xref: /openbmc/linux/virt/kvm/kvm_main.c (revision dff03381)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static struct file_operations kvm_chardev_ops;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161 
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 						   unsigned long start, unsigned long end)
164 {
165 }
166 
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170 
171 bool kvm_is_zone_device_page(struct page *page)
172 {
173 	/*
174 	 * The metadata used by is_zone_device_page() to determine whether or
175 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
177 	 * page_count() is zero to help detect bad usage of this helper.
178 	 */
179 	if (WARN_ON_ONCE(!page_count(page)))
180 		return false;
181 
182 	return is_zone_device_page(page);
183 }
184 
185 /*
186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
188  * is likely incomplete, it has been compiled purely through people wanting to
189  * back guest with a certain type of memory and encountering issues.
190  */
191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193 	struct page *page;
194 
195 	if (!pfn_valid(pfn))
196 		return NULL;
197 
198 	page = pfn_to_page(pfn);
199 	if (!PageReserved(page))
200 		return page;
201 
202 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203 	if (is_zero_pfn(pfn))
204 		return page;
205 
206 	/*
207 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208 	 * perspective they are "normal" pages, albeit with slightly different
209 	 * usage rules.
210 	 */
211 	if (kvm_is_zone_device_page(page))
212 		return page;
213 
214 	return NULL;
215 }
216 
217 /*
218  * Switches to specified vcpu, until a matching vcpu_put()
219  */
220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222 	int cpu = get_cpu();
223 
224 	__this_cpu_write(kvm_running_vcpu, vcpu);
225 	preempt_notifier_register(&vcpu->preempt_notifier);
226 	kvm_arch_vcpu_load(vcpu, cpu);
227 	put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230 
231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233 	preempt_disable();
234 	kvm_arch_vcpu_put(vcpu);
235 	preempt_notifier_unregister(&vcpu->preempt_notifier);
236 	__this_cpu_write(kvm_running_vcpu, NULL);
237 	preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240 
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245 
246 	/*
247 	 * We need to wait for the VCPU to reenable interrupts and get out of
248 	 * READING_SHADOW_PAGE_TABLES mode.
249 	 */
250 	if (req & KVM_REQUEST_WAIT)
251 		return mode != OUTSIDE_GUEST_MODE;
252 
253 	/*
254 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
255 	 */
256 	return mode == IN_GUEST_MODE;
257 }
258 
259 static void ack_kick(void *_completed)
260 {
261 }
262 
263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265 	if (cpumask_empty(cpus))
266 		return false;
267 
268 	smp_call_function_many(cpus, ack_kick, NULL, wait);
269 	return true;
270 }
271 
272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273 				  struct cpumask *tmp, int current_cpu)
274 {
275 	int cpu;
276 
277 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278 		__kvm_make_request(req, vcpu);
279 
280 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281 		return;
282 
283 	/*
284 	 * Note, the vCPU could get migrated to a different pCPU at any point
285 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
286 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
287 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289 	 * after this point is also OK, as the requirement is only that KVM wait
290 	 * for vCPUs that were reading SPTEs _before_ any changes were
291 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
292 	 */
293 	if (kvm_request_needs_ipi(vcpu, req)) {
294 		cpu = READ_ONCE(vcpu->cpu);
295 		if (cpu != -1 && cpu != current_cpu)
296 			__cpumask_set_cpu(cpu, tmp);
297 	}
298 }
299 
300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301 				 unsigned long *vcpu_bitmap)
302 {
303 	struct kvm_vcpu *vcpu;
304 	struct cpumask *cpus;
305 	int i, me;
306 	bool called;
307 
308 	me = get_cpu();
309 
310 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311 	cpumask_clear(cpus);
312 
313 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314 		vcpu = kvm_get_vcpu(kvm, i);
315 		if (!vcpu)
316 			continue;
317 		kvm_make_vcpu_request(vcpu, req, cpus, me);
318 	}
319 
320 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321 	put_cpu();
322 
323 	return called;
324 }
325 
326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327 				      struct kvm_vcpu *except)
328 {
329 	struct kvm_vcpu *vcpu;
330 	struct cpumask *cpus;
331 	unsigned long i;
332 	bool called;
333 	int me;
334 
335 	me = get_cpu();
336 
337 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338 	cpumask_clear(cpus);
339 
340 	kvm_for_each_vcpu(i, vcpu, kvm) {
341 		if (vcpu == except)
342 			continue;
343 		kvm_make_vcpu_request(vcpu, req, cpus, me);
344 	}
345 
346 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347 	put_cpu();
348 
349 	return called;
350 }
351 
352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357 
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361 	++kvm->stat.generic.remote_tlb_flush_requests;
362 
363 	/*
364 	 * We want to publish modifications to the page tables before reading
365 	 * mode. Pairs with a memory barrier in arch-specific code.
366 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
368 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369 	 *
370 	 * There is already an smp_mb__after_atomic() before
371 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372 	 * barrier here.
