xref: /openbmc/linux/virt/kvm/kvm_main.c (revision e6c81cce)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71 
72 /*
73  * Ordering of locks:
74  *
75  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77 
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81 
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85 
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88 
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90 
91 struct dentry *kvm_debugfs_dir;
92 
93 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
94 			   unsigned long arg);
95 #ifdef CONFIG_KVM_COMPAT
96 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
97 				  unsigned long arg);
98 #endif
99 static int hardware_enable_all(void);
100 static void hardware_disable_all(void);
101 
102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
103 
104 static void kvm_release_pfn_dirty(pfn_t pfn);
105 static void mark_page_dirty_in_slot(struct kvm *kvm,
106 				    struct kvm_memory_slot *memslot, gfn_t gfn);
107 
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110 
111 static bool largepages_enabled = true;
112 
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 	if (pfn_valid(pfn))
116 		return PageReserved(pfn_to_page(pfn));
117 
118 	return true;
119 }
120 
121 /*
122  * Switches to specified vcpu, until a matching vcpu_put()
123  */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 	int cpu;
127 
128 	if (mutex_lock_killable(&vcpu->mutex))
129 		return -EINTR;
130 	cpu = get_cpu();
131 	preempt_notifier_register(&vcpu->preempt_notifier);
132 	kvm_arch_vcpu_load(vcpu, cpu);
133 	put_cpu();
134 	return 0;
135 }
136 
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 	preempt_disable();
140 	kvm_arch_vcpu_put(vcpu);
141 	preempt_notifier_unregister(&vcpu->preempt_notifier);
142 	preempt_enable();
143 	mutex_unlock(&vcpu->mutex);
144 }
145 
146 static void ack_flush(void *_completed)
147 {
148 }
149 
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 	int i, cpu, me;
153 	cpumask_var_t cpus;
154 	bool called = true;
155 	struct kvm_vcpu *vcpu;
156 
157 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158 
159 	me = get_cpu();
160 	kvm_for_each_vcpu(i, vcpu, kvm) {
161 		kvm_make_request(req, vcpu);
162 		cpu = vcpu->cpu;
163 
164 		/* Set ->requests bit before we read ->mode */
165 		smp_mb();
166 
167 		if (cpus != NULL && cpu != -1 && cpu != me &&
168 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 			cpumask_set_cpu(cpu, cpus);
170 	}
171 	if (unlikely(cpus == NULL))
172 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 	else if (!cpumask_empty(cpus))
174 		smp_call_function_many(cpus, ack_flush, NULL, 1);
175 	else
176 		called = false;
177 	put_cpu();
178 	free_cpumask_var(cpus);
179 	return called;
180 }
181 
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 	long dirty_count = kvm->tlbs_dirty;
186 
187 	smp_mb();
188 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 		++kvm->stat.remote_tlb_flush;
190 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194 
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199 
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204 
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209 
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 	struct page *page;
213 	int r;
214 
215 	mutex_init(&vcpu->mutex);
216 	vcpu->cpu = -1;
217 	vcpu->kvm = kvm;
218 	vcpu->vcpu_id = id;
219 	vcpu->pid = NULL;
220 	init_waitqueue_head(&vcpu->wq);
221 	kvm_async_pf_vcpu_init(vcpu);
222 
223 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 	if (!page) {
225 		r = -ENOMEM;
226 		goto fail;
227 	}
228 	vcpu->run = page_address(page);
229 
230 	kvm_vcpu_set_in_spin_loop(vcpu, false);
231 	kvm_vcpu_set_dy_eligible(vcpu, false);
232 	vcpu->preempted = false;
233 
234 	r = kvm_arch_vcpu_init(vcpu);
235 	if (r < 0)
236 		goto fail_free_run;
237 	return 0;
238 
239 fail_free_run:
240 	free_page((unsigned long)vcpu->run);
241 fail:
242 	return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245 
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 	put_pid(vcpu->pid);
249 	kvm_arch_vcpu_uninit(vcpu);
250 	free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253 
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 	return container_of(mn, struct kvm, mmu_notifier);
258 }
259 
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 					     struct mm_struct *mm,
262 					     unsigned long address)
263 {
264 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 	int need_tlb_flush, idx;
266 
267 	/*
268 	 * When ->invalidate_page runs, the linux pte has been zapped
269 	 * already but the page is still allocated until
270 	 * ->invalidate_page returns. So if we increase the sequence
271 	 * here the kvm page fault will notice if the spte can't be
272 	 * established because the page is going to be freed. If
273 	 * instead the kvm page fault establishes the spte before
274 	 * ->invalidate_page runs, kvm_unmap_hva will release it
275 	 * before returning.
276 	 *
277 	 * The sequence increase only need to be seen at spin_unlock
278 	 * time, and not at spin_lock time.
279 	 *
280 	 * Increasing the sequence after the spin_unlock would be
281 	 * unsafe because the kvm page fault could then establish the
282 	 * pte after kvm_unmap_hva returned, without noticing the page
283 	 * is going to be freed.
284 	 */
285 	idx = srcu_read_lock(&kvm->srcu);
286 	spin_lock(&kvm->mmu_lock);
287 
288 	kvm->mmu_notifier_seq++;
289 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 	/* we've to flush the tlb before the pages can be freed */
291 	if (need_tlb_flush)
292 		kvm_flush_remote_tlbs(kvm);
293 
294 	spin_unlock(&kvm->mmu_lock);
295 
296 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297 
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 	need_tlb_flush |= kvm->tlbs_dirty;
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 
339 	spin_unlock(&kvm->mmu_lock);
340 	srcu_read_unlock(&kvm->srcu, idx);
341 }
342 
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 						  struct mm_struct *mm,
345 						  unsigned long start,
346 						  unsigned long end)
347 {
348 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
349 
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * This sequence increase will notify the kvm page fault that
353 	 * the page that is going to be mapped in the spte could have
354 	 * been freed.
355 	 */
356 	kvm->mmu_notifier_seq++;
357 	smp_wmb();
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease, which is ensured by the smp_wmb above
361 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 	 */
363 	kvm->mmu_notifier_count--;
364 	spin_unlock(&kvm->mmu_lock);
365 
366 	BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368 
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 					      struct mm_struct *mm,
371 					      unsigned long start,
372 					      unsigned long end)
373 {
374 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 	int young, idx;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 
380 	young = kvm_age_hva(kvm, start, end);
381 	if (young)
382 		kvm_flush_remote_tlbs(kvm);
383 
384 	spin_unlock(&kvm->mmu_lock);
385 	srcu_read_unlock(&kvm->srcu, idx);
386 
387 	return young;
388 }
389 
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 				       struct mm_struct *mm,
392 				       unsigned long address)
393 {
394 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 	int young, idx;
396 
397 	idx = srcu_read_lock(&kvm->srcu);
398 	spin_lock(&kvm->mmu_lock);
399 	young = kvm_test_age_hva(kvm, address);
400 	spin_unlock(&kvm->mmu_lock);
401 	srcu_read_unlock(&kvm->srcu, idx);
402 
403 	return young;
404 }
405 
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 				     struct mm_struct *mm)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int idx;
411 
412 	idx = srcu_read_lock(&kvm->srcu);
413 	kvm_arch_flush_shadow_all(kvm);
414 	srcu_read_unlock(&kvm->srcu, idx);
415 }
416 
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
419 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
420 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
421 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
422 	.test_young		= kvm_mmu_notifier_test_young,
423 	.change_pte		= kvm_mmu_notifier_change_pte,
424 	.release		= kvm_mmu_notifier_release,
425 };
426 
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432 
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 	return 0;
438 }
439 
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444 	int i;
445 	struct kvm_memslots *slots = kvm->memslots;
446 
447 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 		slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450 
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453 	int r, i;
454 	struct kvm *kvm = kvm_arch_alloc_vm();
455 
456 	if (!kvm)
457 		return ERR_PTR(-ENOMEM);
458 
459 	r = kvm_arch_init_vm(kvm, type);
460 	if (r)
461 		goto out_err_no_disable;
462 
463 	r = hardware_enable_all();
464 	if (r)
465 		goto out_err_no_disable;
466 
467 #ifdef CONFIG_HAVE_KVM_IRQFD
468 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470 
471 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472 
473 	r = -ENOMEM;
474 	kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
475 	if (!kvm->memslots)
476 		goto out_err_no_srcu;
477 
478 	/*
479 	 * Init kvm generation close to the maximum to easily test the
480 	 * code of handling generation number wrap-around.
481 	 */
482 	kvm->memslots->generation = -150;
483 
484 	kvm_init_memslots_id(kvm);
485 	if (init_srcu_struct(&kvm->srcu))
486 		goto out_err_no_srcu;
487 	if (init_srcu_struct(&kvm->irq_srcu))
488 		goto out_err_no_irq_srcu;
489 	for (i = 0; i < KVM_NR_BUSES; i++) {
490 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
491 					GFP_KERNEL);
492 		if (!kvm->buses[i])
493 			goto out_err;
494 	}
495 
496 	spin_lock_init(&kvm->mmu_lock);
497 	kvm->mm = current->mm;
498 	atomic_inc(&kvm->mm->mm_count);
499 	kvm_eventfd_init(kvm);
500 	mutex_init(&kvm->lock);
501 	mutex_init(&kvm->irq_lock);
502 	mutex_init(&kvm->slots_lock);
503 	atomic_set(&kvm->users_count, 1);
504 	INIT_LIST_HEAD(&kvm->devices);
505 
506 	r = kvm_init_mmu_notifier(kvm);
507 	if (r)
508 		goto out_err;
509 
510 	spin_lock(&kvm_lock);
511 	list_add(&kvm->vm_list, &vm_list);
512 	spin_unlock(&kvm_lock);
513 
514 	return kvm;
515 
516 out_err:
517 	cleanup_srcu_struct(&kvm->irq_srcu);
518 out_err_no_irq_srcu:
519 	cleanup_srcu_struct(&kvm->srcu);
520 out_err_no_srcu:
521 	hardware_disable_all();
522 out_err_no_disable:
523 	for (i = 0; i < KVM_NR_BUSES; i++)
524 		kfree(kvm->buses[i]);
525 	kvfree(kvm->memslots);
526 	kvm_arch_free_vm(kvm);
527 	return ERR_PTR(r);
528 }
529 
530 /*
531  * Avoid using vmalloc for a small buffer.
532  * Should not be used when the size is statically known.
533  */
534 void *kvm_kvzalloc(unsigned long size)
535 {
536 	if (size > PAGE_SIZE)
537 		return vzalloc(size);
538 	else
539 		return kzalloc(size, GFP_KERNEL);
540 }
541 
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544 	if (!memslot->dirty_bitmap)
545 		return;
546 
547 	kvfree(memslot->dirty_bitmap);
548 	memslot->dirty_bitmap = NULL;
549 }
550 
551 /*
552  * Free any memory in @free but not in @dont.
