xref: /openbmc/linux/virt/kvm/kvm_main.c (revision f2d8e15b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static struct file_operations kvm_chardev_ops;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161 
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 						   unsigned long start, unsigned long end)
164 {
165 }
166 
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170 
171 bool kvm_is_zone_device_page(struct page *page)
172 {
173 	/*
174 	 * The metadata used by is_zone_device_page() to determine whether or
175 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
177 	 * page_count() is zero to help detect bad usage of this helper.
178 	 */
179 	if (WARN_ON_ONCE(!page_count(page)))
180 		return false;
181 
182 	return is_zone_device_page(page);
183 }
184 
185 /*
186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
188  * is likely incomplete, it has been compiled purely through people wanting to
189  * back guest with a certain type of memory and encountering issues.
190  */
191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193 	struct page *page;
194 
195 	if (!pfn_valid(pfn))
196 		return NULL;
197 
198 	page = pfn_to_page(pfn);
199 	if (!PageReserved(page))
200 		return page;
201 
202 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203 	if (is_zero_pfn(pfn))
204 		return page;
205 
206 	/*
207 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208 	 * perspective they are "normal" pages, albeit with slightly different
209 	 * usage rules.
210 	 */
211 	if (kvm_is_zone_device_page(page))
212 		return page;
213 
214 	return NULL;
215 }
216 
217 /*
218  * Switches to specified vcpu, until a matching vcpu_put()
219  */
220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222 	int cpu = get_cpu();
223 
224 	__this_cpu_write(kvm_running_vcpu, vcpu);
225 	preempt_notifier_register(&vcpu->preempt_notifier);
226 	kvm_arch_vcpu_load(vcpu, cpu);
227 	put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230 
231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233 	preempt_disable();
234 	kvm_arch_vcpu_put(vcpu);
235 	preempt_notifier_unregister(&vcpu->preempt_notifier);
236 	__this_cpu_write(kvm_running_vcpu, NULL);
237 	preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240 
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245 
246 	/*
247 	 * We need to wait for the VCPU to reenable interrupts and get out of
248 	 * READING_SHADOW_PAGE_TABLES mode.
249 	 */
250 	if (req & KVM_REQUEST_WAIT)
251 		return mode != OUTSIDE_GUEST_MODE;
252 
253 	/*
254 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
255 	 */
256 	return mode == IN_GUEST_MODE;
257 }
258 
259 static void ack_kick(void *_completed)
260 {
261 }
262 
263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265 	if (cpumask_empty(cpus))
266 		return false;
267 
268 	smp_call_function_many(cpus, ack_kick, NULL, wait);
269 	return true;
270 }
271 
272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273 				  struct cpumask *tmp, int current_cpu)
274 {
275 	int cpu;
276 
277 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278 		__kvm_make_request(req, vcpu);
279 
280 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281 		return;
282 
283 	/*
284 	 * Note, the vCPU could get migrated to a different pCPU at any point
285 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
286 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
287 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289 	 * after this point is also OK, as the requirement is only that KVM wait
290 	 * for vCPUs that were reading SPTEs _before_ any changes were
291 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
292 	 */
293 	if (kvm_request_needs_ipi(vcpu, req)) {
294 		cpu = READ_ONCE(vcpu->cpu);
295 		if (cpu != -1 && cpu != current_cpu)
296 			__cpumask_set_cpu(cpu, tmp);
297 	}
298 }
299 
300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301 				 unsigned long *vcpu_bitmap)
302 {
303 	struct kvm_vcpu *vcpu;
304 	struct cpumask *cpus;
305 	int i, me;
306 	bool called;
307 
308 	me = get_cpu();
309 
310 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311 	cpumask_clear(cpus);
312 
313 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314 		vcpu = kvm_get_vcpu(kvm, i);
315 		if (!vcpu)
316 			continue;
317 		kvm_make_vcpu_request(vcpu, req, cpus, me);
318 	}
319 
320 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321 	put_cpu();
322 
323 	return called;
324 }
325 
326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327 				      struct kvm_vcpu *except)
328 {
329 	struct kvm_vcpu *vcpu;
330 	struct cpumask *cpus;
331 	unsigned long i;
332 	bool called;
333 	int me;
334 
335 	me = get_cpu();
336 
337 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338 	cpumask_clear(cpus);
339 
340 	kvm_for_each_vcpu(i, vcpu, kvm) {
341 		if (vcpu == except)
342 			continue;
343 		kvm_make_vcpu_request(vcpu, req, cpus, me);
344 	}
345 
346 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347 	put_cpu();
348 
349 	return called;
350 }
351 
352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357 
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361 	++kvm->stat.generic.remote_tlb_flush_requests;
362 
363 	/*
364 	 * We want to publish modifications to the page tables before reading
365 	 * mode. Pairs with a memory barrier in arch-specific code.
366 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
368 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369 	 *
370 	 * There is already an smp_mb__after_atomic() before
371 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372 	 * barrier here.
373 	 */
374 	if (!kvm_arch_flush_remote_tlb(kvm)
375 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376 		++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380 
381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383 	kvm_arch_flush_shadow_all(kvm);
384 	kvm_arch_guest_memory_reclaimed(kvm);
385 }
386 
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389 					       gfp_t gfp_flags)
390 {
391 	gfp_flags |= mc->gfp_zero;
392 
393 	if (mc->kmem_cache)
394 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395 	else
396 		return (void *)__get_free_page(gfp_flags);
397 }
398 
399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402 	void *obj;
403 
404 	if (mc->nobjs >= min)
405 		return 0;
406 
407 	if (unlikely(!mc->objects)) {
408 		if (WARN_ON_ONCE(!capacity))
409 			return -EIO;
410 
411 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412 		if (!mc->objects)
413 			return -ENOMEM;
414 
415 		mc->capacity = capacity;
416 	}
417 
418 	/* It is illegal to request a different capacity across topups. */
419 	if (WARN_ON_ONCE(mc->capacity != capacity))
420 		return -EIO;
421 
422 	while (mc->nobjs < mc->capacity) {
423 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
424 		if (!obj)
425 			return mc->nobjs >= min ? 0 : -ENOMEM;
426 		mc->objects[mc->nobjs++] = obj;
427 	}
428 	return 0;
429 }
430 
431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435 
436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438 	return mc->nobjs;
439 }
440 
441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443 	while (mc->nobjs) {
444 		if (mc->kmem_cache)
445 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446 		else
447 			free_page((unsigned long)mc->objects[--mc->nobjs]);
448 	}
449 
450 	kvfree(mc->objects);
451 
452 	mc->objects = NULL;
453 	mc->capacity = 0;
454 }
455 
456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458 	void *p;
459 
460 	if (WARN_ON(!mc->nobjs))
461 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462 	else
463 		p = mc->objects[--mc->nobjs];
464 	BUG_ON(!p);
465 	return p;
466 }
467 #endif
468 
469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471 	mutex_init(&vcpu->mutex);
472 	vcpu->cpu = -1;
473 	vcpu->kvm = kvm;
474 	vcpu->vcpu_id = id;
475 	vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477 	rcuwait_init(&vcpu->wait);
478 #endif
479 	kvm_async_pf_vcpu_init(vcpu);
480 
481 	kvm_vcpu_set_in_spin_loop(vcpu, false);
482 	kvm_vcpu_set_dy_eligible(vcpu, false);
483 	vcpu->preempted = false;
484 	vcpu->ready = false;
485 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486 	vcpu->last_used_slot = NULL;
487 
488 	/* Fill the stats id string for the vcpu */
489 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490 		 task_pid_nr(current), id);
491 }
492 
493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494 {
495 	kvm_arch_vcpu_destroy(vcpu);
496 	kvm_dirty_ring_free(&vcpu->dirty_ring);
497 
498 	/*
499 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500 	 * the vcpu->pid pointer, and at destruction time all file descriptors
501 	 * are already gone.
502 	 */
503 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
504 
505 	free_page((unsigned long)vcpu->run);
506 	kmem_cache_free(kvm_vcpu_cache, vcpu);
507 }
508 
509 void kvm_destroy_vcpus(struct kvm *kvm)
510 {
511 	unsigned long i;
512 	struct kvm_vcpu *vcpu;
513 
514 	kvm_for_each_vcpu(i, vcpu, kvm) {
515 		kvm_vcpu_destroy(vcpu);
516 		xa_erase(&kvm->vcpu_array, i);
517 	}
518 
519 	atomic_set(&kvm->online_vcpus, 0);
520 }
521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522 
523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525 {
526 	return container_of(mn, struct kvm, mmu_notifier);
527 }
528 
529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530 					      struct mm_struct *mm,
531 					      unsigned long start, unsigned long end)
532 {
533 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
534 	int idx;
535 
536 	idx = srcu_read_lock(&kvm->srcu);
537 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538 	srcu_read_unlock(&kvm->srcu, idx);
539 }
540 
541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542 
543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544 			     unsigned long end);
545 
546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547 
548 struct kvm_hva_range {
549 	unsigned long start;
550 	unsigned long end;
551 	pte_t pte;
552 	hva_handler_t handler;
553 	on_lock_fn_t on_lock;
554 	on_unlock_fn_t on_unlock;
555 	bool flush_on_ret;
556 	bool may_block;
557 };
558 
559 /*
560  * Use a dedicated stub instead of NULL to indicate that there is no callback
561  * function/handler.  The compiler technically can't guarantee that a real
562  * function will have a non-zero address, and so it will generate code to
563  * check for !NULL, whereas comparing against a stub will be elided at compile
564  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565  */
566 static void kvm_null_fn(void)
567 {
568 
569 }
570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571 
572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
574 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575 	     node;							     \
576 	     node = interval_tree_iter_next(node, start, last))	     \
577 
578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579 						  const struct kvm_hva_range *range)
580 {
581 	bool ret = false, locked = false;
582 	struct kvm_gfn_range gfn_range;
583 	struct kvm_memory_slot *slot;
584 	struct kvm_memslots *slots;
585 	int i, idx;
586 
587 	if (WARN_ON_ONCE(range->end <= range->start))
588 		return 0;
589 
590 	/* A null handler is allowed if and only if on_lock() is provided. */
591 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592 			 IS_KVM_NULL_FN(range->handler)))
593 		return 0;
594 
595 	idx = srcu_read_lock(&kvm->srcu);
596 
597 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598 		struct interval_tree_node *node;
599 
600 		slots = __kvm_memslots(kvm, i);
601 		kvm_for_each_memslot_in_hva_range(node, slots,
602 						  range->start, range->end - 1) {
603 			unsigned long hva_start, hva_end;
604 
605 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606 			hva_start = max(range->start, slot->userspace_addr);
607 			hva_end = min(range->end, slot->userspace_addr +
608 						  (slot->npages << PAGE_SHIFT));
609 
610 			/*
611 			 * To optimize for the likely case where the address
612 			 * range is covered by zero or one memslots, don't
613 			 * bother making these conditional (to avoid writes on
614 			 * the second or later invocation of the handler).
615 			 */
616 			gfn_range.pte = range->pte;
617 			gfn_range.may_block = range->may_block;
618 
619 			/*
620 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
621 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622 			 */
623 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625 			gfn_range.slot = slot;
626 
627 			if (!locked) {
628 				locked = true;
629 				KVM_MMU_LOCK(kvm);
630 				if (!IS_KVM_NULL_FN(range->on_lock))
631 					range->on_lock(kvm, range->start, range->end);
632 				if (IS_KVM_NULL_FN(range->handler))
633 					break;
634 			}
635 			ret |= range->handler(kvm, &gfn_range);
636 		}
637 	}
638 
639 	if (range->flush_on_ret && ret)
640 		kvm_flush_remote_tlbs(kvm);
641 
642 	if (locked) {
643 		KVM_MMU_UNLOCK(kvm);
644 		if (!IS_KVM_NULL_FN(range->on_unlock))
645 			range->on_unlock(kvm);
646 	}
647 
648 	srcu_read_unlock(&kvm->srcu, idx);
649 
650 	/* The notifiers are averse to booleans. :-( */
651 	return (int)ret;
652 }
653 
654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655 						unsigned long start,
656 						unsigned long end,
657 						pte_t pte,
658 						hva_handler_t handler)
659 {
660 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
661 	const struct kvm_hva_range range = {
662 		.start		= start,
663 		.end		= end,
664 		.pte		= pte,
665 		.handler	= handler,
666 		.on_lock	= (void *)kvm_null_fn,
667 		.on_unlock	= (void *)kvm_null_fn,
668 		.flush_on_ret	= true,
669 		.may_block	= false,
670 	};
671 
672 	return __kvm_handle_hva_range(kvm, &range);
673 }
674 
675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676 							 unsigned long start,
677 							 unsigned long end,
678 							 hva_handler_t handler)
679 {
680 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
681 	const struct kvm_hva_range range = {
682 		.start		= start,
683 		.end		= end,
684 		.pte		= __pte(0),
685 		.handler	= handler,
686 		.on_lock	= (void *)kvm_null_fn,
687 		.on_unlock	= (void *)kvm_null_fn,
688 		.flush_on_ret	= false,
689 		.may_block	= false,
690 	};
691 
692 	return __kvm_handle_hva_range(kvm, &range);
693 }
694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695 					struct mm_struct *mm,
696 					unsigned long address,
697 					pte_t pte)
698 {
699 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
700 
701 	trace_kvm_set_spte_hva(address);
702 
703 	/*
704 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705 	 * If mmu_invalidate_in_progress is zero, then no in-progress
706 	 * invalidations, including this one, found a relevant memslot at
707 	 * start(); rechecking memslots here is unnecessary.  Note, a false
708 	 * positive (count elevated by a different invalidation) is sub-optimal
709 	 * but functionally ok.
710 	 */
711 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
712 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
713 		return;
714 
715 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
716 }
717 
718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
719 			      unsigned long end)
720 {
721 	/*
722 	 * The count increase must become visible at unlock time as no
723 	 * spte can be established without taking the mmu_lock and
724 	 * count is also read inside the mmu_lock critical section.
725 	 */
726 	kvm->mmu_invalidate_in_progress++;
727 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
728 		kvm->mmu_invalidate_range_start = start;
729 		kvm->mmu_invalidate_range_end = end;
730 	} else {
731 		/*
732 		 * Fully tracking multiple concurrent ranges has diminishing
733 		 * returns. Keep things simple and just find the minimal range
734 		 * which includes the current and new ranges. As there won't be
735 		 * enough information to subtract a range after its invalidate
736 		 * completes, any ranges invalidated concurrently will
737 		 * accumulate and persist until all outstanding invalidates
738 		 * complete.
739 		 */
740 		kvm->mmu_invalidate_range_start =
741 			min(kvm->mmu_invalidate_range_start, start);
742 		kvm->mmu_invalidate_range_end =
743 			max(kvm->mmu_invalidate_range_end, end);
744 	}
745 }
746 
747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
748 					const struct mmu_notifier_range *range)
749 {
750 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
751 	const struct kvm_hva_range hva_range = {
752 		.start		= range->start,
753 		.end		= range->end,
754 		.pte		= __pte(0),
755 		.handler	= kvm_unmap_gfn_range,
756 		.on_lock	= kvm_mmu_invalidate_begin,
757 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
758 		.flush_on_ret	= true,
759 		.may_block	= mmu_notifier_range_blockable(range),
760 	};
761 
762 	trace_kvm_unmap_hva_range(range->start, range->end);
763 
764 	/*
765 	 * Prevent memslot modification between range_start() and range_end()
766 	 * so that conditionally locking provides the same result in both
767 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
768 	 * adjustments will be imbalanced.
769 	 *
770 	 * Pairs with the decrement in range_end().
771 	 */
772 	spin_lock(&kvm->mn_invalidate_lock);
773 	kvm->mn_active_invalidate_count++;
774 	spin_unlock(&kvm->mn_invalidate_lock);
775 
776 	/*
777 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
778 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
779 	 * each cache's lock.  There are relatively few caches in existence at
780 	 * any given time, and the caches themselves can check for hva overlap,
781 	 * i.e. don't need to rely on memslot overlap checks for performance.
782 	 * Because this runs without holding mmu_lock, the pfn caches must use
783 	 * mn_active_invalidate_count (see above) instead of
784 	 * mmu_invalidate_in_progress.
785 	 */
786 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
787 					  hva_range.may_block);
788 
789 	__kvm_handle_hva_range(kvm, &hva_range);
790 
791 	return 0;
792 }
793 
794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
795 			    unsigned long end)
796 {
797 	/*
798 	 * This sequence increase will notify the kvm page fault that
799 	 * the page that is going to be mapped in the spte could have
800 	 * been freed.
801 	 */
802 	kvm->mmu_invalidate_seq++;
803 	smp_wmb();
804 	/*
805 	 * The above sequence increase must be visible before the
806 	 * below count decrease, which is ensured by the smp_wmb above
807 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
808 	 */
809 	kvm->mmu_invalidate_in_progress--;
810 }
811 
812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
813 					const struct mmu_notifier_range *range)
814 {
815 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
816 	const struct kvm_hva_range hva_range = {
817 		.start		= range->start,
818 		.end		= range->end,
819 		.pte		= __pte(0),
820 		.handler	= (void *)kvm_null_fn,
821 		.on_lock	= kvm_mmu_invalidate_end,
822 		.on_unlock	= (void *)kvm_null_fn,
823 		.flush_on_ret	= false,
824 		.may_block	= mmu_notifier_range_blockable(range),
825 	};
826 	bool wake;
827 
828 	__kvm_handle_hva_range(kvm, &hva_range);
829 
830 	/* Pairs with the increment in range_start(). */
831 	spin_lock(&kvm->mn_invalidate_lock);
832 	wake = (--kvm->mn_active_invalidate_count == 0);
833 	spin_unlock(&kvm->mn_invalidate_lock);
834 
835 	/*
836 	 * There can only be one waiter, since the wait happens under
837 	 * slots_lock.
838 	 */
839 	if (wake)
840 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
841 
842 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
843 }
844 
845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
846 					      struct mm_struct *mm,
847 					      unsigned long start,
848 					      unsigned long end)
849 {
850 	trace_kvm_age_hva(start, end);
851 
852 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
853 }
854 
855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
856 					struct mm_struct *mm,
857 					unsigned long start,
858 					unsigned long end)
859 {
860 	trace_kvm_age_hva(start, end);
861 
862 	/*
863 	 * Even though we do not flush TLB, this will still adversely
864 	 * affect performance on pre-Haswell Intel EPT, where there is
865 	 * no EPT Access Bit to clear so that we have to tear down EPT
866 	 * tables instead. If we find this unacceptable, we can always
867 	 * add a parameter to kvm_age_hva so that it effectively doesn't
868 	 * do anything on clear_young.
869 	 *
870 	 * Also note that currently we never issue secondary TLB flushes
871 	 * from clear_young, leaving this job up to the regular system
872 	 * cadence. If we find this inaccurate, we might come up with a
873 	 * more sophisticated heuristic later.
874 	 */
875 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
876 }
877 
878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
879 				       struct mm_struct *mm,
880 				       unsigned long address)
881 {
882 	trace_kvm_test_age_hva(address);
883 
884 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
885 					     kvm_test_age_gfn);
886 }
887 
888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
889 				     struct mm_struct *mm)
890 {
891 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
892 	int idx;
893 
894 	idx = srcu_read_lock(&kvm->srcu);
895 	kvm_flush_shadow_all(kvm);
896 	srcu_read_unlock(&kvm->srcu, idx);
897 }
898 
899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
900 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
901 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
902 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
903 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
904 	.clear_young		= kvm_mmu_notifier_clear_young,
905 	.test_young		= kvm_mmu_notifier_test_young,
906 	.change_pte		= kvm_mmu_notifier_change_pte,
907 	.release		= kvm_mmu_notifier_release,
908 };
909 
910 static int kvm_init_mmu_notifier(struct kvm *kvm)
911 {
912 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
913 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
914 }
915 
916 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
917 
918 static int kvm_init_mmu_notifier(struct kvm *kvm)
919 {
920 	return 0;
921 }
922 
923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
924 
925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
926 static int kvm_pm_notifier_call(struct notifier_block *bl,
927 				unsigned long state,
928 				void *unused)
929 {
930 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
931 
932 	return kvm_arch_pm_notifier(kvm, state);
933 }
934 
935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
938 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
939 	kvm->pm_notifier.priority = INT_MAX;
940 	register_pm_notifier(&kvm->pm_notifier);
941 }
942 
943 static void kvm_destroy_pm_notifier(struct kvm *kvm)
944 {
945 	unregister_pm_notifier(&kvm->pm_notifier);
946 }
947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 }
951 
952 static void kvm_destroy_pm_notifier(struct kvm *kvm)
953 {
954 }
955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
956 
957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
958 {
959 	if (!memslot->dirty_bitmap)
960 		return;
961 
962 	kvfree(memslot->dirty_bitmap);
963 	memslot->dirty_bitmap = NULL;
964 }
965 
966 /* This does not remove the slot from struct kvm_memslots data structures */
967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
968 {
969 	kvm_destroy_dirty_bitmap(slot);
970 
971 	kvm_arch_free_memslot(kvm, slot);
972 
973 	kfree(slot);
974 }
975 
976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
977 {
978 	struct hlist_node *idnode;
979 	struct kvm_memory_slot *memslot;
980 	int bkt;
981 
982 	/*
983 	 * The same memslot objects live in both active and inactive sets,
984 	 * arbitrarily free using index '1' so the second invocation of this
985 	 * function isn't operating over a structure with dangling pointers
986 	 * (even though this function isn't actually touching them).
