xref: /openbmc/linux/virt/kvm/kvm_main.c (revision e0bf6c5c)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 unsigned int halt_poll_ns = 0;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71 
72 /*
73  * Ordering of locks:
74  *
75  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77 
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81 
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count = 0;
84 static atomic_t hardware_enable_failed;
85 
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88 
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90 
91 struct dentry *kvm_debugfs_dir;
92 
93 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
94 			   unsigned long arg);
95 #ifdef CONFIG_KVM_COMPAT
96 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
97 				  unsigned long arg);
98 #endif
99 static int hardware_enable_all(void);
100 static void hardware_disable_all(void);
101 
102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
103 
104 static void kvm_release_pfn_dirty(pfn_t pfn);
105 static void mark_page_dirty_in_slot(struct kvm *kvm,
106 				    struct kvm_memory_slot *memslot, gfn_t gfn);
107 
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110 
111 static bool largepages_enabled = true;
112 
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 	if (pfn_valid(pfn))
116 		return PageReserved(pfn_to_page(pfn));
117 
118 	return true;
119 }
120 
121 /*
122  * Switches to specified vcpu, until a matching vcpu_put()
123  */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 	int cpu;
127 
128 	if (mutex_lock_killable(&vcpu->mutex))
129 		return -EINTR;
130 	cpu = get_cpu();
131 	preempt_notifier_register(&vcpu->preempt_notifier);
132 	kvm_arch_vcpu_load(vcpu, cpu);
133 	put_cpu();
134 	return 0;
135 }
136 
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 	preempt_disable();
140 	kvm_arch_vcpu_put(vcpu);
141 	preempt_notifier_unregister(&vcpu->preempt_notifier);
142 	preempt_enable();
143 	mutex_unlock(&vcpu->mutex);
144 }
145 
146 static void ack_flush(void *_completed)
147 {
148 }
149 
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 	int i, cpu, me;
153 	cpumask_var_t cpus;
154 	bool called = true;
155 	struct kvm_vcpu *vcpu;
156 
157 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158 
159 	me = get_cpu();
160 	kvm_for_each_vcpu(i, vcpu, kvm) {
161 		kvm_make_request(req, vcpu);
162 		cpu = vcpu->cpu;
163 
164 		/* Set ->requests bit before we read ->mode */
165 		smp_mb();
166 
167 		if (cpus != NULL && cpu != -1 && cpu != me &&
168 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 			cpumask_set_cpu(cpu, cpus);
170 	}
171 	if (unlikely(cpus == NULL))
172 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 	else if (!cpumask_empty(cpus))
174 		smp_call_function_many(cpus, ack_flush, NULL, 1);
175 	else
176 		called = false;
177 	put_cpu();
178 	free_cpumask_var(cpus);
179 	return called;
180 }
181 
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 	long dirty_count = kvm->tlbs_dirty;
186 
187 	smp_mb();
188 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 		++kvm->stat.remote_tlb_flush;
190 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194 
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199 
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204 
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209 
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 	struct page *page;
213 	int r;
214 
215 	mutex_init(&vcpu->mutex);
216 	vcpu->cpu = -1;
217 	vcpu->kvm = kvm;
218 	vcpu->vcpu_id = id;
219 	vcpu->pid = NULL;
220 	init_waitqueue_head(&vcpu->wq);
221 	kvm_async_pf_vcpu_init(vcpu);
222 
223 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 	if (!page) {
225 		r = -ENOMEM;
226 		goto fail;
227 	}
228 	vcpu->run = page_address(page);
229 
230 	kvm_vcpu_set_in_spin_loop(vcpu, false);
231 	kvm_vcpu_set_dy_eligible(vcpu, false);
232 	vcpu->preempted = false;
233 
234 	r = kvm_arch_vcpu_init(vcpu);
235 	if (r < 0)
236 		goto fail_free_run;
237 	return 0;
238 
239 fail_free_run:
240 	free_page((unsigned long)vcpu->run);
241 fail:
242 	return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245 
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 	put_pid(vcpu->pid);
249 	kvm_arch_vcpu_uninit(vcpu);
250 	free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253 
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 	return container_of(mn, struct kvm, mmu_notifier);
258 }
259 
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 					     struct mm_struct *mm,
262 					     unsigned long address)
263 {
264 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 	int need_tlb_flush, idx;
266 
267 	/*
268 	 * When ->invalidate_page runs, the linux pte has been zapped
269 	 * already but the page is still allocated until
270 	 * ->invalidate_page returns. So if we increase the sequence
271 	 * here the kvm page fault will notice if the spte can't be
272 	 * established because the page is going to be freed. If
273 	 * instead the kvm page fault establishes the spte before
274 	 * ->invalidate_page runs, kvm_unmap_hva will release it
275 	 * before returning.
276 	 *
277 	 * The sequence increase only need to be seen at spin_unlock
278 	 * time, and not at spin_lock time.
279 	 *
280 	 * Increasing the sequence after the spin_unlock would be
281 	 * unsafe because the kvm page fault could then establish the
282 	 * pte after kvm_unmap_hva returned, without noticing the page
283 	 * is going to be freed.
284 	 */
285 	idx = srcu_read_lock(&kvm->srcu);
286 	spin_lock(&kvm->mmu_lock);
287 
288 	kvm->mmu_notifier_seq++;
289 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 	/* we've to flush the tlb before the pages can be freed */
291 	if (need_tlb_flush)
292 		kvm_flush_remote_tlbs(kvm);
293 
294 	spin_unlock(&kvm->mmu_lock);
295 
296 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297 
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 	need_tlb_flush |= kvm->tlbs_dirty;
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 
339 	spin_unlock(&kvm->mmu_lock);
340 	srcu_read_unlock(&kvm->srcu, idx);
341 }
342 
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 						  struct mm_struct *mm,
345 						  unsigned long start,
346 						  unsigned long end)
347 {
348 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
349 
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * This sequence increase will notify the kvm page fault that
353 	 * the page that is going to be mapped in the spte could have
354 	 * been freed.
355 	 */
356 	kvm->mmu_notifier_seq++;
357 	smp_wmb();
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease, which is ensured by the smp_wmb above
361 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 	 */
363 	kvm->mmu_notifier_count--;
364 	spin_unlock(&kvm->mmu_lock);
365 
366 	BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368 
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 					      struct mm_struct *mm,
371 					      unsigned long start,
372 					      unsigned long end)
373 {
374 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 	int young, idx;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 
380 	young = kvm_age_hva(kvm, start, end);
381 	if (young)
382 		kvm_flush_remote_tlbs(kvm);
383 
384 	spin_unlock(&kvm->mmu_lock);
385 	srcu_read_unlock(&kvm->srcu, idx);
386 
387 	return young;
388 }
389 
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 				       struct mm_struct *mm,
392 				       unsigned long address)
393 {
394 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 	int young, idx;
396 
397 	idx = srcu_read_lock(&kvm->srcu);
398 	spin_lock(&kvm->mmu_lock);
399 	young = kvm_test_age_hva(kvm, address);
400 	spin_unlock(&kvm->mmu_lock);
401 	srcu_read_unlock(&kvm->srcu, idx);
402 
403 	return young;
404 }
405 
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 				     struct mm_struct *mm)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int idx;
411 
412 	idx = srcu_read_lock(&kvm->srcu);
413 	kvm_arch_flush_shadow_all(kvm);
414 	srcu_read_unlock(&kvm->srcu, idx);
415 }
416 
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
419 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
420 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
421 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
422 	.test_young		= kvm_mmu_notifier_test_young,
423 	.change_pte		= kvm_mmu_notifier_change_pte,
424 	.release		= kvm_mmu_notifier_release,
425 };
426 
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432 
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 	return 0;
438 }
439 
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444 	int i;
445 	struct kvm_memslots *slots = kvm->memslots;
446 
447 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 		slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450 
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453 	int r, i;
454 	struct kvm *kvm = kvm_arch_alloc_vm();
455 
456 	if (!kvm)
457 		return ERR_PTR(-ENOMEM);
458 
459 	r = kvm_arch_init_vm(kvm, type);
460 	if (r)
461 		goto out_err_no_disable;
462 
463 	r = hardware_enable_all();
464 	if (r)
465 		goto out_err_no_disable;
466 
467 #ifdef CONFIG_HAVE_KVM_IRQFD
468 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470 
471 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472 
473 	r = -ENOMEM;
474 	kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
475 	if (!kvm->memslots)
476 		goto out_err_no_srcu;
477 
478 	/*
479 	 * Init kvm generation close to the maximum to easily test the
480 	 * code of handling generation number wrap-around.
481 	 */
482 	kvm->memslots->generation = -150;
483 
484 	kvm_init_memslots_id(kvm);
485 	if (init_srcu_struct(&kvm->srcu))
486 		goto out_err_no_srcu;
487 	if (init_srcu_struct(&kvm->irq_srcu))
488 		goto out_err_no_irq_srcu;
489 	for (i = 0; i < KVM_NR_BUSES; i++) {
490 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
491 					GFP_KERNEL);
492 		if (!kvm->buses[i])
493 			goto out_err;
494 	}
495 
496 	spin_lock_init(&kvm->mmu_lock);
497 	kvm->mm = current->mm;
498 	atomic_inc(&kvm->mm->mm_count);
499 	kvm_eventfd_init(kvm);
500 	mutex_init(&kvm->lock);
501 	mutex_init(&kvm->irq_lock);
502 	mutex_init(&kvm->slots_lock);
503 	atomic_set(&kvm->users_count, 1);
504 	INIT_LIST_HEAD(&kvm->devices);
505 
506 	r = kvm_init_mmu_notifier(kvm);
507 	if (r)
508 		goto out_err;
509 
510 	spin_lock(&kvm_lock);
511 	list_add(&kvm->vm_list, &vm_list);
512 	spin_unlock(&kvm_lock);
513 
514 	return kvm;
515 
516 out_err:
517 	cleanup_srcu_struct(&kvm->irq_srcu);
518 out_err_no_irq_srcu:
519 	cleanup_srcu_struct(&kvm->srcu);
520 out_err_no_srcu:
521 	hardware_disable_all();
522 out_err_no_disable:
523 	for (i = 0; i < KVM_NR_BUSES; i++)
524 		kfree(kvm->buses[i]);
525 	kvfree(kvm->memslots);
526 	kvm_arch_free_vm(kvm);
527 	return ERR_PTR(r);
528 }
529 
530 /*
531  * Avoid using vmalloc for a small buffer.
532  * Should not be used when the size is statically known.
533  */
534 void *kvm_kvzalloc(unsigned long size)
535 {
536 	if (size > PAGE_SIZE)
537 		return vzalloc(size);
538 	else
539 		return kzalloc(size, GFP_KERNEL);
540 }
541 
542 void kvm_kvfree(const void *addr)
543 {
544 	if (is_vmalloc_addr(addr))
545 		vfree(addr);
546 	else
547 		kfree(addr);
548 }
549 
550 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
551 {
552 	if (!memslot->dirty_bitmap)
553 		return;
554 
555 	kvm_kvfree(memslot->dirty_bitmap);
556 	memslot->dirty_bitmap = NULL;
557 }
558 
559 /*
560  * Free any memory in @free but not in @dont.
