xref: /openbmc/linux/virt/kvm/kvm_main.c (revision e3b9f1e8)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122 
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124 
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126 
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129 
130 static bool largepages_enabled = true;
131 
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137 
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 		unsigned long start, unsigned long end)
140 {
141 }
142 
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 	if (pfn_valid(pfn))
146 		return PageReserved(pfn_to_page(pfn));
147 
148 	return true;
149 }
150 
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 void vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 	int cpu = get_cpu();
157 	preempt_notifier_register(&vcpu->preempt_notifier);
158 	kvm_arch_vcpu_load(vcpu, cpu);
159 	put_cpu();
160 }
161 EXPORT_SYMBOL_GPL(vcpu_load);
162 
163 void vcpu_put(struct kvm_vcpu *vcpu)
164 {
165 	preempt_disable();
166 	kvm_arch_vcpu_put(vcpu);
167 	preempt_notifier_unregister(&vcpu->preempt_notifier);
168 	preempt_enable();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_put);
171 
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
174 {
175 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
176 
177 	/*
178 	 * We need to wait for the VCPU to reenable interrupts and get out of
179 	 * READING_SHADOW_PAGE_TABLES mode.
180 	 */
181 	if (req & KVM_REQUEST_WAIT)
182 		return mode != OUTSIDE_GUEST_MODE;
183 
184 	/*
185 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
186 	 */
187 	return mode == IN_GUEST_MODE;
188 }
189 
190 static void ack_flush(void *_completed)
191 {
192 }
193 
194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
195 {
196 	if (unlikely(!cpus))
197 		cpus = cpu_online_mask;
198 
199 	if (cpumask_empty(cpus))
200 		return false;
201 
202 	smp_call_function_many(cpus, ack_flush, NULL, wait);
203 	return true;
204 }
205 
206 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
207 {
208 	int i, cpu, me;
209 	cpumask_var_t cpus;
210 	bool called;
211 	struct kvm_vcpu *vcpu;
212 
213 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
214 
215 	me = get_cpu();
216 	kvm_for_each_vcpu(i, vcpu, kvm) {
217 		kvm_make_request(req, vcpu);
218 		cpu = vcpu->cpu;
219 
220 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
221 			continue;
222 
223 		if (cpus != NULL && cpu != -1 && cpu != me &&
224 		    kvm_request_needs_ipi(vcpu, req))
225 			__cpumask_set_cpu(cpu, cpus);
226 	}
227 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
228 	put_cpu();
229 	free_cpumask_var(cpus);
230 	return called;
231 }
232 
233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
234 void kvm_flush_remote_tlbs(struct kvm *kvm)
235 {
236 	/*
237 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
238 	 * kvm_make_all_cpus_request.
239 	 */
240 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
241 
242 	/*
243 	 * We want to publish modifications to the page tables before reading
244 	 * mode. Pairs with a memory barrier in arch-specific code.
245 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
246 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
247 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
248 	 *
249 	 * There is already an smp_mb__after_atomic() before
250 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
251 	 * barrier here.
252 	 */
253 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
254 		++kvm->stat.remote_tlb_flush;
255 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
256 }
257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
258 #endif
259 
260 void kvm_reload_remote_mmus(struct kvm *kvm)
261 {
262 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
263 }
264 
265 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
266 {
267 	struct page *page;
268 	int r;
269 
270 	mutex_init(&vcpu->mutex);
271 	vcpu->cpu = -1;
272 	vcpu->kvm = kvm;
273 	vcpu->vcpu_id = id;
274 	vcpu->pid = NULL;
275 	init_swait_queue_head(&vcpu->wq);
276 	kvm_async_pf_vcpu_init(vcpu);
277 
278 	vcpu->pre_pcpu = -1;
279 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
280 
281 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
282 	if (!page) {
283 		r = -ENOMEM;
284 		goto fail;
285 	}
286 	vcpu->run = page_address(page);
287 
288 	kvm_vcpu_set_in_spin_loop(vcpu, false);
289 	kvm_vcpu_set_dy_eligible(vcpu, false);
290 	vcpu->preempted = false;
291 
292 	r = kvm_arch_vcpu_init(vcpu);
293 	if (r < 0)
294 		goto fail_free_run;
295 	return 0;
296 
297 fail_free_run:
298 	free_page((unsigned long)vcpu->run);
299 fail:
300 	return r;
301 }
302 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
303 
304 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
305 {
306 	/*
307 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
308 	 * will change the vcpu->pid pointer and on uninit all file
309 	 * descriptors are already gone.
310 	 */
311 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
312 	kvm_arch_vcpu_uninit(vcpu);
313 	free_page((unsigned long)vcpu->run);
314 }
315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
316 
317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
318 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
319 {
320 	return container_of(mn, struct kvm, mmu_notifier);
321 }
322 
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
324 					struct mm_struct *mm,
325 					unsigned long address,
326 					pte_t pte)
327 {
328 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 	int idx;
330 
331 	idx = srcu_read_lock(&kvm->srcu);
332 	spin_lock(&kvm->mmu_lock);
333 	kvm->mmu_notifier_seq++;
334 	kvm_set_spte_hva(kvm, address, pte);
335 	spin_unlock(&kvm->mmu_lock);
336 	srcu_read_unlock(&kvm->srcu, idx);
337 }
338 
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
340 						    struct mm_struct *mm,
341 						    unsigned long start,
342 						    unsigned long end)
343 {
344 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
345 	int need_tlb_flush = 0, idx;
346 
347 	idx = srcu_read_lock(&kvm->srcu);
348 	spin_lock(&kvm->mmu_lock);
349 	/*
350 	 * The count increase must become visible at unlock time as no
351 	 * spte can be established without taking the mmu_lock and
352 	 * count is also read inside the mmu_lock critical section.
353 	 */
354 	kvm->mmu_notifier_count++;
355 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
356 	need_tlb_flush |= kvm->tlbs_dirty;
357 	/* we've to flush the tlb before the pages can be freed */
358 	if (need_tlb_flush)
359 		kvm_flush_remote_tlbs(kvm);
360 
361 	spin_unlock(&kvm->mmu_lock);
362 
363 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
364 
365 	srcu_read_unlock(&kvm->srcu, idx);
366 }
367 
368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
369 						  struct mm_struct *mm,
370 						  unsigned long start,
371 						  unsigned long end)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 
375 	spin_lock(&kvm->mmu_lock);
376 	/*
377 	 * This sequence increase will notify the kvm page fault that
378 	 * the page that is going to be mapped in the spte could have
379 	 * been freed.
380 	 */
381 	kvm->mmu_notifier_seq++;
382 	smp_wmb();
383 	/*
384 	 * The above sequence increase must be visible before the
385 	 * below count decrease, which is ensured by the smp_wmb above
386 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
387 	 */
388 	kvm->mmu_notifier_count--;
389 	spin_unlock(&kvm->mmu_lock);
390 
391 	BUG_ON(kvm->mmu_notifier_count < 0);
392 }
393 
394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
395 					      struct mm_struct *mm,
396 					      unsigned long start,
397 					      unsigned long end)
398 {
399 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 	int young, idx;
401 
402 	idx = srcu_read_lock(&kvm->srcu);
403 	spin_lock(&kvm->mmu_lock);
404 
405 	young = kvm_age_hva(kvm, start, end);
406 	if (young)
407 		kvm_flush_remote_tlbs(kvm);
408 
409 	spin_unlock(&kvm->mmu_lock);
410 	srcu_read_unlock(&kvm->srcu, idx);
411 
412 	return young;
413 }
414 
415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
416 					struct mm_struct *mm,
417 					unsigned long start,
418 					unsigned long end)
419 {
420 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
421 	int young, idx;
422 
423 	idx = srcu_read_lock(&kvm->srcu);
424 	spin_lock(&kvm->mmu_lock);
425 	/*
426 	 * Even though we do not flush TLB, this will still adversely
427 	 * affect performance on pre-Haswell Intel EPT, where there is
428 	 * no EPT Access Bit to clear so that we have to tear down EPT
429 	 * tables instead. If we find this unacceptable, we can always
430 	 * add a parameter to kvm_age_hva so that it effectively doesn't
431 	 * do anything on clear_young.
432 	 *
433 	 * Also note that currently we never issue secondary TLB flushes
434 	 * from clear_young, leaving this job up to the regular system
435 	 * cadence. If we find this inaccurate, we might come up with a
436 	 * more sophisticated heuristic later.
437 	 */
438 	young = kvm_age_hva(kvm, start, end);
439 	spin_unlock(&kvm->mmu_lock);
440 	srcu_read_unlock(&kvm->srcu, idx);
441 
442 	return young;
443 }
444 
445 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
446 				       struct mm_struct *mm,
447 				       unsigned long address)
448 {
449 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 	int young, idx;
451 
452 	idx = srcu_read_lock(&kvm->srcu);
453 	spin_lock(&kvm->mmu_lock);
454 	young = kvm_test_age_hva(kvm, address);
455 	spin_unlock(&kvm->mmu_lock);
456 	srcu_read_unlock(&kvm->srcu, idx);
457 
458 	return young;
459 }
460 
461 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
462 				     struct mm_struct *mm)
463 {
464 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 	int idx;
466 
467 	idx = srcu_read_lock(&kvm->srcu);
468 	kvm_arch_flush_shadow_all(kvm);
469 	srcu_read_unlock(&kvm->srcu, idx);
470 }
471 
472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
473 	.flags			= MMU_INVALIDATE_DOES_NOT_BLOCK,
474 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
475 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
476 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
477 	.clear_young		= kvm_mmu_notifier_clear_young,
478 	.test_young		= kvm_mmu_notifier_test_young,
479 	.change_pte		= kvm_mmu_notifier_change_pte,
480 	.release		= kvm_mmu_notifier_release,
481 };
482 
483 static int kvm_init_mmu_notifier(struct kvm *kvm)
484 {
485 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
486 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
487 }
488 
489 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
490 
491 static int kvm_init_mmu_notifier(struct kvm *kvm)
492 {
493 	return 0;
494 }
495 
496 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
497 
498 static struct kvm_memslots *kvm_alloc_memslots(void)
499 {
500 	int i;
501 	struct kvm_memslots *slots;
502 
503 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
504 	if (!slots)
505 		return NULL;
506 
507 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
508 		slots->id_to_index[i] = slots->memslots[i].id = i;
509 
510 	return slots;
511 }
512 
513 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
514 {
515 	if (!memslot->dirty_bitmap)
516 		return;
517 
518 	kvfree(memslot->dirty_bitmap);
519 	memslot->dirty_bitmap = NULL;
520 }
521 
522 /*
523  * Free any memory in @free but not in @dont.
524  */
525 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
526 			      struct kvm_memory_slot *dont)
527 {
528 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
529 		kvm_destroy_dirty_bitmap(free);
530 
531 	kvm_arch_free_memslot(kvm, free, dont);
532 
533 	free->npages = 0;
534 }
535 
536 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
537 {
538 	struct kvm_memory_slot *memslot;
539 
540 	if (!slots)
541 		return;
542 
543 	kvm_for_each_memslot(memslot, slots)
544 		kvm_free_memslot(kvm, memslot, NULL);
545 
546 	kvfree(slots);
547 }
548 
549 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
550 {
551 	int i;
552 
553 	if (!kvm->debugfs_dentry)
554 		return;
555 
556 	debugfs_remove_recursive(kvm->debugfs_dentry);
557 
558 	if (kvm->debugfs_stat_data) {
559 		for (i = 0; i < kvm_debugfs_num_entries; i++)
560 			kfree(kvm->debugfs_stat_data[i]);
561 		kfree(kvm->debugfs_stat_data);
562 	}
563 }
564 
565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
566 {
567 	char dir_name[ITOA_MAX_LEN * 2];
568 	struct kvm_stat_data *stat_data;
569 	struct kvm_stats_debugfs_item *p;
570 
571 	if (!debugfs_initialized())
572 		return 0;
573 
574 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
575 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
576 						 kvm_debugfs_dir);
577 	if (!kvm->debugfs_dentry)
578 		return -ENOMEM;
579 
580 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
581 					 sizeof(*kvm->debugfs_stat_data),
582 					 GFP_KERNEL);
583 	if (!kvm->debugfs_stat_data)
584 		return -ENOMEM;
585 
586 	for (p = debugfs_entries; p->name; p++) {
587 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
588 		if (!stat_data)
589 			return -ENOMEM;
590 
591 		stat_data->kvm = kvm;
592 		stat_data->offset = p->offset;
593 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
594 		if (!debugfs_create_file(p->name, 0644,
595 					 kvm->debugfs_dentry,
596 					 stat_data,
597 					 stat_fops_per_vm[p->kind]))
598 			return -ENOMEM;
599 	}
600 	return 0;
601 }
602 
603 static struct kvm *kvm_create_vm(unsigned long type)
604 {
605 	int r, i;
606 	struct kvm *kvm = kvm_arch_alloc_vm();
607 
608 	if (!kvm)
609 		return ERR_PTR(-ENOMEM);
610 
611 	spin_lock_init(&kvm->mmu_lock);
612 	mmgrab(current->mm);
613 	kvm->mm = current->mm;
614 	kvm_eventfd_init(kvm);
615 	mutex_init(&kvm->lock);
616 	mutex_init(&kvm->irq_lock);
617 	mutex_init(&kvm->slots_lock);
618 	refcount_set(&kvm->users_count, 1);
619 	INIT_LIST_HEAD(&kvm->devices);
620 
621 	r = kvm_arch_init_vm(kvm, type);
622 	if (r)
623 		goto out_err_no_disable;
624 
625 	r = hardware_enable_all();
626 	if (r)
627 		goto out_err_no_disable;
628 
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
631 #endif
632 
633 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
634 
635 	r = -ENOMEM;
636 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
637 		struct kvm_memslots *slots = kvm_alloc_memslots();
638 		if (!slots)
639 			goto out_err_no_srcu;
640 		/*
641 		 * Generations must be different for each address space.
