcpu *vcpu)
136 {
137 	preempt_disable();
138 	kvm_arch_vcpu_put(vcpu);
139 	preempt_notifier_unregister(&vcpu->preempt_notifier);
140 	preempt_enable();
141 	mutex_unlock(&vcpu->mutex);
142 }
143 
144 static void ack_flush(void *_completed)
145 {
146 }
147 
148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
149 {
150 	int i, cpu, me;
151 	cpumask_var_t cpus;
152 	bool called = true;
153 	struct kvm_vcpu *vcpu;
154 
155 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
156 
157 	me = get_cpu();
158 	kvm_for_each_vcpu(i, vcpu, kvm) {
159 		kvm_make_request(req, vcpu);
160 		cpu = vcpu->cpu;
161 
162 		/* Set ->requests bit before we read ->mode */
163 		smp_mb();
164 
165 		if (cpus != NULL && cpu != -1 && cpu != me &&
166 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
167 			cpumask_set_cpu(cpu, cpus);
168 	}
169 	if (unlikely(cpus == NULL))
170 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
171 	else if (!cpumask_empty(cpus))
172 		smp_call_function_many(cpus, ack_flush, NULL, 1);
173 	else
174 		called = false;
175 	put_cpu();
176 	free_cpumask_var(cpus);
177 	return called;
178 }
179 
180 void kvm_flush_remote_tlbs(struct kvm *kvm)
181 {
182 	long dirty_count = kvm->tlbs_dirty;
183 
184 	smp_mb();
185 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
186 		++kvm->stat.remote_tlb_flush;
187 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
188 }
189 
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194 
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199 
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204 
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 	struct page *page;
208 	int r;
209 
210 	mutex_init(&vcpu->mutex);
211 	vcpu->cpu = -1;
212 	vcpu->kvm = kvm;
213 	vcpu->vcpu_id = id;
214 	vcpu->pid = NULL;
215 	init_waitqueue_head(&vcpu->wq);
216 	kvm_async_pf_vcpu_init(vcpu);
217 
218 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 	if (!page) {
220 		r = -ENOMEM;
221 		goto fail;
222 	}
223 	vcpu->run = page_address(page);
224 
225 	kvm_vcpu_set_in_spin_loop(vcpu, false);
226 	kvm_vcpu_set_dy_eligible(vcpu, false);
227 	vcpu->preempted = false;
228 
229 	r = kvm_arch_vcpu_init(vcpu);
230 	if (r < 0)
231 		goto fail_free_run;
232 	return 0;
233 
234 fail_free_run:
235 	free_page((unsigned long)vcpu->run);
236 fail:
237 	return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240 
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 	put_pid(vcpu->pid);
244 	kvm_arch_vcpu_uninit(vcpu);
245 	free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248 
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 	return container_of(mn, struct kvm, mmu_notifier);
253 }
254 
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 					     struct mm_struct *mm,
257 					     unsigned long address)
258 {
259 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 	int need_tlb_flush, idx;
261 
262 	/*
263 	 * When ->invalidate_page runs, the linux pte has been zapped
264 	 * already but the page is still allocated until
265 	 * ->invalidate_page returns. So if we increase the sequence
266 	 * here the kvm page fault will notice if the spte can't be
267 	 * established because the page is going to be freed. If
268 	 * instead the kvm page fault establishes the spte before
269 	 * ->invalidate_page runs, kvm_unmap_hva will release it
270 	 * before returning.
271 	 *
272 	 * The sequence increase only need to be seen at spin_unlock
273 	 * time, and not at spin_lock time.
274 	 *
275 	 * Increasing the sequence after the spin_unlock would be
276 	 * unsafe because the kvm page fault could then establish the
277 	 * pte after kvm_unmap_hva returned, without noticing the page
278 	 * is going to be freed.
279 	 */
280 	idx = srcu_read_lock(&kvm->srcu);
281 	spin_lock(&kvm->mmu_lock);
282 
283 	kvm->mmu_notifier_seq++;
284 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 	/* we've to flush the tlb before the pages can be freed */
286 	if (need_tlb_flush)
287 		kvm_flush_remote_tlbs(kvm);
288 
289 	spin_unlock(&kvm->mmu_lock);
290 	srcu_read_unlock(&kvm->srcu, idx);
291 }
292 
293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
294 					struct mm_struct *mm,
295 					unsigned long address,
296 					pte_t pte)
297 {
298 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
299 	int idx;
300 
301 	idx = srcu_read_lock(&kvm->srcu);
302 	spin_lock(&kvm->mmu_lock);
303 	kvm->mmu_notifier_seq++;
304 	kvm_set_spte_hva(kvm, address, pte);
305 	spin_unlock(&kvm->mmu_lock);
306 	srcu_read_unlock(&kvm->srcu, idx);
307 }
308 
309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
310 						    struct mm_struct *mm,
311 						    unsigned long start,
312 						    unsigned long end)
313 {
314 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
315 	int need_tlb_flush = 0, idx;
316 
317 	idx = srcu_read_lock(&kvm->srcu);
318 	spin_lock(&kvm->mmu_lock);
319 	/*
320 	 * The count increase must become visible at unlock time as no
321 	 * spte can be established without taking the mmu_lock and
322 	 * count is also read inside the mmu_lock critical section.
323 	 */
324 	kvm->mmu_notifier_count++;
325 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
326 	need_tlb_flush |= kvm->tlbs_dirty;
327 	/* we've to flush the tlb before the pages can be freed */
328 	if (need_tlb_flush)
329 		kvm_flush_remote_tlbs(kvm);
330 
331 	spin_unlock(&kvm->mmu_lock);
332 	srcu_read_unlock(&kvm->srcu, idx);
333 }
334 
335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
336 						  struct mm_struct *mm,
337 						  unsigned long start,
338 						  unsigned long end)
339 {
340 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
341 
342 	spin_lock(&kvm->mmu_lock);
343 	/*
344 	 * This sequence increase will notify the kvm page fault that
345 	 * the page that is going to be mapped in the spte could have
346 	 * been freed.
347 	 */
348 	kvm->mmu_notifier_seq++;
349 	smp_wmb();
350 	/*
351 	 * The above sequence increase must be visible before the
352 	 * below count decrease, which is ensured by the smp_wmb above
353 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
354 	 */
355 	kvm->mmu_notifier_count--;
356 	spin_unlock(&kvm->mmu_lock);
357 
358 	BUG_ON(kvm->mmu_notifier_count < 0);
359 }
360 
361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
362 					      struct mm_struct *mm,
363 					      unsigned long address)
364 {
365 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
366 	int young, idx;
367 
368 	idx = srcu_read_lock(&kvm->srcu);
369 	spin_lock(&kvm->mmu_lock);
370 
371 	young = kvm_age_hva(kvm, address);
372 	if (young)
373 		kvm_flush_remote_tlbs(kvm);
374 
375 	spin_unlock(&kvm->mmu_lock);
376 	srcu_read_unlock(&kvm->srcu, idx);
377 
378 	return young;
379 }
380 
381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
382 				       struct mm_struct *mm,
383 				       unsigned long address)
384 {
385 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 	int young, idx;
387 
388 	idx = srcu_read_lock(&kvm->srcu);
389 	spin_lock(&kvm->mmu_lock);
390 	young = kvm_test_age_hva(kvm, address);
391 	spin_unlock(&kvm->mmu_lock);
392 	srcu_read_unlock(&kvm->srcu, idx);
393 
394 	return young;
395 }
396 
397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
398 				     struct mm_struct *mm)
399 {
400 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 	int idx;
402 
403 	idx = srcu_read_lock(&kvm->srcu);
404 	kvm_arch_flush_shadow_all(kvm);
405 	srcu_read_unlock(&kvm->srcu, idx);
406 }
407 
408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
409 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
410 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
411 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
412 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
413 	.test_young		= kvm_mmu_notifier_test_young,
414 	.change_pte		= kvm_mmu_notifier_change_pte,
415 	.release		= kvm_mmu_notifier_release,
416 };
417 
418 static int kvm_init_mmu_notifier(struct kvm *kvm)
419 {
420 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
421 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
422 }
423 
424 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
425 
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 	return 0;
429 }
430 
431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
432 
433 static void kvm_init_memslots_id(struct kvm *kvm)
434 {
435 	int i;
436 	struct kvm_memslots *slots = kvm->memslots;
437 
438 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
439 		slots->id_to_index[i] = slots->memslots[i].id = i;
440 }
441 
442 static struct kvm *kvm_create_vm(unsigned long type)
443 {
444 	int r, i;
445 	struct kvm *kvm = kvm_arch_alloc_vm();
446 
447 	if (!kvm)
448 		return ERR_PTR(-ENOMEM);
449 
450 	r = kvm_arch_init_vm(kvm, type);
451 	if (r)
452 		goto out_err_nodisable;
453 
454 	r = hardware_enable_all();
455 	if (r)
456 		goto out_err_nodisable;
457 
458 #ifdef CONFIG_HAVE_KVM_IRQCHIP
459 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
460 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
461 #endif
462 
463 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
464 
465 	r = -ENOMEM;
466 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467 	if (!kvm->memslots)
468 		goto out_err_nosrcu;
469 	kvm_init_memslots_id(kvm);
470 	if (init_srcu_struct(&kvm->srcu))
471 		goto out_err_nosrcu;
472 	for (i = 0; i < KVM_NR_BUSES; i++) {
473 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
474 					GFP_KERNEL);
475 		if (!kvm->buses[i])
476 			goto out_err;
477 	}
478 
479 	spin_lock_init(&kvm->mmu_lock);
480 	kvm->mm = current->mm;
481 	atomic_inc(&kvm->mm->mm_count);
482 	kvm_eventfd_init(kvm);
483 	mutex_init(&kvm->lock);
484 	mutex_init(&kvm->irq_lock);
485 	mutex_init(&kvm->slots_lock);
486 	atomic_set(&kvm->users_count, 1);
487 	INIT_LIST_HEAD(&kvm->devices);
488 
489 	r = kvm_init_mmu_notifier(kvm);
490 	if (r)
491 		goto out_err;
492 
493 	raw_spin_lock(&kvm_lock);
494 	list_add(&kvm->vm_list, &vm_list);
495 	raw_spin_unlock(&kvm_lock);
496 
497 	return kvm;
498 
499 out_err:
500 	cleanup_srcu_struct(&kvm->srcu);
501 out_err_nosrcu:
502 	hardware_disable_all();
503 out_err_nodisable:
504 	for (i = 0; i < KVM_NR_BUSES; i++)
505 		kfree(kvm->buses[i]);
506 	kfree(kvm->memslots);
507 	kvm_arch_free_vm(kvm);
508 	return ERR_PTR(r);
509 }
510 
511 /*
512  * Avoid using vmalloc for a small buffer.
513  * Should not be used when the size is statically known.
