xref: /openbmc/linux/virt/kvm/kvm_main.c (revision e8e0929d)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #include "iodev.h"
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51 
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55 
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64 
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67 
68 /*
69  * Ordering of locks:
70  *
71  * 		kvm->slots_lock --> kvm->lock --> kvm->irq_lock
72  */
73 
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76 
77 static cpumask_var_t cpus_hardware_enabled;
78 
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81 
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83 
84 struct dentry *kvm_debugfs_dir;
85 
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 			   unsigned long arg);
88 
89 static bool kvm_rebooting;
90 
91 static bool largepages_enabled = true;
92 
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95 						      int assigned_dev_id)
96 {
97 	struct list_head *ptr;
98 	struct kvm_assigned_dev_kernel *match;
99 
100 	list_for_each(ptr, head) {
101 		match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102 		if (match->assigned_dev_id == assigned_dev_id)
103 			return match;
104 	}
105 	return NULL;
106 }
107 
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109 				    *assigned_dev, int irq)
110 {
111 	int i, index;
112 	struct msix_entry *host_msix_entries;
113 
114 	host_msix_entries = assigned_dev->host_msix_entries;
115 
116 	index = -1;
117 	for (i = 0; i < assigned_dev->entries_nr; i++)
118 		if (irq == host_msix_entries[i].vector) {
119 			index = i;
120 			break;
121 		}
122 	if (index < 0) {
123 		printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124 		return 0;
125 	}
126 
127 	return index;
128 }
129 
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132 	struct kvm_assigned_dev_kernel *assigned_dev;
133 	struct kvm *kvm;
134 	int i;
135 
136 	assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137 				    interrupt_work);
138 	kvm = assigned_dev->kvm;
139 
140 	mutex_lock(&kvm->irq_lock);
141 	spin_lock_irq(&assigned_dev->assigned_dev_lock);
142 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143 		struct kvm_guest_msix_entry *guest_entries =
144 			assigned_dev->guest_msix_entries;
145 		for (i = 0; i < assigned_dev->entries_nr; i++) {
146 			if (!(guest_entries[i].flags &
147 					KVM_ASSIGNED_MSIX_PENDING))
148 				continue;
149 			guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150 			kvm_set_irq(assigned_dev->kvm,
151 				    assigned_dev->irq_source_id,
152 				    guest_entries[i].vector, 1);
153 		}
154 	} else
155 		kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156 			    assigned_dev->guest_irq, 1);
157 
158 	spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159 	mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161 
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164 	unsigned long flags;
165 	struct kvm_assigned_dev_kernel *assigned_dev =
166 		(struct kvm_assigned_dev_kernel *) dev_id;
167 
168 	spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170 		int index = find_index_from_host_irq(assigned_dev, irq);
171 		if (index < 0)
172 			goto out;
173 		assigned_dev->guest_msix_entries[index].flags |=
174 			KVM_ASSIGNED_MSIX_PENDING;
175 	}
176 
177 	schedule_work(&assigned_dev->interrupt_work);
178 
179 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180 		disable_irq_nosync(irq);
181 		assigned_dev->host_irq_disabled = true;
182 	}
183 
184 out:
185 	spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186 	return IRQ_HANDLED;
187 }
188 
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192 	struct kvm_assigned_dev_kernel *dev;
193 	unsigned long flags;
194 
195 	if (kian->gsi == -1)
196 		return;
197 
198 	dev = container_of(kian, struct kvm_assigned_dev_kernel,
199 			   ack_notifier);
200 
201 	kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202 
203 	/* The guest irq may be shared so this ack may be
204 	 * from another device.
205 	 */
206 	spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207 	if (dev->host_irq_disabled) {
208 		enable_irq(dev->host_irq);
209 		dev->host_irq_disabled = false;
210 	}
211 	spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213 
214 static void deassign_guest_irq(struct kvm *kvm,
215 			       struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217 	kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218 	assigned_dev->ack_notifier.gsi = -1;
219 
220 	if (assigned_dev->irq_source_id != -1)
221 		kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222 	assigned_dev->irq_source_id = -1;
223 	assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225 
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228 			      struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230 	/*
231 	 * In kvm_free_device_irq, cancel_work_sync return true if:
232 	 * 1. work is scheduled, and then cancelled.
233 	 * 2. work callback is executed.
234 	 *
235 	 * The first one ensured that the irq is disabled and no more events
236 	 * would happen. But for the second one, the irq may be enabled (e.g.
237 	 * for MSI). So we disable irq here to prevent further events.
238 	 *
239 	 * Notice this maybe result in nested disable if the interrupt type is
240 	 * INTx, but it's OK for we are going to free it.
241 	 *
242 	 * If this function is a part of VM destroy, please ensure that till
243 	 * now, the kvm state is still legal for probably we also have to wait
244 	 * interrupt_work done.
245 	 */
246 	if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247 		int i;
248 		for (i = 0; i < assigned_dev->entries_nr; i++)
249 			disable_irq_nosync(assigned_dev->
250 					   host_msix_entries[i].vector);
251 
252 		cancel_work_sync(&assigned_dev->interrupt_work);
253 
254 		for (i = 0; i < assigned_dev->entries_nr; i++)
255 			free_irq(assigned_dev->host_msix_entries[i].vector,
256 				 (void *)assigned_dev);
257 
258 		assigned_dev->entries_nr = 0;
259 		kfree(assigned_dev->host_msix_entries);
260 		kfree(assigned_dev->guest_msix_entries);
261 		pci_disable_msix(assigned_dev->dev);
262 	} else {
263 		/* Deal with MSI and INTx */
264 		disable_irq_nosync(assigned_dev->host_irq);
265 		cancel_work_sync(&assigned_dev->interrupt_work);
266 
267 		free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268 
269 		if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270 			pci_disable_msi(assigned_dev->dev);
271 	}
272 
273 	assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275 
276 static int kvm_deassign_irq(struct kvm *kvm,
277 			    struct kvm_assigned_dev_kernel *assigned_dev,
278 			    unsigned long irq_requested_type)
279 {
280 	unsigned long guest_irq_type, host_irq_type;
281 
282 	if (!irqchip_in_kernel(kvm))
283 		return -EINVAL;
284 	/* no irq assignment to deassign */
285 	if (!assigned_dev->irq_requested_type)
286 		return -ENXIO;
287 
288 	host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289 	guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290 
291 	if (host_irq_type)
292 		deassign_host_irq(kvm, assigned_dev);
293 	if (guest_irq_type)
294 		deassign_guest_irq(kvm, assigned_dev);
295 
296 	return 0;
297 }
298 
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300 				  struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302 	kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304 
305 static void kvm_free_assigned_device(struct kvm *kvm,
306 				     struct kvm_assigned_dev_kernel
307 				     *assigned_dev)
308 {
309 	kvm_free_assigned_irq(kvm, assigned_dev);
310 
311 	pci_reset_function(assigned_dev->dev);
312 
313 	pci_release_regions(assigned_dev->dev);
314 	pci_disable_device(assigned_dev->dev);
315 	pci_dev_put(assigned_dev->dev);
316 
317 	list_del(&assigned_dev->list);
318 	kfree(assigned_dev);
319 }
320 
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323 	struct list_head *ptr, *ptr2;
324 	struct kvm_assigned_dev_kernel *assigned_dev;
325 
326 	list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327 		assigned_dev = list_entry(ptr,
328 					  struct kvm_assigned_dev_kernel,
329 					  list);
330 
331 		kvm_free_assigned_device(kvm, assigned_dev);
332 	}
333 }
334 
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336 					    struct kvm_assigned_dev_kernel *dev)
337 {
338 	dev->host_irq = dev->dev->irq;
339 	/* Even though this is PCI, we don't want to use shared
340 	 * interrupts. Sharing host devices with guest-assigned devices
341 	 * on the same interrupt line is not a happy situation: there
342 	 * are going to be long delays in accepting, acking, etc.