553  */
554 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
555 				  struct kvm_memory_slot *dont)
556 {
557 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 		kvm_destroy_dirty_bitmap(free);
559 
560 	kvm_arch_free_memslot(kvm, free, dont);
561 
562 	free->npages = 0;
563 }
564 
565 static void kvm_free_physmem(struct kvm *kvm)
566 {
567 	struct kvm_memslots *slots = kvm->memslots;
568 	struct kvm_memory_slot *memslot;
569 
570 	kvm_for_each_memslot(memslot, slots)
571 		kvm_free_physmem_slot(kvm, memslot, NULL);
572 
573 	kvfree(kvm->memslots);
574 }
575 
576 static void kvm_destroy_devices(struct kvm *kvm)
577 {
578 	struct list_head *node, *tmp;
579 
580 	list_for_each_safe(node, tmp, &kvm->devices) {
581 		struct kvm_device *dev =
582 			list_entry(node, struct kvm_device, vm_node);
583 
584 		list_del(node);
585 		dev->ops->destroy(dev);
586 	}
587 }
588 
589 static void kvm_destroy_vm(struct kvm *kvm)
590 {
591 	int i;
592 	struct mm_struct *mm = kvm->mm;
593 
594 	kvm_arch_sync_events(kvm);
595 	spin_lock(&kvm_lock);
596 	list_del(&kvm->vm_list);
597 	spin_unlock(&kvm_lock);
598 	kvm_free_irq_routing(kvm);
599 	for (i = 0; i < KVM_NR_BUSES; i++)
600 		kvm_io_bus_destroy(kvm->buses[i]);
601 	kvm_coalesced_mmio_free(kvm);
602 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
603 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
604 #else
605 	kvm_arch_flush_shadow_all(kvm);
606 #endif
607 	kvm_arch_destroy_vm(kvm);
608 	kvm_destroy_devices(kvm);
609 	kvm_free_physmem(kvm);
610 	cleanup_srcu_struct(&kvm->irq_srcu);
611 	cleanup_srcu_struct(&kvm->srcu);
612 	kvm_arch_free_vm(kvm);
613 	hardware_disable_all();
614 	mmdrop(mm);
615 }
616 
617 void kvm_get_kvm(struct kvm *kvm)
618 {
619 	atomic_inc(&kvm->users_count);
620 }
621 EXPORT_SYMBOL_GPL(kvm_get_kvm);
622 
623 void kvm_put_kvm(struct kvm *kvm)
624 {
625 	if (atomic_dec_and_test(&kvm->users_count))
626 		kvm_destroy_vm(kvm);
627 }
628 EXPORT_SYMBOL_GPL(kvm_put_kvm);
629 
630 
631 static int kvm_vm_release(struct inode *inode, struct file *filp)
632 {
633 	struct kvm *kvm = filp->private_data;
634 
635 	kvm_irqfd_release(kvm);
636 
637 	kvm_put_kvm(kvm);
638 	return 0;
639 }
640 
641 /*
642  * Allocation size is twice as large as the actual dirty bitmap size.
643  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
644  */
645 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
646 {
647 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
648 
649 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
650 	if (!memslot->dirty_bitmap)
651 		return -ENOMEM;
652 
653 	return 0;
654 }
655 
656 /*
657  * Insert memslot and re-sort memslots based on their GFN,
658  * so binary search could be used to lookup GFN.
659  * Sorting algorithm takes advantage of having initially
660  * sorted array and known changed memslot position.
661  */
662 static void update_memslots(struct kvm_memslots *slots,
663 			    struct kvm_memory_slot *new)
664 {
665 	int id = new->id;
666 	int i = slots->id_to_index[id];
667 	struct kvm_memory_slot *mslots = slots->memslots;
668 
669 	WARN_ON(mslots[i].id != id);
670 	if (!new->npages) {
671 		WARN_ON(!mslots[i].npages);
672 		new->base_gfn = 0;
673 		new->flags = 0;
674 		if (mslots[i].npages)
675 			slots->used_slots--;
676 	} else {
677 		if (!mslots[i].npages)
678 			slots->used_slots++;
679 	}
680 
681 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
682 	       new->base_gfn <= mslots[i + 1].base_gfn) {
683 		if (!mslots[i + 1].npages)
684 			break;
685 		mslots[i] = mslots[i + 1];
686 		slots->id_to_index[mslots[i].id] = i;
687 		i++;
688 	}
689 
690 	/*
691 	 * The ">=" is needed when creating a slot with base_gfn == 0,
692 	 * so that it moves before all those with base_gfn == npages == 0.
693 	 *
694 	 * On the other hand, if new->npages is zero, the above loop has
695 	 * already left i pointing to the beginning of the empty part of
696 	 * mslots, and the ">=" would move the hole backwards in this
697 	 * case---which is wrong.  So skip the loop when deleting a slot.
698 	 */
699 	if (new->npages) {
700 		while (i > 0 &&
701 		       new->base_gfn >= mslots[i - 1].base_gfn) {
702 			mslots[i] = mslots[i - 1];
703 			slots->id_to_index[mslots[i].id] = i;
704 			i--;
705 		}
706 	} else
707 		WARN_ON_ONCE(i != slots->used_slots);
708 
709 	mslots[i] = *new;
710 	slots->id_to_index[mslots[i].id] = i;
711 }
712 
713 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
714 {
715 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
716 
717 #ifdef __KVM_HAVE_READONLY_MEM
718 	valid_flags |= KVM_MEM_READONLY;
719 #endif
720 
721 	if (mem->flags & ~valid_flags)
722 		return -EINVAL;
723 
724 	return 0;
725 }
726 
727 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
728 		struct kvm_memslots *slots)
729 {
730 	struct kvm_memslots *old_memslots = kvm->memslots;
731 
732 	/*
733 	 * Set the low bit in the generation, which disables SPTE caching
734 	 * until the end of synchronize_srcu_expedited.
735 	 */
736 	WARN_ON(old_memslots->generation & 1);
737 	slots->generation = old_memslots->generation + 1;
738 
739 	rcu_assign_pointer(kvm->memslots, slots);
740 	synchronize_srcu_expedited(&kvm->srcu);
741 
742 	/*
743 	 * Increment the new memslot generation a second time. This prevents
744 	 * vm exits that race with memslot updates from caching a memslot
745 	 * generation that will (potentially) be valid forever.
746 	 */
747 	slots->generation++;
748 
749 	kvm_arch_memslots_updated(kvm);
750 
751 	return old_memslots;
752 }
753 
754 /*
755  * Allocate some memory and give it an address in the guest physical address
756  * space.
757  *
758  * Discontiguous memory is allowed, mostly for framebuffers.
759  *
760  * Must be called holding kvm->slots_lock for write.
761  */
762 int __kvm_set_memory_region(struct kvm *kvm,
763 			    struct kvm_userspace_memory_region *mem)
764 {
765 	int r;
766 	gfn_t base_gfn;
767 	unsigned long npages;
768 	struct kvm_memory_slot *slot;
769 	struct kvm_memory_slot old, new;
770 	struct kvm_memslots *slots = NULL, *old_memslots;
771 	enum kvm_mr_change change;
772 
773 	r = check_memory_region_flags(mem);
774 	if (r)
775 		goto out;
776 
777 	r = -EINVAL;
778 	/* General sanity checks */
779 	if (mem->memory_size & (PAGE_SIZE - 1))
780 		goto out;
781 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
782 		goto out;
783 	/* We can read the guest memory with __xxx_user() later on. */
784 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
785 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
786 	     !access_ok(VERIFY_WRITE,
787 			(void __user *)(unsigned long)mem->userspace_addr,
788 			mem->memory_size)))
789 		goto out;
790 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
791 		goto out;
792 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
793 		goto out;
794 
795 	slot = id_to_memslot(kvm->memslots, mem->slot);
796 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
797 	npages = mem->memory_size >> PAGE_SHIFT;
798 
799 	if (npages > KVM_MEM_MAX_NR_PAGES)
800 		goto out;
801 
802 	if (!npages)
803 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
804 
805 	new = old = *slot;
806 
807 	new.id = mem->slot;
808 	new.base_gfn = base_gfn;
809 	new.npages = npages;
810 	new.flags = mem->flags;
811 
812 	if (npages) {
813 		if (!old.npages)
814 			change = KVM_MR_CREATE;
815 		else { /* Modify an existing slot. */
816 			if ((mem->userspace_addr != old.userspace_addr) ||
817 			    (npages != old.npages) ||
818 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
819 				goto out;
820 
821 			if (base_gfn != old.base_gfn)
822 				change = KVM_MR_MOVE;
823 			else if (new.flags != old.flags)
824 				change = KVM_MR_FLAGS_ONLY;
825 			else { /* Nothing to change. */
826 				r = 0;
827 				goto out;
828 			}
829 		}
830 	} else if (old.npages) {
831 		change = KVM_MR_DELETE;
832 	} else /* Modify a non-existent slot: disallowed. */
833 		goto out;
834 
835 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
836 		/* Check for overlaps */
837 		r = -EEXIST;
838 		kvm_for_each_memslot(slot, kvm->memslots) {
839 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
840 			    (slot->id == mem->slot))
841 				continue;
842 			if (!((base_gfn + npages <= slot->base_gfn) ||
843 			      (base_gfn >= slot->base_gfn + slot->npages)))
844 				goto out;
845 		}
846 	}
847 
848 	/* Free page dirty bitmap if unneeded */
849 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
850 		new.dirty_bitmap = NULL;
851 
852 	r = -ENOMEM;
853 	if (change == KVM_MR_CREATE) {
854 		new.userspace_addr = mem->userspace_addr;
855 
856 		if (kvm_arch_create_memslot(kvm, &new, npages))
857 			goto out_free;
858 	}
859 
860 	/* Allocate page dirty bitmap if needed */
861 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
862 		if (kvm_create_dirty_bitmap(&new) < 0)
863 			goto out_free;
864 	}
865 
866 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
867 	if (!slots)
868 		goto out_free;
869 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
870 
871 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
872 		slot = id_to_memslot(slots, mem->slot);
873 		slot->flags |= KVM_MEMSLOT_INVALID;
874 
875 		old_memslots = install_new_memslots(kvm, slots);
876 
877 		/* slot was deleted or moved, clear iommu mapping */
878 		kvm_iommu_unmap_pages(kvm, &old);
879 		/* From this point no new shadow pages pointing to a deleted,
880 		 * or moved, memslot will be created.
881 		 *
882 		 * validation of sp->gfn happens in:
883 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
884 		 *	- kvm_is_visible_gfn (mmu_check_roots)
885 		 */
886 		kvm_arch_flush_shadow_memslot(kvm, slot);
887 
888 		/*
889 		 * We can re-use the old_memslots from above, the only difference
890 		 * from the currently installed memslots is the invalid flag.  This
891 		 * will get overwritten by update_memslots anyway.
892 		 */
893 		slots = old_memslots;
894 	}
895 
896 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
897 	if (r)
898 		goto out_slots;
899 
900 	/* actual memory is freed via old in kvm_free_physmem_slot below */
901 	if (change == KVM_MR_DELETE) {
902 		new.dirty_bitmap = NULL;
903 		memset(&new.arch, 0, sizeof(new.arch));
904 	}
905 
906 	update_memslots(slots, &new);
907 	old_memslots = install_new_memslots(kvm, slots);
908 
909 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
910 
911 	kvm_free_physmem_slot(kvm, &old, &new);
912 	kvfree(old_memslots);
913 
914 	/*
915 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
916 	 * un-mapped and re-mapped if their base changes.  Since base change
917 	 * unmapping is handled above with slot deletion, mapping alone is
918 	 * needed here.  Anything else the iommu might care about for existing
919 	 * slots (size changes, userspace addr changes and read-only flag
920 	 * changes) is disallowed above, so any other attribute changes getting
921 	 * here can be skipped.
