xref: /openbmc/linux/virt/kvm/kvm_main.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 						   unsigned long start, unsigned long end)
160 {
161 }
162 
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 		return false;
173 
174 	return is_zone_device_page(pfn_to_page(pfn));
175 }
176 
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 	/*
180 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 	 * perspective they are "normal" pages, albeit with slightly different
182 	 * usage rules.
183 	 */
184 	if (pfn_valid(pfn))
185 		return PageReserved(pfn_to_page(pfn)) &&
186 		       !is_zero_pfn(pfn) &&
187 		       !kvm_is_zone_device_pfn(pfn);
188 
189 	return true;
190 }
191 
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194 	struct page *page = pfn_to_page(pfn);
195 
196 	if (!PageTransCompoundMap(page))
197 		return false;
198 
199 	return is_transparent_hugepage(compound_head(page));
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_flush(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250 	if (unlikely(!cpus))
251 		cpus = cpu_online_mask;
252 
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_flush, NULL, wait);
257 	return true;
258 }
259 
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 				 struct kvm_vcpu *except,
262 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 	int i, cpu, me;
265 	struct kvm_vcpu *vcpu;
266 	bool called;
267 
268 	me = get_cpu();
269 
270 	kvm_for_each_vcpu(i, vcpu, kvm) {
271 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 		    vcpu == except)
273 			continue;
274 
275 		kvm_make_request(req, vcpu);
276 		cpu = vcpu->cpu;
277 
278 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 			continue;
280 
281 		if (tmp != NULL && cpu != -1 && cpu != me &&
282 		    kvm_request_needs_ipi(vcpu, req))
283 			__cpumask_set_cpu(cpu, tmp);
284 	}
285 
286 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 				      struct kvm_vcpu *except)
294 {
295 	cpumask_var_t cpus;
296 	bool called;
297 
298 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 
300 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 
302 	free_cpumask_var(cpus);
303 	return called;
304 }
305 
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311 
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315 	/*
316 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 	 * kvm_make_all_cpus_request.
318 	 */
319 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320 
321 	/*
322 	 * We want to publish modifications to the page tables before reading
323 	 * mode. Pairs with a memory barrier in arch-specific code.
324 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 	 *
328 	 * There is already an smp_mb__after_atomic() before
329 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 	 * barrier here.
331 	 */
332 	if (!kvm_arch_flush_remote_tlb(kvm)
333 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 		++kvm->stat.generic.remote_tlb_flush;
335 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339 
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344 
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347 					       gfp_t gfp_flags)
348 {
349 	gfp_flags |= mc->gfp_zero;
350 
351 	if (mc->kmem_cache)
352 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353 	else
354 		return (void *)__get_free_page(gfp_flags);
355 }
356 
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359 	void *obj;
360 
361 	if (mc->nobjs >= min)
362 		return 0;
363 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365 		if (!obj)
366 			return mc->nobjs >= min ? 0 : -ENOMEM;
367 		mc->objects[mc->nobjs++] = obj;
368 	}
369 	return 0;
370 }
371 
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374 	return mc->nobjs;
375 }
376 
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379 	while (mc->nobjs) {
380 		if (mc->kmem_cache)
381 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382 		else
383 			free_page((unsigned long)mc->objects[--mc->nobjs]);
384 	}
385 }
386 
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389 	void *p;
390 
391 	if (WARN_ON(!mc->nobjs))
392 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393 	else
394 		p = mc->objects[--mc->nobjs];
395 	BUG_ON(!p);
396 	return p;
397 }
398 #endif
399 
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402 	mutex_init(&vcpu->mutex);
403 	vcpu->cpu = -1;
404 	vcpu->kvm = kvm;
405 	vcpu->vcpu_id = id;
406 	vcpu->pid = NULL;
407 	rcuwait_init(&vcpu->wait);
408 	kvm_async_pf_vcpu_init(vcpu);
409 
410 	vcpu->pre_pcpu = -1;
411 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412 
413 	kvm_vcpu_set_in_spin_loop(vcpu, false);
414 	kvm_vcpu_set_dy_eligible(vcpu, false);
415 	vcpu->preempted = false;
416 	vcpu->ready = false;
417 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419 
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422 	kvm_dirty_ring_free(&vcpu->dirty_ring);
423 	kvm_arch_vcpu_destroy(vcpu);
424 
425 	/*
426 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427 	 * the vcpu->pid pointer, and at destruction time all file descriptors
428 	 * are already gone.
429 	 */
430 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
431 
432 	free_page((unsigned long)vcpu->run);
433 	kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436 
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440 	return container_of(mn, struct kvm, mmu_notifier);
441 }
442 
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444 					      struct mm_struct *mm,
445 					      unsigned long start, unsigned long end)
446 {
447 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 	int idx;
449 
450 	idx = srcu_read_lock(&kvm->srcu);
451 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452 	srcu_read_unlock(&kvm->srcu, idx);
453 }
454 
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456 
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458 			     unsigned long end);
459 
460 struct kvm_hva_range {
461 	unsigned long start;
462 	unsigned long end;
463 	pte_t pte;
464 	hva_handler_t handler;
465 	on_lock_fn_t on_lock;
466 	bool flush_on_ret;
467 	bool may_block;
468 };
469 
470 /*
471  * Use a dedicated stub instead of NULL to indicate that there is no callback
472  * function/handler.  The compiler technically can't guarantee that a real
473  * function will have a non-zero address, and so it will generate code to
474  * check for !NULL, whereas comparing against a stub will be elided at compile
475  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476  */
477 static void kvm_null_fn(void)
478 {
479 
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482 
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484 						  const struct kvm_hva_range *range)
485 {
486 	bool ret = false, locked = false;
487 	struct kvm_gfn_range gfn_range;
488 	struct kvm_memory_slot *slot;
489 	struct kvm_memslots *slots;
490 	int i, idx;
491 
492 	/* A null handler is allowed if and only if on_lock() is provided. */
493 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494 			 IS_KVM_NULL_FN(range->handler)))
495 		return 0;
496 
497 	idx = srcu_read_lock(&kvm->srcu);
498 
499 	/* The on_lock() path does not yet support lock elision. */
500 	if (!IS_KVM_NULL_FN(range->on_lock)) {
501 		locked = true;
502 		KVM_MMU_LOCK(kvm);
503 
504 		range->on_lock(kvm, range->start, range->end);
505 
506 		if (IS_KVM_NULL_FN(range->handler))
507 			goto out_unlock;
508 	}
509 
510 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511 		slots = __kvm_memslots(kvm, i);
512 		kvm_for_each_memslot(slot, slots) {
513 			unsigned long hva_start, hva_end;
514 
515 			hva_start = max(range->start, slot->userspace_addr);
516 			hva_end = min(range->end, slot->userspace_addr +
517 						  (slot->npages << PAGE_SHIFT));
518 			if (hva_start >= hva_end)
519 				continue;
520 
521 			/*
522 			 * To optimize for the likely case where the address
523 			 * range is covered by zero or one memslots, don't
524 			 * bother making these conditional (to avoid writes on
525 			 * the second or later invocation of the handler).
526 			 */
527 			gfn_range.pte = range->pte;
528 			gfn_range.may_block = range->may_block;
529 
530 			/*
531 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
532 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533 			 */
534 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536 			gfn_range.slot = slot;
537 
538 			if (!locked) {
539 				locked = true;
540 				KVM_MMU_LOCK(kvm);
541 			}
542 			ret |= range->handler(kvm, &gfn_range);
543 		}
544 	}
545 
546 	if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547 		kvm_flush_remote_tlbs(kvm);
548 
549 out_unlock:
550 	if (locked)
551 		KVM_MMU_UNLOCK(kvm);
552 
553 	srcu_read_unlock(&kvm->srcu, idx);
554 
555 	/* The notifiers are averse to booleans. :-( */
556 	return (int)ret;
557 }
558 
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560 						unsigned long start,
561 						unsigned long end,
562 						pte_t pte,
563 						hva_handler_t handler)
564 {
565 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
566 	const struct kvm_hva_range range = {
567 		.start		= start,
568 		.end		= end,
569 		.pte		= pte,
570 		.handler	= handler,
571 		.on_lock	= (void *)kvm_null_fn,
572 		.flush_on_ret	= true,
573 		.may_block	= false,
574 	};
575 
576 	return __kvm_handle_hva_range(kvm, &range);
577 }
578 
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580 							 unsigned long start,
581 							 unsigned long end,
582 							 hva_handler_t handler)
583 {
584 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
585 	const struct kvm_hva_range range = {
586 		.start		= start,
587 		.end		= end,
588 		.pte		= __pte(0),
589 		.handler	= handler,
590 		.on_lock	= (void *)kvm_null_fn,
591 		.flush_on_ret	= false,
592 		.may_block	= false,
593 	};
594 
595 	return __kvm_handle_hva_range(kvm, &range);
596 }
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598 					struct mm_struct *mm,
599 					unsigned long address,
600 					pte_t pte)
601 {
602 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
603 
604 	trace_kvm_set_spte_hva(address);
605 
606 	/*
607 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608 	 * and so always runs with an elevated notifier count.  This obviates
609 	 * the need to bump the sequence count.
610 	 */
611 	WARN_ON_ONCE(!kvm->mmu_notifier_count);
612 
613 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
614 }
615 
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617 				   unsigned long end)
618 {
619 	/*
620 	 * The count increase must become visible at unlock time as no
621 	 * spte can be established without taking the mmu_lock and
622 	 * count is also read inside the mmu_lock critical section.
623 	 */
624 	kvm->mmu_notifier_count++;
625 	if (likely(kvm->mmu_notifier_count == 1)) {
626 		kvm->mmu_notifier_range_start = start;
627 		kvm->mmu_notifier_range_end = end;
628 	} else {
629 		/*
630 		 * Fully tracking multiple concurrent ranges has dimishing
631 		 * returns. Keep things simple and just find the minimal range
632 		 * which includes the current and new ranges. As there won't be
633 		 * enough information to subtract a range after its invalidate
634 		 * completes, any ranges invalidated concurrently will
635 		 * accumulate and persist until all outstanding invalidates
636 		 * complete.
637 		 */
638 		kvm->mmu_notifier_range_start =
639 			min(kvm->mmu_notifier_range_start, start);
640 		kvm->mmu_notifier_range_end =
641 			max(kvm->mmu_notifier_range_end, end);
642 	}
643 }
644 
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646 					const struct mmu_notifier_range *range)
647 {
648 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
649 	const struct kvm_hva_range hva_range = {
650 		.start		= range->start,
651 		.end		= range->end,
652 		.pte		= __pte(0),
653 		.handler	= kvm_unmap_gfn_range,
654 		.on_lock	= kvm_inc_notifier_count,
655 		.flush_on_ret	= true,
656 		.may_block	= mmu_notifier_range_blockable(range),
657 	};
658 
659 	trace_kvm_unmap_hva_range(range->start, range->end);
660 
661 	__kvm_handle_hva_range(kvm, &hva_range);
662 
663 	return 0;
664 }
665 
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667 				   unsigned long end)
668 {
669 	/*
670 	 * This sequence increase will notify the kvm page fault that
671 	 * the page that is going to be mapped in the spte could have
672 	 * been freed.
673 	 */
674 	kvm->mmu_notifier_seq++;
675 	smp_wmb();
676 	/*
677 	 * The above sequence increase must be visible before the
678 	 * below count decrease, which is ensured by the smp_wmb above
679 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
680 	 */
681 	kvm->mmu_notifier_count--;
682 }
683 
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685 					const struct mmu_notifier_range *range)
686 {
687 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
688 	const struct kvm_hva_range hva_range = {
689 		.start		= range->start,
690 		.end		= range->end,
691 		.pte		= __pte(0),
692 		.handler	= (void *)kvm_null_fn,
693 		.on_lock	= kvm_dec_notifier_count,
694 		.flush_on_ret	= false,
695 		.may_block	= mmu_notifier_range_blockable(range),
696 	};
697 
698 	__kvm_handle_hva_range(kvm, &hva_range);
699 
700 	BUG_ON(kvm->mmu_notifier_count < 0);
701 }
702 
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704 					      struct mm_struct *mm,
705 					      unsigned long start,
706 					      unsigned long end)
707 {
708 	trace_kvm_age_hva(start, end);
709 
710 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
711 }
712 
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714 					struct mm_struct *mm,
715 					unsigned long start,
716 					unsigned long end)
717 {
718 	trace_kvm_age_hva(start, end);
719 
720 	/*
721 	 * Even though we do not flush TLB, this will still adversely
722 	 * affect performance on pre-Haswell Intel EPT, where there is
723 	 * no EPT Access Bit to clear so that we have to tear down EPT
724 	 * tables instead. If we find this unacceptable, we can always
725 	 * add a parameter to kvm_age_hva so that it effectively doesn't
726 	 * do anything on clear_young.
727 	 *
728 	 * Also note that currently we never issue secondary TLB flushes
729 	 * from clear_young, leaving this job up to the regular system
730 	 * cadence. If we find this inaccurate, we might come up with a
731 	 * more sophisticated heuristic later.
732 	 */
733 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
734 }
735 
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737 				       struct mm_struct *mm,
738 				       unsigned long address)
739 {
740 	trace_kvm_test_age_hva(address);
741 
742 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743 					     kvm_test_age_gfn);
744 }
745 
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747 				     struct mm_struct *mm)
748 {
749 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
750 	int idx;
751 
752 	idx = srcu_read_lock(&kvm->srcu);
753 	kvm_arch_flush_shadow_all(kvm);
754 	srcu_read_unlock(&kvm->srcu, idx);
755 }
756 
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
759 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
760 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
761 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
762 	.clear_young		= kvm_mmu_notifier_clear_young,
763 	.test_young		= kvm_mmu_notifier_test_young,
764 	.change_pte		= kvm_mmu_notifier_change_pte,
765 	.release		= kvm_mmu_notifier_release,
766 };
767 
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
769 {
770 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 }
773 
774 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775 
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
777 {
778 	return 0;
779 }
780 
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782 
783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 static int kvm_pm_notifier_call(struct notifier_block *bl,
785 				unsigned long state,
786 				void *unused)
787 {
788 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
789 
790 	return kvm_arch_pm_notifier(kvm, state);
791 }
792 
793 static void kvm_init_pm_notifier(struct kvm *kvm)
794 {
795 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
796 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
797 	kvm->pm_notifier.priority = INT_MAX;
798 	register_pm_notifier(&kvm->pm_notifier);
799 }
800 
801 static void kvm_destroy_pm_notifier(struct kvm *kvm)
802 {
803 	unregister_pm_notifier(&kvm->pm_notifier);
804 }
805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
806 static void kvm_init_pm_notifier(struct kvm *kvm)
807 {
808 }
809 
810 static void kvm_destroy_pm_notifier(struct kvm *kvm)
811 {
812 }
813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
814 
815 static struct kvm_memslots *kvm_alloc_memslots(void)
816 {
817 	int i;
818 	struct kvm_memslots *slots;
819 
820 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
821 	if (!slots)
822 		return NULL;
823 
824 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
825 		slots->id_to_index[i] = -1;
826 
827 	return slots;
828 }
829 
830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
831 {
832 	if (!memslot->dirty_bitmap)
833 		return;
834 
835 	kvfree(memslot->dirty_bitmap);
836 	memslot->dirty_bitmap = NULL;
837 }
838 
839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
840 {
841 	kvm_destroy_dirty_bitmap(slot);
842 
843 	kvm_arch_free_memslot(kvm, slot);
844 
845 	slot->flags = 0;
846 	slot->npages = 0;
847 }
848 
849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
850 {
851 	struct kvm_memory_slot *memslot;
852 
853 	if (!slots)
854 		return;
855 
856 	kvm_for_each_memslot(memslot, slots)
857 		kvm_free_memslot(kvm, memslot);
858 
859 	kvfree(slots);
860 }
861 
862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
863 {
864 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
865 	case KVM_STATS_TYPE_INSTANT:
866 		return 0444;
867 	case KVM_STATS_TYPE_CUMULATIVE:
868 	case KVM_STATS_TYPE_PEAK:
869 	default:
870 		return 0644;
871 	}
872 }
873 
874 
875 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
876 {
877 	int i;
878 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
879 				      kvm_vcpu_stats_header.num_desc;
880 
881 	if (!kvm->debugfs_dentry)
882 		return;
883 
884 	debugfs_remove_recursive(kvm->debugfs_dentry);
885 
886 	if (kvm->debugfs_stat_data) {
887 		for (i = 0; i < kvm_debugfs_num_entries; i++)
888 			kfree(kvm->debugfs_stat_data[i]);
889 		kfree(kvm->debugfs_stat_data);
890 	}
891 }
892 
893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
894 {
895 	static DEFINE_MUTEX(kvm_debugfs_lock);
896 	struct dentry *dent;
897 	char dir_name[ITOA_MAX_LEN * 2];
898 	struct kvm_stat_data *stat_data;
899 	const struct _kvm_stats_desc *pdesc;
900 	int i;
901 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
902 				      kvm_vcpu_stats_header.num_desc;
903 
904 	if (!debugfs_initialized())
905 		return 0;
906 
907 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
908 	mutex_lock(&kvm_debugfs_lock);
909 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
910 	if (dent) {
911 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
912 		dput(dent);
913 		mutex_unlock(&kvm_debugfs_lock);
914 		return 0;
915 	}
916 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
917 	mutex_unlock(&kvm_debugfs_lock);
918 	if (IS_ERR(dent))
919 		return 0;
920 
921 	kvm->debugfs_dentry = dent;
922 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
923 					 sizeof(*kvm->debugfs_stat_data),
924 					 GFP_KERNEL_ACCOUNT);
925 	if (!kvm->debugfs_stat_data)
926 		return -ENOMEM;
927 
928 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
929 		pdesc = &kvm_vm_stats_desc[i];
930 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
931 		if (!stat_data)
932 			return -ENOMEM;
933 
934 		stat_data->kvm = kvm;
935 		stat_data->desc = pdesc;
936 		stat_data->kind = KVM_STAT_VM;
937 		kvm->debugfs_stat_data[i] = stat_data;
938 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
939 				    kvm->debugfs_dentry, stat_data,
940 				    &stat_fops_per_vm);
941 	}
942 
943 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
944 		pdesc = &kvm_vcpu_stats_desc[i];
945 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
946 		if (!stat_data)
947 			return -ENOMEM;
948 
949 		stat_data->kvm = kvm;
950 		stat_data->desc = pdesc;
951 		stat_data->kind = KVM_STAT_VCPU;
952 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
953 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
954 				    kvm->debugfs_dentry, stat_data,
955 				    &stat_fops_per_vm);
956 	}
957 	return 0;
958 }
959 
960 /*
961  * Called after the VM is otherwise initialized, but just before adding it to
962  * the vm_list.