343 	 */
344 	if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345 			0, "kvm_assigned_intx_device", (void *)dev))
346 		return -EIO;
347 	return 0;
348 }
349 
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352 					   struct kvm_assigned_dev_kernel *dev)
353 {
354 	int r;
355 
356 	if (!dev->dev->msi_enabled) {
357 		r = pci_enable_msi(dev->dev);
358 		if (r)
359 			return r;
360 	}
361 
362 	dev->host_irq = dev->dev->irq;
363 	if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364 			"kvm_assigned_msi_device", (void *)dev)) {
365 		pci_disable_msi(dev->dev);
366 		return -EIO;
367 	}
368 
369 	return 0;
370 }
371 #endif
372 
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375 					    struct kvm_assigned_dev_kernel *dev)
376 {
377 	int i, r = -EINVAL;
378 
379 	/* host_msix_entries and guest_msix_entries should have been
380 	 * initialized */
381 	if (dev->entries_nr == 0)
382 		return r;
383 
384 	r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385 	if (r)
386 		return r;
387 
388 	for (i = 0; i < dev->entries_nr; i++) {
389 		r = request_irq(dev->host_msix_entries[i].vector,
390 				kvm_assigned_dev_intr, 0,
391 				"kvm_assigned_msix_device",
392 				(void *)dev);
393 		/* FIXME: free requested_irq's on failure */
394 		if (r)
395 			return r;
396 	}
397 
398 	return 0;
399 }
400 
401 #endif
402 
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404 				struct kvm_assigned_dev_kernel *dev,
405 				struct kvm_assigned_irq *irq)
406 {
407 	dev->guest_irq = irq->guest_irq;
408 	dev->ack_notifier.gsi = irq->guest_irq;
409 	return 0;
410 }
411 
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414 			struct kvm_assigned_dev_kernel *dev,
415 			struct kvm_assigned_irq *irq)
416 {
417 	dev->guest_irq = irq->guest_irq;
418 	dev->ack_notifier.gsi = -1;
419 	dev->host_irq_disabled = false;
420 	return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 			struct kvm_assigned_dev_kernel *dev,
426 			struct kvm_assigned_irq *irq)
427 {
428 	dev->guest_irq = irq->guest_irq;
429 	dev->ack_notifier.gsi = -1;
430 	dev->host_irq_disabled = false;
431 	return 0;
432 }
433 #endif
434 
435 static int assign_host_irq(struct kvm *kvm,
436 			   struct kvm_assigned_dev_kernel *dev,
437 			   __u32 host_irq_type)
438 {
439 	int r = -EEXIST;
440 
441 	if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442 		return r;
443 
444 	switch (host_irq_type) {
445 	case KVM_DEV_IRQ_HOST_INTX:
446 		r = assigned_device_enable_host_intx(kvm, dev);
447 		break;
448 #ifdef __KVM_HAVE_MSI
449 	case KVM_DEV_IRQ_HOST_MSI:
450 		r = assigned_device_enable_host_msi(kvm, dev);
451 		break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454 	case KVM_DEV_IRQ_HOST_MSIX:
455 		r = assigned_device_enable_host_msix(kvm, dev);
456 		break;
457 #endif
458 	default:
459 		r = -EINVAL;
460 	}
461 
462 	if (!r)
463 		dev->irq_requested_type |= host_irq_type;
464 
465 	return r;
466 }
467 
468 static int assign_guest_irq(struct kvm *kvm,
469 			    struct kvm_assigned_dev_kernel *dev,
470 			    struct kvm_assigned_irq *irq,
471 			    unsigned long guest_irq_type)
472 {
473 	int id;
474 	int r = -EEXIST;
475 
476 	if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477 		return r;
478 
479 	id = kvm_request_irq_source_id(kvm);
480 	if (id < 0)
481 		return id;
482 
483 	dev->irq_source_id = id;
484 
485 	switch (guest_irq_type) {
486 	case KVM_DEV_IRQ_GUEST_INTX:
487 		r = assigned_device_enable_guest_intx(kvm, dev, irq);
488 		break;
489 #ifdef __KVM_HAVE_MSI
490 	case KVM_DEV_IRQ_GUEST_MSI:
491 		r = assigned_device_enable_guest_msi(kvm, dev, irq);
492 		break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495 	case KVM_DEV_IRQ_GUEST_MSIX:
496 		r = assigned_device_enable_guest_msix(kvm, dev, irq);
497 		break;
498 #endif
499 	default:
500 		r = -EINVAL;
501 	}
502 
503 	if (!r) {
504 		dev->irq_requested_type |= guest_irq_type;
505 		kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506 	} else
507 		kvm_free_irq_source_id(kvm, dev->irq_source_id);
508 
509 	return r;
510 }
511 
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514 				   struct kvm_assigned_irq *assigned_irq)
515 {
516 	int r = -EINVAL;
517 	struct kvm_assigned_dev_kernel *match;
518 	unsigned long host_irq_type, guest_irq_type;
519 
520 	if (!capable(CAP_SYS_RAWIO))
521 		return -EPERM;
522 
523 	if (!irqchip_in_kernel(kvm))
524 		return r;
525 
526 	mutex_lock(&kvm->lock);
527 	r = -ENODEV;
528 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529 				      assigned_irq->assigned_dev_id);
530 	if (!match)
531 		goto out;
532 
533 	host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534 	guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535 
536 	r = -EINVAL;
537 	/* can only assign one type at a time */
538 	if (hweight_long(host_irq_type) > 1)
539 		goto out;
540 	if (hweight_long(guest_irq_type) > 1)
541 		goto out;
542 	if (host_irq_type == 0 && guest_irq_type == 0)
543 		goto out;
544 
545 	r = 0;
546 	if (host_irq_type)
547 		r = assign_host_irq(kvm, match, host_irq_type);
548 	if (r)
549 		goto out;
550 
551 	if (guest_irq_type)
552 		r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554 	mutex_unlock(&kvm->lock);
555 	return r;
556 }
557 
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559 					 struct kvm_assigned_irq
560 					 *assigned_irq)
561 {
562 	int r = -ENODEV;
563 	struct kvm_assigned_dev_kernel *match;
564 
565 	mutex_lock(&kvm->lock);
566 
567 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568 				      assigned_irq->assigned_dev_id);
569 	if (!match)
570 		goto out;
571 
572 	r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574 	mutex_unlock(&kvm->lock);
575 	return r;
576 }
577 
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579 				      struct kvm_assigned_pci_dev *assigned_dev)
580 {
581 	int r = 0;
582 	struct kvm_assigned_dev_kernel *match;
583 	struct pci_dev *dev;
584 
585 	down_read(&kvm->slots_lock);
586 	mutex_lock(&kvm->lock);
587 
588 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589 				      assigned_dev->assigned_dev_id);
590 	if (match) {
591 		/* device already assigned */
592 		r = -EEXIST;
593 		goto out;
594 	}
595 
596 	match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597 	if (match == NULL) {
598 		printk(KERN_INFO "%s: Couldn't allocate memory\n",
599 		       __func__);
600 		r = -ENOMEM;
601 		goto out;
602 	}
603 	dev = pci_get_bus_and_slot(assigned_dev->busnr,
604 				   assigned_dev->devfn);
605 	if (!dev) {
606 		printk(KERN_INFO "%s: host device not found\n", __func__);
607 		r = -EINVAL;
608 		goto out_free;
609 	}
610 	if (pci_enable_device(dev)) {
611 		printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612 		r = -EBUSY;
613 		goto out_put;
614 	}
615 	r = pci_request_regions(dev, "kvm_assigned_device");
616 	if (r) {
617 		printk(KERN_INFO "%s: Could not get access to device regions\n",
618 		       __func__);
619 		goto out_disable;
620 	}
621 
622 	pci_reset_function(dev);
623 
624 	match->assigned_dev_id = assigned_dev->assigned_dev_id;
625 	match->host_busnr = assigned_dev->busnr;
626 	match->host_devfn = assigned_dev->devfn;
627 	match->flags = assigned_dev->flags;
628 	match->dev = dev;
629 	spin_lock_init(&match->assigned_dev_lock);
630 	match->irq_source_id = -1;
631 	match->kvm = kvm;
632 	match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633 	INIT_WORK(&match->interrupt_work,
634 		  kvm_assigned_dev_interrupt_work_handler);
635 
636 	list_add(&match->list, &kvm->arch.assigned_dev_head);
637 
638 	if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639 		if (!kvm->arch.iommu_domain) {
640 			r = kvm_iommu_map_guest(kvm);
641 			if (r)
642 				goto out_list_del;
643 		}
644 		r = kvm_assign_device(kvm, match);
645 		if (r)
646 			goto out_list_del;
647 	}
648 
649 out:
650 	mutex_unlock(&kvm->lock);
651 	up_read(&kvm->slots_lock);
652 	return r;
653 out_list_del:
654 	list_del(&match->list);
655 	pci_release_regions(dev);
656 out_disable:
657 	pci_disable_device(dev);
658 out_put:
659 	pci_dev_put(dev);
660 out_free:
661 	kfree(match);
662 	mutex_unlock(&kvm->lock);
663 	up_read(&kvm->slots_lock);
664 	return r;
665 }
666 #endif
667 
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670 		struct kvm_assigned_pci_dev *assigned_dev)
671 {
672 	int r = 0;
673 	struct kvm_assigned_dev_kernel *match;
674 
675 	mutex_lock(&kvm->lock);
676 
677 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678 				      assigned_dev->assigned_dev_id);
679 	if (!match) {
680 		printk(KERN_INFO "%s: device hasn't been assigned before, "
681 		  "so cannot be deassigned\n", __func__);
682 		r = -EINVAL;
683 		goto out;
684 	}
685 
686 	if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687 		kvm_deassign_device(kvm, match);
688 
689 	kvm_free_assigned_device(kvm, match);
690 
691 out:
692 	mutex_unlock(&kvm->lock);
693 	return r;
694 }
695 #endif
696 
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699 	if (pfn_valid(pfn)) {
700 		struct page *page = compound_head(pfn_to_page(pfn));
701 		return PageReserved(page);
702 	}
703 
704 	return true;
705 }
706 
707 /*
708  * Switches to specified vcpu, until a matching vcpu_put()
709  */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712 	int cpu;
713 
714 	mutex_lock(&vcpu->mutex);
715 	cpu = get_cpu();
716 	preempt_notifier_register(&vcpu->preempt_notifier);
717 	kvm_arch_vcpu_load(vcpu, cpu);
718 	put_cpu();
719 }
720 
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723 	preempt_disable();
724 	kvm_arch_vcpu_put(vcpu);
725 	preempt_notifier_unregister(&vcpu->preempt_notifier);
726 	preempt_enable();
727 	mutex_unlock(&vcpu->mutex);
728 }
729 
730 static void ack_flush(void *_completed)
731 {
732 }
733 
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736 	int i, cpu, me;
737 	cpumask_var_t cpus;
738 	bool called = true;
739 	struct kvm_vcpu *vcpu;
740 
741 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
742 
743 	spin_lock(&kvm->requests_lock);
744 	me = smp_processor_id();
745 	kvm_for_each_vcpu(i, vcpu, kvm) {
746 		if (test_and_set_bit(req, &vcpu->requests))
747 			continue;
748 		cpu = vcpu->cpu;
749 		if (cpus != NULL && cpu != -1 && cpu != me)
750 			cpumask_set_cpu(cpu, cpus);
751 	}
752 	if (unlikely(cpus == NULL))
753 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
754 	else if (!cpumask_empty(cpus))
755 		smp_call_function_many(cpus, ack_flush, NULL, 1);
756 	else
757 		called = false;
758 	spin_unlock(&kvm->requests_lock);
759 	free_cpumask_var(cpus);
760 	return called;
761 }
762 
763 void kvm_flush_remote_tlbs(struct kvm *kvm)
764 {
765 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
766 		++kvm->stat.remote_tlb_flush;
767 }
768 
769 void kvm_reload_remote_mmus(struct kvm *kvm)
770 {
771 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
772 }
773 
774 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
775 {
776 	struct page *page;
777 	int r;
778 
779 	mutex_init(&vcpu->mutex);
780 	vcpu->cpu = -1;
781 	vcpu->kvm = kvm;
782 	vcpu->vcpu_id = id;
783 	init_waitqueue_head(&vcpu->wq);
784 
785 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
786 	if (!page) {
787 		r = -ENOMEM;
788 		goto fail;
789 	}
790 	vcpu->run = page_address(page);
791 
792 	r = kvm_arch_vcpu_init(vcpu);
793 	if (r < 0)
794 		goto fail_free_run;
795 	return 0;
796 
797 fail_free_run:
798 	free_page((unsigned long)vcpu->run);
799 fail:
800 	return r;
801 }
802 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
803 
804 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
805 {
806 	kvm_arch_vcpu_uninit(vcpu);
807 	free_page((unsigned long)vcpu->run);
808 }
809 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
810 
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
813 {
814 	return container_of(mn, struct kvm, mmu_notifier);
815 }
816 
817 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
818 					     struct mm_struct *mm,
819 					     unsigned long address)
820 {
821 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
822 	int need_tlb_flush;
823 
824 	/*
825 	 * When ->invalidate_page runs, the linux pte has been zapped
826 	 * already but the page is still allocated until
827 	 * ->invalidate_page returns. So if we increase the sequence
828 	 * here the kvm page fault will notice if the spte can't be
829 	 * established because the page is going to be freed. If
830 	 * instead the kvm page fault establishes the spte before
831 	 * ->invalidate_page runs, kvm_unmap_hva will release it
832 	 * before returning.