922 	 */
923 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
924 		r = kvm_iommu_map_pages(kvm, &new);
925 		return r;
926 	}
927 
928 	return 0;
929 
930 out_slots:
931 	kvfree(slots);
932 out_free:
933 	kvm_free_physmem_slot(kvm, &new, &old);
934 out:
935 	return r;
936 }
937 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
938 
939 int kvm_set_memory_region(struct kvm *kvm,
940 			  struct kvm_userspace_memory_region *mem)
941 {
942 	int r;
943 
944 	mutex_lock(&kvm->slots_lock);
945 	r = __kvm_set_memory_region(kvm, mem);
946 	mutex_unlock(&kvm->slots_lock);
947 	return r;
948 }
949 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
950 
951 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
952 					  struct kvm_userspace_memory_region *mem)
953 {
954 	if (mem->slot >= KVM_USER_MEM_SLOTS)
955 		return -EINVAL;
956 	return kvm_set_memory_region(kvm, mem);
957 }
958 
959 int kvm_get_dirty_log(struct kvm *kvm,
960 			struct kvm_dirty_log *log, int *is_dirty)
961 {
962 	struct kvm_memory_slot *memslot;
963 	int r, i;
964 	unsigned long n;
965 	unsigned long any = 0;
966 
967 	r = -EINVAL;
968 	if (log->slot >= KVM_USER_MEM_SLOTS)
969 		goto out;
970 
971 	memslot = id_to_memslot(kvm->memslots, log->slot);
972 	r = -ENOENT;
973 	if (!memslot->dirty_bitmap)
974 		goto out;
975 
976 	n = kvm_dirty_bitmap_bytes(memslot);
977 
978 	for (i = 0; !any && i < n/sizeof(long); ++i)
979 		any = memslot->dirty_bitmap[i];
980 
981 	r = -EFAULT;
982 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
983 		goto out;
984 
985 	if (any)
986 		*is_dirty = 1;
987 
988 	r = 0;
989 out:
990 	return r;
991 }
992 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
993 
994 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
995 /**
996  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
997  *	are dirty write protect them for next write.
998  * @kvm:	pointer to kvm instance
999  * @log:	slot id and address to which we copy the log
1000  * @is_dirty:	flag set if any page is dirty
1001  *
1002  * We need to keep it in mind that VCPU threads can write to the bitmap
1003  * concurrently. So, to avoid losing track of dirty pages we keep the
1004  * following order:
1005  *
1006  *    1. Take a snapshot of the bit and clear it if needed.
1007  *    2. Write protect the corresponding page.
1008  *    3. Copy the snapshot to the userspace.
1009  *    4. Upon return caller flushes TLB's if needed.
1010  *
1011  * Between 2 and 4, the guest may write to the page using the remaining TLB
1012  * entry.  This is not a problem because the page is reported dirty using
1013  * the snapshot taken before and step 4 ensures that writes done after
1014  * exiting to userspace will be logged for the next call.
1015  *
1016  */
1017 int kvm_get_dirty_log_protect(struct kvm *kvm,
1018 			struct kvm_dirty_log *log, bool *is_dirty)
1019 {
1020 	struct kvm_memory_slot *memslot;
1021 	int r, i;
1022 	unsigned long n;
1023 	unsigned long *dirty_bitmap;
1024 	unsigned long *dirty_bitmap_buffer;
1025 
1026 	r = -EINVAL;
1027 	if (log->slot >= KVM_USER_MEM_SLOTS)
1028 		goto out;
1029 
1030 	memslot = id_to_memslot(kvm->memslots, log->slot);
1031 
1032 	dirty_bitmap = memslot->dirty_bitmap;
1033 	r = -ENOENT;
1034 	if (!dirty_bitmap)
1035 		goto out;
1036 
1037 	n = kvm_dirty_bitmap_bytes(memslot);
1038 
1039 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1040 	memset(dirty_bitmap_buffer, 0, n);
1041 
1042 	spin_lock(&kvm->mmu_lock);
1043 	*is_dirty = false;
1044 	for (i = 0; i < n / sizeof(long); i++) {
1045 		unsigned long mask;
1046 		gfn_t offset;
1047 
1048 		if (!dirty_bitmap[i])
1049 			continue;
1050 
1051 		*is_dirty = true;
1052 
1053 		mask = xchg(&dirty_bitmap[i], 0);
1054 		dirty_bitmap_buffer[i] = mask;
1055 
1056 		if (mask) {
1057 			offset = i * BITS_PER_LONG;
1058 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1059 								offset, mask);
1060 		}
1061 	}
1062 
1063 	spin_unlock(&kvm->mmu_lock);
1064 
1065 	r = -EFAULT;
1066 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1067 		goto out;
1068 
1069 	r = 0;
1070 out:
1071 	return r;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1074 #endif
1075 
1076 bool kvm_largepages_enabled(void)
1077 {
1078 	return largepages_enabled;
1079 }
1080 
1081 void kvm_disable_largepages(void)
1082 {
1083 	largepages_enabled = false;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1086 
1087 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1088 {
1089 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1090 }
1091 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1092 
1093 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1094 {
1095 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1096 
1097 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1098 	      memslot->flags & KVM_MEMSLOT_INVALID)
1099 		return 0;
1100 
1101 	return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1104 
1105 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1106 {
1107 	struct vm_area_struct *vma;
1108 	unsigned long addr, size;
1109 
1110 	size = PAGE_SIZE;
1111 
1112 	addr = gfn_to_hva(kvm, gfn);
1113 	if (kvm_is_error_hva(addr))
1114 		return PAGE_SIZE;
1115 
1116 	down_read(&current->mm->mmap_sem);
1117 	vma = find_vma(current->mm, addr);
1118 	if (!vma)
1119 		goto out;
1120 
1121 	size = vma_kernel_pagesize(vma);
1122 
1123 out:
1124 	up_read(&current->mm->mmap_sem);
1125 
1126 	return size;
1127 }
1128 
1129 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1130 {
1131 	return slot->flags & KVM_MEM_READONLY;
1132 }
1133 
1134 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1135 				       gfn_t *nr_pages, bool write)
1136 {
1137 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1138 		return KVM_HVA_ERR_BAD;
1139 
1140 	if (memslot_is_readonly(slot) && write)
1141 		return KVM_HVA_ERR_RO_BAD;
1142 
1143 	if (nr_pages)
1144 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1145 
1146 	return __gfn_to_hva_memslot(slot, gfn);
1147 }
1148 
1149 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1150 				     gfn_t *nr_pages)
1151 {
1152 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1153 }
1154 
1155 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1156 					gfn_t gfn)
1157 {
1158 	return gfn_to_hva_many(slot, gfn, NULL);
1159 }
1160 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1161 
1162 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1163 {
1164 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1165 }
1166 EXPORT_SYMBOL_GPL(gfn_to_hva);
1167 
1168 /*
1169  * If writable is set to false, the hva returned by this function is only
1170  * allowed to be read.
1171  */
1172 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1173 				      gfn_t gfn, bool *writable)
1174 {
1175 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1176 
1177 	if (!kvm_is_error_hva(hva) && writable)
1178 		*writable = !memslot_is_readonly(slot);
1179 
1180 	return hva;
1181 }
1182 
1183 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1184 {
1185 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1186 
1187 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1188 }
1189 
1190 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1191 	unsigned long start, int write, struct page **page)
1192 {
1193 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1194 
1195 	if (write)
1196 		flags |= FOLL_WRITE;
1197 
1198 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1199 }
1200 
1201 static inline int check_user_page_hwpoison(unsigned long addr)
1202 {
1203 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1204 
1205 	rc = __get_user_pages(current, current->mm, addr, 1,
1206 			      flags, NULL, NULL, NULL);
1207 	return rc == -EHWPOISON;
1208 }
1209 
1210 /*
1211  * The atomic path to get the writable pfn which will be stored in @pfn,
1212  * true indicates success, otherwise false is returned.
1213  */
1214 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1215 			    bool write_fault, bool *writable, pfn_t *pfn)
1216 {
1217 	struct page *page[1];
1218 	int npages;
1219 
1220 	if (!(async || atomic))
1221 		return false;
1222 
1223 	/*
1224 	 * Fast pin a writable pfn only if it is a write fault request
1225 	 * or the caller allows to map a writable pfn for a read fault
1226 	 * request.
1227 	 */
1228 	if (!(write_fault || writable))
1229 		return false;
1230 
1231 	npages = __get_user_pages_fast(addr, 1, 1, page);
1232 	if (npages == 1) {
1233 		*pfn = page_to_pfn(page[0]);
1234 
1235 		if (writable)
1236 			*writable = true;
1237 		return true;
1238 	}
1239 
1240 	return false;
1241 }
1242 
1243 /*
1244  * The slow path to get the pfn of the specified host virtual address,
1245  * 1 indicates success, -errno is returned if error is detected.
1246  */
1247 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1248 			   bool *writable, pfn_t *pfn)
1249 {
1250 	struct page *page[1];
1251 	int npages = 0;
1252 
1253 	might_sleep();
1254 
1255 	if (writable)
1256 		*writable = write_fault;
1257 
1258 	if (async) {
1259 		down_read(&current->mm->mmap_sem);
1260 		npages = get_user_page_nowait(current, current->mm,
1261 					      addr, write_fault, page);
1262 		up_read(&current->mm->mmap_sem);
1263 	} else
1264 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1265 						   write_fault, 0, page,
1266 						   FOLL_TOUCH|FOLL_HWPOISON);
1267 	if (npages != 1)
1268 		return npages;
1269 
1270 	/* map read fault as writable if possible */
1271 	if (unlikely(!write_fault) && writable) {
1272 		struct page *wpage[1];
1273 
1274 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1275 		if (npages == 1) {
1276 			*writable = true;
1277 			put_page(page[0]);
1278 			page[0] = wpage[0];
1279 		}
1280 
1281 		npages = 1;
1282 	}
1283 	*pfn = page_to_pfn(page[0]);
1284 	return npages;
1285 }
1286 
1287 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1288 {
1289 	if (unlikely(!(vma->vm_flags & VM_READ)))
1290 		return false;
1291 
1292 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1293 		return false;
1294 
1295 	return true;
1296 }
1297 
1298 /*
1299  * Pin guest page in memory and return its pfn.
1300  * @addr: host virtual address which maps memory to the guest
1301  * @atomic: whether this function can sleep
1302  * @async: whether this function need to wait IO complete if the
1303  *         host page is not in the memory
1304  * @write_fault: whether we should get a writable host page
1305  * @writable: whether it allows to map a writable host page for !@write_fault
1306  *
1307  * The function will map a writable host page for these two cases:
1308  * 1): @write_fault = true
1309  * 2): @write_fault = false && @writable, @writable will tell the caller
1310  *     whether the mapping is writable.