642 		 * Init kvm generation close to the maximum to easily test the
643 		 * code of handling generation number wrap-around.
644 		 */
645 		slots->generation = i * 2 - 150;
646 		rcu_assign_pointer(kvm->memslots[i], slots);
647 	}
648 
649 	if (init_srcu_struct(&kvm->srcu))
650 		goto out_err_no_srcu;
651 	if (init_srcu_struct(&kvm->irq_srcu))
652 		goto out_err_no_irq_srcu;
653 	for (i = 0; i < KVM_NR_BUSES; i++) {
654 		rcu_assign_pointer(kvm->buses[i],
655 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
656 		if (!kvm->buses[i])
657 			goto out_err;
658 	}
659 
660 	r = kvm_init_mmu_notifier(kvm);
661 	if (r)
662 		goto out_err;
663 
664 	spin_lock(&kvm_lock);
665 	list_add(&kvm->vm_list, &vm_list);
666 	spin_unlock(&kvm_lock);
667 
668 	preempt_notifier_inc();
669 
670 	return kvm;
671 
672 out_err:
673 	cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 	cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 	hardware_disable_all();
678 out_err_no_disable:
679 	refcount_set(&kvm->users_count, 0);
680 	for (i = 0; i < KVM_NR_BUSES; i++)
681 		kfree(kvm_get_bus(kvm, i));
682 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
683 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
684 	kvm_arch_free_vm(kvm);
685 	mmdrop(current->mm);
686 	return ERR_PTR(r);
687 }
688 
689 static void kvm_destroy_devices(struct kvm *kvm)
690 {
691 	struct kvm_device *dev, *tmp;
692 
693 	/*
694 	 * We do not need to take the kvm->lock here, because nobody else
695 	 * has a reference to the struct kvm at this point and therefore
696 	 * cannot access the devices list anyhow.
697 	 */
698 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
699 		list_del(&dev->vm_node);
700 		dev->ops->destroy(dev);
701 	}
702 }
703 
704 static void kvm_destroy_vm(struct kvm *kvm)
705 {
706 	int i;
707 	struct mm_struct *mm = kvm->mm;
708 
709 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
710 	kvm_destroy_vm_debugfs(kvm);
711 	kvm_arch_sync_events(kvm);
712 	spin_lock(&kvm_lock);
713 	list_del(&kvm->vm_list);
714 	spin_unlock(&kvm_lock);
715 	kvm_free_irq_routing(kvm);
716 	for (i = 0; i < KVM_NR_BUSES; i++) {
717 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
718 
719 		if (bus)
720 			kvm_io_bus_destroy(bus);
721 		kvm->buses[i] = NULL;
722 	}
723 	kvm_coalesced_mmio_free(kvm);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
726 #else
727 	kvm_arch_flush_shadow_all(kvm);
728 #endif
729 	kvm_arch_destroy_vm(kvm);
730 	kvm_destroy_devices(kvm);
731 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
732 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
733 	cleanup_srcu_struct(&kvm->irq_srcu);
734 	cleanup_srcu_struct(&kvm->srcu);
735 	kvm_arch_free_vm(kvm);
736 	preempt_notifier_dec();
737 	hardware_disable_all();
738 	mmdrop(mm);
739 }
740 
741 void kvm_get_kvm(struct kvm *kvm)
742 {
743 	refcount_inc(&kvm->users_count);
744 }
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
746 
747 void kvm_put_kvm(struct kvm *kvm)
748 {
749 	if (refcount_dec_and_test(&kvm->users_count))
750 		kvm_destroy_vm(kvm);
751 }
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
753 
754 
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
756 {
757 	struct kvm *kvm = filp->private_data;
758 
759 	kvm_irqfd_release(kvm);
760 
761 	kvm_put_kvm(kvm);
762 	return 0;
763 }
764 
765 /*
766  * Allocation size is twice as large as the actual dirty bitmap size.
767  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
768  */
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
770 {
771 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
772 
773 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
774 	if (!memslot->dirty_bitmap)
775 		return -ENOMEM;
776 
777 	return 0;
778 }
779 
780 /*
781  * Insert memslot and re-sort memslots based on their GFN,
782  * so binary search could be used to lookup GFN.
783  * Sorting algorithm takes advantage of having initially
784  * sorted array and known changed memslot position.
785  */
786 static void update_memslots(struct kvm_memslots *slots,
787 			    struct kvm_memory_slot *new)
788 {
789 	int id = new->id;
790 	int i = slots->id_to_index[id];
791 	struct kvm_memory_slot *mslots = slots->memslots;
792 
793 	WARN_ON(mslots[i].id != id);
794 	if (!new->npages) {
795 		WARN_ON(!mslots[i].npages);
796 		if (mslots[i].npages)
797 			slots->used_slots--;
798 	} else {
799 		if (!mslots[i].npages)
800 			slots->used_slots++;
801 	}
802 
803 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
804 	       new->base_gfn <= mslots[i + 1].base_gfn) {
805 		if (!mslots[i + 1].npages)
806 			break;
807 		mslots[i] = mslots[i + 1];
808 		slots->id_to_index[mslots[i].id] = i;
809 		i++;
810 	}
811 
812 	/*
813 	 * The ">=" is needed when creating a slot with base_gfn == 0,
814 	 * so that it moves before all those with base_gfn == npages == 0.
815 	 *
816 	 * On the other hand, if new->npages is zero, the above loop has
817 	 * already left i pointing to the beginning of the empty part of
818 	 * mslots, and the ">=" would move the hole backwards in this
819 	 * case---which is wrong.  So skip the loop when deleting a slot.
820 	 */
821 	if (new->npages) {
822 		while (i > 0 &&
823 		       new->base_gfn >= mslots[i - 1].base_gfn) {
824 			mslots[i] = mslots[i - 1];
825 			slots->id_to_index[mslots[i].id] = i;
826 			i--;
827 		}
828 	} else
829 		WARN_ON_ONCE(i != slots->used_slots);
830 
831 	mslots[i] = *new;
832 	slots->id_to_index[mslots[i].id] = i;
833 }
834 
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
836 {
837 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
838 
839 #ifdef __KVM_HAVE_READONLY_MEM
840 	valid_flags |= KVM_MEM_READONLY;
841 #endif
842 
843 	if (mem->flags & ~valid_flags)
844 		return -EINVAL;
845 
846 	return 0;
847 }
848 
849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
850 		int as_id, struct kvm_memslots *slots)
851 {
852 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
853 
854 	/*
855 	 * Set the low bit in the generation, which disables SPTE caching
856 	 * until the end of synchronize_srcu_expedited.
857 	 */
858 	WARN_ON(old_memslots->generation & 1);
859 	slots->generation = old_memslots->generation + 1;
860 
861 	rcu_assign_pointer(kvm->memslots[as_id], slots);
862 	synchronize_srcu_expedited(&kvm->srcu);
863 
864 	/*
865 	 * Increment the new memslot generation a second time. This prevents
866 	 * vm exits that race with memslot updates from caching a memslot
867 	 * generation that will (potentially) be valid forever.
868 	 *
869 	 * Generations must be unique even across address spaces.  We do not need
870 	 * a global counter for that, instead the generation space is evenly split
871 	 * across address spaces.  For example, with two address spaces, address
872 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
873 	 * use generations 2, 6, 10, 14, ...
874 	 */
875 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
876 
877 	kvm_arch_memslots_updated(kvm, slots);
878 
879 	return old_memslots;
880 }
881 
882 /*
883  * Allocate some memory and give it an address in the guest physical address
884  * space.
885  *
886  * Discontiguous memory is allowed, mostly for framebuffers.
887  *
888  * Must be called holding kvm->slots_lock for write.
889  */
890 int __kvm_set_memory_region(struct kvm *kvm,
891 			    const struct kvm_userspace_memory_region *mem)
892 {
893 	int r;
894 	gfn_t base_gfn;
895 	unsigned long npages;
896 	struct kvm_memory_slot *slot;
897 	struct kvm_memory_slot old, new;
898 	struct kvm_memslots *slots = NULL, *old_memslots;
899 	int as_id, id;
900 	enum kvm_mr_change change;
901 
902 	r = check_memory_region_flags(mem);
903 	if (r)
904 		goto out;
905 
906 	r = -EINVAL;
907 	as_id = mem->slot >> 16;
908 	id = (u16)mem->slot;
909 
910 	/* General sanity checks */
911 	if (mem->memory_size & (PAGE_SIZE - 1))
912 		goto out;
913 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
914 		goto out;
915 	/* We can read the guest memory with __xxx_user() later on. */
916 	if ((id < KVM_USER_MEM_SLOTS) &&
917 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
918 	     !access_ok(VERIFY_WRITE,
919 			(void __user *)(unsigned long)mem->userspace_addr,
920 			mem->memory_size)))
921 		goto out;
922 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
923 		goto out;
924 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
925 		goto out;
926 
927 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
928 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
929 	npages = mem->memory_size >> PAGE_SHIFT;
930 
931 	if (npages > KVM_MEM_MAX_NR_PAGES)
932 		goto out;
933 
934 	new = old = *slot;
935 
936 	new.id = id;
937 	new.base_gfn = base_gfn;
938 	new.npages = npages;
939 	new.flags = mem->flags;
940 
941 	if (npages) {
942 		if (!old.npages)
943 			change = KVM_MR_CREATE;
944 		else { /* Modify an existing slot. */
945 			if ((mem->userspace_addr != old.userspace_addr) ||
946 			    (npages != old.npages) ||
947 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
948 				goto out;
949 
950 			if (base_gfn != old.base_gfn)
951 				change = KVM_MR_MOVE;
952 			else if (new.flags != old.flags)
953 				change = KVM_MR_FLAGS_ONLY;
954 			else { /* Nothing to change. */
955 				r = 0;
956 				goto out;
957 			}
958 		}
959 	} else {
960 		if (!old.npages)
961 			goto out;
962 
963 		change = KVM_MR_DELETE;
964 		new.base_gfn = 0;
965 		new.flags = 0;
966 	}
967 
968 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
969 		/* Check for overlaps */
970 		r = -EEXIST;
971 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
972 			if (slot->id == id)
973 				continue;
974 			if (!((base_gfn + npages <= slot->base_gfn) ||
975 			      (base_gfn >= slot->base_gfn + slot->npages)))
976 				goto out;
977 		}
978 	}
979 
980 	/* Free page dirty bitmap if unneeded */
981 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982 		new.dirty_bitmap = NULL;
983 
984 	r = -ENOMEM;
985 	if (change == KVM_MR_CREATE) {
986 		new.userspace_addr = mem->userspace_addr;
987 
988 		if (kvm_arch_create_memslot(kvm, &new, npages))
989 			goto out_free;
990 	}
991 
992 	/* Allocate page dirty bitmap if needed */
993 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994 		if (kvm_create_dirty_bitmap(&new) < 0)
995 			goto out_free;
996 	}
997 
998 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
999 	if (!slots)
1000 		goto out_free;
1001 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002 
1003 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004 		slot = id_to_memslot(slots, id);
1005 		slot->flags |= KVM_MEMSLOT_INVALID;
1006 
1007 		old_memslots = install_new_memslots(kvm, as_id, slots);
1008 
1009 		/* From this point no new shadow pages pointing to a deleted,
1010 		 * or moved, memslot will be created.
1011 		 *
1012 		 * validation of sp->gfn happens in:
1013 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1014 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1015 		 */
1016 		kvm_arch_flush_shadow_memslot(kvm, slot);
1017 
1018 		/*
1019 		 * We can re-use the old_memslots from above, the only difference
1020 		 * from the currently installed memslots is the invalid flag.  This
1021 		 * will get overwritten by update_memslots anyway.
1022 		 */
1023 		slots = old_memslots;
1024 	}
1025 
1026 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1027 	if (r)
1028 		goto out_slots;
1029 
1030 	/* actual memory is freed via old in kvm_free_memslot below */
1031 	if (change == KVM_MR_DELETE) {
1032 		new.dirty_bitmap = NULL;
1033 		memset(&new.arch, 0, sizeof(new.arch));
1034 	}
1035 
1036 	update_memslots(slots, &new);
1037 	old_memslots = install_new_memslots(kvm, as_id, slots);
1038 
1039 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1040 
1041 	kvm_free_memslot(kvm, &old, &new);
1042 	kvfree(old_memslots);
1043 	return 0;
1044 
1045 out_slots:
1046 	kvfree(slots);
1047 out_free:
1048 	kvm_free_memslot(kvm, &new, &old);
1049 out:
1050 	return r;
1051 }
1052 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1053 
1054 int kvm_set_memory_region(struct kvm *kvm,
1055 			  const struct kvm_userspace_memory_region *mem)
1056 {
1057 	int r;
1058 
1059 	mutex_lock(&kvm->slots_lock);
1060 	r = __kvm_set_memory_region(kvm, mem);
1061 	mutex_unlock(&kvm->slots_lock);
1062 	return r;
1063 }
1064 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1065 
1066 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1067 					  struct kvm_userspace_memory_region *mem)
1068 {
1069 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1070 		return -EINVAL;
1071 
1072 	return kvm_set_memory_region(kvm, mem);
1073 }
1074 
1075 int kvm_get_dirty_log(struct kvm *kvm,
1076 			struct kvm_dirty_log *log, int *is_dirty)
1077 {
1078 	struct kvm_memslots *slots;
1079 	struct kvm_memory_slot *memslot;
1080 	int i, as_id, id;
1081 	unsigned long n;
1082 	unsigned long any = 0;
1083 
1084 	as_id = log->slot >> 16;
1085 	id = (u16)log->slot;
1086 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1087 		return -EINVAL;
1088 
1089 	slots = __kvm_memslots(kvm, as_id);
1090 	memslot = id_to_memslot(slots, id);
1091 	if (!memslot->dirty_bitmap)
1092 		return -ENOENT;
1093 
1094 	n = kvm_dirty_bitmap_bytes(memslot);
1095 
1096 	for (i = 0; !any && i < n/sizeof(long); ++i)
1097 		any = memslot->dirty_bitmap[i];
1098 
1099 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1100 		return -EFAULT;
1101 
1102 	if (any)
1103 		*is_dirty = 1;
1104 	return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1107 
1108 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1109 /**
1110  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1111  *	are dirty write protect them for next write.
