xref: /openbmc/linux/virt/kvm/kvm_main.c (revision f2a89d3b)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79 
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83 
84 /*
85  * Ordering of locks:
86  *
87  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89 
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93 
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97 
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100 
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102 
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105 
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108 
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 			   unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 				  unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117 
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119 
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122 
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125 
126 static bool largepages_enabled = true;
127 
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 	if (pfn_valid(pfn))
131 		return PageReserved(pfn_to_page(pfn));
132 
133 	return true;
134 }
135 
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 	int cpu;
142 
143 	if (mutex_lock_killable(&vcpu->mutex))
144 		return -EINTR;
145 	cpu = get_cpu();
146 	preempt_notifier_register(&vcpu->preempt_notifier);
147 	kvm_arch_vcpu_load(vcpu, cpu);
148 	put_cpu();
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152 
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162 
163 static void ack_flush(void *_completed)
164 {
165 }
166 
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 	int i, cpu, me;
170 	cpumask_var_t cpus;
171 	bool called = true;
172 	struct kvm_vcpu *vcpu;
173 
174 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175 
176 	me = get_cpu();
177 	kvm_for_each_vcpu(i, vcpu, kvm) {
178 		kvm_make_request(req, vcpu);
179 		cpu = vcpu->cpu;
180 
181 		/* Set ->requests bit before we read ->mode. */
182 		smp_mb__after_atomic();
183 
184 		if (cpus != NULL && cpu != -1 && cpu != me &&
185 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 			cpumask_set_cpu(cpu, cpus);
187 	}
188 	if (unlikely(cpus == NULL))
189 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 	else if (!cpumask_empty(cpus))
191 		smp_call_function_many(cpus, ack_flush, NULL, 1);
192 	else
193 		called = false;
194 	put_cpu();
195 	free_cpumask_var(cpus);
196 	return called;
197 }
198 
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	/*
203 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 	 * kvm_make_all_cpus_request.
205 	 */
206 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207 
208 	/*
209 	 * We want to publish modifications to the page tables before reading
210 	 * mode. Pairs with a memory barrier in arch-specific code.
211 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 	 *
215 	 * There is already an smp_mb__after_atomic() before
216 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 	 * barrier here.
218 	 */
219 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 		++kvm->stat.remote_tlb_flush;
221 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225 
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230 
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 	struct page *page;
234 	int r;
235 
236 	mutex_init(&vcpu->mutex);
237 	vcpu->cpu = -1;
238 	vcpu->kvm = kvm;
239 	vcpu->vcpu_id = id;
240 	vcpu->pid = NULL;
241 	init_swait_queue_head(&vcpu->wq);
242 	kvm_async_pf_vcpu_init(vcpu);
243 
244 	vcpu->pre_pcpu = -1;
245 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246 
247 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 	if (!page) {
249 		r = -ENOMEM;
250 		goto fail;
251 	}
252 	vcpu->run = page_address(page);
253 
254 	kvm_vcpu_set_in_spin_loop(vcpu, false);
255 	kvm_vcpu_set_dy_eligible(vcpu, false);
256 	vcpu->preempted = false;
257 
258 	r = kvm_arch_vcpu_init(vcpu);
259 	if (r < 0)
260 		goto fail_free_run;
261 	return 0;
262 
263 fail_free_run:
264 	free_page((unsigned long)vcpu->run);
265 fail:
266 	return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269 
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 	put_pid(vcpu->pid);
273 	kvm_arch_vcpu_uninit(vcpu);
274 	free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277 
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 	return container_of(mn, struct kvm, mmu_notifier);
282 }
283 
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 					     struct mm_struct *mm,
286 					     unsigned long address)
287 {
288 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 	int need_tlb_flush, idx;
290 
291 	/*
292 	 * When ->invalidate_page runs, the linux pte has been zapped
293 	 * already but the page is still allocated until
294 	 * ->invalidate_page returns. So if we increase the sequence
295 	 * here the kvm page fault will notice if the spte can't be
296 	 * established because the page is going to be freed. If
297 	 * instead the kvm page fault establishes the spte before
298 	 * ->invalidate_page runs, kvm_unmap_hva will release it
299 	 * before returning.
300 	 *
301 	 * The sequence increase only need to be seen at spin_unlock
302 	 * time, and not at spin_lock time.
303 	 *
304 	 * Increasing the sequence after the spin_unlock would be
305 	 * unsafe because the kvm page fault could then establish the
306 	 * pte after kvm_unmap_hva returned, without noticing the page
307 	 * is going to be freed.
308 	 */
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 
312 	kvm->mmu_notifier_seq++;
313 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 	/* we've to flush the tlb before the pages can be freed */
315 	if (need_tlb_flush)
316 		kvm_flush_remote_tlbs(kvm);
317 
318 	spin_unlock(&kvm->mmu_lock);
319 
320 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321 
322 	srcu_read_unlock(&kvm->srcu, idx);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
473 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
474 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
475 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
476 	.clear_young		= kvm_mmu_notifier_clear_young,
477 	.test_young		= kvm_mmu_notifier_test_young,
478 	.change_pte		= kvm_mmu_notifier_change_pte,
479 	.release		= kvm_mmu_notifier_release,
480 };
481 
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487 
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489 
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 	return 0;
493 }
494 
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496 
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 	int i;
500 	struct kvm_memslots *slots;
501 
502 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 	if (!slots)
504 		return NULL;
505 
506 	/*
507 	 * Init kvm generation close to the maximum to easily test the
508 	 * code of handling generation number wrap-around.
509 	 */
510 	slots->generation = -150;
511 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 		slots->id_to_index[i] = slots->memslots[i].id = i;
513 
514 	return slots;
515 }
516 
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 	if (!memslot->dirty_bitmap)
520 		return;
521 
522 	kvfree(memslot->dirty_bitmap);
523 	memslot->dirty_bitmap = NULL;
524 }
525 
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 			      struct kvm_memory_slot *dont)
531 {
532 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 		kvm_destroy_dirty_bitmap(free);
534 
535 	kvm_arch_free_memslot(kvm, free, dont);
536 
537 	free->npages = 0;
538 }
539 
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 	struct kvm_memory_slot *memslot;
543 
544 	if (!slots)
545 		return;
546 
547 	kvm_for_each_memslot(memslot, slots)
548 		kvm_free_memslot(kvm, memslot, NULL);
549 
550 	kvfree(slots);
551 }
552 
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 	int i;
556 
557 	if (!kvm->debugfs_dentry)
558 		return;
559 
560 	debugfs_remove_recursive(kvm->debugfs_dentry);
561 
562 	for (i = 0; i < kvm_debugfs_num_entries; i++)
563 		kfree(kvm->debugfs_stat_data[i]);
564 	kfree(kvm->debugfs_stat_data);
565 }
566 
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569 	char dir_name[ITOA_MAX_LEN * 2];
570 	struct kvm_stat_data *stat_data;
571 	struct kvm_stats_debugfs_item *p;
572 
573 	if (!debugfs_initialized())
574 		return 0;
575 
576 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578 						 kvm_debugfs_dir);
579 	if (!kvm->debugfs_dentry)
580 		return -ENOMEM;
581 
582 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583 					 sizeof(*kvm->debugfs_stat_data),
584 					 GFP_KERNEL);
585 	if (!kvm->debugfs_stat_data)
586 		return -ENOMEM;
587 
588 	for (p = debugfs_entries; p->name; p++) {
589 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590 		if (!stat_data)
591 			return -ENOMEM;
592 
593 		stat_data->kvm = kvm;
594 		stat_data->offset = p->offset;
595 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596 		if (!debugfs_create_file(p->name, 0444,
597 					 kvm->debugfs_dentry,
598 					 stat_data,
599 					 stat_fops_per_vm[p->kind]))
600 			return -ENOMEM;
601 	}
602 	return 0;
603 }
604 
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607 	int r, i;
608 	struct kvm *kvm = kvm_arch_alloc_vm();
609 
610 	if (!kvm)
611 		return ERR_PTR(-ENOMEM);
612 
613 	spin_lock_init(&kvm->mmu_lock);
614 	atomic_inc(&current->mm->mm_count);
615 	kvm->mm = current->mm;
616 	kvm_eventfd_init(kvm);
617 	mutex_init(&kvm->lock);
618 	mutex_init(&kvm->irq_lock);
619 	mutex_init(&kvm->slots_lock);
620 	atomic_set(&kvm->users_count, 1);
621 	INIT_LIST_HEAD(&kvm->devices);
622 
623 	r = kvm_arch_init_vm(kvm, type);
624 	if (r)
625 		goto out_err_no_disable;
626 
627 	r = hardware_enable_all();
628 	if (r)
629 		goto out_err_no_disable;
630 
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634 
635 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636 
637 	r = -ENOMEM;
638 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639 		kvm->memslots[i] = kvm_alloc_memslots();
640 		if (!kvm->memslots[i])
641 			goto out_err_no_srcu;
642 	}
643 
644 	if (init_srcu_struct(&kvm->srcu))
645 		goto out_err_no_srcu;
646 	if (init_srcu_struct(&kvm->irq_srcu))
647 		goto out_err_no_irq_srcu;
648 	for (i = 0; i < KVM_NR_BUSES; i++) {
649 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
650 					GFP_KERNEL);
651 		if (!kvm->buses[i])
652 			goto out_err;
653 	}
654 
655 	r = kvm_init_mmu_notifier(kvm);
656 	if (r)
657 		goto out_err;
658 
659 	spin_lock(&kvm_lock);
660 	list_add(&kvm->vm_list, &vm_list);
661 	spin_unlock(&kvm_lock);
662 
663 	preempt_notifier_inc();
664 
665 	return kvm;
666 
667 out_err:
668 	cleanup_srcu_struct(&kvm->irq_srcu);
669 out_err_no_irq_srcu:
670 	cleanup_srcu_struct(&kvm->srcu);
671 out_err_no_srcu:
672 	hardware_disable_all();
673 out_err_no_disable:
674 	for (i = 0; i < KVM_NR_BUSES; i++)
675 		kfree(kvm->buses[i]);
676 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677 		kvm_free_memslots(kvm, kvm->memslots[i]);
678 	kvm_arch_free_vm(kvm);
679 	mmdrop(current->mm);
680 	return ERR_PTR(r);
681 }
682 
683 /*
684  * Avoid using vmalloc for a small buffer.
685  * Should not be used when the size is statically known.
686  */
687 void *kvm_kvzalloc(unsigned long size)
688 {
689 	if (size > PAGE_SIZE)
690 		return vzalloc(size);
691 	else
692 		return kzalloc(size, GFP_KERNEL);
693 }
694 
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697 	struct kvm_device *dev, *tmp;
698 
699 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
700 		list_del(&dev->vm_node);
701 		dev->ops->destroy(dev);
702 	}
703 }
704 
705 static void kvm_destroy_vm(struct kvm *kvm)
706 {
707 	int i;
708 	struct mm_struct *mm = kvm->mm;
709 
710 	kvm_destroy_vm_debugfs(kvm);
711 	kvm_arch_sync_events(kvm);
712 	spin_lock(&kvm_lock);
713 	list_del(&kvm->vm_list);
714 	spin_unlock(&kvm_lock);
715 	kvm_free_irq_routing(kvm);
716 	for (i = 0; i < KVM_NR_BUSES; i++)
717 		kvm_io_bus_destroy(kvm->buses[i]);
718 	kvm_coalesced_mmio_free(kvm);
719 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
720 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
721 #else
722 	kvm_arch_flush_shadow_all(kvm);
723 #endif
724 	kvm_arch_destroy_vm(kvm);
725 	kvm_destroy_devices(kvm);
726 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
727 		kvm_free_memslots(kvm, kvm->memslots[i]);
728 	cleanup_srcu_struct(&kvm->irq_srcu);
729 	cleanup_srcu_struct(&kvm->srcu);
730 	kvm_arch_free_vm(kvm);
731 	preempt_notifier_dec();
732 	hardware_disable_all();
733 	mmdrop(mm);
734 }
735 
736 void kvm_get_kvm(struct kvm *kvm)
737 {
738 	atomic_inc(&kvm->users_count);
739 }
740 EXPORT_SYMBOL_GPL(kvm_get_kvm);
741 
742 void kvm_put_kvm(struct kvm *kvm)
743 {
744 	if (atomic_dec_and_test(&kvm->users_count))
745 		kvm_destroy_vm(kvm);
746 }
747 EXPORT_SYMBOL_GPL(kvm_put_kvm);
748 
749 
750 static int kvm_vm_release(struct inode *inode, struct file *filp)
751 {
752 	struct kvm *kvm = filp->private_data;
753 
754 	kvm_irqfd_release(kvm);
755 
756 	kvm_put_kvm(kvm);
757 	return 0;
758 }
759 
760 /*
761  * Allocation size is twice as large as the actual dirty bitmap size.