1311  */
1312 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1313 			bool write_fault, bool *writable)
1314 {
1315 	struct vm_area_struct *vma;
1316 	pfn_t pfn = 0;
1317 	int npages;
1318 
1319 	/* we can do it either atomically or asynchronously, not both */
1320 	BUG_ON(atomic && async);
1321 
1322 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1323 		return pfn;
1324 
1325 	if (atomic)
1326 		return KVM_PFN_ERR_FAULT;
1327 
1328 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1329 	if (npages == 1)
1330 		return pfn;
1331 
1332 	down_read(&current->mm->mmap_sem);
1333 	if (npages == -EHWPOISON ||
1334 	      (!async && check_user_page_hwpoison(addr))) {
1335 		pfn = KVM_PFN_ERR_HWPOISON;
1336 		goto exit;
1337 	}
1338 
1339 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1340 
1341 	if (vma == NULL)
1342 		pfn = KVM_PFN_ERR_FAULT;
1343 	else if ((vma->vm_flags & VM_PFNMAP)) {
1344 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1345 			vma->vm_pgoff;
1346 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1347 	} else {
1348 		if (async && vma_is_valid(vma, write_fault))
1349 			*async = true;
1350 		pfn = KVM_PFN_ERR_FAULT;
1351 	}
1352 exit:
1353 	up_read(&current->mm->mmap_sem);
1354 	return pfn;
1355 }
1356 
1357 static pfn_t
1358 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1359 		     bool *async, bool write_fault, bool *writable)
1360 {
1361 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1362 
1363 	if (addr == KVM_HVA_ERR_RO_BAD)
1364 		return KVM_PFN_ERR_RO_FAULT;
1365 
1366 	if (kvm_is_error_hva(addr))
1367 		return KVM_PFN_NOSLOT;
1368 
1369 	/* Do not map writable pfn in the readonly memslot. */
1370 	if (writable && memslot_is_readonly(slot)) {
1371 		*writable = false;
1372 		writable = NULL;
1373 	}
1374 
1375 	return hva_to_pfn(addr, atomic, async, write_fault,
1376 			  writable);
1377 }
1378 
1379 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1380 			  bool write_fault, bool *writable)
1381 {
1382 	struct kvm_memory_slot *slot;
1383 
1384 	if (async)
1385 		*async = false;
1386 
1387 	slot = gfn_to_memslot(kvm, gfn);
1388 
1389 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1390 				    writable);
1391 }
1392 
1393 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1394 {
1395 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1398 
1399 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1400 		       bool write_fault, bool *writable)
1401 {
1402 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1403 }
1404 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1405 
1406 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1407 {
1408 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1409 }
1410 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1411 
1412 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1413 		      bool *writable)
1414 {
1415 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1416 }
1417 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1418 
1419 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1420 {
1421 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1422 }
1423 
1424 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1425 {
1426 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1427 }
1428 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1429 
1430 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1431 								  int nr_pages)
1432 {
1433 	unsigned long addr;
1434 	gfn_t entry;
1435 
1436 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1437 	if (kvm_is_error_hva(addr))
1438 		return -1;
1439 
1440 	if (entry < nr_pages)
1441 		return 0;
1442 
1443 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1444 }
1445 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1446 
1447 static struct page *kvm_pfn_to_page(pfn_t pfn)
1448 {
1449 	if (is_error_noslot_pfn(pfn))
1450 		return KVM_ERR_PTR_BAD_PAGE;
1451 
1452 	if (kvm_is_reserved_pfn(pfn)) {
1453 		WARN_ON(1);
1454 		return KVM_ERR_PTR_BAD_PAGE;
1455 	}
1456 
1457 	return pfn_to_page(pfn);
1458 }
1459 
1460 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1461 {
1462 	pfn_t pfn;
1463 
1464 	pfn = gfn_to_pfn(kvm, gfn);
1465 
1466 	return kvm_pfn_to_page(pfn);
1467 }
1468 EXPORT_SYMBOL_GPL(gfn_to_page);
1469 
1470 void kvm_release_page_clean(struct page *page)
1471 {
1472 	WARN_ON(is_error_page(page));
1473 
1474 	kvm_release_pfn_clean(page_to_pfn(page));
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1477 
1478 void kvm_release_pfn_clean(pfn_t pfn)
1479 {
1480 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1481 		put_page(pfn_to_page(pfn));
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1484 
1485 void kvm_release_page_dirty(struct page *page)
1486 {
1487 	WARN_ON(is_error_page(page));
1488 
1489 	kvm_release_pfn_dirty(page_to_pfn(page));
1490 }
1491 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1492 
1493 static void kvm_release_pfn_dirty(pfn_t pfn)
1494 {
1495 	kvm_set_pfn_dirty(pfn);
1496 	kvm_release_pfn_clean(pfn);
1497 }
1498 
1499 void kvm_set_pfn_dirty(pfn_t pfn)
1500 {
1501 	if (!kvm_is_reserved_pfn(pfn)) {
1502 		struct page *page = pfn_to_page(pfn);
1503 
1504 		if (!PageReserved(page))
1505 			SetPageDirty(page);
1506 	}
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1509 
1510 void kvm_set_pfn_accessed(pfn_t pfn)
1511 {
1512 	if (!kvm_is_reserved_pfn(pfn))
1513 		mark_page_accessed(pfn_to_page(pfn));
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1516 
1517 void kvm_get_pfn(pfn_t pfn)
1518 {
1519 	if (!kvm_is_reserved_pfn(pfn))
1520 		get_page(pfn_to_page(pfn));
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1523 
1524 static int next_segment(unsigned long len, int offset)
1525 {
1526 	if (len > PAGE_SIZE - offset)
1527 		return PAGE_SIZE - offset;
1528 	else
1529 		return len;
1530 }
1531 
1532 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1533 			int len)
1534 {
1535 	int r;
1536 	unsigned long addr;
1537 
1538 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1539 	if (kvm_is_error_hva(addr))
1540 		return -EFAULT;
1541 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1542 	if (r)
1543 		return -EFAULT;
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1547 
1548 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1549 {
1550 	gfn_t gfn = gpa >> PAGE_SHIFT;
1551 	int seg;
1552 	int offset = offset_in_page(gpa);
1553 	int ret;
1554 
1555 	while ((seg = next_segment(len, offset)) != 0) {
1556 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1557 		if (ret < 0)
1558 			return ret;
1559 		offset = 0;
1560 		len -= seg;
1561 		data += seg;
1562 		++gfn;
1563 	}
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_read_guest);
1567 
1568 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1569 			  unsigned long len)
1570 {
1571 	int r;
1572 	unsigned long addr;
1573 	gfn_t gfn = gpa >> PAGE_SHIFT;
1574 	int offset = offset_in_page(gpa);
1575 
1576 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1577 	if (kvm_is_error_hva(addr))
1578 		return -EFAULT;
1579 	pagefault_disable();
1580 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1581 	pagefault_enable();
1582 	if (r)
1583 		return -EFAULT;
1584 	return 0;
1585 }
1586 EXPORT_SYMBOL(kvm_read_guest_atomic);
1587 
1588 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1589 			 int offset, int len)
1590 {
1591 	int r;
1592 	unsigned long addr;
1593 
1594 	addr = gfn_to_hva(kvm, gfn);
1595 	if (kvm_is_error_hva(addr))
1596 		return -EFAULT;
1597 	r = __copy_to_user((void __user *)addr + offset, data, len);
1598 	if (r)
1599 		return -EFAULT;
1600 	mark_page_dirty(kvm, gfn);
1601 	return 0;
1602 }
1603 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1604 
1605 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1606 		    unsigned long len)
1607 {
1608 	gfn_t gfn = gpa >> PAGE_SHIFT;
1609 	int seg;
1610 	int offset = offset_in_page(gpa);
1611 	int ret;
1612 
1613 	while ((seg = next_segment(len, offset)) != 0) {
1614 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1615 		if (ret < 0)
1616 			return ret;
1617 		offset = 0;
1618 		len -= seg;
1619 		data += seg;
1620 		++gfn;
1621 	}
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_write_guest);
1625 
1626 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1627 			      gpa_t gpa, unsigned long len)
1628 {
1629 	struct kvm_memslots *slots = kvm_memslots(kvm);
1630 	int offset = offset_in_page(gpa);
1631 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1632 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1633 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1634 	gfn_t nr_pages_avail;
1635 
1636 	ghc->gpa = gpa;
1637 	ghc->generation = slots->generation;
1638 	ghc->len = len;
1639 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1640 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1641 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1642 		ghc->hva += offset;
1643 	} else {
1644 		/*
1645 		 * If the requested region crosses two memslots, we still
1646 		 * verify that the entire region is valid here.
1647 		 */
1648 		while (start_gfn <= end_gfn) {
1649 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1650 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1651 						   &nr_pages_avail);
1652 			if (kvm_is_error_hva(ghc->hva))
1653 				return -EFAULT;
1654 			start_gfn += nr_pages_avail;
1655 		}
1656 		/* Use the slow path for cross page reads and writes. */
1657 		ghc->memslot = NULL;
1658 	}
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1662 
1663 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1664 			   void *data, unsigned long len)
1665 {
1666 	struct kvm_memslots *slots = kvm_memslots(kvm);
1667 	int r;
1668 
1669 	BUG_ON(len > ghc->len);
1670 
1671 	if (slots->generation != ghc->generation)
1672 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1673 
1674 	if (unlikely(!ghc->memslot))
1675 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1676 
1677 	if (kvm_is_error_hva(ghc->hva))
1678 		return -EFAULT;
1679 
1680 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1681 	if (r)
1682 		return -EFAULT;
1683 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1684 
1685 	return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1688 
1689 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1690 			   void *data, unsigned long len)
1691 {
1692 	struct kvm_memslots *slots = kvm_memslots(kvm);
1693 	int r;
1694 
1695 	BUG_ON(len > ghc->len);
1696 
1697 	if (slots->generation != ghc->generation)
1698 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1699 
1700 	if (unlikely(!ghc->memslot))
1701 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1702 
1703 	if (kvm_is_error_hva(ghc->hva))
1704 		return -EFAULT;
1705 
1706 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1707 	if (r)
1708 		return -EFAULT;
1709 
1710 	return 0;
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1713 
1714 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1715 {
1716 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1717 
1718 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1719 }
1720 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1721 
1722 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1723 {
1724 	gfn_t gfn = gpa >> PAGE_SHIFT;
1725 	int seg;
1726 	int offset = offset_in_page(gpa);
1727 	int ret;
1728 
1729 	while ((seg = next_segment(len, offset)) != 0) {
1730 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1731 		if (ret < 0)
1732 			return ret;
1733 		offset = 0;
1734 		len -= seg;
1735 		++gfn;
1736 	}
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1740 
1741 static void mark_page_dirty_in_slot(struct kvm *kvm,
1742 				    struct kvm_memory_slot *memslot,
1743 				    gfn_t gfn)
1744 {
1745 	if (memslot && memslot->dirty_bitmap) {
1746 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1747 
1748 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1749 	}
1750 }
1751 
1752 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1753 {
1754 	struct kvm_memory_slot *memslot;
1755 
1756 	memslot = gfn_to_memslot(kvm, gfn);
1757 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1758 }
1759 EXPORT_SYMBOL_GPL(mark_page_dirty);
1760 
1761 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1762 {
1763 	if (kvm_arch_vcpu_runnable(vcpu)) {
1764 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1765 		return -EINTR;
1766 	}
1767 	if (kvm_cpu_has_pending_timer(vcpu))
1768 		return -EINTR;
1769 	if (signal_pending(current))
1770 		return -EINTR;
1771 
1772 	return 0;
1773 }
1774 
1775 /*
1776  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1777  */
1778 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1779 {
1780 	ktime_t start, cur;
1781 	DEFINE_WAIT(wait);
1782 	bool waited = false;
1783 
1784 	start = cur = ktime_get();
1785 	if (halt_poll_ns) {
1786 		ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1787 
1788 		do {
1789 			/*
1790 			 * This sets KVM_REQ_UNHALT if an interrupt
1791 			 * arrives.
