1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 54 #include <asm/processor.h> 55 #include <asm/ioctl.h> 56 #include <linux/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, 0644); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* The start value to grow halt_poll_ns from */ 83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 84 module_param(halt_poll_ns_grow_start, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 86 87 /* Default resets per-vcpu halt_poll_ns . */ 88 unsigned int halt_poll_ns_shrink; 89 module_param(halt_poll_ns_shrink, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 91 92 /* 93 * Ordering of locks: 94 * 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 96 */ 97 98 DEFINE_MUTEX(kvm_lock); 99 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 100 LIST_HEAD(vm_list); 101 102 static cpumask_var_t cpus_hardware_enabled; 103 static int kvm_usage_count; 104 static atomic_t hardware_enable_failed; 105 106 struct kmem_cache *kvm_vcpu_cache; 107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 108 109 static __read_mostly struct preempt_ops kvm_preempt_ops; 110 111 struct dentry *kvm_debugfs_dir; 112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 113 114 static int kvm_debugfs_num_entries; 115 static const struct file_operations *stat_fops_per_vm[]; 116 117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #ifdef CONFIG_KVM_COMPAT 120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #define KVM_COMPAT(c) .compat_ioctl = (c) 123 #else 124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 125 unsigned long arg) { return -EINVAL; } 126 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 127 #endif 128 static int hardware_enable_all(void); 129 static void hardware_disable_all(void); 130 131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 132 133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 134 135 __visible bool kvm_rebooting; 136 EXPORT_SYMBOL_GPL(kvm_rebooting); 137 138 static bool largepages_enabled = true; 139 140 #define KVM_EVENT_CREATE_VM 0 141 #define KVM_EVENT_DESTROY_VM 1 142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 143 static unsigned long long kvm_createvm_count; 144 static unsigned long long kvm_active_vms; 145 146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 147 unsigned long start, unsigned long end, bool blockable) 148 { 149 return 0; 150 } 151 152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 153 { 154 if (pfn_valid(pfn)) 155 return PageReserved(pfn_to_page(pfn)); 156 157 return true; 158 } 159 160 /* 161 * Switches to specified vcpu, until a matching vcpu_put() 162 */ 163 void vcpu_load(struct kvm_vcpu *vcpu) 164 { 165 int cpu = get_cpu(); 166 preempt_notifier_register(&vcpu->preempt_notifier); 167 kvm_arch_vcpu_load(vcpu, cpu); 168 put_cpu(); 169 } 170 EXPORT_SYMBOL_GPL(vcpu_load); 171 172 void vcpu_put(struct kvm_vcpu *vcpu) 173 { 174 preempt_disable(); 175 kvm_arch_vcpu_put(vcpu); 176 preempt_notifier_unregister(&vcpu->preempt_notifier); 177 preempt_enable(); 178 } 179 EXPORT_SYMBOL_GPL(vcpu_put); 180 181 /* TODO: merge with kvm_arch_vcpu_should_kick */ 182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 183 { 184 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 185 186 /* 187 * We need to wait for the VCPU to reenable interrupts and get out of 188 * READING_SHADOW_PAGE_TABLES mode. 189 */ 190 if (req & KVM_REQUEST_WAIT) 191 return mode != OUTSIDE_GUEST_MODE; 192 193 /* 194 * Need to kick a running VCPU, but otherwise there is nothing to do. 195 */ 196 return mode == IN_GUEST_MODE; 197 } 198 199 static void ack_flush(void *_completed) 200 { 201 } 202 203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 204 { 205 if (unlikely(!cpus)) 206 cpus = cpu_online_mask; 207 208 if (cpumask_empty(cpus)) 209 return false; 210 211 smp_call_function_many(cpus, ack_flush, NULL, wait); 212 return true; 213 } 214 215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 216 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 217 { 218 int i, cpu, me; 219 struct kvm_vcpu *vcpu; 220 bool called; 221 222 me = get_cpu(); 223 224 kvm_for_each_vcpu(i, vcpu, kvm) { 225 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 226 continue; 227 228 kvm_make_request(req, vcpu); 229 cpu = vcpu->cpu; 230 231 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 232 continue; 233 234 if (tmp != NULL && cpu != -1 && cpu != me && 235 kvm_request_needs_ipi(vcpu, req)) 236 __cpumask_set_cpu(cpu, tmp); 237 } 238 239 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 240 put_cpu(); 241 242 return called; 243 } 244 245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 246 { 247 cpumask_var_t cpus; 248 bool called; 249 250 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 251 252 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 253 254 free_cpumask_var(cpus); 255 return called; 256 } 257 258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 259 void kvm_flush_remote_tlbs(struct kvm *kvm) 260 { 261 /* 262 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 263 * kvm_make_all_cpus_request. 264 */ 265 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 266 267 /* 268 * We want to publish modifications to the page tables before reading 269 * mode. Pairs with a memory barrier in arch-specific code. 270 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 271 * and smp_mb in walk_shadow_page_lockless_begin/end. 272 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 273 * 274 * There is already an smp_mb__after_atomic() before 275 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 276 * barrier here. 277 */ 278 if (!kvm_arch_flush_remote_tlb(kvm) 279 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 280 ++kvm->stat.remote_tlb_flush; 281 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 282 } 283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 284 #endif 285 286 void kvm_reload_remote_mmus(struct kvm *kvm) 287 { 288 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 289 } 290 291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 292 { 293 struct page *page; 294 int r; 295 296 mutex_init(&vcpu->mutex); 297 vcpu->cpu = -1; 298 vcpu->kvm = kvm; 299 vcpu->vcpu_id = id; 300 vcpu->pid = NULL; 301 init_swait_queue_head(&vcpu->wq); 302 kvm_async_pf_vcpu_init(vcpu); 303 304 vcpu->pre_pcpu = -1; 305 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 306 307 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 308 if (!page) { 309 r = -ENOMEM; 310 goto fail; 311 } 312 vcpu->run = page_address(page); 313 314 kvm_vcpu_set_in_spin_loop(vcpu, false); 315 kvm_vcpu_set_dy_eligible(vcpu, false); 316 vcpu->preempted = false; 317 vcpu->ready = false; 318 319 r = kvm_arch_vcpu_init(vcpu); 320 if (r < 0) 321 goto fail_free_run; 322 return 0; 323 324 fail_free_run: 325 free_page((unsigned long)vcpu->run); 326 fail: 327 return r; 328 } 329 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 330 331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 332 { 333 /* 334 * no need for rcu_read_lock as VCPU_RUN is the only place that 335 * will change the vcpu->pid pointer and on uninit all file 336 * descriptors are already gone. 337 */ 338 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 339 kvm_arch_vcpu_uninit(vcpu); 340 free_page((unsigned long)vcpu->run); 341 } 342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 343 344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 346 { 347 return container_of(mn, struct kvm, mmu_notifier); 348 } 349 350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 351 struct mm_struct *mm, 352 unsigned long address, 353 pte_t pte) 354 { 355 struct kvm *kvm = mmu_notifier_to_kvm(mn); 356 int idx; 357 358 idx = srcu_read_lock(&kvm->srcu); 359 spin_lock(&kvm->mmu_lock); 360 kvm->mmu_notifier_seq++; 361 362 if (kvm_set_spte_hva(kvm, address, pte)) 363 kvm_flush_remote_tlbs(kvm); 364 365 spin_unlock(&kvm->mmu_lock); 366 srcu_read_unlock(&kvm->srcu, idx); 367 } 368 369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 370 const struct mmu_notifier_range *range) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 int need_tlb_flush = 0, idx; 374 int ret; 375 376 idx = srcu_read_lock(&kvm->srcu); 377 spin_lock(&kvm->mmu_lock); 378 /* 379 * The count increase must become visible at unlock time as no 380 * spte can be established without taking the mmu_lock and 381 * count is also read inside the mmu_lock critical section. 382 */ 383 kvm->mmu_notifier_count++; 384 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 385 need_tlb_flush |= kvm->tlbs_dirty; 386 /* we've to flush the tlb before the pages can be freed */ 387 if (need_tlb_flush) 388 kvm_flush_remote_tlbs(kvm); 389 390 spin_unlock(&kvm->mmu_lock); 391 392 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 393 range->end, 394 mmu_notifier_range_blockable(range)); 395 396 srcu_read_unlock(&kvm->srcu, idx); 397 398 return ret; 399 } 400 401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 402 const struct mmu_notifier_range *range) 403 { 404 struct kvm *kvm = mmu_notifier_to_kvm(mn); 405 406 spin_lock(&kvm->mmu_lock); 407 /* 408 * This sequence increase will notify the kvm page fault that 409 * the page that is going to be mapped in the spte could have 410 * been freed. 411 */ 412 kvm->mmu_notifier_seq++; 413 smp_wmb(); 414 /* 415 * The above sequence increase must be visible before the 416 * below count decrease, which is ensured by the smp_wmb above 417 * in conjunction with the smp_rmb in mmu_notifier_retry(). 418 */ 419 kvm->mmu_notifier_count--; 420 spin_unlock(&kvm->mmu_lock); 421 422 BUG_ON(kvm->mmu_notifier_count < 0); 423 } 424 425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 426 struct mm_struct *mm, 427 unsigned long start, 428 unsigned long end) 429 { 430 struct kvm *kvm = mmu_notifier_to_kvm(mn); 431 int young, idx; 432 433 idx = srcu_read_lock(&kvm->srcu); 434 spin_lock(&kvm->mmu_lock); 435 436 young = kvm_age_hva(kvm, start, end); 437 if (young) 438 kvm_flush_remote_tlbs(kvm); 439 440 spin_unlock(&kvm->mmu_lock); 441 srcu_read_unlock(&kvm->srcu, idx); 442 443 return young; 444 } 445 446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 447 struct mm_struct *mm, 448 unsigned long start, 449 unsigned long end) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 /* 457 * Even though we do not flush TLB, this will still adversely 458 * affect performance on pre-Haswell Intel EPT, where there is 459 * no EPT Access Bit to clear so that we have to tear down EPT 460 * tables instead. If we find this unacceptable, we can always 461 * add a parameter to kvm_age_hva so that it effectively doesn't 462 * do anything on clear_young. 463 * 464 * Also note that currently we never issue secondary TLB flushes 465 * from clear_young, leaving this job up to the regular system 466 * cadence. If we find this inaccurate, we might come up with a 467 * more sophisticated heuristic later. 468 */ 469 young = kvm_age_hva(kvm, start, end); 470 spin_unlock(&kvm->mmu_lock); 471 srcu_read_unlock(&kvm->srcu, idx); 472 473 return young; 474 } 475 476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 477 struct mm_struct *mm, 478 unsigned long address) 479 { 480 struct kvm *kvm = mmu_notifier_to_kvm(mn); 481 int young, idx; 482 483 idx = srcu_read_lock(&kvm->srcu); 484 spin_lock(&kvm->mmu_lock); 485 young = kvm_test_age_hva(kvm, address); 486 spin_unlock(&kvm->mmu_lock); 487 srcu_read_unlock(&kvm->srcu, idx); 488 489 return young; 490 } 491 492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 493 struct mm_struct *mm) 494 { 495 struct kvm *kvm = mmu_notifier_to_kvm(mn); 496 int idx; 497 498 idx = srcu_read_lock(&kvm->srcu); 499 kvm_arch_flush_shadow_all(kvm); 500 srcu_read_unlock(&kvm->srcu, idx); 501 } 502 503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 504 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 505 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 506 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 507 .clear_young = kvm_mmu_notifier_clear_young, 508 .test_young = kvm_mmu_notifier_test_young, 509 .change_pte = kvm_mmu_notifier_change_pte, 510 .release = kvm_mmu_notifier_release, 511 }; 512 513 static int kvm_init_mmu_notifier(struct kvm *kvm) 514 { 515 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 516 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 517 } 518 519 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 520 521 static int kvm_init_mmu_notifier(struct kvm *kvm) 522 { 523 return 0; 524 } 525 526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 527 528 static struct kvm_memslots *kvm_alloc_memslots(void) 529 { 530 int i; 531 struct kvm_memslots *slots; 532 533 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 534 if (!slots) 535 return NULL; 536 537 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 538 slots->id_to_index[i] = slots->memslots[i].id = i; 539 540 return slots; 541 } 542 543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 544 { 545 if (!memslot->dirty_bitmap) 546 return; 547 548 kvfree(memslot->dirty_bitmap); 549 memslot->dirty_bitmap = NULL; 550 } 551 552 /* 553 * Free any memory in @free but not in @dont. 554 */ 555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 556 struct kvm_memory_slot *dont) 557 { 558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 559 kvm_destroy_dirty_bitmap(free); 560 561 kvm_arch_free_memslot(kvm, free, dont); 562 563 free->npages = 0; 564 } 565 566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 567 { 568 struct kvm_memory_slot *memslot; 569 570 if (!slots) 571 return; 572 573 kvm_for_each_memslot(memslot, slots) 574 kvm_free_memslot(kvm, memslot, NULL); 575 576 kvfree(slots); 577 } 578 579 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 580 { 581 int i; 582 583 if (!kvm->debugfs_dentry) 584 return; 585 586 debugfs_remove_recursive(kvm->debugfs_dentry); 587 588 if (kvm->debugfs_stat_data) { 589 for (i = 0; i < kvm_debugfs_num_entries; i++) 590 kfree(kvm->debugfs_stat_data[i]); 591 kfree(kvm->debugfs_stat_data); 592 } 593 } 594 595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 596 { 597 char dir_name[ITOA_MAX_LEN * 2]; 598 struct kvm_stat_data *stat_data; 599 struct kvm_stats_debugfs_item *p; 600 601 if (!debugfs_initialized()) 602 return 0; 603 604 