514  */
515 void *kvm_kvzalloc(unsigned long size)
516 {
517 	if (size > PAGE_SIZE)
518 		return vzalloc(size);
519 	else
520 		return kzalloc(size, GFP_KERNEL);
521 }
522 
523 void kvm_kvfree(const void *addr)
524 {
525 	if (is_vmalloc_addr(addr))
526 		vfree(addr);
527 	else
528 		kfree(addr);
529 }
530 
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533 	if (!memslot->dirty_bitmap)
534 		return;
535 
536 	kvm_kvfree(memslot->dirty_bitmap);
537 	memslot->dirty_bitmap = NULL;
538 }
539 
540 /*
541  * Free any memory in @free but not in @dont.
542  */
543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
544 				  struct kvm_memory_slot *dont)
545 {
546 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547 		kvm_destroy_dirty_bitmap(free);
548 
549 	kvm_arch_free_memslot(free, dont);
550 
551 	free->npages = 0;
552 }
553 
554 void kvm_free_physmem(struct kvm *kvm)
555 {
556 	struct kvm_memslots *slots = kvm->memslots;
557 	struct kvm_memory_slot *memslot;
558 
559 	kvm_for_each_memslot(memslot, slots)
560 		kvm_free_physmem_slot(memslot, NULL);
561 
562 	kfree(kvm->memslots);
563 }
564 
565 static void kvm_destroy_devices(struct kvm *kvm)
566 {
567 	struct list_head *node, *tmp;
568 
569 	list_for_each_safe(node, tmp, &kvm->devices) {
570 		struct kvm_device *dev =
571 			list_entry(node, struct kvm_device, vm_node);
572 
573 		list_del(node);
574 		dev->ops->destroy(dev);
575 	}
576 }
577 
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580 	int i;
581 	struct mm_struct *mm = kvm->mm;
582 
583 	kvm_arch_sync_events(kvm);
584 	raw_spin_lock(&kvm_lock);
585 	list_del(&kvm->vm_list);
586 	raw_spin_unlock(&kvm_lock);
587 	kvm_free_irq_routing(kvm);
588 	for (i = 0; i < KVM_NR_BUSES; i++)
589 		kvm_io_bus_destroy(kvm->buses[i]);
590 	kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594 	kvm_arch_flush_shadow_all(kvm);
595 #endif
596 	kvm_arch_destroy_vm(kvm);
597 	kvm_destroy_devices(kvm);
598 	kvm_free_physmem(kvm);
599 	cleanup_srcu_struct(&kvm->srcu);
600 	kvm_arch_free_vm(kvm);
601 	hardware_disable_all();
602 	mmdrop(mm);
603 }
604 
605 void kvm_get_kvm(struct kvm *kvm)
606 {
607 	atomic_inc(&kvm->users_count);
608 }
609 EXPORT_SYMBOL_GPL(kvm_get_kvm);
610 
611 void kvm_put_kvm(struct kvm *kvm)
612 {
613 	if (atomic_dec_and_test(&kvm->users_count))
614 		kvm_destroy_vm(kvm);
615 }
616 EXPORT_SYMBOL_GPL(kvm_put_kvm);
617 
618 
619 static int kvm_vm_release(struct inode *inode, struct file *filp)
620 {
621 	struct kvm *kvm = filp->private_data;
622 
623 	kvm_irqfd_release(kvm);
624 
625 	kvm_put_kvm(kvm);
626 	return 0;
627 }
628 
629 /*
630  * Allocation size is twice as large as the actual dirty bitmap size.
631  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
632  */
633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 #ifndef CONFIG_S390
636 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
637 
638 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
639 	if (!memslot->dirty_bitmap)
640 		return -ENOMEM;
641 
642 #endif /* !CONFIG_S390 */
643 	return 0;
644 }
645 
646 static int cmp_memslot(const void *slot1, const void *slot2)
647 {
648 	struct kvm_memory_slot *s1, *s2;
649 
650 	s1 = (struct kvm_memory_slot *)slot1;
651 	s2 = (struct kvm_memory_slot *)slot2;
652 
653 	if (s1->npages < s2->npages)
654 		return 1;
655 	if (s1->npages > s2->npages)
656 		return -1;
657 
658 	return 0;
659 }
660 
661 /*
662  * Sort the memslots base on its size, so the larger slots
663  * will get better fit.
664  */
665 static void sort_memslots(struct kvm_memslots *slots)
666 {
667 	int i;
668 
669 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
670 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
671 
672 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
673 		slots->id_to_index[slots->memslots[i].id] = i;
674 }
675 
676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
677 		     u64 last_generation)
678 {
679 	if (new) {
680 		int id = new->id;
681 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
682 		unsigned long npages = old->npages;
683 
684 		*old = *new;
685 		if (new->npages != npages)
686 			sort_memslots(slots);
687 	}
688 
689 	slots->generation = last_generation + 1;
690 }
691 
692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
693 {
694 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
695 
696 #ifdef KVM_CAP_READONLY_MEM
697 	valid_flags |= KVM_MEM_READONLY;
698 #endif
699 
700 	if (mem->flags & ~valid_flags)
701 		return -EINVAL;
702 
703 	return 0;
704 }
705 
706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
707 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
708 {
709 	struct kvm_memslots *old_memslots = kvm->memslots;
710 
711 	update_memslots(slots, new, kvm->memslots->generation);
712 	rcu_assign_pointer(kvm->memslots, slots);
713 	synchronize_srcu_expedited(&kvm->srcu);
714 
715 	kvm_arch_memslots_updated(kvm);
716 
717 	return old_memslots;
718 }
719 
720 /*
721  * Allocate some memory and give it an address in the guest physical address
722  * space.
723  *
724  * Discontiguous memory is allowed, mostly for framebuffers.
725  *
726  * Must be called holding mmap_sem for write.
727  */
728 int __kvm_set_memory_region(struct kvm *kvm,
729 			    struct kvm_userspace_memory_region *mem)
730 {
731 	int r;
732 	gfn_t base_gfn;
733 	unsigned long npages;
734 	struct kvm_memory_slot *slot;
735 	struct kvm_memory_slot old, new;
736 	struct kvm_memslots *slots = NULL, *old_memslots;
737 	enum kvm_mr_change change;
738 
739 	r = check_memory_region_flags(mem);
740 	if (r)
741 		goto out;
742 
743 	r = -EINVAL;
744 	/* General sanity checks */
745 	if (mem->memory_size & (PAGE_SIZE - 1))
746 		goto out;
747 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
748 		goto out;
749 	/* We can read the guest memory with __xxx_user() later on. */
750 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
751 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
752 	     !access_ok(VERIFY_WRITE,
753 			(void __user *)(unsigned long)mem->userspace_addr,
754 			mem->memory_size)))
755 		goto out;
756 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
757 		goto out;
758 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
759 		goto out;
760 
761 	slot = id_to_memslot(kvm->memslots, mem->slot);
762 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
763 	npages = mem->memory_size >> PAGE_SHIFT;
764 
765 	r = -EINVAL;
766 	if (npages > KVM_MEM_MAX_NR_PAGES)
767 		goto out;
768 
769 	if (!npages)
770 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
771 
772 	new = old = *slot;
773 
774 	new.id = mem->slot;
775 	new.base_gfn = base_gfn;
776 	new.npages = npages;
777 	new.flags = mem->flags;
778 
779 	r = -EINVAL;
780 	if (npages) {
781 		if (!old.npages)
782 			change = KVM_MR_CREATE;
783 		else { /* Modify an existing slot. */
784 			if ((mem->userspace_addr != old.userspace_addr) ||
785 			    (npages != old.npages) ||
786 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
787 				goto out;
788 
789 			if (base_gfn != old.base_gfn)
790 				change = KVM_MR_MOVE;
791 			else if (new.flags != old.flags)
792 				change = KVM_MR_FLAGS_ONLY;
793 			else { /* Nothing to change. */
794 				r = 0;
795 				goto out;
796 			}
797 		}
798 	} else if (old.npages) {
799 		change = KVM_MR_DELETE;
800 	} else /* Modify a non-existent slot: disallowed. */
801 		goto out;
802 
803 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
804 		/* Check for overlaps */
805 		r = -EEXIST;
806 		kvm_for_each_memslot(slot, kvm->memslots) {
807 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
808 			    (slot->id == mem->slot))
809 				continue;
810 			if (!((base_gfn + npages <= slot->base_gfn) ||
811 			      (base_gfn >= slot->base_gfn + slot->npages)))
812 				goto out;
813 		}
814 	}
815 
816 	/* Free page dirty bitmap if unneeded */
817 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
818 		new.dirty_bitmap = NULL;
819 
820 	r = -ENOMEM;
821 	if (change == KVM_MR_CREATE) {
822 		new.userspace_addr = mem->userspace_addr;
823 
824 		if (kvm_arch_create_memslot(&new, npages))
825 			goto out_free;
826 	}
827 
828 	/* Allocate page dirty bitmap if needed */
829 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
830 		if (kvm_create_dirty_bitmap(&new) < 0)
831 			goto out_free;
832 	}
833 
834 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
835 		r = -ENOMEM;
836 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 				GFP_KERNEL);
838 		if (!slots)
839 			goto out_free;
840 		slot = id_to_memslot(slots, mem->slot);
841 		slot->flags |= KVM_MEMSLOT_INVALID;
842 
843 		old_memslots = install_new_memslots(kvm, slots, NULL);
844 
845 		/* slot was deleted or moved, clear iommu mapping */
846 		kvm_iommu_unmap_pages(kvm, &old);
847 		/* From this point no new shadow pages pointing to a deleted,
848 		 * or moved, memslot will be created.
849 		 *
850 		 * validation of sp->gfn happens in:
851 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
852 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
853 		 */
854 		kvm_arch_flush_shadow_memslot(kvm, slot);
855 		slots = old_memslots;
856 	}
857 
858 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
859 	if (r)
860 		goto out_slots;
861 
862 	r = -ENOMEM;
863 	/*
864 	 * We can re-use the old_memslots from above, the only difference
865 	 * from the currently installed memslots is the invalid flag.  This
866 	 * will get overwritten by update_memslots anyway.
867 	 */
868 	if (!slots) {
869 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
870 				GFP_KERNEL);
871 		if (!slots)
872 			goto out_free;
873 	}
874 
875 	/*
876 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
877 	 * un-mapped and re-mapped if their base changes.  Since base change
878 	 * unmapping is handled above with slot deletion, mapping alone is
879 	 * needed here.  Anything else the iommu might care about for existing
880 	 * slots (size changes, userspace addr changes and read-only flag
881 	 * changes) is disallowed above, so any other attribute changes getting
882 	 * here can be skipped.