963  */
964 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
965 {
966 	return 0;
967 }
968 
969 /*
970  * Called just after removing the VM from the vm_list, but before doing any
971  * other destruction.
972  */
973 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
974 {
975 }
976 
977 static struct kvm *kvm_create_vm(unsigned long type)
978 {
979 	struct kvm *kvm = kvm_arch_alloc_vm();
980 	int r = -ENOMEM;
981 	int i;
982 
983 	if (!kvm)
984 		return ERR_PTR(-ENOMEM);
985 
986 	KVM_MMU_LOCK_INIT(kvm);
987 	mmgrab(current->mm);
988 	kvm->mm = current->mm;
989 	kvm_eventfd_init(kvm);
990 	mutex_init(&kvm->lock);
991 	mutex_init(&kvm->irq_lock);
992 	mutex_init(&kvm->slots_lock);
993 	mutex_init(&kvm->slots_arch_lock);
994 	INIT_LIST_HEAD(&kvm->devices);
995 
996 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
997 
998 	if (init_srcu_struct(&kvm->srcu))
999 		goto out_err_no_srcu;
1000 	if (init_srcu_struct(&kvm->irq_srcu))
1001 		goto out_err_no_irq_srcu;
1002 
1003 	refcount_set(&kvm->users_count, 1);
1004 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1005 		struct kvm_memslots *slots = kvm_alloc_memslots();
1006 
1007 		if (!slots)
1008 			goto out_err_no_arch_destroy_vm;
1009 		/* Generations must be different for each address space. */
1010 		slots->generation = i;
1011 		rcu_assign_pointer(kvm->memslots[i], slots);
1012 	}
1013 
1014 	for (i = 0; i < KVM_NR_BUSES; i++) {
1015 		rcu_assign_pointer(kvm->buses[i],
1016 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1017 		if (!kvm->buses[i])
1018 			goto out_err_no_arch_destroy_vm;
1019 	}
1020 
1021 	kvm->max_halt_poll_ns = halt_poll_ns;
1022 
1023 	r = kvm_arch_init_vm(kvm, type);
1024 	if (r)
1025 		goto out_err_no_arch_destroy_vm;
1026 
1027 	r = hardware_enable_all();
1028 	if (r)
1029 		goto out_err_no_disable;
1030 
1031 #ifdef CONFIG_HAVE_KVM_IRQFD
1032 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1033 #endif
1034 
1035 	r = kvm_init_mmu_notifier(kvm);
1036 	if (r)
1037 		goto out_err_no_mmu_notifier;
1038 
1039 	r = kvm_arch_post_init_vm(kvm);
1040 	if (r)
1041 		goto out_err;
1042 
1043 	mutex_lock(&kvm_lock);
1044 	list_add(&kvm->vm_list, &vm_list);
1045 	mutex_unlock(&kvm_lock);
1046 
1047 	preempt_notifier_inc();
1048 	kvm_init_pm_notifier(kvm);
1049 
1050 	return kvm;
1051 
1052 out_err:
1053 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1054 	if (kvm->mmu_notifier.ops)
1055 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1056 #endif
1057 out_err_no_mmu_notifier:
1058 	hardware_disable_all();
1059 out_err_no_disable:
1060 	kvm_arch_destroy_vm(kvm);
1061 out_err_no_arch_destroy_vm:
1062 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1063 	for (i = 0; i < KVM_NR_BUSES; i++)
1064 		kfree(kvm_get_bus(kvm, i));
1065 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1066 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1067 	cleanup_srcu_struct(&kvm->irq_srcu);
1068 out_err_no_irq_srcu:
1069 	cleanup_srcu_struct(&kvm->srcu);
1070 out_err_no_srcu:
1071 	kvm_arch_free_vm(kvm);
1072 	mmdrop(current->mm);
1073 	return ERR_PTR(r);
1074 }
1075 
1076 static void kvm_destroy_devices(struct kvm *kvm)
1077 {
1078 	struct kvm_device *dev, *tmp;
1079 
1080 	/*
1081 	 * We do not need to take the kvm->lock here, because nobody else
1082 	 * has a reference to the struct kvm at this point and therefore
1083 	 * cannot access the devices list anyhow.
1084 	 */
1085 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1086 		list_del(&dev->vm_node);
1087 		dev->ops->destroy(dev);
1088 	}
1089 }
1090 
1091 static void kvm_destroy_vm(struct kvm *kvm)
1092 {
1093 	int i;
1094 	struct mm_struct *mm = kvm->mm;
1095 
1096 	kvm_destroy_pm_notifier(kvm);
1097 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1098 	kvm_destroy_vm_debugfs(kvm);
1099 	kvm_arch_sync_events(kvm);
1100 	mutex_lock(&kvm_lock);
1101 	list_del(&kvm->vm_list);
1102 	mutex_unlock(&kvm_lock);
1103 	kvm_arch_pre_destroy_vm(kvm);
1104 
1105 	kvm_free_irq_routing(kvm);
1106 	for (i = 0; i < KVM_NR_BUSES; i++) {
1107 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1108 
1109 		if (bus)
1110 			kvm_io_bus_destroy(bus);
1111 		kvm->buses[i] = NULL;
1112 	}
1113 	kvm_coalesced_mmio_free(kvm);
1114 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1115 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1116 #else
1117 	kvm_arch_flush_shadow_all(kvm);
1118 #endif
1119 	kvm_arch_destroy_vm(kvm);
1120 	kvm_destroy_devices(kvm);
1121 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1122 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1123 	cleanup_srcu_struct(&kvm->irq_srcu);
1124 	cleanup_srcu_struct(&kvm->srcu);
1125 	kvm_arch_free_vm(kvm);
1126 	preempt_notifier_dec();
1127 	hardware_disable_all();
1128 	mmdrop(mm);
1129 }
1130 
1131 void kvm_get_kvm(struct kvm *kvm)
1132 {
1133 	refcount_inc(&kvm->users_count);
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1136 
1137 void kvm_put_kvm(struct kvm *kvm)
1138 {
1139 	if (refcount_dec_and_test(&kvm->users_count))
1140 		kvm_destroy_vm(kvm);
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1143 
1144 /*
1145  * Used to put a reference that was taken on behalf of an object associated
1146  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1147  * of the new file descriptor fails and the reference cannot be transferred to
1148  * its final owner.  In such cases, the caller is still actively using @kvm and
1149  * will fail miserably if the refcount unexpectedly hits zero.
1150  */
1151 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1152 {
1153 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1156 
1157 static int kvm_vm_release(struct inode *inode, struct file *filp)
1158 {
1159 	struct kvm *kvm = filp->private_data;
1160 
1161 	kvm_irqfd_release(kvm);
1162 
1163 	kvm_put_kvm(kvm);
1164 	return 0;
1165 }
1166 
1167 /*
1168  * Allocation size is twice as large as the actual dirty bitmap size.
1169  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1170  */
1171 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1172 {
1173 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1174 
1175 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1176 	if (!memslot->dirty_bitmap)
1177 		return -ENOMEM;
1178 
1179 	return 0;
1180 }
1181 
1182 /*
1183  * Delete a memslot by decrementing the number of used slots and shifting all
1184  * other entries in the array forward one spot.
1185  */
1186 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1187 				      struct kvm_memory_slot *memslot)
1188 {
1189 	struct kvm_memory_slot *mslots = slots->memslots;
1190 	int i;
1191 
1192 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1193 		return;
1194 
1195 	slots->used_slots--;
1196 
1197 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1198 		atomic_set(&slots->lru_slot, 0);
1199 
1200 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1201 		mslots[i] = mslots[i + 1];
1202 		slots->id_to_index[mslots[i].id] = i;
1203 	}
1204 	mslots[i] = *memslot;
1205 	slots->id_to_index[memslot->id] = -1;
1206 }
1207 
1208 /*
1209  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1210  * the new slot's initial index into the memslots array.
1211  */
1212 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1213 {
1214 	return slots->used_slots++;
1215 }
1216 
1217 /*
1218  * Move a changed memslot backwards in the array by shifting existing slots
1219  * with a higher GFN toward the front of the array.  Note, the changed memslot
1220  * itself is not preserved in the array, i.e. not swapped at this time, only
1221  * its new index into the array is tracked.  Returns the changed memslot's
1222  * current index into the memslots array.
1223  */
1224 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1225 					    struct kvm_memory_slot *memslot)
1226 {
1227 	struct kvm_memory_slot *mslots = slots->memslots;
1228 	int i;
1229 
1230 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1231 	    WARN_ON_ONCE(!slots->used_slots))
1232 		return -1;
1233 
1234 	/*
1235 	 * Move the target memslot backward in the array by shifting existing
1236 	 * memslots with a higher GFN (than the target memslot) towards the
1237 	 * front of the array.
1238 	 */
1239 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1240 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1241 			break;
1242 
1243 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1244 
1245 		/* Shift the next memslot forward one and update its index. */
1246 		mslots[i] = mslots[i + 1];
1247 		slots->id_to_index[mslots[i].id] = i;
1248 	}
1249 	return i;
1250 }
1251 
1252 /*
1253  * Move a changed memslot forwards in the array by shifting existing slots with
1254  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1255  * is not preserved in the array, i.e. not swapped at this time, only its new
1256  * index into the array is tracked.  Returns the changed memslot's final index
1257  * into the memslots array.
1258  */
1259 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1260 					   struct kvm_memory_slot *memslot,
1261 					   int start)
1262 {
1263 	struct kvm_memory_slot *mslots = slots->memslots;
1264 	int i;
1265 
1266 	for (i = start; i > 0; i--) {
1267 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1268 			break;
1269 
1270 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1271 
1272 		/* Shift the next memslot back one and update its index. */
1273 		mslots[i] = mslots[i - 1];
1274 		slots->id_to_index[mslots[i].id] = i;
1275 	}
1276 	return i;
1277 }
1278 
1279 /*
1280  * Re-sort memslots based on their GFN to account for an added, deleted, or
1281  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1282  * memslot lookup.
1283  *
1284  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1285  * at memslots[0] has the highest GFN.
1286  *
1287  * The sorting algorithm takes advantage of having initially sorted memslots
1288  * and knowing the position of the changed memslot.  Sorting is also optimized
1289  * by not swapping the updated memslot and instead only shifting other memslots
1290  * and tracking the new index for the update memslot.  Only once its final
1291  * index is known is the updated memslot copied into its position in the array.
1292  *
1293  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1294  *    the end of the array.
1295  *
1296  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1297  *    end of the array and then it forward to its correct location.
1298  *
1299  *  - When moving a memslot, the algorithm first moves the updated memslot
1300  *    backward to handle the scenario where the memslot's GFN was changed to a
1301  *    lower value.  update_memslots() then falls through and runs the same flow
1302  *    as creating a memslot to move the memslot forward to handle the scenario
1303  *    where its GFN was changed to a higher value.
1304  *
1305  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1306  * historical reasons.  Originally, invalid memslots where denoted by having
1307  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1308  * to the end of the array.  The current algorithm uses dedicated logic to
1309  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1310  *
1311  * The other historical motiviation for highest->lowest was to improve the
1312  * performance of memslot lookup.  KVM originally used a linear search starting
1313  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1314  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1315  * single memslot above the 4gb boundary.  As the largest memslot is also the
1316  * most likely to be referenced, sorting it to the front of the array was
1317  * advantageous.  The current binary search starts from the middle of the array
1318  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1319  */
1320 static void update_memslots(struct kvm_memslots *slots,
1321 			    struct kvm_memory_slot *memslot,
1322 			    enum kvm_mr_change change)
1323 {
1324 	int i;
1325 
1326 	if (change == KVM_MR_DELETE) {
1327 		kvm_memslot_delete(slots, memslot);
1328 	} else {
1329 		if (change == KVM_MR_CREATE)
1330 			i = kvm_memslot_insert_back(slots);
1331 		else
1332 			i = kvm_memslot_move_backward(slots, memslot);
1333 		i = kvm_memslot_move_forward(slots, memslot, i);
1334 
1335 		/*
1336 		 * Copy the memslot to its new position in memslots and update
1337 		 * its index accordingly.
1338 		 */
1339 		slots->memslots[i] = *memslot;
1340 		slots->id_to_index[memslot->id] = i;
1341 	}
1342 }
1343 
1344 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1345 {
1346 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1347 
1348 #ifdef __KVM_HAVE_READONLY_MEM
1349 	valid_flags |= KVM_MEM_READONLY;
1350 #endif
1351 
1352 	if (mem->flags & ~valid_flags)
1353 		return -EINVAL;
1354 
1355 	return 0;
1356 }
1357 
1358 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1359 		int as_id, struct kvm_memslots *slots)
1360 {
1361 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1362 	u64 gen = old_memslots->generation;
1363 
1364 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1365 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1366 
1367 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1368 
1369 	/*
1370 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1371 	 * SRCU below in order to avoid deadlock with another thread
1372 	 * acquiring the slots_arch_lock in an srcu critical section.
1373 	 */
1374 	mutex_unlock(&kvm->slots_arch_lock);
1375 
1376 	synchronize_srcu_expedited(&kvm->srcu);
1377 
1378 	/*
1379 	 * Increment the new memslot generation a second time, dropping the
1380 	 * update in-progress flag and incrementing the generation based on
1381 	 * the number of address spaces.  This provides a unique and easily
1382 	 * identifiable generation number while the memslots are in flux.
1383 	 */
1384 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1385 
1386 	/*
1387 	 * Generations must be unique even across address spaces.  We do not need
1388 	 * a global counter for that, instead the generation space is evenly split
1389 	 * across address spaces.  For example, with two address spaces, address
1390 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1391 	 * use generations 1, 3, 5, ...
1392 	 */
1393 	gen += KVM_ADDRESS_SPACE_NUM;
1394 
1395 	kvm_arch_memslots_updated(kvm, gen);
1396 
1397 	slots->generation = gen;
1398 
1399 	return old_memslots;
1400 }
1401 
1402 static size_t kvm_memslots_size(int slots)
1403 {
1404 	return sizeof(struct kvm_memslots) +
1405 	       (sizeof(struct kvm_memory_slot) * slots);
1406 }
1407 
1408 static void kvm_copy_memslots(struct kvm_memslots *to,
1409 			      struct kvm_memslots *from)
1410 {
1411 	memcpy(to, from, kvm_memslots_size(from->used_slots));
1412 }
1413 
1414 /*
1415  * Note, at a minimum, the current number of used slots must be allocated, even
1416  * when deleting a memslot, as we need a complete duplicate of the memslots for
1417  * use when invalidating a memslot prior to deleting/moving the memslot.
1418  */
1419 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1420 					     enum kvm_mr_change change)
1421 {
1422 	struct kvm_memslots *slots;
1423 	size_t new_size;
1424 
1425 	if (change == KVM_MR_CREATE)
1426 		new_size = kvm_memslots_size(old->used_slots + 1);
1427 	else
1428 		new_size = kvm_memslots_size(old->used_slots);
1429 
1430 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1431 	if (likely(slots))
1432 		kvm_copy_memslots(slots, old);
1433 
1434 	return slots;
1435 }
1436 
1437 static int kvm_set_memslot(struct kvm *kvm,
1438 			   const struct kvm_userspace_memory_region *mem,
1439 			   struct kvm_memory_slot *old,
1440 			   struct kvm_memory_slot *new, int as_id,
1441 			   enum kvm_mr_change change)
1442 {
1443 	struct kvm_memory_slot *slot;
1444 	struct kvm_memslots *slots;
1445 	int r;
1446 
1447 	/*
1448 	 * Released in install_new_memslots.
1449 	 *
1450 	 * Must be held from before the current memslots are copied until
1451 	 * after the new memslots are installed with rcu_assign_pointer,
1452 	 * then released before the synchronize srcu in install_new_memslots.
1453 	 *
1454 	 * When modifying memslots outside of the slots_lock, must be held
1455 	 * before reading the pointer to the current memslots until after all
1456 	 * changes to those memslots are complete.
1457 	 *
1458 	 * These rules ensure that installing new memslots does not lose
1459 	 * changes made to the previous memslots.
1460 	 */
1461 	mutex_lock(&kvm->slots_arch_lock);
1462 
1463 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1464 	if (!slots) {
1465 		mutex_unlock(&kvm->slots_arch_lock);
1466 		return -ENOMEM;
1467 	}
1468 
1469 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1470 		/*
1471 		 * Note, the INVALID flag needs to be in the appropriate entry
1472 		 * in the freshly allocated memslots, not in @old or @new.
1473 		 */
1474 		slot = id_to_memslot(slots, old->id);
1475 		slot->flags |= KVM_MEMSLOT_INVALID;
1476 
1477 		/*
1478 		 * We can re-use the memory from the old memslots.
1479 		 * It will be overwritten with a copy of the new memslots
1480 		 * after reacquiring the slots_arch_lock below.
1481 		 */
1482 		slots = install_new_memslots(kvm, as_id, slots);
1483 
1484 		/* From this point no new shadow pages pointing to a deleted,
1485 		 * or moved, memslot will be created.
1486 		 *
1487 		 * validation of sp->gfn happens in:
1488 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1489 		 *	- kvm_is_visible_gfn (mmu_check_root)
1490 		 */
1491 		kvm_arch_flush_shadow_memslot(kvm, slot);
1492 
1493 		/* Released in install_new_memslots. */
1494 		mutex_lock(&kvm->slots_arch_lock);
1495 
1496 		/*
1497 		 * The arch-specific fields of the memslots could have changed
1498 		 * between releasing the slots_arch_lock in
1499 		 * install_new_memslots and here, so get a fresh copy of the
1500 		 * slots.
1501 		 */
1502 		kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1503 	}
1504 
1505 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1506 	if (r)
1507 		goto out_slots;
1508 
1509 	update_memslots(slots, new, change);
1510 	slots = install_new_memslots(kvm, as_id, slots);
1511 
1512 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1513 
1514 	kvfree(slots);
1515 	return 0;
1516 
1517 out_slots:
1518 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1519 		slot = id_to_memslot(slots, old->id);
1520 		slot->flags &= ~KVM_MEMSLOT_INVALID;
1521 		slots = install_new_memslots(kvm, as_id, slots);
1522 	} else {
1523 		mutex_unlock(&kvm->slots_arch_lock);
1524 	}
1525 	kvfree(slots);
1526 	return r;
1527 }
1528 
1529 static int kvm_delete_memslot(struct kvm *kvm,
1530 			      const struct kvm_userspace_memory_region *mem,
1531 			      struct kvm_memory_slot *old, int as_id)
1532 {
1533 	struct kvm_memory_slot new;
1534 	int r;
1535 
1536 	if (!old->npages)
1537 		return -EINVAL;
1538 
1539 	memset(&new, 0, sizeof(new));
1540 	new.id = old->id;
1541 	/*
1542 	 * This is only for debugging purpose; it should never be referenced
1543 	 * for a removed memslot.