1112  * @kvm:	pointer to kvm instance
1113  * @log:	slot id and address to which we copy the log
1114  * @is_dirty:	flag set if any page is dirty
1115  *
1116  * We need to keep it in mind that VCPU threads can write to the bitmap
1117  * concurrently. So, to avoid losing track of dirty pages we keep the
1118  * following order:
1119  *
1120  *    1. Take a snapshot of the bit and clear it if needed.
1121  *    2. Write protect the corresponding page.
1122  *    3. Copy the snapshot to the userspace.
1123  *    4. Upon return caller flushes TLB's if needed.
1124  *
1125  * Between 2 and 4, the guest may write to the page using the remaining TLB
1126  * entry.  This is not a problem because the page is reported dirty using
1127  * the snapshot taken before and step 4 ensures that writes done after
1128  * exiting to userspace will be logged for the next call.
1129  *
1130  */
1131 int kvm_get_dirty_log_protect(struct kvm *kvm,
1132 			struct kvm_dirty_log *log, bool *is_dirty)
1133 {
1134 	struct kvm_memslots *slots;
1135 	struct kvm_memory_slot *memslot;
1136 	int i, as_id, id;
1137 	unsigned long n;
1138 	unsigned long *dirty_bitmap;
1139 	unsigned long *dirty_bitmap_buffer;
1140 
1141 	as_id = log->slot >> 16;
1142 	id = (u16)log->slot;
1143 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1144 		return -EINVAL;
1145 
1146 	slots = __kvm_memslots(kvm, as_id);
1147 	memslot = id_to_memslot(slots, id);
1148 
1149 	dirty_bitmap = memslot->dirty_bitmap;
1150 	if (!dirty_bitmap)
1151 		return -ENOENT;
1152 
1153 	n = kvm_dirty_bitmap_bytes(memslot);
1154 
1155 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1156 	memset(dirty_bitmap_buffer, 0, n);
1157 
1158 	spin_lock(&kvm->mmu_lock);
1159 	*is_dirty = false;
1160 	for (i = 0; i < n / sizeof(long); i++) {
1161 		unsigned long mask;
1162 		gfn_t offset;
1163 
1164 		if (!dirty_bitmap[i])
1165 			continue;
1166 
1167 		*is_dirty = true;
1168 
1169 		mask = xchg(&dirty_bitmap[i], 0);
1170 		dirty_bitmap_buffer[i] = mask;
1171 
1172 		if (mask) {
1173 			offset = i * BITS_PER_LONG;
1174 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1175 								offset, mask);
1176 		}
1177 	}
1178 
1179 	spin_unlock(&kvm->mmu_lock);
1180 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1181 		return -EFAULT;
1182 	return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1185 #endif
1186 
1187 bool kvm_largepages_enabled(void)
1188 {
1189 	return largepages_enabled;
1190 }
1191 
1192 void kvm_disable_largepages(void)
1193 {
1194 	largepages_enabled = false;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1197 
1198 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1199 {
1200 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1201 }
1202 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1203 
1204 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1205 {
1206 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1207 }
1208 
1209 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1210 {
1211 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1212 
1213 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1214 	      memslot->flags & KVM_MEMSLOT_INVALID)
1215 		return false;
1216 
1217 	return true;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1220 
1221 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1222 {
1223 	struct vm_area_struct *vma;
1224 	unsigned long addr, size;
1225 
1226 	size = PAGE_SIZE;
1227 
1228 	addr = gfn_to_hva(kvm, gfn);
1229 	if (kvm_is_error_hva(addr))
1230 		return PAGE_SIZE;
1231 
1232 	down_read(&current->mm->mmap_sem);
1233 	vma = find_vma(current->mm, addr);
1234 	if (!vma)
1235 		goto out;
1236 
1237 	size = vma_kernel_pagesize(vma);
1238 
1239 out:
1240 	up_read(&current->mm->mmap_sem);
1241 
1242 	return size;
1243 }
1244 
1245 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1246 {
1247 	return slot->flags & KVM_MEM_READONLY;
1248 }
1249 
1250 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1251 				       gfn_t *nr_pages, bool write)
1252 {
1253 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1254 		return KVM_HVA_ERR_BAD;
1255 
1256 	if (memslot_is_readonly(slot) && write)
1257 		return KVM_HVA_ERR_RO_BAD;
1258 
1259 	if (nr_pages)
1260 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1261 
1262 	return __gfn_to_hva_memslot(slot, gfn);
1263 }
1264 
1265 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1266 				     gfn_t *nr_pages)
1267 {
1268 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1269 }
1270 
1271 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1272 					gfn_t gfn)
1273 {
1274 	return gfn_to_hva_many(slot, gfn, NULL);
1275 }
1276 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1277 
1278 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1279 {
1280 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1281 }
1282 EXPORT_SYMBOL_GPL(gfn_to_hva);
1283 
1284 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1285 {
1286 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1289 
1290 /*
1291  * If writable is set to false, the hva returned by this function is only
1292  * allowed to be read.
1293  */
1294 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1295 				      gfn_t gfn, bool *writable)
1296 {
1297 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1298 
1299 	if (!kvm_is_error_hva(hva) && writable)
1300 		*writable = !memslot_is_readonly(slot);
1301 
1302 	return hva;
1303 }
1304 
1305 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1306 {
1307 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1308 
1309 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1310 }
1311 
1312 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1313 {
1314 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1315 
1316 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1317 }
1318 
1319 static inline int check_user_page_hwpoison(unsigned long addr)
1320 {
1321 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1322 
1323 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1324 	return rc == -EHWPOISON;
1325 }
1326 
1327 /*
1328  * The atomic path to get the writable pfn which will be stored in @pfn,
1329  * true indicates success, otherwise false is returned.
1330  */
1331 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1332 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1333 {
1334 	struct page *page[1];
1335 	int npages;
1336 
1337 	if (!(async || atomic))
1338 		return false;
1339 
1340 	/*
1341 	 * Fast pin a writable pfn only if it is a write fault request
1342 	 * or the caller allows to map a writable pfn for a read fault
1343 	 * request.
1344 	 */
1345 	if (!(write_fault || writable))
1346 		return false;
1347 
1348 	npages = __get_user_pages_fast(addr, 1, 1, page);
1349 	if (npages == 1) {
1350 		*pfn = page_to_pfn(page[0]);
1351 
1352 		if (writable)
1353 			*writable = true;
1354 		return true;
1355 	}
1356 
1357 	return false;
1358 }
1359 
1360 /*
1361  * The slow path to get the pfn of the specified host virtual address,
1362  * 1 indicates success, -errno is returned if error is detected.
1363  */
1364 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1365 			   bool *writable, kvm_pfn_t *pfn)
1366 {
1367 	unsigned int flags = FOLL_HWPOISON;
1368 	struct page *page;
1369 	int npages = 0;
1370 
1371 	might_sleep();
1372 
1373 	if (writable)
1374 		*writable = write_fault;
1375 
1376 	if (write_fault)
1377 		flags |= FOLL_WRITE;
1378 	if (async)
1379 		flags |= FOLL_NOWAIT;
1380 
1381 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1382 	if (npages != 1)
1383 		return npages;
1384 
1385 	/* map read fault as writable if possible */
1386 	if (unlikely(!write_fault) && writable) {
1387 		struct page *wpage;
1388 
1389 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1390 			*writable = true;
1391 			put_page(page);
1392 			page = wpage;
1393 		}
1394 	}
1395 	*pfn = page_to_pfn(page);
1396 	return npages;
1397 }
1398 
1399 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1400 {
1401 	if (unlikely(!(vma->vm_flags & VM_READ)))
1402 		return false;
1403 
1404 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1405 		return false;
1406 
1407 	return true;
1408 }
1409 
1410 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1411 			       unsigned long addr, bool *async,
1412 			       bool write_fault, bool *writable,
1413 			       kvm_pfn_t *p_pfn)
1414 {
1415 	unsigned long pfn;
1416 	int r;
1417 
1418 	r = follow_pfn(vma, addr, &pfn);
1419 	if (r) {
1420 		/*
1421 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1422 		 * not call the fault handler, so do it here.
1423 		 */
1424 		bool unlocked = false;
1425 		r = fixup_user_fault(current, current->mm, addr,
1426 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1427 				     &unlocked);
1428 		if (unlocked)
1429 			return -EAGAIN;
1430 		if (r)
1431 			return r;
1432 
1433 		r = follow_pfn(vma, addr, &pfn);
1434 		if (r)
1435 			return r;
1436 
1437 	}
1438 
1439 	if (writable)
1440 		*writable = true;
1441 
1442 	/*
1443 	 * Get a reference here because callers of *hva_to_pfn* and
1444 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1445 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1446 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1447 	 * simply do nothing for reserved pfns.
1448 	 *
1449 	 * Whoever called remap_pfn_range is also going to call e.g.
1450 	 * unmap_mapping_range before the underlying pages are freed,
1451 	 * causing a call to our MMU notifier.
1452 	 */
1453 	kvm_get_pfn(pfn);
1454 
1455 	*p_pfn = pfn;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * Pin guest page in memory and return its pfn.
1461  * @addr: host virtual address which maps memory to the guest
1462  * @atomic: whether this function can sleep
1463  * @async: whether this function need to wait IO complete if the
1464  *         host page is not in the memory
1465  * @write_fault: whether we should get a writable host page
1466  * @writable: whether it allows to map a writable host page for !@write_fault
1467  *
1468  * The function will map a writable host page for these two cases:
1469  * 1): @write_fault = true
1470  * 2): @write_fault = false && @writable, @writable will tell the caller
1471  *     whether the mapping is writable.