561  */
562 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
563 				  struct kvm_memory_slot *dont)
564 {
565 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
566 		kvm_destroy_dirty_bitmap(free);
567 
568 	kvm_arch_free_memslot(kvm, free, dont);
569 
570 	free->npages = 0;
571 }
572 
573 static void kvm_free_physmem(struct kvm *kvm)
574 {
575 	struct kvm_memslots *slots = kvm->memslots;
576 	struct kvm_memory_slot *memslot;
577 
578 	kvm_for_each_memslot(memslot, slots)
579 		kvm_free_physmem_slot(kvm, memslot, NULL);
580 
581 	kvfree(kvm->memslots);
582 }
583 
584 static void kvm_destroy_devices(struct kvm *kvm)
585 {
586 	struct list_head *node, *tmp;
587 
588 	list_for_each_safe(node, tmp, &kvm->devices) {
589 		struct kvm_device *dev =
590 			list_entry(node, struct kvm_device, vm_node);
591 
592 		list_del(node);
593 		dev->ops->destroy(dev);
594 	}
595 }
596 
597 static void kvm_destroy_vm(struct kvm *kvm)
598 {
599 	int i;
600 	struct mm_struct *mm = kvm->mm;
601 
602 	kvm_arch_sync_events(kvm);
603 	spin_lock(&kvm_lock);
604 	list_del(&kvm->vm_list);
605 	spin_unlock(&kvm_lock);
606 	kvm_free_irq_routing(kvm);
607 	for (i = 0; i < KVM_NR_BUSES; i++)
608 		kvm_io_bus_destroy(kvm->buses[i]);
609 	kvm_coalesced_mmio_free(kvm);
610 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
611 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
612 #else
613 	kvm_arch_flush_shadow_all(kvm);
614 #endif
615 	kvm_arch_destroy_vm(kvm);
616 	kvm_destroy_devices(kvm);
617 	kvm_free_physmem(kvm);
618 	cleanup_srcu_struct(&kvm->irq_srcu);
619 	cleanup_srcu_struct(&kvm->srcu);
620 	kvm_arch_free_vm(kvm);
621 	hardware_disable_all();
622 	mmdrop(mm);
623 }
624 
625 void kvm_get_kvm(struct kvm *kvm)
626 {
627 	atomic_inc(&kvm->users_count);
628 }
629 EXPORT_SYMBOL_GPL(kvm_get_kvm);
630 
631 void kvm_put_kvm(struct kvm *kvm)
632 {
633 	if (atomic_dec_and_test(&kvm->users_count))
634 		kvm_destroy_vm(kvm);
635 }
636 EXPORT_SYMBOL_GPL(kvm_put_kvm);
637 
638 
639 static int kvm_vm_release(struct inode *inode, struct file *filp)
640 {
641 	struct kvm *kvm = filp->private_data;
642 
643 	kvm_irqfd_release(kvm);
644 
645 	kvm_put_kvm(kvm);
646 	return 0;
647 }
648 
649 /*
650  * Allocation size is twice as large as the actual dirty bitmap size.
651  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
652  */
653 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
654 {
655 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
656 
657 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
658 	if (!memslot->dirty_bitmap)
659 		return -ENOMEM;
660 
661 	return 0;
662 }
663 
664 /*
665  * Insert memslot and re-sort memslots based on their GFN,
666  * so binary search could be used to lookup GFN.
667  * Sorting algorithm takes advantage of having initially
668  * sorted array and known changed memslot position.
669  */
670 static void update_memslots(struct kvm_memslots *slots,
671 			    struct kvm_memory_slot *new)
672 {
673 	int id = new->id;
674 	int i = slots->id_to_index[id];
675 	struct kvm_memory_slot *mslots = slots->memslots;
676 
677 	WARN_ON(mslots[i].id != id);
678 	if (!new->npages) {
679 		WARN_ON(!mslots[i].npages);
680 		new->base_gfn = 0;
681 		new->flags = 0;
682 		if (mslots[i].npages)
683 			slots->used_slots--;
684 	} else {
685 		if (!mslots[i].npages)
686 			slots->used_slots++;
687 	}
688 
689 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
690 	       new->base_gfn <= mslots[i + 1].base_gfn) {
691 		if (!mslots[i + 1].npages)
692 			break;
693 		mslots[i] = mslots[i + 1];
694 		slots->id_to_index[mslots[i].id] = i;
695 		i++;
696 	}
697 
698 	/*
699 	 * The ">=" is needed when creating a slot with base_gfn == 0,
700 	 * so that it moves before all those with base_gfn == npages == 0.
701 	 *
702 	 * On the other hand, if new->npages is zero, the above loop has
703 	 * already left i pointing to the beginning of the empty part of
704 	 * mslots, and the ">=" would move the hole backwards in this
705 	 * case---which is wrong.  So skip the loop when deleting a slot.
706 	 */
707 	if (new->npages) {
708 		while (i > 0 &&
709 		       new->base_gfn >= mslots[i - 1].base_gfn) {
710 			mslots[i] = mslots[i - 1];
711 			slots->id_to_index[mslots[i].id] = i;
712 			i--;
713 		}
714 	} else
715 		WARN_ON_ONCE(i != slots->used_slots);
716 
717 	mslots[i] = *new;
718 	slots->id_to_index[mslots[i].id] = i;
719 }
720 
721 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
722 {
723 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
724 
725 #ifdef __KVM_HAVE_READONLY_MEM
726 	valid_flags |= KVM_MEM_READONLY;
727 #endif
728 
729 	if (mem->flags & ~valid_flags)
730 		return -EINVAL;
731 
732 	return 0;
733 }
734 
735 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
736 		struct kvm_memslots *slots)
737 {
738 	struct kvm_memslots *old_memslots = kvm->memslots;
739 
740 	/*
741 	 * Set the low bit in the generation, which disables SPTE caching
742 	 * until the end of synchronize_srcu_expedited.
743 	 */
744 	WARN_ON(old_memslots->generation & 1);
745 	slots->generation = old_memslots->generation + 1;
746 
747 	rcu_assign_pointer(kvm->memslots, slots);
748 	synchronize_srcu_expedited(&kvm->srcu);
749 
750 	/*
751 	 * Increment the new memslot generation a second time. This prevents
752 	 * vm exits that race with memslot updates from caching a memslot
753 	 * generation that will (potentially) be valid forever.
754 	 */
755 	slots->generation++;
756 
757 	kvm_arch_memslots_updated(kvm);
758 
759 	return old_memslots;
760 }
761 
762 /*
763  * Allocate some memory and give it an address in the guest physical address
764  * space.
765  *
766  * Discontiguous memory is allowed, mostly for framebuffers.
767  *
768  * Must be called holding kvm->slots_lock for write.
769  */
770 int __kvm_set_memory_region(struct kvm *kvm,
771 			    struct kvm_userspace_memory_region *mem)
772 {
773 	int r;
774 	gfn_t base_gfn;
775 	unsigned long npages;
776 	struct kvm_memory_slot *slot;
777 	struct kvm_memory_slot old, new;
778 	struct kvm_memslots *slots = NULL, *old_memslots;
779 	enum kvm_mr_change change;
780 
781 	r = check_memory_region_flags(mem);
782 	if (r)
783 		goto out;
784 
785 	r = -EINVAL;
786 	/* General sanity checks */
787 	if (mem->memory_size & (PAGE_SIZE - 1))
788 		goto out;
789 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
790 		goto out;
791 	/* We can read the guest memory with __xxx_user() later on. */
792 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
793 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
794 	     !access_ok(VERIFY_WRITE,
795 			(void __user *)(unsigned long)mem->userspace_addr,
796 			mem->memory_size)))
797 		goto out;
798 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
799 		goto out;
800 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
801 		goto out;
802 
803 	slot = id_to_memslot(kvm->memslots, mem->slot);
804 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
805 	npages = mem->memory_size >> PAGE_SHIFT;
806 
807 	if (npages > KVM_MEM_MAX_NR_PAGES)
808 		goto out;
809 
810 	if (!npages)
811 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
812 
813 	new = old = *slot;
814 
815 	new.id = mem->slot;
816 	new.base_gfn = base_gfn;
817 	new.npages = npages;
818 	new.flags = mem->flags;
819 
820 	if (npages) {
821 		if (!old.npages)
822 			change = KVM_MR_CREATE;
823 		else { /* Modify an existing slot. */
824 			if ((mem->userspace_addr != old.userspace_addr) ||
825 			    (npages != old.npages) ||
826 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
827 				goto out;
828 
829 			if (base_gfn != old.base_gfn)
830 				change = KVM_MR_MOVE;
831 			else if (new.flags != old.flags)
832 				change = KVM_MR_FLAGS_ONLY;
833 			else { /* Nothing to change. */
834 				r = 0;
835 				goto out;
836 			}
837 		}
838 	} else if (old.npages) {
839 		change = KVM_MR_DELETE;
840 	} else /* Modify a non-existent slot: disallowed. */
841 		goto out;
842 
843 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
844 		/* Check for overlaps */
845 		r = -EEXIST;
846 		kvm_for_each_memslot(slot, kvm->memslots) {
847 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
848 			    (slot->id == mem->slot))
849 				continue;
850 			if (!((base_gfn + npages <= slot->base_gfn) ||
851 			      (base_gfn >= slot->base_gfn + slot->npages)))
852 				goto out;
853 		}
854 	}
855 
856 	/* Free page dirty bitmap if unneeded */
857 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
858 		new.dirty_bitmap = NULL;
859 
860 	r = -ENOMEM;
861 	if (change == KVM_MR_CREATE) {
862 		new.userspace_addr = mem->userspace_addr;
863 
864 		if (kvm_arch_create_memslot(kvm, &new, npages))
865 			goto out_free;
866 	}
867 
868 	/* Allocate page dirty bitmap if needed */
869 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
870 		if (kvm_create_dirty_bitmap(&new) < 0)
871 			goto out_free;
872 	}
873 
874 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
875 	if (!slots)
876 		goto out_free;
877 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
878 
879 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
880 		slot = id_to_memslot(slots, mem->slot);
881 		slot->flags |= KVM_MEMSLOT_INVALID;
882 
883 		old_memslots = install_new_memslots(kvm, slots);
884 
885 		/* slot was deleted or moved, clear iommu mapping */
886 		kvm_iommu_unmap_pages(kvm, &old);
887 		/* From this point no new shadow pages pointing to a deleted,
888 		 * or moved, memslot will be created.
889 		 *
890 		 * validation of sp->gfn happens in:
891 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
892 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
893 		 */
894 		kvm_arch_flush_shadow_memslot(kvm, slot);
895 
896 		/*
897 		 * We can re-use the old_memslots from above, the only difference
898 		 * from the currently installed memslots is the invalid flag.  This
899 		 * will get overwritten by update_memslots anyway.
900 		 */
901 		slots = old_memslots;
902 	}
903 
904 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
905 	if (r)
906 		goto out_slots;
907 
908 	/* actual memory is freed via old in kvm_free_physmem_slot below */
909 	if (change == KVM_MR_DELETE) {
910 		new.dirty_bitmap = NULL;
911 		memset(&new.arch, 0, sizeof(new.arch));
912 	}
913 
914 	update_memslots(slots, &new);
915 	old_memslots = install_new_memslots(kvm, slots);
916 
917 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
918 
919 	kvm_free_physmem_slot(kvm, &old, &new);
920 	kvfree(old_memslots);
921 
922 	/*
923 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
924 	 * un-mapped and re-mapped if their base changes.  Since base change
925 	 * unmapping is handled above with slot deletion, mapping alone is
926 	 * needed here.  Anything else the iommu might care about for existing
927 	 * slots (size changes, userspace addr changes and read-only flag
928 	 * changes) is disallowed above, so any other attribute changes getting
929 	 * here can be skipped.