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 605 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 606 607 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 608 sizeof(*kvm->debugfs_stat_data), 609 GFP_KERNEL_ACCOUNT); 610 if (!kvm->debugfs_stat_data) 611 return -ENOMEM; 612 613 for (p = debugfs_entries; p->name; p++) { 614 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 615 if (!stat_data) 616 return -ENOMEM; 617 618 stat_data->kvm = kvm; 619 stat_data->offset = p->offset; 620 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 621 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 622 stat_data, stat_fops_per_vm[p->kind]); 623 } 624 return 0; 625 } 626 627 static struct kvm *kvm_create_vm(unsigned long type) 628 { 629 int r, i; 630 struct kvm *kvm = kvm_arch_alloc_vm(); 631 632 if (!kvm) 633 return ERR_PTR(-ENOMEM); 634 635 spin_lock_init(&kvm->mmu_lock); 636 mmgrab(current->mm); 637 kvm->mm = current->mm; 638 kvm_eventfd_init(kvm); 639 mutex_init(&kvm->lock); 640 mutex_init(&kvm->irq_lock); 641 mutex_init(&kvm->slots_lock); 642 refcount_set(&kvm->users_count, 1); 643 INIT_LIST_HEAD(&kvm->devices); 644 645 r = kvm_arch_init_vm(kvm, type); 646 if (r) 647 goto out_err_no_disable; 648 649 r = hardware_enable_all(); 650 if (r) 651 goto out_err_no_disable; 652 653 #ifdef CONFIG_HAVE_KVM_IRQFD 654 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 655 #endif 656 657 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 658 659 r = -ENOMEM; 660 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 661 struct kvm_memslots *slots = kvm_alloc_memslots(); 662 if (!slots) 663 goto out_err_no_srcu; 664 /* Generations must be different for each address space. */ 665 slots->generation = i; 666 rcu_assign_pointer(kvm->memslots[i], slots); 667 } 668 669 if (init_srcu_struct(&kvm->srcu)) 670 goto out_err_no_srcu; 671 if (init_srcu_struct(&kvm->irq_srcu)) 672 goto out_err_no_irq_srcu; 673 for (i = 0; i < KVM_NR_BUSES; i++) { 674 rcu_assign_pointer(kvm->buses[i], 675 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 676 if (!kvm->buses[i]) 677 goto out_err; 678 } 679 680 r = kvm_init_mmu_notifier(kvm); 681 if (r) 682 goto out_err; 683 684 mutex_lock(&kvm_lock); 685 list_add(&kvm->vm_list, &vm_list); 686 mutex_unlock(&kvm_lock); 687 688 preempt_notifier_inc(); 689 690 return kvm; 691 692 out_err: 693 cleanup_srcu_struct(&kvm->irq_srcu); 694 out_err_no_irq_srcu: 695 cleanup_srcu_struct(&kvm->srcu); 696 out_err_no_srcu: 697 hardware_disable_all(); 698 out_err_no_disable: 699 refcount_set(&kvm->users_count, 0); 700 for (i = 0; i < KVM_NR_BUSES; i++) 701 kfree(kvm_get_bus(kvm, i)); 702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 703 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 704 kvm_arch_free_vm(kvm); 705 mmdrop(current->mm); 706 return ERR_PTR(r); 707 } 708 709 static void kvm_destroy_devices(struct kvm *kvm) 710 { 711 struct kvm_device *dev, *tmp; 712 713 /* 714 * We do not need to take the kvm->lock here, because nobody else 715 * has a reference to the struct kvm at this point and therefore 716 * cannot access the devices list anyhow. 717 */ 718 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 719 list_del(&dev->vm_node); 720 dev->ops->destroy(dev); 721 } 722 } 723 724 static void kvm_destroy_vm(struct kvm *kvm) 725 { 726 int i; 727 struct mm_struct *mm = kvm->mm; 728 729 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 730 kvm_destroy_vm_debugfs(kvm); 731 kvm_arch_sync_events(kvm); 732 mutex_lock(&kvm_lock); 733 list_del(&kvm->vm_list); 734 mutex_unlock(&kvm_lock); 735 kvm_free_irq_routing(kvm); 736 for (i = 0; i < KVM_NR_BUSES; i++) { 737 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 738 739 if (bus) 740 kvm_io_bus_destroy(bus); 741 kvm->buses[i] = NULL; 742 } 743 kvm_coalesced_mmio_free(kvm); 744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 745 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 746 #else 747 kvm_arch_flush_shadow_all(kvm); 748 #endif 749 kvm_arch_destroy_vm(kvm); 750 kvm_destroy_devices(kvm); 751 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 752 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 753 cleanup_srcu_struct(&kvm->irq_srcu); 754 cleanup_srcu_struct(&kvm->srcu); 755 kvm_arch_free_vm(kvm); 756 preempt_notifier_dec(); 757 hardware_disable_all(); 758 mmdrop(mm); 759 } 760 761 void kvm_get_kvm(struct kvm *kvm) 762 { 763 refcount_inc(&kvm->users_count); 764 } 765 EXPORT_SYMBOL_GPL(kvm_get_kvm); 766 767 void kvm_put_kvm(struct kvm *kvm) 768 { 769 if (refcount_dec_and_test(&kvm->users_count)) 770 kvm_destroy_vm(kvm); 771 } 772 EXPORT_SYMBOL_GPL(kvm_put_kvm); 773 774 775 static int kvm_vm_release(struct inode *inode, struct file *filp) 776 { 777 struct kvm *kvm = filp->private_data; 778 779 kvm_irqfd_release(kvm); 780 781 kvm_put_kvm(kvm); 782 return 0; 783 } 784 785 /* 786 * Allocation size is twice as large as the actual dirty bitmap size. 787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 788 */ 789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 790 { 791 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 792 793 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 794 if (!memslot->dirty_bitmap) 795 return -ENOMEM; 796 797 return 0; 798 } 799 800 /* 801 * Insert memslot and re-sort memslots based on their GFN, 802 * so binary search could be used to lookup GFN. 803 * Sorting algorithm takes advantage of having initially 804 * sorted array and known changed memslot position. 805 */ 806 static void update_memslots(struct kvm_memslots *slots, 807 struct kvm_memory_slot *new, 808 enum kvm_mr_change change) 809 { 810 int id = new->id; 811 int i = slots->id_to_index[id]; 812 struct kvm_memory_slot *mslots = slots->memslots; 813 814 WARN_ON(mslots[i].id != id); 815 switch (change) { 816 case KVM_MR_CREATE: 817 slots->used_slots++; 818 WARN_ON(mslots[i].npages || !new->npages); 819 break; 820 case KVM_MR_DELETE: 821 slots->used_slots--; 822 WARN_ON(new->npages || !mslots[i].npages); 823 break; 824 default: 825 break; 826 } 827 828 while (i < KVM_MEM_SLOTS_NUM - 1 && 829 new->base_gfn <= mslots[i + 1].base_gfn) { 830 if (!mslots[i + 1].npages) 831 break; 832 mslots[i] = mslots[i + 1]; 833 slots->id_to_index[mslots[i].id] = i; 834 i++; 835 } 836 837 /* 838 * The ">=" is needed when creating a slot with base_gfn == 0, 839 * so that it moves before all those with base_gfn == npages == 0. 840 * 841 * On the other hand, if new->npages is zero, the above loop has 842 * already left i pointing to the beginning of the empty part of 843 * mslots, and the ">=" would move the hole backwards in this 844 * case---which is wrong. So skip the loop when deleting a slot. 845 */ 846 if (new->npages) { 847 while (i > 0 && 848 new->base_gfn >= mslots[i - 1].base_gfn) { 849 mslots[i] = mslots[i - 1]; 850 slots->id_to_index[mslots[i].id] = i; 851 i--; 852 } 853 } else 854 WARN_ON_ONCE(i != slots->used_slots); 855 856 mslots[i] = *new; 857 slots->id_to_index[mslots[i].id] = i; 858 } 859 860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 861 { 862 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 863 864 #ifdef __KVM_HAVE_READONLY_MEM 865 valid_flags |= KVM_MEM_READONLY; 866 #endif 867 868 if (mem->flags & ~valid_flags) 869 return -EINVAL; 870 871 return 0; 872 } 873 874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 875 int as_id, struct kvm_memslots *slots) 876 { 877 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 878 u64 gen = old_memslots->generation; 879 880 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 881 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 882 883 rcu_assign_pointer(kvm->memslots[as_id], slots); 884 synchronize_srcu_expedited(&kvm->srcu); 885 886 /* 887 * Increment the new memslot generation a second time, dropping the 888 * update in-progress flag and incrementing then generation based on 889 * the number of address spaces. This provides a unique and easily 890 * identifiable generation number while the memslots are in flux. 891 */ 892 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 893 894 /* 895 * Generations must be unique even across address spaces. We do not need 896 * a global counter for that, instead the generation space is evenly split 897 * across address spaces. For example, with two address spaces, address 898 * space 0 will use generations 0, 2, 4, ... while address space 1 will 899 * use generations 1, 3, 5, ... 900 */ 901 gen += KVM_ADDRESS_SPACE_NUM; 902 903 kvm_arch_memslots_updated(kvm, gen); 904 905 slots->generation = gen; 906 907 return old_memslots; 908 } 909 910 /* 911 * Allocate some memory and give it an address in the guest physical address 912 * space. 913 * 914 * Discontiguous memory is allowed, mostly for framebuffers. 915 * 916 * Must be called holding kvm->slots_lock for write. 917 */ 918 int __kvm_set_memory_region(struct kvm *kvm, 919 const struct kvm_userspace_memory_region *mem) 920 { 921 int r; 922 gfn_t base_gfn; 923 unsigned long npages; 924 struct kvm_memory_slot *slot; 925 struct kvm_memory_slot old, new; 926 struct kvm_memslots *slots = NULL, *old_memslots; 927 int as_id, id; 928 enum kvm_mr_change change; 929 930 r = check_memory_region_flags(mem); 931 if (r) 932 goto out; 933 934 r = -EINVAL; 935 as_id = mem->slot >> 16; 936 id = (u16)mem->slot; 937 938 /* General sanity checks */ 939 if (mem->memory_size & (PAGE_SIZE - 1)) 940 goto out; 941 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 942 goto out; 943 /* We can read the guest memory with __xxx_user() later on. */ 944 if ((id < KVM_USER_MEM_SLOTS) && 945 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 946 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 947 mem->memory_size))) 948 goto out; 949 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 950 goto out; 951 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 952 goto out; 953 954 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 955 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 956 npages = mem->memory_size >> PAGE_SHIFT; 957 958 if (npages > KVM_MEM_MAX_NR_PAGES) 959 goto out; 960 961 new = old = *slot; 962 963 new.id = id; 964 new.base_gfn = base_gfn; 965 new.npages = npages; 966 new.flags = mem->flags; 967 968 if (npages) { 969 if (!old.npages) 970 change = KVM_MR_CREATE; 971 else { /* Modify an existing slot. */ 972 if ((mem->userspace_addr != old.userspace_addr) || 973 (npages != old.npages) || 974 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 975 goto out; 976 977 if (base_gfn != old.base_gfn) 978 change = KVM_MR_MOVE; 979 else if (new.flags != old.flags) 980 change = KVM_MR_FLAGS_ONLY; 981 else { /* Nothing to change. */ 982 r = 0; 983 goto out; 984 } 985 } 986 } else { 987 if (!old.npages) 988 goto out; 989 990 change = KVM_MR_DELETE; 991 new.base_gfn = 0; 992 new.flags = 0; 993 } 994 995 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 996 /* Check for overlaps */ 997 r = -EEXIST; 998 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 999 if (slot->id == id) 1000 continue; 1001 if (!((base_gfn + npages <= slot->base_gfn) || 1002 (base_gfn >= slot->base_gfn + slot->npages))) 1003 goto out; 1004 } 1005 } 1006 1007 /* Free page dirty bitmap if unneeded */ 1008 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1009 new.dirty_bitmap = NULL; 1010 1011 r = -ENOMEM; 1012 if (change == KVM_MR_CREATE) { 1013 new.userspace_addr = mem->userspace_addr; 1014 1015 if (kvm_arch_create_memslot(kvm, &new, npages)) 1016 goto out_free; 1017 } 1018 1019 /* Allocate page dirty bitmap if needed */ 1020 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1021 if (kvm_create_dirty_bitmap(&new) < 0) 1022 goto out_free; 1023 } 1024 1025 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1026 if (!slots) 1027 goto out_free; 1028 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1029 1030 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1031 slot = id_to_memslot(slots, id); 1032 slot->flags |= KVM_MEMSLOT_INVALID; 1033 1034 old_memslots = install_new_memslots(kvm, as_id, slots); 1035 1036 /* From this point no new shadow pages pointing to a deleted, 1037 * or moved, memslot will be created. 1038 * 1039 * validation of sp->gfn happens in: 1040 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1041 * - kvm_is_visible_gfn (mmu_check_roots) 1042 */ 1043 kvm_arch_flush_shadow_memslot(kvm, slot); 1044 1045 /* 1046 * We can re-use the old_memslots from above, the only difference 1047 * from the currently installed memslots is the invalid flag. This 1048 * will get overwritten by update_memslots anyway. 1049 */ 1050 slots = old_memslots; 1051 } 1052 1053 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1054 if (r) 1055 goto out_slots; 1056 1057 /* actual memory is freed via old in kvm_free_memslot below */ 1058 if (change == KVM_MR_DELETE) { 1059 new.dirty_bitmap = NULL; 1060 memset(&new.arch, 0, sizeof(new.arch)); 1061 } 1062 1063 update_memslots(slots, &new, change); 1064 old_memslots = install_new_memslots(kvm, as_id, slots); 1065 1066 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1067 1068 kvm_free_memslot(kvm, &old, &new); 1069 kvfree(old_memslots); 1070 return 0; 1071 1072 out_slots: 1073 kvfree(slots); 1074 out_free: 1075 kvm_free_memslot(kvm, &new, &old); 1076 out: 1077 return r; 1078 } 1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1080 1081 int kvm_set_memory_region(struct kvm *kvm, 1082 const struct kvm_userspace_memory_region *mem) 1083 { 1084 int r; 1085 1086 mutex_lock(&kvm->slots_lock); 1087 r = __kvm_set_memory_region(kvm, mem); 1088 mutex_unlock(&kvm->slots_lock); 1089 return r; 1090 } 1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1092 1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1094 struct kvm_userspace_memory_region *mem) 1095 { 1096 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1097 return -EINVAL; 1098 1099 return kvm_set_memory_region(kvm, mem); 1100 } 1101 1102 int kvm_get_dirty_log(struct kvm *kvm, 1103 struct kvm_dirty_log *log, int *is_dirty) 1104 { 1105 struct kvm_memslots *slots; 1106 struct kvm_memory_slot *memslot; 1107 int i, as_id, id; 1108 unsigned long n; 1109 unsigned long any = 0; 1110 1111 as_id = log->slot >> 16; 1112 id = (u16)log->slot; 1113 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1114 return -EINVAL; 1115 1116 slots = __kvm_memslots(kvm, as_id); 1117 memslot = id_to_memslot(slots, id); 1118 if (!memslot->dirty_bitmap) 1119 return -ENOENT; 1120 1121 n = kvm_dirty_bitmap_bytes(memslot); 1122 1123 for (i = 0; !any && i < n/sizeof(long); ++i) 1124 any = memslot->dirty_bitmap[i]; 1125 1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1127 return -EFAULT; 1128 1129 if (any) 1130 *is_dirty = 1; 1131 return 0; 1132 } 1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1134 1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1136 /** 1137 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1138 * and reenable dirty page tracking for the corresponding pages. 