1544 	 */
1545 	new.as_id = as_id;
1546 
1547 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1548 	if (r)
1549 		return r;
1550 
1551 	kvm_free_memslot(kvm, old);
1552 	return 0;
1553 }
1554 
1555 /*
1556  * Allocate some memory and give it an address in the guest physical address
1557  * space.
1558  *
1559  * Discontiguous memory is allowed, mostly for framebuffers.
1560  *
1561  * Must be called holding kvm->slots_lock for write.
1562  */
1563 int __kvm_set_memory_region(struct kvm *kvm,
1564 			    const struct kvm_userspace_memory_region *mem)
1565 {
1566 	struct kvm_memory_slot old, new;
1567 	struct kvm_memory_slot *tmp;
1568 	enum kvm_mr_change change;
1569 	int as_id, id;
1570 	int r;
1571 
1572 	r = check_memory_region_flags(mem);
1573 	if (r)
1574 		return r;
1575 
1576 	as_id = mem->slot >> 16;
1577 	id = (u16)mem->slot;
1578 
1579 	/* General sanity checks */
1580 	if (mem->memory_size & (PAGE_SIZE - 1))
1581 		return -EINVAL;
1582 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1583 		return -EINVAL;
1584 	/* We can read the guest memory with __xxx_user() later on. */
1585 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1586 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1587 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1588 			mem->memory_size))
1589 		return -EINVAL;
1590 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1591 		return -EINVAL;
1592 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1593 		return -EINVAL;
1594 
1595 	/*
1596 	 * Make a full copy of the old memslot, the pointer will become stale
1597 	 * when the memslots are re-sorted by update_memslots(), and the old
1598 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1599 	 * to free its resources and for arch specific behavior.
1600 	 */
1601 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1602 	if (tmp) {
1603 		old = *tmp;
1604 		tmp = NULL;
1605 	} else {
1606 		memset(&old, 0, sizeof(old));
1607 		old.id = id;
1608 	}
1609 
1610 	if (!mem->memory_size)
1611 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1612 
1613 	new.as_id = as_id;
1614 	new.id = id;
1615 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1616 	new.npages = mem->memory_size >> PAGE_SHIFT;
1617 	new.flags = mem->flags;
1618 	new.userspace_addr = mem->userspace_addr;
1619 
1620 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1621 		return -EINVAL;
1622 
1623 	if (!old.npages) {
1624 		change = KVM_MR_CREATE;
1625 		new.dirty_bitmap = NULL;
1626 		memset(&new.arch, 0, sizeof(new.arch));
1627 	} else { /* Modify an existing slot. */
1628 		if ((new.userspace_addr != old.userspace_addr) ||
1629 		    (new.npages != old.npages) ||
1630 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1631 			return -EINVAL;
1632 
1633 		if (new.base_gfn != old.base_gfn)
1634 			change = KVM_MR_MOVE;
1635 		else if (new.flags != old.flags)
1636 			change = KVM_MR_FLAGS_ONLY;
1637 		else /* Nothing to change. */
1638 			return 0;
1639 
1640 		/* Copy dirty_bitmap and arch from the current memslot. */
1641 		new.dirty_bitmap = old.dirty_bitmap;
1642 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1643 	}
1644 
1645 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1646 		/* Check for overlaps */
1647 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1648 			if (tmp->id == id)
1649 				continue;
1650 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1651 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1652 				return -EEXIST;
1653 		}
1654 	}
1655 
1656 	/* Allocate/free page dirty bitmap as needed */
1657 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1658 		new.dirty_bitmap = NULL;
1659 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1660 		r = kvm_alloc_dirty_bitmap(&new);
1661 		if (r)
1662 			return r;
1663 
1664 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1665 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1666 	}
1667 
1668 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1669 	if (r)
1670 		goto out_bitmap;
1671 
1672 	if (old.dirty_bitmap && !new.dirty_bitmap)
1673 		kvm_destroy_dirty_bitmap(&old);
1674 	return 0;
1675 
1676 out_bitmap:
1677 	if (new.dirty_bitmap && !old.dirty_bitmap)
1678 		kvm_destroy_dirty_bitmap(&new);
1679 	return r;
1680 }
1681 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1682 
1683 int kvm_set_memory_region(struct kvm *kvm,
1684 			  const struct kvm_userspace_memory_region *mem)
1685 {
1686 	int r;
1687 
1688 	mutex_lock(&kvm->slots_lock);
1689 	r = __kvm_set_memory_region(kvm, mem);
1690 	mutex_unlock(&kvm->slots_lock);
1691 	return r;
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1694 
1695 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1696 					  struct kvm_userspace_memory_region *mem)
1697 {
1698 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1699 		return -EINVAL;
1700 
1701 	return kvm_set_memory_region(kvm, mem);
1702 }
1703 
1704 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1705 /**
1706  * kvm_get_dirty_log - get a snapshot of dirty pages
1707  * @kvm:	pointer to kvm instance
1708  * @log:	slot id and address to which we copy the log
1709  * @is_dirty:	set to '1' if any dirty pages were found
1710  * @memslot:	set to the associated memslot, always valid on success
1711  */
1712 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1713 		      int *is_dirty, struct kvm_memory_slot **memslot)
1714 {
1715 	struct kvm_memslots *slots;
1716 	int i, as_id, id;
1717 	unsigned long n;
1718 	unsigned long any = 0;
1719 
1720 	/* Dirty ring tracking is exclusive to dirty log tracking */
1721 	if (kvm->dirty_ring_size)
1722 		return -ENXIO;
1723 
1724 	*memslot = NULL;
1725 	*is_dirty = 0;
1726 
1727 	as_id = log->slot >> 16;
1728 	id = (u16)log->slot;
1729 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1730 		return -EINVAL;
1731 
1732 	slots = __kvm_memslots(kvm, as_id);
1733 	*memslot = id_to_memslot(slots, id);
1734 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1735 		return -ENOENT;
1736 
1737 	kvm_arch_sync_dirty_log(kvm, *memslot);
1738 
1739 	n = kvm_dirty_bitmap_bytes(*memslot);
1740 
1741 	for (i = 0; !any && i < n/sizeof(long); ++i)
1742 		any = (*memslot)->dirty_bitmap[i];
1743 
1744 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1745 		return -EFAULT;
1746 
1747 	if (any)
1748 		*is_dirty = 1;
1749 	return 0;
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1752 
1753 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1754 /**
1755  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1756  *	and reenable dirty page tracking for the corresponding pages.
1757  * @kvm:	pointer to kvm instance
1758  * @log:	slot id and address to which we copy the log
1759  *
1760  * We need to keep it in mind that VCPU threads can write to the bitmap
1761  * concurrently. So, to avoid losing track of dirty pages we keep the
1762  * following order:
1763  *
1764  *    1. Take a snapshot of the bit and clear it if needed.
1765  *    2. Write protect the corresponding page.
1766  *    3. Copy the snapshot to the userspace.
1767  *    4. Upon return caller flushes TLB's if needed.
1768  *
1769  * Between 2 and 4, the guest may write to the page using the remaining TLB
1770  * entry.  This is not a problem because the page is reported dirty using
1771  * the snapshot taken before and step 4 ensures that writes done after
1772  * exiting to userspace will be logged for the next call.
1773  *
1774  */
1775 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1776 {
1777 	struct kvm_memslots *slots;
1778 	struct kvm_memory_slot *memslot;
1779 	int i, as_id, id;
1780 	unsigned long n;
1781 	unsigned long *dirty_bitmap;
1782 	unsigned long *dirty_bitmap_buffer;
1783 	bool flush;
1784 
1785 	/* Dirty ring tracking is exclusive to dirty log tracking */
1786 	if (kvm->dirty_ring_size)
1787 		return -ENXIO;
1788 
1789 	as_id = log->slot >> 16;
1790 	id = (u16)log->slot;
1791 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1792 		return -EINVAL;
1793 
1794 	slots = __kvm_memslots(kvm, as_id);
1795 	memslot = id_to_memslot(slots, id);
1796 	if (!memslot || !memslot->dirty_bitmap)
1797 		return -ENOENT;
1798 
1799 	dirty_bitmap = memslot->dirty_bitmap;
1800 
1801 	kvm_arch_sync_dirty_log(kvm, memslot);
1802 
1803 	n = kvm_dirty_bitmap_bytes(memslot);
1804 	flush = false;
1805 	if (kvm->manual_dirty_log_protect) {
1806 		/*
1807 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1808 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1809 		 * is some code duplication between this function and
1810 		 * kvm_get_dirty_log, but hopefully all architecture
1811 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1812 		 * can be eliminated.
1813 		 */
1814 		dirty_bitmap_buffer = dirty_bitmap;
1815 	} else {
1816 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1817 		memset(dirty_bitmap_buffer, 0, n);
1818 
1819 		KVM_MMU_LOCK(kvm);
1820 		for (i = 0; i < n / sizeof(long); i++) {
1821 			unsigned long mask;
1822 			gfn_t offset;
1823 
1824 			if (!dirty_bitmap[i])
1825 				continue;
1826 
1827 			flush = true;
1828 			mask = xchg(&dirty_bitmap[i], 0);
1829 			dirty_bitmap_buffer[i] = mask;
1830 
1831 			offset = i * BITS_PER_LONG;
1832 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1833 								offset, mask);
1834 		}
1835 		KVM_MMU_UNLOCK(kvm);
1836 	}
1837 
1838 	if (flush)
1839 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1840 
1841 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1842 		return -EFAULT;
1843 	return 0;
1844 }
1845 
1846 
1847 /**
1848  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1849  * @kvm: kvm instance
1850  * @log: slot id and address to which we copy the log
1851  *
1852  * Steps 1-4 below provide general overview of dirty page logging. See
1853  * kvm_get_dirty_log_protect() function description for additional details.
1854  *
1855  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1856  * always flush the TLB (step 4) even if previous step failed  and the dirty
1857  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1858  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1859  * writes will be marked dirty for next log read.
1860  *
1861  *   1. Take a snapshot of the bit and clear it if needed.
1862  *   2. Write protect the corresponding page.
1863  *   3. Copy the snapshot to the userspace.
1864  *   4. Flush TLB's if needed.
1865  */
1866 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1867 				      struct kvm_dirty_log *log)
1868 {
1869 	int r;
1870 
1871 	mutex_lock(&kvm->slots_lock);
1872 
1873 	r = kvm_get_dirty_log_protect(kvm, log);
1874 
1875 	mutex_unlock(&kvm->slots_lock);
1876 	return r;
1877 }
1878 
1879 /**
1880  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1881  *	and reenable dirty page tracking for the corresponding pages.
1882  * @kvm:	pointer to kvm instance
1883  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1884  */
1885 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1886 				       struct kvm_clear_dirty_log *log)
1887 {
1888 	struct kvm_memslots *slots;
1889 	struct kvm_memory_slot *memslot;
1890 	int as_id, id;
1891 	gfn_t offset;
1892 	unsigned long i, n;
1893 	unsigned long *dirty_bitmap;
1894 	unsigned long *dirty_bitmap_buffer;
1895 	bool flush;
1896 
1897 	/* Dirty ring tracking is exclusive to dirty log tracking */
1898 	if (kvm->dirty_ring_size)
1899 		return -ENXIO;
1900 
1901 	as_id = log->slot >> 16;
1902 	id = (u16)log->slot;
1903 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1904 		return -EINVAL;
1905 
1906 	if (log->first_page & 63)
1907 		return -EINVAL;
1908 
1909 	slots = __kvm_memslots(kvm, as_id);
1910 	memslot = id_to_memslot(slots, id);
1911 	if (!memslot || !memslot->dirty_bitmap)
1912 		return -ENOENT;
1913 
1914 	dirty_bitmap = memslot->dirty_bitmap;
1915 
1916 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1917 
1918 	if (log->first_page > memslot->npages ||
1919 	    log->num_pages > memslot->npages - log->first_page ||
1920 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1921 	    return -EINVAL;
1922 
1923 	kvm_arch_sync_dirty_log(kvm, memslot);
1924 
1925 	flush = false;
1926 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1927 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1928 		return -EFAULT;
1929 
1930 	KVM_MMU_LOCK(kvm);
1931 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1932 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1933 	     i++, offset += BITS_PER_LONG) {
1934 		unsigned long mask = *dirty_bitmap_buffer++;
1935 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1936 		if (!mask)
1937 			continue;
1938 
1939 		mask &= atomic_long_fetch_andnot(mask, p);
1940 
1941 		/*
1942 		 * mask contains the bits that really have been cleared.  This
1943 		 * never includes any bits beyond the length of the memslot (if
1944 		 * the length is not aligned to 64 pages), therefore it is not
1945 		 * a problem if userspace sets them in log->dirty_bitmap.
1946 		*/
1947 		if (mask) {
1948 			flush = true;
1949 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1950 								offset, mask);
1951 		}
1952 	}
1953 	KVM_MMU_UNLOCK(kvm);
1954 
1955 	if (flush)
1956 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1957 
1958 	return 0;
1959 }
1960 
1961 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1962 					struct kvm_clear_dirty_log *log)
1963 {
1964 	int r;
1965 
1966 	mutex_lock(&kvm->slots_lock);
1967 
1968 	r = kvm_clear_dirty_log_protect(kvm, log);
1969 
1970 	mutex_unlock(&kvm->slots_lock);
1971 	return r;
1972 }
1973 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1974 
1975 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1976 {
1977 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1980 
1981 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1986 
1987 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1988 {
1989 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1990 
1991 	return kvm_is_visible_memslot(memslot);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1994 
1995 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1996 {
1997 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1998 
1999 	return kvm_is_visible_memslot(memslot);
2000 }
2001 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2002 
2003 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2004 {
2005 	struct vm_area_struct *vma;
2006 	unsigned long addr, size;
2007 
2008 	size = PAGE_SIZE;
2009 
2010 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2011 	if (kvm_is_error_hva(addr))
2012 		return PAGE_SIZE;
2013 
2014 	mmap_read_lock(current->mm);
2015 	vma = find_vma(current->mm, addr);
2016 	if (!vma)
2017 		goto out;
2018 
2019 	size = vma_kernel_pagesize(vma);
2020 
2021 out:
2022 	mmap_read_unlock(current->mm);
2023 
2024 	return size;
2025 }
2026 
2027 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2028 {
2029 	return slot->flags & KVM_MEM_READONLY;
2030 }
2031 
2032 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2033 				       gfn_t *nr_pages, bool write)
2034 {
2035 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2036 		return KVM_HVA_ERR_BAD;
2037 
2038 	if (memslot_is_readonly(slot) && write)
2039 		return KVM_HVA_ERR_RO_BAD;
2040 
2041 	if (nr_pages)
2042 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2043 
2044 	return __gfn_to_hva_memslot(slot, gfn);
2045 }
2046 
2047 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2048 				     gfn_t *nr_pages)
2049 {
2050 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2051 }
2052 
2053 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2054 					gfn_t gfn)
2055 {
2056 	return gfn_to_hva_many(slot, gfn, NULL);
2057 }
2058 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2059 
2060 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2061 {
2062 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2063 }
2064 EXPORT_SYMBOL_GPL(gfn_to_hva);
2065 
2066 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2067 {
2068 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2071 
2072 /*
2073  * Return the hva of a @gfn and the R/W attribute if possible.
2074  *
2075  * @slot: the kvm_memory_slot which contains @gfn
2076  * @gfn: the gfn to be translated
2077  * @writable: used to return the read/write attribute of the @slot if the hva
2078  * is valid and @writable is not NULL
2079  */
2080 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2081 				      gfn_t gfn, bool *writable)
2082 {
2083 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2084 
2085 	if (!kvm_is_error_hva(hva) && writable)
2086 		*writable = !memslot_is_readonly(slot);
2087 
2088 	return hva;
2089 }
2090 
2091 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2092 {
2093 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2094 
2095 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2096 }
2097 
2098 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2099 {
2100 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2101 
2102 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2103 }
2104 
2105 static inline int check_user_page_hwpoison(unsigned long addr)
2106 {
2107 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2108 
2109 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2110 	return rc == -EHWPOISON;
2111 }
2112 
2113 /*
2114  * The fast path to get the writable pfn which will be stored in @pfn,
2115  * true indicates success, otherwise false is returned.  It's also the
2116  * only part that runs if we can in atomic context.
2117  */
2118 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2119 			    bool *writable, kvm_pfn_t *pfn)
2120 {
2121 	struct page *page[1];
2122 
2123 	/*
2124 	 * Fast pin a writable pfn only if it is a write fault request
2125 	 * or the caller allows to map a writable pfn for a read fault
2126 	 * request.
2127 	 */
2128 	if (!(write_fault || writable))
2129 		return false;
2130 
2131 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2132 		*pfn = page_to_pfn(page[0]);
2133 
2134 		if (writable)
2135 			*writable = true;
2136 		return true;
2137 	}
2138 
2139 	return false;
2140 }
2141 
2142 /*
2143  * The slow path to get the pfn of the specified host virtual address,
2144  * 1 indicates success, -errno is returned if error is detected.
2145  */
2146 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2147 			   bool *writable, kvm_pfn_t *pfn)
2148 {
2149 	unsigned int flags = FOLL_HWPOISON;
2150 	struct page *page;
2151 	int npages = 0;
2152 
2153 	might_sleep();
2154 
2155 	if (writable)
2156 		*writable = write_fault;
2157 
2158 	if (write_fault)
2159 		flags |= FOLL_WRITE;
2160 	if (async)
2161 		flags |= FOLL_NOWAIT;
2162 
2163 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2164 	if (npages != 1)
2165 		return npages;
2166 
2167 	/* map read fault as writable if possible */
2168 	if (unlikely(!write_fault) && writable) {
2169 		struct page *wpage;
2170 
2171 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2172 			*writable = true;
2173 			put_page(page);
2174 			page = wpage;
2175 		}
2176 	}
2177 	*pfn = page_to_pfn(page);
2178 	return npages;
2179 }
2180 
2181 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2182 {
2183 	if (unlikely(!(vma->vm_flags & VM_READ)))
2184 		return false;
2185 
2186 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2187 		return false;
2188 
2189 	return true;
2190 }
2191 
2192 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2193 {
2194 	if (kvm_is_reserved_pfn(pfn))
2195 		return 1;
2196 	return get_page_unless_zero(pfn_to_page(pfn));
2197 }
2198 
2199 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2200 			       unsigned long addr, bool *async,
2201 			       bool write_fault, bool *writable,
2202 			       kvm_pfn_t *p_pfn)
2203 {
2204 	kvm_pfn_t pfn;
2205 	pte_t *ptep;
2206 	spinlock_t *ptl;
2207 	int r;
2208 
2209 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2210 	if (r) {
2211 		/*
2212 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2213 		 * not call the fault handler, so do it here.