987 	 */
988 	if (!slots->node_idx)
989 		return;
990 
991 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
992 		kvm_free_memslot(kvm, memslot);
993 }
994 
995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
996 {
997 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
998 	case KVM_STATS_TYPE_INSTANT:
999 		return 0444;
1000 	case KVM_STATS_TYPE_CUMULATIVE:
1001 	case KVM_STATS_TYPE_PEAK:
1002 	default:
1003 		return 0644;
1004 	}
1005 }
1006 
1007 
1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009 {
1010 	int i;
1011 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012 				      kvm_vcpu_stats_header.num_desc;
1013 
1014 	if (IS_ERR(kvm->debugfs_dentry))
1015 		return;
1016 
1017 	debugfs_remove_recursive(kvm->debugfs_dentry);
1018 
1019 	if (kvm->debugfs_stat_data) {
1020 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1021 			kfree(kvm->debugfs_stat_data[i]);
1022 		kfree(kvm->debugfs_stat_data);
1023 	}
1024 }
1025 
1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027 {
1028 	static DEFINE_MUTEX(kvm_debugfs_lock);
1029 	struct dentry *dent;
1030 	char dir_name[ITOA_MAX_LEN * 2];
1031 	struct kvm_stat_data *stat_data;
1032 	const struct _kvm_stats_desc *pdesc;
1033 	int i, ret = -ENOMEM;
1034 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035 				      kvm_vcpu_stats_header.num_desc;
1036 
1037 	if (!debugfs_initialized())
1038 		return 0;
1039 
1040 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041 	mutex_lock(&kvm_debugfs_lock);
1042 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043 	if (dent) {
1044 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045 		dput(dent);
1046 		mutex_unlock(&kvm_debugfs_lock);
1047 		return 0;
1048 	}
1049 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050 	mutex_unlock(&kvm_debugfs_lock);
1051 	if (IS_ERR(dent))
1052 		return 0;
1053 
1054 	kvm->debugfs_dentry = dent;
1055 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056 					 sizeof(*kvm->debugfs_stat_data),
1057 					 GFP_KERNEL_ACCOUNT);
1058 	if (!kvm->debugfs_stat_data)
1059 		goto out_err;
1060 
1061 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062 		pdesc = &kvm_vm_stats_desc[i];
1063 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064 		if (!stat_data)
1065 			goto out_err;
1066 
1067 		stat_data->kvm = kvm;
1068 		stat_data->desc = pdesc;
1069 		stat_data->kind = KVM_STAT_VM;
1070 		kvm->debugfs_stat_data[i] = stat_data;
1071 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072 				    kvm->debugfs_dentry, stat_data,
1073 				    &stat_fops_per_vm);
1074 	}
1075 
1076 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077 		pdesc = &kvm_vcpu_stats_desc[i];
1078 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079 		if (!stat_data)
1080 			goto out_err;
1081 
1082 		stat_data->kvm = kvm;
1083 		stat_data->desc = pdesc;
1084 		stat_data->kind = KVM_STAT_VCPU;
1085 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087 				    kvm->debugfs_dentry, stat_data,
1088 				    &stat_fops_per_vm);
1089 	}
1090 
1091 	ret = kvm_arch_create_vm_debugfs(kvm);
1092 	if (ret)
1093 		goto out_err;
1094 
1095 	return 0;
1096 out_err:
1097 	kvm_destroy_vm_debugfs(kvm);
1098 	return ret;
1099 }
1100 
1101 /*
1102  * Called after the VM is otherwise initialized, but just before adding it to
1103  * the vm_list.
1104  */
1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 {
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Called just after removing the VM from the vm_list, but before doing any
1112  * other destruction.
1113  */
1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115 {
1116 }
1117 
1118 /*
1119  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1120  * be setup already, so we can create arch-specific debugfs entries under it.
1121  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122  * a per-arch destroy interface is not needed.
1123  */
1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125 {
1126 	return 0;
1127 }
1128 
1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130 {
1131 	struct kvm *kvm = kvm_arch_alloc_vm();
1132 	struct kvm_memslots *slots;
1133 	int r = -ENOMEM;
1134 	int i, j;
1135 
1136 	if (!kvm)
1137 		return ERR_PTR(-ENOMEM);
1138 
1139 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140 	__module_get(kvm_chardev_ops.owner);
1141 
1142 	KVM_MMU_LOCK_INIT(kvm);
1143 	mmgrab(current->mm);
1144 	kvm->mm = current->mm;
1145 	kvm_eventfd_init(kvm);
1146 	mutex_init(&kvm->lock);
1147 	mutex_init(&kvm->irq_lock);
1148 	mutex_init(&kvm->slots_lock);
1149 	mutex_init(&kvm->slots_arch_lock);
1150 	spin_lock_init(&kvm->mn_invalidate_lock);
1151 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152 	xa_init(&kvm->vcpu_array);
1153 
1154 	INIT_LIST_HEAD(&kvm->gpc_list);
1155 	spin_lock_init(&kvm->gpc_lock);
1156 
1157 	INIT_LIST_HEAD(&kvm->devices);
1158 	kvm->max_vcpus = KVM_MAX_VCPUS;
1159 
1160 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161 
1162 	/*
1163 	 * Force subsequent debugfs file creations to fail if the VM directory
1164 	 * is not created (by kvm_create_vm_debugfs()).
1165 	 */
1166 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167 
1168 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169 		 task_pid_nr(current));
1170 
1171 	if (init_srcu_struct(&kvm->srcu))
1172 		goto out_err_no_srcu;
1173 	if (init_srcu_struct(&kvm->irq_srcu))
1174 		goto out_err_no_irq_srcu;
1175 
1176 	refcount_set(&kvm->users_count, 1);
1177 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178 		for (j = 0; j < 2; j++) {
1179 			slots = &kvm->__memslots[i][j];
1180 
1181 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182 			slots->hva_tree = RB_ROOT_CACHED;
1183 			slots->gfn_tree = RB_ROOT;
1184 			hash_init(slots->id_hash);
1185 			slots->node_idx = j;
1186 
1187 			/* Generations must be different for each address space. */
1188 			slots->generation = i;
1189 		}
1190 
1191 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192 	}
1193 
1194 	for (i = 0; i < KVM_NR_BUSES; i++) {
1195 		rcu_assign_pointer(kvm->buses[i],
1196 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197 		if (!kvm->buses[i])
1198 			goto out_err_no_arch_destroy_vm;
1199 	}
1200 
1201 	kvm->max_halt_poll_ns = halt_poll_ns;
1202 
1203 	r = kvm_arch_init_vm(kvm, type);
1204 	if (r)
1205 		goto out_err_no_arch_destroy_vm;
1206 
1207 	r = hardware_enable_all();
1208 	if (r)
1209 		goto out_err_no_disable;
1210 
1211 #ifdef CONFIG_HAVE_KVM_IRQFD
1212 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1213 #endif
1214 
1215 	r = kvm_init_mmu_notifier(kvm);
1216 	if (r)
1217 		goto out_err_no_mmu_notifier;
1218 
1219 	r = kvm_coalesced_mmio_init(kvm);
1220 	if (r < 0)
1221 		goto out_no_coalesced_mmio;
1222 
1223 	r = kvm_create_vm_debugfs(kvm, fdname);
1224 	if (r)
1225 		goto out_err_no_debugfs;
1226 
1227 	r = kvm_arch_post_init_vm(kvm);
1228 	if (r)
1229 		goto out_err;
1230 
1231 	mutex_lock(&kvm_lock);
1232 	list_add(&kvm->vm_list, &vm_list);
1233 	mutex_unlock(&kvm_lock);
1234 
1235 	preempt_notifier_inc();
1236 	kvm_init_pm_notifier(kvm);
1237 
1238 	return kvm;
1239 
1240 out_err:
1241 	kvm_destroy_vm_debugfs(kvm);
1242 out_err_no_debugfs:
1243 	kvm_coalesced_mmio_free(kvm);
1244 out_no_coalesced_mmio:
1245 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1246 	if (kvm->mmu_notifier.ops)
1247 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1248 #endif
1249 out_err_no_mmu_notifier:
1250 	hardware_disable_all();
1251 out_err_no_disable:
1252 	kvm_arch_destroy_vm(kvm);
1253 out_err_no_arch_destroy_vm:
1254 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1255 	for (i = 0; i < KVM_NR_BUSES; i++)
1256 		kfree(kvm_get_bus(kvm, i));
1257 	cleanup_srcu_struct(&kvm->irq_srcu);
1258 out_err_no_irq_srcu:
1259 	cleanup_srcu_struct(&kvm->srcu);
1260 out_err_no_srcu:
1261 	kvm_arch_free_vm(kvm);
1262 	mmdrop(current->mm);
1263 	module_put(kvm_chardev_ops.owner);
1264 	return ERR_PTR(r);
1265 }
1266 
1267 static void kvm_destroy_devices(struct kvm *kvm)
1268 {
1269 	struct kvm_device *dev, *tmp;
1270 
1271 	/*
1272 	 * We do not need to take the kvm->lock here, because nobody else
1273 	 * has a reference to the struct kvm at this point and therefore
1274 	 * cannot access the devices list anyhow.
1275 	 */
1276 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1277 		list_del(&dev->vm_node);
1278 		dev->ops->destroy(dev);
1279 	}
1280 }
1281 
1282 static void kvm_destroy_vm(struct kvm *kvm)
1283 {
1284 	int i;
1285 	struct mm_struct *mm = kvm->mm;
1286 
1287 	kvm_destroy_pm_notifier(kvm);
1288 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1289 	kvm_destroy_vm_debugfs(kvm);
1290 	kvm_arch_sync_events(kvm);
1291 	mutex_lock(&kvm_lock);
1292 	list_del(&kvm->vm_list);
1293 	mutex_unlock(&kvm_lock);
1294 	kvm_arch_pre_destroy_vm(kvm);
1295 
1296 	kvm_free_irq_routing(kvm);
1297 	for (i = 0; i < KVM_NR_BUSES; i++) {
1298 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1299 
1300 		if (bus)
1301 			kvm_io_bus_destroy(bus);
1302 		kvm->buses[i] = NULL;
1303 	}
1304 	kvm_coalesced_mmio_free(kvm);
1305 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1306 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1307 	/*
1308 	 * At this point, pending calls to invalidate_range_start()
1309 	 * have completed but no more MMU notifiers will run, so
1310 	 * mn_active_invalidate_count may remain unbalanced.
1311 	 * No threads can be waiting in install_new_memslots as the
1312 	 * last reference on KVM has been dropped, but freeing
1313 	 * memslots would deadlock without this manual intervention.
1314 	 */
1315 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1316 	kvm->mn_active_invalidate_count = 0;
1317 #else
1318 	kvm_flush_shadow_all(kvm);
1319 #endif
1320 	kvm_arch_destroy_vm(kvm);
1321 	kvm_destroy_devices(kvm);
1322 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1323 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1324 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1325 	}
1326 	cleanup_srcu_struct(&kvm->irq_srcu);
1327 	cleanup_srcu_struct(&kvm->srcu);
1328 	kvm_arch_free_vm(kvm);
1329 	preempt_notifier_dec();
1330 	hardware_disable_all();
1331 	mmdrop(mm);
1332 	module_put(kvm_chardev_ops.owner);
1333 }
1334 
1335 void kvm_get_kvm(struct kvm *kvm)
1336 {
1337 	refcount_inc(&kvm->users_count);
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1340 
1341 /*
1342  * Make sure the vm is not during destruction, which is a safe version of
1343  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1344  */
1345 bool kvm_get_kvm_safe(struct kvm *kvm)
1346 {
1347 	return refcount_inc_not_zero(&kvm->users_count);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1350 
1351 void kvm_put_kvm(struct kvm *kvm)
1352 {
1353 	if (refcount_dec_and_test(&kvm->users_count))
1354 		kvm_destroy_vm(kvm);
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1357 
1358 /*
1359  * Used to put a reference that was taken on behalf of an object associated
1360  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1361  * of the new file descriptor fails and the reference cannot be transferred to
1362  * its final owner.  In such cases, the caller is still actively using @kvm and
1363  * will fail miserably if the refcount unexpectedly hits zero.
1364  */
1365 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1366 {
1367 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1370 
1371 static int kvm_vm_release(struct inode *inode, struct file *filp)
1372 {
1373 	struct kvm *kvm = filp->private_data;
1374 
1375 	kvm_irqfd_release(kvm);
1376 
1377 	kvm_put_kvm(kvm);
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Allocation size is twice as large as the actual dirty bitmap size.
1383  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1384  */
1385 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1386 {
1387 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1388 
1389 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1390 	if (!memslot->dirty_bitmap)
1391 		return -ENOMEM;
1392 
1393 	return 0;
1394 }
1395 
1396 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1397 {
1398 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1399 	int node_idx_inactive = active->node_idx ^ 1;
1400 
1401 	return &kvm->__memslots[as_id][node_idx_inactive];
1402 }
1403 
1404 /*
1405  * Helper to get the address space ID when one of memslot pointers may be NULL.
1406  * This also serves as a sanity that at least one of the pointers is non-NULL,
1407  * and that their address space IDs don't diverge.
1408  */
1409 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1410 				  struct kvm_memory_slot *b)
1411 {
1412 	if (WARN_ON_ONCE(!a && !b))
1413 		return 0;
1414 
1415 	if (!a)
1416 		return b->as_id;
1417 	if (!b)
1418 		return a->as_id;
1419 
1420 	WARN_ON_ONCE(a->as_id != b->as_id);
1421 	return a->as_id;
1422 }
1423 
1424 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1425 				struct kvm_memory_slot *slot)
1426 {
1427 	struct rb_root *gfn_tree = &slots->gfn_tree;
1428 	struct rb_node **node, *parent;
1429 	int idx = slots->node_idx;
1430 
1431 	parent = NULL;
1432 	for (node = &gfn_tree->rb_node; *node; ) {
1433 		struct kvm_memory_slot *tmp;
1434 
1435 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1436 		parent = *node;
1437 		if (slot->base_gfn < tmp->base_gfn)
1438 			node = &(*node)->rb_left;
1439 		else if (slot->base_gfn > tmp->base_gfn)
1440 			node = &(*node)->rb_right;
1441 		else
1442 			BUG();
1443 	}
1444 
1445 	rb_link_node(&slot->gfn_node[idx], parent, node);
1446 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1447 }
1448 
1449 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1450 			       struct kvm_memory_slot *slot)
1451 {
1452 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1453 }
1454 
1455 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1456 				 struct kvm_memory_slot *old,
1457 				 struct kvm_memory_slot *new)
1458 {
1459 	int idx = slots->node_idx;
1460 
1461 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1462 
1463 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1464 			&slots->gfn_tree);
1465 }
1466 
1467 /*
1468  * Replace @old with @new in the inactive memslots.
1469  *
1470  * With NULL @old this simply adds @new.
1471  * With NULL @new this simply removes @old.
1472  *
1473  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1474  * appropriately.
1475  */
1476 static void kvm_replace_memslot(struct kvm *kvm,
1477 				struct kvm_memory_slot *old,
1478 				struct kvm_memory_slot *new)
1479 {
1480 	int as_id = kvm_memslots_get_as_id(old, new);
1481 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1482 	int idx = slots->node_idx;
1483 
1484 	if (old) {
1485 		hash_del(&old->id_node[idx]);
1486 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1487 
1488 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1489 			atomic_long_set(&slots->last_used_slot, (long)new);
1490 
1491 		if (!new) {
1492 			kvm_erase_gfn_node(slots, old);
1493 			return;
1494 		}
1495 	}
1496 
1497 	/*
1498 	 * Initialize @new's hva range.  Do this even when replacing an @old
1499 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1500 	 */
1501 	new->hva_node[idx].start = new->userspace_addr;
1502 	new->hva_node[idx].last = new->userspace_addr +
1503 				  (new->npages << PAGE_SHIFT) - 1;
1504 
1505 	/*
1506 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1507 	 * hva_node needs to be swapped with remove+insert even though hva can't
1508 	 * change when replacing an existing slot.
1509 	 */
1510 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1511 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1512 
1513 	/*
1514 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1515 	 * switch the node in the gfn tree instead of removing the old and
1516 	 * inserting the new as two separate operations. Replacement is a
1517 	 * single O(1) operation versus two O(log(n)) operations for
1518 	 * remove+insert.
1519 	 */
1520 	if (old && old->base_gfn == new->base_gfn) {
1521 		kvm_replace_gfn_node(slots, old, new);
1522 	} else {
1523 		if (old)
1524 			kvm_erase_gfn_node(slots, old);
1525 		kvm_insert_gfn_node(slots, new);
1526 	}
1527 }
1528 
1529 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1530 {
1531 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1532 
1533 #ifdef __KVM_HAVE_READONLY_MEM
1534 	valid_flags |= KVM_MEM_READONLY;
1535 #endif
1536 
1537 	if (mem->flags & ~valid_flags)
1538 		return -EINVAL;
1539 
1540 	return 0;
1541 }
1542 
1543 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1544 {
1545 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1546 
1547 	/* Grab the generation from the activate memslots. */
1548 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1549 
1550 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1551 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1552 
1553 	/*
1554 	 * Do not store the new memslots while there are invalidations in
1555 	 * progress, otherwise the locking in invalidate_range_start and
1556 	 * invalidate_range_end will be unbalanced.
1557 	 */
1558 	spin_lock(&kvm->mn_invalidate_lock);
1559 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560 	while (kvm->mn_active_invalidate_count) {
1561 		set_current_state(TASK_UNINTERRUPTIBLE);
1562 		spin_unlock(&kvm->mn_invalidate_lock);
1563 		schedule();
1564 		spin_lock(&kvm->mn_invalidate_lock);
1565 	}
1566 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1568 	spin_unlock(&kvm->mn_invalidate_lock);
1569 
1570 	/*
1571 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1572 	 * SRCU below in order to avoid deadlock with another thread
1573 	 * acquiring the slots_arch_lock in an srcu critical section.
1574 	 */
1575 	mutex_unlock(&kvm->slots_arch_lock);
1576 
1577 	synchronize_srcu_expedited(&kvm->srcu);
1578 
1579 	/*
1580 	 * Increment the new memslot generation a second time, dropping the
1581 	 * update in-progress flag and incrementing the generation based on
1582 	 * the number of address spaces.  This provides a unique and easily
1583 	 * identifiable generation number while the memslots are in flux.
1584 	 */
1585 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1586 
1587 	/*
1588 	 * Generations must be unique even across address spaces.  We do not need
1589 	 * a global counter for that, instead the generation space is evenly split
1590 	 * across address spaces.  For example, with two address spaces, address
1591 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1592 	 * use generations 1, 3, 5, ...
1593 	 */
1594 	gen += KVM_ADDRESS_SPACE_NUM;
1595 
1596 	kvm_arch_memslots_updated(kvm, gen);
1597 
1598 	slots->generation = gen;
1599 }
1600 
1601 static int kvm_prepare_memory_region(struct kvm *kvm,
1602 				     const struct kvm_memory_slot *old,
1603 				     struct kvm_memory_slot *new,
1604 				     enum kvm_mr_change change)
1605 {
1606 	int r;
1607 
1608 	/*
1609 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1610 	 * will be freed on "commit".  If logging is enabled in both old and
1611 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1612 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1613 	 * new bitmap.
1614 	 */
1615 	if (change != KVM_MR_DELETE) {
1616 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1617 			new->dirty_bitmap = NULL;
1618 		else if (old && old->dirty_bitmap)
1619 			new->dirty_bitmap = old->dirty_bitmap;
1620 		else if (!kvm->dirty_ring_size) {
1621 			r = kvm_alloc_dirty_bitmap(new);
1622 			if (r)
1623 				return r;
1624 
1625 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1626 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1627 		}
1628 	}
1629 
1630 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1631 
1632 	/* Free the bitmap on failure if it was allocated above. */
1633 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1634 		kvm_destroy_dirty_bitmap(new);
1635 
1636 	return r;
1637 }
1638 
1639 static void kvm_commit_memory_region(struct kvm *kvm,
1640 				     struct kvm_memory_slot *old,
1641 				     const struct kvm_memory_slot *new,
1642 				     enum kvm_mr_change change)
1643 {
1644 	/*
1645 	 * Update the total number of memslot pages before calling the arch
1646 	 * hook so that architectures can consume the result directly.