762  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
763  */
764 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
765 {
766 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
767 
768 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
769 	if (!memslot->dirty_bitmap)
770 		return -ENOMEM;
771 
772 	return 0;
773 }
774 
775 /*
776  * Insert memslot and re-sort memslots based on their GFN,
777  * so binary search could be used to lookup GFN.
778  * Sorting algorithm takes advantage of having initially
779  * sorted array and known changed memslot position.
780  */
781 static void update_memslots(struct kvm_memslots *slots,
782 			    struct kvm_memory_slot *new)
783 {
784 	int id = new->id;
785 	int i = slots->id_to_index[id];
786 	struct kvm_memory_slot *mslots = slots->memslots;
787 
788 	WARN_ON(mslots[i].id != id);
789 	if (!new->npages) {
790 		WARN_ON(!mslots[i].npages);
791 		if (mslots[i].npages)
792 			slots->used_slots--;
793 	} else {
794 		if (!mslots[i].npages)
795 			slots->used_slots++;
796 	}
797 
798 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
799 	       new->base_gfn <= mslots[i + 1].base_gfn) {
800 		if (!mslots[i + 1].npages)
801 			break;
802 		mslots[i] = mslots[i + 1];
803 		slots->id_to_index[mslots[i].id] = i;
804 		i++;
805 	}
806 
807 	/*
808 	 * The ">=" is needed when creating a slot with base_gfn == 0,
809 	 * so that it moves before all those with base_gfn == npages == 0.
810 	 *
811 	 * On the other hand, if new->npages is zero, the above loop has
812 	 * already left i pointing to the beginning of the empty part of
813 	 * mslots, and the ">=" would move the hole backwards in this
814 	 * case---which is wrong.  So skip the loop when deleting a slot.
815 	 */
816 	if (new->npages) {
817 		while (i > 0 &&
818 		       new->base_gfn >= mslots[i - 1].base_gfn) {
819 			mslots[i] = mslots[i - 1];
820 			slots->id_to_index[mslots[i].id] = i;
821 			i--;
822 		}
823 	} else
824 		WARN_ON_ONCE(i != slots->used_slots);
825 
826 	mslots[i] = *new;
827 	slots->id_to_index[mslots[i].id] = i;
828 }
829 
830 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
831 {
832 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
833 
834 #ifdef __KVM_HAVE_READONLY_MEM
835 	valid_flags |= KVM_MEM_READONLY;
836 #endif
837 
838 	if (mem->flags & ~valid_flags)
839 		return -EINVAL;
840 
841 	return 0;
842 }
843 
844 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
845 		int as_id, struct kvm_memslots *slots)
846 {
847 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
848 
849 	/*
850 	 * Set the low bit in the generation, which disables SPTE caching
851 	 * until the end of synchronize_srcu_expedited.
852 	 */
853 	WARN_ON(old_memslots->generation & 1);
854 	slots->generation = old_memslots->generation + 1;
855 
856 	rcu_assign_pointer(kvm->memslots[as_id], slots);
857 	synchronize_srcu_expedited(&kvm->srcu);
858 
859 	/*
860 	 * Increment the new memslot generation a second time. This prevents
861 	 * vm exits that race with memslot updates from caching a memslot
862 	 * generation that will (potentially) be valid forever.
863 	 */
864 	slots->generation++;
865 
866 	kvm_arch_memslots_updated(kvm, slots);
867 
868 	return old_memslots;
869 }
870 
871 /*
872  * Allocate some memory and give it an address in the guest physical address
873  * space.
874  *
875  * Discontiguous memory is allowed, mostly for framebuffers.
876  *
877  * Must be called holding kvm->slots_lock for write.
878  */
879 int __kvm_set_memory_region(struct kvm *kvm,
880 			    const struct kvm_userspace_memory_region *mem)
881 {
882 	int r;
883 	gfn_t base_gfn;
884 	unsigned long npages;
885 	struct kvm_memory_slot *slot;
886 	struct kvm_memory_slot old, new;
887 	struct kvm_memslots *slots = NULL, *old_memslots;
888 	int as_id, id;
889 	enum kvm_mr_change change;
890 
891 	r = check_memory_region_flags(mem);
892 	if (r)
893 		goto out;
894 
895 	r = -EINVAL;
896 	as_id = mem->slot >> 16;
897 	id = (u16)mem->slot;
898 
899 	/* General sanity checks */
900 	if (mem->memory_size & (PAGE_SIZE - 1))
901 		goto out;
902 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
903 		goto out;
904 	/* We can read the guest memory with __xxx_user() later on. */
905 	if ((id < KVM_USER_MEM_SLOTS) &&
906 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
907 	     !access_ok(VERIFY_WRITE,
908 			(void __user *)(unsigned long)mem->userspace_addr,
909 			mem->memory_size)))
910 		goto out;
911 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
912 		goto out;
913 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
914 		goto out;
915 
916 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
917 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
918 	npages = mem->memory_size >> PAGE_SHIFT;
919 
920 	if (npages > KVM_MEM_MAX_NR_PAGES)
921 		goto out;
922 
923 	new = old = *slot;
924 
925 	new.id = id;
926 	new.base_gfn = base_gfn;
927 	new.npages = npages;
928 	new.flags = mem->flags;
929 
930 	if (npages) {
931 		if (!old.npages)
932 			change = KVM_MR_CREATE;
933 		else { /* Modify an existing slot. */
934 			if ((mem->userspace_addr != old.userspace_addr) ||
935 			    (npages != old.npages) ||
936 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
937 				goto out;
938 
939 			if (base_gfn != old.base_gfn)
940 				change = KVM_MR_MOVE;
941 			else if (new.flags != old.flags)
942 				change = KVM_MR_FLAGS_ONLY;
943 			else { /* Nothing to change. */
944 				r = 0;
945 				goto out;
946 			}
947 		}
948 	} else {
949 		if (!old.npages)
950 			goto out;
951 
952 		change = KVM_MR_DELETE;
953 		new.base_gfn = 0;
954 		new.flags = 0;
955 	}
956 
957 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
958 		/* Check for overlaps */
959 		r = -EEXIST;
960 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
961 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
962 			    (slot->id == id))
963 				continue;
964 			if (!((base_gfn + npages <= slot->base_gfn) ||
965 			      (base_gfn >= slot->base_gfn + slot->npages)))
966 				goto out;
967 		}
968 	}
969 
970 	/* Free page dirty bitmap if unneeded */
971 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
972 		new.dirty_bitmap = NULL;
973 
974 	r = -ENOMEM;
975 	if (change == KVM_MR_CREATE) {
976 		new.userspace_addr = mem->userspace_addr;
977 
978 		if (kvm_arch_create_memslot(kvm, &new, npages))
979 			goto out_free;
980 	}
981 
982 	/* Allocate page dirty bitmap if needed */
983 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
984 		if (kvm_create_dirty_bitmap(&new) < 0)
985 			goto out_free;
986 	}
987 
988 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
989 	if (!slots)
990 		goto out_free;
991 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
992 
993 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
994 		slot = id_to_memslot(slots, id);
995 		slot->flags |= KVM_MEMSLOT_INVALID;
996 
997 		old_memslots = install_new_memslots(kvm, as_id, slots);
998 
999 		/* slot was deleted or moved, clear iommu mapping */
1000 		kvm_iommu_unmap_pages(kvm, &old);
1001 		/* From this point no new shadow pages pointing to a deleted,
1002 		 * or moved, memslot will be created.
1003 		 *
1004 		 * validation of sp->gfn happens in:
1005 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1006 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1007 		 */
1008 		kvm_arch_flush_shadow_memslot(kvm, slot);
1009 
1010 		/*
1011 		 * We can re-use the old_memslots from above, the only difference
1012 		 * from the currently installed memslots is the invalid flag.  This
1013 		 * will get overwritten by update_memslots anyway.
1014 		 */
1015 		slots = old_memslots;
1016 	}
1017 
1018 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1019 	if (r)
1020 		goto out_slots;
1021 
1022 	/* actual memory is freed via old in kvm_free_memslot below */
1023 	if (change == KVM_MR_DELETE) {
1024 		new.dirty_bitmap = NULL;
1025 		memset(&new.arch, 0, sizeof(new.arch));
1026 	}
1027 
1028 	update_memslots(slots, &new);
1029 	old_memslots = install_new_memslots(kvm, as_id, slots);
1030 
1031 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1032 
1033 	kvm_free_memslot(kvm, &old, &new);
1034 	kvfree(old_memslots);
1035 
1036 	/*
1037 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1038 	 * un-mapped and re-mapped if their base changes.  Since base change
1039 	 * unmapping is handled above with slot deletion, mapping alone is
1040 	 * needed here.  Anything else the iommu might care about for existing
1041 	 * slots (size changes, userspace addr changes and read-only flag
1042 	 * changes) is disallowed above, so any other attribute changes getting
1043 	 * here can be skipped.
1044 	 */
1045 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1046 		r = kvm_iommu_map_pages(kvm, &new);
1047 		return r;
1048 	}
1049 
1050 	return 0;
1051 
1052 out_slots:
1053 	kvfree(slots);
1054 out_free:
1055 	kvm_free_memslot(kvm, &new, &old);
1056 out:
1057 	return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060 
1061 int kvm_set_memory_region(struct kvm *kvm,
1062 			  const struct kvm_userspace_memory_region *mem)
1063 {
1064 	int r;
1065 
1066 	mutex_lock(&kvm->slots_lock);
1067 	r = __kvm_set_memory_region(kvm, mem);
1068 	mutex_unlock(&kvm->slots_lock);
1069 	return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072 
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074 					  struct kvm_userspace_memory_region *mem)
1075 {
1076 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077 		return -EINVAL;
1078 
1079 	return kvm_set_memory_region(kvm, mem);
1080 }
1081 
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083 			struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085 	struct kvm_memslots *slots;
1086 	struct kvm_memory_slot *memslot;
1087 	int r, i, as_id, id;
1088 	unsigned long n;
1089 	unsigned long any = 0;
1090 
1091 	r = -EINVAL;
1092 	as_id = log->slot >> 16;
1093 	id = (u16)log->slot;
1094 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1095 		goto out;
1096 
1097 	slots = __kvm_memslots(kvm, as_id);
1098 	memslot = id_to_memslot(slots, id);
1099 	r = -ENOENT;
1100 	if (!memslot->dirty_bitmap)
1101 		goto out;
1102 
1103 	n = kvm_dirty_bitmap_bytes(memslot);
1104 
1105 	for (i = 0; !any && i < n/sizeof(long); ++i)
1106 		any = memslot->dirty_bitmap[i];
1107 
1108 	r = -EFAULT;
1109 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1110 		goto out;
1111 
1112 	if (any)
1113 		*is_dirty = 1;
1114 
1115 	r = 0;
1116 out:
1117 	return r;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1120 
1121 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1122 /**
1123  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1124  *	are dirty write protect them for next write.
1125  * @kvm:	pointer to kvm instance
1126  * @log:	slot id and address to which we copy the log
1127  * @is_dirty:	flag set if any page is dirty
1128  *
1129  * We need to keep it in mind that VCPU threads can write to the bitmap
1130  * concurrently. So, to avoid losing track of dirty pages we keep the
1131  * following order:
1132  *
1133  *    1. Take a snapshot of the bit and clear it if needed.
1134  *    2. Write protect the corresponding page.
1135  *    3. Copy the snapshot to the userspace.
1136  *    4. Upon return caller flushes TLB's if needed.
1137  *
1138  * Between 2 and 4, the guest may write to the page using the remaining TLB
1139  * entry.  This is not a problem because the page is reported dirty using
1140  * the snapshot taken before and step 4 ensures that writes done after
1141  * exiting to userspace will be logged for the next call.
