1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "mmu_lock.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 159 unsigned long start, unsigned long end) 160 { 161 } 162 163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 164 { 165 /* 166 * The metadata used by is_zone_device_page() to determine whether or 167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 168 * the device has been pinned, e.g. by get_user_pages(). WARN if the 169 * page_count() is zero to help detect bad usage of this helper. 170 */ 171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 172 return false; 173 174 return is_zone_device_page(pfn_to_page(pfn)); 175 } 176 177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 178 { 179 /* 180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 181 * perspective they are "normal" pages, albeit with slightly different 182 * usage rules. 183 */ 184 if (pfn_valid(pfn)) 185 return PageReserved(pfn_to_page(pfn)) && 186 !is_zero_pfn(pfn) && 187 !kvm_is_zone_device_pfn(pfn); 188 189 return true; 190 } 191 192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 193 { 194 struct page *page = pfn_to_page(pfn); 195 196 if (!PageTransCompoundMap(page)) 197 return false; 198 199 return is_transparent_hugepage(compound_head(page)); 200 } 201 202 /* 203 * Switches to specified vcpu, until a matching vcpu_put() 204 */ 205 void vcpu_load(struct kvm_vcpu *vcpu) 206 { 207 int cpu = get_cpu(); 208 209 __this_cpu_write(kvm_running_vcpu, vcpu); 210 preempt_notifier_register(&vcpu->preempt_notifier); 211 kvm_arch_vcpu_load(vcpu, cpu); 212 put_cpu(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_load); 215 216 void vcpu_put(struct kvm_vcpu *vcpu) 217 { 218 preempt_disable(); 219 kvm_arch_vcpu_put(vcpu); 220 preempt_notifier_unregister(&vcpu->preempt_notifier); 221 __this_cpu_write(kvm_running_vcpu, NULL); 222 preempt_enable(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_put); 225 226 /* TODO: merge with kvm_arch_vcpu_should_kick */ 227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 228 { 229 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 230 231 /* 232 * We need to wait for the VCPU to reenable interrupts and get out of 233 * READING_SHADOW_PAGE_TABLES mode. 234 */ 235 if (req & KVM_REQUEST_WAIT) 236 return mode != OUTSIDE_GUEST_MODE; 237 238 /* 239 * Need to kick a running VCPU, but otherwise there is nothing to do. 240 */ 241 return mode == IN_GUEST_MODE; 242 } 243 244 static void ack_flush(void *_completed) 245 { 246 } 247 248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 249 { 250 if (unlikely(!cpus)) 251 cpus = cpu_online_mask; 252 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_flush, NULL, wait); 257 return true; 258 } 259 260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 261 struct kvm_vcpu *except, 262 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 263 { 264 int i, cpu, me; 265 struct kvm_vcpu *vcpu; 266 bool called; 267 268 me = get_cpu(); 269 270 kvm_for_each_vcpu(i, vcpu, kvm) { 271 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) || 272 vcpu == except) 273 continue; 274 275 kvm_make_request(req, vcpu); 276 cpu = vcpu->cpu; 277 278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 279 continue; 280 281 if (tmp != NULL && cpu != -1 && cpu != me && 282 kvm_request_needs_ipi(vcpu, req)) 283 __cpumask_set_cpu(cpu, tmp); 284 } 285 286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 287 put_cpu(); 288 289 return called; 290 } 291 292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 293 struct kvm_vcpu *except) 294 { 295 cpumask_var_t cpus; 296 bool called; 297 298 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 299 300 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus); 301 302 free_cpumask_var(cpus); 303 return called; 304 } 305 306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 307 { 308 return kvm_make_all_cpus_request_except(kvm, req, NULL); 309 } 310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 311 312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 313 void kvm_flush_remote_tlbs(struct kvm *kvm) 314 { 315 /* 316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 317 * kvm_make_all_cpus_request. 318 */ 319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 320 321 /* 322 * We want to publish modifications to the page tables before reading 323 * mode. Pairs with a memory barrier in arch-specific code. 324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 325 * and smp_mb in walk_shadow_page_lockless_begin/end. 326 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 327 * 328 * There is already an smp_mb__after_atomic() before 329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 330 * barrier here. 331 */ 332 if (!kvm_arch_flush_remote_tlb(kvm) 333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 334 ++kvm->stat.generic.remote_tlb_flush; 335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 336 } 337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 338 #endif 339 340 void kvm_reload_remote_mmus(struct kvm *kvm) 341 { 342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 343 } 344 345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 347 gfp_t gfp_flags) 348 { 349 gfp_flags |= mc->gfp_zero; 350 351 if (mc->kmem_cache) 352 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 353 else 354 return (void *)__get_free_page(gfp_flags); 355 } 356 357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 358 { 359 void *obj; 360 361 if (mc->nobjs >= min) 362 return 0; 363 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 364 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 365 if (!obj) 366 return mc->nobjs >= min ? 0 : -ENOMEM; 367 mc->objects[mc->nobjs++] = obj; 368 } 369 return 0; 370 } 371 372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 373 { 374 return mc->nobjs; 375 } 376 377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 378 { 379 while (mc->nobjs) { 380 if (mc->kmem_cache) 381 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 382 else 383 free_page((unsigned long)mc->objects[--mc->nobjs]); 384 } 385 } 386 387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 388 { 389 void *p; 390 391 if (WARN_ON(!mc->nobjs)) 392 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 393 else 394 p = mc->objects[--mc->nobjs]; 395 BUG_ON(!p); 396 return p; 397 } 398 #endif 399 400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 401 { 402 mutex_init(&vcpu->mutex); 403 vcpu->cpu = -1; 404 vcpu->kvm = kvm; 405 vcpu->vcpu_id = id; 406 vcpu->pid = NULL; 407 rcuwait_init(&vcpu->wait); 408 kvm_async_pf_vcpu_init(vcpu); 409 410 vcpu->pre_pcpu = -1; 411 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 412 413 kvm_vcpu_set_in_spin_loop(vcpu, false); 414 kvm_vcpu_set_dy_eligible(vcpu, false); 415 vcpu->preempted = false; 416 vcpu->ready = false; 417 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 418 } 419 420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 421 { 422 kvm_dirty_ring_free(&vcpu->dirty_ring); 423 kvm_arch_vcpu_destroy(vcpu); 424 425 /* 426 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 427 * the vcpu->pid pointer, and at destruction time all file descriptors 428 * are already gone. 429 */ 430 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 431 432 free_page((unsigned long)vcpu->run); 433 kmem_cache_free(kvm_vcpu_cache, vcpu); 434 } 435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 436 437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 439 { 440 return container_of(mn, struct kvm, mmu_notifier); 441 } 442 443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 444 struct mm_struct *mm, 445 unsigned long start, unsigned long end) 446 { 447 struct kvm *kvm = mmu_notifier_to_kvm(mn); 448 int idx; 449 450 idx = srcu_read_lock(&kvm->srcu); 451 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 452 srcu_read_unlock(&kvm->srcu, idx); 453 } 454 455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 456 457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 458 unsigned long end); 459 460 struct kvm_hva_range { 461 unsigned long start; 462 unsigned long end; 463 pte_t pte; 464 hva_handler_t handler; 465 on_lock_fn_t on_lock; 466 bool flush_on_ret; 467 bool may_block; 468 }; 469 470 /* 471 * Use a dedicated stub instead of NULL to indicate that there is no callback 472 * function/handler. The compiler technically can't guarantee that a real 473 * function will have a non-zero address, and so it will generate code to 474 * check for !NULL, whereas comparing against a stub will be elided at compile 475 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 476 */ 477 static void kvm_null_fn(void) 478 { 479 480 } 481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 482 483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 484 const struct kvm_hva_range *range) 485 { 486 bool ret = false, locked = false; 487 struct kvm_gfn_range gfn_range; 488 struct kvm_memory_slot *slot; 489 struct kvm_memslots *slots; 490 int i, idx; 491 492 /* A null handler is allowed if and only if on_lock() is provided. */ 493 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 494 IS_KVM_NULL_FN(range->handler))) 495 return 0; 496 497 idx = srcu_read_lock(&kvm->srcu); 498 499 /* The on_lock() path does not yet support lock elision. */ 500 if (!IS_KVM_NULL_FN(range->on_lock)) { 501 locked = true; 502 KVM_MMU_LOCK(kvm); 503 504 range->on_lock(kvm, range->start, range->end); 505 506 if (IS_KVM_NULL_FN(range->handler)) 507 goto out_unlock; 508 } 509 510 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 511 slots = __kvm_memslots(kvm, i); 512 kvm_for_each_memslot(slot, slots) { 513 unsigned long hva_start, hva_end; 514 515 hva_start = max(range->start, slot->userspace_addr); 516 hva_end = min(range->end, slot->userspace_addr + 517 (slot->npages << PAGE_SHIFT)); 518 if (hva_start >= hva_end) 519 continue; 520 521 /* 522 * To optimize for the likely case where the address 523 * range is covered by zero or one memslots, don't 524 * bother making these conditional (to avoid writes on 525 * the second or later invocation of the handler). 526 */ 527 gfn_range.pte = range->pte; 528 gfn_range.may_block = range->may_block; 529 530 /* 531 * {gfn(page) | page intersects with [hva_start, hva_end)} = 532 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 533 */ 534 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 535 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 536 gfn_range.slot = slot; 537 538 if (!locked) { 539 locked = true; 540 KVM_MMU_LOCK(kvm); 541 } 542 ret |= range->handler(kvm, &gfn_range); 543 } 544 } 545 546 if (range->flush_on_ret && (ret || kvm->tlbs_dirty)) 547 kvm_flush_remote_tlbs(kvm); 548 549 out_unlock: 550 if (locked) 551 KVM_MMU_UNLOCK(kvm); 552 553 srcu_read_unlock(&kvm->srcu, idx); 554 555 /* The notifiers are averse to booleans. :-( */ 556 return (int)ret; 557 } 558 559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 560 unsigned long start, 561 unsigned long end, 562 pte_t pte, 563 hva_handler_t handler) 564 { 565 struct kvm *kvm = mmu_notifier_to_kvm(mn); 566 const struct kvm_hva_range range = { 567 .start = start, 568 .end = end, 569 .pte = pte, 570 .handler = handler, 571 .on_lock = (void *)kvm_null_fn, 572 .flush_on_ret = true, 573 .may_block = false, 574 }; 575 576 return __kvm_handle_hva_range(kvm, &range); 577 } 578 579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 580 unsigned long start, 581 unsigned long end, 582 hva_handler_t handler) 583 { 584 struct kvm *kvm = mmu_notifier_to_kvm(mn); 585 const struct kvm_hva_range range = { 586 .start = start, 587 .end = end, 588 .pte = __pte(0), 589 .handler = handler, 590 .on_lock = (void *)kvm_null_fn, 591 .flush_on_ret = false, 592 .may_block = false, 593 }; 594 595 return __kvm_handle_hva_range(kvm, &range); 596 } 597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 598 struct mm_struct *mm, 599 unsigned long address, 600 pte_t pte) 601 { 602 struct kvm *kvm = mmu_notifier_to_kvm(mn); 603 604 trace_kvm_set_spte_hva(address); 605 606 /* 607 * .change_pte() must be surrounded by .invalidate_range_{start,end}(), 608 * and so always runs with an elevated notifier count. This obviates 609 * the need to bump the sequence count. 610 */ 611 WARN_ON_ONCE(!kvm->mmu_notifier_count); 612 613 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 614 } 615 616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 617 unsigned long end) 618 { 619 /* 620 * The count increase must become visible at unlock time as no 621 * spte can be established without taking the mmu_lock and 622 * count is also read inside the mmu_lock critical section. 623 */ 624 kvm->mmu_notifier_count++; 625 if (likely(kvm->mmu_notifier_count == 1)) { 626 kvm->mmu_notifier_range_start = start; 627 kvm->mmu_notifier_range_end = end; 628 } else { 629 /* 630 * Fully tracking multiple concurrent ranges has dimishing 631 * returns. Keep things simple and just find the minimal range 632 * which includes the current and new ranges. As there won't be 633 * enough information to subtract a range after its invalidate 634 * completes, any ranges invalidated concurrently will 635 * accumulate and persist until all outstanding invalidates 636 * complete. 637 */ 638 kvm->mmu_notifier_range_start = 639 min(kvm->mmu_notifier_range_start, start); 640 kvm->mmu_notifier_range_end = 641 max(kvm->mmu_notifier_range_end, end); 642 } 643 } 644 645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 646 const struct mmu_notifier_range *range) 647 { 648 struct kvm *kvm = mmu_notifier_to_kvm(mn); 649 const struct kvm_hva_range hva_range = { 650 .start = range->start, 651 .end = range->end, 652 .pte = __pte(0), 653 .handler = kvm_unmap_gfn_range, 654 .on_lock = kvm_inc_notifier_count, 655 .flush_on_ret = true, 656 .may_block = mmu_notifier_range_blockable(range), 657 }; 658 659 trace_kvm_unmap_hva_range(range->start, range->end); 660 661 __kvm_handle_hva_range(kvm, &hva_range); 662 663 return 0; 664 } 665 666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 667 unsigned long end) 668 { 669 /* 670 * This sequence increase will notify the kvm page fault that 671 * the page that is going to be mapped in the spte could have 672 * been freed. 673 */ 674 kvm->mmu_notifier_seq++; 675 smp_wmb(); 676 /* 677 * The above sequence increase must be visible before the 678 * below count decrease, which is ensured by the smp_wmb above 679 * in conjunction with the smp_rmb in mmu_notifier_retry(). 680 */ 681 kvm->mmu_notifier_count--; 682 } 683 684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 685 const struct mmu_notifier_range *range) 686 { 687 struct kvm *kvm = mmu_notifier_to_kvm(mn); 688 const struct kvm_hva_range hva_range = { 689 .start = range->start, 690 .end = range->end, 691 .pte = __pte(0), 692 .handler = (void *)kvm_null_fn, 693 .on_lock = kvm_dec_notifier_count, 694 .flush_on_ret = false, 695 .may_block = mmu_notifier_range_blockable(range), 696 }; 697 698 __kvm_handle_hva_range(kvm, &hva_range); 699 700 BUG_ON(kvm->mmu_notifier_count < 0); 701 } 702 703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 704 struct mm_struct *mm, 705 unsigned long start, 706 unsigned long end) 707 { 708 trace_kvm_age_hva(start, end); 709 710 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 711 } 712 713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 714 struct mm_struct *mm, 715 unsigned long start, 716 unsigned long end) 717 { 718 trace_kvm_age_hva(start, end); 719 720 /* 721 * Even though we do not flush TLB, this will still adversely 722 * affect performance on pre-Haswell Intel EPT, where there is 723 * no EPT Access Bit to clear so that we have to tear down EPT 724 * tables instead. If we find this unacceptable, we can always 725 * add a parameter to kvm_age_hva so that it effectively doesn't 726 * do anything on clear_young. 727 * 728 * Also note that currently we never issue secondary TLB flushes 729 * from clear_young, leaving this job up to the regular system 730 * cadence. If we find this inaccurate, we might come up with a 731 * more sophisticated heuristic later. 