1139 * @kvm: pointer to kvm instance 1140 * @log: slot id and address to which we copy the log 1141 * @flush: true if TLB flush is needed by caller 1142 * 1143 * We need to keep it in mind that VCPU threads can write to the bitmap 1144 * concurrently. So, to avoid losing track of dirty pages we keep the 1145 * following order: 1146 * 1147 * 1. Take a snapshot of the bit and clear it if needed. 1148 * 2. Write protect the corresponding page. 1149 * 3. Copy the snapshot to the userspace. 1150 * 4. Upon return caller flushes TLB's if needed. 1151 * 1152 * Between 2 and 4, the guest may write to the page using the remaining TLB 1153 * entry. This is not a problem because the page is reported dirty using 1154 * the snapshot taken before and step 4 ensures that writes done after 1155 * exiting to userspace will be logged for the next call. 1156 * 1157 */ 1158 int kvm_get_dirty_log_protect(struct kvm *kvm, 1159 struct kvm_dirty_log *log, bool *flush) 1160 { 1161 struct kvm_memslots *slots; 1162 struct kvm_memory_slot *memslot; 1163 int i, as_id, id; 1164 unsigned long n; 1165 unsigned long *dirty_bitmap; 1166 unsigned long *dirty_bitmap_buffer; 1167 1168 as_id = log->slot >> 16; 1169 id = (u16)log->slot; 1170 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1171 return -EINVAL; 1172 1173 slots = __kvm_memslots(kvm, as_id); 1174 memslot = id_to_memslot(slots, id); 1175 1176 dirty_bitmap = memslot->dirty_bitmap; 1177 if (!dirty_bitmap) 1178 return -ENOENT; 1179 1180 n = kvm_dirty_bitmap_bytes(memslot); 1181 *flush = false; 1182 if (kvm->manual_dirty_log_protect) { 1183 /* 1184 * Unlike kvm_get_dirty_log, we always return false in *flush, 1185 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1186 * is some code duplication between this function and 1187 * kvm_get_dirty_log, but hopefully all architecture 1188 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1189 * can be eliminated. 1190 */ 1191 dirty_bitmap_buffer = dirty_bitmap; 1192 } else { 1193 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1194 memset(dirty_bitmap_buffer, 0, n); 1195 1196 spin_lock(&kvm->mmu_lock); 1197 for (i = 0; i < n / sizeof(long); i++) { 1198 unsigned long mask; 1199 gfn_t offset; 1200 1201 if (!dirty_bitmap[i]) 1202 continue; 1203 1204 *flush = true; 1205 mask = xchg(&dirty_bitmap[i], 0); 1206 dirty_bitmap_buffer[i] = mask; 1207 1208 offset = i * BITS_PER_LONG; 1209 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1210 offset, mask); 1211 } 1212 spin_unlock(&kvm->mmu_lock); 1213 } 1214 1215 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1216 return -EFAULT; 1217 return 0; 1218 } 1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1220 1221 /** 1222 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1223 * and reenable dirty page tracking for the corresponding pages. 1224 * @kvm: pointer to kvm instance 1225 * @log: slot id and address from which to fetch the bitmap of dirty pages 1226 * @flush: true if TLB flush is needed by caller 1227 */ 1228 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1229 struct kvm_clear_dirty_log *log, bool *flush) 1230 { 1231 struct kvm_memslots *slots; 1232 struct kvm_memory_slot *memslot; 1233 int as_id, id; 1234 gfn_t offset; 1235 unsigned long i, n; 1236 unsigned long *dirty_bitmap; 1237 unsigned long *dirty_bitmap_buffer; 1238 1239 as_id = log->slot >> 16; 1240 id = (u16)log->slot; 1241 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1242 return -EINVAL; 1243 1244 if (log->first_page & 63) 1245 return -EINVAL; 1246 1247 slots = __kvm_memslots(kvm, as_id); 1248 memslot = id_to_memslot(slots, id); 1249 1250 dirty_bitmap = memslot->dirty_bitmap; 1251 if (!dirty_bitmap) 1252 return -ENOENT; 1253 1254 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1255 1256 if (log->first_page > memslot->npages || 1257 log->num_pages > memslot->npages - log->first_page || 1258 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1259 return -EINVAL; 1260 1261 *flush = false; 1262 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1263 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1264 return -EFAULT; 1265 1266 spin_lock(&kvm->mmu_lock); 1267 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1268 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1269 i++, offset += BITS_PER_LONG) { 1270 unsigned long mask = *dirty_bitmap_buffer++; 1271 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1272 if (!mask) 1273 continue; 1274 1275 mask &= atomic_long_fetch_andnot(mask, p); 1276 1277 /* 1278 * mask contains the bits that really have been cleared. This 1279 * never includes any bits beyond the length of the memslot (if 1280 * the length is not aligned to 64 pages), therefore it is not 1281 * a problem if userspace sets them in log->dirty_bitmap. 1282 */ 1283 if (mask) { 1284 *flush = true; 1285 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1286 offset, mask); 1287 } 1288 } 1289 spin_unlock(&kvm->mmu_lock); 1290 1291 return 0; 1292 } 1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1294 #endif 1295 1296 bool kvm_largepages_enabled(void) 1297 { 1298 return largepages_enabled; 1299 } 1300 1301 void kvm_disable_largepages(void) 1302 { 1303 largepages_enabled = false; 1304 } 1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1306 1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1308 { 1309 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1310 } 1311 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1312 1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1314 { 1315 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1316 } 1317 1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1319 { 1320 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1321 1322 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1323 memslot->flags & KVM_MEMSLOT_INVALID) 1324 return false; 1325 1326 return true; 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1329 1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1331 { 1332 struct vm_area_struct *vma; 1333 unsigned long addr, size; 1334 1335 size = PAGE_SIZE; 1336 1337 addr = gfn_to_hva(kvm, gfn); 1338 if (kvm_is_error_hva(addr)) 1339 return PAGE_SIZE; 1340 1341 down_read(¤t->mm->mmap_sem); 1342 vma = find_vma(current->mm, addr); 1343 if (!vma) 1344 goto out; 1345 1346 size = vma_kernel_pagesize(vma); 1347 1348 out: 1349 up_read(¤t->mm->mmap_sem); 1350 1351 return size; 1352 } 1353 1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1355 { 1356 return slot->flags & KVM_MEM_READONLY; 1357 } 1358 1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1360 gfn_t *nr_pages, bool write) 1361 { 1362 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1363 return KVM_HVA_ERR_BAD; 1364 1365 if (memslot_is_readonly(slot) && write) 1366 return KVM_HVA_ERR_RO_BAD; 1367 1368 if (nr_pages) 1369 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1370 1371 return __gfn_to_hva_memslot(slot, gfn); 1372 } 1373 1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1375 gfn_t *nr_pages) 1376 { 1377 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1378 } 1379 1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1381 gfn_t gfn) 1382 { 1383 return gfn_to_hva_many(slot, gfn, NULL); 1384 } 1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1386 1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1388 { 1389 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1390 } 1391 EXPORT_SYMBOL_GPL(gfn_to_hva); 1392 1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1394 { 1395 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1396 } 1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1398 1399 /* 1400 * Return the hva of a @gfn and the R/W attribute if possible. 1401 * 1402 * @slot: the kvm_memory_slot which contains @gfn 1403 * @gfn: the gfn to be translated 1404 * @writable: used to return the read/write attribute of the @slot if the hva 1405 * is valid and @writable is not NULL 1406 */ 1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1408 gfn_t gfn, bool *writable) 1409 { 1410 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1411 1412 if (!kvm_is_error_hva(hva) && writable) 1413 *writable = !memslot_is_readonly(slot); 1414 1415 return hva; 1416 } 1417 1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1419 { 1420 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1421 1422 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1423 } 1424 1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1426 { 1427 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1428 1429 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1430 } 1431 1432 static inline int check_user_page_hwpoison(unsigned long addr) 1433 { 1434 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1435 1436 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1437 return rc == -EHWPOISON; 1438 } 1439 1440 /* 1441 * The fast path to get the writable pfn which will be stored in @pfn, 1442 * true indicates success, otherwise false is returned. It's also the 1443 * only part that runs if we can are in atomic context. 1444 */ 1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1446 bool *writable, kvm_pfn_t *pfn) 1447 { 1448 struct page *page[1]; 1449 int npages; 1450 1451 /* 1452 * Fast pin a writable pfn only if it is a write fault request 1453 * or the caller allows to map a writable pfn for a read fault 1454 * request. 1455 */ 1456 if (!(write_fault || writable)) 1457 return false; 1458 1459 npages = __get_user_pages_fast(addr, 1, 1, page); 1460 if (npages == 1) { 1461 *pfn = page_to_pfn(page[0]); 1462 1463 if (writable) 1464 *writable = true; 1465 return true; 1466 } 1467 1468 return false; 1469 } 1470 1471 /* 1472 * The slow path to get the pfn of the specified host virtual address, 1473 * 1 indicates success, -errno is returned if error is detected. 1474 */ 1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1476 bool *writable, kvm_pfn_t *pfn) 1477 { 1478 unsigned int flags = FOLL_HWPOISON; 1479 struct page *page; 1480 int npages = 0; 1481 1482 might_sleep(); 1483 1484 if (writable) 1485 *writable = write_fault; 1486 1487 if (write_fault) 1488 flags |= FOLL_WRITE; 1489 if (async) 1490 flags |= FOLL_NOWAIT; 1491 1492 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1493 if (npages != 1) 1494 return npages; 1495 1496 /* map read fault as writable if possible */ 1497 if (unlikely(!write_fault) && writable) { 1498 struct page *wpage; 1499 1500 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1501 *writable = true; 1502 put_page(page); 1503 page = wpage; 1504 } 1505 } 1506 *pfn = page_to_pfn(page); 1507 return npages; 1508 } 1509 1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1511 { 1512 if (unlikely(!(vma->vm_flags & VM_READ))) 1513 return false; 1514 1515 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1516 return false; 1517 1518 return true; 1519 } 1520 1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1522 unsigned long addr, bool *async, 1523 bool write_fault, bool *writable, 1524 kvm_pfn_t *p_pfn) 1525 { 1526 unsigned long pfn; 1527 int r; 1528 1529 r = follow_pfn(vma, addr, &pfn); 1530 if (r) { 1531 /* 1532 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1533 * not call the fault handler, so do it here. 1534 */ 1535 bool unlocked = false; 1536 r = fixup_user_fault(current, current->mm, addr, 1537 (write_fault ? FAULT_FLAG_WRITE : 0), 1538 &unlocked); 1539 if (unlocked) 1540 return -EAGAIN; 1541 if (r) 1542 return r; 1543 1544 r = follow_pfn(vma, addr, &pfn); 1545 if (r) 1546 return r; 1547 1548 } 1549 1550 if (writable) 1551 *writable = true; 1552 1553 /* 1554 * Get a reference here because callers of *hva_to_pfn* and 1555 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1556 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1557 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1558 * simply do nothing for reserved pfns. 1559 * 1560 * Whoever called remap_pfn_range is also going to call e.g. 1561 * unmap_mapping_range before the underlying pages are freed, 1562 * causing a call to our MMU notifier. 1563 */ 1564 kvm_get_pfn(pfn); 1565 1566 *p_pfn = pfn; 1567 return 0; 1568 } 1569 1570 /* 1571 * Pin guest page in memory and return its pfn. 1572 * @addr: host virtual address which maps memory to the guest 1573 * @atomic: whether this function can sleep 1574 * @async: whether this function need to wait IO complete if the 1575 * host page is not in the memory 1576 * @write_fault: whether we should get a writable host page 1577 * @writable: whether it allows to map a writable host page for !@write_fault 1578 * 1579 * The function will map a writable host page for these two cases: 1580 * 1): @write_fault = true 1581 * 2): @write_fault = false && @writable, @writable will tell the caller 1582 * whether the mapping is writable. 