1647 	 */
1648 	if (change == KVM_MR_DELETE)
1649 		kvm->nr_memslot_pages -= old->npages;
1650 	else if (change == KVM_MR_CREATE)
1651 		kvm->nr_memslot_pages += new->npages;
1652 
1653 	kvm_arch_commit_memory_region(kvm, old, new, change);
1654 
1655 	switch (change) {
1656 	case KVM_MR_CREATE:
1657 		/* Nothing more to do. */
1658 		break;
1659 	case KVM_MR_DELETE:
1660 		/* Free the old memslot and all its metadata. */
1661 		kvm_free_memslot(kvm, old);
1662 		break;
1663 	case KVM_MR_MOVE:
1664 	case KVM_MR_FLAGS_ONLY:
1665 		/*
1666 		 * Free the dirty bitmap as needed; the below check encompasses
1667 		 * both the flags and whether a ring buffer is being used)
1668 		 */
1669 		if (old->dirty_bitmap && !new->dirty_bitmap)
1670 			kvm_destroy_dirty_bitmap(old);
1671 
1672 		/*
1673 		 * The final quirk.  Free the detached, old slot, but only its
1674 		 * memory, not any metadata.  Metadata, including arch specific
1675 		 * data, may be reused by @new.
1676 		 */
1677 		kfree(old);
1678 		break;
1679 	default:
1680 		BUG();
1681 	}
1682 }
1683 
1684 /*
1685  * Activate @new, which must be installed in the inactive slots by the caller,
1686  * by swapping the active slots and then propagating @new to @old once @old is
1687  * unreachable and can be safely modified.
1688  *
1689  * With NULL @old this simply adds @new to @active (while swapping the sets).
1690  * With NULL @new this simply removes @old from @active and frees it
1691  * (while also swapping the sets).
1692  */
1693 static void kvm_activate_memslot(struct kvm *kvm,
1694 				 struct kvm_memory_slot *old,
1695 				 struct kvm_memory_slot *new)
1696 {
1697 	int as_id = kvm_memslots_get_as_id(old, new);
1698 
1699 	kvm_swap_active_memslots(kvm, as_id);
1700 
1701 	/* Propagate the new memslot to the now inactive memslots. */
1702 	kvm_replace_memslot(kvm, old, new);
1703 }
1704 
1705 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1706 			     const struct kvm_memory_slot *src)
1707 {
1708 	dest->base_gfn = src->base_gfn;
1709 	dest->npages = src->npages;
1710 	dest->dirty_bitmap = src->dirty_bitmap;
1711 	dest->arch = src->arch;
1712 	dest->userspace_addr = src->userspace_addr;
1713 	dest->flags = src->flags;
1714 	dest->id = src->id;
1715 	dest->as_id = src->as_id;
1716 }
1717 
1718 static void kvm_invalidate_memslot(struct kvm *kvm,
1719 				   struct kvm_memory_slot *old,
1720 				   struct kvm_memory_slot *invalid_slot)
1721 {
1722 	/*
1723 	 * Mark the current slot INVALID.  As with all memslot modifications,
1724 	 * this must be done on an unreachable slot to avoid modifying the
1725 	 * current slot in the active tree.
1726 	 */
1727 	kvm_copy_memslot(invalid_slot, old);
1728 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1729 	kvm_replace_memslot(kvm, old, invalid_slot);
1730 
1731 	/*
1732 	 * Activate the slot that is now marked INVALID, but don't propagate
1733 	 * the slot to the now inactive slots. The slot is either going to be
1734 	 * deleted or recreated as a new slot.
1735 	 */
1736 	kvm_swap_active_memslots(kvm, old->as_id);
1737 
1738 	/*
1739 	 * From this point no new shadow pages pointing to a deleted, or moved,
1740 	 * memslot will be created.  Validation of sp->gfn happens in:
1741 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1742 	 *	- kvm_is_visible_gfn (mmu_check_root)
1743 	 */
1744 	kvm_arch_flush_shadow_memslot(kvm, old);
1745 	kvm_arch_guest_memory_reclaimed(kvm);
1746 
1747 	/* Was released by kvm_swap_active_memslots, reacquire. */
1748 	mutex_lock(&kvm->slots_arch_lock);
1749 
1750 	/*
1751 	 * Copy the arch-specific field of the newly-installed slot back to the
1752 	 * old slot as the arch data could have changed between releasing
1753 	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1754 	 * above.  Writers are required to retrieve memslots *after* acquiring
1755 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1756 	 */
1757 	old->arch = invalid_slot->arch;
1758 }
1759 
1760 static void kvm_create_memslot(struct kvm *kvm,
1761 			       struct kvm_memory_slot *new)
1762 {
1763 	/* Add the new memslot to the inactive set and activate. */
1764 	kvm_replace_memslot(kvm, NULL, new);
1765 	kvm_activate_memslot(kvm, NULL, new);
1766 }
1767 
1768 static void kvm_delete_memslot(struct kvm *kvm,
1769 			       struct kvm_memory_slot *old,
1770 			       struct kvm_memory_slot *invalid_slot)
1771 {
1772 	/*
1773 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1774 	 * the "new" slot, and for the invalid version in the active slots.
1775 	 */
1776 	kvm_replace_memslot(kvm, old, NULL);
1777 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1778 }
1779 
1780 static void kvm_move_memslot(struct kvm *kvm,
1781 			     struct kvm_memory_slot *old,
1782 			     struct kvm_memory_slot *new,
1783 			     struct kvm_memory_slot *invalid_slot)
1784 {
1785 	/*
1786 	 * Replace the old memslot in the inactive slots, and then swap slots
1787 	 * and replace the current INVALID with the new as well.
1788 	 */
1789 	kvm_replace_memslot(kvm, old, new);
1790 	kvm_activate_memslot(kvm, invalid_slot, new);
1791 }
1792 
1793 static void kvm_update_flags_memslot(struct kvm *kvm,
1794 				     struct kvm_memory_slot *old,
1795 				     struct kvm_memory_slot *new)
1796 {
1797 	/*
1798 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1799 	 * an intermediate step. Instead, the old memslot is simply replaced
1800 	 * with a new, updated copy in both memslot sets.
1801 	 */
1802 	kvm_replace_memslot(kvm, old, new);
1803 	kvm_activate_memslot(kvm, old, new);
1804 }
1805 
1806 static int kvm_set_memslot(struct kvm *kvm,
1807 			   struct kvm_memory_slot *old,
1808 			   struct kvm_memory_slot *new,
1809 			   enum kvm_mr_change change)
1810 {
1811 	struct kvm_memory_slot *invalid_slot;
1812 	int r;
1813 
1814 	/*
1815 	 * Released in kvm_swap_active_memslots.
1816 	 *
1817 	 * Must be held from before the current memslots are copied until
1818 	 * after the new memslots are installed with rcu_assign_pointer,
1819 	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1820 	 *
1821 	 * When modifying memslots outside of the slots_lock, must be held
1822 	 * before reading the pointer to the current memslots until after all
1823 	 * changes to those memslots are complete.
1824 	 *
1825 	 * These rules ensure that installing new memslots does not lose
1826 	 * changes made to the previous memslots.
1827 	 */
1828 	mutex_lock(&kvm->slots_arch_lock);
1829 
1830 	/*
1831 	 * Invalidate the old slot if it's being deleted or moved.  This is
1832 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1833 	 * continue running by ensuring there are no mappings or shadow pages
1834 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1835 	 * (and without a lock), a window would exist between effecting the
1836 	 * delete/move and committing the changes in arch code where KVM or a
1837 	 * guest could access a non-existent memslot.
1838 	 *
1839 	 * Modifications are done on a temporary, unreachable slot.  The old
1840 	 * slot needs to be preserved in case a later step fails and the
1841 	 * invalidation needs to be reverted.
1842 	 */
1843 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1844 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1845 		if (!invalid_slot) {
1846 			mutex_unlock(&kvm->slots_arch_lock);
1847 			return -ENOMEM;
1848 		}
1849 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1850 	}
1851 
1852 	r = kvm_prepare_memory_region(kvm, old, new, change);
1853 	if (r) {
1854 		/*
1855 		 * For DELETE/MOVE, revert the above INVALID change.  No
1856 		 * modifications required since the original slot was preserved
1857 		 * in the inactive slots.  Changing the active memslots also
1858 		 * release slots_arch_lock.
1859 		 */
1860 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1861 			kvm_activate_memslot(kvm, invalid_slot, old);
1862 			kfree(invalid_slot);
1863 		} else {
1864 			mutex_unlock(&kvm->slots_arch_lock);
1865 		}
1866 		return r;
1867 	}
1868 
1869 	/*
1870 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1871 	 * version of the old slot.  MOVE is particularly special as it reuses
1872 	 * the old slot and returns a copy of the old slot (in working_slot).
1873 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1874 	 * old slot is detached but otherwise preserved.
1875 	 */
1876 	if (change == KVM_MR_CREATE)
1877 		kvm_create_memslot(kvm, new);
1878 	else if (change == KVM_MR_DELETE)
1879 		kvm_delete_memslot(kvm, old, invalid_slot);
1880 	else if (change == KVM_MR_MOVE)
1881 		kvm_move_memslot(kvm, old, new, invalid_slot);
1882 	else if (change == KVM_MR_FLAGS_ONLY)
1883 		kvm_update_flags_memslot(kvm, old, new);
1884 	else
1885 		BUG();
1886 
1887 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1888 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1889 		kfree(invalid_slot);
1890 
1891 	/*
1892 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1893 	 * will directly hit the final, active memslot.  Architectures are
1894 	 * responsible for knowing that new->arch may be stale.
1895 	 */
1896 	kvm_commit_memory_region(kvm, old, new, change);
1897 
1898 	return 0;
1899 }
1900 
1901 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1902 				      gfn_t start, gfn_t end)
1903 {
1904 	struct kvm_memslot_iter iter;
1905 
1906 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1907 		if (iter.slot->id != id)
1908 			return true;
1909 	}
1910 
1911 	return false;
1912 }
1913 
1914 /*
1915  * Allocate some memory and give it an address in the guest physical address
1916  * space.
1917  *
1918  * Discontiguous memory is allowed, mostly for framebuffers.
1919  *
1920  * Must be called holding kvm->slots_lock for write.
1921  */
1922 int __kvm_set_memory_region(struct kvm *kvm,
1923 			    const struct kvm_userspace_memory_region *mem)
1924 {
1925 	struct kvm_memory_slot *old, *new;
1926 	struct kvm_memslots *slots;
1927 	enum kvm_mr_change change;
1928 	unsigned long npages;
1929 	gfn_t base_gfn;
1930 	int as_id, id;
1931 	int r;
1932 
1933 	r = check_memory_region_flags(mem);
1934 	if (r)
1935 		return r;
1936 
1937 	as_id = mem->slot >> 16;
1938 	id = (u16)mem->slot;
1939 
1940 	/* General sanity checks */
1941 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1942 	    (mem->memory_size != (unsigned long)mem->memory_size))
1943 		return -EINVAL;
1944 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1945 		return -EINVAL;
1946 	/* We can read the guest memory with __xxx_user() later on. */
1947 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1948 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1949 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1950 			mem->memory_size))
1951 		return -EINVAL;
1952 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1953 		return -EINVAL;
1954 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1955 		return -EINVAL;
1956 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1957 		return -EINVAL;
1958 
1959 	slots = __kvm_memslots(kvm, as_id);
1960 
1961 	/*
1962 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1963 	 * and/or destroyed by kvm_set_memslot().
1964 	 */
1965 	old = id_to_memslot(slots, id);
1966 
1967 	if (!mem->memory_size) {
1968 		if (!old || !old->npages)
1969 			return -EINVAL;
1970 
1971 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1972 			return -EIO;
1973 
1974 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1975 	}
1976 
1977 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1978 	npages = (mem->memory_size >> PAGE_SHIFT);
1979 
1980 	if (!old || !old->npages) {
1981 		change = KVM_MR_CREATE;
1982 
1983 		/*
1984 		 * To simplify KVM internals, the total number of pages across
1985 		 * all memslots must fit in an unsigned long.
1986 		 */
1987 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1988 			return -EINVAL;
1989 	} else { /* Modify an existing slot. */
1990 		if ((mem->userspace_addr != old->userspace_addr) ||
1991 		    (npages != old->npages) ||
1992 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1993 			return -EINVAL;
1994 
1995 		if (base_gfn != old->base_gfn)
1996 			change = KVM_MR_MOVE;
1997 		else if (mem->flags != old->flags)
1998 			change = KVM_MR_FLAGS_ONLY;
1999 		else /* Nothing to change. */
2000 			return 0;
2001 	}
2002 
2003 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2004 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2005 		return -EEXIST;
2006 
2007 	/* Allocate a slot that will persist in the memslot. */
2008 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2009 	if (!new)
2010 		return -ENOMEM;
2011 
2012 	new->as_id = as_id;
2013 	new->id = id;
2014 	new->base_gfn = base_gfn;
2015 	new->npages = npages;
2016 	new->flags = mem->flags;
2017 	new->userspace_addr = mem->userspace_addr;
2018 
2019 	r = kvm_set_memslot(kvm, old, new, change);
2020 	if (r)
2021 		kfree(new);
2022 	return r;
2023 }
2024 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2025 
2026 int kvm_set_memory_region(struct kvm *kvm,
2027 			  const struct kvm_userspace_memory_region *mem)
2028 {
2029 	int r;
2030 
2031 	mutex_lock(&kvm->slots_lock);
2032 	r = __kvm_set_memory_region(kvm, mem);
2033 	mutex_unlock(&kvm->slots_lock);
2034 	return r;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2037 
2038 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2039 					  struct kvm_userspace_memory_region *mem)
2040 {
2041 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2042 		return -EINVAL;
2043 
2044 	return kvm_set_memory_region(kvm, mem);
2045 }
2046 
2047 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2048 /**
2049  * kvm_get_dirty_log - get a snapshot of dirty pages
2050  * @kvm:	pointer to kvm instance
2051  * @log:	slot id and address to which we copy the log
2052  * @is_dirty:	set to '1' if any dirty pages were found
2053  * @memslot:	set to the associated memslot, always valid on success
2054  */
2055 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2056 		      int *is_dirty, struct kvm_memory_slot **memslot)
2057 {
2058 	struct kvm_memslots *slots;
2059 	int i, as_id, id;
2060 	unsigned long n;
2061 	unsigned long any = 0;
2062 
2063 	/* Dirty ring tracking is exclusive to dirty log tracking */
2064 	if (kvm->dirty_ring_size)
2065 		return -ENXIO;
2066 
2067 	*memslot = NULL;
2068 	*is_dirty = 0;
2069 
2070 	as_id = log->slot >> 16;
2071 	id = (u16)log->slot;
2072 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2073 		return -EINVAL;
2074 
2075 	slots = __kvm_memslots(kvm, as_id);
2076 	*memslot = id_to_memslot(slots, id);
2077 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2078 		return -ENOENT;
2079 
2080 	kvm_arch_sync_dirty_log(kvm, *memslot);
2081 
2082 	n = kvm_dirty_bitmap_bytes(*memslot);
2083 
2084 	for (i = 0; !any && i < n/sizeof(long); ++i)
2085 		any = (*memslot)->dirty_bitmap[i];
2086 
2087 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2088 		return -EFAULT;
2089 
2090 	if (any)
2091 		*is_dirty = 1;
2092 	return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2095 
2096 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2097 /**
2098  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2099  *	and reenable dirty page tracking for the corresponding pages.
2100  * @kvm:	pointer to kvm instance
2101  * @log:	slot id and address to which we copy the log
2102  *
2103  * We need to keep it in mind that VCPU threads can write to the bitmap
2104  * concurrently. So, to avoid losing track of dirty pages we keep the
2105  * following order:
2106  *
2107  *    1. Take a snapshot of the bit and clear it if needed.
2108  *    2. Write protect the corresponding page.
2109  *    3. Copy the snapshot to the userspace.
2110  *    4. Upon return caller flushes TLB's if needed.
2111  *
2112  * Between 2 and 4, the guest may write to the page using the remaining TLB
2113  * entry.  This is not a problem because the page is reported dirty using
2114  * the snapshot taken before and step 4 ensures that writes done after
2115  * exiting to userspace will be logged for the next call.
2116  *
2117  */
2118 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2119 {
2120 	struct kvm_memslots *slots;
2121 	struct kvm_memory_slot *memslot;
2122 	int i, as_id, id;
2123 	unsigned long n;
2124 	unsigned long *dirty_bitmap;
2125 	unsigned long *dirty_bitmap_buffer;
2126 	bool flush;
2127 
2128 	/* Dirty ring tracking is exclusive to dirty log tracking */
2129 	if (kvm->dirty_ring_size)
2130 		return -ENXIO;
2131 
2132 	as_id = log->slot >> 16;
2133 	id = (u16)log->slot;
2134 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2135 		return -EINVAL;
2136 
2137 	slots = __kvm_memslots(kvm, as_id);
2138 	memslot = id_to_memslot(slots, id);
2139 	if (!memslot || !memslot->dirty_bitmap)
2140 		return -ENOENT;
2141 
2142 	dirty_bitmap = memslot->dirty_bitmap;
2143 
2144 	kvm_arch_sync_dirty_log(kvm, memslot);
2145 
2146 	n = kvm_dirty_bitmap_bytes(memslot);
2147 	flush = false;
2148 	if (kvm->manual_dirty_log_protect) {
2149 		/*
2150 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2151 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2152 		 * is some code duplication between this function and
2153 		 * kvm_get_dirty_log, but hopefully all architecture
2154 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2155 		 * can be eliminated.
2156 		 */
2157 		dirty_bitmap_buffer = dirty_bitmap;
2158 	} else {
2159 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2160 		memset(dirty_bitmap_buffer, 0, n);
2161 
2162 		KVM_MMU_LOCK(kvm);
2163 		for (i = 0; i < n / sizeof(long); i++) {
2164 			unsigned long mask;
2165 			gfn_t offset;
2166 
2167 			if (!dirty_bitmap[i])
2168 				continue;
2169 
2170 			flush = true;
2171 			mask = xchg(&dirty_bitmap[i], 0);
2172 			dirty_bitmap_buffer[i] = mask;
2173 
2174 			offset = i * BITS_PER_LONG;
2175 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2176 								offset, mask);
2177 		}
2178 		KVM_MMU_UNLOCK(kvm);
2179 	}
2180 
2181 	if (flush)
2182 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2183 
2184 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2185 		return -EFAULT;
2186 	return 0;
2187 }
2188 
2189 
2190 /**
2191  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2192  * @kvm: kvm instance
2193  * @log: slot id and address to which we copy the log
2194  *
2195  * Steps 1-4 below provide general overview of dirty page logging. See
2196  * kvm_get_dirty_log_protect() function description for additional details.
2197  *
2198  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2199  * always flush the TLB (step 4) even if previous step failed  and the dirty
2200  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2201  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2202  * writes will be marked dirty for next log read.
2203  *
2204  *   1. Take a snapshot of the bit and clear it if needed.
2205  *   2. Write protect the corresponding page.
2206  *   3. Copy the snapshot to the userspace.
2207  *   4. Flush TLB's if needed.
2208  */
2209 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2210 				      struct kvm_dirty_log *log)
2211 {
2212 	int r;
2213 
2214 	mutex_lock(&kvm->slots_lock);
2215 
2216 	r = kvm_get_dirty_log_protect(kvm, log);
2217 
2218 	mutex_unlock(&kvm->slots_lock);
2219 	return r;
2220 }
2221 
2222 /**
2223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2224  *	and reenable dirty page tracking for the corresponding pages.
2225  * @kvm:	pointer to kvm instance
2226  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2227  */
2228 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2229 				       struct kvm_clear_dirty_log *log)
2230 {
2231 	struct kvm_memslots *slots;
2232 	struct kvm_memory_slot *memslot;
2233 	int as_id, id;
2234 	gfn_t offset;
2235 	unsigned long i, n;
2236 	unsigned long *dirty_bitmap;
2237 	unsigned long *dirty_bitmap_buffer;
2238 	bool flush;
2239 
2240 	/* Dirty ring tracking is exclusive to dirty log tracking */
2241 	if (kvm->dirty_ring_size)
2242 		return -ENXIO;
2243 
2244 	as_id = log->slot >> 16;
2245 	id = (u16)log->slot;
2246 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2247 		return -EINVAL;
2248 
2249 	if (log->first_page & 63)
2250 		return -EINVAL;
2251 
2252 	slots = __kvm_memslots(kvm, as_id);
2253 	memslot = id_to_memslot(slots, id);
2254 	if (!memslot || !memslot->dirty_bitmap)
2255 		return -ENOENT;
2256 
2257 	dirty_bitmap = memslot->dirty_bitmap;
2258 
2259 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2260 
2261 	if (log->first_page > memslot->npages ||
2262 	    log->num_pages > memslot->npages - log->first_page ||
2263 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2264 	    return -EINVAL;
2265 
2266 	kvm_arch_sync_dirty_log(kvm, memslot);
2267 
2268 	flush = false;
2269 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2270 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2271 		return -EFAULT;
2272 
2273 	KVM_MMU_LOCK(kvm);
2274 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2275 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2276 	     i++, offset += BITS_PER_LONG) {
2277 		unsigned long mask = *dirty_bitmap_buffer++;
2278 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2279 		if (!mask)
2280 			continue;
2281 
2282 		mask &= atomic_long_fetch_andnot(mask, p);
2283 
2284 		/*
2285 		 * mask contains the bits that really have been cleared.  This
2286 		 * never includes any bits beyond the length of the memslot (if
2287 		 * the length is not aligned to 64 pages), therefore it is not
2288 		 * a problem if userspace sets them in log->dirty_bitmap.