1792 			 */
1793 			if (kvm_vcpu_check_block(vcpu) < 0) {
1794 				++vcpu->stat.halt_successful_poll;
1795 				goto out;
1796 			}
1797 			cur = ktime_get();
1798 		} while (single_task_running() && ktime_before(cur, stop));
1799 	}
1800 
1801 	for (;;) {
1802 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1803 
1804 		if (kvm_vcpu_check_block(vcpu) < 0)
1805 			break;
1806 
1807 		waited = true;
1808 		schedule();
1809 	}
1810 
1811 	finish_wait(&vcpu->wq, &wait);
1812 	cur = ktime_get();
1813 
1814 out:
1815 	trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1818 
1819 #ifndef CONFIG_S390
1820 /*
1821  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1822  */
1823 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1824 {
1825 	int me;
1826 	int cpu = vcpu->cpu;
1827 	wait_queue_head_t *wqp;
1828 
1829 	wqp = kvm_arch_vcpu_wq(vcpu);
1830 	if (waitqueue_active(wqp)) {
1831 		wake_up_interruptible(wqp);
1832 		++vcpu->stat.halt_wakeup;
1833 	}
1834 
1835 	me = get_cpu();
1836 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1837 		if (kvm_arch_vcpu_should_kick(vcpu))
1838 			smp_send_reschedule(cpu);
1839 	put_cpu();
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1842 #endif /* !CONFIG_S390 */
1843 
1844 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1845 {
1846 	struct pid *pid;
1847 	struct task_struct *task = NULL;
1848 	int ret = 0;
1849 
1850 	rcu_read_lock();
1851 	pid = rcu_dereference(target->pid);
1852 	if (pid)
1853 		task = get_pid_task(pid, PIDTYPE_PID);
1854 	rcu_read_unlock();
1855 	if (!task)
1856 		return ret;
1857 	ret = yield_to(task, 1);
1858 	put_task_struct(task);
1859 
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1863 
1864 /*
1865  * Helper that checks whether a VCPU is eligible for directed yield.
1866  * Most eligible candidate to yield is decided by following heuristics:
1867  *
1868  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1869  *  (preempted lock holder), indicated by @in_spin_loop.
1870  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1871  *
1872  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1873  *  chance last time (mostly it has become eligible now since we have probably
1874  *  yielded to lockholder in last iteration. This is done by toggling
1875  *  @dy_eligible each time a VCPU checked for eligibility.)
1876  *
1877  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1878  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1879  *  burning. Giving priority for a potential lock-holder increases lock
1880  *  progress.
1881  *
1882  *  Since algorithm is based on heuristics, accessing another VCPU data without
1883  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1884  *  and continue with next VCPU and so on.
1885  */
1886 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1887 {
1888 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1889 	bool eligible;
1890 
1891 	eligible = !vcpu->spin_loop.in_spin_loop ||
1892 		    vcpu->spin_loop.dy_eligible;
1893 
1894 	if (vcpu->spin_loop.in_spin_loop)
1895 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1896 
1897 	return eligible;
1898 #else
1899 	return true;
1900 #endif
1901 }
1902 
1903 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1904 {
1905 	struct kvm *kvm = me->kvm;
1906 	struct kvm_vcpu *vcpu;
1907 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1908 	int yielded = 0;
1909 	int try = 3;
1910 	int pass;
1911 	int i;
1912 
1913 	kvm_vcpu_set_in_spin_loop(me, true);
1914 	/*
1915 	 * We boost the priority of a VCPU that is runnable but not
1916 	 * currently running, because it got preempted by something
1917 	 * else and called schedule in __vcpu_run.  Hopefully that
1918 	 * VCPU is holding the lock that we need and will release it.
1919 	 * We approximate round-robin by starting at the last boosted VCPU.
1920 	 */
1921 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1922 		kvm_for_each_vcpu(i, vcpu, kvm) {
1923 			if (!pass && i <= last_boosted_vcpu) {
1924 				i = last_boosted_vcpu;
1925 				continue;
1926 			} else if (pass && i > last_boosted_vcpu)
1927 				break;
1928 			if (!ACCESS_ONCE(vcpu->preempted))
1929 				continue;
1930 			if (vcpu == me)
1931 				continue;
1932 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1933 				continue;
1934 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1935 				continue;
1936 
1937 			yielded = kvm_vcpu_yield_to(vcpu);
1938 			if (yielded > 0) {
1939 				kvm->last_boosted_vcpu = i;
1940 				break;
1941 			} else if (yielded < 0) {
1942 				try--;
1943 				if (!try)
1944 					break;
1945 			}
1946 		}
1947 	}
1948 	kvm_vcpu_set_in_spin_loop(me, false);
1949 
1950 	/* Ensure vcpu is not eligible during next spinloop */
1951 	kvm_vcpu_set_dy_eligible(me, false);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1954 
1955 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1956 {
1957 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1958 	struct page *page;
1959 
1960 	if (vmf->pgoff == 0)
1961 		page = virt_to_page(vcpu->run);
1962 #ifdef CONFIG_X86
1963 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1964 		page = virt_to_page(vcpu->arch.pio_data);
1965 #endif
1966 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1967 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1968 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1969 #endif
1970 	else
1971 		return kvm_arch_vcpu_fault(vcpu, vmf);
1972 	get_page(page);
1973 	vmf->page = page;
1974 	return 0;
1975 }
1976 
1977 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1978 	.fault = kvm_vcpu_fault,
1979 };
1980 
1981 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1982 {
1983 	vma->vm_ops = &kvm_vcpu_vm_ops;
1984 	return 0;
1985 }
1986 
1987 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1988 {
1989 	struct kvm_vcpu *vcpu = filp->private_data;
1990 
1991 	kvm_put_kvm(vcpu->kvm);
1992 	return 0;
1993 }
1994 
1995 static struct file_operations kvm_vcpu_fops = {
1996 	.release        = kvm_vcpu_release,
1997 	.unlocked_ioctl = kvm_vcpu_ioctl,
1998 #ifdef CONFIG_KVM_COMPAT
1999 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2000 #endif
2001 	.mmap           = kvm_vcpu_mmap,
2002 	.llseek		= noop_llseek,
2003 };
2004 
2005 /*
2006  * Allocates an inode for the vcpu.
2007  */
2008 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2009 {
2010 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2011 }
2012 
2013 /*
2014  * Creates some virtual cpus.  Good luck creating more than one.
2015  */
2016 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2017 {
2018 	int r;
2019 	struct kvm_vcpu *vcpu, *v;
2020 
2021 	if (id >= KVM_MAX_VCPUS)
2022 		return -EINVAL;
2023 
2024 	vcpu = kvm_arch_vcpu_create(kvm, id);
2025 	if (IS_ERR(vcpu))
2026 		return PTR_ERR(vcpu);
2027 
2028 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2029 
2030 	r = kvm_arch_vcpu_setup(vcpu);
2031 	if (r)
2032 		goto vcpu_destroy;
2033 
2034 	mutex_lock(&kvm->lock);
2035 	if (!kvm_vcpu_compatible(vcpu)) {
2036 		r = -EINVAL;
2037 		goto unlock_vcpu_destroy;
2038 	}
2039 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2040 		r = -EINVAL;
2041 		goto unlock_vcpu_destroy;
2042 	}
2043 
2044 	kvm_for_each_vcpu(r, v, kvm)
2045 		if (v->vcpu_id == id) {
2046 			r = -EEXIST;
2047 			goto unlock_vcpu_destroy;
2048 		}
2049 
2050 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2051 
2052 	/* Now it's all set up, let userspace reach it */
2053 	kvm_get_kvm(kvm);
2054 	r = create_vcpu_fd(vcpu);
2055 	if (r < 0) {
2056 		kvm_put_kvm(kvm);
2057 		goto unlock_vcpu_destroy;
2058 	}
2059 
2060 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2061 	smp_wmb();
2062 	atomic_inc(&kvm->online_vcpus);
2063 
2064 	mutex_unlock(&kvm->lock);
2065 	kvm_arch_vcpu_postcreate(vcpu);
2066 	return r;
2067 
2068 unlock_vcpu_destroy:
2069 	mutex_unlock(&kvm->lock);
2070 vcpu_destroy:
2071 	kvm_arch_vcpu_destroy(vcpu);
2072 	return r;
2073 }
2074 
2075 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2076 {
2077 	if (sigset) {
2078 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2079 		vcpu->sigset_active = 1;
2080 		vcpu->sigset = *sigset;
2081 	} else
2082 		vcpu->sigset_active = 0;
2083 	return 0;
2084 }
2085 
2086 static long kvm_vcpu_ioctl(struct file *filp,
2087 			   unsigned int ioctl, unsigned long arg)
2088 {
2089 	struct kvm_vcpu *vcpu = filp->private_data;
2090 	void __user *argp = (void __user *)arg;
2091 	int r;
2092 	struct kvm_fpu *fpu = NULL;
2093 	struct kvm_sregs *kvm_sregs = NULL;
2094 
2095 	if (vcpu->kvm->mm != current->mm)
2096 		return -EIO;
2097 
2098 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2099 		return -EINVAL;
2100 
2101 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2102 	/*
2103 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2104 	 * so vcpu_load() would break it.