1583 */ 1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1585 bool write_fault, bool *writable) 1586 { 1587 struct vm_area_struct *vma; 1588 kvm_pfn_t pfn = 0; 1589 int npages, r; 1590 1591 /* we can do it either atomically or asynchronously, not both */ 1592 BUG_ON(atomic && async); 1593 1594 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1595 return pfn; 1596 1597 if (atomic) 1598 return KVM_PFN_ERR_FAULT; 1599 1600 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1601 if (npages == 1) 1602 return pfn; 1603 1604 down_read(¤t->mm->mmap_sem); 1605 if (npages == -EHWPOISON || 1606 (!async && check_user_page_hwpoison(addr))) { 1607 pfn = KVM_PFN_ERR_HWPOISON; 1608 goto exit; 1609 } 1610 1611 retry: 1612 vma = find_vma_intersection(current->mm, addr, addr + 1); 1613 1614 if (vma == NULL) 1615 pfn = KVM_PFN_ERR_FAULT; 1616 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1617 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1618 if (r == -EAGAIN) 1619 goto retry; 1620 if (r < 0) 1621 pfn = KVM_PFN_ERR_FAULT; 1622 } else { 1623 if (async && vma_is_valid(vma, write_fault)) 1624 *async = true; 1625 pfn = KVM_PFN_ERR_FAULT; 1626 } 1627 exit: 1628 up_read(¤t->mm->mmap_sem); 1629 return pfn; 1630 } 1631 1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1633 bool atomic, bool *async, bool write_fault, 1634 bool *writable) 1635 { 1636 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1637 1638 if (addr == KVM_HVA_ERR_RO_BAD) { 1639 if (writable) 1640 *writable = false; 1641 return KVM_PFN_ERR_RO_FAULT; 1642 } 1643 1644 if (kvm_is_error_hva(addr)) { 1645 if (writable) 1646 *writable = false; 1647 return KVM_PFN_NOSLOT; 1648 } 1649 1650 /* Do not map writable pfn in the readonly memslot. */ 1651 if (writable && memslot_is_readonly(slot)) { 1652 *writable = false; 1653 writable = NULL; 1654 } 1655 1656 return hva_to_pfn(addr, atomic, async, write_fault, 1657 writable); 1658 } 1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1660 1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1662 bool *writable) 1663 { 1664 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1665 write_fault, writable); 1666 } 1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1668 1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1670 { 1671 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1672 } 1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1674 1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1676 { 1677 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1678 } 1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1680 1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1682 { 1683 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1684 } 1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1686 1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1688 { 1689 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1692 1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1694 { 1695 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1696 } 1697 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1698 1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1700 { 1701 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1704 1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1706 struct page **pages, int nr_pages) 1707 { 1708 unsigned long addr; 1709 gfn_t entry = 0; 1710 1711 addr = gfn_to_hva_many(slot, gfn, &entry); 1712 if (kvm_is_error_hva(addr)) 1713 return -1; 1714 1715 if (entry < nr_pages) 1716 return 0; 1717 1718 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1719 } 1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1721 1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1723 { 1724 if (is_error_noslot_pfn(pfn)) 1725 return KVM_ERR_PTR_BAD_PAGE; 1726 1727 if (kvm_is_reserved_pfn(pfn)) { 1728 WARN_ON(1); 1729 return KVM_ERR_PTR_BAD_PAGE; 1730 } 1731 1732 return pfn_to_page(pfn); 1733 } 1734 1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1736 { 1737 kvm_pfn_t pfn; 1738 1739 pfn = gfn_to_pfn(kvm, gfn); 1740 1741 return kvm_pfn_to_page(pfn); 1742 } 1743 EXPORT_SYMBOL_GPL(gfn_to_page); 1744 1745 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1746 struct kvm_host_map *map) 1747 { 1748 kvm_pfn_t pfn; 1749 void *hva = NULL; 1750 struct page *page = KVM_UNMAPPED_PAGE; 1751 1752 if (!map) 1753 return -EINVAL; 1754 1755 pfn = gfn_to_pfn_memslot(slot, gfn); 1756 if (is_error_noslot_pfn(pfn)) 1757 return -EINVAL; 1758 1759 if (pfn_valid(pfn)) { 1760 page = pfn_to_page(pfn); 1761 hva = kmap(page); 1762 #ifdef CONFIG_HAS_IOMEM 1763 } else { 1764 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1765 #endif 1766 } 1767 1768 if (!hva) 1769 return -EFAULT; 1770 1771 map->page = page; 1772 map->hva = hva; 1773 map->pfn = pfn; 1774 map->gfn = gfn; 1775 1776 return 0; 1777 } 1778 1779 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1780 { 1781 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1782 } 1783 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1784 1785 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1786 bool dirty) 1787 { 1788 if (!map) 1789 return; 1790 1791 if (!map->hva) 1792 return; 1793 1794 if (map->page != KVM_UNMAPPED_PAGE) 1795 kunmap(map->page); 1796 #ifdef CONFIG_HAS_IOMEM 1797 else 1798 memunmap(map->hva); 1799 #endif 1800 1801 if (dirty) { 1802 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1803 kvm_release_pfn_dirty(map->pfn); 1804 } else { 1805 kvm_release_pfn_clean(map->pfn); 1806 } 1807 1808 map->hva = NULL; 1809 map->page = NULL; 1810 } 1811 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1812 1813 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1814 { 1815 kvm_pfn_t pfn; 1816 1817 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1818 1819 return kvm_pfn_to_page(pfn); 1820 } 1821 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1822 1823 void kvm_release_page_clean(struct page *page) 1824 { 1825 WARN_ON(is_error_page(page)); 1826 1827 kvm_release_pfn_clean(page_to_pfn(page)); 1828 } 1829 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1830 1831 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1832 { 1833 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1834 put_page(pfn_to_page(pfn)); 1835 } 1836 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1837 1838 void kvm_release_page_dirty(struct page *page) 1839 { 1840 WARN_ON(is_error_page(page)); 1841 1842 kvm_release_pfn_dirty(page_to_pfn(page)); 1843 } 1844 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1845 1846 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1847 { 1848 kvm_set_pfn_dirty(pfn); 1849 kvm_release_pfn_clean(pfn); 1850 } 1851 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1852 1853 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1854 { 1855 if (!kvm_is_reserved_pfn(pfn)) { 1856 struct page *page = pfn_to_page(pfn); 1857 1858 SetPageDirty(page); 1859 } 1860 } 1861 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1862 1863 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1864 { 1865 if (!kvm_is_reserved_pfn(pfn)) 1866 mark_page_accessed(pfn_to_page(pfn)); 1867 } 1868 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1869 1870 void kvm_get_pfn(kvm_pfn_t pfn) 1871 { 1872 if (!kvm_is_reserved_pfn(pfn)) 1873 get_page(pfn_to_page(pfn)); 1874 } 1875 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1876 1877 static int next_segment(unsigned long len, int offset) 1878 { 1879 if (len > PAGE_SIZE - offset) 1880 return PAGE_SIZE - offset; 1881 else 1882 return len; 1883 } 1884 1885 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1886 void *data, int offset, int len) 1887 { 1888 int r; 1889 unsigned long addr; 1890 1891 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1892 if (kvm_is_error_hva(addr)) 1893 return -EFAULT; 1894 r = __copy_from_user(data, (void __user *)addr + offset, len); 1895 if (r) 1896 return -EFAULT; 1897 return 0; 1898 } 1899 1900 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1901 int len) 1902 { 1903 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1904 1905 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1906 } 1907 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1908 1909 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1910 int offset, int len) 1911 { 1912 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1913 1914 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1915 } 1916 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1917 1918 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1919 { 1920 gfn_t gfn = gpa >> PAGE_SHIFT; 1921 int seg; 1922 int offset = offset_in_page(gpa); 1923 int ret; 1924 1925 while ((seg = next_segment(len, offset)) != 0) { 1926 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1927 if (ret < 0) 1928 return ret; 1929 offset = 0; 1930 len -= seg; 1931 data += seg; 1932 ++gfn; 1933 } 1934 return 0; 1935 } 1936 EXPORT_SYMBOL_GPL(kvm_read_guest); 1937 1938 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1939 { 1940 gfn_t gfn = gpa >> PAGE_SHIFT; 1941 int seg; 1942 int offset = offset_in_page(gpa); 1943 int ret; 1944 1945 while ((seg = next_segment(len, offset)) != 0) { 1946 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1947 if (ret < 0) 1948 return ret; 1949 offset = 0; 1950 len -= seg; 1951 data += seg; 1952 ++gfn; 1953 } 1954 return 0; 1955 } 1956 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1957 1958 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1959 void *data, int offset, unsigned long len) 1960 { 1961 int r; 1962 unsigned long addr; 1963 1964 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1965 if (kvm_is_error_hva(addr)) 1966 return -EFAULT; 1967 pagefault_disable(); 1968 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1969 pagefault_enable(); 1970 if (r) 1971 return -EFAULT; 1972 return 0; 1973 } 1974 1975 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1976 unsigned long len) 1977 { 1978 gfn_t gfn = gpa >> PAGE_SHIFT; 1979 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1980 int offset = offset_in_page(gpa); 1981 1982 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1983 } 1984 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1985 1986 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1987 void *data, unsigned long len) 1988 { 1989 gfn_t gfn = gpa >> PAGE_SHIFT; 1990 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1991 int offset = offset_in_page(gpa); 1992 1993 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1994 } 1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1996 1997 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1998 const void *data, int offset, int len) 1999 { 2000 int r; 2001 unsigned long addr; 2002 2003 addr = gfn_to_hva_memslot(memslot, gfn); 2004 if (kvm_is_error_hva(addr)) 2005 return -EFAULT; 2006 r = __copy_to_user((void __user *)addr + offset, data, len); 2007 if (r) 2008 return -EFAULT; 2009 mark_page_dirty_in_slot(memslot, gfn); 2010 return 0; 2011 } 2012 2013 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2014 const void *data, int offset, int len) 2015 { 2016 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2017 2018 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2019 } 2020 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2021 2022 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2023 const void *data, int offset, int len) 2024 { 2025 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2026 2027 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2028 } 2029 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2030 2031 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2032 unsigned long len) 2033 { 2034 gfn_t gfn = gpa >> PAGE_SHIFT; 2035 int seg; 2036 int offset = offset_in_page(gpa); 2037 int ret; 2038 2039 while ((seg = next_segment(len, offset)) != 0) { 2040 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2041 if (ret < 0) 2042 return ret; 2043 offset = 0; 2044 len -= seg; 2045 data += seg; 2046 ++gfn; 2047 } 2048 return 0; 2049 } 2050 EXPORT_SYMBOL_GPL(kvm_write_guest); 2051 2052 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2053 unsigned long len) 2054 { 2055 gfn_t gfn = gpa >> PAGE_SHIFT; 2056 int seg; 2057 int offset = offset_in_page(gpa); 2058 int ret; 2059 2060 while ((seg = next_segment(len, offset)) != 0) { 2061 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2062 if (ret < 0) 2063 return ret; 2064 offset = 0; 2065 len -= seg; 2066 data += seg; 2067 ++gfn; 2068 } 2069 return 0; 2070 } 2071 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2072 2073 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2074 struct gfn_to_hva_cache *ghc, 2075 gpa_t gpa, unsigned long len) 2076 { 2077 int offset = offset_in_page(gpa); 2078 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2079 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2080 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2081 gfn_t nr_pages_avail; 2082 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2083 2084 ghc->gpa = gpa; 2085 ghc->generation = slots->generation; 2086 ghc->len = len; 2087 ghc->hva = KVM_HVA_ERR_BAD; 2088 2089 /* 2090 * If the requested region crosses two memslots, we still 2091 * verify that the entire region is valid here. 2092 */ 2093 while (!r && start_gfn <= end_gfn) { 2094 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2095 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2096 &nr_pages_avail); 2097 if (kvm_is_error_hva(ghc->hva)) 2098 r = -EFAULT; 2099 start_gfn += nr_pages_avail; 2100 } 2101 2102 /* Use the slow path for cross page reads and writes. */ 2103 if (!r && nr_pages_needed == 1) 2104 ghc->hva += offset; 2105 else 2106 ghc->memslot = NULL; 2107 2108 return r; 2109 } 2110 2111 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2112 gpa_t gpa, unsigned long len) 2113 { 2114 struct kvm_memslots *slots = kvm_memslots(kvm); 2115 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2118 2119 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2120 void *data, unsigned int offset, 2121 unsigned long len) 2122 { 2123 struct kvm_memslots *slots = kvm_memslots(kvm); 2124 int r; 2125 gpa_t gpa = ghc->gpa + offset; 2126 2127 BUG_ON(len + offset > ghc->len); 2128 2129 if (slots->generation != ghc->generation) 2130 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2131 2132 if (unlikely(!ghc->memslot)) 2133 return kvm_write_guest(kvm, gpa, data, len); 2134 2135 if (kvm_is_error_hva(ghc->hva)) 2136 return -EFAULT; 2137 2138 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2139 if (r) 2140 return -EFAULT; 2141 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2142 2143 return 0; 2144 } 2145 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2146 2147 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2148 void *data, unsigned long len) 2149 { 2150 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2151 } 2152 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2153 2154 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2155 void *data, unsigned long len) 2156 { 2157 struct kvm_memslots *slots = kvm_memslots(kvm); 2158 int r; 2159 2160 BUG_ON(len > ghc->len); 2161 2162 if (slots->generation != ghc->generation) 