xref: /openbmc/linux/virt/kvm/kvm_main.c (revision e5c86679)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127 
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130 
131 static bool largepages_enabled = true;
132 
133 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
134 {
135 	if (pfn_valid(pfn))
136 		return PageReserved(pfn_to_page(pfn));
137 
138 	return true;
139 }
140 
141 /*
142  * Switches to specified vcpu, until a matching vcpu_put()
143  */
144 int vcpu_load(struct kvm_vcpu *vcpu)
145 {
146 	int cpu;
147 
148 	if (mutex_lock_killable(&vcpu->mutex))
149 		return -EINTR;
150 	cpu = get_cpu();
151 	preempt_notifier_register(&vcpu->preempt_notifier);
152 	kvm_arch_vcpu_load(vcpu, cpu);
153 	put_cpu();
154 	return 0;
155 }
156 EXPORT_SYMBOL_GPL(vcpu_load);
157 
158 void vcpu_put(struct kvm_vcpu *vcpu)
159 {
160 	preempt_disable();
161 	kvm_arch_vcpu_put(vcpu);
162 	preempt_notifier_unregister(&vcpu->preempt_notifier);
163 	preempt_enable();
164 	mutex_unlock(&vcpu->mutex);
165 }
166 EXPORT_SYMBOL_GPL(vcpu_put);
167 
168 static void ack_flush(void *_completed)
169 {
170 }
171 
172 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 	int i, cpu, me;
175 	cpumask_var_t cpus;
176 	bool called = true;
177 	struct kvm_vcpu *vcpu;
178 
179 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180 
181 	me = get_cpu();
182 	kvm_for_each_vcpu(i, vcpu, kvm) {
183 		kvm_make_request(req, vcpu);
184 		cpu = vcpu->cpu;
185 
186 		/* Set ->requests bit before we read ->mode. */
187 		smp_mb__after_atomic();
188 
189 		if (cpus != NULL && cpu != -1 && cpu != me &&
190 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 			cpumask_set_cpu(cpu, cpus);
192 	}
193 	if (unlikely(cpus == NULL))
194 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 	else if (!cpumask_empty(cpus))
196 		smp_call_function_many(cpus, ack_flush, NULL, 1);
197 	else
198 		called = false;
199 	put_cpu();
200 	free_cpumask_var(cpus);
201 	return called;
202 }
203 
204 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 {
207 	/*
208 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
209 	 * kvm_make_all_cpus_request.
210 	 */
211 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
212 
213 	/*
214 	 * We want to publish modifications to the page tables before reading
215 	 * mode. Pairs with a memory barrier in arch-specific code.
216 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
217 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
218 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
219 	 *
220 	 * There is already an smp_mb__after_atomic() before
221 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
222 	 * barrier here.
223 	 */
224 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
225 		++kvm->stat.remote_tlb_flush;
226 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
227 }
228 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
229 #endif
230 
231 void kvm_reload_remote_mmus(struct kvm *kvm)
232 {
233 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
234 }
235 
236 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
237 {
238 	struct page *page;
239 	int r;
240 
241 	mutex_init(&vcpu->mutex);
242 	vcpu->cpu = -1;
243 	vcpu->kvm = kvm;
244 	vcpu->vcpu_id = id;
245 	vcpu->pid = NULL;
246 	init_swait_queue_head(&vcpu->wq);
247 	kvm_async_pf_vcpu_init(vcpu);
248 
249 	vcpu->pre_pcpu = -1;
250 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
251 
252 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
253 	if (!page) {
254 		r = -ENOMEM;
255 		goto fail;
256 	}
257 	vcpu->run = page_address(page);
258 
259 	kvm_vcpu_set_in_spin_loop(vcpu, false);
260 	kvm_vcpu_set_dy_eligible(vcpu, false);
261 	vcpu->preempted = false;
262 
263 	r = kvm_arch_vcpu_init(vcpu);
264 	if (r < 0)
265 		goto fail_free_run;
266 	return 0;
267 
268 fail_free_run:
269 	free_page((unsigned long)vcpu->run);
270 fail:
271 	return r;
272 }
273 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
274 
275 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
276 {
277 	put_pid(vcpu->pid);
278 	kvm_arch_vcpu_uninit(vcpu);
279 	free_page((unsigned long)vcpu->run);
280 }
281 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
282 
283 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
284 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
285 {
286 	return container_of(mn, struct kvm, mmu_notifier);
287 }
288 
289 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
290 					     struct mm_struct *mm,
291 					     unsigned long address)
292 {
293 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
294 	int need_tlb_flush, idx;
295 
296 	/*
297 	 * When ->invalidate_page runs, the linux pte has been zapped
298 	 * already but the page is still allocated until
299 	 * ->invalidate_page returns. So if we increase the sequence
300 	 * here the kvm page fault will notice if the spte can't be
301 	 * established because the page is going to be freed. If
302 	 * instead the kvm page fault establishes the spte before
303 	 * ->invalidate_page runs, kvm_unmap_hva will release it
304 	 * before returning.
305 	 *
306 	 * The sequence increase only need to be seen at spin_unlock
307 	 * time, and not at spin_lock time.
308 	 *
309 	 * Increasing the sequence after the spin_unlock would be
310 	 * unsafe because the kvm page fault could then establish the
311 	 * pte after kvm_unmap_hva returned, without noticing the page
312 	 * is going to be freed.
313 	 */
314 	idx = srcu_read_lock(&kvm->srcu);
315 	spin_lock(&kvm->mmu_lock);
316 
317 	kvm->mmu_notifier_seq++;
318 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
319 	/* we've to flush the tlb before the pages can be freed */
320 	if (need_tlb_flush)
321 		kvm_flush_remote_tlbs(kvm);
322 
323 	spin_unlock(&kvm->mmu_lock);
324 
325 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
326 
327 	srcu_read_unlock(&kvm->srcu, idx);
328 }
329 
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331 					struct mm_struct *mm,
332 					unsigned long address,
333 					pte_t pte)
334 {
335 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 	int idx;
337 
338 	idx = srcu_read_lock(&kvm->srcu);
339 	spin_lock(&kvm->mmu_lock);
340 	kvm->mmu_notifier_seq++;
341 	kvm_set_spte_hva(kvm, address, pte);
342 	spin_unlock(&kvm->mmu_lock);
343 	srcu_read_unlock(&kvm->srcu, idx);
344 }
345 
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347 						    struct mm_struct *mm,
348 						    unsigned long start,
349 						    unsigned long end)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 	int need_tlb_flush = 0, idx;
353 
354 	idx = srcu_read_lock(&kvm->srcu);
355 	spin_lock(&kvm->mmu_lock);
356 	/*
357 	 * The count increase must become visible at unlock time as no
358 	 * spte can be established without taking the mmu_lock and
359 	 * count is also read inside the mmu_lock critical section.
360 	 */
361 	kvm->mmu_notifier_count++;
362 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363 	need_tlb_flush |= kvm->tlbs_dirty;
364 	/* we've to flush the tlb before the pages can be freed */
365 	if (need_tlb_flush)
366 		kvm_flush_remote_tlbs(kvm);
367 
368 	spin_unlock(&kvm->mmu_lock);
369 	srcu_read_unlock(&kvm->srcu, idx);
370 }
371 
372 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
373 						  struct mm_struct *mm,
374 						  unsigned long start,
375 						  unsigned long end)
376 {
377 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
378 
379 	spin_lock(&kvm->mmu_lock);
380 	/*
381 	 * This sequence increase will notify the kvm page fault that
382 	 * the page that is going to be mapped in the spte could have
383 	 * been freed.
384 	 */
385 	kvm->mmu_notifier_seq++;
386 	smp_wmb();
387 	/*
388 	 * The above sequence increase must be visible before the
389 	 * below count decrease, which is ensured by the smp_wmb above
390 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
391 	 */
392 	kvm->mmu_notifier_count--;
393 	spin_unlock(&kvm->mmu_lock);
394 
395 	BUG_ON(kvm->mmu_notifier_count < 0);
396 }
397 
398 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
399 					      struct mm_struct *mm,
400 					      unsigned long start,
401 					      unsigned long end)
402 {
403 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
404 	int young, idx;
405 
406 	idx = srcu_read_lock(&kvm->srcu);
407 	spin_lock(&kvm->mmu_lock);
408 
409 	young = kvm_age_hva(kvm, start, end);
410 	if (young)
411 		kvm_flush_remote_tlbs(kvm);
412 
413 	spin_unlock(&kvm->mmu_lock);
414 	srcu_read_unlock(&kvm->srcu, idx);
415 
416 	return young;
417 }
418 
419 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
420 					struct mm_struct *mm,
421 					unsigned long start,
422 					unsigned long end)
423 {
424 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
425 	int young, idx;
426 
427 	idx = srcu_read_lock(&kvm->srcu);
428 	spin_lock(&kvm->mmu_lock);
429 	/*
430 	 * Even though we do not flush TLB, this will still adversely
431 	 * affect performance on pre-Haswell Intel EPT, where there is
432 	 * no EPT Access Bit to clear so that we have to tear down EPT
433 	 * tables instead. If we find this unacceptable, we can always
434 	 * add a parameter to kvm_age_hva so that it effectively doesn't
435 	 * do anything on clear_young.
436 	 *
437 	 * Also note that currently we never issue secondary TLB flushes
438 	 * from clear_young, leaving this job up to the regular system
439 	 * cadence. If we find this inaccurate, we might come up with a
440 	 * more sophisticated heuristic later.
441 	 */
442 	young = kvm_age_hva(kvm, start, end);
443 	spin_unlock(&kvm->mmu_lock);
444 	srcu_read_unlock(&kvm->srcu, idx);
445 
446 	return young;
447 }
448 
449 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
450 				       struct mm_struct *mm,
451 				       unsigned long address)
452 {
453 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
454 	int young, idx;
455 
456 	idx = srcu_read_lock(&kvm->srcu);
457 	spin_lock(&kvm->mmu_lock);
458 	young = kvm_test_age_hva(kvm, address);
459 	spin_unlock(&kvm->mmu_lock);
460 	srcu_read_unlock(&kvm->srcu, idx);
461 
462 	return young;
463 }
464 
465 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
466 				     struct mm_struct *mm)
467 {
468 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
469 	int idx;
470 
471 	idx = srcu_read_lock(&kvm->srcu);
472 	kvm_arch_flush_shadow_all(kvm);
473 	srcu_read_unlock(&kvm->srcu, idx);
474 }
475 
476 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
477 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
478 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
479 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
480 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
481 	.clear_young		= kvm_mmu_notifier_clear_young,
482 	.test_young		= kvm_mmu_notifier_test_young,
483 	.change_pte		= kvm_mmu_notifier_change_pte,
484 	.release		= kvm_mmu_notifier_release,
485 };
486 
487 static int kvm_init_mmu_notifier(struct kvm *kvm)
488 {
489 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
490 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
491 }
492 
493 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
494 
495 static int kvm_init_mmu_notifier(struct kvm *kvm)
496 {
497 	return 0;
498 }
499 
500 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
501 
502 static struct kvm_memslots *kvm_alloc_memslots(void)
503 {
504 	int i;
505 	struct kvm_memslots *slots;
506 
507 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
508 	if (!slots)
509 		return NULL;
510 
511 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 		slots->id_to_index[i] = slots->memslots[i].id = i;
513 
514 	return slots;
515 }
516 
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 	if (!memslot->dirty_bitmap)
520 		return;
521 
522 	kvfree(memslot->dirty_bitmap);
523 	memslot->dirty_bitmap = NULL;
524 }
525 
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 			      struct kvm_memory_slot *dont)
531 {
532 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 		kvm_destroy_dirty_bitmap(free);
534 
535 	kvm_arch_free_memslot(kvm, free, dont);
536 
537 	free->npages = 0;
538 }
539 
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 	struct kvm_memory_slot *memslot;
543 
544 	if (!slots)
545 		return;
546 
547 	kvm_for_each_memslot(memslot, slots)
548 		kvm_free_memslot(kvm, memslot, NULL);
549 
550 	kvfree(slots);
551 }
552 
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 	int i;
556 
557 	if (!kvm->debugfs_dentry)
558 		return;
559 
560 	debugfs_remove_recursive(kvm->debugfs_dentry);
561 
562 	if (kvm->debugfs_stat_data) {
563 		for (i = 0; i < kvm_debugfs_num_entries; i++)
564 			kfree(kvm->debugfs_stat_data[i]);
565 		kfree(kvm->debugfs_stat_data);
566 	}
567 }
568 
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 	char dir_name[ITOA_MAX_LEN * 2];
572 	struct kvm_stat_data *stat_data;
573 	struct kvm_stats_debugfs_item *p;
574 
575 	if (!debugfs_initialized())
576 		return 0;
577 
578 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 						 kvm_debugfs_dir);
581 	if (!kvm->debugfs_dentry)
582 		return -ENOMEM;
583 
584 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 					 sizeof(*kvm->debugfs_stat_data),
586 					 GFP_KERNEL);
587 	if (!kvm->debugfs_stat_data)
588 		return -ENOMEM;
589 
590 	for (p = debugfs_entries; p->name; p++) {
591 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 		if (!stat_data)
593 			return -ENOMEM;
594 
595 		stat_data->kvm = kvm;
596 		stat_data->offset = p->offset;
597 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 		if (!debugfs_create_file(p->name, 0644,
599 					 kvm->debugfs_dentry,
600 					 stat_data,
601 					 stat_fops_per_vm[p->kind]))
602 			return -ENOMEM;
603 	}
604 	return 0;
605 }
606 
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 	int r, i;
610 	struct kvm *kvm = kvm_arch_alloc_vm();
611 
612 	if (!kvm)
613 		return ERR_PTR(-ENOMEM);
614 
615 	spin_lock_init(&kvm->mmu_lock);
616 	mmgrab(current->mm);
617 	kvm->mm = current->mm;
618 	kvm_eventfd_init(kvm);
619 	mutex_init(&kvm->lock);
620 	mutex_init(&kvm->irq_lock);
621 	mutex_init(&kvm->slots_lock);
622 	refcount_set(&kvm->users_count, 1);
623 	INIT_LIST_HEAD(&kvm->devices);
624 
625 	r = kvm_arch_init_vm(kvm, type);
626 	if (r)
627 		goto out_err_no_disable;
628 
629 	r = hardware_enable_all();
630 	if (r)
631 		goto out_err_no_disable;
632 
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636 
637 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638 
639 	r = -ENOMEM;
640 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 		struct kvm_memslots *slots = kvm_alloc_memslots();
642 		if (!slots)
643 			goto out_err_no_srcu;
644 		/*
645 		 * Generations must be different for each address space.