930 	 */
931 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
932 		r = kvm_iommu_map_pages(kvm, &new);
933 		return r;
934 	}
935 
936 	return 0;
937 
938 out_slots:
939 	kvfree(slots);
940 out_free:
941 	kvm_free_physmem_slot(kvm, &new, &old);
942 out:
943 	return r;
944 }
945 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
946 
947 int kvm_set_memory_region(struct kvm *kvm,
948 			  struct kvm_userspace_memory_region *mem)
949 {
950 	int r;
951 
952 	mutex_lock(&kvm->slots_lock);
953 	r = __kvm_set_memory_region(kvm, mem);
954 	mutex_unlock(&kvm->slots_lock);
955 	return r;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
958 
959 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
960 					  struct kvm_userspace_memory_region *mem)
961 {
962 	if (mem->slot >= KVM_USER_MEM_SLOTS)
963 		return -EINVAL;
964 	return kvm_set_memory_region(kvm, mem);
965 }
966 
967 int kvm_get_dirty_log(struct kvm *kvm,
968 			struct kvm_dirty_log *log, int *is_dirty)
969 {
970 	struct kvm_memory_slot *memslot;
971 	int r, i;
972 	unsigned long n;
973 	unsigned long any = 0;
974 
975 	r = -EINVAL;
976 	if (log->slot >= KVM_USER_MEM_SLOTS)
977 		goto out;
978 
979 	memslot = id_to_memslot(kvm->memslots, log->slot);
980 	r = -ENOENT;
981 	if (!memslot->dirty_bitmap)
982 		goto out;
983 
984 	n = kvm_dirty_bitmap_bytes(memslot);
985 
986 	for (i = 0; !any && i < n/sizeof(long); ++i)
987 		any = memslot->dirty_bitmap[i];
988 
989 	r = -EFAULT;
990 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
991 		goto out;
992 
993 	if (any)
994 		*is_dirty = 1;
995 
996 	r = 0;
997 out:
998 	return r;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1001 
1002 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1003 /**
1004  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1005  *	are dirty write protect them for next write.
1006  * @kvm:	pointer to kvm instance
1007  * @log:	slot id and address to which we copy the log
1008  * @is_dirty:	flag set if any page is dirty
1009  *
1010  * We need to keep it in mind that VCPU threads can write to the bitmap
1011  * concurrently. So, to avoid losing track of dirty pages we keep the
1012  * following order:
1013  *
1014  *    1. Take a snapshot of the bit and clear it if needed.
1015  *    2. Write protect the corresponding page.
1016  *    3. Copy the snapshot to the userspace.
1017  *    4. Upon return caller flushes TLB's if needed.
1018  *
1019  * Between 2 and 4, the guest may write to the page using the remaining TLB
1020  * entry.  This is not a problem because the page is reported dirty using
1021  * the snapshot taken before and step 4 ensures that writes done after
1022  * exiting to userspace will be logged for the next call.
1023  *
1024  */
1025 int kvm_get_dirty_log_protect(struct kvm *kvm,
1026 			struct kvm_dirty_log *log, bool *is_dirty)
1027 {
1028 	struct kvm_memory_slot *memslot;
1029 	int r, i;
1030 	unsigned long n;
1031 	unsigned long *dirty_bitmap;
1032 	unsigned long *dirty_bitmap_buffer;
1033 
1034 	r = -EINVAL;
1035 	if (log->slot >= KVM_USER_MEM_SLOTS)
1036 		goto out;
1037 
1038 	memslot = id_to_memslot(kvm->memslots, log->slot);
1039 
1040 	dirty_bitmap = memslot->dirty_bitmap;
1041 	r = -ENOENT;
1042 	if (!dirty_bitmap)
1043 		goto out;
1044 
1045 	n = kvm_dirty_bitmap_bytes(memslot);
1046 
1047 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1048 	memset(dirty_bitmap_buffer, 0, n);
1049 
1050 	spin_lock(&kvm->mmu_lock);
1051 	*is_dirty = false;
1052 	for (i = 0; i < n / sizeof(long); i++) {
1053 		unsigned long mask;
1054 		gfn_t offset;
1055 
1056 		if (!dirty_bitmap[i])
1057 			continue;
1058 
1059 		*is_dirty = true;
1060 
1061 		mask = xchg(&dirty_bitmap[i], 0);
1062 		dirty_bitmap_buffer[i] = mask;
1063 
1064 		offset = i * BITS_PER_LONG;
1065 		kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, offset,
1066 								mask);
1067 	}
1068 
1069 	spin_unlock(&kvm->mmu_lock);
1070 
1071 	r = -EFAULT;
1072 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1073 		goto out;
1074 
1075 	r = 0;
1076 out:
1077 	return r;
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1080 #endif
1081 
1082 bool kvm_largepages_enabled(void)
1083 {
1084 	return largepages_enabled;
1085 }
1086 
1087 void kvm_disable_largepages(void)
1088 {
1089 	largepages_enabled = false;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1092 
1093 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1094 {
1095 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1096 }
1097 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1098 
1099 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1100 {
1101 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1102 
1103 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1104 	      memslot->flags & KVM_MEMSLOT_INVALID)
1105 		return 0;
1106 
1107 	return 1;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1110 
1111 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1112 {
1113 	struct vm_area_struct *vma;
1114 	unsigned long addr, size;
1115 
1116 	size = PAGE_SIZE;
1117 
1118 	addr = gfn_to_hva(kvm, gfn);
1119 	if (kvm_is_error_hva(addr))
1120 		return PAGE_SIZE;
1121 
1122 	down_read(&current->mm->mmap_sem);
1123 	vma = find_vma(current->mm, addr);
1124 	if (!vma)
1125 		goto out;
1126 
1127 	size = vma_kernel_pagesize(vma);
1128 
1129 out:
1130 	up_read(&current->mm->mmap_sem);
1131 
1132 	return size;
1133 }
1134 
1135 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1136 {
1137 	return slot->flags & KVM_MEM_READONLY;
1138 }
1139 
1140 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1141 				       gfn_t *nr_pages, bool write)
1142 {
1143 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1144 		return KVM_HVA_ERR_BAD;
1145 
1146 	if (memslot_is_readonly(slot) && write)
1147 		return KVM_HVA_ERR_RO_BAD;
1148 
1149 	if (nr_pages)
1150 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1151 
1152 	return __gfn_to_hva_memslot(slot, gfn);
1153 }
1154 
1155 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1156 				     gfn_t *nr_pages)
1157 {
1158 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1159 }
1160 
1161 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1162 					gfn_t gfn)
1163 {
1164 	return gfn_to_hva_many(slot, gfn, NULL);
1165 }
1166 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1167 
1168 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1169 {
1170 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1171 }
1172 EXPORT_SYMBOL_GPL(gfn_to_hva);
1173 
1174 /*
1175  * If writable is set to false, the hva returned by this function is only
1176  * allowed to be read.
1177  */
1178 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1179 				      gfn_t gfn, bool *writable)
1180 {
1181 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1182 
1183 	if (!kvm_is_error_hva(hva) && writable)
1184 		*writable = !memslot_is_readonly(slot);
1185 
1186 	return hva;
1187 }
1188 
1189 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1190 {
1191 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1192 
1193 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1194 }
1195 
1196 static int kvm_read_hva(void *data, void __user *hva, int len)
1197 {
1198 	return __copy_from_user(data, hva, len);
1199 }
1200 
1201 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1202 {
1203 	return __copy_from_user_inatomic(data, hva, len);
1204 }
1205 
1206 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1207 	unsigned long start, int write, struct page **page)
1208 {
1209 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1210 
1211 	if (write)
1212 		flags |= FOLL_WRITE;
1213 
1214 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1215 }
1216 
1217 static inline int check_user_page_hwpoison(unsigned long addr)
1218 {
1219 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1220 
1221 	rc = __get_user_pages(current, current->mm, addr, 1,
1222 			      flags, NULL, NULL, NULL);
1223 	return rc == -EHWPOISON;
1224 }
1225 
1226 /*
1227  * The atomic path to get the writable pfn which will be stored in @pfn,
1228  * true indicates success, otherwise false is returned.
1229  */
1230 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1231 			    bool write_fault, bool *writable, pfn_t *pfn)
1232 {
1233 	struct page *page[1];
1234 	int npages;
1235 
1236 	if (!(async || atomic))
1237 		return false;
1238 
1239 	/*
1240 	 * Fast pin a writable pfn only if it is a write fault request
1241 	 * or the caller allows to map a writable pfn for a read fault
1242 	 * request.
1243 	 */
1244 	if (!(write_fault || writable))
1245 		return false;
1246 
1247 	npages = __get_user_pages_fast(addr, 1, 1, page);
1248 	if (npages == 1) {
1249 		*pfn = page_to_pfn(page[0]);
1250 
1251 		if (writable)
1252 			*writable = true;
1253 		return true;
1254 	}
1255 
1256 	return false;
1257 }
1258 
1259 /*
1260  * The slow path to get the pfn of the specified host virtual address,
1261  * 1 indicates success, -errno is returned if error is detected.
1262  */
1263 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1264 			   bool *writable, pfn_t *pfn)
1265 {
1266 	struct page *page[1];
1267 	int npages = 0;
1268 
1269 	might_sleep();
1270 
1271 	if (writable)
1272 		*writable = write_fault;
1273 
1274 	if (async) {
1275 		down_read(&current->mm->mmap_sem);
1276 		npages = get_user_page_nowait(current, current->mm,
1277 					      addr, write_fault, page);
1278 		up_read(&current->mm->mmap_sem);
1279 	} else
1280 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1281 						   write_fault, 0, page,
1282 						   FOLL_TOUCH|FOLL_HWPOISON);
1283 	if (npages != 1)
1284 		return npages;
1285 
1286 	/* map read fault as writable if possible */
1287 	if (unlikely(!write_fault) && writable) {
1288 		struct page *wpage[1];
1289 
1290 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1291 		if (npages == 1) {
1292 			*writable = true;
1293 			put_page(page[0]);
1294 			page[0] = wpage[0];
1295 		}
1296 
1297 		npages = 1;
1298 	}
1299 	*pfn = page_to_pfn(page[0]);
1300 	return npages;
1301 }
1302 
1303 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1304 {
1305 	if (unlikely(!(vma->vm_flags & VM_READ)))
1306 		return false;
1307 
1308 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1309 		return false;
1310 
1311 	return true;
1312 }
1313 
1314 /*
1315  * Pin guest page in memory and return its pfn.
1316  * @addr: host virtual address which maps memory to the guest
1317  * @atomic: whether this function can sleep
1318  * @async: whether this function need to wait IO complete if the
1319  *         host page is not in the memory
1320  * @write_fault: whether we should get a writable host page
1321  * @writable: whether it allows to map a writable host page for !@write_fault
1322  *
1323  * The function will map a writable host page for these two cases:
1324  * 1): @write_fault = true
1325  * 2): @write_fault = false && @writable, @writable will tell the caller
1326  *     whether the mapping is writable.