2163 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2164 2165 if (unlikely(!ghc->memslot)) 2166 return kvm_read_guest(kvm, ghc->gpa, data, len); 2167 2168 if (kvm_is_error_hva(ghc->hva)) 2169 return -EFAULT; 2170 2171 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2172 if (r) 2173 return -EFAULT; 2174 2175 return 0; 2176 } 2177 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2178 2179 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2180 { 2181 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2182 2183 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2184 } 2185 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2186 2187 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2188 { 2189 gfn_t gfn = gpa >> PAGE_SHIFT; 2190 int seg; 2191 int offset = offset_in_page(gpa); 2192 int ret; 2193 2194 while ((seg = next_segment(len, offset)) != 0) { 2195 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2196 if (ret < 0) 2197 return ret; 2198 offset = 0; 2199 len -= seg; 2200 ++gfn; 2201 } 2202 return 0; 2203 } 2204 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2205 2206 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2207 gfn_t gfn) 2208 { 2209 if (memslot && memslot->dirty_bitmap) { 2210 unsigned long rel_gfn = gfn - memslot->base_gfn; 2211 2212 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2213 } 2214 } 2215 2216 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2217 { 2218 struct kvm_memory_slot *memslot; 2219 2220 memslot = gfn_to_memslot(kvm, gfn); 2221 mark_page_dirty_in_slot(memslot, gfn); 2222 } 2223 EXPORT_SYMBOL_GPL(mark_page_dirty); 2224 2225 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2226 { 2227 struct kvm_memory_slot *memslot; 2228 2229 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2230 mark_page_dirty_in_slot(memslot, gfn); 2231 } 2232 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2233 2234 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2235 { 2236 if (!vcpu->sigset_active) 2237 return; 2238 2239 /* 2240 * This does a lockless modification of ->real_blocked, which is fine 2241 * because, only current can change ->real_blocked and all readers of 2242 * ->real_blocked don't care as long ->real_blocked is always a subset 2243 * of ->blocked. 2244 */ 2245 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2246 } 2247 2248 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2249 { 2250 if (!vcpu->sigset_active) 2251 return; 2252 2253 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2254 sigemptyset(¤t->real_blocked); 2255 } 2256 2257 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2258 { 2259 unsigned int old, val, grow, grow_start; 2260 2261 old = val = vcpu->halt_poll_ns; 2262 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2263 grow = READ_ONCE(halt_poll_ns_grow); 2264 if (!grow) 2265 goto out; 2266 2267 val *= grow; 2268 if (val < grow_start) 2269 val = grow_start; 2270 2271 if (val > halt_poll_ns) 2272 val = halt_poll_ns; 2273 2274 vcpu->halt_poll_ns = val; 2275 out: 2276 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2277 } 2278 2279 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2280 { 2281 unsigned int old, val, shrink; 2282 2283 old = val = vcpu->halt_poll_ns; 2284 shrink = READ_ONCE(halt_poll_ns_shrink); 2285 if (shrink == 0) 2286 val = 0; 2287 else 2288 val /= shrink; 2289 2290 vcpu->halt_poll_ns = val; 2291 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2292 } 2293 2294 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2295 { 2296 int ret = -EINTR; 2297 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2298 2299 if (kvm_arch_vcpu_runnable(vcpu)) { 2300 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2301 goto out; 2302 } 2303 if (kvm_cpu_has_pending_timer(vcpu)) 2304 goto out; 2305 if (signal_pending(current)) 2306 goto out; 2307 2308 ret = 0; 2309 out: 2310 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2311 return ret; 2312 } 2313 2314 /* 2315 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2316 */ 2317 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2318 { 2319 ktime_t start, cur; 2320 DECLARE_SWAITQUEUE(wait); 2321 bool waited = false; 2322 u64 block_ns; 2323 2324 kvm_arch_vcpu_blocking(vcpu); 2325 2326 start = cur = ktime_get(); 2327 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2328 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2329 2330 ++vcpu->stat.halt_attempted_poll; 2331 do { 2332 /* 2333 * This sets KVM_REQ_UNHALT if an interrupt 2334 * arrives. 2335 */ 2336 if (kvm_vcpu_check_block(vcpu) < 0) { 2337 ++vcpu->stat.halt_successful_poll; 2338 if (!vcpu_valid_wakeup(vcpu)) 2339 ++vcpu->stat.halt_poll_invalid; 2340 goto out; 2341 } 2342 cur = ktime_get(); 2343 } while (single_task_running() && ktime_before(cur, stop)); 2344 } 2345 2346 for (;;) { 2347 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2348 2349 if (kvm_vcpu_check_block(vcpu) < 0) 2350 break; 2351 2352 waited = true; 2353 schedule(); 2354 } 2355 2356 finish_swait(&vcpu->wq, &wait); 2357 cur = ktime_get(); 2358 out: 2359 kvm_arch_vcpu_unblocking(vcpu); 2360 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2361 2362 if (!vcpu_valid_wakeup(vcpu)) 2363 shrink_halt_poll_ns(vcpu); 2364 else if (halt_poll_ns) { 2365 if (block_ns <= vcpu->halt_poll_ns) 2366 ; 2367 /* we had a long block, shrink polling */ 2368 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2369 shrink_halt_poll_ns(vcpu); 2370 /* we had a short halt and our poll time is too small */ 2371 else if (vcpu->halt_poll_ns < halt_poll_ns && 2372 block_ns < halt_poll_ns) 2373 grow_halt_poll_ns(vcpu); 2374 } else 2375 vcpu->halt_poll_ns = 0; 2376 2377 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2378 kvm_arch_vcpu_block_finish(vcpu); 2379 } 2380 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2381 2382 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2383 { 2384 struct swait_queue_head *wqp; 2385 2386 wqp = kvm_arch_vcpu_wq(vcpu); 2387 if (swq_has_sleeper(wqp)) { 2388 swake_up_one(wqp); 2389 WRITE_ONCE(vcpu->ready, true); 2390 ++vcpu->stat.halt_wakeup; 2391 return true; 2392 } 2393 2394 return false; 2395 } 2396 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2397 2398 #ifndef CONFIG_S390 2399 /* 2400 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2401 */ 2402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2403 { 2404 int me; 2405 int cpu = vcpu->cpu; 2406 2407 if (kvm_vcpu_wake_up(vcpu)) 2408 return; 2409 2410 me = get_cpu(); 2411 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2412 if (kvm_arch_vcpu_should_kick(vcpu)) 2413 smp_send_reschedule(cpu); 2414 put_cpu(); 2415 } 2416 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2417 #endif /* !CONFIG_S390 */ 2418 2419 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2420 { 2421 struct pid *pid; 2422 struct task_struct *task = NULL; 2423 int ret = 0; 2424 2425 rcu_read_lock(); 2426 pid = rcu_dereference(target->pid); 2427 if (pid) 2428 task = get_pid_task(pid, PIDTYPE_PID); 2429 rcu_read_unlock(); 2430 if (!task) 2431 return ret; 2432 ret = yield_to(task, 1); 2433 put_task_struct(task); 2434 2435 return ret; 2436 } 2437 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2438 2439 /* 2440 * Helper that checks whether a VCPU is eligible for directed yield. 2441 * Most eligible candidate to yield is decided by following heuristics: 2442 * 2443 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2444 * (preempted lock holder), indicated by @in_spin_loop. 2445 * Set at the beiginning and cleared at the end of interception/PLE handler. 2446 * 2447 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2448 * chance last time (mostly it has become eligible now since we have probably 2449 * yielded to lockholder in last iteration. This is done by toggling 2450 * @dy_eligible each time a VCPU checked for eligibility.) 2451 * 2452 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2453 * to preempted lock-holder could result in wrong VCPU selection and CPU 2454 * burning. Giving priority for a potential lock-holder increases lock 2455 * progress. 2456 * 2457 * Since algorithm is based on heuristics, accessing another VCPU data without 2458 * locking does not harm. It may result in trying to yield to same VCPU, fail 2459 * and continue with next VCPU and so on. 2460 */ 2461 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2462 { 2463 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2464 bool eligible; 2465 2466 eligible = !vcpu->spin_loop.in_spin_loop || 2467 vcpu->spin_loop.dy_eligible; 2468 2469 if (vcpu->spin_loop.in_spin_loop) 2470 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2471 2472 return eligible; 2473 #else 2474 return true; 2475 #endif 2476 } 2477 2478 /* 2479 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2480 * a vcpu_load/vcpu_put pair. However, for most architectures 2481 * kvm_arch_vcpu_runnable does not require vcpu_load. 2482 */ 2483 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2484 { 2485 return kvm_arch_vcpu_runnable(vcpu); 2486 } 2487 2488 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2489 { 2490 if (kvm_arch_dy_runnable(vcpu)) 2491 return true; 2492 2493 #ifdef CONFIG_KVM_ASYNC_PF 2494 if (!list_empty_careful(&vcpu->async_pf.done)) 2495 return true; 2496 #endif 2497 2498 return false; 2499 } 2500 2501 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2502 { 2503 struct kvm *kvm = me->kvm; 2504 struct kvm_vcpu *vcpu; 2505 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2506 int yielded = 0; 2507 int try = 3; 2508 int pass; 2509 int i; 2510 2511 kvm_vcpu_set_in_spin_loop(me, true); 2512 /* 2513 * We boost the priority of a VCPU that is runnable but not 2514 * currently running, because it got preempted by something 2515 * else and called schedule in __vcpu_run. Hopefully that 2516 * VCPU is holding the lock that we need and will release it. 2517 * We approximate round-robin by starting at the last boosted VCPU. 2518 */ 2519 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2520 kvm_for_each_vcpu(i, vcpu, kvm) { 2521 if (!pass && i <= last_boosted_vcpu) { 2522 i = last_boosted_vcpu; 2523 continue; 2524 } else if (pass && i > last_boosted_vcpu) 2525 break; 2526 if (!READ_ONCE(vcpu->ready)) 2527 continue; 2528 if (vcpu == me) 2529 continue; 2530 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu)) 2531 continue; 2532 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2533 !kvm_arch_vcpu_in_kernel(vcpu)) 2534 continue; 2535 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2536 continue; 2537 2538 yielded = kvm_vcpu_yield_to(vcpu); 2539 if (yielded > 0) { 2540 kvm->last_boosted_vcpu = i; 2541 break; 2542 } else if (yielded < 0) { 2543 try--; 2544 if (!try) 2545 break; 2546 } 2547 } 2548 } 2549 kvm_vcpu_set_in_spin_loop(me, false); 2550 2551 /* Ensure vcpu is not eligible during next spinloop */ 2552 kvm_vcpu_set_dy_eligible(me, false); 2553 } 2554 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2555 2556 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2557 { 2558 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2559 struct page *page; 2560 2561 if (vmf->pgoff == 0) 2562 page = virt_to_page(vcpu->run); 2563 #ifdef CONFIG_X86 2564 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2565 page = virt_to_page(vcpu->arch.pio_data); 2566 #endif 2567 #ifdef CONFIG_KVM_MMIO 2568 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2569 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2570 #endif 2571 else 2572 return kvm_arch_vcpu_fault(vcpu, vmf); 2573 get_page(page); 2574 vmf->page = page; 2575 return 0; 2576 } 2577 2578 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2579 .fault = kvm_vcpu_fault, 2580 }; 2581 2582 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2583 { 2584 vma->vm_ops = &kvm_vcpu_vm_ops; 2585 return 0; 2586 } 2587 2588 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2589 { 2590 struct kvm_vcpu *vcpu = filp->private_data; 2591 2592 debugfs_remove_recursive(vcpu->debugfs_dentry); 2593 kvm_put_kvm(vcpu->kvm); 2594 return 0; 2595 } 2596 2597 static struct file_operations kvm_vcpu_fops = { 2598 .release = kvm_vcpu_release, 2599 .unlocked_ioctl = kvm_vcpu_ioctl, 2600 .mmap = kvm_vcpu_mmap, 2601 .llseek = noop_llseek, 2602 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2603 }; 2604 2605 /* 2606 * Allocates an inode for the vcpu. 2607 */ 2608 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2609 { 2610 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2611 2612 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2613 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2614 } 2615 2616 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2617 { 2618 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 2619 char dir_name[ITOA_MAX_LEN * 2]; 2620 2621 if (!debugfs_initialized()) 2622 return; 2623 2624 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2625 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2626 vcpu->kvm->debugfs_dentry); 2627 2628 kvm_arch_create_vcpu_debugfs(vcpu); 2629 #endif 2630 } 2631 2632 /* 2633 * Creates some virtual cpus. Good luck creating more than one. 2634 */ 2635 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2636 { 2637 int r; 2638 struct kvm_vcpu *vcpu; 2639 2640 if (id >= KVM_MAX_VCPU_ID) 2641 return -EINVAL; 2642 2643 mutex_lock(&kvm->lock); 2644 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2645 mutex_unlock(&kvm->lock); 2646 return -EINVAL; 2647 } 2648 2649 kvm->created_vcpus++; 2650 mutex_unlock(&kvm->lock); 2651 2652 vcpu = kvm_arch_vcpu_create(kvm, id); 2653 if (IS_ERR(vcpu)) { 2654 r = PTR_ERR(vcpu); 2655 goto vcpu_decrement; 2656 } 2657 2658 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2659 2660 r = kvm_arch_vcpu_setup(vcpu); 2661 if (r) 2662 goto vcpu_destroy; 2663 2664 kvm_create_vcpu_debugfs(vcpu); 2665 2666 mutex_lock(&kvm->lock); 2667 if (kvm_get_vcpu_by_id(kvm, id)) { 2668 r = -EEXIST; 2669 goto unlock_vcpu_destroy; 2670 } 2671 2672 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2673 2674 /* Now it's all set up, let userspace reach it */ 2675 kvm_get_kvm(kvm); 2676 r = create_vcpu_fd(vcpu); 2677 if (r < 0) { 2678 kvm_put_kvm(kvm); 2679 goto unlock_vcpu_destroy; 2680 } 2681 2682 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2683 2684 /* 2685 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2686 * before kvm->online_vcpu's incremented value. 