2289 		*/
2290 		if (mask) {
2291 			flush = true;
2292 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2293 								offset, mask);
2294 		}
2295 	}
2296 	KVM_MMU_UNLOCK(kvm);
2297 
2298 	if (flush)
2299 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2300 
2301 	return 0;
2302 }
2303 
2304 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2305 					struct kvm_clear_dirty_log *log)
2306 {
2307 	int r;
2308 
2309 	mutex_lock(&kvm->slots_lock);
2310 
2311 	r = kvm_clear_dirty_log_protect(kvm, log);
2312 
2313 	mutex_unlock(&kvm->slots_lock);
2314 	return r;
2315 }
2316 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2317 
2318 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2319 {
2320 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2321 }
2322 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2323 
2324 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2325 {
2326 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2327 	u64 gen = slots->generation;
2328 	struct kvm_memory_slot *slot;
2329 
2330 	/*
2331 	 * This also protects against using a memslot from a different address space,
2332 	 * since different address spaces have different generation numbers.
2333 	 */
2334 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2335 		vcpu->last_used_slot = NULL;
2336 		vcpu->last_used_slot_gen = gen;
2337 	}
2338 
2339 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2340 	if (slot)
2341 		return slot;
2342 
2343 	/*
2344 	 * Fall back to searching all memslots. We purposely use
2345 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2346 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2347 	 */
2348 	slot = search_memslots(slots, gfn, false);
2349 	if (slot) {
2350 		vcpu->last_used_slot = slot;
2351 		return slot;
2352 	}
2353 
2354 	return NULL;
2355 }
2356 
2357 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2358 {
2359 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2360 
2361 	return kvm_is_visible_memslot(memslot);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2364 
2365 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2366 {
2367 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2368 
2369 	return kvm_is_visible_memslot(memslot);
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2372 
2373 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2374 {
2375 	struct vm_area_struct *vma;
2376 	unsigned long addr, size;
2377 
2378 	size = PAGE_SIZE;
2379 
2380 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2381 	if (kvm_is_error_hva(addr))
2382 		return PAGE_SIZE;
2383 
2384 	mmap_read_lock(current->mm);
2385 	vma = find_vma(current->mm, addr);
2386 	if (!vma)
2387 		goto out;
2388 
2389 	size = vma_kernel_pagesize(vma);
2390 
2391 out:
2392 	mmap_read_unlock(current->mm);
2393 
2394 	return size;
2395 }
2396 
2397 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2398 {
2399 	return slot->flags & KVM_MEM_READONLY;
2400 }
2401 
2402 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2403 				       gfn_t *nr_pages, bool write)
2404 {
2405 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2406 		return KVM_HVA_ERR_BAD;
2407 
2408 	if (memslot_is_readonly(slot) && write)
2409 		return KVM_HVA_ERR_RO_BAD;
2410 
2411 	if (nr_pages)
2412 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2413 
2414 	return __gfn_to_hva_memslot(slot, gfn);
2415 }
2416 
2417 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2418 				     gfn_t *nr_pages)
2419 {
2420 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2421 }
2422 
2423 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2424 					gfn_t gfn)
2425 {
2426 	return gfn_to_hva_many(slot, gfn, NULL);
2427 }
2428 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2429 
2430 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2431 {
2432 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2433 }
2434 EXPORT_SYMBOL_GPL(gfn_to_hva);
2435 
2436 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2437 {
2438 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2441 
2442 /*
2443  * Return the hva of a @gfn and the R/W attribute if possible.
2444  *
2445  * @slot: the kvm_memory_slot which contains @gfn
2446  * @gfn: the gfn to be translated
2447  * @writable: used to return the read/write attribute of the @slot if the hva
2448  * is valid and @writable is not NULL
2449  */
2450 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2451 				      gfn_t gfn, bool *writable)
2452 {
2453 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2454 
2455 	if (!kvm_is_error_hva(hva) && writable)
2456 		*writable = !memslot_is_readonly(slot);
2457 
2458 	return hva;
2459 }
2460 
2461 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2462 {
2463 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2464 
2465 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2466 }
2467 
2468 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2469 {
2470 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2471 
2472 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2473 }
2474 
2475 static inline int check_user_page_hwpoison(unsigned long addr)
2476 {
2477 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2478 
2479 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2480 	return rc == -EHWPOISON;
2481 }
2482 
2483 /*
2484  * The fast path to get the writable pfn which will be stored in @pfn,
2485  * true indicates success, otherwise false is returned.  It's also the
2486  * only part that runs if we can in atomic context.
2487  */
2488 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2489 			    bool *writable, kvm_pfn_t *pfn)
2490 {
2491 	struct page *page[1];
2492 
2493 	/*
2494 	 * Fast pin a writable pfn only if it is a write fault request
2495 	 * or the caller allows to map a writable pfn for a read fault
2496 	 * request.
2497 	 */
2498 	if (!(write_fault || writable))
2499 		return false;
2500 
2501 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2502 		*pfn = page_to_pfn(page[0]);
2503 
2504 		if (writable)
2505 			*writable = true;
2506 		return true;
2507 	}
2508 
2509 	return false;
2510 }
2511 
2512 /*
2513  * The slow path to get the pfn of the specified host virtual address,
2514  * 1 indicates success, -errno is returned if error is detected.
2515  */
2516 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2517 			   bool *writable, kvm_pfn_t *pfn)
2518 {
2519 	unsigned int flags = FOLL_HWPOISON;
2520 	struct page *page;
2521 	int npages;
2522 
2523 	might_sleep();
2524 
2525 	if (writable)
2526 		*writable = write_fault;
2527 
2528 	if (write_fault)
2529 		flags |= FOLL_WRITE;
2530 	if (async)
2531 		flags |= FOLL_NOWAIT;
2532 
2533 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2534 	if (npages != 1)
2535 		return npages;
2536 
2537 	/* map read fault as writable if possible */
2538 	if (unlikely(!write_fault) && writable) {
2539 		struct page *wpage;
2540 
2541 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2542 			*writable = true;
2543 			put_page(page);
2544 			page = wpage;
2545 		}
2546 	}
2547 	*pfn = page_to_pfn(page);
2548 	return npages;
2549 }
2550 
2551 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2552 {
2553 	if (unlikely(!(vma->vm_flags & VM_READ)))
2554 		return false;
2555 
2556 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2557 		return false;
2558 
2559 	return true;
2560 }
2561 
2562 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2563 {
2564 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2565 
2566 	if (!page)
2567 		return 1;
2568 
2569 	return get_page_unless_zero(page);
2570 }
2571 
2572 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2573 			       unsigned long addr, bool write_fault,
2574 			       bool *writable, kvm_pfn_t *p_pfn)
2575 {
2576 	kvm_pfn_t pfn;
2577 	pte_t *ptep;
2578 	spinlock_t *ptl;
2579 	int r;
2580 
2581 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2582 	if (r) {
2583 		/*
2584 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2585 		 * not call the fault handler, so do it here.
2586 		 */
2587 		bool unlocked = false;
2588 		r = fixup_user_fault(current->mm, addr,
2589 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2590 				     &unlocked);
2591 		if (unlocked)
2592 			return -EAGAIN;
2593 		if (r)
2594 			return r;
2595 
2596 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2597 		if (r)
2598 			return r;
2599 	}
2600 
2601 	if (write_fault && !pte_write(*ptep)) {
2602 		pfn = KVM_PFN_ERR_RO_FAULT;
2603 		goto out;
2604 	}
2605 
2606 	if (writable)
2607 		*writable = pte_write(*ptep);
2608 	pfn = pte_pfn(*ptep);
2609 
2610 	/*
2611 	 * Get a reference here because callers of *hva_to_pfn* and
2612 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2613 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2614 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2615 	 * simply do nothing for reserved pfns.
2616 	 *
2617 	 * Whoever called remap_pfn_range is also going to call e.g.
2618 	 * unmap_mapping_range before the underlying pages are freed,
2619 	 * causing a call to our MMU notifier.
2620 	 *
2621 	 * Certain IO or PFNMAP mappings can be backed with valid
2622 	 * struct pages, but be allocated without refcounting e.g.,
2623 	 * tail pages of non-compound higher order allocations, which
2624 	 * would then underflow the refcount when the caller does the
2625 	 * required put_page. Don't allow those pages here.
2626 	 */
2627 	if (!kvm_try_get_pfn(pfn))
2628 		r = -EFAULT;
2629 
2630 out:
2631 	pte_unmap_unlock(ptep, ptl);
2632 	*p_pfn = pfn;
2633 
2634 	return r;
2635 }
2636 
2637 /*
2638  * Pin guest page in memory and return its pfn.
2639  * @addr: host virtual address which maps memory to the guest
2640  * @atomic: whether this function can sleep
2641  * @async: whether this function need to wait IO complete if the
2642  *         host page is not in the memory
2643  * @write_fault: whether we should get a writable host page
2644  * @writable: whether it allows to map a writable host page for !@write_fault
2645  *
2646  * The function will map a writable host page for these two cases:
2647  * 1): @write_fault = true
2648  * 2): @write_fault = false && @writable, @writable will tell the caller
2649  *     whether the mapping is writable.
2650  */
2651 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2652 		     bool write_fault, bool *writable)
2653 {
2654 	struct vm_area_struct *vma;
2655 	kvm_pfn_t pfn;
2656 	int npages, r;
2657 
2658 	/* we can do it either atomically or asynchronously, not both */
2659 	BUG_ON(atomic && async);
2660 
2661 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2662 		return pfn;
2663 
2664 	if (atomic)
2665 		return KVM_PFN_ERR_FAULT;
2666 
2667 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2668 	if (npages == 1)
2669 		return pfn;
2670 
2671 	mmap_read_lock(current->mm);
2672 	if (npages == -EHWPOISON ||
2673 	      (!async && check_user_page_hwpoison(addr))) {
2674 		pfn = KVM_PFN_ERR_HWPOISON;
2675 		goto exit;
2676 	}
2677 
2678 retry:
2679 	vma = vma_lookup(current->mm, addr);
2680 
2681 	if (vma == NULL)
2682 		pfn = KVM_PFN_ERR_FAULT;
2683 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2684 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2685 		if (r == -EAGAIN)
2686 			goto retry;
2687 		if (r < 0)
2688 			pfn = KVM_PFN_ERR_FAULT;
2689 	} else {
2690 		if (async && vma_is_valid(vma, write_fault))
2691 			*async = true;
2692 		pfn = KVM_PFN_ERR_FAULT;
2693 	}
2694 exit:
2695 	mmap_read_unlock(current->mm);
2696 	return pfn;
2697 }
2698 
2699 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2700 			       bool atomic, bool *async, bool write_fault,
2701 			       bool *writable, hva_t *hva)
2702 {
2703 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2704 
2705 	if (hva)
2706 		*hva = addr;
2707 
2708 	if (addr == KVM_HVA_ERR_RO_BAD) {
2709 		if (writable)
2710 			*writable = false;
2711 		return KVM_PFN_ERR_RO_FAULT;
2712 	}
2713 
2714 	if (kvm_is_error_hva(addr)) {
2715 		if (writable)
2716 			*writable = false;
2717 		return KVM_PFN_NOSLOT;
2718 	}
2719 
2720 	/* Do not map writable pfn in the readonly memslot. */
2721 	if (writable && memslot_is_readonly(slot)) {
2722 		*writable = false;
2723 		writable = NULL;
2724 	}
2725 
2726 	return hva_to_pfn(addr, atomic, async, write_fault,
2727 			  writable);
2728 }
2729 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2730 
2731 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2732 		      bool *writable)
2733 {
2734 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2735 				    write_fault, writable, NULL);
2736 }
2737 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2738 
2739 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2740 {
2741 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2742 }
2743 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2744 
2745 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2746 {
2747 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2748 }
2749 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2750 
2751 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2752 {
2753 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2754 }
2755 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2756 
2757 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2758 {
2759 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2760 }
2761 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2762 
2763 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2764 {
2765 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2768 
2769 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2770 			    struct page **pages, int nr_pages)
2771 {
2772 	unsigned long addr;
2773 	gfn_t entry = 0;
2774 
2775 	addr = gfn_to_hva_many(slot, gfn, &entry);
2776 	if (kvm_is_error_hva(addr))
2777 		return -1;
2778 
2779 	if (entry < nr_pages)
2780 		return 0;
2781 
2782 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2785 
2786 /*
2787  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2788  * backed by 'struct page'.  A valid example is if the backing memslot is
2789  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2790  * been elevated by gfn_to_pfn().
2791  */
2792 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2793 {
2794 	struct page *page;
2795 	kvm_pfn_t pfn;
2796 
2797 	pfn = gfn_to_pfn(kvm, gfn);
2798 
2799 	if (is_error_noslot_pfn(pfn))
2800 		return KVM_ERR_PTR_BAD_PAGE;
2801 
2802 	page = kvm_pfn_to_refcounted_page(pfn);
2803 	if (!page)
2804 		return KVM_ERR_PTR_BAD_PAGE;
2805 
2806 	return page;
2807 }
2808 EXPORT_SYMBOL_GPL(gfn_to_page);
2809 
2810 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2811 {
2812 	if (dirty)
2813 		kvm_release_pfn_dirty(pfn);
2814 	else
2815 		kvm_release_pfn_clean(pfn);
2816 }
2817 
2818 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2819 {
2820 	kvm_pfn_t pfn;
2821 	void *hva = NULL;
2822 	struct page *page = KVM_UNMAPPED_PAGE;
2823 
2824 	if (!map)
2825 		return -EINVAL;
2826 
2827 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2828 	if (is_error_noslot_pfn(pfn))
2829 		return -EINVAL;
2830 
2831 	if (pfn_valid(pfn)) {
2832 		page = pfn_to_page(pfn);
2833 		hva = kmap(page);
2834 #ifdef CONFIG_HAS_IOMEM
2835 	} else {
2836 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2837 #endif
2838 	}
2839 
2840 	if (!hva)
2841 		return -EFAULT;
2842 
2843 	map->page = page;
2844 	map->hva = hva;
2845 	map->pfn = pfn;
2846 	map->gfn = gfn;
2847 
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2851 
2852 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2853 {
2854 	if (!map)
2855 		return;
2856 
2857 	if (!map->hva)
2858 		return;
2859 
2860 	if (map->page != KVM_UNMAPPED_PAGE)
2861 		kunmap(map->page);
2862 #ifdef CONFIG_HAS_IOMEM
2863 	else
2864 		memunmap(map->hva);
2865 #endif
2866 
2867 	if (dirty)
2868 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2869 
2870 	kvm_release_pfn(map->pfn, dirty);
2871 
2872 	map->hva = NULL;
2873 	map->page = NULL;
2874 }
2875 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2876 
2877 static bool kvm_is_ad_tracked_page(struct page *page)
2878 {
2879 	/*
2880 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2881 	 * touched (e.g. set dirty) except by its owner".
2882 	 */
2883 	return !PageReserved(page);
2884 }
2885 
2886 static void kvm_set_page_dirty(struct page *page)
2887 {
2888 	if (kvm_is_ad_tracked_page(page))
2889 		SetPageDirty(page);
2890 }
2891 
2892 static void kvm_set_page_accessed(struct page *page)
2893 {
2894 	if (kvm_is_ad_tracked_page(page))
2895 		mark_page_accessed(page);
2896 }
2897 
2898 void kvm_release_page_clean(struct page *page)
2899 {
2900 	WARN_ON(is_error_page(page));
2901 
2902 	kvm_set_page_accessed(page);
2903 	put_page(page);
2904 }
2905 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2906 
2907 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2908 {
2909 	struct page *page;
2910 
2911 	if (is_error_noslot_pfn(pfn))
2912 		return;
2913 
2914 	page = kvm_pfn_to_refcounted_page(pfn);
2915 	if (!page)
2916 		return;
2917 
2918 	kvm_release_page_clean(page);
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2921 
2922 void kvm_release_page_dirty(struct page *page)
2923 {
2924 	WARN_ON(is_error_page(page));
2925 
2926 	kvm_set_page_dirty(page);
2927 	kvm_release_page_clean(page);
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2930 
2931 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2932 {
2933 	struct page *page;
2934 
2935 	if (is_error_noslot_pfn(pfn))
2936 		return;
2937 
2938 	page = kvm_pfn_to_refcounted_page(pfn);
2939 	if (!page)
2940 		return;
2941 
2942 	kvm_release_page_dirty(page);
2943 }
2944 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2945 
2946 /*
2947  * Note, checking for an error/noslot pfn is the caller's responsibility when
2948  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2949  * "set" helpers are not to be used when the pfn might point at garbage.
2950  */
2951 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2952 {
2953 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2954 		return;
2955 
2956 	if (pfn_valid(pfn))
2957 		kvm_set_page_dirty(pfn_to_page(pfn));
2958 }
2959 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2960 
2961 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2962 {
2963 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2964 		return;
2965 
2966 	if (pfn_valid(pfn))
2967 		kvm_set_page_accessed(pfn_to_page(pfn));
2968 }
2969 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2970 
2971 static int next_segment(unsigned long len, int offset)
2972 {
2973 	if (len > PAGE_SIZE - offset)
2974 		return PAGE_SIZE - offset;
2975 	else
2976 		return len;
2977 }
2978 
2979 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2980 				 void *data, int offset, int len)
2981 {
2982 	int r;
2983 	unsigned long addr;
2984 
2985 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2986 	if (kvm_is_error_hva(addr))
2987 		return -EFAULT;
2988 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2989 	if (r)
2990 		return -EFAULT;
2991 	return 0;
2992 }
2993 
2994 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2995 			int len)
2996 {
2997 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2998 
2999 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3002 
3003 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3004 			     int offset, int len)
3005 {
3006 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3007 
3008 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3009 }
3010 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3011 
3012 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3013 {
3014 	gfn_t gfn = gpa >> PAGE_SHIFT;
3015 	int seg;
3016 	int offset = offset_in_page(gpa);
3017 	int ret;
3018 
3019 	while ((seg = next_segment(len, offset)) != 0) {
3020 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3021 		if (ret < 0)
3022 			return ret;
3023 		offset = 0;
3024 		len -= seg;
3025 		data += seg;
3026 		++gfn;
3027 	}
3028 	return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(kvm_read_guest);
3031 
3032 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3033 {
3034 	gfn_t gfn = gpa >> PAGE_SHIFT;
3035 	int seg;
3036 	int offset = offset_in_page(gpa);
3037 	int ret;
3038 
3039 	while ((seg = next_segment(len, offset)) != 0) {
3040 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3041 		if (ret < 0)
3042 			return ret;
3043 		offset = 0;
3044 		len -= seg;
3045 		data += seg;
3046 		++gfn;
3047 	}
3048 	return 0;
3049 }
3050 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3051 
3052 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3053 			           void *data, int offset, unsigned long len)
3054 {
3055 	int r;
3056 	unsigned long addr;
3057 
3058 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3059 	if (kvm_is_error_hva(addr))
3060 		return -EFAULT;
3061 	pagefault_disable();
3062 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3063 	pagefault_enable();
3064 	if (r)
3065 		return -EFAULT;
3066 	return 0;
3067 }
3068 
3069 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3070 			       void *data, unsigned long len)
3071 {
3072 	gfn_t gfn = gpa >> PAGE_SHIFT;
3073 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3074 	int offset = offset_in_page(gpa);
3075 
3076 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3077 }
3078 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3079 
3080 static int __kvm_write_guest_page(struct kvm *kvm,
3081 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3082 			          const void *data, int offset, int len)
3083 {
3084 	int r;
3085 	unsigned long addr;
3086 
3087 	addr = gfn_to_hva_memslot(memslot, gfn);
3088 	if (kvm_is_error_hva(addr))
3089 		return -EFAULT;
3090 	r = __copy_to_user((void __user *)addr + offset, data, len);
3091 	if (r)
3092 		return -EFAULT;
3093 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3094 	return 0;
3095 }
3096 
3097 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3098 			 const void *data, int offset, int len)
3099 {
3100 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3101 
3102 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3103 }
3104 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3105 
3106 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3107 			      const void *data, int offset, int len)
3108 {
3109 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3110 
3111 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3112 }
3113 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3114 
3115 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3116 		    unsigned long len)
3117 {
3118 	gfn_t gfn = gpa >> PAGE_SHIFT;
3119 	int seg;
3120 	int offset = offset_in_page(gpa);
3121 	int ret;
3122 
3123 	while ((seg = next_segment(len, offset)) != 0) {
3124 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3125 		if (ret < 0)
3126 			return ret;
3127 		offset = 0;
3128 		len -= seg;
3129 		data += seg;
3130 		++gfn;
3131 	}
3132 	return 0;
3133 }
3134 EXPORT_SYMBOL_GPL(kvm_write_guest);
3135 
3136 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3137 		         unsigned long len)
3138 {
3139 	gfn_t gfn = gpa >> PAGE_SHIFT;
3140 	int seg;
3141 	int offset = offset_in_page(gpa);
3142 	int ret;
3143 
3144 	while ((seg = next_segment(len, offset)) != 0) {
3145 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3146 		if (ret < 0)
3147 			return ret;
3148 		offset = 0;
3149 		len -= seg;
3150 		data += seg;
3151 		++gfn;
3152 	}
3153 	return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3156 
3157 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3158 				       struct gfn_to_hva_cache *ghc,
3159 				       gpa_t gpa, unsigned long len)
3160 {
3161 	int offset = offset_in_page(gpa);
3162 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3163 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3164 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3165 	gfn_t nr_pages_avail;
3166 
3167 	/* Update ghc->generation before performing any error checks. */
3168 	ghc->generation = slots->generation;
3169 
3170 	if (start_gfn > end_gfn) {
3171 		ghc->hva = KVM_HVA_ERR_BAD;
3172 		return -EINVAL;
3173 	}
3174 
3175 	/*
3176 	 * If the requested region crosses two memslots, we still
3177 	 * verify that the entire region is valid here.