833 	 *
834 	 * The sequence increase only need to be seen at spin_unlock
835 	 * time, and not at spin_lock time.
836 	 *
837 	 * Increasing the sequence after the spin_unlock would be
838 	 * unsafe because the kvm page fault could then establish the
839 	 * pte after kvm_unmap_hva returned, without noticing the page
840 	 * is going to be freed.
841 	 */
842 	spin_lock(&kvm->mmu_lock);
843 	kvm->mmu_notifier_seq++;
844 	need_tlb_flush = kvm_unmap_hva(kvm, address);
845 	spin_unlock(&kvm->mmu_lock);
846 
847 	/* we've to flush the tlb before the pages can be freed */
848 	if (need_tlb_flush)
849 		kvm_flush_remote_tlbs(kvm);
850 
851 }
852 
853 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
854 						    struct mm_struct *mm,
855 						    unsigned long start,
856 						    unsigned long end)
857 {
858 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
859 	int need_tlb_flush = 0;
860 
861 	spin_lock(&kvm->mmu_lock);
862 	/*
863 	 * The count increase must become visible at unlock time as no
864 	 * spte can be established without taking the mmu_lock and
865 	 * count is also read inside the mmu_lock critical section.
866 	 */
867 	kvm->mmu_notifier_count++;
868 	for (; start < end; start += PAGE_SIZE)
869 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
870 	spin_unlock(&kvm->mmu_lock);
871 
872 	/* we've to flush the tlb before the pages can be freed */
873 	if (need_tlb_flush)
874 		kvm_flush_remote_tlbs(kvm);
875 }
876 
877 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
878 						  struct mm_struct *mm,
879 						  unsigned long start,
880 						  unsigned long end)
881 {
882 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
883 
884 	spin_lock(&kvm->mmu_lock);
885 	/*
886 	 * This sequence increase will notify the kvm page fault that
887 	 * the page that is going to be mapped in the spte could have
888 	 * been freed.
889 	 */
890 	kvm->mmu_notifier_seq++;
891 	/*
892 	 * The above sequence increase must be visible before the
893 	 * below count decrease but both values are read by the kvm
894 	 * page fault under mmu_lock spinlock so we don't need to add
895 	 * a smb_wmb() here in between the two.
896 	 */
897 	kvm->mmu_notifier_count--;
898 	spin_unlock(&kvm->mmu_lock);
899 
900 	BUG_ON(kvm->mmu_notifier_count < 0);
901 }
902 
903 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
904 					      struct mm_struct *mm,
905 					      unsigned long address)
906 {
907 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
908 	int young;
909 
910 	spin_lock(&kvm->mmu_lock);
911 	young = kvm_age_hva(kvm, address);
912 	spin_unlock(&kvm->mmu_lock);
913 
914 	if (young)
915 		kvm_flush_remote_tlbs(kvm);
916 
917 	return young;
918 }
919 
920 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
921 				     struct mm_struct *mm)
922 {
923 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
924 	kvm_arch_flush_shadow(kvm);
925 }
926 
927 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
928 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
929 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
930 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
931 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
932 	.release		= kvm_mmu_notifier_release,
933 };
934 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
935 
936 static struct kvm *kvm_create_vm(void)
937 {
938 	struct kvm *kvm = kvm_arch_create_vm();
939 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
940 	struct page *page;
941 #endif
942 
943 	if (IS_ERR(kvm))
944 		goto out;
945 #ifdef CONFIG_HAVE_KVM_IRQCHIP
946 	INIT_LIST_HEAD(&kvm->irq_routing);
947 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
948 #endif
949 
950 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
951 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
952 	if (!page) {
953 		kfree(kvm);
954 		return ERR_PTR(-ENOMEM);
955 	}
956 	kvm->coalesced_mmio_ring =
957 			(struct kvm_coalesced_mmio_ring *)page_address(page);
958 #endif
959 
960 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
961 	{
962 		int err;
963 		kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
964 		err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
965 		if (err) {
966 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
967 			put_page(page);
968 #endif
969 			kfree(kvm);
970 			return ERR_PTR(err);
971 		}
972 	}
973 #endif
974 
975 	kvm->mm = current->mm;
976 	atomic_inc(&kvm->mm->mm_count);
977 	spin_lock_init(&kvm->mmu_lock);
978 	spin_lock_init(&kvm->requests_lock);
979 	kvm_io_bus_init(&kvm->pio_bus);
980 	kvm_eventfd_init(kvm);
981 	mutex_init(&kvm->lock);
982 	mutex_init(&kvm->irq_lock);
983 	kvm_io_bus_init(&kvm->mmio_bus);
984 	init_rwsem(&kvm->slots_lock);
985 	atomic_set(&kvm->users_count, 1);
986 	spin_lock(&kvm_lock);
987 	list_add(&kvm->vm_list, &vm_list);
988 	spin_unlock(&kvm_lock);
989 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
990 	kvm_coalesced_mmio_init(kvm);
991 #endif
992 out:
993 	return kvm;
994 }
995 
996 /*
997  * Free any memory in @free but not in @dont.
998  */
999 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1000 				  struct kvm_memory_slot *dont)
1001 {
1002 	int i;
1003 
1004 	if (!dont || free->rmap != dont->rmap)
1005 		vfree(free->rmap);
1006 
1007 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1008 		vfree(free->dirty_bitmap);
1009 
1010 
1011 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1012 		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
1013 			vfree(free->lpage_info[i]);
1014 			free->lpage_info[i] = NULL;
1015 		}
1016 	}
1017 
1018 	free->npages = 0;
1019 	free->dirty_bitmap = NULL;
1020 	free->rmap = NULL;
1021 }
1022 
1023 void kvm_free_physmem(struct kvm *kvm)
1024 {
1025 	int i;
1026 
1027 	for (i = 0; i < kvm->nmemslots; ++i)
1028 		kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1029 }
1030 
1031 static void kvm_destroy_vm(struct kvm *kvm)
1032 {
1033 	struct mm_struct *mm = kvm->mm;
1034 
1035 	kvm_arch_sync_events(kvm);
1036 	spin_lock(&kvm_lock);
1037 	list_del(&kvm->vm_list);
1038 	spin_unlock(&kvm_lock);
1039 	kvm_free_irq_routing(kvm);
1040 	kvm_io_bus_destroy(&kvm->pio_bus);
1041 	kvm_io_bus_destroy(&kvm->mmio_bus);
1042 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1043 	if (kvm->coalesced_mmio_ring != NULL)
1044 		free_page((unsigned long)kvm->coalesced_mmio_ring);
1045 #endif
1046 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1047 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1048 #else
1049 	kvm_arch_flush_shadow(kvm);
1050 #endif
1051 	kvm_arch_destroy_vm(kvm);
1052 	mmdrop(mm);
1053 }
1054 
1055 void kvm_get_kvm(struct kvm *kvm)
1056 {
1057 	atomic_inc(&kvm->users_count);
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1060 
1061 void kvm_put_kvm(struct kvm *kvm)
1062 {
1063 	if (atomic_dec_and_test(&kvm->users_count))
1064 		kvm_destroy_vm(kvm);
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1067 
1068 
1069 static int kvm_vm_release(struct inode *inode, struct file *filp)
1070 {
1071 	struct kvm *kvm = filp->private_data;
1072 
1073 	kvm_irqfd_release(kvm);
1074 
1075 	kvm_put_kvm(kvm);
1076 	return 0;
1077 }
1078 
1079 /*
1080  * Allocate some memory and give it an address in the guest physical address
1081  * space.
1082  *
1083  * Discontiguous memory is allowed, mostly for framebuffers.
1084  *
1085  * Must be called holding mmap_sem for write.