1472  */
1473 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1474 			bool write_fault, bool *writable)
1475 {
1476 	struct vm_area_struct *vma;
1477 	kvm_pfn_t pfn = 0;
1478 	int npages, r;
1479 
1480 	/* we can do it either atomically or asynchronously, not both */
1481 	BUG_ON(atomic && async);
1482 
1483 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1484 		return pfn;
1485 
1486 	if (atomic)
1487 		return KVM_PFN_ERR_FAULT;
1488 
1489 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1490 	if (npages == 1)
1491 		return pfn;
1492 
1493 	down_read(&current->mm->mmap_sem);
1494 	if (npages == -EHWPOISON ||
1495 	      (!async && check_user_page_hwpoison(addr))) {
1496 		pfn = KVM_PFN_ERR_HWPOISON;
1497 		goto exit;
1498 	}
1499 
1500 retry:
1501 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1502 
1503 	if (vma == NULL)
1504 		pfn = KVM_PFN_ERR_FAULT;
1505 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1506 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1507 		if (r == -EAGAIN)
1508 			goto retry;
1509 		if (r < 0)
1510 			pfn = KVM_PFN_ERR_FAULT;
1511 	} else {
1512 		if (async && vma_is_valid(vma, write_fault))
1513 			*async = true;
1514 		pfn = KVM_PFN_ERR_FAULT;
1515 	}
1516 exit:
1517 	up_read(&current->mm->mmap_sem);
1518 	return pfn;
1519 }
1520 
1521 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1522 			       bool atomic, bool *async, bool write_fault,
1523 			       bool *writable)
1524 {
1525 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1526 
1527 	if (addr == KVM_HVA_ERR_RO_BAD) {
1528 		if (writable)
1529 			*writable = false;
1530 		return KVM_PFN_ERR_RO_FAULT;
1531 	}
1532 
1533 	if (kvm_is_error_hva(addr)) {
1534 		if (writable)
1535 			*writable = false;
1536 		return KVM_PFN_NOSLOT;
1537 	}
1538 
1539 	/* Do not map writable pfn in the readonly memslot. */
1540 	if (writable && memslot_is_readonly(slot)) {
1541 		*writable = false;
1542 		writable = NULL;
1543 	}
1544 
1545 	return hva_to_pfn(addr, atomic, async, write_fault,
1546 			  writable);
1547 }
1548 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1549 
1550 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1551 		      bool *writable)
1552 {
1553 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1554 				    write_fault, writable);
1555 }
1556 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1557 
1558 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1559 {
1560 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1561 }
1562 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1563 
1564 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1565 {
1566 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1567 }
1568 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1569 
1570 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1571 {
1572 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1573 }
1574 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1575 
1576 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1577 {
1578 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1579 }
1580 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1581 
1582 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1583 {
1584 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1585 }
1586 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1587 
1588 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1589 {
1590 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1593 
1594 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1595 			    struct page **pages, int nr_pages)
1596 {
1597 	unsigned long addr;
1598 	gfn_t entry = 0;
1599 
1600 	addr = gfn_to_hva_many(slot, gfn, &entry);
1601 	if (kvm_is_error_hva(addr))
1602 		return -1;
1603 
1604 	if (entry < nr_pages)
1605 		return 0;
1606 
1607 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1608 }
1609 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1610 
1611 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1612 {
1613 	if (is_error_noslot_pfn(pfn))
1614 		return KVM_ERR_PTR_BAD_PAGE;
1615 
1616 	if (kvm_is_reserved_pfn(pfn)) {
1617 		WARN_ON(1);
1618 		return KVM_ERR_PTR_BAD_PAGE;
1619 	}
1620 
1621 	return pfn_to_page(pfn);
1622 }
1623 
1624 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1625 {
1626 	kvm_pfn_t pfn;
1627 
1628 	pfn = gfn_to_pfn(kvm, gfn);
1629 
1630 	return kvm_pfn_to_page(pfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_page);
1633 
1634 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636 	kvm_pfn_t pfn;
1637 
1638 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1639 
1640 	return kvm_pfn_to_page(pfn);
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1643 
1644 void kvm_release_page_clean(struct page *page)
1645 {
1646 	WARN_ON(is_error_page(page));
1647 
1648 	kvm_release_pfn_clean(page_to_pfn(page));
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1651 
1652 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1653 {
1654 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1655 		put_page(pfn_to_page(pfn));
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1658 
1659 void kvm_release_page_dirty(struct page *page)
1660 {
1661 	WARN_ON(is_error_page(page));
1662 
1663 	kvm_release_pfn_dirty(page_to_pfn(page));
1664 }
1665 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1666 
1667 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1668 {
1669 	kvm_set_pfn_dirty(pfn);
1670 	kvm_release_pfn_clean(pfn);
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1673 
1674 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1675 {
1676 	if (!kvm_is_reserved_pfn(pfn)) {
1677 		struct page *page = pfn_to_page(pfn);
1678 
1679 		if (!PageReserved(page))
1680 			SetPageDirty(page);
1681 	}
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1684 
1685 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1686 {
1687 	if (!kvm_is_reserved_pfn(pfn))
1688 		mark_page_accessed(pfn_to_page(pfn));
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1691 
1692 void kvm_get_pfn(kvm_pfn_t pfn)
1693 {
1694 	if (!kvm_is_reserved_pfn(pfn))
1695 		get_page(pfn_to_page(pfn));
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1698 
1699 static int next_segment(unsigned long len, int offset)
1700 {
1701 	if (len > PAGE_SIZE - offset)
1702 		return PAGE_SIZE - offset;
1703 	else
1704 		return len;
1705 }
1706 
1707 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1708 				 void *data, int offset, int len)
1709 {
1710 	int r;
1711 	unsigned long addr;
1712 
1713 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1714 	if (kvm_is_error_hva(addr))
1715 		return -EFAULT;
1716 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1717 	if (r)
1718 		return -EFAULT;
1719 	return 0;
1720 }
1721 
1722 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1723 			int len)
1724 {
1725 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1726 
1727 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1728 }
1729 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1730 
1731 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1732 			     int offset, int len)
1733 {
1734 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1735 
1736 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1739 
1740 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1741 {
1742 	gfn_t gfn = gpa >> PAGE_SHIFT;
1743 	int seg;
1744 	int offset = offset_in_page(gpa);
1745 	int ret;
1746 
1747 	while ((seg = next_segment(len, offset)) != 0) {
1748 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1749 		if (ret < 0)
1750 			return ret;
1751 		offset = 0;
1752 		len -= seg;
1753 		data += seg;
1754 		++gfn;
1755 	}
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_read_guest);
1759 
1760 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1761 {
1762 	gfn_t gfn = gpa >> PAGE_SHIFT;
1763 	int seg;
1764 	int offset = offset_in_page(gpa);
1765 	int ret;
1766 
1767 	while ((seg = next_segment(len, offset)) != 0) {
1768 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1769 		if (ret < 0)
1770 			return ret;
1771 		offset = 0;
1772 		len -= seg;
1773 		data += seg;
1774 		++gfn;
1775 	}
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1779 
1780 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1781 			           void *data, int offset, unsigned long len)
1782 {
1783 	int r;
1784 	unsigned long addr;
1785 
1786 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1787 	if (kvm_is_error_hva(addr))
1788 		return -EFAULT;
1789 	pagefault_disable();
1790 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1791 	pagefault_enable();
1792 	if (r)
1793 		return -EFAULT;
1794 	return 0;
1795 }
1796 
1797 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1798 			  unsigned long len)
1799 {
1800 	gfn_t gfn = gpa >> PAGE_SHIFT;
1801 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1802 	int offset = offset_in_page(gpa);
1803 
1804 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1807 
1808 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1809 			       void *data, unsigned long len)
1810 {
1811 	gfn_t gfn = gpa >> PAGE_SHIFT;
1812 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1813 	int offset = offset_in_page(gpa);
1814 
1815 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1818 
1819 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1820 			          const void *data, int offset, int len)
1821 {
1822 	int r;
1823 	unsigned long addr;
1824 
1825 	addr = gfn_to_hva_memslot(memslot, gfn);
1826 	if (kvm_is_error_hva(addr))
1827 		return -EFAULT;
1828 	r = __copy_to_user((void __user *)addr + offset, data, len);
1829 	if (r)
1830 		return -EFAULT;
1831 	mark_page_dirty_in_slot(memslot, gfn);
1832 	return 0;
1833 }
1834 
1835 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1836 			 const void *data, int offset, int len)
1837 {
1838 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1839 
1840 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1841 }
1842 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1843 
1844 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1845 			      const void *data, int offset, int len)
1846 {
1847 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1848 
1849 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1852 
1853 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1854 		    unsigned long len)
1855 {
1856 	gfn_t gfn = gpa >> PAGE_SHIFT;
1857 	int seg;
1858 	int offset = offset_in_page(gpa);
1859 	int ret;
1860 
1861 	while ((seg = next_segment(len, offset)) != 0) {
1862 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1863 		if (ret < 0)
1864 			return ret;
1865 		offset = 0;
1866 		len -= seg;
1867 		data += seg;
1868 		++gfn;
1869 	}
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_write_guest);
1873 
1874 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1875 		         unsigned long len)
1876 {
1877 	gfn_t gfn = gpa >> PAGE_SHIFT;
1878 	int seg;
1879 	int offset = offset_in_page(gpa);
1880 	int ret;
1881 
1882 	while ((seg = next_segment(len, offset)) != 0) {
1883 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1884 		if (ret < 0)
1885 			return ret;
1886 		offset = 0;
1887 		len -= seg;
1888 		data += seg;
1889 		++gfn;
1890 	}
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1894 
1895 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1896 				       struct gfn_to_hva_cache *ghc,
1897 				       gpa_t gpa, unsigned long len)
1898 {
1899 	int offset = offset_in_page(gpa);
1900 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1901 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1902 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1903 	gfn_t nr_pages_avail;
1904 
1905 	ghc->gpa = gpa;
1906 	ghc->generation = slots->generation;
1907 	ghc->len = len;
1908 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1909 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1910 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1911 		ghc->hva += offset;
1912 	} else {
1913 		/*
1914 		 * If the requested region crosses two memslots, we still
1915 		 * verify that the entire region is valid here.
1916 		 */
1917 		while (start_gfn <= end_gfn) {
1918 			nr_pages_avail = 0;
1919 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1920 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1921 						   &nr_pages_avail);
1922 			if (kvm_is_error_hva(ghc->hva))
1923 				return -EFAULT;
1924 			start_gfn += nr_pages_avail;
1925 		}
1926 		/* Use the slow path for cross page reads and writes. */
1927 		ghc->memslot = NULL;
1928 	}
1929 	return 0;
1930 }
1931 
1932 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1933 			      gpa_t gpa, unsigned long len)
1934 {
1935 	struct kvm_memslots *slots = kvm_memslots(kvm);
1936 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1939 
1940 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941 			   void *data, int offset, unsigned long len)
1942 {
1943 	struct kvm_memslots *slots = kvm_memslots(kvm);
1944 	int r;
1945 	gpa_t gpa = ghc->gpa + offset;
1946 
1947 	BUG_ON(len + offset > ghc->len);
1948 
1949 	if (slots->generation != ghc->generation)
1950 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1951 
1952 	if (unlikely(!ghc->memslot))
1953 		return kvm_write_guest(kvm, gpa, data, len);
1954 
1955 	if (kvm_is_error_hva(ghc->hva))
1956 		return -EFAULT;
1957 
1958 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1959 	if (r)
1960 		return -EFAULT;
1961 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1962 
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1966 
1967 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968 			   void *data, unsigned long len)
1969 {
1970 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1971 }
1972 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1973 
1974 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1975 			   void *data, unsigned long len)
1976 {
1977 	struct kvm_memslots *slots = kvm_memslots(kvm);
1978 	int r;
1979 
1980 	BUG_ON(len > ghc->len);
1981 
1982 	if (slots->generation != ghc->generation)
1983 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1984 
1985 	if (unlikely(!ghc->memslot))
1986 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1987 
1988 	if (kvm_is_error_hva(ghc->hva))
1989 		return -EFAULT;
1990 
1991 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1992 	if (r)
1993 		return -EFAULT;
1994 
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1998 
1999 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2000 {
2001 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2002 
2003 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2004 }
2005 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2006 
2007 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2008 {
2009 	gfn_t gfn = gpa >> PAGE_SHIFT;
2010 	int seg;
2011 	int offset = offset_in_page(gpa);
2012 	int ret;
2013 
2014 	while ((seg = next_segment(len, offset)) != 0) {
2015 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2016 		if (ret < 0)
2017 			return ret;
2018 		offset = 0;
2019 		len -= seg;
2020 		++gfn;
2021 	}
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2025 
2026 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2027 				    gfn_t gfn)
2028 {
2029 	if (memslot && memslot->dirty_bitmap) {
2030 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2031 
2032 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2033 	}
2034 }
2035 
2036 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2037 {
2038 	struct kvm_memory_slot *memslot;
2039 
2040 	memslot = gfn_to_memslot(kvm, gfn);
2041 	mark_page_dirty_in_slot(memslot, gfn);
2042 }
2043 EXPORT_SYMBOL_GPL(mark_page_dirty);
2044 
2045 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2046 {
2047 	struct kvm_memory_slot *memslot;
2048 
2049 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2050 	mark_page_dirty_in_slot(memslot, gfn);
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2053 
2054 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2055 {
2056 	if (!vcpu->sigset_active)
2057 		return;
2058 
2059 	/*
2060 	 * This does a lockless modification of ->real_blocked, which is fine
2061 	 * because, only current can change ->real_blocked and all readers of
2062 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2063 	 * of ->blocked.
2064 	 */
2065 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2066 }
2067 
2068 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2069 {
2070 	if (!vcpu->sigset_active)
2071 		return;
2072 
2073 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2074 	sigemptyset(&current->real_blocked);
2075 }
2076 
2077 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2078 {
2079 	unsigned int old, val, grow;
2080 
2081 	old = val = vcpu->halt_poll_ns;
2082 	grow = READ_ONCE(halt_poll_ns_grow);
2083 	/* 10us base */
2084 	if (val == 0 && grow)
2085 		val = 10000;
2086 	else
2087 		val *= grow;
2088 
2089 	if (val > halt_poll_ns)
2090 		val = halt_poll_ns;
2091 
2092 	vcpu->halt_poll_ns = val;
2093 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2094 }
2095 
2096 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2097 {
2098 	unsigned int old, val, shrink;
2099 
2100 	old = val = vcpu->halt_poll_ns;
2101 	shrink = READ_ONCE(halt_poll_ns_shrink);
2102 	if (shrink == 0)
2103 		val = 0;
2104 	else
2105 		val /= shrink;
2106 
2107 	vcpu->halt_poll_ns = val;
2108 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2109 }
2110 
2111 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2112 {
2113 	if (kvm_arch_vcpu_runnable(vcpu)) {
2114 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2115 		return -EINTR;
2116 	}
2117 	if (kvm_cpu_has_pending_timer(vcpu))
2118 		return -EINTR;
2119 	if (signal_pending(current))
2120 		return -EINTR;
2121 
2122 	return 0;
2123 }
2124 
2125 /*
2126  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2127  */
2128 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2129 {
2130 	ktime_t start, cur;
2131 	DECLARE_SWAITQUEUE(wait);
2132 	bool waited = false;
2133 	u64 block_ns;
2134 
2135 	start = cur = ktime_get();
2136 	if (vcpu->halt_poll_ns) {
2137 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2138 
2139 		++vcpu->stat.halt_attempted_poll;
2140 		do {
2141 			/*
2142 			 * This sets KVM_REQ_UNHALT if an interrupt
2143 			 * arrives.
2144 			 */
2145 			if (kvm_vcpu_check_block(vcpu) < 0) {
2146 				++vcpu->stat.halt_successful_poll;
2147 				if (!vcpu_valid_wakeup(vcpu))
2148 					++vcpu->stat.halt_poll_invalid;
2149 				goto out;
2150 			}
2151 			cur = ktime_get();
2152 		} while (single_task_running() && ktime_before(cur, stop));
2153 	}
2154 
2155 	kvm_arch_vcpu_blocking(vcpu);
2156 
2157 	for (;;) {
2158 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2159 
2160 		if (kvm_vcpu_check_block(vcpu) < 0)
2161 			break;
2162 
2163 		waited = true;
2164 		schedule();
2165 	}
2166 
2167 	finish_swait(&vcpu->wq, &wait);
2168 	cur = ktime_get();
2169 
2170 	kvm_arch_vcpu_unblocking(vcpu);
2171 out:
2172 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2173 
2174 	if (!vcpu_valid_wakeup(vcpu))
2175 		shrink_halt_poll_ns(vcpu);
2176 	else if (halt_poll_ns) {
2177 		if (block_ns <= vcpu->halt_poll_ns)
2178 			;
2179 		/* we had a long block, shrink polling */
2180 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2181 			shrink_halt_poll_ns(vcpu);
2182 		/* we had a short halt and our poll time is too small */
2183 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2184 			block_ns < halt_poll_ns)
2185 			grow_halt_poll_ns(vcpu);
2186 	} else
2187 		vcpu->halt_poll_ns = 0;
2188 
2189 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2190 	kvm_arch_vcpu_block_finish(vcpu);
2191 }
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2193 
2194 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2195 {
2196 	struct swait_queue_head *wqp;
2197 
2198 	wqp = kvm_arch_vcpu_wq(vcpu);
2199 	if (swq_has_sleeper(wqp)) {
2200 		swake_up(wqp);
2201 		++vcpu->stat.halt_wakeup;
2202 		return true;
2203 	}
2204 
2205 	return false;
2206 }
2207 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2208 
2209 #ifndef CONFIG_S390
2210 /*
2211  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2212  */
2213 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2214 {
2215 	int me;
2216 	int cpu = vcpu->cpu;
2217 
2218 	if (kvm_vcpu_wake_up(vcpu))
2219 		return;
2220 
2221 	me = get_cpu();
2222 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2223 		if (kvm_arch_vcpu_should_kick(vcpu))
2224 			smp_send_reschedule(cpu);
2225 	put_cpu();
2226 }
2227 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2228 #endif /* !CONFIG_S390 */
2229 
2230 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2231 {
2232 	struct pid *pid;
2233 	struct task_struct *task = NULL;
2234 	int ret = 0;
2235 
2236 	rcu_read_lock();
2237 	pid = rcu_dereference(target->pid);
2238 	if (pid)
2239 		task = get_pid_task(pid, PIDTYPE_PID);
2240 	rcu_read_unlock();
2241 	if (!task)
2242 		return ret;
2243 	ret = yield_to(task, 1);
2244 	put_task_struct(task);
2245 
2246 	return ret;
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2249 
2250 /*
2251  * Helper that checks whether a VCPU is eligible for directed yield.