373 	 */
374 	if (!kvm_arch_flush_remote_tlb(kvm)
375 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376 		++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380 
381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383 	kvm_arch_flush_shadow_all(kvm);
384 	kvm_arch_guest_memory_reclaimed(kvm);
385 }
386 
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389 					       gfp_t gfp_flags)
390 {
391 	gfp_flags |= mc->gfp_zero;
392 
393 	if (mc->kmem_cache)
394 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395 	else
396 		return (void *)__get_free_page(gfp_flags);
397 }
398 
399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402 	void *obj;
403 
404 	if (mc->nobjs >= min)
405 		return 0;
406 
407 	if (unlikely(!mc->objects)) {
408 		if (WARN_ON_ONCE(!capacity))
409 			return -EIO;
410 
411 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412 		if (!mc->objects)
413 			return -ENOMEM;
414 
415 		mc->capacity = capacity;
416 	}
417 
418 	/* It is illegal to request a different capacity across topups. */
419 	if (WARN_ON_ONCE(mc->capacity != capacity))
420 		return -EIO;
421 
422 	while (mc->nobjs < mc->capacity) {
423 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
424 		if (!obj)
425 			return mc->nobjs >= min ? 0 : -ENOMEM;
426 		mc->objects[mc->nobjs++] = obj;
427 	}
428 	return 0;
429 }
430 
431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435 
436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438 	return mc->nobjs;
439 }
440 
441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443 	while (mc->nobjs) {
444 		if (mc->kmem_cache)
445 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446 		else
447 			free_page((unsigned long)mc->objects[--mc->nobjs]);
448 	}
449 
450 	kvfree(mc->objects);
451 
452 	mc->objects = NULL;
453 	mc->capacity = 0;
454 }
455 
456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458 	void *p;
459 
460 	if (WARN_ON(!mc->nobjs))
461 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462 	else
463 		p = mc->objects[--mc->nobjs];
464 	BUG_ON(!p);
465 	return p;
466 }
467 #endif
468 
469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471 	mutex_init(&vcpu->mutex);
472 	vcpu->cpu = -1;
473 	vcpu->kvm = kvm;
474 	vcpu->vcpu_id = id;
475 	vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477 	rcuwait_init(&vcpu->wait);
478 #endif
479 	kvm_async_pf_vcpu_init(vcpu);
480 
481 	kvm_vcpu_set_in_spin_loop(vcpu, false);
482 	kvm_vcpu_set_dy_eligible(vcpu, false);
483 	vcpu->preempted = false;
484 	vcpu->ready = false;
485 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486 	vcpu->last_used_slot = NULL;
487 }
488 
489 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
490 {
491 	kvm_arch_vcpu_destroy(vcpu);
492 	kvm_dirty_ring_free(&vcpu->dirty_ring);
493 
494 	/*
495 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
496 	 * the vcpu->pid pointer, and at destruction time all file descriptors
497 	 * are already gone.
498 	 */
499 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
500 
501 	free_page((unsigned long)vcpu->run);
502 	kmem_cache_free(kvm_vcpu_cache, vcpu);
503 }
504 
505 void kvm_destroy_vcpus(struct kvm *kvm)
506 {
507 	unsigned long i;
508 	struct kvm_vcpu *vcpu;
509 
510 	kvm_for_each_vcpu(i, vcpu, kvm) {
511 		kvm_vcpu_destroy(vcpu);
512 		xa_erase(&kvm->vcpu_array, i);
513 	}
514 
515 	atomic_set(&kvm->online_vcpus, 0);
516 }
517 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
518 
519 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
520 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
521 {
522 	return container_of(mn, struct kvm, mmu_notifier);
523 }
524 
525 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
526 					      struct mm_struct *mm,
527 					      unsigned long start, unsigned long end)
528 {
529 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
530 	int idx;
531 
532 	idx = srcu_read_lock(&kvm->srcu);
533 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
534 	srcu_read_unlock(&kvm->srcu, idx);
535 }
536 
537 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
538 
539 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
540 			     unsigned long end);
541 
542 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
543 
544 struct kvm_hva_range {
545 	unsigned long start;
546 	unsigned long end;
547 	pte_t pte;
548 	hva_handler_t handler;
549 	on_lock_fn_t on_lock;
550 	on_unlock_fn_t on_unlock;
551 	bool flush_on_ret;
552 	bool may_block;
553 };
554 
555 /*
556  * Use a dedicated stub instead of NULL to indicate that there is no callback
557  * function/handler.  The compiler technically can't guarantee that a real
558  * function will have a non-zero address, and so it will generate code to
559  * check for !NULL, whereas comparing against a stub will be elided at compile
560  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
561  */
562 static void kvm_null_fn(void)
563 {
564 
565 }
566 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
567 
568 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
569 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
570 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
571 	     node;							     \
572 	     node = interval_tree_iter_next(node, start, last))	     \
573 
574 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
575 						  const struct kvm_hva_range *range)
576 {
577 	bool ret = false, locked = false;
578 	struct kvm_gfn_range gfn_range;
579 	struct kvm_memory_slot *slot;
580 	struct kvm_memslots *slots;
581 	int i, idx;
582 
583 	if (WARN_ON_ONCE(range->end <= range->start))
584 		return 0;
585 
586 	/* A null handler is allowed if and only if on_lock() is provided. */
587 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
588 			 IS_KVM_NULL_FN(range->handler)))
589 		return 0;
590 
591 	idx = srcu_read_lock(&kvm->srcu);
592 
593 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
594 		struct interval_tree_node *node;
595 
596 		slots = __kvm_memslots(kvm, i);
597 		kvm_for_each_memslot_in_hva_range(node, slots,
598 						  range->start, range->end - 1) {
599 			unsigned long hva_start, hva_end;
600 
601 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
602 			hva_start = max(range->start, slot->userspace_addr);
603 			hva_end = min(range->end, slot->userspace_addr +
604 						  (slot->npages << PAGE_SHIFT));
605 
606 			/*
607 			 * To optimize for the likely case where the address
608 			 * range is covered by zero or one memslots, don't
609 			 * bother making these conditional (to avoid writes on
610 			 * the second or later invocation of the handler).