1086  */
1087 int __kvm_set_memory_region(struct kvm *kvm,
1088 			    struct kvm_userspace_memory_region *mem,
1089 			    int user_alloc)
1090 {
1091 	int r;
1092 	gfn_t base_gfn;
1093 	unsigned long npages;
1094 	unsigned long i;
1095 	struct kvm_memory_slot *memslot;
1096 	struct kvm_memory_slot old, new;
1097 
1098 	r = -EINVAL;
1099 	/* General sanity checks */
1100 	if (mem->memory_size & (PAGE_SIZE - 1))
1101 		goto out;
1102 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1103 		goto out;
1104 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1105 		goto out;
1106 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1107 		goto out;
1108 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1109 		goto out;
1110 
1111 	memslot = &kvm->memslots[mem->slot];
1112 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1113 	npages = mem->memory_size >> PAGE_SHIFT;
1114 
1115 	if (!npages)
1116 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1117 
1118 	new = old = *memslot;
1119 
1120 	new.base_gfn = base_gfn;
1121 	new.npages = npages;
1122 	new.flags = mem->flags;
1123 
1124 	/* Disallow changing a memory slot's size. */
1125 	r = -EINVAL;
1126 	if (npages && old.npages && npages != old.npages)
1127 		goto out_free;
1128 
1129 	/* Check for overlaps */
1130 	r = -EEXIST;
1131 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1132 		struct kvm_memory_slot *s = &kvm->memslots[i];
1133 
1134 		if (s == memslot || !s->npages)
1135 			continue;
1136 		if (!((base_gfn + npages <= s->base_gfn) ||
1137 		      (base_gfn >= s->base_gfn + s->npages)))
1138 			goto out_free;
1139 	}
1140 
1141 	/* Free page dirty bitmap if unneeded */
1142 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1143 		new.dirty_bitmap = NULL;
1144 
1145 	r = -ENOMEM;
1146 
1147 	/* Allocate if a slot is being created */
1148 #ifndef CONFIG_S390
1149 	if (npages && !new.rmap) {
1150 		new.rmap = vmalloc(npages * sizeof(struct page *));
1151 
1152 		if (!new.rmap)
1153 			goto out_free;
1154 
1155 		memset(new.rmap, 0, npages * sizeof(*new.rmap));
1156 
1157 		new.user_alloc = user_alloc;
1158 		/*
1159 		 * hva_to_rmmap() serialzies with the mmu_lock and to be
1160 		 * safe it has to ignore memslots with !user_alloc &&
1161 		 * !userspace_addr.
1162 		 */
1163 		if (user_alloc)
1164 			new.userspace_addr = mem->userspace_addr;
1165 		else
1166 			new.userspace_addr = 0;
1167 	}
1168 	if (!npages)
1169 		goto skip_lpage;
1170 
1171 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1172 		unsigned long ugfn;
1173 		unsigned long j;
1174 		int lpages;
1175 		int level = i + 2;
1176 
1177 		/* Avoid unused variable warning if no large pages */
1178 		(void)level;
1179 
1180 		if (new.lpage_info[i])
1181 			continue;
1182 
1183 		lpages = 1 + (base_gfn + npages - 1) /
1184 			     KVM_PAGES_PER_HPAGE(level);
1185 		lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
1186 
1187 		new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
1188 
1189 		if (!new.lpage_info[i])
1190 			goto out_free;
1191 
1192 		memset(new.lpage_info[i], 0,
1193 		       lpages * sizeof(*new.lpage_info[i]));
1194 
1195 		if (base_gfn % KVM_PAGES_PER_HPAGE(level))
1196 			new.lpage_info[i][0].write_count = 1;
1197 		if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
1198 			new.lpage_info[i][lpages - 1].write_count = 1;
1199 		ugfn = new.userspace_addr >> PAGE_SHIFT;
1200 		/*
1201 		 * If the gfn and userspace address are not aligned wrt each
1202 		 * other, or if explicitly asked to, disable large page
1203 		 * support for this slot
1204 		 */
1205 		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
1206 		    !largepages_enabled)
1207 			for (j = 0; j < lpages; ++j)
1208 				new.lpage_info[i][j].write_count = 1;
1209 	}
1210 
1211 skip_lpage:
1212 
1213 	/* Allocate page dirty bitmap if needed */
1214 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1215 		unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1216 
1217 		new.dirty_bitmap = vmalloc(dirty_bytes);
1218 		if (!new.dirty_bitmap)
1219 			goto out_free;
1220 		memset(new.dirty_bitmap, 0, dirty_bytes);
1221 		if (old.npages)
1222 			kvm_arch_flush_shadow(kvm);
1223 	}
1224 #else  /* not defined CONFIG_S390 */
1225 	new.user_alloc = user_alloc;
1226 	if (user_alloc)
1227 		new.userspace_addr = mem->userspace_addr;
1228 #endif /* not defined CONFIG_S390 */
1229 
1230 	if (!npages)
1231 		kvm_arch_flush_shadow(kvm);
1232 
1233 	spin_lock(&kvm->mmu_lock);
1234 	if (mem->slot >= kvm->nmemslots)
1235 		kvm->nmemslots = mem->slot + 1;
1236 
1237 	*memslot = new;
1238 	spin_unlock(&kvm->mmu_lock);
1239 
1240 	r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1241 	if (r) {
1242 		spin_lock(&kvm->mmu_lock);
1243 		*memslot = old;
1244 		spin_unlock(&kvm->mmu_lock);
1245 		goto out_free;
1246 	}
1247 
1248 	kvm_free_physmem_slot(&old, npages ? &new : NULL);
1249 	/* Slot deletion case: we have to update the current slot */
1250 	spin_lock(&kvm->mmu_lock);
1251 	if (!npages)
1252 		*memslot = old;
1253 	spin_unlock(&kvm->mmu_lock);
1254 #ifdef CONFIG_DMAR
1255 	/* map the pages in iommu page table */
1256 	r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1257 	if (r)
1258 		goto out;
1259 #endif
1260 	return 0;
1261 
1262 out_free:
1263 	kvm_free_physmem_slot(&new, &old);
1264 out:
1265 	return r;
1266 
1267 }
1268 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1269 
1270 int kvm_set_memory_region(struct kvm *kvm,
1271 			  struct kvm_userspace_memory_region *mem,
1272 			  int user_alloc)
1273 {
1274 	int r;
1275 
1276 	down_write(&kvm->slots_lock);
1277 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
1278 	up_write(&kvm->slots_lock);
1279 	return r;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1282 
1283 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1284 				   struct
1285 				   kvm_userspace_memory_region *mem,
1286 				   int user_alloc)
1287 {
1288 	if (mem->slot >= KVM_MEMORY_SLOTS)
1289 		return -EINVAL;
1290 	return kvm_set_memory_region(kvm, mem, user_alloc);
1291 }
1292 
1293 int kvm_get_dirty_log(struct kvm *kvm,
1294 			struct kvm_dirty_log *log, int *is_dirty)
1295 {
1296 	struct kvm_memory_slot *memslot;
1297 	int r, i;
1298 	int n;
1299 	unsigned long any = 0;
1300 
1301 	r = -EINVAL;
1302 	if (log->slot >= KVM_MEMORY_SLOTS)
1303 		goto out;
1304 
1305 	memslot = &kvm->memslots[log->slot];
1306 	r = -ENOENT;
1307 	if (!memslot->dirty_bitmap)
1308 		goto out;
1309 
1310 	n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1311 
1312 	for (i = 0; !any && i < n/sizeof(long); ++i)
1313 		any = memslot->dirty_bitmap[i];
1314 
1315 	r = -EFAULT;
1316 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1317 		goto out;
1318 
1319 	if (any)
1320 		*is_dirty = 1;
1321 
1322 	r = 0;
1323 out:
1324 	return r;
1325 }
1326 
1327 void kvm_disable_largepages(void)
1328 {
1329 	largepages_enabled = false;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1332 
1333 int is_error_page(struct page *page)
1334 {
1335 	return page == bad_page;
1336 }
1337 EXPORT_SYMBOL_GPL(is_error_page);
1338 
1339 int is_error_pfn(pfn_t pfn)
1340 {
1341 	return pfn == bad_pfn;
1342 }
1343 EXPORT_SYMBOL_GPL(is_error_pfn);
1344 
1345 static inline unsigned long bad_hva(void)
1346 {
1347 	return PAGE_OFFSET;
1348 }
1349 
1350 int kvm_is_error_hva(unsigned long addr)
1351 {
1352 	return addr == bad_hva();
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1355 
1356 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < kvm->nmemslots; ++i) {
1361 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1362 
1363 		if (gfn >= memslot->base_gfn
1364 		    && gfn < memslot->base_gfn + memslot->npages)
1365 			return memslot;
1366 	}
1367 	return NULL;
1368 }
1369 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1370 
1371 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1372 {
1373 	gfn = unalias_gfn(kvm, gfn);
1374 	return gfn_to_memslot_unaliased(kvm, gfn);
1375 }
1376 
1377 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1378 {
1379 	int i;
1380 
1381 	gfn = unalias_gfn(kvm, gfn);
1382 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1383 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1384 
1385 		if (gfn >= memslot->base_gfn
1386 		    && gfn < memslot->base_gfn + memslot->npages)
1387 			return 1;
1388 	}
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1392 
1393 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1394 {
1395 	struct kvm_memory_slot *slot;
1396 
1397 	gfn = unalias_gfn(kvm, gfn);
1398 	slot = gfn_to_memslot_unaliased(kvm, gfn);
1399 	if (!slot)
1400 		return bad_hva();
1401 	return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1402 }
1403 EXPORT_SYMBOL_GPL(gfn_to_hva);
1404 