646 		 * Init kvm generation close to the maximum to easily test the
647 		 * code of handling generation number wrap-around.
648 		 */
649 		slots->generation = i * 2 - 150;
650 		rcu_assign_pointer(kvm->memslots[i], slots);
651 	}
652 
653 	if (init_srcu_struct(&kvm->srcu))
654 		goto out_err_no_srcu;
655 	if (init_srcu_struct(&kvm->irq_srcu))
656 		goto out_err_no_irq_srcu;
657 	for (i = 0; i < KVM_NR_BUSES; i++) {
658 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
659 					GFP_KERNEL);
660 		if (!kvm->buses[i])
661 			goto out_err;
662 	}
663 
664 	r = kvm_init_mmu_notifier(kvm);
665 	if (r)
666 		goto out_err;
667 
668 	spin_lock(&kvm_lock);
669 	list_add(&kvm->vm_list, &vm_list);
670 	spin_unlock(&kvm_lock);
671 
672 	preempt_notifier_inc();
673 
674 	return kvm;
675 
676 out_err:
677 	cleanup_srcu_struct(&kvm->irq_srcu);
678 out_err_no_irq_srcu:
679 	cleanup_srcu_struct(&kvm->srcu);
680 out_err_no_srcu:
681 	hardware_disable_all();
682 out_err_no_disable:
683 	for (i = 0; i < KVM_NR_BUSES; i++)
684 		kfree(kvm->buses[i]);
685 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
686 		kvm_free_memslots(kvm, kvm->memslots[i]);
687 	kvm_arch_free_vm(kvm);
688 	mmdrop(current->mm);
689 	return ERR_PTR(r);
690 }
691 
692 /*
693  * Avoid using vmalloc for a small buffer.
694  * Should not be used when the size is statically known.
695  */
696 void *kvm_kvzalloc(unsigned long size)
697 {
698 	if (size > PAGE_SIZE)
699 		return vzalloc(size);
700 	else
701 		return kzalloc(size, GFP_KERNEL);
702 }
703 
704 static void kvm_destroy_devices(struct kvm *kvm)
705 {
706 	struct kvm_device *dev, *tmp;
707 
708 	/*
709 	 * We do not need to take the kvm->lock here, because nobody else
710 	 * has a reference to the struct kvm at this point and therefore
711 	 * cannot access the devices list anyhow.
712 	 */
713 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
714 		list_del(&dev->vm_node);
715 		dev->ops->destroy(dev);
716 	}
717 }
718 
719 static void kvm_destroy_vm(struct kvm *kvm)
720 {
721 	int i;
722 	struct mm_struct *mm = kvm->mm;
723 
724 	kvm_destroy_vm_debugfs(kvm);
725 	kvm_arch_sync_events(kvm);
726 	spin_lock(&kvm_lock);
727 	list_del(&kvm->vm_list);
728 	spin_unlock(&kvm_lock);
729 	kvm_free_irq_routing(kvm);
730 	for (i = 0; i < KVM_NR_BUSES; i++) {
731 		if (kvm->buses[i])
732 			kvm_io_bus_destroy(kvm->buses[i]);
733 		kvm->buses[i] = NULL;
734 	}
735 	kvm_coalesced_mmio_free(kvm);
736 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
737 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
738 #else
739 	kvm_arch_flush_shadow_all(kvm);
740 #endif
741 	kvm_arch_destroy_vm(kvm);
742 	kvm_destroy_devices(kvm);
743 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
744 		kvm_free_memslots(kvm, kvm->memslots[i]);
745 	cleanup_srcu_struct(&kvm->irq_srcu);
746 	cleanup_srcu_struct(&kvm->srcu);
747 	kvm_arch_free_vm(kvm);
748 	preempt_notifier_dec();
749 	hardware_disable_all();
750 	mmdrop(mm);
751 }
752 
753 void kvm_get_kvm(struct kvm *kvm)
754 {
755 	refcount_inc(&kvm->users_count);
756 }
757 EXPORT_SYMBOL_GPL(kvm_get_kvm);
758 
759 void kvm_put_kvm(struct kvm *kvm)
760 {
761 	if (refcount_dec_and_test(&kvm->users_count))
762 		kvm_destroy_vm(kvm);
763 }
764 EXPORT_SYMBOL_GPL(kvm_put_kvm);
765 
766 
767 static int kvm_vm_release(struct inode *inode, struct file *filp)
768 {
769 	struct kvm *kvm = filp->private_data;
770 
771 	kvm_irqfd_release(kvm);
772 
773 	kvm_put_kvm(kvm);
774 	return 0;
775 }
776 
777 /*
778  * Allocation size is twice as large as the actual dirty bitmap size.
779  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
780  */
781 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
782 {
783 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
784 
785 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
786 	if (!memslot->dirty_bitmap)
787 		return -ENOMEM;
788 
789 	return 0;
790 }
791 
792 /*
793  * Insert memslot and re-sort memslots based on their GFN,
794  * so binary search could be used to lookup GFN.
795  * Sorting algorithm takes advantage of having initially
796  * sorted array and known changed memslot position.
797  */
798 static void update_memslots(struct kvm_memslots *slots,
799 			    struct kvm_memory_slot *new)
800 {
801 	int id = new->id;
802 	int i = slots->id_to_index[id];
803 	struct kvm_memory_slot *mslots = slots->memslots;
804 
805 	WARN_ON(mslots[i].id != id);
806 	if (!new->npages) {
807 		WARN_ON(!mslots[i].npages);
808 		if (mslots[i].npages)
809 			slots->used_slots--;
810 	} else {
811 		if (!mslots[i].npages)
812 			slots->used_slots++;
813 	}
814 
815 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
816 	       new->base_gfn <= mslots[i + 1].base_gfn) {
817 		if (!mslots[i + 1].npages)
818 			break;
819 		mslots[i] = mslots[i + 1];
820 		slots->id_to_index[mslots[i].id] = i;
821 		i++;
822 	}
823 
824 	/*
825 	 * The ">=" is needed when creating a slot with base_gfn == 0,
826 	 * so that it moves before all those with base_gfn == npages == 0.
827 	 *
828 	 * On the other hand, if new->npages is zero, the above loop has
829 	 * already left i pointing to the beginning of the empty part of
830 	 * mslots, and the ">=" would move the hole backwards in this
831 	 * case---which is wrong.  So skip the loop when deleting a slot.
832 	 */
833 	if (new->npages) {
834 		while (i > 0 &&
835 		       new->base_gfn >= mslots[i - 1].base_gfn) {
836 			mslots[i] = mslots[i - 1];
837 			slots->id_to_index[mslots[i].id] = i;
838 			i--;
839 		}
840 	} else
841 		WARN_ON_ONCE(i != slots->used_slots);
842 
843 	mslots[i] = *new;
844 	slots->id_to_index[mslots[i].id] = i;
845 }
846 
847 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
848 {
849 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
850 
851 #ifdef __KVM_HAVE_READONLY_MEM
852 	valid_flags |= KVM_MEM_READONLY;
853 #endif
854 
855 	if (mem->flags & ~valid_flags)
856 		return -EINVAL;
857 
858 	return 0;
859 }
860 
861 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
862 		int as_id, struct kvm_memslots *slots)
863 {
864 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
865 
866 	/*
867 	 * Set the low bit in the generation, which disables SPTE caching
868 	 * until the end of synchronize_srcu_expedited.
869 	 */
870 	WARN_ON(old_memslots->generation & 1);
871 	slots->generation = old_memslots->generation + 1;
872 
873 	rcu_assign_pointer(kvm->memslots[as_id], slots);
874 	synchronize_srcu_expedited(&kvm->srcu);
875 
876 	/*
877 	 * Increment the new memslot generation a second time. This prevents
878 	 * vm exits that race with memslot updates from caching a memslot
879 	 * generation that will (potentially) be valid forever.
880 	 *
881 	 * Generations must be unique even across address spaces.  We do not need
882 	 * a global counter for that, instead the generation space is evenly split
883 	 * across address spaces.  For example, with two address spaces, address
884 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
885 	 * use generations 2, 6, 10, 14, ...
886 	 */
887 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
888 
889 	kvm_arch_memslots_updated(kvm, slots);
890 
891 	return old_memslots;
892 }
893 
894 /*
895  * Allocate some memory and give it an address in the guest physical address
896  * space.
897  *
898  * Discontiguous memory is allowed, mostly for framebuffers.
899  *
900  * Must be called holding kvm->slots_lock for write.
901  */
902 int __kvm_set_memory_region(struct kvm *kvm,
903 			    const struct kvm_userspace_memory_region *mem)
904 {
905 	int r;
906 	gfn_t base_gfn;
907 	unsigned long npages;
908 	struct kvm_memory_slot *slot;
909 	struct kvm_memory_slot old, new;
910 	struct kvm_memslots *slots = NULL, *old_memslots;
911 	int as_id, id;
912 	enum kvm_mr_change change;
913 
914 	r = check_memory_region_flags(mem);
915 	if (r)
916 		goto out;
917 
918 	r = -EINVAL;
919 	as_id = mem->slot >> 16;
920 	id = (u16)mem->slot;
921 
922 	/* General sanity checks */
923 	if (mem->memory_size & (PAGE_SIZE - 1))
924 		goto out;
925 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
926 		goto out;
927 	/* We can read the guest memory with __xxx_user() later on. */
928 	if ((id < KVM_USER_MEM_SLOTS) &&
929 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
930 	     !access_ok(VERIFY_WRITE,
931 			(void __user *)(unsigned long)mem->userspace_addr,
932 			mem->memory_size)))
933 		goto out;
934 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
935 		goto out;
936 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
937 		goto out;
938 
939 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
940 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
941 	npages = mem->memory_size >> PAGE_SHIFT;
942 
943 	if (npages > KVM_MEM_MAX_NR_PAGES)
944 		goto out;
945 
946 	new = old = *slot;
947 
948 	new.id = id;
949 	new.base_gfn = base_gfn;
950 	new.npages = npages;
951 	new.flags = mem->flags;
952 
953 	if (npages) {
954 		if (!old.npages)
955 			change = KVM_MR_CREATE;
956 		else { /* Modify an existing slot. */
957 			if ((mem->userspace_addr != old.userspace_addr) ||
958 			    (npages != old.npages) ||
959 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
960 				goto out;
961 
962 			if (base_gfn != old.base_gfn)
963 				change = KVM_MR_MOVE;
964 			else if (new.flags != old.flags)
965 				change = KVM_MR_FLAGS_ONLY;
966 			else { /* Nothing to change. */
967 				r = 0;
968 				goto out;
969 			}
970 		}
971 	} else {
972 		if (!old.npages)
973 			goto out;
974 
975 		change = KVM_MR_DELETE;
976 		new.base_gfn = 0;
977 		new.flags = 0;
978 	}
979 
980 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
981 		/* Check for overlaps */
982 		r = -EEXIST;
983 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
984 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
985 			    (slot->id == id))
986 				continue;
987 			if (!((base_gfn + npages <= slot->base_gfn) ||
988 			      (base_gfn >= slot->base_gfn + slot->npages)))
989 				goto out;
990 		}
991 	}
992 
993 	/* Free page dirty bitmap if unneeded */
994 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
995 		new.dirty_bitmap = NULL;
996 
997 	r = -ENOMEM;
998 	if (change == KVM_MR_CREATE) {
999 		new.userspace_addr = mem->userspace_addr;
1000 
1001 		if (kvm_arch_create_memslot(kvm, &new, npages))
1002 			goto out_free;
1003 	}
1004 
1005 	/* Allocate page dirty bitmap if needed */
1006 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1007 		if (kvm_create_dirty_bitmap(&new) < 0)
1008 			goto out_free;
1009 	}
1010 
1011 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1012 	if (!slots)
1013 		goto out_free;
1014 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1015 
1016 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1017 		slot = id_to_memslot(slots, id);
1018 		slot->flags |= KVM_MEMSLOT_INVALID;
1019 
1020 		old_memslots = install_new_memslots(kvm, as_id, slots);
1021 
1022 		/* slot was deleted or moved, clear iommu mapping */
1023 		kvm_iommu_unmap_pages(kvm, &old);
1024 		/* From this point no new shadow pages pointing to a deleted,
1025 		 * or moved, memslot will be created.
1026 		 *
1027 		 * validation of sp->gfn happens in:
1028 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1029 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1030 		 */
1031 		kvm_arch_flush_shadow_memslot(kvm, slot);
1032 
1033 		/*
1034 		 * We can re-use the old_memslots from above, the only difference
1035 		 * from the currently installed memslots is the invalid flag.  This
1036 		 * will get overwritten by update_memslots anyway.