1327  */
1328 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1329 			bool write_fault, bool *writable)
1330 {
1331 	struct vm_area_struct *vma;
1332 	pfn_t pfn = 0;
1333 	int npages;
1334 
1335 	/* we can do it either atomically or asynchronously, not both */
1336 	BUG_ON(atomic && async);
1337 
1338 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1339 		return pfn;
1340 
1341 	if (atomic)
1342 		return KVM_PFN_ERR_FAULT;
1343 
1344 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1345 	if (npages == 1)
1346 		return pfn;
1347 
1348 	down_read(&current->mm->mmap_sem);
1349 	if (npages == -EHWPOISON ||
1350 	      (!async && check_user_page_hwpoison(addr))) {
1351 		pfn = KVM_PFN_ERR_HWPOISON;
1352 		goto exit;
1353 	}
1354 
1355 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1356 
1357 	if (vma == NULL)
1358 		pfn = KVM_PFN_ERR_FAULT;
1359 	else if ((vma->vm_flags & VM_PFNMAP)) {
1360 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1361 			vma->vm_pgoff;
1362 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1363 	} else {
1364 		if (async && vma_is_valid(vma, write_fault))
1365 			*async = true;
1366 		pfn = KVM_PFN_ERR_FAULT;
1367 	}
1368 exit:
1369 	up_read(&current->mm->mmap_sem);
1370 	return pfn;
1371 }
1372 
1373 static pfn_t
1374 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1375 		     bool *async, bool write_fault, bool *writable)
1376 {
1377 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1378 
1379 	if (addr == KVM_HVA_ERR_RO_BAD)
1380 		return KVM_PFN_ERR_RO_FAULT;
1381 
1382 	if (kvm_is_error_hva(addr))
1383 		return KVM_PFN_NOSLOT;
1384 
1385 	/* Do not map writable pfn in the readonly memslot. */
1386 	if (writable && memslot_is_readonly(slot)) {
1387 		*writable = false;
1388 		writable = NULL;
1389 	}
1390 
1391 	return hva_to_pfn(addr, atomic, async, write_fault,
1392 			  writable);
1393 }
1394 
1395 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1396 			  bool write_fault, bool *writable)
1397 {
1398 	struct kvm_memory_slot *slot;
1399 
1400 	if (async)
1401 		*async = false;
1402 
1403 	slot = gfn_to_memslot(kvm, gfn);
1404 
1405 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1406 				    writable);
1407 }
1408 
1409 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1410 {
1411 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1412 }
1413 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1414 
1415 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1416 		       bool write_fault, bool *writable)
1417 {
1418 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1419 }
1420 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1421 
1422 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1423 {
1424 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1425 }
1426 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1427 
1428 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1429 		      bool *writable)
1430 {
1431 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1432 }
1433 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1434 
1435 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1436 {
1437 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1438 }
1439 
1440 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1441 {
1442 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1443 }
1444 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1445 
1446 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1447 								  int nr_pages)
1448 {
1449 	unsigned long addr;
1450 	gfn_t entry;
1451 
1452 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1453 	if (kvm_is_error_hva(addr))
1454 		return -1;
1455 
1456 	if (entry < nr_pages)
1457 		return 0;
1458 
1459 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1460 }
1461 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1462 
1463 static struct page *kvm_pfn_to_page(pfn_t pfn)
1464 {
1465 	if (is_error_noslot_pfn(pfn))
1466 		return KVM_ERR_PTR_BAD_PAGE;
1467 
1468 	if (kvm_is_reserved_pfn(pfn)) {
1469 		WARN_ON(1);
1470 		return KVM_ERR_PTR_BAD_PAGE;
1471 	}
1472 
1473 	return pfn_to_page(pfn);
1474 }
1475 
1476 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1477 {
1478 	pfn_t pfn;
1479 
1480 	pfn = gfn_to_pfn(kvm, gfn);
1481 
1482 	return kvm_pfn_to_page(pfn);
1483 }
1484 
1485 EXPORT_SYMBOL_GPL(gfn_to_page);
1486 
1487 void kvm_release_page_clean(struct page *page)
1488 {
1489 	WARN_ON(is_error_page(page));
1490 
1491 	kvm_release_pfn_clean(page_to_pfn(page));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1494 
1495 void kvm_release_pfn_clean(pfn_t pfn)
1496 {
1497 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1498 		put_page(pfn_to_page(pfn));
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1501 
1502 void kvm_release_page_dirty(struct page *page)
1503 {
1504 	WARN_ON(is_error_page(page));
1505 
1506 	kvm_release_pfn_dirty(page_to_pfn(page));
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1509 
1510 static void kvm_release_pfn_dirty(pfn_t pfn)
1511 {
1512 	kvm_set_pfn_dirty(pfn);
1513 	kvm_release_pfn_clean(pfn);
1514 }
1515 
1516 void kvm_set_pfn_dirty(pfn_t pfn)
1517 {
1518 	if (!kvm_is_reserved_pfn(pfn)) {
1519 		struct page *page = pfn_to_page(pfn);
1520 		if (!PageReserved(page))
1521 			SetPageDirty(page);
1522 	}
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1525 
1526 void kvm_set_pfn_accessed(pfn_t pfn)
1527 {
1528 	if (!kvm_is_reserved_pfn(pfn))
1529 		mark_page_accessed(pfn_to_page(pfn));
1530 }
1531 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1532 
1533 void kvm_get_pfn(pfn_t pfn)
1534 {
1535 	if (!kvm_is_reserved_pfn(pfn))
1536 		get_page(pfn_to_page(pfn));
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1539 
1540 static int next_segment(unsigned long len, int offset)
1541 {
1542 	if (len > PAGE_SIZE - offset)
1543 		return PAGE_SIZE - offset;
1544 	else
1545 		return len;
1546 }
1547 
1548 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1549 			int len)
1550 {
1551 	int r;
1552 	unsigned long addr;
1553 
1554 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1555 	if (kvm_is_error_hva(addr))
1556 		return -EFAULT;
1557 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1558 	if (r)
1559 		return -EFAULT;
1560 	return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1563 
1564 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1565 {
1566 	gfn_t gfn = gpa >> PAGE_SHIFT;
1567 	int seg;
1568 	int offset = offset_in_page(gpa);
1569 	int ret;
1570 
1571 	while ((seg = next_segment(len, offset)) != 0) {
1572 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1573 		if (ret < 0)
1574 			return ret;
1575 		offset = 0;
1576 		len -= seg;
1577 		data += seg;
1578 		++gfn;
1579 	}
1580 	return 0;
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_read_guest);
1583 
1584 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1585 			  unsigned long len)
1586 {
1587 	int r;
1588 	unsigned long addr;
1589 	gfn_t gfn = gpa >> PAGE_SHIFT;
1590 	int offset = offset_in_page(gpa);
1591 
1592 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1593 	if (kvm_is_error_hva(addr))
1594 		return -EFAULT;
1595 	pagefault_disable();
1596 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1597 	pagefault_enable();
1598 	if (r)
1599 		return -EFAULT;
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL(kvm_read_guest_atomic);
1603 
1604 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1605 			 int offset, int len)
1606 {
1607 	int r;
1608 	unsigned long addr;
1609 
1610 	addr = gfn_to_hva(kvm, gfn);
1611 	if (kvm_is_error_hva(addr))
1612 		return -EFAULT;
1613 	r = __copy_to_user((void __user *)addr + offset, data, len);
1614 	if (r)
1615 		return -EFAULT;
1616 	mark_page_dirty(kvm, gfn);
1617 	return 0;
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1620 
1621 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1622 		    unsigned long len)
1623 {
1624 	gfn_t gfn = gpa >> PAGE_SHIFT;
1625 	int seg;
1626 	int offset = offset_in_page(gpa);
1627 	int ret;
1628 
1629 	while ((seg = next_segment(len, offset)) != 0) {
1630 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1631 		if (ret < 0)
1632 			return ret;
1633 		offset = 0;
1634 		len -= seg;
1635 		data += seg;
1636 		++gfn;
1637 	}
1638 	return 0;
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_write_guest);
1641 
1642 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1643 			      gpa_t gpa, unsigned long len)
1644 {
1645 	struct kvm_memslots *slots = kvm_memslots(kvm);
1646 	int offset = offset_in_page(gpa);
1647 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1648 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1649 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1650 	gfn_t nr_pages_avail;
1651 
1652 	ghc->gpa = gpa;
1653 	ghc->generation = slots->generation;
1654 	ghc->len = len;
1655 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1656 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1657 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1658 		ghc->hva += offset;
1659 	} else {
1660 		/*
1661 		 * If the requested region crosses two memslots, we still
1662 		 * verify that the entire region is valid here.
1663 		 */
1664 		while (start_gfn <= end_gfn) {
1665 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1666 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1667 						   &nr_pages_avail);
1668 			if (kvm_is_error_hva(ghc->hva))
1669 				return -EFAULT;
1670 			start_gfn += nr_pages_avail;
1671 		}
1672 		/* Use the slow path for cross page reads and writes. */
1673 		ghc->memslot = NULL;
1674 	}
1675 	return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1678 
1679 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1680 			   void *data, unsigned long len)
1681 {
1682 	struct kvm_memslots *slots = kvm_memslots(kvm);
1683 	int r;
1684 
1685 	BUG_ON(len > ghc->len);
1686 
1687 	if (slots->generation != ghc->generation)
1688 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1689 
1690 	if (unlikely(!ghc->memslot))
1691 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1692 
1693 	if (kvm_is_error_hva(ghc->hva))
1694 		return -EFAULT;
1695 
1696 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1697 	if (r)
1698 		return -EFAULT;
1699 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1700 
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1704 
1705 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1706 			   void *data, unsigned long len)
1707 {
1708 	struct kvm_memslots *slots = kvm_memslots(kvm);
1709 	int r;
1710 
1711 	BUG_ON(len > ghc->len);
1712 
1713 	if (slots->generation != ghc->generation)
1714 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1715 
1716 	if (unlikely(!ghc->memslot))
1717 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1718 
1719 	if (kvm_is_error_hva(ghc->hva))
1720 		return -EFAULT;
1721 
1722 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1723 	if (r)
1724 		return -EFAULT;
1725 
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1729 
1730 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1731 {
1732 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1733 
1734 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1737 
1738 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1739 {
1740 	gfn_t gfn = gpa >> PAGE_SHIFT;
1741 	int seg;
1742 	int offset = offset_in_page(gpa);
1743 	int ret;
1744 
1745         while ((seg = next_segment(len, offset)) != 0) {
1746 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1747 		if (ret < 0)
1748 			return ret;
1749 		offset = 0;
1750 		len -= seg;
1751 		++gfn;
1752 	}
1753 	return 0;
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1756 
1757 static void mark_page_dirty_in_slot(struct kvm *kvm,
1758 				    struct kvm_memory_slot *memslot,
1759 				    gfn_t gfn)
1760 {
1761 	if (memslot && memslot->dirty_bitmap) {
1762 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1763 
1764 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1765 	}
1766 }
1767 
1768 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1769 {
1770 	struct kvm_memory_slot *memslot;
1771 
1772 	memslot = gfn_to_memslot(kvm, gfn);
1773 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1774 }
1775 EXPORT_SYMBOL_GPL(mark_page_dirty);
1776 
1777 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1778 {
1779 	if (kvm_arch_vcpu_runnable(vcpu)) {
1780 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1781 		return -EINTR;
1782 	}
1783 	if (kvm_cpu_has_pending_timer(vcpu))
1784 		return -EINTR;
1785 	if (signal_pending(current))
1786 		return -EINTR;
1787 
1788 	return 0;
1789 }
1790 
1791 /*
1792  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1793  */
1794 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1795 {
1796 	ktime_t start, cur;
1797 	DEFINE_WAIT(wait);
1798 	bool waited = false;
1799 
1800 	start = cur = ktime_get();
1801 	if (halt_poll_ns) {
1802 		ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1803 		do {
1804 			/*
1805 			 * This sets KVM_REQ_UNHALT if an interrupt
1806 			 * arrives.