732 */ 733 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 734 } 735 736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 737 struct mm_struct *mm, 738 unsigned long address) 739 { 740 trace_kvm_test_age_hva(address); 741 742 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 743 kvm_test_age_gfn); 744 } 745 746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 747 struct mm_struct *mm) 748 { 749 struct kvm *kvm = mmu_notifier_to_kvm(mn); 750 int idx; 751 752 idx = srcu_read_lock(&kvm->srcu); 753 kvm_arch_flush_shadow_all(kvm); 754 srcu_read_unlock(&kvm->srcu, idx); 755 } 756 757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 758 .invalidate_range = kvm_mmu_notifier_invalidate_range, 759 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 760 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 761 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 762 .clear_young = kvm_mmu_notifier_clear_young, 763 .test_young = kvm_mmu_notifier_test_young, 764 .change_pte = kvm_mmu_notifier_change_pte, 765 .release = kvm_mmu_notifier_release, 766 }; 767 768 static int kvm_init_mmu_notifier(struct kvm *kvm) 769 { 770 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 771 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 772 } 773 774 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 775 776 static int kvm_init_mmu_notifier(struct kvm *kvm) 777 { 778 return 0; 779 } 780 781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 782 783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 784 static int kvm_pm_notifier_call(struct notifier_block *bl, 785 unsigned long state, 786 void *unused) 787 { 788 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 789 790 return kvm_arch_pm_notifier(kvm, state); 791 } 792 793 static void kvm_init_pm_notifier(struct kvm *kvm) 794 { 795 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 796 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 797 kvm->pm_notifier.priority = INT_MAX; 798 register_pm_notifier(&kvm->pm_notifier); 799 } 800 801 static void kvm_destroy_pm_notifier(struct kvm *kvm) 802 { 803 unregister_pm_notifier(&kvm->pm_notifier); 804 } 805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 806 static void kvm_init_pm_notifier(struct kvm *kvm) 807 { 808 } 809 810 static void kvm_destroy_pm_notifier(struct kvm *kvm) 811 { 812 } 813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 814 815 static struct kvm_memslots *kvm_alloc_memslots(void) 816 { 817 int i; 818 struct kvm_memslots *slots; 819 820 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 821 if (!slots) 822 return NULL; 823 824 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 825 slots->id_to_index[i] = -1; 826 827 return slots; 828 } 829 830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 831 { 832 if (!memslot->dirty_bitmap) 833 return; 834 835 kvfree(memslot->dirty_bitmap); 836 memslot->dirty_bitmap = NULL; 837 } 838 839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 840 { 841 kvm_destroy_dirty_bitmap(slot); 842 843 kvm_arch_free_memslot(kvm, slot); 844 845 slot->flags = 0; 846 slot->npages = 0; 847 } 848 849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 850 { 851 struct kvm_memory_slot *memslot; 852 853 if (!slots) 854 return; 855 856 kvm_for_each_memslot(memslot, slots) 857 kvm_free_memslot(kvm, memslot); 858 859 kvfree(slots); 860 } 861 862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 863 { 864 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 865 case KVM_STATS_TYPE_INSTANT: 866 return 0444; 867 case KVM_STATS_TYPE_CUMULATIVE: 868 case KVM_STATS_TYPE_PEAK: 869 default: 870 return 0644; 871 } 872 } 873 874 875 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 876 { 877 int i; 878 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 879 kvm_vcpu_stats_header.num_desc; 880 881 if (!kvm->debugfs_dentry) 882 return; 883 884 debugfs_remove_recursive(kvm->debugfs_dentry); 885 886 if (kvm->debugfs_stat_data) { 887 for (i = 0; i < kvm_debugfs_num_entries; i++) 888 kfree(kvm->debugfs_stat_data[i]); 889 kfree(kvm->debugfs_stat_data); 890 } 891 } 892 893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 894 { 895 static DEFINE_MUTEX(kvm_debugfs_lock); 896 struct dentry *dent; 897 char dir_name[ITOA_MAX_LEN * 2]; 898 struct kvm_stat_data *stat_data; 899 const struct _kvm_stats_desc *pdesc; 900 int i; 901 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 902 kvm_vcpu_stats_header.num_desc; 903 904 if (!debugfs_initialized()) 905 return 0; 906 907 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 908 mutex_lock(&kvm_debugfs_lock); 909 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 910 if (dent) { 911 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 912 dput(dent); 913 mutex_unlock(&kvm_debugfs_lock); 914 return 0; 915 } 916 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 917 mutex_unlock(&kvm_debugfs_lock); 918 if (IS_ERR(dent)) 919 return 0; 920 921 kvm->debugfs_dentry = dent; 922 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 923 sizeof(*kvm->debugfs_stat_data), 924 GFP_KERNEL_ACCOUNT); 925 if (!kvm->debugfs_stat_data) 926 return -ENOMEM; 927 928 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 929 pdesc = &kvm_vm_stats_desc[i]; 930 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 931 if (!stat_data) 932 return -ENOMEM; 933 934 stat_data->kvm = kvm; 935 stat_data->desc = pdesc; 936 stat_data->kind = KVM_STAT_VM; 937 kvm->debugfs_stat_data[i] = stat_data; 938 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 939 kvm->debugfs_dentry, stat_data, 940 &stat_fops_per_vm); 941 } 942 943 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 944 pdesc = &kvm_vcpu_stats_desc[i]; 945 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 946 if (!stat_data) 947 return -ENOMEM; 948 949 stat_data->kvm = kvm; 950 stat_data->desc = pdesc; 951 stat_data->kind = KVM_STAT_VCPU; 952 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 953 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 954 kvm->debugfs_dentry, stat_data, 955 &stat_fops_per_vm); 956 } 957 return 0; 958 } 959 960 /* 961 * Called after the VM is otherwise initialized, but just before adding it to 962 * the vm_list. 963 */ 964 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 965 { 966 return 0; 967 } 968 969 /* 970 * Called just after removing the VM from the vm_list, but before doing any 971 * other destruction. 972 */ 973 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 974 { 975 } 976 977 static struct kvm *kvm_create_vm(unsigned long type) 978 { 979 struct kvm *kvm = kvm_arch_alloc_vm(); 980 int r = -ENOMEM; 981 int i; 982 983 if (!kvm) 984 return ERR_PTR(-ENOMEM); 985 986 KVM_MMU_LOCK_INIT(kvm); 987 mmgrab(current->mm); 988 kvm->mm = current->mm; 989 kvm_eventfd_init(kvm); 990 mutex_init(&kvm->lock); 991 mutex_init(&kvm->irq_lock); 992 mutex_init(&kvm->slots_lock); 993 mutex_init(&kvm->slots_arch_lock); 994 INIT_LIST_HEAD(&kvm->devices); 995 996 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 997 998 if (init_srcu_struct(&kvm->srcu)) 999 goto out_err_no_srcu; 1000 if (init_srcu_struct(&kvm->irq_srcu)) 1001 goto out_err_no_irq_srcu; 1002 1003 refcount_set(&kvm->users_count, 1); 1004 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1005 struct kvm_memslots *slots = kvm_alloc_memslots(); 1006 1007 if (!slots) 1008 goto out_err_no_arch_destroy_vm; 1009 /* Generations must be different for each address space. */ 1010 slots->generation = i; 1011 rcu_assign_pointer(kvm->memslots[i], slots); 1012 } 1013 1014 for (i = 0; i < KVM_NR_BUSES; i++) { 1015 rcu_assign_pointer(kvm->buses[i], 1016 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1017 if (!kvm->buses[i]) 1018 goto out_err_no_arch_destroy_vm; 1019 } 1020 1021 kvm->max_halt_poll_ns = halt_poll_ns; 1022 1023 r = kvm_arch_init_vm(kvm, type); 1024 if (r) 1025 goto out_err_no_arch_destroy_vm; 1026 1027 r = hardware_enable_all(); 1028 if (r) 1029 goto out_err_no_disable; 1030 1031 #ifdef CONFIG_HAVE_KVM_IRQFD 1032 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1033 #endif 1034 1035 r = kvm_init_mmu_notifier(kvm); 1036 if (r) 1037 goto out_err_no_mmu_notifier; 1038 1039 r = kvm_arch_post_init_vm(kvm); 1040 if (r) 1041 goto out_err; 1042 1043 mutex_lock(&kvm_lock); 1044 list_add(&kvm->vm_list, &vm_list); 1045 mutex_unlock(&kvm_lock); 1046 1047 preempt_notifier_inc(); 1048 kvm_init_pm_notifier(kvm); 1049 1050 return kvm; 1051 1052 out_err: 1053 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1054 if (kvm->mmu_notifier.ops) 1055 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1056 #endif 1057 out_err_no_mmu_notifier: 1058 hardware_disable_all(); 1059 out_err_no_disable: 1060 kvm_arch_destroy_vm(kvm); 1061 out_err_no_arch_destroy_vm: 1062 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1063 for (i = 0; i < KVM_NR_BUSES; i++) 1064 kfree(kvm_get_bus(kvm, i)); 1065 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1066 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1067 cleanup_srcu_struct(&kvm->irq_srcu); 1068 out_err_no_irq_srcu: 1069 cleanup_srcu_struct(&kvm->srcu); 1070 out_err_no_srcu: 1071 kvm_arch_free_vm(kvm); 1072 mmdrop(current->mm); 1073 return ERR_PTR(r); 1074 } 1075 1076 static void kvm_destroy_devices(struct kvm *kvm) 1077 { 1078 struct kvm_device *dev, *tmp; 1079 1080 /* 1081 * We do not need to take the kvm->lock here, because nobody else 1082 * has a reference to the struct kvm at this point and therefore 1083 * cannot access the devices list anyhow. 1084 */ 1085 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1086 list_del(&dev->vm_node); 1087 dev->ops->destroy(dev); 1088 } 1089 } 1090 1091 static void kvm_destroy_vm(struct kvm *kvm) 1092 { 1093 int i; 1094 struct mm_struct *mm = kvm->mm; 1095 1096 kvm_destroy_pm_notifier(kvm); 1097 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1098 kvm_destroy_vm_debugfs(kvm); 1099 kvm_arch_sync_events(kvm); 1100 mutex_lock(&kvm_lock); 1101 list_del(&kvm->vm_list); 1102 mutex_unlock(&kvm_lock); 1103 kvm_arch_pre_destroy_vm(kvm); 1104 1105 kvm_free_irq_routing(kvm); 1106 for (i = 0; i < KVM_NR_BUSES; i++) { 1107 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1108 1109 if (bus) 1110 kvm_io_bus_destroy(bus); 1111 kvm->buses[i] = NULL; 1112 } 1113 kvm_coalesced_mmio_free(kvm); 1114 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1115 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1116 #else 1117 kvm_arch_flush_shadow_all(kvm); 1118 #endif 1119 kvm_arch_destroy_vm(kvm); 1120 kvm_destroy_devices(kvm); 1121 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 1122 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 1123 cleanup_srcu_struct(&kvm->irq_srcu); 1124 cleanup_srcu_struct(&kvm->srcu); 1125 kvm_arch_free_vm(kvm); 1126 preempt_notifier_dec(); 1127 hardware_disable_all(); 1128 mmdrop(mm); 1129 } 1130 1131 void kvm_get_kvm(struct kvm *kvm) 1132 { 1133 refcount_inc(&kvm->users_count); 1134 } 1135 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1136 1137 void kvm_put_kvm(struct kvm *kvm) 1138 { 1139 if (refcount_dec_and_test(&kvm->users_count)) 1140 kvm_destroy_vm(kvm); 1141 } 1142 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1143 1144 /* 1145 * Used to put a reference that was taken on behalf of an object associated 1146 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1147 * of the new file descriptor fails and the reference cannot be transferred to 1148 * its final owner. In such cases, the caller is still actively using @kvm and 1149 * will fail miserably if the refcount unexpectedly hits zero. 1150 */ 1151 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1152 { 1153 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1156 1157 static int kvm_vm_release(struct inode *inode, struct file *filp) 1158 { 1159 struct kvm *kvm = filp->private_data; 1160 1161 kvm_irqfd_release(kvm); 1162 1163 kvm_put_kvm(kvm); 1164 return 0; 1165 } 1166 1167 /* 1168 * Allocation size is twice as large as the actual dirty bitmap size. 1169 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1170 */ 1171 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1172 { 1173 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 1174 1175 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 1176 if (!memslot->dirty_bitmap) 1177 return -ENOMEM; 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * Delete a memslot by decrementing the number of used slots and shifting all 1184 * other entries in the array forward one spot. 1185 */ 1186 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 1187 struct kvm_memory_slot *memslot) 1188 { 1189 struct kvm_memory_slot *mslots = slots->memslots; 1190 int i; 1191 1192 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 1193 return; 1194 1195 slots->used_slots--; 1196 1197 if (atomic_read(&slots->lru_slot) >= slots->used_slots) 1198 atomic_set(&slots->lru_slot, 0); 1199 1200 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 1201 mslots[i] = mslots[i + 1]; 1202 slots->id_to_index[mslots[i].id] = i; 1203 } 1204 mslots[i] = *memslot; 1205 slots->id_to_index[memslot->id] = -1; 1206 } 1207 1208 /* 1209 * "Insert" a new memslot by incrementing the number of used slots. Returns 1210 * the new slot's initial index into the memslots array. 1211 */ 1212 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 1213 { 1214 return slots->used_slots++; 1215 } 1216 1217 /* 1218 * Move a changed memslot backwards in the array by shifting existing slots 1219 * with a higher GFN toward the front of the array. Note, the changed memslot 1220 * itself is not preserved in the array, i.e. not swapped at this time, only 1221 * its new index into the array is tracked. Returns the changed memslot's 1222 * current index into the memslots array. 1223 */ 1224 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 1225 struct kvm_memory_slot *memslot) 1226 { 1227 struct kvm_memory_slot *mslots = slots->memslots; 1228 int i; 1229 1230 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 1231 WARN_ON_ONCE(!slots->used_slots)) 1232 return -1; 1233 1234 /* 1235 * Move the target memslot backward in the array by shifting existing 1236 * memslots with a higher GFN (than the target memslot) towards the 1237 * front of the array. 1238 */ 1239 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 1240 if (memslot->base_gfn > mslots[i + 1].base_gfn) 1241 break; 1242 1243 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1244 1245 /* Shift the next memslot forward one and update its index. */ 1246 mslots[i] = mslots[i + 1]; 1247 slots->id_to_index[mslots[i].id] = i; 1248 } 1249 return i; 1250 } 1251 1252 /* 1253 * Move a changed memslot forwards in the array by shifting existing slots with 1254 * a lower GFN toward the back of the array. Note, the changed memslot itself 1255 * is not preserved in the array, i.e. not swapped at this time, only its new 1256 * index into the array is tracked. Returns the changed memslot's final index 1257 * into the memslots array. 1258 */ 1259 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1260 struct kvm_memory_slot *memslot, 1261 int start) 1262 { 1263 struct kvm_memory_slot *mslots = slots->memslots; 1264 int i; 1265 1266 for (i = start; i > 0; i--) { 1267 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1268 break; 1269 1270 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1271 1272 /* Shift the next memslot back one and update its index. */ 1273 mslots[i] = mslots[i - 1]; 1274 slots->id_to_index[mslots[i].id] = i; 1275 } 1276 return i; 1277 } 1278 1279 /* 1280 * Re-sort memslots based on their GFN to account for an added, deleted, or 1281 * moved memslot. Sorting memslots by GFN allows using a binary search during 1282 * memslot lookup. 1283 * 1284 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1285 * at memslots[0] has the highest GFN. 1286 * 1287 * The sorting algorithm takes advantage of having initially sorted memslots 1288 * and knowing the position of the changed memslot. Sorting is also optimized 1289 * by not swapping the updated memslot and instead only shifting other memslots 1290 * and tracking the new index for the update memslot. Only once its final 1291 * index is known is the updated memslot copied into its position in the array. 1292 * 1293 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1294 * the end of the array. 1295 * 1296 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1297 * end of the array and then it forward to its correct location. 1298 * 1299 * - When moving a memslot, the algorithm first moves the updated memslot 1300 * backward to handle the scenario where the memslot's GFN was changed to a 1301 * lower value. update_memslots() then falls through and runs the same flow 1302 * as creating a memslot to move the memslot forward to handle the scenario 1303 * where its GFN was changed to a higher value. 1304 * 1305 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1306 * historical reasons. Originally, invalid memslots where denoted by having 1307 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1308 * to the end of the array. The current algorithm uses dedicated logic to 1309 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1310 * 1311 * The other historical motiviation for highest->lowest was to improve the 1312 * performance of memslot lookup. KVM originally used a linear search starting 1313 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1314 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1315 * single memslot above the 4gb boundary. As the largest memslot is also the 1316 * most likely to be referenced, sorting it to the front of the array was 1317 * advantageous. The current binary search starts from the middle of the array 1318 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1319 */ 1320 static void update_memslots(struct kvm_memslots *slots, 1321 struct kvm_memory_slot *memslot, 1322 enum kvm_mr_change change) 1323 { 1324 int i; 1325 1326 if (change == KVM_MR_DELETE) { 1327 kvm_memslot_delete(slots, memslot); 1328 } else { 1329 if (change == KVM_MR_CREATE) 1330 i = kvm_memslot_insert_back(slots); 1331 else 1332 i = kvm_memslot_move_backward(slots, memslot); 1333 i = kvm_memslot_move_forward(slots, memslot, i); 1334 1335 /* 1336 * Copy the memslot to its new position in memslots and update 1337 * its index accordingly. 1338 */ 1339 slots->memslots[i] = *memslot; 1340 slots->id_to_index[memslot->id] = i; 1341 } 1342 } 1343 1344 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1345 { 1346 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1347 1348 #ifdef __KVM_HAVE_READONLY_MEM 1349 valid_flags |= KVM_MEM_READONLY; 1350 #endif 1351 1352 if (mem->flags & ~valid_flags) 1353 return -EINVAL; 1354 1355 return 0; 1356 } 1357 1358 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1359 int as_id, struct kvm_memslots *slots) 1360 { 1361 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1362 u64 gen = old_memslots->generation; 1363 1364 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1365 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1366 1367 rcu_assign_pointer(kvm->memslots[as_id], slots); 1368 1369 /* 1370 * Acquired in kvm_set_memslot. Must be released before synchronize 1371 * SRCU below in order to avoid deadlock with another thread 1372 * acquiring the slots_arch_lock in an srcu critical section. 1373 */ 1374 mutex_unlock(&kvm->slots_arch_lock); 1375 1376 synchronize_srcu_expedited(&kvm->srcu); 1377 1378 /* 1379 * Increment the new memslot generation a second time, dropping the 1380 * update in-progress flag and incrementing the generation based on 1381 * the number of address spaces. This provides a unique and easily 1382 * identifiable generation number while the memslots are in flux. 1383 */ 1384 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1385 1386 /* 1387 * Generations must be unique even across address spaces. We do not need 1388 * a global counter for that, instead the generation space is evenly split 1389 * across address spaces. For example, with two address spaces, address 1390 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1391 * use generations 1, 3, 5, ... 1392 */ 1393 gen += KVM_ADDRESS_SPACE_NUM; 1394 1395 kvm_arch_memslots_updated(kvm, gen); 1396 1397 slots->generation = gen; 1398 1399 return old_memslots; 1400 } 1401 1402 static size_t kvm_memslots_size(int slots) 1403 { 1404 return sizeof(struct kvm_memslots) + 1405 (sizeof(struct kvm_memory_slot) * slots); 1406 } 1407 1408 static void kvm_copy_memslots(struct kvm_memslots *to, 1409 struct kvm_memslots *from) 1410 { 1411 memcpy(to, from, kvm_memslots_size(from->used_slots)); 1412 } 1413 1414 /* 1415 * Note, at a minimum, the current number of used slots must be allocated, even 1416 * when deleting a memslot, as we need a complete duplicate of the memslots for 1417 * use when invalidating a memslot prior to deleting/moving the memslot. 