1037 		 */
1038 		slots = old_memslots;
1039 	}
1040 
1041 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1042 	if (r)
1043 		goto out_slots;
1044 
1045 	/* actual memory is freed via old in kvm_free_memslot below */
1046 	if (change == KVM_MR_DELETE) {
1047 		new.dirty_bitmap = NULL;
1048 		memset(&new.arch, 0, sizeof(new.arch));
1049 	}
1050 
1051 	update_memslots(slots, &new);
1052 	old_memslots = install_new_memslots(kvm, as_id, slots);
1053 
1054 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1055 
1056 	kvm_free_memslot(kvm, &old, &new);
1057 	kvfree(old_memslots);
1058 
1059 	/*
1060 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1061 	 * un-mapped and re-mapped if their base changes.  Since base change
1062 	 * unmapping is handled above with slot deletion, mapping alone is
1063 	 * needed here.  Anything else the iommu might care about for existing
1064 	 * slots (size changes, userspace addr changes and read-only flag
1065 	 * changes) is disallowed above, so any other attribute changes getting
1066 	 * here can be skipped.
1067 	 */
1068 	if (as_id == 0 && (change == KVM_MR_CREATE || change == KVM_MR_MOVE)) {
1069 		r = kvm_iommu_map_pages(kvm, &new);
1070 		return r;
1071 	}
1072 
1073 	return 0;
1074 
1075 out_slots:
1076 	kvfree(slots);
1077 out_free:
1078 	kvm_free_memslot(kvm, &new, &old);
1079 out:
1080 	return r;
1081 }
1082 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1083 
1084 int kvm_set_memory_region(struct kvm *kvm,
1085 			  const struct kvm_userspace_memory_region *mem)
1086 {
1087 	int r;
1088 
1089 	mutex_lock(&kvm->slots_lock);
1090 	r = __kvm_set_memory_region(kvm, mem);
1091 	mutex_unlock(&kvm->slots_lock);
1092 	return r;
1093 }
1094 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1095 
1096 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1097 					  struct kvm_userspace_memory_region *mem)
1098 {
1099 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1100 		return -EINVAL;
1101 
1102 	return kvm_set_memory_region(kvm, mem);
1103 }
1104 
1105 int kvm_get_dirty_log(struct kvm *kvm,
1106 			struct kvm_dirty_log *log, int *is_dirty)
1107 {
1108 	struct kvm_memslots *slots;
1109 	struct kvm_memory_slot *memslot;
1110 	int i, as_id, id;
1111 	unsigned long n;
1112 	unsigned long any = 0;
1113 
1114 	as_id = log->slot >> 16;
1115 	id = (u16)log->slot;
1116 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1117 		return -EINVAL;
1118 
1119 	slots = __kvm_memslots(kvm, as_id);
1120 	memslot = id_to_memslot(slots, id);
1121 	if (!memslot->dirty_bitmap)
1122 		return -ENOENT;
1123 
1124 	n = kvm_dirty_bitmap_bytes(memslot);
1125 
1126 	for (i = 0; !any && i < n/sizeof(long); ++i)
1127 		any = memslot->dirty_bitmap[i];
1128 
1129 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1130 		return -EFAULT;
1131 
1132 	if (any)
1133 		*is_dirty = 1;
1134 	return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1137 
1138 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1139 /**
1140  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1141  *	are dirty write protect them for next write.
1142  * @kvm:	pointer to kvm instance
1143  * @log:	slot id and address to which we copy the log
1144  * @is_dirty:	flag set if any page is dirty
1145  *
1146  * We need to keep it in mind that VCPU threads can write to the bitmap
1147  * concurrently. So, to avoid losing track of dirty pages we keep the
1148  * following order:
1149  *
1150  *    1. Take a snapshot of the bit and clear it if needed.
1151  *    2. Write protect the corresponding page.
1152  *    3. Copy the snapshot to the userspace.
1153  *    4. Upon return caller flushes TLB's if needed.
1154  *
1155  * Between 2 and 4, the guest may write to the page using the remaining TLB
1156  * entry.  This is not a problem because the page is reported dirty using
1157  * the snapshot taken before and step 4 ensures that writes done after
1158  * exiting to userspace will be logged for the next call.
1159  *
1160  */
1161 int kvm_get_dirty_log_protect(struct kvm *kvm,
1162 			struct kvm_dirty_log *log, bool *is_dirty)
1163 {
1164 	struct kvm_memslots *slots;
1165 	struct kvm_memory_slot *memslot;
1166 	int i, as_id, id;
1167 	unsigned long n;
1168 	unsigned long *dirty_bitmap;
1169 	unsigned long *dirty_bitmap_buffer;
1170 
1171 	as_id = log->slot >> 16;
1172 	id = (u16)log->slot;
1173 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1174 		return -EINVAL;
1175 
1176 	slots = __kvm_memslots(kvm, as_id);
1177 	memslot = id_to_memslot(slots, id);
1178 
1179 	dirty_bitmap = memslot->dirty_bitmap;
1180 	if (!dirty_bitmap)
1181 		return -ENOENT;
1182 
1183 	n = kvm_dirty_bitmap_bytes(memslot);
1184 
1185 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1186 	memset(dirty_bitmap_buffer, 0, n);
1187 
1188 	spin_lock(&kvm->mmu_lock);
1189 	*is_dirty = false;
1190 	for (i = 0; i < n / sizeof(long); i++) {
1191 		unsigned long mask;
1192 		gfn_t offset;
1193 
1194 		if (!dirty_bitmap[i])
1195 			continue;
1196 
1197 		*is_dirty = true;
1198 
1199 		mask = xchg(&dirty_bitmap[i], 0);
1200 		dirty_bitmap_buffer[i] = mask;
1201 
1202 		if (mask) {
1203 			offset = i * BITS_PER_LONG;
1204 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1205 								offset, mask);
1206 		}
1207 	}
1208 
1209 	spin_unlock(&kvm->mmu_lock);
1210 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1211 		return -EFAULT;
1212 	return 0;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216 
1217 bool kvm_largepages_enabled(void)
1218 {
1219 	return largepages_enabled;
1220 }
1221 
1222 void kvm_disable_largepages(void)
1223 {
1224 	largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227 
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233 
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238 
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242 
1243 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244 	      memslot->flags & KVM_MEMSLOT_INVALID)
1245 		return false;
1246 
1247 	return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250 
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253 	struct vm_area_struct *vma;
1254 	unsigned long addr, size;
1255 
1256 	size = PAGE_SIZE;
1257 
1258 	addr = gfn_to_hva(kvm, gfn);
1259 	if (kvm_is_error_hva(addr))
1260 		return PAGE_SIZE;
1261 
1262 	down_read(&current->mm->mmap_sem);
1263 	vma = find_vma(current->mm, addr);
1264 	if (!vma)
1265 		goto out;
1266 
1267 	size = vma_kernel_pagesize(vma);
1268 
1269 out:
1270 	up_read(&current->mm->mmap_sem);
1271 
1272 	return size;
1273 }
1274 
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277 	return slot->flags & KVM_MEM_READONLY;
1278 }
1279 
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281 				       gfn_t *nr_pages, bool write)
1282 {
1283 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284 		return KVM_HVA_ERR_BAD;
1285 
1286 	if (memslot_is_readonly(slot) && write)
1287 		return KVM_HVA_ERR_RO_BAD;
1288 
1289 	if (nr_pages)
1290 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1291 
1292 	return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294 
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296 				     gfn_t *nr_pages)
1297 {
1298 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300 
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302 					gfn_t gfn)
1303 {
1304 	return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307 
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313 
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319 
1320 /*
1321  * If writable is set to false, the hva returned by this function is only
1322  * allowed to be read.
1323  */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325 				      gfn_t gfn, bool *writable)
1326 {
1327 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328 
1329 	if (!kvm_is_error_hva(hva) && writable)
1330 		*writable = !memslot_is_readonly(slot);
1331 
1332 	return hva;
1333 }
1334 
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338 
1339 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341 
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345 
1346 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348 
1349 static int get_user_page_nowait(unsigned long start, int write,
1350 		struct page **page)
1351 {
1352 	int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353 
1354 	if (write)
1355 		flags |= FOLL_WRITE;
1356 
1357 	return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359 
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363 
1364 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365 	return rc == -EHWPOISON;
1366 }
1367 
1368 /*
1369  * The atomic path to get the writable pfn which will be stored in @pfn,
1370  * true indicates success, otherwise false is returned.
1371  */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375 	struct page *page[1];
1376 	int npages;
1377 
1378 	if (!(async || atomic))
1379 		return false;
1380 
1381 	/*
1382 	 * Fast pin a writable pfn only if it is a write fault request
1383 	 * or the caller allows to map a writable pfn for a read fault
1384 	 * request.
1385 	 */
1386 	if (!(write_fault || writable))
1387 		return false;
1388 
1389 	npages = __get_user_pages_fast(addr, 1, 1, page);
1390 	if (npages == 1) {
1391 		*pfn = page_to_pfn(page[0]);
1392 
1393 		if (writable)
1394 			*writable = true;
1395 		return true;
1396 	}
1397 
1398 	return false;
1399 }
1400 
1401 /*
1402  * The slow path to get the pfn of the specified host virtual address,
1403  * 1 indicates success, -errno is returned if error is detected.
1404  */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406 			   bool *writable, kvm_pfn_t *pfn)
1407 {
1408 	struct page *page[1];
1409 	int npages = 0;
1410 
1411 	might_sleep();
1412 
1413 	if (writable)
1414 		*writable = write_fault;
1415 
1416 	if (async) {
1417 		down_read(&current->mm->mmap_sem);
1418 		npages = get_user_page_nowait(addr, write_fault, page);
1419 		up_read(&current->mm->mmap_sem);
1420 	} else {
1421 		unsigned int flags = FOLL_HWPOISON;
1422 
1423 		if (write_fault)
1424 			flags |= FOLL_WRITE;
1425 
1426 		npages = get_user_pages_unlocked(addr, 1, page, flags);
1427 	}
1428 	if (npages != 1)
1429 		return npages;
1430 
1431 	/* map read fault as writable if possible */
1432 	if (unlikely(!write_fault) && writable) {
1433 		struct page *wpage[1];
1434 
1435 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1436 		if (npages == 1) {
1437 			*writable = true;
1438 			put_page(page[0]);
1439 			page[0] = wpage[0];
1440 		}
1441 
1442 		npages = 1;
1443 	}
1444 	*pfn = page_to_pfn(page[0]);
1445 	return npages;
1446 }
1447 
1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1449 {
1450 	if (unlikely(!(vma->vm_flags & VM_READ)))
1451 		return false;
1452 
1453 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1454 		return false;
1455 
1456 	return true;
1457 }
1458 
1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1460 			       unsigned long addr, bool *async,
1461 			       bool write_fault, kvm_pfn_t *p_pfn)
1462 {
1463 	unsigned long pfn;
1464 	int r;
1465 
1466 	r = follow_pfn(vma, addr, &pfn);
1467 	if (r) {
1468 		/*
1469 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1470 		 * not call the fault handler, so do it here.
1471 		 */
1472 		bool unlocked = false;
1473 		r = fixup_user_fault(current, current->mm, addr,
1474 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1475 				     &unlocked);
1476 		if (unlocked)
1477 			return -EAGAIN;
1478 		if (r)
1479 			return r;
1480 
1481 		r = follow_pfn(vma, addr, &pfn);
1482 		if (r)
1483 			return r;
1484 
1485 	}
1486 
1487 
1488 	/*
1489 	 * Get a reference here because callers of *hva_to_pfn* and
1490 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1491 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1492 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1493 	 * simply do nothing for reserved pfns.
1494 	 *
1495 	 * Whoever called remap_pfn_range is also going to call e.g.
1496 	 * unmap_mapping_range before the underlying pages are freed,
1497 	 * causing a call to our MMU notifier.
1498 	 */
1499 	kvm_get_pfn(pfn);
1500 
1501 	*p_pfn = pfn;
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Pin guest page in memory and return its pfn.
1507  * @addr: host virtual address which maps memory to the guest
1508  * @atomic: whether this function can sleep
1509  * @async: whether this function need to wait IO complete if the
1510  *         host page is not in the memory
1511  * @write_fault: whether we should get a writable host page
1512  * @writable: whether it allows to map a writable host page for !@write_fault
1513  *
1514  * The function will map a writable host page for these two cases:
1515  * 1): @write_fault = true
1516  * 2): @write_fault = false && @writable, @writable will tell the caller
1517  *     whether the mapping is writable.