1405 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1406 {
1407 	struct page *page[1];
1408 	unsigned long addr;
1409 	int npages;
1410 	pfn_t pfn;
1411 
1412 	might_sleep();
1413 
1414 	addr = gfn_to_hva(kvm, gfn);
1415 	if (kvm_is_error_hva(addr)) {
1416 		get_page(bad_page);
1417 		return page_to_pfn(bad_page);
1418 	}
1419 
1420 	npages = get_user_pages_fast(addr, 1, 1, page);
1421 
1422 	if (unlikely(npages != 1)) {
1423 		struct vm_area_struct *vma;
1424 
1425 		down_read(&current->mm->mmap_sem);
1426 		vma = find_vma(current->mm, addr);
1427 
1428 		if (vma == NULL || addr < vma->vm_start ||
1429 		    !(vma->vm_flags & VM_PFNMAP)) {
1430 			up_read(&current->mm->mmap_sem);
1431 			get_page(bad_page);
1432 			return page_to_pfn(bad_page);
1433 		}
1434 
1435 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1436 		up_read(&current->mm->mmap_sem);
1437 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1438 	} else
1439 		pfn = page_to_pfn(page[0]);
1440 
1441 	return pfn;
1442 }
1443 
1444 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1445 
1446 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1447 {
1448 	pfn_t pfn;
1449 
1450 	pfn = gfn_to_pfn(kvm, gfn);
1451 	if (!kvm_is_mmio_pfn(pfn))
1452 		return pfn_to_page(pfn);
1453 
1454 	WARN_ON(kvm_is_mmio_pfn(pfn));
1455 
1456 	get_page(bad_page);
1457 	return bad_page;
1458 }
1459 
1460 EXPORT_SYMBOL_GPL(gfn_to_page);
1461 
1462 void kvm_release_page_clean(struct page *page)
1463 {
1464 	kvm_release_pfn_clean(page_to_pfn(page));
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1467 
1468 void kvm_release_pfn_clean(pfn_t pfn)
1469 {
1470 	if (!kvm_is_mmio_pfn(pfn))
1471 		put_page(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1474 
1475 void kvm_release_page_dirty(struct page *page)
1476 {
1477 	kvm_release_pfn_dirty(page_to_pfn(page));
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1480 
1481 void kvm_release_pfn_dirty(pfn_t pfn)
1482 {
1483 	kvm_set_pfn_dirty(pfn);
1484 	kvm_release_pfn_clean(pfn);
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1487 
1488 void kvm_set_page_dirty(struct page *page)
1489 {
1490 	kvm_set_pfn_dirty(page_to_pfn(page));
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1493 
1494 void kvm_set_pfn_dirty(pfn_t pfn)
1495 {
1496 	if (!kvm_is_mmio_pfn(pfn)) {
1497 		struct page *page = pfn_to_page(pfn);
1498 		if (!PageReserved(page))
1499 			SetPageDirty(page);
1500 	}
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1503 
1504 void kvm_set_pfn_accessed(pfn_t pfn)
1505 {
1506 	if (!kvm_is_mmio_pfn(pfn))
1507 		mark_page_accessed(pfn_to_page(pfn));
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1510 
1511 void kvm_get_pfn(pfn_t pfn)
1512 {
1513 	if (!kvm_is_mmio_pfn(pfn))
1514 		get_page(pfn_to_page(pfn));
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1517 
1518 static int next_segment(unsigned long len, int offset)
1519 {
1520 	if (len > PAGE_SIZE - offset)
1521 		return PAGE_SIZE - offset;
1522 	else
1523 		return len;
1524 }
1525 
1526 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1527 			int len)
1528 {
1529 	int r;
1530 	unsigned long addr;
1531 
1532 	addr = gfn_to_hva(kvm, gfn);
1533 	if (kvm_is_error_hva(addr))
1534 		return -EFAULT;
1535 	r = copy_from_user(data, (void __user *)addr + offset, len);
1536 	if (r)
1537 		return -EFAULT;
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1541 
1542 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1543 {
1544 	gfn_t gfn = gpa >> PAGE_SHIFT;
1545 	int seg;
1546 	int offset = offset_in_page(gpa);
1547 	int ret;
1548 
1549 	while ((seg = next_segment(len, offset)) != 0) {
1550 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1551 		if (ret < 0)
1552 			return ret;
1553 		offset = 0;
1554 		len -= seg;
1555 		data += seg;
1556 		++gfn;
1557 	}
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_read_guest);
1561 
1562 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1563 			  unsigned long len)
1564 {
1565 	int r;
1566 	unsigned long addr;
1567 	gfn_t gfn = gpa >> PAGE_SHIFT;
1568 	int offset = offset_in_page(gpa);
1569 
1570 	addr = gfn_to_hva(kvm, gfn);
1571 	if (kvm_is_error_hva(addr))
1572 		return -EFAULT;
1573 	pagefault_disable();
1574 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1575 	pagefault_enable();
1576 	if (r)
1577 		return -EFAULT;
1578 	return 0;
1579 }
1580 EXPORT_SYMBOL(kvm_read_guest_atomic);
1581 
1582 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1583 			 int offset, int len)
1584 {
1585 	int r;
1586 	unsigned long addr;
1587 
1588 	addr = gfn_to_hva(kvm, gfn);
1589 	if (kvm_is_error_hva(addr))
1590 		return -EFAULT;
1591 	r = copy_to_user((void __user *)addr + offset, data, len);
1592 	if (r)
1593 		return -EFAULT;
1594 	mark_page_dirty(kvm, gfn);
1595 	return 0;
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1598 
1599 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1600 		    unsigned long len)
1601 {
1602 	gfn_t gfn = gpa >> PAGE_SHIFT;
1603 	int seg;
1604 	int offset = offset_in_page(gpa);
1605 	int ret;
1606 
1607 	while ((seg = next_segment(len, offset)) != 0) {
1608 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1609 		if (ret < 0)
1610 			return ret;
1611 		offset = 0;
1612 		len -= seg;
1613 		data += seg;
1614 		++gfn;
1615 	}
1616 	return 0;
1617 }
1618 
1619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1620 {
1621 	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1624 
1625 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1626 {
1627 	gfn_t gfn = gpa >> PAGE_SHIFT;
1628 	int seg;
1629 	int offset = offset_in_page(gpa);
1630 	int ret;
1631 
1632         while ((seg = next_segment(len, offset)) != 0) {
1633 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1634 		if (ret < 0)
1635 			return ret;
1636 		offset = 0;
1637 		len -= seg;
1638 		++gfn;
1639 	}
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1643 
1644 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1645 {
1646 	struct kvm_memory_slot *memslot;
1647 
1648 	gfn = unalias_gfn(kvm, gfn);
1649 	memslot = gfn_to_memslot_unaliased(kvm, gfn);
1650 	if (memslot && memslot->dirty_bitmap) {
1651 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1652 
1653 		/* avoid RMW */
1654 		if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1655 			set_bit(rel_gfn, memslot->dirty_bitmap);
1656 	}
1657 }
1658 
1659 /*
1660  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1661  */
1662 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1663 {
1664 	DEFINE_WAIT(wait);
1665 
1666 	for (;;) {
1667 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1668 
1669 		if (kvm_arch_vcpu_runnable(vcpu)) {
1670 			set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1671 			break;
1672 		}
1673 		if (kvm_cpu_has_pending_timer(vcpu))
1674 			break;
1675 		if (signal_pending(current))
1676 			break;
1677 
1678 		vcpu_put(vcpu);
1679 		schedule();
1680 		vcpu_load(vcpu);
1681 	}
1682 
1683 	finish_wait(&vcpu->wq, &wait);
1684 }
1685 
1686 void kvm_resched(struct kvm_vcpu *vcpu)
1687 {
1688 	if (!need_resched())
1689 		return;
1690 	cond_resched();
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_resched);
1693 
1694 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1695 {
1696 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1697 	struct page *page;
1698 
1699 	if (vmf->pgoff == 0)
1700 		page = virt_to_page(vcpu->run);
1701 #ifdef CONFIG_X86
1702 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1703 		page = virt_to_page(vcpu->arch.pio_data);
1704 #endif
1705 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1706 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1707 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1708 #endif
1709 	else
1710 		return VM_FAULT_SIGBUS;
1711 	get_page(page);
1712 	vmf->page = page;
1713 	return 0;
1714 }
1715 
1716 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1717 	.fault = kvm_vcpu_fault,
1718 };
1719 
1720 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1721 {
1722 	vma->vm_ops = &kvm_vcpu_vm_ops;
1723 	return 0;
1724 }
1725 
1726 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1727 {
1728 	struct kvm_vcpu *vcpu = filp->private_data;
1729 
1730 	kvm_put_kvm(vcpu->kvm);
1731 	return 0;
1732 }
1733 
1734 static struct file_operations kvm_vcpu_fops = {
1735 	.release        = kvm_vcpu_release,
1736 	.unlocked_ioctl = kvm_vcpu_ioctl,
1737 	.compat_ioctl   = kvm_vcpu_ioctl,
1738 	.mmap           = kvm_vcpu_mmap,
1739 };
1740 
1741 /*
1742  * Allocates an inode for the vcpu.
1743  */
1744 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1745 {
1746 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1747 }
1748 
1749 /*
1750  * Creates some virtual cpus.  Good luck creating more than one.