1142  *
1143  */
1144 int kvm_get_dirty_log_protect(struct kvm *kvm,
1145 			struct kvm_dirty_log *log, bool *is_dirty)
1146 {
1147 	struct kvm_memslots *slots;
1148 	struct kvm_memory_slot *memslot;
1149 	int r, i, as_id, id;
1150 	unsigned long n;
1151 	unsigned long *dirty_bitmap;
1152 	unsigned long *dirty_bitmap_buffer;
1153 
1154 	r = -EINVAL;
1155 	as_id = log->slot >> 16;
1156 	id = (u16)log->slot;
1157 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1158 		goto out;
1159 
1160 	slots = __kvm_memslots(kvm, as_id);
1161 	memslot = id_to_memslot(slots, id);
1162 
1163 	dirty_bitmap = memslot->dirty_bitmap;
1164 	r = -ENOENT;
1165 	if (!dirty_bitmap)
1166 		goto out;
1167 
1168 	n = kvm_dirty_bitmap_bytes(memslot);
1169 
1170 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1171 	memset(dirty_bitmap_buffer, 0, n);
1172 
1173 	spin_lock(&kvm->mmu_lock);
1174 	*is_dirty = false;
1175 	for (i = 0; i < n / sizeof(long); i++) {
1176 		unsigned long mask;
1177 		gfn_t offset;
1178 
1179 		if (!dirty_bitmap[i])
1180 			continue;
1181 
1182 		*is_dirty = true;
1183 
1184 		mask = xchg(&dirty_bitmap[i], 0);
1185 		dirty_bitmap_buffer[i] = mask;
1186 
1187 		if (mask) {
1188 			offset = i * BITS_PER_LONG;
1189 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1190 								offset, mask);
1191 		}
1192 	}
1193 
1194 	spin_unlock(&kvm->mmu_lock);
1195 
1196 	r = -EFAULT;
1197 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198 		goto out;
1199 
1200 	r = 0;
1201 out:
1202 	return r;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1205 #endif
1206 
1207 bool kvm_largepages_enabled(void)
1208 {
1209 	return largepages_enabled;
1210 }
1211 
1212 void kvm_disable_largepages(void)
1213 {
1214 	largepages_enabled = false;
1215 }
1216 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1217 
1218 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1219 {
1220 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1221 }
1222 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1223 
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1225 {
1226 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1227 }
1228 
1229 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1230 {
1231 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1232 
1233 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1234 	      memslot->flags & KVM_MEMSLOT_INVALID)
1235 		return false;
1236 
1237 	return true;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240 
1241 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1242 {
1243 	struct vm_area_struct *vma;
1244 	unsigned long addr, size;
1245 
1246 	size = PAGE_SIZE;
1247 
1248 	addr = gfn_to_hva(kvm, gfn);
1249 	if (kvm_is_error_hva(addr))
1250 		return PAGE_SIZE;
1251 
1252 	down_read(&current->mm->mmap_sem);
1253 	vma = find_vma(current->mm, addr);
1254 	if (!vma)
1255 		goto out;
1256 
1257 	size = vma_kernel_pagesize(vma);
1258 
1259 out:
1260 	up_read(&current->mm->mmap_sem);
1261 
1262 	return size;
1263 }
1264 
1265 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1266 {
1267 	return slot->flags & KVM_MEM_READONLY;
1268 }
1269 
1270 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1271 				       gfn_t *nr_pages, bool write)
1272 {
1273 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1274 		return KVM_HVA_ERR_BAD;
1275 
1276 	if (memslot_is_readonly(slot) && write)
1277 		return KVM_HVA_ERR_RO_BAD;
1278 
1279 	if (nr_pages)
1280 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1281 
1282 	return __gfn_to_hva_memslot(slot, gfn);
1283 }
1284 
1285 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1286 				     gfn_t *nr_pages)
1287 {
1288 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1289 }
1290 
1291 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1292 					gfn_t gfn)
1293 {
1294 	return gfn_to_hva_many(slot, gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1297 
1298 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1299 {
1300 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva);
1303 
1304 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1309 
1310 /*
1311  * If writable is set to false, the hva returned by this function is only
1312  * allowed to be read.
1313  */
1314 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1315 				      gfn_t gfn, bool *writable)
1316 {
1317 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1318 
1319 	if (!kvm_is_error_hva(hva) && writable)
1320 		*writable = !memslot_is_readonly(slot);
1321 
1322 	return hva;
1323 }
1324 
1325 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1326 {
1327 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1328 
1329 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1330 }
1331 
1332 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1333 {
1334 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1335 
1336 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338 
1339 static int get_user_page_nowait(unsigned long start, int write,
1340 		struct page **page)
1341 {
1342 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1343 
1344 	if (write)
1345 		flags |= FOLL_WRITE;
1346 
1347 	return __get_user_pages(current, current->mm, start, 1, flags, page,
1348 			NULL, NULL);
1349 }
1350 
1351 static inline int check_user_page_hwpoison(unsigned long addr)
1352 {
1353 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1354 
1355 	rc = __get_user_pages(current, current->mm, addr, 1,
1356 			      flags, NULL, NULL, NULL);
1357 	return rc == -EHWPOISON;
1358 }
1359 
1360 /*
1361  * The atomic path to get the writable pfn which will be stored in @pfn,
1362  * true indicates success, otherwise false is returned.
1363  */
1364 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1365 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1366 {
1367 	struct page *page[1];
1368 	int npages;
1369 
1370 	if (!(async || atomic))
1371 		return false;
1372 
1373 	/*
1374 	 * Fast pin a writable pfn only if it is a write fault request
1375 	 * or the caller allows to map a writable pfn for a read fault
1376 	 * request.
1377 	 */
1378 	if (!(write_fault || writable))
1379 		return false;
1380 
1381 	npages = __get_user_pages_fast(addr, 1, 1, page);
1382 	if (npages == 1) {
1383 		*pfn = page_to_pfn(page[0]);
1384 
1385 		if (writable)
1386 			*writable = true;
1387 		return true;
1388 	}
1389 
1390 	return false;
1391 }
1392 
1393 /*
1394  * The slow path to get the pfn of the specified host virtual address,
1395  * 1 indicates success, -errno is returned if error is detected.
1396  */
1397 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1398 			   bool *writable, kvm_pfn_t *pfn)
1399 {
1400 	struct page *page[1];
1401 	int npages = 0;
1402 
1403 	might_sleep();
1404 
1405 	if (writable)
1406 		*writable = write_fault;
1407 
1408 	if (async) {
1409 		down_read(&current->mm->mmap_sem);
1410 		npages = get_user_page_nowait(addr, write_fault, page);
1411 		up_read(&current->mm->mmap_sem);
1412 	} else
1413 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1414 						   write_fault, 0, page,
1415 						   FOLL_TOUCH|FOLL_HWPOISON);
1416 	if (npages != 1)
1417 		return npages;
1418 
1419 	/* map read fault as writable if possible */
1420 	if (unlikely(!write_fault) && writable) {
1421 		struct page *wpage[1];
1422 
1423 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1424 		if (npages == 1) {
1425 			*writable = true;
1426 			put_page(page[0]);
1427 			page[0] = wpage[0];
1428 		}
1429 
1430 		npages = 1;
1431 	}
1432 	*pfn = page_to_pfn(page[0]);
1433 	return npages;
1434 }
1435 
1436 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1437 {
1438 	if (unlikely(!(vma->vm_flags & VM_READ)))
1439 		return false;
1440 
1441 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1442 		return false;
1443 
1444 	return true;
1445 }
1446 
1447 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1448 			       unsigned long addr, bool *async,
1449 			       bool write_fault, kvm_pfn_t *p_pfn)
1450 {
1451 	unsigned long pfn;
1452 	int r;
1453 
1454 	r = follow_pfn(vma, addr, &pfn);
1455 	if (r) {
1456 		/*
1457 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1458 		 * not call the fault handler, so do it here.
1459 		 */
1460 		bool unlocked = false;
1461 		r = fixup_user_fault(current, current->mm, addr,
1462 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1463 				     &unlocked);
1464 		if (unlocked)
1465 			return -EAGAIN;
1466 		if (r)
1467 			return r;
1468 
1469 		r = follow_pfn(vma, addr, &pfn);
1470 		if (r)
1471 			return r;
1472 
1473 	}
1474 
1475 
1476 	/*
1477 	 * Get a reference here because callers of *hva_to_pfn* and
1478 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1479 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1480 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1481 	 * simply do nothing for reserved pfns.
1482 	 *
1483 	 * Whoever called remap_pfn_range is also going to call e.g.
1484 	 * unmap_mapping_range before the underlying pages are freed,
1485 	 * causing a call to our MMU notifier.
1486 	 */
1487 	kvm_get_pfn(pfn);
1488 
1489 	*p_pfn = pfn;
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Pin guest page in memory and return its pfn.
1495  * @addr: host virtual address which maps memory to the guest
1496  * @atomic: whether this function can sleep
1497  * @async: whether this function need to wait IO complete if the
1498  *         host page is not in the memory
1499  * @write_fault: whether we should get a writable host page
1500  * @writable: whether it allows to map a writable host page for !@write_fault
1501  *
1502  * The function will map a writable host page for these two cases:
1503  * 1): @write_fault = true
1504  * 2): @write_fault = false && @writable, @writable will tell the caller
1505  *     whether the mapping is writable.