1518  */
1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1520 			bool write_fault, bool *writable)
1521 {
1522 	struct vm_area_struct *vma;
1523 	kvm_pfn_t pfn = 0;
1524 	int npages, r;
1525 
1526 	/* we can do it either atomically or asynchronously, not both */
1527 	BUG_ON(atomic && async);
1528 
1529 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1530 		return pfn;
1531 
1532 	if (atomic)
1533 		return KVM_PFN_ERR_FAULT;
1534 
1535 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1536 	if (npages == 1)
1537 		return pfn;
1538 
1539 	down_read(&current->mm->mmap_sem);
1540 	if (npages == -EHWPOISON ||
1541 	      (!async && check_user_page_hwpoison(addr))) {
1542 		pfn = KVM_PFN_ERR_HWPOISON;
1543 		goto exit;
1544 	}
1545 
1546 retry:
1547 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1548 
1549 	if (vma == NULL)
1550 		pfn = KVM_PFN_ERR_FAULT;
1551 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1552 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1553 		if (r == -EAGAIN)
1554 			goto retry;
1555 		if (r < 0)
1556 			pfn = KVM_PFN_ERR_FAULT;
1557 	} else {
1558 		if (async && vma_is_valid(vma, write_fault))
1559 			*async = true;
1560 		pfn = KVM_PFN_ERR_FAULT;
1561 	}
1562 exit:
1563 	up_read(&current->mm->mmap_sem);
1564 	return pfn;
1565 }
1566 
1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1568 			       bool atomic, bool *async, bool write_fault,
1569 			       bool *writable)
1570 {
1571 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1572 
1573 	if (addr == KVM_HVA_ERR_RO_BAD) {
1574 		if (writable)
1575 			*writable = false;
1576 		return KVM_PFN_ERR_RO_FAULT;
1577 	}
1578 
1579 	if (kvm_is_error_hva(addr)) {
1580 		if (writable)
1581 			*writable = false;
1582 		return KVM_PFN_NOSLOT;
1583 	}
1584 
1585 	/* Do not map writable pfn in the readonly memslot. */
1586 	if (writable && memslot_is_readonly(slot)) {
1587 		*writable = false;
1588 		writable = NULL;
1589 	}
1590 
1591 	return hva_to_pfn(addr, atomic, async, write_fault,
1592 			  writable);
1593 }
1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1595 
1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1597 		      bool *writable)
1598 {
1599 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1600 				    write_fault, writable);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1603 
1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1605 {
1606 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1609 
1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1615 
1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1617 {
1618 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1621 
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1627 
1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1633 
1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1639 
1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1641 			    struct page **pages, int nr_pages)
1642 {
1643 	unsigned long addr;
1644 	gfn_t entry;
1645 
1646 	addr = gfn_to_hva_many(slot, gfn, &entry);
1647 	if (kvm_is_error_hva(addr))
1648 		return -1;
1649 
1650 	if (entry < nr_pages)
1651 		return 0;
1652 
1653 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1656 
1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1658 {
1659 	if (is_error_noslot_pfn(pfn))
1660 		return KVM_ERR_PTR_BAD_PAGE;
1661 
1662 	if (kvm_is_reserved_pfn(pfn)) {
1663 		WARN_ON(1);
1664 		return KVM_ERR_PTR_BAD_PAGE;
1665 	}
1666 
1667 	return pfn_to_page(pfn);
1668 }
1669 
1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1671 {
1672 	kvm_pfn_t pfn;
1673 
1674 	pfn = gfn_to_pfn(kvm, gfn);
1675 
1676 	return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_page);
1679 
1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1681 {
1682 	kvm_pfn_t pfn;
1683 
1684 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1685 
1686 	return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1689 
1690 void kvm_release_page_clean(struct page *page)
1691 {
1692 	WARN_ON(is_error_page(page));
1693 
1694 	kvm_release_pfn_clean(page_to_pfn(page));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1697 
1698 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1699 {
1700 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1701 		put_page(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1704 
1705 void kvm_release_page_dirty(struct page *page)
1706 {
1707 	WARN_ON(is_error_page(page));
1708 
1709 	kvm_release_pfn_dirty(page_to_pfn(page));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1712 
1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1714 {
1715 	kvm_set_pfn_dirty(pfn);
1716 	kvm_release_pfn_clean(pfn);
1717 }
1718 
1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721 	if (!kvm_is_reserved_pfn(pfn)) {
1722 		struct page *page = pfn_to_page(pfn);
1723 
1724 		if (!PageReserved(page))
1725 			SetPageDirty(page);
1726 	}
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1729 
1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1731 {
1732 	if (!kvm_is_reserved_pfn(pfn))
1733 		mark_page_accessed(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1736 
1737 void kvm_get_pfn(kvm_pfn_t pfn)
1738 {
1739 	if (!kvm_is_reserved_pfn(pfn))
1740 		get_page(pfn_to_page(pfn));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1743 
1744 static int next_segment(unsigned long len, int offset)
1745 {
1746 	if (len > PAGE_SIZE - offset)
1747 		return PAGE_SIZE - offset;
1748 	else
1749 		return len;
1750 }
1751 
1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1753 				 void *data, int offset, int len)
1754 {
1755 	int r;
1756 	unsigned long addr;
1757 
1758 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1759 	if (kvm_is_error_hva(addr))
1760 		return -EFAULT;
1761 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1762 	if (r)
1763 		return -EFAULT;
1764 	return 0;
1765 }
1766 
1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1768 			int len)
1769 {
1770 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1771 
1772 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1775 
1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1777 			     int offset, int len)
1778 {
1779 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1780 
1781 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1784 
1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1786 {
1787 	gfn_t gfn = gpa >> PAGE_SHIFT;
1788 	int seg;
1789 	int offset = offset_in_page(gpa);
1790 	int ret;
1791 
1792 	while ((seg = next_segment(len, offset)) != 0) {
1793 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1794 		if (ret < 0)
1795 			return ret;
1796 		offset = 0;
1797 		len -= seg;
1798 		data += seg;
1799 		++gfn;
1800 	}
1801 	return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_read_guest);
1804 
1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1806 {
1807 	gfn_t gfn = gpa >> PAGE_SHIFT;
1808 	int seg;
1809 	int offset = offset_in_page(gpa);
1810 	int ret;
1811 
1812 	while ((seg = next_segment(len, offset)) != 0) {
1813 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1814 		if (ret < 0)
1815 			return ret;
1816 		offset = 0;
1817 		len -= seg;
1818 		data += seg;
1819 		++gfn;
1820 	}
1821 	return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1824 
1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1826 			           void *data, int offset, unsigned long len)
1827 {
1828 	int r;
1829 	unsigned long addr;
1830 
1831 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1832 	if (kvm_is_error_hva(addr))
1833 		return -EFAULT;
1834 	pagefault_disable();
1835 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1836 	pagefault_enable();
1837 	if (r)
1838 		return -EFAULT;
1839 	return 0;
1840 }
1841 
1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1843 			  unsigned long len)
1844 {
1845 	gfn_t gfn = gpa >> PAGE_SHIFT;
1846 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1847 	int offset = offset_in_page(gpa);
1848 
1849 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1852 
1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1854 			       void *data, unsigned long len)
1855 {
1856 	gfn_t gfn = gpa >> PAGE_SHIFT;
1857 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1858 	int offset = offset_in_page(gpa);
1859 
1860 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1863 
1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1865 			          const void *data, int offset, int len)
1866 {
1867 	int r;
1868 	unsigned long addr;
1869 
1870 	addr = gfn_to_hva_memslot(memslot, gfn);
1871 	if (kvm_is_error_hva(addr))
1872 		return -EFAULT;
1873 	r = __copy_to_user((void __user *)addr + offset, data, len);
1874 	if (r)
1875 		return -EFAULT;
1876 	mark_page_dirty_in_slot(memslot, gfn);
1877 	return 0;
1878 }
1879 
1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1881 			 const void *data, int offset, int len)
1882 {
1883 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1884 
1885 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1888 
1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1890 			      const void *data, int offset, int len)
1891 {
1892 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1893 
1894 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1897 
1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1899 		    unsigned long len)
1900 {
1901 	gfn_t gfn = gpa >> PAGE_SHIFT;
1902 	int seg;
1903 	int offset = offset_in_page(gpa);
1904 	int ret;
1905 
1906 	while ((seg = next_segment(len, offset)) != 0) {
1907 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1908 		if (ret < 0)
1909 			return ret;
1910 		offset = 0;
1911 		len -= seg;
1912 		data += seg;
1913 		++gfn;
1914 	}
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_write_guest);
1918 
1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1920 		         unsigned long len)
1921 {
1922 	gfn_t gfn = gpa >> PAGE_SHIFT;
1923 	int seg;
1924 	int offset = offset_in_page(gpa);
1925 	int ret;
1926 
1927 	while ((seg = next_segment(len, offset)) != 0) {
1928 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1929 		if (ret < 0)
1930 			return ret;
1931 		offset = 0;
1932 		len -= seg;
1933 		data += seg;
1934 		++gfn;
1935 	}
1936 	return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1939 
1940 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1941 				       struct gfn_to_hva_cache *ghc,
1942 				       gpa_t gpa, unsigned long len)
1943 {
1944 	int offset = offset_in_page(gpa);
1945 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1946 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1947 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1948 	gfn_t nr_pages_avail;
1949 
1950 	ghc->gpa = gpa;
1951 	ghc->generation = slots->generation;
1952 	ghc->len = len;
1953 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1954 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1955 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1956 		ghc->hva += offset;
1957 	} else {
1958 		/*
1959 		 * If the requested region crosses two memslots, we still
1960 		 * verify that the entire region is valid here.
1961 		 */
1962 		while (start_gfn <= end_gfn) {
1963 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1964 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1965 						   &nr_pages_avail);
1966 			if (kvm_is_error_hva(ghc->hva))
1967 				return -EFAULT;
1968 			start_gfn += nr_pages_avail;
1969 		}
1970 		/* Use the slow path for cross page reads and writes. */
1971 		ghc->memslot = NULL;
1972 	}
1973 	return 0;
1974 }
1975 
1976 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1977 			      gpa_t gpa, unsigned long len)
1978 {
1979 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1980 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1983 
1984 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1985 				       void *data, int offset, unsigned long len)
1986 {
1987 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1988 	int r;
1989 	gpa_t gpa = ghc->gpa + offset;
1990 
1991 	BUG_ON(len + offset > ghc->len);
1992 
1993 	if (slots->generation != ghc->generation)
1994 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1995 
1996 	if (unlikely(!ghc->memslot))
1997 		return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1998 
1999 	if (kvm_is_error_hva(ghc->hva))
2000 		return -EFAULT;
2001 
2002 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2003 	if (r)
2004 		return -EFAULT;
2005 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2006 
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2010 
2011 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2012 			       void *data, unsigned long len)
2013 {
2014 	return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2015 }
2016 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2017 
2018 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2019 			       void *data, unsigned long len)
2020 {
2021 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2022 	int r;
2023 
2024 	BUG_ON(len > ghc->len);
2025 
2026 	if (slots->generation != ghc->generation)
2027 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2028 
2029 	if (unlikely(!ghc->memslot))
2030 		return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2031 
2032 	if (kvm_is_error_hva(ghc->hva))
2033 		return -EFAULT;
2034 
2035 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2036 	if (r)
2037 		return -EFAULT;
2038 
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2042 
2043 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2044 {
2045 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2046 
2047 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2050 
2051 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2052 {
2053 	gfn_t gfn = gpa >> PAGE_SHIFT;
2054 	int seg;
2055 	int offset = offset_in_page(gpa);
2056 	int ret;
2057 
2058 	while ((seg = next_segment(len, offset)) != 0) {
2059 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2060 		if (ret < 0)
2061 			return ret;
2062 		offset = 0;
2063 		len -= seg;
2064 		++gfn;
2065 	}
2066 	return 0;
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2069 
2070 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2071 				    gfn_t gfn)
2072 {
2073 	if (memslot && memslot->dirty_bitmap) {
2074 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2075 
2076 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2077 	}
2078 }
2079 
2080 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2081 {
2082 	struct kvm_memory_slot *memslot;
2083 
2084 	memslot = gfn_to_memslot(kvm, gfn);
2085 	mark_page_dirty_in_slot(memslot, gfn);
2086 }
2087 EXPORT_SYMBOL_GPL(mark_page_dirty);
2088 
2089 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2090 {
2091 	struct kvm_memory_slot *memslot;
2092 
2093 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2094 	mark_page_dirty_in_slot(memslot, gfn);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2097 
2098 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2099 {
2100 	unsigned int old, val, grow;
2101 
2102 	old = val = vcpu->halt_poll_ns;
2103 	grow = READ_ONCE(halt_poll_ns_grow);
2104 	/* 10us base */
2105 	if (val == 0 && grow)
2106 		val = 10000;
2107 	else
2108 		val *= grow;
2109 
2110 	if (val > halt_poll_ns)
2111 		val = halt_poll_ns;
2112 
2113 	vcpu->halt_poll_ns = val;
2114 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2115 }
2116 
2117 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2118 {
2119 	unsigned int old, val, shrink;
2120 
2121 	old = val = vcpu->halt_poll_ns;
2122 	shrink = READ_ONCE(halt_poll_ns_shrink);
2123 	if (shrink == 0)
2124 		val = 0;
2125 	else
2126 		val /= shrink;
2127 
2128 	vcpu->halt_poll_ns = val;
2129 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2130 }
2131 
2132 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2133 {
2134 	if (kvm_arch_vcpu_runnable(vcpu)) {
2135 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2136 		return -EINTR;
2137 	}
2138 	if (kvm_cpu_has_pending_timer(vcpu))
2139 		return -EINTR;
2140 	if (signal_pending(current))
2141 		return -EINTR;
2142 
2143 	return 0;
2144 }
2145 
2146 /*
2147  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2148  */
2149 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2150 {
2151 	ktime_t start, cur;
2152 	DECLARE_SWAITQUEUE(wait);
2153 	bool waited = false;
2154 	u64 block_ns;
2155 
2156 	start = cur = ktime_get();
2157 	if (vcpu->halt_poll_ns) {
2158 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2159 
2160 		++vcpu->stat.halt_attempted_poll;
2161 		do {
2162 			/*
2163 			 * This sets KVM_REQ_UNHALT if an interrupt
2164 			 * arrives.