1418 */ 1419 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1420 enum kvm_mr_change change) 1421 { 1422 struct kvm_memslots *slots; 1423 size_t new_size; 1424 1425 if (change == KVM_MR_CREATE) 1426 new_size = kvm_memslots_size(old->used_slots + 1); 1427 else 1428 new_size = kvm_memslots_size(old->used_slots); 1429 1430 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1431 if (likely(slots)) 1432 kvm_copy_memslots(slots, old); 1433 1434 return slots; 1435 } 1436 1437 static int kvm_set_memslot(struct kvm *kvm, 1438 const struct kvm_userspace_memory_region *mem, 1439 struct kvm_memory_slot *old, 1440 struct kvm_memory_slot *new, int as_id, 1441 enum kvm_mr_change change) 1442 { 1443 struct kvm_memory_slot *slot; 1444 struct kvm_memslots *slots; 1445 int r; 1446 1447 /* 1448 * Released in install_new_memslots. 1449 * 1450 * Must be held from before the current memslots are copied until 1451 * after the new memslots are installed with rcu_assign_pointer, 1452 * then released before the synchronize srcu in install_new_memslots. 1453 * 1454 * When modifying memslots outside of the slots_lock, must be held 1455 * before reading the pointer to the current memslots until after all 1456 * changes to those memslots are complete. 1457 * 1458 * These rules ensure that installing new memslots does not lose 1459 * changes made to the previous memslots. 1460 */ 1461 mutex_lock(&kvm->slots_arch_lock); 1462 1463 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1464 if (!slots) { 1465 mutex_unlock(&kvm->slots_arch_lock); 1466 return -ENOMEM; 1467 } 1468 1469 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1470 /* 1471 * Note, the INVALID flag needs to be in the appropriate entry 1472 * in the freshly allocated memslots, not in @old or @new. 1473 */ 1474 slot = id_to_memslot(slots, old->id); 1475 slot->flags |= KVM_MEMSLOT_INVALID; 1476 1477 /* 1478 * We can re-use the memory from the old memslots. 1479 * It will be overwritten with a copy of the new memslots 1480 * after reacquiring the slots_arch_lock below. 1481 */ 1482 slots = install_new_memslots(kvm, as_id, slots); 1483 1484 /* From this point no new shadow pages pointing to a deleted, 1485 * or moved, memslot will be created. 1486 * 1487 * validation of sp->gfn happens in: 1488 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1489 * - kvm_is_visible_gfn (mmu_check_root) 1490 */ 1491 kvm_arch_flush_shadow_memslot(kvm, slot); 1492 1493 /* Released in install_new_memslots. */ 1494 mutex_lock(&kvm->slots_arch_lock); 1495 1496 /* 1497 * The arch-specific fields of the memslots could have changed 1498 * between releasing the slots_arch_lock in 1499 * install_new_memslots and here, so get a fresh copy of the 1500 * slots. 1501 */ 1502 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id)); 1503 } 1504 1505 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1506 if (r) 1507 goto out_slots; 1508 1509 update_memslots(slots, new, change); 1510 slots = install_new_memslots(kvm, as_id, slots); 1511 1512 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1513 1514 kvfree(slots); 1515 return 0; 1516 1517 out_slots: 1518 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1519 slot = id_to_memslot(slots, old->id); 1520 slot->flags &= ~KVM_MEMSLOT_INVALID; 1521 slots = install_new_memslots(kvm, as_id, slots); 1522 } else { 1523 mutex_unlock(&kvm->slots_arch_lock); 1524 } 1525 kvfree(slots); 1526 return r; 1527 } 1528 1529 static int kvm_delete_memslot(struct kvm *kvm, 1530 const struct kvm_userspace_memory_region *mem, 1531 struct kvm_memory_slot *old, int as_id) 1532 { 1533 struct kvm_memory_slot new; 1534 int r; 1535 1536 if (!old->npages) 1537 return -EINVAL; 1538 1539 memset(&new, 0, sizeof(new)); 1540 new.id = old->id; 1541 /* 1542 * This is only for debugging purpose; it should never be referenced 1543 * for a removed memslot. 1544 */ 1545 new.as_id = as_id; 1546 1547 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1548 if (r) 1549 return r; 1550 1551 kvm_free_memslot(kvm, old); 1552 return 0; 1553 } 1554 1555 /* 1556 * Allocate some memory and give it an address in the guest physical address 1557 * space. 1558 * 1559 * Discontiguous memory is allowed, mostly for framebuffers. 1560 * 1561 * Must be called holding kvm->slots_lock for write. 1562 */ 1563 int __kvm_set_memory_region(struct kvm *kvm, 1564 const struct kvm_userspace_memory_region *mem) 1565 { 1566 struct kvm_memory_slot old, new; 1567 struct kvm_memory_slot *tmp; 1568 enum kvm_mr_change change; 1569 int as_id, id; 1570 int r; 1571 1572 r = check_memory_region_flags(mem); 1573 if (r) 1574 return r; 1575 1576 as_id = mem->slot >> 16; 1577 id = (u16)mem->slot; 1578 1579 /* General sanity checks */ 1580 if (mem->memory_size & (PAGE_SIZE - 1)) 1581 return -EINVAL; 1582 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1583 return -EINVAL; 1584 /* We can read the guest memory with __xxx_user() later on. */ 1585 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1586 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1587 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1588 mem->memory_size)) 1589 return -EINVAL; 1590 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1591 return -EINVAL; 1592 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1593 return -EINVAL; 1594 1595 /* 1596 * Make a full copy of the old memslot, the pointer will become stale 1597 * when the memslots are re-sorted by update_memslots(), and the old 1598 * memslot needs to be referenced after calling update_memslots(), e.g. 1599 * to free its resources and for arch specific behavior. 1600 */ 1601 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1602 if (tmp) { 1603 old = *tmp; 1604 tmp = NULL; 1605 } else { 1606 memset(&old, 0, sizeof(old)); 1607 old.id = id; 1608 } 1609 1610 if (!mem->memory_size) 1611 return kvm_delete_memslot(kvm, mem, &old, as_id); 1612 1613 new.as_id = as_id; 1614 new.id = id; 1615 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1616 new.npages = mem->memory_size >> PAGE_SHIFT; 1617 new.flags = mem->flags; 1618 new.userspace_addr = mem->userspace_addr; 1619 1620 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1621 return -EINVAL; 1622 1623 if (!old.npages) { 1624 change = KVM_MR_CREATE; 1625 new.dirty_bitmap = NULL; 1626 memset(&new.arch, 0, sizeof(new.arch)); 1627 } else { /* Modify an existing slot. */ 1628 if ((new.userspace_addr != old.userspace_addr) || 1629 (new.npages != old.npages) || 1630 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1631 return -EINVAL; 1632 1633 if (new.base_gfn != old.base_gfn) 1634 change = KVM_MR_MOVE; 1635 else if (new.flags != old.flags) 1636 change = KVM_MR_FLAGS_ONLY; 1637 else /* Nothing to change. */ 1638 return 0; 1639 1640 /* Copy dirty_bitmap and arch from the current memslot. */ 1641 new.dirty_bitmap = old.dirty_bitmap; 1642 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1643 } 1644 1645 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1646 /* Check for overlaps */ 1647 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1648 if (tmp->id == id) 1649 continue; 1650 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1651 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1652 return -EEXIST; 1653 } 1654 } 1655 1656 /* Allocate/free page dirty bitmap as needed */ 1657 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1658 new.dirty_bitmap = NULL; 1659 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) { 1660 r = kvm_alloc_dirty_bitmap(&new); 1661 if (r) 1662 return r; 1663 1664 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1665 bitmap_set(new.dirty_bitmap, 0, new.npages); 1666 } 1667 1668 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1669 if (r) 1670 goto out_bitmap; 1671 1672 if (old.dirty_bitmap && !new.dirty_bitmap) 1673 kvm_destroy_dirty_bitmap(&old); 1674 return 0; 1675 1676 out_bitmap: 1677 if (new.dirty_bitmap && !old.dirty_bitmap) 1678 kvm_destroy_dirty_bitmap(&new); 1679 return r; 1680 } 1681 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1682 1683 int kvm_set_memory_region(struct kvm *kvm, 1684 const struct kvm_userspace_memory_region *mem) 1685 { 1686 int r; 1687 1688 mutex_lock(&kvm->slots_lock); 1689 r = __kvm_set_memory_region(kvm, mem); 1690 mutex_unlock(&kvm->slots_lock); 1691 return r; 1692 } 1693 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1694 1695 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1696 struct kvm_userspace_memory_region *mem) 1697 { 1698 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1699 return -EINVAL; 1700 1701 return kvm_set_memory_region(kvm, mem); 1702 } 1703 1704 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1705 /** 1706 * kvm_get_dirty_log - get a snapshot of dirty pages 1707 * @kvm: pointer to kvm instance 1708 * @log: slot id and address to which we copy the log 1709 * @is_dirty: set to '1' if any dirty pages were found 1710 * @memslot: set to the associated memslot, always valid on success 1711 */ 1712 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1713 int *is_dirty, struct kvm_memory_slot **memslot) 1714 { 1715 struct kvm_memslots *slots; 1716 int i, as_id, id; 1717 unsigned long n; 1718 unsigned long any = 0; 1719 1720 /* Dirty ring tracking is exclusive to dirty log tracking */ 1721 if (kvm->dirty_ring_size) 1722 return -ENXIO; 1723 1724 *memslot = NULL; 1725 *is_dirty = 0; 1726 1727 as_id = log->slot >> 16; 1728 id = (u16)log->slot; 1729 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1730 return -EINVAL; 1731 1732 slots = __kvm_memslots(kvm, as_id); 1733 *memslot = id_to_memslot(slots, id); 1734 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1735 return -ENOENT; 1736 1737 kvm_arch_sync_dirty_log(kvm, *memslot); 1738 1739 n = kvm_dirty_bitmap_bytes(*memslot); 1740 1741 for (i = 0; !any && i < n/sizeof(long); ++i) 1742 any = (*memslot)->dirty_bitmap[i]; 1743 1744 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1745 return -EFAULT; 1746 1747 if (any) 1748 *is_dirty = 1; 1749 return 0; 1750 } 1751 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1752 1753 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1754 /** 1755 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1756 * and reenable dirty page tracking for the corresponding pages. 1757 * @kvm: pointer to kvm instance 1758 * @log: slot id and address to which we copy the log 1759 * 1760 * We need to keep it in mind that VCPU threads can write to the bitmap 1761 * concurrently. So, to avoid losing track of dirty pages we keep the 1762 * following order: 1763 * 1764 * 1. Take a snapshot of the bit and clear it if needed. 1765 * 2. Write protect the corresponding page. 1766 * 3. Copy the snapshot to the userspace. 1767 * 4. Upon return caller flushes TLB's if needed. 1768 * 1769 * Between 2 and 4, the guest may write to the page using the remaining TLB 1770 * entry. This is not a problem because the page is reported dirty using 1771 * the snapshot taken before and step 4 ensures that writes done after 1772 * exiting to userspace will be logged for the next call. 1773 * 1774 */ 1775 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1776 { 1777 struct kvm_memslots *slots; 1778 struct kvm_memory_slot *memslot; 1779 int i, as_id, id; 1780 unsigned long n; 1781 unsigned long *dirty_bitmap; 1782 unsigned long *dirty_bitmap_buffer; 1783 bool flush; 1784 1785 /* Dirty ring tracking is exclusive to dirty log tracking */ 1786 if (kvm->dirty_ring_size) 1787 return -ENXIO; 1788 1789 as_id = log->slot >> 16; 1790 id = (u16)log->slot; 1791 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1792 return -EINVAL; 1793 1794 slots = __kvm_memslots(kvm, as_id); 1795 memslot = id_to_memslot(slots, id); 1796 if (!memslot || !memslot->dirty_bitmap) 1797 return -ENOENT; 1798 1799 dirty_bitmap = memslot->dirty_bitmap; 1800 1801 kvm_arch_sync_dirty_log(kvm, memslot); 1802 1803 n = kvm_dirty_bitmap_bytes(memslot); 1804 flush = false; 1805 if (kvm->manual_dirty_log_protect) { 1806 /* 1807 * Unlike kvm_get_dirty_log, we always return false in *flush, 1808 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1809 * is some code duplication between this function and 1810 * kvm_get_dirty_log, but hopefully all architecture 1811 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1812 * can be eliminated. 1813 */ 1814 dirty_bitmap_buffer = dirty_bitmap; 1815 } else { 1816 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1817 memset(dirty_bitmap_buffer, 0, n); 1818 1819 KVM_MMU_LOCK(kvm); 1820 for (i = 0; i < n / sizeof(long); i++) { 1821 unsigned long mask; 1822 gfn_t offset; 1823 1824 if (!dirty_bitmap[i]) 1825 continue; 1826 1827 flush = true; 1828 mask = xchg(&dirty_bitmap[i], 0); 1829 dirty_bitmap_buffer[i] = mask; 1830 1831 offset = i * BITS_PER_LONG; 1832 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1833 offset, mask); 1834 } 1835 KVM_MMU_UNLOCK(kvm); 1836 } 1837 1838 if (flush) 1839 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1840 1841 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1842 return -EFAULT; 1843 return 0; 1844 } 1845 1846 1847 /** 1848 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1849 * @kvm: kvm instance 1850 * @log: slot id and address to which we copy the log 1851 * 1852 * Steps 1-4 below provide general overview of dirty page logging. See 1853 * kvm_get_dirty_log_protect() function description for additional details. 1854 * 1855 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1856 * always flush the TLB (step 4) even if previous step failed and the dirty 1857 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1858 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1859 * writes will be marked dirty for next log read. 1860 * 1861 * 1. Take a snapshot of the bit and clear it if needed. 1862 * 2. Write protect the corresponding page. 1863 * 3. Copy the snapshot to the userspace. 1864 * 4. Flush TLB's if needed. 1865 */ 1866 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1867 struct kvm_dirty_log *log) 1868 { 1869 int r; 1870 1871 mutex_lock(&kvm->slots_lock); 1872 1873 r = kvm_get_dirty_log_protect(kvm, log); 1874 1875 mutex_unlock(&kvm->slots_lock); 1876 return r; 1877 } 1878 1879 /** 1880 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1881 * and reenable dirty page tracking for the corresponding pages. 1882 * @kvm: pointer to kvm instance 1883 * @log: slot id and address from which to fetch the bitmap of dirty pages 1884 */ 1885 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1886 struct kvm_clear_dirty_log *log) 1887 { 1888 struct kvm_memslots *slots; 1889 struct kvm_memory_slot *memslot; 1890 int as_id, id; 1891 gfn_t offset; 1892 unsigned long i, n; 1893 unsigned long *dirty_bitmap; 1894 unsigned long *dirty_bitmap_buffer; 1895 bool flush; 1896 1897 /* Dirty ring tracking is exclusive to dirty log tracking */ 1898 if (kvm->dirty_ring_size) 1899 return -ENXIO; 1900 1901 as_id = log->slot >> 16; 1902 id = (u16)log->slot; 1903 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1904 return -EINVAL; 1905 1906 if (log->first_page & 63) 1907 return -EINVAL; 1908 1909 slots = __kvm_memslots(kvm, as_id); 1910 memslot = id_to_memslot(slots, id); 1911 if (!memslot || !memslot->dirty_bitmap) 1912 return -ENOENT; 1913 1914 dirty_bitmap = memslot->dirty_bitmap; 1915 1916 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1917 1918 if (log->first_page > memslot->npages || 1919 log->num_pages > memslot->npages - log->first_page || 1920 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1921 return -EINVAL; 1922 1923 kvm_arch_sync_dirty_log(kvm, memslot); 1924 1925 flush = false; 1926 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1927 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1928 return -EFAULT; 1929 1930 KVM_MMU_LOCK(kvm); 1931 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1932 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1933 i++, offset += BITS_PER_LONG) { 1934 unsigned long mask = *dirty_bitmap_buffer++; 1935 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1936 if (!mask) 1937 continue; 1938 1939 mask &= atomic_long_fetch_andnot(mask, p); 1940 1941 /* 1942 * mask contains the bits that really have been cleared. This 1943 * never includes any bits beyond the length of the memslot (if 1944 * the length is not aligned to 64 pages), therefore it is not 1945 * a problem if userspace sets them in log->dirty_bitmap. 1946 */ 1947 if (mask) { 1948 flush = true; 1949 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1950 offset, mask); 1951 } 1952 } 1953 KVM_MMU_UNLOCK(kvm); 1954 1955 if (flush) 1956 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1957 1958 return 0; 1959 } 1960 1961 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 1962 struct kvm_clear_dirty_log *log) 1963 { 1964 int r; 1965 1966 mutex_lock(&kvm->slots_lock); 1967 1968 r = kvm_clear_dirty_log_protect(kvm, log); 1969 1970 mutex_unlock(&kvm->slots_lock); 1971 return r; 1972 } 1973 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1974 1975 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1976 { 1977 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1978 } 1979 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1980 1981 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1982 { 1983 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 1986 1987 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1988 { 1989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1990 1991 return kvm_is_visible_memslot(memslot); 1992 } 1993 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1994 1995 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1996 { 1997 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1998 1999 return kvm_is_visible_memslot(memslot); 2000 } 2001 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2002 2003 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2004 { 2005 struct vm_area_struct *vma; 2006 unsigned long addr, size; 2007 2008 size = PAGE_SIZE; 2009 2010 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2011 if (kvm_is_error_hva(addr)) 2012 return PAGE_SIZE; 2013 2014 mmap_read_lock(current->mm); 2015 vma = find_vma(current->mm, addr); 2016 if (!vma) 2017 goto out; 2018 2019 size = vma_kernel_pagesize(vma); 2020 2021 out: 2022 mmap_read_unlock(current->mm); 2023 2024 return size; 2025 } 2026 2027 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 2028 { 2029 return slot->flags & KVM_MEM_READONLY; 2030 } 2031 2032 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2033 gfn_t *nr_pages, bool write) 2034 { 2035 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2036 return KVM_HVA_ERR_BAD; 2037 2038 if (memslot_is_readonly(slot) && write) 2039 return KVM_HVA_ERR_RO_BAD; 2040 2041 if (nr_pages) 2042 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2043 2044 return __gfn_to_hva_memslot(slot, gfn); 2045 } 2046 2047 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2048 gfn_t *nr_pages) 2049 { 2050 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2051 } 2052 2053 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2054 gfn_t gfn) 2055 { 2056 return gfn_to_hva_many(slot, gfn, NULL); 2057 } 2058 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2059 2060 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2061 { 2062 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2063 } 2064 EXPORT_SYMBOL_GPL(gfn_to_hva); 2065 2066 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2067 { 2068 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2069 } 2070 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2071 2072 /* 2073 * Return the hva of a @gfn and the R/W attribute if possible. 