1751  */
1752 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1753 {
1754 	int r;
1755 	struct kvm_vcpu *vcpu, *v;
1756 
1757 	vcpu = kvm_arch_vcpu_create(kvm, id);
1758 	if (IS_ERR(vcpu))
1759 		return PTR_ERR(vcpu);
1760 
1761 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1762 
1763 	r = kvm_arch_vcpu_setup(vcpu);
1764 	if (r)
1765 		return r;
1766 
1767 	mutex_lock(&kvm->lock);
1768 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1769 		r = -EINVAL;
1770 		goto vcpu_destroy;
1771 	}
1772 
1773 	kvm_for_each_vcpu(r, v, kvm)
1774 		if (v->vcpu_id == id) {
1775 			r = -EEXIST;
1776 			goto vcpu_destroy;
1777 		}
1778 
1779 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1780 
1781 	/* Now it's all set up, let userspace reach it */
1782 	kvm_get_kvm(kvm);
1783 	r = create_vcpu_fd(vcpu);
1784 	if (r < 0) {
1785 		kvm_put_kvm(kvm);
1786 		goto vcpu_destroy;
1787 	}
1788 
1789 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1790 	smp_wmb();
1791 	atomic_inc(&kvm->online_vcpus);
1792 
1793 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1794 	if (kvm->bsp_vcpu_id == id)
1795 		kvm->bsp_vcpu = vcpu;
1796 #endif
1797 	mutex_unlock(&kvm->lock);
1798 	return r;
1799 
1800 vcpu_destroy:
1801 	mutex_unlock(&kvm->lock);
1802 	kvm_arch_vcpu_destroy(vcpu);
1803 	return r;
1804 }
1805 
1806 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1807 {
1808 	if (sigset) {
1809 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1810 		vcpu->sigset_active = 1;
1811 		vcpu->sigset = *sigset;
1812 	} else
1813 		vcpu->sigset_active = 0;
1814 	return 0;
1815 }
1816 
1817 #ifdef __KVM_HAVE_MSIX
1818 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1819 				    struct kvm_assigned_msix_nr *entry_nr)
1820 {
1821 	int r = 0;
1822 	struct kvm_assigned_dev_kernel *adev;
1823 
1824 	mutex_lock(&kvm->lock);
1825 
1826 	adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1827 				      entry_nr->assigned_dev_id);
1828 	if (!adev) {
1829 		r = -EINVAL;
1830 		goto msix_nr_out;
1831 	}
1832 
1833 	if (adev->entries_nr == 0) {
1834 		adev->entries_nr = entry_nr->entry_nr;
1835 		if (adev->entries_nr == 0 ||
1836 		    adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1837 			r = -EINVAL;
1838 			goto msix_nr_out;
1839 		}
1840 
1841 		adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1842 						entry_nr->entry_nr,
1843 						GFP_KERNEL);
1844 		if (!adev->host_msix_entries) {
1845 			r = -ENOMEM;
1846 			goto msix_nr_out;
1847 		}
1848 		adev->guest_msix_entries = kzalloc(
1849 				sizeof(struct kvm_guest_msix_entry) *
1850 				entry_nr->entry_nr, GFP_KERNEL);
1851 		if (!adev->guest_msix_entries) {
1852 			kfree(adev->host_msix_entries);
1853 			r = -ENOMEM;
1854 			goto msix_nr_out;
1855 		}
1856 	} else /* Not allowed set MSI-X number twice */
1857 		r = -EINVAL;
1858 msix_nr_out:
1859 	mutex_unlock(&kvm->lock);
1860 	return r;
1861 }
1862 
1863 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1864 				       struct kvm_assigned_msix_entry *entry)
1865 {
1866 	int r = 0, i;
1867 	struct kvm_assigned_dev_kernel *adev;
1868 
1869 	mutex_lock(&kvm->lock);
1870 
1871 	adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1872 				      entry->assigned_dev_id);
1873 
1874 	if (!adev) {
1875 		r = -EINVAL;
1876 		goto msix_entry_out;
1877 	}
1878 
1879 	for (i = 0; i < adev->entries_nr; i++)
1880 		if (adev->guest_msix_entries[i].vector == 0 ||
1881 		    adev->guest_msix_entries[i].entry == entry->entry) {
1882 			adev->guest_msix_entries[i].entry = entry->entry;
1883 			adev->guest_msix_entries[i].vector = entry->gsi;
1884 			adev->host_msix_entries[i].entry = entry->entry;
1885 			break;
1886 		}
1887 	if (i == adev->entries_nr) {
1888 		r = -ENOSPC;
1889 		goto msix_entry_out;
1890 	}
1891 
1892 msix_entry_out:
1893 	mutex_unlock(&kvm->lock);
1894 
1895 	return r;
1896 }
1897 #endif
1898 
1899 static long kvm_vcpu_ioctl(struct file *filp,
1900 			   unsigned int ioctl, unsigned long arg)
1901 {
1902 	struct kvm_vcpu *vcpu = filp->private_data;
1903 	void __user *argp = (void __user *)arg;
1904 	int r;
1905 	struct kvm_fpu *fpu = NULL;
1906 	struct kvm_sregs *kvm_sregs = NULL;
1907 
1908 	if (vcpu->kvm->mm != current->mm)
1909 		return -EIO;
1910 	switch (ioctl) {
1911 	case KVM_RUN:
1912 		r = -EINVAL;
1913 		if (arg)
1914 			goto out;
1915 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1916 		break;
1917 	case KVM_GET_REGS: {
1918 		struct kvm_regs *kvm_regs;
1919 
1920 		r = -ENOMEM;
1921 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1922 		if (!kvm_regs)
1923 			goto out;
1924 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1925 		if (r)
1926 			goto out_free1;
1927 		r = -EFAULT;
1928 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1929 			goto out_free1;
1930 		r = 0;
1931 out_free1:
1932 		kfree(kvm_regs);
1933 		break;
1934 	}
1935 	case KVM_SET_REGS: {
1936 		struct kvm_regs *kvm_regs;
1937 
1938 		r = -ENOMEM;
1939 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1940 		if (!kvm_regs)
1941 			goto out;
1942 		r = -EFAULT;
1943 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1944 			goto out_free2;
1945 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1946 		if (r)
1947 			goto out_free2;
1948 		r = 0;
1949 out_free2:
1950 		kfree(kvm_regs);
1951 		break;
1952 	}
1953 	case KVM_GET_SREGS: {
1954 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1955 		r = -ENOMEM;
1956 		if (!kvm_sregs)
1957 			goto out;
1958 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1959 		if (r)
1960 			goto out;
1961 		r = -EFAULT;
1962 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1963 			goto out;
1964 		r = 0;
1965 		break;
1966 	}
1967 	case KVM_SET_SREGS: {
1968 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1969 		r = -ENOMEM;
1970 		if (!kvm_sregs)
1971 			goto out;
1972 		r = -EFAULT;
1973 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1974 			goto out;
1975 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1976 		if (r)
1977 			goto out;
1978 		r = 0;
1979 		break;
1980 	}
1981 	case KVM_GET_MP_STATE: {
1982 		struct kvm_mp_state mp_state;
1983 
1984 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1985 		if (r)
1986 			goto out;
1987 		r = -EFAULT;
1988 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1989 			goto out;
1990 		r = 0;
1991 		break;
1992 	}
1993 	case KVM_SET_MP_STATE: {
1994 		struct kvm_mp_state mp_state;
1995 
1996 		r = -EFAULT;
1997 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1998 			goto out;
1999 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2000 		if (r)
2001 			goto out;
2002 		r = 0;
2003 		break;
2004 	}
2005 	case KVM_TRANSLATE: {
2006 		struct kvm_translation tr;
2007 
2008 		r = -EFAULT;
2009 		if (copy_from_user(&tr, argp, sizeof tr))
2010 			goto out;
2011 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2012 		if (r)
2013 			goto out;
2014 		r = -EFAULT;
2015 		if (copy_to_user(argp, &tr, sizeof tr))
2016 			goto out;
2017 		r = 0;
2018 		break;
2019 	}
2020 	case KVM_SET_GUEST_DEBUG: {
2021 		struct kvm_guest_debug dbg;
2022 
2023 		r = -EFAULT;
2024 		if (copy_from_user(&dbg, argp, sizeof dbg))
2025 			goto out;
2026 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2027 		if (r)
2028 			goto out;
2029 		r = 0;
2030 		break;
2031 	}
2032 	case KVM_SET_SIGNAL_MASK: {
2033 		struct kvm_signal_mask __user *sigmask_arg = argp;
2034 		struct kvm_signal_mask kvm_sigmask;
2035 		sigset_t sigset, *p;
2036 
2037 		p = NULL;
2038 		if (argp) {
2039 			r = -EFAULT;
2040 			if (copy_from_user(&kvm_sigmask, argp,
2041 					   sizeof kvm_sigmask))
2042 				goto out;
2043 			r = -EINVAL;
2044 			if (kvm_sigmask.len != sizeof sigset)
2045 				goto out;
2046 			r = -EFAULT;
2047 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2048 					   sizeof sigset))
2049 				goto out;
2050 			p = &sigset;
2051 		}
2052 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2053 		break;
2054 	}
2055 	case KVM_GET_FPU: {
2056 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2057 		r = -ENOMEM;
2058 		if (!fpu)
2059 			goto out;
2060 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2061 		if (r)
2062 			goto out;
2063 		r = -EFAULT;
2064 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2065 			goto out;
2066 		r = 0;
2067 		break;
2068 	}
2069 	case KVM_SET_FPU: {
2070 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2071 		r = -ENOMEM;
2072 		if (!fpu)
2073 			goto out;
2074 		r = -EFAULT;
2075 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2076 			goto out;
2077 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2078 		if (r)
2079 			goto out;
2080 		r = 0;
2081 		break;
2082 	}
2083 	default:
2084 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2085 	}
2086 out:
2087 	kfree(fpu);
2088 	kfree(kvm_sregs);
2089 	return r;
2090 }
2091 
2092 static long kvm_vm_ioctl(struct file *filp,
2093 			   unsigned int ioctl, unsigned long arg)
2094 {
2095 	struct kvm *kvm = filp->private_data;
2096 	void __user *argp = (void __user *)arg;
2097 	int r;
2098 
2099 	if (kvm->mm != current->mm)
2100 		return -EIO;
2101 	switch (ioctl) {
2102 	case KVM_CREATE_VCPU:
2103 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2104 		if (r < 0)
2105 			goto out;
2106 		break;
2107 	case KVM_SET_USER_MEMORY_REGION: {
2108 		struct kvm_userspace_memory_region kvm_userspace_mem;
2109 
2110 		r = -EFAULT;
2111 		if (copy_from_user(&kvm_userspace_mem, argp,
2112 						sizeof kvm_userspace_mem))
2113 			goto out;
2114 
2115 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2116 		if (r)
2117 			goto out;
2118 		break;
2119 	}
2120 	case KVM_GET_DIRTY_LOG: {
2121 		struct kvm_dirty_log log;
2122 
2123 		r = -EFAULT;
2124 		if (copy_from_user(&log, argp, sizeof log))
2125 			goto out;