883 	 */
884 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885 		r = kvm_iommu_map_pages(kvm, &new);
886 		if (r)
887 			goto out_slots;
888 	}
889 
890 	/* actual memory is freed via old in kvm_free_physmem_slot below */
891 	if (change == KVM_MR_DELETE) {
892 		new.dirty_bitmap = NULL;
893 		memset(&new.arch, 0, sizeof(new.arch));
894 	}
895 
896 	old_memslots = install_new_memslots(kvm, slots, &new);
897 
898 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
899 
900 	kvm_free_physmem_slot(&old, &new);
901 	kfree(old_memslots);
902 
903 	return 0;
904 
905 out_slots:
906 	kfree(slots);
907 out_free:
908 	kvm_free_physmem_slot(&new, &old);
909 out:
910 	return r;
911 }
912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913 
914 int kvm_set_memory_region(struct kvm *kvm,
915 			  struct kvm_userspace_memory_region *mem)
916 {
917 	int r;
918 
919 	mutex_lock(&kvm->slots_lock);
920 	r = __kvm_set_memory_region(kvm, mem);
921 	mutex_unlock(&kvm->slots_lock);
922 	return r;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925 
926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927 				   struct kvm_userspace_memory_region *mem)
928 {
929 	if (mem->slot >= KVM_USER_MEM_SLOTS)
930 		return -EINVAL;
931 	return kvm_set_memory_region(kvm, mem);
932 }
933 
934 int kvm_get_dirty_log(struct kvm *kvm,
935 			struct kvm_dirty_log *log, int *is_dirty)
936 {
937 	struct kvm_memory_slot *memslot;
938 	int r, i;
939 	unsigned long n;
940 	unsigned long any = 0;
941 
942 	r = -EINVAL;
943 	if (log->slot >= KVM_USER_MEM_SLOTS)
944 		goto out;
945 
946 	memslot = id_to_memslot(kvm->memslots, log->slot);
947 	r = -ENOENT;
948 	if (!memslot->dirty_bitmap)
949 		goto out;
950 
951 	n = kvm_dirty_bitmap_bytes(memslot);
952 
953 	for (i = 0; !any && i < n/sizeof(long); ++i)
954 		any = memslot->dirty_bitmap[i];
955 
956 	r = -EFAULT;
957 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958 		goto out;
959 
960 	if (any)
961 		*is_dirty = 1;
962 
963 	r = 0;
964 out:
965 	return r;
966 }
967 
968 bool kvm_largepages_enabled(void)
969 {
970 	return largepages_enabled;
971 }
972 
973 void kvm_disable_largepages(void)
974 {
975 	largepages_enabled = false;
976 }
977 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978 
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984 
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988 
989 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990 	      memslot->flags & KVM_MEMSLOT_INVALID)
991 		return 0;
992 
993 	return 1;
994 }
995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996 
997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998 {
999 	struct vm_area_struct *vma;
1000 	unsigned long addr, size;
1001 
1002 	size = PAGE_SIZE;
1003 
1004 	addr = gfn_to_hva(kvm, gfn);
1005 	if (kvm_is_error_hva(addr))
1006 		return PAGE_SIZE;
1007 
1008 	down_read(&current->mm->mmap_sem);
1009 	vma = find_vma(current->mm, addr);
1010 	if (!vma)
1011 		goto out;
1012 
1013 	size = vma_kernel_pagesize(vma);
1014 
1015 out:
1016 	up_read(&current->mm->mmap_sem);
1017 
1018 	return size;
1019 }
1020 
1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022 {
1023 	return slot->flags & KVM_MEM_READONLY;
1024 }
1025 
1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027 				       gfn_t *nr_pages, bool write)
1028 {
1029 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030 		return KVM_HVA_ERR_BAD;
1031 
1032 	if (memslot_is_readonly(slot) && write)
1033 		return KVM_HVA_ERR_RO_BAD;
1034 
1035 	if (nr_pages)
1036 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1037 
1038 	return __gfn_to_hva_memslot(slot, gfn);
1039 }
1040 
1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042 				     gfn_t *nr_pages)
1043 {
1044 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045 }
1046 
1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048 				 gfn_t gfn)
1049 {
1050 	return gfn_to_hva_many(slot, gfn, NULL);
1051 }
1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053 
1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055 {
1056 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva);
1059 
1060 /*
1061  * If writable is set to false, the hva returned by this function is only
1062  * allowed to be read.
1063  */
1064 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1065 {
1066 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1067 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1068 
1069 	if (!kvm_is_error_hva(hva) && writable)
1070 		*writable = !memslot_is_readonly(slot);
1071 
1072 	return hva;
1073 }
1074 
1075 static int kvm_read_hva(void *data, void __user *hva, int len)
1076 {
1077 	return __copy_from_user(data, hva, len);
1078 }
1079 
1080 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1081 {
1082 	return __copy_from_user_inatomic(data, hva, len);
1083 }
1084 
1085 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1086 	unsigned long start, int write, struct page **page)
1087 {
1088 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1089 
1090 	if (write)
1091 		flags |= FOLL_WRITE;
1092 
1093 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1094 }
1095 
1096 static inline int check_user_page_hwpoison(unsigned long addr)
1097 {
1098 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1099 
1100 	rc = __get_user_pages(current, current->mm, addr, 1,
1101 			      flags, NULL, NULL, NULL);
1102 	return rc == -EHWPOISON;
1103 }
1104 
1105 /*
1106  * The atomic path to get the writable pfn which will be stored in @pfn,
1107  * true indicates success, otherwise false is returned.
1108  */
1109 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1110 			    bool write_fault, bool *writable, pfn_t *pfn)
1111 {
1112 	struct page *page[1];
1113 	int npages;
1114 
1115 	if (!(async || atomic))
1116 		return false;
1117 
1118 	/*
1119 	 * Fast pin a writable pfn only if it is a write fault request
1120 	 * or the caller allows to map a writable pfn for a read fault
1121 	 * request.
1122 	 */
1123 	if (!(write_fault || writable))
1124 		return false;
1125 
1126 	npages = __get_user_pages_fast(addr, 1, 1, page);
1127 	if (npages == 1) {
1128 		*pfn = page_to_pfn(page[0]);
1129 
1130 		if (writable)
1131 			*writable = true;
1132 		return true;
1133 	}
1134 
1135 	return false;
1136 }
1137 
1138 /*
1139  * The slow path to get the pfn of the specified host virtual address,
1140  * 1 indicates success, -errno is returned if error is detected.
1141  */
1142 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1143 			   bool *writable, pfn_t *pfn)
1144 {
1145 	struct page *page[1];
1146 	int npages = 0;
1147 
1148 	might_sleep();
1149 
1150 	if (writable)
1151 		*writable = write_fault;
1152 
1153 	if (async) {
1154 		down_read(&current->mm->mmap_sem);
1155 		npages = get_user_page_nowait(current, current->mm,
1156 					      addr, write_fault, page);
1157 		up_read(&current->mm->mmap_sem);
1158 	} else
1159 		npages = get_user_pages_fast(addr, 1, write_fault,
1160 					     page);
1161 	if (npages != 1)
1162 		return npages;
1163 
1164 	/* map read fault as writable if possible */
1165 	if (unlikely(!write_fault) && writable) {
1166 		struct page *wpage[1];
1167 
1168 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1169 		if (npages == 1) {
1170 			*writable = true;
1171 			put_page(page[0]);
1172 			page[0] = wpage[0];
1173 		}
1174 
1175 		npages = 1;
1176 	}
1177 	*pfn = page_to_pfn(page[0]);
1178 	return npages;
1179 }
1180 
1181 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1182 {
1183 	if (unlikely(!(vma->vm_flags & VM_READ)))
1184 		return false;
1185 
1186 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1187 		return false;
1188 
1189 	return true;
1190 }
1191 
1192 /*
1193  * Pin guest page in memory and return its pfn.
1194  * @addr: host virtual address which maps memory to the guest
1195  * @atomic: whether this function can sleep
1196  * @async: whether this function need to wait IO complete if the
1197  *         host page is not in the memory
1198  * @write_fault: whether we should get a writable host page
1199  * @writable: whether it allows to map a writable host page for !@write_fault
1200  *
1201  * The function will map a writable host page for these two cases:
1202  * 1): @write_fault = true
1203  * 2): @write_fault = false && @writable, @writable will tell the caller
1204  *     whether the mapping is writable.
1205  */
1206 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1207 			bool write_fault, bool *writable)
1208 {
1209 	struct vm_area_struct *vma;
1210 	pfn_t pfn = 0;
1211 	int npages;
1212 
1213 	/* we can do it either atomically or asynchronously, not both */
1214 	BUG_ON(atomic && async);
1215 
1216 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1217 		return pfn;
1218 
1219 	if (atomic)
1220 		return KVM_PFN_ERR_FAULT;
1221 
1222 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1223 	if (npages == 1)
1224 		return pfn;
1225 
1226 	down_read(&current->mm->mmap_sem);
1227 	if (npages == -EHWPOISON ||
1228 	      (!async && check_user_page_hwpoison(addr))) {
1229 		pfn = KVM_PFN_ERR_HWPOISON;
1230 		goto exit;
1231 	}
1232 
1233 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1234 
1235 	if (vma == NULL)
1236 		pfn = KVM_PFN_ERR_FAULT;
1237 	else if ((vma->vm_flags & VM_PFNMAP)) {
1238 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1239 			vma->vm_pgoff;
1240 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1241 	} else {
1242 		if (async && vma_is_valid(vma, write_fault))
1243 			*async = true;
1244 		pfn = KVM_PFN_ERR_FAULT;
1245 	}
1246 exit:
1247 	up_read(&current->mm->mmap_sem);
1248 	return pfn;
1249 }
1250 
1251 static pfn_t
1252 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1253 		     bool *async, bool write_fault, bool *writable)
1254 {
1255 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1256 
1257 	if (addr == KVM_HVA_ERR_RO_BAD)
1258 		return KVM_PFN_ERR_RO_FAULT;
1259 
1260 	if (kvm_is_error_hva(addr))
1261 		return KVM_PFN_NOSLOT;
1262 
1263 	/* Do not map writable pfn in the readonly memslot. */
1264 	if (writable && memslot_is_readonly(slot)) {
1265 		*writable = false;
1266 		writable = NULL;
1267 	}
1268 
1269 	return hva_to_pfn(addr, atomic, async, write_fault,
1270 			  writable);
1271 }
1272 
1273 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1274 			  bool write_fault, bool *writable)
1275 {
1276 	struct kvm_memory_slot *slot;
1277 
1278 	if (async)
1279 		*async = false;
1280 
1281 	slot = gfn_to_memslot(kvm, gfn);
1282 
1283 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1284 				    writable);
1285 }
1286 
1287 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1288 {
1289 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1290 }
1291 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1292 
1293 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1294 		       bool write_fault, bool *writable)
1295 {
1296 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1297 }
1298 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1299 
1300 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1301 {
1302 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1303 }
1304 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1305 
1306 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1307 		      bool *writable)
1308 {
1309 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1312 
1313 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1314 {
1315 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1316 }
1317 
1318 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1319 {
1320 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1323 
1324 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1325 								  int nr_pages)
1326 {
1327 	unsigned long addr;
1328 	gfn_t entry;
1329 
1330 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1331 	if (kvm_is_error_hva(addr))
1332 		return -1;
1333 
1334 	if (entry < nr_pages)
1335 		return 0;
1336 
1337 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1338 }
1339 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1340 
1341 static struct page *kvm_pfn_to_page(pfn_t pfn)
1342 {
1343 	if (is_error_noslot_pfn(pfn))
1344 		return KVM_ERR_PTR_BAD_PAGE;
1345 
1346 	if (kvm_is_mmio_pfn(pfn)) {