2105 	 */
2106 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2107 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2108 #endif
2109 
2110 
2111 	r = vcpu_load(vcpu);
2112 	if (r)
2113 		return r;
2114 	switch (ioctl) {
2115 	case KVM_RUN:
2116 		r = -EINVAL;
2117 		if (arg)
2118 			goto out;
2119 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2120 			/* The thread running this VCPU changed. */
2121 			struct pid *oldpid = vcpu->pid;
2122 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2123 
2124 			rcu_assign_pointer(vcpu->pid, newpid);
2125 			if (oldpid)
2126 				synchronize_rcu();
2127 			put_pid(oldpid);
2128 		}
2129 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2130 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2131 		break;
2132 	case KVM_GET_REGS: {
2133 		struct kvm_regs *kvm_regs;
2134 
2135 		r = -ENOMEM;
2136 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2137 		if (!kvm_regs)
2138 			goto out;
2139 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2140 		if (r)
2141 			goto out_free1;
2142 		r = -EFAULT;
2143 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2144 			goto out_free1;
2145 		r = 0;
2146 out_free1:
2147 		kfree(kvm_regs);
2148 		break;
2149 	}
2150 	case KVM_SET_REGS: {
2151 		struct kvm_regs *kvm_regs;
2152 
2153 		r = -ENOMEM;
2154 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2155 		if (IS_ERR(kvm_regs)) {
2156 			r = PTR_ERR(kvm_regs);
2157 			goto out;
2158 		}
2159 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2160 		kfree(kvm_regs);
2161 		break;
2162 	}
2163 	case KVM_GET_SREGS: {
2164 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2165 		r = -ENOMEM;
2166 		if (!kvm_sregs)
2167 			goto out;
2168 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2169 		if (r)
2170 			goto out;
2171 		r = -EFAULT;
2172 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2173 			goto out;
2174 		r = 0;
2175 		break;
2176 	}
2177 	case KVM_SET_SREGS: {
2178 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2179 		if (IS_ERR(kvm_sregs)) {
2180 			r = PTR_ERR(kvm_sregs);
2181 			kvm_sregs = NULL;
2182 			goto out;
2183 		}
2184 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2185 		break;
2186 	}
2187 	case KVM_GET_MP_STATE: {
2188 		struct kvm_mp_state mp_state;
2189 
2190 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2191 		if (r)
2192 			goto out;
2193 		r = -EFAULT;
2194 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2195 			goto out;
2196 		r = 0;
2197 		break;
2198 	}
2199 	case KVM_SET_MP_STATE: {
2200 		struct kvm_mp_state mp_state;
2201 
2202 		r = -EFAULT;
2203 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2204 			goto out;
2205 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2206 		break;
2207 	}
2208 	case KVM_TRANSLATE: {
2209 		struct kvm_translation tr;
2210 
2211 		r = -EFAULT;
2212 		if (copy_from_user(&tr, argp, sizeof(tr)))
2213 			goto out;
2214 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2215 		if (r)
2216 			goto out;
2217 		r = -EFAULT;
2218 		if (copy_to_user(argp, &tr, sizeof(tr)))
2219 			goto out;
2220 		r = 0;
2221 		break;
2222 	}
2223 	case KVM_SET_GUEST_DEBUG: {
2224 		struct kvm_guest_debug dbg;
2225 
2226 		r = -EFAULT;
2227 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2228 			goto out;
2229 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2230 		break;
2231 	}
2232 	case KVM_SET_SIGNAL_MASK: {
2233 		struct kvm_signal_mask __user *sigmask_arg = argp;
2234 		struct kvm_signal_mask kvm_sigmask;
2235 		sigset_t sigset, *p;
2236 
2237 		p = NULL;
2238 		if (argp) {
2239 			r = -EFAULT;
2240 			if (copy_from_user(&kvm_sigmask, argp,
2241 					   sizeof(kvm_sigmask)))
2242 				goto out;
2243 			r = -EINVAL;
2244 			if (kvm_sigmask.len != sizeof(sigset))
2245 				goto out;
2246 			r = -EFAULT;
2247 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2248 					   sizeof(sigset)))
2249 				goto out;
2250 			p = &sigset;
2251 		}
2252 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2253 		break;
2254 	}
2255 	case KVM_GET_FPU: {
2256 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2257 		r = -ENOMEM;
2258 		if (!fpu)
2259 			goto out;
2260 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2261 		if (r)
2262 			goto out;
2263 		r = -EFAULT;
2264 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2265 			goto out;
2266 		r = 0;
2267 		break;
2268 	}
2269 	case KVM_SET_FPU: {
2270 		fpu = memdup_user(argp, sizeof(*fpu));
2271 		if (IS_ERR(fpu)) {
2272 			r = PTR_ERR(fpu);
2273 			fpu = NULL;
2274 			goto out;
2275 		}
2276 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2277 		break;
2278 	}
2279 	default:
2280 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2281 	}
2282 out:
2283 	vcpu_put(vcpu);
2284 	kfree(fpu);
2285 	kfree(kvm_sregs);
2286 	return r;
2287 }
2288 
2289 #ifdef CONFIG_KVM_COMPAT
2290 static long kvm_vcpu_compat_ioctl(struct file *filp,
2291 				  unsigned int ioctl, unsigned long arg)
2292 {
2293 	struct kvm_vcpu *vcpu = filp->private_data;
2294 	void __user *argp = compat_ptr(arg);
2295 	int r;
2296 
2297 	if (vcpu->kvm->mm != current->mm)
2298 		return -EIO;
2299 
2300 	switch (ioctl) {
2301 	case KVM_SET_SIGNAL_MASK: {
2302 		struct kvm_signal_mask __user *sigmask_arg = argp;
2303 		struct kvm_signal_mask kvm_sigmask;
2304 		compat_sigset_t csigset;
2305 		sigset_t sigset;
2306 
2307 		if (argp) {
2308 			r = -EFAULT;
2309 			if (copy_from_user(&kvm_sigmask, argp,
2310 					   sizeof(kvm_sigmask)))
2311 				goto out;
2312 			r = -EINVAL;
2313 			if (kvm_sigmask.len != sizeof(csigset))
2314 				goto out;
2315 			r = -EFAULT;
2316 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2317 					   sizeof(csigset)))
2318 				goto out;
2319 			sigset_from_compat(&sigset, &csigset);
2320 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2321 		} else
2322 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2323 		break;
2324 	}
2325 	default:
2326 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2327 	}
2328 
2329 out:
2330 	return r;
2331 }
2332 #endif
2333 
2334 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2335 				 int (*accessor)(struct kvm_device *dev,
2336 						 struct kvm_device_attr *attr),
2337 				 unsigned long arg)
2338 {
2339 	struct kvm_device_attr attr;
2340 
2341 	if (!accessor)
2342 		return -EPERM;
2343 
2344 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2345 		return -EFAULT;
2346 
2347 	return accessor(dev, &attr);
2348 }
2349 
2350 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2351 			     unsigned long arg)
2352 {
2353 	struct kvm_device *dev = filp->private_data;
2354 
2355 	switch (ioctl) {
2356 	case KVM_SET_DEVICE_ATTR:
2357 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2358 	case KVM_GET_DEVICE_ATTR:
2359 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2360 	case KVM_HAS_DEVICE_ATTR:
2361 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2362 	default:
2363 		if (dev->ops->ioctl)
2364 			return dev->ops->ioctl(dev, ioctl, arg);
2365 
2366 		return -ENOTTY;
2367 	}
2368 }
2369 
2370 static int kvm_device_release(struct inode *inode, struct file *filp)
2371 {
2372 	struct kvm_device *dev = filp->private_data;
2373 	struct kvm *kvm = dev->kvm;
2374 
2375 	kvm_put_kvm(kvm);
2376 	return 0;
2377 }
2378 
2379 static const struct file_operations kvm_device_fops = {
2380 	.unlocked_ioctl = kvm_device_ioctl,
2381 #ifdef CONFIG_KVM_COMPAT
2382 	.compat_ioctl = kvm_device_ioctl,
2383 #endif
2384 	.release = kvm_device_release,
2385 };
2386 
2387 struct kvm_device *kvm_device_from_filp(struct file *filp)
2388 {
2389 	if (filp->f_op != &kvm_device_fops)
2390 		return NULL;
2391 
2392 	return filp->private_data;
2393 }
2394 
2395 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2396 #ifdef CONFIG_KVM_MPIC
2397 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2398 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2399 #endif
2400 
2401 #ifdef CONFIG_KVM_XICS
2402 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2403 #endif
2404 };
2405 
2406 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2407 {
2408 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2409 		return -ENOSPC;
2410 
2411 	if (kvm_device_ops_table[type] != NULL)
2412 		return -EEXIST;
2413 
2414 	kvm_device_ops_table[type] = ops;
2415 	return 0;
2416 }
2417 
2418 void kvm_unregister_device_ops(u32 type)
2419 {
2420 	if (kvm_device_ops_table[type] != NULL)
2421 		kvm_device_ops_table[type] = NULL;
2422 }
2423 
2424 static int kvm_ioctl_create_device(struct kvm *kvm,
2425 				   struct kvm_create_device *cd)
2426 {
2427 	struct kvm_device_ops *ops = NULL;
2428 	struct kvm_device *dev;
2429 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2430 	int ret;
2431 
2432 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2433 		return -ENODEV;
2434 
2435 	ops = kvm_device_ops_table[cd->type];
2436 	if (ops == NULL)
2437 		return -ENODEV;
2438 
2439 	if (test)
2440 		return 0;
2441 
2442 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2443 	if (!dev)
2444 		return -ENOMEM;
2445 
2446 	dev->ops = ops;
2447 	dev->kvm = kvm;
2448 
2449 	ret = ops->create(dev, cd->type);
2450 	if (ret < 0) {
2451 		kfree(dev);
2452 		return ret;
2453 	}
2454 
2455 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2456 	if (ret < 0) {
2457 		ops->destroy(dev);
2458 		return ret;
2459 	}
2460 
2461 	list_add(&dev->vm_node, &kvm->devices);
2462 	kvm_get_kvm(kvm);
2463 	cd->fd = ret;
2464 	return 0;
2465 }
2466 
2467 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2468 {
2469 	switch (arg) {
2470 	case KVM_CAP_USER_MEMORY:
2471 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2472 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2473 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2474 	case KVM_CAP_SET_BOOT_CPU_ID:
2475 #endif
2476 	case KVM_CAP_INTERNAL_ERROR_DATA:
2477 #ifdef CONFIG_HAVE_KVM_MSI
2478 	case KVM_CAP_SIGNAL_MSI:
2479 #endif
2480 #ifdef CONFIG_HAVE_KVM_IRQFD
2481 	case KVM_CAP_IRQFD:
2482 	case KVM_CAP_IRQFD_RESAMPLE:
2483 #endif
2484 	case KVM_CAP_CHECK_EXTENSION_VM:
2485 		return 1;
2486 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2487 	case KVM_CAP_IRQ_ROUTING:
2488 		return KVM_MAX_IRQ_ROUTES;
2489 #endif
2490 	default:
2491 		break;
2492 	}
2493 	return kvm_vm_ioctl_check_extension(kvm, arg);
2494 }
2495 
2496 static long kvm_vm_ioctl(struct file *filp,
2497 			   unsigned int ioctl, unsigned long arg)
2498 {
2499 	struct kvm *kvm = filp->private_data;
2500 	void __user *argp = (void __user *)arg;
2501 	int r;
2502 
2503 	if (kvm->mm != current->mm)
2504 		return -EIO;
2505 	switch (ioctl) {
2506 	case KVM_CREATE_VCPU:
2507 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2508 		break;
2509 	case KVM_SET_USER_MEMORY_REGION: {
2510 		struct kvm_userspace_memory_region kvm_userspace_mem;
2511 
2512 		r = -EFAULT;
2513 		if (copy_from_user(&kvm_userspace_mem, argp,
2514 						sizeof(kvm_userspace_mem)))
2515 			goto out;
2516 
2517 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2518 		break;
2519 	}
2520 	case KVM_GET_DIRTY_LOG: {
2521 		struct kvm_dirty_log log;
2522 
2523 		r = -EFAULT;
2524 		if (copy_from_user(&log, argp, sizeof(log)))
2525 			goto out;
2526 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2527 		break;
2528 	}
2529 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2530 	case KVM_REGISTER_COALESCED_MMIO: {
2531 		struct kvm_coalesced_mmio_zone zone;
2532 
2533 		r = -EFAULT;
2534 		if (copy_from_user(&zone, argp, sizeof(zone)))
2535 			goto out;
2536 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2537 		break;
2538 	}
2539 	case KVM_UNREGISTER_COALESCED_MMIO: {
2540 		struct kvm_coalesced_mmio_zone zone;
2541 
2542 		r = -EFAULT;
2543 		if (copy_from_user(&zone, argp, sizeof(zone)))
2544 			goto out;
2545 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2546 		break;
2547 	}
2548 #endif
2549 	case KVM_IRQFD: {
2550 		struct kvm_irqfd data;
2551 
2552 		r = -EFAULT;
2553 		if (copy_from_user(&data, argp, sizeof(data)))
2554 			goto out;
2555 		r = kvm_irqfd(kvm, &data);
2556 		break;
2557 	}
2558 	case KVM_IOEVENTFD: {
2559 		struct kvm_ioeventfd data;
2560 
2561 		r = -EFAULT;
2562 		if (copy_from_user(&data, argp, sizeof(data)))
2563 			goto out;
2564 		r = kvm_ioeventfd(kvm, &data);
2565 		break;
2566 	}
2567 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2568 	case KVM_SET_BOOT_CPU_ID:
