1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #endif 120 static int hardware_enable_all(void); 121 static void hardware_disable_all(void); 122 123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 124 125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 126 127 __visible bool kvm_rebooting; 128 EXPORT_SYMBOL_GPL(kvm_rebooting); 129 130 static bool largepages_enabled = true; 131 132 #define KVM_EVENT_CREATE_VM 0 133 #define KVM_EVENT_DESTROY_VM 1 134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 135 static unsigned long long kvm_createvm_count; 136 static unsigned long long kvm_active_vms; 137 138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 139 unsigned long start, unsigned long end) 140 { 141 } 142 143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 144 { 145 if (pfn_valid(pfn)) 146 return PageReserved(pfn_to_page(pfn)); 147 148 return true; 149 } 150 151 /* 152 * Switches to specified vcpu, until a matching vcpu_put() 153 */ 154 void vcpu_load(struct kvm_vcpu *vcpu) 155 { 156 int cpu = get_cpu(); 157 preempt_notifier_register(&vcpu->preempt_notifier); 158 kvm_arch_vcpu_load(vcpu, cpu); 159 put_cpu(); 160 } 161 EXPORT_SYMBOL_GPL(vcpu_load); 162 163 void vcpu_put(struct kvm_vcpu *vcpu) 164 { 165 preempt_disable(); 166 kvm_arch_vcpu_put(vcpu); 167 preempt_notifier_unregister(&vcpu->preempt_notifier); 168 preempt_enable(); 169 } 170 EXPORT_SYMBOL_GPL(vcpu_put); 171 172 /* TODO: merge with kvm_arch_vcpu_should_kick */ 173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 174 { 175 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 176 177 /* 178 * We need to wait for the VCPU to reenable interrupts and get out of 179 * READING_SHADOW_PAGE_TABLES mode. 180 */ 181 if (req & KVM_REQUEST_WAIT) 182 return mode != OUTSIDE_GUEST_MODE; 183 184 /* 185 * Need to kick a running VCPU, but otherwise there is nothing to do. 186 */ 187 return mode == IN_GUEST_MODE; 188 } 189 190 static void ack_flush(void *_completed) 191 { 192 } 193 194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 195 { 196 if (unlikely(!cpus)) 197 cpus = cpu_online_mask; 198 199 if (cpumask_empty(cpus)) 200 return false; 201 202 smp_call_function_many(cpus, ack_flush, NULL, wait); 203 return true; 204 } 205 206 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 207 { 208 int i, cpu, me; 209 cpumask_var_t cpus; 210 bool called; 211 struct kvm_vcpu *vcpu; 212 213 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 214 215 me = get_cpu(); 216 kvm_for_each_vcpu(i, vcpu, kvm) { 217 kvm_make_request(req, vcpu); 218 cpu = vcpu->cpu; 219 220 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 221 continue; 222 223 if (cpus != NULL && cpu != -1 && cpu != me && 224 kvm_request_needs_ipi(vcpu, req)) 225 __cpumask_set_cpu(cpu, cpus); 226 } 227 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 228 put_cpu(); 229 free_cpumask_var(cpus); 230 return called; 231 } 232 233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 234 void kvm_flush_remote_tlbs(struct kvm *kvm) 235 { 236 /* 237 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 238 * kvm_make_all_cpus_request. 239 */ 240 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 241 242 /* 243 * We want to publish modifications to the page tables before reading 244 * mode. Pairs with a memory barrier in arch-specific code. 245 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 246 * and smp_mb in walk_shadow_page_lockless_begin/end. 247 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 248 * 249 * There is already an smp_mb__after_atomic() before 250 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 251 * barrier here. 252 */ 253 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 254 ++kvm->stat.remote_tlb_flush; 255 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 256 } 257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 258 #endif 259 260 void kvm_reload_remote_mmus(struct kvm *kvm) 261 { 262 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 263 } 264 265 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 266 { 267 struct page *page; 268 int r; 269 270 mutex_init(&vcpu->mutex); 271 vcpu->cpu = -1; 272 vcpu->kvm = kvm; 273 vcpu->vcpu_id = id; 274 vcpu->pid = NULL; 275 init_swait_queue_head(&vcpu->wq); 276 kvm_async_pf_vcpu_init(vcpu); 277 278 vcpu->pre_pcpu = -1; 279 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 280 281 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 282 if (!page) { 283 r = -ENOMEM; 284 goto fail; 285 } 286 vcpu->run = page_address(page); 287 288 kvm_vcpu_set_in_spin_loop(vcpu, false); 289 kvm_vcpu_set_dy_eligible(vcpu, false); 290 vcpu->preempted = false; 291 292 r = kvm_arch_vcpu_init(vcpu); 293 if (r < 0) 294 goto fail_free_run; 295 return 0; 296 297 fail_free_run: 298 free_page((unsigned long)vcpu->run); 299 fail: 300 return r; 301 } 302 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 303 304 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 305 { 306 /* 307 * no need for rcu_read_lock as VCPU_RUN is the only place that 308 * will change the vcpu->pid pointer and on uninit all file 309 * descriptors are already gone. 310 */ 311 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 312 kvm_arch_vcpu_uninit(vcpu); 313 free_page((unsigned long)vcpu->run); 314 } 315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 316 317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 318 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 319 { 320 return container_of(mn, struct kvm, mmu_notifier); 321 } 322 323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 324 struct mm_struct *mm, 325 unsigned long address, 326 pte_t pte) 327 { 328 struct kvm *kvm = mmu_notifier_to_kvm(mn); 329 int idx; 330 331 idx = srcu_read_lock(&kvm->srcu); 332 spin_lock(&kvm->mmu_lock); 333 kvm->mmu_notifier_seq++; 334 kvm_set_spte_hva(kvm, address, pte); 335 spin_unlock(&kvm->mmu_lock); 336 srcu_read_unlock(&kvm->srcu, idx); 337 } 338 339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 340 struct mm_struct *mm, 341 unsigned long start, 342 unsigned long end) 343 { 344 struct kvm *kvm = mmu_notifier_to_kvm(mn); 345 int need_tlb_flush = 0, idx; 346 347 idx = srcu_read_lock(&kvm->srcu); 348 spin_lock(&kvm->mmu_lock); 349 /* 350 * The count increase must become visible at unlock time as no 351 * spte can be established without taking the mmu_lock and 352 * count is also read inside the mmu_lock critical section. 353 */ 354 kvm->mmu_notifier_count++; 355 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 356 need_tlb_flush |= kvm->tlbs_dirty; 357 /* we've to flush the tlb before the pages can be freed */ 358 if (need_tlb_flush) 359 kvm_flush_remote_tlbs(kvm); 360 361 spin_unlock(&kvm->mmu_lock); 362 363 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 364 365 srcu_read_unlock(&kvm->srcu, idx); 366 } 367 368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 369 struct mm_struct *mm, 370 unsigned long start, 371 unsigned long end) 372 { 373 struct kvm *kvm = mmu_notifier_to_kvm(mn); 374 375 spin_lock(&kvm->mmu_lock); 376 /* 377 * This sequence increase will notify the kvm page fault that 378 * the page that is going to be mapped in the spte could have 379 * been freed. 380 */ 381 kvm->mmu_notifier_seq++; 382 smp_wmb(); 383 /* 384 * The above sequence increase must be visible before the 385 * below count decrease, which is ensured by the smp_wmb above 386 * in conjunction with the smp_rmb in mmu_notifier_retry(). 387 */ 388 kvm->mmu_notifier_count--; 389 spin_unlock(&kvm->mmu_lock); 390 391 BUG_ON(kvm->mmu_notifier_count < 0); 392 } 393 394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 395 struct mm_struct *mm, 396 unsigned long start, 397 unsigned long end) 398 { 399 struct kvm *kvm = mmu_notifier_to_kvm(mn); 400 int young, idx; 401 402 idx = srcu_read_lock(&kvm->srcu); 403 spin_lock(&kvm->mmu_lock); 404 405 young = kvm_age_hva(kvm, start, end); 406 if (young) 407 kvm_flush_remote_tlbs(kvm); 408 409 spin_unlock(&kvm->mmu_lock); 410 srcu_read_unlock(&kvm->srcu, idx); 411 412 return young; 413 } 414 415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 416 struct mm_struct *mm, 417 unsigned long start, 418 unsigned long end) 419 { 420 struct kvm *kvm = mmu_notifier_to_kvm(mn); 421 int young, idx; 422 423 idx = srcu_read_lock(&kvm->srcu); 424 spin_lock(&kvm->mmu_lock); 425 /* 426 * Even though we do not flush TLB, this will still adversely 427 * affect performance on pre-Haswell Intel EPT, where there is 428 * no EPT Access Bit to clear so that we have to tear down EPT 429 * tables instead. If we find this unacceptable, we can always 430 * add a parameter to kvm_age_hva so that it effectively doesn't 431 * do anything on clear_young. 432 * 433 * Also note that currently we never issue secondary TLB flushes 434 * from clear_young, leaving this job up to the regular system 435 * cadence. If we find this inaccurate, we might come up with a 436 * more sophisticated heuristic later. 437 */ 438 young = kvm_age_hva(kvm, start, end); 439 spin_unlock(&kvm->mmu_lock); 440 srcu_read_unlock(&kvm->srcu, idx); 441 442 return young; 443 } 444 445 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 446 struct mm_struct *mm, 447 unsigned long address) 448 { 449 struct kvm *kvm = mmu_notifier_to_kvm(mn); 450 int young, idx; 451 452 idx = srcu_read_lock(&kvm->srcu); 453 spin_lock(&kvm->mmu_lock); 454 young = kvm_test_age_hva(kvm, address); 455 spin_unlock(&kvm->mmu_lock); 456 srcu_read_unlock(&kvm->srcu, idx); 457 458 return young; 459 } 460 461 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 462 struct mm_struct *mm) 463 { 464 struct kvm *kvm = mmu_notifier_to_kvm(mn); 465 int idx; 466 467 idx = srcu_read_lock(&kvm->srcu); 468 kvm_arch_flush_shadow_all(kvm); 469 srcu_read_unlock(&kvm->srcu, idx); 470 } 471 472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 473 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK, 474 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 475 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 476 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 477 .clear_young = kvm_mmu_notifier_clear_young, 478 .test_young = kvm_mmu_notifier_test_young, 479 .change_pte = kvm_mmu_notifier_change_pte, 480 .release = kvm_mmu_notifier_release, 481 }; 482 483 static int kvm_init_mmu_notifier(struct kvm *kvm) 484 { 485 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 486 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 487 } 488 489 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 490 491 static int kvm_init_mmu_notifier(struct kvm *kvm) 492 { 493 return 0; 494 } 495 496 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 497 498 static struct kvm_memslots *kvm_alloc_memslots(void) 499 { 500 int i; 501 struct kvm_memslots *slots; 502 503 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 504 if (!slots) 505 return NULL; 506 507 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 508 slots->id_to_index[i] = slots->memslots[i].id = i; 509 510 return slots; 511 } 512 513 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 514 { 515 if (!memslot->dirty_bitmap) 516 return; 517 518 kvfree(memslot->dirty_bitmap); 519 memslot->dirty_bitmap = NULL; 520 } 521 522 /* 523 * Free any memory in @free but not in @dont. 524 */ 525 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 526 struct kvm_memory_slot *dont) 527 { 528 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 529 kvm_destroy_dirty_bitmap(free); 530 531 kvm_arch_free_memslot(kvm, free, dont); 532 533 free->npages = 0; 534 } 535 536 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 537 { 538 struct kvm_memory_slot *memslot; 539 540 if (!slots) 541 return; 542 543 kvm_for_each_memslot(memslot, slots) 544 kvm_free_memslot(kvm, memslot, NULL); 545 546 kvfree(slots); 547 } 548 549 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 550 { 551 int i; 552 553 if (!kvm->debugfs_dentry) 554 return; 555 556 debugfs_remove_recursive(kvm->debugfs_dentry); 557 558 if (kvm->debugfs_stat_data) { 559 for (i = 0; i < kvm_debugfs_num_entries; i++) 560 kfree(kvm->debugfs_stat_data[i]); 561 kfree(kvm->debugfs_stat_data); 562 } 563 } 564 565 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 566 { 567 char dir_name[ITOA_MAX_LEN * 2]; 568 struct kvm_stat_data *stat_data; 569 struct kvm_stats_debugfs_item *p; 570 571 if (!debugfs_initialized()) 572 return 0; 573 574 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 575 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 576 kvm_debugfs_dir); 577 if (!kvm->debugfs_dentry) 578 return -ENOMEM; 579 580 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 581 sizeof(*kvm->debugfs_stat_data), 582 GFP_KERNEL); 583 if (!kvm->debugfs_stat_data) 584 return -ENOMEM; 585 586 for (p = debugfs_entries; p->name; p++) { 587 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 588 if (!stat_data) 589 return -ENOMEM; 590 591 stat_data->kvm = kvm; 592 stat_data->offset = p->offset; 593 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 594 if (!debugfs_create_file(p->name, 0644, 595 kvm->debugfs_dentry, 596 stat_data, 597 stat_fops_per_vm[p->kind])) 598 return -ENOMEM; 599 } 600 return 0; 601 } 602 603 static struct kvm *kvm_create_vm(unsigned long type) 604 { 605 int r, i; 606 struct kvm *kvm = kvm_arch_alloc_vm(); 607 608 if (!kvm) 609 return ERR_PTR(-ENOMEM); 610 611 spin_lock_init(&kvm->mmu_lock); 612 mmgrab(current->mm); 613 kvm->mm = current->mm; 614 kvm_eventfd_init(kvm); 615 mutex_init(&kvm->lock); 616 mutex_init(&kvm->irq_lock); 617 mutex_init(&kvm->slots_lock); 618 refcount_set(&kvm->users_count, 1); 619 INIT_LIST_HEAD(&kvm->devices); 620 621 r = kvm_arch_init_vm(kvm, type); 622 if (r) 623 goto out_err_no_disable; 624 625 r = hardware_enable_all(); 626 if (r) 627 goto out_err_no_disable; 628 629 #ifdef CONFIG_HAVE_KVM_IRQFD 630 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 631 #endif 632 633 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 634 635 r = -ENOMEM; 636 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 637 struct kvm_memslots *slots = kvm_alloc_memslots(); 638 if (!slots) 639 goto out_err_no_srcu; 640 /* 641 * Generations must be different for each address space. 