2126 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2127 		if (r)
2128 			goto out;
2129 		break;
2130 	}
2131 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2132 	case KVM_REGISTER_COALESCED_MMIO: {
2133 		struct kvm_coalesced_mmio_zone zone;
2134 		r = -EFAULT;
2135 		if (copy_from_user(&zone, argp, sizeof zone))
2136 			goto out;
2137 		r = -ENXIO;
2138 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2139 		if (r)
2140 			goto out;
2141 		r = 0;
2142 		break;
2143 	}
2144 	case KVM_UNREGISTER_COALESCED_MMIO: {
2145 		struct kvm_coalesced_mmio_zone zone;
2146 		r = -EFAULT;
2147 		if (copy_from_user(&zone, argp, sizeof zone))
2148 			goto out;
2149 		r = -ENXIO;
2150 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2151 		if (r)
2152 			goto out;
2153 		r = 0;
2154 		break;
2155 	}
2156 #endif
2157 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2158 	case KVM_ASSIGN_PCI_DEVICE: {
2159 		struct kvm_assigned_pci_dev assigned_dev;
2160 
2161 		r = -EFAULT;
2162 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2163 			goto out;
2164 		r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2165 		if (r)
2166 			goto out;
2167 		break;
2168 	}
2169 	case KVM_ASSIGN_IRQ: {
2170 		r = -EOPNOTSUPP;
2171 		break;
2172 	}
2173 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2174 	case KVM_ASSIGN_DEV_IRQ: {
2175 		struct kvm_assigned_irq assigned_irq;
2176 
2177 		r = -EFAULT;
2178 		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2179 			goto out;
2180 		r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2181 		if (r)
2182 			goto out;
2183 		break;
2184 	}
2185 	case KVM_DEASSIGN_DEV_IRQ: {
2186 		struct kvm_assigned_irq assigned_irq;
2187 
2188 		r = -EFAULT;
2189 		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2190 			goto out;
2191 		r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2192 		if (r)
2193 			goto out;
2194 		break;
2195 	}
2196 #endif
2197 #endif
2198 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2199 	case KVM_DEASSIGN_PCI_DEVICE: {
2200 		struct kvm_assigned_pci_dev assigned_dev;
2201 
2202 		r = -EFAULT;
2203 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2204 			goto out;
2205 		r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2206 		if (r)
2207 			goto out;
2208 		break;
2209 	}
2210 #endif
2211 #ifdef KVM_CAP_IRQ_ROUTING
2212 	case KVM_SET_GSI_ROUTING: {
2213 		struct kvm_irq_routing routing;
2214 		struct kvm_irq_routing __user *urouting;
2215 		struct kvm_irq_routing_entry *entries;
2216 
2217 		r = -EFAULT;
2218 		if (copy_from_user(&routing, argp, sizeof(routing)))
2219 			goto out;
2220 		r = -EINVAL;
2221 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2222 			goto out;
2223 		if (routing.flags)
2224 			goto out;
2225 		r = -ENOMEM;
2226 		entries = vmalloc(routing.nr * sizeof(*entries));
2227 		if (!entries)
2228 			goto out;
2229 		r = -EFAULT;
2230 		urouting = argp;
2231 		if (copy_from_user(entries, urouting->entries,
2232 				   routing.nr * sizeof(*entries)))
2233 			goto out_free_irq_routing;
2234 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2235 					routing.flags);
2236 	out_free_irq_routing:
2237 		vfree(entries);
2238 		break;
2239 	}
2240 #endif /* KVM_CAP_IRQ_ROUTING */
2241 #ifdef __KVM_HAVE_MSIX
2242 	case KVM_ASSIGN_SET_MSIX_NR: {
2243 		struct kvm_assigned_msix_nr entry_nr;
2244 		r = -EFAULT;
2245 		if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2246 			goto out;
2247 		r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2248 		if (r)
2249 			goto out;
2250 		break;
2251 	}
2252 	case KVM_ASSIGN_SET_MSIX_ENTRY: {
2253 		struct kvm_assigned_msix_entry entry;
2254 		r = -EFAULT;
2255 		if (copy_from_user(&entry, argp, sizeof entry))
2256 			goto out;
2257 		r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2258 		if (r)
2259 			goto out;
2260 		break;
2261 	}
2262 #endif
2263 	case KVM_IRQFD: {
2264 		struct kvm_irqfd data;
2265 
2266 		r = -EFAULT;
2267 		if (copy_from_user(&data, argp, sizeof data))
2268 			goto out;
2269 		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2270 		break;
2271 	}
2272 	case KVM_IOEVENTFD: {
2273 		struct kvm_ioeventfd data;
2274 
2275 		r = -EFAULT;
2276 		if (copy_from_user(&data, argp, sizeof data))
2277 			goto out;
2278 		r = kvm_ioeventfd(kvm, &data);
2279 		break;
2280 	}
2281 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2282 	case KVM_SET_BOOT_CPU_ID:
2283 		r = 0;
2284 		mutex_lock(&kvm->lock);
2285 		if (atomic_read(&kvm->online_vcpus) != 0)
2286 			r = -EBUSY;
2287 		else
2288 			kvm->bsp_vcpu_id = arg;
2289 		mutex_unlock(&kvm->lock);
2290 		break;
2291 #endif
2292 	default:
2293 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2294 	}
2295 out:
2296 	return r;
2297 }
2298 
2299 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2300 {
2301 	struct page *page[1];
2302 	unsigned long addr;
2303 	int npages;
2304 	gfn_t gfn = vmf->pgoff;
2305 	struct kvm *kvm = vma->vm_file->private_data;
2306 
2307 	addr = gfn_to_hva(kvm, gfn);
2308 	if (kvm_is_error_hva(addr))
2309 		return VM_FAULT_SIGBUS;
2310 
2311 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2312 				NULL);
2313 	if (unlikely(npages != 1))
2314 		return VM_FAULT_SIGBUS;
2315 
2316 	vmf->page = page[0];
2317 	return 0;
2318 }
2319 
2320 static const struct vm_operations_struct kvm_vm_vm_ops = {
2321 	.fault = kvm_vm_fault,
2322 };
2323 
2324 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2325 {
2326 	vma->vm_ops = &kvm_vm_vm_ops;
2327 	return 0;
2328 }
2329 
2330 static struct file_operations kvm_vm_fops = {
2331 	.release        = kvm_vm_release,
2332 	.unlocked_ioctl = kvm_vm_ioctl,
2333 	.compat_ioctl   = kvm_vm_ioctl,
2334 	.mmap           = kvm_vm_mmap,
2335 };
2336 
2337 static int kvm_dev_ioctl_create_vm(void)
2338 {
2339 	int fd;
2340 	struct kvm *kvm;
2341 
2342 	kvm = kvm_create_vm();
2343 	if (IS_ERR(kvm))
2344 		return PTR_ERR(kvm);
2345 	fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2346 	if (fd < 0)
2347 		kvm_put_kvm(kvm);
2348 
2349 	return fd;
2350 }
2351 
2352 static long kvm_dev_ioctl_check_extension_generic(long arg)
2353 {
2354 	switch (arg) {
2355 	case KVM_CAP_USER_MEMORY:
2356 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2357 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2358 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2359 	case KVM_CAP_SET_BOOT_CPU_ID:
2360 #endif
2361 		return 1;
2362 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2363 	case KVM_CAP_IRQ_ROUTING:
2364 		return KVM_MAX_IRQ_ROUTES;
2365 #endif
2366 	default:
2367 		break;
2368 	}
2369 	return kvm_dev_ioctl_check_extension(arg);
2370 }
2371 
2372 static long kvm_dev_ioctl(struct file *filp,
2373 			  unsigned int ioctl, unsigned long arg)
2374 {
2375 	long r = -EINVAL;
2376 
2377 	switch (ioctl) {
2378 	case KVM_GET_API_VERSION:
2379 		r = -EINVAL;
2380 		if (arg)
2381 			goto out;
2382 		r = KVM_API_VERSION;
2383 		break;
2384 	case KVM_CREATE_VM:
2385 		r = -EINVAL;
2386 		if (arg)
2387 			goto out;
2388 		r = kvm_dev_ioctl_create_vm();
2389 		break;
2390 	case KVM_CHECK_EXTENSION:
2391 		r = kvm_dev_ioctl_check_extension_generic(arg);
2392 		break;
2393 	case KVM_GET_VCPU_MMAP_SIZE:
2394 		r = -EINVAL;
2395 		if (arg)
2396 			goto out;
2397 		r = PAGE_SIZE;     /* struct kvm_run */
2398 #ifdef CONFIG_X86
2399 		r += PAGE_SIZE;    /* pio data page */
2400 #endif
2401 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2402 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2403 #endif
2404 		break;
2405 	case KVM_TRACE_ENABLE:
2406 	case KVM_TRACE_PAUSE:
2407 	case KVM_TRACE_DISABLE:
2408 		r = -EOPNOTSUPP;
2409 		break;
2410 	default:
2411 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2412 	}
2413 out:
2414 	return r;
2415 }
2416 
2417 static struct file_operations kvm_chardev_ops = {
2418 	.unlocked_ioctl = kvm_dev_ioctl,
2419 	.compat_ioctl   = kvm_dev_ioctl,
2420 };
2421 
2422 static struct miscdevice kvm_dev = {
2423 	KVM_MINOR,
2424 	"kvm",
2425 	&kvm_chardev_ops,
2426 };
2427 
2428 static void hardware_enable(void *junk)
2429 {
2430 	int cpu = raw_smp_processor_id();
2431 
2432 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2433 		return;
2434 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2435 	kvm_arch_hardware_enable(NULL);
2436 }
2437 
2438 static void hardware_disable(void *junk)
2439 {
2440 	int cpu = raw_smp_processor_id();
2441 
2442 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2443 		return;
2444 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2445 	kvm_arch_hardware_disable(NULL);
2446 }
2447 
2448 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2449 			   void *v)
2450 {
2451 	int cpu = (long)v;
2452 
2453 	val &= ~CPU_TASKS_FROZEN;
2454 	switch (val) {
2455 	case CPU_DYING:
2456 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2457 		       cpu);
2458 		hardware_disable(NULL);
2459 		break;
2460 	case CPU_UP_CANCELED:
2461 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2462 		       cpu);
2463 		smp_call_function_single(cpu, hardware_disable, NULL, 1);
2464 		break;
2465 	case CPU_ONLINE:
2466 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2467 		       cpu);
2468 		smp_call_function_single(cpu, hardware_enable, NULL, 1);
2469 		break;
2470 	}
2471 	return NOTIFY_OK;
2472 }
2473 
2474 
2475 asmlinkage void kvm_handle_fault_on_reboot(void)
2476 {
2477 	if (kvm_rebooting)
2478 		/* spin while reset goes on */
2479 		while (true)
2480 			;
2481 	/* Fault while not rebooting.  We want the trace. */
2482 	BUG();
2483 }
2484 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2485 
2486 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2487 		      void *v)
2488 {
2489 	/*
2490 	 * Some (well, at least mine) BIOSes hang on reboot if
2491 	 * in vmx root mode.