2569 		r = 0;
2570 		mutex_lock(&kvm->lock);
2571 		if (atomic_read(&kvm->online_vcpus) != 0)
2572 			r = -EBUSY;
2573 		else
2574 			kvm->bsp_vcpu_id = arg;
2575 		mutex_unlock(&kvm->lock);
2576 		break;
2577 #endif
2578 #ifdef CONFIG_HAVE_KVM_MSI
2579 	case KVM_SIGNAL_MSI: {
2580 		struct kvm_msi msi;
2581 
2582 		r = -EFAULT;
2583 		if (copy_from_user(&msi, argp, sizeof(msi)))
2584 			goto out;
2585 		r = kvm_send_userspace_msi(kvm, &msi);
2586 		break;
2587 	}
2588 #endif
2589 #ifdef __KVM_HAVE_IRQ_LINE
2590 	case KVM_IRQ_LINE_STATUS:
2591 	case KVM_IRQ_LINE: {
2592 		struct kvm_irq_level irq_event;
2593 
2594 		r = -EFAULT;
2595 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2596 			goto out;
2597 
2598 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2599 					ioctl == KVM_IRQ_LINE_STATUS);
2600 		if (r)
2601 			goto out;
2602 
2603 		r = -EFAULT;
2604 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2605 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2606 				goto out;
2607 		}
2608 
2609 		r = 0;
2610 		break;
2611 	}
2612 #endif
2613 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2614 	case KVM_SET_GSI_ROUTING: {
2615 		struct kvm_irq_routing routing;
2616 		struct kvm_irq_routing __user *urouting;
2617 		struct kvm_irq_routing_entry *entries;
2618 
2619 		r = -EFAULT;
2620 		if (copy_from_user(&routing, argp, sizeof(routing)))
2621 			goto out;
2622 		r = -EINVAL;
2623 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2624 			goto out;
2625 		if (routing.flags)
2626 			goto out;
2627 		r = -ENOMEM;
2628 		entries = vmalloc(routing.nr * sizeof(*entries));
2629 		if (!entries)
2630 			goto out;
2631 		r = -EFAULT;
2632 		urouting = argp;
2633 		if (copy_from_user(entries, urouting->entries,
2634 				   routing.nr * sizeof(*entries)))
2635 			goto out_free_irq_routing;
2636 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2637 					routing.flags);
2638 out_free_irq_routing:
2639 		vfree(entries);
2640 		break;
2641 	}
2642 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2643 	case KVM_CREATE_DEVICE: {
2644 		struct kvm_create_device cd;
2645 
2646 		r = -EFAULT;
2647 		if (copy_from_user(&cd, argp, sizeof(cd)))
2648 			goto out;
2649 
2650 		r = kvm_ioctl_create_device(kvm, &cd);
2651 		if (r)
2652 			goto out;
2653 
2654 		r = -EFAULT;
2655 		if (copy_to_user(argp, &cd, sizeof(cd)))
2656 			goto out;
2657 
2658 		r = 0;
2659 		break;
2660 	}
2661 	case KVM_CHECK_EXTENSION:
2662 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2663 		break;
2664 	default:
2665 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2666 	}
2667 out:
2668 	return r;
2669 }
2670 
2671 #ifdef CONFIG_KVM_COMPAT
2672 struct compat_kvm_dirty_log {
2673 	__u32 slot;
2674 	__u32 padding1;
2675 	union {
2676 		compat_uptr_t dirty_bitmap; /* one bit per page */
2677 		__u64 padding2;
2678 	};
2679 };
2680 
2681 static long kvm_vm_compat_ioctl(struct file *filp,
2682 			   unsigned int ioctl, unsigned long arg)
2683 {
2684 	struct kvm *kvm = filp->private_data;
2685 	int r;
2686 
2687 	if (kvm->mm != current->mm)
2688 		return -EIO;
2689 	switch (ioctl) {
2690 	case KVM_GET_DIRTY_LOG: {
2691 		struct compat_kvm_dirty_log compat_log;
2692 		struct kvm_dirty_log log;
2693 
2694 		r = -EFAULT;
2695 		if (copy_from_user(&compat_log, (void __user *)arg,
2696 				   sizeof(compat_log)))
2697 			goto out;
2698 		log.slot	 = compat_log.slot;
2699 		log.padding1	 = compat_log.padding1;
2700 		log.padding2	 = compat_log.padding2;
2701 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2702 
2703 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2704 		break;
2705 	}
2706 	default:
2707 		r = kvm_vm_ioctl(filp, ioctl, arg);
2708 	}
2709 
2710 out:
2711 	return r;
2712 }
2713 #endif
2714 
2715 static struct file_operations kvm_vm_fops = {
2716 	.release        = kvm_vm_release,
2717 	.unlocked_ioctl = kvm_vm_ioctl,
2718 #ifdef CONFIG_KVM_COMPAT
2719 	.compat_ioctl   = kvm_vm_compat_ioctl,
2720 #endif
2721 	.llseek		= noop_llseek,
2722 };
2723 
2724 static int kvm_dev_ioctl_create_vm(unsigned long type)
2725 {
2726 	int r;
2727 	struct kvm *kvm;
2728 
2729 	kvm = kvm_create_vm(type);
2730 	if (IS_ERR(kvm))
2731 		return PTR_ERR(kvm);
2732 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2733 	r = kvm_coalesced_mmio_init(kvm);
2734 	if (r < 0) {
2735 		kvm_put_kvm(kvm);
2736 		return r;
2737 	}
2738 #endif
2739 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2740 	if (r < 0)
2741 		kvm_put_kvm(kvm);
2742 
2743 	return r;
2744 }
2745 
2746 static long kvm_dev_ioctl(struct file *filp,
2747 			  unsigned int ioctl, unsigned long arg)
2748 {
2749 	long r = -EINVAL;
2750 
2751 	switch (ioctl) {
2752 	case KVM_GET_API_VERSION:
2753 		if (arg)
2754 			goto out;
2755 		r = KVM_API_VERSION;
2756 		break;
2757 	case KVM_CREATE_VM:
2758 		r = kvm_dev_ioctl_create_vm(arg);
2759 		break;
2760 	case KVM_CHECK_EXTENSION:
2761 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2762 		break;
2763 	case KVM_GET_VCPU_MMAP_SIZE:
2764 		if (arg)
2765 			goto out;
2766 		r = PAGE_SIZE;     /* struct kvm_run */
2767 #ifdef CONFIG_X86
2768 		r += PAGE_SIZE;    /* pio data page */
2769 #endif
2770 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2771 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2772 #endif
2773 		break;
2774 	case KVM_TRACE_ENABLE:
2775 	case KVM_TRACE_PAUSE:
2776 	case KVM_TRACE_DISABLE:
2777 		r = -EOPNOTSUPP;
2778 		break;
2779 	default:
2780 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2781 	}
2782 out:
2783 	return r;
2784 }
2785 
2786 static struct file_operations kvm_chardev_ops = {
2787 	.unlocked_ioctl = kvm_dev_ioctl,
2788 	.compat_ioctl   = kvm_dev_ioctl,
2789 	.llseek		= noop_llseek,
2790 };
2791 
2792 static struct miscdevice kvm_dev = {
2793 	KVM_MINOR,
2794 	"kvm",
2795 	&kvm_chardev_ops,
2796 };
2797 
2798 static void hardware_enable_nolock(void *junk)
2799 {
2800 	int cpu = raw_smp_processor_id();
2801 	int r;
2802 
2803 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2804 		return;
2805 
2806 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2807 
2808 	r = kvm_arch_hardware_enable();
2809 
2810 	if (r) {
2811 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2812 		atomic_inc(&hardware_enable_failed);
2813 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2814 	}
2815 }
2816 
2817 static void hardware_enable(void)
2818 {
2819 	raw_spin_lock(&kvm_count_lock);
2820 	if (kvm_usage_count)
2821 		hardware_enable_nolock(NULL);
2822 	raw_spin_unlock(&kvm_count_lock);
2823 }
2824 
2825 static void hardware_disable_nolock(void *junk)
2826 {
2827 	int cpu = raw_smp_processor_id();
2828 
2829 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2830 		return;
2831 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2832 	kvm_arch_hardware_disable();
2833 }
2834 
2835 static void hardware_disable(void)
2836 {
2837 	raw_spin_lock(&kvm_count_lock);
2838 	if (kvm_usage_count)
2839 		hardware_disable_nolock(NULL);
2840 	raw_spin_unlock(&kvm_count_lock);
2841 }
2842 
2843 static void hardware_disable_all_nolock(void)
2844 {
2845 	BUG_ON(!kvm_usage_count);
2846 
2847 	kvm_usage_count--;
2848 	if (!kvm_usage_count)
2849 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2850 }
2851 
2852 static void hardware_disable_all(void)
2853 {
2854 	raw_spin_lock(&kvm_count_lock);
2855 	hardware_disable_all_nolock();
2856 	raw_spin_unlock(&kvm_count_lock);
2857 }
2858 
2859 static int hardware_enable_all(void)
2860 {
2861 	int r = 0;
2862 
2863 	raw_spin_lock(&kvm_count_lock);
2864 
2865 	kvm_usage_count++;
2866 	if (kvm_usage_count == 1) {
2867 		atomic_set(&hardware_enable_failed, 0);
2868 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2869 
2870 		if (atomic_read(&hardware_enable_failed)) {
2871 			hardware_disable_all_nolock();
2872 			r = -EBUSY;
2873 		}
2874 	}
2875 
2876 	raw_spin_unlock(&kvm_count_lock);
2877 
2878 	return r;
2879 }
2880 
2881 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2882 			   void *v)
2883 {
2884 	int cpu = (long)v;
2885 
2886 	val &= ~CPU_TASKS_FROZEN;
2887 	switch (val) {
2888 	case CPU_DYING:
2889 		pr_info("kvm: disabling virtualization on CPU%d\n",
2890 		       cpu);
2891 		hardware_disable();
2892 		break;
2893 	case CPU_STARTING:
2894 		pr_info("kvm: enabling virtualization on CPU%d\n",
2895 		       cpu);
2896 		hardware_enable();
2897 		break;
2898 	}
2899 	return NOTIFY_OK;
2900 }
2901 
2902 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2903 		      void *v)
2904 {
2905 	/*
2906 	 * Some (well, at least mine) BIOSes hang on reboot if
2907 	 * in vmx root mode.
2908 	 *
2909 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2910 	 */
2911 	pr_info("kvm: exiting hardware virtualization\n");
2912 	kvm_rebooting = true;
2913 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2914 	return NOTIFY_OK;
2915 }
2916 
2917 static struct notifier_block kvm_reboot_notifier = {
2918 	.notifier_call = kvm_reboot,
2919 	.priority = 0,
2920 };
2921 
2922 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2923 {
2924 	int i;
2925 
2926 	for (i = 0; i < bus->dev_count; i++) {
2927 		struct kvm_io_device *pos = bus->range[i].dev;
2928 
2929 		kvm_iodevice_destructor(pos);
2930 	}
2931 	kfree(bus);
2932 }
2933 
2934 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2935 				 const struct kvm_io_range *r2)
2936 {
2937 	if (r1->addr < r2->addr)
2938 		return -1;
2939 	if (r1->addr + r1->len > r2->addr + r2->len)
2940 		return 1;
2941 	return 0;
2942 }
2943 
2944 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2945 {
2946 	return kvm_io_bus_cmp(p1, p2);
2947 }
2948 
2949 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2950 			  gpa_t addr, int len)
2951 {
2952 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2953 		.addr = addr,
2954 		.len = len,
2955 		.dev = dev,
2956 	};
2957 
2958 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2959 		kvm_io_bus_sort_cmp, NULL);
2960 
2961 	return 0;
2962 }
2963 
2964 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2965 			     gpa_t addr, int len)
2966 {
2967 	struct kvm_io_range *range, key;
2968 	int off;
2969 
2970 	key = (struct kvm_io_range) {
2971 		.addr = addr,
2972 		.len = len,
2973 	};
2974 
2975 	range = bsearch(&key, bus->range, bus->dev_count,
2976 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2977 	if (range == NULL)
2978 		return -ENOENT;
2979 
2980 	off = range - bus->range;
2981 
2982 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2983 		off--;
2984 
2985 	return off;
2986 }
2987 
2988 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
2989 			      struct kvm_io_range *range, const void *val)
2990 {
2991 	int idx;
2992 
2993 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2994 	if (idx < 0)
2995 		return -EOPNOTSUPP;
2996 
2997 	while (idx < bus->dev_count &&
2998 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2999 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3000 					range->len, val))
3001 			return idx;
3002 		idx++;
3003 	}
3004 
3005 	return -EOPNOTSUPP;
3006 }
3007 
3008 /* kvm_io_bus_write - called under kvm->slots_lock */
3009 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3010 		     int len, const void *val)
3011 {
3012 	struct kvm_io_bus *bus;
3013 	struct kvm_io_range range;
3014 	int r;
3015 
3016 	range = (struct kvm_io_range) {
3017 		.addr = addr,
3018 		.len = len,
3019 	};
3020 
3021 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3022 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3023 	return r < 0 ? r : 0;
3024 }
3025 
3026 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3027 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3028 			    gpa_t addr, int len, const void *val, long cookie)
3029 {
3030 	struct kvm_io_bus *bus;
3031 	struct kvm_io_range range;
3032 
3033 	range = (struct kvm_io_range) {
3034 		.addr = addr,
3035 		.len = len,
3036 	};
3037 
3038 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3039 
3040 	/* First try the device referenced by cookie. */
3041 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3042 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3043 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3044 					val))
3045 			return cookie;
3046 
3047 	/*
3048 	 * cookie contained garbage; fall back to search and return the
3049 	 * correct cookie value.