642 * Init kvm generation close to the maximum to easily test the 643 * code of handling generation number wrap-around. 644 */ 645 slots->generation = i * 2 - 150; 646 rcu_assign_pointer(kvm->memslots[i], slots); 647 } 648 649 if (init_srcu_struct(&kvm->srcu)) 650 goto out_err_no_srcu; 651 if (init_srcu_struct(&kvm->irq_srcu)) 652 goto out_err_no_irq_srcu; 653 for (i = 0; i < KVM_NR_BUSES; i++) { 654 rcu_assign_pointer(kvm->buses[i], 655 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 656 if (!kvm->buses[i]) 657 goto out_err; 658 } 659 660 r = kvm_init_mmu_notifier(kvm); 661 if (r) 662 goto out_err; 663 664 spin_lock(&kvm_lock); 665 list_add(&kvm->vm_list, &vm_list); 666 spin_unlock(&kvm_lock); 667 668 preempt_notifier_inc(); 669 670 return kvm; 671 672 out_err: 673 cleanup_srcu_struct(&kvm->irq_srcu); 674 out_err_no_irq_srcu: 675 cleanup_srcu_struct(&kvm->srcu); 676 out_err_no_srcu: 677 hardware_disable_all(); 678 out_err_no_disable: 679 refcount_set(&kvm->users_count, 0); 680 for (i = 0; i < KVM_NR_BUSES; i++) 681 kfree(kvm_get_bus(kvm, i)); 682 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 683 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 684 kvm_arch_free_vm(kvm); 685 mmdrop(current->mm); 686 return ERR_PTR(r); 687 } 688 689 static void kvm_destroy_devices(struct kvm *kvm) 690 { 691 struct kvm_device *dev, *tmp; 692 693 /* 694 * We do not need to take the kvm->lock here, because nobody else 695 * has a reference to the struct kvm at this point and therefore 696 * cannot access the devices list anyhow. 697 */ 698 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 699 list_del(&dev->vm_node); 700 dev->ops->destroy(dev); 701 } 702 } 703 704 static void kvm_destroy_vm(struct kvm *kvm) 705 { 706 int i; 707 struct mm_struct *mm = kvm->mm; 708 709 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 710 kvm_destroy_vm_debugfs(kvm); 711 kvm_arch_sync_events(kvm); 712 spin_lock(&kvm_lock); 713 list_del(&kvm->vm_list); 714 spin_unlock(&kvm_lock); 715 kvm_free_irq_routing(kvm); 716 for (i = 0; i < KVM_NR_BUSES; i++) { 717 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 718 719 if (bus) 720 kvm_io_bus_destroy(bus); 721 kvm->buses[i] = NULL; 722 } 723 kvm_coalesced_mmio_free(kvm); 724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 725 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 726 #else 727 kvm_arch_flush_shadow_all(kvm); 728 #endif 729 kvm_arch_destroy_vm(kvm); 730 kvm_destroy_devices(kvm); 731 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 732 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 733 cleanup_srcu_struct(&kvm->irq_srcu); 734 cleanup_srcu_struct(&kvm->srcu); 735 kvm_arch_free_vm(kvm); 736 preempt_notifier_dec(); 737 hardware_disable_all(); 738 mmdrop(mm); 739 } 740 741 void kvm_get_kvm(struct kvm *kvm) 742 { 743 refcount_inc(&kvm->users_count); 744 } 745 EXPORT_SYMBOL_GPL(kvm_get_kvm); 746 747 void kvm_put_kvm(struct kvm *kvm) 748 { 749 if (refcount_dec_and_test(&kvm->users_count)) 750 kvm_destroy_vm(kvm); 751 } 752 EXPORT_SYMBOL_GPL(kvm_put_kvm); 753 754 755 static int kvm_vm_release(struct inode *inode, struct file *filp) 756 { 757 struct kvm *kvm = filp->private_data; 758 759 kvm_irqfd_release(kvm); 760 761 kvm_put_kvm(kvm); 762 return 0; 763 } 764 765 /* 766 * Allocation size is twice as large as the actual dirty bitmap size. 767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 768 */ 769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 770 { 771 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 772 773 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 774 if (!memslot->dirty_bitmap) 775 return -ENOMEM; 776 777 return 0; 778 } 779 780 /* 781 * Insert memslot and re-sort memslots based on their GFN, 782 * so binary search could be used to lookup GFN. 783 * Sorting algorithm takes advantage of having initially 784 * sorted array and known changed memslot position. 785 */ 786 static void update_memslots(struct kvm_memslots *slots, 787 struct kvm_memory_slot *new) 788 { 789 int id = new->id; 790 int i = slots->id_to_index[id]; 791 struct kvm_memory_slot *mslots = slots->memslots; 792 793 WARN_ON(mslots[i].id != id); 794 if (!new->npages) { 795 WARN_ON(!mslots[i].npages); 796 if (mslots[i].npages) 797 slots->used_slots--; 798 } else { 799 if (!mslots[i].npages) 800 slots->used_slots++; 801 } 802 803 while (i < KVM_MEM_SLOTS_NUM - 1 && 804 new->base_gfn <= mslots[i + 1].base_gfn) { 805 if (!mslots[i + 1].npages) 806 break; 807 mslots[i] = mslots[i + 1]; 808 slots->id_to_index[mslots[i].id] = i; 809 i++; 810 } 811 812 /* 813 * The ">=" is needed when creating a slot with base_gfn == 0, 814 * so that it moves before all those with base_gfn == npages == 0. 815 * 816 * On the other hand, if new->npages is zero, the above loop has 817 * already left i pointing to the beginning of the empty part of 818 * mslots, and the ">=" would move the hole backwards in this 819 * case---which is wrong. So skip the loop when deleting a slot. 820 */ 821 if (new->npages) { 822 while (i > 0 && 823 new->base_gfn >= mslots[i - 1].base_gfn) { 824 mslots[i] = mslots[i - 1]; 825 slots->id_to_index[mslots[i].id] = i; 826 i--; 827 } 828 } else 829 WARN_ON_ONCE(i != slots->used_slots); 830 831 mslots[i] = *new; 832 slots->id_to_index[mslots[i].id] = i; 833 } 834 835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 836 { 837 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 838 839 #ifdef __KVM_HAVE_READONLY_MEM 840 valid_flags |= KVM_MEM_READONLY; 841 #endif 842 843 if (mem->flags & ~valid_flags) 844 return -EINVAL; 845 846 return 0; 847 } 848 849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 850 int as_id, struct kvm_memslots *slots) 851 { 852 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 853 854 /* 855 * Set the low bit in the generation, which disables SPTE caching 856 * until the end of synchronize_srcu_expedited. 857 */ 858 WARN_ON(old_memslots->generation & 1); 859 slots->generation = old_memslots->generation + 1; 860 861 rcu_assign_pointer(kvm->memslots[as_id], slots); 862 synchronize_srcu_expedited(&kvm->srcu); 863 864 /* 865 * Increment the new memslot generation a second time. This prevents 866 * vm exits that race with memslot updates from caching a memslot 867 * generation that will (potentially) be valid forever. 868 * 869 * Generations must be unique even across address spaces. We do not need 870 * a global counter for that, instead the generation space is evenly split 871 * across address spaces. For example, with two address spaces, address 872 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 873 * use generations 2, 6, 10, 14, ... 874 */ 875 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 876 877 kvm_arch_memslots_updated(kvm, slots); 878 879 return old_memslots; 880 } 881 882 /* 883 * Allocate some memory and give it an address in the guest physical address 884 * space. 885 * 886 * Discontiguous memory is allowed, mostly for framebuffers. 887 * 888 * Must be called holding kvm->slots_lock for write. 889 */ 890 int __kvm_set_memory_region(struct kvm *kvm, 891 const struct kvm_userspace_memory_region *mem) 892 { 893 int r; 894 gfn_t base_gfn; 895 unsigned long npages; 896 struct kvm_memory_slot *slot; 897 struct kvm_memory_slot old, new; 898 struct kvm_memslots *slots = NULL, *old_memslots; 899 int as_id, id; 900 enum kvm_mr_change change; 901 902 r = check_memory_region_flags(mem); 903 if (r) 904 goto out; 905 906 r = -EINVAL; 907 as_id = mem->slot >> 16; 908 id = (u16)mem->slot; 909 910 /* General sanity checks */ 911 if (mem->memory_size & (PAGE_SIZE - 1)) 912 goto out; 913 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 914 goto out; 915 /* We can read the guest memory with __xxx_user() later on. */ 916 if ((id < KVM_USER_MEM_SLOTS) && 917 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 918 !access_ok(VERIFY_WRITE, 919 (void __user *)(unsigned long)mem->userspace_addr, 920 mem->memory_size))) 921 goto out; 922 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 923 goto out; 924 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 925 goto out; 926 927 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 928 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 929 npages = mem->memory_size >> PAGE_SHIFT; 930 931 if (npages > KVM_MEM_MAX_NR_PAGES) 932 goto out; 933 934 new = old = *slot; 935 936 new.id = id; 937 new.base_gfn = base_gfn; 938 new.npages = npages; 939 new.flags = mem->flags; 940 941 if (npages) { 942 if (!old.npages) 943 change = KVM_MR_CREATE; 944 else { /* Modify an existing slot. */ 945 if ((mem->userspace_addr != old.userspace_addr) || 946 (npages != old.npages) || 947 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 948 goto out; 949 950 if (base_gfn != old.base_gfn) 951 change = KVM_MR_MOVE; 952 else if (new.flags != old.flags) 953 change = KVM_MR_FLAGS_ONLY; 954 else { /* Nothing to change. */ 955 r = 0; 956 goto out; 957 } 958 } 959 } else { 960 if (!old.npages) 961 goto out; 962 963 change = KVM_MR_DELETE; 964 new.base_gfn = 0; 965 new.flags = 0; 966 } 967 968 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 969 /* Check for overlaps */ 970 r = -EEXIST; 971 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 972 if (slot->id == id) 973 continue; 974 if (!((base_gfn + npages <= slot->base_gfn) || 975 (base_gfn >= slot->base_gfn + slot->npages))) 976 goto out; 977 } 978 } 979 980 /* Free page dirty bitmap if unneeded */ 981 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 982 new.dirty_bitmap = NULL; 983 984 r = -ENOMEM; 985 if (change == KVM_MR_CREATE) { 986 new.userspace_addr = mem->userspace_addr; 987 988 if (kvm_arch_create_memslot(kvm, &new, npages)) 989 goto out_free; 990 } 991 992 /* Allocate page dirty bitmap if needed */ 993 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 994 if (kvm_create_dirty_bitmap(&new) < 0) 995 goto out_free; 996 } 997 998 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 999 if (!slots) 1000 goto out_free; 1001 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1002 1003 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1004 slot = id_to_memslot(slots, id); 1005 slot->flags |= KVM_MEMSLOT_INVALID; 1006 1007 old_memslots = install_new_memslots(kvm, as_id, slots); 1008 1009 /* From this point no new shadow pages pointing to a deleted, 1010 * or moved, memslot will be created. 1011 * 1012 * validation of sp->gfn happens in: 1013 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1014 * - kvm_is_visible_gfn (mmu_check_roots) 1015 */ 1016 kvm_arch_flush_shadow_memslot(kvm, slot); 1017 1018 /* 1019 * We can re-use the old_memslots from above, the only difference 1020 * from the currently installed memslots is the invalid flag. This 1021 * will get overwritten by update_memslots anyway. 1022 */ 1023 slots = old_memslots; 1024 } 1025 1026 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1027 if (r) 1028 goto out_slots; 1029 1030 /* actual memory is freed via old in kvm_free_memslot below */ 1031 if (change == KVM_MR_DELETE) { 1032 new.dirty_bitmap = NULL; 1033 memset(&new.arch, 0, sizeof(new.arch)); 1034 } 1035 1036 update_memslots(slots, &new); 1037 old_memslots = install_new_memslots(kvm, as_id, slots); 1038 1039 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1040 1041 kvm_free_memslot(kvm, &old, &new); 1042 kvfree(old_memslots); 1043 return 0; 1044 1045 out_slots: 1046 kvfree(slots); 1047 out_free: 1048 kvm_free_memslot(kvm, &new, &old); 1049 out: 1050 return r; 1051 } 1052 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1053 1054 int kvm_set_memory_region(struct kvm *kvm, 1055 const struct kvm_userspace_memory_region *mem) 1056 { 1057 int r; 1058 1059 mutex_lock(&kvm->slots_lock); 1060 r = __kvm_set_memory_region(kvm, mem); 1061 mutex_unlock(&kvm->slots_lock); 1062 return r; 1063 } 1064 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1065 1066 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1067 struct kvm_userspace_memory_region *mem) 1068 { 1069 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1070 return -EINVAL; 1071 1072 return kvm_set_memory_region(kvm, mem); 1073 } 1074 1075 int kvm_get_dirty_log(struct kvm *kvm, 1076 struct kvm_dirty_log *log, int *is_dirty) 1077 { 1078 struct kvm_memslots *slots; 1079 struct kvm_memory_slot *memslot; 1080 int i, as_id, id; 1081 unsigned long n; 1082 unsigned long any = 0; 1083 1084 as_id = log->slot >> 16; 1085 id = (u16)log->slot; 1086 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1087 return -EINVAL; 1088 1089 slots = __kvm_memslots(kvm, as_id); 1090 memslot = id_to_memslot(slots, id); 1091 if (!memslot->dirty_bitmap) 1092 return -ENOENT; 1093 1094 n = kvm_dirty_bitmap_bytes(memslot); 1095 1096 for (i = 0; !any && i < n/sizeof(long); ++i) 1097 any = memslot->dirty_bitmap[i]; 1098 1099 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1100 return -EFAULT; 1101 1102 if (any) 1103 *is_dirty = 1; 1104 return 0; 1105 } 1106 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1107 1108 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1109 /** 1110 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1111 * are dirty write protect them for next write. 