2687 */ 2688 smp_wmb(); 2689 atomic_inc(&kvm->online_vcpus); 2690 2691 mutex_unlock(&kvm->lock); 2692 kvm_arch_vcpu_postcreate(vcpu); 2693 return r; 2694 2695 unlock_vcpu_destroy: 2696 mutex_unlock(&kvm->lock); 2697 debugfs_remove_recursive(vcpu->debugfs_dentry); 2698 vcpu_destroy: 2699 kvm_arch_vcpu_destroy(vcpu); 2700 vcpu_decrement: 2701 mutex_lock(&kvm->lock); 2702 kvm->created_vcpus--; 2703 mutex_unlock(&kvm->lock); 2704 return r; 2705 } 2706 2707 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2708 { 2709 if (sigset) { 2710 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2711 vcpu->sigset_active = 1; 2712 vcpu->sigset = *sigset; 2713 } else 2714 vcpu->sigset_active = 0; 2715 return 0; 2716 } 2717 2718 static long kvm_vcpu_ioctl(struct file *filp, 2719 unsigned int ioctl, unsigned long arg) 2720 { 2721 struct kvm_vcpu *vcpu = filp->private_data; 2722 void __user *argp = (void __user *)arg; 2723 int r; 2724 struct kvm_fpu *fpu = NULL; 2725 struct kvm_sregs *kvm_sregs = NULL; 2726 2727 if (vcpu->kvm->mm != current->mm) 2728 return -EIO; 2729 2730 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2731 return -EINVAL; 2732 2733 /* 2734 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2735 * execution; mutex_lock() would break them. 2736 */ 2737 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2738 if (r != -ENOIOCTLCMD) 2739 return r; 2740 2741 if (mutex_lock_killable(&vcpu->mutex)) 2742 return -EINTR; 2743 switch (ioctl) { 2744 case KVM_RUN: { 2745 struct pid *oldpid; 2746 r = -EINVAL; 2747 if (arg) 2748 goto out; 2749 oldpid = rcu_access_pointer(vcpu->pid); 2750 if (unlikely(oldpid != task_pid(current))) { 2751 /* The thread running this VCPU changed. */ 2752 struct pid *newpid; 2753 2754 r = kvm_arch_vcpu_run_pid_change(vcpu); 2755 if (r) 2756 break; 2757 2758 newpid = get_task_pid(current, PIDTYPE_PID); 2759 rcu_assign_pointer(vcpu->pid, newpid); 2760 if (oldpid) 2761 synchronize_rcu(); 2762 put_pid(oldpid); 2763 } 2764 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2765 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2766 break; 2767 } 2768 case KVM_GET_REGS: { 2769 struct kvm_regs *kvm_regs; 2770 2771 r = -ENOMEM; 2772 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2773 if (!kvm_regs) 2774 goto out; 2775 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2776 if (r) 2777 goto out_free1; 2778 r = -EFAULT; 2779 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2780 goto out_free1; 2781 r = 0; 2782 out_free1: 2783 kfree(kvm_regs); 2784 break; 2785 } 2786 case KVM_SET_REGS: { 2787 struct kvm_regs *kvm_regs; 2788 2789 r = -ENOMEM; 2790 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2791 if (IS_ERR(kvm_regs)) { 2792 r = PTR_ERR(kvm_regs); 2793 goto out; 2794 } 2795 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2796 kfree(kvm_regs); 2797 break; 2798 } 2799 case KVM_GET_SREGS: { 2800 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2801 GFP_KERNEL_ACCOUNT); 2802 r = -ENOMEM; 2803 if (!kvm_sregs) 2804 goto out; 2805 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2806 if (r) 2807 goto out; 2808 r = -EFAULT; 2809 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2810 goto out; 2811 r = 0; 2812 break; 2813 } 2814 case KVM_SET_SREGS: { 2815 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2816 if (IS_ERR(kvm_sregs)) { 2817 r = PTR_ERR(kvm_sregs); 2818 kvm_sregs = NULL; 2819 goto out; 2820 } 2821 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2822 break; 2823 } 2824 case KVM_GET_MP_STATE: { 2825 struct kvm_mp_state mp_state; 2826 2827 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2828 if (r) 2829 goto out; 2830 r = -EFAULT; 2831 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2832 goto out; 2833 r = 0; 2834 break; 2835 } 2836 case KVM_SET_MP_STATE: { 2837 struct kvm_mp_state mp_state; 2838 2839 r = -EFAULT; 2840 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2841 goto out; 2842 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2843 break; 2844 } 2845 case KVM_TRANSLATE: { 2846 struct kvm_translation tr; 2847 2848 r = -EFAULT; 2849 if (copy_from_user(&tr, argp, sizeof(tr))) 2850 goto out; 2851 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2852 if (r) 2853 goto out; 2854 r = -EFAULT; 2855 if (copy_to_user(argp, &tr, sizeof(tr))) 2856 goto out; 2857 r = 0; 2858 break; 2859 } 2860 case KVM_SET_GUEST_DEBUG: { 2861 struct kvm_guest_debug dbg; 2862 2863 r = -EFAULT; 2864 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2865 goto out; 2866 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2867 break; 2868 } 2869 case KVM_SET_SIGNAL_MASK: { 2870 struct kvm_signal_mask __user *sigmask_arg = argp; 2871 struct kvm_signal_mask kvm_sigmask; 2872 sigset_t sigset, *p; 2873 2874 p = NULL; 2875 if (argp) { 2876 r = -EFAULT; 2877 if (copy_from_user(&kvm_sigmask, argp, 2878 sizeof(kvm_sigmask))) 2879 goto out; 2880 r = -EINVAL; 2881 if (kvm_sigmask.len != sizeof(sigset)) 2882 goto out; 2883 r = -EFAULT; 2884 if (copy_from_user(&sigset, sigmask_arg->sigset, 2885 sizeof(sigset))) 2886 goto out; 2887 p = &sigset; 2888 } 2889 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2890 break; 2891 } 2892 case KVM_GET_FPU: { 2893 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2894 r = -ENOMEM; 2895 if (!fpu) 2896 goto out; 2897 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2898 if (r) 2899 goto out; 2900 r = -EFAULT; 2901 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2902 goto out; 2903 r = 0; 2904 break; 2905 } 2906 case KVM_SET_FPU: { 2907 fpu = memdup_user(argp, sizeof(*fpu)); 2908 if (IS_ERR(fpu)) { 2909 r = PTR_ERR(fpu); 2910 fpu = NULL; 2911 goto out; 2912 } 2913 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2914 break; 2915 } 2916 default: 2917 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2918 } 2919 out: 2920 mutex_unlock(&vcpu->mutex); 2921 kfree(fpu); 2922 kfree(kvm_sregs); 2923 return r; 2924 } 2925 2926 #ifdef CONFIG_KVM_COMPAT 2927 static long kvm_vcpu_compat_ioctl(struct file *filp, 2928 unsigned int ioctl, unsigned long arg) 2929 { 2930 struct kvm_vcpu *vcpu = filp->private_data; 2931 void __user *argp = compat_ptr(arg); 2932 int r; 2933 2934 if (vcpu->kvm->mm != current->mm) 2935 return -EIO; 2936 2937 switch (ioctl) { 2938 case KVM_SET_SIGNAL_MASK: { 2939 struct kvm_signal_mask __user *sigmask_arg = argp; 2940 struct kvm_signal_mask kvm_sigmask; 2941 sigset_t sigset; 2942 2943 if (argp) { 2944 r = -EFAULT; 2945 if (copy_from_user(&kvm_sigmask, argp, 2946 sizeof(kvm_sigmask))) 2947 goto out; 2948 r = -EINVAL; 2949 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2950 goto out; 2951 r = -EFAULT; 2952 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2953 goto out; 2954 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2955 } else 2956 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2957 break; 2958 } 2959 default: 2960 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2961 } 2962 2963 out: 2964 return r; 2965 } 2966 #endif 2967 2968 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 2969 { 2970 struct kvm_device *dev = filp->private_data; 2971 2972 if (dev->ops->mmap) 2973 return dev->ops->mmap(dev, vma); 2974 2975 return -ENODEV; 2976 } 2977 2978 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2979 int (*accessor)(struct kvm_device *dev, 2980 struct kvm_device_attr *attr), 2981 unsigned long arg) 2982 { 2983 struct kvm_device_attr attr; 2984 2985 if (!accessor) 2986 return -EPERM; 2987 2988 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2989 return -EFAULT; 2990 2991 return accessor(dev, &attr); 2992 } 2993 2994 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2995 unsigned long arg) 2996 { 2997 struct kvm_device *dev = filp->private_data; 2998 2999 if (dev->kvm->mm != current->mm) 3000 return -EIO; 3001 3002 switch (ioctl) { 3003 case KVM_SET_DEVICE_ATTR: 3004 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3005 case KVM_GET_DEVICE_ATTR: 3006 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3007 case KVM_HAS_DEVICE_ATTR: 3008 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3009 default: 3010 if (dev->ops->ioctl) 3011 return dev->ops->ioctl(dev, ioctl, arg); 3012 3013 return -ENOTTY; 3014 } 3015 } 3016 3017 static int kvm_device_release(struct inode *inode, struct file *filp) 3018 { 3019 struct kvm_device *dev = filp->private_data; 3020 struct kvm *kvm = dev->kvm; 3021 3022 if (dev->ops->release) { 3023 mutex_lock(&kvm->lock); 3024 list_del(&dev->vm_node); 3025 dev->ops->release(dev); 3026 mutex_unlock(&kvm->lock); 3027 } 3028 3029 kvm_put_kvm(kvm); 3030 return 0; 3031 } 3032 3033 static const struct file_operations kvm_device_fops = { 3034 .unlocked_ioctl = kvm_device_ioctl, 3035 .release = kvm_device_release, 3036 KVM_COMPAT(kvm_device_ioctl), 3037 .mmap = kvm_device_mmap, 3038 }; 3039 3040 struct kvm_device *kvm_device_from_filp(struct file *filp) 3041 { 3042 if (filp->f_op != &kvm_device_fops) 3043 return NULL; 3044 3045 return filp->private_data; 3046 } 3047 3048 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3049 #ifdef CONFIG_KVM_MPIC 3050 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3051 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3052 #endif 3053 }; 3054 3055 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 3056 { 3057 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3058 return -ENOSPC; 3059 3060 if (kvm_device_ops_table[type] != NULL) 3061 return -EEXIST; 3062 3063 kvm_device_ops_table[type] = ops; 3064 return 0; 3065 } 3066 3067 void kvm_unregister_device_ops(u32 type) 3068 { 3069 if (kvm_device_ops_table[type] != NULL) 3070 kvm_device_ops_table[type] = NULL; 3071 } 3072 3073 static int kvm_ioctl_create_device(struct kvm *kvm, 3074 struct kvm_create_device *cd) 3075 { 3076 struct kvm_device_ops *ops = NULL; 3077 struct kvm_device *dev; 3078 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3079 int type; 3080 int ret; 3081 3082 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3083 return -ENODEV; 3084 3085 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3086 ops = kvm_device_ops_table[type]; 3087 if (ops == NULL) 3088 return -ENODEV; 3089 3090 if (test) 3091 return 0; 3092 3093 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3094 if (!dev) 3095 return -ENOMEM; 3096 3097 dev->ops = ops; 3098 dev->kvm = kvm; 3099 3100 mutex_lock(&kvm->lock); 3101 ret = ops->create(dev, type); 3102 if (ret < 0) { 3103 mutex_unlock(&kvm->lock); 3104 kfree(dev); 3105 return ret; 3106 } 3107 list_add(&dev->vm_node, &kvm->devices); 3108 mutex_unlock(&kvm->lock); 3109 3110 if (ops->init) 3111 ops->init(dev); 3112 3113 kvm_get_kvm(kvm); 3114 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3115 if (ret < 0) { 3116 kvm_put_kvm(kvm); 3117 mutex_lock(&kvm->lock); 3118 list_del(&dev->vm_node); 3119 mutex_unlock(&kvm->lock); 3120 ops->destroy(dev); 3121 return ret; 3122 } 3123 3124 cd->fd = ret; 3125 return 0; 3126 } 3127 3128 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3129 { 3130 switch (arg) { 3131 case KVM_CAP_USER_MEMORY: 3132 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3133 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3134 case KVM_CAP_INTERNAL_ERROR_DATA: 3135 #ifdef CONFIG_HAVE_KVM_MSI 3136 case KVM_CAP_SIGNAL_MSI: 3137 #endif 3138 #ifdef CONFIG_HAVE_KVM_IRQFD 3139 case KVM_CAP_IRQFD: 3140 case KVM_CAP_IRQFD_RESAMPLE: 3141 #endif 3142 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3143 case KVM_CAP_CHECK_EXTENSION_VM: 3144 case KVM_CAP_ENABLE_CAP_VM: 3145 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3146 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3147 #endif 3148 return 1; 3149 #ifdef CONFIG_KVM_MMIO 3150 case KVM_CAP_COALESCED_MMIO: 3151 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3152 case KVM_CAP_COALESCED_PIO: 3153 return 1; 3154 #endif 3155 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3156 case KVM_CAP_IRQ_ROUTING: 3157 return KVM_MAX_IRQ_ROUTES; 3158 #endif 3159 #if KVM_ADDRESS_SPACE_NUM > 1 3160 case KVM_CAP_MULTI_ADDRESS_SPACE: 3161 return KVM_ADDRESS_SPACE_NUM; 3162 #endif 3163 case KVM_CAP_NR_MEMSLOTS: 3164 return KVM_USER_MEM_SLOTS; 3165 default: 3166 break; 3167 } 3168 return kvm_vm_ioctl_check_extension(kvm, arg); 3169 } 3170 3171 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3172 struct kvm_enable_cap *cap) 3173 { 3174 return -EINVAL; 3175 } 3176 3177 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3178 struct kvm_enable_cap *cap) 3179 { 3180 switch (cap->cap) { 3181 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3182 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3183 if (cap->flags || (cap->args[0] & ~1)) 3184 return -EINVAL; 3185 kvm->manual_dirty_log_protect = cap->args[0]; 3186 return 0; 3187 #endif 3188 default: 3189 return kvm_vm_ioctl_enable_cap(kvm, cap); 3190 } 3191 } 3192 3193 static long kvm_vm_ioctl(struct file *filp, 3194 unsigned int ioctl, unsigned long arg) 3195 { 3196 struct kvm *kvm = filp->private_data; 3197 void __user *argp = (void __user *)arg; 3198 int r; 3199 3200 if (kvm->mm != current->mm) 3201 return -EIO; 3202 switch (ioctl) { 3203 case KVM_CREATE_VCPU: 3204 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3205 break; 3206 case KVM_ENABLE_CAP: { 3207 struct kvm_enable_cap cap; 3208 3209 r = -EFAULT; 3210 if (copy_from_user(&cap, argp, sizeof(cap))) 3211 goto out; 3212 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3213 break; 3214 } 3215 case KVM_SET_USER_MEMORY_REGION: { 3216 struct kvm_userspace_memory_region kvm_userspace_mem; 3217 3218 r = -EFAULT; 3219 if (copy_from_user(&kvm_userspace_mem, argp, 3220 sizeof(kvm_userspace_mem))) 3221 goto out; 3222 3223 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3224 break; 3225 } 3226 case KVM_GET_DIRTY_LOG: { 3227 struct kvm_dirty_log log; 3228 3229 r = -EFAULT; 3230 if (copy_from_user(&log, argp, sizeof(log))) 3231 goto out; 3232 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3233 break; 3234 } 3235 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3236 case KVM_CLEAR_DIRTY_LOG: { 3237 struct kvm_clear_dirty_log log; 3238 3239 r = -EFAULT; 3240 if (copy_from_user(&log, argp, sizeof(log))) 3241 goto out; 