2214 		 */
2215 		bool unlocked = false;
2216 		r = fixup_user_fault(current->mm, addr,
2217 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2218 				     &unlocked);
2219 		if (unlocked)
2220 			return -EAGAIN;
2221 		if (r)
2222 			return r;
2223 
2224 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2225 		if (r)
2226 			return r;
2227 	}
2228 
2229 	if (write_fault && !pte_write(*ptep)) {
2230 		pfn = KVM_PFN_ERR_RO_FAULT;
2231 		goto out;
2232 	}
2233 
2234 	if (writable)
2235 		*writable = pte_write(*ptep);
2236 	pfn = pte_pfn(*ptep);
2237 
2238 	/*
2239 	 * Get a reference here because callers of *hva_to_pfn* and
2240 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2241 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2242 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2243 	 * simply do nothing for reserved pfns.
2244 	 *
2245 	 * Whoever called remap_pfn_range is also going to call e.g.
2246 	 * unmap_mapping_range before the underlying pages are freed,
2247 	 * causing a call to our MMU notifier.
2248 	 *
2249 	 * Certain IO or PFNMAP mappings can be backed with valid
2250 	 * struct pages, but be allocated without refcounting e.g.,
2251 	 * tail pages of non-compound higher order allocations, which
2252 	 * would then underflow the refcount when the caller does the
2253 	 * required put_page. Don't allow those pages here.
2254 	 */
2255 	if (!kvm_try_get_pfn(pfn))
2256 		r = -EFAULT;
2257 
2258 out:
2259 	pte_unmap_unlock(ptep, ptl);
2260 	*p_pfn = pfn;
2261 
2262 	return r;
2263 }
2264 
2265 /*
2266  * Pin guest page in memory and return its pfn.
2267  * @addr: host virtual address which maps memory to the guest
2268  * @atomic: whether this function can sleep
2269  * @async: whether this function need to wait IO complete if the
2270  *         host page is not in the memory
2271  * @write_fault: whether we should get a writable host page
2272  * @writable: whether it allows to map a writable host page for !@write_fault
2273  *
2274  * The function will map a writable host page for these two cases:
2275  * 1): @write_fault = true
2276  * 2): @write_fault = false && @writable, @writable will tell the caller
2277  *     whether the mapping is writable.
2278  */
2279 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2280 			bool write_fault, bool *writable)
2281 {
2282 	struct vm_area_struct *vma;
2283 	kvm_pfn_t pfn = 0;
2284 	int npages, r;
2285 
2286 	/* we can do it either atomically or asynchronously, not both */
2287 	BUG_ON(atomic && async);
2288 
2289 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2290 		return pfn;
2291 
2292 	if (atomic)
2293 		return KVM_PFN_ERR_FAULT;
2294 
2295 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2296 	if (npages == 1)
2297 		return pfn;
2298 
2299 	mmap_read_lock(current->mm);
2300 	if (npages == -EHWPOISON ||
2301 	      (!async && check_user_page_hwpoison(addr))) {
2302 		pfn = KVM_PFN_ERR_HWPOISON;
2303 		goto exit;
2304 	}
2305 
2306 retry:
2307 	vma = vma_lookup(current->mm, addr);
2308 
2309 	if (vma == NULL)
2310 		pfn = KVM_PFN_ERR_FAULT;
2311 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2312 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2313 		if (r == -EAGAIN)
2314 			goto retry;
2315 		if (r < 0)
2316 			pfn = KVM_PFN_ERR_FAULT;
2317 	} else {
2318 		if (async && vma_is_valid(vma, write_fault))
2319 			*async = true;
2320 		pfn = KVM_PFN_ERR_FAULT;
2321 	}
2322 exit:
2323 	mmap_read_unlock(current->mm);
2324 	return pfn;
2325 }
2326 
2327 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2328 			       bool atomic, bool *async, bool write_fault,
2329 			       bool *writable, hva_t *hva)
2330 {
2331 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2332 
2333 	if (hva)
2334 		*hva = addr;
2335 
2336 	if (addr == KVM_HVA_ERR_RO_BAD) {
2337 		if (writable)
2338 			*writable = false;
2339 		return KVM_PFN_ERR_RO_FAULT;
2340 	}
2341 
2342 	if (kvm_is_error_hva(addr)) {
2343 		if (writable)
2344 			*writable = false;
2345 		return KVM_PFN_NOSLOT;
2346 	}
2347 
2348 	/* Do not map writable pfn in the readonly memslot. */
2349 	if (writable && memslot_is_readonly(slot)) {
2350 		*writable = false;
2351 		writable = NULL;
2352 	}
2353 
2354 	return hva_to_pfn(addr, atomic, async, write_fault,
2355 			  writable);
2356 }
2357 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2358 
2359 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2360 		      bool *writable)
2361 {
2362 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2363 				    write_fault, writable, NULL);
2364 }
2365 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2366 
2367 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2368 {
2369 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2370 }
2371 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2372 
2373 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2374 {
2375 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2376 }
2377 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2378 
2379 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2380 {
2381 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2384 
2385 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2386 {
2387 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2388 }
2389 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2390 
2391 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2392 {
2393 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2394 }
2395 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2396 
2397 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2398 			    struct page **pages, int nr_pages)
2399 {
2400 	unsigned long addr;
2401 	gfn_t entry = 0;
2402 
2403 	addr = gfn_to_hva_many(slot, gfn, &entry);
2404 	if (kvm_is_error_hva(addr))
2405 		return -1;
2406 
2407 	if (entry < nr_pages)
2408 		return 0;
2409 
2410 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2411 }
2412 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2413 
2414 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2415 {
2416 	if (is_error_noslot_pfn(pfn))
2417 		return KVM_ERR_PTR_BAD_PAGE;
2418 
2419 	if (kvm_is_reserved_pfn(pfn)) {
2420 		WARN_ON(1);
2421 		return KVM_ERR_PTR_BAD_PAGE;
2422 	}
2423 
2424 	return pfn_to_page(pfn);
2425 }
2426 
2427 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2428 {
2429 	kvm_pfn_t pfn;
2430 
2431 	pfn = gfn_to_pfn(kvm, gfn);
2432 
2433 	return kvm_pfn_to_page(pfn);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_page);
2436 
2437 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2438 {
2439 	if (pfn == 0)
2440 		return;
2441 
2442 	if (cache)
2443 		cache->pfn = cache->gfn = 0;
2444 
2445 	if (dirty)
2446 		kvm_release_pfn_dirty(pfn);
2447 	else
2448 		kvm_release_pfn_clean(pfn);
2449 }
2450 
2451 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2452 				 struct gfn_to_pfn_cache *cache, u64 gen)
2453 {
2454 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2455 
2456 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2457 	cache->gfn = gfn;
2458 	cache->dirty = false;
2459 	cache->generation = gen;
2460 }
2461 
2462 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2463 			 struct kvm_host_map *map,
2464 			 struct gfn_to_pfn_cache *cache,
2465 			 bool atomic)
2466 {
2467 	kvm_pfn_t pfn;
2468 	void *hva = NULL;
2469 	struct page *page = KVM_UNMAPPED_PAGE;
2470 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2471 	u64 gen = slots->generation;
2472 
2473 	if (!map)
2474 		return -EINVAL;
2475 
2476 	if (cache) {
2477 		if (!cache->pfn || cache->gfn != gfn ||
2478 			cache->generation != gen) {
2479 			if (atomic)
2480 				return -EAGAIN;
2481 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2482 		}
2483 		pfn = cache->pfn;
2484 	} else {
2485 		if (atomic)
2486 			return -EAGAIN;
2487 		pfn = gfn_to_pfn_memslot(slot, gfn);
2488 	}
2489 	if (is_error_noslot_pfn(pfn))
2490 		return -EINVAL;
2491 
2492 	if (pfn_valid(pfn)) {
2493 		page = pfn_to_page(pfn);
2494 		if (atomic)
2495 			hva = kmap_atomic(page);
2496 		else
2497 			hva = kmap(page);
2498 #ifdef CONFIG_HAS_IOMEM
2499 	} else if (!atomic) {
2500 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2501 	} else {
2502 		return -EINVAL;
2503 #endif
2504 	}
2505 
2506 	if (!hva)
2507 		return -EFAULT;
2508 
2509 	map->page = page;
2510 	map->hva = hva;
2511 	map->pfn = pfn;
2512 	map->gfn = gfn;
2513 
2514 	return 0;
2515 }
2516 
2517 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2518 		struct gfn_to_pfn_cache *cache, bool atomic)
2519 {
2520 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2521 			cache, atomic);
2522 }
2523 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2524 
2525 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2526 {
2527 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2528 		NULL, false);
2529 }
2530 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2531 
2532 static void __kvm_unmap_gfn(struct kvm *kvm,
2533 			struct kvm_memory_slot *memslot,
2534 			struct kvm_host_map *map,
2535 			struct gfn_to_pfn_cache *cache,
2536 			bool dirty, bool atomic)
2537 {
2538 	if (!map)
2539 		return;
2540 
2541 	if (!map->hva)
2542 		return;
2543 
2544 	if (map->page != KVM_UNMAPPED_PAGE) {
2545 		if (atomic)
2546 			kunmap_atomic(map->hva);
2547 		else
2548 			kunmap(map->page);
2549 	}
2550 #ifdef CONFIG_HAS_IOMEM
2551 	else if (!atomic)
2552 		memunmap(map->hva);
2553 	else
2554 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2555 #endif
2556 
2557 	if (dirty)
2558 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2559 
2560 	if (cache)
2561 		cache->dirty |= dirty;
2562 	else
2563 		kvm_release_pfn(map->pfn, dirty, NULL);
2564 
2565 	map->hva = NULL;
2566 	map->page = NULL;
2567 }
2568 
2569 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2570 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2571 {
2572 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2573 			cache, dirty, atomic);
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2577 
2578 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2579 {
2580 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2581 			map, NULL, dirty, false);
2582 }
2583 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2584 
2585 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2586 {
2587 	kvm_pfn_t pfn;
2588 
2589 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2590 
2591 	return kvm_pfn_to_page(pfn);
2592 }
2593 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2594 
2595 void kvm_release_page_clean(struct page *page)
2596 {
2597 	WARN_ON(is_error_page(page));
2598 
2599 	kvm_release_pfn_clean(page_to_pfn(page));
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2602 
2603 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2604 {
2605 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2606 		put_page(pfn_to_page(pfn));
2607 }
2608 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2609 
2610 void kvm_release_page_dirty(struct page *page)
2611 {
2612 	WARN_ON(is_error_page(page));
2613 
2614 	kvm_release_pfn_dirty(page_to_pfn(page));
2615 }
2616 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2617 
2618 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2619 {
2620 	kvm_set_pfn_dirty(pfn);
2621 	kvm_release_pfn_clean(pfn);
2622 }
2623 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2624 
2625 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2626 {
2627 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2628 		SetPageDirty(pfn_to_page(pfn));
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2631 
2632 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2633 {
2634 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2635 		mark_page_accessed(pfn_to_page(pfn));
2636 }
2637 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2638 
2639 void kvm_get_pfn(kvm_pfn_t pfn)
2640 {
2641 	if (!kvm_is_reserved_pfn(pfn))
2642 		get_page(pfn_to_page(pfn));
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2645 
2646 static int next_segment(unsigned long len, int offset)
2647 {
2648 	if (len > PAGE_SIZE - offset)
2649 		return PAGE_SIZE - offset;
2650 	else
2651 		return len;
2652 }
2653 
2654 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2655 				 void *data, int offset, int len)
2656 {
2657 	int r;
2658 	unsigned long addr;
2659 
2660 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2661 	if (kvm_is_error_hva(addr))
2662 		return -EFAULT;
2663 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2664 	if (r)
2665 		return -EFAULT;
2666 	return 0;
2667 }
2668 
2669 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2670 			int len)
2671 {
2672 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2673 
2674 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2675 }
2676 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2677 
2678 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2679 			     int offset, int len)
2680 {
2681 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2682 
2683 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2684 }
2685 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2686 
2687 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2688 {
2689 	gfn_t gfn = gpa >> PAGE_SHIFT;
2690 	int seg;
2691 	int offset = offset_in_page(gpa);
2692 	int ret;
2693 
2694 	while ((seg = next_segment(len, offset)) != 0) {
2695 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2696 		if (ret < 0)
2697 			return ret;
2698 		offset = 0;
2699 		len -= seg;
2700 		data += seg;
2701 		++gfn;
2702 	}
2703 	return 0;
2704 }
2705 EXPORT_SYMBOL_GPL(kvm_read_guest);
2706 
2707 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2708 {
2709 	gfn_t gfn = gpa >> PAGE_SHIFT;
2710 	int seg;
2711 	int offset = offset_in_page(gpa);
2712 	int ret;
2713 
2714 	while ((seg = next_segment(len, offset)) != 0) {
2715 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2716 		if (ret < 0)
2717 			return ret;
2718 		offset = 0;
2719 		len -= seg;
2720 		data += seg;
2721 		++gfn;
2722 	}
2723 	return 0;
2724 }
2725 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2726 
2727 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2728 			           void *data, int offset, unsigned long len)
2729 {
2730 	int r;
2731 	unsigned long addr;
2732 
2733 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2734 	if (kvm_is_error_hva(addr))
2735 		return -EFAULT;
2736 	pagefault_disable();
2737 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2738 	pagefault_enable();
2739 	if (r)
2740 		return -EFAULT;
2741 	return 0;
2742 }
2743 
2744 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2745 			       void *data, unsigned long len)
2746 {
2747 	gfn_t gfn = gpa >> PAGE_SHIFT;
2748 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2749 	int offset = offset_in_page(gpa);
2750 
2751 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2754 
2755 static int __kvm_write_guest_page(struct kvm *kvm,
2756 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2757 			          const void *data, int offset, int len)
2758 {
2759 	int r;
2760 	unsigned long addr;
2761 
2762 	addr = gfn_to_hva_memslot(memslot, gfn);
2763 	if (kvm_is_error_hva(addr))
2764 		return -EFAULT;
2765 	r = __copy_to_user((void __user *)addr + offset, data, len);
2766 	if (r)
2767 		return -EFAULT;
2768 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2769 	return 0;
2770 }
2771 
2772 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2773 			 const void *data, int offset, int len)
2774 {
2775 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2776 
2777 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2780 
2781 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2782 			      const void *data, int offset, int len)
2783 {
2784 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2785 
2786 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2787 }
2788 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2789 
2790 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2791 		    unsigned long len)
2792 {
2793 	gfn_t gfn = gpa >> PAGE_SHIFT;
2794 	int seg;
2795 	int offset = offset_in_page(gpa);
2796 	int ret;
2797 
2798 	while ((seg = next_segment(len, offset)) != 0) {
2799 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2800 		if (ret < 0)
2801 			return ret;
2802 		offset = 0;
2803 		len -= seg;
2804 		data += seg;
2805 		++gfn;
2806 	}
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_write_guest);
2810 
2811 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2812 		         unsigned long len)
2813 {
2814 	gfn_t gfn = gpa >> PAGE_SHIFT;
2815 	int seg;
2816 	int offset = offset_in_page(gpa);
2817 	int ret;
2818 
2819 	while ((seg = next_segment(len, offset)) != 0) {
2820 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2821 		if (ret < 0)
2822 			return ret;
2823 		offset = 0;
2824 		len -= seg;
2825 		data += seg;
2826 		++gfn;
2827 	}
2828 	return 0;
2829 }
2830 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2831 
2832 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2833 				       struct gfn_to_hva_cache *ghc,
2834 				       gpa_t gpa, unsigned long len)
2835 {
2836 	int offset = offset_in_page(gpa);
2837 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2838 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2839 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2840 	gfn_t nr_pages_avail;
2841 
2842 	/* Update ghc->generation before performing any error checks. */
2843 	ghc->generation = slots->generation;
2844 
2845 	if (start_gfn > end_gfn) {
2846 		ghc->hva = KVM_HVA_ERR_BAD;
2847 		return -EINVAL;
2848 	}
2849 
2850 	/*
2851 	 * If the requested region crosses two memslots, we still
2852 	 * verify that the entire region is valid here.
2853 	 */
2854 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2855 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2856 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2857 					   &nr_pages_avail);
2858 		if (kvm_is_error_hva(ghc->hva))
2859 			return -EFAULT;
2860 	}
2861 
2862 	/* Use the slow path for cross page reads and writes. */
2863 	if (nr_pages_needed == 1)
2864 		ghc->hva += offset;
2865 	else
2866 		ghc->memslot = NULL;
2867 
2868 	ghc->gpa = gpa;
2869 	ghc->len = len;
2870 	return 0;
2871 }
2872 
2873 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2874 			      gpa_t gpa, unsigned long len)
2875 {
2876 	struct kvm_memslots *slots = kvm_memslots(kvm);
2877 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2878 }
2879 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2880 
2881 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2882 				  void *data, unsigned int offset,
2883 				  unsigned long len)
2884 {
2885 	struct kvm_memslots *slots = kvm_memslots(kvm);
2886 	int r;
2887 	gpa_t gpa = ghc->gpa + offset;
2888 
2889 	BUG_ON(len + offset > ghc->len);
2890 
2891 	if (slots->generation != ghc->generation) {
2892 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2893 			return -EFAULT;
2894 	}
2895 
2896 	if (kvm_is_error_hva(ghc->hva))
2897 		return -EFAULT;
2898 
2899 	if (unlikely(!ghc->memslot))
2900 		return kvm_write_guest(kvm, gpa, data, len);
2901 
2902 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2903 	if (r)
2904 		return -EFAULT;
2905 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2906 
2907 	return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2910 
2911 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2912 			   void *data, unsigned long len)
2913 {
2914 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2915 }
2916 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2917 
2918 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2919 				 void *data, unsigned int offset,
2920 				 unsigned long len)
2921 {
2922 	struct kvm_memslots *slots = kvm_memslots(kvm);
2923 	int r;
2924 	gpa_t gpa = ghc->gpa + offset;
2925 
2926 	BUG_ON(len + offset > ghc->len);
2927 
2928 	if (slots->generation != ghc->generation) {
2929 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2930 			return -EFAULT;
2931 	}
2932 
2933 	if (kvm_is_error_hva(ghc->hva))
2934 		return -EFAULT;
2935 
2936 	if (unlikely(!ghc->memslot))
2937 		return kvm_read_guest(kvm, gpa, data, len);
2938 
2939 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2940 	if (r)
2941 		return -EFAULT;
2942 
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2946 
2947 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2948 			  void *data, unsigned long len)
2949 {
2950 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2951 }
2952 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2953 
2954 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2955 {
2956 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2957 	gfn_t gfn = gpa >> PAGE_SHIFT;
2958 	int seg;
2959 	int offset = offset_in_page(gpa);
2960 	int ret;
2961 
2962 	while ((seg = next_segment(len, offset)) != 0) {
2963 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2964 		if (ret < 0)
2965 			return ret;
2966 		offset = 0;
2967 		len -= seg;
2968 		++gfn;
2969 	}
2970 	return 0;
2971 }
2972 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2973 
2974 void mark_page_dirty_in_slot(struct kvm *kvm,
2975 			     struct kvm_memory_slot *memslot,
2976 		 	     gfn_t gfn)
2977 {
2978 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2979 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2980 		u32 slot = (memslot->as_id << 16) | memslot->id;
2981 
2982 		if (kvm->dirty_ring_size)
2983 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2984 					    slot, rel_gfn);
2985 		else
2986 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
2987 	}
2988 }
2989 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2990 
2991 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2992 {
2993 	struct kvm_memory_slot *memslot;
2994 
2995 	memslot = gfn_to_memslot(kvm, gfn);
2996 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2997 }
2998 EXPORT_SYMBOL_GPL(mark_page_dirty);
2999 
3000 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3001 {
3002 	struct kvm_memory_slot *memslot;
3003 
3004 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3005 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3008 
3009 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3010 {
3011 	if (!vcpu->sigset_active)
3012 		return;
3013 
3014 	/*
3015 	 * This does a lockless modification of ->real_blocked, which is fine
3016 	 * because, only current can change ->real_blocked and all readers of
3017 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3018 	 * of ->blocked.