3050 	 */
3051 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3052 }
3053 
3054 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3055 			     struct kvm_io_range *range, void *val)
3056 {
3057 	int idx;
3058 
3059 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3060 	if (idx < 0)
3061 		return -EOPNOTSUPP;
3062 
3063 	while (idx < bus->dev_count &&
3064 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3065 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3066 				       range->len, val))
3067 			return idx;
3068 		idx++;
3069 	}
3070 
3071 	return -EOPNOTSUPP;
3072 }
3073 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3074 
3075 /* kvm_io_bus_read - called under kvm->slots_lock */
3076 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3077 		    int len, void *val)
3078 {
3079 	struct kvm_io_bus *bus;
3080 	struct kvm_io_range range;
3081 	int r;
3082 
3083 	range = (struct kvm_io_range) {
3084 		.addr = addr,
3085 		.len = len,
3086 	};
3087 
3088 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3089 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3090 	return r < 0 ? r : 0;
3091 }
3092 
3093 
3094 /* Caller must hold slots_lock. */
3095 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3096 			    int len, struct kvm_io_device *dev)
3097 {
3098 	struct kvm_io_bus *new_bus, *bus;
3099 
3100 	bus = kvm->buses[bus_idx];
3101 	/* exclude ioeventfd which is limited by maximum fd */
3102 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3103 		return -ENOSPC;
3104 
3105 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3106 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3107 	if (!new_bus)
3108 		return -ENOMEM;
3109 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3110 	       sizeof(struct kvm_io_range)));
3111 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3112 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3113 	synchronize_srcu_expedited(&kvm->srcu);
3114 	kfree(bus);
3115 
3116 	return 0;
3117 }
3118 
3119 /* Caller must hold slots_lock. */
3120 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3121 			      struct kvm_io_device *dev)
3122 {
3123 	int i, r;
3124 	struct kvm_io_bus *new_bus, *bus;
3125 
3126 	bus = kvm->buses[bus_idx];
3127 	r = -ENOENT;
3128 	for (i = 0; i < bus->dev_count; i++)
3129 		if (bus->range[i].dev == dev) {
3130 			r = 0;
3131 			break;
3132 		}
3133 
3134 	if (r)
3135 		return r;
3136 
3137 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3138 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3139 	if (!new_bus)
3140 		return -ENOMEM;
3141 
3142 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3143 	new_bus->dev_count--;
3144 	memcpy(new_bus->range + i, bus->range + i + 1,
3145 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3146 
3147 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3148 	synchronize_srcu_expedited(&kvm->srcu);
3149 	kfree(bus);
3150 	return r;
3151 }
3152 
3153 static struct notifier_block kvm_cpu_notifier = {
3154 	.notifier_call = kvm_cpu_hotplug,
3155 };
3156 
3157 static int vm_stat_get(void *_offset, u64 *val)
3158 {
3159 	unsigned offset = (long)_offset;
3160 	struct kvm *kvm;
3161 
3162 	*val = 0;
3163 	spin_lock(&kvm_lock);
3164 	list_for_each_entry(kvm, &vm_list, vm_list)
3165 		*val += *(u32 *)((void *)kvm + offset);
3166 	spin_unlock(&kvm_lock);
3167 	return 0;
3168 }
3169 
3170 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3171 
3172 static int vcpu_stat_get(void *_offset, u64 *val)
3173 {
3174 	unsigned offset = (long)_offset;
3175 	struct kvm *kvm;
3176 	struct kvm_vcpu *vcpu;
3177 	int i;
3178 
3179 	*val = 0;
3180 	spin_lock(&kvm_lock);
3181 	list_for_each_entry(kvm, &vm_list, vm_list)
3182 		kvm_for_each_vcpu(i, vcpu, kvm)
3183 			*val += *(u32 *)((void *)vcpu + offset);
3184 
3185 	spin_unlock(&kvm_lock);
3186 	return 0;
3187 }
3188 
3189 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3190 
3191 static const struct file_operations *stat_fops[] = {
3192 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3193 	[KVM_STAT_VM]   = &vm_stat_fops,
3194 };
3195 
3196 static int kvm_init_debug(void)
3197 {
3198 	int r = -EEXIST;
3199 	struct kvm_stats_debugfs_item *p;
3200 
3201 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3202 	if (kvm_debugfs_dir == NULL)
3203 		goto out;
3204 
3205 	for (p = debugfs_entries; p->name; ++p) {
3206 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3207 						(void *)(long)p->offset,
3208 						stat_fops[p->kind]);
3209 		if (p->dentry == NULL)
3210 			goto out_dir;
3211 	}
3212 
3213 	return 0;
3214 
3215 out_dir:
3216 	debugfs_remove_recursive(kvm_debugfs_dir);
3217 out:
3218 	return r;
3219 }
3220 
3221 static void kvm_exit_debug(void)
3222 {
3223 	struct kvm_stats_debugfs_item *p;
3224 
3225 	for (p = debugfs_entries; p->name; ++p)
3226 		debugfs_remove(p->dentry);
3227 	debugfs_remove(kvm_debugfs_dir);
3228 }
3229 
3230 static int kvm_suspend(void)
3231 {
3232 	if (kvm_usage_count)
3233 		hardware_disable_nolock(NULL);
3234 	return 0;
3235 }
3236 
3237 static void kvm_resume(void)
3238 {
3239 	if (kvm_usage_count) {
3240 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3241 		hardware_enable_nolock(NULL);
3242 	}
3243 }
3244 
3245 static struct syscore_ops kvm_syscore_ops = {
3246 	.suspend = kvm_suspend,
3247 	.resume = kvm_resume,
3248 };
3249 
3250 static inline
3251 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3252 {
3253 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3254 }
3255 
3256 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3257 {
3258 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3259 
3260 	if (vcpu->preempted)
3261 		vcpu->preempted = false;
3262 
3263 	kvm_arch_sched_in(vcpu, cpu);
3264 
3265 	kvm_arch_vcpu_load(vcpu, cpu);
3266 }
3267 
3268 static void kvm_sched_out(struct preempt_notifier *pn,
3269 			  struct task_struct *next)
3270 {
3271 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3272 
3273 	if (current->state == TASK_RUNNING)
3274 		vcpu->preempted = true;
3275 	kvm_arch_vcpu_put(vcpu);
3276 }
3277 
3278 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3279 		  struct module *module)
3280 {
3281 	int r;
3282 	int cpu;
3283 
3284 	r = kvm_arch_init(opaque);
3285 	if (r)
3286 		goto out_fail;
3287 
3288 	/*
3289 	 * kvm_arch_init makes sure there's at most one caller
3290 	 * for architectures that support multiple implementations,
3291 	 * like intel and amd on x86.
3292 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3293 	 * conflicts in case kvm is already setup for another implementation.
3294 	 */
3295 	r = kvm_irqfd_init();
3296 	if (r)
3297 		goto out_irqfd;
3298 
3299 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3300 		r = -ENOMEM;
3301 		goto out_free_0;
3302 	}
3303 
3304 	r = kvm_arch_hardware_setup();
3305 	if (r < 0)
3306 		goto out_free_0a;
3307 
3308 	for_each_online_cpu(cpu) {
3309 		smp_call_function_single(cpu,
3310 				kvm_arch_check_processor_compat,
3311 				&r, 1);
3312 		if (r < 0)
3313 			goto out_free_1;
3314 	}
3315 
3316 	r = register_cpu_notifier(&kvm_cpu_notifier);
3317 	if (r)
3318 		goto out_free_2;
3319 	register_reboot_notifier(&kvm_reboot_notifier);
3320 
3321 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3322 	if (!vcpu_align)
3323 		vcpu_align = __alignof__(struct kvm_vcpu);
3324 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3325 					   0, NULL);
3326 	if (!kvm_vcpu_cache) {
3327 		r = -ENOMEM;
3328 		goto out_free_3;
3329 	}
3330 
3331 	r = kvm_async_pf_init();
3332 	if (r)
3333 		goto out_free;
3334 
3335 	kvm_chardev_ops.owner = module;
3336 	kvm_vm_fops.owner = module;
3337 	kvm_vcpu_fops.owner = module;
3338 
3339 	r = misc_register(&kvm_dev);
3340 	if (r) {
3341 		pr_err("kvm: misc device register failed\n");
3342 		goto out_unreg;
3343 	}
3344 
3345 	register_syscore_ops(&kvm_syscore_ops);
3346 
3347 	kvm_preempt_ops.sched_in = kvm_sched_in;
3348 	kvm_preempt_ops.sched_out = kvm_sched_out;
3349 
3350 	r = kvm_init_debug();
3351 	if (r) {
3352 		pr_err("kvm: create debugfs files failed\n");
3353 		goto out_undebugfs;
3354 	}
3355 
3356 	r = kvm_vfio_ops_init();
3357 	WARN_ON(r);
3358 
3359 	return 0;
3360 
3361 out_undebugfs:
3362 	unregister_syscore_ops(&kvm_syscore_ops);
3363 	misc_deregister(&kvm_dev);
3364 out_unreg:
3365 	kvm_async_pf_deinit();
3366 out_free:
3367 	kmem_cache_destroy(kvm_vcpu_cache);
3368 out_free_3:
3369 	unregister_reboot_notifier(&kvm_reboot_notifier);
3370 	unregister_cpu_notifier(&kvm_cpu_notifier);
3371 out_free_2:
3372 out_free_1:
3373 	kvm_arch_hardware_unsetup();
3374 out_free_0a:
3375 	free_cpumask_var(cpus_hardware_enabled);
3376 out_free_0:
3377 	kvm_irqfd_exit();
3378 out_irqfd:
3379 	kvm_arch_exit();
3380 out_fail:
3381 	return r;
3382 }
3383 EXPORT_SYMBOL_GPL(kvm_init);
3384 
3385 void kvm_exit(void)
3386 {
3387 	kvm_exit_debug();
3388 	misc_deregister(&kvm_dev);
3389 	kmem_cache_destroy(kvm_vcpu_cache);
3390 	kvm_async_pf_deinit();
3391 	unregister_syscore_ops(&kvm_syscore_ops);
3392 	unregister_reboot_notifier(&kvm_reboot_notifier);
3393 	unregister_cpu_notifier(&kvm_cpu_notifier);
3394 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3395 	kvm_arch_hardware_unsetup();
3396 	kvm_arch_exit();
3397 	kvm_irqfd_exit();
3398 	free_cpumask_var(cpus_hardware_enabled);
3399 	kvm_vfio_ops_exit();
3400 }
3401 EXPORT_SYMBOL_GPL(kvm_exit);
3402