2252  * Most eligible candidate to yield is decided by following heuristics:
2253  *
2254  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2255  *  (preempted lock holder), indicated by @in_spin_loop.
2256  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2257  *
2258  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2259  *  chance last time (mostly it has become eligible now since we have probably
2260  *  yielded to lockholder in last iteration. This is done by toggling
2261  *  @dy_eligible each time a VCPU checked for eligibility.)
2262  *
2263  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2264  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2265  *  burning. Giving priority for a potential lock-holder increases lock
2266  *  progress.
2267  *
2268  *  Since algorithm is based on heuristics, accessing another VCPU data without
2269  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2270  *  and continue with next VCPU and so on.
2271  */
2272 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2273 {
2274 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2275 	bool eligible;
2276 
2277 	eligible = !vcpu->spin_loop.in_spin_loop ||
2278 		    vcpu->spin_loop.dy_eligible;
2279 
2280 	if (vcpu->spin_loop.in_spin_loop)
2281 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2282 
2283 	return eligible;
2284 #else
2285 	return true;
2286 #endif
2287 }
2288 
2289 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2290 {
2291 	struct kvm *kvm = me->kvm;
2292 	struct kvm_vcpu *vcpu;
2293 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2294 	int yielded = 0;
2295 	int try = 3;
2296 	int pass;
2297 	int i;
2298 
2299 	kvm_vcpu_set_in_spin_loop(me, true);
2300 	/*
2301 	 * We boost the priority of a VCPU that is runnable but not
2302 	 * currently running, because it got preempted by something
2303 	 * else and called schedule in __vcpu_run.  Hopefully that
2304 	 * VCPU is holding the lock that we need and will release it.
2305 	 * We approximate round-robin by starting at the last boosted VCPU.
2306 	 */
2307 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2308 		kvm_for_each_vcpu(i, vcpu, kvm) {
2309 			if (!pass && i <= last_boosted_vcpu) {
2310 				i = last_boosted_vcpu;
2311 				continue;
2312 			} else if (pass && i > last_boosted_vcpu)
2313 				break;
2314 			if (!READ_ONCE(vcpu->preempted))
2315 				continue;
2316 			if (vcpu == me)
2317 				continue;
2318 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2319 				continue;
2320 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2321 				continue;
2322 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2323 				continue;
2324 
2325 			yielded = kvm_vcpu_yield_to(vcpu);
2326 			if (yielded > 0) {
2327 				kvm->last_boosted_vcpu = i;
2328 				break;
2329 			} else if (yielded < 0) {
2330 				try--;
2331 				if (!try)
2332 					break;
2333 			}
2334 		}
2335 	}
2336 	kvm_vcpu_set_in_spin_loop(me, false);
2337 
2338 	/* Ensure vcpu is not eligible during next spinloop */
2339 	kvm_vcpu_set_dy_eligible(me, false);
2340 }
2341 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2342 
2343 static int kvm_vcpu_fault(struct vm_fault *vmf)
2344 {
2345 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2346 	struct page *page;
2347 
2348 	if (vmf->pgoff == 0)
2349 		page = virt_to_page(vcpu->run);
2350 #ifdef CONFIG_X86
2351 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2352 		page = virt_to_page(vcpu->arch.pio_data);
2353 #endif
2354 #ifdef CONFIG_KVM_MMIO
2355 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2356 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2357 #endif
2358 	else
2359 		return kvm_arch_vcpu_fault(vcpu, vmf);
2360 	get_page(page);
2361 	vmf->page = page;
2362 	return 0;
2363 }
2364 
2365 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2366 	.fault = kvm_vcpu_fault,
2367 };
2368 
2369 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2370 {
2371 	vma->vm_ops = &kvm_vcpu_vm_ops;
2372 	return 0;
2373 }
2374 
2375 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2376 {
2377 	struct kvm_vcpu *vcpu = filp->private_data;
2378 
2379 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2380 	kvm_put_kvm(vcpu->kvm);
2381 	return 0;
2382 }
2383 
2384 static struct file_operations kvm_vcpu_fops = {
2385 	.release        = kvm_vcpu_release,
2386 	.unlocked_ioctl = kvm_vcpu_ioctl,
2387 #ifdef CONFIG_KVM_COMPAT
2388 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2389 #endif
2390 	.mmap           = kvm_vcpu_mmap,
2391 	.llseek		= noop_llseek,
2392 };
2393 
2394 /*
2395  * Allocates an inode for the vcpu.
2396  */
2397 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2398 {
2399 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2400 
2401 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2402 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2403 }
2404 
2405 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2406 {
2407 	char dir_name[ITOA_MAX_LEN * 2];
2408 	int ret;
2409 
2410 	if (!kvm_arch_has_vcpu_debugfs())
2411 		return 0;
2412 
2413 	if (!debugfs_initialized())
2414 		return 0;
2415 
2416 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2417 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2418 								vcpu->kvm->debugfs_dentry);
2419 	if (!vcpu->debugfs_dentry)
2420 		return -ENOMEM;
2421 
2422 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2423 	if (ret < 0) {
2424 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2425 		return ret;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 /*
2432  * Creates some virtual cpus.  Good luck creating more than one.
2433  */
2434 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2435 {
2436 	int r;
2437 	struct kvm_vcpu *vcpu;
2438 
2439 	if (id >= KVM_MAX_VCPU_ID)
2440 		return -EINVAL;
2441 
2442 	mutex_lock(&kvm->lock);
2443 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2444 		mutex_unlock(&kvm->lock);
2445 		return -EINVAL;
2446 	}
2447 
2448 	kvm->created_vcpus++;
2449 	mutex_unlock(&kvm->lock);
2450 
2451 	vcpu = kvm_arch_vcpu_create(kvm, id);
2452 	if (IS_ERR(vcpu)) {
2453 		r = PTR_ERR(vcpu);
2454 		goto vcpu_decrement;
2455 	}
2456 
2457 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2458 
2459 	r = kvm_arch_vcpu_setup(vcpu);
2460 	if (r)
2461 		goto vcpu_destroy;
2462 
2463 	r = kvm_create_vcpu_debugfs(vcpu);
2464 	if (r)
2465 		goto vcpu_destroy;
2466 
2467 	mutex_lock(&kvm->lock);
2468 	if (kvm_get_vcpu_by_id(kvm, id)) {
2469 		r = -EEXIST;
2470 		goto unlock_vcpu_destroy;
2471 	}
2472 
2473 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2474 
2475 	/* Now it's all set up, let userspace reach it */
2476 	kvm_get_kvm(kvm);
2477 	r = create_vcpu_fd(vcpu);
2478 	if (r < 0) {
2479 		kvm_put_kvm(kvm);
2480 		goto unlock_vcpu_destroy;
2481 	}
2482 
2483 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2484 
2485 	/*
2486 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2487 	 * before kvm->online_vcpu's incremented value.
2488 	 */
2489 	smp_wmb();
2490 	atomic_inc(&kvm->online_vcpus);
2491 
2492 	mutex_unlock(&kvm->lock);
2493 	kvm_arch_vcpu_postcreate(vcpu);
2494 	return r;
2495 
2496 unlock_vcpu_destroy:
2497 	mutex_unlock(&kvm->lock);
2498 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2499 vcpu_destroy:
2500 	kvm_arch_vcpu_destroy(vcpu);
2501 vcpu_decrement:
2502 	mutex_lock(&kvm->lock);
2503 	kvm->created_vcpus--;
2504 	mutex_unlock(&kvm->lock);
2505 	return r;
2506 }
2507 
2508 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2509 {
2510 	if (sigset) {
2511 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2512 		vcpu->sigset_active = 1;
2513 		vcpu->sigset = *sigset;
2514 	} else
2515 		vcpu->sigset_active = 0;
2516 	return 0;
2517 }
2518 
2519 static long kvm_vcpu_ioctl(struct file *filp,
2520 			   unsigned int ioctl, unsigned long arg)
2521 {
2522 	struct kvm_vcpu *vcpu = filp->private_data;
2523 	void __user *argp = (void __user *)arg;
2524 	int r;
2525 	struct kvm_fpu *fpu = NULL;
2526 	struct kvm_sregs *kvm_sregs = NULL;
2527 
2528 	if (vcpu->kvm->mm != current->mm)
2529 		return -EIO;
2530 
2531 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2532 		return -EINVAL;
2533 
2534 	/*
2535 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2536 	 * execution; mutex_lock() would break them.