3019 	 */
3020 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3021 }
3022 
3023 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3024 {
3025 	if (!vcpu->sigset_active)
3026 		return;
3027 
3028 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3029 	sigemptyset(&current->real_blocked);
3030 }
3031 
3032 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3033 {
3034 	unsigned int old, val, grow, grow_start;
3035 
3036 	old = val = vcpu->halt_poll_ns;
3037 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3038 	grow = READ_ONCE(halt_poll_ns_grow);
3039 	if (!grow)
3040 		goto out;
3041 
3042 	val *= grow;
3043 	if (val < grow_start)
3044 		val = grow_start;
3045 
3046 	if (val > vcpu->kvm->max_halt_poll_ns)
3047 		val = vcpu->kvm->max_halt_poll_ns;
3048 
3049 	vcpu->halt_poll_ns = val;
3050 out:
3051 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3052 }
3053 
3054 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3055 {
3056 	unsigned int old, val, shrink;
3057 
3058 	old = val = vcpu->halt_poll_ns;
3059 	shrink = READ_ONCE(halt_poll_ns_shrink);
3060 	if (shrink == 0)
3061 		val = 0;
3062 	else
3063 		val /= shrink;
3064 
3065 	vcpu->halt_poll_ns = val;
3066 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3067 }
3068 
3069 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3070 {
3071 	int ret = -EINTR;
3072 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3073 
3074 	if (kvm_arch_vcpu_runnable(vcpu)) {
3075 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3076 		goto out;
3077 	}
3078 	if (kvm_cpu_has_pending_timer(vcpu))
3079 		goto out;
3080 	if (signal_pending(current))
3081 		goto out;
3082 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3083 		goto out;
3084 
3085 	ret = 0;
3086 out:
3087 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3088 	return ret;
3089 }
3090 
3091 static inline void
3092 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3093 {
3094 	if (waited)
3095 		vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3096 	else
3097 		vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3098 }
3099 
3100 /*
3101  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3102  */
3103 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3104 {
3105 	ktime_t start, cur, poll_end;
3106 	bool waited = false;
3107 	u64 block_ns;
3108 
3109 	kvm_arch_vcpu_blocking(vcpu);
3110 
3111 	start = cur = poll_end = ktime_get();
3112 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3113 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3114 
3115 		++vcpu->stat.generic.halt_attempted_poll;
3116 		do {
3117 			/*
3118 			 * This sets KVM_REQ_UNHALT if an interrupt
3119 			 * arrives.
3120 			 */
3121 			if (kvm_vcpu_check_block(vcpu) < 0) {
3122 				++vcpu->stat.generic.halt_successful_poll;
3123 				if (!vcpu_valid_wakeup(vcpu))
3124 					++vcpu->stat.generic.halt_poll_invalid;
3125 				goto out;
3126 			}
3127 			cpu_relax();
3128 			poll_end = cur = ktime_get();
3129 		} while (kvm_vcpu_can_poll(cur, stop));
3130 	}
3131 
3132 	prepare_to_rcuwait(&vcpu->wait);
3133 	for (;;) {
3134 		set_current_state(TASK_INTERRUPTIBLE);
3135 
3136 		if (kvm_vcpu_check_block(vcpu) < 0)
3137 			break;
3138 
3139 		waited = true;
3140 		schedule();
3141 	}
3142 	finish_rcuwait(&vcpu->wait);
3143 	cur = ktime_get();
3144 out:
3145 	kvm_arch_vcpu_unblocking(vcpu);
3146 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3147 
3148 	update_halt_poll_stats(
3149 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3150 
3151 	if (!kvm_arch_no_poll(vcpu)) {
3152 		if (!vcpu_valid_wakeup(vcpu)) {
3153 			shrink_halt_poll_ns(vcpu);
3154 		} else if (vcpu->kvm->max_halt_poll_ns) {
3155 			if (block_ns <= vcpu->halt_poll_ns)
3156 				;
3157 			/* we had a long block, shrink polling */
3158 			else if (vcpu->halt_poll_ns &&
3159 					block_ns > vcpu->kvm->max_halt_poll_ns)
3160 				shrink_halt_poll_ns(vcpu);
3161 			/* we had a short halt and our poll time is too small */
3162 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3163 					block_ns < vcpu->kvm->max_halt_poll_ns)
3164 				grow_halt_poll_ns(vcpu);
3165 		} else {
3166 			vcpu->halt_poll_ns = 0;
3167 		}
3168 	}
3169 
3170 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3171 	kvm_arch_vcpu_block_finish(vcpu);
3172 }
3173 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3174 
3175 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3176 {
3177 	struct rcuwait *waitp;
3178 
3179 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3180 	if (rcuwait_wake_up(waitp)) {
3181 		WRITE_ONCE(vcpu->ready, true);
3182 		++vcpu->stat.generic.halt_wakeup;
3183 		return true;
3184 	}
3185 
3186 	return false;
3187 }
3188 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3189 
3190 #ifndef CONFIG_S390
3191 /*
3192  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3193  */
3194 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3195 {
3196 	int me;
3197 	int cpu = vcpu->cpu;
3198 
3199 	if (kvm_vcpu_wake_up(vcpu))
3200 		return;
3201 
3202 	me = get_cpu();
3203 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3204 		if (kvm_arch_vcpu_should_kick(vcpu))
3205 			smp_send_reschedule(cpu);
3206 	put_cpu();
3207 }
3208 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3209 #endif /* !CONFIG_S390 */
3210 
3211 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3212 {
3213 	struct pid *pid;
3214 	struct task_struct *task = NULL;
3215 	int ret = 0;
3216 
3217 	rcu_read_lock();
3218 	pid = rcu_dereference(target->pid);
3219 	if (pid)
3220 		task = get_pid_task(pid, PIDTYPE_PID);
3221 	rcu_read_unlock();
3222 	if (!task)
3223 		return ret;
3224 	ret = yield_to(task, 1);
3225 	put_task_struct(task);
3226 
3227 	return ret;
3228 }
3229 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3230 
3231 /*
3232  * Helper that checks whether a VCPU is eligible for directed yield.
3233  * Most eligible candidate to yield is decided by following heuristics:
3234  *
3235  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3236  *  (preempted lock holder), indicated by @in_spin_loop.
3237  *  Set at the beginning and cleared at the end of interception/PLE handler.
3238  *
3239  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3240  *  chance last time (mostly it has become eligible now since we have probably
3241  *  yielded to lockholder in last iteration. This is done by toggling
3242  *  @dy_eligible each time a VCPU checked for eligibility.)
3243  *
3244  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3245  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3246  *  burning. Giving priority for a potential lock-holder increases lock
3247  *  progress.
3248  *
3249  *  Since algorithm is based on heuristics, accessing another VCPU data without
3250  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3251  *  and continue with next VCPU and so on.
3252  */
3253 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3254 {
3255 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3256 	bool eligible;
3257 
3258 	eligible = !vcpu->spin_loop.in_spin_loop ||
3259 		    vcpu->spin_loop.dy_eligible;
3260 
3261 	if (vcpu->spin_loop.in_spin_loop)
3262 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3263 
3264 	return eligible;
3265 #else
3266 	return true;
3267 #endif
3268 }
3269 
3270 /*
3271  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3272  * a vcpu_load/vcpu_put pair.  However, for most architectures
3273  * kvm_arch_vcpu_runnable does not require vcpu_load.
3274  */
3275 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3276 {
3277 	return kvm_arch_vcpu_runnable(vcpu);
3278 }
3279 
3280 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3281 {
3282 	if (kvm_arch_dy_runnable(vcpu))
3283 		return true;
3284 
3285 #ifdef CONFIG_KVM_ASYNC_PF
3286 	if (!list_empty_careful(&vcpu->async_pf.done))
3287 		return true;
3288 #endif
3289 
3290 	return false;
3291 }
3292 
3293 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3294 {
3295 	return false;
3296 }
3297 
3298 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3299 {
3300 	struct kvm *kvm = me->kvm;
3301 	struct kvm_vcpu *vcpu;
3302 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3303 	int yielded = 0;
3304 	int try = 3;
3305 	int pass;
3306 	int i;
3307 
3308 	kvm_vcpu_set_in_spin_loop(me, true);
3309 	/*
3310 	 * We boost the priority of a VCPU that is runnable but not
3311 	 * currently running, because it got preempted by something
3312 	 * else and called schedule in __vcpu_run.  Hopefully that
3313 	 * VCPU is holding the lock that we need and will release it.
3314 	 * We approximate round-robin by starting at the last boosted VCPU.
3315 	 */
3316 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3317 		kvm_for_each_vcpu(i, vcpu, kvm) {
3318 			if (!pass && i <= last_boosted_vcpu) {
3319 				i = last_boosted_vcpu;
3320 				continue;
3321 			} else if (pass && i > last_boosted_vcpu)
3322 				break;
3323 			if (!READ_ONCE(vcpu->ready))
3324 				continue;
3325 			if (vcpu == me)
3326 				continue;
3327 			if (rcuwait_active(&vcpu->wait) &&
3328 			    !vcpu_dy_runnable(vcpu))
3329 				continue;
3330 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3331 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3332 			    !kvm_arch_vcpu_in_kernel(vcpu))
3333 				continue;
3334 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3335 				continue;
3336 
3337 			yielded = kvm_vcpu_yield_to(vcpu);
3338 			if (yielded > 0) {
3339 				kvm->last_boosted_vcpu = i;
3340 				break;
3341 			} else if (yielded < 0) {
3342 				try--;
3343 				if (!try)
3344 					break;
3345 			}
3346 		}
3347 	}
3348 	kvm_vcpu_set_in_spin_loop(me, false);
3349 
3350 	/* Ensure vcpu is not eligible during next spinloop */
3351 	kvm_vcpu_set_dy_eligible(me, false);
3352 }
3353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3354 
3355 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3356 {
3357 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3358 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3359 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3360 	     kvm->dirty_ring_size / PAGE_SIZE);
3361 #else
3362 	return false;
3363 #endif
3364 }
3365 
3366 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3367 {
3368 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3369 	struct page *page;
3370 
3371 	if (vmf->pgoff == 0)
3372 		page = virt_to_page(vcpu->run);
3373 #ifdef CONFIG_X86
3374 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3375 		page = virt_to_page(vcpu->arch.pio_data);
3376 #endif
3377 #ifdef CONFIG_KVM_MMIO
3378 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3379 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3380 #endif
3381 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3382 		page = kvm_dirty_ring_get_page(
3383 		    &vcpu->dirty_ring,
3384 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3385 	else
3386 		return kvm_arch_vcpu_fault(vcpu, vmf);
3387 	get_page(page);
3388 	vmf->page = page;
3389 	return 0;
3390 }
3391 
3392 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3393 	.fault = kvm_vcpu_fault,
3394 };
3395 
3396 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3397 {
3398 	struct kvm_vcpu *vcpu = file->private_data;
3399 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3400 
3401 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3402 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3403 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3404 		return -EINVAL;
3405 
3406 	vma->vm_ops = &kvm_vcpu_vm_ops;
3407 	return 0;
3408 }
3409 
3410 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3411 {
3412 	struct kvm_vcpu *vcpu = filp->private_data;
3413 
3414 	kvm_put_kvm(vcpu->kvm);
3415 	return 0;
3416 }
3417 
3418 static struct file_operations kvm_vcpu_fops = {
3419 	.release        = kvm_vcpu_release,
3420 	.unlocked_ioctl = kvm_vcpu_ioctl,
3421 	.mmap           = kvm_vcpu_mmap,
3422 	.llseek		= noop_llseek,
3423 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3424 };
3425 
3426 /*
3427  * Allocates an inode for the vcpu.
3428  */
3429 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3430 {
3431 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3432 
3433 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3434 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3435 }
3436 
3437 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3438 {
3439 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3440 	struct dentry *debugfs_dentry;
3441 	char dir_name[ITOA_MAX_LEN * 2];
3442 
3443 	if (!debugfs_initialized())
3444 		return;
3445 
3446 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3447 	debugfs_dentry = debugfs_create_dir(dir_name,
3448 					    vcpu->kvm->debugfs_dentry);
3449 
3450 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3451 #endif
3452 }
3453 
3454 /*
3455  * Creates some virtual cpus.  Good luck creating more than one.
3456  */
3457 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3458 {
3459 	int r;
3460 	struct kvm_vcpu *vcpu;
3461 	struct page *page;
3462 
3463 	if (id >= KVM_MAX_VCPU_ID)
3464 		return -EINVAL;
3465 
3466 	mutex_lock(&kvm->lock);
3467 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3468 		mutex_unlock(&kvm->lock);
3469 		return -EINVAL;
3470 	}
3471 
3472 	kvm->created_vcpus++;
3473 	mutex_unlock(&kvm->lock);
3474 
3475 	r = kvm_arch_vcpu_precreate(kvm, id);
3476 	if (r)
3477 		goto vcpu_decrement;
3478 
3479 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3480 	if (!vcpu) {
3481 		r = -ENOMEM;
3482 		goto vcpu_decrement;
3483 	}
3484 
3485 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3486 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3487 	if (!page) {
3488 		r = -ENOMEM;
3489 		goto vcpu_free;
3490 	}
3491 	vcpu->run = page_address(page);
3492 
3493 	kvm_vcpu_init(vcpu, kvm, id);
3494 
3495 	r = kvm_arch_vcpu_create(vcpu);
3496 	if (r)
3497 		goto vcpu_free_run_page;
3498 
3499 	if (kvm->dirty_ring_size) {
3500 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3501 					 id, kvm->dirty_ring_size);
3502 		if (r)
3503 			goto arch_vcpu_destroy;
3504 	}
3505 
3506 	mutex_lock(&kvm->lock);
3507 	if (kvm_get_vcpu_by_id(kvm, id)) {
3508 		r = -EEXIST;
3509 		goto unlock_vcpu_destroy;
3510 	}
3511 
3512 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3513 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3514 
3515 	/* Fill the stats id string for the vcpu */
3516 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3517 		 task_pid_nr(current), id);
3518 
3519 	/* Now it's all set up, let userspace reach it */
3520 	kvm_get_kvm(kvm);
3521 	r = create_vcpu_fd(vcpu);
3522 	if (r < 0) {
3523 		kvm_put_kvm_no_destroy(kvm);
3524 		goto unlock_vcpu_destroy;
3525 	}
3526 
3527 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3528 
3529 	/*
3530 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3531 	 * before kvm->online_vcpu's incremented value.
3532 	 */
3533 	smp_wmb();
3534 	atomic_inc(&kvm->online_vcpus);
3535 
3536 	mutex_unlock(&kvm->lock);
3537 	kvm_arch_vcpu_postcreate(vcpu);
3538 	kvm_create_vcpu_debugfs(vcpu);
3539 	return r;
3540 
3541 unlock_vcpu_destroy:
3542 	mutex_unlock(&kvm->lock);
3543 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3544 arch_vcpu_destroy:
3545 	kvm_arch_vcpu_destroy(vcpu);
3546 vcpu_free_run_page:
3547 	free_page((unsigned long)vcpu->run);
3548 vcpu_free:
3549 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3550 vcpu_decrement:
3551 	mutex_lock(&kvm->lock);
3552 	kvm->created_vcpus--;
3553 	mutex_unlock(&kvm->lock);
3554 	return r;
3555 }
3556 
3557 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3558 {
3559 	if (sigset) {
3560 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3561 		vcpu->sigset_active = 1;
3562 		vcpu->sigset = *sigset;
3563 	} else
3564 		vcpu->sigset_active = 0;
3565 	return 0;
3566 }
3567 
3568 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3569 			      size_t size, loff_t *offset)
3570 {
3571 	struct kvm_vcpu *vcpu = file->private_data;
3572 
3573 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3574 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3575 			sizeof(vcpu->stat), user_buffer, size, offset);
3576 }
3577 
3578 static const struct file_operations kvm_vcpu_stats_fops = {
3579 	.read = kvm_vcpu_stats_read,
3580 	.llseek = noop_llseek,
3581 };
3582 
3583 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3584 {
3585 	int fd;
3586 	struct file *file;
3587 	char name[15 + ITOA_MAX_LEN + 1];
3588 
3589 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3590 
3591 	fd = get_unused_fd_flags(O_CLOEXEC);
3592 	if (fd < 0)
3593 		return fd;
3594 
3595 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3596 	if (IS_ERR(file)) {
3597 		put_unused_fd(fd);
3598 		return PTR_ERR(file);
3599 	}
3600 	file->f_mode |= FMODE_PREAD;
3601 	fd_install(fd, file);
3602 
3603 	return fd;
3604 }
3605 
3606 static long kvm_vcpu_ioctl(struct file *filp,
3607 			   unsigned int ioctl, unsigned long arg)
3608 {
3609 	struct kvm_vcpu *vcpu = filp->private_data;
3610 	void __user *argp = (void __user *)arg;
3611 	int r;
3612 	struct kvm_fpu *fpu = NULL;
3613 	struct kvm_sregs *kvm_sregs = NULL;
3614 
3615 	if (vcpu->kvm->mm != current->mm)
3616 		return -EIO;
3617 
3618 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3619 		return -EINVAL;
3620 
3621 	/*
3622 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3623 	 * execution; mutex_lock() would break them.