1506  */
1507 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1508 			bool write_fault, bool *writable)
1509 {
1510 	struct vm_area_struct *vma;
1511 	kvm_pfn_t pfn = 0;
1512 	int npages, r;
1513 
1514 	/* we can do it either atomically or asynchronously, not both */
1515 	BUG_ON(atomic && async);
1516 
1517 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1518 		return pfn;
1519 
1520 	if (atomic)
1521 		return KVM_PFN_ERR_FAULT;
1522 
1523 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1524 	if (npages == 1)
1525 		return pfn;
1526 
1527 	down_read(&current->mm->mmap_sem);
1528 	if (npages == -EHWPOISON ||
1529 	      (!async && check_user_page_hwpoison(addr))) {
1530 		pfn = KVM_PFN_ERR_HWPOISON;
1531 		goto exit;
1532 	}
1533 
1534 retry:
1535 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1536 
1537 	if (vma == NULL)
1538 		pfn = KVM_PFN_ERR_FAULT;
1539 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1540 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1541 		if (r == -EAGAIN)
1542 			goto retry;
1543 		if (r < 0)
1544 			pfn = KVM_PFN_ERR_FAULT;
1545 	} else {
1546 		if (async && vma_is_valid(vma, write_fault))
1547 			*async = true;
1548 		pfn = KVM_PFN_ERR_FAULT;
1549 	}
1550 exit:
1551 	up_read(&current->mm->mmap_sem);
1552 	return pfn;
1553 }
1554 
1555 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1556 			       bool atomic, bool *async, bool write_fault,
1557 			       bool *writable)
1558 {
1559 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1560 
1561 	if (addr == KVM_HVA_ERR_RO_BAD) {
1562 		if (writable)
1563 			*writable = false;
1564 		return KVM_PFN_ERR_RO_FAULT;
1565 	}
1566 
1567 	if (kvm_is_error_hva(addr)) {
1568 		if (writable)
1569 			*writable = false;
1570 		return KVM_PFN_NOSLOT;
1571 	}
1572 
1573 	/* Do not map writable pfn in the readonly memslot. */
1574 	if (writable && memslot_is_readonly(slot)) {
1575 		*writable = false;
1576 		writable = NULL;
1577 	}
1578 
1579 	return hva_to_pfn(addr, atomic, async, write_fault,
1580 			  writable);
1581 }
1582 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1583 
1584 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1585 		      bool *writable)
1586 {
1587 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1588 				    write_fault, writable);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1591 
1592 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1593 {
1594 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1597 
1598 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1599 {
1600 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1603 
1604 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1605 {
1606 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1609 
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1615 
1616 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1621 
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1627 
1628 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1629 			    struct page **pages, int nr_pages)
1630 {
1631 	unsigned long addr;
1632 	gfn_t entry;
1633 
1634 	addr = gfn_to_hva_many(slot, gfn, &entry);
1635 	if (kvm_is_error_hva(addr))
1636 		return -1;
1637 
1638 	if (entry < nr_pages)
1639 		return 0;
1640 
1641 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1642 }
1643 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1644 
1645 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1646 {
1647 	if (is_error_noslot_pfn(pfn))
1648 		return KVM_ERR_PTR_BAD_PAGE;
1649 
1650 	if (kvm_is_reserved_pfn(pfn)) {
1651 		WARN_ON(1);
1652 		return KVM_ERR_PTR_BAD_PAGE;
1653 	}
1654 
1655 	return pfn_to_page(pfn);
1656 }
1657 
1658 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1659 {
1660 	kvm_pfn_t pfn;
1661 
1662 	pfn = gfn_to_pfn(kvm, gfn);
1663 
1664 	return kvm_pfn_to_page(pfn);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_page);
1667 
1668 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1669 {
1670 	kvm_pfn_t pfn;
1671 
1672 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1673 
1674 	return kvm_pfn_to_page(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1677 
1678 void kvm_release_page_clean(struct page *page)
1679 {
1680 	WARN_ON(is_error_page(page));
1681 
1682 	kvm_release_pfn_clean(page_to_pfn(page));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1685 
1686 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1687 {
1688 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1689 		put_page(pfn_to_page(pfn));
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1692 
1693 void kvm_release_page_dirty(struct page *page)
1694 {
1695 	WARN_ON(is_error_page(page));
1696 
1697 	kvm_release_pfn_dirty(page_to_pfn(page));
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1700 
1701 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703 	kvm_set_pfn_dirty(pfn);
1704 	kvm_release_pfn_clean(pfn);
1705 }
1706 
1707 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1708 {
1709 	if (!kvm_is_reserved_pfn(pfn)) {
1710 		struct page *page = pfn_to_page(pfn);
1711 
1712 		if (!PageReserved(page))
1713 			SetPageDirty(page);
1714 	}
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1717 
1718 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1719 {
1720 	if (!kvm_is_reserved_pfn(pfn))
1721 		mark_page_accessed(pfn_to_page(pfn));
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1724 
1725 void kvm_get_pfn(kvm_pfn_t pfn)
1726 {
1727 	if (!kvm_is_reserved_pfn(pfn))
1728 		get_page(pfn_to_page(pfn));
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1731 
1732 static int next_segment(unsigned long len, int offset)
1733 {
1734 	if (len > PAGE_SIZE - offset)
1735 		return PAGE_SIZE - offset;
1736 	else
1737 		return len;
1738 }
1739 
1740 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1741 				 void *data, int offset, int len)
1742 {
1743 	int r;
1744 	unsigned long addr;
1745 
1746 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1747 	if (kvm_is_error_hva(addr))
1748 		return -EFAULT;
1749 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1750 	if (r)
1751 		return -EFAULT;
1752 	return 0;
1753 }
1754 
1755 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1756 			int len)
1757 {
1758 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1759 
1760 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1763 
1764 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1765 			     int offset, int len)
1766 {
1767 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1768 
1769 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1770 }
1771 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1772 
1773 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1774 {
1775 	gfn_t gfn = gpa >> PAGE_SHIFT;
1776 	int seg;
1777 	int offset = offset_in_page(gpa);
1778 	int ret;
1779 
1780 	while ((seg = next_segment(len, offset)) != 0) {
1781 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1782 		if (ret < 0)
1783 			return ret;
1784 		offset = 0;
1785 		len -= seg;
1786 		data += seg;
1787 		++gfn;
1788 	}
1789 	return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_read_guest);
1792 
1793 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1794 {
1795 	gfn_t gfn = gpa >> PAGE_SHIFT;
1796 	int seg;
1797 	int offset = offset_in_page(gpa);
1798 	int ret;
1799 
1800 	while ((seg = next_segment(len, offset)) != 0) {
1801 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1802 		if (ret < 0)
1803 			return ret;
1804 		offset = 0;
1805 		len -= seg;
1806 		data += seg;
1807 		++gfn;
1808 	}
1809 	return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1812 
1813 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1814 			           void *data, int offset, unsigned long len)
1815 {
1816 	int r;
1817 	unsigned long addr;
1818 
1819 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1820 	if (kvm_is_error_hva(addr))
1821 		return -EFAULT;
1822 	pagefault_disable();
1823 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1824 	pagefault_enable();
1825 	if (r)
1826 		return -EFAULT;
1827 	return 0;
1828 }
1829 
1830 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1831 			  unsigned long len)
1832 {
1833 	gfn_t gfn = gpa >> PAGE_SHIFT;
1834 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1835 	int offset = offset_in_page(gpa);
1836 
1837 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1840 
1841 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1842 			       void *data, unsigned long len)
1843 {
1844 	gfn_t gfn = gpa >> PAGE_SHIFT;
1845 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1846 	int offset = offset_in_page(gpa);
1847 
1848 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1851 
1852 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1853 			          const void *data, int offset, int len)
1854 {
1855 	int r;
1856 	unsigned long addr;
1857 
1858 	addr = gfn_to_hva_memslot(memslot, gfn);
1859 	if (kvm_is_error_hva(addr))
1860 		return -EFAULT;
1861 	r = __copy_to_user((void __user *)addr + offset, data, len);
1862 	if (r)
1863 		return -EFAULT;
1864 	mark_page_dirty_in_slot(memslot, gfn);
1865 	return 0;
1866 }
1867 
1868 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1869 			 const void *data, int offset, int len)
1870 {
1871 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1872 
1873 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1876 
1877 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1878 			      const void *data, int offset, int len)
1879 {
1880 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1881 
1882 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1885 
1886 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1887 		    unsigned long len)
1888 {
1889 	gfn_t gfn = gpa >> PAGE_SHIFT;
1890 	int seg;
1891 	int offset = offset_in_page(gpa);
1892 	int ret;
1893 
1894 	while ((seg = next_segment(len, offset)) != 0) {
1895 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1896 		if (ret < 0)
1897 			return ret;
1898 		offset = 0;
1899 		len -= seg;
1900 		data += seg;
1901 		++gfn;
1902 	}
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_write_guest);
1906 
1907 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1908 		         unsigned long len)
1909 {
1910 	gfn_t gfn = gpa >> PAGE_SHIFT;
1911 	int seg;
1912 	int offset = offset_in_page(gpa);
1913 	int ret;
1914 
1915 	while ((seg = next_segment(len, offset)) != 0) {
1916 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1917 		if (ret < 0)
1918 			return ret;
1919 		offset = 0;
1920 		len -= seg;
1921 		data += seg;
1922 		++gfn;
1923 	}
1924 	return 0;
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1927 
1928 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1929 			      gpa_t gpa, unsigned long len)
1930 {
1931 	struct kvm_memslots *slots = kvm_memslots(kvm);
1932 	int offset = offset_in_page(gpa);
1933 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1934 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1935 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1936 	gfn_t nr_pages_avail;
1937 
1938 	ghc->gpa = gpa;
1939 	ghc->generation = slots->generation;
1940 	ghc->len = len;
1941 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1942 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1943 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1944 		ghc->hva += offset;
1945 	} else {
1946 		/*
1947 		 * If the requested region crosses two memslots, we still
1948 		 * verify that the entire region is valid here.
1949 		 */
1950 		while (start_gfn <= end_gfn) {
1951 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1952 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1953 						   &nr_pages_avail);
1954 			if (kvm_is_error_hva(ghc->hva))
1955 				return -EFAULT;
1956 			start_gfn += nr_pages_avail;
1957 		}
1958 		/* Use the slow path for cross page reads and writes. */
1959 		ghc->memslot = NULL;
1960 	}
1961 	return 0;
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1964 
1965 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1966 			   void *data, unsigned long len)
1967 {
1968 	struct kvm_memslots *slots = kvm_memslots(kvm);
1969 	int r;
1970 
1971 	BUG_ON(len > ghc->len);
1972 
1973 	if (slots->generation != ghc->generation)
1974 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1975 
1976 	if (unlikely(!ghc->memslot))
1977 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1978 
1979 	if (kvm_is_error_hva(ghc->hva))
1980 		return -EFAULT;
1981 
1982 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1983 	if (r)
1984 		return -EFAULT;
1985 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1986 
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1990 
1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992 			   void *data, unsigned long len)
1993 {
1994 	struct kvm_memslots *slots = kvm_memslots(kvm);
1995 	int r;
1996 
1997 	BUG_ON(len > ghc->len);
1998 
1999 	if (slots->generation != ghc->generation)
2000 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2001 
2002 	if (unlikely(!ghc->memslot))
2003 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2004 
2005 	if (kvm_is_error_hva(ghc->hva))
2006 		return -EFAULT;
2007 
2008 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2009 	if (r)
2010 		return -EFAULT;
2011 
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2015 
2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2017 {
2018 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2019 
2020 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2023 
2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2025 {
2026 	gfn_t gfn = gpa >> PAGE_SHIFT;
2027 	int seg;
2028 	int offset = offset_in_page(gpa);
2029 	int ret;
2030 
2031 	while ((seg = next_segment(len, offset)) != 0) {
2032 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2033 		if (ret < 0)
2034 			return ret;
2035 		offset = 0;
2036 		len -= seg;
2037 		++gfn;
2038 	}
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2042 
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2044 				    gfn_t gfn)
2045 {
2046 	if (memslot && memslot->dirty_bitmap) {
2047 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2048 
2049 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2050 	}
2051 }
2052 
2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2054 {
2055 	struct kvm_memory_slot *memslot;
2056 
2057 	memslot = gfn_to_memslot(kvm, gfn);
2058 	mark_page_dirty_in_slot(memslot, gfn);
2059 }
2060 EXPORT_SYMBOL_GPL(mark_page_dirty);
2061 
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2063 {
2064 	struct kvm_memory_slot *memslot;
2065 
2066 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067 	mark_page_dirty_in_slot(memslot, gfn);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2070 
2071 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2072 {
2073 	unsigned int old, val, grow;
2074 
2075 	old = val = vcpu->halt_poll_ns;
2076 	grow = READ_ONCE(halt_poll_ns_grow);
2077 	/* 10us base */
2078 	if (val == 0 && grow)
2079 		val = 10000;
2080 	else
2081 		val *= grow;
2082 
2083 	if (val > halt_poll_ns)
2084 		val = halt_poll_ns;
2085 
2086 	vcpu->halt_poll_ns = val;
2087 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2088 }
2089 
2090 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2091 {
2092 	unsigned int old, val, shrink;
2093 
2094 	old = val = vcpu->halt_poll_ns;
2095 	shrink = READ_ONCE(halt_poll_ns_shrink);
2096 	if (shrink == 0)
2097 		val = 0;
2098 	else
2099 		val /= shrink;
2100 
2101 	vcpu->halt_poll_ns = val;
2102 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2103 }
2104 
2105 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2106 {
2107 	if (kvm_arch_vcpu_runnable(vcpu)) {
2108 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2109 		return -EINTR;
2110 	}
2111 	if (kvm_cpu_has_pending_timer(vcpu))
2112 		return -EINTR;
2113 	if (signal_pending(current))
2114 		return -EINTR;
2115 
2116 	return 0;
2117 }
2118 
2119 /*
2120  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2121  */
2122 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2123 {
2124 	ktime_t start, cur;
2125 	DECLARE_SWAITQUEUE(wait);
2126 	bool waited = false;
2127 	u64 block_ns;
2128 
2129 	start = cur = ktime_get();
2130 	if (vcpu->halt_poll_ns) {
2131 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2132 
2133 		++vcpu->stat.halt_attempted_poll;
2134 		do {
2135 			/*
2136 			 * This sets KVM_REQ_UNHALT if an interrupt
2137 			 * arrives.