3242 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3243 break; 3244 } 3245 #endif 3246 #ifdef CONFIG_KVM_MMIO 3247 case KVM_REGISTER_COALESCED_MMIO: { 3248 struct kvm_coalesced_mmio_zone zone; 3249 3250 r = -EFAULT; 3251 if (copy_from_user(&zone, argp, sizeof(zone))) 3252 goto out; 3253 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3254 break; 3255 } 3256 case KVM_UNREGISTER_COALESCED_MMIO: { 3257 struct kvm_coalesced_mmio_zone zone; 3258 3259 r = -EFAULT; 3260 if (copy_from_user(&zone, argp, sizeof(zone))) 3261 goto out; 3262 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3263 break; 3264 } 3265 #endif 3266 case KVM_IRQFD: { 3267 struct kvm_irqfd data; 3268 3269 r = -EFAULT; 3270 if (copy_from_user(&data, argp, sizeof(data))) 3271 goto out; 3272 r = kvm_irqfd(kvm, &data); 3273 break; 3274 } 3275 case KVM_IOEVENTFD: { 3276 struct kvm_ioeventfd data; 3277 3278 r = -EFAULT; 3279 if (copy_from_user(&data, argp, sizeof(data))) 3280 goto out; 3281 r = kvm_ioeventfd(kvm, &data); 3282 break; 3283 } 3284 #ifdef CONFIG_HAVE_KVM_MSI 3285 case KVM_SIGNAL_MSI: { 3286 struct kvm_msi msi; 3287 3288 r = -EFAULT; 3289 if (copy_from_user(&msi, argp, sizeof(msi))) 3290 goto out; 3291 r = kvm_send_userspace_msi(kvm, &msi); 3292 break; 3293 } 3294 #endif 3295 #ifdef __KVM_HAVE_IRQ_LINE 3296 case KVM_IRQ_LINE_STATUS: 3297 case KVM_IRQ_LINE: { 3298 struct kvm_irq_level irq_event; 3299 3300 r = -EFAULT; 3301 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3302 goto out; 3303 3304 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3305 ioctl == KVM_IRQ_LINE_STATUS); 3306 if (r) 3307 goto out; 3308 3309 r = -EFAULT; 3310 if (ioctl == KVM_IRQ_LINE_STATUS) { 3311 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3312 goto out; 3313 } 3314 3315 r = 0; 3316 break; 3317 } 3318 #endif 3319 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3320 case KVM_SET_GSI_ROUTING: { 3321 struct kvm_irq_routing routing; 3322 struct kvm_irq_routing __user *urouting; 3323 struct kvm_irq_routing_entry *entries = NULL; 3324 3325 r = -EFAULT; 3326 if (copy_from_user(&routing, argp, sizeof(routing))) 3327 goto out; 3328 r = -EINVAL; 3329 if (!kvm_arch_can_set_irq_routing(kvm)) 3330 goto out; 3331 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3332 goto out; 3333 if (routing.flags) 3334 goto out; 3335 if (routing.nr) { 3336 r = -ENOMEM; 3337 entries = vmalloc(array_size(sizeof(*entries), 3338 routing.nr)); 3339 if (!entries) 3340 goto out; 3341 r = -EFAULT; 3342 urouting = argp; 3343 if (copy_from_user(entries, urouting->entries, 3344 routing.nr * sizeof(*entries))) 3345 goto out_free_irq_routing; 3346 } 3347 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3348 routing.flags); 3349 out_free_irq_routing: 3350 vfree(entries); 3351 break; 3352 } 3353 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3354 case KVM_CREATE_DEVICE: { 3355 struct kvm_create_device cd; 3356 3357 r = -EFAULT; 3358 if (copy_from_user(&cd, argp, sizeof(cd))) 3359 goto out; 3360 3361 r = kvm_ioctl_create_device(kvm, &cd); 3362 if (r) 3363 goto out; 3364 3365 r = -EFAULT; 3366 if (copy_to_user(argp, &cd, sizeof(cd))) 3367 goto out; 3368 3369 r = 0; 3370 break; 3371 } 3372 case KVM_CHECK_EXTENSION: 3373 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3374 break; 3375 default: 3376 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3377 } 3378 out: 3379 return r; 3380 } 3381 3382 #ifdef CONFIG_KVM_COMPAT 3383 struct compat_kvm_dirty_log { 3384 __u32 slot; 3385 __u32 padding1; 3386 union { 3387 compat_uptr_t dirty_bitmap; /* one bit per page */ 3388 __u64 padding2; 3389 }; 3390 }; 3391 3392 static long kvm_vm_compat_ioctl(struct file *filp, 3393 unsigned int ioctl, unsigned long arg) 3394 { 3395 struct kvm *kvm = filp->private_data; 3396 int r; 3397 3398 if (kvm->mm != current->mm) 3399 return -EIO; 3400 switch (ioctl) { 3401 case KVM_GET_DIRTY_LOG: { 3402 struct compat_kvm_dirty_log compat_log; 3403 struct kvm_dirty_log log; 3404 3405 if (copy_from_user(&compat_log, (void __user *)arg, 3406 sizeof(compat_log))) 3407 return -EFAULT; 3408 log.slot = compat_log.slot; 3409 log.padding1 = compat_log.padding1; 3410 log.padding2 = compat_log.padding2; 3411 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3412 3413 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3414 break; 3415 } 3416 default: 3417 r = kvm_vm_ioctl(filp, ioctl, arg); 3418 } 3419 return r; 3420 } 3421 #endif 3422 3423 static struct file_operations kvm_vm_fops = { 3424 .release = kvm_vm_release, 3425 .unlocked_ioctl = kvm_vm_ioctl, 3426 .llseek = noop_llseek, 3427 KVM_COMPAT(kvm_vm_compat_ioctl), 3428 }; 3429 3430 static int kvm_dev_ioctl_create_vm(unsigned long type) 3431 { 3432 int r; 3433 struct kvm *kvm; 3434 struct file *file; 3435 3436 kvm = kvm_create_vm(type); 3437 if (IS_ERR(kvm)) 3438 return PTR_ERR(kvm); 3439 #ifdef CONFIG_KVM_MMIO 3440 r = kvm_coalesced_mmio_init(kvm); 3441 if (r < 0) 3442 goto put_kvm; 3443 #endif 3444 r = get_unused_fd_flags(O_CLOEXEC); 3445 if (r < 0) 3446 goto put_kvm; 3447 3448 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3449 if (IS_ERR(file)) { 3450 put_unused_fd(r); 3451 r = PTR_ERR(file); 3452 goto put_kvm; 3453 } 3454 3455 /* 3456 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3457 * already set, with ->release() being kvm_vm_release(). In error 3458 * cases it will be called by the final fput(file) and will take 3459 * care of doing kvm_put_kvm(kvm). 3460 */ 3461 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3462 put_unused_fd(r); 3463 fput(file); 3464 return -ENOMEM; 3465 } 3466 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3467 3468 fd_install(r, file); 3469 return r; 3470 3471 put_kvm: 3472 kvm_put_kvm(kvm); 3473 return r; 3474 } 3475 3476 static long kvm_dev_ioctl(struct file *filp, 3477 unsigned int ioctl, unsigned long arg) 3478 { 3479 long r = -EINVAL; 3480 3481 switch (ioctl) { 3482 case KVM_GET_API_VERSION: 3483 if (arg) 3484 goto out; 3485 r = KVM_API_VERSION; 3486 break; 3487 case KVM_CREATE_VM: 3488 r = kvm_dev_ioctl_create_vm(arg); 3489 break; 3490 case KVM_CHECK_EXTENSION: 3491 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3492 break; 3493 case KVM_GET_VCPU_MMAP_SIZE: 3494 if (arg) 3495 goto out; 3496 r = PAGE_SIZE; /* struct kvm_run */ 3497 #ifdef CONFIG_X86 3498 r += PAGE_SIZE; /* pio data page */ 3499 #endif 3500 #ifdef CONFIG_KVM_MMIO 3501 r += PAGE_SIZE; /* coalesced mmio ring page */ 3502 #endif 3503 break; 3504 case KVM_TRACE_ENABLE: 3505 case KVM_TRACE_PAUSE: 3506 case KVM_TRACE_DISABLE: 3507 r = -EOPNOTSUPP; 3508 break; 3509 default: 3510 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3511 } 3512 out: 3513 return r; 3514 } 3515 3516 static struct file_operations kvm_chardev_ops = { 3517 .unlocked_ioctl = kvm_dev_ioctl, 3518 .llseek = noop_llseek, 3519 KVM_COMPAT(kvm_dev_ioctl), 3520 }; 3521 3522 static struct miscdevice kvm_dev = { 3523 KVM_MINOR, 3524 "kvm", 3525 &kvm_chardev_ops, 3526 }; 3527 3528 static void hardware_enable_nolock(void *junk) 3529 { 3530 int cpu = raw_smp_processor_id(); 3531 int r; 3532 3533 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3534 return; 3535 3536 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3537 3538 r = kvm_arch_hardware_enable(); 3539 3540 if (r) { 3541 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3542 atomic_inc(&hardware_enable_failed); 3543 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3544 } 3545 } 3546 3547 static int kvm_starting_cpu(unsigned int cpu) 3548 { 3549 raw_spin_lock(&kvm_count_lock); 3550 if (kvm_usage_count) 3551 hardware_enable_nolock(NULL); 3552 raw_spin_unlock(&kvm_count_lock); 3553 return 0; 3554 } 3555 3556 static void hardware_disable_nolock(void *junk) 3557 { 3558 int cpu = raw_smp_processor_id(); 3559 3560 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3561 return; 3562 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3563 kvm_arch_hardware_disable(); 3564 } 3565 3566 static int kvm_dying_cpu(unsigned int cpu) 3567 { 3568 raw_spin_lock(&kvm_count_lock); 3569 if (kvm_usage_count) 3570 hardware_disable_nolock(NULL); 3571 raw_spin_unlock(&kvm_count_lock); 3572 return 0; 3573 } 3574 3575 static void hardware_disable_all_nolock(void) 3576 { 3577 BUG_ON(!kvm_usage_count); 3578 3579 kvm_usage_count--; 3580 if (!kvm_usage_count) 3581 on_each_cpu(hardware_disable_nolock, NULL, 1); 3582 } 3583 3584 static void hardware_disable_all(void) 3585 { 3586 raw_spin_lock(&kvm_count_lock); 3587 hardware_disable_all_nolock(); 3588 raw_spin_unlock(&kvm_count_lock); 3589 } 3590 3591 static int hardware_enable_all(void) 3592 { 3593 int r = 0; 3594 3595 raw_spin_lock(&kvm_count_lock); 3596 3597 kvm_usage_count++; 3598 if (kvm_usage_count == 1) { 3599 atomic_set(&hardware_enable_failed, 0); 3600 on_each_cpu(hardware_enable_nolock, NULL, 1); 3601 3602 if (atomic_read(&hardware_enable_failed)) { 3603 hardware_disable_all_nolock(); 3604 r = -EBUSY; 3605 } 3606 } 3607 3608 raw_spin_unlock(&kvm_count_lock); 3609 3610 return r; 3611 } 3612 3613 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3614 void *v) 3615 { 3616 /* 3617 * Some (well, at least mine) BIOSes hang on reboot if 3618 * in vmx root mode. 3619 * 3620 * And Intel TXT required VMX off for all cpu when system shutdown. 3621 */ 3622 pr_info("kvm: exiting hardware virtualization\n"); 3623 kvm_rebooting = true; 3624 on_each_cpu(hardware_disable_nolock, NULL, 1); 3625 return NOTIFY_OK; 3626 } 3627 3628 static struct notifier_block kvm_reboot_notifier = { 3629 .notifier_call = kvm_reboot, 3630 .priority = 0, 3631 }; 3632 3633 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3634 { 3635 int i; 3636 3637 for (i = 0; i < bus->dev_count; i++) { 3638 struct kvm_io_device *pos = bus->range[i].dev; 3639 3640 kvm_iodevice_destructor(pos); 3641 } 3642 kfree(bus); 3643 } 3644 3645 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3646 const struct kvm_io_range *r2) 3647 { 3648 gpa_t addr1 = r1->addr; 3649 gpa_t addr2 = r2->addr; 3650 3651 if (addr1 < addr2) 3652 return -1; 3653 3654 /* If r2->len == 0, match the exact address. If r2->len != 0, 3655 * accept any overlapping write. Any order is acceptable for 3656 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3657 * we process all of them. 3658 */ 3659 if (r2->len) { 3660 addr1 += r1->len; 3661 addr2 += r2->len; 3662 } 3663 3664 if (addr1 > addr2) 3665 return 1; 3666 3667 return 0; 3668 } 3669 3670 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3671 { 3672 return kvm_io_bus_cmp(p1, p2); 3673 } 3674 3675 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3676 gpa_t addr, int len) 3677 { 3678 struct kvm_io_range *range, key; 3679 int off; 3680 3681 key = (struct kvm_io_range) { 3682 .addr = addr, 3683 .len = len, 3684 }; 3685 3686 range = bsearch(&key, bus->range, bus->dev_count, 3687 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3688 if (range == NULL) 3689 return -ENOENT; 3690 3691 off = range - bus->range; 3692 3693 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3694 off--; 3695 3696 return off; 3697 } 3698 3699 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3700 struct kvm_io_range *range, const void *val) 3701 { 3702 int idx; 3703 3704 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3705 if (idx < 0) 3706 return -EOPNOTSUPP; 3707 3708 while (idx < bus->dev_count && 3709 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3710 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3711 range->len, val)) 3712 return idx; 3713 idx++; 3714 } 3715 3716 return -EOPNOTSUPP; 3717 } 3718 3719 /* kvm_io_bus_write - called under kvm->slots_lock */ 3720 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3721 int len, const void *val) 3722 { 3723 struct kvm_io_bus *bus; 3724 struct kvm_io_range range; 3725 int r; 3726 3727 range = (struct kvm_io_range) { 3728 .addr = addr, 3729 .len = len, 3730 }; 3731 3732 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3733 if (!bus) 3734 return -ENOMEM; 3735 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3736 return r < 0 ? r : 0; 3737 } 3738 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3739 3740 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3741 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3742 gpa_t addr, int len, const void *val, long cookie) 3743 { 3744 struct kvm_io_bus *bus; 3745 struct kvm_io_range range; 3746 3747 range = (struct kvm_io_range) { 3748 .addr = addr, 3749 .len = len, 3750 }; 3751 3752 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3753 if (!bus) 3754 return -ENOMEM; 3755 3756 /* First try the device referenced by cookie. */ 3757 if ((cookie >= 0) && (cookie < bus->dev_count) && 3758 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3759 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3760 val)) 3761 return cookie; 3762 3763 /* 3764 * cookie contained garbage; fall back to search and return the 3765 * correct cookie value. 