2165 			 */
2166 			if (kvm_vcpu_check_block(vcpu) < 0) {
2167 				++vcpu->stat.halt_successful_poll;
2168 				if (!vcpu_valid_wakeup(vcpu))
2169 					++vcpu->stat.halt_poll_invalid;
2170 				goto out;
2171 			}
2172 			cur = ktime_get();
2173 		} while (single_task_running() && ktime_before(cur, stop));
2174 	}
2175 
2176 	kvm_arch_vcpu_blocking(vcpu);
2177 
2178 	for (;;) {
2179 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2180 
2181 		if (kvm_vcpu_check_block(vcpu) < 0)
2182 			break;
2183 
2184 		waited = true;
2185 		schedule();
2186 	}
2187 
2188 	finish_swait(&vcpu->wq, &wait);
2189 	cur = ktime_get();
2190 
2191 	kvm_arch_vcpu_unblocking(vcpu);
2192 out:
2193 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2194 
2195 	if (!vcpu_valid_wakeup(vcpu))
2196 		shrink_halt_poll_ns(vcpu);
2197 	else if (halt_poll_ns) {
2198 		if (block_ns <= vcpu->halt_poll_ns)
2199 			;
2200 		/* we had a long block, shrink polling */
2201 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2202 			shrink_halt_poll_ns(vcpu);
2203 		/* we had a short halt and our poll time is too small */
2204 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2205 			block_ns < halt_poll_ns)
2206 			grow_halt_poll_ns(vcpu);
2207 	} else
2208 		vcpu->halt_poll_ns = 0;
2209 
2210 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2211 	kvm_arch_vcpu_block_finish(vcpu);
2212 }
2213 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2214 
2215 #ifndef CONFIG_S390
2216 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2217 {
2218 	struct swait_queue_head *wqp;
2219 
2220 	wqp = kvm_arch_vcpu_wq(vcpu);
2221 	if (swait_active(wqp)) {
2222 		swake_up(wqp);
2223 		++vcpu->stat.halt_wakeup;
2224 	}
2225 
2226 }
2227 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2228 
2229 /*
2230  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2231  */
2232 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2233 {
2234 	int me;
2235 	int cpu = vcpu->cpu;
2236 
2237 	kvm_vcpu_wake_up(vcpu);
2238 	me = get_cpu();
2239 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2240 		if (kvm_arch_vcpu_should_kick(vcpu))
2241 			smp_send_reschedule(cpu);
2242 	put_cpu();
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2245 #endif /* !CONFIG_S390 */
2246 
2247 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2248 {
2249 	struct pid *pid;
2250 	struct task_struct *task = NULL;
2251 	int ret = 0;
2252 
2253 	rcu_read_lock();
2254 	pid = rcu_dereference(target->pid);
2255 	if (pid)
2256 		task = get_pid_task(pid, PIDTYPE_PID);
2257 	rcu_read_unlock();
2258 	if (!task)
2259 		return ret;
2260 	ret = yield_to(task, 1);
2261 	put_task_struct(task);
2262 
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2266 
2267 /*
2268  * Helper that checks whether a VCPU is eligible for directed yield.
2269  * Most eligible candidate to yield is decided by following heuristics:
2270  *
2271  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2272  *  (preempted lock holder), indicated by @in_spin_loop.
2273  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2274  *
2275  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2276  *  chance last time (mostly it has become eligible now since we have probably
2277  *  yielded to lockholder in last iteration. This is done by toggling
2278  *  @dy_eligible each time a VCPU checked for eligibility.)
2279  *
2280  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2281  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2282  *  burning. Giving priority for a potential lock-holder increases lock
2283  *  progress.
2284  *
2285  *  Since algorithm is based on heuristics, accessing another VCPU data without
2286  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2287  *  and continue with next VCPU and so on.
2288  */
2289 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2290 {
2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2292 	bool eligible;
2293 
2294 	eligible = !vcpu->spin_loop.in_spin_loop ||
2295 		    vcpu->spin_loop.dy_eligible;
2296 
2297 	if (vcpu->spin_loop.in_spin_loop)
2298 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2299 
2300 	return eligible;
2301 #else
2302 	return true;
2303 #endif
2304 }
2305 
2306 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2307 {
2308 	struct kvm *kvm = me->kvm;
2309 	struct kvm_vcpu *vcpu;
2310 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2311 	int yielded = 0;
2312 	int try = 3;
2313 	int pass;
2314 	int i;
2315 
2316 	kvm_vcpu_set_in_spin_loop(me, true);
2317 	/*
2318 	 * We boost the priority of a VCPU that is runnable but not
2319 	 * currently running, because it got preempted by something
2320 	 * else and called schedule in __vcpu_run.  Hopefully that
2321 	 * VCPU is holding the lock that we need and will release it.
2322 	 * We approximate round-robin by starting at the last boosted VCPU.
2323 	 */
2324 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2325 		kvm_for_each_vcpu(i, vcpu, kvm) {
2326 			if (!pass && i <= last_boosted_vcpu) {
2327 				i = last_boosted_vcpu;
2328 				continue;
2329 			} else if (pass && i > last_boosted_vcpu)
2330 				break;
2331 			if (!ACCESS_ONCE(vcpu->preempted))
2332 				continue;
2333 			if (vcpu == me)
2334 				continue;
2335 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2336 				continue;
2337 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2338 				continue;
2339 
2340 			yielded = kvm_vcpu_yield_to(vcpu);
2341 			if (yielded > 0) {
2342 				kvm->last_boosted_vcpu = i;
2343 				break;
2344 			} else if (yielded < 0) {
2345 				try--;
2346 				if (!try)
2347 					break;
2348 			}
2349 		}
2350 	}
2351 	kvm_vcpu_set_in_spin_loop(me, false);
2352 
2353 	/* Ensure vcpu is not eligible during next spinloop */
2354 	kvm_vcpu_set_dy_eligible(me, false);
2355 }
2356 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2357 
2358 static int kvm_vcpu_fault(struct vm_fault *vmf)
2359 {
2360 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2361 	struct page *page;
2362 
2363 	if (vmf->pgoff == 0)
2364 		page = virt_to_page(vcpu->run);
2365 #ifdef CONFIG_X86
2366 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2367 		page = virt_to_page(vcpu->arch.pio_data);
2368 #endif
2369 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2370 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2371 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2372 #endif
2373 	else
2374 		return kvm_arch_vcpu_fault(vcpu, vmf);
2375 	get_page(page);
2376 	vmf->page = page;
2377 	return 0;
2378 }
2379 
2380 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2381 	.fault = kvm_vcpu_fault,
2382 };
2383 
2384 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2385 {
2386 	vma->vm_ops = &kvm_vcpu_vm_ops;
2387 	return 0;
2388 }
2389 
2390 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2391 {
2392 	struct kvm_vcpu *vcpu = filp->private_data;
2393 
2394 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2395 	kvm_put_kvm(vcpu->kvm);
2396 	return 0;
2397 }
2398 
2399 static struct file_operations kvm_vcpu_fops = {
2400 	.release        = kvm_vcpu_release,
2401 	.unlocked_ioctl = kvm_vcpu_ioctl,
2402 #ifdef CONFIG_KVM_COMPAT
2403 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2404 #endif
2405 	.mmap           = kvm_vcpu_mmap,
2406 	.llseek		= noop_llseek,
2407 };
2408 
2409 /*
2410  * Allocates an inode for the vcpu.
2411  */
2412 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2413 {
2414 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2415 }
2416 
2417 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2418 {
2419 	char dir_name[ITOA_MAX_LEN * 2];
2420 	int ret;
2421 
2422 	if (!kvm_arch_has_vcpu_debugfs())
2423 		return 0;
2424 
2425 	if (!debugfs_initialized())
2426 		return 0;
2427 
2428 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2429 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2430 								vcpu->kvm->debugfs_dentry);
2431 	if (!vcpu->debugfs_dentry)
2432 		return -ENOMEM;
2433 
2434 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2435 	if (ret < 0) {
2436 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2437 		return ret;
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 /*
2444  * Creates some virtual cpus.  Good luck creating more than one.
2445  */
2446 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2447 {
2448 	int r;
2449 	struct kvm_vcpu *vcpu;
2450 
2451 	if (id >= KVM_MAX_VCPU_ID)
2452 		return -EINVAL;
2453 
2454 	mutex_lock(&kvm->lock);
2455 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2456 		mutex_unlock(&kvm->lock);
2457 		return -EINVAL;
2458 	}
2459 
2460 	kvm->created_vcpus++;
2461 	mutex_unlock(&kvm->lock);
2462 
2463 	vcpu = kvm_arch_vcpu_create(kvm, id);
2464 	if (IS_ERR(vcpu)) {
2465 		r = PTR_ERR(vcpu);
2466 		goto vcpu_decrement;
2467 	}
2468 
2469 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2470 
2471 	r = kvm_arch_vcpu_setup(vcpu);
2472 	if (r)
2473 		goto vcpu_destroy;
2474 
2475 	r = kvm_create_vcpu_debugfs(vcpu);
2476 	if (r)
2477 		goto vcpu_destroy;
2478 
2479 	mutex_lock(&kvm->lock);
2480 	if (kvm_get_vcpu_by_id(kvm, id)) {
2481 		r = -EEXIST;
2482 		goto unlock_vcpu_destroy;
2483 	}
2484 
2485 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2486 
2487 	/* Now it's all set up, let userspace reach it */
2488 	kvm_get_kvm(kvm);
2489 	r = create_vcpu_fd(vcpu);
2490 	if (r < 0) {
2491 		kvm_put_kvm(kvm);
2492 		goto unlock_vcpu_destroy;
2493 	}
2494 
2495 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2496 
2497 	/*
2498 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2499 	 * before kvm->online_vcpu's incremented value.
2500 	 */
2501 	smp_wmb();
2502 	atomic_inc(&kvm->online_vcpus);
2503 
2504 	mutex_unlock(&kvm->lock);
2505 	kvm_arch_vcpu_postcreate(vcpu);
2506 	return r;
2507 
2508 unlock_vcpu_destroy:
2509 	mutex_unlock(&kvm->lock);
2510 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2511 vcpu_destroy:
2512 	kvm_arch_vcpu_destroy(vcpu);
2513 vcpu_decrement:
2514 	mutex_lock(&kvm->lock);
2515 	kvm->created_vcpus--;
2516 	mutex_unlock(&kvm->lock);
2517 	return r;
2518 }
2519 
2520 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2521 {
2522 	if (sigset) {
2523 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2524 		vcpu->sigset_active = 1;
2525 		vcpu->sigset = *sigset;
2526 	} else
2527 		vcpu->sigset_active = 0;
2528 	return 0;
2529 }
2530 
2531 static long kvm_vcpu_ioctl(struct file *filp,
2532 			   unsigned int ioctl, unsigned long arg)
2533 {
2534 	struct kvm_vcpu *vcpu = filp->private_data;
2535 	void __user *argp = (void __user *)arg;
2536 	int r;
2537 	struct kvm_fpu *fpu = NULL;
2538 	struct kvm_sregs *kvm_sregs = NULL;
2539 
2540 	if (vcpu->kvm->mm != current->mm)
2541 		return -EIO;
2542 
2543 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2544 		return -EINVAL;
2545 
2546 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2547 	/*
2548 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2549 	 * so vcpu_load() would break it.