1112 * @kvm: pointer to kvm instance 1113 * @log: slot id and address to which we copy the log 1114 * @is_dirty: flag set if any page is dirty 1115 * 1116 * We need to keep it in mind that VCPU threads can write to the bitmap 1117 * concurrently. So, to avoid losing track of dirty pages we keep the 1118 * following order: 1119 * 1120 * 1. Take a snapshot of the bit and clear it if needed. 1121 * 2. Write protect the corresponding page. 1122 * 3. Copy the snapshot to the userspace. 1123 * 4. Upon return caller flushes TLB's if needed. 1124 * 1125 * Between 2 and 4, the guest may write to the page using the remaining TLB 1126 * entry. This is not a problem because the page is reported dirty using 1127 * the snapshot taken before and step 4 ensures that writes done after 1128 * exiting to userspace will be logged for the next call. 1129 * 1130 */ 1131 int kvm_get_dirty_log_protect(struct kvm *kvm, 1132 struct kvm_dirty_log *log, bool *is_dirty) 1133 { 1134 struct kvm_memslots *slots; 1135 struct kvm_memory_slot *memslot; 1136 int i, as_id, id; 1137 unsigned long n; 1138 unsigned long *dirty_bitmap; 1139 unsigned long *dirty_bitmap_buffer; 1140 1141 as_id = log->slot >> 16; 1142 id = (u16)log->slot; 1143 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1144 return -EINVAL; 1145 1146 slots = __kvm_memslots(kvm, as_id); 1147 memslot = id_to_memslot(slots, id); 1148 1149 dirty_bitmap = memslot->dirty_bitmap; 1150 if (!dirty_bitmap) 1151 return -ENOENT; 1152 1153 n = kvm_dirty_bitmap_bytes(memslot); 1154 1155 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1156 memset(dirty_bitmap_buffer, 0, n); 1157 1158 spin_lock(&kvm->mmu_lock); 1159 *is_dirty = false; 1160 for (i = 0; i < n / sizeof(long); i++) { 1161 unsigned long mask; 1162 gfn_t offset; 1163 1164 if (!dirty_bitmap[i]) 1165 continue; 1166 1167 *is_dirty = true; 1168 1169 mask = xchg(&dirty_bitmap[i], 0); 1170 dirty_bitmap_buffer[i] = mask; 1171 1172 if (mask) { 1173 offset = i * BITS_PER_LONG; 1174 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1175 offset, mask); 1176 } 1177 } 1178 1179 spin_unlock(&kvm->mmu_lock); 1180 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1181 return -EFAULT; 1182 return 0; 1183 } 1184 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1185 #endif 1186 1187 bool kvm_largepages_enabled(void) 1188 { 1189 return largepages_enabled; 1190 } 1191 1192 void kvm_disable_largepages(void) 1193 { 1194 largepages_enabled = false; 1195 } 1196 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1197 1198 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1199 { 1200 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1201 } 1202 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1203 1204 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1205 { 1206 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1207 } 1208 1209 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1210 { 1211 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1212 1213 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1214 memslot->flags & KVM_MEMSLOT_INVALID) 1215 return false; 1216 1217 return true; 1218 } 1219 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1220 1221 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1222 { 1223 struct vm_area_struct *vma; 1224 unsigned long addr, size; 1225 1226 size = PAGE_SIZE; 1227 1228 addr = gfn_to_hva(kvm, gfn); 1229 if (kvm_is_error_hva(addr)) 1230 return PAGE_SIZE; 1231 1232 down_read(¤t->mm->mmap_sem); 1233 vma = find_vma(current->mm, addr); 1234 if (!vma) 1235 goto out; 1236 1237 size = vma_kernel_pagesize(vma); 1238 1239 out: 1240 up_read(¤t->mm->mmap_sem); 1241 1242 return size; 1243 } 1244 1245 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1246 { 1247 return slot->flags & KVM_MEM_READONLY; 1248 } 1249 1250 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1251 gfn_t *nr_pages, bool write) 1252 { 1253 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1254 return KVM_HVA_ERR_BAD; 1255 1256 if (memslot_is_readonly(slot) && write) 1257 return KVM_HVA_ERR_RO_BAD; 1258 1259 if (nr_pages) 1260 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1261 1262 return __gfn_to_hva_memslot(slot, gfn); 1263 } 1264 1265 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1266 gfn_t *nr_pages) 1267 { 1268 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1269 } 1270 1271 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1272 gfn_t gfn) 1273 { 1274 return gfn_to_hva_many(slot, gfn, NULL); 1275 } 1276 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1277 1278 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1279 { 1280 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1281 } 1282 EXPORT_SYMBOL_GPL(gfn_to_hva); 1283 1284 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1285 { 1286 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1287 } 1288 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1289 1290 /* 1291 * If writable is set to false, the hva returned by this function is only 1292 * allowed to be read. 1293 */ 1294 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1295 gfn_t gfn, bool *writable) 1296 { 1297 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1298 1299 if (!kvm_is_error_hva(hva) && writable) 1300 *writable = !memslot_is_readonly(slot); 1301 1302 return hva; 1303 } 1304 1305 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1306 { 1307 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1308 1309 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1310 } 1311 1312 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1313 { 1314 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1315 1316 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1317 } 1318 1319 static inline int check_user_page_hwpoison(unsigned long addr) 1320 { 1321 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1322 1323 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1324 return rc == -EHWPOISON; 1325 } 1326 1327 /* 1328 * The atomic path to get the writable pfn which will be stored in @pfn, 1329 * true indicates success, otherwise false is returned. 1330 */ 1331 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1332 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1333 { 1334 struct page *page[1]; 1335 int npages; 1336 1337 if (!(async || atomic)) 1338 return false; 1339 1340 /* 1341 * Fast pin a writable pfn only if it is a write fault request 1342 * or the caller allows to map a writable pfn for a read fault 1343 * request. 1344 */ 1345 if (!(write_fault || writable)) 1346 return false; 1347 1348 npages = __get_user_pages_fast(addr, 1, 1, page); 1349 if (npages == 1) { 1350 *pfn = page_to_pfn(page[0]); 1351 1352 if (writable) 1353 *writable = true; 1354 return true; 1355 } 1356 1357 return false; 1358 } 1359 1360 /* 1361 * The slow path to get the pfn of the specified host virtual address, 1362 * 1 indicates success, -errno is returned if error is detected. 1363 */ 1364 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1365 bool *writable, kvm_pfn_t *pfn) 1366 { 1367 unsigned int flags = FOLL_HWPOISON; 1368 struct page *page; 1369 int npages = 0; 1370 1371 might_sleep(); 1372 1373 if (writable) 1374 *writable = write_fault; 1375 1376 if (write_fault) 1377 flags |= FOLL_WRITE; 1378 if (async) 1379 flags |= FOLL_NOWAIT; 1380 1381 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1382 if (npages != 1) 1383 return npages; 1384 1385 /* map read fault as writable if possible */ 1386 if (unlikely(!write_fault) && writable) { 1387 struct page *wpage; 1388 1389 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1390 *writable = true; 1391 put_page(page); 1392 page = wpage; 1393 } 1394 } 1395 *pfn = page_to_pfn(page); 1396 return npages; 1397 } 1398 1399 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1400 { 1401 if (unlikely(!(vma->vm_flags & VM_READ))) 1402 return false; 1403 1404 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1405 return false; 1406 1407 return true; 1408 } 1409 1410 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1411 unsigned long addr, bool *async, 1412 bool write_fault, bool *writable, 1413 kvm_pfn_t *p_pfn) 1414 { 1415 unsigned long pfn; 1416 int r; 1417 1418 r = follow_pfn(vma, addr, &pfn); 1419 if (r) { 1420 /* 1421 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1422 * not call the fault handler, so do it here. 1423 */ 1424 bool unlocked = false; 1425 r = fixup_user_fault(current, current->mm, addr, 1426 (write_fault ? FAULT_FLAG_WRITE : 0), 1427 &unlocked); 1428 if (unlocked) 1429 return -EAGAIN; 1430 if (r) 1431 return r; 1432 1433 r = follow_pfn(vma, addr, &pfn); 1434 if (r) 1435 return r; 1436 1437 } 1438 1439 if (writable) 1440 *writable = true; 1441 1442 /* 1443 * Get a reference here because callers of *hva_to_pfn* and 1444 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1445 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1446 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1447 * simply do nothing for reserved pfns. 1448 * 1449 * Whoever called remap_pfn_range is also going to call e.g. 1450 * unmap_mapping_range before the underlying pages are freed, 1451 * causing a call to our MMU notifier. 1452 */ 1453 kvm_get_pfn(pfn); 1454 1455 *p_pfn = pfn; 1456 return 0; 1457 } 1458 1459 /* 1460 * Pin guest page in memory and return its pfn. 1461 * @addr: host virtual address which maps memory to the guest 1462 * @atomic: whether this function can sleep 1463 * @async: whether this function need to wait IO complete if the 1464 * host page is not in the memory 1465 * @write_fault: whether we should get a writable host page 1466 * @writable: whether it allows to map a writable host page for !@write_fault 1467 * 1468 * The function will map a writable host page for these two cases: 1469 * 1): @write_fault = true 1470 * 2): @write_fault = false && @writable, @writable will tell the caller 1471 * whether the mapping is writable. 1472 */ 1473 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1474 bool write_fault, bool *writable) 1475 { 1476 struct vm_area_struct *vma; 1477 kvm_pfn_t pfn = 0; 1478 int npages, r; 1479 1480 /* we can do it either atomically or asynchronously, not both */ 1481 BUG_ON(atomic && async); 1482 1483 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1484 return pfn; 1485 1486 if (atomic) 1487 return KVM_PFN_ERR_FAULT; 1488 1489 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1490 if (npages == 1) 1491 return pfn; 1492 1493 down_read(¤t->mm->mmap_sem); 1494 if (npages == -EHWPOISON || 1495 (!async && check_user_page_hwpoison(addr))) { 1496 pfn = KVM_PFN_ERR_HWPOISON; 1497 goto exit; 1498 } 1499 1500 retry: 1501 vma = find_vma_intersection(current->mm, addr, addr + 1); 1502 1503 if (vma == NULL) 1504 pfn = KVM_PFN_ERR_FAULT; 1505 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1506 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1507 if (r == -EAGAIN) 1508 goto retry; 1509 if (r < 0) 1510 pfn = KVM_PFN_ERR_FAULT; 1511 } else { 1512 if (async && vma_is_valid(vma, write_fault)) 1513 *async = true; 1514 pfn = KVM_PFN_ERR_FAULT; 1515 } 1516 exit: 1517 up_read(¤t->mm->mmap_sem); 1518 return pfn; 1519 } 1520 1521 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1522 bool atomic, bool *async, bool write_fault, 1523 bool *writable) 1524 { 1525 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1526 1527 if (addr == KVM_HVA_ERR_RO_BAD) { 1528 if (writable) 1529 *writable = false; 1530 return KVM_PFN_ERR_RO_FAULT; 1531 } 1532 1533 if (kvm_is_error_hva(addr)) { 1534 if (writable) 1535 *writable = false; 1536 return KVM_PFN_NOSLOT; 1537 } 1538 1539 /* Do not map writable pfn in the readonly memslot. */ 1540 if (writable && memslot_is_readonly(slot)) { 1541 *writable = false; 1542 writable = NULL; 1543 } 1544 1545 return hva_to_pfn(addr, atomic, async, write_fault, 1546 writable); 1547 } 1548 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1549 1550 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1551 bool *writable) 1552 { 1553 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1554 write_fault, writable); 1555 } 1556 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1557 1558 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1559 { 1560 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1561 } 1562 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1563 1564 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1565 { 1566 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1567 } 1568 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1569 1570 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1571 { 1572 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1573 } 1574 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1575 1576 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1577 { 1578 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1579 } 1580 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1581 1582 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1583 { 1584 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1585 } 1586 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1587 1588 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1589 { 1590 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1591 } 1592 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1593 1594 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1595 struct page **pages, int nr_pages) 1596 { 1597 unsigned long addr; 1598 gfn_t entry = 0; 1599 1600 addr = gfn_to_hva_many(slot, gfn, &entry); 1601 if (kvm_is_error_hva(addr)) 1602 return -1; 1603 1604 if (entry < nr_pages) 1605 return 0; 1606 1607 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1608 } 1609 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1610 1611 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1612 { 1613 if (is_error_noslot_pfn(pfn)) 1614 return KVM_ERR_PTR_BAD_PAGE; 1615 1616 if (kvm_is_reserved_pfn(pfn)) { 1617 WARN_ON(1); 1618 return KVM_ERR_PTR_BAD_PAGE; 1619 } 1620 1621 return pfn_to_page(pfn); 1622 } 1623 1624 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1625 { 1626 kvm_pfn_t pfn; 1627 1628 pfn = gfn_to_pfn(kvm, gfn); 1629 1630 return kvm_pfn_to_page(pfn); 1631 } 1632 EXPORT_SYMBOL_GPL(gfn_to_page); 1633 1634 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1635 { 1636 kvm_pfn_t pfn; 1637 1638 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1639 1640 return kvm_pfn_to_page(pfn); 1641 } 1642 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1643 1644 void kvm_release_page_clean(struct page *page) 1645 { 1646 WARN_ON(is_error_page(page)); 1647 1648 kvm_release_pfn_clean(page_to_pfn(page)); 1649 } 1650 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1651 1652 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1653 { 1654 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1655 put_page(pfn_to_page(pfn)); 1656 } 1657 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1658 1659 void kvm_release_page_dirty(struct page *page) 1660 { 1661 WARN_ON(is_error_page(page)); 1662 1663 kvm_release_pfn_dirty(page_to_pfn(page)); 1664 } 1665 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1666 1667 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1668 { 1669 kvm_set_pfn_dirty(pfn); 1670 kvm_release_pfn_clean(pfn); 1671 } 1672 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1673 1674 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1675 { 1676 if (!kvm_is_reserved_pfn(pfn)) { 1677 struct page *page = pfn_to_page(pfn); 1678 1679 if (!PageReserved(page)) 1680 SetPageDirty(page); 1681 } 1682 } 1683 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1684 1685 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1686 { 1687 if (!kvm_is_reserved_pfn(pfn)) 1688 mark_page_accessed(pfn_to_page(pfn)); 1689 } 1690 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1691 1692 void kvm_get_pfn(kvm_pfn_t pfn) 1693 { 1694 if (!kvm_is_reserved_pfn(pfn)) 1695 get_page(pfn_to_page(pfn)); 1696 } 1697 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1698 1699 static int next_segment(unsigned long len, int offset) 1700 { 1701 if (len > PAGE_SIZE - offset) 1702 return PAGE_SIZE - offset; 1703 else 1704 return len; 1705 } 1706 1707 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1708 void *data, int offset, int len) 1709 { 1710 int r; 1711 unsigned long addr; 1712 1713 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1714 if (kvm_is_error_hva(addr)) 1715 return -EFAULT; 1716 r = __copy_from_user(data, (void __user *)addr + offset, len); 1717 if (r) 1718 return -EFAULT; 1719 return 0; 1720 } 1721 1722 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1723 int len) 1724 { 1725 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1726 1727 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1728 } 1729 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1730 1731 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1732 int offset, int len) 1733 { 1734 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1735 1736 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1737 } 1738 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1739 1740 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1741 { 1742 gfn_t gfn = gpa >> PAGE_SHIFT; 1743 int seg; 1744 int offset = offset_in_page(gpa); 1745 int ret; 1746 1747 while ((seg = next_segment(len, offset)) != 0) { 1748 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1749 if (ret < 0) 1750 return ret; 1751 offset = 0; 1752 len -= seg; 1753 data += seg; 1754 ++gfn; 1755 } 1756 return 0; 1757 } 1758 EXPORT_SYMBOL_GPL(kvm_read_guest); 1759 1760 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1761 { 1762 gfn_t gfn = gpa >> PAGE_SHIFT; 1763 int seg; 1764 int offset = offset_in_page(gpa); 1765 int ret; 1766 1767 while ((seg = next_segment(len, offset)) != 0) { 1768 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1769 if (ret < 0) 1770 return ret; 1771 offset = 0; 1772 len -= seg; 1773 data += seg; 1774 ++gfn; 1775 } 1776 return 0; 1777 } 1778 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1779 1780 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1781 void *data, int offset, unsigned long len) 1782 { 1783 int r; 1784 unsigned long addr; 1785 1786 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1787 if (kvm_is_error_hva(addr)) 1788 return -EFAULT; 1789 pagefault_disable(); 1790 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1791 pagefault_enable(); 1792 if (r) 1793 return -EFAULT; 1794 return 0; 1795 } 1796 1797 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1798 unsigned long len) 1799 { 1800 gfn_t gfn = gpa >> PAGE_SHIFT; 1801 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1802 int offset = offset_in_page(gpa); 1803 1804 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1805 } 1806 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1807 1808 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1809 void *data, unsigned long len) 1810 { 1811 gfn_t gfn = gpa >> PAGE_SHIFT; 1812 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1813 int offset = offset_in_page(gpa); 1814 1815 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1816 } 1817 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1818 1819 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1820 const void *data, int offset, int len) 1821 { 1822 int r; 1823 unsigned long addr; 1824 1825 addr = gfn_to_hva_memslot(memslot, gfn); 1826 if (kvm_is_error_hva(addr)) 1827 return -EFAULT; 1828 r = __copy_to_user((void __user *)addr + offset, data, len); 1829 if (r) 1830 return -EFAULT; 1831 mark_page_dirty_in_slot(memslot, gfn); 1832 return 0; 1833 } 1834 1835 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1836 const void *data, int offset, int len) 1837 { 1838 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1839 1840 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1841 } 1842 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1843 1844 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1845 const void *data, int offset, int len) 1846 { 1847 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1848 1849 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1850 } 1851 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1852 1853 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1854 unsigned long len) 1855 { 1856 gfn_t gfn = gpa >> PAGE_SHIFT; 1857 int seg; 1858 int offset = offset_in_page(gpa); 1859 int ret; 1860 1861 while ((seg = next_segment(len, offset)) != 0) { 1862 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1863 if (ret < 0) 1864 return ret; 1865 offset = 0; 1866 len -= seg; 1867 data += seg; 1868 ++gfn; 1869 } 1870 return 0; 1871 } 1872 EXPORT_SYMBOL_GPL(kvm_write_guest); 1873 1874 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1875 unsigned long len) 1876 { 1877 gfn_t gfn = gpa >> PAGE_SHIFT; 1878 int seg; 1879 int offset = offset_in_page(gpa); 1880 int ret; 1881 1882 while ((seg = next_segment(len, offset)) != 0) { 1883 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1884 if (ret < 0) 1885 return ret; 1886 offset = 0; 1887 len -= seg; 1888 data += seg; 1889 ++gfn; 1890 } 1891 return 0; 1892 } 1893 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1894 1895 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1896 struct gfn_to_hva_cache *ghc, 1897 gpa_t gpa, unsigned long len) 1898 { 1899 int offset = offset_in_page(gpa); 1900 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1901 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1902 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1903 gfn_t nr_pages_avail; 1904 1905 ghc->gpa = gpa; 1906 ghc->generation = slots->generation; 1907 ghc->len = len; 1908 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1909 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1910 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1911 ghc->hva += offset; 1912 } else { 1913 /* 1914 * If the requested region crosses two memslots, we still 1915 * verify that the entire region is valid here. 1916 */ 1917 while (start_gfn <= end_gfn) { 1918 nr_pages_avail = 0; 1919 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1920 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1921 &nr_pages_avail); 1922 if (kvm_is_error_hva(ghc->hva)) 1923 return -EFAULT; 1924 start_gfn += nr_pages_avail; 1925 } 1926 /* Use the slow path for cross page reads and writes. */ 1927 ghc->memslot = NULL; 1928 } 1929 return 0; 1930 } 1931 1932 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1933 gpa_t gpa, unsigned long len) 1934 { 1935 struct kvm_memslots *slots = kvm_memslots(kvm); 1936 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1937 } 1938 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1939 1940 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1941 void *data, int offset, unsigned long len) 1942 { 1943 struct kvm_memslots *slots = kvm_memslots(kvm); 1944 int r; 1945 gpa_t gpa = ghc->gpa + offset; 1946 1947 BUG_ON(len + offset > ghc->len); 1948 1949 if (slots->generation != ghc->generation) 1950 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1951 1952 if (unlikely(!ghc->memslot)) 1953 return kvm_write_guest(kvm, gpa, data, len); 1954 1955 if (kvm_is_error_hva(ghc->hva)) 1956 return -EFAULT; 1957 1958 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1959 if (r) 1960 return -EFAULT; 1961 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1962 1963 return 0; 1964 } 1965 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 1966 1967 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1968 void *data, unsigned long len) 1969 { 1970 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 1971 } 1972 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1973 1974 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1975 void *data, unsigned long len) 1976 { 1977 struct kvm_memslots *slots = kvm_memslots(kvm); 1978 int r; 1979 1980 BUG_ON(len > ghc->len); 1981 1982 if (slots->generation != ghc->generation) 1983 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1984 1985 if (unlikely(!ghc->memslot)) 1986 return kvm_read_guest(kvm, ghc->gpa, data, len); 1987 1988 if (kvm_is_error_hva(ghc->hva)) 1989 return -EFAULT; 1990 1991 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1992 if (r) 1993 return -EFAULT; 1994 1995 return 0; 1996 } 1997 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1998 1999 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2000 { 2001 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2002 2003 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2004 } 2005 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2006 2007 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2008 { 2009 gfn_t gfn = gpa >> PAGE_SHIFT; 2010 int seg; 2011 int offset = offset_in_page(gpa); 2012 int ret; 2013 2014 while ((seg = next_segment(len, offset)) != 0) { 2015 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2016 if (ret < 0) 2017 return ret; 2018 offset = 0; 2019 len -= seg; 2020 ++gfn; 2021 } 2022 return 0; 2023 } 2024 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2025 2026 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2027 gfn_t gfn) 2028 { 2029 if (memslot && memslot->dirty_bitmap) { 2030 unsigned long rel_gfn = gfn - memslot->base_gfn; 2031 2032 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2033 } 2034 } 2035 2036 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2037 { 2038 struct kvm_memory_slot *memslot; 2039 2040 memslot = gfn_to_memslot(kvm, gfn); 2041 mark_page_dirty_in_slot(memslot, gfn); 2042 } 2043 EXPORT_SYMBOL_GPL(mark_page_dirty); 2044 2045 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2046 { 2047 struct kvm_memory_slot *memslot; 2048 2049 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2050 mark_page_dirty_in_slot(memslot, gfn); 2051 } 2052 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2053 2054 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2055 { 2056 if (!vcpu->sigset_active) 2057 return; 2058 2059 /* 2060 * This does a lockless modification of ->real_blocked, which is fine 2061 * because, only current can change ->real_blocked and all readers of 2062 * ->real_blocked don't care as long ->real_blocked is always a subset 2063 * of ->blocked. 