611 			 */
612 			gfn_range.pte = range->pte;
613 			gfn_range.may_block = range->may_block;
614 
615 			/*
616 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
617 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
618 			 */
619 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
620 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
621 			gfn_range.slot = slot;
622 
623 			if (!locked) {
624 				locked = true;
625 				KVM_MMU_LOCK(kvm);
626 				if (!IS_KVM_NULL_FN(range->on_lock))
627 					range->on_lock(kvm, range->start, range->end);
628 				if (IS_KVM_NULL_FN(range->handler))
629 					break;
630 			}
631 			ret |= range->handler(kvm, &gfn_range);
632 		}
633 	}
634 
635 	if (range->flush_on_ret && ret)
636 		kvm_flush_remote_tlbs(kvm);
637 
638 	if (locked) {
639 		KVM_MMU_UNLOCK(kvm);
640 		if (!IS_KVM_NULL_FN(range->on_unlock))
641 			range->on_unlock(kvm);
642 	}
643 
644 	srcu_read_unlock(&kvm->srcu, idx);
645 
646 	/* The notifiers are averse to booleans. :-( */
647 	return (int)ret;
648 }
649 
650 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
651 						unsigned long start,
652 						unsigned long end,
653 						pte_t pte,
654 						hva_handler_t handler)
655 {
656 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
657 	const struct kvm_hva_range range = {
658 		.start		= start,
659 		.end		= end,
660 		.pte		= pte,
661 		.handler	= handler,
662 		.on_lock	= (void *)kvm_null_fn,
663 		.on_unlock	= (void *)kvm_null_fn,
664 		.flush_on_ret	= true,
665 		.may_block	= false,
666 	};
667 
668 	return __kvm_handle_hva_range(kvm, &range);
669 }
670 
671 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
672 							 unsigned long start,
673 							 unsigned long end,
674 							 hva_handler_t handler)
675 {
676 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 	const struct kvm_hva_range range = {
678 		.start		= start,
679 		.end		= end,
680 		.pte		= __pte(0),
681 		.handler	= handler,
682 		.on_lock	= (void *)kvm_null_fn,
683 		.on_unlock	= (void *)kvm_null_fn,
684 		.flush_on_ret	= false,
685 		.may_block	= false,
686 	};
687 
688 	return __kvm_handle_hva_range(kvm, &range);
689 }
690 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
691 					struct mm_struct *mm,
692 					unsigned long address,
693 					pte_t pte)
694 {
695 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 
697 	trace_kvm_set_spte_hva(address);
698 
699 	/*
700 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
701 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
702 	 * including this one, found a relevant memslot at start(); rechecking
703 	 * memslots here is unnecessary.  Note, a false positive (count elevated
704 	 * by a different invalidation) is sub-optimal but functionally ok.
705 	 */
706 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
707 	if (!READ_ONCE(kvm->mmu_notifier_count))
708 		return;
709 
710 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
711 }
712 
713 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
714 				   unsigned long end)
715 {
716 	/*
717 	 * The count increase must become visible at unlock time as no
718 	 * spte can be established without taking the mmu_lock and
719 	 * count is also read inside the mmu_lock critical section.
720 	 */
721 	kvm->mmu_notifier_count++;
722 	if (likely(kvm->mmu_notifier_count == 1)) {
723 		kvm->mmu_notifier_range_start = start;
724 		kvm->mmu_notifier_range_end = end;
725 	} else {
726 		/*
727 		 * Fully tracking multiple concurrent ranges has diminishing
728 		 * returns. Keep things simple and just find the minimal range
729 		 * which includes the current and new ranges. As there won't be
730 		 * enough information to subtract a range after its invalidate
731 		 * completes, any ranges invalidated concurrently will
732 		 * accumulate and persist until all outstanding invalidates
733 		 * complete.
734 		 */
735 		kvm->mmu_notifier_range_start =
736 			min(kvm->mmu_notifier_range_start, start);
737 		kvm->mmu_notifier_range_end =
738 			max(kvm->mmu_notifier_range_end, end);
739 	}
740 }
741 
742 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
743 					const struct mmu_notifier_range *range)
744 {
745 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
746 	const struct kvm_hva_range hva_range = {
747 		.start		= range->start,
748 		.end		= range->end,
749 		.pte		= __pte(0),
750 		.handler	= kvm_unmap_gfn_range,
751 		.on_lock	= kvm_inc_notifier_count,
752 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
753 		.flush_on_ret	= true,
754 		.may_block	= mmu_notifier_range_blockable(range),
755 	};
756 
757 	trace_kvm_unmap_hva_range(range->start, range->end);
758 
759 	/*
760 	 * Prevent memslot modification between range_start() and range_end()
761 	 * so that conditionally locking provides the same result in both
762 	 * functions.  Without that guarantee, the mmu_notifier_count
763 	 * adjustments will be imbalanced.