2550 	 */
2551 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2552 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2553 #endif
2554 
2555 
2556 	r = vcpu_load(vcpu);
2557 	if (r)
2558 		return r;
2559 	switch (ioctl) {
2560 	case KVM_RUN:
2561 		r = -EINVAL;
2562 		if (arg)
2563 			goto out;
2564 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2565 			/* The thread running this VCPU changed. */
2566 			struct pid *oldpid = vcpu->pid;
2567 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2568 
2569 			rcu_assign_pointer(vcpu->pid, newpid);
2570 			if (oldpid)
2571 				synchronize_rcu();
2572 			put_pid(oldpid);
2573 		}
2574 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2575 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2576 		break;
2577 	case KVM_GET_REGS: {
2578 		struct kvm_regs *kvm_regs;
2579 
2580 		r = -ENOMEM;
2581 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2582 		if (!kvm_regs)
2583 			goto out;
2584 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2585 		if (r)
2586 			goto out_free1;
2587 		r = -EFAULT;
2588 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2589 			goto out_free1;
2590 		r = 0;
2591 out_free1:
2592 		kfree(kvm_regs);
2593 		break;
2594 	}
2595 	case KVM_SET_REGS: {
2596 		struct kvm_regs *kvm_regs;
2597 
2598 		r = -ENOMEM;
2599 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2600 		if (IS_ERR(kvm_regs)) {
2601 			r = PTR_ERR(kvm_regs);
2602 			goto out;
2603 		}
2604 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2605 		kfree(kvm_regs);
2606 		break;
2607 	}
2608 	case KVM_GET_SREGS: {
2609 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2610 		r = -ENOMEM;
2611 		if (!kvm_sregs)
2612 			goto out;
2613 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2614 		if (r)
2615 			goto out;
2616 		r = -EFAULT;
2617 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2618 			goto out;
2619 		r = 0;
2620 		break;
2621 	}
2622 	case KVM_SET_SREGS: {
2623 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2624 		if (IS_ERR(kvm_sregs)) {
2625 			r = PTR_ERR(kvm_sregs);
2626 			kvm_sregs = NULL;
2627 			goto out;
2628 		}
2629 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2630 		break;
2631 	}
2632 	case KVM_GET_MP_STATE: {
2633 		struct kvm_mp_state mp_state;
2634 
2635 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2636 		if (r)
2637 			goto out;
2638 		r = -EFAULT;
2639 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2640 			goto out;
2641 		r = 0;
2642 		break;
2643 	}
2644 	case KVM_SET_MP_STATE: {
2645 		struct kvm_mp_state mp_state;
2646 
2647 		r = -EFAULT;
2648 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2649 			goto out;
2650 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2651 		break;
2652 	}
2653 	case KVM_TRANSLATE: {
2654 		struct kvm_translation tr;
2655 
2656 		r = -EFAULT;
2657 		if (copy_from_user(&tr, argp, sizeof(tr)))
2658 			goto out;
2659 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2660 		if (r)
2661 			goto out;
2662 		r = -EFAULT;
2663 		if (copy_to_user(argp, &tr, sizeof(tr)))
2664 			goto out;
2665 		r = 0;
2666 		break;
2667 	}
2668 	case KVM_SET_GUEST_DEBUG: {
2669 		struct kvm_guest_debug dbg;
2670 
2671 		r = -EFAULT;
2672 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2673 			goto out;
2674 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2675 		break;
2676 	}
2677 	case KVM_SET_SIGNAL_MASK: {
2678 		struct kvm_signal_mask __user *sigmask_arg = argp;
2679 		struct kvm_signal_mask kvm_sigmask;
2680 		sigset_t sigset, *p;
2681 
2682 		p = NULL;
2683 		if (argp) {
2684 			r = -EFAULT;
2685 			if (copy_from_user(&kvm_sigmask, argp,
2686 					   sizeof(kvm_sigmask)))
2687 				goto out;
2688 			r = -EINVAL;
2689 			if (kvm_sigmask.len != sizeof(sigset))
2690 				goto out;
2691 			r = -EFAULT;
2692 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2693 					   sizeof(sigset)))
2694 				goto out;
2695 			p = &sigset;
2696 		}
2697 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2698 		break;
2699 	}
2700 	case KVM_GET_FPU: {
2701 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2702 		r = -ENOMEM;
2703 		if (!fpu)
2704 			goto out;
2705 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2706 		if (r)
2707 			goto out;
2708 		r = -EFAULT;
2709 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2710 			goto out;
2711 		r = 0;
2712 		break;
2713 	}
2714 	case KVM_SET_FPU: {
2715 		fpu = memdup_user(argp, sizeof(*fpu));
2716 		if (IS_ERR(fpu)) {
2717 			r = PTR_ERR(fpu);
2718 			fpu = NULL;
2719 			goto out;
2720 		}
2721 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2722 		break;
2723 	}
2724 	default:
2725 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2726 	}
2727 out:
2728 	vcpu_put(vcpu);
2729 	kfree(fpu);
2730 	kfree(kvm_sregs);
2731 	return r;
2732 }
2733 
2734 #ifdef CONFIG_KVM_COMPAT
2735 static long kvm_vcpu_compat_ioctl(struct file *filp,
2736 				  unsigned int ioctl, unsigned long arg)
2737 {
2738 	struct kvm_vcpu *vcpu = filp->private_data;
2739 	void __user *argp = compat_ptr(arg);
2740 	int r;
2741 
2742 	if (vcpu->kvm->mm != current->mm)
2743 		return -EIO;
2744 
2745 	switch (ioctl) {
2746 	case KVM_SET_SIGNAL_MASK: {
2747 		struct kvm_signal_mask __user *sigmask_arg = argp;
2748 		struct kvm_signal_mask kvm_sigmask;
2749 		compat_sigset_t csigset;
2750 		sigset_t sigset;
2751 
2752 		if (argp) {
2753 			r = -EFAULT;
2754 			if (copy_from_user(&kvm_sigmask, argp,
2755 					   sizeof(kvm_sigmask)))
2756 				goto out;
2757 			r = -EINVAL;
2758 			if (kvm_sigmask.len != sizeof(csigset))
2759 				goto out;
2760 			r = -EFAULT;
2761 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2762 					   sizeof(csigset)))
2763 				goto out;
2764 			sigset_from_compat(&sigset, &csigset);
2765 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2766 		} else
2767 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2768 		break;
2769 	}
2770 	default:
2771 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2772 	}
2773 
2774 out:
2775 	return r;
2776 }
2777 #endif
2778 
2779 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2780 				 int (*accessor)(struct kvm_device *dev,
2781 						 struct kvm_device_attr *attr),
2782 				 unsigned long arg)
2783 {
2784 	struct kvm_device_attr attr;
2785 
2786 	if (!accessor)
2787 		return -EPERM;
2788 
2789 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2790 		return -EFAULT;
2791 
2792 	return accessor(dev, &attr);
2793 }
2794 
2795 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2796 			     unsigned long arg)
2797 {
2798 	struct kvm_device *dev = filp->private_data;
2799 
2800 	switch (ioctl) {
2801 	case KVM_SET_DEVICE_ATTR:
2802 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2803 	case KVM_GET_DEVICE_ATTR:
2804 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2805 	case KVM_HAS_DEVICE_ATTR:
2806 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2807 	default:
2808 		if (dev->ops->ioctl)
2809 			return dev->ops->ioctl(dev, ioctl, arg);
2810 
2811 		return -ENOTTY;
2812 	}
2813 }
2814 
2815 static int kvm_device_release(struct inode *inode, struct file *filp)
2816 {
2817 	struct kvm_device *dev = filp->private_data;
2818 	struct kvm *kvm = dev->kvm;
2819 
2820 	kvm_put_kvm(kvm);
2821 	return 0;
2822 }
2823 
2824 static const struct file_operations kvm_device_fops = {
2825 	.unlocked_ioctl = kvm_device_ioctl,
2826 #ifdef CONFIG_KVM_COMPAT
2827 	.compat_ioctl = kvm_device_ioctl,
2828 #endif
2829 	.release = kvm_device_release,
2830 };
2831 
2832 struct kvm_device *kvm_device_from_filp(struct file *filp)
2833 {
2834 	if (filp->f_op != &kvm_device_fops)
2835 		return NULL;
2836 
2837 	return filp->private_data;
2838 }
2839 
2840 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2841 #ifdef CONFIG_KVM_MPIC
2842 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2843 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2844 #endif
2845 
2846 #ifdef CONFIG_KVM_XICS
2847 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2848 #endif
2849 };
2850 
2851 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2852 {
2853 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2854 		return -ENOSPC;
2855 
2856 	if (kvm_device_ops_table[type] != NULL)
2857 		return -EEXIST;
2858 
2859 	kvm_device_ops_table[type] = ops;
2860 	return 0;
2861 }
2862 
2863 void kvm_unregister_device_ops(u32 type)
2864 {
2865 	if (kvm_device_ops_table[type] != NULL)
2866 		kvm_device_ops_table[type] = NULL;
2867 }
2868 
2869 static int kvm_ioctl_create_device(struct kvm *kvm,
2870 				   struct kvm_create_device *cd)
2871 {
2872 	struct kvm_device_ops *ops = NULL;
2873 	struct kvm_device *dev;
2874 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2875 	int ret;
2876 
2877 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2878 		return -ENODEV;
2879 
2880 	ops = kvm_device_ops_table[cd->type];
2881 	if (ops == NULL)
2882 		return -ENODEV;
2883 
2884 	if (test)
2885 		return 0;
2886 
2887 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2888 	if (!dev)
2889 		return -ENOMEM;
2890 
2891 	dev->ops = ops;
2892 	dev->kvm = kvm;
2893 
2894 	mutex_lock(&kvm->lock);
2895 	ret = ops->create(dev, cd->type);
2896 	if (ret < 0) {
2897 		mutex_unlock(&kvm->lock);
2898 		kfree(dev);
2899 		return ret;
2900 	}
2901 	list_add(&dev->vm_node, &kvm->devices);
2902 	mutex_unlock(&kvm->lock);
2903 
2904 	if (ops->init)
2905 		ops->init(dev);
2906 
2907 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2908 	if (ret < 0) {
2909 		mutex_lock(&kvm->lock);
2910 		list_del(&dev->vm_node);
2911 		mutex_unlock(&kvm->lock);
2912 		ops->destroy(dev);
2913 		return ret;
2914 	}
2915 
2916 	kvm_get_kvm(kvm);
2917 	cd->fd = ret;
2918 	return 0;
2919 }
2920 
2921 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2922 {
2923 	switch (arg) {
2924 	case KVM_CAP_USER_MEMORY:
2925 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2926 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2927 	case KVM_CAP_INTERNAL_ERROR_DATA:
2928 #ifdef CONFIG_HAVE_KVM_MSI
2929 	case KVM_CAP_SIGNAL_MSI:
2930 #endif
2931 #ifdef CONFIG_HAVE_KVM_IRQFD
2932 	case KVM_CAP_IRQFD:
2933 	case KVM_CAP_IRQFD_RESAMPLE:
2934 #endif
2935 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2936 	case KVM_CAP_CHECK_EXTENSION_VM:
2937 		return 1;
2938 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2939 	case KVM_CAP_IRQ_ROUTING:
2940 		return KVM_MAX_IRQ_ROUTES;
2941 #endif
2942 #if KVM_ADDRESS_SPACE_NUM > 1
2943 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2944 		return KVM_ADDRESS_SPACE_NUM;
2945 #endif
2946 	case KVM_CAP_MAX_VCPU_ID:
2947 		return KVM_MAX_VCPU_ID;
2948 	default:
2949 		break;
2950 	}
2951 	return kvm_vm_ioctl_check_extension(kvm, arg);
2952 }
2953 
2954 static long kvm_vm_ioctl(struct file *filp,
2955 			   unsigned int ioctl, unsigned long arg)
2956 {
2957 	struct kvm *kvm = filp->private_data;
2958 	void __user *argp = (void __user *)arg;
2959 	int r;
2960 
2961 	if (kvm->mm != current->mm)
2962 		return -EIO;
2963 	switch (ioctl) {
2964 	case KVM_CREATE_VCPU:
2965 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2966 		break;
2967 	case KVM_SET_USER_MEMORY_REGION: {
2968 		struct kvm_userspace_memory_region kvm_userspace_mem;
2969 
2970 		r = -EFAULT;
2971 		if (copy_from_user(&kvm_userspace_mem, argp,
2972 						sizeof(kvm_userspace_mem)))
2973 			goto out;
2974 
2975 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2976 		break;
2977 	}
2978 	case KVM_GET_DIRTY_LOG: {
2979 		struct kvm_dirty_log log;
2980 
2981 		r = -EFAULT;
2982 		if (copy_from_user(&log, argp, sizeof(log)))
2983 			goto out;
2984 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2985 		break;
2986 	}
2987 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2988 	case KVM_REGISTER_COALESCED_MMIO: {
2989 		struct kvm_coalesced_mmio_zone zone;
2990 
2991 		r = -EFAULT;
2992 		if (copy_from_user(&zone, argp, sizeof(zone)))
2993 			goto out;
2994 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2995 		break;
2996 	}
2997 	case KVM_UNREGISTER_COALESCED_MMIO: {
2998 		struct kvm_coalesced_mmio_zone zone;
2999 
3000 		r = -EFAULT;
3001 		if (copy_from_user(&zone, argp, sizeof(zone)))
3002 			goto out;
3003 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3004 		break;
3005 	}
3006 #endif
3007 	case KVM_IRQFD: {
3008 		struct kvm_irqfd data;
3009 
3010 		r = -EFAULT;
3011 		if (copy_from_user(&data, argp, sizeof(data)))
3012 			goto out;
3013 		r = kvm_irqfd(kvm, &data);
3014 		break;
3015 	}
3016 	case KVM_IOEVENTFD: {
3017 		struct kvm_ioeventfd data;
3018 
3019 		r = -EFAULT;
3020 		if (copy_from_user(&data, argp, sizeof(data)))