2064 */ 2065 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2066 } 2067 2068 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2069 { 2070 if (!vcpu->sigset_active) 2071 return; 2072 2073 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2074 sigemptyset(¤t->real_blocked); 2075 } 2076 2077 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2078 { 2079 unsigned int old, val, grow; 2080 2081 old = val = vcpu->halt_poll_ns; 2082 grow = READ_ONCE(halt_poll_ns_grow); 2083 /* 10us base */ 2084 if (val == 0 && grow) 2085 val = 10000; 2086 else 2087 val *= grow; 2088 2089 if (val > halt_poll_ns) 2090 val = halt_poll_ns; 2091 2092 vcpu->halt_poll_ns = val; 2093 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2094 } 2095 2096 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2097 { 2098 unsigned int old, val, shrink; 2099 2100 old = val = vcpu->halt_poll_ns; 2101 shrink = READ_ONCE(halt_poll_ns_shrink); 2102 if (shrink == 0) 2103 val = 0; 2104 else 2105 val /= shrink; 2106 2107 vcpu->halt_poll_ns = val; 2108 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2109 } 2110 2111 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2112 { 2113 if (kvm_arch_vcpu_runnable(vcpu)) { 2114 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2115 return -EINTR; 2116 } 2117 if (kvm_cpu_has_pending_timer(vcpu)) 2118 return -EINTR; 2119 if (signal_pending(current)) 2120 return -EINTR; 2121 2122 return 0; 2123 } 2124 2125 /* 2126 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2127 */ 2128 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2129 { 2130 ktime_t start, cur; 2131 DECLARE_SWAITQUEUE(wait); 2132 bool waited = false; 2133 u64 block_ns; 2134 2135 start = cur = ktime_get(); 2136 if (vcpu->halt_poll_ns) { 2137 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2138 2139 ++vcpu->stat.halt_attempted_poll; 2140 do { 2141 /* 2142 * This sets KVM_REQ_UNHALT if an interrupt 2143 * arrives. 2144 */ 2145 if (kvm_vcpu_check_block(vcpu) < 0) { 2146 ++vcpu->stat.halt_successful_poll; 2147 if (!vcpu_valid_wakeup(vcpu)) 2148 ++vcpu->stat.halt_poll_invalid; 2149 goto out; 2150 } 2151 cur = ktime_get(); 2152 } while (single_task_running() && ktime_before(cur, stop)); 2153 } 2154 2155 kvm_arch_vcpu_blocking(vcpu); 2156 2157 for (;;) { 2158 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2159 2160 if (kvm_vcpu_check_block(vcpu) < 0) 2161 break; 2162 2163 waited = true; 2164 schedule(); 2165 } 2166 2167 finish_swait(&vcpu->wq, &wait); 2168 cur = ktime_get(); 2169 2170 kvm_arch_vcpu_unblocking(vcpu); 2171 out: 2172 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2173 2174 if (!vcpu_valid_wakeup(vcpu)) 2175 shrink_halt_poll_ns(vcpu); 2176 else if (halt_poll_ns) { 2177 if (block_ns <= vcpu->halt_poll_ns) 2178 ; 2179 /* we had a long block, shrink polling */ 2180 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2181 shrink_halt_poll_ns(vcpu); 2182 /* we had a short halt and our poll time is too small */ 2183 else if (vcpu->halt_poll_ns < halt_poll_ns && 2184 block_ns < halt_poll_ns) 2185 grow_halt_poll_ns(vcpu); 2186 } else 2187 vcpu->halt_poll_ns = 0; 2188 2189 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2190 kvm_arch_vcpu_block_finish(vcpu); 2191 } 2192 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2193 2194 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2195 { 2196 struct swait_queue_head *wqp; 2197 2198 wqp = kvm_arch_vcpu_wq(vcpu); 2199 if (swq_has_sleeper(wqp)) { 2200 swake_up(wqp); 2201 ++vcpu->stat.halt_wakeup; 2202 return true; 2203 } 2204 2205 return false; 2206 } 2207 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2208 2209 #ifndef CONFIG_S390 2210 /* 2211 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2212 */ 2213 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2214 { 2215 int me; 2216 int cpu = vcpu->cpu; 2217 2218 if (kvm_vcpu_wake_up(vcpu)) 2219 return; 2220 2221 me = get_cpu(); 2222 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2223 if (kvm_arch_vcpu_should_kick(vcpu)) 2224 smp_send_reschedule(cpu); 2225 put_cpu(); 2226 } 2227 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2228 #endif /* !CONFIG_S390 */ 2229 2230 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2231 { 2232 struct pid *pid; 2233 struct task_struct *task = NULL; 2234 int ret = 0; 2235 2236 rcu_read_lock(); 2237 pid = rcu_dereference(target->pid); 2238 if (pid) 2239 task = get_pid_task(pid, PIDTYPE_PID); 2240 rcu_read_unlock(); 2241 if (!task) 2242 return ret; 2243 ret = yield_to(task, 1); 2244 put_task_struct(task); 2245 2246 return ret; 2247 } 2248 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2249 2250 /* 2251 * Helper that checks whether a VCPU is eligible for directed yield. 2252 * Most eligible candidate to yield is decided by following heuristics: 2253 * 2254 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2255 * (preempted lock holder), indicated by @in_spin_loop. 2256 * Set at the beiginning and cleared at the end of interception/PLE handler. 2257 * 2258 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2259 * chance last time (mostly it has become eligible now since we have probably 2260 * yielded to lockholder in last iteration. This is done by toggling 2261 * @dy_eligible each time a VCPU checked for eligibility.) 2262 * 2263 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2264 * to preempted lock-holder could result in wrong VCPU selection and CPU 2265 * burning. Giving priority for a potential lock-holder increases lock 2266 * progress. 2267 * 2268 * Since algorithm is based on heuristics, accessing another VCPU data without 2269 * locking does not harm. It may result in trying to yield to same VCPU, fail 2270 * and continue with next VCPU and so on. 2271 */ 2272 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2273 { 2274 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2275 bool eligible; 2276 2277 eligible = !vcpu->spin_loop.in_spin_loop || 2278 vcpu->spin_loop.dy_eligible; 2279 2280 if (vcpu->spin_loop.in_spin_loop) 2281 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2282 2283 return eligible; 2284 #else 2285 return true; 2286 #endif 2287 } 2288 2289 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2290 { 2291 struct kvm *kvm = me->kvm; 2292 struct kvm_vcpu *vcpu; 2293 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2294 int yielded = 0; 2295 int try = 3; 2296 int pass; 2297 int i; 2298 2299 kvm_vcpu_set_in_spin_loop(me, true); 2300 /* 2301 * We boost the priority of a VCPU that is runnable but not 2302 * currently running, because it got preempted by something 2303 * else and called schedule in __vcpu_run. Hopefully that 2304 * VCPU is holding the lock that we need and will release it. 2305 * We approximate round-robin by starting at the last boosted VCPU. 2306 */ 2307 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2308 kvm_for_each_vcpu(i, vcpu, kvm) { 2309 if (!pass && i <= last_boosted_vcpu) { 2310 i = last_boosted_vcpu; 2311 continue; 2312 } else if (pass && i > last_boosted_vcpu) 2313 break; 2314 if (!READ_ONCE(vcpu->preempted)) 2315 continue; 2316 if (vcpu == me) 2317 continue; 2318 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2319 continue; 2320 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2321 continue; 2322 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2323 continue; 2324 2325 yielded = kvm_vcpu_yield_to(vcpu); 2326 if (yielded > 0) { 2327 kvm->last_boosted_vcpu = i; 2328 break; 2329 } else if (yielded < 0) { 2330 try--; 2331 if (!try) 2332 break; 2333 } 2334 } 2335 } 2336 kvm_vcpu_set_in_spin_loop(me, false); 2337 2338 /* Ensure vcpu is not eligible during next spinloop */ 2339 kvm_vcpu_set_dy_eligible(me, false); 2340 } 2341 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2342 2343 static int kvm_vcpu_fault(struct vm_fault *vmf) 2344 { 2345 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2346 struct page *page; 2347 2348 if (vmf->pgoff == 0) 2349 page = virt_to_page(vcpu->run); 2350 #ifdef CONFIG_X86 2351 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2352 page = virt_to_page(vcpu->arch.pio_data); 2353 #endif 2354 #ifdef CONFIG_KVM_MMIO 2355 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2356 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2357 #endif 2358 else 2359 return kvm_arch_vcpu_fault(vcpu, vmf); 2360 get_page(page); 2361 vmf->page = page; 2362 return 0; 2363 } 2364 2365 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2366 .fault = kvm_vcpu_fault, 2367 }; 2368 2369 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2370 { 2371 vma->vm_ops = &kvm_vcpu_vm_ops; 2372 return 0; 2373 } 2374 2375 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2376 { 2377 struct kvm_vcpu *vcpu = filp->private_data; 2378 2379 debugfs_remove_recursive(vcpu->debugfs_dentry); 2380 kvm_put_kvm(vcpu->kvm); 2381 return 0; 2382 } 2383 2384 static struct file_operations kvm_vcpu_fops = { 2385 .release = kvm_vcpu_release, 2386 .unlocked_ioctl = kvm_vcpu_ioctl, 2387 #ifdef CONFIG_KVM_COMPAT 2388 .compat_ioctl = kvm_vcpu_compat_ioctl, 2389 #endif 2390 .mmap = kvm_vcpu_mmap, 2391 .llseek = noop_llseek, 2392 }; 2393 2394 /* 2395 * Allocates an inode for the vcpu. 2396 */ 2397 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2398 { 2399 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2400 2401 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2402 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2403 } 2404 2405 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2406 { 2407 char dir_name[ITOA_MAX_LEN * 2]; 2408 int ret; 2409 2410 if (!kvm_arch_has_vcpu_debugfs()) 2411 return 0; 2412 2413 if (!debugfs_initialized()) 2414 return 0; 2415 2416 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2417 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2418 vcpu->kvm->debugfs_dentry); 2419 if (!vcpu->debugfs_dentry) 2420 return -ENOMEM; 2421 2422 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2423 if (ret < 0) { 2424 debugfs_remove_recursive(vcpu->debugfs_dentry); 2425 return ret; 2426 } 2427 2428 return 0; 2429 } 2430 2431 /* 2432 * Creates some virtual cpus. Good luck creating more than one. 2433 */ 2434 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2435 { 2436 int r; 2437 struct kvm_vcpu *vcpu; 2438 2439 if (id >= KVM_MAX_VCPU_ID) 2440 return -EINVAL; 2441 2442 mutex_lock(&kvm->lock); 2443 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2444 mutex_unlock(&kvm->lock); 2445 return -EINVAL; 2446 } 2447 2448 kvm->created_vcpus++; 2449 mutex_unlock(&kvm->lock); 2450 2451 vcpu = kvm_arch_vcpu_create(kvm, id); 2452 if (IS_ERR(vcpu)) { 2453 r = PTR_ERR(vcpu); 2454 goto vcpu_decrement; 2455 } 2456 2457 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2458 2459 r = kvm_arch_vcpu_setup(vcpu); 2460 if (r) 2461 goto vcpu_destroy; 2462 2463 r = kvm_create_vcpu_debugfs(vcpu); 2464 if (r) 2465 goto vcpu_destroy; 2466 2467 mutex_lock(&kvm->lock); 2468 if (kvm_get_vcpu_by_id(kvm, id)) { 2469 r = -EEXIST; 2470 goto unlock_vcpu_destroy; 2471 } 2472 2473 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2474 2475 /* Now it's all set up, let userspace reach it */ 2476 kvm_get_kvm(kvm); 2477 r = create_vcpu_fd(vcpu); 2478 if (r < 0) { 2479 kvm_put_kvm(kvm); 2480 goto unlock_vcpu_destroy; 2481 } 2482 2483 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2484 2485 /* 2486 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2487 * before kvm->online_vcpu's incremented value. 