3178 	 */
3179 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3180 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3181 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3182 					   &nr_pages_avail);
3183 		if (kvm_is_error_hva(ghc->hva))
3184 			return -EFAULT;
3185 	}
3186 
3187 	/* Use the slow path for cross page reads and writes. */
3188 	if (nr_pages_needed == 1)
3189 		ghc->hva += offset;
3190 	else
3191 		ghc->memslot = NULL;
3192 
3193 	ghc->gpa = gpa;
3194 	ghc->len = len;
3195 	return 0;
3196 }
3197 
3198 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3199 			      gpa_t gpa, unsigned long len)
3200 {
3201 	struct kvm_memslots *slots = kvm_memslots(kvm);
3202 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3203 }
3204 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3205 
3206 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3207 				  void *data, unsigned int offset,
3208 				  unsigned long len)
3209 {
3210 	struct kvm_memslots *slots = kvm_memslots(kvm);
3211 	int r;
3212 	gpa_t gpa = ghc->gpa + offset;
3213 
3214 	if (WARN_ON_ONCE(len + offset > ghc->len))
3215 		return -EINVAL;
3216 
3217 	if (slots->generation != ghc->generation) {
3218 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3219 			return -EFAULT;
3220 	}
3221 
3222 	if (kvm_is_error_hva(ghc->hva))
3223 		return -EFAULT;
3224 
3225 	if (unlikely(!ghc->memslot))
3226 		return kvm_write_guest(kvm, gpa, data, len);
3227 
3228 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3229 	if (r)
3230 		return -EFAULT;
3231 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3232 
3233 	return 0;
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3236 
3237 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3238 			   void *data, unsigned long len)
3239 {
3240 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3241 }
3242 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3243 
3244 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3245 				 void *data, unsigned int offset,
3246 				 unsigned long len)
3247 {
3248 	struct kvm_memslots *slots = kvm_memslots(kvm);
3249 	int r;
3250 	gpa_t gpa = ghc->gpa + offset;
3251 
3252 	if (WARN_ON_ONCE(len + offset > ghc->len))
3253 		return -EINVAL;
3254 
3255 	if (slots->generation != ghc->generation) {
3256 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3257 			return -EFAULT;
3258 	}
3259 
3260 	if (kvm_is_error_hva(ghc->hva))
3261 		return -EFAULT;
3262 
3263 	if (unlikely(!ghc->memslot))
3264 		return kvm_read_guest(kvm, gpa, data, len);
3265 
3266 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3267 	if (r)
3268 		return -EFAULT;
3269 
3270 	return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3273 
3274 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3275 			  void *data, unsigned long len)
3276 {
3277 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3278 }
3279 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3280 
3281 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3282 {
3283 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3284 	gfn_t gfn = gpa >> PAGE_SHIFT;
3285 	int seg;
3286 	int offset = offset_in_page(gpa);
3287 	int ret;
3288 
3289 	while ((seg = next_segment(len, offset)) != 0) {
3290 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3291 		if (ret < 0)
3292 			return ret;
3293 		offset = 0;
3294 		len -= seg;
3295 		++gfn;
3296 	}
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3300 
3301 void mark_page_dirty_in_slot(struct kvm *kvm,
3302 			     const struct kvm_memory_slot *memslot,
3303 		 	     gfn_t gfn)
3304 {
3305 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3306 
3307 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3308 	if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3309 		return;
3310 #endif
3311 
3312 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3313 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3314 		u32 slot = (memslot->as_id << 16) | memslot->id;
3315 
3316 		if (kvm->dirty_ring_size)
3317 			kvm_dirty_ring_push(&vcpu->dirty_ring,
3318 					    slot, rel_gfn);
3319 		else
3320 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3321 	}
3322 }
3323 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3324 
3325 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3326 {
3327 	struct kvm_memory_slot *memslot;
3328 
3329 	memslot = gfn_to_memslot(kvm, gfn);
3330 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3331 }
3332 EXPORT_SYMBOL_GPL(mark_page_dirty);
3333 
3334 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3335 {
3336 	struct kvm_memory_slot *memslot;
3337 
3338 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3339 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3342 
3343 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3344 {
3345 	if (!vcpu->sigset_active)
3346 		return;
3347 
3348 	/*
3349 	 * This does a lockless modification of ->real_blocked, which is fine
3350 	 * because, only current can change ->real_blocked and all readers of
3351 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3352 	 * of ->blocked.
3353 	 */
3354 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3355 }
3356 
3357 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3358 {
3359 	if (!vcpu->sigset_active)
3360 		return;
3361 
3362 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3363 	sigemptyset(&current->real_blocked);
3364 }
3365 
3366 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3367 {
3368 	unsigned int old, val, grow, grow_start;
3369 
3370 	old = val = vcpu->halt_poll_ns;
3371 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3372 	grow = READ_ONCE(halt_poll_ns_grow);
3373 	if (!grow)
3374 		goto out;
3375 
3376 	val *= grow;
3377 	if (val < grow_start)
3378 		val = grow_start;
3379 
3380 	if (val > vcpu->kvm->max_halt_poll_ns)
3381 		val = vcpu->kvm->max_halt_poll_ns;
3382 
3383 	vcpu->halt_poll_ns = val;
3384 out:
3385 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3386 }
3387 
3388 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3389 {
3390 	unsigned int old, val, shrink, grow_start;
3391 
3392 	old = val = vcpu->halt_poll_ns;
3393 	shrink = READ_ONCE(halt_poll_ns_shrink);
3394 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3395 	if (shrink == 0)
3396 		val = 0;
3397 	else
3398 		val /= shrink;
3399 
3400 	if (val < grow_start)
3401 		val = 0;
3402 
3403 	vcpu->halt_poll_ns = val;
3404 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3405 }
3406 
3407 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3408 {
3409 	int ret = -EINTR;
3410 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3411 
3412 	if (kvm_arch_vcpu_runnable(vcpu)) {
3413 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3414 		goto out;
3415 	}
3416 	if (kvm_cpu_has_pending_timer(vcpu))
3417 		goto out;
3418 	if (signal_pending(current))
3419 		goto out;
3420 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3421 		goto out;
3422 
3423 	ret = 0;
3424 out:
3425 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3426 	return ret;
3427 }
3428 
3429 /*
3430  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3431  * pending.  This is mostly used when halting a vCPU, but may also be used
3432  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3433  */
3434 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3435 {
3436 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3437 	bool waited = false;
3438 
3439 	vcpu->stat.generic.blocking = 1;
3440 
3441 	preempt_disable();
3442 	kvm_arch_vcpu_blocking(vcpu);
3443 	prepare_to_rcuwait(wait);
3444 	preempt_enable();
3445 
3446 	for (;;) {
3447 		set_current_state(TASK_INTERRUPTIBLE);
3448 
3449 		if (kvm_vcpu_check_block(vcpu) < 0)
3450 			break;
3451 
3452 		waited = true;
3453 		schedule();
3454 	}
3455 
3456 	preempt_disable();
3457 	finish_rcuwait(wait);
3458 	kvm_arch_vcpu_unblocking(vcpu);
3459 	preempt_enable();
3460 
3461 	vcpu->stat.generic.blocking = 0;
3462 
3463 	return waited;
3464 }
3465 
3466 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3467 					  ktime_t end, bool success)
3468 {
3469 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3470 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3471 
3472 	++vcpu->stat.generic.halt_attempted_poll;
3473 
3474 	if (success) {
3475 		++vcpu->stat.generic.halt_successful_poll;
3476 
3477 		if (!vcpu_valid_wakeup(vcpu))
3478 			++vcpu->stat.generic.halt_poll_invalid;
3479 
3480 		stats->halt_poll_success_ns += poll_ns;
3481 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3482 	} else {
3483 		stats->halt_poll_fail_ns += poll_ns;
3484 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3485 	}
3486 }
3487 
3488 /*
3489  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3490  * polling is enabled, busy wait for a short time before blocking to avoid the
3491  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3492  * is halted.
3493  */
3494 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3495 {
3496 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3497 	bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3498 	ktime_t start, cur, poll_end;
3499 	bool waited = false;
3500 	u64 halt_ns;
3501 
3502 	start = cur = poll_end = ktime_get();
3503 	if (do_halt_poll) {
3504 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3505 
3506 		do {
3507 			/*
3508 			 * This sets KVM_REQ_UNHALT if an interrupt
3509 			 * arrives.
3510 			 */
3511 			if (kvm_vcpu_check_block(vcpu) < 0)
3512 				goto out;
3513 			cpu_relax();
3514 			poll_end = cur = ktime_get();
3515 		} while (kvm_vcpu_can_poll(cur, stop));
3516 	}
3517 
3518 	waited = kvm_vcpu_block(vcpu);
3519 
3520 	cur = ktime_get();
3521 	if (waited) {
3522 		vcpu->stat.generic.halt_wait_ns +=
3523 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3524 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3525 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3526 	}
3527 out:
3528 	/* The total time the vCPU was "halted", including polling time. */
3529 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3530 
3531 	/*
3532 	 * Note, halt-polling is considered successful so long as the vCPU was
3533 	 * never actually scheduled out, i.e. even if the wake event arrived
3534 	 * after of the halt-polling loop itself, but before the full wait.
3535 	 */
3536 	if (do_halt_poll)
3537 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3538 
3539 	if (halt_poll_allowed) {
3540 		if (!vcpu_valid_wakeup(vcpu)) {
3541 			shrink_halt_poll_ns(vcpu);
3542 		} else if (vcpu->kvm->max_halt_poll_ns) {
3543 			if (halt_ns <= vcpu->halt_poll_ns)
3544 				;
3545 			/* we had a long block, shrink polling */
3546 			else if (vcpu->halt_poll_ns &&
3547 				 halt_ns > vcpu->kvm->max_halt_poll_ns)
3548 				shrink_halt_poll_ns(vcpu);
3549 			/* we had a short halt and our poll time is too small */
3550 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3551 				 halt_ns < vcpu->kvm->max_halt_poll_ns)
3552 				grow_halt_poll_ns(vcpu);
3553 		} else {
3554 			vcpu->halt_poll_ns = 0;
3555 		}
3556 	}
3557 
3558 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3561 
3562 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3563 {
3564 	if (__kvm_vcpu_wake_up(vcpu)) {
3565 		WRITE_ONCE(vcpu->ready, true);
3566 		++vcpu->stat.generic.halt_wakeup;
3567 		return true;
3568 	}
3569 
3570 	return false;
3571 }
3572 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3573 
3574 #ifndef CONFIG_S390
3575 /*
3576  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3577  */
3578 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3579 {
3580 	int me, cpu;
3581 
3582 	if (kvm_vcpu_wake_up(vcpu))
3583 		return;
3584 
3585 	me = get_cpu();
3586 	/*
3587 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3588 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3589 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3590 	 * within the vCPU thread itself.
3591 	 */
3592 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3593 		if (vcpu->mode == IN_GUEST_MODE)
3594 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3595 		goto out;
3596 	}
3597 
3598 	/*
3599 	 * Note, the vCPU could get migrated to a different pCPU at any point
3600 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3601 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3602 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3603 	 * vCPU also requires it to leave IN_GUEST_MODE.
3604 	 */
3605 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3606 		cpu = READ_ONCE(vcpu->cpu);
3607 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3608 			smp_send_reschedule(cpu);
3609 	}
3610 out:
3611 	put_cpu();
3612 }
3613 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3614 #endif /* !CONFIG_S390 */
3615 
3616 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3617 {
3618 	struct pid *pid;
3619 	struct task_struct *task = NULL;
3620 	int ret = 0;
3621 
3622 	rcu_read_lock();
3623 	pid = rcu_dereference(target->pid);
3624 	if (pid)
3625 		task = get_pid_task(pid, PIDTYPE_PID);
3626 	rcu_read_unlock();
3627 	if (!task)
3628 		return ret;
3629 	ret = yield_to(task, 1);
3630 	put_task_struct(task);
3631 
3632 	return ret;
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3635 
3636 /*
3637  * Helper that checks whether a VCPU is eligible for directed yield.
3638  * Most eligible candidate to yield is decided by following heuristics:
3639  *
3640  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3641  *  (preempted lock holder), indicated by @in_spin_loop.
3642  *  Set at the beginning and cleared at the end of interception/PLE handler.
3643  *
3644  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3645  *  chance last time (mostly it has become eligible now since we have probably
3646  *  yielded to lockholder in last iteration. This is done by toggling
3647  *  @dy_eligible each time a VCPU checked for eligibility.)
3648  *
3649  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3650  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3651  *  burning. Giving priority for a potential lock-holder increases lock
3652  *  progress.
3653  *
3654  *  Since algorithm is based on heuristics, accessing another VCPU data without
3655  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3656  *  and continue with next VCPU and so on.
3657  */
3658 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3659 {
3660 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3661 	bool eligible;
3662 
3663 	eligible = !vcpu->spin_loop.in_spin_loop ||
3664 		    vcpu->spin_loop.dy_eligible;
3665 
3666 	if (vcpu->spin_loop.in_spin_loop)
3667 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3668 
3669 	return eligible;
3670 #else
3671 	return true;
3672 #endif
3673 }
3674 
3675 /*
3676  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3677  * a vcpu_load/vcpu_put pair.  However, for most architectures
3678  * kvm_arch_vcpu_runnable does not require vcpu_load.
3679  */
3680 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3681 {
3682 	return kvm_arch_vcpu_runnable(vcpu);
3683 }
3684 
3685 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3686 {
3687 	if (kvm_arch_dy_runnable(vcpu))
3688 		return true;
3689 
3690 #ifdef CONFIG_KVM_ASYNC_PF
3691 	if (!list_empty_careful(&vcpu->async_pf.done))
3692 		return true;
3693 #endif
3694 
3695 	return false;
3696 }
3697 
3698 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3699 {
3700 	return false;
3701 }
3702 
3703 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3704 {
3705 	struct kvm *kvm = me->kvm;
3706 	struct kvm_vcpu *vcpu;
3707 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3708 	unsigned long i;
3709 	int yielded = 0;
3710 	int try = 3;
3711 	int pass;
3712 
3713 	kvm_vcpu_set_in_spin_loop(me, true);
3714 	/*
3715 	 * We boost the priority of a VCPU that is runnable but not
3716 	 * currently running, because it got preempted by something
3717 	 * else and called schedule in __vcpu_run.  Hopefully that
3718 	 * VCPU is holding the lock that we need and will release it.
3719 	 * We approximate round-robin by starting at the last boosted VCPU.
3720 	 */
3721 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3722 		kvm_for_each_vcpu(i, vcpu, kvm) {
3723 			if (!pass && i <= last_boosted_vcpu) {
3724 				i = last_boosted_vcpu;
3725 				continue;
3726 			} else if (pass && i > last_boosted_vcpu)
3727 				break;
3728 			if (!READ_ONCE(vcpu->ready))
3729 				continue;
3730 			if (vcpu == me)
3731 				continue;
3732 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3733 				continue;
3734 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3735 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3736 			    !kvm_arch_vcpu_in_kernel(vcpu))
3737 				continue;
3738 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3739 				continue;
3740 
3741 			yielded = kvm_vcpu_yield_to(vcpu);
3742 			if (yielded > 0) {
3743 				kvm->last_boosted_vcpu = i;
3744 				break;
3745 			} else if (yielded < 0) {
3746 				try--;
3747 				if (!try)
3748 					break;
3749 			}
3750 		}
3751 	}
3752 	kvm_vcpu_set_in_spin_loop(me, false);
3753 
3754 	/* Ensure vcpu is not eligible during next spinloop */
3755 	kvm_vcpu_set_dy_eligible(me, false);
3756 }
3757 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3758 
3759 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3760 {
3761 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3762 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3763 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3764 	     kvm->dirty_ring_size / PAGE_SIZE);
3765 #else
3766 	return false;
3767 #endif
3768 }
3769 
3770 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3771 {
3772 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3773 	struct page *page;
3774 
3775 	if (vmf->pgoff == 0)
3776 		page = virt_to_page(vcpu->run);
3777 #ifdef CONFIG_X86
3778 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3779 		page = virt_to_page(vcpu->arch.pio_data);
3780 #endif
3781 #ifdef CONFIG_KVM_MMIO
3782 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3783 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3784 #endif
3785 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3786 		page = kvm_dirty_ring_get_page(
3787 		    &vcpu->dirty_ring,
3788 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3789 	else
3790 		return kvm_arch_vcpu_fault(vcpu, vmf);
3791 	get_page(page);
3792 	vmf->page = page;
3793 	return 0;
3794 }
3795 
3796 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3797 	.fault = kvm_vcpu_fault,
3798 };
3799 
3800 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3801 {
3802 	struct kvm_vcpu *vcpu = file->private_data;
3803 	unsigned long pages = vma_pages(vma);
3804 
3805 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3806 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3807 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3808 		return -EINVAL;
3809 
3810 	vma->vm_ops = &kvm_vcpu_vm_ops;
3811 	return 0;
3812 }
3813 
3814 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3815 {
3816 	struct kvm_vcpu *vcpu = filp->private_data;
3817 
3818 	kvm_put_kvm(vcpu->kvm);
3819 	return 0;
3820 }
3821 
3822 static const struct file_operations kvm_vcpu_fops = {
3823 	.release        = kvm_vcpu_release,
3824 	.unlocked_ioctl = kvm_vcpu_ioctl,
3825 	.mmap           = kvm_vcpu_mmap,
3826 	.llseek		= noop_llseek,
3827 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3828 };
3829 
3830 /*
3831  * Allocates an inode for the vcpu.
3832  */
3833 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3834 {
3835 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3836 
3837 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3838 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3839 }
3840 
3841 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3842 static int vcpu_get_pid(void *data, u64 *val)
3843 {
3844 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3845 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3846 	return 0;
3847 }
3848 
3849 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3850 
3851 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3852 {
3853 	struct dentry *debugfs_dentry;
3854 	char dir_name[ITOA_MAX_LEN * 2];
3855 
3856 	if (!debugfs_initialized())
3857 		return;
3858 
3859 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3860 	debugfs_dentry = debugfs_create_dir(dir_name,
3861 					    vcpu->kvm->debugfs_dentry);
3862 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3863 			    &vcpu_get_pid_fops);
3864 
3865 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3866 }
3867 #endif
3868 
3869 /*
3870  * Creates some virtual cpus.  Good luck creating more than one.