1347 		WARN_ON(1);
1348 		return KVM_ERR_PTR_BAD_PAGE;
1349 	}
1350 
1351 	return pfn_to_page(pfn);
1352 }
1353 
1354 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1355 {
1356 	pfn_t pfn;
1357 
1358 	pfn = gfn_to_pfn(kvm, gfn);
1359 
1360 	return kvm_pfn_to_page(pfn);
1361 }
1362 
1363 EXPORT_SYMBOL_GPL(gfn_to_page);
1364 
1365 void kvm_release_page_clean(struct page *page)
1366 {
1367 	WARN_ON(is_error_page(page));
1368 
1369 	kvm_release_pfn_clean(page_to_pfn(page));
1370 }
1371 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1372 
1373 void kvm_release_pfn_clean(pfn_t pfn)
1374 {
1375 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1376 		put_page(pfn_to_page(pfn));
1377 }
1378 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1379 
1380 void kvm_release_page_dirty(struct page *page)
1381 {
1382 	WARN_ON(is_error_page(page));
1383 
1384 	kvm_release_pfn_dirty(page_to_pfn(page));
1385 }
1386 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1387 
1388 void kvm_release_pfn_dirty(pfn_t pfn)
1389 {
1390 	kvm_set_pfn_dirty(pfn);
1391 	kvm_release_pfn_clean(pfn);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1394 
1395 void kvm_set_page_dirty(struct page *page)
1396 {
1397 	kvm_set_pfn_dirty(page_to_pfn(page));
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1400 
1401 void kvm_set_pfn_dirty(pfn_t pfn)
1402 {
1403 	if (!kvm_is_mmio_pfn(pfn)) {
1404 		struct page *page = pfn_to_page(pfn);
1405 		if (!PageReserved(page))
1406 			SetPageDirty(page);
1407 	}
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1410 
1411 void kvm_set_pfn_accessed(pfn_t pfn)
1412 {
1413 	if (!kvm_is_mmio_pfn(pfn))
1414 		mark_page_accessed(pfn_to_page(pfn));
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1417 
1418 void kvm_get_pfn(pfn_t pfn)
1419 {
1420 	if (!kvm_is_mmio_pfn(pfn))
1421 		get_page(pfn_to_page(pfn));
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1424 
1425 static int next_segment(unsigned long len, int offset)
1426 {
1427 	if (len > PAGE_SIZE - offset)
1428 		return PAGE_SIZE - offset;
1429 	else
1430 		return len;
1431 }
1432 
1433 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1434 			int len)
1435 {
1436 	int r;
1437 	unsigned long addr;
1438 
1439 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1440 	if (kvm_is_error_hva(addr))
1441 		return -EFAULT;
1442 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1443 	if (r)
1444 		return -EFAULT;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1448 
1449 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1450 {
1451 	gfn_t gfn = gpa >> PAGE_SHIFT;
1452 	int seg;
1453 	int offset = offset_in_page(gpa);
1454 	int ret;
1455 
1456 	while ((seg = next_segment(len, offset)) != 0) {
1457 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1458 		if (ret < 0)
1459 			return ret;
1460 		offset = 0;
1461 		len -= seg;
1462 		data += seg;
1463 		++gfn;
1464 	}
1465 	return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_read_guest);
1468 
1469 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1470 			  unsigned long len)
1471 {
1472 	int r;
1473 	unsigned long addr;
1474 	gfn_t gfn = gpa >> PAGE_SHIFT;
1475 	int offset = offset_in_page(gpa);
1476 
1477 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1478 	if (kvm_is_error_hva(addr))
1479 		return -EFAULT;
1480 	pagefault_disable();
1481 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1482 	pagefault_enable();
1483 	if (r)
1484 		return -EFAULT;
1485 	return 0;
1486 }
1487 EXPORT_SYMBOL(kvm_read_guest_atomic);
1488 
1489 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1490 			 int offset, int len)
1491 {
1492 	int r;
1493 	unsigned long addr;
1494 
1495 	addr = gfn_to_hva(kvm, gfn);
1496 	if (kvm_is_error_hva(addr))
1497 		return -EFAULT;
1498 	r = __copy_to_user((void __user *)addr + offset, data, len);
1499 	if (r)
1500 		return -EFAULT;
1501 	mark_page_dirty(kvm, gfn);
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1505 
1506 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1507 		    unsigned long len)
1508 {
1509 	gfn_t gfn = gpa >> PAGE_SHIFT;
1510 	int seg;
1511 	int offset = offset_in_page(gpa);
1512 	int ret;
1513 
1514 	while ((seg = next_segment(len, offset)) != 0) {
1515 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1516 		if (ret < 0)
1517 			return ret;
1518 		offset = 0;
1519 		len -= seg;
1520 		data += seg;
1521 		++gfn;
1522 	}
1523 	return 0;
1524 }
1525 
1526 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1527 			      gpa_t gpa, unsigned long len)
1528 {
1529 	struct kvm_memslots *slots = kvm_memslots(kvm);
1530 	int offset = offset_in_page(gpa);
1531 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1532 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1533 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1534 	gfn_t nr_pages_avail;
1535 
1536 	ghc->gpa = gpa;
1537 	ghc->generation = slots->generation;
1538 	ghc->len = len;
1539 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1540 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1541 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1542 		ghc->hva += offset;
1543 	} else {
1544 		/*
1545 		 * If the requested region crosses two memslots, we still
1546 		 * verify that the entire region is valid here.
1547 		 */
1548 		while (start_gfn <= end_gfn) {
1549 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1550 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1551 						   &nr_pages_avail);
1552 			if (kvm_is_error_hva(ghc->hva))
1553 				return -EFAULT;
1554 			start_gfn += nr_pages_avail;
1555 		}
1556 		/* Use the slow path for cross page reads and writes. */
1557 		ghc->memslot = NULL;
1558 	}
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1562 
1563 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1564 			   void *data, unsigned long len)
1565 {
1566 	struct kvm_memslots *slots = kvm_memslots(kvm);
1567 	int r;
1568 
1569 	BUG_ON(len > ghc->len);
1570 
1571 	if (slots->generation != ghc->generation)
1572 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1573 
1574 	if (unlikely(!ghc->memslot))
1575 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1576 
1577 	if (kvm_is_error_hva(ghc->hva))
1578 		return -EFAULT;
1579 
1580 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1581 	if (r)
1582 		return -EFAULT;
1583 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1588 
1589 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1590 			   void *data, unsigned long len)
1591 {
1592 	struct kvm_memslots *slots = kvm_memslots(kvm);
1593 	int r;
1594 
1595 	BUG_ON(len > ghc->len);
1596 
1597 	if (slots->generation != ghc->generation)
1598 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1599 
1600 	if (unlikely(!ghc->memslot))
1601 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1602 
1603 	if (kvm_is_error_hva(ghc->hva))
1604 		return -EFAULT;
1605 
1606 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1607 	if (r)
1608 		return -EFAULT;
1609 
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1613 
1614 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1615 {
1616 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1617 				    offset, len);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1620 
1621 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1622 {
1623 	gfn_t gfn = gpa >> PAGE_SHIFT;
1624 	int seg;
1625 	int offset = offset_in_page(gpa);
1626 	int ret;
1627 
1628         while ((seg = next_segment(len, offset)) != 0) {
1629 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1630 		if (ret < 0)
1631 			return ret;
1632 		offset = 0;
1633 		len -= seg;
1634 		++gfn;
1635 	}
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1639 
1640 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1641 			     gfn_t gfn)
1642 {
1643 	if (memslot && memslot->dirty_bitmap) {
1644 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1645 
1646 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1647 	}
1648 }
1649 
1650 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1651 {
1652 	struct kvm_memory_slot *memslot;
1653 
1654 	memslot = gfn_to_memslot(kvm, gfn);
1655 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1656 }
1657 
1658 /*
1659  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1660  */
1661 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1662 {
1663 	DEFINE_WAIT(wait);
1664 
1665 	for (;;) {
1666 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1667 
1668 		if (kvm_arch_vcpu_runnable(vcpu)) {
1669 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1670 			break;
1671 		}
1672 		if (kvm_cpu_has_pending_timer(vcpu))
1673 			break;
1674 		if (signal_pending(current))
1675 			break;
1676 
1677 		schedule();
1678 	}
1679 
1680 	finish_wait(&vcpu->wq, &wait);
1681 }
1682 
1683 #ifndef CONFIG_S390
1684 /*
1685  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1686  */
1687 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1688 {
1689 	int me;
1690 	int cpu = vcpu->cpu;
1691 	wait_queue_head_t *wqp;
1692 
1693 	wqp = kvm_arch_vcpu_wq(vcpu);
1694 	if (waitqueue_active(wqp)) {
1695 		wake_up_interruptible(wqp);
1696 		++vcpu->stat.halt_wakeup;
1697 	}
1698 
1699 	me = get_cpu();
1700 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1701 		if (kvm_arch_vcpu_should_kick(vcpu))
1702 			smp_send_reschedule(cpu);
1703 	put_cpu();
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1706 #endif /* !CONFIG_S390 */
1707 
1708 void kvm_resched(struct kvm_vcpu *vcpu)
1709 {
1710 	if (!need_resched())
1711 		return;
1712 	cond_resched();
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_resched);
1715 
1716 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1717 {
1718 	struct pid *pid;
1719 	struct task_struct *task = NULL;
1720 	bool ret = false;
1721 
1722 	rcu_read_lock();
1723 	pid = rcu_dereference(target->pid);
1724 	if (pid)
1725 		task = get_pid_task(target->pid, PIDTYPE_PID);
1726 	rcu_read_unlock();
1727 	if (!task)
1728 		return ret;
1729 	if (task->flags & PF_VCPU) {
1730 		put_task_struct(task);
1731 		return ret;
1732 	}
1733 	ret = yield_to(task, 1);
1734 	put_task_struct(task);
1735 
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1739 
1740 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1741 /*
1742  * Helper that checks whether a VCPU is eligible for directed yield.
1743  * Most eligible candidate to yield is decided by following heuristics:
1744  *
1745  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1746  *  (preempted lock holder), indicated by @in_spin_loop.
1747  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1748  *
1749  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1750  *  chance last time (mostly it has become eligible now since we have probably
1751  *  yielded to lockholder in last iteration. This is done by toggling
1752  *  @dy_eligible each time a VCPU checked for eligibility.)
1753  *
1754  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1755  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1756  *  burning. Giving priority for a potential lock-holder increases lock
1757  *  progress.
1758  *
1759  *  Since algorithm is based on heuristics, accessing another VCPU data without
1760  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1761  *  and continue with next VCPU and so on.
1762  */
1763 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1764 {
1765 	bool eligible;
1766 
1767 	eligible = !vcpu->spin_loop.in_spin_loop ||
1768 			(vcpu->spin_loop.in_spin_loop &&
1769 			 vcpu->spin_loop.dy_eligible);
1770 
1771 	if (vcpu->spin_loop.in_spin_loop)
1772 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1773 
1774 	return eligible;
1775 }
1776 #endif
1777 
1778 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1779 {
1780 	struct kvm *kvm = me->kvm;
1781 	struct kvm_vcpu *vcpu;
1782 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1783 	int yielded = 0;
1784 	int try = 3;
1785 	int pass;
1786 	int i;
1787 
1788 	kvm_vcpu_set_in_spin_loop(me, true);
1789 	/*
1790 	 * We boost the priority of a VCPU that is runnable but not
1791 	 * currently running, because it got preempted by something
1792 	 * else and called schedule in __vcpu_run.  Hopefully that
1793 	 * VCPU is holding the lock that we need and will release it.