2537 	 */
2538 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2539 	if (r != -ENOIOCTLCMD)
2540 		return r;
2541 
2542 	if (mutex_lock_killable(&vcpu->mutex))
2543 		return -EINTR;
2544 	switch (ioctl) {
2545 	case KVM_RUN: {
2546 		struct pid *oldpid;
2547 		r = -EINVAL;
2548 		if (arg)
2549 			goto out;
2550 		oldpid = rcu_access_pointer(vcpu->pid);
2551 		if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2552 			/* The thread running this VCPU changed. */
2553 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2554 
2555 			rcu_assign_pointer(vcpu->pid, newpid);
2556 			if (oldpid)
2557 				synchronize_rcu();
2558 			put_pid(oldpid);
2559 		}
2560 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2561 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2562 		break;
2563 	}
2564 	case KVM_GET_REGS: {
2565 		struct kvm_regs *kvm_regs;
2566 
2567 		r = -ENOMEM;
2568 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2569 		if (!kvm_regs)
2570 			goto out;
2571 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2572 		if (r)
2573 			goto out_free1;
2574 		r = -EFAULT;
2575 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2576 			goto out_free1;
2577 		r = 0;
2578 out_free1:
2579 		kfree(kvm_regs);
2580 		break;
2581 	}
2582 	case KVM_SET_REGS: {
2583 		struct kvm_regs *kvm_regs;
2584 
2585 		r = -ENOMEM;
2586 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2587 		if (IS_ERR(kvm_regs)) {
2588 			r = PTR_ERR(kvm_regs);
2589 			goto out;
2590 		}
2591 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2592 		kfree(kvm_regs);
2593 		break;
2594 	}
2595 	case KVM_GET_SREGS: {
2596 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2597 		r = -ENOMEM;
2598 		if (!kvm_sregs)
2599 			goto out;
2600 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2601 		if (r)
2602 			goto out;
2603 		r = -EFAULT;
2604 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2605 			goto out;
2606 		r = 0;
2607 		break;
2608 	}
2609 	case KVM_SET_SREGS: {
2610 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2611 		if (IS_ERR(kvm_sregs)) {
2612 			r = PTR_ERR(kvm_sregs);
2613 			kvm_sregs = NULL;
2614 			goto out;
2615 		}
2616 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2617 		break;
2618 	}
2619 	case KVM_GET_MP_STATE: {
2620 		struct kvm_mp_state mp_state;
2621 
2622 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2623 		if (r)
2624 			goto out;
2625 		r = -EFAULT;
2626 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2627 			goto out;
2628 		r = 0;
2629 		break;
2630 	}
2631 	case KVM_SET_MP_STATE: {
2632 		struct kvm_mp_state mp_state;
2633 
2634 		r = -EFAULT;
2635 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2636 			goto out;
2637 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2638 		break;
2639 	}
2640 	case KVM_TRANSLATE: {
2641 		struct kvm_translation tr;
2642 
2643 		r = -EFAULT;
2644 		if (copy_from_user(&tr, argp, sizeof(tr)))
2645 			goto out;
2646 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2647 		if (r)
2648 			goto out;
2649 		r = -EFAULT;
2650 		if (copy_to_user(argp, &tr, sizeof(tr)))
2651 			goto out;
2652 		r = 0;
2653 		break;
2654 	}
2655 	case KVM_SET_GUEST_DEBUG: {
2656 		struct kvm_guest_debug dbg;
2657 
2658 		r = -EFAULT;
2659 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2660 			goto out;
2661 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2662 		break;
2663 	}
2664 	case KVM_SET_SIGNAL_MASK: {
2665 		struct kvm_signal_mask __user *sigmask_arg = argp;
2666 		struct kvm_signal_mask kvm_sigmask;
2667 		sigset_t sigset, *p;
2668 
2669 		p = NULL;
2670 		if (argp) {
2671 			r = -EFAULT;
2672 			if (copy_from_user(&kvm_sigmask, argp,
2673 					   sizeof(kvm_sigmask)))
2674 				goto out;
2675 			r = -EINVAL;
2676 			if (kvm_sigmask.len != sizeof(sigset))
2677 				goto out;
2678 			r = -EFAULT;
2679 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2680 					   sizeof(sigset)))
2681 				goto out;
2682 			p = &sigset;
2683 		}
2684 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2685 		break;
2686 	}
2687 	case KVM_GET_FPU: {
2688 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2689 		r = -ENOMEM;
2690 		if (!fpu)
2691 			goto out;
2692 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2693 		if (r)
2694 			goto out;
2695 		r = -EFAULT;
2696 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2697 			goto out;
2698 		r = 0;
2699 		break;
2700 	}
2701 	case KVM_SET_FPU: {
2702 		fpu = memdup_user(argp, sizeof(*fpu));
2703 		if (IS_ERR(fpu)) {
2704 			r = PTR_ERR(fpu);
2705 			fpu = NULL;
2706 			goto out;
2707 		}
2708 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2709 		break;
2710 	}
2711 	default:
2712 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2713 	}
2714 out:
2715 	mutex_unlock(&vcpu->mutex);
2716 	kfree(fpu);
2717 	kfree(kvm_sregs);
2718 	return r;
2719 }
2720 
2721 #ifdef CONFIG_KVM_COMPAT
2722 static long kvm_vcpu_compat_ioctl(struct file *filp,
2723 				  unsigned int ioctl, unsigned long arg)
2724 {
2725 	struct kvm_vcpu *vcpu = filp->private_data;
2726 	void __user *argp = compat_ptr(arg);
2727 	int r;
2728 
2729 	if (vcpu->kvm->mm != current->mm)
2730 		return -EIO;
2731 
2732 	switch (ioctl) {
2733 	case KVM_SET_SIGNAL_MASK: {
2734 		struct kvm_signal_mask __user *sigmask_arg = argp;
2735 		struct kvm_signal_mask kvm_sigmask;
2736 		sigset_t sigset;
2737 
2738 		if (argp) {
2739 			r = -EFAULT;
2740 			if (copy_from_user(&kvm_sigmask, argp,
2741 					   sizeof(kvm_sigmask)))
2742 				goto out;
2743 			r = -EINVAL;
2744 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2745 				goto out;
2746 			r = -EFAULT;
2747 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2748 				goto out;
2749 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2750 		} else
2751 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2752 		break;
2753 	}
2754 	default:
2755 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2756 	}
2757 
2758 out:
2759 	return r;
2760 }
2761 #endif
2762 
2763 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2764 				 int (*accessor)(struct kvm_device *dev,
2765 						 struct kvm_device_attr *attr),
2766 				 unsigned long arg)
2767 {
2768 	struct kvm_device_attr attr;
2769 
2770 	if (!accessor)
2771 		return -EPERM;
2772 
2773 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2774 		return -EFAULT;
2775 
2776 	return accessor(dev, &attr);
2777 }
2778 
2779 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2780 			     unsigned long arg)
2781 {
2782 	struct kvm_device *dev = filp->private_data;
2783 
2784 	switch (ioctl) {
2785 	case KVM_SET_DEVICE_ATTR:
2786 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2787 	case KVM_GET_DEVICE_ATTR:
2788 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2789 	case KVM_HAS_DEVICE_ATTR:
2790 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2791 	default:
2792 		if (dev->ops->ioctl)
2793 			return dev->ops->ioctl(dev, ioctl, arg);
2794 
2795 		return -ENOTTY;
2796 	}
2797 }
2798 
2799 static int kvm_device_release(struct inode *inode, struct file *filp)
2800 {
2801 	struct kvm_device *dev = filp->private_data;
2802 	struct kvm *kvm = dev->kvm;
2803 
2804 	kvm_put_kvm(kvm);
2805 	return 0;
2806 }
2807 
2808 static const struct file_operations kvm_device_fops = {
2809 	.unlocked_ioctl = kvm_device_ioctl,
2810 #ifdef CONFIG_KVM_COMPAT
2811 	.compat_ioctl = kvm_device_ioctl,
2812 #endif
2813 	.release = kvm_device_release,
2814 };
2815 
2816 struct kvm_device *kvm_device_from_filp(struct file *filp)
2817 {
2818 	if (filp->f_op != &kvm_device_fops)
2819 		return NULL;
2820 
2821 	return filp->private_data;
2822 }
2823 
2824 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2825 #ifdef CONFIG_KVM_MPIC
2826 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2827 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2828 #endif
2829 };
2830 
2831 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2832 {
2833 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2834 		return -ENOSPC;
2835 
2836 	if (kvm_device_ops_table[type] != NULL)
2837 		return -EEXIST;
2838 
2839 	kvm_device_ops_table[type] = ops;
2840 	return 0;
2841 }
2842 
2843 void kvm_unregister_device_ops(u32 type)
2844 {
2845 	if (kvm_device_ops_table[type] != NULL)
2846 		kvm_device_ops_table[type] = NULL;
2847 }
2848 
2849 static int kvm_ioctl_create_device(struct kvm *kvm,
2850 				   struct kvm_create_device *cd)
2851 {
2852 	struct kvm_device_ops *ops = NULL;
2853 	struct kvm_device *dev;
2854 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2855 	int ret;
2856 
2857 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2858 		return -ENODEV;
2859 
2860 	ops = kvm_device_ops_table[cd->type];
2861 	if (ops == NULL)
2862 		return -ENODEV;
2863 
2864 	if (test)
2865 		return 0;
2866 
2867 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2868 	if (!dev)
2869 		return -ENOMEM;
2870 
2871 	dev->ops = ops;
2872 	dev->kvm = kvm;
2873 
2874 	mutex_lock(&kvm->lock);
2875 	ret = ops->create(dev, cd->type);
2876 	if (ret < 0) {
2877 		mutex_unlock(&kvm->lock);
2878 		kfree(dev);
2879 		return ret;
2880 	}
2881 	list_add(&dev->vm_node, &kvm->devices);
2882 	mutex_unlock(&kvm->lock);
2883 
2884 	if (ops->init)
2885 		ops->init(dev);
2886 
2887 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2888 	if (ret < 0) {
2889 		mutex_lock(&kvm->lock);
2890 		list_del(&dev->vm_node);
2891 		mutex_unlock(&kvm->lock);
2892 		ops->destroy(dev);
2893 		return ret;
2894 	}
2895 
2896 	kvm_get_kvm(kvm);
2897 	cd->fd = ret;
2898 	return 0;
2899 }
2900 
2901 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2902 {
2903 	switch (arg) {
2904 	case KVM_CAP_USER_MEMORY:
2905 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2906 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2907 	case KVM_CAP_INTERNAL_ERROR_DATA:
2908 #ifdef CONFIG_HAVE_KVM_MSI
2909 	case KVM_CAP_SIGNAL_MSI:
2910 #endif
2911 #ifdef CONFIG_HAVE_KVM_IRQFD
2912 	case KVM_CAP_IRQFD:
2913 	case KVM_CAP_IRQFD_RESAMPLE:
2914 #endif
2915 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2916 	case KVM_CAP_CHECK_EXTENSION_VM:
2917 		return 1;
2918 #ifdef CONFIG_KVM_MMIO
2919 	case KVM_CAP_COALESCED_MMIO:
2920 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2921 #endif
2922 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2923 	case KVM_CAP_IRQ_ROUTING:
2924 		return KVM_MAX_IRQ_ROUTES;
2925 #endif
2926 #if KVM_ADDRESS_SPACE_NUM > 1
2927 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2928 		return KVM_ADDRESS_SPACE_NUM;
2929 #endif
2930 	case KVM_CAP_MAX_VCPU_ID:
2931 		return KVM_MAX_VCPU_ID;
2932 	default:
2933 		break;
2934 	}
2935 	return kvm_vm_ioctl_check_extension(kvm, arg);
2936 }
2937 
2938 static long kvm_vm_ioctl(struct file *filp,
2939 			   unsigned int ioctl, unsigned long arg)
2940 {
2941 	struct kvm *kvm = filp->private_data;
2942 	void __user *argp = (void __user *)arg;
2943 	int r;
2944 
2945 	if (kvm->mm != current->mm)
2946 		return -EIO;
2947 	switch (ioctl) {
2948 	case KVM_CREATE_VCPU:
2949 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2950 		break;
2951 	case KVM_SET_USER_MEMORY_REGION: {
2952 		struct kvm_userspace_memory_region kvm_userspace_mem;
2953 
2954 		r = -EFAULT;
2955 		if (copy_from_user(&kvm_userspace_mem, argp,
2956 						sizeof(kvm_userspace_mem)))
2957 			goto out;
2958 
2959 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2960 		break;
2961 	}
2962 	case KVM_GET_DIRTY_LOG: {
2963 		struct kvm_dirty_log log;
2964 
2965 		r = -EFAULT;
2966 		if (copy_from_user(&log, argp, sizeof(log)))
2967 			goto out;
2968 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2969 		break;
2970 	}
2971 #ifdef CONFIG_KVM_MMIO
2972 	case KVM_REGISTER_COALESCED_MMIO: {
2973 		struct kvm_coalesced_mmio_zone zone;
2974 
2975 		r = -EFAULT;
2976 		if (copy_from_user(&zone, argp, sizeof(zone)))
2977 			goto out;
2978 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2979 		break;
2980 	}
2981 	case KVM_UNREGISTER_COALESCED_MMIO: {
2982 		struct kvm_coalesced_mmio_zone zone;
2983 
2984 		r = -EFAULT;
2985 		if (copy_from_user(&zone, argp, sizeof(zone)))
2986 			goto out;
2987 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2988 		break;
2989 	}
2990 #endif
2991 	case KVM_IRQFD: {
2992 		struct kvm_irqfd data;
2993 
2994 		r = -EFAULT;
2995 		if (copy_from_user(&data, argp, sizeof(data)))
2996 			goto out;
2997 		r = kvm_irqfd(kvm, &data);
2998 		break;
2999 	}
3000 	case KVM_IOEVENTFD: {
3001 		struct kvm_ioeventfd data;
3002 
3003 		r = -EFAULT;
3004 		if (copy_from_user(&data, argp, sizeof(data)))
3005 			goto out;
3006 		r = kvm_ioeventfd(kvm, &data);
3007 		break;
3008 	}
3009 #ifdef CONFIG_HAVE_KVM_MSI
3010 	case KVM_SIGNAL_MSI: {
3011 		struct kvm_msi msi;
3012 
3013 		r = -EFAULT;
3014 		if (copy_from_user(&msi, argp, sizeof(msi)))
3015 			goto out;
3016 		r = kvm_send_userspace_msi(kvm, &msi);
3017 		break;
3018 	}
3019 #endif
3020 #ifdef __KVM_HAVE_IRQ_LINE
3021 	case KVM_IRQ_LINE_STATUS:
3022 	case KVM_IRQ_LINE: {
3023 		struct kvm_irq_level irq_event;
3024 
3025 		r = -EFAULT;
3026 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3027 			goto out;
3028 
3029 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3030 					ioctl == KVM_IRQ_LINE_STATUS);
3031 		if (r)
3032 			goto out;
3033 
3034 		r = -EFAULT;
3035 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3036 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3037 				goto out;
3038 		}
3039 
3040 		r = 0;
3041 		break;
3042 	}
3043 #endif
3044 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3045 	case KVM_SET_GSI_ROUTING: {
3046 		struct kvm_irq_routing routing;
3047 		struct kvm_irq_routing __user *urouting;
3048 		struct kvm_irq_routing_entry *entries = NULL;
3049 
3050 		r = -EFAULT;
3051 		if (copy_from_user(&routing, argp, sizeof(routing)))
3052 			goto out;
3053 		r = -EINVAL;
3054 		if (!kvm_arch_can_set_irq_routing(kvm))
3055 			goto out;
3056 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3057 			goto out;
3058 		if (routing.flags)
3059 			goto out;
3060 		if (routing.nr) {
3061 			r = -ENOMEM;
3062 			entries = vmalloc(routing.nr * sizeof(*entries));
3063 			if (!entries)
3064 				goto out;
3065 			r = -EFAULT;
3066 			urouting = argp;
3067 			if (copy_from_user(entries, urouting->entries,
3068 					   routing.nr * sizeof(*entries)))
3069 				goto out_free_irq_routing;
3070 		}
3071 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3072 					routing.flags);
3073 out_free_irq_routing:
3074 		vfree(entries);
3075 		break;
3076 	}
3077 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3078 	case KVM_CREATE_DEVICE: {
3079 		struct kvm_create_device cd;
3080 
3081 		r = -EFAULT;
3082 		if (copy_from_user(&cd, argp, sizeof(cd)))
3083 			goto out;
3084 
3085 		r = kvm_ioctl_create_device(kvm, &cd);
3086 		if (r)
3087 			goto out;
3088 
3089 		r = -EFAULT;
3090 		if (copy_to_user(argp, &cd, sizeof(cd)))
3091 			goto out;
3092 
3093 		r = 0;
3094 		break;
3095 	}
3096 	case KVM_CHECK_EXTENSION:
3097 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3098 		break;
3099 	default:
3100 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3101 	}
3102 out:
3103 	return r;
3104 }
3105 
3106 #ifdef CONFIG_KVM_COMPAT
3107 struct compat_kvm_dirty_log {
3108 	__u32 slot;
3109 	__u32 padding1;
3110 	union {
3111 		compat_uptr_t dirty_bitmap; /* one bit per page */
3112 		__u64 padding2;
3113 	};
3114 };
3115 
3116 static long kvm_vm_compat_ioctl(struct file *filp,
3117 			   unsigned int ioctl, unsigned long arg)
3118 {
3119 	struct kvm *kvm = filp->private_data;
3120 	int r;
3121 
3122 	if (kvm->mm != current->mm)
3123 		return -EIO;
3124 	switch (ioctl) {
3125 	case KVM_GET_DIRTY_LOG: {
3126 		struct compat_kvm_dirty_log compat_log;
3127 		struct kvm_dirty_log log;
3128 
3129 		if (copy_from_user(&compat_log, (void __user *)arg,
3130 				   sizeof(compat_log)))
3131 			return -EFAULT;
3132 		log.slot	 = compat_log.slot;
3133 		log.padding1	 = compat_log.padding1;
3134 		log.padding2	 = compat_log.padding2;
3135 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3136 
3137 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3138 		break;
3139 	}
3140 	default:
3141 		r = kvm_vm_ioctl(filp, ioctl, arg);
3142 	}
3143 	return r;
3144 }
3145 #endif
3146 
3147 static struct file_operations kvm_vm_fops = {
3148 	.release        = kvm_vm_release,
3149 	.unlocked_ioctl = kvm_vm_ioctl,
3150 #ifdef CONFIG_KVM_COMPAT
3151 	.compat_ioctl   = kvm_vm_compat_ioctl,
3152 #endif
3153 	.llseek		= noop_llseek,
3154 };
3155 
3156 static int kvm_dev_ioctl_create_vm(unsigned long type)
3157 {
3158 	int r;
3159 	struct kvm *kvm;
3160 	struct file *file;
3161 
3162 	kvm = kvm_create_vm(type);
3163 	if (IS_ERR(kvm))
3164 		return PTR_ERR(kvm);
3165 #ifdef CONFIG_KVM_MMIO
3166 	r = kvm_coalesced_mmio_init(kvm);
3167 	if (r < 0)
3168 		goto put_kvm;
3169 #endif
3170 	r = get_unused_fd_flags(O_CLOEXEC);
3171 	if (r < 0)
3172 		goto put_kvm;
3173 
3174 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3175 	if (IS_ERR(file)) {
3176 		put_unused_fd(r);
3177 		r = PTR_ERR(file);
3178 		goto put_kvm;
3179 	}
3180 
3181 	/*
3182 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3183 	 * already set, with ->release() being kvm_vm_release().  In error
3184 	 * cases it will be called by the final fput(file) and will take
3185 	 * care of doing kvm_put_kvm(kvm).