1807 			 */
1808 			if (kvm_vcpu_check_block(vcpu) < 0) {
1809 				++vcpu->stat.halt_successful_poll;
1810 				goto out;
1811 			}
1812 			cur = ktime_get();
1813 		} while (single_task_running() && ktime_before(cur, stop));
1814 	}
1815 
1816 	for (;;) {
1817 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1818 
1819 		if (kvm_vcpu_check_block(vcpu) < 0)
1820 			break;
1821 
1822 		waited = true;
1823 		schedule();
1824 	}
1825 
1826 	finish_wait(&vcpu->wq, &wait);
1827 	cur = ktime_get();
1828 
1829 out:
1830 	trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1833 
1834 #ifndef CONFIG_S390
1835 /*
1836  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1837  */
1838 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1839 {
1840 	int me;
1841 	int cpu = vcpu->cpu;
1842 	wait_queue_head_t *wqp;
1843 
1844 	wqp = kvm_arch_vcpu_wq(vcpu);
1845 	if (waitqueue_active(wqp)) {
1846 		wake_up_interruptible(wqp);
1847 		++vcpu->stat.halt_wakeup;
1848 	}
1849 
1850 	me = get_cpu();
1851 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1852 		if (kvm_arch_vcpu_should_kick(vcpu))
1853 			smp_send_reschedule(cpu);
1854 	put_cpu();
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1857 #endif /* !CONFIG_S390 */
1858 
1859 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1860 {
1861 	struct pid *pid;
1862 	struct task_struct *task = NULL;
1863 	int ret = 0;
1864 
1865 	rcu_read_lock();
1866 	pid = rcu_dereference(target->pid);
1867 	if (pid)
1868 		task = get_pid_task(pid, PIDTYPE_PID);
1869 	rcu_read_unlock();
1870 	if (!task)
1871 		return ret;
1872 	ret = yield_to(task, 1);
1873 	put_task_struct(task);
1874 
1875 	return ret;
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1878 
1879 /*
1880  * Helper that checks whether a VCPU is eligible for directed yield.
1881  * Most eligible candidate to yield is decided by following heuristics:
1882  *
1883  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1884  *  (preempted lock holder), indicated by @in_spin_loop.
1885  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1886  *
1887  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1888  *  chance last time (mostly it has become eligible now since we have probably
1889  *  yielded to lockholder in last iteration. This is done by toggling
1890  *  @dy_eligible each time a VCPU checked for eligibility.)
1891  *
1892  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1893  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1894  *  burning. Giving priority for a potential lock-holder increases lock
1895  *  progress.
1896  *
1897  *  Since algorithm is based on heuristics, accessing another VCPU data without
1898  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1899  *  and continue with next VCPU and so on.
1900  */
1901 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1902 {
1903 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1904 	bool eligible;
1905 
1906 	eligible = !vcpu->spin_loop.in_spin_loop ||
1907 		    vcpu->spin_loop.dy_eligible;
1908 
1909 	if (vcpu->spin_loop.in_spin_loop)
1910 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1911 
1912 	return eligible;
1913 #else
1914 	return true;
1915 #endif
1916 }
1917 
1918 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1919 {
1920 	struct kvm *kvm = me->kvm;
1921 	struct kvm_vcpu *vcpu;
1922 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1923 	int yielded = 0;
1924 	int try = 3;
1925 	int pass;
1926 	int i;
1927 
1928 	kvm_vcpu_set_in_spin_loop(me, true);
1929 	/*
1930 	 * We boost the priority of a VCPU that is runnable but not
1931 	 * currently running, because it got preempted by something
1932 	 * else and called schedule in __vcpu_run.  Hopefully that
1933 	 * VCPU is holding the lock that we need and will release it.
1934 	 * We approximate round-robin by starting at the last boosted VCPU.
1935 	 */
1936 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1937 		kvm_for_each_vcpu(i, vcpu, kvm) {
1938 			if (!pass && i <= last_boosted_vcpu) {
1939 				i = last_boosted_vcpu;
1940 				continue;
1941 			} else if (pass && i > last_boosted_vcpu)
1942 				break;
1943 			if (!ACCESS_ONCE(vcpu->preempted))
1944 				continue;
1945 			if (vcpu == me)
1946 				continue;
1947 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1948 				continue;
1949 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1950 				continue;
1951 
1952 			yielded = kvm_vcpu_yield_to(vcpu);
1953 			if (yielded > 0) {
1954 				kvm->last_boosted_vcpu = i;
1955 				break;
1956 			} else if (yielded < 0) {
1957 				try--;
1958 				if (!try)
1959 					break;
1960 			}
1961 		}
1962 	}
1963 	kvm_vcpu_set_in_spin_loop(me, false);
1964 
1965 	/* Ensure vcpu is not eligible during next spinloop */
1966 	kvm_vcpu_set_dy_eligible(me, false);
1967 }
1968 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1969 
1970 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1971 {
1972 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1973 	struct page *page;
1974 
1975 	if (vmf->pgoff == 0)
1976 		page = virt_to_page(vcpu->run);
1977 #ifdef CONFIG_X86
1978 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1979 		page = virt_to_page(vcpu->arch.pio_data);
1980 #endif
1981 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1982 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1983 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1984 #endif
1985 	else
1986 		return kvm_arch_vcpu_fault(vcpu, vmf);
1987 	get_page(page);
1988 	vmf->page = page;
1989 	return 0;
1990 }
1991 
1992 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1993 	.fault = kvm_vcpu_fault,
1994 };
1995 
1996 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1997 {
1998 	vma->vm_ops = &kvm_vcpu_vm_ops;
1999 	return 0;
2000 }
2001 
2002 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2003 {
2004 	struct kvm_vcpu *vcpu = filp->private_data;
2005 
2006 	kvm_put_kvm(vcpu->kvm);
2007 	return 0;
2008 }
2009 
2010 static struct file_operations kvm_vcpu_fops = {
2011 	.release        = kvm_vcpu_release,
2012 	.unlocked_ioctl = kvm_vcpu_ioctl,
2013 #ifdef CONFIG_KVM_COMPAT
2014 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2015 #endif
2016 	.mmap           = kvm_vcpu_mmap,
2017 	.llseek		= noop_llseek,
2018 };
2019 
2020 /*
2021  * Allocates an inode for the vcpu.
2022  */
2023 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2024 {
2025 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2026 }
2027 
2028 /*
2029  * Creates some virtual cpus.  Good luck creating more than one.
2030  */
2031 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2032 {
2033 	int r;
2034 	struct kvm_vcpu *vcpu, *v;
2035 
2036 	if (id >= KVM_MAX_VCPUS)
2037 		return -EINVAL;
2038 
2039 	vcpu = kvm_arch_vcpu_create(kvm, id);
2040 	if (IS_ERR(vcpu))
2041 		return PTR_ERR(vcpu);
2042 
2043 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2044 
2045 	r = kvm_arch_vcpu_setup(vcpu);
2046 	if (r)
2047 		goto vcpu_destroy;
2048 
2049 	mutex_lock(&kvm->lock);
2050 	if (!kvm_vcpu_compatible(vcpu)) {
2051 		r = -EINVAL;
2052 		goto unlock_vcpu_destroy;
2053 	}
2054 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2055 		r = -EINVAL;
2056 		goto unlock_vcpu_destroy;
2057 	}
2058 
2059 	kvm_for_each_vcpu(r, v, kvm)
2060 		if (v->vcpu_id == id) {
2061 			r = -EEXIST;
2062 			goto unlock_vcpu_destroy;
2063 		}
2064 
2065 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2066 
2067 	/* Now it's all set up, let userspace reach it */
2068 	kvm_get_kvm(kvm);
2069 	r = create_vcpu_fd(vcpu);
2070 	if (r < 0) {
2071 		kvm_put_kvm(kvm);
2072 		goto unlock_vcpu_destroy;
2073 	}
2074 
2075 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2076 	smp_wmb();
2077 	atomic_inc(&kvm->online_vcpus);
2078 
2079 	mutex_unlock(&kvm->lock);
2080 	kvm_arch_vcpu_postcreate(vcpu);
2081 	return r;
2082 
2083 unlock_vcpu_destroy:
2084 	mutex_unlock(&kvm->lock);
2085 vcpu_destroy:
2086 	kvm_arch_vcpu_destroy(vcpu);
2087 	return r;
2088 }
2089 
2090 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2091 {
2092 	if (sigset) {
2093 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2094 		vcpu->sigset_active = 1;
2095 		vcpu->sigset = *sigset;
2096 	} else
2097 		vcpu->sigset_active = 0;
2098 	return 0;
2099 }
2100 
2101 static long kvm_vcpu_ioctl(struct file *filp,
2102 			   unsigned int ioctl, unsigned long arg)
2103 {
2104 	struct kvm_vcpu *vcpu = filp->private_data;
2105 	void __user *argp = (void __user *)arg;
2106 	int r;
2107 	struct kvm_fpu *fpu = NULL;
2108 	struct kvm_sregs *kvm_sregs = NULL;
2109 
2110 	if (vcpu->kvm->mm != current->mm)
2111 		return -EIO;
2112 
2113 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2114 		return -EINVAL;
2115 
2116 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2117 	/*
2118 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2119 	 * so vcpu_load() would break it.