2074 * 2075 * @slot: the kvm_memory_slot which contains @gfn 2076 * @gfn: the gfn to be translated 2077 * @writable: used to return the read/write attribute of the @slot if the hva 2078 * is valid and @writable is not NULL 2079 */ 2080 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2081 gfn_t gfn, bool *writable) 2082 { 2083 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2084 2085 if (!kvm_is_error_hva(hva) && writable) 2086 *writable = !memslot_is_readonly(slot); 2087 2088 return hva; 2089 } 2090 2091 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2092 { 2093 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2094 2095 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2096 } 2097 2098 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2099 { 2100 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2101 2102 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2103 } 2104 2105 static inline int check_user_page_hwpoison(unsigned long addr) 2106 { 2107 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2108 2109 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2110 return rc == -EHWPOISON; 2111 } 2112 2113 /* 2114 * The fast path to get the writable pfn which will be stored in @pfn, 2115 * true indicates success, otherwise false is returned. It's also the 2116 * only part that runs if we can in atomic context. 2117 */ 2118 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2119 bool *writable, kvm_pfn_t *pfn) 2120 { 2121 struct page *page[1]; 2122 2123 /* 2124 * Fast pin a writable pfn only if it is a write fault request 2125 * or the caller allows to map a writable pfn for a read fault 2126 * request. 2127 */ 2128 if (!(write_fault || writable)) 2129 return false; 2130 2131 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2132 *pfn = page_to_pfn(page[0]); 2133 2134 if (writable) 2135 *writable = true; 2136 return true; 2137 } 2138 2139 return false; 2140 } 2141 2142 /* 2143 * The slow path to get the pfn of the specified host virtual address, 2144 * 1 indicates success, -errno is returned if error is detected. 2145 */ 2146 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2147 bool *writable, kvm_pfn_t *pfn) 2148 { 2149 unsigned int flags = FOLL_HWPOISON; 2150 struct page *page; 2151 int npages = 0; 2152 2153 might_sleep(); 2154 2155 if (writable) 2156 *writable = write_fault; 2157 2158 if (write_fault) 2159 flags |= FOLL_WRITE; 2160 if (async) 2161 flags |= FOLL_NOWAIT; 2162 2163 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2164 if (npages != 1) 2165 return npages; 2166 2167 /* map read fault as writable if possible */ 2168 if (unlikely(!write_fault) && writable) { 2169 struct page *wpage; 2170 2171 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2172 *writable = true; 2173 put_page(page); 2174 page = wpage; 2175 } 2176 } 2177 *pfn = page_to_pfn(page); 2178 return npages; 2179 } 2180 2181 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2182 { 2183 if (unlikely(!(vma->vm_flags & VM_READ))) 2184 return false; 2185 2186 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2187 return false; 2188 2189 return true; 2190 } 2191 2192 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2193 { 2194 if (kvm_is_reserved_pfn(pfn)) 2195 return 1; 2196 return get_page_unless_zero(pfn_to_page(pfn)); 2197 } 2198 2199 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2200 unsigned long addr, bool *async, 2201 bool write_fault, bool *writable, 2202 kvm_pfn_t *p_pfn) 2203 { 2204 kvm_pfn_t pfn; 2205 pte_t *ptep; 2206 spinlock_t *ptl; 2207 int r; 2208 2209 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2210 if (r) { 2211 /* 2212 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2213 * not call the fault handler, so do it here. 2214 */ 2215 bool unlocked = false; 2216 r = fixup_user_fault(current->mm, addr, 2217 (write_fault ? FAULT_FLAG_WRITE : 0), 2218 &unlocked); 2219 if (unlocked) 2220 return -EAGAIN; 2221 if (r) 2222 return r; 2223 2224 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2225 if (r) 2226 return r; 2227 } 2228 2229 if (write_fault && !pte_write(*ptep)) { 2230 pfn = KVM_PFN_ERR_RO_FAULT; 2231 goto out; 2232 } 2233 2234 if (writable) 2235 *writable = pte_write(*ptep); 2236 pfn = pte_pfn(*ptep); 2237 2238 /* 2239 * Get a reference here because callers of *hva_to_pfn* and 2240 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2241 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2242 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 2243 * simply do nothing for reserved pfns. 2244 * 2245 * Whoever called remap_pfn_range is also going to call e.g. 2246 * unmap_mapping_range before the underlying pages are freed, 2247 * causing a call to our MMU notifier. 2248 * 2249 * Certain IO or PFNMAP mappings can be backed with valid 2250 * struct pages, but be allocated without refcounting e.g., 2251 * tail pages of non-compound higher order allocations, which 2252 * would then underflow the refcount when the caller does the 2253 * required put_page. Don't allow those pages here. 2254 */ 2255 if (!kvm_try_get_pfn(pfn)) 2256 r = -EFAULT; 2257 2258 out: 2259 pte_unmap_unlock(ptep, ptl); 2260 *p_pfn = pfn; 2261 2262 return r; 2263 } 2264 2265 /* 2266 * Pin guest page in memory and return its pfn. 2267 * @addr: host virtual address which maps memory to the guest 2268 * @atomic: whether this function can sleep 2269 * @async: whether this function need to wait IO complete if the 2270 * host page is not in the memory 2271 * @write_fault: whether we should get a writable host page 2272 * @writable: whether it allows to map a writable host page for !@write_fault 2273 * 2274 * The function will map a writable host page for these two cases: 2275 * 1): @write_fault = true 2276 * 2): @write_fault = false && @writable, @writable will tell the caller 2277 * whether the mapping is writable. 2278 */ 2279 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2280 bool write_fault, bool *writable) 2281 { 2282 struct vm_area_struct *vma; 2283 kvm_pfn_t pfn = 0; 2284 int npages, r; 2285 2286 /* we can do it either atomically or asynchronously, not both */ 2287 BUG_ON(atomic && async); 2288 2289 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2290 return pfn; 2291 2292 if (atomic) 2293 return KVM_PFN_ERR_FAULT; 2294 2295 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2296 if (npages == 1) 2297 return pfn; 2298 2299 mmap_read_lock(current->mm); 2300 if (npages == -EHWPOISON || 2301 (!async && check_user_page_hwpoison(addr))) { 2302 pfn = KVM_PFN_ERR_HWPOISON; 2303 goto exit; 2304 } 2305 2306 retry: 2307 vma = vma_lookup(current->mm, addr); 2308 2309 if (vma == NULL) 2310 pfn = KVM_PFN_ERR_FAULT; 2311 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2312 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 2313 if (r == -EAGAIN) 2314 goto retry; 2315 if (r < 0) 2316 pfn = KVM_PFN_ERR_FAULT; 2317 } else { 2318 if (async && vma_is_valid(vma, write_fault)) 2319 *async = true; 2320 pfn = KVM_PFN_ERR_FAULT; 2321 } 2322 exit: 2323 mmap_read_unlock(current->mm); 2324 return pfn; 2325 } 2326 2327 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 2328 bool atomic, bool *async, bool write_fault, 2329 bool *writable, hva_t *hva) 2330 { 2331 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2332 2333 if (hva) 2334 *hva = addr; 2335 2336 if (addr == KVM_HVA_ERR_RO_BAD) { 2337 if (writable) 2338 *writable = false; 2339 return KVM_PFN_ERR_RO_FAULT; 2340 } 2341 2342 if (kvm_is_error_hva(addr)) { 2343 if (writable) 2344 *writable = false; 2345 return KVM_PFN_NOSLOT; 2346 } 2347 2348 /* Do not map writable pfn in the readonly memslot. */ 2349 if (writable && memslot_is_readonly(slot)) { 2350 *writable = false; 2351 writable = NULL; 2352 } 2353 2354 return hva_to_pfn(addr, atomic, async, write_fault, 2355 writable); 2356 } 2357 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2358 2359 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2360 bool *writable) 2361 { 2362 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2363 write_fault, writable, NULL); 2364 } 2365 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2366 2367 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2368 { 2369 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2370 } 2371 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2372 2373 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2374 { 2375 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2376 } 2377 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2378 2379 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2380 { 2381 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2382 } 2383 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2384 2385 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2386 { 2387 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2388 } 2389 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2390 2391 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2392 { 2393 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2394 } 2395 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2396 2397 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2398 struct page **pages, int nr_pages) 2399 { 2400 unsigned long addr; 2401 gfn_t entry = 0; 2402 2403 addr = gfn_to_hva_many(slot, gfn, &entry); 2404 if (kvm_is_error_hva(addr)) 2405 return -1; 2406 2407 if (entry < nr_pages) 2408 return 0; 2409 2410 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2411 } 2412 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2413 2414 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2415 { 2416 if (is_error_noslot_pfn(pfn)) 2417 return KVM_ERR_PTR_BAD_PAGE; 2418 2419 if (kvm_is_reserved_pfn(pfn)) { 2420 WARN_ON(1); 2421 return KVM_ERR_PTR_BAD_PAGE; 2422 } 2423 2424 return pfn_to_page(pfn); 2425 } 2426 2427 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2428 { 2429 kvm_pfn_t pfn; 2430 2431 pfn = gfn_to_pfn(kvm, gfn); 2432 2433 return kvm_pfn_to_page(pfn); 2434 } 2435 EXPORT_SYMBOL_GPL(gfn_to_page); 2436 2437 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2438 { 2439 if (pfn == 0) 2440 return; 2441 2442 if (cache) 2443 cache->pfn = cache->gfn = 0; 2444 2445 if (dirty) 2446 kvm_release_pfn_dirty(pfn); 2447 else 2448 kvm_release_pfn_clean(pfn); 2449 } 2450 2451 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2452 struct gfn_to_pfn_cache *cache, u64 gen) 2453 { 2454 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2455 2456 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2457 cache->gfn = gfn; 2458 cache->dirty = false; 2459 cache->generation = gen; 2460 } 2461 2462 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2463 struct kvm_host_map *map, 2464 struct gfn_to_pfn_cache *cache, 2465 bool atomic) 2466 { 2467 kvm_pfn_t pfn; 2468 void *hva = NULL; 2469 struct page *page = KVM_UNMAPPED_PAGE; 2470 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2471 u64 gen = slots->generation; 2472 2473 if (!map) 2474 return -EINVAL; 2475 2476 if (cache) { 2477 if (!cache->pfn || cache->gfn != gfn || 2478 cache->generation != gen) { 2479 if (atomic) 2480 return -EAGAIN; 2481 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2482 } 2483 pfn = cache->pfn; 2484 } else { 2485 if (atomic) 2486 return -EAGAIN; 2487 pfn = gfn_to_pfn_memslot(slot, gfn); 2488 } 2489 if (is_error_noslot_pfn(pfn)) 2490 return -EINVAL; 2491 2492 if (pfn_valid(pfn)) { 2493 page = pfn_to_page(pfn); 2494 if (atomic) 2495 hva = kmap_atomic(page); 2496 else 2497 hva = kmap(page); 2498 #ifdef CONFIG_HAS_IOMEM 2499 } else if (!atomic) { 2500 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2501 } else { 2502 return -EINVAL; 2503 #endif 2504 } 2505 2506 if (!hva) 2507 return -EFAULT; 2508 2509 map->page = page; 2510 map->hva = hva; 2511 map->pfn = pfn; 2512 map->gfn = gfn; 2513 2514 return 0; 2515 } 2516 2517 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2518 struct gfn_to_pfn_cache *cache, bool atomic) 2519 { 2520 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2521 cache, atomic); 2522 } 2523 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2524 2525 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2526 { 2527 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2528 NULL, false); 2529 } 2530 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2531 2532 static void __kvm_unmap_gfn(struct kvm *kvm, 2533 struct kvm_memory_slot *memslot, 2534 struct kvm_host_map *map, 2535 struct gfn_to_pfn_cache *cache, 2536 bool dirty, bool atomic) 2537 { 2538 if (!map) 2539 return; 2540 2541 if (!map->hva) 2542 return; 2543 2544 if (map->page != KVM_UNMAPPED_PAGE) { 2545 if (atomic) 2546 kunmap_atomic(map->hva); 2547 else 2548 kunmap(map->page); 2549 } 2550 #ifdef CONFIG_HAS_IOMEM 2551 else if (!atomic) 2552 memunmap(map->hva); 2553 else 2554 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2555 #endif 2556 2557 if (dirty) 2558 mark_page_dirty_in_slot(kvm, memslot, map->gfn); 2559 2560 if (cache) 2561 cache->dirty |= dirty; 2562 else 2563 kvm_release_pfn(map->pfn, dirty, NULL); 2564 2565 map->hva = NULL; 2566 map->page = NULL; 2567 } 2568 2569 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2570 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2571 { 2572 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map, 2573 cache, dirty, atomic); 2574 return 0; 2575 } 2576 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2577 2578 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2579 { 2580 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), 2581 map, NULL, dirty, false); 2582 } 2583 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2584 2585 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2586 { 2587 kvm_pfn_t pfn; 2588 2589 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2590 2591 return kvm_pfn_to_page(pfn); 2592 } 2593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2594 2595 void kvm_release_page_clean(struct page *page) 2596 { 2597 WARN_ON(is_error_page(page)); 2598 2599 kvm_release_pfn_clean(page_to_pfn(page)); 2600 } 2601 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2602 2603 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2604 { 2605 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2606 put_page(pfn_to_page(pfn)); 2607 } 2608 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2609 2610 void kvm_release_page_dirty(struct page *page) 2611 { 2612 WARN_ON(is_error_page(page)); 2613 2614 kvm_release_pfn_dirty(page_to_pfn(page)); 2615 } 2616 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2617 2618 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2619 { 2620 kvm_set_pfn_dirty(pfn); 2621 kvm_release_pfn_clean(pfn); 2622 } 2623 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2624 2625 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2626 { 2627 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2628 SetPageDirty(pfn_to_page(pfn)); 2629 } 2630 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2631 2632 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2633 { 2634 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2635 mark_page_accessed(pfn_to_page(pfn)); 2636 } 2637 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2638 2639 void kvm_get_pfn(kvm_pfn_t pfn) 2640 { 2641 if (!kvm_is_reserved_pfn(pfn)) 2642 get_page(pfn_to_page(pfn)); 2643 } 2644 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2645 2646 static int next_segment(unsigned long len, int offset) 2647 { 2648 if (len > PAGE_SIZE - offset) 2649 return PAGE_SIZE - offset; 2650 else 2651 return len; 2652 } 2653 2654 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2655 void *data, int offset, int len) 2656 { 2657 int r; 2658 unsigned long addr; 2659 2660 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2661 if (kvm_is_error_hva(addr)) 2662 return -EFAULT; 2663 r = __copy_from_user(data, (void __user *)addr + offset, len); 2664 if (r) 2665 return -EFAULT; 2666 return 0; 2667 } 2668 2669 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2670 int len) 2671 { 2672 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2673 2674 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2675 } 2676 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2677 2678 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2679 int offset, int len) 2680 { 2681 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2682 2683 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2684 } 2685 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2686 2687 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2688 { 2689 gfn_t gfn = gpa >> PAGE_SHIFT; 2690 int seg; 2691 int offset = offset_in_page(gpa); 2692 int ret; 2693 2694 while ((seg = next_segment(len, offset)) != 0) { 2695 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2696 if (ret < 0) 2697 return ret; 2698 offset = 0; 2699 len -= seg; 2700 data += seg; 2701 ++gfn; 2702 } 2703 return 0; 2704 } 2705 EXPORT_SYMBOL_GPL(kvm_read_guest); 2706 2707 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2708 { 2709 gfn_t gfn = gpa >> PAGE_SHIFT; 2710 int seg; 2711 int offset = offset_in_page(gpa); 2712 int ret; 2713 2714 while ((seg = next_segment(len, offset)) != 0) { 2715 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2716 if (ret < 0) 2717 return ret; 2718 offset = 0; 2719 len -= seg; 2720 data += seg; 2721 ++gfn; 2722 } 2723 return 0; 2724 } 2725 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2726 2727 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2728 void *data, int offset, unsigned long len) 2729 { 2730 int r; 2731 unsigned long addr; 2732 2733 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2734 if (kvm_is_error_hva(addr)) 2735 return -EFAULT; 2736 pagefault_disable(); 2737 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2738 pagefault_enable(); 2739 if (r) 2740 return -EFAULT; 2741 return 0; 2742 } 