3186 	 */
3187 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3188 		put_unused_fd(r);
3189 		fput(file);
3190 		return -ENOMEM;
3191 	}
3192 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3193 
3194 	fd_install(r, file);
3195 	return r;
3196 
3197 put_kvm:
3198 	kvm_put_kvm(kvm);
3199 	return r;
3200 }
3201 
3202 static long kvm_dev_ioctl(struct file *filp,
3203 			  unsigned int ioctl, unsigned long arg)
3204 {
3205 	long r = -EINVAL;
3206 
3207 	switch (ioctl) {
3208 	case KVM_GET_API_VERSION:
3209 		if (arg)
3210 			goto out;
3211 		r = KVM_API_VERSION;
3212 		break;
3213 	case KVM_CREATE_VM:
3214 		r = kvm_dev_ioctl_create_vm(arg);
3215 		break;
3216 	case KVM_CHECK_EXTENSION:
3217 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3218 		break;
3219 	case KVM_GET_VCPU_MMAP_SIZE:
3220 		if (arg)
3221 			goto out;
3222 		r = PAGE_SIZE;     /* struct kvm_run */
3223 #ifdef CONFIG_X86
3224 		r += PAGE_SIZE;    /* pio data page */
3225 #endif
3226 #ifdef CONFIG_KVM_MMIO
3227 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3228 #endif
3229 		break;
3230 	case KVM_TRACE_ENABLE:
3231 	case KVM_TRACE_PAUSE:
3232 	case KVM_TRACE_DISABLE:
3233 		r = -EOPNOTSUPP;
3234 		break;
3235 	default:
3236 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3237 	}
3238 out:
3239 	return r;
3240 }
3241 
3242 static struct file_operations kvm_chardev_ops = {
3243 	.unlocked_ioctl = kvm_dev_ioctl,
3244 	.compat_ioctl   = kvm_dev_ioctl,
3245 	.llseek		= noop_llseek,
3246 };
3247 
3248 static struct miscdevice kvm_dev = {
3249 	KVM_MINOR,
3250 	"kvm",
3251 	&kvm_chardev_ops,
3252 };
3253 
3254 static void hardware_enable_nolock(void *junk)
3255 {
3256 	int cpu = raw_smp_processor_id();
3257 	int r;
3258 
3259 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3260 		return;
3261 
3262 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3263 
3264 	r = kvm_arch_hardware_enable();
3265 
3266 	if (r) {
3267 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3268 		atomic_inc(&hardware_enable_failed);
3269 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3270 	}
3271 }
3272 
3273 static int kvm_starting_cpu(unsigned int cpu)
3274 {
3275 	raw_spin_lock(&kvm_count_lock);
3276 	if (kvm_usage_count)
3277 		hardware_enable_nolock(NULL);
3278 	raw_spin_unlock(&kvm_count_lock);
3279 	return 0;
3280 }
3281 
3282 static void hardware_disable_nolock(void *junk)
3283 {
3284 	int cpu = raw_smp_processor_id();
3285 
3286 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3287 		return;
3288 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3289 	kvm_arch_hardware_disable();
3290 }
3291 
3292 static int kvm_dying_cpu(unsigned int cpu)
3293 {
3294 	raw_spin_lock(&kvm_count_lock);
3295 	if (kvm_usage_count)
3296 		hardware_disable_nolock(NULL);
3297 	raw_spin_unlock(&kvm_count_lock);
3298 	return 0;
3299 }
3300 
3301 static void hardware_disable_all_nolock(void)
3302 {
3303 	BUG_ON(!kvm_usage_count);
3304 
3305 	kvm_usage_count--;
3306 	if (!kvm_usage_count)
3307 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3308 }
3309 
3310 static void hardware_disable_all(void)
3311 {
3312 	raw_spin_lock(&kvm_count_lock);
3313 	hardware_disable_all_nolock();
3314 	raw_spin_unlock(&kvm_count_lock);
3315 }
3316 
3317 static int hardware_enable_all(void)
3318 {
3319 	int r = 0;
3320 
3321 	raw_spin_lock(&kvm_count_lock);
3322 
3323 	kvm_usage_count++;
3324 	if (kvm_usage_count == 1) {
3325 		atomic_set(&hardware_enable_failed, 0);
3326 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3327 
3328 		if (atomic_read(&hardware_enable_failed)) {
3329 			hardware_disable_all_nolock();
3330 			r = -EBUSY;
3331 		}
3332 	}
3333 
3334 	raw_spin_unlock(&kvm_count_lock);
3335 
3336 	return r;
3337 }
3338 
3339 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3340 		      void *v)
3341 {
3342 	/*
3343 	 * Some (well, at least mine) BIOSes hang on reboot if
3344 	 * in vmx root mode.
3345 	 *
3346 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3347 	 */
3348 	pr_info("kvm: exiting hardware virtualization\n");
3349 	kvm_rebooting = true;
3350 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3351 	return NOTIFY_OK;
3352 }
3353 
3354 static struct notifier_block kvm_reboot_notifier = {
3355 	.notifier_call = kvm_reboot,
3356 	.priority = 0,
3357 };
3358 
3359 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3360 {
3361 	int i;
3362 
3363 	for (i = 0; i < bus->dev_count; i++) {
3364 		struct kvm_io_device *pos = bus->range[i].dev;
3365 
3366 		kvm_iodevice_destructor(pos);
3367 	}
3368 	kfree(bus);
3369 }
3370 
3371 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3372 				 const struct kvm_io_range *r2)
3373 {
3374 	gpa_t addr1 = r1->addr;
3375 	gpa_t addr2 = r2->addr;
3376 
3377 	if (addr1 < addr2)
3378 		return -1;
3379 
3380 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3381 	 * accept any overlapping write.  Any order is acceptable for
3382 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3383 	 * we process all of them.
3384 	 */
3385 	if (r2->len) {
3386 		addr1 += r1->len;
3387 		addr2 += r2->len;
3388 	}
3389 
3390 	if (addr1 > addr2)
3391 		return 1;
3392 
3393 	return 0;
3394 }
3395 
3396 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3397 {
3398 	return kvm_io_bus_cmp(p1, p2);
3399 }
3400 
3401 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3402 			  gpa_t addr, int len)
3403 {
3404 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3405 		.addr = addr,
3406 		.len = len,
3407 		.dev = dev,
3408 	};
3409 
3410 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3411 		kvm_io_bus_sort_cmp, NULL);
3412 
3413 	return 0;
3414 }
3415 
3416 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3417 			     gpa_t addr, int len)
3418 {
3419 	struct kvm_io_range *range, key;
3420 	int off;
3421 
3422 	key = (struct kvm_io_range) {
3423 		.addr = addr,
3424 		.len = len,
3425 	};
3426 
3427 	range = bsearch(&key, bus->range, bus->dev_count,
3428 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3429 	if (range == NULL)
3430 		return -ENOENT;
3431 
3432 	off = range - bus->range;
3433 
3434 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3435 		off--;
3436 
3437 	return off;
3438 }
3439 
3440 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3441 			      struct kvm_io_range *range, const void *val)
3442 {
3443 	int idx;
3444 
3445 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3446 	if (idx < 0)
3447 		return -EOPNOTSUPP;
3448 
3449 	while (idx < bus->dev_count &&
3450 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3451 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3452 					range->len, val))
3453 			return idx;
3454 		idx++;
3455 	}
3456 
3457 	return -EOPNOTSUPP;
3458 }
3459 
3460 /* kvm_io_bus_write - called under kvm->slots_lock */
3461 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3462 		     int len, const void *val)
3463 {
3464 	struct kvm_io_bus *bus;
3465 	struct kvm_io_range range;
3466 	int r;
3467 
3468 	range = (struct kvm_io_range) {
3469 		.addr = addr,
3470 		.len = len,
3471 	};
3472 
3473 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3474 	if (!bus)
3475 		return -ENOMEM;
3476 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3477 	return r < 0 ? r : 0;
3478 }
3479 
3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3482 			    gpa_t addr, int len, const void *val, long cookie)
3483 {
3484 	struct kvm_io_bus *bus;
3485 	struct kvm_io_range range;
3486 
3487 	range = (struct kvm_io_range) {
3488 		.addr = addr,
3489 		.len = len,
3490 	};
3491 
3492 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3493 	if (!bus)
3494 		return -ENOMEM;
3495 
3496 	/* First try the device referenced by cookie. */
3497 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3498 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3499 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3500 					val))
3501 			return cookie;
3502 
3503 	/*
3504 	 * cookie contained garbage; fall back to search and return the
3505 	 * correct cookie value.
3506 	 */
3507 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3508 }
3509 
3510 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3511 			     struct kvm_io_range *range, void *val)
3512 {
3513 	int idx;
3514 
3515 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3516 	if (idx < 0)
3517 		return -EOPNOTSUPP;
3518 
3519 	while (idx < bus->dev_count &&
3520 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3521 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3522 				       range->len, val))
3523 			return idx;
3524 		idx++;
3525 	}
3526 
3527 	return -EOPNOTSUPP;
3528 }
3529 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3530 
3531 /* kvm_io_bus_read - called under kvm->slots_lock */
3532 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3533 		    int len, void *val)
3534 {
3535 	struct kvm_io_bus *bus;
3536 	struct kvm_io_range range;
3537 	int r;
3538 
3539 	range = (struct kvm_io_range) {
3540 		.addr = addr,
3541 		.len = len,
3542 	};
3543 
3544 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3545 	if (!bus)
3546 		return -ENOMEM;
3547 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3548 	return r < 0 ? r : 0;
3549 }
3550 
3551 
3552 /* Caller must hold slots_lock. */
3553 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3554 			    int len, struct kvm_io_device *dev)
3555 {
3556 	struct kvm_io_bus *new_bus, *bus;
3557 
3558 	bus = kvm_get_bus(kvm, bus_idx);
3559 	if (!bus)
3560 		return -ENOMEM;
3561 
3562 	/* exclude ioeventfd which is limited by maximum fd */
3563 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3564 		return -ENOSPC;
3565 
3566 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3567 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3568 	if (!new_bus)
3569 		return -ENOMEM;
3570 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3571 	       sizeof(struct kvm_io_range)));
3572 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3573 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3574 	synchronize_srcu_expedited(&kvm->srcu);
3575 	kfree(bus);
3576 
3577 	return 0;
3578 }
3579 
3580 /* Caller must hold slots_lock. */
3581 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3582 			       struct kvm_io_device *dev)
3583 {
3584 	int i;
3585 	struct kvm_io_bus *new_bus, *bus;
3586 
3587 	bus = kvm_get_bus(kvm, bus_idx);
3588 	if (!bus)
3589 		return;
3590 
3591 	for (i = 0; i < bus->dev_count; i++)
3592 		if (bus->range[i].dev == dev) {
3593 			break;
3594 		}
3595 
3596 	if (i == bus->dev_count)
3597 		return;
3598 
3599 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3600 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3601 	if (!new_bus)  {
3602 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3603 		goto broken;
3604 	}
3605 
3606 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3607 	new_bus->dev_count--;
3608 	memcpy(new_bus->range + i, bus->range + i + 1,
3609 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3610 
3611 broken:
3612 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3613 	synchronize_srcu_expedited(&kvm->srcu);
3614 	kfree(bus);
3615 	return;
3616 }
3617 
3618 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3619 					 gpa_t addr)
3620 {
3621 	struct kvm_io_bus *bus;
3622 	int dev_idx, srcu_idx;
3623 	struct kvm_io_device *iodev = NULL;
3624 
3625 	srcu_idx = srcu_read_lock(&kvm->srcu);
3626 
3627 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3628 	if (!bus)
3629 		goto out_unlock;
3630 
3631 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3632 	if (dev_idx < 0)
3633 		goto out_unlock;
3634 
3635 	iodev = bus->range[dev_idx].dev;
3636 
3637 out_unlock:
3638 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3639 
3640 	return iodev;
3641 }
3642 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3643 
3644 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3645 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3646 			   const char *fmt)
3647 {
3648 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3649 					  inode->i_private;
3650 
3651 	/* The debugfs files are a reference to the kvm struct which
3652 	 * is still valid when kvm_destroy_vm is called.