2138 			 */
2139 			if (kvm_vcpu_check_block(vcpu) < 0) {
2140 				++vcpu->stat.halt_successful_poll;
2141 				if (!vcpu_valid_wakeup(vcpu))
2142 					++vcpu->stat.halt_poll_invalid;
2143 				goto out;
2144 			}
2145 			cur = ktime_get();
2146 		} while (single_task_running() && ktime_before(cur, stop));
2147 	}
2148 
2149 	kvm_arch_vcpu_blocking(vcpu);
2150 
2151 	for (;;) {
2152 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2153 
2154 		if (kvm_vcpu_check_block(vcpu) < 0)
2155 			break;
2156 
2157 		waited = true;
2158 		schedule();
2159 	}
2160 
2161 	finish_swait(&vcpu->wq, &wait);
2162 	cur = ktime_get();
2163 
2164 	kvm_arch_vcpu_unblocking(vcpu);
2165 out:
2166 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2167 
2168 	if (!vcpu_valid_wakeup(vcpu))
2169 		shrink_halt_poll_ns(vcpu);
2170 	else if (halt_poll_ns) {
2171 		if (block_ns <= vcpu->halt_poll_ns)
2172 			;
2173 		/* we had a long block, shrink polling */
2174 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2175 			shrink_halt_poll_ns(vcpu);
2176 		/* we had a short halt and our poll time is too small */
2177 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2178 			block_ns < halt_poll_ns)
2179 			grow_halt_poll_ns(vcpu);
2180 	} else
2181 		vcpu->halt_poll_ns = 0;
2182 
2183 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2184 	kvm_arch_vcpu_block_finish(vcpu);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2187 
2188 #ifndef CONFIG_S390
2189 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2190 {
2191 	struct swait_queue_head *wqp;
2192 
2193 	wqp = kvm_arch_vcpu_wq(vcpu);
2194 	if (swait_active(wqp)) {
2195 		swake_up(wqp);
2196 		++vcpu->stat.halt_wakeup;
2197 	}
2198 
2199 }
2200 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2201 
2202 /*
2203  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2204  */
2205 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2206 {
2207 	int me;
2208 	int cpu = vcpu->cpu;
2209 
2210 	kvm_vcpu_wake_up(vcpu);
2211 	me = get_cpu();
2212 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2213 		if (kvm_arch_vcpu_should_kick(vcpu))
2214 			smp_send_reschedule(cpu);
2215 	put_cpu();
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2218 #endif /* !CONFIG_S390 */
2219 
2220 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2221 {
2222 	struct pid *pid;
2223 	struct task_struct *task = NULL;
2224 	int ret = 0;
2225 
2226 	rcu_read_lock();
2227 	pid = rcu_dereference(target->pid);
2228 	if (pid)
2229 		task = get_pid_task(pid, PIDTYPE_PID);
2230 	rcu_read_unlock();
2231 	if (!task)
2232 		return ret;
2233 	ret = yield_to(task, 1);
2234 	put_task_struct(task);
2235 
2236 	return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2239 
2240 /*
2241  * Helper that checks whether a VCPU is eligible for directed yield.
2242  * Most eligible candidate to yield is decided by following heuristics:
2243  *
2244  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2245  *  (preempted lock holder), indicated by @in_spin_loop.
2246  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2247  *
2248  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2249  *  chance last time (mostly it has become eligible now since we have probably
2250  *  yielded to lockholder in last iteration. This is done by toggling
2251  *  @dy_eligible each time a VCPU checked for eligibility.)
2252  *
2253  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2254  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2255  *  burning. Giving priority for a potential lock-holder increases lock
2256  *  progress.
2257  *
2258  *  Since algorithm is based on heuristics, accessing another VCPU data without
2259  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2260  *  and continue with next VCPU and so on.
2261  */
2262 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2263 {
2264 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2265 	bool eligible;
2266 
2267 	eligible = !vcpu->spin_loop.in_spin_loop ||
2268 		    vcpu->spin_loop.dy_eligible;
2269 
2270 	if (vcpu->spin_loop.in_spin_loop)
2271 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2272 
2273 	return eligible;
2274 #else
2275 	return true;
2276 #endif
2277 }
2278 
2279 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2280 {
2281 	struct kvm *kvm = me->kvm;
2282 	struct kvm_vcpu *vcpu;
2283 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2284 	int yielded = 0;
2285 	int try = 3;
2286 	int pass;
2287 	int i;
2288 
2289 	kvm_vcpu_set_in_spin_loop(me, true);
2290 	/*
2291 	 * We boost the priority of a VCPU that is runnable but not
2292 	 * currently running, because it got preempted by something
2293 	 * else and called schedule in __vcpu_run.  Hopefully that
2294 	 * VCPU is holding the lock that we need and will release it.
2295 	 * We approximate round-robin by starting at the last boosted VCPU.
2296 	 */
2297 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2298 		kvm_for_each_vcpu(i, vcpu, kvm) {
2299 			if (!pass && i <= last_boosted_vcpu) {
2300 				i = last_boosted_vcpu;
2301 				continue;
2302 			} else if (pass && i > last_boosted_vcpu)
2303 				break;
2304 			if (!ACCESS_ONCE(vcpu->preempted))
2305 				continue;
2306 			if (vcpu == me)
2307 				continue;
2308 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2309 				continue;
2310 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2311 				continue;
2312 
2313 			yielded = kvm_vcpu_yield_to(vcpu);
2314 			if (yielded > 0) {
2315 				kvm->last_boosted_vcpu = i;
2316 				break;
2317 			} else if (yielded < 0) {
2318 				try--;
2319 				if (!try)
2320 					break;
2321 			}
2322 		}
2323 	}
2324 	kvm_vcpu_set_in_spin_loop(me, false);
2325 
2326 	/* Ensure vcpu is not eligible during next spinloop */
2327 	kvm_vcpu_set_dy_eligible(me, false);
2328 }
2329 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2330 
2331 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2332 {
2333 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2334 	struct page *page;
2335 
2336 	if (vmf->pgoff == 0)
2337 		page = virt_to_page(vcpu->run);
2338 #ifdef CONFIG_X86
2339 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2340 		page = virt_to_page(vcpu->arch.pio_data);
2341 #endif
2342 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2343 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2344 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2345 #endif
2346 	else
2347 		return kvm_arch_vcpu_fault(vcpu, vmf);
2348 	get_page(page);
2349 	vmf->page = page;
2350 	return 0;
2351 }
2352 
2353 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2354 	.fault = kvm_vcpu_fault,
2355 };
2356 
2357 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2358 {
2359 	vma->vm_ops = &kvm_vcpu_vm_ops;
2360 	return 0;
2361 }
2362 
2363 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2364 {
2365 	struct kvm_vcpu *vcpu = filp->private_data;
2366 
2367 	kvm_put_kvm(vcpu->kvm);
2368 	return 0;
2369 }
2370 
2371 static struct file_operations kvm_vcpu_fops = {
2372 	.release        = kvm_vcpu_release,
2373 	.unlocked_ioctl = kvm_vcpu_ioctl,
2374 #ifdef CONFIG_KVM_COMPAT
2375 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2376 #endif
2377 	.mmap           = kvm_vcpu_mmap,
2378 	.llseek		= noop_llseek,
2379 };
2380 
2381 /*
2382  * Allocates an inode for the vcpu.
2383  */
2384 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2385 {
2386 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2387 }
2388 
2389 /*
2390  * Creates some virtual cpus.  Good luck creating more than one.
2391  */
2392 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2393 {
2394 	int r;
2395 	struct kvm_vcpu *vcpu;
2396 
2397 	if (id >= KVM_MAX_VCPU_ID)
2398 		return -EINVAL;
2399 
2400 	mutex_lock(&kvm->lock);
2401 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2402 		mutex_unlock(&kvm->lock);
2403 		return -EINVAL;
2404 	}
2405 
2406 	kvm->created_vcpus++;
2407 	mutex_unlock(&kvm->lock);
2408 
2409 	vcpu = kvm_arch_vcpu_create(kvm, id);
2410 	if (IS_ERR(vcpu)) {
2411 		r = PTR_ERR(vcpu);
2412 		goto vcpu_decrement;
2413 	}
2414 
2415 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2416 
2417 	r = kvm_arch_vcpu_setup(vcpu);
2418 	if (r)
2419 		goto vcpu_destroy;
2420 
2421 	mutex_lock(&kvm->lock);
2422 	if (kvm_get_vcpu_by_id(kvm, id)) {
2423 		r = -EEXIST;
2424 		goto unlock_vcpu_destroy;
2425 	}
2426 
2427 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2428 
2429 	/* Now it's all set up, let userspace reach it */
2430 	kvm_get_kvm(kvm);
2431 	r = create_vcpu_fd(vcpu);
2432 	if (r < 0) {
2433 		kvm_put_kvm(kvm);
2434 		goto unlock_vcpu_destroy;
2435 	}
2436 
2437 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2438 
2439 	/*
2440 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2441 	 * before kvm->online_vcpu's incremented value.
2442 	 */
2443 	smp_wmb();
2444 	atomic_inc(&kvm->online_vcpus);
2445 
2446 	mutex_unlock(&kvm->lock);
2447 	kvm_arch_vcpu_postcreate(vcpu);
2448 	return r;
2449 
2450 unlock_vcpu_destroy:
2451 	mutex_unlock(&kvm->lock);
2452 vcpu_destroy:
2453 	kvm_arch_vcpu_destroy(vcpu);
2454 vcpu_decrement:
2455 	mutex_lock(&kvm->lock);
2456 	kvm->created_vcpus--;
2457 	mutex_unlock(&kvm->lock);
2458 	return r;
2459 }
2460 
2461 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2462 {
2463 	if (sigset) {
2464 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2465 		vcpu->sigset_active = 1;
2466 		vcpu->sigset = *sigset;
2467 	} else
2468 		vcpu->sigset_active = 0;
2469 	return 0;
2470 }
2471 
2472 static long kvm_vcpu_ioctl(struct file *filp,
2473 			   unsigned int ioctl, unsigned long arg)
2474 {
2475 	struct kvm_vcpu *vcpu = filp->private_data;
2476 	void __user *argp = (void __user *)arg;
2477 	int r;
2478 	struct kvm_fpu *fpu = NULL;
2479 	struct kvm_sregs *kvm_sregs = NULL;
2480 
2481 	if (vcpu->kvm->mm != current->mm)
2482 		return -EIO;
2483 
2484 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2485 		return -EINVAL;
2486 
2487 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2488 	/*
2489 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2490 	 * so vcpu_load() would break it.