3624 	 */
3625 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3626 	if (r != -ENOIOCTLCMD)
3627 		return r;
3628 
3629 	if (mutex_lock_killable(&vcpu->mutex))
3630 		return -EINTR;
3631 	switch (ioctl) {
3632 	case KVM_RUN: {
3633 		struct pid *oldpid;
3634 		r = -EINVAL;
3635 		if (arg)
3636 			goto out;
3637 		oldpid = rcu_access_pointer(vcpu->pid);
3638 		if (unlikely(oldpid != task_pid(current))) {
3639 			/* The thread running this VCPU changed. */
3640 			struct pid *newpid;
3641 
3642 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3643 			if (r)
3644 				break;
3645 
3646 			newpid = get_task_pid(current, PIDTYPE_PID);
3647 			rcu_assign_pointer(vcpu->pid, newpid);
3648 			if (oldpid)
3649 				synchronize_rcu();
3650 			put_pid(oldpid);
3651 		}
3652 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3653 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3654 		break;
3655 	}
3656 	case KVM_GET_REGS: {
3657 		struct kvm_regs *kvm_regs;
3658 
3659 		r = -ENOMEM;
3660 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3661 		if (!kvm_regs)
3662 			goto out;
3663 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3664 		if (r)
3665 			goto out_free1;
3666 		r = -EFAULT;
3667 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3668 			goto out_free1;
3669 		r = 0;
3670 out_free1:
3671 		kfree(kvm_regs);
3672 		break;
3673 	}
3674 	case KVM_SET_REGS: {
3675 		struct kvm_regs *kvm_regs;
3676 
3677 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3678 		if (IS_ERR(kvm_regs)) {
3679 			r = PTR_ERR(kvm_regs);
3680 			goto out;
3681 		}
3682 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3683 		kfree(kvm_regs);
3684 		break;
3685 	}
3686 	case KVM_GET_SREGS: {
3687 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3688 				    GFP_KERNEL_ACCOUNT);
3689 		r = -ENOMEM;
3690 		if (!kvm_sregs)
3691 			goto out;
3692 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3693 		if (r)
3694 			goto out;
3695 		r = -EFAULT;
3696 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3697 			goto out;
3698 		r = 0;
3699 		break;
3700 	}
3701 	case KVM_SET_SREGS: {
3702 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3703 		if (IS_ERR(kvm_sregs)) {
3704 			r = PTR_ERR(kvm_sregs);
3705 			kvm_sregs = NULL;
3706 			goto out;
3707 		}
3708 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3709 		break;
3710 	}
3711 	case KVM_GET_MP_STATE: {
3712 		struct kvm_mp_state mp_state;
3713 
3714 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3715 		if (r)
3716 			goto out;
3717 		r = -EFAULT;
3718 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3719 			goto out;
3720 		r = 0;
3721 		break;
3722 	}
3723 	case KVM_SET_MP_STATE: {
3724 		struct kvm_mp_state mp_state;
3725 
3726 		r = -EFAULT;
3727 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3728 			goto out;
3729 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3730 		break;
3731 	}
3732 	case KVM_TRANSLATE: {
3733 		struct kvm_translation tr;
3734 
3735 		r = -EFAULT;
3736 		if (copy_from_user(&tr, argp, sizeof(tr)))
3737 			goto out;
3738 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3739 		if (r)
3740 			goto out;
3741 		r = -EFAULT;
3742 		if (copy_to_user(argp, &tr, sizeof(tr)))
3743 			goto out;
3744 		r = 0;
3745 		break;
3746 	}
3747 	case KVM_SET_GUEST_DEBUG: {
3748 		struct kvm_guest_debug dbg;
3749 
3750 		r = -EFAULT;
3751 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3752 			goto out;
3753 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3754 		break;
3755 	}
3756 	case KVM_SET_SIGNAL_MASK: {
3757 		struct kvm_signal_mask __user *sigmask_arg = argp;
3758 		struct kvm_signal_mask kvm_sigmask;
3759 		sigset_t sigset, *p;
3760 
3761 		p = NULL;
3762 		if (argp) {
3763 			r = -EFAULT;
3764 			if (copy_from_user(&kvm_sigmask, argp,
3765 					   sizeof(kvm_sigmask)))
3766 				goto out;
3767 			r = -EINVAL;
3768 			if (kvm_sigmask.len != sizeof(sigset))
3769 				goto out;
3770 			r = -EFAULT;
3771 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3772 					   sizeof(sigset)))
3773 				goto out;
3774 			p = &sigset;
3775 		}
3776 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3777 		break;
3778 	}
3779 	case KVM_GET_FPU: {
3780 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3781 		r = -ENOMEM;
3782 		if (!fpu)
3783 			goto out;
3784 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3785 		if (r)
3786 			goto out;
3787 		r = -EFAULT;
3788 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3789 			goto out;
3790 		r = 0;
3791 		break;
3792 	}
3793 	case KVM_SET_FPU: {
3794 		fpu = memdup_user(argp, sizeof(*fpu));
3795 		if (IS_ERR(fpu)) {
3796 			r = PTR_ERR(fpu);
3797 			fpu = NULL;
3798 			goto out;
3799 		}
3800 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3801 		break;
3802 	}
3803 	case KVM_GET_STATS_FD: {
3804 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3805 		break;
3806 	}
3807 	default:
3808 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3809 	}
3810 out:
3811 	mutex_unlock(&vcpu->mutex);
3812 	kfree(fpu);
3813 	kfree(kvm_sregs);
3814 	return r;
3815 }
3816 
3817 #ifdef CONFIG_KVM_COMPAT
3818 static long kvm_vcpu_compat_ioctl(struct file *filp,
3819 				  unsigned int ioctl, unsigned long arg)
3820 {
3821 	struct kvm_vcpu *vcpu = filp->private_data;
3822 	void __user *argp = compat_ptr(arg);
3823 	int r;
3824 
3825 	if (vcpu->kvm->mm != current->mm)
3826 		return -EIO;
3827 
3828 	switch (ioctl) {
3829 	case KVM_SET_SIGNAL_MASK: {
3830 		struct kvm_signal_mask __user *sigmask_arg = argp;
3831 		struct kvm_signal_mask kvm_sigmask;
3832 		sigset_t sigset;
3833 
3834 		if (argp) {
3835 			r = -EFAULT;
3836 			if (copy_from_user(&kvm_sigmask, argp,
3837 					   sizeof(kvm_sigmask)))
3838 				goto out;
3839 			r = -EINVAL;
3840 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3841 				goto out;
3842 			r = -EFAULT;
3843 			if (get_compat_sigset(&sigset,
3844 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3845 				goto out;
3846 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3847 		} else
3848 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3849 		break;
3850 	}
3851 	default:
3852 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3853 	}
3854 
3855 out:
3856 	return r;
3857 }
3858 #endif
3859 
3860 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3861 {
3862 	struct kvm_device *dev = filp->private_data;
3863 
3864 	if (dev->ops->mmap)
3865 		return dev->ops->mmap(dev, vma);
3866 
3867 	return -ENODEV;
3868 }
3869 
3870 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3871 				 int (*accessor)(struct kvm_device *dev,
3872 						 struct kvm_device_attr *attr),
3873 				 unsigned long arg)
3874 {
3875 	struct kvm_device_attr attr;
3876 
3877 	if (!accessor)
3878 		return -EPERM;
3879 
3880 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3881 		return -EFAULT;
3882 
3883 	return accessor(dev, &attr);
3884 }
3885 
3886 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3887 			     unsigned long arg)
3888 {
3889 	struct kvm_device *dev = filp->private_data;
3890 
3891 	if (dev->kvm->mm != current->mm)
3892 		return -EIO;
3893 
3894 	switch (ioctl) {
3895 	case KVM_SET_DEVICE_ATTR:
3896 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3897 	case KVM_GET_DEVICE_ATTR:
3898 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3899 	case KVM_HAS_DEVICE_ATTR:
3900 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3901 	default:
3902 		if (dev->ops->ioctl)
3903 			return dev->ops->ioctl(dev, ioctl, arg);
3904 
3905 		return -ENOTTY;
3906 	}
3907 }
3908 
3909 static int kvm_device_release(struct inode *inode, struct file *filp)
3910 {
3911 	struct kvm_device *dev = filp->private_data;
3912 	struct kvm *kvm = dev->kvm;
3913 
3914 	if (dev->ops->release) {
3915 		mutex_lock(&kvm->lock);
3916 		list_del(&dev->vm_node);
3917 		dev->ops->release(dev);
3918 		mutex_unlock(&kvm->lock);
3919 	}
3920 
3921 	kvm_put_kvm(kvm);
3922 	return 0;
3923 }
3924 
3925 static const struct file_operations kvm_device_fops = {
3926 	.unlocked_ioctl = kvm_device_ioctl,
3927 	.release = kvm_device_release,
3928 	KVM_COMPAT(kvm_device_ioctl),
3929 	.mmap = kvm_device_mmap,
3930 };
3931 
3932 struct kvm_device *kvm_device_from_filp(struct file *filp)
3933 {
3934 	if (filp->f_op != &kvm_device_fops)
3935 		return NULL;
3936 
3937 	return filp->private_data;
3938 }
3939 
3940 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3941 #ifdef CONFIG_KVM_MPIC
3942 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3943 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3944 #endif
3945 };
3946 
3947 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3948 {
3949 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3950 		return -ENOSPC;
3951 
3952 	if (kvm_device_ops_table[type] != NULL)
3953 		return -EEXIST;
3954 
3955 	kvm_device_ops_table[type] = ops;
3956 	return 0;
3957 }
3958 
3959 void kvm_unregister_device_ops(u32 type)
3960 {
3961 	if (kvm_device_ops_table[type] != NULL)
3962 		kvm_device_ops_table[type] = NULL;
3963 }
3964 
3965 static int kvm_ioctl_create_device(struct kvm *kvm,
3966 				   struct kvm_create_device *cd)
3967 {
3968 	const struct kvm_device_ops *ops = NULL;
3969 	struct kvm_device *dev;
3970 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3971 	int type;
3972 	int ret;
3973 
3974 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3975 		return -ENODEV;
3976 
3977 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3978 	ops = kvm_device_ops_table[type];
3979 	if (ops == NULL)
3980 		return -ENODEV;
3981 
3982 	if (test)
3983 		return 0;
3984 
3985 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3986 	if (!dev)
3987 		return -ENOMEM;
3988 
3989 	dev->ops = ops;
3990 	dev->kvm = kvm;
3991 
3992 	mutex_lock(&kvm->lock);
3993 	ret = ops->create(dev, type);
3994 	if (ret < 0) {
3995 		mutex_unlock(&kvm->lock);
3996 		kfree(dev);
3997 		return ret;
3998 	}
3999 	list_add(&dev->vm_node, &kvm->devices);
4000 	mutex_unlock(&kvm->lock);
4001 
4002 	if (ops->init)
4003 		ops->init(dev);
4004 
4005 	kvm_get_kvm(kvm);
4006 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4007 	if (ret < 0) {
4008 		kvm_put_kvm_no_destroy(kvm);
4009 		mutex_lock(&kvm->lock);
4010 		list_del(&dev->vm_node);
4011 		mutex_unlock(&kvm->lock);
4012 		ops->destroy(dev);
4013 		return ret;
4014 	}
4015 
4016 	cd->fd = ret;
4017 	return 0;
4018 }
4019 
4020 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4021 {
4022 	switch (arg) {
4023 	case KVM_CAP_USER_MEMORY:
4024 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4025 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4026 	case KVM_CAP_INTERNAL_ERROR_DATA:
4027 #ifdef CONFIG_HAVE_KVM_MSI
4028 	case KVM_CAP_SIGNAL_MSI:
4029 #endif
4030 #ifdef CONFIG_HAVE_KVM_IRQFD
4031 	case KVM_CAP_IRQFD:
4032 	case KVM_CAP_IRQFD_RESAMPLE:
4033 #endif
4034 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4035 	case KVM_CAP_CHECK_EXTENSION_VM:
4036 	case KVM_CAP_ENABLE_CAP_VM:
4037 	case KVM_CAP_HALT_POLL:
4038 		return 1;
4039 #ifdef CONFIG_KVM_MMIO
4040 	case KVM_CAP_COALESCED_MMIO:
4041 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4042 	case KVM_CAP_COALESCED_PIO:
4043 		return 1;
4044 #endif
4045 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4046 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4047 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4048 #endif
4049 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4050 	case KVM_CAP_IRQ_ROUTING:
4051 		return KVM_MAX_IRQ_ROUTES;
4052 #endif
4053 #if KVM_ADDRESS_SPACE_NUM > 1
4054 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4055 		return KVM_ADDRESS_SPACE_NUM;
4056 #endif
4057 	case KVM_CAP_NR_MEMSLOTS:
4058 		return KVM_USER_MEM_SLOTS;
4059 	case KVM_CAP_DIRTY_LOG_RING:
4060 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4061 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4062 #else
4063 		return 0;
4064 #endif
4065 	case KVM_CAP_BINARY_STATS_FD:
4066 		return 1;
4067 	default:
4068 		break;
4069 	}
4070 	return kvm_vm_ioctl_check_extension(kvm, arg);
4071 }
4072 
4073 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4074 {
4075 	int r;
4076 
4077 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4078 		return -EINVAL;
4079 
4080 	/* the size should be power of 2 */
4081 	if (!size || (size & (size - 1)))
4082 		return -EINVAL;
4083 
4084 	/* Should be bigger to keep the reserved entries, or a page */
4085 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4086 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4087 		return -EINVAL;
4088 
4089 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4090 	    sizeof(struct kvm_dirty_gfn))
4091 		return -E2BIG;
4092 
4093 	/* We only allow it to set once */
4094 	if (kvm->dirty_ring_size)
4095 		return -EINVAL;
4096 
4097 	mutex_lock(&kvm->lock);
4098 
4099 	if (kvm->created_vcpus) {
4100 		/* We don't allow to change this value after vcpu created */
4101 		r = -EINVAL;
4102 	} else {
4103 		kvm->dirty_ring_size = size;
4104 		r = 0;
4105 	}
4106 
4107 	mutex_unlock(&kvm->lock);
4108 	return r;
4109 }
4110 
4111 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4112 {
4113 	int i;
4114 	struct kvm_vcpu *vcpu;
4115 	int cleared = 0;
4116 
4117 	if (!kvm->dirty_ring_size)
4118 		return -EINVAL;
4119 
4120 	mutex_lock(&kvm->slots_lock);
4121 
4122 	kvm_for_each_vcpu(i, vcpu, kvm)
4123 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4124 
4125 	mutex_unlock(&kvm->slots_lock);
4126 
4127 	if (cleared)
4128 		kvm_flush_remote_tlbs(kvm);
4129 
4130 	return cleared;
4131 }
4132 
4133 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4134 						  struct kvm_enable_cap *cap)
4135 {
4136 	return -EINVAL;
4137 }
4138 
4139 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4140 					   struct kvm_enable_cap *cap)
4141 {
4142 	switch (cap->cap) {
4143 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4144 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4145 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4146 
4147 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4148 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4149 
4150 		if (cap->flags || (cap->args[0] & ~allowed_options))
4151 			return -EINVAL;
4152 		kvm->manual_dirty_log_protect = cap->args[0];
4153 		return 0;
4154 	}
4155 #endif
4156 	case KVM_CAP_HALT_POLL: {
4157 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4158 			return -EINVAL;
4159 
4160 		kvm->max_halt_poll_ns = cap->args[0];
4161 		return 0;
4162 	}
4163 	case KVM_CAP_DIRTY_LOG_RING:
4164 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4165 	default:
4166 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4167 	}
4168 }
4169 
4170 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4171 			      size_t size, loff_t *offset)
4172 {
4173 	struct kvm *kvm = file->private_data;
4174 
4175 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4176 				&kvm_vm_stats_desc[0], &kvm->stat,
4177 				sizeof(kvm->stat), user_buffer, size, offset);
4178 }
4179 
4180 static const struct file_operations kvm_vm_stats_fops = {
4181 	.read = kvm_vm_stats_read,
4182 	.llseek = noop_llseek,
4183 };
4184 
4185 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4186 {
4187 	int fd;
4188 	struct file *file;
4189 
4190 	fd = get_unused_fd_flags(O_CLOEXEC);
4191 	if (fd < 0)
4192 		return fd;
4193 
4194 	file = anon_inode_getfile("kvm-vm-stats",
4195 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4196 	if (IS_ERR(file)) {
4197 		put_unused_fd(fd);
4198 		return PTR_ERR(file);
4199 	}
4200 	file->f_mode |= FMODE_PREAD;
4201 	fd_install(fd, file);
4202 
4203 	return fd;
4204 }
4205 
4206 static long kvm_vm_ioctl(struct file *filp,
4207 			   unsigned int ioctl, unsigned long arg)
4208 {
4209 	struct kvm *kvm = filp->private_data;
4210 	void __user *argp = (void __user *)arg;
4211 	int r;
4212 
4213 	if (kvm->mm != current->mm)
4214 		return -EIO;
4215 	switch (ioctl) {
4216 	case KVM_CREATE_VCPU:
4217 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4218 		break;
4219 	case KVM_ENABLE_CAP: {
4220 		struct kvm_enable_cap cap;
4221 
4222 		r = -EFAULT;
4223 		if (copy_from_user(&cap, argp, sizeof(cap)))
4224 			goto out;
4225 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4226 		break;
4227 	}
4228 	case KVM_SET_USER_MEMORY_REGION: {
4229 		struct kvm_userspace_memory_region kvm_userspace_mem;
4230 
4231 		r = -EFAULT;
4232 		if (copy_from_user(&kvm_userspace_mem, argp,
4233 						sizeof(kvm_userspace_mem)))
4234 			goto out;
4235 
4236 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4237 		break;
4238 	}
4239 	case KVM_GET_DIRTY_LOG: {
4240 		struct kvm_dirty_log log;
4241 
4242 		r = -EFAULT;
4243 		if (copy_from_user(&log, argp, sizeof(log)))
4244 			goto out;
4245 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4246 		break;
4247 	}
4248 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4249 	case KVM_CLEAR_DIRTY_LOG: {
4250 		struct kvm_clear_dirty_log log;
4251 
4252 		r = -EFAULT;
4253 		if (copy_from_user(&log, argp, sizeof(log)))
4254 			goto out;
4255 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4256 		break;
4257 	}
4258 #endif
4259 #ifdef CONFIG_KVM_MMIO
4260 	case KVM_REGISTER_COALESCED_MMIO: {
4261 		struct kvm_coalesced_mmio_zone zone;
4262 
4263 		r = -EFAULT;
4264 		if (copy_from_user(&zone, argp, sizeof(zone)))
4265 			goto out;
4266 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4267 		break;
4268 	}
4269 	case KVM_UNREGISTER_COALESCED_MMIO: {
4270 		struct kvm_coalesced_mmio_zone zone;
4271 
4272 		r = -EFAULT;
4273 		if (copy_from_user(&zone, argp, sizeof(zone)))
4274 			goto out;
4275 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4276 		break;
4277 	}
4278 #endif
4279 	case KVM_IRQFD: {
4280 		struct kvm_irqfd data;
4281 
4282 		r = -EFAULT;
4283 		if (copy_from_user(&data, argp, sizeof(data)))
4284 			goto out;
4285 		r = kvm_irqfd(kvm, &data);
4286 		break;
4287 	}
4288 	case KVM_IOEVENTFD: {
4289 		struct kvm_ioeventfd data;
4290 
4291 		r = -EFAULT;
4292 		if (copy_from_user(&data, argp, sizeof(data)))
4293 			goto out;
4294 		r = kvm_ioeventfd(kvm, &data);
4295 		break;
4296 	}
4297 #ifdef CONFIG_HAVE_KVM_MSI
4298 	case KVM_SIGNAL_MSI: {
4299 		struct kvm_msi msi;
4300 
4301 		r = -EFAULT;