3653 	 * To avoid the race between open and the removal of the debugfs
3654 	 * directory we test against the users count.
3655 	 */
3656 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3657 		return -ENOENT;
3658 
3659 	if (simple_attr_open(inode, file, get, set, fmt)) {
3660 		kvm_put_kvm(stat_data->kvm);
3661 		return -ENOMEM;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3668 {
3669 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3670 					  inode->i_private;
3671 
3672 	simple_attr_release(inode, file);
3673 	kvm_put_kvm(stat_data->kvm);
3674 
3675 	return 0;
3676 }
3677 
3678 static int vm_stat_get_per_vm(void *data, u64 *val)
3679 {
3680 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3681 
3682 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3683 
3684 	return 0;
3685 }
3686 
3687 static int vm_stat_clear_per_vm(void *data, u64 val)
3688 {
3689 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3690 
3691 	if (val)
3692 		return -EINVAL;
3693 
3694 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3695 
3696 	return 0;
3697 }
3698 
3699 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3700 {
3701 	__simple_attr_check_format("%llu\n", 0ull);
3702 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3703 				vm_stat_clear_per_vm, "%llu\n");
3704 }
3705 
3706 static const struct file_operations vm_stat_get_per_vm_fops = {
3707 	.owner   = THIS_MODULE,
3708 	.open    = vm_stat_get_per_vm_open,
3709 	.release = kvm_debugfs_release,
3710 	.read    = simple_attr_read,
3711 	.write   = simple_attr_write,
3712 	.llseek  = no_llseek,
3713 };
3714 
3715 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3716 {
3717 	int i;
3718 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3719 	struct kvm_vcpu *vcpu;
3720 
3721 	*val = 0;
3722 
3723 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3724 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3725 
3726 	return 0;
3727 }
3728 
3729 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3730 {
3731 	int i;
3732 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3733 	struct kvm_vcpu *vcpu;
3734 
3735 	if (val)
3736 		return -EINVAL;
3737 
3738 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3739 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3740 
3741 	return 0;
3742 }
3743 
3744 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3745 {
3746 	__simple_attr_check_format("%llu\n", 0ull);
3747 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3748 				 vcpu_stat_clear_per_vm, "%llu\n");
3749 }
3750 
3751 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3752 	.owner   = THIS_MODULE,
3753 	.open    = vcpu_stat_get_per_vm_open,
3754 	.release = kvm_debugfs_release,
3755 	.read    = simple_attr_read,
3756 	.write   = simple_attr_write,
3757 	.llseek  = no_llseek,
3758 };
3759 
3760 static const struct file_operations *stat_fops_per_vm[] = {
3761 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3762 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3763 };
3764 
3765 static int vm_stat_get(void *_offset, u64 *val)
3766 {
3767 	unsigned offset = (long)_offset;
3768 	struct kvm *kvm;
3769 	struct kvm_stat_data stat_tmp = {.offset = offset};
3770 	u64 tmp_val;
3771 
3772 	*val = 0;
3773 	spin_lock(&kvm_lock);
3774 	list_for_each_entry(kvm, &vm_list, vm_list) {
3775 		stat_tmp.kvm = kvm;
3776 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3777 		*val += tmp_val;
3778 	}
3779 	spin_unlock(&kvm_lock);
3780 	return 0;
3781 }
3782 
3783 static int vm_stat_clear(void *_offset, u64 val)
3784 {
3785 	unsigned offset = (long)_offset;
3786 	struct kvm *kvm;
3787 	struct kvm_stat_data stat_tmp = {.offset = offset};
3788 
3789 	if (val)
3790 		return -EINVAL;
3791 
3792 	spin_lock(&kvm_lock);
3793 	list_for_each_entry(kvm, &vm_list, vm_list) {
3794 		stat_tmp.kvm = kvm;
3795 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3796 	}
3797 	spin_unlock(&kvm_lock);
3798 
3799 	return 0;
3800 }
3801 
3802 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3803 
3804 static int vcpu_stat_get(void *_offset, u64 *val)
3805 {
3806 	unsigned offset = (long)_offset;
3807 	struct kvm *kvm;
3808 	struct kvm_stat_data stat_tmp = {.offset = offset};
3809 	u64 tmp_val;
3810 
3811 	*val = 0;
3812 	spin_lock(&kvm_lock);
3813 	list_for_each_entry(kvm, &vm_list, vm_list) {
3814 		stat_tmp.kvm = kvm;
3815 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3816 		*val += tmp_val;
3817 	}
3818 	spin_unlock(&kvm_lock);
3819 	return 0;
3820 }
3821 
3822 static int vcpu_stat_clear(void *_offset, u64 val)
3823 {
3824 	unsigned offset = (long)_offset;
3825 	struct kvm *kvm;
3826 	struct kvm_stat_data stat_tmp = {.offset = offset};
3827 
3828 	if (val)
3829 		return -EINVAL;
3830 
3831 	spin_lock(&kvm_lock);
3832 	list_for_each_entry(kvm, &vm_list, vm_list) {
3833 		stat_tmp.kvm = kvm;
3834 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3835 	}
3836 	spin_unlock(&kvm_lock);
3837 
3838 	return 0;
3839 }
3840 
3841 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3842 			"%llu\n");
3843 
3844 static const struct file_operations *stat_fops[] = {
3845 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3846 	[KVM_STAT_VM]   = &vm_stat_fops,
3847 };
3848 
3849 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3850 {
3851 	struct kobj_uevent_env *env;
3852 	unsigned long long created, active;
3853 
3854 	if (!kvm_dev.this_device || !kvm)
3855 		return;
3856 
3857 	spin_lock(&kvm_lock);
3858 	if (type == KVM_EVENT_CREATE_VM) {
3859 		kvm_createvm_count++;
3860 		kvm_active_vms++;
3861 	} else if (type == KVM_EVENT_DESTROY_VM) {
3862 		kvm_active_vms--;
3863 	}
3864 	created = kvm_createvm_count;
3865 	active = kvm_active_vms;
3866 	spin_unlock(&kvm_lock);
3867 
3868 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3869 	if (!env)
3870 		return;
3871 
3872 	add_uevent_var(env, "CREATED=%llu", created);
3873 	add_uevent_var(env, "COUNT=%llu", active);
3874 
3875 	if (type == KVM_EVENT_CREATE_VM) {
3876 		add_uevent_var(env, "EVENT=create");
3877 		kvm->userspace_pid = task_pid_nr(current);
3878 	} else if (type == KVM_EVENT_DESTROY_VM) {
3879 		add_uevent_var(env, "EVENT=destroy");
3880 	}
3881 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3882 
3883 	if (kvm->debugfs_dentry) {
3884 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3885 
3886 		if (p) {
3887 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3888 			if (!IS_ERR(tmp))
3889 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3890 			kfree(p);
3891 		}
3892 	}
3893 	/* no need for checks, since we are adding at most only 5 keys */
3894 	env->envp[env->envp_idx++] = NULL;
3895 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3896 	kfree(env);
3897 }
3898 
3899 static int kvm_init_debug(void)
3900 {
3901 	int r = -EEXIST;
3902 	struct kvm_stats_debugfs_item *p;
3903 
3904 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3905 	if (kvm_debugfs_dir == NULL)
3906 		goto out;
3907 
3908 	kvm_debugfs_num_entries = 0;
3909 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3910 		if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3911 					 (void *)(long)p->offset,
3912 					 stat_fops[p->kind]))
3913 			goto out_dir;
3914 	}
3915 
3916 	return 0;
3917 
3918 out_dir:
3919 	debugfs_remove_recursive(kvm_debugfs_dir);
3920 out:
3921 	return r;
3922 }
3923 
3924 static int kvm_suspend(void)
3925 {
3926 	if (kvm_usage_count)
3927 		hardware_disable_nolock(NULL);
3928 	return 0;
3929 }
3930 
3931 static void kvm_resume(void)
3932 {
3933 	if (kvm_usage_count) {
3934 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3935 		hardware_enable_nolock(NULL);
3936 	}
3937 }
3938 
3939 static struct syscore_ops kvm_syscore_ops = {
3940 	.suspend = kvm_suspend,
3941 	.resume = kvm_resume,
3942 };
3943 
3944 static inline
3945 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3946 {
3947 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3948 }
3949 
3950 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3951 {
3952 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3953 
3954 	if (vcpu->preempted)
3955 		vcpu->preempted = false;
3956 
3957 	kvm_arch_sched_in(vcpu, cpu);
3958 
3959 	kvm_arch_vcpu_load(vcpu, cpu);
3960 }
3961 
3962 static void kvm_sched_out(struct preempt_notifier *pn,
3963 			  struct task_struct *next)
3964 {
3965 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3966 
3967 	if (current->state == TASK_RUNNING)
3968 		vcpu->preempted = true;
3969 	kvm_arch_vcpu_put(vcpu);
3970 }
3971 
3972 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3973 		  struct module *module)
3974 {
3975 	int r;
3976 	int cpu;
3977 
3978 	r = kvm_arch_init(opaque);
3979 	if (r)
3980 		goto out_fail;
3981 
3982 	/*
3983 	 * kvm_arch_init makes sure there's at most one caller
3984 	 * for architectures that support multiple implementations,
3985 	 * like intel and amd on x86.
3986 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3987 	 * conflicts in case kvm is already setup for another implementation.
3988 	 */
3989 	r = kvm_irqfd_init();
3990 	if (r)
3991 		goto out_irqfd;
3992 
3993 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3994 		r = -ENOMEM;
3995 		goto out_free_0;
3996 	}
3997 
3998 	r = kvm_arch_hardware_setup();
3999 	if (r < 0)
4000 		goto out_free_0a;
4001 
4002 	for_each_online_cpu(cpu) {
4003 		smp_call_function_single(cpu,
4004 				kvm_arch_check_processor_compat,
4005 				&r, 1);
4006 		if (r < 0)
4007 			goto out_free_1;
4008 	}
4009 
4010 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4011 				      kvm_starting_cpu, kvm_dying_cpu);
4012 	if (r)
4013 		goto out_free_2;
4014 	register_reboot_notifier(&kvm_reboot_notifier);
4015 
4016 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4017 	if (!vcpu_align)
4018 		vcpu_align = __alignof__(struct kvm_vcpu);
4019 	kvm_vcpu_cache =
4020 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4021 					   SLAB_ACCOUNT,
4022 					   offsetof(struct kvm_vcpu, arch),
4023 					   sizeof_field(struct kvm_vcpu, arch),
4024 					   NULL);
4025 	if (!kvm_vcpu_cache) {
4026 		r = -ENOMEM;
4027 		goto out_free_3;
4028 	}
4029 
4030 	r = kvm_async_pf_init();
4031 	if (r)
4032 		goto out_free;
4033 
4034 	kvm_chardev_ops.owner = module;
4035 	kvm_vm_fops.owner = module;
4036 	kvm_vcpu_fops.owner = module;
4037 
4038 	r = misc_register(&kvm_dev);
4039 	if (r) {
4040 		pr_err("kvm: misc device register failed\n");
4041 		goto out_unreg;
4042 	}
4043 
4044 	register_syscore_ops(&kvm_syscore_ops);
4045 
4046 	kvm_preempt_ops.sched_in = kvm_sched_in;
4047 	kvm_preempt_ops.sched_out = kvm_sched_out;
4048 
4049 	r = kvm_init_debug();
4050 	if (r) {
4051 		pr_err("kvm: create debugfs files failed\n");
4052 		goto out_undebugfs;
4053 	}
4054 
4055 	r = kvm_vfio_ops_init();
4056 	WARN_ON(r);
4057 
4058 	return 0;
4059 
4060 out_undebugfs:
4061 	unregister_syscore_ops(&kvm_syscore_ops);
4062 	misc_deregister(&kvm_dev);
4063 out_unreg:
4064 	kvm_async_pf_deinit();
4065 out_free:
4066 	kmem_cache_destroy(kvm_vcpu_cache);
4067 out_free_3:
4068 	unregister_reboot_notifier(&kvm_reboot_notifier);
4069 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4070 out_free_2:
4071 out_free_1:
4072 	kvm_arch_hardware_unsetup();
4073 out_free_0a:
4074 	free_cpumask_var(cpus_hardware_enabled);
4075 out_free_0:
4076 	kvm_irqfd_exit();
4077 out_irqfd:
4078 	kvm_arch_exit();
4079 out_fail:
4080 	return r;
4081 }
4082 EXPORT_SYMBOL_GPL(kvm_init);
4083 
4084 void kvm_exit(void)
4085 {
4086 	debugfs_remove_recursive(kvm_debugfs_dir);
4087 	misc_deregister(&kvm_dev);
4088 	kmem_cache_destroy(kvm_vcpu_cache);
4089 	kvm_async_pf_deinit();
4090 	unregister_syscore_ops(&kvm_syscore_ops);
4091 	unregister_reboot_notifier(&kvm_reboot_notifier);
4092 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4093 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4094 	kvm_arch_hardware_unsetup();
4095 	kvm_arch_exit();
4096 	kvm_irqfd_exit();
4097 	free_cpumask_var(cpus_hardware_enabled);
4098 	kvm_vfio_ops_exit();
4099 }
4100 EXPORT_SYMBOL_GPL(kvm_exit);
4101