2120 	 */
2121 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2122 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2123 #endif
2124 
2125 
2126 	r = vcpu_load(vcpu);
2127 	if (r)
2128 		return r;
2129 	switch (ioctl) {
2130 	case KVM_RUN:
2131 		r = -EINVAL;
2132 		if (arg)
2133 			goto out;
2134 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2135 			/* The thread running this VCPU changed. */
2136 			struct pid *oldpid = vcpu->pid;
2137 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2138 			rcu_assign_pointer(vcpu->pid, newpid);
2139 			if (oldpid)
2140 				synchronize_rcu();
2141 			put_pid(oldpid);
2142 		}
2143 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2144 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2145 		break;
2146 	case KVM_GET_REGS: {
2147 		struct kvm_regs *kvm_regs;
2148 
2149 		r = -ENOMEM;
2150 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2151 		if (!kvm_regs)
2152 			goto out;
2153 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2154 		if (r)
2155 			goto out_free1;
2156 		r = -EFAULT;
2157 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2158 			goto out_free1;
2159 		r = 0;
2160 out_free1:
2161 		kfree(kvm_regs);
2162 		break;
2163 	}
2164 	case KVM_SET_REGS: {
2165 		struct kvm_regs *kvm_regs;
2166 
2167 		r = -ENOMEM;
2168 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2169 		if (IS_ERR(kvm_regs)) {
2170 			r = PTR_ERR(kvm_regs);
2171 			goto out;
2172 		}
2173 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2174 		kfree(kvm_regs);
2175 		break;
2176 	}
2177 	case KVM_GET_SREGS: {
2178 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2179 		r = -ENOMEM;
2180 		if (!kvm_sregs)
2181 			goto out;
2182 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2183 		if (r)
2184 			goto out;
2185 		r = -EFAULT;
2186 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2187 			goto out;
2188 		r = 0;
2189 		break;
2190 	}
2191 	case KVM_SET_SREGS: {
2192 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2193 		if (IS_ERR(kvm_sregs)) {
2194 			r = PTR_ERR(kvm_sregs);
2195 			kvm_sregs = NULL;
2196 			goto out;
2197 		}
2198 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2199 		break;
2200 	}
2201 	case KVM_GET_MP_STATE: {
2202 		struct kvm_mp_state mp_state;
2203 
2204 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2205 		if (r)
2206 			goto out;
2207 		r = -EFAULT;
2208 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2209 			goto out;
2210 		r = 0;
2211 		break;
2212 	}
2213 	case KVM_SET_MP_STATE: {
2214 		struct kvm_mp_state mp_state;
2215 
2216 		r = -EFAULT;
2217 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2218 			goto out;
2219 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2220 		break;
2221 	}
2222 	case KVM_TRANSLATE: {
2223 		struct kvm_translation tr;
2224 
2225 		r = -EFAULT;
2226 		if (copy_from_user(&tr, argp, sizeof tr))
2227 			goto out;
2228 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2229 		if (r)
2230 			goto out;
2231 		r = -EFAULT;
2232 		if (copy_to_user(argp, &tr, sizeof tr))
2233 			goto out;
2234 		r = 0;
2235 		break;
2236 	}
2237 	case KVM_SET_GUEST_DEBUG: {
2238 		struct kvm_guest_debug dbg;
2239 
2240 		r = -EFAULT;
2241 		if (copy_from_user(&dbg, argp, sizeof dbg))
2242 			goto out;
2243 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2244 		break;
2245 	}
2246 	case KVM_SET_SIGNAL_MASK: {
2247 		struct kvm_signal_mask __user *sigmask_arg = argp;
2248 		struct kvm_signal_mask kvm_sigmask;
2249 		sigset_t sigset, *p;
2250 
2251 		p = NULL;
2252 		if (argp) {
2253 			r = -EFAULT;
2254 			if (copy_from_user(&kvm_sigmask, argp,
2255 					   sizeof kvm_sigmask))
2256 				goto out;
2257 			r = -EINVAL;
2258 			if (kvm_sigmask.len != sizeof sigset)
2259 				goto out;
2260 			r = -EFAULT;
2261 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2262 					   sizeof sigset))
2263 				goto out;
2264 			p = &sigset;
2265 		}
2266 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2267 		break;
2268 	}
2269 	case KVM_GET_FPU: {
2270 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2271 		r = -ENOMEM;
2272 		if (!fpu)
2273 			goto out;
2274 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2275 		if (r)
2276 			goto out;
2277 		r = -EFAULT;
2278 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2279 			goto out;
2280 		r = 0;
2281 		break;
2282 	}
2283 	case KVM_SET_FPU: {
2284 		fpu = memdup_user(argp, sizeof(*fpu));
2285 		if (IS_ERR(fpu)) {
2286 			r = PTR_ERR(fpu);
2287 			fpu = NULL;
2288 			goto out;
2289 		}
2290 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2291 		break;
2292 	}
2293 	default:
2294 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2295 	}
2296 out:
2297 	vcpu_put(vcpu);
2298 	kfree(fpu);
2299 	kfree(kvm_sregs);
2300 	return r;
2301 }
2302 
2303 #ifdef CONFIG_KVM_COMPAT
2304 static long kvm_vcpu_compat_ioctl(struct file *filp,
2305 				  unsigned int ioctl, unsigned long arg)
2306 {
2307 	struct kvm_vcpu *vcpu = filp->private_data;
2308 	void __user *argp = compat_ptr(arg);
2309 	int r;
2310 
2311 	if (vcpu->kvm->mm != current->mm)
2312 		return -EIO;
2313 
2314 	switch (ioctl) {
2315 	case KVM_SET_SIGNAL_MASK: {
2316 		struct kvm_signal_mask __user *sigmask_arg = argp;
2317 		struct kvm_signal_mask kvm_sigmask;
2318 		compat_sigset_t csigset;
2319 		sigset_t sigset;
2320 
2321 		if (argp) {
2322 			r = -EFAULT;
2323 			if (copy_from_user(&kvm_sigmask, argp,
2324 					   sizeof kvm_sigmask))
2325 				goto out;
2326 			r = -EINVAL;
2327 			if (kvm_sigmask.len != sizeof csigset)
2328 				goto out;
2329 			r = -EFAULT;
2330 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2331 					   sizeof csigset))
2332 				goto out;
2333 			sigset_from_compat(&sigset, &csigset);
2334 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2335 		} else
2336 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2337 		break;
2338 	}
2339 	default:
2340 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2341 	}
2342 
2343 out:
2344 	return r;
2345 }
2346 #endif
2347 
2348 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2349 				 int (*accessor)(struct kvm_device *dev,
2350 						 struct kvm_device_attr *attr),
2351 				 unsigned long arg)
2352 {
2353 	struct kvm_device_attr attr;
2354 
2355 	if (!accessor)
2356 		return -EPERM;
2357 
2358 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2359 		return -EFAULT;
2360 
2361 	return accessor(dev, &attr);
2362 }
2363 
2364 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2365 			     unsigned long arg)
2366 {
2367 	struct kvm_device *dev = filp->private_data;
2368 
2369 	switch (ioctl) {
2370 	case KVM_SET_DEVICE_ATTR:
2371 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2372 	case KVM_GET_DEVICE_ATTR:
2373 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2374 	case KVM_HAS_DEVICE_ATTR:
2375 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2376 	default:
2377 		if (dev->ops->ioctl)
2378 			return dev->ops->ioctl(dev, ioctl, arg);
2379 
2380 		return -ENOTTY;
2381 	}
2382 }
2383 
2384 static int kvm_device_release(struct inode *inode, struct file *filp)
2385 {
2386 	struct kvm_device *dev = filp->private_data;
2387 	struct kvm *kvm = dev->kvm;
2388 
2389 	kvm_put_kvm(kvm);
2390 	return 0;
2391 }
2392 
2393 static const struct file_operations kvm_device_fops = {
2394 	.unlocked_ioctl = kvm_device_ioctl,
2395 #ifdef CONFIG_KVM_COMPAT
2396 	.compat_ioctl = kvm_device_ioctl,
2397 #endif
2398 	.release = kvm_device_release,
2399 };
2400 
2401 struct kvm_device *kvm_device_from_filp(struct file *filp)
2402 {
2403 	if (filp->f_op != &kvm_device_fops)
2404 		return NULL;
2405 
2406 	return filp->private_data;
2407 }
2408 
2409 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2410 #ifdef CONFIG_KVM_MPIC
2411 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2412 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2413 #endif
2414 
2415 #ifdef CONFIG_KVM_XICS
2416 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2417 #endif
2418 };
2419 
2420 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2421 {
2422 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2423 		return -ENOSPC;
2424 
2425 	if (kvm_device_ops_table[type] != NULL)
2426 		return -EEXIST;
2427 
2428 	kvm_device_ops_table[type] = ops;
2429 	return 0;
2430 }
2431 
2432 void kvm_unregister_device_ops(u32 type)
2433 {
2434 	if (kvm_device_ops_table[type] != NULL)
2435 		kvm_device_ops_table[type] = NULL;
2436 }
2437 
2438 static int kvm_ioctl_create_device(struct kvm *kvm,
2439 				   struct kvm_create_device *cd)
2440 {
2441 	struct kvm_device_ops *ops = NULL;
2442 	struct kvm_device *dev;
2443 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2444 	int ret;
2445 
2446 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2447 		return -ENODEV;
2448 
2449 	ops = kvm_device_ops_table[cd->type];
2450 	if (ops == NULL)
2451 		return -ENODEV;
2452 
2453 	if (test)
2454 		return 0;
2455 
2456 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2457 	if (!dev)
2458 		return -ENOMEM;
2459 
2460 	dev->ops = ops;
2461 	dev->kvm = kvm;
2462 
2463 	ret = ops->create(dev, cd->type);
2464 	if (ret < 0) {
2465 		kfree(dev);
2466 		return ret;
2467 	}
2468 
2469 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2470 	if (ret < 0) {
2471 		ops->destroy(dev);
2472 		return ret;
2473 	}
2474 
2475 	list_add(&dev->vm_node, &kvm->devices);
2476 	kvm_get_kvm(kvm);
2477 	cd->fd = ret;
2478 	return 0;
2479 }
2480 
2481 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2482 {
2483 	switch (arg) {
2484 	case KVM_CAP_USER_MEMORY:
2485 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2486 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2487 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2488 	case KVM_CAP_SET_BOOT_CPU_ID:
2489 #endif
2490 	case KVM_CAP_INTERNAL_ERROR_DATA:
2491 #ifdef CONFIG_HAVE_KVM_MSI
2492 	case KVM_CAP_SIGNAL_MSI:
2493 #endif
2494 #ifdef CONFIG_HAVE_KVM_IRQFD
2495 	case KVM_CAP_IRQFD:
2496 	case KVM_CAP_IRQFD_RESAMPLE:
2497 #endif
2498 	case KVM_CAP_CHECK_EXTENSION_VM:
2499 		return 1;
2500 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2501 	case KVM_CAP_IRQ_ROUTING:
2502 		return KVM_MAX_IRQ_ROUTES;
2503 #endif
2504 	default:
2505 		break;
2506 	}
2507 	return kvm_vm_ioctl_check_extension(kvm, arg);
2508 }
2509 
2510 static long kvm_vm_ioctl(struct file *filp,
2511 			   unsigned int ioctl, unsigned long arg)
2512 {
2513 	struct kvm *kvm = filp->private_data;
2514 	void __user *argp = (void __user *)arg;
2515 	int r;
2516 
2517 	if (kvm->mm != current->mm)
2518 		return -EIO;
2519 	switch (ioctl) {
2520 	case KVM_CREATE_VCPU:
2521 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2522 		break;
2523 	case KVM_SET_USER_MEMORY_REGION: {
2524 		struct kvm_userspace_memory_region kvm_userspace_mem;
2525 
2526 		r = -EFAULT;
2527 		if (copy_from_user(&kvm_userspace_mem, argp,
2528 						sizeof kvm_userspace_mem))
2529 			goto out;
2530 
2531 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2532 		break;
2533 	}
2534 	case KVM_GET_DIRTY_LOG: {
2535 		struct kvm_dirty_log log;
2536 
2537 		r = -EFAULT;
2538 		if (copy_from_user(&log, argp, sizeof log))
2539 			goto out;
2540 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2541 		break;
2542 	}
2543 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2544 	case KVM_REGISTER_COALESCED_MMIO: {
2545 		struct kvm_coalesced_mmio_zone zone;
2546 		r = -EFAULT;
2547 		if (copy_from_user(&zone, argp, sizeof zone))
2548 			goto out;
2549 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2550 		break;
2551 	}
2552 	case KVM_UNREGISTER_COALESCED_MMIO: {
2553 		struct kvm_coalesced_mmio_zone zone;
2554 		r = -EFAULT;
2555 		if (copy_from_user(&zone, argp, sizeof zone))
2556 			goto out;
2557 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2558 		break;
2559 	}
2560 #endif
2561 	case KVM_IRQFD: {
2562 		struct kvm_irqfd data;
2563 
2564 		r = -EFAULT;
2565 		if (copy_from_user(&data, argp, sizeof data))
2566 			goto out;
2567 		r = kvm_irqfd(kvm, &data);
2568 		break;
2569 	}
2570 	case KVM_IOEVENTFD: {
2571 		struct kvm_ioeventfd data;
2572 
2573 		r = -EFAULT;
2574 		if (copy_from_user(&data, argp, sizeof data))
2575 			goto out;
2576 		r = kvm_ioeventfd(kvm, &data);
2577 		break;
2578 	}
2579 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2580 	case KVM_SET_BOOT_CPU_ID:
2581 		r = 0;