2743 2744 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2745 void *data, unsigned long len) 2746 { 2747 gfn_t gfn = gpa >> PAGE_SHIFT; 2748 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2749 int offset = offset_in_page(gpa); 2750 2751 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2752 } 2753 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2754 2755 static int __kvm_write_guest_page(struct kvm *kvm, 2756 struct kvm_memory_slot *memslot, gfn_t gfn, 2757 const void *data, int offset, int len) 2758 { 2759 int r; 2760 unsigned long addr; 2761 2762 addr = gfn_to_hva_memslot(memslot, gfn); 2763 if (kvm_is_error_hva(addr)) 2764 return -EFAULT; 2765 r = __copy_to_user((void __user *)addr + offset, data, len); 2766 if (r) 2767 return -EFAULT; 2768 mark_page_dirty_in_slot(kvm, memslot, gfn); 2769 return 0; 2770 } 2771 2772 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2773 const void *data, int offset, int len) 2774 { 2775 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2776 2777 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2778 } 2779 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2780 2781 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2782 const void *data, int offset, int len) 2783 { 2784 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2785 2786 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 2787 } 2788 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2789 2790 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2791 unsigned long len) 2792 { 2793 gfn_t gfn = gpa >> PAGE_SHIFT; 2794 int seg; 2795 int offset = offset_in_page(gpa); 2796 int ret; 2797 2798 while ((seg = next_segment(len, offset)) != 0) { 2799 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2800 if (ret < 0) 2801 return ret; 2802 offset = 0; 2803 len -= seg; 2804 data += seg; 2805 ++gfn; 2806 } 2807 return 0; 2808 } 2809 EXPORT_SYMBOL_GPL(kvm_write_guest); 2810 2811 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2812 unsigned long len) 2813 { 2814 gfn_t gfn = gpa >> PAGE_SHIFT; 2815 int seg; 2816 int offset = offset_in_page(gpa); 2817 int ret; 2818 2819 while ((seg = next_segment(len, offset)) != 0) { 2820 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2821 if (ret < 0) 2822 return ret; 2823 offset = 0; 2824 len -= seg; 2825 data += seg; 2826 ++gfn; 2827 } 2828 return 0; 2829 } 2830 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2831 2832 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2833 struct gfn_to_hva_cache *ghc, 2834 gpa_t gpa, unsigned long len) 2835 { 2836 int offset = offset_in_page(gpa); 2837 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2838 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2839 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2840 gfn_t nr_pages_avail; 2841 2842 /* Update ghc->generation before performing any error checks. */ 2843 ghc->generation = slots->generation; 2844 2845 if (start_gfn > end_gfn) { 2846 ghc->hva = KVM_HVA_ERR_BAD; 2847 return -EINVAL; 2848 } 2849 2850 /* 2851 * If the requested region crosses two memslots, we still 2852 * verify that the entire region is valid here. 2853 */ 2854 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2855 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2856 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2857 &nr_pages_avail); 2858 if (kvm_is_error_hva(ghc->hva)) 2859 return -EFAULT; 2860 } 2861 2862 /* Use the slow path for cross page reads and writes. */ 2863 if (nr_pages_needed == 1) 2864 ghc->hva += offset; 2865 else 2866 ghc->memslot = NULL; 2867 2868 ghc->gpa = gpa; 2869 ghc->len = len; 2870 return 0; 2871 } 2872 2873 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2874 gpa_t gpa, unsigned long len) 2875 { 2876 struct kvm_memslots *slots = kvm_memslots(kvm); 2877 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2878 } 2879 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2880 2881 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2882 void *data, unsigned int offset, 2883 unsigned long len) 2884 { 2885 struct kvm_memslots *slots = kvm_memslots(kvm); 2886 int r; 2887 gpa_t gpa = ghc->gpa + offset; 2888 2889 BUG_ON(len + offset > ghc->len); 2890 2891 if (slots->generation != ghc->generation) { 2892 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2893 return -EFAULT; 2894 } 2895 2896 if (kvm_is_error_hva(ghc->hva)) 2897 return -EFAULT; 2898 2899 if (unlikely(!ghc->memslot)) 2900 return kvm_write_guest(kvm, gpa, data, len); 2901 2902 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2903 if (r) 2904 return -EFAULT; 2905 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 2906 2907 return 0; 2908 } 2909 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2910 2911 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2912 void *data, unsigned long len) 2913 { 2914 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2915 } 2916 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2917 2918 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2919 void *data, unsigned int offset, 2920 unsigned long len) 2921 { 2922 struct kvm_memslots *slots = kvm_memslots(kvm); 2923 int r; 2924 gpa_t gpa = ghc->gpa + offset; 2925 2926 BUG_ON(len + offset > ghc->len); 2927 2928 if (slots->generation != ghc->generation) { 2929 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2930 return -EFAULT; 2931 } 2932 2933 if (kvm_is_error_hva(ghc->hva)) 2934 return -EFAULT; 2935 2936 if (unlikely(!ghc->memslot)) 2937 return kvm_read_guest(kvm, gpa, data, len); 2938 2939 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2940 if (r) 2941 return -EFAULT; 2942 2943 return 0; 2944 } 2945 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2946 2947 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2948 void *data, unsigned long len) 2949 { 2950 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2951 } 2952 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2953 2954 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2955 { 2956 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2957 gfn_t gfn = gpa >> PAGE_SHIFT; 2958 int seg; 2959 int offset = offset_in_page(gpa); 2960 int ret; 2961 2962 while ((seg = next_segment(len, offset)) != 0) { 2963 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2964 if (ret < 0) 2965 return ret; 2966 offset = 0; 2967 len -= seg; 2968 ++gfn; 2969 } 2970 return 0; 2971 } 2972 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2973 2974 void mark_page_dirty_in_slot(struct kvm *kvm, 2975 struct kvm_memory_slot *memslot, 2976 gfn_t gfn) 2977 { 2978 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 2979 unsigned long rel_gfn = gfn - memslot->base_gfn; 2980 u32 slot = (memslot->as_id << 16) | memslot->id; 2981 2982 if (kvm->dirty_ring_size) 2983 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm), 2984 slot, rel_gfn); 2985 else 2986 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2987 } 2988 } 2989 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 2990 2991 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2992 { 2993 struct kvm_memory_slot *memslot; 2994 2995 memslot = gfn_to_memslot(kvm, gfn); 2996 mark_page_dirty_in_slot(kvm, memslot, gfn); 2997 } 2998 EXPORT_SYMBOL_GPL(mark_page_dirty); 2999 3000 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3001 { 3002 struct kvm_memory_slot *memslot; 3003 3004 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3005 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3006 } 3007 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3008 3009 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3010 { 3011 if (!vcpu->sigset_active) 3012 return; 3013 3014 /* 3015 * This does a lockless modification of ->real_blocked, which is fine 3016 * because, only current can change ->real_blocked and all readers of 3017 * ->real_blocked don't care as long ->real_blocked is always a subset 3018 * of ->blocked. 3019 */ 3020 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3021 } 3022 3023 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3024 { 3025 if (!vcpu->sigset_active) 3026 return; 3027 3028 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3029 sigemptyset(¤t->real_blocked); 3030 } 3031 3032 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3033 { 3034 unsigned int old, val, grow, grow_start; 3035 3036 old = val = vcpu->halt_poll_ns; 3037 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3038 grow = READ_ONCE(halt_poll_ns_grow); 3039 if (!grow) 3040 goto out; 3041 3042 val *= grow; 3043 if (val < grow_start) 3044 val = grow_start; 3045 3046 if (val > vcpu->kvm->max_halt_poll_ns) 3047 val = vcpu->kvm->max_halt_poll_ns; 3048 3049 vcpu->halt_poll_ns = val; 3050 out: 3051 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3052 } 3053 3054 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3055 { 3056 unsigned int old, val, shrink; 3057 3058 old = val = vcpu->halt_poll_ns; 3059 shrink = READ_ONCE(halt_poll_ns_shrink); 3060 if (shrink == 0) 3061 val = 0; 3062 else 3063 val /= shrink; 3064 3065 vcpu->halt_poll_ns = val; 3066 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3067 } 3068 3069 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3070 { 3071 int ret = -EINTR; 3072 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3073 3074 if (kvm_arch_vcpu_runnable(vcpu)) { 3075 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3076 goto out; 3077 } 3078 if (kvm_cpu_has_pending_timer(vcpu)) 3079 goto out; 3080 if (signal_pending(current)) 3081 goto out; 3082 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3083 goto out; 3084 3085 ret = 0; 3086 out: 3087 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3088 return ret; 3089 } 3090 3091 static inline void 3092 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 3093 { 3094 if (waited) 3095 vcpu->stat.generic.halt_poll_fail_ns += poll_ns; 3096 else 3097 vcpu->stat.generic.halt_poll_success_ns += poll_ns; 3098 } 3099 3100 /* 3101 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 3102 */ 3103 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 3104 { 3105 ktime_t start, cur, poll_end; 3106 bool waited = false; 3107 u64 block_ns; 3108 3109 kvm_arch_vcpu_blocking(vcpu); 3110 3111 start = cur = poll_end = ktime_get(); 3112 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 3113 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 3114 3115 ++vcpu->stat.generic.halt_attempted_poll; 3116 do { 3117 /* 3118 * This sets KVM_REQ_UNHALT if an interrupt 3119 * arrives. 3120 */ 3121 if (kvm_vcpu_check_block(vcpu) < 0) { 3122 ++vcpu->stat.generic.halt_successful_poll; 3123 if (!vcpu_valid_wakeup(vcpu)) 3124 ++vcpu->stat.generic.halt_poll_invalid; 3125 goto out; 3126 } 3127 cpu_relax(); 3128 poll_end = cur = ktime_get(); 3129 } while (kvm_vcpu_can_poll(cur, stop)); 3130 } 3131 3132 prepare_to_rcuwait(&vcpu->wait); 3133 for (;;) { 3134 set_current_state(TASK_INTERRUPTIBLE); 3135 3136 if (kvm_vcpu_check_block(vcpu) < 0) 3137 break; 3138 3139 waited = true; 3140 schedule(); 3141 } 3142 finish_rcuwait(&vcpu->wait); 3143 cur = ktime_get(); 3144 out: 3145 kvm_arch_vcpu_unblocking(vcpu); 3146 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3147 3148 update_halt_poll_stats( 3149 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 3150 3151 if (!kvm_arch_no_poll(vcpu)) { 3152 if (!vcpu_valid_wakeup(vcpu)) { 3153 shrink_halt_poll_ns(vcpu); 3154 } else if (vcpu->kvm->max_halt_poll_ns) { 3155 if (block_ns <= vcpu->halt_poll_ns) 3156 ; 3157 /* we had a long block, shrink polling */ 3158 else if (vcpu->halt_poll_ns && 3159 block_ns > vcpu->kvm->max_halt_poll_ns) 3160 shrink_halt_poll_ns(vcpu); 3161 /* we had a short halt and our poll time is too small */ 3162 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3163 block_ns < vcpu->kvm->max_halt_poll_ns) 3164 grow_halt_poll_ns(vcpu); 3165 } else { 3166 vcpu->halt_poll_ns = 0; 3167 } 3168 } 3169 3170 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 3171 kvm_arch_vcpu_block_finish(vcpu); 3172 } 3173 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 3174 3175 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3176 { 3177 struct rcuwait *waitp; 3178 3179 waitp = kvm_arch_vcpu_get_wait(vcpu); 3180 if (rcuwait_wake_up(waitp)) { 3181 WRITE_ONCE(vcpu->ready, true); 3182 ++vcpu->stat.generic.halt_wakeup; 3183 return true; 3184 } 3185 3186 return false; 3187 } 3188 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3189 3190 #ifndef CONFIG_S390 3191 /* 3192 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3193 */ 3194 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3195 { 3196 int me; 3197 int cpu = vcpu->cpu; 3198 3199 if (kvm_vcpu_wake_up(vcpu)) 3200 return; 3201 3202 me = get_cpu(); 3203 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3204 if (kvm_arch_vcpu_should_kick(vcpu)) 3205 smp_send_reschedule(cpu); 3206 put_cpu(); 3207 } 3208 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3209 #endif /* !CONFIG_S390 */ 3210 3211 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3212 { 3213 struct pid *pid; 3214 struct task_struct *task = NULL; 3215 int ret = 0; 3216 3217 rcu_read_lock(); 3218 pid = rcu_dereference(target->pid); 3219 if (pid) 3220 task = get_pid_task(pid, PIDTYPE_PID); 3221 rcu_read_unlock(); 3222 if (!task) 3223 return ret; 3224 ret = yield_to(task, 1); 3225 put_task_struct(task); 3226 3227 return ret; 3228 } 3229 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3230 3231 /* 3232 * Helper that checks whether a VCPU is eligible for directed yield. 3233 * Most eligible candidate to yield is decided by following heuristics: 3234 * 3235 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3236 * (preempted lock holder), indicated by @in_spin_loop. 3237 * Set at the beginning and cleared at the end of interception/PLE handler. 3238 * 3239 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3240 * chance last time (mostly it has become eligible now since we have probably 3241 * yielded to lockholder in last iteration. This is done by toggling 3242 * @dy_eligible each time a VCPU checked for eligibility.) 3243 * 3244 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3245 * to preempted lock-holder could result in wrong VCPU selection and CPU 3246 * burning. Giving priority for a potential lock-holder increases lock 3247 * progress. 3248 * 3249 * Since algorithm is based on heuristics, accessing another VCPU data without 3250 * locking does not harm. It may result in trying to yield to same VCPU, fail 3251 * and continue with next VCPU and so on. 3252 */ 3253 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3254 { 3255 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3256 bool eligible; 3257 3258 eligible = !vcpu->spin_loop.in_spin_loop || 3259 vcpu->spin_loop.dy_eligible; 3260 3261 if (vcpu->spin_loop.in_spin_loop) 3262 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3263 3264 return eligible; 3265 #else 3266 return true; 3267 #endif 3268 } 3269 3270 /* 3271 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3272 * a vcpu_load/vcpu_put pair. However, for most architectures 3273 * kvm_arch_vcpu_runnable does not require vcpu_load. 3274 */ 3275 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3276 { 3277 return kvm_arch_vcpu_runnable(vcpu); 3278 } 3279 3280 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3281 { 3282 if (kvm_arch_dy_runnable(vcpu)) 3283 return true; 3284 3285 #ifdef CONFIG_KVM_ASYNC_PF 3286 if (!list_empty_careful(&vcpu->async_pf.done)) 3287 return true; 3288 #endif 3289 3290 return false; 3291 } 3292 3293 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3294 { 3295 return false; 3296 } 3297 3298 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3299 { 3300 struct kvm *kvm = me->kvm; 3301 struct kvm_vcpu *vcpu; 3302 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3303 int yielded = 0; 3304 int try = 3; 3305 int pass; 3306 int i; 3307 3308 kvm_vcpu_set_in_spin_loop(me, true); 3309 /* 3310 * We boost the priority of a VCPU that is runnable but not 3311 * currently running, because it got preempted by something 3312 * else and called schedule in __vcpu_run. Hopefully that 3313 * VCPU is holding the lock that we need and will release it. 3314 * We approximate round-robin by starting at the last boosted VCPU. 3315 */ 3316 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3317 kvm_for_each_vcpu(i, vcpu, kvm) { 3318 if (!pass && i <= last_boosted_vcpu) { 3319 i = last_boosted_vcpu; 3320 continue; 3321 } else if (pass && i > last_boosted_vcpu) 3322 break; 3323 if (!READ_ONCE(vcpu->ready)) 3324 continue; 3325 if (vcpu == me) 3326 continue; 3327 if (rcuwait_active(&vcpu->wait) && 3328 !vcpu_dy_runnable(vcpu)) 3329 continue; 3330 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3331 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3332 !kvm_arch_vcpu_in_kernel(vcpu)) 3333 continue; 3334 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3335 continue; 3336 3337 yielded = kvm_vcpu_yield_to(vcpu); 3338 if (yielded > 0) { 3339 kvm->last_boosted_vcpu = i; 3340 break; 3341 } else if (yielded < 0) { 3342 try--; 3343 if (!try) 3344 break; 3345 } 3346 } 3347 } 3348 kvm_vcpu_set_in_spin_loop(me, false); 3349 3350 /* Ensure vcpu is not eligible during next spinloop */ 3351 kvm_vcpu_set_dy_eligible(me, false); 3352 } 3353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3354 3355 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3356 { 3357 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 3358 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3359 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3360 kvm->dirty_ring_size / PAGE_SIZE); 3361 #else 3362 return false; 3363 #endif 3364 } 3365 3366 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3367 { 3368 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3369 struct page *page; 3370 3371 if (vmf->pgoff == 0) 3372 page = virt_to_page(vcpu->run); 3373 #ifdef CONFIG_X86 3374 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3375 page = virt_to_page(vcpu->arch.pio_data); 3376 #endif 3377 #ifdef CONFIG_KVM_MMIO 3378 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3379 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3380 #endif 3381 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3382 page = kvm_dirty_ring_get_page( 3383 &vcpu->dirty_ring, 3384 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3385 else 3386 return kvm_arch_vcpu_fault(vcpu, vmf); 3387 get_page(page); 3388 vmf->page = page; 3389 return 0; 3390 } 3391 3392 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3393 .fault = kvm_vcpu_fault, 3394 }; 3395 3396 