764 	 *
765 	 * Pairs with the decrement in range_end().
766 	 */
767 	spin_lock(&kvm->mn_invalidate_lock);
768 	kvm->mn_active_invalidate_count++;
769 	spin_unlock(&kvm->mn_invalidate_lock);
770 
771 	/*
772 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
773 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
774 	 * each cache's lock.  There are relatively few caches in existence at
775 	 * any given time, and the caches themselves can check for hva overlap,
776 	 * i.e. don't need to rely on memslot overlap checks for performance.
777 	 * Because this runs without holding mmu_lock, the pfn caches must use
778 	 * mn_active_invalidate_count (see above) instead of mmu_notifier_count.
779 	 */
780 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
781 					  hva_range.may_block);
782 
783 	__kvm_handle_hva_range(kvm, &hva_range);
784 
785 	return 0;
786 }
787 
788 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
789 				   unsigned long end)
790 {
791 	/*
792 	 * This sequence increase will notify the kvm page fault that
793 	 * the page that is going to be mapped in the spte could have
794 	 * been freed.
795 	 */
796 	kvm->mmu_notifier_seq++;
797 	smp_wmb();
798 	/*
799 	 * The above sequence increase must be visible before the
800 	 * below count decrease, which is ensured by the smp_wmb above
801 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
802 	 */
803 	kvm->mmu_notifier_count--;
804 }
805 
806 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
807 					const struct mmu_notifier_range *range)
808 {
809 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
810 	const struct kvm_hva_range hva_range = {
811 		.start		= range->start,
812 		.end		= range->end,
813 		.pte		= __pte(0),
814 		.handler	= (void *)kvm_null_fn,
815 		.on_lock	= kvm_dec_notifier_count,
816 		.on_unlock	= (void *)kvm_null_fn,
817 		.flush_on_ret	= false,
818 		.may_block	= mmu_notifier_range_blockable(range),
819 	};
820 	bool wake;
821 
822 	__kvm_handle_hva_range(kvm, &hva_range);
823 
824 	/* Pairs with the increment in range_start(). */
825 	spin_lock(&kvm->mn_invalidate_lock);
826 	wake = (--kvm->mn_active_invalidate_count == 0);
827 	spin_unlock(&kvm->mn_invalidate_lock);
828 
829 	/*
830 	 * There can only be one waiter, since the wait happens under
831 	 * slots_lock.
832 	 */
833 	if (wake)
834 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
835 
836 	BUG_ON(kvm->mmu_notifier_count < 0);
837 }
838 
839 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
840 					      struct mm_struct *mm,
841 					      unsigned long start,
842 					      unsigned long end)
843 {
844 	trace_kvm_age_hva(start, end);
845 
846 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
847 }
848 
849 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
850 					struct mm_struct *mm,
851 					unsigned long start,
852 					unsigned long end)
853 {
854 	trace_kvm_age_hva(start, end);
855 
856 	/*
857 	 * Even though we do not flush TLB, this will still adversely
858 	 * affect performance on pre-Haswell Intel EPT, where there is
859 	 * no EPT Access Bit to clear so that we have to tear down EPT
860 	 * tables instead. If we find this unacceptable, we can always
861 	 * add a parameter to kvm_age_hva so that it effectively doesn't
862 	 * do anything on clear_young.
863 	 *
864 	 * Also note that currently we never issue secondary TLB flushes
865 	 * from clear_young, leaving this job up to the regular system
866 	 * cadence. If we find this inaccurate, we might come up with a
867 	 * more sophisticated heuristic later.