1794 	 * We approximate round-robin by starting at the last boosted VCPU.
1795 	 */
1796 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1797 		kvm_for_each_vcpu(i, vcpu, kvm) {
1798 			if (!pass && i <= last_boosted_vcpu) {
1799 				i = last_boosted_vcpu;
1800 				continue;
1801 			} else if (pass && i > last_boosted_vcpu)
1802 				break;
1803 			if (!ACCESS_ONCE(vcpu->preempted))
1804 				continue;
1805 			if (vcpu == me)
1806 				continue;
1807 			if (waitqueue_active(&vcpu->wq))
1808 				continue;
1809 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1810 				continue;
1811 
1812 			yielded = kvm_vcpu_yield_to(vcpu);
1813 			if (yielded > 0) {
1814 				kvm->last_boosted_vcpu = i;
1815 				break;
1816 			} else if (yielded < 0) {
1817 				try--;
1818 				if (!try)
1819 					break;
1820 			}
1821 		}
1822 	}
1823 	kvm_vcpu_set_in_spin_loop(me, false);
1824 
1825 	/* Ensure vcpu is not eligible during next spinloop */
1826 	kvm_vcpu_set_dy_eligible(me, false);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1829 
1830 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1831 {
1832 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1833 	struct page *page;
1834 
1835 	if (vmf->pgoff == 0)
1836 		page = virt_to_page(vcpu->run);
1837 #ifdef CONFIG_X86
1838 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1839 		page = virt_to_page(vcpu->arch.pio_data);
1840 #endif
1841 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1842 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1843 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1844 #endif
1845 	else
1846 		return kvm_arch_vcpu_fault(vcpu, vmf);
1847 	get_page(page);
1848 	vmf->page = page;
1849 	return 0;
1850 }
1851 
1852 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1853 	.fault = kvm_vcpu_fault,
1854 };
1855 
1856 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1857 {
1858 	vma->vm_ops = &kvm_vcpu_vm_ops;
1859 	return 0;
1860 }
1861 
1862 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1863 {
1864 	struct kvm_vcpu *vcpu = filp->private_data;
1865 
1866 	kvm_put_kvm(vcpu->kvm);
1867 	return 0;
1868 }
1869 
1870 static struct file_operations kvm_vcpu_fops = {
1871 	.release        = kvm_vcpu_release,
1872 	.unlocked_ioctl = kvm_vcpu_ioctl,
1873 #ifdef CONFIG_COMPAT
1874 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1875 #endif
1876 	.mmap           = kvm_vcpu_mmap,
1877 	.llseek		= noop_llseek,
1878 };
1879 
1880 /*
1881  * Allocates an inode for the vcpu.
1882  */
1883 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1884 {
1885 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1886 }
1887 
1888 /*
1889  * Creates some virtual cpus.  Good luck creating more than one.
1890  */
1891 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1892 {
1893 	int r;
1894 	struct kvm_vcpu *vcpu, *v;
1895 
1896 	vcpu = kvm_arch_vcpu_create(kvm, id);
1897 	if (IS_ERR(vcpu))
1898 		return PTR_ERR(vcpu);
1899 
1900 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1901 
1902 	r = kvm_arch_vcpu_setup(vcpu);
1903 	if (r)
1904 		goto vcpu_destroy;
1905 
1906 	mutex_lock(&kvm->lock);
1907 	if (!kvm_vcpu_compatible(vcpu)) {
1908 		r = -EINVAL;
1909 		goto unlock_vcpu_destroy;
1910 	}
1911 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1912 		r = -EINVAL;
1913 		goto unlock_vcpu_destroy;
1914 	}
1915 
1916 	kvm_for_each_vcpu(r, v, kvm)
1917 		if (v->vcpu_id == id) {
1918 			r = -EEXIST;
1919 			goto unlock_vcpu_destroy;
1920 		}
1921 
1922 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1923 
1924 	/* Now it's all set up, let userspace reach it */
1925 	kvm_get_kvm(kvm);
1926 	r = create_vcpu_fd(vcpu);
1927 	if (r < 0) {
1928 		kvm_put_kvm(kvm);
1929 		goto unlock_vcpu_destroy;
1930 	}
1931 
1932 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1933 	smp_wmb();
1934 	atomic_inc(&kvm->online_vcpus);
1935 
1936 	mutex_unlock(&kvm->lock);
1937 	kvm_arch_vcpu_postcreate(vcpu);
1938 	return r;
1939 
1940 unlock_vcpu_destroy:
1941 	mutex_unlock(&kvm->lock);
1942 vcpu_destroy:
1943 	kvm_arch_vcpu_destroy(vcpu);
1944 	return r;
1945 }
1946 
1947 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1948 {
1949 	if (sigset) {
1950 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1951 		vcpu->sigset_active = 1;
1952 		vcpu->sigset = *sigset;
1953 	} else
1954 		vcpu->sigset_active = 0;
1955 	return 0;
1956 }
1957 
1958 static long kvm_vcpu_ioctl(struct file *filp,
1959 			   unsigned int ioctl, unsigned long arg)
1960 {
1961 	struct kvm_vcpu *vcpu = filp->private_data;
1962 	void __user *argp = (void __user *)arg;
1963 	int r;
1964 	struct kvm_fpu *fpu = NULL;
1965 	struct kvm_sregs *kvm_sregs = NULL;
1966 
1967 	if (vcpu->kvm->mm != current->mm)
1968 		return -EIO;
1969 
1970 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1971 	/*
1972 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1973 	 * so vcpu_load() would break it.
1974 	 */
1975 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1976 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1977 #endif
1978 
1979 
1980 	r = vcpu_load(vcpu);
1981 	if (r)
1982 		return r;
1983 	switch (ioctl) {
1984 	case KVM_RUN:
1985 		r = -EINVAL;
1986 		if (arg)
1987 			goto out;
1988 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1989 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1990 		break;
1991 	case KVM_GET_REGS: {
1992 		struct kvm_regs *kvm_regs;
1993 
1994 		r = -ENOMEM;
1995 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1996 		if (!kvm_regs)
1997 			goto out;
1998 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1999 		if (r)
2000 			goto out_free1;
2001 		r = -EFAULT;
2002 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2003 			goto out_free1;
2004 		r = 0;
2005 out_free1:
2006 		kfree(kvm_regs);
2007 		break;
2008 	}
2009 	case KVM_SET_REGS: {
2010 		struct kvm_regs *kvm_regs;
2011 
2012 		r = -ENOMEM;
2013 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2014 		if (IS_ERR(kvm_regs)) {
2015 			r = PTR_ERR(kvm_regs);
2016 			goto out;
2017 		}
2018 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2019 		kfree(kvm_regs);
2020 		break;
2021 	}
2022 	case KVM_GET_SREGS: {
2023 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2024 		r = -ENOMEM;
2025 		if (!kvm_sregs)
2026 			goto out;
2027 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2028 		if (r)
2029 			goto out;
2030 		r = -EFAULT;
2031 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2032 			goto out;
2033 		r = 0;
2034 		break;
2035 	}
2036 	case KVM_SET_SREGS: {
2037 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2038 		if (IS_ERR(kvm_sregs)) {
2039 			r = PTR_ERR(kvm_sregs);
2040 			kvm_sregs = NULL;
2041 			goto out;
2042 		}
2043 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2044 		break;
2045 	}
2046 	case KVM_GET_MP_STATE: {
2047 		struct kvm_mp_state mp_state;
2048 
2049 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2050 		if (r)
2051 			goto out;
2052 		r = -EFAULT;
2053 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2054 			goto out;
2055 		r = 0;
2056 		break;
2057 	}
2058 	case KVM_SET_MP_STATE: {
2059 		struct kvm_mp_state mp_state;
2060 
2061 		r = -EFAULT;
2062 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2063 			goto out;
2064 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2065 		break;
2066 	}
2067 	case KVM_TRANSLATE: {
2068 		struct kvm_translation tr;
2069 
2070 		r = -EFAULT;
2071 		if (copy_from_user(&tr, argp, sizeof tr))
2072 			goto out;
2073 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2074 		if (r)
2075 			goto out;
2076 		r = -EFAULT;
2077 		if (copy_to_user(argp, &tr, sizeof tr))
2078 			goto out;
2079 		r = 0;
2080 		break;
2081 	}
2082 	case KVM_SET_GUEST_DEBUG: {
2083 		struct kvm_guest_debug dbg;
2084 
2085 		r = -EFAULT;
2086 		if (copy_from_user(&dbg, argp, sizeof dbg))
2087 			goto out;
2088 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2089 		break;
2090 	}
2091 	case KVM_SET_SIGNAL_MASK: {
2092 		struct kvm_signal_mask __user *sigmask_arg = argp;
2093 		struct kvm_signal_mask kvm_sigmask;
2094 		sigset_t sigset, *p;
2095 
2096 		p = NULL;
2097 		if (argp) {
2098 			r = -EFAULT;
2099 			if (copy_from_user(&kvm_sigmask, argp,
2100 					   sizeof kvm_sigmask))
2101 				goto out;
2102 			r = -EINVAL;
2103 			if (kvm_sigmask.len != sizeof sigset)
2104 				goto out;
2105 			r = -EFAULT;
2106 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2107 					   sizeof sigset))
2108 				goto out;
2109 			p = &sigset;
2110 		}
2111 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2112 		break;
2113 	}
2114 	case KVM_GET_FPU: {
2115 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2116 		r = -ENOMEM;
2117 		if (!fpu)
2118 			goto out;
2119 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2120 		if (r)
2121 			goto out;
2122 		r = -EFAULT;
2123 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2124 			goto out;
2125 		r = 0;
2126 		break;
2127 	}
2128 	case KVM_SET_FPU: {
2129 		fpu = memdup_user(argp, sizeof(*fpu));
2130 		if (IS_ERR(fpu)) {
2131 			r = PTR_ERR(fpu);
2132 			fpu = NULL;
2133 			goto out;
2134 		}
2135 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2136 		break;
2137 	}
2138 	default:
2139 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2140 	}
2141 out:
2142 	vcpu_put(vcpu);
2143 	kfree(fpu);
2144 	kfree(kvm_sregs);
2145 	return r;
2146 }
2147 
2148 #ifdef CONFIG_COMPAT
2149 static long kvm_vcpu_compat_ioctl(struct file *filp,
2150 				  unsigned int ioctl, unsigned long arg)
2151 {
2152 	struct kvm_vcpu *vcpu = filp->private_data;
2153 	void __user *argp = compat_ptr(arg);
2154 	int r;
2155 
2156 	if (vcpu->kvm->mm != current->mm)
2157 		return -EIO;
2158 
2159 	switch (ioctl) {
2160 	case KVM_SET_SIGNAL_MASK: {
2161 		struct kvm_signal_mask __user *sigmask_arg = argp;