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3397 { 3398 struct kvm_vcpu *vcpu = file->private_data; 3399 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3400 3401 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3402 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3403 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3404 return -EINVAL; 3405 3406 vma->vm_ops = &kvm_vcpu_vm_ops; 3407 return 0; 3408 } 3409 3410 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3411 { 3412 struct kvm_vcpu *vcpu = filp->private_data; 3413 3414 kvm_put_kvm(vcpu->kvm); 3415 return 0; 3416 } 3417 3418 static struct file_operations kvm_vcpu_fops = { 3419 .release = kvm_vcpu_release, 3420 .unlocked_ioctl = kvm_vcpu_ioctl, 3421 .mmap = kvm_vcpu_mmap, 3422 .llseek = noop_llseek, 3423 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3424 }; 3425 3426 /* 3427 * Allocates an inode for the vcpu. 3428 */ 3429 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3430 { 3431 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3432 3433 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3434 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3435 } 3436 3437 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3438 { 3439 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3440 struct dentry *debugfs_dentry; 3441 char dir_name[ITOA_MAX_LEN * 2]; 3442 3443 if (!debugfs_initialized()) 3444 return; 3445 3446 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3447 debugfs_dentry = debugfs_create_dir(dir_name, 3448 vcpu->kvm->debugfs_dentry); 3449 3450 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3451 #endif 3452 } 3453 3454 /* 3455 * Creates some virtual cpus. Good luck creating more than one. 3456 */ 3457 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3458 { 3459 int r; 3460 struct kvm_vcpu *vcpu; 3461 struct page *page; 3462 3463 if (id >= KVM_MAX_VCPU_ID) 3464 return -EINVAL; 3465 3466 mutex_lock(&kvm->lock); 3467 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3468 mutex_unlock(&kvm->lock); 3469 return -EINVAL; 3470 } 3471 3472 kvm->created_vcpus++; 3473 mutex_unlock(&kvm->lock); 3474 3475 r = kvm_arch_vcpu_precreate(kvm, id); 3476 if (r) 3477 goto vcpu_decrement; 3478 3479 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3480 if (!vcpu) { 3481 r = -ENOMEM; 3482 goto vcpu_decrement; 3483 } 3484 3485 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3486 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3487 if (!page) { 3488 r = -ENOMEM; 3489 goto vcpu_free; 3490 } 3491 vcpu->run = page_address(page); 3492 3493 kvm_vcpu_init(vcpu, kvm, id); 3494 3495 r = kvm_arch_vcpu_create(vcpu); 3496 if (r) 3497 goto vcpu_free_run_page; 3498 3499 if (kvm->dirty_ring_size) { 3500 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3501 id, kvm->dirty_ring_size); 3502 if (r) 3503 goto arch_vcpu_destroy; 3504 } 3505 3506 mutex_lock(&kvm->lock); 3507 if (kvm_get_vcpu_by_id(kvm, id)) { 3508 r = -EEXIST; 3509 goto unlock_vcpu_destroy; 3510 } 3511 3512 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3513 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3514 3515 /* Fill the stats id string for the vcpu */ 3516 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3517 task_pid_nr(current), id); 3518 3519 /* Now it's all set up, let userspace reach it */ 3520 kvm_get_kvm(kvm); 3521 r = create_vcpu_fd(vcpu); 3522 if (r < 0) { 3523 kvm_put_kvm_no_destroy(kvm); 3524 goto unlock_vcpu_destroy; 3525 } 3526 3527 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3528 3529 /* 3530 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3531 * before kvm->online_vcpu's incremented value. 3532 */ 3533 smp_wmb(); 3534 atomic_inc(&kvm->online_vcpus); 3535 3536 mutex_unlock(&kvm->lock); 3537 kvm_arch_vcpu_postcreate(vcpu); 3538 kvm_create_vcpu_debugfs(vcpu); 3539 return r; 3540 3541 unlock_vcpu_destroy: 3542 mutex_unlock(&kvm->lock); 3543 kvm_dirty_ring_free(&vcpu->dirty_ring); 3544 arch_vcpu_destroy: 3545 kvm_arch_vcpu_destroy(vcpu); 3546 vcpu_free_run_page: 3547 free_page((unsigned long)vcpu->run); 3548 vcpu_free: 3549 kmem_cache_free(kvm_vcpu_cache, vcpu); 3550 vcpu_decrement: 3551 mutex_lock(&kvm->lock); 3552 kvm->created_vcpus--; 3553 mutex_unlock(&kvm->lock); 3554 return r; 3555 } 3556 3557 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3558 { 3559 if (sigset) { 3560 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3561 vcpu->sigset_active = 1; 3562 vcpu->sigset = *sigset; 3563 } else 3564 vcpu->sigset_active = 0; 3565 return 0; 3566 } 3567 3568 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3569 size_t size, loff_t *offset) 3570 { 3571 struct kvm_vcpu *vcpu = file->private_data; 3572 3573 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3574 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3575 sizeof(vcpu->stat), user_buffer, size, offset); 3576 } 3577 3578 static const struct file_operations kvm_vcpu_stats_fops = { 3579 .read = kvm_vcpu_stats_read, 3580 .llseek = noop_llseek, 3581 }; 3582 3583 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3584 { 3585 int fd; 3586 struct file *file; 3587 char name[15 + ITOA_MAX_LEN + 1]; 3588 3589 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3590 3591 fd = get_unused_fd_flags(O_CLOEXEC); 3592 if (fd < 0) 3593 return fd; 3594 3595 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3596 if (IS_ERR(file)) { 3597 put_unused_fd(fd); 3598 return PTR_ERR(file); 3599 } 3600 file->f_mode |= FMODE_PREAD; 3601 fd_install(fd, file); 3602 3603 return fd; 3604 } 3605 3606 static long kvm_vcpu_ioctl(struct file *filp, 3607 unsigned int ioctl, unsigned long arg) 3608 { 3609 struct kvm_vcpu *vcpu = filp->private_data; 3610 void __user *argp = (void __user *)arg; 3611 int r; 3612 struct kvm_fpu *fpu = NULL; 3613 struct kvm_sregs *kvm_sregs = NULL; 3614 3615 if (vcpu->kvm->mm != current->mm) 3616 return -EIO; 3617 3618 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3619 return -EINVAL; 3620 3621 /* 3622 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3623 * execution; mutex_lock() would break them. 3624 */ 3625 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3626 if (r != -ENOIOCTLCMD) 3627 return r; 3628 3629 if (mutex_lock_killable(&vcpu->mutex)) 3630 return -EINTR; 3631 switch (ioctl) { 3632 case KVM_RUN: { 3633 struct pid *oldpid; 3634 r = -EINVAL; 3635 if (arg) 3636 goto out; 3637 oldpid = rcu_access_pointer(vcpu->pid); 3638 if (unlikely(oldpid != task_pid(current))) { 3639 /* The thread running this VCPU changed. */ 3640 struct pid *newpid; 3641 3642 r = kvm_arch_vcpu_run_pid_change(vcpu); 3643 if (r) 3644 break; 3645 3646 newpid = get_task_pid(current, PIDTYPE_PID); 3647 rcu_assign_pointer(vcpu->pid, newpid); 3648 if (oldpid) 3649 synchronize_rcu(); 3650 put_pid(oldpid); 3651 } 3652 r = kvm_arch_vcpu_ioctl_run(vcpu); 3653 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3654 break; 3655 } 3656 case KVM_GET_REGS: { 3657 struct kvm_regs *kvm_regs; 3658 3659 r = -ENOMEM; 3660 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3661 if (!kvm_regs) 3662 goto out; 3663 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3664 if (r) 3665 goto out_free1; 3666 r = -EFAULT; 3667 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3668 goto out_free1; 3669 r = 0; 3670 out_free1: 3671 kfree(kvm_regs); 3672 break; 3673 } 3674 case KVM_SET_REGS: { 3675 struct kvm_regs *kvm_regs; 3676 3677 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3678 if (IS_ERR(kvm_regs)) { 3679 r = PTR_ERR(kvm_regs); 3680 goto out; 3681 } 3682 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3683 kfree(kvm_regs); 3684 break; 3685 } 3686 case KVM_GET_SREGS: { 3687 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3688 GFP_KERNEL_ACCOUNT); 3689 r = -ENOMEM; 3690 if (!kvm_sregs) 3691 goto out; 3692 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3693 if (r) 3694 goto out; 3695 r = -EFAULT; 3696 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3697 goto out; 3698 r = 0; 3699 break; 3700 } 3701 case KVM_SET_SREGS: { 3702 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3703 if (IS_ERR(kvm_sregs)) { 3704 r = PTR_ERR(kvm_sregs); 3705 kvm_sregs = NULL; 3706 goto out; 3707 } 3708 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3709 break; 3710 } 3711 case KVM_GET_MP_STATE: { 3712 struct kvm_mp_state mp_state; 3713 3714 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3715 if (r) 3716 goto out; 3717 r = -EFAULT; 3718 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3719 goto out; 3720 r = 0; 3721 break; 3722 } 3723 case KVM_SET_MP_STATE: { 3724 struct kvm_mp_state mp_state; 3725 3726 r = -EFAULT; 3727 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3728 goto out; 3729 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3730 break; 3731 } 3732 case KVM_TRANSLATE: { 3733 struct kvm_translation tr; 3734 3735 r = -EFAULT; 3736 if (copy_from_user(&tr, argp, sizeof(tr))) 3737 goto out; 3738 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3739 if (r) 3740 goto out; 3741 r = -EFAULT; 3742 if (copy_to_user(argp, &tr, sizeof(tr))) 3743 goto out; 3744 r = 0; 3745 break; 3746 } 3747 case KVM_SET_GUEST_DEBUG: { 3748 struct kvm_guest_debug dbg; 3749 3750 r = -EFAULT; 3751 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3752 goto out; 3753 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3754 break; 3755 } 3756 case KVM_SET_SIGNAL_MASK: { 3757 struct kvm_signal_mask __user *sigmask_arg = argp; 3758 struct kvm_signal_mask kvm_sigmask; 3759 sigset_t sigset, *p; 3760 3761 p = NULL; 3762 if (argp) { 3763 r = -EFAULT; 3764 if (copy_from_user(&kvm_sigmask, argp, 3765 sizeof(kvm_sigmask))) 3766 goto out; 3767 r = -EINVAL; 3768 if (kvm_sigmask.len != sizeof(sigset)) 3769 goto out; 3770 r = -EFAULT; 3771 if (copy_from_user(&sigset, sigmask_arg->sigset, 3772 sizeof(sigset))) 3773 goto out; 3774 p = &sigset; 3775 } 3776 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3777 break; 3778 } 3779 case KVM_GET_FPU: { 3780 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3781 r = -ENOMEM; 3782 if (!fpu) 3783 goto out; 3784 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3785 if (r) 3786 goto out; 3787 r = -EFAULT; 3788 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3789 goto out; 3790 r = 0; 3791 break; 3792 } 3793 case KVM_SET_FPU: { 3794 fpu = memdup_user(argp, sizeof(*fpu)); 3795 if (IS_ERR(fpu)) { 3796 r = PTR_ERR(fpu); 3797 fpu = NULL; 3798 goto out; 3799 } 3800 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3801 break; 3802 } 3803 case KVM_GET_STATS_FD: { 3804 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 3805 break; 3806 } 3807 default: 3808 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3809 } 3810 out: 3811 mutex_unlock(&vcpu->mutex); 3812 kfree(fpu); 3813 kfree(kvm_sregs); 3814 return r; 3815 } 3816 3817 #ifdef CONFIG_KVM_COMPAT 3818 static long kvm_vcpu_compat_ioctl(struct file *filp, 3819 unsigned int ioctl, unsigned long arg) 3820 { 3821 struct kvm_vcpu *vcpu = filp->private_data; 3822 void __user *argp = compat_ptr(arg); 3823 int r; 3824 3825 if (vcpu->kvm->mm != current->mm) 3826 return -EIO; 3827 3828 switch (ioctl) { 3829 case KVM_SET_SIGNAL_MASK: { 3830 struct kvm_signal_mask __user *sigmask_arg = argp; 3831 struct kvm_signal_mask kvm_sigmask; 3832 sigset_t sigset; 3833 3834 if (argp) { 3835 r = -EFAULT; 3836 if (copy_from_user(&kvm_sigmask, argp, 3837 sizeof(kvm_sigmask))) 3838 goto out; 3839 r = -EINVAL; 3840 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3841 goto out; 3842 r = -EFAULT; 3843 if (get_compat_sigset(&sigset, 3844 (compat_sigset_t __user *)sigmask_arg->sigset)) 3845 goto out; 3846 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3847 } else 3848 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3849 break; 3850 } 3851 default: 3852 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3853 } 3854 3855 out: 3856 return r; 3857 } 3858 #endif 3859 3860 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3861 { 3862 struct kvm_device *dev = filp->private_data; 3863 3864 if (dev->ops->mmap) 3865 return dev->ops->mmap(dev, vma); 3866 3867 return -ENODEV; 3868 } 3869 3870 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3871 int (*accessor)(struct kvm_device *dev, 3872 struct kvm_device_attr *attr), 3873 unsigned long arg) 3874 { 3875 struct kvm_device_attr attr; 3876 3877 if (!accessor) 3878 return -EPERM; 3879 3880 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3881 return -EFAULT; 3882 3883 return accessor(dev, &attr); 3884 } 3885 3886 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3887 unsigned long arg) 3888 { 3889 struct kvm_device *dev = filp->private_data; 3890 3891 if (dev->kvm->mm != current->mm) 3892 return -EIO; 3893 3894 switch (ioctl) { 3895 case KVM_SET_DEVICE_ATTR: 3896 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3897 case KVM_GET_DEVICE_ATTR: 3898 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3899 case KVM_HAS_DEVICE_ATTR: 3900 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3901 default: 3902 if (dev->ops->ioctl) 3903 return dev->ops->ioctl(dev, ioctl, arg); 3904 3905 return -ENOTTY; 3906 } 3907 } 3908 3909 static int kvm_device_release(struct inode *inode, struct file *filp) 3910 { 3911 struct kvm_device *dev = filp->private_data; 3912 struct kvm *kvm = dev->kvm; 3913 3914 if (dev->ops->release) { 3915 mutex_lock(&kvm->lock); 3916 list_del(&dev->vm_node); 3917 dev->ops->release(dev); 3918 mutex_unlock(&kvm->lock); 3919 } 3920 3921 kvm_put_kvm(kvm); 3922 return 0; 3923 } 3924 3925 static const struct file_operations kvm_device_fops = { 3926 .unlocked_ioctl = kvm_device_ioctl, 3927 .release = kvm_device_release, 3928 KVM_COMPAT(kvm_device_ioctl), 3929 .mmap = kvm_device_mmap, 3930 }; 3931 3932 struct kvm_device *kvm_device_from_filp(struct file *filp) 3933 { 3934 if (filp->f_op != &kvm_device_fops) 3935 return NULL; 3936 3937 return filp->private_data; 3938 } 3939 3940 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3941 #ifdef CONFIG_KVM_MPIC 3942 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3943 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3944 #endif 3945 }; 3946 3947 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3948 { 3949 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3950 return -ENOSPC; 3951 3952 if (kvm_device_ops_table[type] != NULL) 3953 return -EEXIST; 3954 3955 kvm_device_ops_table[type] = ops; 3956 return 0; 3957 } 3958 3959 void kvm_unregister_device_ops(u32 type) 3960 { 3961 if (kvm_device_ops_table[type] != NULL) 3962 kvm_device_ops_table[type] = NULL; 3963 } 3964 3965 static int kvm_ioctl_create_device(struct kvm *kvm, 3966 struct kvm_create_device *cd) 3967 { 3968 const struct kvm_device_ops *ops = NULL; 3969 struct kvm_device *dev; 3970 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3971 int type; 3972 int ret; 3973 3974 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3975 return -ENODEV; 3976 3977 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3978 ops = kvm_device_ops_table[type]; 3979 if (ops == NULL) 3980 return -ENODEV; 3981 3982 if (test) 3983 return 0; 3984 3985 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3986 if (!dev) 3987 return -ENOMEM; 3988 3989 dev->ops = ops; 3990 dev->kvm = kvm; 3991 3992 mutex_lock(&kvm->lock); 3993 ret = ops->create(dev, type); 3994 if (ret < 0) { 3995 mutex_unlock(&kvm->lock); 3996 kfree(dev); 3997 return ret; 3998 } 3999 list_add(&dev->vm_node, &kvm->devices); 4000 mutex_unlock(&kvm->lock); 4001 4002 if (ops->init) 4003 ops->init(dev); 4004 4005 kvm_get_kvm(kvm); 4006 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4007 if (ret < 0) { 4008 kvm_put_kvm_no_destroy(kvm); 4009 mutex_lock(&kvm->lock); 4010 list_del(&dev->vm_node); 4011 mutex_unlock(&kvm->lock); 4012 ops->destroy(dev); 4013 return ret; 4014 } 4015 4016 cd->fd = ret; 4017 return 0; 4018 } 4019 4020 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4021 { 4022 switch (arg) { 4023 case KVM_CAP_USER_MEMORY: 4024 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4025 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4026 case KVM_CAP_INTERNAL_ERROR_DATA: 4027 #ifdef CONFIG_HAVE_KVM_MSI 4028 case KVM_CAP_SIGNAL_MSI: 4029 #endif 4030 #ifdef CONFIG_HAVE_KVM_IRQFD 4031 case KVM_CAP_IRQFD: 4032 case KVM_CAP_IRQFD_RESAMPLE: 4033 #endif 4034 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4035 case KVM_CAP_CHECK_EXTENSION_VM: 4036 case KVM_CAP_ENABLE_CAP_VM: 4037 case KVM_CAP_HALT_POLL: 4038 return 1; 4039 #ifdef CONFIG_KVM_MMIO 4040 case KVM_CAP_COALESCED_MMIO: 4041 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4042 case KVM_CAP_COALESCED_PIO: 4043 return 1; 4044 #endif 4045 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4046 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4047 return KVM_DIRTY_LOG_MANUAL_CAPS; 4048 #endif 4049 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4050 case KVM_CAP_IRQ_ROUTING: 4051 return KVM_MAX_IRQ_ROUTES; 4052 #endif 4053 #if KVM_ADDRESS_SPACE_NUM > 1 4054 case KVM_CAP_MULTI_ADDRESS_SPACE: 4055 return KVM_ADDRESS_SPACE_NUM; 4056 #endif 4057 case KVM_CAP_NR_MEMSLOTS: 4058 return KVM_USER_MEM_SLOTS; 4059 case KVM_CAP_DIRTY_LOG_RING: 4060 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0 4061 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4062 #else 4063 return 0; 4064 #endif 4065 case KVM_CAP_BINARY_STATS_FD: 4066 return 1; 4067 default: 4068 break; 4069 } 4070 return kvm_vm_ioctl_check_extension(kvm, arg); 4071 } 4072 4073 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4074 { 4075 int r; 4076 4077 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4078 return -EINVAL; 4079 4080 /* the size should be power of 2 */ 4081 if (!size || (size & (size - 1))) 4082 return -EINVAL; 4083 4084 /* Should be bigger to keep the reserved entries, or a page */ 4085 if (size < kvm_dirty_ring_get_rsvd_entries() * 4086 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4087 return -EINVAL; 4088 4089 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4090 sizeof(struct kvm_dirty_gfn)) 4091 return -E2BIG; 4092 4093 /* We only allow it to set once */ 4094 if (kvm->dirty_ring_size) 4095 return -EINVAL; 4096 4097 mutex_lock(&kvm->lock); 4098 4099 if (kvm->created_vcpus) { 4100 /* We don't allow to change this value after vcpu created */ 4101 r = -EINVAL; 4102 } else { 4103 kvm->dirty_ring_size = size; 4104 r = 0; 4105 } 4106 4107 mutex_unlock(&kvm->lock); 4108 return r; 4109 } 4110 4111 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4112 { 4113 int i; 4114 struct kvm_vcpu *vcpu; 4115 int cleared = 0; 4116 4117 if (!kvm->dirty_ring_size) 