868 	 */
869 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
870 }
871 
872 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
873 				       struct mm_struct *mm,
874 				       unsigned long address)
875 {
876 	trace_kvm_test_age_hva(address);
877 
878 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
879 					     kvm_test_age_gfn);
880 }
881 
882 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
883 				     struct mm_struct *mm)
884 {
885 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
886 	int idx;
887 
888 	idx = srcu_read_lock(&kvm->srcu);
889 	kvm_flush_shadow_all(kvm);
890 	srcu_read_unlock(&kvm->srcu, idx);
891 }
892 
893 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
894 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
895 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
896 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
897 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
898 	.clear_young		= kvm_mmu_notifier_clear_young,
899 	.test_young		= kvm_mmu_notifier_test_young,
900 	.change_pte		= kvm_mmu_notifier_change_pte,
901 	.release		= kvm_mmu_notifier_release,
902 };
903 
904 static int kvm_init_mmu_notifier(struct kvm *kvm)
905 {
906 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
907 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
908 }
909 
910 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
911 
912 static int kvm_init_mmu_notifier(struct kvm *kvm)
913 {
914 	return 0;
915 }
916 
917 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
918 
919 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
920 static int kvm_pm_notifier_call(struct notifier_block *bl,
921 				unsigned long state,
922 				void *unused)
923 {
924 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
925 
926 	return kvm_arch_pm_notifier(kvm, state);
927 }
928 
929 static void kvm_init_pm_notifier(struct kvm *kvm)
930 {
931 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
932 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
933 	kvm->pm_notifier.priority = INT_MAX;
934 	register_pm_notifier(&kvm->pm_notifier);
935 }
936 
937 static void kvm_destroy_pm_notifier(struct kvm *kvm)
938 {
939 	unregister_pm_notifier(&kvm->pm_notifier);
940 }
941 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
942 static void kvm_init_pm_notifier(struct kvm *kvm)
943 {
944 }
945 
946 static void kvm_destroy_pm_notifier(struct kvm *kvm)
947 {
948 }
949 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
950 
951 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
952 {
953 	if (!memslot->dirty_bitmap)
954 		return;
955 
956 	kvfree(memslot->dirty_bitmap);
957 	memslot->dirty_bitmap = NULL;
958 }
959 
960 /* This does not remove the slot from struct kvm_memslots data structures */
961 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
962 {
963 	kvm_destroy_dirty_bitmap(slot);
964 
965 	kvm_arch_free_memslot(kvm, slot);
966 
967 	kfree(slot);
968 }
969 
970 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
971 {
972 	struct hlist_node *idnode;
973 	struct kvm_memory_slot *memslot;
974 	int bkt;
975 
976 	/*
977 	 * The same memslot objects live in both active and inactive sets,
978 	 * arbitrarily free using index '1' so the second invocation of this
979 	 * function isn't operating over a structure with dangling pointers
980 	 * (even though this function isn't actually touching them).
981 	 */
982 	if (!slots->node_idx)
983 		return;
984 
985 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
986 		kvm_free_memslot(kvm, memslot);
987 }
988 
989 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
990 {
991 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
992 	case KVM_STATS_TYPE_INSTANT:
993 		return 0444;
994 	case KVM_STATS_TYPE_CUMULATIVE:
995 	case KVM_STATS_TYPE_PEAK:
996 	default:
997 		return 0644;
998 	}
999 }
1000 
1001 
1002 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1003 {
1004 	int i;
1005 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1006 				      kvm_vcpu_stats_header.num_desc;
1007 
1008 	if (IS_ERR(kvm->debugfs_dentry))
1009 		return;
1010 
1011 	debugfs_remove_recursive(kvm->debugfs_dentry);
1012 
1013 	if (kvm->debugfs_stat_data) {
1014 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1015 			kfree(kvm->debugfs_stat_data[i]);
1016 		kfree(kvm->debugfs_stat_data);
1017 	}
1018 }
1019 
1020 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
1021 {
1022 	static DEFINE_MUTEX(kvm_debugfs_lock);
1023 	struct dentry *dent;
1024 	char dir_name[ITOA_MAX_LEN * 2];
1025 	struct kvm_stat_data *stat_data;
1026 	const struct _kvm_stats_desc *pdesc;
1027 	int i, ret;
1028 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1029 				      kvm_vcpu_stats_header.num_desc;
1030 
1031 	if (!debugfs_initialized())
1032 		return 0;
1033 
1034 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
1035 	mutex_lock(&kvm_debugfs_lock);
1036 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1037 	if (dent) {
1038 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1039 		dput(dent);
1040 		mutex_unlock(&kvm_debugfs_lock);
1041 		return 0;
1042 	}
1043 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1044 	mutex_unlock(&kvm_debugfs_lock);
1045 	if (IS_ERR(dent))
1046 		return 0;
1047 
1048 	kvm->debugfs_dentry = dent;
1049 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1050 					 sizeof(*kvm->debugfs_stat_data),
1051 					 GFP_KERNEL_ACCOUNT);
1052 	if (!kvm->debugfs_stat_data)
1053 		return -ENOMEM;
1054 
1055 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1056 		pdesc = &kvm_vm_stats_desc[i];
1057 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1058 		if (!stat_data)
1059 			return -ENOMEM;
1060 
1061 		stat_data->kvm = kvm;
1062 		stat_data->desc = pdesc;
1063 		stat_data->kind = KVM_STAT_VM;
1064 		kvm->debugfs_stat_data[i] = stat_data;
1065 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1066 				    kvm->debugfs_dentry, stat_data,
1067 				    &stat_fops_per_vm);
1068 	}
1069 
1070 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1071 		pdesc = &kvm_vcpu_stats_desc[i];
1072 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1073 		if (!stat_data)
1074 			return -ENOMEM;
1075 
1076 		stat_data->kvm = kvm;
1077 		stat_data->desc = pdesc;
1078 		stat_data->kind = KVM_STAT_VCPU;
1079 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1080 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1081 				    kvm->debugfs_dentry, stat_data,
1082 				    &stat_fops_per_vm);
1083 	}
1084 
1085 	ret = kvm_arch_create_vm_debugfs(kvm);
1086 	if (ret) {
1087 		kvm_destroy_vm_debugfs(kvm);
1088 		return i;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Called after the VM is otherwise initialized, but just before adding it to
1096  * the vm_list.
1097  */
1098 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1099 {
1100 	return 0;
1101 }
1102 
1103 /*
1104  * Called just after removing the VM from the vm_list, but before doing any
1105  * other destruction.
1106  */
1107 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1108 {
1109 }
1110 
1111 /*
1112  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1113  * be setup already, so we can create arch-specific debugfs entries under it.