2162 		struct kvm_signal_mask kvm_sigmask;
2163 		compat_sigset_t csigset;
2164 		sigset_t sigset;
2165 
2166 		if (argp) {
2167 			r = -EFAULT;
2168 			if (copy_from_user(&kvm_sigmask, argp,
2169 					   sizeof kvm_sigmask))
2170 				goto out;
2171 			r = -EINVAL;
2172 			if (kvm_sigmask.len != sizeof csigset)
2173 				goto out;
2174 			r = -EFAULT;
2175 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2176 					   sizeof csigset))
2177 				goto out;
2178 			sigset_from_compat(&sigset, &csigset);
2179 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2180 		} else
2181 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2182 		break;
2183 	}
2184 	default:
2185 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2186 	}
2187 
2188 out:
2189 	return r;
2190 }
2191 #endif
2192 
2193 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2194 				 int (*accessor)(struct kvm_device *dev,
2195 						 struct kvm_device_attr *attr),
2196 				 unsigned long arg)
2197 {
2198 	struct kvm_device_attr attr;
2199 
2200 	if (!accessor)
2201 		return -EPERM;
2202 
2203 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2204 		return -EFAULT;
2205 
2206 	return accessor(dev, &attr);
2207 }
2208 
2209 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2210 			     unsigned long arg)
2211 {
2212 	struct kvm_device *dev = filp->private_data;
2213 
2214 	switch (ioctl) {
2215 	case KVM_SET_DEVICE_ATTR:
2216 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2217 	case KVM_GET_DEVICE_ATTR:
2218 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2219 	case KVM_HAS_DEVICE_ATTR:
2220 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2221 	default:
2222 		if (dev->ops->ioctl)
2223 			return dev->ops->ioctl(dev, ioctl, arg);
2224 
2225 		return -ENOTTY;
2226 	}
2227 }
2228 
2229 static int kvm_device_release(struct inode *inode, struct file *filp)
2230 {
2231 	struct kvm_device *dev = filp->private_data;
2232 	struct kvm *kvm = dev->kvm;
2233 
2234 	kvm_put_kvm(kvm);
2235 	return 0;
2236 }
2237 
2238 static const struct file_operations kvm_device_fops = {
2239 	.unlocked_ioctl = kvm_device_ioctl,
2240 #ifdef CONFIG_COMPAT
2241 	.compat_ioctl = kvm_device_ioctl,
2242 #endif
2243 	.release = kvm_device_release,
2244 };
2245 
2246 struct kvm_device *kvm_device_from_filp(struct file *filp)
2247 {
2248 	if (filp->f_op != &kvm_device_fops)
2249 		return NULL;
2250 
2251 	return filp->private_data;
2252 }
2253 
2254 static int kvm_ioctl_create_device(struct kvm *kvm,
2255 				   struct kvm_create_device *cd)
2256 {
2257 	struct kvm_device_ops *ops = NULL;
2258 	struct kvm_device *dev;
2259 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2260 	int ret;
2261 
2262 	switch (cd->type) {
2263 #ifdef CONFIG_KVM_MPIC
2264 	case KVM_DEV_TYPE_FSL_MPIC_20:
2265 	case KVM_DEV_TYPE_FSL_MPIC_42:
2266 		ops = &kvm_mpic_ops;
2267 		break;
2268 #endif
2269 #ifdef CONFIG_KVM_XICS
2270 	case KVM_DEV_TYPE_XICS:
2271 		ops = &kvm_xics_ops;
2272 		break;
2273 #endif
2274 	default:
2275 		return -ENODEV;
2276 	}
2277 
2278 	if (test)
2279 		return 0;
2280 
2281 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2282 	if (!dev)
2283 		return -ENOMEM;
2284 
2285 	dev->ops = ops;
2286 	dev->kvm = kvm;
2287 
2288 	ret = ops->create(dev, cd->type);
2289 	if (ret < 0) {
2290 		kfree(dev);
2291 		return ret;
2292 	}
2293 
2294 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2295 	if (ret < 0) {
2296 		ops->destroy(dev);
2297 		return ret;
2298 	}
2299 
2300 	list_add(&dev->vm_node, &kvm->devices);
2301 	kvm_get_kvm(kvm);
2302 	cd->fd = ret;
2303 	return 0;
2304 }
2305 
2306 static long kvm_vm_ioctl(struct file *filp,
2307 			   unsigned int ioctl, unsigned long arg)
2308 {
2309 	struct kvm *kvm = filp->private_data;
2310 	void __user *argp = (void __user *)arg;
2311 	int r;
2312 
2313 	if (kvm->mm != current->mm)
2314 		return -EIO;
2315 	switch (ioctl) {
2316 	case KVM_CREATE_VCPU:
2317 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2318 		break;
2319 	case KVM_SET_USER_MEMORY_REGION: {
2320 		struct kvm_userspace_memory_region kvm_userspace_mem;
2321 
2322 		r = -EFAULT;
2323 		if (copy_from_user(&kvm_userspace_mem, argp,
2324 						sizeof kvm_userspace_mem))
2325 			goto out;
2326 
2327 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2328 		break;
2329 	}
2330 	case KVM_GET_DIRTY_LOG: {
2331 		struct kvm_dirty_log log;
2332 
2333 		r = -EFAULT;
2334 		if (copy_from_user(&log, argp, sizeof log))
2335 			goto out;
2336 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2337 		break;
2338 	}
2339 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2340 	case KVM_REGISTER_COALESCED_MMIO: {
2341 		struct kvm_coalesced_mmio_zone zone;
2342 		r = -EFAULT;
2343 		if (copy_from_user(&zone, argp, sizeof zone))
2344 			goto out;
2345 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2346 		break;
2347 	}
2348 	case KVM_UNREGISTER_COALESCED_MMIO: {
2349 		struct kvm_coalesced_mmio_zone zone;
2350 		r = -EFAULT;
2351 		if (copy_from_user(&zone, argp, sizeof zone))
2352 			goto out;
2353 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2354 		break;
2355 	}
2356 #endif
2357 	case KVM_IRQFD: {
2358 		struct kvm_irqfd data;
2359 
2360 		r = -EFAULT;
2361 		if (copy_from_user(&data, argp, sizeof data))
2362 			goto out;
2363 		r = kvm_irqfd(kvm, &data);
2364 		break;
2365 	}
2366 	case KVM_IOEVENTFD: {
2367 		struct kvm_ioeventfd data;
2368 
2369 		r = -EFAULT;
2370 		if (copy_from_user(&data, argp, sizeof data))
2371 			goto out;
2372 		r = kvm_ioeventfd(kvm, &data);
2373 		break;
2374 	}
2375 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2376 	case KVM_SET_BOOT_CPU_ID:
2377 		r = 0;
2378 		mutex_lock(&kvm->lock);
2379 		if (atomic_read(&kvm->online_vcpus) != 0)
2380 			r = -EBUSY;
2381 		else
2382 			kvm->bsp_vcpu_id = arg;
2383 		mutex_unlock(&kvm->lock);
2384 		break;
2385 #endif
2386 #ifdef CONFIG_HAVE_KVM_MSI
2387 	case KVM_SIGNAL_MSI: {
2388 		struct kvm_msi msi;
2389 
2390 		r = -EFAULT;
2391 		if (copy_from_user(&msi, argp, sizeof msi))
2392 			goto out;
2393 		r = kvm_send_userspace_msi(kvm, &msi);
2394 		break;
2395 	}
2396 #endif
2397 #ifdef __KVM_HAVE_IRQ_LINE
2398 	case KVM_IRQ_LINE_STATUS:
2399 	case KVM_IRQ_LINE: {
2400 		struct kvm_irq_level irq_event;
2401 
2402 		r = -EFAULT;
2403 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2404 			goto out;
2405 
2406 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2407 					ioctl == KVM_IRQ_LINE_STATUS);
2408 		if (r)
2409 			goto out;
2410 
2411 		r = -EFAULT;
2412 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2413 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2414 				goto out;
2415 		}
2416 
2417 		r = 0;
2418 		break;
2419 	}
2420 #endif
2421 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2422 	case KVM_SET_GSI_ROUTING: {
2423 		struct kvm_irq_routing routing;
2424 		struct kvm_irq_routing __user *urouting;
2425 		struct kvm_irq_routing_entry *entries;
2426 
2427 		r = -EFAULT;
2428 		if (copy_from_user(&routing, argp, sizeof(routing)))
2429 			goto out;
2430 		r = -EINVAL;
2431 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2432 			goto out;
2433 		if (routing.flags)
2434 			goto out;
2435 		r = -ENOMEM;
2436 		entries = vmalloc(routing.nr * sizeof(*entries));
2437 		if (!entries)
2438 			goto out;
2439 		r = -EFAULT;
2440 		urouting = argp;
2441 		if (copy_from_user(entries, urouting->entries,
2442 				   routing.nr * sizeof(*entries)))
2443 			goto out_free_irq_routing;
2444 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2445 					routing.flags);
2446 	out_free_irq_routing:
2447 		vfree(entries);
2448 		break;
2449 	}
2450 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2451 	case KVM_CREATE_DEVICE: {
2452 		struct kvm_create_device cd;
2453 
2454 		r = -EFAULT;
2455 		if (copy_from_user(&cd, argp, sizeof(cd)))
2456 			goto out;
2457 
2458 		r = kvm_ioctl_create_device(kvm, &cd);
2459 		if (r)
2460 			goto out;
2461 
2462 		r = -EFAULT;
2463 		if (copy_to_user(argp, &cd, sizeof(cd)))
2464 			goto out;
2465 
2466 		r = 0;
2467 		break;
2468 	}
2469 	default:
2470 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2471 		if (r == -ENOTTY)
2472 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2473 	}
2474 out:
2475 	return r;
2476 }
2477 
2478 #ifdef CONFIG_COMPAT
2479 struct compat_kvm_dirty_log {
2480 	__u32 slot;
2481 	__u32 padding1;
2482 	union {
2483 		compat_uptr_t dirty_bitmap; /* one bit per page */
2484 		__u64 padding2;
2485 	};
2486 };
2487 
2488 static long kvm_vm_compat_ioctl(struct file *filp,
2489 			   unsigned int ioctl, unsigned long arg)
2490 {
2491 	struct kvm *kvm = filp->private_data;
2492 	int r;
2493 
2494 	if (kvm->mm != current->mm)
2495 		return -EIO;
2496 	switch (ioctl) {
2497 	case KVM_GET_DIRTY_LOG: {
2498 		struct compat_kvm_dirty_log compat_log;
2499 		struct kvm_dirty_log log;
2500 
2501 		r = -EFAULT;
2502 		if (copy_from_user(&compat_log, (void __user *)arg,
2503 				   sizeof(compat_log)))
2504 			goto out;
2505 		log.slot	 = compat_log.slot;
2506 		log.padding1	 = compat_log.padding1;
2507 		log.padding2	 = compat_log.padding2;
2508 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2509 
2510 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2511 		break;
2512 	}
2513 	default:
2514 		r = kvm_vm_ioctl(filp, ioctl, arg);
2515 	}
2516 
2517 out:
2518 	return r;
2519 }
2520 #endif
2521 
2522 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2523 {
2524 	struct page *page[1];
2525 	unsigned long addr;
2526 	int npages;
2527 	gfn_t gfn = vmf->pgoff;
2528 	struct kvm *kvm = vma->vm_file->private_data;
2529 
2530 	addr = gfn_to_hva(kvm, gfn);
2531 	if (kvm_is_error_hva(addr))
2532 		return VM_FAULT_SIGBUS;
2533 
2534 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2535 				NULL);
2536 	if (unlikely(npages != 1))