2582 		mutex_lock(&kvm->lock);
2583 		if (atomic_read(&kvm->online_vcpus) != 0)
2584 			r = -EBUSY;
2585 		else
2586 			kvm->bsp_vcpu_id = arg;
2587 		mutex_unlock(&kvm->lock);
2588 		break;
2589 #endif
2590 #ifdef CONFIG_HAVE_KVM_MSI
2591 	case KVM_SIGNAL_MSI: {
2592 		struct kvm_msi msi;
2593 
2594 		r = -EFAULT;
2595 		if (copy_from_user(&msi, argp, sizeof msi))
2596 			goto out;
2597 		r = kvm_send_userspace_msi(kvm, &msi);
2598 		break;
2599 	}
2600 #endif
2601 #ifdef __KVM_HAVE_IRQ_LINE
2602 	case KVM_IRQ_LINE_STATUS:
2603 	case KVM_IRQ_LINE: {
2604 		struct kvm_irq_level irq_event;
2605 
2606 		r = -EFAULT;
2607 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2608 			goto out;
2609 
2610 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2611 					ioctl == KVM_IRQ_LINE_STATUS);
2612 		if (r)
2613 			goto out;
2614 
2615 		r = -EFAULT;
2616 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2617 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2618 				goto out;
2619 		}
2620 
2621 		r = 0;
2622 		break;
2623 	}
2624 #endif
2625 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2626 	case KVM_SET_GSI_ROUTING: {
2627 		struct kvm_irq_routing routing;
2628 		struct kvm_irq_routing __user *urouting;
2629 		struct kvm_irq_routing_entry *entries;
2630 
2631 		r = -EFAULT;
2632 		if (copy_from_user(&routing, argp, sizeof(routing)))
2633 			goto out;
2634 		r = -EINVAL;
2635 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2636 			goto out;
2637 		if (routing.flags)
2638 			goto out;
2639 		r = -ENOMEM;
2640 		entries = vmalloc(routing.nr * sizeof(*entries));
2641 		if (!entries)
2642 			goto out;
2643 		r = -EFAULT;
2644 		urouting = argp;
2645 		if (copy_from_user(entries, urouting->entries,
2646 				   routing.nr * sizeof(*entries)))
2647 			goto out_free_irq_routing;
2648 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2649 					routing.flags);
2650 	out_free_irq_routing:
2651 		vfree(entries);
2652 		break;
2653 	}
2654 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2655 	case KVM_CREATE_DEVICE: {
2656 		struct kvm_create_device cd;
2657 
2658 		r = -EFAULT;
2659 		if (copy_from_user(&cd, argp, sizeof(cd)))
2660 			goto out;
2661 
2662 		r = kvm_ioctl_create_device(kvm, &cd);
2663 		if (r)
2664 			goto out;
2665 
2666 		r = -EFAULT;
2667 		if (copy_to_user(argp, &cd, sizeof(cd)))
2668 			goto out;
2669 
2670 		r = 0;
2671 		break;
2672 	}
2673 	case KVM_CHECK_EXTENSION:
2674 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2675 		break;
2676 	default:
2677 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2678 	}
2679 out:
2680 	return r;
2681 }
2682 
2683 #ifdef CONFIG_KVM_COMPAT
2684 struct compat_kvm_dirty_log {
2685 	__u32 slot;
2686 	__u32 padding1;
2687 	union {
2688 		compat_uptr_t dirty_bitmap; /* one bit per page */
2689 		__u64 padding2;
2690 	};
2691 };
2692 
2693 static long kvm_vm_compat_ioctl(struct file *filp,
2694 			   unsigned int ioctl, unsigned long arg)
2695 {
2696 	struct kvm *kvm = filp->private_data;
2697 	int r;
2698 
2699 	if (kvm->mm != current->mm)
2700 		return -EIO;
2701 	switch (ioctl) {
2702 	case KVM_GET_DIRTY_LOG: {
2703 		struct compat_kvm_dirty_log compat_log;
2704 		struct kvm_dirty_log log;
2705 
2706 		r = -EFAULT;
2707 		if (copy_from_user(&compat_log, (void __user *)arg,
2708 				   sizeof(compat_log)))
2709 			goto out;
2710 		log.slot	 = compat_log.slot;
2711 		log.padding1	 = compat_log.padding1;
2712 		log.padding2	 = compat_log.padding2;
2713 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2714 
2715 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2716 		break;
2717 	}
2718 	default:
2719 		r = kvm_vm_ioctl(filp, ioctl, arg);
2720 	}
2721 
2722 out:
2723 	return r;
2724 }
2725 #endif
2726 
2727 static struct file_operations kvm_vm_fops = {
2728 	.release        = kvm_vm_release,
2729 	.unlocked_ioctl = kvm_vm_ioctl,
2730 #ifdef CONFIG_KVM_COMPAT
2731 	.compat_ioctl   = kvm_vm_compat_ioctl,
2732 #endif
2733 	.llseek		= noop_llseek,
2734 };
2735 
2736 static int kvm_dev_ioctl_create_vm(unsigned long type)
2737 {
2738 	int r;
2739 	struct kvm *kvm;
2740 
2741 	kvm = kvm_create_vm(type);
2742 	if (IS_ERR(kvm))
2743 		return PTR_ERR(kvm);
2744 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2745 	r = kvm_coalesced_mmio_init(kvm);
2746 	if (r < 0) {
2747 		kvm_put_kvm(kvm);
2748 		return r;
2749 	}
2750 #endif
2751 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2752 	if (r < 0)
2753 		kvm_put_kvm(kvm);
2754 
2755 	return r;
2756 }
2757 
2758 static long kvm_dev_ioctl(struct file *filp,
2759 			  unsigned int ioctl, unsigned long arg)
2760 {
2761 	long r = -EINVAL;
2762 
2763 	switch (ioctl) {
2764 	case KVM_GET_API_VERSION:
2765 		if (arg)
2766 			goto out;
2767 		r = KVM_API_VERSION;
2768 		break;
2769 	case KVM_CREATE_VM:
2770 		r = kvm_dev_ioctl_create_vm(arg);
2771 		break;
2772 	case KVM_CHECK_EXTENSION:
2773 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2774 		break;
2775 	case KVM_GET_VCPU_MMAP_SIZE:
2776 		if (arg)
2777 			goto out;
2778 		r = PAGE_SIZE;     /* struct kvm_run */
2779 #ifdef CONFIG_X86
2780 		r += PAGE_SIZE;    /* pio data page */
2781 #endif
2782 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2783 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2784 #endif
2785 		break;
2786 	case KVM_TRACE_ENABLE:
2787 	case KVM_TRACE_PAUSE:
2788 	case KVM_TRACE_DISABLE:
2789 		r = -EOPNOTSUPP;
2790 		break;
2791 	default:
2792 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2793 	}
2794 out:
2795 	return r;
2796 }
2797 
2798 static struct file_operations kvm_chardev_ops = {
2799 	.unlocked_ioctl = kvm_dev_ioctl,
2800 	.compat_ioctl   = kvm_dev_ioctl,
2801 	.llseek		= noop_llseek,
2802 };
2803 
2804 static struct miscdevice kvm_dev = {
2805 	KVM_MINOR,
2806 	"kvm",
2807 	&kvm_chardev_ops,
2808 };
2809 
2810 static void hardware_enable_nolock(void *junk)
2811 {
2812 	int cpu = raw_smp_processor_id();
2813 	int r;
2814 
2815 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2816 		return;
2817 
2818 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2819 
2820 	r = kvm_arch_hardware_enable();
2821 
2822 	if (r) {
2823 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2824 		atomic_inc(&hardware_enable_failed);
2825 		printk(KERN_INFO "kvm: enabling virtualization on "
2826 				 "CPU%d failed\n", cpu);
2827 	}
2828 }
2829 
2830 static void hardware_enable(void)
2831 {
2832 	raw_spin_lock(&kvm_count_lock);
2833 	if (kvm_usage_count)
2834 		hardware_enable_nolock(NULL);
2835 	raw_spin_unlock(&kvm_count_lock);
2836 }
2837 
2838 static void hardware_disable_nolock(void *junk)
2839 {
2840 	int cpu = raw_smp_processor_id();
2841 
2842 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2843 		return;
2844 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2845 	kvm_arch_hardware_disable();
2846 }
2847 
2848 static void hardware_disable(void)
2849 {
2850 	raw_spin_lock(&kvm_count_lock);
2851 	if (kvm_usage_count)
2852 		hardware_disable_nolock(NULL);
2853 	raw_spin_unlock(&kvm_count_lock);
2854 }
2855 
2856 static void hardware_disable_all_nolock(void)
2857 {
2858 	BUG_ON(!kvm_usage_count);
2859 
2860 	kvm_usage_count--;
2861 	if (!kvm_usage_count)
2862 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2863 }
2864 
2865 static void hardware_disable_all(void)
2866 {
2867 	raw_spin_lock(&kvm_count_lock);
2868 	hardware_disable_all_nolock();
2869 	raw_spin_unlock(&kvm_count_lock);
2870 }
2871 
2872 static int hardware_enable_all(void)
2873 {
2874 	int r = 0;
2875 
2876 	raw_spin_lock(&kvm_count_lock);
2877 
2878 	kvm_usage_count++;
2879 	if (kvm_usage_count == 1) {
2880 		atomic_set(&hardware_enable_failed, 0);
2881 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2882 
2883 		if (atomic_read(&hardware_enable_failed)) {
2884 			hardware_disable_all_nolock();
2885 			r = -EBUSY;
2886 		}
2887 	}
2888 
2889 	raw_spin_unlock(&kvm_count_lock);
2890 
2891 	return r;
2892 }
2893 
2894 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2895 			   void *v)
2896 {
2897 	int cpu = (long)v;
2898 
2899 	val &= ~CPU_TASKS_FROZEN;
2900 	switch (val) {
2901 	case CPU_DYING:
2902 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2903 		       cpu);
2904 		hardware_disable();
2905 		break;
2906 	case CPU_STARTING:
2907 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2908 		       cpu);
2909 		hardware_enable();
2910 		break;
2911 	}
2912 	return NOTIFY_OK;
2913 }
2914 
2915 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2916 		      void *v)
2917 {
2918 	/*
2919 	 * Some (well, at least mine) BIOSes hang on reboot if
2920 	 * in vmx root mode.
2921 	 *
2922 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2923 	 */
2924 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2925 	kvm_rebooting = true;
2926 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2927 	return NOTIFY_OK;
2928 }
2929 
2930 static struct notifier_block kvm_reboot_notifier = {
2931 	.notifier_call = kvm_reboot,
2932 	.priority = 0,
2933 };
2934 
2935 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2936 {
2937 	int i;
2938 
2939 	for (i = 0; i < bus->dev_count; i++) {
2940 		struct kvm_io_device *pos = bus->range[i].dev;
2941 
2942 		kvm_iodevice_destructor(pos);
2943 	}
2944 	kfree(bus);
2945 }
2946 
2947 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2948                                  const struct kvm_io_range *r2)
2949 {
2950 	if (r1->addr < r2->addr)
2951 		return -1;
2952 	if (r1->addr + r1->len > r2->addr + r2->len)
2953 		return 1;
2954 	return 0;
2955 }
2956 
2957 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2958 {
2959 	return kvm_io_bus_cmp(p1, p2);
2960 }
2961 
2962 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2963 			  gpa_t addr, int len)
2964 {
2965 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2966 		.addr = addr,
2967 		.len = len,
2968 		.dev = dev,
2969 	};
2970 
2971 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2972 		kvm_io_bus_sort_cmp, NULL);
2973 
2974 	return 0;
2975 }
2976 
2977 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2978 			     gpa_t addr, int len)
2979 {
2980 	struct kvm_io_range *range, key;
2981 	int off;
2982 
2983 	key = (struct kvm_io_range) {
2984 		.addr = addr,
2985 		.len = len,
2986 	};
2987 
2988 	range = bsearch(&key, bus->range, bus->dev_count,
2989 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2990 	if (range == NULL)
2991 		return -ENOENT;
2992 
2993 	off = range - bus->range;
2994 
2995 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2996 		off--;
2997 
2998 	return off;
2999 }
3000 
3001 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
3002 			      struct kvm_io_range *range, const void *val)
3003 {
3004 	int idx;
3005 
3006 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3007 	if (idx < 0)
3008 		return -EOPNOTSUPP;
3009 
3010 	while (idx < bus->dev_count &&
3011 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3012 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
3013 					range->len, val))
3014 			return idx;
3015 		idx++;
3016 	}
3017 
3018 	return -EOPNOTSUPP;
3019 }
3020 
3021 /* kvm_io_bus_write - called under kvm->slots_lock */
3022 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3023 		     int len, const void *val)
3024 {
3025 	struct kvm_io_bus *bus;
3026 	struct kvm_io_range range;
3027 	int r;
3028 
3029 	range = (struct kvm_io_range) {
3030 		.addr = addr,
3031 		.len = len,
3032 	};
3033 
3034 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3035 	r = __kvm_io_bus_write(bus, &range, val);
3036 	return r < 0 ? r : 0;
3037 }
3038 
3039 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3040 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3041 			    int len, const void *val, long cookie)
3042 {
3043 	struct kvm_io_bus *bus;
3044 	struct kvm_io_range range;
3045 
3046 	range = (struct kvm_io_range) {
3047 		.addr = addr,
3048 		.len = len,
3049 	};
3050 
3051 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3052 
3053 	/* First try the device referenced by cookie. */
3054 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3055 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3056 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
3057 					val))
3058 			return cookie;
3059 
3060 	/*
3061 	 * cookie contained garbage; fall back to search and return the
3062 	 * correct cookie value.