3871  */
3872 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3873 {
3874 	int r;
3875 	struct kvm_vcpu *vcpu;
3876 	struct page *page;
3877 
3878 	if (id >= KVM_MAX_VCPU_IDS)
3879 		return -EINVAL;
3880 
3881 	mutex_lock(&kvm->lock);
3882 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3883 		mutex_unlock(&kvm->lock);
3884 		return -EINVAL;
3885 	}
3886 
3887 	r = kvm_arch_vcpu_precreate(kvm, id);
3888 	if (r) {
3889 		mutex_unlock(&kvm->lock);
3890 		return r;
3891 	}
3892 
3893 	kvm->created_vcpus++;
3894 	mutex_unlock(&kvm->lock);
3895 
3896 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3897 	if (!vcpu) {
3898 		r = -ENOMEM;
3899 		goto vcpu_decrement;
3900 	}
3901 
3902 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3903 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3904 	if (!page) {
3905 		r = -ENOMEM;
3906 		goto vcpu_free;
3907 	}
3908 	vcpu->run = page_address(page);
3909 
3910 	kvm_vcpu_init(vcpu, kvm, id);
3911 
3912 	r = kvm_arch_vcpu_create(vcpu);
3913 	if (r)
3914 		goto vcpu_free_run_page;
3915 
3916 	if (kvm->dirty_ring_size) {
3917 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3918 					 id, kvm->dirty_ring_size);
3919 		if (r)
3920 			goto arch_vcpu_destroy;
3921 	}
3922 
3923 	mutex_lock(&kvm->lock);
3924 	if (kvm_get_vcpu_by_id(kvm, id)) {
3925 		r = -EEXIST;
3926 		goto unlock_vcpu_destroy;
3927 	}
3928 
3929 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3930 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3931 	BUG_ON(r == -EBUSY);
3932 	if (r)
3933 		goto unlock_vcpu_destroy;
3934 
3935 	/* Now it's all set up, let userspace reach it */
3936 	kvm_get_kvm(kvm);
3937 	r = create_vcpu_fd(vcpu);
3938 	if (r < 0) {
3939 		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3940 		kvm_put_kvm_no_destroy(kvm);
3941 		goto unlock_vcpu_destroy;
3942 	}
3943 
3944 	/*
3945 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3946 	 * pointer before kvm->online_vcpu's incremented value.
3947 	 */
3948 	smp_wmb();
3949 	atomic_inc(&kvm->online_vcpus);
3950 
3951 	mutex_unlock(&kvm->lock);
3952 	kvm_arch_vcpu_postcreate(vcpu);
3953 	kvm_create_vcpu_debugfs(vcpu);
3954 	return r;
3955 
3956 unlock_vcpu_destroy:
3957 	mutex_unlock(&kvm->lock);
3958 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3959 arch_vcpu_destroy:
3960 	kvm_arch_vcpu_destroy(vcpu);
3961 vcpu_free_run_page:
3962 	free_page((unsigned long)vcpu->run);
3963 vcpu_free:
3964 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3965 vcpu_decrement:
3966 	mutex_lock(&kvm->lock);
3967 	kvm->created_vcpus--;
3968 	mutex_unlock(&kvm->lock);
3969 	return r;
3970 }
3971 
3972 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3973 {
3974 	if (sigset) {
3975 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3976 		vcpu->sigset_active = 1;
3977 		vcpu->sigset = *sigset;
3978 	} else
3979 		vcpu->sigset_active = 0;
3980 	return 0;
3981 }
3982 
3983 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3984 			      size_t size, loff_t *offset)
3985 {
3986 	struct kvm_vcpu *vcpu = file->private_data;
3987 
3988 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3989 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3990 			sizeof(vcpu->stat), user_buffer, size, offset);
3991 }
3992 
3993 static const struct file_operations kvm_vcpu_stats_fops = {
3994 	.read = kvm_vcpu_stats_read,
3995 	.llseek = noop_llseek,
3996 };
3997 
3998 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3999 {
4000 	int fd;
4001 	struct file *file;
4002 	char name[15 + ITOA_MAX_LEN + 1];
4003 
4004 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4005 
4006 	fd = get_unused_fd_flags(O_CLOEXEC);
4007 	if (fd < 0)
4008 		return fd;
4009 
4010 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4011 	if (IS_ERR(file)) {
4012 		put_unused_fd(fd);
4013 		return PTR_ERR(file);
4014 	}
4015 	file->f_mode |= FMODE_PREAD;
4016 	fd_install(fd, file);
4017 
4018 	return fd;
4019 }
4020 
4021 static long kvm_vcpu_ioctl(struct file *filp,
4022 			   unsigned int ioctl, unsigned long arg)
4023 {
4024 	struct kvm_vcpu *vcpu = filp->private_data;
4025 	void __user *argp = (void __user *)arg;
4026 	int r;
4027 	struct kvm_fpu *fpu = NULL;
4028 	struct kvm_sregs *kvm_sregs = NULL;
4029 
4030 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4031 		return -EIO;
4032 
4033 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4034 		return -EINVAL;
4035 
4036 	/*
4037 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4038 	 * execution; mutex_lock() would break them.
4039 	 */
4040 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4041 	if (r != -ENOIOCTLCMD)
4042 		return r;
4043 
4044 	if (mutex_lock_killable(&vcpu->mutex))
4045 		return -EINTR;
4046 	switch (ioctl) {
4047 	case KVM_RUN: {
4048 		struct pid *oldpid;
4049 		r = -EINVAL;
4050 		if (arg)
4051 			goto out;
4052 		oldpid = rcu_access_pointer(vcpu->pid);
4053 		if (unlikely(oldpid != task_pid(current))) {
4054 			/* The thread running this VCPU changed. */
4055 			struct pid *newpid;
4056 
4057 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4058 			if (r)
4059 				break;
4060 
4061 			newpid = get_task_pid(current, PIDTYPE_PID);
4062 			rcu_assign_pointer(vcpu->pid, newpid);
4063 			if (oldpid)
4064 				synchronize_rcu();
4065 			put_pid(oldpid);
4066 		}
4067 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4068 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4069 		break;
4070 	}
4071 	case KVM_GET_REGS: {
4072 		struct kvm_regs *kvm_regs;
4073 
4074 		r = -ENOMEM;
4075 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4076 		if (!kvm_regs)
4077 			goto out;
4078 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4079 		if (r)
4080 			goto out_free1;
4081 		r = -EFAULT;
4082 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4083 			goto out_free1;
4084 		r = 0;
4085 out_free1:
4086 		kfree(kvm_regs);
4087 		break;
4088 	}
4089 	case KVM_SET_REGS: {
4090 		struct kvm_regs *kvm_regs;
4091 
4092 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4093 		if (IS_ERR(kvm_regs)) {
4094 			r = PTR_ERR(kvm_regs);
4095 			goto out;
4096 		}
4097 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4098 		kfree(kvm_regs);
4099 		break;
4100 	}
4101 	case KVM_GET_SREGS: {
4102 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4103 				    GFP_KERNEL_ACCOUNT);
4104 		r = -ENOMEM;
4105 		if (!kvm_sregs)
4106 			goto out;
4107 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4108 		if (r)
4109 			goto out;
4110 		r = -EFAULT;
4111 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4112 			goto out;
4113 		r = 0;
4114 		break;
4115 	}
4116 	case KVM_SET_SREGS: {
4117 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4118 		if (IS_ERR(kvm_sregs)) {
4119 			r = PTR_ERR(kvm_sregs);
4120 			kvm_sregs = NULL;
4121 			goto out;
4122 		}
4123 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4124 		break;
4125 	}
4126 	case KVM_GET_MP_STATE: {
4127 		struct kvm_mp_state mp_state;
4128 
4129 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4130 		if (r)
4131 			goto out;
4132 		r = -EFAULT;
4133 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4134 			goto out;
4135 		r = 0;
4136 		break;
4137 	}
4138 	case KVM_SET_MP_STATE: {
4139 		struct kvm_mp_state mp_state;
4140 
4141 		r = -EFAULT;
4142 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4143 			goto out;
4144 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4145 		break;
4146 	}
4147 	case KVM_TRANSLATE: {
4148 		struct kvm_translation tr;
4149 
4150 		r = -EFAULT;
4151 		if (copy_from_user(&tr, argp, sizeof(tr)))
4152 			goto out;
4153 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4154 		if (r)
4155 			goto out;
4156 		r = -EFAULT;
4157 		if (copy_to_user(argp, &tr, sizeof(tr)))
4158 			goto out;
4159 		r = 0;
4160 		break;
4161 	}
4162 	case KVM_SET_GUEST_DEBUG: {
4163 		struct kvm_guest_debug dbg;
4164 
4165 		r = -EFAULT;
4166 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4167 			goto out;
4168 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4169 		break;
4170 	}
4171 	case KVM_SET_SIGNAL_MASK: {
4172 		struct kvm_signal_mask __user *sigmask_arg = argp;
4173 		struct kvm_signal_mask kvm_sigmask;
4174 		sigset_t sigset, *p;
4175 
4176 		p = NULL;
4177 		if (argp) {
4178 			r = -EFAULT;
4179 			if (copy_from_user(&kvm_sigmask, argp,
4180 					   sizeof(kvm_sigmask)))
4181 				goto out;
4182 			r = -EINVAL;
4183 			if (kvm_sigmask.len != sizeof(sigset))
4184 				goto out;
4185 			r = -EFAULT;
4186 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4187 					   sizeof(sigset)))
4188 				goto out;
4189 			p = &sigset;
4190 		}
4191 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4192 		break;
4193 	}
4194 	case KVM_GET_FPU: {
4195 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4196 		r = -ENOMEM;
4197 		if (!fpu)
4198 			goto out;
4199 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4200 		if (r)
4201 			goto out;
4202 		r = -EFAULT;
4203 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4204 			goto out;
4205 		r = 0;
4206 		break;
4207 	}
4208 	case KVM_SET_FPU: {
4209 		fpu = memdup_user(argp, sizeof(*fpu));
4210 		if (IS_ERR(fpu)) {
4211 			r = PTR_ERR(fpu);
4212 			fpu = NULL;
4213 			goto out;
4214 		}
4215 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4216 		break;
4217 	}
4218 	case KVM_GET_STATS_FD: {
4219 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4220 		break;
4221 	}
4222 	default:
4223 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4224 	}
4225 out:
4226 	mutex_unlock(&vcpu->mutex);
4227 	kfree(fpu);
4228 	kfree(kvm_sregs);
4229 	return r;
4230 }
4231 
4232 #ifdef CONFIG_KVM_COMPAT
4233 static long kvm_vcpu_compat_ioctl(struct file *filp,
4234 				  unsigned int ioctl, unsigned long arg)
4235 {
4236 	struct kvm_vcpu *vcpu = filp->private_data;
4237 	void __user *argp = compat_ptr(arg);
4238 	int r;
4239 
4240 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4241 		return -EIO;
4242 
4243 	switch (ioctl) {
4244 	case KVM_SET_SIGNAL_MASK: {
4245 		struct kvm_signal_mask __user *sigmask_arg = argp;
4246 		struct kvm_signal_mask kvm_sigmask;
4247 		sigset_t sigset;
4248 
4249 		if (argp) {
4250 			r = -EFAULT;
4251 			if (copy_from_user(&kvm_sigmask, argp,
4252 					   sizeof(kvm_sigmask)))
4253 				goto out;
4254 			r = -EINVAL;
4255 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4256 				goto out;
4257 			r = -EFAULT;
4258 			if (get_compat_sigset(&sigset,
4259 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4260 				goto out;
4261 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4262 		} else
4263 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4264 		break;
4265 	}
4266 	default:
4267 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4268 	}
4269 
4270 out:
4271 	return r;
4272 }
4273 #endif
4274 
4275 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4276 {
4277 	struct kvm_device *dev = filp->private_data;
4278 
4279 	if (dev->ops->mmap)
4280 		return dev->ops->mmap(dev, vma);
4281 
4282 	return -ENODEV;
4283 }
4284 
4285 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4286 				 int (*accessor)(struct kvm_device *dev,
4287 						 struct kvm_device_attr *attr),
4288 				 unsigned long arg)
4289 {
4290 	struct kvm_device_attr attr;
4291 
4292 	if (!accessor)
4293 		return -EPERM;
4294 
4295 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4296 		return -EFAULT;
4297 
4298 	return accessor(dev, &attr);
4299 }
4300 
4301 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4302 			     unsigned long arg)
4303 {
4304 	struct kvm_device *dev = filp->private_data;
4305 
4306 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4307 		return -EIO;
4308 
4309 	switch (ioctl) {
4310 	case KVM_SET_DEVICE_ATTR:
4311 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4312 	case KVM_GET_DEVICE_ATTR:
4313 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4314 	case KVM_HAS_DEVICE_ATTR:
4315 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4316 	default:
4317 		if (dev->ops->ioctl)
4318 			return dev->ops->ioctl(dev, ioctl, arg);
4319 
4320 		return -ENOTTY;
4321 	}
4322 }
4323 
4324 static int kvm_device_release(struct inode *inode, struct file *filp)
4325 {
4326 	struct kvm_device *dev = filp->private_data;
4327 	struct kvm *kvm = dev->kvm;
4328 
4329 	if (dev->ops->release) {
4330 		mutex_lock(&kvm->lock);
4331 		list_del(&dev->vm_node);
4332 		dev->ops->release(dev);
4333 		mutex_unlock(&kvm->lock);
4334 	}
4335 
4336 	kvm_put_kvm(kvm);
4337 	return 0;
4338 }
4339 
4340 static const struct file_operations kvm_device_fops = {
4341 	.unlocked_ioctl = kvm_device_ioctl,
4342 	.release = kvm_device_release,
4343 	KVM_COMPAT(kvm_device_ioctl),
4344 	.mmap = kvm_device_mmap,
4345 };
4346 
4347 struct kvm_device *kvm_device_from_filp(struct file *filp)
4348 {
4349 	if (filp->f_op != &kvm_device_fops)
4350 		return NULL;
4351 
4352 	return filp->private_data;
4353 }
4354 
4355 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4356 #ifdef CONFIG_KVM_MPIC
4357 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4358 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4359 #endif
4360 };
4361 
4362 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4363 {
4364 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4365 		return -ENOSPC;
4366 
4367 	if (kvm_device_ops_table[type] != NULL)
4368 		return -EEXIST;
4369 
4370 	kvm_device_ops_table[type] = ops;
4371 	return 0;
4372 }
4373 
4374 void kvm_unregister_device_ops(u32 type)
4375 {
4376 	if (kvm_device_ops_table[type] != NULL)
4377 		kvm_device_ops_table[type] = NULL;
4378 }
4379 
4380 static int kvm_ioctl_create_device(struct kvm *kvm,
4381 				   struct kvm_create_device *cd)
4382 {
4383 	const struct kvm_device_ops *ops;
4384 	struct kvm_device *dev;
4385 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4386 	int type;
4387 	int ret;
4388 
4389 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4390 		return -ENODEV;
4391 
4392 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4393 	ops = kvm_device_ops_table[type];
4394 	if (ops == NULL)
4395 		return -ENODEV;
4396 
4397 	if (test)
4398 		return 0;
4399 
4400 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4401 	if (!dev)
4402 		return -ENOMEM;
4403 
4404 	dev->ops = ops;
4405 	dev->kvm = kvm;
4406 
4407 	mutex_lock(&kvm->lock);
4408 	ret = ops->create(dev, type);
4409 	if (ret < 0) {
4410 		mutex_unlock(&kvm->lock);
4411 		kfree(dev);
4412 		return ret;
4413 	}
4414 	list_add(&dev->vm_node, &kvm->devices);
4415 	mutex_unlock(&kvm->lock);
4416 
4417 	if (ops->init)
4418 		ops->init(dev);
4419 
4420 	kvm_get_kvm(kvm);
4421 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4422 	if (ret < 0) {
4423 		kvm_put_kvm_no_destroy(kvm);
4424 		mutex_lock(&kvm->lock);
4425 		list_del(&dev->vm_node);
4426 		if (ops->release)
4427 			ops->release(dev);
4428 		mutex_unlock(&kvm->lock);
4429 		if (ops->destroy)
4430 			ops->destroy(dev);
4431 		return ret;
4432 	}
4433 
4434 	cd->fd = ret;
4435 	return 0;
4436 }
4437 
4438 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4439 {
4440 	switch (arg) {
4441 	case KVM_CAP_USER_MEMORY:
4442 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4443 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4444 	case KVM_CAP_INTERNAL_ERROR_DATA:
4445 #ifdef CONFIG_HAVE_KVM_MSI
4446 	case KVM_CAP_SIGNAL_MSI:
4447 #endif
4448 #ifdef CONFIG_HAVE_KVM_IRQFD
4449 	case KVM_CAP_IRQFD:
4450 	case KVM_CAP_IRQFD_RESAMPLE:
4451 #endif
4452 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4453 	case KVM_CAP_CHECK_EXTENSION_VM:
4454 	case KVM_CAP_ENABLE_CAP_VM:
4455 	case KVM_CAP_HALT_POLL:
4456 		return 1;
4457 #ifdef CONFIG_KVM_MMIO
4458 	case KVM_CAP_COALESCED_MMIO:
4459 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4460 	case KVM_CAP_COALESCED_PIO:
4461 		return 1;
4462 #endif
4463 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4464 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4465 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4466 #endif
4467 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4468 	case KVM_CAP_IRQ_ROUTING:
4469 		return KVM_MAX_IRQ_ROUTES;
4470 #endif
4471 #if KVM_ADDRESS_SPACE_NUM > 1
4472 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4473 		return KVM_ADDRESS_SPACE_NUM;
4474 #endif
4475 	case KVM_CAP_NR_MEMSLOTS:
4476 		return KVM_USER_MEM_SLOTS;
4477 	case KVM_CAP_DIRTY_LOG_RING:
4478 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4479 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4480 #else
4481 		return 0;
4482 #endif
4483 	case KVM_CAP_BINARY_STATS_FD:
4484 	case KVM_CAP_SYSTEM_EVENT_DATA:
4485 		return 1;
4486 	default:
4487 		break;
4488 	}
4489 	return kvm_vm_ioctl_check_extension(kvm, arg);
4490 }
4491 
4492 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4493 {
4494 	int r;
4495 
4496 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4497 		return -EINVAL;
4498 
4499 	/* the size should be power of 2 */
4500 	if (!size || (size & (size - 1)))
4501 		return -EINVAL;
4502 
4503 	/* Should be bigger to keep the reserved entries, or a page */
4504 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4505 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4506 		return -EINVAL;
4507 
4508 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4509 	    sizeof(struct kvm_dirty_gfn))
4510 		return -E2BIG;
4511 
4512 	/* We only allow it to set once */
4513 	if (kvm->dirty_ring_size)
4514 		return -EINVAL;
4515 
4516 	mutex_lock(&kvm->lock);
4517 
4518 	if (kvm->created_vcpus) {
4519 		/* We don't allow to change this value after vcpu created */
4520 		r = -EINVAL;
4521 	} else {
4522 		kvm->dirty_ring_size = size;
4523 		r = 0;
4524 	}
4525 
4526 	mutex_unlock(&kvm->lock);
4527 	return r;
4528 }
4529 
4530 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4531 {
4532 	unsigned long i;
4533 	struct kvm_vcpu *vcpu;
4534 	int cleared = 0;
4535 
4536 	if (!kvm->dirty_ring_size)
4537 		return -EINVAL;
4538 
4539 	mutex_lock(&kvm->slots_lock);
4540 
4541 	kvm_for_each_vcpu(i, vcpu, kvm)
4542 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4543 
4544 	mutex_unlock(&kvm->slots_lock);
4545 
4546 	if (cleared)
4547 		kvm_flush_remote_tlbs(kvm);
4548 
4549 	return cleared;
4550 }
4551 
4552 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4553 						  struct kvm_enable_cap *cap)
4554 {
4555 	return -EINVAL;
4556 }
4557 
4558 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4559 					   struct kvm_enable_cap *cap)
4560 {
4561 	switch (cap->cap) {
4562 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4563 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4564 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4565 
4566 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4567 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4568 
4569 		if (cap->flags || (cap->args[0] & ~allowed_options))
4570 			return -EINVAL;
4571 		kvm->manual_dirty_log_protect = cap->args[0];
4572 		return 0;
4573 	}
4574 #endif
4575 	case KVM_CAP_HALT_POLL: {
4576 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4577 			return -EINVAL;
4578 
4579 		kvm->max_halt_poll_ns = cap->args[0];
4580 		return 0;
4581 	}
4582 	case KVM_CAP_DIRTY_LOG_RING:
4583 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4584 	default:
4585 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4586 	}
4587 }
4588 
4589 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4590 			      size_t size, loff_t *offset)
4591 {
4592 	struct kvm *kvm = file->private_data;
4593 
4594 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4595 				&kvm_vm_stats_desc[0], &kvm->stat,
4596 				sizeof(kvm->stat), user_buffer, size, offset);
4597 }
4598 
4599 static const struct file_operations kvm_vm_stats_fops = {
4600 	.read = kvm_vm_stats_read,
4601 	.llseek = noop_llseek,
4602 };
4603 
4604 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4605 {
4606 	int fd;
4607 	struct file *file;
4608 
4609 	fd = get_unused_fd_flags(O_CLOEXEC);
4610 	if (fd < 0)
4611 		return fd;
4612 
4613 	file = anon_inode_getfile("kvm-vm-stats",
4614 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4615 	if (IS_ERR(file)) {
4616 		put_unused_fd(fd);
4617 		return PTR_ERR(file);
4618 	}
4619 	file->f_mode |= FMODE_PREAD;
4620 	fd_install(fd, file);
4621 
4622 	return fd;
4623 }
4624 
4625 static long kvm_vm_ioctl(struct file *filp,
4626 			   unsigned int ioctl, unsigned long arg)
4627 {
4628 	struct kvm *kvm = filp->private_data;
4629 	void __user *argp = (void __user *)arg;
4630 	int r;
4631 
4632 	if (kvm->mm != current->mm || kvm->vm_dead)