1114  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1115  * a per-arch destroy interface is not needed.
1116  */
1117 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1118 {
1119 	return 0;
1120 }
1121 
1122 static struct kvm *kvm_create_vm(unsigned long type)
1123 {
1124 	struct kvm *kvm = kvm_arch_alloc_vm();
1125 	struct kvm_memslots *slots;
1126 	int r = -ENOMEM;
1127 	int i, j;
1128 
1129 	if (!kvm)
1130 		return ERR_PTR(-ENOMEM);
1131 
1132 	KVM_MMU_LOCK_INIT(kvm);
1133 	mmgrab(current->mm);
1134 	kvm->mm = current->mm;
1135 	kvm_eventfd_init(kvm);
1136 	mutex_init(&kvm->lock);
1137 	mutex_init(&kvm->irq_lock);
1138 	mutex_init(&kvm->slots_lock);
1139 	mutex_init(&kvm->slots_arch_lock);
1140 	spin_lock_init(&kvm->mn_invalidate_lock);
1141 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1142 	xa_init(&kvm->vcpu_array);
1143 
1144 	INIT_LIST_HEAD(&kvm->gpc_list);
1145 	spin_lock_init(&kvm->gpc_lock);
1146 
1147 	INIT_LIST_HEAD(&kvm->devices);
1148 	kvm->max_vcpus = KVM_MAX_VCPUS;
1149 
1150 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1151 
1152 	/*
1153 	 * Force subsequent debugfs file creations to fail if the VM directory
1154 	 * is not created (by kvm_create_vm_debugfs()).
1155 	 */
1156 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1157 
1158 	if (init_srcu_struct(&kvm->srcu))
1159 		goto out_err_no_srcu;
1160 	if (init_srcu_struct(&kvm->irq_srcu))
1161 		goto out_err_no_irq_srcu;
1162 
1163 	refcount_set(&kvm->users_count, 1);
1164 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1165 		for (j = 0; j < 2; j++) {
1166 			slots = &kvm->__memslots[i][j];
1167 
1168 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1169 			slots->hva_tree = RB_ROOT_CACHED;
1170 			slots->gfn_tree = RB_ROOT;
1171 			hash_init(slots->id_hash);
1172 			slots->node_idx = j;
1173 
1174 			/* Generations must be different for each address space. */
1175 			slots->generation = i;
1176 		}
1177 
1178 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1179 	}
1180 
1181 	for (i = 0; i < KVM_NR_BUSES; i++) {
1182 		rcu_assign_pointer(kvm->buses[i],
1183 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1184 		if (!kvm->buses[i])
1185 			goto out_err_no_arch_destroy_vm;
1186 	}
1187 
1188 	kvm->max_halt_poll_ns = halt_poll_ns;
1189 
1190 	r = kvm_arch_init_vm(kvm, type);
1191 	if (r)
1192 		goto out_err_no_arch_destroy_vm;
1193 
1194 	r = hardware_enable_all();
1195 	if (r)
1196 		goto out_err_no_disable;
1197 
1198 #ifdef CONFIG_HAVE_KVM_IRQFD
1199 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1200 #endif
1201 
1202 	r = kvm_init_mmu_notifier(kvm);
1203 	if (r)
1204 		goto out_err_no_mmu_notifier;
1205 
1206 	r = kvm_arch_post_init_vm(kvm);
1207 	if (r)
1208 		goto out_err;
1209 
1210 	mutex_lock(&kvm_lock);
1211 	list_add(&kvm->vm_list, &vm_list);
1212 	mutex_unlock(&kvm_lock);
1213 
1214 	preempt_notifier_inc();
1215 	kvm_init_pm_notifier(kvm);
1216 
1217 	/*
1218 	 * When the fd passed to this ioctl() is opened it pins the module,
1219 	 * but try_module_get() also prevents getting a reference if the module
1220 	 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1221 	 */
1222 	if (!try_module_get(kvm_chardev_ops.owner)) {
1223 		r = -ENODEV;
1224 		goto out_err;
1225 	}
1226 
1227 	return kvm;
1228 
1229 out_err:
1230 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1231 	if (kvm->mmu_notifier.ops)
1232 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1233 #endif
1234 out_err_no_mmu_notifier:
1235 	hardware_disable_all();
1236 out_err_no_disable:
1237 	kvm_arch_destroy_vm(kvm);
1238 out_err_no_arch_destroy_vm:
1239 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1240 	for (i = 0; i < KVM_NR_BUSES; i++)
1241 		kfree(kvm_get_bus(kvm, i));
1242 	cleanup_srcu_struct(&kvm->irq_srcu);
1243 out_err_no_irq_srcu:
1244 	cleanup_srcu_struct(&kvm->srcu);
1245 out_err_no_srcu:
1246 	kvm_arch_free_vm(kvm);
1247 	mmdrop(current->mm);
1248 	return ERR_PTR(r);
1249 }
1250 
1251 static void kvm_destroy_devices(struct kvm *kvm)
1252 {
1253 	struct kvm_device *dev, *tmp;
1254 
1255 	/*
1256 	 * We do not need to take the kvm->lock here, because nobody else
1257 	 * has a reference to the struct kvm at this point and therefore
1258 	 * cannot access the devices list anyhow.