3063 	 */
3064 	return __kvm_io_bus_write(bus, &range, val);
3065 }
3066 
3067 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
3068 			     void *val)
3069 {
3070 	int idx;
3071 
3072 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3073 	if (idx < 0)
3074 		return -EOPNOTSUPP;
3075 
3076 	while (idx < bus->dev_count &&
3077 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3078 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3079 				       range->len, val))
3080 			return idx;
3081 		idx++;
3082 	}
3083 
3084 	return -EOPNOTSUPP;
3085 }
3086 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3087 
3088 /* kvm_io_bus_read - called under kvm->slots_lock */
3089 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3090 		    int len, void *val)
3091 {
3092 	struct kvm_io_bus *bus;
3093 	struct kvm_io_range range;
3094 	int r;
3095 
3096 	range = (struct kvm_io_range) {
3097 		.addr = addr,
3098 		.len = len,
3099 	};
3100 
3101 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3102 	r = __kvm_io_bus_read(bus, &range, val);
3103 	return r < 0 ? r : 0;
3104 }
3105 
3106 
3107 /* Caller must hold slots_lock. */
3108 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3109 			    int len, struct kvm_io_device *dev)
3110 {
3111 	struct kvm_io_bus *new_bus, *bus;
3112 
3113 	bus = kvm->buses[bus_idx];
3114 	/* exclude ioeventfd which is limited by maximum fd */
3115 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3116 		return -ENOSPC;
3117 
3118 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3119 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3120 	if (!new_bus)
3121 		return -ENOMEM;
3122 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3123 	       sizeof(struct kvm_io_range)));
3124 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3125 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3126 	synchronize_srcu_expedited(&kvm->srcu);
3127 	kfree(bus);
3128 
3129 	return 0;
3130 }
3131 
3132 /* Caller must hold slots_lock. */
3133 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3134 			      struct kvm_io_device *dev)
3135 {
3136 	int i, r;
3137 	struct kvm_io_bus *new_bus, *bus;
3138 
3139 	bus = kvm->buses[bus_idx];
3140 	r = -ENOENT;
3141 	for (i = 0; i < bus->dev_count; i++)
3142 		if (bus->range[i].dev == dev) {
3143 			r = 0;
3144 			break;
3145 		}
3146 
3147 	if (r)
3148 		return r;
3149 
3150 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3151 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3152 	if (!new_bus)
3153 		return -ENOMEM;
3154 
3155 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3156 	new_bus->dev_count--;
3157 	memcpy(new_bus->range + i, bus->range + i + 1,
3158 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3159 
3160 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3161 	synchronize_srcu_expedited(&kvm->srcu);
3162 	kfree(bus);
3163 	return r;
3164 }
3165 
3166 static struct notifier_block kvm_cpu_notifier = {
3167 	.notifier_call = kvm_cpu_hotplug,
3168 };
3169 
3170 static int vm_stat_get(void *_offset, u64 *val)
3171 {
3172 	unsigned offset = (long)_offset;
3173 	struct kvm *kvm;
3174 
3175 	*val = 0;
3176 	spin_lock(&kvm_lock);
3177 	list_for_each_entry(kvm, &vm_list, vm_list)
3178 		*val += *(u32 *)((void *)kvm + offset);
3179 	spin_unlock(&kvm_lock);
3180 	return 0;
3181 }
3182 
3183 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3184 
3185 static int vcpu_stat_get(void *_offset, u64 *val)
3186 {
3187 	unsigned offset = (long)_offset;
3188 	struct kvm *kvm;
3189 	struct kvm_vcpu *vcpu;
3190 	int i;
3191 
3192 	*val = 0;
3193 	spin_lock(&kvm_lock);
3194 	list_for_each_entry(kvm, &vm_list, vm_list)
3195 		kvm_for_each_vcpu(i, vcpu, kvm)
3196 			*val += *(u32 *)((void *)vcpu + offset);
3197 
3198 	spin_unlock(&kvm_lock);
3199 	return 0;
3200 }
3201 
3202 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3203 
3204 static const struct file_operations *stat_fops[] = {
3205 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3206 	[KVM_STAT_VM]   = &vm_stat_fops,
3207 };
3208 
3209 static int kvm_init_debug(void)
3210 {
3211 	int r = -EEXIST;
3212 	struct kvm_stats_debugfs_item *p;
3213 
3214 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3215 	if (kvm_debugfs_dir == NULL)
3216 		goto out;
3217 
3218 	for (p = debugfs_entries; p->name; ++p) {
3219 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3220 						(void *)(long)p->offset,
3221 						stat_fops[p->kind]);
3222 		if (p->dentry == NULL)
3223 			goto out_dir;
3224 	}
3225 
3226 	return 0;
3227 
3228 out_dir:
3229 	debugfs_remove_recursive(kvm_debugfs_dir);
3230 out:
3231 	return r;
3232 }
3233 
3234 static void kvm_exit_debug(void)
3235 {
3236 	struct kvm_stats_debugfs_item *p;
3237 
3238 	for (p = debugfs_entries; p->name; ++p)
3239 		debugfs_remove(p->dentry);
3240 	debugfs_remove(kvm_debugfs_dir);
3241 }
3242 
3243 static int kvm_suspend(void)
3244 {
3245 	if (kvm_usage_count)
3246 		hardware_disable_nolock(NULL);
3247 	return 0;
3248 }
3249 
3250 static void kvm_resume(void)
3251 {
3252 	if (kvm_usage_count) {
3253 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3254 		hardware_enable_nolock(NULL);
3255 	}
3256 }
3257 
3258 static struct syscore_ops kvm_syscore_ops = {
3259 	.suspend = kvm_suspend,
3260 	.resume = kvm_resume,
3261 };
3262 
3263 static inline
3264 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3265 {
3266 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3267 }
3268 
3269 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3270 {
3271 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3272 	if (vcpu->preempted)
3273 		vcpu->preempted = false;
3274 
3275 	kvm_arch_sched_in(vcpu, cpu);
3276 
3277 	kvm_arch_vcpu_load(vcpu, cpu);
3278 }
3279 
3280 static void kvm_sched_out(struct preempt_notifier *pn,
3281 			  struct task_struct *next)
3282 {
3283 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3284 
3285 	if (current->state == TASK_RUNNING)
3286 		vcpu->preempted = true;
3287 	kvm_arch_vcpu_put(vcpu);
3288 }
3289 
3290 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3291 		  struct module *module)
3292 {
3293 	int r;
3294 	int cpu;
3295 
3296 	r = kvm_arch_init(opaque);
3297 	if (r)
3298 		goto out_fail;
3299 
3300 	/*
3301 	 * kvm_arch_init makes sure there's at most one caller
3302 	 * for architectures that support multiple implementations,
3303 	 * like intel and amd on x86.
3304 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3305 	 * conflicts in case kvm is already setup for another implementation.
3306 	 */
3307 	r = kvm_irqfd_init();
3308 	if (r)
3309 		goto out_irqfd;
3310 
3311 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3312 		r = -ENOMEM;
3313 		goto out_free_0;
3314 	}
3315 
3316 	r = kvm_arch_hardware_setup();
3317 	if (r < 0)
3318 		goto out_free_0a;
3319 
3320 	for_each_online_cpu(cpu) {
3321 		smp_call_function_single(cpu,
3322 				kvm_arch_check_processor_compat,
3323 				&r, 1);
3324 		if (r < 0)
3325 			goto out_free_1;
3326 	}
3327 
3328 	r = register_cpu_notifier(&kvm_cpu_notifier);
3329 	if (r)
3330 		goto out_free_2;
3331 	register_reboot_notifier(&kvm_reboot_notifier);
3332 
3333 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3334 	if (!vcpu_align)
3335 		vcpu_align = __alignof__(struct kvm_vcpu);
3336 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3337 					   0, NULL);
3338 	if (!kvm_vcpu_cache) {
3339 		r = -ENOMEM;
3340 		goto out_free_3;
3341 	}
3342 
3343 	r = kvm_async_pf_init();
3344 	if (r)
3345 		goto out_free;
3346 
3347 	kvm_chardev_ops.owner = module;
3348 	kvm_vm_fops.owner = module;
3349 	kvm_vcpu_fops.owner = module;
3350 
3351 	r = misc_register(&kvm_dev);
3352 	if (r) {
3353 		printk(KERN_ERR "kvm: misc device register failed\n");
3354 		goto out_unreg;
3355 	}
3356 
3357 	register_syscore_ops(&kvm_syscore_ops);
3358 
3359 	kvm_preempt_ops.sched_in = kvm_sched_in;
3360 	kvm_preempt_ops.sched_out = kvm_sched_out;
3361 
3362 	r = kvm_init_debug();
3363 	if (r) {
3364 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3365 		goto out_undebugfs;
3366 	}
3367 
3368 	r = kvm_vfio_ops_init();
3369 	WARN_ON(r);
3370 
3371 	return 0;
3372 
3373 out_undebugfs:
3374 	unregister_syscore_ops(&kvm_syscore_ops);
3375 	misc_deregister(&kvm_dev);
3376 out_unreg:
3377 	kvm_async_pf_deinit();
3378 out_free:
3379 	kmem_cache_destroy(kvm_vcpu_cache);
3380 out_free_3:
3381 	unregister_reboot_notifier(&kvm_reboot_notifier);
3382 	unregister_cpu_notifier(&kvm_cpu_notifier);
3383 out_free_2:
3384 out_free_1:
3385 	kvm_arch_hardware_unsetup();
3386 out_free_0a:
3387 	free_cpumask_var(cpus_hardware_enabled);
3388 out_free_0:
3389 	kvm_irqfd_exit();
3390 out_irqfd:
3391 	kvm_arch_exit();
3392 out_fail:
3393 	return r;
3394 }
3395 EXPORT_SYMBOL_GPL(kvm_init);
3396 
3397 void kvm_exit(void)
3398 {
3399 	kvm_exit_debug();
3400 	misc_deregister(&kvm_dev);
3401 	kmem_cache_destroy(kvm_vcpu_cache);
3402 	kvm_async_pf_deinit();
3403 	unregister_syscore_ops(&kvm_syscore_ops);
3404 	unregister_reboot_notifier(&kvm_reboot_notifier);
3405 	unregister_cpu_notifier(&kvm_cpu_notifier);
3406 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3407 	kvm_arch_hardware_unsetup();
3408 	kvm_arch_exit();
3409 	kvm_irqfd_exit();
3410 	free_cpumask_var(cpus_hardware_enabled);
3411 	kvm_vfio_ops_exit();
3412 }
3413 EXPORT_SYMBOL_GPL(kvm_exit);
3414