4118 return -EINVAL; 4119 4120 mutex_lock(&kvm->slots_lock); 4121 4122 kvm_for_each_vcpu(i, vcpu, kvm) 4123 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4124 4125 mutex_unlock(&kvm->slots_lock); 4126 4127 if (cleared) 4128 kvm_flush_remote_tlbs(kvm); 4129 4130 return cleared; 4131 } 4132 4133 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4134 struct kvm_enable_cap *cap) 4135 { 4136 return -EINVAL; 4137 } 4138 4139 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4140 struct kvm_enable_cap *cap) 4141 { 4142 switch (cap->cap) { 4143 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4144 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4145 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4146 4147 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4148 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4149 4150 if (cap->flags || (cap->args[0] & ~allowed_options)) 4151 return -EINVAL; 4152 kvm->manual_dirty_log_protect = cap->args[0]; 4153 return 0; 4154 } 4155 #endif 4156 case KVM_CAP_HALT_POLL: { 4157 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4158 return -EINVAL; 4159 4160 kvm->max_halt_poll_ns = cap->args[0]; 4161 return 0; 4162 } 4163 case KVM_CAP_DIRTY_LOG_RING: 4164 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4165 default: 4166 return kvm_vm_ioctl_enable_cap(kvm, cap); 4167 } 4168 } 4169 4170 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4171 size_t size, loff_t *offset) 4172 { 4173 struct kvm *kvm = file->private_data; 4174 4175 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4176 &kvm_vm_stats_desc[0], &kvm->stat, 4177 sizeof(kvm->stat), user_buffer, size, offset); 4178 } 4179 4180 static const struct file_operations kvm_vm_stats_fops = { 4181 .read = kvm_vm_stats_read, 4182 .llseek = noop_llseek, 4183 }; 4184 4185 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4186 { 4187 int fd; 4188 struct file *file; 4189 4190 fd = get_unused_fd_flags(O_CLOEXEC); 4191 if (fd < 0) 4192 return fd; 4193 4194 file = anon_inode_getfile("kvm-vm-stats", 4195 &kvm_vm_stats_fops, kvm, O_RDONLY); 4196 if (IS_ERR(file)) { 4197 put_unused_fd(fd); 4198 return PTR_ERR(file); 4199 } 4200 file->f_mode |= FMODE_PREAD; 4201 fd_install(fd, file); 4202 4203 return fd; 4204 } 4205 4206 static long kvm_vm_ioctl(struct file *filp, 4207 unsigned int ioctl, unsigned long arg) 4208 { 4209 struct kvm *kvm = filp->private_data; 4210 void __user *argp = (void __user *)arg; 4211 int r; 4212 4213 if (kvm->mm != current->mm) 4214 return -EIO; 4215 switch (ioctl) { 4216 case KVM_CREATE_VCPU: 4217 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4218 break; 4219 case KVM_ENABLE_CAP: { 4220 struct kvm_enable_cap cap; 4221 4222 r = -EFAULT; 4223 if (copy_from_user(&cap, argp, sizeof(cap))) 4224 goto out; 4225 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4226 break; 4227 } 4228 case KVM_SET_USER_MEMORY_REGION: { 4229 struct kvm_userspace_memory_region kvm_userspace_mem; 4230 4231 r = -EFAULT; 4232 if (copy_from_user(&kvm_userspace_mem, argp, 4233 sizeof(kvm_userspace_mem))) 4234 goto out; 4235 4236 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4237 break; 4238 } 4239 case KVM_GET_DIRTY_LOG: { 4240 struct kvm_dirty_log log; 4241 4242 r = -EFAULT; 4243 if (copy_from_user(&log, argp, sizeof(log))) 4244 goto out; 4245 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4246 break; 4247 } 4248 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4249 case KVM_CLEAR_DIRTY_LOG: { 4250 struct kvm_clear_dirty_log log; 4251 4252 r = -EFAULT; 4253 if (copy_from_user(&log, argp, sizeof(log))) 4254 goto out; 4255 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4256 break; 4257 } 4258 #endif 4259 #ifdef CONFIG_KVM_MMIO 4260 case KVM_REGISTER_COALESCED_MMIO: { 4261 struct kvm_coalesced_mmio_zone zone; 4262 4263 r = -EFAULT; 4264 if (copy_from_user(&zone, argp, sizeof(zone))) 4265 goto out; 4266 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4267 break; 4268 } 4269 case KVM_UNREGISTER_COALESCED_MMIO: { 4270 struct kvm_coalesced_mmio_zone zone; 4271 4272 r = -EFAULT; 4273 if (copy_from_user(&zone, argp, sizeof(zone))) 4274 goto out; 4275 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4276 break; 4277 } 4278 #endif 4279 case KVM_IRQFD: { 4280 struct kvm_irqfd data; 4281 4282 r = -EFAULT; 4283 if (copy_from_user(&data, argp, sizeof(data))) 4284 goto out; 4285 r = kvm_irqfd(kvm, &data); 4286 break; 4287 } 4288 case KVM_IOEVENTFD: { 4289 struct kvm_ioeventfd data; 4290 4291 r = -EFAULT; 4292 if (copy_from_user(&data, argp, sizeof(data))) 4293 goto out; 4294 r = kvm_ioeventfd(kvm, &data); 4295 break; 4296 } 4297 #ifdef CONFIG_HAVE_KVM_MSI 4298 case KVM_SIGNAL_MSI: { 4299 struct kvm_msi msi; 4300 4301 r = -EFAULT; 4302 if (copy_from_user(&msi, argp, sizeof(msi))) 4303 goto out; 4304 r = kvm_send_userspace_msi(kvm, &msi); 4305 break; 4306 } 4307 #endif 4308 #ifdef __KVM_HAVE_IRQ_LINE 4309 case KVM_IRQ_LINE_STATUS: 4310 case KVM_IRQ_LINE: { 4311 struct kvm_irq_level irq_event; 4312 4313 r = -EFAULT; 4314 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4315 goto out; 4316 4317 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4318 ioctl == KVM_IRQ_LINE_STATUS); 4319 if (r) 4320 goto out; 4321 4322 r = -EFAULT; 4323 if (ioctl == KVM_IRQ_LINE_STATUS) { 4324 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4325 goto out; 4326 } 4327 4328 r = 0; 4329 break; 4330 } 4331 #endif 4332 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4333 case KVM_SET_GSI_ROUTING: { 4334 struct kvm_irq_routing routing; 4335 struct kvm_irq_routing __user *urouting; 4336 struct kvm_irq_routing_entry *entries = NULL; 4337 4338 r = -EFAULT; 4339 if (copy_from_user(&routing, argp, sizeof(routing))) 4340 goto out; 4341 r = -EINVAL; 4342 if (!kvm_arch_can_set_irq_routing(kvm)) 4343 goto out; 4344 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4345 goto out; 4346 if (routing.flags) 4347 goto out; 4348 if (routing.nr) { 4349 urouting = argp; 4350 entries = vmemdup_user(urouting->entries, 4351 array_size(sizeof(*entries), 4352 routing.nr)); 4353 if (IS_ERR(entries)) { 4354 r = PTR_ERR(entries); 4355 goto out; 4356 } 4357 } 4358 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4359 routing.flags); 4360 kvfree(entries); 4361 break; 4362 } 4363 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4364 case KVM_CREATE_DEVICE: { 4365 struct kvm_create_device cd; 4366 4367 r = -EFAULT; 4368 if (copy_from_user(&cd, argp, sizeof(cd))) 4369 goto out; 4370 4371 r = kvm_ioctl_create_device(kvm, &cd); 4372 if (r) 4373 goto out; 4374 4375 r = -EFAULT; 4376 if (copy_to_user(argp, &cd, sizeof(cd))) 4377 goto out; 4378 4379 r = 0; 4380 break; 4381 } 4382 case KVM_CHECK_EXTENSION: 4383 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4384 break; 4385 case KVM_RESET_DIRTY_RINGS: 4386 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4387 break; 4388 case KVM_GET_STATS_FD: 4389 r = kvm_vm_ioctl_get_stats_fd(kvm); 4390 break; 4391 default: 4392 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4393 } 4394 out: 4395 return r; 4396 } 4397 4398 #ifdef CONFIG_KVM_COMPAT 4399 struct compat_kvm_dirty_log { 4400 __u32 slot; 4401 __u32 padding1; 4402 union { 4403 compat_uptr_t dirty_bitmap; /* one bit per page */ 4404 __u64 padding2; 4405 }; 4406 }; 4407 4408 struct compat_kvm_clear_dirty_log { 4409 __u32 slot; 4410 __u32 num_pages; 4411 __u64 first_page; 4412 union { 4413 compat_uptr_t dirty_bitmap; /* one bit per page */ 4414 __u64 padding2; 4415 }; 4416 }; 4417 4418 static long kvm_vm_compat_ioctl(struct file *filp, 4419 unsigned int ioctl, unsigned long arg) 4420 { 4421 struct kvm *kvm = filp->private_data; 4422 int r; 4423 4424 if (kvm->mm != current->mm) 4425 return -EIO; 4426 switch (ioctl) { 4427 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4428 case KVM_CLEAR_DIRTY_LOG: { 4429 struct compat_kvm_clear_dirty_log compat_log; 4430 struct kvm_clear_dirty_log log; 4431 4432 if (copy_from_user(&compat_log, (void __user *)arg, 4433 sizeof(compat_log))) 4434 return -EFAULT; 4435 log.slot = compat_log.slot; 4436 log.num_pages = compat_log.num_pages; 4437 log.first_page = compat_log.first_page; 4438 log.padding2 = compat_log.padding2; 4439 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4440 4441 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4442 break; 4443 } 4444 #endif 4445 case KVM_GET_DIRTY_LOG: { 4446 struct compat_kvm_dirty_log compat_log; 4447 struct kvm_dirty_log log; 4448 4449 if (copy_from_user(&compat_log, (void __user *)arg, 4450 sizeof(compat_log))) 4451 return -EFAULT; 4452 log.slot = compat_log.slot; 4453 log.padding1 = compat_log.padding1; 4454 log.padding2 = compat_log.padding2; 4455 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4456 4457 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4458 break; 4459 } 4460 default: 4461 r = kvm_vm_ioctl(filp, ioctl, arg); 4462 } 4463 return r; 4464 } 4465 #endif 4466 4467 static struct file_operations kvm_vm_fops = { 4468 .release = kvm_vm_release, 4469 .unlocked_ioctl = kvm_vm_ioctl, 4470 .llseek = noop_llseek, 4471 KVM_COMPAT(kvm_vm_compat_ioctl), 4472 }; 4473 4474 bool file_is_kvm(struct file *file) 4475 { 4476 return file && file->f_op == &kvm_vm_fops; 4477 } 4478 EXPORT_SYMBOL_GPL(file_is_kvm); 4479 4480 static int kvm_dev_ioctl_create_vm(unsigned long type) 4481 { 4482 int r; 4483 struct kvm *kvm; 4484 struct file *file; 4485 4486 kvm = kvm_create_vm(type); 4487 if (IS_ERR(kvm)) 4488 return PTR_ERR(kvm); 4489 #ifdef CONFIG_KVM_MMIO 4490 r = kvm_coalesced_mmio_init(kvm); 4491 if (r < 0) 4492 goto put_kvm; 4493 #endif 4494 r = get_unused_fd_flags(O_CLOEXEC); 4495 if (r < 0) 4496 goto put_kvm; 4497 4498 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4499 "kvm-%d", task_pid_nr(current)); 4500 4501 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4502 if (IS_ERR(file)) { 4503 put_unused_fd(r); 4504 r = PTR_ERR(file); 4505 goto put_kvm; 4506 } 4507 4508 /* 4509 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4510 * already set, with ->release() being kvm_vm_release(). In error 4511 * cases it will be called by the final fput(file) and will take 4512 * care of doing kvm_put_kvm(kvm). 4513 */ 4514 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4515 put_unused_fd(r); 4516 fput(file); 4517 return -ENOMEM; 4518 } 4519 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4520 4521 fd_install(r, file); 4522 return r; 4523 4524 put_kvm: 4525 kvm_put_kvm(kvm); 4526 return r; 4527 } 4528 4529 static long kvm_dev_ioctl(struct file *filp, 4530 unsigned int ioctl, unsigned long arg) 4531 { 4532 long r = -EINVAL; 4533 4534 switch (ioctl) { 4535 case KVM_GET_API_VERSION: 4536 if (arg) 4537 goto out; 4538 r = KVM_API_VERSION; 4539 break; 4540 case KVM_CREATE_VM: 4541 r = kvm_dev_ioctl_create_vm(arg); 4542 break; 4543 case KVM_CHECK_EXTENSION: 4544 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4545 break; 4546 case KVM_GET_VCPU_MMAP_SIZE: 4547 if (arg) 4548 goto out; 4549 r = PAGE_SIZE; /* struct kvm_run */ 4550 #ifdef CONFIG_X86 4551 r += PAGE_SIZE; /* pio data page */ 4552 #endif 4553 #ifdef CONFIG_KVM_MMIO 4554 r += PAGE_SIZE; /* coalesced mmio ring page */ 4555 #endif 4556 break; 4557 case KVM_TRACE_ENABLE: 4558 case KVM_TRACE_PAUSE: 4559 case KVM_TRACE_DISABLE: 4560 r = -EOPNOTSUPP; 4561 break; 4562 default: 4563 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4564 } 4565 out: 4566 return r; 4567 } 4568 4569 static struct file_operations kvm_chardev_ops = { 4570 .unlocked_ioctl = kvm_dev_ioctl, 4571 .llseek = noop_llseek, 4572 KVM_COMPAT(kvm_dev_ioctl), 4573 }; 4574 4575 static struct miscdevice kvm_dev = { 4576 KVM_MINOR, 4577 "kvm", 4578 &kvm_chardev_ops, 4579 }; 4580 4581 static void hardware_enable_nolock(void *junk) 4582 { 4583 int cpu = raw_smp_processor_id(); 4584 int r; 4585 4586 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4587 return; 4588 4589 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4590 4591 r = kvm_arch_hardware_enable(); 4592 4593 if (r) { 4594 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4595 atomic_inc(&hardware_enable_failed); 4596 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4597 } 4598 } 4599 4600 static int kvm_starting_cpu(unsigned int cpu) 4601 { 4602 raw_spin_lock(&kvm_count_lock); 4603 if (kvm_usage_count) 4604 hardware_enable_nolock(NULL); 4605 raw_spin_unlock(&kvm_count_lock); 4606 return 0; 4607 } 4608 4609 static void hardware_disable_nolock(void *junk) 4610 { 4611 int cpu = raw_smp_processor_id(); 4612 4613 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4614 return; 4615 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4616 kvm_arch_hardware_disable(); 4617 } 4618 4619 static int kvm_dying_cpu(unsigned int cpu) 4620 { 4621 raw_spin_lock(&kvm_count_lock); 4622 if (kvm_usage_count) 4623 hardware_disable_nolock(NULL); 4624 raw_spin_unlock(&kvm_count_lock); 4625 return 0; 4626 } 4627 4628 static void hardware_disable_all_nolock(void) 4629 { 4630 BUG_ON(!kvm_usage_count); 4631 4632 kvm_usage_count--; 4633 if (!kvm_usage_count) 4634 on_each_cpu(hardware_disable_nolock, NULL, 1); 4635 } 4636 4637 static void hardware_disable_all(void) 4638 { 4639 raw_spin_lock(&kvm_count_lock); 4640 hardware_disable_all_nolock(); 4641 raw_spin_unlock(&kvm_count_lock); 4642 } 4643 4644 static int hardware_enable_all(void) 4645 { 4646 int r = 0; 4647 4648 raw_spin_lock(&kvm_count_lock); 4649 4650 kvm_usage_count++; 4651 if (kvm_usage_count == 1) { 4652 atomic_set(&hardware_enable_failed, 0); 4653 on_each_cpu(hardware_enable_nolock, NULL, 1); 4654 4655 if (atomic_read(&hardware_enable_failed)) { 4656 hardware_disable_all_nolock(); 4657 r = -EBUSY; 4658 } 4659 } 4660 4661 raw_spin_unlock(&kvm_count_lock); 4662 4663 return r; 4664 } 4665 4666 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4667 void *v) 4668 { 4669 /* 4670 * Some (well, at least mine) BIOSes hang on reboot if 4671 * in vmx root mode. 4672 * 4673 * And Intel TXT required VMX off for all cpu when system shutdown. 4674 */ 4675 pr_info("kvm: exiting hardware virtualization\n"); 4676 kvm_rebooting = true; 4677 on_each_cpu(hardware_disable_nolock, NULL, 1); 4678 return NOTIFY_OK; 4679 } 4680 4681 static struct notifier_block kvm_reboot_notifier = { 4682 .notifier_call = kvm_reboot, 4683 .priority = 0, 4684 }; 4685 4686 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4687 { 4688 int i; 4689 4690 for (i = 0; i < bus->dev_count; i++) { 4691 struct kvm_io_device *pos = bus->range[i].dev; 4692 4693 kvm_iodevice_destructor(pos); 4694 } 4695 kfree(bus); 4696 } 4697 4698 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4699 const struct kvm_io_range *r2) 4700 { 4701 gpa_t addr1 = r1->addr; 4702 gpa_t addr2 = r2->addr; 4703 4704 if (addr1 < addr2) 4705 return -1; 4706 4707 /* If r2->len == 0, match the exact address. If r2->len != 0, 4708 * accept any overlapping write. Any order is acceptable for 4709 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4710 * we process all of them. 4711 */ 4712 if (r2->len) { 4713 addr1 += r1->len; 4714 addr2 += r2->len; 4715 } 4716 4717 if (addr1 > addr2) 4718 return 1; 4719 4720 return 0; 4721 } 4722 4723 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4724 { 4725 return kvm_io_bus_cmp(p1, p2); 4726 } 4727 4728 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4729 gpa_t addr, int len) 4730 { 4731 struct kvm_io_range *range, key; 4732 int off; 4733 4734 key = (struct kvm_io_range) { 4735 .addr = addr, 4736 .len = len, 4737 }; 4738 4739 range = bsearch(&key, bus->range, bus->dev_count, 4740 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4741 if (range == NULL) 4742 return -ENOENT; 4743 4744 off = range - bus->range; 4745 4746 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4747 off--; 4748 4749 return off; 4750 } 4751 4752 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4753 struct kvm_io_range *range, const void *val) 4754 { 4755 int idx; 4756 4757 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4758 if (idx < 0) 4759 return -EOPNOTSUPP; 4760 4761 while (idx < bus->dev_count && 4762 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4763 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4764 range->len, val)) 4765 return idx; 4766 idx++; 4767 } 4768 4769 return -EOPNOTSUPP; 4770 } 4771 4772 /* kvm_io_bus_write - called under kvm->slots_lock */ 4773 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4774 int len, const void *val) 4775 { 4776 struct kvm_io_bus *bus; 4777 struct kvm_io_range range; 4778 int r; 4779 4780 range = (struct kvm_io_range) { 4781 .addr = addr, 4782 .len = len, 4783 }; 4784 4785 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4786 if (!bus) 4787 return -ENOMEM; 4788 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4789 return r < 0 ? r : 0; 4790 } 4791 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4792 4793 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4794 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4795 gpa_t addr, int len, const void *val, long cookie) 4796 { 4797 struct kvm_io_bus *bus; 4798 struct kvm_io_range range; 4799 4800 range = (struct kvm_io_range) { 4801 .addr = addr, 4802 .len = len, 4803 }; 4804 4805 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4806 if (!bus) 4807 return -ENOMEM; 4808 4809 /* First try the device referenced by cookie. */ 4810 if ((cookie >= 0) && (cookie < bus->dev_count) && 4811 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4812 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4813 val)) 4814 return cookie; 4815 4816 /* 4817 * cookie contained garbage; fall back to search and return the 4818 * correct cookie value. 