3021 			goto out;
3022 		r = kvm_ioeventfd(kvm, &data);
3023 		break;
3024 	}
3025 #ifdef CONFIG_HAVE_KVM_MSI
3026 	case KVM_SIGNAL_MSI: {
3027 		struct kvm_msi msi;
3028 
3029 		r = -EFAULT;
3030 		if (copy_from_user(&msi, argp, sizeof(msi)))
3031 			goto out;
3032 		r = kvm_send_userspace_msi(kvm, &msi);
3033 		break;
3034 	}
3035 #endif
3036 #ifdef __KVM_HAVE_IRQ_LINE
3037 	case KVM_IRQ_LINE_STATUS:
3038 	case KVM_IRQ_LINE: {
3039 		struct kvm_irq_level irq_event;
3040 
3041 		r = -EFAULT;
3042 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3043 			goto out;
3044 
3045 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3046 					ioctl == KVM_IRQ_LINE_STATUS);
3047 		if (r)
3048 			goto out;
3049 
3050 		r = -EFAULT;
3051 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3052 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3053 				goto out;
3054 		}
3055 
3056 		r = 0;
3057 		break;
3058 	}
3059 #endif
3060 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3061 	case KVM_SET_GSI_ROUTING: {
3062 		struct kvm_irq_routing routing;
3063 		struct kvm_irq_routing __user *urouting;
3064 		struct kvm_irq_routing_entry *entries = NULL;
3065 
3066 		r = -EFAULT;
3067 		if (copy_from_user(&routing, argp, sizeof(routing)))
3068 			goto out;
3069 		r = -EINVAL;
3070 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3071 			goto out;
3072 		if (routing.flags)
3073 			goto out;
3074 		if (routing.nr) {
3075 			r = -ENOMEM;
3076 			entries = vmalloc(routing.nr * sizeof(*entries));
3077 			if (!entries)
3078 				goto out;
3079 			r = -EFAULT;
3080 			urouting = argp;
3081 			if (copy_from_user(entries, urouting->entries,
3082 					   routing.nr * sizeof(*entries)))
3083 				goto out_free_irq_routing;
3084 		}
3085 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3086 					routing.flags);
3087 out_free_irq_routing:
3088 		vfree(entries);
3089 		break;
3090 	}
3091 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3092 	case KVM_CREATE_DEVICE: {
3093 		struct kvm_create_device cd;
3094 
3095 		r = -EFAULT;
3096 		if (copy_from_user(&cd, argp, sizeof(cd)))
3097 			goto out;
3098 
3099 		r = kvm_ioctl_create_device(kvm, &cd);
3100 		if (r)
3101 			goto out;
3102 
3103 		r = -EFAULT;
3104 		if (copy_to_user(argp, &cd, sizeof(cd)))
3105 			goto out;
3106 
3107 		r = 0;
3108 		break;
3109 	}
3110 	case KVM_CHECK_EXTENSION:
3111 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3112 		break;
3113 	default:
3114 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3115 	}
3116 out:
3117 	return r;
3118 }
3119 
3120 #ifdef CONFIG_KVM_COMPAT
3121 struct compat_kvm_dirty_log {
3122 	__u32 slot;
3123 	__u32 padding1;
3124 	union {
3125 		compat_uptr_t dirty_bitmap; /* one bit per page */
3126 		__u64 padding2;
3127 	};
3128 };
3129 
3130 static long kvm_vm_compat_ioctl(struct file *filp,
3131 			   unsigned int ioctl, unsigned long arg)
3132 {
3133 	struct kvm *kvm = filp->private_data;
3134 	int r;
3135 
3136 	if (kvm->mm != current->mm)
3137 		return -EIO;
3138 	switch (ioctl) {
3139 	case KVM_GET_DIRTY_LOG: {
3140 		struct compat_kvm_dirty_log compat_log;
3141 		struct kvm_dirty_log log;
3142 
3143 		if (copy_from_user(&compat_log, (void __user *)arg,
3144 				   sizeof(compat_log)))
3145 			return -EFAULT;
3146 		log.slot	 = compat_log.slot;
3147 		log.padding1	 = compat_log.padding1;
3148 		log.padding2	 = compat_log.padding2;
3149 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3150 
3151 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3152 		break;
3153 	}
3154 	default:
3155 		r = kvm_vm_ioctl(filp, ioctl, arg);
3156 	}
3157 	return r;
3158 }
3159 #endif
3160 
3161 static struct file_operations kvm_vm_fops = {
3162 	.release        = kvm_vm_release,
3163 	.unlocked_ioctl = kvm_vm_ioctl,
3164 #ifdef CONFIG_KVM_COMPAT
3165 	.compat_ioctl   = kvm_vm_compat_ioctl,
3166 #endif
3167 	.llseek		= noop_llseek,
3168 };
3169 
3170 static int kvm_dev_ioctl_create_vm(unsigned long type)
3171 {
3172 	int r;
3173 	struct kvm *kvm;
3174 	struct file *file;
3175 
3176 	kvm = kvm_create_vm(type);
3177 	if (IS_ERR(kvm))
3178 		return PTR_ERR(kvm);
3179 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3180 	r = kvm_coalesced_mmio_init(kvm);
3181 	if (r < 0) {
3182 		kvm_put_kvm(kvm);
3183 		return r;
3184 	}
3185 #endif
3186 	r = get_unused_fd_flags(O_CLOEXEC);
3187 	if (r < 0) {
3188 		kvm_put_kvm(kvm);
3189 		return r;
3190 	}
3191 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3192 	if (IS_ERR(file)) {
3193 		put_unused_fd(r);
3194 		kvm_put_kvm(kvm);
3195 		return PTR_ERR(file);
3196 	}
3197 
3198 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3199 		put_unused_fd(r);
3200 		fput(file);
3201 		return -ENOMEM;
3202 	}
3203 
3204 	fd_install(r, file);
3205 	return r;
3206 }
3207 
3208 static long kvm_dev_ioctl(struct file *filp,
3209 			  unsigned int ioctl, unsigned long arg)
3210 {
3211 	long r = -EINVAL;
3212 
3213 	switch (ioctl) {
3214 	case KVM_GET_API_VERSION:
3215 		if (arg)
3216 			goto out;
3217 		r = KVM_API_VERSION;
3218 		break;
3219 	case KVM_CREATE_VM:
3220 		r = kvm_dev_ioctl_create_vm(arg);
3221 		break;
3222 	case KVM_CHECK_EXTENSION:
3223 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3224 		break;
3225 	case KVM_GET_VCPU_MMAP_SIZE:
3226 		if (arg)
3227 			goto out;
3228 		r = PAGE_SIZE;     /* struct kvm_run */
3229 #ifdef CONFIG_X86
3230 		r += PAGE_SIZE;    /* pio data page */
3231 #endif
3232 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3233 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3234 #endif
3235 		break;
3236 	case KVM_TRACE_ENABLE:
3237 	case KVM_TRACE_PAUSE:
3238 	case KVM_TRACE_DISABLE:
3239 		r = -EOPNOTSUPP;
3240 		break;
3241 	default:
3242 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3243 	}
3244 out:
3245 	return r;
3246 }
3247 
3248 static struct file_operations kvm_chardev_ops = {
3249 	.unlocked_ioctl = kvm_dev_ioctl,
3250 	.compat_ioctl   = kvm_dev_ioctl,
3251 	.llseek		= noop_llseek,
3252 };
3253 
3254 static struct miscdevice kvm_dev = {
3255 	KVM_MINOR,
3256 	"kvm",
3257 	&kvm_chardev_ops,
3258 };
3259 
3260 static void hardware_enable_nolock(void *junk)
3261 {
3262 	int cpu = raw_smp_processor_id();
3263 	int r;
3264 
3265 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3266 		return;
3267 
3268 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3269 
3270 	r = kvm_arch_hardware_enable();
3271 
3272 	if (r) {
3273 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3274 		atomic_inc(&hardware_enable_failed);
3275 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3276 	}
3277 }
3278 
3279 static int kvm_starting_cpu(unsigned int cpu)
3280 {
3281 	raw_spin_lock(&kvm_count_lock);
3282 	if (kvm_usage_count)
3283 		hardware_enable_nolock(NULL);
3284 	raw_spin_unlock(&kvm_count_lock);
3285 	return 0;
3286 }
3287 
3288 static void hardware_disable_nolock(void *junk)
3289 {
3290 	int cpu = raw_smp_processor_id();
3291 
3292 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3293 		return;
3294 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3295 	kvm_arch_hardware_disable();
3296 }
3297 
3298 static int kvm_dying_cpu(unsigned int cpu)
3299 {
3300 	raw_spin_lock(&kvm_count_lock);
3301 	if (kvm_usage_count)
3302 		hardware_disable_nolock(NULL);
3303 	raw_spin_unlock(&kvm_count_lock);
3304 	return 0;
3305 }
3306 
3307 static void hardware_disable_all_nolock(void)
3308 {
3309 	BUG_ON(!kvm_usage_count);
3310 
3311 	kvm_usage_count--;
3312 	if (!kvm_usage_count)
3313 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3314 }
3315 
3316 static void hardware_disable_all(void)
3317 {
3318 	raw_spin_lock(&kvm_count_lock);
3319 	hardware_disable_all_nolock();
3320 	raw_spin_unlock(&kvm_count_lock);
3321 }
3322 
3323 static int hardware_enable_all(void)
3324 {
3325 	int r = 0;
3326 
3327 	raw_spin_lock(&kvm_count_lock);
3328 
3329 	kvm_usage_count++;
3330 	if (kvm_usage_count == 1) {
3331 		atomic_set(&hardware_enable_failed, 0);
3332 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3333 
3334 		if (atomic_read(&hardware_enable_failed)) {
3335 			hardware_disable_all_nolock();
3336 			r = -EBUSY;
3337 		}
3338 	}
3339 
3340 	raw_spin_unlock(&kvm_count_lock);
3341 
3342 	return r;
3343 }
3344 
3345 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3346 		      void *v)
3347 {
3348 	/*
3349 	 * Some (well, at least mine) BIOSes hang on reboot if
3350 	 * in vmx root mode.
3351 	 *
3352 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3353 	 */
3354 	pr_info("kvm: exiting hardware virtualization\n");
3355 	kvm_rebooting = true;
3356 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3357 	return NOTIFY_OK;
3358 }
3359 
3360 static struct notifier_block kvm_reboot_notifier = {
3361 	.notifier_call = kvm_reboot,
3362 	.priority = 0,
3363 };
3364 
3365 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3366 {
3367 	int i;
3368 
3369 	for (i = 0; i < bus->dev_count; i++) {
3370 		struct kvm_io_device *pos = bus->range[i].dev;
3371 
3372 		kvm_iodevice_destructor(pos);
3373 	}
3374 	kfree(bus);
3375 }
3376 
3377 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3378 				 const struct kvm_io_range *r2)
3379 {
3380 	gpa_t addr1 = r1->addr;
3381 	gpa_t addr2 = r2->addr;
3382 
3383 	if (addr1 < addr2)
3384 		return -1;
3385 
3386 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3387 	 * accept any overlapping write.  Any order is acceptable for
3388 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3389 	 * we process all of them.
3390 	 */
3391 	if (r2->len) {
3392 		addr1 += r1->len;
3393 		addr2 += r2->len;
3394 	}
3395 
3396 	if (addr1 > addr2)
3397 		return 1;
3398 
3399 	return 0;
3400 }
3401 
3402 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3403 {
3404 	return kvm_io_bus_cmp(p1, p2);
3405 }
3406 
3407 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3408 			  gpa_t addr, int len)
3409 {
3410 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3411 		.addr = addr,
3412 		.len = len,
3413 		.dev = dev,
3414 	};
3415 
3416 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3417 		kvm_io_bus_sort_cmp, NULL);
3418 
3419 	return 0;
3420 }
3421 
3422 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3423 			     gpa_t addr, int len)
3424 {
3425 	struct kvm_io_range *range, key;
3426 	int off;
3427 
3428 	key = (struct kvm_io_range) {
3429 		.addr = addr,
3430 		.len = len,
3431 	};
3432 
3433 	range = bsearch(&key, bus->range, bus->dev_count,
3434 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3435 	if (range == NULL)
3436 		return -ENOENT;
3437 
3438 	off = range - bus->range;
3439 
3440 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3441 		off--;
3442 
3443 	return off;
3444 }
3445 
3446 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3447 			      struct kvm_io_range *range, const void *val)
3448 {
3449 	int idx;
3450 
3451 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3452 	if (idx < 0)
3453 		return -EOPNOTSUPP;
3454 
3455 	while (idx < bus->dev_count &&
3456 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3457 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3458 					range->len, val))
3459 			return idx;
3460 		idx++;
3461 	}
3462 
3463 	return -EOPNOTSUPP;
3464 }
3465 
3466 /* kvm_io_bus_write - called under kvm->slots_lock */
3467 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3468 		     int len, const void *val)
3469 {
3470 	struct kvm_io_bus *bus;
3471 	struct kvm_io_range range;
3472 	int r;
3473 
3474 	range = (struct kvm_io_range) {
3475 		.addr = addr,
3476 		.len = len,
3477 	};
3478 
3479 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3480 	if (!bus)
3481 		return -ENOMEM;
3482 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3483 	return r < 0 ? r : 0;
3484 }
3485 
3486 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3487 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3488 			    gpa_t addr, int len, const void *val, long cookie)
3489 {
3490 	struct kvm_io_bus *bus;
3491 	struct kvm_io_range range;
3492 
3493 	range = (struct kvm_io_range) {
3494 		.addr = addr,
3495 		.len = len,
3496 	};
3497 
3498 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3499 	if (!bus)
3500 		return -ENOMEM;
3501 
3502 	/* First try the device referenced by cookie. */
3503 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3504 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3505 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3506 					val))
3507 			return cookie;
3508 
3509 	/*
3510 	 * cookie contained garbage; fall back to search and return the
3511 	 * correct cookie value.