2491 	 */
2492 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2493 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2494 #endif
2495 
2496 
2497 	r = vcpu_load(vcpu);
2498 	if (r)
2499 		return r;
2500 	switch (ioctl) {
2501 	case KVM_RUN:
2502 		r = -EINVAL;
2503 		if (arg)
2504 			goto out;
2505 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2506 			/* The thread running this VCPU changed. */
2507 			struct pid *oldpid = vcpu->pid;
2508 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2509 
2510 			rcu_assign_pointer(vcpu->pid, newpid);
2511 			if (oldpid)
2512 				synchronize_rcu();
2513 			put_pid(oldpid);
2514 		}
2515 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2516 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2517 		break;
2518 	case KVM_GET_REGS: {
2519 		struct kvm_regs *kvm_regs;
2520 
2521 		r = -ENOMEM;
2522 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2523 		if (!kvm_regs)
2524 			goto out;
2525 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2526 		if (r)
2527 			goto out_free1;
2528 		r = -EFAULT;
2529 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2530 			goto out_free1;
2531 		r = 0;
2532 out_free1:
2533 		kfree(kvm_regs);
2534 		break;
2535 	}
2536 	case KVM_SET_REGS: {
2537 		struct kvm_regs *kvm_regs;
2538 
2539 		r = -ENOMEM;
2540 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2541 		if (IS_ERR(kvm_regs)) {
2542 			r = PTR_ERR(kvm_regs);
2543 			goto out;
2544 		}
2545 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2546 		kfree(kvm_regs);
2547 		break;
2548 	}
2549 	case KVM_GET_SREGS: {
2550 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2551 		r = -ENOMEM;
2552 		if (!kvm_sregs)
2553 			goto out;
2554 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2555 		if (r)
2556 			goto out;
2557 		r = -EFAULT;
2558 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2559 			goto out;
2560 		r = 0;
2561 		break;
2562 	}
2563 	case KVM_SET_SREGS: {
2564 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2565 		if (IS_ERR(kvm_sregs)) {
2566 			r = PTR_ERR(kvm_sregs);
2567 			kvm_sregs = NULL;
2568 			goto out;
2569 		}
2570 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2571 		break;
2572 	}
2573 	case KVM_GET_MP_STATE: {
2574 		struct kvm_mp_state mp_state;
2575 
2576 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2577 		if (r)
2578 			goto out;
2579 		r = -EFAULT;
2580 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2581 			goto out;
2582 		r = 0;
2583 		break;
2584 	}
2585 	case KVM_SET_MP_STATE: {
2586 		struct kvm_mp_state mp_state;
2587 
2588 		r = -EFAULT;
2589 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2590 			goto out;
2591 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2592 		break;
2593 	}
2594 	case KVM_TRANSLATE: {
2595 		struct kvm_translation tr;
2596 
2597 		r = -EFAULT;
2598 		if (copy_from_user(&tr, argp, sizeof(tr)))
2599 			goto out;
2600 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2601 		if (r)
2602 			goto out;
2603 		r = -EFAULT;
2604 		if (copy_to_user(argp, &tr, sizeof(tr)))
2605 			goto out;
2606 		r = 0;
2607 		break;
2608 	}
2609 	case KVM_SET_GUEST_DEBUG: {
2610 		struct kvm_guest_debug dbg;
2611 
2612 		r = -EFAULT;
2613 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2614 			goto out;
2615 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2616 		break;
2617 	}
2618 	case KVM_SET_SIGNAL_MASK: {
2619 		struct kvm_signal_mask __user *sigmask_arg = argp;
2620 		struct kvm_signal_mask kvm_sigmask;
2621 		sigset_t sigset, *p;
2622 
2623 		p = NULL;
2624 		if (argp) {
2625 			r = -EFAULT;
2626 			if (copy_from_user(&kvm_sigmask, argp,
2627 					   sizeof(kvm_sigmask)))
2628 				goto out;
2629 			r = -EINVAL;
2630 			if (kvm_sigmask.len != sizeof(sigset))
2631 				goto out;
2632 			r = -EFAULT;
2633 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2634 					   sizeof(sigset)))
2635 				goto out;
2636 			p = &sigset;
2637 		}
2638 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2639 		break;
2640 	}
2641 	case KVM_GET_FPU: {
2642 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2643 		r = -ENOMEM;
2644 		if (!fpu)
2645 			goto out;
2646 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2647 		if (r)
2648 			goto out;
2649 		r = -EFAULT;
2650 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2651 			goto out;
2652 		r = 0;
2653 		break;
2654 	}
2655 	case KVM_SET_FPU: {
2656 		fpu = memdup_user(argp, sizeof(*fpu));
2657 		if (IS_ERR(fpu)) {
2658 			r = PTR_ERR(fpu);
2659 			fpu = NULL;
2660 			goto out;
2661 		}
2662 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2663 		break;
2664 	}
2665 	default:
2666 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2667 	}
2668 out:
2669 	vcpu_put(vcpu);
2670 	kfree(fpu);
2671 	kfree(kvm_sregs);
2672 	return r;
2673 }
2674 
2675 #ifdef CONFIG_KVM_COMPAT
2676 static long kvm_vcpu_compat_ioctl(struct file *filp,
2677 				  unsigned int ioctl, unsigned long arg)
2678 {
2679 	struct kvm_vcpu *vcpu = filp->private_data;
2680 	void __user *argp = compat_ptr(arg);
2681 	int r;
2682 
2683 	if (vcpu->kvm->mm != current->mm)
2684 		return -EIO;
2685 
2686 	switch (ioctl) {
2687 	case KVM_SET_SIGNAL_MASK: {
2688 		struct kvm_signal_mask __user *sigmask_arg = argp;
2689 		struct kvm_signal_mask kvm_sigmask;
2690 		compat_sigset_t csigset;
2691 		sigset_t sigset;
2692 
2693 		if (argp) {
2694 			r = -EFAULT;
2695 			if (copy_from_user(&kvm_sigmask, argp,
2696 					   sizeof(kvm_sigmask)))
2697 				goto out;
2698 			r = -EINVAL;
2699 			if (kvm_sigmask.len != sizeof(csigset))
2700 				goto out;
2701 			r = -EFAULT;
2702 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2703 					   sizeof(csigset)))
2704 				goto out;
2705 			sigset_from_compat(&sigset, &csigset);
2706 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2707 		} else
2708 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2709 		break;
2710 	}
2711 	default:
2712 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2713 	}
2714 
2715 out:
2716 	return r;
2717 }
2718 #endif
2719 
2720 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2721 				 int (*accessor)(struct kvm_device *dev,
2722 						 struct kvm_device_attr *attr),
2723 				 unsigned long arg)
2724 {
2725 	struct kvm_device_attr attr;
2726 
2727 	if (!accessor)
2728 		return -EPERM;
2729 
2730 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2731 		return -EFAULT;
2732 
2733 	return accessor(dev, &attr);
2734 }
2735 
2736 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2737 			     unsigned long arg)
2738 {
2739 	struct kvm_device *dev = filp->private_data;
2740 
2741 	switch (ioctl) {
2742 	case KVM_SET_DEVICE_ATTR:
2743 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2744 	case KVM_GET_DEVICE_ATTR:
2745 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2746 	case KVM_HAS_DEVICE_ATTR:
2747 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2748 	default:
2749 		if (dev->ops->ioctl)
2750 			return dev->ops->ioctl(dev, ioctl, arg);
2751 
2752 		return -ENOTTY;
2753 	}
2754 }
2755 
2756 static int kvm_device_release(struct inode *inode, struct file *filp)
2757 {
2758 	struct kvm_device *dev = filp->private_data;
2759 	struct kvm *kvm = dev->kvm;
2760 
2761 	kvm_put_kvm(kvm);
2762 	return 0;
2763 }
2764 
2765 static const struct file_operations kvm_device_fops = {
2766 	.unlocked_ioctl = kvm_device_ioctl,
2767 #ifdef CONFIG_KVM_COMPAT
2768 	.compat_ioctl = kvm_device_ioctl,
2769 #endif
2770 	.release = kvm_device_release,
2771 };
2772 
2773 struct kvm_device *kvm_device_from_filp(struct file *filp)
2774 {
2775 	if (filp->f_op != &kvm_device_fops)
2776 		return NULL;
2777 
2778 	return filp->private_data;
2779 }
2780 
2781 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2782 #ifdef CONFIG_KVM_MPIC
2783 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2784 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2785 #endif
2786 
2787 #ifdef CONFIG_KVM_XICS
2788 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2789 #endif
2790 };
2791 
2792 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2793 {
2794 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2795 		return -ENOSPC;
2796 
2797 	if (kvm_device_ops_table[type] != NULL)
2798 		return -EEXIST;
2799 
2800 	kvm_device_ops_table[type] = ops;
2801 	return 0;
2802 }
2803 
2804 void kvm_unregister_device_ops(u32 type)
2805 {
2806 	if (kvm_device_ops_table[type] != NULL)
2807 		kvm_device_ops_table[type] = NULL;
2808 }
2809 
2810 static int kvm_ioctl_create_device(struct kvm *kvm,
2811 				   struct kvm_create_device *cd)
2812 {
2813 	struct kvm_device_ops *ops = NULL;
2814 	struct kvm_device *dev;
2815 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2816 	int ret;
2817 
2818 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2819 		return -ENODEV;
2820 
2821 	ops = kvm_device_ops_table[cd->type];
2822 	if (ops == NULL)
2823 		return -ENODEV;
2824 
2825 	if (test)
2826 		return 0;
2827 
2828 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829 	if (!dev)
2830 		return -ENOMEM;
2831 
2832 	dev->ops = ops;
2833 	dev->kvm = kvm;
2834 
2835 	ret = ops->create(dev, cd->type);
2836 	if (ret < 0) {
2837 		kfree(dev);
2838 		return ret;
2839 	}
2840 
2841 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2842 	if (ret < 0) {
2843 		ops->destroy(dev);
2844 		return ret;
2845 	}
2846 
2847 	list_add(&dev->vm_node, &kvm->devices);
2848 	kvm_get_kvm(kvm);
2849 	cd->fd = ret;
2850 	return 0;
2851 }
2852 
2853 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2854 {
2855 	switch (arg) {
2856 	case KVM_CAP_USER_MEMORY:
2857 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2858 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2859 	case KVM_CAP_INTERNAL_ERROR_DATA:
2860 #ifdef CONFIG_HAVE_KVM_MSI
2861 	case KVM_CAP_SIGNAL_MSI:
2862 #endif
2863 #ifdef CONFIG_HAVE_KVM_IRQFD
2864 	case KVM_CAP_IRQFD:
2865 	case KVM_CAP_IRQFD_RESAMPLE:
2866 #endif
2867 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2868 	case KVM_CAP_CHECK_EXTENSION_VM:
2869 		return 1;
2870 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2871 	case KVM_CAP_IRQ_ROUTING:
2872 		return KVM_MAX_IRQ_ROUTES;
2873 #endif
2874 #if KVM_ADDRESS_SPACE_NUM > 1
2875 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2876 		return KVM_ADDRESS_SPACE_NUM;
2877 #endif
2878 	case KVM_CAP_MAX_VCPU_ID:
2879 		return KVM_MAX_VCPU_ID;
2880 	default:
2881 		break;
2882 	}
2883 	return kvm_vm_ioctl_check_extension(kvm, arg);
2884 }
2885 
2886 static long kvm_vm_ioctl(struct file *filp,
2887 			   unsigned int ioctl, unsigned long arg)
2888 {
2889 	struct kvm *kvm = filp->private_data;
2890 	void __user *argp = (void __user *)arg;
2891 	int r;
2892 
2893 	if (kvm->mm != current->mm)
2894 		return -EIO;
2895 	switch (ioctl) {
2896 	case KVM_CREATE_VCPU:
2897 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2898 		break;
2899 	case KVM_SET_USER_MEMORY_REGION: {
2900 		struct kvm_userspace_memory_region kvm_userspace_mem;
2901 
2902 		r = -EFAULT;
2903 		if (copy_from_user(&kvm_userspace_mem, argp,
2904 						sizeof(kvm_userspace_mem)))
2905 			goto out;
2906 
2907 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2908 		break;
2909 	}
2910 	case KVM_GET_DIRTY_LOG: {
2911 		struct kvm_dirty_log log;
2912 
2913 		r = -EFAULT;
2914 		if (copy_from_user(&log, argp, sizeof(log)))
2915 			goto out;
2916 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2917 		break;
2918 	}
2919 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2920 	case KVM_REGISTER_COALESCED_MMIO: {
2921 		struct kvm_coalesced_mmio_zone zone;
2922 
2923 		r = -EFAULT;
2924 		if (copy_from_user(&zone, argp, sizeof(zone)))
2925 			goto out;
2926 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2927 		break;
2928 	}
2929 	case KVM_UNREGISTER_COALESCED_MMIO: {
2930 		struct kvm_coalesced_mmio_zone zone;
2931 
2932 		r = -EFAULT;
2933 		if (copy_from_user(&zone, argp, sizeof(zone)))
2934 			goto out;
2935 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2936 		break;
2937 	}
2938 #endif
2939 	case KVM_IRQFD: {
2940 		struct kvm_irqfd data;
2941 
2942 		r = -EFAULT;
2943 		if (copy_from_user(&data, argp, sizeof(data)))
2944 			goto out;
2945 		r = kvm_irqfd(kvm, &data);
2946 		break;
2947 	}
2948 	case KVM_IOEVENTFD: {
2949 		struct kvm_ioeventfd data;
2950 
2951 		r = -EFAULT;
2952 		if (copy_from_user(&data, argp, sizeof(data)))
2953 			goto out;
2954 		r = kvm_ioeventfd(kvm, &data);
2955 		break;