2488 */ 2489 smp_wmb(); 2490 atomic_inc(&kvm->online_vcpus); 2491 2492 mutex_unlock(&kvm->lock); 2493 kvm_arch_vcpu_postcreate(vcpu); 2494 return r; 2495 2496 unlock_vcpu_destroy: 2497 mutex_unlock(&kvm->lock); 2498 debugfs_remove_recursive(vcpu->debugfs_dentry); 2499 vcpu_destroy: 2500 kvm_arch_vcpu_destroy(vcpu); 2501 vcpu_decrement: 2502 mutex_lock(&kvm->lock); 2503 kvm->created_vcpus--; 2504 mutex_unlock(&kvm->lock); 2505 return r; 2506 } 2507 2508 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2509 { 2510 if (sigset) { 2511 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2512 vcpu->sigset_active = 1; 2513 vcpu->sigset = *sigset; 2514 } else 2515 vcpu->sigset_active = 0; 2516 return 0; 2517 } 2518 2519 static long kvm_vcpu_ioctl(struct file *filp, 2520 unsigned int ioctl, unsigned long arg) 2521 { 2522 struct kvm_vcpu *vcpu = filp->private_data; 2523 void __user *argp = (void __user *)arg; 2524 int r; 2525 struct kvm_fpu *fpu = NULL; 2526 struct kvm_sregs *kvm_sregs = NULL; 2527 2528 if (vcpu->kvm->mm != current->mm) 2529 return -EIO; 2530 2531 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2532 return -EINVAL; 2533 2534 /* 2535 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2536 * execution; mutex_lock() would break them. 2537 */ 2538 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2539 if (r != -ENOIOCTLCMD) 2540 return r; 2541 2542 if (mutex_lock_killable(&vcpu->mutex)) 2543 return -EINTR; 2544 switch (ioctl) { 2545 case KVM_RUN: { 2546 struct pid *oldpid; 2547 r = -EINVAL; 2548 if (arg) 2549 goto out; 2550 oldpid = rcu_access_pointer(vcpu->pid); 2551 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2552 /* The thread running this VCPU changed. */ 2553 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2554 2555 rcu_assign_pointer(vcpu->pid, newpid); 2556 if (oldpid) 2557 synchronize_rcu(); 2558 put_pid(oldpid); 2559 } 2560 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2561 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2562 break; 2563 } 2564 case KVM_GET_REGS: { 2565 struct kvm_regs *kvm_regs; 2566 2567 r = -ENOMEM; 2568 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2569 if (!kvm_regs) 2570 goto out; 2571 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2572 if (r) 2573 goto out_free1; 2574 r = -EFAULT; 2575 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2576 goto out_free1; 2577 r = 0; 2578 out_free1: 2579 kfree(kvm_regs); 2580 break; 2581 } 2582 case KVM_SET_REGS: { 2583 struct kvm_regs *kvm_regs; 2584 2585 r = -ENOMEM; 2586 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2587 if (IS_ERR(kvm_regs)) { 2588 r = PTR_ERR(kvm_regs); 2589 goto out; 2590 } 2591 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2592 kfree(kvm_regs); 2593 break; 2594 } 2595 case KVM_GET_SREGS: { 2596 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2597 r = -ENOMEM; 2598 if (!kvm_sregs) 2599 goto out; 2600 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2601 if (r) 2602 goto out; 2603 r = -EFAULT; 2604 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2605 goto out; 2606 r = 0; 2607 break; 2608 } 2609 case KVM_SET_SREGS: { 2610 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2611 if (IS_ERR(kvm_sregs)) { 2612 r = PTR_ERR(kvm_sregs); 2613 kvm_sregs = NULL; 2614 goto out; 2615 } 2616 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2617 break; 2618 } 2619 case KVM_GET_MP_STATE: { 2620 struct kvm_mp_state mp_state; 2621 2622 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2623 if (r) 2624 goto out; 2625 r = -EFAULT; 2626 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2627 goto out; 2628 r = 0; 2629 break; 2630 } 2631 case KVM_SET_MP_STATE: { 2632 struct kvm_mp_state mp_state; 2633 2634 r = -EFAULT; 2635 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2636 goto out; 2637 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2638 break; 2639 } 2640 case KVM_TRANSLATE: { 2641 struct kvm_translation tr; 2642 2643 r = -EFAULT; 2644 if (copy_from_user(&tr, argp, sizeof(tr))) 2645 goto out; 2646 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2647 if (r) 2648 goto out; 2649 r = -EFAULT; 2650 if (copy_to_user(argp, &tr, sizeof(tr))) 2651 goto out; 2652 r = 0; 2653 break; 2654 } 2655 case KVM_SET_GUEST_DEBUG: { 2656 struct kvm_guest_debug dbg; 2657 2658 r = -EFAULT; 2659 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2660 goto out; 2661 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2662 break; 2663 } 2664 case KVM_SET_SIGNAL_MASK: { 2665 struct kvm_signal_mask __user *sigmask_arg = argp; 2666 struct kvm_signal_mask kvm_sigmask; 2667 sigset_t sigset, *p; 2668 2669 p = NULL; 2670 if (argp) { 2671 r = -EFAULT; 2672 if (copy_from_user(&kvm_sigmask, argp, 2673 sizeof(kvm_sigmask))) 2674 goto out; 2675 r = -EINVAL; 2676 if (kvm_sigmask.len != sizeof(sigset)) 2677 goto out; 2678 r = -EFAULT; 2679 if (copy_from_user(&sigset, sigmask_arg->sigset, 2680 sizeof(sigset))) 2681 goto out; 2682 p = &sigset; 2683 } 2684 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2685 break; 2686 } 2687 case KVM_GET_FPU: { 2688 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2689 r = -ENOMEM; 2690 if (!fpu) 2691 goto out; 2692 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2693 if (r) 2694 goto out; 2695 r = -EFAULT; 2696 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2697 goto out; 2698 r = 0; 2699 break; 2700 } 2701 case KVM_SET_FPU: { 2702 fpu = memdup_user(argp, sizeof(*fpu)); 2703 if (IS_ERR(fpu)) { 2704 r = PTR_ERR(fpu); 2705 fpu = NULL; 2706 goto out; 2707 } 2708 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2709 break; 2710 } 2711 default: 2712 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2713 } 2714 out: 2715 mutex_unlock(&vcpu->mutex); 2716 kfree(fpu); 2717 kfree(kvm_sregs); 2718 return r; 2719 } 2720 2721 #ifdef CONFIG_KVM_COMPAT 2722 static long kvm_vcpu_compat_ioctl(struct file *filp, 2723 unsigned int ioctl, unsigned long arg) 2724 { 2725 struct kvm_vcpu *vcpu = filp->private_data; 2726 void __user *argp = compat_ptr(arg); 2727 int r; 2728 2729 if (vcpu->kvm->mm != current->mm) 2730 return -EIO; 2731 2732 switch (ioctl) { 2733 case KVM_SET_SIGNAL_MASK: { 2734 struct kvm_signal_mask __user *sigmask_arg = argp; 2735 struct kvm_signal_mask kvm_sigmask; 2736 sigset_t sigset; 2737 2738 if (argp) { 2739 r = -EFAULT; 2740 if (copy_from_user(&kvm_sigmask, argp, 2741 sizeof(kvm_sigmask))) 2742 goto out; 2743 r = -EINVAL; 2744 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2745 goto out; 2746 r = -EFAULT; 2747 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2748 goto out; 2749 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2750 } else 2751 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2752 break; 2753 } 2754 default: 2755 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2756 } 2757 2758 out: 2759 return r; 2760 } 2761 #endif 2762 2763 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2764 int (*accessor)(struct kvm_device *dev, 2765 struct kvm_device_attr *attr), 2766 unsigned long arg) 2767 { 2768 struct kvm_device_attr attr; 2769 2770 if (!accessor) 2771 return -EPERM; 2772 2773 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2774 return -EFAULT; 2775 2776 return accessor(dev, &attr); 2777 } 2778 2779 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2780 unsigned long arg) 2781 { 2782 struct kvm_device *dev = filp->private_data; 2783 2784 switch (ioctl) { 2785 case KVM_SET_DEVICE_ATTR: 2786 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2787 case KVM_GET_DEVICE_ATTR: 2788 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2789 case KVM_HAS_DEVICE_ATTR: 2790 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2791 default: 2792 if (dev->ops->ioctl) 2793 return dev->ops->ioctl(dev, ioctl, arg); 2794 2795 return -ENOTTY; 2796 } 2797 } 2798 2799 static int kvm_device_release(struct inode *inode, struct file *filp) 2800 { 2801 struct kvm_device *dev = filp->private_data; 2802 struct kvm *kvm = dev->kvm; 2803 2804 kvm_put_kvm(kvm); 2805 return 0; 2806 } 2807 2808 static const struct file_operations kvm_device_fops = { 2809 .unlocked_ioctl = kvm_device_ioctl, 2810 #ifdef CONFIG_KVM_COMPAT 2811 .compat_ioctl = kvm_device_ioctl, 2812 #endif 2813 .release = kvm_device_release, 2814 }; 2815 2816 struct kvm_device *kvm_device_from_filp(struct file *filp) 2817 { 2818 if (filp->f_op != &kvm_device_fops) 2819 return NULL; 2820 2821 return filp->private_data; 2822 } 2823 2824 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2825 #ifdef CONFIG_KVM_MPIC 2826 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2827 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2828 #endif 2829 }; 2830 2831 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2832 { 2833 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2834 return -ENOSPC; 2835 2836 if (kvm_device_ops_table[type] != NULL) 2837 return -EEXIST; 2838 2839 kvm_device_ops_table[type] = ops; 2840 return 0; 2841 } 2842 2843 void kvm_unregister_device_ops(u32 type) 2844 { 2845 if (kvm_device_ops_table[type] != NULL) 2846 kvm_device_ops_table[type] = NULL; 2847 } 2848 2849 static int kvm_ioctl_create_device(struct kvm *kvm, 2850 struct kvm_create_device *cd) 2851 { 2852 struct kvm_device_ops *ops = NULL; 2853 struct kvm_device *dev; 2854 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2855 int ret; 2856 2857 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2858 return -ENODEV; 2859 2860 ops = kvm_device_ops_table[cd->type]; 2861 if (ops == NULL) 2862 return -ENODEV; 2863 2864 if (test) 2865 return 0; 2866 2867 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2868 if (!dev) 2869 return -ENOMEM; 2870 2871 dev->ops = ops; 2872 dev->kvm = kvm; 2873 2874 mutex_lock(&kvm->lock); 2875 ret = ops->create(dev, cd->type); 2876 if (ret < 0) { 2877 mutex_unlock(&kvm->lock); 2878 kfree(dev); 2879 return ret; 2880 } 2881 list_add(&dev->vm_node, &kvm->devices); 2882 mutex_unlock(&kvm->lock); 2883 2884 if (ops->init) 2885 ops->init(dev); 2886 2887 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2888 if (ret < 0) { 2889 mutex_lock(&kvm->lock); 2890 list_del(&dev->vm_node); 2891 mutex_unlock(&kvm->lock); 2892 ops->destroy(dev); 2893 return ret; 2894 } 2895 2896 kvm_get_kvm(kvm); 2897 cd->fd = ret; 2898 return 0; 2899 } 2900 2901 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2902 { 2903 switch (arg) { 2904 case KVM_CAP_USER_MEMORY: 2905 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2906 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2907 case KVM_CAP_INTERNAL_ERROR_DATA: 2908 #ifdef CONFIG_HAVE_KVM_MSI 2909 case KVM_CAP_SIGNAL_MSI: 2910 #endif 2911 #ifdef CONFIG_HAVE_KVM_IRQFD 2912 case KVM_CAP_IRQFD: 2913 case KVM_CAP_IRQFD_RESAMPLE: 2914 #endif 2915 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2916 case KVM_CAP_CHECK_EXTENSION_VM: 2917 return 1; 2918 #ifdef CONFIG_KVM_MMIO 2919 case KVM_CAP_COALESCED_MMIO: 2920 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2921 #endif 2922 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2923 case KVM_CAP_IRQ_ROUTING: 2924 return KVM_MAX_IRQ_ROUTES; 2925 #endif 2926 #if KVM_ADDRESS_SPACE_NUM > 1 2927 case KVM_CAP_MULTI_ADDRESS_SPACE: 2928 return KVM_ADDRESS_SPACE_NUM; 2929 #endif 2930 case KVM_CAP_MAX_VCPU_ID: 2931 return KVM_MAX_VCPU_ID; 2932 default: 2933 break; 2934 } 2935 return kvm_vm_ioctl_check_extension(kvm, arg); 2936 } 2937 2938 static long kvm_vm_ioctl(struct file *filp, 2939 unsigned int ioctl, unsigned long arg) 2940 { 2941 struct kvm *kvm = filp->private_data; 2942 void __user *argp = (void __user *)arg; 2943 int r; 2944 2945 if (kvm->mm != current->mm) 2946 return -EIO; 2947 switch (ioctl) { 2948 case KVM_CREATE_VCPU: 2949 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2950 break; 2951 case KVM_SET_USER_MEMORY_REGION: { 2952 struct kvm_userspace_memory_region kvm_userspace_mem; 2953 2954 r = -EFAULT; 2955 if (copy_from_user(&kvm_userspace_mem, argp, 2956 sizeof(kvm_userspace_mem))) 2957 goto out; 2958 2959 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2960 break; 2961 } 2962 case KVM_GET_DIRTY_LOG: { 2963 struct kvm_dirty_log log; 2964 2965 r = -EFAULT; 2966 if (copy_from_user(&log, argp, sizeof(log))) 2967 goto out; 2968 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2969 break; 2970 } 2971 #ifdef CONFIG_KVM_MMIO 2972 case KVM_REGISTER_COALESCED_MMIO: { 2973 struct kvm_coalesced_mmio_zone zone; 2974 2975 r = -EFAULT; 2976 if (copy_from_user(&zone, argp, sizeof(zone))) 2977 goto out; 2978 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2979 break; 2980 } 2981 case KVM_UNREGISTER_COALESCED_MMIO: { 2982 struct kvm_coalesced_mmio_zone zone; 2983 2984 r = -EFAULT; 2985 if (copy_from_user(&zone, argp, sizeof(zone))) 2986 goto out; 2987 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2988 break; 2989 } 2990 #endif 2991 case KVM_IRQFD: { 2992 struct kvm_irqfd data; 2993 2994 r = -EFAULT; 2995 if (copy_from_user(&data, argp, sizeof(data))) 2996 goto out; 2997 r = kvm_irqfd(kvm, &data); 2998 break; 2999 } 3000 case KVM_IOEVENTFD: { 3001 struct kvm_ioeventfd data; 3002 3003 r = -EFAULT; 3004 if (copy_from_user(&data, argp, sizeof(data))) 3005 goto out; 3006 r = kvm_ioeventfd(kvm, &data); 3007 break; 3008 } 3009 #ifdef CONFIG_HAVE_KVM_MSI 3010 case KVM_SIGNAL_MSI: { 3011 struct kvm_msi msi; 3012 3013 r = -EFAULT; 3014 if (copy_from_user(&msi, argp, sizeof(msi))) 3015 goto out; 3016 r = kvm_send_userspace_msi(kvm, &msi); 3017 break; 3018 } 3019 #endif 3020 #ifdef __KVM_HAVE_IRQ_LINE 3021 case KVM_IRQ_LINE_STATUS: 3022 case KVM_IRQ_LINE: { 3023 struct kvm_irq_level irq_event; 3024 3025 r = -EFAULT; 3026 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3027 goto out; 3028 3029 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3030 ioctl == KVM_IRQ_LINE_STATUS); 3031 if (r) 3032 goto out; 3033 3034 r = -EFAULT; 3035 if (ioctl == KVM_IRQ_LINE_STATUS) { 3036 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3037 goto out; 3038 } 3039 3040 r = 0; 3041 break; 3042 } 3043 #endif 3044 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3045 case KVM_SET_GSI_ROUTING: { 3046 struct kvm_irq_routing routing; 3047 struct kvm_irq_routing __user *urouting; 3048 struct kvm_irq_routing_entry *entries = NULL; 3049 3050 r = -EFAULT; 3051 if (copy_from_user(&routing, argp, sizeof(routing))) 3052 goto out; 3053 r = -EINVAL; 3054 if (!kvm_arch_can_set_irq_routing(kvm)) 3055 goto out; 3056 