4819 */ 4820 return __kvm_io_bus_write(vcpu, bus, &range, val); 4821 } 4822 4823 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4824 struct kvm_io_range *range, void *val) 4825 { 4826 int idx; 4827 4828 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4829 if (idx < 0) 4830 return -EOPNOTSUPP; 4831 4832 while (idx < bus->dev_count && 4833 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4834 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4835 range->len, val)) 4836 return idx; 4837 idx++; 4838 } 4839 4840 return -EOPNOTSUPP; 4841 } 4842 4843 /* kvm_io_bus_read - called under kvm->slots_lock */ 4844 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4845 int len, void *val) 4846 { 4847 struct kvm_io_bus *bus; 4848 struct kvm_io_range range; 4849 int r; 4850 4851 range = (struct kvm_io_range) { 4852 .addr = addr, 4853 .len = len, 4854 }; 4855 4856 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4857 if (!bus) 4858 return -ENOMEM; 4859 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4860 return r < 0 ? r : 0; 4861 } 4862 4863 /* Caller must hold slots_lock. */ 4864 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4865 int len, struct kvm_io_device *dev) 4866 { 4867 int i; 4868 struct kvm_io_bus *new_bus, *bus; 4869 struct kvm_io_range range; 4870 4871 bus = kvm_get_bus(kvm, bus_idx); 4872 if (!bus) 4873 return -ENOMEM; 4874 4875 /* exclude ioeventfd which is limited by maximum fd */ 4876 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4877 return -ENOSPC; 4878 4879 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4880 GFP_KERNEL_ACCOUNT); 4881 if (!new_bus) 4882 return -ENOMEM; 4883 4884 range = (struct kvm_io_range) { 4885 .addr = addr, 4886 .len = len, 4887 .dev = dev, 4888 }; 4889 4890 for (i = 0; i < bus->dev_count; i++) 4891 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4892 break; 4893 4894 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4895 new_bus->dev_count++; 4896 new_bus->range[i] = range; 4897 memcpy(new_bus->range + i + 1, bus->range + i, 4898 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4899 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4900 synchronize_srcu_expedited(&kvm->srcu); 4901 kfree(bus); 4902 4903 return 0; 4904 } 4905 4906 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4907 struct kvm_io_device *dev) 4908 { 4909 int i, j; 4910 struct kvm_io_bus *new_bus, *bus; 4911 4912 lockdep_assert_held(&kvm->slots_lock); 4913 4914 bus = kvm_get_bus(kvm, bus_idx); 4915 if (!bus) 4916 return 0; 4917 4918 for (i = 0; i < bus->dev_count; i++) { 4919 if (bus->range[i].dev == dev) { 4920 break; 4921 } 4922 } 4923 4924 if (i == bus->dev_count) 4925 return 0; 4926 4927 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4928 GFP_KERNEL_ACCOUNT); 4929 if (new_bus) { 4930 memcpy(new_bus, bus, struct_size(bus, range, i)); 4931 new_bus->dev_count--; 4932 memcpy(new_bus->range + i, bus->range + i + 1, 4933 flex_array_size(new_bus, range, new_bus->dev_count - i)); 4934 } 4935 4936 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4937 synchronize_srcu_expedited(&kvm->srcu); 4938 4939 /* Destroy the old bus _after_ installing the (null) bus. */ 4940 if (!new_bus) { 4941 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4942 for (j = 0; j < bus->dev_count; j++) { 4943 if (j == i) 4944 continue; 4945 kvm_iodevice_destructor(bus->range[j].dev); 4946 } 4947 } 4948 4949 kfree(bus); 4950 return new_bus ? 0 : -ENOMEM; 4951 } 4952 4953 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4954 gpa_t addr) 4955 { 4956 struct kvm_io_bus *bus; 4957 int dev_idx, srcu_idx; 4958 struct kvm_io_device *iodev = NULL; 4959 4960 srcu_idx = srcu_read_lock(&kvm->srcu); 4961 4962 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4963 if (!bus) 4964 goto out_unlock; 4965 4966 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4967 if (dev_idx < 0) 4968 goto out_unlock; 4969 4970 iodev = bus->range[dev_idx].dev; 4971 4972 out_unlock: 4973 srcu_read_unlock(&kvm->srcu, srcu_idx); 4974 4975 return iodev; 4976 } 4977 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4978 4979 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4980 int (*get)(void *, u64 *), int (*set)(void *, u64), 4981 const char *fmt) 4982 { 4983 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4984 inode->i_private; 4985 4986 /* The debugfs files are a reference to the kvm struct which 4987 * is still valid when kvm_destroy_vm is called. 4988 * To avoid the race between open and the removal of the debugfs 4989 * directory we test against the users count. 4990 */ 4991 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4992 return -ENOENT; 4993 4994 if (simple_attr_open(inode, file, get, 4995 kvm_stats_debugfs_mode(stat_data->desc) & 0222 4996 ? set : NULL, 4997 fmt)) { 4998 kvm_put_kvm(stat_data->kvm); 4999 return -ENOMEM; 5000 } 5001 5002 return 0; 5003 } 5004 5005 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5006 { 5007 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5008 inode->i_private; 5009 5010 simple_attr_release(inode, file); 5011 kvm_put_kvm(stat_data->kvm); 5012 5013 return 0; 5014 } 5015 5016 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5017 { 5018 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5019 5020 return 0; 5021 } 5022 5023 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5024 { 5025 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5026 5027 return 0; 5028 } 5029 5030 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5031 { 5032 int i; 5033 struct kvm_vcpu *vcpu; 5034 5035 *val = 0; 5036 5037 kvm_for_each_vcpu(i, vcpu, kvm) 5038 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5039 5040 return 0; 5041 } 5042 5043 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5044 { 5045 int i; 5046 struct kvm_vcpu *vcpu; 5047 5048 kvm_for_each_vcpu(i, vcpu, kvm) 5049 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5050 5051 return 0; 5052 } 5053 5054 static int kvm_stat_data_get(void *data, u64 *val) 5055 { 5056 int r = -EFAULT; 5057 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5058 5059 switch (stat_data->kind) { 5060 case KVM_STAT_VM: 5061 r = kvm_get_stat_per_vm(stat_data->kvm, 5062 stat_data->desc->desc.offset, val); 5063 break; 5064 case KVM_STAT_VCPU: 5065 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5066 stat_data->desc->desc.offset, val); 5067 break; 5068 } 5069 5070 return r; 5071 } 5072 5073 static int kvm_stat_data_clear(void *data, u64 val) 5074 { 5075 int r = -EFAULT; 5076 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5077 5078 if (val) 5079 return -EINVAL; 5080 5081 switch (stat_data->kind) { 5082 case KVM_STAT_VM: 5083 r = kvm_clear_stat_per_vm(stat_data->kvm, 5084 stat_data->desc->desc.offset); 5085 break; 5086 case KVM_STAT_VCPU: 5087 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5088 stat_data->desc->desc.offset); 5089 break; 5090 } 5091 5092 return r; 5093 } 5094 5095 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5096 { 5097 __simple_attr_check_format("%llu\n", 0ull); 5098 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5099 kvm_stat_data_clear, "%llu\n"); 5100 } 5101 5102 static const struct file_operations stat_fops_per_vm = { 5103 .owner = THIS_MODULE, 5104 .open = kvm_stat_data_open, 5105 .release = kvm_debugfs_release, 5106 .read = simple_attr_read, 5107 .write = simple_attr_write, 5108 .llseek = no_llseek, 5109 }; 5110 5111 static int vm_stat_get(void *_offset, u64 *val) 5112 { 5113 unsigned offset = (long)_offset; 5114 struct kvm *kvm; 5115 u64 tmp_val; 5116 5117 *val = 0; 5118 mutex_lock(&kvm_lock); 5119 list_for_each_entry(kvm, &vm_list, vm_list) { 5120 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5121 *val += tmp_val; 5122 } 5123 mutex_unlock(&kvm_lock); 5124 return 0; 5125 } 5126 5127 static int vm_stat_clear(void *_offset, u64 val) 5128 { 5129 unsigned offset = (long)_offset; 5130 struct kvm *kvm; 5131 5132 if (val) 5133 return -EINVAL; 5134 5135 mutex_lock(&kvm_lock); 5136 list_for_each_entry(kvm, &vm_list, vm_list) { 5137 kvm_clear_stat_per_vm(kvm, offset); 5138 } 5139 mutex_unlock(&kvm_lock); 5140 5141 return 0; 5142 } 5143 5144 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5145 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5146 5147 static int vcpu_stat_get(void *_offset, u64 *val) 5148 { 5149 unsigned offset = (long)_offset; 5150 struct kvm *kvm; 5151 u64 tmp_val; 5152 5153 *val = 0; 5154 mutex_lock(&kvm_lock); 5155 list_for_each_entry(kvm, &vm_list, vm_list) { 5156 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5157 *val += tmp_val; 5158 } 5159 mutex_unlock(&kvm_lock); 5160 return 0; 5161 } 5162 5163 static int vcpu_stat_clear(void *_offset, u64 val) 5164 { 5165 unsigned offset = (long)_offset; 5166 struct kvm *kvm; 5167 5168 if (val) 5169 return -EINVAL; 5170 5171 mutex_lock(&kvm_lock); 5172 list_for_each_entry(kvm, &vm_list, vm_list) { 5173 kvm_clear_stat_per_vcpu(kvm, offset); 5174 } 5175 mutex_unlock(&kvm_lock); 5176 5177 return 0; 5178 } 5179 5180 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5181 "%llu\n"); 5182 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5183 5184 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5185 { 5186 struct kobj_uevent_env *env; 5187 unsigned long long created, active; 5188 5189 if (!kvm_dev.this_device || !kvm) 5190 return; 5191 5192 mutex_lock(&kvm_lock); 5193 if (type == KVM_EVENT_CREATE_VM) { 5194 kvm_createvm_count++; 5195 kvm_active_vms++; 5196 } else if (type == KVM_EVENT_DESTROY_VM) { 5197 kvm_active_vms--; 5198 } 5199 created = kvm_createvm_count; 5200 active = kvm_active_vms; 5201 mutex_unlock(&kvm_lock); 5202 5203 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5204 if (!env) 5205 return; 5206 5207 add_uevent_var(env, "CREATED=%llu", created); 5208 add_uevent_var(env, "COUNT=%llu", active); 5209 5210 if (type == KVM_EVENT_CREATE_VM) { 5211 add_uevent_var(env, "EVENT=create"); 5212 kvm->userspace_pid = task_pid_nr(current); 5213 } else if (type == KVM_EVENT_DESTROY_VM) { 5214 add_uevent_var(env, "EVENT=destroy"); 5215 } 5216 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5217 5218 if (kvm->debugfs_dentry) { 5219 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5220 5221 if (p) { 5222 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5223 if (!IS_ERR(tmp)) 5224 add_uevent_var(env, "STATS_PATH=%s", tmp); 5225 kfree(p); 5226 } 5227 } 5228 /* no need for checks, since we are adding at most only 5 keys */ 5229 env->envp[env->envp_idx++] = NULL; 5230 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5231 kfree(env); 5232 } 5233 5234 static void kvm_init_debug(void) 5235 { 5236 const struct file_operations *fops; 5237 const struct _kvm_stats_desc *pdesc; 5238 int i; 5239 5240 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5241 5242 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5243 pdesc = &kvm_vm_stats_desc[i]; 5244 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5245 fops = &vm_stat_fops; 5246 else 5247 fops = &vm_stat_readonly_fops; 5248 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5249 kvm_debugfs_dir, 5250 (void *)(long)pdesc->desc.offset, fops); 5251 } 5252 5253 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5254 pdesc = &kvm_vcpu_stats_desc[i]; 5255 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5256 fops = &vcpu_stat_fops; 5257 else 5258 fops = &vcpu_stat_readonly_fops; 5259 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5260 kvm_debugfs_dir, 5261 (void *)(long)pdesc->desc.offset, fops); 5262 } 5263 } 5264 5265 static int kvm_suspend(void) 5266 { 5267 if (kvm_usage_count) 5268 hardware_disable_nolock(NULL); 5269 return 0; 5270 } 5271 5272 static void kvm_resume(void) 5273 { 5274 if (kvm_usage_count) { 5275 #ifdef CONFIG_LOCKDEP 5276 WARN_ON(lockdep_is_held(&kvm_count_lock)); 5277 #endif 5278 hardware_enable_nolock(NULL); 5279 } 5280 } 5281 5282 static struct syscore_ops kvm_syscore_ops = { 5283 .suspend = kvm_suspend, 5284 .resume = kvm_resume, 5285 }; 5286 5287 static inline 5288 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5289 { 5290 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5291 } 5292 5293 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5294 { 5295 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5296 5297 WRITE_ONCE(vcpu->preempted, false); 5298 WRITE_ONCE(vcpu->ready, false); 5299 5300 __this_cpu_write(kvm_running_vcpu, vcpu); 5301 kvm_arch_sched_in(vcpu, cpu); 5302 kvm_arch_vcpu_load(vcpu, cpu); 5303 } 5304 5305 static void kvm_sched_out(struct preempt_notifier *pn, 5306 struct task_struct *next) 5307 { 5308 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5309 5310 if (current->on_rq) { 5311 WRITE_ONCE(vcpu->preempted, true); 5312 WRITE_ONCE(vcpu->ready, true); 5313 } 5314 kvm_arch_vcpu_put(vcpu); 5315 __this_cpu_write(kvm_running_vcpu, NULL); 5316 } 5317 5318 /** 5319 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5320 * 5321 * We can disable preemption locally around accessing the per-CPU variable, 5322 * and use the resolved vcpu pointer after enabling preemption again, 5323 * because even if the current thread is migrated to another CPU, reading 5324 * the per-CPU value later will give us the same value as we update the 5325 * per-CPU variable in the preempt notifier handlers. 5326 */ 5327 struct kvm_vcpu *kvm_get_running_vcpu(void) 5328 { 5329 struct kvm_vcpu *vcpu; 5330 5331 preempt_disable(); 5332 vcpu = __this_cpu_read(kvm_running_vcpu); 5333 preempt_enable(); 5334 5335 return vcpu; 5336 } 5337 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5338 5339 /** 5340 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5341 */ 5342 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5343 { 5344 return &kvm_running_vcpu; 5345 } 5346 5347 struct kvm_cpu_compat_check { 5348 void *opaque; 5349 int *ret; 5350 }; 5351 5352 static void check_processor_compat(void *data) 5353 { 5354 struct kvm_cpu_compat_check *c = data; 5355 5356 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5357 } 5358 5359 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5360 struct module *module) 5361 { 5362 struct kvm_cpu_compat_check c; 5363 int r; 5364 int cpu; 5365 5366 r = kvm_arch_init(opaque); 5367 if (r) 5368 goto out_fail; 5369 5370 /* 5371 * kvm_arch_init makes sure there's at most one caller 5372 * for architectures that support multiple implementations, 5373 * like intel and amd on x86. 5374 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5375 * conflicts in case kvm is already setup for another implementation. 5376 */ 5377 r = kvm_irqfd_init(); 5378 if (r) 5379 goto out_irqfd; 5380 5381 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5382 r = -ENOMEM; 5383 goto out_free_0; 5384 } 5385 5386 r = kvm_arch_hardware_setup(opaque); 5387 if (r < 0) 5388 goto out_free_1; 5389 5390 c.ret = &r; 5391 c.opaque = opaque; 5392 for_each_online_cpu(cpu) { 5393 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5394 if (r < 0) 5395 goto out_free_2; 5396 } 5397 5398 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5399 kvm_starting_cpu, kvm_dying_cpu); 5400 if (r) 5401 goto out_free_2; 5402 register_reboot_notifier(&kvm_reboot_notifier); 5403 5404 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5405 if (!vcpu_align) 5406 vcpu_align = __alignof__(struct kvm_vcpu); 5407 kvm_vcpu_cache = 5408 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5409 SLAB_ACCOUNT, 5410 offsetof(struct kvm_vcpu, arch), 5411 offsetofend(struct kvm_vcpu, stats_id) 5412 - offsetof(struct kvm_vcpu, arch), 5413 NULL); 5414 if (!kvm_vcpu_cache) { 5415 r = -ENOMEM; 5416 goto out_free_3; 5417 } 5418 5419 r = kvm_async_pf_init(); 5420 if (r) 5421 goto out_free; 5422 5423 kvm_chardev_ops.owner = module; 5424 kvm_vm_fops.owner = module; 5425 kvm_vcpu_fops.owner = module; 5426 5427 r = misc_register(&kvm_dev); 5428 if (r) { 5429 pr_err("kvm: misc device register failed\n"); 5430 goto out_unreg; 5431 } 5432 5433 register_syscore_ops(&kvm_syscore_ops); 5434 5435 kvm_preempt_ops.sched_in = kvm_sched_in; 5436 kvm_preempt_ops.sched_out = kvm_sched_out; 5437 5438 kvm_init_debug(); 5439 5440 r = kvm_vfio_ops_init(); 5441 WARN_ON(r); 5442 5443 return 0; 5444 5445 out_unreg: 5446 kvm_async_pf_deinit(); 5447 out_free: 5448 kmem_cache_destroy(kvm_vcpu_cache); 5449 out_free_3: 5450 unregister_reboot_notifier(&kvm_reboot_notifier); 5451 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5452 out_free_2: 5453 kvm_arch_hardware_unsetup(); 5454 out_free_1: 5455 free_cpumask_var(cpus_hardware_enabled); 5456 out_free_0: 5457 kvm_irqfd_exit(); 5458 out_irqfd: 5459 kvm_arch_exit(); 5460 out_fail: 5461 return r; 5462 } 5463 EXPORT_SYMBOL_GPL(kvm_init); 5464 5465 void kvm_exit(void) 5466 { 5467 debugfs_remove_recursive(kvm_debugfs_dir); 5468 misc_deregister(&kvm_dev); 5469 kmem_cache_destroy(kvm_vcpu_cache); 5470 kvm_async_pf_deinit(); 5471 unregister_syscore_ops(&kvm_syscore_ops); 5472 unregister_reboot_notifier(&kvm_reboot_notifier); 5473 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5474 on_each_cpu(hardware_disable_nolock, NULL, 1); 5475 kvm_arch_hardware_unsetup(); 5476 kvm_arch_exit(); 5477 kvm_irqfd_exit(); 5478 free_cpumask_var(cpus_hardware_enabled); 5479 kvm_vfio_ops_exit(); 5480 } 5481 EXPORT_SYMBOL_GPL(kvm_exit); 5482 5483 struct kvm_vm_worker_thread_context { 5484 struct kvm *kvm; 5485 struct task_struct *parent; 5486 struct completion init_done; 5487 kvm_vm_thread_fn_t thread_fn; 5488 uintptr_t data; 5489 int err; 5490 }; 5491 5492 static int kvm_vm_worker_thread(void *context) 5493 { 5494 /* 5495 * The init_context is allocated on the stack of the parent thread, so 5496 * we have to locally copy anything that is needed beyond initialization 5497 */ 5498 struct kvm_vm_worker_thread_context *init_context = context; 5499 struct kvm *kvm = init_context->kvm; 5500 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5501 uintptr_t data = init_context->data; 5502 int err; 5503 5504 err = kthread_park(current); 5505 /* kthread_park(current) is never supposed to return an error */ 5506 WARN_ON(err != 0); 5507 if (err) 5508 goto init_complete; 5509 5510 err = cgroup_attach_task_all(init_context->parent, current); 5511 if (err) { 5512 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5513 __func__, err); 5514 goto init_complete; 5515 } 5516 5517 set_user_nice(current, task_nice(init_context->parent)); 5518 5519 init_complete: 5520 init_context->err = err; 5521 complete(&init_context->init_done); 5522 init_context = NULL; 5523 5524 if (err) 5525 return err; 5526 5527 /* Wait to be woken up by the spawner before proceeding. */ 5528 kthread_parkme(); 5529 5530 if (!kthread_should_stop()) 5531 err = thread_fn(kvm, data); 5532 5533 return err; 5534 } 5535 5536 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5537 uintptr_t data, const char *name, 5538 struct task_struct **thread_ptr) 5539 { 5540 struct kvm_vm_worker_thread_context init_context = {}; 5541 struct task_struct *thread; 5542 5543 *thread_ptr = NULL; 5544 init_context.kvm = kvm; 5545 init_context.parent = current; 5546 init_context.thread_fn = thread_fn; 5547 init_context.data = data; 5548 init_completion(&init_context.init_done); 5549 5550 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5551 "%s-%d", name, task_pid_nr(current)); 5552 if (IS_ERR(thread)) 5553 return PTR_ERR(thread); 5554 5555 /* kthread_run is never supposed to return NULL */ 5556 WARN_ON(thread == NULL); 5557 5558 wait_for_completion(&init_context.init_done); 5559 5560 if (!init_context.err) 5561 *thread_ptr = thread; 5562 5563 return init_context.err; 5564 } 5565