2956 	}
2957 #ifdef CONFIG_HAVE_KVM_MSI
2958 	case KVM_SIGNAL_MSI: {
2959 		struct kvm_msi msi;
2960 
2961 		r = -EFAULT;
2962 		if (copy_from_user(&msi, argp, sizeof(msi)))
2963 			goto out;
2964 		r = kvm_send_userspace_msi(kvm, &msi);
2965 		break;
2966 	}
2967 #endif
2968 #ifdef __KVM_HAVE_IRQ_LINE
2969 	case KVM_IRQ_LINE_STATUS:
2970 	case KVM_IRQ_LINE: {
2971 		struct kvm_irq_level irq_event;
2972 
2973 		r = -EFAULT;
2974 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2975 			goto out;
2976 
2977 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2978 					ioctl == KVM_IRQ_LINE_STATUS);
2979 		if (r)
2980 			goto out;
2981 
2982 		r = -EFAULT;
2983 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2984 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2985 				goto out;
2986 		}
2987 
2988 		r = 0;
2989 		break;
2990 	}
2991 #endif
2992 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2993 	case KVM_SET_GSI_ROUTING: {
2994 		struct kvm_irq_routing routing;
2995 		struct kvm_irq_routing __user *urouting;
2996 		struct kvm_irq_routing_entry *entries = NULL;
2997 
2998 		r = -EFAULT;
2999 		if (copy_from_user(&routing, argp, sizeof(routing)))
3000 			goto out;
3001 		r = -EINVAL;
3002 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3003 			goto out;
3004 		if (routing.flags)
3005 			goto out;
3006 		if (routing.nr) {
3007 			r = -ENOMEM;
3008 			entries = vmalloc(routing.nr * sizeof(*entries));
3009 			if (!entries)
3010 				goto out;
3011 			r = -EFAULT;
3012 			urouting = argp;
3013 			if (copy_from_user(entries, urouting->entries,
3014 					   routing.nr * sizeof(*entries)))
3015 				goto out_free_irq_routing;
3016 		}
3017 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3018 					routing.flags);
3019 out_free_irq_routing:
3020 		vfree(entries);
3021 		break;
3022 	}
3023 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3024 	case KVM_CREATE_DEVICE: {
3025 		struct kvm_create_device cd;
3026 
3027 		r = -EFAULT;
3028 		if (copy_from_user(&cd, argp, sizeof(cd)))
3029 			goto out;
3030 
3031 		r = kvm_ioctl_create_device(kvm, &cd);
3032 		if (r)
3033 			goto out;
3034 
3035 		r = -EFAULT;
3036 		if (copy_to_user(argp, &cd, sizeof(cd)))
3037 			goto out;
3038 
3039 		r = 0;
3040 		break;
3041 	}
3042 	case KVM_CHECK_EXTENSION:
3043 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3044 		break;
3045 	default:
3046 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3047 	}
3048 out:
3049 	return r;
3050 }
3051 
3052 #ifdef CONFIG_KVM_COMPAT
3053 struct compat_kvm_dirty_log {
3054 	__u32 slot;
3055 	__u32 padding1;
3056 	union {
3057 		compat_uptr_t dirty_bitmap; /* one bit per page */
3058 		__u64 padding2;
3059 	};
3060 };
3061 
3062 static long kvm_vm_compat_ioctl(struct file *filp,
3063 			   unsigned int ioctl, unsigned long arg)
3064 {
3065 	struct kvm *kvm = filp->private_data;
3066 	int r;
3067 
3068 	if (kvm->mm != current->mm)
3069 		return -EIO;
3070 	switch (ioctl) {
3071 	case KVM_GET_DIRTY_LOG: {
3072 		struct compat_kvm_dirty_log compat_log;
3073 		struct kvm_dirty_log log;
3074 
3075 		r = -EFAULT;
3076 		if (copy_from_user(&compat_log, (void __user *)arg,
3077 				   sizeof(compat_log)))
3078 			goto out;
3079 		log.slot	 = compat_log.slot;
3080 		log.padding1	 = compat_log.padding1;
3081 		log.padding2	 = compat_log.padding2;
3082 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3083 
3084 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3085 		break;
3086 	}
3087 	default:
3088 		r = kvm_vm_ioctl(filp, ioctl, arg);
3089 	}
3090 
3091 out:
3092 	return r;
3093 }
3094 #endif
3095 
3096 static struct file_operations kvm_vm_fops = {
3097 	.release        = kvm_vm_release,
3098 	.unlocked_ioctl = kvm_vm_ioctl,
3099 #ifdef CONFIG_KVM_COMPAT
3100 	.compat_ioctl   = kvm_vm_compat_ioctl,
3101 #endif
3102 	.llseek		= noop_llseek,
3103 };
3104 
3105 static int kvm_dev_ioctl_create_vm(unsigned long type)
3106 {
3107 	int r;
3108 	struct kvm *kvm;
3109 	struct file *file;
3110 
3111 	kvm = kvm_create_vm(type);
3112 	if (IS_ERR(kvm))
3113 		return PTR_ERR(kvm);
3114 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3115 	r = kvm_coalesced_mmio_init(kvm);
3116 	if (r < 0) {
3117 		kvm_put_kvm(kvm);
3118 		return r;
3119 	}
3120 #endif
3121 	r = get_unused_fd_flags(O_CLOEXEC);
3122 	if (r < 0) {
3123 		kvm_put_kvm(kvm);
3124 		return r;
3125 	}
3126 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3127 	if (IS_ERR(file)) {
3128 		put_unused_fd(r);
3129 		kvm_put_kvm(kvm);
3130 		return PTR_ERR(file);
3131 	}
3132 
3133 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3134 		put_unused_fd(r);
3135 		fput(file);
3136 		return -ENOMEM;
3137 	}
3138 
3139 	fd_install(r, file);
3140 	return r;
3141 }
3142 
3143 static long kvm_dev_ioctl(struct file *filp,
3144 			  unsigned int ioctl, unsigned long arg)
3145 {
3146 	long r = -EINVAL;
3147 
3148 	switch (ioctl) {
3149 	case KVM_GET_API_VERSION:
3150 		if (arg)
3151 			goto out;
3152 		r = KVM_API_VERSION;
3153 		break;
3154 	case KVM_CREATE_VM:
3155 		r = kvm_dev_ioctl_create_vm(arg);
3156 		break;
3157 	case KVM_CHECK_EXTENSION:
3158 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3159 		break;
3160 	case KVM_GET_VCPU_MMAP_SIZE:
3161 		if (arg)
3162 			goto out;
3163 		r = PAGE_SIZE;     /* struct kvm_run */
3164 #ifdef CONFIG_X86
3165 		r += PAGE_SIZE;    /* pio data page */
3166 #endif
3167 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3168 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3169 #endif
3170 		break;
3171 	case KVM_TRACE_ENABLE:
3172 	case KVM_TRACE_PAUSE:
3173 	case KVM_TRACE_DISABLE:
3174 		r = -EOPNOTSUPP;
3175 		break;
3176 	default:
3177 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3178 	}
3179 out:
3180 	return r;
3181 }
3182 
3183 static struct file_operations kvm_chardev_ops = {
3184 	.unlocked_ioctl = kvm_dev_ioctl,
3185 	.compat_ioctl   = kvm_dev_ioctl,
3186 	.llseek		= noop_llseek,
3187 };
3188 
3189 static struct miscdevice kvm_dev = {
3190 	KVM_MINOR,
3191 	"kvm",
3192 	&kvm_chardev_ops,
3193 };
3194 
3195 static void hardware_enable_nolock(void *junk)
3196 {
3197 	int cpu = raw_smp_processor_id();
3198 	int r;
3199 
3200 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3201 		return;
3202 
3203 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3204 
3205 	r = kvm_arch_hardware_enable();
3206 
3207 	if (r) {
3208 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3209 		atomic_inc(&hardware_enable_failed);
3210 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3211 	}
3212 }
3213 
3214 static int kvm_starting_cpu(unsigned int cpu)
3215 {
3216 	raw_spin_lock(&kvm_count_lock);
3217 	if (kvm_usage_count)
3218 		hardware_enable_nolock(NULL);
3219 	raw_spin_unlock(&kvm_count_lock);
3220 	return 0;
3221 }
3222 
3223 static void hardware_disable_nolock(void *junk)
3224 {
3225 	int cpu = raw_smp_processor_id();
3226 
3227 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3228 		return;
3229 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3230 	kvm_arch_hardware_disable();
3231 }
3232 
3233 static int kvm_dying_cpu(unsigned int cpu)
3234 {
3235 	raw_spin_lock(&kvm_count_lock);
3236 	if (kvm_usage_count)
3237 		hardware_disable_nolock(NULL);
3238 	raw_spin_unlock(&kvm_count_lock);
3239 	return 0;
3240 }
3241 
3242 static void hardware_disable_all_nolock(void)
3243 {
3244 	BUG_ON(!kvm_usage_count);
3245 
3246 	kvm_usage_count--;
3247 	if (!kvm_usage_count)
3248 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3249 }
3250 
3251 static void hardware_disable_all(void)
3252 {
3253 	raw_spin_lock(&kvm_count_lock);
3254 	hardware_disable_all_nolock();
3255 	raw_spin_unlock(&kvm_count_lock);
3256 }
3257 
3258 static int hardware_enable_all(void)
3259 {
3260 	int r = 0;
3261 
3262 	raw_spin_lock(&kvm_count_lock);
3263 
3264 	kvm_usage_count++;
3265 	if (kvm_usage_count == 1) {
3266 		atomic_set(&hardware_enable_failed, 0);
3267 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3268 
3269 		if (atomic_read(&hardware_enable_failed)) {
3270 			hardware_disable_all_nolock();
3271 			r = -EBUSY;
3272 		}
3273 	}
3274 
3275 	raw_spin_unlock(&kvm_count_lock);
3276 
3277 	return r;
3278 }
3279 
3280 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3281 		      void *v)
3282 {
3283 	/*
3284 	 * Some (well, at least mine) BIOSes hang on reboot if
3285 	 * in vmx root mode.
3286 	 *
3287 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3288 	 */
3289 	pr_info("kvm: exiting hardware virtualization\n");
3290 	kvm_rebooting = true;
3291 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3292 	return NOTIFY_OK;
3293 }
3294 
3295 static struct notifier_block kvm_reboot_notifier = {
3296 	.notifier_call = kvm_reboot,
3297 	.priority = 0,
3298 };
3299 
3300 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3301 {
3302 	int i;
3303 
3304 	for (i = 0; i < bus->dev_count; i++) {
3305 		struct kvm_io_device *pos = bus->range[i].dev;
3306 
3307 		kvm_iodevice_destructor(pos);
3308 	}
3309 	kfree(bus);
3310 }
3311 
3312 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3313 				 const struct kvm_io_range *r2)
3314 {
3315 	gpa_t addr1 = r1->addr;
3316 	gpa_t addr2 = r2->addr;
3317 
3318 	if (addr1 < addr2)
3319 		return -1;
3320 
3321 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3322 	 * accept any overlapping write.  Any order is acceptable for
3323 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3324 	 * we process all of them.
3325 	 */
3326 	if (r2->len) {
3327 		addr1 += r1->len;
3328 		addr2 += r2->len;
3329 	}
3330 
3331 	if (addr1 > addr2)
3332 		return 1;
3333 
3334 	return 0;
3335 }
3336 
3337 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3338 {
3339 	return kvm_io_bus_cmp(p1, p2);
3340 }
3341 
3342 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3343 			  gpa_t addr, int len)
3344 {
3345 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3346 		.addr = addr,
3347 		.len = len,
3348 		.dev = dev,
3349 	};
3350 
3351 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3352 		kvm_io_bus_sort_cmp, NULL);
3353 
3354 	return 0;
3355 }
3356 
3357 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3358 			     gpa_t addr, int len)
3359 {
3360 	struct kvm_io_range *range, key;
3361 	int off;
3362 
3363 	key = (struct kvm_io_range) {
3364 		.addr = addr,
3365 		.len = len,
3366 	};
3367 
3368 	range = bsearch(&key, bus->range, bus->dev_count,
3369 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3370 	if (range == NULL)
3371 		return -ENOENT;
3372 
3373 	off = range - bus->range;
3374 
3375 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3376 		off--;
3377 
3378 	return off;
3379 }
3380 
3381 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3382 			      struct kvm_io_range *range, const void *val)
3383 {
3384 	int idx;
3385 
3386 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3387 	if (idx < 0)
3388 		return -EOPNOTSUPP;
3389 
3390 	while (idx < bus->dev_count &&
3391 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3392 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3393 					range->len, val))
3394 			return idx;
3395 		idx++;
3396 	}
3397 
3398 	return -EOPNOTSUPP;
3399 }
3400 
3401 /* kvm_io_bus_write - called under kvm->slots_lock */
3402 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3403 		     int len, const void *val)
3404 {
3405 	struct kvm_io_bus *bus;
3406 	struct kvm_io_range range;
3407 	int r;
3408 
3409 	range = (struct kvm_io_range) {
3410 		.addr = addr,
3411 		.len = len,
3412 	};
3413 
3414 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3415 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3416 	return r < 0 ? r : 0;
3417 }
3418 
3419 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3420 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3421 			    gpa_t addr, int len, const void *val, long cookie)
3422 {
3423 	struct kvm_io_bus *bus;
3424 	struct kvm_io_range range;
3425 
3426 	range = (struct kvm_io_range) {
3427 		.addr = addr,
3428 		.len = len,
3429 	};
3430 
3431 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3432 
3433 	/* First try the device referenced by cookie. */
3434 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3435 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3436 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3437 					val))
3438 			return cookie;
3439 
3440 	/*
3441 	 * cookie contained garbage; fall back to search and return the
3442 	 * correct cookie value.