1259 	 */
1260 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1261 		list_del(&dev->vm_node);
1262 		dev->ops->destroy(dev);
1263 	}
1264 }
1265 
1266 static void kvm_destroy_vm(struct kvm *kvm)
1267 {
1268 	int i;
1269 	struct mm_struct *mm = kvm->mm;
1270 
1271 	kvm_destroy_pm_notifier(kvm);
1272 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1273 	kvm_destroy_vm_debugfs(kvm);
1274 	kvm_arch_sync_events(kvm);
1275 	mutex_lock(&kvm_lock);
1276 	list_del(&kvm->vm_list);
1277 	mutex_unlock(&kvm_lock);
1278 	kvm_arch_pre_destroy_vm(kvm);
1279 
1280 	kvm_free_irq_routing(kvm);
1281 	for (i = 0; i < KVM_NR_BUSES; i++) {
1282 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1283 
1284 		if (bus)
1285 			kvm_io_bus_destroy(bus);
1286 		kvm->buses[i] = NULL;
1287 	}
1288 	kvm_coalesced_mmio_free(kvm);
1289 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1290 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1291 	/*
1292 	 * At this point, pending calls to invalidate_range_start()
1293 	 * have completed but no more MMU notifiers will run, so
1294 	 * mn_active_invalidate_count may remain unbalanced.
1295 	 * No threads can be waiting in install_new_memslots as the
1296 	 * last reference on KVM has been dropped, but freeing
1297 	 * memslots would deadlock without this manual intervention.
1298 	 */
1299 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1300 	kvm->mn_active_invalidate_count = 0;
1301 #else
1302 	kvm_flush_shadow_all(kvm);
1303 #endif
1304 	kvm_arch_destroy_vm(kvm);
1305 	kvm_destroy_devices(kvm);
1306 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1307 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1308 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1309 	}
1310 	cleanup_srcu_struct(&kvm->irq_srcu);
1311 	cleanup_srcu_struct(&kvm->srcu);
1312 	kvm_arch_free_vm(kvm);
1313 	preempt_notifier_dec();
1314 	hardware_disable_all();
1315 	mmdrop(mm);
1316 	module_put(kvm_chardev_ops.owner);
1317 }
1318 
1319 void kvm_get_kvm(struct kvm *kvm)
1320 {
1321 	refcount_inc(&kvm->users_count);
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1324 
1325 /*
1326  * Make sure the vm is not during destruction, which is a safe version of
1327  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1328  */
1329 bool kvm_get_kvm_safe(struct kvm *kvm)
1330 {
1331 	return refcount_inc_not_zero(&kvm->users_count);
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1334 
1335 void kvm_put_kvm(struct kvm *kvm)
1336 {
1337 	if (refcount_dec_and_test(&kvm->users_count))
1338 		kvm_destroy_vm(kvm);
1339 }
1340 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1341 
1342 /*
1343  * Used to put a reference that was taken on behalf of an object associated
1344  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1345  * of the new file descriptor fails and the reference cannot be transferred to
1346  * its final owner.  In such cases, the caller is still actively using @kvm and
1347  * will fail miserably if the refcount unexpectedly hits zero.
1348  */
1349 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1350 {
1351 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1352 }
1353 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1354 
1355 static int kvm_vm_release(struct inode *inode, struct file *filp)
1356 {
1357 	struct kvm *kvm = filp->private_data;
1358 
1359 	kvm_irqfd_release(kvm);
1360 
1361 	kvm_put_kvm(kvm);
1362 	return 0;
1363 }
1364 
1365 /*
1366  * Allocation size is twice as large as the actual dirty bitmap size.
1367  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1368  */
1369 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1370 {
1371 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1372 
1373 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1374 	if (!memslot->dirty_bitmap)
1375 		return -ENOMEM;
1376 
1377 	return 0;
1378 }
1379 
1380 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1381 {
1382 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1383 	int node_idx_inactive = active->node_idx ^ 1;
1384 
1385 	return &kvm->__memslots[as_id][node_idx_inactive];
1386 }
1387 
1388 /*
1389  * Helper to get the address space ID when one of memslot pointers may be NULL.
1390  * This also serves as a sanity that at least one of the pointers is non-NULL,
1391  * and that their address space IDs don't diverge.
1392  */
1393 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1394 				  struct kvm_memory_slot *b)
1395 {
1396 	if (WARN_ON_ONCE(!a && !b))
1397 		return 0;
1398 
1399 	if (!a)
1400 		return b->as_id;
1401 	if (!b)
1402 		return a->as_id;
1403 
1404 	WARN_ON_ONCE(a->as_id != b->as_id);
1405 	return a->as_id;
1406 }
1407 
1408 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1409 				struct kvm_memory_slot *slot)
1410 {
1411 	struct rb_root *gfn_tree = &slots->gfn_tree;
1412 	struct rb_node **node, *parent;
1413 	int idx = slots->node_idx;
1414 
1415 	parent = NULL;
1416 	for (node = &gfn_tree->rb_node; *node; ) {
1417 		struct kvm_memory_slot *tmp;
1418 
1419 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1420 		parent = *node;
1421 		if (slot->base_gfn < tmp->base_gfn)
1422 			node = &(*node)->rb_left;
1423 		else if (slot->base_gfn > tmp->base_gfn)
1424 			node = &(*node)->rb_right;
1425 		else
1426 			BUG();
1427 	}
1428 
1429 	rb_link_node(&slot->gfn_node[idx], parent, node);
1430 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1431 }
1432 
1433 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1434 			       struct kvm_memory_slot *slot)
1435 {
1436 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1437 }
1438 
1439 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1440 				 struct kvm_memory_slot *old,
1441 				 struct kvm_memory_slot *new)
1442 {
1443 	int idx = slots->node_idx;
1444 
1445 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1446 
1447 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1448 			&slots->gfn_tree);
1449 }
1450 
1451 /*
1452  * Replace @old with @new in the inactive memslots.