4302 		if (copy_from_user(&msi, argp, sizeof(msi)))
4303 			goto out;
4304 		r = kvm_send_userspace_msi(kvm, &msi);
4305 		break;
4306 	}
4307 #endif
4308 #ifdef __KVM_HAVE_IRQ_LINE
4309 	case KVM_IRQ_LINE_STATUS:
4310 	case KVM_IRQ_LINE: {
4311 		struct kvm_irq_level irq_event;
4312 
4313 		r = -EFAULT;
4314 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4315 			goto out;
4316 
4317 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4318 					ioctl == KVM_IRQ_LINE_STATUS);
4319 		if (r)
4320 			goto out;
4321 
4322 		r = -EFAULT;
4323 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4324 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4325 				goto out;
4326 		}
4327 
4328 		r = 0;
4329 		break;
4330 	}
4331 #endif
4332 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4333 	case KVM_SET_GSI_ROUTING: {
4334 		struct kvm_irq_routing routing;
4335 		struct kvm_irq_routing __user *urouting;
4336 		struct kvm_irq_routing_entry *entries = NULL;
4337 
4338 		r = -EFAULT;
4339 		if (copy_from_user(&routing, argp, sizeof(routing)))
4340 			goto out;
4341 		r = -EINVAL;
4342 		if (!kvm_arch_can_set_irq_routing(kvm))
4343 			goto out;
4344 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4345 			goto out;
4346 		if (routing.flags)
4347 			goto out;
4348 		if (routing.nr) {
4349 			urouting = argp;
4350 			entries = vmemdup_user(urouting->entries,
4351 					       array_size(sizeof(*entries),
4352 							  routing.nr));
4353 			if (IS_ERR(entries)) {
4354 				r = PTR_ERR(entries);
4355 				goto out;
4356 			}
4357 		}
4358 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4359 					routing.flags);
4360 		kvfree(entries);
4361 		break;
4362 	}
4363 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4364 	case KVM_CREATE_DEVICE: {
4365 		struct kvm_create_device cd;
4366 
4367 		r = -EFAULT;
4368 		if (copy_from_user(&cd, argp, sizeof(cd)))
4369 			goto out;
4370 
4371 		r = kvm_ioctl_create_device(kvm, &cd);
4372 		if (r)
4373 			goto out;
4374 
4375 		r = -EFAULT;
4376 		if (copy_to_user(argp, &cd, sizeof(cd)))
4377 			goto out;
4378 
4379 		r = 0;
4380 		break;
4381 	}
4382 	case KVM_CHECK_EXTENSION:
4383 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4384 		break;
4385 	case KVM_RESET_DIRTY_RINGS:
4386 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4387 		break;
4388 	case KVM_GET_STATS_FD:
4389 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4390 		break;
4391 	default:
4392 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4393 	}
4394 out:
4395 	return r;
4396 }
4397 
4398 #ifdef CONFIG_KVM_COMPAT
4399 struct compat_kvm_dirty_log {
4400 	__u32 slot;
4401 	__u32 padding1;
4402 	union {
4403 		compat_uptr_t dirty_bitmap; /* one bit per page */
4404 		__u64 padding2;
4405 	};
4406 };
4407 
4408 struct compat_kvm_clear_dirty_log {
4409 	__u32 slot;
4410 	__u32 num_pages;
4411 	__u64 first_page;
4412 	union {
4413 		compat_uptr_t dirty_bitmap; /* one bit per page */
4414 		__u64 padding2;
4415 	};
4416 };
4417 
4418 static long kvm_vm_compat_ioctl(struct file *filp,
4419 			   unsigned int ioctl, unsigned long arg)
4420 {
4421 	struct kvm *kvm = filp->private_data;
4422 	int r;
4423 
4424 	if (kvm->mm != current->mm)
4425 		return -EIO;
4426 	switch (ioctl) {
4427 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4428 	case KVM_CLEAR_DIRTY_LOG: {
4429 		struct compat_kvm_clear_dirty_log compat_log;
4430 		struct kvm_clear_dirty_log log;
4431 
4432 		if (copy_from_user(&compat_log, (void __user *)arg,
4433 				   sizeof(compat_log)))
4434 			return -EFAULT;
4435 		log.slot	 = compat_log.slot;
4436 		log.num_pages	 = compat_log.num_pages;
4437 		log.first_page	 = compat_log.first_page;
4438 		log.padding2	 = compat_log.padding2;
4439 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4440 
4441 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4442 		break;
4443 	}
4444 #endif
4445 	case KVM_GET_DIRTY_LOG: {
4446 		struct compat_kvm_dirty_log compat_log;
4447 		struct kvm_dirty_log log;
4448 
4449 		if (copy_from_user(&compat_log, (void __user *)arg,
4450 				   sizeof(compat_log)))
4451 			return -EFAULT;
4452 		log.slot	 = compat_log.slot;
4453 		log.padding1	 = compat_log.padding1;
4454 		log.padding2	 = compat_log.padding2;
4455 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4456 
4457 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4458 		break;
4459 	}
4460 	default:
4461 		r = kvm_vm_ioctl(filp, ioctl, arg);
4462 	}
4463 	return r;
4464 }
4465 #endif
4466 
4467 static struct file_operations kvm_vm_fops = {
4468 	.release        = kvm_vm_release,
4469 	.unlocked_ioctl = kvm_vm_ioctl,
4470 	.llseek		= noop_llseek,
4471 	KVM_COMPAT(kvm_vm_compat_ioctl),
4472 };
4473 
4474 bool file_is_kvm(struct file *file)
4475 {
4476 	return file && file->f_op == &kvm_vm_fops;
4477 }
4478 EXPORT_SYMBOL_GPL(file_is_kvm);
4479 
4480 static int kvm_dev_ioctl_create_vm(unsigned long type)
4481 {
4482 	int r;
4483 	struct kvm *kvm;
4484 	struct file *file;
4485 
4486 	kvm = kvm_create_vm(type);
4487 	if (IS_ERR(kvm))
4488 		return PTR_ERR(kvm);
4489 #ifdef CONFIG_KVM_MMIO
4490 	r = kvm_coalesced_mmio_init(kvm);
4491 	if (r < 0)
4492 		goto put_kvm;
4493 #endif
4494 	r = get_unused_fd_flags(O_CLOEXEC);
4495 	if (r < 0)
4496 		goto put_kvm;
4497 
4498 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4499 			"kvm-%d", task_pid_nr(current));
4500 
4501 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4502 	if (IS_ERR(file)) {
4503 		put_unused_fd(r);
4504 		r = PTR_ERR(file);
4505 		goto put_kvm;
4506 	}
4507 
4508 	/*
4509 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4510 	 * already set, with ->release() being kvm_vm_release().  In error
4511 	 * cases it will be called by the final fput(file) and will take
4512 	 * care of doing kvm_put_kvm(kvm).
4513 	 */
4514 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4515 		put_unused_fd(r);
4516 		fput(file);
4517 		return -ENOMEM;
4518 	}
4519 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4520 
4521 	fd_install(r, file);
4522 	return r;
4523 
4524 put_kvm:
4525 	kvm_put_kvm(kvm);
4526 	return r;
4527 }
4528 
4529 static long kvm_dev_ioctl(struct file *filp,
4530 			  unsigned int ioctl, unsigned long arg)
4531 {
4532 	long r = -EINVAL;
4533 
4534 	switch (ioctl) {
4535 	case KVM_GET_API_VERSION:
4536 		if (arg)
4537 			goto out;
4538 		r = KVM_API_VERSION;
4539 		break;
4540 	case KVM_CREATE_VM:
4541 		r = kvm_dev_ioctl_create_vm(arg);
4542 		break;
4543 	case KVM_CHECK_EXTENSION:
4544 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4545 		break;
4546 	case KVM_GET_VCPU_MMAP_SIZE:
4547 		if (arg)
4548 			goto out;
4549 		r = PAGE_SIZE;     /* struct kvm_run */
4550 #ifdef CONFIG_X86
4551 		r += PAGE_SIZE;    /* pio data page */
4552 #endif
4553 #ifdef CONFIG_KVM_MMIO
4554 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4555 #endif
4556 		break;
4557 	case KVM_TRACE_ENABLE:
4558 	case KVM_TRACE_PAUSE:
4559 	case KVM_TRACE_DISABLE:
4560 		r = -EOPNOTSUPP;
4561 		break;
4562 	default:
4563 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4564 	}
4565 out:
4566 	return r;
4567 }
4568 
4569 static struct file_operations kvm_chardev_ops = {
4570 	.unlocked_ioctl = kvm_dev_ioctl,
4571 	.llseek		= noop_llseek,
4572 	KVM_COMPAT(kvm_dev_ioctl),
4573 };
4574 
4575 static struct miscdevice kvm_dev = {
4576 	KVM_MINOR,
4577 	"kvm",
4578 	&kvm_chardev_ops,
4579 };
4580 
4581 static void hardware_enable_nolock(void *junk)
4582 {
4583 	int cpu = raw_smp_processor_id();
4584 	int r;
4585 
4586 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4587 		return;
4588 
4589 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4590 
4591 	r = kvm_arch_hardware_enable();
4592 
4593 	if (r) {
4594 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4595 		atomic_inc(&hardware_enable_failed);
4596 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4597 	}
4598 }
4599 
4600 static int kvm_starting_cpu(unsigned int cpu)
4601 {
4602 	raw_spin_lock(&kvm_count_lock);
4603 	if (kvm_usage_count)
4604 		hardware_enable_nolock(NULL);
4605 	raw_spin_unlock(&kvm_count_lock);
4606 	return 0;
4607 }
4608 
4609 static void hardware_disable_nolock(void *junk)
4610 {
4611 	int cpu = raw_smp_processor_id();
4612 
4613 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4614 		return;
4615 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4616 	kvm_arch_hardware_disable();
4617 }
4618 
4619 static int kvm_dying_cpu(unsigned int cpu)
4620 {
4621 	raw_spin_lock(&kvm_count_lock);
4622 	if (kvm_usage_count)
4623 		hardware_disable_nolock(NULL);
4624 	raw_spin_unlock(&kvm_count_lock);
4625 	return 0;
4626 }
4627 
4628 static void hardware_disable_all_nolock(void)
4629 {
4630 	BUG_ON(!kvm_usage_count);
4631 
4632 	kvm_usage_count--;
4633 	if (!kvm_usage_count)
4634 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4635 }
4636 
4637 static void hardware_disable_all(void)
4638 {
4639 	raw_spin_lock(&kvm_count_lock);
4640 	hardware_disable_all_nolock();
4641 	raw_spin_unlock(&kvm_count_lock);
4642 }
4643 
4644 static int hardware_enable_all(void)
4645 {
4646 	int r = 0;
4647 
4648 	raw_spin_lock(&kvm_count_lock);
4649 
4650 	kvm_usage_count++;
4651 	if (kvm_usage_count == 1) {
4652 		atomic_set(&hardware_enable_failed, 0);
4653 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4654 
4655 		if (atomic_read(&hardware_enable_failed)) {
4656 			hardware_disable_all_nolock();
4657 			r = -EBUSY;
4658 		}
4659 	}
4660 
4661 	raw_spin_unlock(&kvm_count_lock);
4662 
4663 	return r;
4664 }
4665 
4666 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4667 		      void *v)
4668 {
4669 	/*
4670 	 * Some (well, at least mine) BIOSes hang on reboot if
4671 	 * in vmx root mode.
4672 	 *
4673 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4674 	 */
4675 	pr_info("kvm: exiting hardware virtualization\n");
4676 	kvm_rebooting = true;
4677 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4678 	return NOTIFY_OK;
4679 }
4680 
4681 static struct notifier_block kvm_reboot_notifier = {
4682 	.notifier_call = kvm_reboot,
4683 	.priority = 0,
4684 };
4685 
4686 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4687 {
4688 	int i;
4689 
4690 	for (i = 0; i < bus->dev_count; i++) {
4691 		struct kvm_io_device *pos = bus->range[i].dev;
4692 
4693 		kvm_iodevice_destructor(pos);
4694 	}
4695 	kfree(bus);
4696 }
4697 
4698 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4699 				 const struct kvm_io_range *r2)
4700 {
4701 	gpa_t addr1 = r1->addr;
4702 	gpa_t addr2 = r2->addr;
4703 
4704 	if (addr1 < addr2)
4705 		return -1;
4706 
4707 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4708 	 * accept any overlapping write.  Any order is acceptable for
4709 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4710 	 * we process all of them.
4711 	 */
4712 	if (r2->len) {
4713 		addr1 += r1->len;
4714 		addr2 += r2->len;
4715 	}
4716 
4717 	if (addr1 > addr2)
4718 		return 1;
4719 
4720 	return 0;
4721 }
4722 
4723 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4724 {
4725 	return kvm_io_bus_cmp(p1, p2);
4726 }
4727 
4728 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4729 			     gpa_t addr, int len)
4730 {
4731 	struct kvm_io_range *range, key;
4732 	int off;
4733 
4734 	key = (struct kvm_io_range) {
4735 		.addr = addr,
4736 		.len = len,
4737 	};
4738 
4739 	range = bsearch(&key, bus->range, bus->dev_count,
4740 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4741 	if (range == NULL)
4742 		return -ENOENT;
4743 
4744 	off = range - bus->range;
4745 
4746 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4747 		off--;
4748 
4749 	return off;
4750 }
4751 
4752 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4753 			      struct kvm_io_range *range, const void *val)
4754 {
4755 	int idx;
4756 
4757 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4758 	if (idx < 0)
4759 		return -EOPNOTSUPP;
4760 
4761 	while (idx < bus->dev_count &&
4762 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4763 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4764 					range->len, val))
4765 			return idx;
4766 		idx++;
4767 	}
4768 
4769 	return -EOPNOTSUPP;
4770 }
4771 
4772 /* kvm_io_bus_write - called under kvm->slots_lock */
4773 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4774 		     int len, const void *val)
4775 {
4776 	struct kvm_io_bus *bus;
4777 	struct kvm_io_range range;
4778 	int r;
4779 
4780 	range = (struct kvm_io_range) {
4781 		.addr = addr,
4782 		.len = len,
4783 	};
4784 
4785 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4786 	if (!bus)
4787 		return -ENOMEM;
4788 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4789 	return r < 0 ? r : 0;
4790 }
4791 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4792 
4793 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4794 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4795 			    gpa_t addr, int len, const void *val, long cookie)
4796 {
4797 	struct kvm_io_bus *bus;
4798 	struct kvm_io_range range;
4799 
4800 	range = (struct kvm_io_range) {
4801 		.addr = addr,
4802 		.len = len,
4803 	};
4804 
4805 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4806 	if (!bus)
4807 		return -ENOMEM;
4808 
4809 	/* First try the device referenced by cookie. */
4810 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4811 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4812 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4813 					val))
4814 			return cookie;
4815 
4816 	/*
4817 	 * cookie contained garbage; fall back to search and return the
4818 	 * correct cookie value.
4819 	 */
4820 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4821 }
4822 
4823 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4824 			     struct kvm_io_range *range, void *val)
4825 {
4826 	int idx;
4827 
4828 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4829 	if (idx < 0)
4830 		return -EOPNOTSUPP;
4831 
4832 	while (idx < bus->dev_count &&
4833 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4834 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4835 				       range->len, val))
4836 			return idx;
4837 		idx++;
4838 	}
4839 
4840 	return -EOPNOTSUPP;
4841 }
4842 
4843 /* kvm_io_bus_read - called under kvm->slots_lock */
4844 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4845 		    int len, void *val)
4846 {
4847 	struct kvm_io_bus *bus;
4848 	struct kvm_io_range range;
4849 	int r;
4850 
4851 	range = (struct kvm_io_range) {
4852 		.addr = addr,
4853 		.len = len,
4854 	};
4855 
4856 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4857 	if (!bus)
4858 		return -ENOMEM;
4859 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4860 	return r < 0 ? r : 0;
4861 }
4862 
4863 /* Caller must hold slots_lock. */
4864 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4865 			    int len, struct kvm_io_device *dev)
4866 {
4867 	int i;
4868 	struct kvm_io_bus *new_bus, *bus;
4869 	struct kvm_io_range range;
4870 
4871 	bus = kvm_get_bus(kvm, bus_idx);
4872 	if (!bus)
4873 		return -ENOMEM;
4874 
4875 	/* exclude ioeventfd which is limited by maximum fd */
4876 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4877 		return -ENOSPC;
4878 
4879 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4880 			  GFP_KERNEL_ACCOUNT);
4881 	if (!new_bus)
4882 		return -ENOMEM;
4883 
4884 	range = (struct kvm_io_range) {
4885 		.addr = addr,
4886 		.len = len,
4887 		.dev = dev,
4888 	};
4889 
4890 	for (i = 0; i < bus->dev_count; i++)
4891 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4892 			break;
4893 
4894 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4895 	new_bus->dev_count++;
4896 	new_bus->range[i] = range;
4897 	memcpy(new_bus->range + i + 1, bus->range + i,
4898 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4899 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4900 	synchronize_srcu_expedited(&kvm->srcu);
4901 	kfree(bus);
4902 
4903 	return 0;
4904 }
4905 
4906 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4907 			      struct kvm_io_device *dev)
4908 {
4909 	int i, j;
4910 	struct kvm_io_bus *new_bus, *bus;
4911 
4912 	lockdep_assert_held(&kvm->slots_lock);
4913 
4914 	bus = kvm_get_bus(kvm, bus_idx);
4915 	if (!bus)
4916 		return 0;
4917 
4918 	for (i = 0; i < bus->dev_count; i++) {
4919 		if (bus->range[i].dev == dev) {
4920 			break;
4921 		}
4922 	}
4923 
4924 	if (i == bus->dev_count)
4925 		return 0;
4926 
4927 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4928 			  GFP_KERNEL_ACCOUNT);
4929 	if (new_bus) {
4930 		memcpy(new_bus, bus, struct_size(bus, range, i));
4931 		new_bus->dev_count--;
4932 		memcpy(new_bus->range + i, bus->range + i + 1,
4933 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4934 	}
4935 
4936 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4937 	synchronize_srcu_expedited(&kvm->srcu);
4938 
4939 	/* Destroy the old bus _after_ installing the (null) bus. */
4940 	if (!new_bus) {
4941 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4942 		for (j = 0; j < bus->dev_count; j++) {
4943 			if (j == i)
4944 				continue;
4945 			kvm_iodevice_destructor(bus->range[j].dev);
4946 		}
4947 	}
4948 
4949 	kfree(bus);
4950 	return new_bus ? 0 : -ENOMEM;
4951 }
4952 
4953 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4954 					 gpa_t addr)
4955 {
4956 	struct kvm_io_bus *bus;
4957 	int dev_idx, srcu_idx;
4958 	struct kvm_io_device *iodev = NULL;
4959 
4960 	srcu_idx = srcu_read_lock(&kvm->srcu);
4961 
4962 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4963 	if (!bus)
4964 		goto out_unlock;
4965 
4966 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4967 	if (dev_idx < 0)
4968 		goto out_unlock;
4969 
4970 	iodev = bus->range[dev_idx].dev;
4971 
4972 out_unlock:
4973 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4974 
4975 	return iodev;
4976 }
4977 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4978 
4979 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4980 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4981 			   const char *fmt)
4982 {
4983 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4984 					  inode->i_private;
4985 
4986 	/* The debugfs files are a reference to the kvm struct which
4987 	 * is still valid when kvm_destroy_vm is called.