3443 	 */
3444 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3445 }
3446 
3447 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3448 			     struct kvm_io_range *range, void *val)
3449 {
3450 	int idx;
3451 
3452 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3453 	if (idx < 0)
3454 		return -EOPNOTSUPP;
3455 
3456 	while (idx < bus->dev_count &&
3457 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3458 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3459 				       range->len, val))
3460 			return idx;
3461 		idx++;
3462 	}
3463 
3464 	return -EOPNOTSUPP;
3465 }
3466 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3467 
3468 /* kvm_io_bus_read - called under kvm->slots_lock */
3469 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3470 		    int len, void *val)
3471 {
3472 	struct kvm_io_bus *bus;
3473 	struct kvm_io_range range;
3474 	int r;
3475 
3476 	range = (struct kvm_io_range) {
3477 		.addr = addr,
3478 		.len = len,
3479 	};
3480 
3481 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3483 	return r < 0 ? r : 0;
3484 }
3485 
3486 
3487 /* Caller must hold slots_lock. */
3488 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3489 			    int len, struct kvm_io_device *dev)
3490 {
3491 	struct kvm_io_bus *new_bus, *bus;
3492 
3493 	bus = kvm->buses[bus_idx];
3494 	/* exclude ioeventfd which is limited by maximum fd */
3495 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3496 		return -ENOSPC;
3497 
3498 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3499 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3500 	if (!new_bus)
3501 		return -ENOMEM;
3502 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3503 	       sizeof(struct kvm_io_range)));
3504 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3505 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3506 	synchronize_srcu_expedited(&kvm->srcu);
3507 	kfree(bus);
3508 
3509 	return 0;
3510 }
3511 
3512 /* Caller must hold slots_lock. */
3513 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3514 			      struct kvm_io_device *dev)
3515 {
3516 	int i, r;
3517 	struct kvm_io_bus *new_bus, *bus;
3518 
3519 	bus = kvm->buses[bus_idx];
3520 	r = -ENOENT;
3521 	for (i = 0; i < bus->dev_count; i++)
3522 		if (bus->range[i].dev == dev) {
3523 			r = 0;
3524 			break;
3525 		}
3526 
3527 	if (r)
3528 		return r;
3529 
3530 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3531 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3532 	if (!new_bus)
3533 		return -ENOMEM;
3534 
3535 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3536 	new_bus->dev_count--;
3537 	memcpy(new_bus->range + i, bus->range + i + 1,
3538 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3539 
3540 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3541 	synchronize_srcu_expedited(&kvm->srcu);
3542 	kfree(bus);
3543 	return r;
3544 }
3545 
3546 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3547 					 gpa_t addr)
3548 {
3549 	struct kvm_io_bus *bus;
3550 	int dev_idx, srcu_idx;
3551 	struct kvm_io_device *iodev = NULL;
3552 
3553 	srcu_idx = srcu_read_lock(&kvm->srcu);
3554 
3555 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3556 
3557 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3558 	if (dev_idx < 0)
3559 		goto out_unlock;
3560 
3561 	iodev = bus->range[dev_idx].dev;
3562 
3563 out_unlock:
3564 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3565 
3566 	return iodev;
3567 }
3568 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3569 
3570 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3571 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3572 			   const char *fmt)
3573 {
3574 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3575 					  inode->i_private;
3576 
3577 	/* The debugfs files are a reference to the kvm struct which
3578 	 * is still valid when kvm_destroy_vm is called.
3579 	 * To avoid the race between open and the removal of the debugfs
3580 	 * directory we test against the users count.
3581 	 */
3582 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3583 		return -ENOENT;
3584 
3585 	if (simple_attr_open(inode, file, get, set, fmt)) {
3586 		kvm_put_kvm(stat_data->kvm);
3587 		return -ENOMEM;
3588 	}
3589 
3590 	return 0;
3591 }
3592 
3593 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3594 {
3595 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3596 					  inode->i_private;
3597 
3598 	simple_attr_release(inode, file);
3599 	kvm_put_kvm(stat_data->kvm);
3600 
3601 	return 0;
3602 }
3603 
3604 static int vm_stat_get_per_vm(void *data, u64 *val)
3605 {
3606 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3607 
3608 	*val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3609 
3610 	return 0;
3611 }
3612 
3613 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3614 {
3615 	__simple_attr_check_format("%llu\n", 0ull);
3616 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3617 				NULL, "%llu\n");
3618 }
3619 
3620 static const struct file_operations vm_stat_get_per_vm_fops = {
3621 	.owner   = THIS_MODULE,
3622 	.open    = vm_stat_get_per_vm_open,
3623 	.release = kvm_debugfs_release,
3624 	.read    = simple_attr_read,
3625 	.write   = simple_attr_write,
3626 	.llseek  = generic_file_llseek,
3627 };
3628 
3629 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3630 {
3631 	int i;
3632 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3633 	struct kvm_vcpu *vcpu;
3634 
3635 	*val = 0;
3636 
3637 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3638 		*val += *(u32 *)((void *)vcpu + stat_data->offset);
3639 
3640 	return 0;
3641 }
3642 
3643 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3644 {
3645 	__simple_attr_check_format("%llu\n", 0ull);
3646 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3647 				 NULL, "%llu\n");
3648 }
3649 
3650 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3651 	.owner   = THIS_MODULE,
3652 	.open    = vcpu_stat_get_per_vm_open,
3653 	.release = kvm_debugfs_release,
3654 	.read    = simple_attr_read,
3655 	.write   = simple_attr_write,
3656 	.llseek  = generic_file_llseek,
3657 };
3658 
3659 static const struct file_operations *stat_fops_per_vm[] = {
3660 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3661 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3662 };
3663 
3664 static int vm_stat_get(void *_offset, u64 *val)
3665 {
3666 	unsigned offset = (long)_offset;
3667 	struct kvm *kvm;
3668 	struct kvm_stat_data stat_tmp = {.offset = offset};
3669 	u64 tmp_val;
3670 
3671 	*val = 0;
3672 	spin_lock(&kvm_lock);
3673 	list_for_each_entry(kvm, &vm_list, vm_list) {
3674 		stat_tmp.kvm = kvm;
3675 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3676 		*val += tmp_val;
3677 	}
3678 	spin_unlock(&kvm_lock);
3679 	return 0;
3680 }
3681 
3682 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3683 
3684 static int vcpu_stat_get(void *_offset, u64 *val)
3685 {
3686 	unsigned offset = (long)_offset;
3687 	struct kvm *kvm;
3688 	struct kvm_stat_data stat_tmp = {.offset = offset};
3689 	u64 tmp_val;
3690 
3691 	*val = 0;
3692 	spin_lock(&kvm_lock);
3693 	list_for_each_entry(kvm, &vm_list, vm_list) {
3694 		stat_tmp.kvm = kvm;
3695 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3696 		*val += tmp_val;
3697 	}
3698 	spin_unlock(&kvm_lock);
3699 	return 0;
3700 }
3701 
3702 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3703 
3704 static const struct file_operations *stat_fops[] = {
3705 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3706 	[KVM_STAT_VM]   = &vm_stat_fops,
3707 };
3708 
3709 static int kvm_init_debug(void)
3710 {
3711 	int r = -EEXIST;
3712 	struct kvm_stats_debugfs_item *p;
3713 
3714 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3715 	if (kvm_debugfs_dir == NULL)
3716 		goto out;
3717 
3718 	kvm_debugfs_num_entries = 0;
3719 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3720 		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3721 					 (void *)(long)p->offset,
3722 					 stat_fops[p->kind]))
3723 			goto out_dir;
3724 	}
3725 
3726 	return 0;
3727 
3728 out_dir:
3729 	debugfs_remove_recursive(kvm_debugfs_dir);
3730 out:
3731 	return r;
3732 }
3733 
3734 static int kvm_suspend(void)
3735 {
3736 	if (kvm_usage_count)
3737 		hardware_disable_nolock(NULL);
3738 	return 0;
3739 }
3740 
3741 static void kvm_resume(void)
3742 {
3743 	if (kvm_usage_count) {
3744 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3745 		hardware_enable_nolock(NULL);
3746 	}
3747 }
3748 
3749 static struct syscore_ops kvm_syscore_ops = {
3750 	.suspend = kvm_suspend,
3751 	.resume = kvm_resume,
3752 };
3753 
3754 static inline
3755 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3756 {
3757 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3758 }
3759 
3760 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3761 {
3762 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3763 
3764 	if (vcpu->preempted)
3765 		vcpu->preempted = false;
3766 
3767 	kvm_arch_sched_in(vcpu, cpu);
3768 
3769 	kvm_arch_vcpu_load(vcpu, cpu);
3770 }
3771 
3772 static void kvm_sched_out(struct preempt_notifier *pn,
3773 			  struct task_struct *next)
3774 {
3775 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3776 
3777 	if (current->state == TASK_RUNNING)
3778 		vcpu->preempted = true;
3779 	kvm_arch_vcpu_put(vcpu);
3780 }
3781 
3782 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3783 		  struct module *module)
3784 {
3785 	int r;
3786 	int cpu;
3787 
3788 	r = kvm_arch_init(opaque);
3789 	if (r)
3790 		goto out_fail;
3791 
3792 	/*
3793 	 * kvm_arch_init makes sure there's at most one caller
3794 	 * for architectures that support multiple implementations,
3795 	 * like intel and amd on x86.
3796 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3797 	 * conflicts in case kvm is already setup for another implementation.
3798 	 */
3799 	r = kvm_irqfd_init();
3800 	if (r)
3801 		goto out_irqfd;
3802 
3803 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3804 		r = -ENOMEM;
3805 		goto out_free_0;
3806 	}
3807 
3808 	r = kvm_arch_hardware_setup();
3809 	if (r < 0)
3810 		goto out_free_0a;
3811 
3812 	for_each_online_cpu(cpu) {
3813 		smp_call_function_single(cpu,
3814 				kvm_arch_check_processor_compat,
3815 				&r, 1);
3816 		if (r < 0)
3817 			goto out_free_1;
3818 	}
3819 
3820 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3821 				      kvm_starting_cpu, kvm_dying_cpu);
3822 	if (r)
3823 		goto out_free_2;
3824 	register_reboot_notifier(&kvm_reboot_notifier);
3825 
3826 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3827 	if (!vcpu_align)
3828 		vcpu_align = __alignof__(struct kvm_vcpu);
3829 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3830 					   0, NULL);
3831 	if (!kvm_vcpu_cache) {
3832 		r = -ENOMEM;
3833 		goto out_free_3;
3834 	}
3835 
3836 	r = kvm_async_pf_init();
3837 	if (r)
3838 		goto out_free;
3839 
3840 	kvm_chardev_ops.owner = module;
3841 	kvm_vm_fops.owner = module;
3842 	kvm_vcpu_fops.owner = module;
3843 
3844 	r = misc_register(&kvm_dev);
3845 	if (r) {
3846 		pr_err("kvm: misc device register failed\n");
3847 		goto out_unreg;
3848 	}
3849 
3850 	register_syscore_ops(&kvm_syscore_ops);
3851 
3852 	kvm_preempt_ops.sched_in = kvm_sched_in;
3853 	kvm_preempt_ops.sched_out = kvm_sched_out;
3854 
3855 	r = kvm_init_debug();
3856 	if (r) {
3857 		pr_err("kvm: create debugfs files failed\n");
3858 		goto out_undebugfs;
3859 	}
3860 
3861 	r = kvm_vfio_ops_init();
3862 	WARN_ON(r);
3863 
3864 	return 0;
3865 
3866 out_undebugfs:
3867 	unregister_syscore_ops(&kvm_syscore_ops);
3868 	misc_deregister(&kvm_dev);
3869 out_unreg:
3870 	kvm_async_pf_deinit();
3871 out_free:
3872 	kmem_cache_destroy(kvm_vcpu_cache);
3873 out_free_3:
3874 	unregister_reboot_notifier(&kvm_reboot_notifier);
3875 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3876 out_free_2:
3877 out_free_1:
3878 	kvm_arch_hardware_unsetup();
3879 out_free_0a:
3880 	free_cpumask_var(cpus_hardware_enabled);
3881 out_free_0:
3882 	kvm_irqfd_exit();
3883 out_irqfd:
3884 	kvm_arch_exit();
3885 out_fail:
3886 	return r;
3887 }
3888 EXPORT_SYMBOL_GPL(kvm_init);
3889 
3890 void kvm_exit(void)
3891 {
3892 	debugfs_remove_recursive(kvm_debugfs_dir);
3893 	misc_deregister(&kvm_dev);
3894 	kmem_cache_destroy(kvm_vcpu_cache);
3895 	kvm_async_pf_deinit();
3896 	unregister_syscore_ops(&kvm_syscore_ops);
3897 	unregister_reboot_notifier(&kvm_reboot_notifier);
3898 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3899 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3900 	kvm_arch_hardware_unsetup();
3901 	kvm_arch_exit();
3902 	kvm_irqfd_exit();
3903 	free_cpumask_var(cpus_hardware_enabled);
3904 	kvm_vfio_ops_exit();
3905 }
3906 EXPORT_SYMBOL_GPL(kvm_exit);
3907