3766 */ 3767 return __kvm_io_bus_write(vcpu, bus, &range, val); 3768 } 3769 3770 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3771 struct kvm_io_range *range, void *val) 3772 { 3773 int idx; 3774 3775 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3776 if (idx < 0) 3777 return -EOPNOTSUPP; 3778 3779 while (idx < bus->dev_count && 3780 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3781 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3782 range->len, val)) 3783 return idx; 3784 idx++; 3785 } 3786 3787 return -EOPNOTSUPP; 3788 } 3789 3790 /* kvm_io_bus_read - called under kvm->slots_lock */ 3791 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3792 int len, void *val) 3793 { 3794 struct kvm_io_bus *bus; 3795 struct kvm_io_range range; 3796 int r; 3797 3798 range = (struct kvm_io_range) { 3799 .addr = addr, 3800 .len = len, 3801 }; 3802 3803 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3804 if (!bus) 3805 return -ENOMEM; 3806 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3807 return r < 0 ? r : 0; 3808 } 3809 3810 /* Caller must hold slots_lock. */ 3811 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3812 int len, struct kvm_io_device *dev) 3813 { 3814 int i; 3815 struct kvm_io_bus *new_bus, *bus; 3816 struct kvm_io_range range; 3817 3818 bus = kvm_get_bus(kvm, bus_idx); 3819 if (!bus) 3820 return -ENOMEM; 3821 3822 /* exclude ioeventfd which is limited by maximum fd */ 3823 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3824 return -ENOSPC; 3825 3826 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3827 GFP_KERNEL_ACCOUNT); 3828 if (!new_bus) 3829 return -ENOMEM; 3830 3831 range = (struct kvm_io_range) { 3832 .addr = addr, 3833 .len = len, 3834 .dev = dev, 3835 }; 3836 3837 for (i = 0; i < bus->dev_count; i++) 3838 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3839 break; 3840 3841 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3842 new_bus->dev_count++; 3843 new_bus->range[i] = range; 3844 memcpy(new_bus->range + i + 1, bus->range + i, 3845 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3846 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3847 synchronize_srcu_expedited(&kvm->srcu); 3848 kfree(bus); 3849 3850 return 0; 3851 } 3852 3853 /* Caller must hold slots_lock. */ 3854 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3855 struct kvm_io_device *dev) 3856 { 3857 int i; 3858 struct kvm_io_bus *new_bus, *bus; 3859 3860 bus = kvm_get_bus(kvm, bus_idx); 3861 if (!bus) 3862 return; 3863 3864 for (i = 0; i < bus->dev_count; i++) 3865 if (bus->range[i].dev == dev) { 3866 break; 3867 } 3868 3869 if (i == bus->dev_count) 3870 return; 3871 3872 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3873 GFP_KERNEL_ACCOUNT); 3874 if (!new_bus) { 3875 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3876 goto broken; 3877 } 3878 3879 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3880 new_bus->dev_count--; 3881 memcpy(new_bus->range + i, bus->range + i + 1, 3882 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3883 3884 broken: 3885 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3886 synchronize_srcu_expedited(&kvm->srcu); 3887 kfree(bus); 3888 return; 3889 } 3890 3891 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3892 gpa_t addr) 3893 { 3894 struct kvm_io_bus *bus; 3895 int dev_idx, srcu_idx; 3896 struct kvm_io_device *iodev = NULL; 3897 3898 srcu_idx = srcu_read_lock(&kvm->srcu); 3899 3900 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3901 if (!bus) 3902 goto out_unlock; 3903 3904 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3905 if (dev_idx < 0) 3906 goto out_unlock; 3907 3908 iodev = bus->range[dev_idx].dev; 3909 3910 out_unlock: 3911 srcu_read_unlock(&kvm->srcu, srcu_idx); 3912 3913 return iodev; 3914 } 3915 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3916 3917 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3918 int (*get)(void *, u64 *), int (*set)(void *, u64), 3919 const char *fmt) 3920 { 3921 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3922 inode->i_private; 3923 3924 /* The debugfs files are a reference to the kvm struct which 3925 * is still valid when kvm_destroy_vm is called. 3926 * To avoid the race between open and the removal of the debugfs 3927 * directory we test against the users count. 3928 */ 3929 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3930 return -ENOENT; 3931 3932 if (simple_attr_open(inode, file, get, set, fmt)) { 3933 kvm_put_kvm(stat_data->kvm); 3934 return -ENOMEM; 3935 } 3936 3937 return 0; 3938 } 3939 3940 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3941 { 3942 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3943 inode->i_private; 3944 3945 simple_attr_release(inode, file); 3946 kvm_put_kvm(stat_data->kvm); 3947 3948 return 0; 3949 } 3950 3951 static int vm_stat_get_per_vm(void *data, u64 *val) 3952 { 3953 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3954 3955 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3956 3957 return 0; 3958 } 3959 3960 static int vm_stat_clear_per_vm(void *data, u64 val) 3961 { 3962 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3963 3964 if (val) 3965 return -EINVAL; 3966 3967 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3968 3969 return 0; 3970 } 3971 3972 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3973 { 3974 __simple_attr_check_format("%llu\n", 0ull); 3975 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3976 vm_stat_clear_per_vm, "%llu\n"); 3977 } 3978 3979 static const struct file_operations vm_stat_get_per_vm_fops = { 3980 .owner = THIS_MODULE, 3981 .open = vm_stat_get_per_vm_open, 3982 .release = kvm_debugfs_release, 3983 .read = simple_attr_read, 3984 .write = simple_attr_write, 3985 .llseek = no_llseek, 3986 }; 3987 3988 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3989 { 3990 int i; 3991 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3992 struct kvm_vcpu *vcpu; 3993 3994 *val = 0; 3995 3996 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3997 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3998 3999 return 0; 4000 } 4001 4002 static int vcpu_stat_clear_per_vm(void *data, u64 val) 4003 { 4004 int i; 4005 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4006 struct kvm_vcpu *vcpu; 4007 4008 if (val) 4009 return -EINVAL; 4010 4011 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4012 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4013 4014 return 0; 4015 } 4016 4017 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4018 { 4019 __simple_attr_check_format("%llu\n", 0ull); 4020 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4021 vcpu_stat_clear_per_vm, "%llu\n"); 4022 } 4023 4024 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4025 .owner = THIS_MODULE, 4026 .open = vcpu_stat_get_per_vm_open, 4027 .release = kvm_debugfs_release, 4028 .read = simple_attr_read, 4029 .write = simple_attr_write, 4030 .llseek = no_llseek, 4031 }; 4032 4033 static const struct file_operations *stat_fops_per_vm[] = { 4034 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4035 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4036 }; 4037 4038 static int vm_stat_get(void *_offset, u64 *val) 4039 { 4040 unsigned offset = (long)_offset; 4041 struct kvm *kvm; 4042 struct kvm_stat_data stat_tmp = {.offset = offset}; 4043 u64 tmp_val; 4044 4045 *val = 0; 4046 mutex_lock(&kvm_lock); 4047 list_for_each_entry(kvm, &vm_list, vm_list) { 4048 stat_tmp.kvm = kvm; 4049 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4050 *val += tmp_val; 4051 } 4052 mutex_unlock(&kvm_lock); 4053 return 0; 4054 } 4055 4056 static int vm_stat_clear(void *_offset, u64 val) 4057 { 4058 unsigned offset = (long)_offset; 4059 struct kvm *kvm; 4060 struct kvm_stat_data stat_tmp = {.offset = offset}; 4061 4062 if (val) 4063 return -EINVAL; 4064 4065 mutex_lock(&kvm_lock); 4066 list_for_each_entry(kvm, &vm_list, vm_list) { 4067 stat_tmp.kvm = kvm; 4068 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4069 } 4070 mutex_unlock(&kvm_lock); 4071 4072 return 0; 4073 } 4074 4075 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4076 4077 static int vcpu_stat_get(void *_offset, u64 *val) 4078 { 4079 unsigned offset = (long)_offset; 4080 struct kvm *kvm; 4081 struct kvm_stat_data stat_tmp = {.offset = offset}; 4082 u64 tmp_val; 4083 4084 *val = 0; 4085 mutex_lock(&kvm_lock); 4086 list_for_each_entry(kvm, &vm_list, vm_list) { 4087 stat_tmp.kvm = kvm; 4088 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4089 *val += tmp_val; 4090 } 4091 mutex_unlock(&kvm_lock); 4092 return 0; 4093 } 4094 4095 static int vcpu_stat_clear(void *_offset, u64 val) 4096 { 4097 unsigned offset = (long)_offset; 4098 struct kvm *kvm; 4099 struct kvm_stat_data stat_tmp = {.offset = offset}; 4100 4101 if (val) 4102 return -EINVAL; 4103 4104 mutex_lock(&kvm_lock); 4105 list_for_each_entry(kvm, &vm_list, vm_list) { 4106 stat_tmp.kvm = kvm; 4107 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4108 } 4109 mutex_unlock(&kvm_lock); 4110 4111 return 0; 4112 } 4113 4114 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4115 "%llu\n"); 4116 4117 static const struct file_operations *stat_fops[] = { 4118 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4119 [KVM_STAT_VM] = &vm_stat_fops, 4120 }; 4121 4122 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4123 { 4124 struct kobj_uevent_env *env; 4125 unsigned long long created, active; 4126 4127 if (!kvm_dev.this_device || !kvm) 4128 return; 4129 4130 mutex_lock(&kvm_lock); 4131 if (type == KVM_EVENT_CREATE_VM) { 4132 kvm_createvm_count++; 4133 kvm_active_vms++; 4134 } else if (type == KVM_EVENT_DESTROY_VM) { 4135 kvm_active_vms--; 4136 } 4137 created = kvm_createvm_count; 4138 active = kvm_active_vms; 4139 mutex_unlock(&kvm_lock); 4140 4141 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4142 if (!env) 4143 return; 4144 4145 add_uevent_var(env, "CREATED=%llu", created); 4146 add_uevent_var(env, "COUNT=%llu", active); 4147 4148 if (type == KVM_EVENT_CREATE_VM) { 4149 add_uevent_var(env, "EVENT=create"); 4150 kvm->userspace_pid = task_pid_nr(current); 4151 } else if (type == KVM_EVENT_DESTROY_VM) { 4152 add_uevent_var(env, "EVENT=destroy"); 4153 } 4154 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4155 4156 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4157 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4158 4159 if (p) { 4160 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4161 if (!IS_ERR(tmp)) 4162 add_uevent_var(env, "STATS_PATH=%s", tmp); 4163 kfree(p); 4164 } 4165 } 4166 /* no need for checks, since we are adding at most only 5 keys */ 4167 env->envp[env->envp_idx++] = NULL; 4168 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4169 kfree(env); 4170 } 4171 4172 static void kvm_init_debug(void) 4173 { 4174 struct kvm_stats_debugfs_item *p; 4175 4176 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4177 4178 kvm_debugfs_num_entries = 0; 4179 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4180 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4181 (void *)(long)p->offset, 4182 stat_fops[p->kind]); 4183 } 4184 } 4185 4186 static int kvm_suspend(void) 4187 { 4188 if (kvm_usage_count) 4189 hardware_disable_nolock(NULL); 4190 return 0; 4191 } 4192 4193 static void kvm_resume(void) 4194 { 4195 if (kvm_usage_count) { 4196 #ifdef CONFIG_LOCKDEP 4197 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4198 #endif 4199 hardware_enable_nolock(NULL); 4200 } 4201 } 4202 4203 static struct syscore_ops kvm_syscore_ops = { 4204 .suspend = kvm_suspend, 4205 .resume = kvm_resume, 4206 }; 4207 4208 static inline 4209 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4210 { 4211 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4212 } 4213 4214 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4215 { 4216 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4217 4218 WRITE_ONCE(vcpu->preempted, false); 4219 WRITE_ONCE(vcpu->ready, false); 4220 4221 kvm_arch_sched_in(vcpu, cpu); 4222 4223 kvm_arch_vcpu_load(vcpu, cpu); 4224 } 4225 4226 static void kvm_sched_out(struct preempt_notifier *pn, 4227 struct task_struct *next) 4228 { 4229 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4230 4231 if (current->state == TASK_RUNNING) { 4232 WRITE_ONCE(vcpu->preempted, true); 4233 WRITE_ONCE(vcpu->ready, true); 4234 } 4235 kvm_arch_vcpu_put(vcpu); 4236 } 4237 4238 static void check_processor_compat(void *rtn) 4239 { 4240 *(int *)rtn = kvm_arch_check_processor_compat(); 4241 } 4242 4243 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4244 struct module *module) 4245 { 4246 int r; 4247 int cpu; 4248 4249 r = kvm_arch_init(opaque); 4250 if (r) 4251 goto out_fail; 4252 4253 /* 4254 * kvm_arch_init makes sure there's at most one caller 4255 * for architectures that support multiple implementations, 4256 * like intel and amd on x86. 4257 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4258 * conflicts in case kvm is already setup for another implementation. 4259 */ 4260 r = kvm_irqfd_init(); 4261 if (r) 4262 goto out_irqfd; 4263 4264 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4265 r = -ENOMEM; 4266 goto out_free_0; 4267 } 4268 4269 r = kvm_arch_hardware_setup(); 4270 if (r < 0) 4271 goto out_free_0a; 4272 4273 for_each_online_cpu(cpu) { 4274 smp_call_function_single(cpu, check_processor_compat, &r, 1); 4275 if (r < 0) 4276 goto out_free_1; 4277 } 4278 4279 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4280 kvm_starting_cpu, kvm_dying_cpu); 4281 if (r) 4282 goto out_free_2; 4283 register_reboot_notifier(&kvm_reboot_notifier); 4284 4285 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4286 if (!vcpu_align) 4287 vcpu_align = __alignof__(struct kvm_vcpu); 4288 kvm_vcpu_cache = 4289 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4290 SLAB_ACCOUNT, 4291 offsetof(struct kvm_vcpu, arch), 4292 sizeof_field(struct kvm_vcpu, arch), 4293 NULL); 4294 if (!kvm_vcpu_cache) { 4295 r = -ENOMEM; 4296 goto out_free_3; 4297 } 4298 4299 r = kvm_async_pf_init(); 4300 if (r) 4301 goto out_free; 4302 4303 kvm_chardev_ops.owner = module; 4304 kvm_vm_fops.owner = module; 4305 kvm_vcpu_fops.owner = module; 4306 4307 r = misc_register(&kvm_dev); 4308 if (r) { 4309 pr_err("kvm: misc device register failed\n"); 4310 goto out_unreg; 4311 } 4312 4313 register_syscore_ops(&kvm_syscore_ops); 4314 4315 kvm_preempt_ops.sched_in = kvm_sched_in; 4316 kvm_preempt_ops.sched_out = kvm_sched_out; 4317 4318 kvm_init_debug(); 4319 4320 r = kvm_vfio_ops_init(); 4321 WARN_ON(r); 4322 4323 return 0; 4324 4325 out_unreg: 4326 kvm_async_pf_deinit(); 4327 out_free: 4328 kmem_cache_destroy(kvm_vcpu_cache); 4329 out_free_3: 4330 unregister_reboot_notifier(&kvm_reboot_notifier); 4331 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4332 out_free_2: 4333 out_free_1: 4334 kvm_arch_hardware_unsetup(); 4335 out_free_0a: 4336 free_cpumask_var(cpus_hardware_enabled); 4337 out_free_0: 4338 kvm_irqfd_exit(); 4339 out_irqfd: 4340 kvm_arch_exit(); 4341 out_fail: 4342 return r; 4343 } 4344 EXPORT_SYMBOL_GPL(kvm_init); 4345 4346 void kvm_exit(void) 4347 { 4348 debugfs_remove_recursive(kvm_debugfs_dir); 4349 misc_deregister(&kvm_dev); 4350 kmem_cache_destroy(kvm_vcpu_cache); 4351 kvm_async_pf_deinit(); 4352 unregister_syscore_ops(&kvm_syscore_ops); 4353 unregister_reboot_notifier(&kvm_reboot_notifier); 4354 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4355 on_each_cpu(hardware_disable_nolock, NULL, 1); 4356 kvm_arch_hardware_unsetup(); 4357 kvm_arch_exit(); 4358 kvm_irqfd_exit(); 4359 free_cpumask_var(cpus_hardware_enabled); 4360 kvm_vfio_ops_exit(); 4361 } 4362 EXPORT_SYMBOL_GPL(kvm_exit); 4363