2537 		return VM_FAULT_SIGBUS;
2538 
2539 	vmf->page = page[0];
2540 	return 0;
2541 }
2542 
2543 static const struct vm_operations_struct kvm_vm_vm_ops = {
2544 	.fault = kvm_vm_fault,
2545 };
2546 
2547 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2548 {
2549 	vma->vm_ops = &kvm_vm_vm_ops;
2550 	return 0;
2551 }
2552 
2553 static struct file_operations kvm_vm_fops = {
2554 	.release        = kvm_vm_release,
2555 	.unlocked_ioctl = kvm_vm_ioctl,
2556 #ifdef CONFIG_COMPAT
2557 	.compat_ioctl   = kvm_vm_compat_ioctl,
2558 #endif
2559 	.mmap           = kvm_vm_mmap,
2560 	.llseek		= noop_llseek,
2561 };
2562 
2563 static int kvm_dev_ioctl_create_vm(unsigned long type)
2564 {
2565 	int r;
2566 	struct kvm *kvm;
2567 
2568 	kvm = kvm_create_vm(type);
2569 	if (IS_ERR(kvm))
2570 		return PTR_ERR(kvm);
2571 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2572 	r = kvm_coalesced_mmio_init(kvm);
2573 	if (r < 0) {
2574 		kvm_put_kvm(kvm);
2575 		return r;
2576 	}
2577 #endif
2578 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2579 	if (r < 0)
2580 		kvm_put_kvm(kvm);
2581 
2582 	return r;
2583 }
2584 
2585 static long kvm_dev_ioctl_check_extension_generic(long arg)
2586 {
2587 	switch (arg) {
2588 	case KVM_CAP_USER_MEMORY:
2589 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2590 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2591 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2592 	case KVM_CAP_SET_BOOT_CPU_ID:
2593 #endif
2594 	case KVM_CAP_INTERNAL_ERROR_DATA:
2595 #ifdef CONFIG_HAVE_KVM_MSI
2596 	case KVM_CAP_SIGNAL_MSI:
2597 #endif
2598 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2599 	case KVM_CAP_IRQFD_RESAMPLE:
2600 #endif
2601 		return 1;
2602 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2603 	case KVM_CAP_IRQ_ROUTING:
2604 		return KVM_MAX_IRQ_ROUTES;
2605 #endif
2606 	default:
2607 		break;
2608 	}
2609 	return kvm_dev_ioctl_check_extension(arg);
2610 }
2611 
2612 static long kvm_dev_ioctl(struct file *filp,
2613 			  unsigned int ioctl, unsigned long arg)
2614 {
2615 	long r = -EINVAL;
2616 
2617 	switch (ioctl) {
2618 	case KVM_GET_API_VERSION:
2619 		r = -EINVAL;
2620 		if (arg)
2621 			goto out;
2622 		r = KVM_API_VERSION;
2623 		break;
2624 	case KVM_CREATE_VM:
2625 		r = kvm_dev_ioctl_create_vm(arg);
2626 		break;
2627 	case KVM_CHECK_EXTENSION:
2628 		r = kvm_dev_ioctl_check_extension_generic(arg);
2629 		break;
2630 	case KVM_GET_VCPU_MMAP_SIZE:
2631 		r = -EINVAL;
2632 		if (arg)
2633 			goto out;
2634 		r = PAGE_SIZE;     /* struct kvm_run */
2635 #ifdef CONFIG_X86
2636 		r += PAGE_SIZE;    /* pio data page */
2637 #endif
2638 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2639 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2640 #endif
2641 		break;
2642 	case KVM_TRACE_ENABLE:
2643 	case KVM_TRACE_PAUSE:
2644 	case KVM_TRACE_DISABLE:
2645 		r = -EOPNOTSUPP;
2646 		break;
2647 	default:
2648 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2649 	}
2650 out:
2651 	return r;
2652 }
2653 
2654 static struct file_operations kvm_chardev_ops = {
2655 	.unlocked_ioctl = kvm_dev_ioctl,
2656 	.compat_ioctl   = kvm_dev_ioctl,
2657 	.llseek		= noop_llseek,
2658 };
2659 
2660 static struct miscdevice kvm_dev = {
2661 	KVM_MINOR,
2662 	"kvm",
2663 	&kvm_chardev_ops,
2664 };
2665 
2666 static void hardware_enable_nolock(void *junk)
2667 {
2668 	int cpu = raw_smp_processor_id();
2669 	int r;
2670 
2671 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2672 		return;
2673 
2674 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2675 
2676 	r = kvm_arch_hardware_enable(NULL);
2677 
2678 	if (r) {
2679 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2680 		atomic_inc(&hardware_enable_failed);
2681 		printk(KERN_INFO "kvm: enabling virtualization on "
2682 				 "CPU%d failed\n", cpu);
2683 	}
2684 }
2685 
2686 static void hardware_enable(void *junk)
2687 {
2688 	raw_spin_lock(&kvm_lock);
2689 	hardware_enable_nolock(junk);
2690 	raw_spin_unlock(&kvm_lock);
2691 }
2692 
2693 static void hardware_disable_nolock(void *junk)
2694 {
2695 	int cpu = raw_smp_processor_id();
2696 
2697 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2698 		return;
2699 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2700 	kvm_arch_hardware_disable(NULL);
2701 }
2702 
2703 static void hardware_disable(void *junk)
2704 {
2705 	raw_spin_lock(&kvm_lock);
2706 	hardware_disable_nolock(junk);
2707 	raw_spin_unlock(&kvm_lock);
2708 }
2709 
2710 static void hardware_disable_all_nolock(void)
2711 {
2712 	BUG_ON(!kvm_usage_count);
2713 
2714 	kvm_usage_count--;
2715 	if (!kvm_usage_count)
2716 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2717 }
2718 
2719 static void hardware_disable_all(void)
2720 {
2721 	raw_spin_lock(&kvm_lock);
2722 	hardware_disable_all_nolock();
2723 	raw_spin_unlock(&kvm_lock);
2724 }
2725 
2726 static int hardware_enable_all(void)
2727 {
2728 	int r = 0;
2729 
2730 	raw_spin_lock(&kvm_lock);
2731 
2732 	kvm_usage_count++;
2733 	if (kvm_usage_count == 1) {
2734 		atomic_set(&hardware_enable_failed, 0);
2735 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2736 
2737 		if (atomic_read(&hardware_enable_failed)) {
2738 			hardware_disable_all_nolock();
2739 			r = -EBUSY;
2740 		}
2741 	}
2742 
2743 	raw_spin_unlock(&kvm_lock);
2744 
2745 	return r;
2746 }
2747 
2748 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2749 			   void *v)
2750 {
2751 	int cpu = (long)v;
2752 
2753 	if (!kvm_usage_count)
2754 		return NOTIFY_OK;
2755 
2756 	val &= ~CPU_TASKS_FROZEN;
2757 	switch (val) {
2758 	case CPU_DYING:
2759 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2760 		       cpu);
2761 		hardware_disable(NULL);
2762 		break;
2763 	case CPU_STARTING:
2764 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2765 		       cpu);
2766 		hardware_enable(NULL);
2767 		break;
2768 	}
2769 	return NOTIFY_OK;
2770 }
2771 
2772 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2773 		      void *v)
2774 {
2775 	/*
2776 	 * Some (well, at least mine) BIOSes hang on reboot if
2777 	 * in vmx root mode.
2778 	 *
2779 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2780 	 */
2781 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2782 	kvm_rebooting = true;
2783 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2784 	return NOTIFY_OK;
2785 }
2786 
2787 static struct notifier_block kvm_reboot_notifier = {
2788 	.notifier_call = kvm_reboot,
2789 	.priority = 0,
2790 };
2791 
2792 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2793 {
2794 	int i;
2795 
2796 	for (i = 0; i < bus->dev_count; i++) {
2797 		struct kvm_io_device *pos = bus->range[i].dev;
2798 
2799 		kvm_iodevice_destructor(pos);
2800 	}
2801 	kfree(bus);
2802 }
2803 
2804 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2805                                  const struct kvm_io_range *r2)
2806 {
2807 	if (r1->addr < r2->addr)
2808 		return -1;
2809 	if (r1->addr + r1->len > r2->addr + r2->len)
2810 		return 1;
2811 	return 0;
2812 }
2813 
2814 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2815 {
2816 	return kvm_io_bus_cmp(p1, p2);
2817 }
2818 
2819 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2820 			  gpa_t addr, int len)
2821 {
2822 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2823 		.addr = addr,
2824 		.len = len,
2825 		.dev = dev,
2826 	};
2827 
2828 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2829 		kvm_io_bus_sort_cmp, NULL);
2830 
2831 	return 0;
2832 }
2833 
2834 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2835 			     gpa_t addr, int len)
2836 {
2837 	struct kvm_io_range *range, key;
2838 	int off;
2839 
2840 	key = (struct kvm_io_range) {
2841 		.addr = addr,
2842 		.len = len,
2843 	};
2844 
2845 	range = bsearch(&key, bus->range, bus->dev_count,
2846 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2847 	if (range == NULL)
2848 		return -ENOENT;
2849 
2850 	off = range - bus->range;
2851 
2852 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2853 		off--;
2854 
2855 	return off;
2856 }
2857 
2858 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2859 			      struct kvm_io_range *range, const void *val)
2860 {
2861 	int idx;
2862 
2863 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2864 	if (idx < 0)
2865 		return -EOPNOTSUPP;
2866 
2867 	while (idx < bus->dev_count &&
2868 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2869 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2870 					range->len, val))
2871 			return idx;
2872 		idx++;
2873 	}
2874 
2875 	return -EOPNOTSUPP;
2876 }
2877 
2878 /* kvm_io_bus_write - called under kvm->slots_lock */
2879 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2880 		     int len, const void *val)
2881 {
2882 	struct kvm_io_bus *bus;
2883 	struct kvm_io_range range;
2884 	int r;
2885 
2886 	range = (struct kvm_io_range) {
2887 		.addr = addr,
2888 		.len = len,
2889 	};
2890 
2891 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2892 	r = __kvm_io_bus_write(bus, &range, val);
2893 	return r < 0 ? r : 0;
2894 }
2895 
2896 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2897 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2898 			    int len, const void *val, long cookie)
2899 {
2900 	struct kvm_io_bus *bus;
2901 	struct kvm_io_range range;
2902 
2903 	range = (struct kvm_io_range) {
2904 		.addr = addr,
2905 		.len = len,
2906 	};
2907 
2908 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2909 
2910 	/* First try the device referenced by cookie. */
2911 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2912 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2913 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2914 					val))
2915 			return cookie;
2916 
2917 	/*
2918 	 * cookie contained garbage; fall back to search and return the
2919 	 * correct cookie value.