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3057 goto out; 3058 if (routing.flags) 3059 goto out; 3060 if (routing.nr) { 3061 r = -ENOMEM; 3062 entries = vmalloc(routing.nr * sizeof(*entries)); 3063 if (!entries) 3064 goto out; 3065 r = -EFAULT; 3066 urouting = argp; 3067 if (copy_from_user(entries, urouting->entries, 3068 routing.nr * sizeof(*entries))) 3069 goto out_free_irq_routing; 3070 } 3071 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3072 routing.flags); 3073 out_free_irq_routing: 3074 vfree(entries); 3075 break; 3076 } 3077 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3078 case KVM_CREATE_DEVICE: { 3079 struct kvm_create_device cd; 3080 3081 r = -EFAULT; 3082 if (copy_from_user(&cd, argp, sizeof(cd))) 3083 goto out; 3084 3085 r = kvm_ioctl_create_device(kvm, &cd); 3086 if (r) 3087 goto out; 3088 3089 r = -EFAULT; 3090 if (copy_to_user(argp, &cd, sizeof(cd))) 3091 goto out; 3092 3093 r = 0; 3094 break; 3095 } 3096 case KVM_CHECK_EXTENSION: 3097 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3098 break; 3099 default: 3100 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3101 } 3102 out: 3103 return r; 3104 } 3105 3106 #ifdef CONFIG_KVM_COMPAT 3107 struct compat_kvm_dirty_log { 3108 __u32 slot; 3109 __u32 padding1; 3110 union { 3111 compat_uptr_t dirty_bitmap; /* one bit per page */ 3112 __u64 padding2; 3113 }; 3114 }; 3115 3116 static long kvm_vm_compat_ioctl(struct file *filp, 3117 unsigned int ioctl, unsigned long arg) 3118 { 3119 struct kvm *kvm = filp->private_data; 3120 int r; 3121 3122 if (kvm->mm != current->mm) 3123 return -EIO; 3124 switch (ioctl) { 3125 case KVM_GET_DIRTY_LOG: { 3126 struct compat_kvm_dirty_log compat_log; 3127 struct kvm_dirty_log log; 3128 3129 if (copy_from_user(&compat_log, (void __user *)arg, 3130 sizeof(compat_log))) 3131 return -EFAULT; 3132 log.slot = compat_log.slot; 3133 log.padding1 = compat_log.padding1; 3134 log.padding2 = compat_log.padding2; 3135 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3136 3137 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3138 break; 3139 } 3140 default: 3141 r = kvm_vm_ioctl(filp, ioctl, arg); 3142 } 3143 return r; 3144 } 3145 #endif 3146 3147 static struct file_operations kvm_vm_fops = { 3148 .release = kvm_vm_release, 3149 .unlocked_ioctl = kvm_vm_ioctl, 3150 #ifdef CONFIG_KVM_COMPAT 3151 .compat_ioctl = kvm_vm_compat_ioctl, 3152 #endif 3153 .llseek = noop_llseek, 3154 }; 3155 3156 static int kvm_dev_ioctl_create_vm(unsigned long type) 3157 { 3158 int r; 3159 struct kvm *kvm; 3160 struct file *file; 3161 3162 kvm = kvm_create_vm(type); 3163 if (IS_ERR(kvm)) 3164 return PTR_ERR(kvm); 3165 #ifdef CONFIG_KVM_MMIO 3166 r = kvm_coalesced_mmio_init(kvm); 3167 if (r < 0) 3168 goto put_kvm; 3169 #endif 3170 r = get_unused_fd_flags(O_CLOEXEC); 3171 if (r < 0) 3172 goto put_kvm; 3173 3174 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3175 if (IS_ERR(file)) { 3176 put_unused_fd(r); 3177 r = PTR_ERR(file); 3178 goto put_kvm; 3179 } 3180 3181 /* 3182 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3183 * already set, with ->release() being kvm_vm_release(). In error 3184 * cases it will be called by the final fput(file) and will take 3185 * care of doing kvm_put_kvm(kvm). 3186 */ 3187 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3188 put_unused_fd(r); 3189 fput(file); 3190 return -ENOMEM; 3191 } 3192 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3193 3194 fd_install(r, file); 3195 return r; 3196 3197 put_kvm: 3198 kvm_put_kvm(kvm); 3199 return r; 3200 } 3201 3202 static long kvm_dev_ioctl(struct file *filp, 3203 unsigned int ioctl, unsigned long arg) 3204 { 3205 long r = -EINVAL; 3206 3207 switch (ioctl) { 3208 case KVM_GET_API_VERSION: 3209 if (arg) 3210 goto out; 3211 r = KVM_API_VERSION; 3212 break; 3213 case KVM_CREATE_VM: 3214 r = kvm_dev_ioctl_create_vm(arg); 3215 break; 3216 case KVM_CHECK_EXTENSION: 3217 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3218 break; 3219 case KVM_GET_VCPU_MMAP_SIZE: 3220 if (arg) 3221 goto out; 3222 r = PAGE_SIZE; /* struct kvm_run */ 3223 #ifdef CONFIG_X86 3224 r += PAGE_SIZE; /* pio data page */ 3225 #endif 3226 #ifdef CONFIG_KVM_MMIO 3227 r += PAGE_SIZE; /* coalesced mmio ring page */ 3228 #endif 3229 break; 3230 case KVM_TRACE_ENABLE: 3231 case KVM_TRACE_PAUSE: 3232 case KVM_TRACE_DISABLE: 3233 r = -EOPNOTSUPP; 3234 break; 3235 default: 3236 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3237 } 3238 out: 3239 return r; 3240 } 3241 3242 static struct file_operations kvm_chardev_ops = { 3243 .unlocked_ioctl = kvm_dev_ioctl, 3244 .compat_ioctl = kvm_dev_ioctl, 3245 .llseek = noop_llseek, 3246 }; 3247 3248 static struct miscdevice kvm_dev = { 3249 KVM_MINOR, 3250 "kvm", 3251 &kvm_chardev_ops, 3252 }; 3253 3254 static void hardware_enable_nolock(void *junk) 3255 { 3256 int cpu = raw_smp_processor_id(); 3257 int r; 3258 3259 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3260 return; 3261 3262 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3263 3264 r = kvm_arch_hardware_enable(); 3265 3266 if (r) { 3267 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3268 atomic_inc(&hardware_enable_failed); 3269 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3270 } 3271 } 3272 3273 static int kvm_starting_cpu(unsigned int cpu) 3274 { 3275 raw_spin_lock(&kvm_count_lock); 3276 if (kvm_usage_count) 3277 hardware_enable_nolock(NULL); 3278 raw_spin_unlock(&kvm_count_lock); 3279 return 0; 3280 } 3281 3282 static void hardware_disable_nolock(void *junk) 3283 { 3284 int cpu = raw_smp_processor_id(); 3285 3286 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3287 return; 3288 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3289 kvm_arch_hardware_disable(); 3290 } 3291 3292 static int kvm_dying_cpu(unsigned int cpu) 3293 { 3294 raw_spin_lock(&kvm_count_lock); 3295 if (kvm_usage_count) 3296 hardware_disable_nolock(NULL); 3297 raw_spin_unlock(&kvm_count_lock); 3298 return 0; 3299 } 3300 3301 static void hardware_disable_all_nolock(void) 3302 { 3303 BUG_ON(!kvm_usage_count); 3304 3305 kvm_usage_count--; 3306 if (!kvm_usage_count) 3307 on_each_cpu(hardware_disable_nolock, NULL, 1); 3308 } 3309 3310 static void hardware_disable_all(void) 3311 { 3312 raw_spin_lock(&kvm_count_lock); 3313 hardware_disable_all_nolock(); 3314 raw_spin_unlock(&kvm_count_lock); 3315 } 3316 3317 static int hardware_enable_all(void) 3318 { 3319 int r = 0; 3320 3321 raw_spin_lock(&kvm_count_lock); 3322 3323 kvm_usage_count++; 3324 if (kvm_usage_count == 1) { 3325 atomic_set(&hardware_enable_failed, 0); 3326 on_each_cpu(hardware_enable_nolock, NULL, 1); 3327 3328 if (atomic_read(&hardware_enable_failed)) { 3329 hardware_disable_all_nolock(); 3330 r = -EBUSY; 3331 } 3332 } 3333 3334 raw_spin_unlock(&kvm_count_lock); 3335 3336 return r; 3337 } 3338 3339 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3340 void *v) 3341 { 3342 /* 3343 * Some (well, at least mine) BIOSes hang on reboot if 3344 * in vmx root mode. 3345 * 3346 * And Intel TXT required VMX off for all cpu when system shutdown. 3347 */ 3348 pr_info("kvm: exiting hardware virtualization\n"); 3349 kvm_rebooting = true; 3350 on_each_cpu(hardware_disable_nolock, NULL, 1); 3351 return NOTIFY_OK; 3352 } 3353 3354 static struct notifier_block kvm_reboot_notifier = { 3355 .notifier_call = kvm_reboot, 3356 .priority = 0, 3357 }; 3358 3359 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3360 { 3361 int i; 3362 3363 for (i = 0; i < bus->dev_count; i++) { 3364 struct kvm_io_device *pos = bus->range[i].dev; 3365 3366 kvm_iodevice_destructor(pos); 3367 } 3368 kfree(bus); 3369 } 3370 3371 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3372 const struct kvm_io_range *r2) 3373 { 3374 gpa_t addr1 = r1->addr; 3375 gpa_t addr2 = r2->addr; 3376 3377 if (addr1 < addr2) 3378 return -1; 3379 3380 /* If r2->len == 0, match the exact address. If r2->len != 0, 3381 * accept any overlapping write. Any order is acceptable for 3382 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3383 * we process all of them. 3384 */ 3385 if (r2->len) { 3386 addr1 += r1->len; 3387 addr2 += r2->len; 3388 } 3389 3390 if (addr1 > addr2) 3391 return 1; 3392 3393 return 0; 3394 } 3395 3396 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3397 { 3398 return kvm_io_bus_cmp(p1, p2); 3399 } 3400 3401 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3402 gpa_t addr, int len) 3403 { 3404 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3405 .addr = addr, 3406 .len = len, 3407 .dev = dev, 3408 }; 3409 3410 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3411 kvm_io_bus_sort_cmp, NULL); 3412 3413 return 0; 3414 } 3415 3416 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3417 gpa_t addr, int len) 3418 { 3419 struct kvm_io_range *range, key; 3420 int off; 3421 3422 key = (struct kvm_io_range) { 3423 .addr = addr, 3424 .len = len, 3425 }; 3426 3427 range = bsearch(&key, bus->range, bus->dev_count, 3428 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3429 if (range == NULL) 3430 return -ENOENT; 3431 3432 off = range - bus->range; 3433 3434 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3435 off--; 3436 3437 return off; 3438 } 3439 3440 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3441 struct kvm_io_range *range, const void *val) 3442 { 3443 int idx; 3444 3445 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3446 if (idx < 0) 3447 return -EOPNOTSUPP; 3448 3449 while (idx < bus->dev_count && 3450 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3451 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3452 range->len, val)) 3453 return idx; 3454 idx++; 3455 } 3456 3457 return -EOPNOTSUPP; 3458 } 3459 3460 /* kvm_io_bus_write - called under kvm->slots_lock */ 3461 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3462 int len, const void *val) 3463 { 3464 struct kvm_io_bus *bus; 3465 struct kvm_io_range range; 3466 int r; 3467 3468 range = (struct kvm_io_range) { 3469 .addr = addr, 3470 .len = len, 3471 }; 3472 3473 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3474 if (!bus) 3475 return -ENOMEM; 3476 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3477 return r < 0 ? r : 0; 3478 } 3479 3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3482 gpa_t addr, int len, const void *val, long cookie) 3483 { 3484 struct kvm_io_bus *bus; 3485 struct kvm_io_range range; 3486 3487 range = (struct kvm_io_range) { 3488 .addr = addr, 3489 .len = len, 3490 }; 3491 3492 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3493 if (!bus) 3494 return -ENOMEM; 3495 3496 /* First try the device referenced by cookie. */ 3497 if ((cookie >= 0) && (cookie < bus->dev_count) && 3498 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3499 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3500 val)) 3501 return cookie; 3502 3503 /* 3504 * cookie contained garbage; fall back to search and return the 3505 * correct cookie value. 3506 */ 3507 return __kvm_io_bus_write(vcpu, bus, &range, val); 3508 } 3509 3510 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3511 struct kvm_io_range *range, void *val) 3512 { 3513 int idx; 3514 3515 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3516 if (idx < 0) 3517 return -EOPNOTSUPP; 3518 3519 while (idx < bus->dev_count && 3520 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3521 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3522 range->len, val)) 3523 return idx; 3524 idx++; 3525 } 3526 3527 return -EOPNOTSUPP; 3528 } 3529 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3530 3531 /* kvm_io_bus_read - called under kvm->slots_lock */ 3532 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3533 int len, void *val) 3534 { 3535 struct kvm_io_bus *bus; 3536 struct kvm_io_range range; 3537 int r; 3538 3539 range = (struct kvm_io_range) { 3540 .addr = addr, 3541 .len = len, 3542 }; 3543 3544 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3545 if (!bus) 3546 return -ENOMEM; 3547 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3548 return r < 0 ? r : 0; 3549 } 3550 3551 3552 /* Caller must hold slots_lock. */ 3553 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3554 int len, struct kvm_io_device *dev) 3555 { 3556 struct kvm_io_bus *new_bus, *bus; 3557 3558 bus = kvm_get_bus(kvm, bus_idx); 3559 if (!bus) 3560 return -ENOMEM; 3561 3562 /* exclude ioeventfd which is limited by maximum fd */ 3563 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3564 return -ENOSPC; 3565 3566 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3567 sizeof(struct kvm_io_range)), GFP_KERNEL); 3568 if (!new_bus) 3569 return -ENOMEM; 3570 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3571 sizeof(struct kvm_io_range))); 3572 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3573 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3574 synchronize_srcu_expedited(&kvm->srcu); 3575 kfree(bus); 3576 3577 return 0; 3578 } 3579 3580 /* Caller must hold slots_lock. */ 3581 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3582 struct kvm_io_device *dev) 3583 { 3584 int i; 3585 struct kvm_io_bus *new_bus, *bus; 3586 3587 bus = kvm_get_bus(kvm, bus_idx); 3588 if (!bus) 3589 return; 3590 3591 for (i = 0; i < bus->dev_count; i++) 3592 if (bus->range[i].dev == dev) { 3593 break; 3594 } 3595 3596 if (i == bus->dev_count) 3597 return; 3598 3599 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3600 sizeof(struct kvm_io_range)), GFP_KERNEL); 3601 if (!new_bus) { 3602 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3603 goto broken; 3604 } 3605 3606 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3607 new_bus->dev_count--; 3608 memcpy(new_bus->range + i, bus->range + i + 1, 3609 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3610 3611 broken: 3612 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3613 synchronize_srcu_expedited(&kvm->srcu); 3614 kfree(bus); 3615 return; 3616 } 3617 3618 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3619 gpa_t addr) 3620 { 3621 struct kvm_io_bus *bus; 3622 int dev_idx, srcu_idx; 3623 struct kvm_io_device *iodev = NULL; 3624 3625 srcu_idx = srcu_read_lock(&kvm->srcu); 3626 3627 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3628 if (!bus) 3629 goto out_unlock; 3630 3631 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3632 if (dev_idx < 0) 3633 goto out_unlock; 3634 3635 iodev = bus->range[dev_idx].dev; 3636 3637 out_unlock: 3638 srcu_read_unlock(&kvm->srcu, srcu_idx); 3639 3640 return iodev; 3641 } 3642 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3643 3644 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3645 int (*get)(void *, u64 *), int (*set)(void *, u64), 3646 const char *fmt) 3647 { 3648 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3649 inode->i_private; 3650 3651 /* The debugfs files are a reference to the kvm struct which 3652 * is still valid when kvm_destroy_vm is called. 