4633 		return -EIO;
4634 	switch (ioctl) {
4635 	case KVM_CREATE_VCPU:
4636 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4637 		break;
4638 	case KVM_ENABLE_CAP: {
4639 		struct kvm_enable_cap cap;
4640 
4641 		r = -EFAULT;
4642 		if (copy_from_user(&cap, argp, sizeof(cap)))
4643 			goto out;
4644 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4645 		break;
4646 	}
4647 	case KVM_SET_USER_MEMORY_REGION: {
4648 		struct kvm_userspace_memory_region kvm_userspace_mem;
4649 
4650 		r = -EFAULT;
4651 		if (copy_from_user(&kvm_userspace_mem, argp,
4652 						sizeof(kvm_userspace_mem)))
4653 			goto out;
4654 
4655 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4656 		break;
4657 	}
4658 	case KVM_GET_DIRTY_LOG: {
4659 		struct kvm_dirty_log log;
4660 
4661 		r = -EFAULT;
4662 		if (copy_from_user(&log, argp, sizeof(log)))
4663 			goto out;
4664 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4665 		break;
4666 	}
4667 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4668 	case KVM_CLEAR_DIRTY_LOG: {
4669 		struct kvm_clear_dirty_log log;
4670 
4671 		r = -EFAULT;
4672 		if (copy_from_user(&log, argp, sizeof(log)))
4673 			goto out;
4674 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4675 		break;
4676 	}
4677 #endif
4678 #ifdef CONFIG_KVM_MMIO
4679 	case KVM_REGISTER_COALESCED_MMIO: {
4680 		struct kvm_coalesced_mmio_zone zone;
4681 
4682 		r = -EFAULT;
4683 		if (copy_from_user(&zone, argp, sizeof(zone)))
4684 			goto out;
4685 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4686 		break;
4687 	}
4688 	case KVM_UNREGISTER_COALESCED_MMIO: {
4689 		struct kvm_coalesced_mmio_zone zone;
4690 
4691 		r = -EFAULT;
4692 		if (copy_from_user(&zone, argp, sizeof(zone)))
4693 			goto out;
4694 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4695 		break;
4696 	}
4697 #endif
4698 	case KVM_IRQFD: {
4699 		struct kvm_irqfd data;
4700 
4701 		r = -EFAULT;
4702 		if (copy_from_user(&data, argp, sizeof(data)))
4703 			goto out;
4704 		r = kvm_irqfd(kvm, &data);
4705 		break;
4706 	}
4707 	case KVM_IOEVENTFD: {
4708 		struct kvm_ioeventfd data;
4709 
4710 		r = -EFAULT;
4711 		if (copy_from_user(&data, argp, sizeof(data)))
4712 			goto out;
4713 		r = kvm_ioeventfd(kvm, &data);
4714 		break;
4715 	}
4716 #ifdef CONFIG_HAVE_KVM_MSI
4717 	case KVM_SIGNAL_MSI: {
4718 		struct kvm_msi msi;
4719 
4720 		r = -EFAULT;
4721 		if (copy_from_user(&msi, argp, sizeof(msi)))
4722 			goto out;
4723 		r = kvm_send_userspace_msi(kvm, &msi);
4724 		break;
4725 	}
4726 #endif
4727 #ifdef __KVM_HAVE_IRQ_LINE
4728 	case KVM_IRQ_LINE_STATUS:
4729 	case KVM_IRQ_LINE: {
4730 		struct kvm_irq_level irq_event;
4731 
4732 		r = -EFAULT;
4733 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4734 			goto out;
4735 
4736 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4737 					ioctl == KVM_IRQ_LINE_STATUS);
4738 		if (r)
4739 			goto out;
4740 
4741 		r = -EFAULT;
4742 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4743 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4744 				goto out;
4745 		}
4746 
4747 		r = 0;
4748 		break;
4749 	}
4750 #endif
4751 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4752 	case KVM_SET_GSI_ROUTING: {
4753 		struct kvm_irq_routing routing;
4754 		struct kvm_irq_routing __user *urouting;
4755 		struct kvm_irq_routing_entry *entries = NULL;
4756 
4757 		r = -EFAULT;
4758 		if (copy_from_user(&routing, argp, sizeof(routing)))
4759 			goto out;
4760 		r = -EINVAL;
4761 		if (!kvm_arch_can_set_irq_routing(kvm))
4762 			goto out;
4763 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4764 			goto out;
4765 		if (routing.flags)
4766 			goto out;
4767 		if (routing.nr) {
4768 			urouting = argp;
4769 			entries = vmemdup_user(urouting->entries,
4770 					       array_size(sizeof(*entries),
4771 							  routing.nr));
4772 			if (IS_ERR(entries)) {
4773 				r = PTR_ERR(entries);
4774 				goto out;
4775 			}
4776 		}
4777 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4778 					routing.flags);
4779 		kvfree(entries);
4780 		break;
4781 	}
4782 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4783 	case KVM_CREATE_DEVICE: {
4784 		struct kvm_create_device cd;
4785 
4786 		r = -EFAULT;
4787 		if (copy_from_user(&cd, argp, sizeof(cd)))
4788 			goto out;
4789 
4790 		r = kvm_ioctl_create_device(kvm, &cd);
4791 		if (r)
4792 			goto out;
4793 
4794 		r = -EFAULT;
4795 		if (copy_to_user(argp, &cd, sizeof(cd)))
4796 			goto out;
4797 
4798 		r = 0;
4799 		break;
4800 	}
4801 	case KVM_CHECK_EXTENSION:
4802 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4803 		break;
4804 	case KVM_RESET_DIRTY_RINGS:
4805 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4806 		break;
4807 	case KVM_GET_STATS_FD:
4808 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4809 		break;
4810 	default:
4811 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4812 	}
4813 out:
4814 	return r;
4815 }
4816 
4817 #ifdef CONFIG_KVM_COMPAT
4818 struct compat_kvm_dirty_log {
4819 	__u32 slot;
4820 	__u32 padding1;
4821 	union {
4822 		compat_uptr_t dirty_bitmap; /* one bit per page */
4823 		__u64 padding2;
4824 	};
4825 };
4826 
4827 struct compat_kvm_clear_dirty_log {
4828 	__u32 slot;
4829 	__u32 num_pages;
4830 	__u64 first_page;
4831 	union {
4832 		compat_uptr_t dirty_bitmap; /* one bit per page */
4833 		__u64 padding2;
4834 	};
4835 };
4836 
4837 static long kvm_vm_compat_ioctl(struct file *filp,
4838 			   unsigned int ioctl, unsigned long arg)
4839 {
4840 	struct kvm *kvm = filp->private_data;
4841 	int r;
4842 
4843 	if (kvm->mm != current->mm || kvm->vm_dead)
4844 		return -EIO;
4845 	switch (ioctl) {
4846 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4847 	case KVM_CLEAR_DIRTY_LOG: {
4848 		struct compat_kvm_clear_dirty_log compat_log;
4849 		struct kvm_clear_dirty_log log;
4850 
4851 		if (copy_from_user(&compat_log, (void __user *)arg,
4852 				   sizeof(compat_log)))
4853 			return -EFAULT;
4854 		log.slot	 = compat_log.slot;
4855 		log.num_pages	 = compat_log.num_pages;
4856 		log.first_page	 = compat_log.first_page;
4857 		log.padding2	 = compat_log.padding2;
4858 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4859 
4860 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4861 		break;
4862 	}
4863 #endif
4864 	case KVM_GET_DIRTY_LOG: {
4865 		struct compat_kvm_dirty_log compat_log;
4866 		struct kvm_dirty_log log;
4867 
4868 		if (copy_from_user(&compat_log, (void __user *)arg,
4869 				   sizeof(compat_log)))
4870 			return -EFAULT;
4871 		log.slot	 = compat_log.slot;
4872 		log.padding1	 = compat_log.padding1;
4873 		log.padding2	 = compat_log.padding2;
4874 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4875 
4876 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4877 		break;
4878 	}
4879 	default:
4880 		r = kvm_vm_ioctl(filp, ioctl, arg);
4881 	}
4882 	return r;
4883 }
4884 #endif
4885 
4886 static const struct file_operations kvm_vm_fops = {
4887 	.release        = kvm_vm_release,
4888 	.unlocked_ioctl = kvm_vm_ioctl,
4889 	.llseek		= noop_llseek,
4890 	KVM_COMPAT(kvm_vm_compat_ioctl),
4891 };
4892 
4893 bool file_is_kvm(struct file *file)
4894 {
4895 	return file && file->f_op == &kvm_vm_fops;
4896 }
4897 EXPORT_SYMBOL_GPL(file_is_kvm);
4898 
4899 static int kvm_dev_ioctl_create_vm(unsigned long type)
4900 {
4901 	char fdname[ITOA_MAX_LEN + 1];
4902 	int r, fd;
4903 	struct kvm *kvm;
4904 	struct file *file;
4905 
4906 	fd = get_unused_fd_flags(O_CLOEXEC);
4907 	if (fd < 0)
4908 		return fd;
4909 
4910 	snprintf(fdname, sizeof(fdname), "%d", fd);
4911 
4912 	kvm = kvm_create_vm(type, fdname);
4913 	if (IS_ERR(kvm)) {
4914 		r = PTR_ERR(kvm);
4915 		goto put_fd;
4916 	}
4917 
4918 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4919 	if (IS_ERR(file)) {
4920 		r = PTR_ERR(file);
4921 		goto put_kvm;
4922 	}
4923 
4924 	/*
4925 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4926 	 * already set, with ->release() being kvm_vm_release().  In error
4927 	 * cases it will be called by the final fput(file) and will take
4928 	 * care of doing kvm_put_kvm(kvm).
4929 	 */
4930 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4931 
4932 	fd_install(fd, file);
4933 	return fd;
4934 
4935 put_kvm:
4936 	kvm_put_kvm(kvm);
4937 put_fd:
4938 	put_unused_fd(fd);
4939 	return r;
4940 }
4941 
4942 static long kvm_dev_ioctl(struct file *filp,
4943 			  unsigned int ioctl, unsigned long arg)
4944 {
4945 	long r = -EINVAL;
4946 
4947 	switch (ioctl) {
4948 	case KVM_GET_API_VERSION:
4949 		if (arg)
4950 			goto out;
4951 		r = KVM_API_VERSION;
4952 		break;
4953 	case KVM_CREATE_VM:
4954 		r = kvm_dev_ioctl_create_vm(arg);
4955 		break;
4956 	case KVM_CHECK_EXTENSION:
4957 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4958 		break;
4959 	case KVM_GET_VCPU_MMAP_SIZE:
4960 		if (arg)
4961 			goto out;
4962 		r = PAGE_SIZE;     /* struct kvm_run */
4963 #ifdef CONFIG_X86
4964 		r += PAGE_SIZE;    /* pio data page */
4965 #endif
4966 #ifdef CONFIG_KVM_MMIO
4967 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4968 #endif
4969 		break;
4970 	case KVM_TRACE_ENABLE:
4971 	case KVM_TRACE_PAUSE:
4972 	case KVM_TRACE_DISABLE:
4973 		r = -EOPNOTSUPP;
4974 		break;
4975 	default:
4976 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4977 	}
4978 out:
4979 	return r;
4980 }
4981 
4982 static struct file_operations kvm_chardev_ops = {
4983 	.unlocked_ioctl = kvm_dev_ioctl,
4984 	.llseek		= noop_llseek,
4985 	KVM_COMPAT(kvm_dev_ioctl),
4986 };
4987 
4988 static struct miscdevice kvm_dev = {
4989 	KVM_MINOR,
4990 	"kvm",
4991 	&kvm_chardev_ops,
4992 };
4993 
4994 static void hardware_enable_nolock(void *junk)
4995 {
4996 	int cpu = raw_smp_processor_id();
4997 	int r;
4998 
4999 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5000 		return;
5001 
5002 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
5003 
5004 	r = kvm_arch_hardware_enable();
5005 
5006 	if (r) {
5007 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5008 		atomic_inc(&hardware_enable_failed);
5009 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5010 	}
5011 }
5012 
5013 static int kvm_starting_cpu(unsigned int cpu)
5014 {
5015 	raw_spin_lock(&kvm_count_lock);
5016 	if (kvm_usage_count)
5017 		hardware_enable_nolock(NULL);
5018 	raw_spin_unlock(&kvm_count_lock);
5019 	return 0;
5020 }
5021 
5022 static void hardware_disable_nolock(void *junk)
5023 {
5024 	int cpu = raw_smp_processor_id();
5025 
5026 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5027 		return;
5028 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5029 	kvm_arch_hardware_disable();
5030 }
5031 
5032 static int kvm_dying_cpu(unsigned int cpu)
5033 {
5034 	raw_spin_lock(&kvm_count_lock);
5035 	if (kvm_usage_count)
5036 		hardware_disable_nolock(NULL);
5037 	raw_spin_unlock(&kvm_count_lock);
5038 	return 0;
5039 }
5040 
5041 static void hardware_disable_all_nolock(void)
5042 {
5043 	BUG_ON(!kvm_usage_count);
5044 
5045 	kvm_usage_count--;
5046 	if (!kvm_usage_count)
5047 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5048 }
5049 
5050 static void hardware_disable_all(void)
5051 {
5052 	raw_spin_lock(&kvm_count_lock);
5053 	hardware_disable_all_nolock();
5054 	raw_spin_unlock(&kvm_count_lock);
5055 }
5056 
5057 static int hardware_enable_all(void)
5058 {
5059 	int r = 0;
5060 
5061 	raw_spin_lock(&kvm_count_lock);
5062 
5063 	kvm_usage_count++;
5064 	if (kvm_usage_count == 1) {
5065 		atomic_set(&hardware_enable_failed, 0);
5066 		on_each_cpu(hardware_enable_nolock, NULL, 1);
5067 
5068 		if (atomic_read(&hardware_enable_failed)) {
5069 			hardware_disable_all_nolock();
5070 			r = -EBUSY;
5071 		}
5072 	}
5073 
5074 	raw_spin_unlock(&kvm_count_lock);
5075 
5076 	return r;
5077 }
5078 
5079 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5080 		      void *v)
5081 {
5082 	/*
5083 	 * Some (well, at least mine) BIOSes hang on reboot if
5084 	 * in vmx root mode.
5085 	 *
5086 	 * And Intel TXT required VMX off for all cpu when system shutdown.
5087 	 */
5088 	pr_info("kvm: exiting hardware virtualization\n");
5089 	kvm_rebooting = true;
5090 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5091 	return NOTIFY_OK;
5092 }
5093 
5094 static struct notifier_block kvm_reboot_notifier = {
5095 	.notifier_call = kvm_reboot,
5096 	.priority = 0,
5097 };
5098 
5099 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5100 {
5101 	int i;
5102 
5103 	for (i = 0; i < bus->dev_count; i++) {
5104 		struct kvm_io_device *pos = bus->range[i].dev;
5105 
5106 		kvm_iodevice_destructor(pos);
5107 	}
5108 	kfree(bus);
5109 }
5110 
5111 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5112 				 const struct kvm_io_range *r2)
5113 {
5114 	gpa_t addr1 = r1->addr;
5115 	gpa_t addr2 = r2->addr;
5116 
5117 	if (addr1 < addr2)
5118 		return -1;
5119 
5120 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5121 	 * accept any overlapping write.  Any order is acceptable for
5122 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5123 	 * we process all of them.
5124 	 */
5125 	if (r2->len) {
5126 		addr1 += r1->len;
5127 		addr2 += r2->len;
5128 	}
5129 
5130 	if (addr1 > addr2)
5131 		return 1;
5132 
5133 	return 0;
5134 }
5135 
5136 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5137 {
5138 	return kvm_io_bus_cmp(p1, p2);
5139 }
5140 
5141 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5142 			     gpa_t addr, int len)
5143 {
5144 	struct kvm_io_range *range, key;
5145 	int off;
5146 
5147 	key = (struct kvm_io_range) {
5148 		.addr = addr,
5149 		.len = len,
5150 	};
5151 
5152 	range = bsearch(&key, bus->range, bus->dev_count,
5153 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5154 	if (range == NULL)
5155 		return -ENOENT;
5156 
5157 	off = range - bus->range;
5158 
5159 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5160 		off--;
5161 
5162 	return off;
5163 }
5164 
5165 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5166 			      struct kvm_io_range *range, const void *val)
5167 {
5168 	int idx;
5169 
5170 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5171 	if (idx < 0)
5172 		return -EOPNOTSUPP;
5173 
5174 	while (idx < bus->dev_count &&
5175 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5176 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5177 					range->len, val))
5178 			return idx;
5179 		idx++;
5180 	}
5181 
5182 	return -EOPNOTSUPP;
5183 }
5184 
5185 /* kvm_io_bus_write - called under kvm->slots_lock */
5186 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5187 		     int len, const void *val)
5188 {
5189 	struct kvm_io_bus *bus;
5190 	struct kvm_io_range range;
5191 	int r;
5192 
5193 	range = (struct kvm_io_range) {
5194 		.addr = addr,
5195 		.len = len,
5196 	};
5197 
5198 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5199 	if (!bus)
5200 		return -ENOMEM;
5201 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5202 	return r < 0 ? r : 0;
5203 }
5204 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5205 
5206 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5207 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5208 			    gpa_t addr, int len, const void *val, long cookie)
5209 {
5210 	struct kvm_io_bus *bus;
5211 	struct kvm_io_range range;
5212 
5213 	range = (struct kvm_io_range) {
5214 		.addr = addr,
5215 		.len = len,
5216 	};
5217 
5218 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5219 	if (!bus)
5220 		return -ENOMEM;
5221 
5222 	/* First try the device referenced by cookie. */
5223 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5224 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5225 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5226 					val))
5227 			return cookie;
5228 
5229 	/*
5230 	 * cookie contained garbage; fall back to search and return the
5231 	 * correct cookie value.
5232 	 */
5233 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5234 }
5235 
5236 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5237 			     struct kvm_io_range *range, void *val)
5238 {
5239 	int idx;
5240 
5241 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5242 	if (idx < 0)
5243 		return -EOPNOTSUPP;
5244 
5245 	while (idx < bus->dev_count &&
5246 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5247 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5248 				       range->len, val))
5249 			return idx;
5250 		idx++;
5251 	}
5252 
5253 	return -EOPNOTSUPP;
5254 }
5255 
5256 /* kvm_io_bus_read - called under kvm->slots_lock */
5257 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5258 		    int len, void *val)
5259 {
5260 	struct kvm_io_bus *bus;
5261 	struct kvm_io_range range;
5262 	int r;
5263 
5264 	range = (struct kvm_io_range) {
5265 		.addr = addr,
5266 		.len = len,
5267 	};
5268 
5269 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5270 	if (!bus)
5271 		return -ENOMEM;
5272 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5273 	return r < 0 ? r : 0;
5274 }
5275 
5276 /* Caller must hold slots_lock. */
5277 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5278 			    int len, struct kvm_io_device *dev)
5279 {
5280 	int i;
5281 	struct kvm_io_bus *new_bus, *bus;
5282 	struct kvm_io_range range;
5283 
5284 	bus = kvm_get_bus(kvm, bus_idx);
5285 	if (!bus)
5286 		return -ENOMEM;
5287 
5288 	/* exclude ioeventfd which is limited by maximum fd */
5289 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5290 		return -ENOSPC;
5291 
5292 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5293 			  GFP_KERNEL_ACCOUNT);
5294 	if (!new_bus)
5295 		return -ENOMEM;
5296 
5297 	range = (struct kvm_io_range) {
5298 		.addr = addr,
5299 		.len = len,
5300 		.dev = dev,
5301 	};
5302 
5303 	for (i = 0; i < bus->dev_count; i++)
5304 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5305 			break;
5306 
5307 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5308 	new_bus->dev_count++;
5309 	new_bus->range[i] = range;
5310 	memcpy(new_bus->range + i + 1, bus->range + i,
5311 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5312 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5313 	synchronize_srcu_expedited(&kvm->srcu);
5314 	kfree(bus);
5315 
5316 	return 0;
5317 }
5318 
5319 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5320 			      struct kvm_io_device *dev)
5321 {
5322 	int i, j;
5323 	struct kvm_io_bus *new_bus, *bus;
5324 
5325 	lockdep_assert_held(&kvm->slots_lock);
5326 
5327 	bus = kvm_get_bus(kvm, bus_idx);
5328 	if (!bus)
5329 		return 0;
5330 
5331 	for (i = 0; i < bus->dev_count; i++) {
5332 		if (bus->range[i].dev == dev) {
5333 			break;
5334 		}
5335 	}
5336 
5337 	if (i == bus->dev_count)
5338 		return 0;
5339 
5340 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5341 			  GFP_KERNEL_ACCOUNT);
5342 	if (new_bus) {
5343 		memcpy(new_bus, bus, struct_size(bus, range, i));
5344 		new_bus->dev_count--;
5345 		memcpy(new_bus->range + i, bus->range + i + 1,
5346 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5347 	}
5348 
5349 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5350 	synchronize_srcu_expedited(&kvm->srcu);
5351 
5352 	/* Destroy the old bus _after_ installing the (null) bus. */
5353 	if (!new_bus) {
5354 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5355 		for (j = 0; j < bus->dev_count; j++) {
5356 			if (j == i)
5357 				continue;
5358 			kvm_iodevice_destructor(bus->range[j].dev);
5359 		}
5360 	}
5361 
5362 	kfree(bus);
5363 	return new_bus ? 0 : -ENOMEM;
5364 }
5365 
5366 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5367 					 gpa_t addr)
5368 {
5369 	struct kvm_io_bus *bus;
5370 	int dev_idx, srcu_idx;
5371 	struct kvm_io_device *iodev = NULL;
5372 
5373 	srcu_idx = srcu_read_lock(&kvm->srcu);
5374 
5375 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5376 	if (!bus)
5377 		goto out_unlock;
5378 
5379 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5380 	if (dev_idx < 0)
5381 		goto out_unlock;
5382 
5383 	iodev = bus->range[dev_idx].dev;
5384 
5385 out_unlock:
5386 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5387 
5388 	return iodev;
5389 }
5390 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5391 
5392 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5393 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5394 			   const char *fmt)
5395 {
5396 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5397 					  inode->i_private;
5398 
5399 	/*
5400 	 * The debugfs files are a reference to the kvm struct which
5401         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5402         * avoids the race between open and the removal of the debugfs directory.