2920 	 */
2921 	return __kvm_io_bus_write(bus, &range, val);
2922 }
2923 
2924 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2925 			     void *val)
2926 {
2927 	int idx;
2928 
2929 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2930 	if (idx < 0)
2931 		return -EOPNOTSUPP;
2932 
2933 	while (idx < bus->dev_count &&
2934 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2935 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2936 				       range->len, val))
2937 			return idx;
2938 		idx++;
2939 	}
2940 
2941 	return -EOPNOTSUPP;
2942 }
2943 
2944 /* kvm_io_bus_read - called under kvm->slots_lock */
2945 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2946 		    int len, void *val)
2947 {
2948 	struct kvm_io_bus *bus;
2949 	struct kvm_io_range range;
2950 	int r;
2951 
2952 	range = (struct kvm_io_range) {
2953 		.addr = addr,
2954 		.len = len,
2955 	};
2956 
2957 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2958 	r = __kvm_io_bus_read(bus, &range, val);
2959 	return r < 0 ? r : 0;
2960 }
2961 
2962 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2963 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2964 			   int len, void *val, long cookie)
2965 {
2966 	struct kvm_io_bus *bus;
2967 	struct kvm_io_range range;
2968 
2969 	range = (struct kvm_io_range) {
2970 		.addr = addr,
2971 		.len = len,
2972 	};
2973 
2974 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2975 
2976 	/* First try the device referenced by cookie. */
2977 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2978 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2979 		if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2980 				       val))
2981 			return cookie;
2982 
2983 	/*
2984 	 * cookie contained garbage; fall back to search and return the
2985 	 * correct cookie value.
2986 	 */
2987 	return __kvm_io_bus_read(bus, &range, val);
2988 }
2989 
2990 /* Caller must hold slots_lock. */
2991 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2992 			    int len, struct kvm_io_device *dev)
2993 {
2994 	struct kvm_io_bus *new_bus, *bus;
2995 
2996 	bus = kvm->buses[bus_idx];
2997 	/* exclude ioeventfd which is limited by maximum fd */
2998 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2999 		return -ENOSPC;
3000 
3001 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3002 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3003 	if (!new_bus)
3004 		return -ENOMEM;
3005 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3006 	       sizeof(struct kvm_io_range)));
3007 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3008 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3009 	synchronize_srcu_expedited(&kvm->srcu);
3010 	kfree(bus);
3011 
3012 	return 0;
3013 }
3014 
3015 /* Caller must hold slots_lock. */
3016 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3017 			      struct kvm_io_device *dev)
3018 {
3019 	int i, r;
3020 	struct kvm_io_bus *new_bus, *bus;
3021 
3022 	bus = kvm->buses[bus_idx];
3023 	r = -ENOENT;
3024 	for (i = 0; i < bus->dev_count; i++)
3025 		if (bus->range[i].dev == dev) {
3026 			r = 0;
3027 			break;
3028 		}
3029 
3030 	if (r)
3031 		return r;
3032 
3033 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3034 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3035 	if (!new_bus)
3036 		return -ENOMEM;
3037 
3038 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3039 	new_bus->dev_count--;
3040 	memcpy(new_bus->range + i, bus->range + i + 1,
3041 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3042 
3043 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3044 	synchronize_srcu_expedited(&kvm->srcu);
3045 	kfree(bus);
3046 	return r;
3047 }
3048 
3049 static struct notifier_block kvm_cpu_notifier = {
3050 	.notifier_call = kvm_cpu_hotplug,
3051 };
3052 
3053 static int vm_stat_get(void *_offset, u64 *val)
3054 {
3055 	unsigned offset = (long)_offset;
3056 	struct kvm *kvm;
3057 
3058 	*val = 0;
3059 	raw_spin_lock(&kvm_lock);
3060 	list_for_each_entry(kvm, &vm_list, vm_list)
3061 		*val += *(u32 *)((void *)kvm + offset);
3062 	raw_spin_unlock(&kvm_lock);
3063 	return 0;
3064 }
3065 
3066 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3067 
3068 static int vcpu_stat_get(void *_offset, u64 *val)
3069 {
3070 	unsigned offset = (long)_offset;
3071 	struct kvm *kvm;
3072 	struct kvm_vcpu *vcpu;
3073 	int i;
3074 
3075 	*val = 0;
3076 	raw_spin_lock(&kvm_lock);
3077 	list_for_each_entry(kvm, &vm_list, vm_list)
3078 		kvm_for_each_vcpu(i, vcpu, kvm)
3079 			*val += *(u32 *)((void *)vcpu + offset);
3080 
3081 	raw_spin_unlock(&kvm_lock);
3082 	return 0;
3083 }
3084 
3085 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3086 
3087 static const struct file_operations *stat_fops[] = {
3088 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3089 	[KVM_STAT_VM]   = &vm_stat_fops,
3090 };
3091 
3092 static int kvm_init_debug(void)
3093 {
3094 	int r = -EFAULT;
3095 	struct kvm_stats_debugfs_item *p;
3096 
3097 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3098 	if (kvm_debugfs_dir == NULL)
3099 		goto out;
3100 
3101 	for (p = debugfs_entries; p->name; ++p) {
3102 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3103 						(void *)(long)p->offset,
3104 						stat_fops[p->kind]);
3105 		if (p->dentry == NULL)
3106 			goto out_dir;
3107 	}
3108 
3109 	return 0;
3110 
3111 out_dir:
3112 	debugfs_remove_recursive(kvm_debugfs_dir);
3113 out:
3114 	return r;
3115 }
3116 
3117 static void kvm_exit_debug(void)
3118 {
3119 	struct kvm_stats_debugfs_item *p;
3120 
3121 	for (p = debugfs_entries; p->name; ++p)
3122 		debugfs_remove(p->dentry);
3123 	debugfs_remove(kvm_debugfs_dir);
3124 }
3125 
3126 static int kvm_suspend(void)
3127 {
3128 	if (kvm_usage_count)
3129 		hardware_disable_nolock(NULL);
3130 	return 0;
3131 }
3132 
3133 static void kvm_resume(void)
3134 {
3135 	if (kvm_usage_count) {
3136 		WARN_ON(raw_spin_is_locked(&kvm_lock));
3137 		hardware_enable_nolock(NULL);
3138 	}
3139 }
3140 
3141 static struct syscore_ops kvm_syscore_ops = {
3142 	.suspend = kvm_suspend,
3143 	.resume = kvm_resume,
3144 };
3145 
3146 static inline
3147 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3148 {
3149 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3150 }
3151 
3152 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3153 {
3154 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3155 	if (vcpu->preempted)
3156 		vcpu->preempted = false;
3157 
3158 	kvm_arch_vcpu_load(vcpu, cpu);
3159 }
3160 
3161 static void kvm_sched_out(struct preempt_notifier *pn,
3162 			  struct task_struct *next)
3163 {
3164 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3165 
3166 	if (current->state == TASK_RUNNING)
3167 		vcpu->preempted = true;
3168 	kvm_arch_vcpu_put(vcpu);
3169 }
3170 
3171 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3172 		  struct module *module)
3173 {
3174 	int r;
3175 	int cpu;
3176 
3177 	r = kvm_arch_init(opaque);
3178 	if (r)
3179 		goto out_fail;
3180 
3181 	/*
3182 	 * kvm_arch_init makes sure there's at most one caller
3183 	 * for architectures that support multiple implementations,
3184 	 * like intel and amd on x86.
3185 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3186 	 * conflicts in case kvm is already setup for another implementation.
3187 	 */
3188 	r = kvm_irqfd_init();
3189 	if (r)
3190 		goto out_irqfd;
3191 
3192 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3193 		r = -ENOMEM;
3194 		goto out_free_0;
3195 	}
3196 
3197 	r = kvm_arch_hardware_setup();
3198 	if (r < 0)
3199 		goto out_free_0a;
3200 
3201 	for_each_online_cpu(cpu) {
3202 		smp_call_function_single(cpu,
3203 				kvm_arch_check_processor_compat,
3204 				&r, 1);
3205 		if (r < 0)
3206 			goto out_free_1;
3207 	}
3208 
3209 	r = register_cpu_notifier(&kvm_cpu_notifier);
3210 	if (r)
3211 		goto out_free_2;
3212 	register_reboot_notifier(&kvm_reboot_notifier);
3213 
3214 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3215 	if (!vcpu_align)
3216 		vcpu_align = __alignof__(struct kvm_vcpu);
3217 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3218 					   0, NULL);
3219 	if (!kvm_vcpu_cache) {
3220 		r = -ENOMEM;
3221 		goto out_free_3;
3222 	}
3223 
3224 	r = kvm_async_pf_init();
3225 	if (r)
3226 		goto out_free;
3227 
3228 	kvm_chardev_ops.owner = module;
3229 	kvm_vm_fops.owner = module;
3230 	kvm_vcpu_fops.owner = module;
3231 
3232 	r = misc_register(&kvm_dev);
3233 	if (r) {
3234 		printk(KERN_ERR "kvm: misc device register failed\n");
3235 		goto out_unreg;
3236 	}
3237 
3238 	register_syscore_ops(&kvm_syscore_ops);
3239 
3240 	kvm_preempt_ops.sched_in = kvm_sched_in;
3241 	kvm_preempt_ops.sched_out = kvm_sched_out;
3242 
3243 	r = kvm_init_debug();
3244 	if (r) {
3245 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3246 		goto out_undebugfs;
3247 	}
3248 
3249 	return 0;
3250 
3251 out_undebugfs:
3252 	unregister_syscore_ops(&kvm_syscore_ops);
3253 	misc_deregister(&kvm_dev);
3254 out_unreg:
3255 	kvm_async_pf_deinit();
3256 out_free:
3257 	kmem_cache_destroy(kvm_vcpu_cache);
3258 out_free_3:
3259 	unregister_reboot_notifier(&kvm_reboot_notifier);
3260 	unregister_cpu_notifier(&kvm_cpu_notifier);
3261 out_free_2:
3262 out_free_1:
3263 	kvm_arch_hardware_unsetup();
3264 out_free_0a:
3265 	free_cpumask_var(cpus_hardware_enabled);
3266 out_free_0:
3267 	kvm_irqfd_exit();
3268 out_irqfd:
3269 	kvm_arch_exit();
3270 out_fail:
3271 	return r;
3272 }
3273 EXPORT_SYMBOL_GPL(kvm_init);
3274 
3275 void kvm_exit(void)
3276 {
3277 	kvm_exit_debug();
3278 	misc_deregister(&kvm_dev);
3279 	kmem_cache_destroy(kvm_vcpu_cache);
3280 	kvm_async_pf_deinit();
3281 	unregister_syscore_ops(&kvm_syscore_ops);
3282 	unregister_reboot_notifier(&kvm_reboot_notifier);
3283 	unregister_cpu_notifier(&kvm_cpu_notifier);
3284 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3285 	kvm_arch_hardware_unsetup();
3286 	kvm_arch_exit();
3287 	kvm_irqfd_exit();
3288 	free_cpumask_var(cpus_hardware_enabled);
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_exit);
3291