3512 	 */
3513 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3514 }
3515 
3516 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3517 			     struct kvm_io_range *range, void *val)
3518 {
3519 	int idx;
3520 
3521 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3522 	if (idx < 0)
3523 		return -EOPNOTSUPP;
3524 
3525 	while (idx < bus->dev_count &&
3526 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3527 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3528 				       range->len, val))
3529 			return idx;
3530 		idx++;
3531 	}
3532 
3533 	return -EOPNOTSUPP;
3534 }
3535 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3536 
3537 /* kvm_io_bus_read - called under kvm->slots_lock */
3538 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3539 		    int len, void *val)
3540 {
3541 	struct kvm_io_bus *bus;
3542 	struct kvm_io_range range;
3543 	int r;
3544 
3545 	range = (struct kvm_io_range) {
3546 		.addr = addr,
3547 		.len = len,
3548 	};
3549 
3550 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3551 	if (!bus)
3552 		return -ENOMEM;
3553 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3554 	return r < 0 ? r : 0;
3555 }
3556 
3557 
3558 /* Caller must hold slots_lock. */
3559 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3560 			    int len, struct kvm_io_device *dev)
3561 {
3562 	struct kvm_io_bus *new_bus, *bus;
3563 
3564 	bus = kvm->buses[bus_idx];
3565 	if (!bus)
3566 		return -ENOMEM;
3567 
3568 	/* exclude ioeventfd which is limited by maximum fd */
3569 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3570 		return -ENOSPC;
3571 
3572 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3573 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3574 	if (!new_bus)
3575 		return -ENOMEM;
3576 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3577 	       sizeof(struct kvm_io_range)));
3578 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3579 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3580 	synchronize_srcu_expedited(&kvm->srcu);
3581 	kfree(bus);
3582 
3583 	return 0;
3584 }
3585 
3586 /* Caller must hold slots_lock. */
3587 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3588 			       struct kvm_io_device *dev)
3589 {
3590 	int i;
3591 	struct kvm_io_bus *new_bus, *bus;
3592 
3593 	bus = kvm->buses[bus_idx];
3594 	if (!bus)
3595 		return;
3596 
3597 	for (i = 0; i < bus->dev_count; i++)
3598 		if (bus->range[i].dev == dev) {
3599 			break;
3600 		}
3601 
3602 	if (i == bus->dev_count)
3603 		return;
3604 
3605 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3606 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3607 	if (!new_bus)  {
3608 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3609 		goto broken;
3610 	}
3611 
3612 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3613 	new_bus->dev_count--;
3614 	memcpy(new_bus->range + i, bus->range + i + 1,
3615 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3616 
3617 broken:
3618 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3619 	synchronize_srcu_expedited(&kvm->srcu);
3620 	kfree(bus);
3621 	return;
3622 }
3623 
3624 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3625 					 gpa_t addr)
3626 {
3627 	struct kvm_io_bus *bus;
3628 	int dev_idx, srcu_idx;
3629 	struct kvm_io_device *iodev = NULL;
3630 
3631 	srcu_idx = srcu_read_lock(&kvm->srcu);
3632 
3633 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3634 	if (!bus)
3635 		goto out_unlock;
3636 
3637 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3638 	if (dev_idx < 0)
3639 		goto out_unlock;
3640 
3641 	iodev = bus->range[dev_idx].dev;
3642 
3643 out_unlock:
3644 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3645 
3646 	return iodev;
3647 }
3648 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3649 
3650 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3651 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3652 			   const char *fmt)
3653 {
3654 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3655 					  inode->i_private;
3656 
3657 	/* The debugfs files are a reference to the kvm struct which
3658 	 * is still valid when kvm_destroy_vm is called.
3659 	 * To avoid the race between open and the removal of the debugfs
3660 	 * directory we test against the users count.
3661 	 */
3662 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3663 		return -ENOENT;
3664 
3665 	if (simple_attr_open(inode, file, get, set, fmt)) {
3666 		kvm_put_kvm(stat_data->kvm);
3667 		return -ENOMEM;
3668 	}
3669 
3670 	return 0;
3671 }
3672 
3673 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3674 {
3675 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3676 					  inode->i_private;
3677 
3678 	simple_attr_release(inode, file);
3679 	kvm_put_kvm(stat_data->kvm);
3680 
3681 	return 0;
3682 }
3683 
3684 static int vm_stat_get_per_vm(void *data, u64 *val)
3685 {
3686 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3687 
3688 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3689 
3690 	return 0;
3691 }
3692 
3693 static int vm_stat_clear_per_vm(void *data, u64 val)
3694 {
3695 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3696 
3697 	if (val)
3698 		return -EINVAL;
3699 
3700 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3701 
3702 	return 0;
3703 }
3704 
3705 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3706 {
3707 	__simple_attr_check_format("%llu\n", 0ull);
3708 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3709 				vm_stat_clear_per_vm, "%llu\n");
3710 }
3711 
3712 static const struct file_operations vm_stat_get_per_vm_fops = {
3713 	.owner   = THIS_MODULE,
3714 	.open    = vm_stat_get_per_vm_open,
3715 	.release = kvm_debugfs_release,
3716 	.read    = simple_attr_read,
3717 	.write   = simple_attr_write,
3718 	.llseek  = generic_file_llseek,
3719 };
3720 
3721 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3722 {
3723 	int i;
3724 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3725 	struct kvm_vcpu *vcpu;
3726 
3727 	*val = 0;
3728 
3729 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3730 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3731 
3732 	return 0;
3733 }
3734 
3735 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3736 {
3737 	int i;
3738 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3739 	struct kvm_vcpu *vcpu;
3740 
3741 	if (val)
3742 		return -EINVAL;
3743 
3744 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3745 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3746 
3747 	return 0;
3748 }
3749 
3750 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3751 {
3752 	__simple_attr_check_format("%llu\n", 0ull);
3753 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3754 				 vcpu_stat_clear_per_vm, "%llu\n");
3755 }
3756 
3757 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3758 	.owner   = THIS_MODULE,
3759 	.open    = vcpu_stat_get_per_vm_open,
3760 	.release = kvm_debugfs_release,
3761 	.read    = simple_attr_read,
3762 	.write   = simple_attr_write,
3763 	.llseek  = generic_file_llseek,
3764 };
3765 
3766 static const struct file_operations *stat_fops_per_vm[] = {
3767 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3768 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3769 };
3770 
3771 static int vm_stat_get(void *_offset, u64 *val)
3772 {
3773 	unsigned offset = (long)_offset;
3774 	struct kvm *kvm;
3775 	struct kvm_stat_data stat_tmp = {.offset = offset};
3776 	u64 tmp_val;
3777 
3778 	*val = 0;
3779 	spin_lock(&kvm_lock);
3780 	list_for_each_entry(kvm, &vm_list, vm_list) {
3781 		stat_tmp.kvm = kvm;
3782 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3783 		*val += tmp_val;
3784 	}
3785 	spin_unlock(&kvm_lock);
3786 	return 0;
3787 }
3788 
3789 static int vm_stat_clear(void *_offset, u64 val)
3790 {
3791 	unsigned offset = (long)_offset;
3792 	struct kvm *kvm;
3793 	struct kvm_stat_data stat_tmp = {.offset = offset};
3794 
3795 	if (val)
3796 		return -EINVAL;
3797 
3798 	spin_lock(&kvm_lock);
3799 	list_for_each_entry(kvm, &vm_list, vm_list) {
3800 		stat_tmp.kvm = kvm;
3801 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3802 	}
3803 	spin_unlock(&kvm_lock);
3804 
3805 	return 0;
3806 }
3807 
3808 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3809 
3810 static int vcpu_stat_get(void *_offset, u64 *val)
3811 {
3812 	unsigned offset = (long)_offset;
3813 	struct kvm *kvm;
3814 	struct kvm_stat_data stat_tmp = {.offset = offset};
3815 	u64 tmp_val;
3816 
3817 	*val = 0;
3818 	spin_lock(&kvm_lock);
3819 	list_for_each_entry(kvm, &vm_list, vm_list) {
3820 		stat_tmp.kvm = kvm;
3821 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3822 		*val += tmp_val;
3823 	}
3824 	spin_unlock(&kvm_lock);
3825 	return 0;
3826 }
3827 
3828 static int vcpu_stat_clear(void *_offset, u64 val)
3829 {
3830 	unsigned offset = (long)_offset;
3831 	struct kvm *kvm;
3832 	struct kvm_stat_data stat_tmp = {.offset = offset};
3833 
3834 	if (val)
3835 		return -EINVAL;
3836 
3837 	spin_lock(&kvm_lock);
3838 	list_for_each_entry(kvm, &vm_list, vm_list) {
3839 		stat_tmp.kvm = kvm;
3840 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3841 	}
3842 	spin_unlock(&kvm_lock);
3843 
3844 	return 0;
3845 }
3846 
3847 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3848 			"%llu\n");
3849 
3850 static const struct file_operations *stat_fops[] = {
3851 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3852 	[KVM_STAT_VM]   = &vm_stat_fops,
3853 };
3854 
3855 static int kvm_init_debug(void)
3856 {
3857 	int r = -EEXIST;
3858 	struct kvm_stats_debugfs_item *p;
3859 
3860 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3861 	if (kvm_debugfs_dir == NULL)
3862 		goto out;
3863 
3864 	kvm_debugfs_num_entries = 0;
3865 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3866 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3867 					 (void *)(long)p->offset,
3868 					 stat_fops[p->kind]))
3869 			goto out_dir;
3870 	}
3871 
3872 	return 0;
3873 
3874 out_dir:
3875 	debugfs_remove_recursive(kvm_debugfs_dir);
3876 out:
3877 	return r;
3878 }
3879 
3880 static int kvm_suspend(void)
3881 {
3882 	if (kvm_usage_count)
3883 		hardware_disable_nolock(NULL);
3884 	return 0;
3885 }
3886 
3887 static void kvm_resume(void)
3888 {
3889 	if (kvm_usage_count) {
3890 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3891 		hardware_enable_nolock(NULL);
3892 	}
3893 }
3894 
3895 static struct syscore_ops kvm_syscore_ops = {
3896 	.suspend = kvm_suspend,
3897 	.resume = kvm_resume,
3898 };
3899 
3900 static inline
3901 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3902 {
3903 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3904 }
3905 
3906 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3907 {
3908 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3909 
3910 	if (vcpu->preempted)
3911 		vcpu->preempted = false;
3912 
3913 	kvm_arch_sched_in(vcpu, cpu);
3914 
3915 	kvm_arch_vcpu_load(vcpu, cpu);
3916 }
3917 
3918 static void kvm_sched_out(struct preempt_notifier *pn,
3919 			  struct task_struct *next)
3920 {
3921 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3922 
3923 	if (current->state == TASK_RUNNING)
3924 		vcpu->preempted = true;
3925 	kvm_arch_vcpu_put(vcpu);
3926 }
3927 
3928 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3929 		  struct module *module)
3930 {
3931 	int r;
3932 	int cpu;
3933 
3934 	r = kvm_arch_init(opaque);
3935 	if (r)
3936 		goto out_fail;
3937 
3938 	/*
3939 	 * kvm_arch_init makes sure there's at most one caller
3940 	 * for architectures that support multiple implementations,
3941 	 * like intel and amd on x86.
3942 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3943 	 * conflicts in case kvm is already setup for another implementation.
3944 	 */
3945 	r = kvm_irqfd_init();
3946 	if (r)
3947 		goto out_irqfd;
3948 
3949 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3950 		r = -ENOMEM;
3951 		goto out_free_0;
3952 	}
3953 
3954 	r = kvm_arch_hardware_setup();
3955 	if (r < 0)
3956 		goto out_free_0a;
3957 
3958 	for_each_online_cpu(cpu) {
3959 		smp_call_function_single(cpu,
3960 				kvm_arch_check_processor_compat,
3961 				&r, 1);
3962 		if (r < 0)
3963 			goto out_free_1;
3964 	}
3965 
3966 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3967 				      kvm_starting_cpu, kvm_dying_cpu);
3968 	if (r)
3969 		goto out_free_2;
3970 	register_reboot_notifier(&kvm_reboot_notifier);
3971 
3972 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3973 	if (!vcpu_align)
3974 		vcpu_align = __alignof__(struct kvm_vcpu);
3975 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3976 					   0, NULL);
3977 	if (!kvm_vcpu_cache) {
3978 		r = -ENOMEM;
3979 		goto out_free_3;
3980 	}
3981 
3982 	r = kvm_async_pf_init();
3983 	if (r)
3984 		goto out_free;
3985 
3986 	kvm_chardev_ops.owner = module;
3987 	kvm_vm_fops.owner = module;
3988 	kvm_vcpu_fops.owner = module;
3989 
3990 	r = misc_register(&kvm_dev);
3991 	if (r) {
3992 		pr_err("kvm: misc device register failed\n");
3993 		goto out_unreg;
3994 	}
3995 
3996 	register_syscore_ops(&kvm_syscore_ops);
3997 
3998 	kvm_preempt_ops.sched_in = kvm_sched_in;
3999 	kvm_preempt_ops.sched_out = kvm_sched_out;
4000 
4001 	r = kvm_init_debug();
4002 	if (r) {
4003 		pr_err("kvm: create debugfs files failed\n");
4004 		goto out_undebugfs;
4005 	}
4006 
4007 	r = kvm_vfio_ops_init();
4008 	WARN_ON(r);
4009 
4010 	return 0;
4011 
4012 out_undebugfs:
4013 	unregister_syscore_ops(&kvm_syscore_ops);
4014 	misc_deregister(&kvm_dev);
4015 out_unreg:
4016 	kvm_async_pf_deinit();
4017 out_free:
4018 	kmem_cache_destroy(kvm_vcpu_cache);
4019 out_free_3:
4020 	unregister_reboot_notifier(&kvm_reboot_notifier);
4021 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4022 out_free_2:
4023 out_free_1:
4024 	kvm_arch_hardware_unsetup();
4025 out_free_0a:
4026 	free_cpumask_var(cpus_hardware_enabled);
4027 out_free_0:
4028 	kvm_irqfd_exit();
4029 out_irqfd:
4030 	kvm_arch_exit();
4031 out_fail:
4032 	return r;
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_init);
4035 
4036 void kvm_exit(void)
4037 {
4038 	debugfs_remove_recursive(kvm_debugfs_dir);
4039 	misc_deregister(&kvm_dev);
4040 	kmem_cache_destroy(kvm_vcpu_cache);
4041 	kvm_async_pf_deinit();
4042 	unregister_syscore_ops(&kvm_syscore_ops);
4043 	unregister_reboot_notifier(&kvm_reboot_notifier);
4044 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4045 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4046 	kvm_arch_hardware_unsetup();
4047 	kvm_arch_exit();
4048 	kvm_irqfd_exit();
4049 	free_cpumask_var(cpus_hardware_enabled);
4050 	kvm_vfio_ops_exit();
4051 }
4052 EXPORT_SYMBOL_GPL(kvm_exit);
4053