5403 	 */
5404 	if (!kvm_get_kvm_safe(stat_data->kvm))
5405 		return -ENOENT;
5406 
5407 	if (simple_attr_open(inode, file, get,
5408 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5409 		    ? set : NULL,
5410 		    fmt)) {
5411 		kvm_put_kvm(stat_data->kvm);
5412 		return -ENOMEM;
5413 	}
5414 
5415 	return 0;
5416 }
5417 
5418 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5419 {
5420 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5421 					  inode->i_private;
5422 
5423 	simple_attr_release(inode, file);
5424 	kvm_put_kvm(stat_data->kvm);
5425 
5426 	return 0;
5427 }
5428 
5429 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5430 {
5431 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5432 
5433 	return 0;
5434 }
5435 
5436 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5437 {
5438 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5439 
5440 	return 0;
5441 }
5442 
5443 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5444 {
5445 	unsigned long i;
5446 	struct kvm_vcpu *vcpu;
5447 
5448 	*val = 0;
5449 
5450 	kvm_for_each_vcpu(i, vcpu, kvm)
5451 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5452 
5453 	return 0;
5454 }
5455 
5456 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5457 {
5458 	unsigned long i;
5459 	struct kvm_vcpu *vcpu;
5460 
5461 	kvm_for_each_vcpu(i, vcpu, kvm)
5462 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5463 
5464 	return 0;
5465 }
5466 
5467 static int kvm_stat_data_get(void *data, u64 *val)
5468 {
5469 	int r = -EFAULT;
5470 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5471 
5472 	switch (stat_data->kind) {
5473 	case KVM_STAT_VM:
5474 		r = kvm_get_stat_per_vm(stat_data->kvm,
5475 					stat_data->desc->desc.offset, val);
5476 		break;
5477 	case KVM_STAT_VCPU:
5478 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5479 					  stat_data->desc->desc.offset, val);
5480 		break;
5481 	}
5482 
5483 	return r;
5484 }
5485 
5486 static int kvm_stat_data_clear(void *data, u64 val)
5487 {
5488 	int r = -EFAULT;
5489 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5490 
5491 	if (val)
5492 		return -EINVAL;
5493 
5494 	switch (stat_data->kind) {
5495 	case KVM_STAT_VM:
5496 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5497 					  stat_data->desc->desc.offset);
5498 		break;
5499 	case KVM_STAT_VCPU:
5500 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5501 					    stat_data->desc->desc.offset);
5502 		break;
5503 	}
5504 
5505 	return r;
5506 }
5507 
5508 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5509 {
5510 	__simple_attr_check_format("%llu\n", 0ull);
5511 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5512 				kvm_stat_data_clear, "%llu\n");
5513 }
5514 
5515 static const struct file_operations stat_fops_per_vm = {
5516 	.owner = THIS_MODULE,
5517 	.open = kvm_stat_data_open,
5518 	.release = kvm_debugfs_release,
5519 	.read = simple_attr_read,
5520 	.write = simple_attr_write,
5521 	.llseek = no_llseek,
5522 };
5523 
5524 static int vm_stat_get(void *_offset, u64 *val)
5525 {
5526 	unsigned offset = (long)_offset;
5527 	struct kvm *kvm;
5528 	u64 tmp_val;
5529 
5530 	*val = 0;
5531 	mutex_lock(&kvm_lock);
5532 	list_for_each_entry(kvm, &vm_list, vm_list) {
5533 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5534 		*val += tmp_val;
5535 	}
5536 	mutex_unlock(&kvm_lock);
5537 	return 0;
5538 }
5539 
5540 static int vm_stat_clear(void *_offset, u64 val)
5541 {
5542 	unsigned offset = (long)_offset;
5543 	struct kvm *kvm;
5544 
5545 	if (val)
5546 		return -EINVAL;
5547 
5548 	mutex_lock(&kvm_lock);
5549 	list_for_each_entry(kvm, &vm_list, vm_list) {
5550 		kvm_clear_stat_per_vm(kvm, offset);
5551 	}
5552 	mutex_unlock(&kvm_lock);
5553 
5554 	return 0;
5555 }
5556 
5557 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5558 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5559 
5560 static int vcpu_stat_get(void *_offset, u64 *val)
5561 {
5562 	unsigned offset = (long)_offset;
5563 	struct kvm *kvm;
5564 	u64 tmp_val;
5565 
5566 	*val = 0;
5567 	mutex_lock(&kvm_lock);
5568 	list_for_each_entry(kvm, &vm_list, vm_list) {
5569 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5570 		*val += tmp_val;
5571 	}
5572 	mutex_unlock(&kvm_lock);
5573 	return 0;
5574 }
5575 
5576 static int vcpu_stat_clear(void *_offset, u64 val)
5577 {
5578 	unsigned offset = (long)_offset;
5579 	struct kvm *kvm;
5580 
5581 	if (val)
5582 		return -EINVAL;
5583 
5584 	mutex_lock(&kvm_lock);
5585 	list_for_each_entry(kvm, &vm_list, vm_list) {
5586 		kvm_clear_stat_per_vcpu(kvm, offset);
5587 	}
5588 	mutex_unlock(&kvm_lock);
5589 
5590 	return 0;
5591 }
5592 
5593 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5594 			"%llu\n");
5595 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5596 
5597 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5598 {
5599 	struct kobj_uevent_env *env;
5600 	unsigned long long created, active;
5601 
5602 	if (!kvm_dev.this_device || !kvm)
5603 		return;
5604 
5605 	mutex_lock(&kvm_lock);
5606 	if (type == KVM_EVENT_CREATE_VM) {
5607 		kvm_createvm_count++;
5608 		kvm_active_vms++;
5609 	} else if (type == KVM_EVENT_DESTROY_VM) {
5610 		kvm_active_vms--;
5611 	}
5612 	created = kvm_createvm_count;
5613 	active = kvm_active_vms;
5614 	mutex_unlock(&kvm_lock);
5615 
5616 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5617 	if (!env)
5618 		return;
5619 
5620 	add_uevent_var(env, "CREATED=%llu", created);
5621 	add_uevent_var(env, "COUNT=%llu", active);
5622 
5623 	if (type == KVM_EVENT_CREATE_VM) {
5624 		add_uevent_var(env, "EVENT=create");
5625 		kvm->userspace_pid = task_pid_nr(current);
5626 	} else if (type == KVM_EVENT_DESTROY_VM) {
5627 		add_uevent_var(env, "EVENT=destroy");
5628 	}
5629 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5630 
5631 	if (!IS_ERR(kvm->debugfs_dentry)) {
5632 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5633 
5634 		if (p) {
5635 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5636 			if (!IS_ERR(tmp))
5637 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5638 			kfree(p);
5639 		}
5640 	}
5641 	/* no need for checks, since we are adding at most only 5 keys */
5642 	env->envp[env->envp_idx++] = NULL;
5643 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5644 	kfree(env);
5645 }
5646 
5647 static void kvm_init_debug(void)
5648 {
5649 	const struct file_operations *fops;
5650 	const struct _kvm_stats_desc *pdesc;
5651 	int i;
5652 
5653 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5654 
5655 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5656 		pdesc = &kvm_vm_stats_desc[i];
5657 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5658 			fops = &vm_stat_fops;
5659 		else
5660 			fops = &vm_stat_readonly_fops;
5661 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5662 				kvm_debugfs_dir,
5663 				(void *)(long)pdesc->desc.offset, fops);
5664 	}
5665 
5666 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5667 		pdesc = &kvm_vcpu_stats_desc[i];
5668 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5669 			fops = &vcpu_stat_fops;
5670 		else
5671 			fops = &vcpu_stat_readonly_fops;
5672 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5673 				kvm_debugfs_dir,
5674 				(void *)(long)pdesc->desc.offset, fops);
5675 	}
5676 }
5677 
5678 static int kvm_suspend(void)
5679 {
5680 	if (kvm_usage_count)
5681 		hardware_disable_nolock(NULL);
5682 	return 0;
5683 }
5684 
5685 static void kvm_resume(void)
5686 {
5687 	if (kvm_usage_count) {
5688 		lockdep_assert_not_held(&kvm_count_lock);
5689 		hardware_enable_nolock(NULL);
5690 	}
5691 }
5692 
5693 static struct syscore_ops kvm_syscore_ops = {
5694 	.suspend = kvm_suspend,
5695 	.resume = kvm_resume,
5696 };
5697 
5698 static inline
5699 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5700 {
5701 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5702 }
5703 
5704 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5705 {
5706 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5707 
5708 	WRITE_ONCE(vcpu->preempted, false);
5709 	WRITE_ONCE(vcpu->ready, false);
5710 
5711 	__this_cpu_write(kvm_running_vcpu, vcpu);
5712 	kvm_arch_sched_in(vcpu, cpu);
5713 	kvm_arch_vcpu_load(vcpu, cpu);
5714 }
5715 
5716 static void kvm_sched_out(struct preempt_notifier *pn,
5717 			  struct task_struct *next)
5718 {
5719 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5720 
5721 	if (current->on_rq) {
5722 		WRITE_ONCE(vcpu->preempted, true);
5723 		WRITE_ONCE(vcpu->ready, true);
5724 	}
5725 	kvm_arch_vcpu_put(vcpu);
5726 	__this_cpu_write(kvm_running_vcpu, NULL);
5727 }
5728 
5729 /**
5730  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5731  *
5732  * We can disable preemption locally around accessing the per-CPU variable,
5733  * and use the resolved vcpu pointer after enabling preemption again,
5734  * because even if the current thread is migrated to another CPU, reading
5735  * the per-CPU value later will give us the same value as we update the
5736  * per-CPU variable in the preempt notifier handlers.
5737  */
5738 struct kvm_vcpu *kvm_get_running_vcpu(void)
5739 {
5740 	struct kvm_vcpu *vcpu;
5741 
5742 	preempt_disable();
5743 	vcpu = __this_cpu_read(kvm_running_vcpu);
5744 	preempt_enable();
5745 
5746 	return vcpu;
5747 }
5748 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5749 
5750 /**
5751  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5752  */
5753 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5754 {
5755         return &kvm_running_vcpu;
5756 }
5757 
5758 #ifdef CONFIG_GUEST_PERF_EVENTS
5759 static unsigned int kvm_guest_state(void)
5760 {
5761 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5762 	unsigned int state;
5763 
5764 	if (!kvm_arch_pmi_in_guest(vcpu))
5765 		return 0;
5766 
5767 	state = PERF_GUEST_ACTIVE;
5768 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5769 		state |= PERF_GUEST_USER;
5770 
5771 	return state;
5772 }
5773 
5774 static unsigned long kvm_guest_get_ip(void)
5775 {
5776 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5777 
5778 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5779 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5780 		return 0;
5781 
5782 	return kvm_arch_vcpu_get_ip(vcpu);
5783 }
5784 
5785 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5786 	.state			= kvm_guest_state,
5787 	.get_ip			= kvm_guest_get_ip,
5788 	.handle_intel_pt_intr	= NULL,
5789 };
5790 
5791 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5792 {
5793 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5794 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5795 }
5796 void kvm_unregister_perf_callbacks(void)
5797 {
5798 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5799 }
5800 #endif
5801 
5802 struct kvm_cpu_compat_check {
5803 	void *opaque;
5804 	int *ret;
5805 };
5806 
5807 static void check_processor_compat(void *data)
5808 {
5809 	struct kvm_cpu_compat_check *c = data;
5810 
5811 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5812 }
5813 
5814 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5815 		  struct module *module)
5816 {
5817 	struct kvm_cpu_compat_check c;
5818 	int r;
5819 	int cpu;
5820 
5821 	r = kvm_arch_init(opaque);
5822 	if (r)
5823 		goto out_fail;
5824 
5825 	/*
5826 	 * kvm_arch_init makes sure there's at most one caller
5827 	 * for architectures that support multiple implementations,
5828 	 * like intel and amd on x86.
5829 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5830 	 * conflicts in case kvm is already setup for another implementation.
5831 	 */
5832 	r = kvm_irqfd_init();
5833 	if (r)
5834 		goto out_irqfd;
5835 
5836 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5837 		r = -ENOMEM;
5838 		goto out_free_0;
5839 	}
5840 
5841 	r = kvm_arch_hardware_setup(opaque);
5842 	if (r < 0)
5843 		goto out_free_1;
5844 
5845 	c.ret = &r;
5846 	c.opaque = opaque;
5847 	for_each_online_cpu(cpu) {
5848 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5849 		if (r < 0)
5850 			goto out_free_2;
5851 	}
5852 
5853 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5854 				      kvm_starting_cpu, kvm_dying_cpu);
5855 	if (r)
5856 		goto out_free_2;
5857 	register_reboot_notifier(&kvm_reboot_notifier);
5858 
5859 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5860 	if (!vcpu_align)
5861 		vcpu_align = __alignof__(struct kvm_vcpu);
5862 	kvm_vcpu_cache =
5863 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5864 					   SLAB_ACCOUNT,
5865 					   offsetof(struct kvm_vcpu, arch),
5866 					   offsetofend(struct kvm_vcpu, stats_id)
5867 					   - offsetof(struct kvm_vcpu, arch),
5868 					   NULL);
5869 	if (!kvm_vcpu_cache) {
5870 		r = -ENOMEM;
5871 		goto out_free_3;
5872 	}
5873 
5874 	for_each_possible_cpu(cpu) {
5875 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5876 					    GFP_KERNEL, cpu_to_node(cpu))) {
5877 			r = -ENOMEM;
5878 			goto out_free_4;
5879 		}
5880 	}
5881 
5882 	r = kvm_async_pf_init();
5883 	if (r)
5884 		goto out_free_5;
5885 
5886 	kvm_chardev_ops.owner = module;
5887 
5888 	r = misc_register(&kvm_dev);
5889 	if (r) {
5890 		pr_err("kvm: misc device register failed\n");
5891 		goto out_unreg;
5892 	}
5893 
5894 	register_syscore_ops(&kvm_syscore_ops);
5895 
5896 	kvm_preempt_ops.sched_in = kvm_sched_in;
5897 	kvm_preempt_ops.sched_out = kvm_sched_out;
5898 
5899 	kvm_init_debug();
5900 
5901 	r = kvm_vfio_ops_init();
5902 	WARN_ON(r);
5903 
5904 	return 0;
5905 
5906 out_unreg:
5907 	kvm_async_pf_deinit();
5908 out_free_5:
5909 	for_each_possible_cpu(cpu)
5910 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5911 out_free_4:
5912 	kmem_cache_destroy(kvm_vcpu_cache);
5913 out_free_3:
5914 	unregister_reboot_notifier(&kvm_reboot_notifier);
5915 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5916 out_free_2:
5917 	kvm_arch_hardware_unsetup();
5918 out_free_1:
5919 	free_cpumask_var(cpus_hardware_enabled);
5920 out_free_0:
5921 	kvm_irqfd_exit();
5922 out_irqfd:
5923 	kvm_arch_exit();
5924 out_fail:
5925 	return r;
5926 }
5927 EXPORT_SYMBOL_GPL(kvm_init);
5928 
5929 void kvm_exit(void)
5930 {
5931 	int cpu;
5932 
5933 	debugfs_remove_recursive(kvm_debugfs_dir);
5934 	misc_deregister(&kvm_dev);
5935 	for_each_possible_cpu(cpu)
5936 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5937 	kmem_cache_destroy(kvm_vcpu_cache);
5938 	kvm_async_pf_deinit();
5939 	unregister_syscore_ops(&kvm_syscore_ops);
5940 	unregister_reboot_notifier(&kvm_reboot_notifier);
5941 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5942 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5943 	kvm_arch_hardware_unsetup();
5944 	kvm_arch_exit();
5945 	kvm_irqfd_exit();
5946 	free_cpumask_var(cpus_hardware_enabled);
5947 	kvm_vfio_ops_exit();
5948 }
5949 EXPORT_SYMBOL_GPL(kvm_exit);
5950 
5951 struct kvm_vm_worker_thread_context {
5952 	struct kvm *kvm;
5953 	struct task_struct *parent;
5954 	struct completion init_done;
5955 	kvm_vm_thread_fn_t thread_fn;
5956 	uintptr_t data;
5957 	int err;
5958 };
5959 
5960 static int kvm_vm_worker_thread(void *context)
5961 {
5962 	/*
5963 	 * The init_context is allocated on the stack of the parent thread, so
5964 	 * we have to locally copy anything that is needed beyond initialization
5965 	 */
5966 	struct kvm_vm_worker_thread_context *init_context = context;
5967 	struct task_struct *parent;
5968 	struct kvm *kvm = init_context->kvm;
5969 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5970 	uintptr_t data = init_context->data;
5971 	int err;
5972 
5973 	err = kthread_park(current);
5974 	/* kthread_park(current) is never supposed to return an error */
5975 	WARN_ON(err != 0);
5976 	if (err)
5977 		goto init_complete;
5978 
5979 	err = cgroup_attach_task_all(init_context->parent, current);
5980 	if (err) {
5981 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5982 			__func__, err);
5983 		goto init_complete;
5984 	}
5985 
5986 	set_user_nice(current, task_nice(init_context->parent));
5987 
5988 init_complete:
5989 	init_context->err = err;
5990 	complete(&init_context->init_done);
5991 	init_context = NULL;
5992 
5993 	if (err)
5994 		goto out;
5995 
5996 	/* Wait to be woken up by the spawner before proceeding. */
5997 	kthread_parkme();
5998 
5999 	if (!kthread_should_stop())
6000 		err = thread_fn(kvm, data);
6001 
6002 out:
6003 	/*
6004 	 * Move kthread back to its original cgroup to prevent it lingering in
6005 	 * the cgroup of the VM process, after the latter finishes its
6006 	 * execution.
6007 	 *
6008 	 * kthread_stop() waits on the 'exited' completion condition which is
6009 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6010 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6011 	 * called after the exit_mm(). This causes the kthread_stop() to return
6012 	 * before the kthread actually quits the cgroup.
6013 	 */
6014 	rcu_read_lock();
6015 	parent = rcu_dereference(current->real_parent);
6016 	get_task_struct(parent);
6017 	rcu_read_unlock();
6018 	cgroup_attach_task_all(parent, current);
6019 	put_task_struct(parent);
6020 
6021 	return err;
6022 }
6023 
6024 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6025 				uintptr_t data, const char *name,
6026 				struct task_struct **thread_ptr)
6027 {
6028 	struct kvm_vm_worker_thread_context init_context = {};
6029 	struct task_struct *thread;
6030 
6031 	*thread_ptr = NULL;
6032 	init_context.kvm = kvm;
6033 	init_context.parent = current;
6034 	init_context.thread_fn = thread_fn;
6035 	init_context.data = data;
6036 	init_completion(&init_context.init_done);
6037 
6038 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6039 			     "%s-%d", name, task_pid_nr(current));
6040 	if (IS_ERR(thread))
6041 		return PTR_ERR(thread);
6042 
6043 	/* kthread_run is never supposed to return NULL */
6044 	WARN_ON(thread == NULL);
6045 
6046 	wait_for_completion(&init_context.init_done);
6047 
6048 	if (!init_context.err)
6049 		*thread_ptr = thread;
6050 
6051 	return init_context.err;
6052 }
6053