4988 	 * To avoid the race between open and the removal of the debugfs
4989 	 * directory we test against the users count.
4990 	 */
4991 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4992 		return -ENOENT;
4993 
4994 	if (simple_attr_open(inode, file, get,
4995 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
4996 		    ? set : NULL,
4997 		    fmt)) {
4998 		kvm_put_kvm(stat_data->kvm);
4999 		return -ENOMEM;
5000 	}
5001 
5002 	return 0;
5003 }
5004 
5005 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5006 {
5007 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5008 					  inode->i_private;
5009 
5010 	simple_attr_release(inode, file);
5011 	kvm_put_kvm(stat_data->kvm);
5012 
5013 	return 0;
5014 }
5015 
5016 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5017 {
5018 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5019 
5020 	return 0;
5021 }
5022 
5023 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5024 {
5025 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5026 
5027 	return 0;
5028 }
5029 
5030 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5031 {
5032 	int i;
5033 	struct kvm_vcpu *vcpu;
5034 
5035 	*val = 0;
5036 
5037 	kvm_for_each_vcpu(i, vcpu, kvm)
5038 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5039 
5040 	return 0;
5041 }
5042 
5043 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5044 {
5045 	int i;
5046 	struct kvm_vcpu *vcpu;
5047 
5048 	kvm_for_each_vcpu(i, vcpu, kvm)
5049 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5050 
5051 	return 0;
5052 }
5053 
5054 static int kvm_stat_data_get(void *data, u64 *val)
5055 {
5056 	int r = -EFAULT;
5057 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5058 
5059 	switch (stat_data->kind) {
5060 	case KVM_STAT_VM:
5061 		r = kvm_get_stat_per_vm(stat_data->kvm,
5062 					stat_data->desc->desc.offset, val);
5063 		break;
5064 	case KVM_STAT_VCPU:
5065 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5066 					  stat_data->desc->desc.offset, val);
5067 		break;
5068 	}
5069 
5070 	return r;
5071 }
5072 
5073 static int kvm_stat_data_clear(void *data, u64 val)
5074 {
5075 	int r = -EFAULT;
5076 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5077 
5078 	if (val)
5079 		return -EINVAL;
5080 
5081 	switch (stat_data->kind) {
5082 	case KVM_STAT_VM:
5083 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5084 					  stat_data->desc->desc.offset);
5085 		break;
5086 	case KVM_STAT_VCPU:
5087 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5088 					    stat_data->desc->desc.offset);
5089 		break;
5090 	}
5091 
5092 	return r;
5093 }
5094 
5095 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5096 {
5097 	__simple_attr_check_format("%llu\n", 0ull);
5098 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5099 				kvm_stat_data_clear, "%llu\n");
5100 }
5101 
5102 static const struct file_operations stat_fops_per_vm = {
5103 	.owner = THIS_MODULE,
5104 	.open = kvm_stat_data_open,
5105 	.release = kvm_debugfs_release,
5106 	.read = simple_attr_read,
5107 	.write = simple_attr_write,
5108 	.llseek = no_llseek,
5109 };
5110 
5111 static int vm_stat_get(void *_offset, u64 *val)
5112 {
5113 	unsigned offset = (long)_offset;
5114 	struct kvm *kvm;
5115 	u64 tmp_val;
5116 
5117 	*val = 0;
5118 	mutex_lock(&kvm_lock);
5119 	list_for_each_entry(kvm, &vm_list, vm_list) {
5120 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5121 		*val += tmp_val;
5122 	}
5123 	mutex_unlock(&kvm_lock);
5124 	return 0;
5125 }
5126 
5127 static int vm_stat_clear(void *_offset, u64 val)
5128 {
5129 	unsigned offset = (long)_offset;
5130 	struct kvm *kvm;
5131 
5132 	if (val)
5133 		return -EINVAL;
5134 
5135 	mutex_lock(&kvm_lock);
5136 	list_for_each_entry(kvm, &vm_list, vm_list) {
5137 		kvm_clear_stat_per_vm(kvm, offset);
5138 	}
5139 	mutex_unlock(&kvm_lock);
5140 
5141 	return 0;
5142 }
5143 
5144 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5145 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5146 
5147 static int vcpu_stat_get(void *_offset, u64 *val)
5148 {
5149 	unsigned offset = (long)_offset;
5150 	struct kvm *kvm;
5151 	u64 tmp_val;
5152 
5153 	*val = 0;
5154 	mutex_lock(&kvm_lock);
5155 	list_for_each_entry(kvm, &vm_list, vm_list) {
5156 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5157 		*val += tmp_val;
5158 	}
5159 	mutex_unlock(&kvm_lock);
5160 	return 0;
5161 }
5162 
5163 static int vcpu_stat_clear(void *_offset, u64 val)
5164 {
5165 	unsigned offset = (long)_offset;
5166 	struct kvm *kvm;
5167 
5168 	if (val)
5169 		return -EINVAL;
5170 
5171 	mutex_lock(&kvm_lock);
5172 	list_for_each_entry(kvm, &vm_list, vm_list) {
5173 		kvm_clear_stat_per_vcpu(kvm, offset);
5174 	}
5175 	mutex_unlock(&kvm_lock);
5176 
5177 	return 0;
5178 }
5179 
5180 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5181 			"%llu\n");
5182 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5183 
5184 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5185 {
5186 	struct kobj_uevent_env *env;
5187 	unsigned long long created, active;
5188 
5189 	if (!kvm_dev.this_device || !kvm)
5190 		return;
5191 
5192 	mutex_lock(&kvm_lock);
5193 	if (type == KVM_EVENT_CREATE_VM) {
5194 		kvm_createvm_count++;
5195 		kvm_active_vms++;
5196 	} else if (type == KVM_EVENT_DESTROY_VM) {
5197 		kvm_active_vms--;
5198 	}
5199 	created = kvm_createvm_count;
5200 	active = kvm_active_vms;
5201 	mutex_unlock(&kvm_lock);
5202 
5203 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5204 	if (!env)
5205 		return;
5206 
5207 	add_uevent_var(env, "CREATED=%llu", created);
5208 	add_uevent_var(env, "COUNT=%llu", active);
5209 
5210 	if (type == KVM_EVENT_CREATE_VM) {
5211 		add_uevent_var(env, "EVENT=create");
5212 		kvm->userspace_pid = task_pid_nr(current);
5213 	} else if (type == KVM_EVENT_DESTROY_VM) {
5214 		add_uevent_var(env, "EVENT=destroy");
5215 	}
5216 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5217 
5218 	if (kvm->debugfs_dentry) {
5219 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5220 
5221 		if (p) {
5222 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5223 			if (!IS_ERR(tmp))
5224 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5225 			kfree(p);
5226 		}
5227 	}
5228 	/* no need for checks, since we are adding at most only 5 keys */
5229 	env->envp[env->envp_idx++] = NULL;
5230 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5231 	kfree(env);
5232 }
5233 
5234 static void kvm_init_debug(void)
5235 {
5236 	const struct file_operations *fops;
5237 	const struct _kvm_stats_desc *pdesc;
5238 	int i;
5239 
5240 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5241 
5242 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5243 		pdesc = &kvm_vm_stats_desc[i];
5244 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5245 			fops = &vm_stat_fops;
5246 		else
5247 			fops = &vm_stat_readonly_fops;
5248 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5249 				kvm_debugfs_dir,
5250 				(void *)(long)pdesc->desc.offset, fops);
5251 	}
5252 
5253 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5254 		pdesc = &kvm_vcpu_stats_desc[i];
5255 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5256 			fops = &vcpu_stat_fops;
5257 		else
5258 			fops = &vcpu_stat_readonly_fops;
5259 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5260 				kvm_debugfs_dir,
5261 				(void *)(long)pdesc->desc.offset, fops);
5262 	}
5263 }
5264 
5265 static int kvm_suspend(void)
5266 {
5267 	if (kvm_usage_count)
5268 		hardware_disable_nolock(NULL);
5269 	return 0;
5270 }
5271 
5272 static void kvm_resume(void)
5273 {
5274 	if (kvm_usage_count) {
5275 #ifdef CONFIG_LOCKDEP
5276 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5277 #endif
5278 		hardware_enable_nolock(NULL);
5279 	}
5280 }
5281 
5282 static struct syscore_ops kvm_syscore_ops = {
5283 	.suspend = kvm_suspend,
5284 	.resume = kvm_resume,
5285 };
5286 
5287 static inline
5288 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5289 {
5290 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5291 }
5292 
5293 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5294 {
5295 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5296 
5297 	WRITE_ONCE(vcpu->preempted, false);
5298 	WRITE_ONCE(vcpu->ready, false);
5299 
5300 	__this_cpu_write(kvm_running_vcpu, vcpu);
5301 	kvm_arch_sched_in(vcpu, cpu);
5302 	kvm_arch_vcpu_load(vcpu, cpu);
5303 }
5304 
5305 static void kvm_sched_out(struct preempt_notifier *pn,
5306 			  struct task_struct *next)
5307 {
5308 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5309 
5310 	if (current->on_rq) {
5311 		WRITE_ONCE(vcpu->preempted, true);
5312 		WRITE_ONCE(vcpu->ready, true);
5313 	}
5314 	kvm_arch_vcpu_put(vcpu);
5315 	__this_cpu_write(kvm_running_vcpu, NULL);
5316 }
5317 
5318 /**
5319  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5320  *
5321  * We can disable preemption locally around accessing the per-CPU variable,
5322  * and use the resolved vcpu pointer after enabling preemption again,
5323  * because even if the current thread is migrated to another CPU, reading
5324  * the per-CPU value later will give us the same value as we update the
5325  * per-CPU variable in the preempt notifier handlers.
5326  */
5327 struct kvm_vcpu *kvm_get_running_vcpu(void)
5328 {
5329 	struct kvm_vcpu *vcpu;
5330 
5331 	preempt_disable();
5332 	vcpu = __this_cpu_read(kvm_running_vcpu);
5333 	preempt_enable();
5334 
5335 	return vcpu;
5336 }
5337 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5338 
5339 /**
5340  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5341  */
5342 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5343 {
5344         return &kvm_running_vcpu;
5345 }
5346 
5347 struct kvm_cpu_compat_check {
5348 	void *opaque;
5349 	int *ret;
5350 };
5351 
5352 static void check_processor_compat(void *data)
5353 {
5354 	struct kvm_cpu_compat_check *c = data;
5355 
5356 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5357 }
5358 
5359 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5360 		  struct module *module)
5361 {
5362 	struct kvm_cpu_compat_check c;
5363 	int r;
5364 	int cpu;
5365 
5366 	r = kvm_arch_init(opaque);
5367 	if (r)
5368 		goto out_fail;
5369 
5370 	/*
5371 	 * kvm_arch_init makes sure there's at most one caller
5372 	 * for architectures that support multiple implementations,
5373 	 * like intel and amd on x86.
5374 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5375 	 * conflicts in case kvm is already setup for another implementation.
5376 	 */
5377 	r = kvm_irqfd_init();
5378 	if (r)
5379 		goto out_irqfd;
5380 
5381 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5382 		r = -ENOMEM;
5383 		goto out_free_0;
5384 	}
5385 
5386 	r = kvm_arch_hardware_setup(opaque);
5387 	if (r < 0)
5388 		goto out_free_1;
5389 
5390 	c.ret = &r;
5391 	c.opaque = opaque;
5392 	for_each_online_cpu(cpu) {
5393 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5394 		if (r < 0)
5395 			goto out_free_2;
5396 	}
5397 
5398 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5399 				      kvm_starting_cpu, kvm_dying_cpu);
5400 	if (r)
5401 		goto out_free_2;
5402 	register_reboot_notifier(&kvm_reboot_notifier);
5403 
5404 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5405 	if (!vcpu_align)
5406 		vcpu_align = __alignof__(struct kvm_vcpu);
5407 	kvm_vcpu_cache =
5408 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5409 					   SLAB_ACCOUNT,
5410 					   offsetof(struct kvm_vcpu, arch),
5411 					   offsetofend(struct kvm_vcpu, stats_id)
5412 					   - offsetof(struct kvm_vcpu, arch),
5413 					   NULL);
5414 	if (!kvm_vcpu_cache) {
5415 		r = -ENOMEM;
5416 		goto out_free_3;
5417 	}
5418 
5419 	r = kvm_async_pf_init();
5420 	if (r)
5421 		goto out_free;
5422 
5423 	kvm_chardev_ops.owner = module;
5424 	kvm_vm_fops.owner = module;
5425 	kvm_vcpu_fops.owner = module;
5426 
5427 	r = misc_register(&kvm_dev);
5428 	if (r) {
5429 		pr_err("kvm: misc device register failed\n");
5430 		goto out_unreg;
5431 	}
5432 
5433 	register_syscore_ops(&kvm_syscore_ops);
5434 
5435 	kvm_preempt_ops.sched_in = kvm_sched_in;
5436 	kvm_preempt_ops.sched_out = kvm_sched_out;
5437 
5438 	kvm_init_debug();
5439 
5440 	r = kvm_vfio_ops_init();
5441 	WARN_ON(r);
5442 
5443 	return 0;
5444 
5445 out_unreg:
5446 	kvm_async_pf_deinit();
5447 out_free:
5448 	kmem_cache_destroy(kvm_vcpu_cache);
5449 out_free_3:
5450 	unregister_reboot_notifier(&kvm_reboot_notifier);
5451 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5452 out_free_2:
5453 	kvm_arch_hardware_unsetup();
5454 out_free_1:
5455 	free_cpumask_var(cpus_hardware_enabled);
5456 out_free_0:
5457 	kvm_irqfd_exit();
5458 out_irqfd:
5459 	kvm_arch_exit();
5460 out_fail:
5461 	return r;
5462 }
5463 EXPORT_SYMBOL_GPL(kvm_init);
5464 
5465 void kvm_exit(void)
5466 {
5467 	debugfs_remove_recursive(kvm_debugfs_dir);
5468 	misc_deregister(&kvm_dev);
5469 	kmem_cache_destroy(kvm_vcpu_cache);
5470 	kvm_async_pf_deinit();
5471 	unregister_syscore_ops(&kvm_syscore_ops);
5472 	unregister_reboot_notifier(&kvm_reboot_notifier);
5473 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5474 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5475 	kvm_arch_hardware_unsetup();
5476 	kvm_arch_exit();
5477 	kvm_irqfd_exit();
5478 	free_cpumask_var(cpus_hardware_enabled);
5479 	kvm_vfio_ops_exit();
5480 }
5481 EXPORT_SYMBOL_GPL(kvm_exit);
5482 
5483 struct kvm_vm_worker_thread_context {
5484 	struct kvm *kvm;
5485 	struct task_struct *parent;
5486 	struct completion init_done;
5487 	kvm_vm_thread_fn_t thread_fn;
5488 	uintptr_t data;
5489 	int err;
5490 };
5491 
5492 static int kvm_vm_worker_thread(void *context)
5493 {
5494 	/*
5495 	 * The init_context is allocated on the stack of the parent thread, so
5496 	 * we have to locally copy anything that is needed beyond initialization
5497 	 */
5498 	struct kvm_vm_worker_thread_context *init_context = context;
5499 	struct kvm *kvm = init_context->kvm;
5500 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5501 	uintptr_t data = init_context->data;
5502 	int err;
5503 
5504 	err = kthread_park(current);
5505 	/* kthread_park(current) is never supposed to return an error */
5506 	WARN_ON(err != 0);
5507 	if (err)
5508 		goto init_complete;
5509 
5510 	err = cgroup_attach_task_all(init_context->parent, current);
5511 	if (err) {
5512 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5513 			__func__, err);
5514 		goto init_complete;
5515 	}
5516 
5517 	set_user_nice(current, task_nice(init_context->parent));
5518 
5519 init_complete:
5520 	init_context->err = err;
5521 	complete(&init_context->init_done);
5522 	init_context = NULL;
5523 
5524 	if (err)
5525 		return err;
5526 
5527 	/* Wait to be woken up by the spawner before proceeding. */
5528 	kthread_parkme();
5529 
5530 	if (!kthread_should_stop())
5531 		err = thread_fn(kvm, data);
5532 
5533 	return err;
5534 }
5535 
5536 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5537 				uintptr_t data, const char *name,
5538 				struct task_struct **thread_ptr)
5539 {
5540 	struct kvm_vm_worker_thread_context init_context = {};
5541 	struct task_struct *thread;
5542 
5543 	*thread_ptr = NULL;
5544 	init_context.kvm = kvm;
5545 	init_context.parent = current;
5546 	init_context.thread_fn = thread_fn;
5547 	init_context.data = data;
5548 	init_completion(&init_context.init_done);
5549 
5550 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5551 			     "%s-%d", name, task_pid_nr(current));
5552 	if (IS_ERR(thread))
5553 		return PTR_ERR(thread);
5554 
5555 	/* kthread_run is never supposed to return NULL */
5556 	WARN_ON(thread == NULL);
5557 
5558 	wait_for_completion(&init_context.init_done);
5559 
5560 	if (!init_context.err)
5561 		*thread_ptr = thread;
5562 
5563 	return init_context.err;
5564 }
5565