3653 * To avoid the race between open and the removal of the debugfs 3654 * directory we test against the users count. 3655 */ 3656 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3657 return -ENOENT; 3658 3659 if (simple_attr_open(inode, file, get, set, fmt)) { 3660 kvm_put_kvm(stat_data->kvm); 3661 return -ENOMEM; 3662 } 3663 3664 return 0; 3665 } 3666 3667 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3668 { 3669 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3670 inode->i_private; 3671 3672 simple_attr_release(inode, file); 3673 kvm_put_kvm(stat_data->kvm); 3674 3675 return 0; 3676 } 3677 3678 static int vm_stat_get_per_vm(void *data, u64 *val) 3679 { 3680 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3681 3682 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3683 3684 return 0; 3685 } 3686 3687 static int vm_stat_clear_per_vm(void *data, u64 val) 3688 { 3689 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3690 3691 if (val) 3692 return -EINVAL; 3693 3694 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3695 3696 return 0; 3697 } 3698 3699 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3700 { 3701 __simple_attr_check_format("%llu\n", 0ull); 3702 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3703 vm_stat_clear_per_vm, "%llu\n"); 3704 } 3705 3706 static const struct file_operations vm_stat_get_per_vm_fops = { 3707 .owner = THIS_MODULE, 3708 .open = vm_stat_get_per_vm_open, 3709 .release = kvm_debugfs_release, 3710 .read = simple_attr_read, 3711 .write = simple_attr_write, 3712 .llseek = no_llseek, 3713 }; 3714 3715 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3716 { 3717 int i; 3718 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3719 struct kvm_vcpu *vcpu; 3720 3721 *val = 0; 3722 3723 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3724 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3725 3726 return 0; 3727 } 3728 3729 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3730 { 3731 int i; 3732 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3733 struct kvm_vcpu *vcpu; 3734 3735 if (val) 3736 return -EINVAL; 3737 3738 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3739 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3740 3741 return 0; 3742 } 3743 3744 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3745 { 3746 __simple_attr_check_format("%llu\n", 0ull); 3747 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3748 vcpu_stat_clear_per_vm, "%llu\n"); 3749 } 3750 3751 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3752 .owner = THIS_MODULE, 3753 .open = vcpu_stat_get_per_vm_open, 3754 .release = kvm_debugfs_release, 3755 .read = simple_attr_read, 3756 .write = simple_attr_write, 3757 .llseek = no_llseek, 3758 }; 3759 3760 static const struct file_operations *stat_fops_per_vm[] = { 3761 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3762 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3763 }; 3764 3765 static int vm_stat_get(void *_offset, u64 *val) 3766 { 3767 unsigned offset = (long)_offset; 3768 struct kvm *kvm; 3769 struct kvm_stat_data stat_tmp = {.offset = offset}; 3770 u64 tmp_val; 3771 3772 *val = 0; 3773 spin_lock(&kvm_lock); 3774 list_for_each_entry(kvm, &vm_list, vm_list) { 3775 stat_tmp.kvm = kvm; 3776 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3777 *val += tmp_val; 3778 } 3779 spin_unlock(&kvm_lock); 3780 return 0; 3781 } 3782 3783 static int vm_stat_clear(void *_offset, u64 val) 3784 { 3785 unsigned offset = (long)_offset; 3786 struct kvm *kvm; 3787 struct kvm_stat_data stat_tmp = {.offset = offset}; 3788 3789 if (val) 3790 return -EINVAL; 3791 3792 spin_lock(&kvm_lock); 3793 list_for_each_entry(kvm, &vm_list, vm_list) { 3794 stat_tmp.kvm = kvm; 3795 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3796 } 3797 spin_unlock(&kvm_lock); 3798 3799 return 0; 3800 } 3801 3802 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3803 3804 static int vcpu_stat_get(void *_offset, u64 *val) 3805 { 3806 unsigned offset = (long)_offset; 3807 struct kvm *kvm; 3808 struct kvm_stat_data stat_tmp = {.offset = offset}; 3809 u64 tmp_val; 3810 3811 *val = 0; 3812 spin_lock(&kvm_lock); 3813 list_for_each_entry(kvm, &vm_list, vm_list) { 3814 stat_tmp.kvm = kvm; 3815 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3816 *val += tmp_val; 3817 } 3818 spin_unlock(&kvm_lock); 3819 return 0; 3820 } 3821 3822 static int vcpu_stat_clear(void *_offset, u64 val) 3823 { 3824 unsigned offset = (long)_offset; 3825 struct kvm *kvm; 3826 struct kvm_stat_data stat_tmp = {.offset = offset}; 3827 3828 if (val) 3829 return -EINVAL; 3830 3831 spin_lock(&kvm_lock); 3832 list_for_each_entry(kvm, &vm_list, vm_list) { 3833 stat_tmp.kvm = kvm; 3834 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3835 } 3836 spin_unlock(&kvm_lock); 3837 3838 return 0; 3839 } 3840 3841 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3842 "%llu\n"); 3843 3844 static const struct file_operations *stat_fops[] = { 3845 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3846 [KVM_STAT_VM] = &vm_stat_fops, 3847 }; 3848 3849 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3850 { 3851 struct kobj_uevent_env *env; 3852 unsigned long long created, active; 3853 3854 if (!kvm_dev.this_device || !kvm) 3855 return; 3856 3857 spin_lock(&kvm_lock); 3858 if (type == KVM_EVENT_CREATE_VM) { 3859 kvm_createvm_count++; 3860 kvm_active_vms++; 3861 } else if (type == KVM_EVENT_DESTROY_VM) { 3862 kvm_active_vms--; 3863 } 3864 created = kvm_createvm_count; 3865 active = kvm_active_vms; 3866 spin_unlock(&kvm_lock); 3867 3868 env = kzalloc(sizeof(*env), GFP_KERNEL); 3869 if (!env) 3870 return; 3871 3872 add_uevent_var(env, "CREATED=%llu", created); 3873 add_uevent_var(env, "COUNT=%llu", active); 3874 3875 if (type == KVM_EVENT_CREATE_VM) { 3876 add_uevent_var(env, "EVENT=create"); 3877 kvm->userspace_pid = task_pid_nr(current); 3878 } else if (type == KVM_EVENT_DESTROY_VM) { 3879 add_uevent_var(env, "EVENT=destroy"); 3880 } 3881 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 3882 3883 if (kvm->debugfs_dentry) { 3884 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 3885 3886 if (p) { 3887 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 3888 if (!IS_ERR(tmp)) 3889 add_uevent_var(env, "STATS_PATH=%s", tmp); 3890 kfree(p); 3891 } 3892 } 3893 /* no need for checks, since we are adding at most only 5 keys */ 3894 env->envp[env->envp_idx++] = NULL; 3895 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3896 kfree(env); 3897 } 3898 3899 static int kvm_init_debug(void) 3900 { 3901 int r = -EEXIST; 3902 struct kvm_stats_debugfs_item *p; 3903 3904 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3905 if (kvm_debugfs_dir == NULL) 3906 goto out; 3907 3908 kvm_debugfs_num_entries = 0; 3909 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3910 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3911 (void *)(long)p->offset, 3912 stat_fops[p->kind])) 3913 goto out_dir; 3914 } 3915 3916 return 0; 3917 3918 out_dir: 3919 debugfs_remove_recursive(kvm_debugfs_dir); 3920 out: 3921 return r; 3922 } 3923 3924 static int kvm_suspend(void) 3925 { 3926 if (kvm_usage_count) 3927 hardware_disable_nolock(NULL); 3928 return 0; 3929 } 3930 3931 static void kvm_resume(void) 3932 { 3933 if (kvm_usage_count) { 3934 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3935 hardware_enable_nolock(NULL); 3936 } 3937 } 3938 3939 static struct syscore_ops kvm_syscore_ops = { 3940 .suspend = kvm_suspend, 3941 .resume = kvm_resume, 3942 }; 3943 3944 static inline 3945 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3946 { 3947 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3948 } 3949 3950 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3951 { 3952 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3953 3954 if (vcpu->preempted) 3955 vcpu->preempted = false; 3956 3957 kvm_arch_sched_in(vcpu, cpu); 3958 3959 kvm_arch_vcpu_load(vcpu, cpu); 3960 } 3961 3962 static void kvm_sched_out(struct preempt_notifier *pn, 3963 struct task_struct *next) 3964 { 3965 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3966 3967 if (current->state == TASK_RUNNING) 3968 vcpu->preempted = true; 3969 kvm_arch_vcpu_put(vcpu); 3970 } 3971 3972 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3973 struct module *module) 3974 { 3975 int r; 3976 int cpu; 3977 3978 r = kvm_arch_init(opaque); 3979 if (r) 3980 goto out_fail; 3981 3982 /* 3983 * kvm_arch_init makes sure there's at most one caller 3984 * for architectures that support multiple implementations, 3985 * like intel and amd on x86. 3986 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3987 * conflicts in case kvm is already setup for another implementation. 3988 */ 3989 r = kvm_irqfd_init(); 3990 if (r) 3991 goto out_irqfd; 3992 3993 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3994 r = -ENOMEM; 3995 goto out_free_0; 3996 } 3997 3998 r = kvm_arch_hardware_setup(); 3999 if (r < 0) 4000 goto out_free_0a; 4001 4002 for_each_online_cpu(cpu) { 4003 smp_call_function_single(cpu, 4004 kvm_arch_check_processor_compat, 4005 &r, 1); 4006 if (r < 0) 4007 goto out_free_1; 4008 } 4009 4010 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4011 kvm_starting_cpu, kvm_dying_cpu); 4012 if (r) 4013 goto out_free_2; 4014 register_reboot_notifier(&kvm_reboot_notifier); 4015 4016 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4017 if (!vcpu_align) 4018 vcpu_align = __alignof__(struct kvm_vcpu); 4019 kvm_vcpu_cache = 4020 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4021 SLAB_ACCOUNT, 4022 offsetof(struct kvm_vcpu, arch), 4023 sizeof_field(struct kvm_vcpu, arch), 4024 NULL); 4025 if (!kvm_vcpu_cache) { 4026 r = -ENOMEM; 4027 goto out_free_3; 4028 } 4029 4030 r = kvm_async_pf_init(); 4031 if (r) 4032 goto out_free; 4033 4034 kvm_chardev_ops.owner = module; 4035 kvm_vm_fops.owner = module; 4036 kvm_vcpu_fops.owner = module; 4037 4038 r = misc_register(&kvm_dev); 4039 if (r) { 4040 pr_err("kvm: misc device register failed\n"); 4041 goto out_unreg; 4042 } 4043 4044 register_syscore_ops(&kvm_syscore_ops); 4045 4046 kvm_preempt_ops.sched_in = kvm_sched_in; 4047 kvm_preempt_ops.sched_out = kvm_sched_out; 4048 4049 r = kvm_init_debug(); 4050 if (r) { 4051 pr_err("kvm: create debugfs files failed\n"); 4052 goto out_undebugfs; 4053 } 4054 4055 r = kvm_vfio_ops_init(); 4056 WARN_ON(r); 4057 4058 return 0; 4059 4060 out_undebugfs: 4061 unregister_syscore_ops(&kvm_syscore_ops); 4062 misc_deregister(&kvm_dev); 4063 out_unreg: 4064 kvm_async_pf_deinit(); 4065 out_free: 4066 kmem_cache_destroy(kvm_vcpu_cache); 4067 out_free_3: 4068 unregister_reboot_notifier(&kvm_reboot_notifier); 4069 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4070 out_free_2: 4071 out_free_1: 4072 kvm_arch_hardware_unsetup(); 4073 out_free_0a: 4074 free_cpumask_var(cpus_hardware_enabled); 4075 out_free_0: 4076 kvm_irqfd_exit(); 4077 out_irqfd: 4078 kvm_arch_exit(); 4079 out_fail: 4080 return r; 4081 } 4082 EXPORT_SYMBOL_GPL(kvm_init); 4083 4084 void kvm_exit(void) 4085 { 4086 debugfs_remove_recursive(kvm_debugfs_dir); 4087 misc_deregister(&kvm_dev); 4088 kmem_cache_destroy(kvm_vcpu_cache); 4089 kvm_async_pf_deinit(); 4090 unregister_syscore_ops(&kvm_syscore_ops); 4091 unregister_reboot_notifier(&kvm_reboot_notifier); 4092 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4093 on_each_cpu(hardware_disable_nolock, NULL, 1); 4094 kvm_arch_hardware_unsetup(); 4095 kvm_arch_exit(); 4096 kvm_irqfd_exit(); 4097 free_cpumask_var(cpus_hardware_enabled); 4098 kvm_vfio_ops_exit(); 4099 } 4100 EXPORT_SYMBOL_GPL(kvm_exit); 4101