2492 	 *
2493 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2494 	 */
2495 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2496 	kvm_rebooting = true;
2497 	on_each_cpu(hardware_disable, NULL, 1);
2498 	return NOTIFY_OK;
2499 }
2500 
2501 static struct notifier_block kvm_reboot_notifier = {
2502 	.notifier_call = kvm_reboot,
2503 	.priority = 0,
2504 };
2505 
2506 void kvm_io_bus_init(struct kvm_io_bus *bus)
2507 {
2508 	memset(bus, 0, sizeof(*bus));
2509 }
2510 
2511 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2512 {
2513 	int i;
2514 
2515 	for (i = 0; i < bus->dev_count; i++) {
2516 		struct kvm_io_device *pos = bus->devs[i];
2517 
2518 		kvm_iodevice_destructor(pos);
2519 	}
2520 }
2521 
2522 /* kvm_io_bus_write - called under kvm->slots_lock */
2523 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
2524 		     int len, const void *val)
2525 {
2526 	int i;
2527 	for (i = 0; i < bus->dev_count; i++)
2528 		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2529 			return 0;
2530 	return -EOPNOTSUPP;
2531 }
2532 
2533 /* kvm_io_bus_read - called under kvm->slots_lock */
2534 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
2535 {
2536 	int i;
2537 	for (i = 0; i < bus->dev_count; i++)
2538 		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2539 			return 0;
2540 	return -EOPNOTSUPP;
2541 }
2542 
2543 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
2544 			     struct kvm_io_device *dev)
2545 {
2546 	int ret;
2547 
2548 	down_write(&kvm->slots_lock);
2549 	ret = __kvm_io_bus_register_dev(bus, dev);
2550 	up_write(&kvm->slots_lock);
2551 
2552 	return ret;
2553 }
2554 
2555 /* An unlocked version. Caller must have write lock on slots_lock. */
2556 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
2557 			      struct kvm_io_device *dev)
2558 {
2559 	if (bus->dev_count > NR_IOBUS_DEVS-1)
2560 		return -ENOSPC;
2561 
2562 	bus->devs[bus->dev_count++] = dev;
2563 
2564 	return 0;
2565 }
2566 
2567 void kvm_io_bus_unregister_dev(struct kvm *kvm,
2568 			       struct kvm_io_bus *bus,
2569 			       struct kvm_io_device *dev)
2570 {
2571 	down_write(&kvm->slots_lock);
2572 	__kvm_io_bus_unregister_dev(bus, dev);
2573 	up_write(&kvm->slots_lock);
2574 }
2575 
2576 /* An unlocked version. Caller must have write lock on slots_lock. */
2577 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
2578 				 struct kvm_io_device *dev)
2579 {
2580 	int i;
2581 
2582 	for (i = 0; i < bus->dev_count; i++)
2583 		if (bus->devs[i] == dev) {
2584 			bus->devs[i] = bus->devs[--bus->dev_count];
2585 			break;
2586 		}
2587 }
2588 
2589 static struct notifier_block kvm_cpu_notifier = {
2590 	.notifier_call = kvm_cpu_hotplug,
2591 	.priority = 20, /* must be > scheduler priority */
2592 };
2593 
2594 static int vm_stat_get(void *_offset, u64 *val)
2595 {
2596 	unsigned offset = (long)_offset;
2597 	struct kvm *kvm;
2598 
2599 	*val = 0;
2600 	spin_lock(&kvm_lock);
2601 	list_for_each_entry(kvm, &vm_list, vm_list)
2602 		*val += *(u32 *)((void *)kvm + offset);
2603 	spin_unlock(&kvm_lock);
2604 	return 0;
2605 }
2606 
2607 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2608 
2609 static int vcpu_stat_get(void *_offset, u64 *val)
2610 {
2611 	unsigned offset = (long)_offset;
2612 	struct kvm *kvm;
2613 	struct kvm_vcpu *vcpu;
2614 	int i;
2615 
2616 	*val = 0;
2617 	spin_lock(&kvm_lock);
2618 	list_for_each_entry(kvm, &vm_list, vm_list)
2619 		kvm_for_each_vcpu(i, vcpu, kvm)
2620 			*val += *(u32 *)((void *)vcpu + offset);
2621 
2622 	spin_unlock(&kvm_lock);
2623 	return 0;
2624 }
2625 
2626 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2627 
2628 static const struct file_operations *stat_fops[] = {
2629 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2630 	[KVM_STAT_VM]   = &vm_stat_fops,
2631 };
2632 
2633 static void kvm_init_debug(void)
2634 {
2635 	struct kvm_stats_debugfs_item *p;
2636 
2637 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2638 	for (p = debugfs_entries; p->name; ++p)
2639 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2640 						(void *)(long)p->offset,
2641 						stat_fops[p->kind]);
2642 }
2643 
2644 static void kvm_exit_debug(void)
2645 {
2646 	struct kvm_stats_debugfs_item *p;
2647 
2648 	for (p = debugfs_entries; p->name; ++p)
2649 		debugfs_remove(p->dentry);
2650 	debugfs_remove(kvm_debugfs_dir);
2651 }
2652 
2653 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2654 {
2655 	hardware_disable(NULL);
2656 	return 0;
2657 }
2658 
2659 static int kvm_resume(struct sys_device *dev)
2660 {
2661 	hardware_enable(NULL);
2662 	return 0;
2663 }
2664 
2665 static struct sysdev_class kvm_sysdev_class = {
2666 	.name = "kvm",
2667 	.suspend = kvm_suspend,
2668 	.resume = kvm_resume,
2669 };
2670 
2671 static struct sys_device kvm_sysdev = {
2672 	.id = 0,
2673 	.cls = &kvm_sysdev_class,
2674 };
2675 
2676 struct page *bad_page;
2677 pfn_t bad_pfn;
2678 
2679 static inline
2680 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2681 {
2682 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2683 }
2684 
2685 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2686 {
2687 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2688 
2689 	kvm_arch_vcpu_load(vcpu, cpu);
2690 }
2691 
2692 static void kvm_sched_out(struct preempt_notifier *pn,
2693 			  struct task_struct *next)
2694 {
2695 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2696 
2697 	kvm_arch_vcpu_put(vcpu);
2698 }
2699 
2700 int kvm_init(void *opaque, unsigned int vcpu_size,
2701 		  struct module *module)
2702 {
2703 	int r;
2704 	int cpu;
2705 
2706 	kvm_init_debug();
2707 
2708 	r = kvm_arch_init(opaque);
2709 	if (r)
2710 		goto out_fail;
2711 
2712 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2713 
2714 	if (bad_page == NULL) {
2715 		r = -ENOMEM;
2716 		goto out;
2717 	}
2718 
2719 	bad_pfn = page_to_pfn(bad_page);
2720 
2721 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2722 		r = -ENOMEM;
2723 		goto out_free_0;
2724 	}
2725 
2726 	r = kvm_arch_hardware_setup();
2727 	if (r < 0)
2728 		goto out_free_0a;
2729 
2730 	for_each_online_cpu(cpu) {
2731 		smp_call_function_single(cpu,
2732 				kvm_arch_check_processor_compat,
2733 				&r, 1);
2734 		if (r < 0)
2735 			goto out_free_1;
2736 	}
2737 
2738 	on_each_cpu(hardware_enable, NULL, 1);
2739 	r = register_cpu_notifier(&kvm_cpu_notifier);
2740 	if (r)
2741 		goto out_free_2;
2742 	register_reboot_notifier(&kvm_reboot_notifier);
2743 
2744 	r = sysdev_class_register(&kvm_sysdev_class);
2745 	if (r)
2746 		goto out_free_3;
2747 
2748 	r = sysdev_register(&kvm_sysdev);
2749 	if (r)
2750 		goto out_free_4;
2751 
2752 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2753 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2754 					   __alignof__(struct kvm_vcpu),
2755 					   0, NULL);
2756 	if (!kvm_vcpu_cache) {
2757 		r = -ENOMEM;
2758 		goto out_free_5;
2759 	}
2760 
2761 	kvm_chardev_ops.owner = module;
2762 	kvm_vm_fops.owner = module;
2763 	kvm_vcpu_fops.owner = module;
2764 
2765 	r = misc_register(&kvm_dev);
2766 	if (r) {
2767 		printk(KERN_ERR "kvm: misc device register failed\n");
2768 		goto out_free;
2769 	}
2770 
2771 	kvm_preempt_ops.sched_in = kvm_sched_in;
2772 	kvm_preempt_ops.sched_out = kvm_sched_out;
2773 
2774 	return 0;
2775 
2776 out_free:
2777 	kmem_cache_destroy(kvm_vcpu_cache);
2778 out_free_5:
2779 	sysdev_unregister(&kvm_sysdev);
2780 out_free_4:
2781 	sysdev_class_unregister(&kvm_sysdev_class);
2782 out_free_3:
2783 	unregister_reboot_notifier(&kvm_reboot_notifier);
2784 	unregister_cpu_notifier(&kvm_cpu_notifier);
2785 out_free_2:
2786 	on_each_cpu(hardware_disable, NULL, 1);
2787 out_free_1:
2788 	kvm_arch_hardware_unsetup();
2789 out_free_0a:
2790 	free_cpumask_var(cpus_hardware_enabled);
2791 out_free_0:
2792 	__free_page(bad_page);
2793 out:
2794 	kvm_arch_exit();
2795 out_fail:
2796 	kvm_exit_debug();
2797 	return r;
2798 }
2799 EXPORT_SYMBOL_GPL(kvm_init);
2800 
2801 void kvm_exit(void)
2802 {
2803 	tracepoint_synchronize_unregister();
2804 	misc_deregister(&kvm_dev);
2805 	kmem_cache_destroy(kvm_vcpu_cache);
2806 	sysdev_unregister(&kvm_sysdev);
2807 	sysdev_class_unregister(&kvm_sysdev_class);
2808 	unregister_reboot_notifier(&kvm_reboot_notifier);
2809 	unregister_cpu_notifier(&kvm_cpu_notifier);
2810 	on_each_cpu(hardware_disable, NULL, 1);
2811 	kvm_arch_hardware_unsetup();
2812 	kvm_arch_exit();
2813 	kvm_exit_debug();
2814 	free_cpumask_var(cpus_hardware_enabled);
2815 	__free_page(bad_page);
2816 }
2817 EXPORT_SYMBOL_GPL(kvm_exit);
2818