1453  *
1454  * With NULL @old this simply adds @new.
1455  * With NULL @new this simply removes @old.
1456  *
1457  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1458  * appropriately.
1459  */
1460 static void kvm_replace_memslot(struct kvm *kvm,
1461 				struct kvm_memory_slot *old,
1462 				struct kvm_memory_slot *new)
1463 {
1464 	int as_id = kvm_memslots_get_as_id(old, new);
1465 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1466 	int idx = slots->node_idx;
1467 
1468 	if (old) {
1469 		hash_del(&old->id_node[idx]);
1470 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1471 
1472 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1473 			atomic_long_set(&slots->last_used_slot, (long)new);
1474 
1475 		if (!new) {
1476 			kvm_erase_gfn_node(slots, old);
1477 			return;
1478 		}
1479 	}
1480 
1481 	/*
1482 	 * Initialize @new's hva range.  Do this even when replacing an @old
1483 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1484 	 */
1485 	new->hva_node[idx].start = new->userspace_addr;
1486 	new->hva_node[idx].last = new->userspace_addr +
1487 				  (new->npages << PAGE_SHIFT) - 1;
1488 
1489 	/*
1490 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1491 	 * hva_node needs to be swapped with remove+insert even though hva can't
1492 	 * change when replacing an existing slot.
1493 	 */
1494 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1495 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1496 
1497 	/*
1498 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1499 	 * switch the node in the gfn tree instead of removing the old and
1500 	 * inserting the new as two separate operations. Replacement is a
1501 	 * single O(1) operation versus two O(log(n)) operations for
1502 	 * remove+insert.
1503 	 */
1504 	if (old && old->base_gfn == new->base_gfn) {
1505 		kvm_replace_gfn_node(slots, old, new);
1506 	} else {
1507 		if (old)
1508 			kvm_erase_gfn_node(slots, old);
1509 		kvm_insert_gfn_node(slots, new);
1510 	}
1511 }
1512 
1513 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1514 {
1515 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1516 
1517 #ifdef __KVM_HAVE_READONLY_MEM
1518 	valid_flags |= KVM_MEM_READONLY;
1519 #endif
1520 
1521 	if (mem->flags & ~valid_flags)
1522 		return -EINVAL;
1523 
1524 	return 0;
1525 }
1526 
1527 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1528 {
1529 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1530 
1531 	/* Grab the generation from the activate memslots. */
1532 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1533 
1534 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1535 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1536 
1537 	/*
1538 	 * Do not store the new memslots while there are invalidations in
1539 	 * progress, otherwise the locking in invalidate_range_start and
1540 	 * invalidate_range_end will be unbalanced.
1541 	 */
1542 	spin_lock(&kvm->mn_invalidate_lock);
1543 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1544 	while (kvm->mn_active_invalidate_count) {
1545 		set_current_state(TASK_UNINTERRUPTIBLE);
1546 		spin_unlock(&kvm->mn_invalidate_lock);
1547 		schedule();
1548 		spin_lock(&kvm->mn_invalidate_lock);
1549 	}
1550 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1551 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1552 	spin_unlock(&kvm->mn_invalidate_lock);
1553 
1554 	/*
1555 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1556 	 * SRCU below in order to avoid deadlock with another thread
1557 	 * acquiring the slots_arch_lock in an srcu critical section.
1558 	 */
1559 	mutex_unlock(&kvm->slots_arch_lock);
1560 
1561 	synchronize_srcu_expedited(&kvm->srcu);
1562 
1563 	/*
1564 	 * Increment the new memslot generation a second time, dropping the
1565 	 * update in-progress flag and incrementing the generation based on
1566 	 * the number of address spaces.  This provides a unique and easily
1567 	 * identifiable generation number while the memslots are in flux.
1568 	 */
1569 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1570 
1571 	/*
1572 	 * Generations must be unique even across address spaces.  We do not need
1573 	 * a global counter for that, instead the generation space is evenly split
1574 	 * across address spaces.  For example, with two address spaces, address
1575 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1576 	 * use generations 1, 3, 5, ...
1577 	 */
1578 	gen += KVM_ADDRESS_SPACE_NUM;
1579 
1580 	kvm_arch_memslots_updated(kvm, gen);
1581 
1582 	slots->generation = gen;
1583 }
1584 
1585 static int kvm_prepare_memory_region(struct kvm *kvm,
1586 				     const struct kvm_memory_slot *old,
1587 				     struct kvm_memory_slot *new,
1588 				     enum kvm_mr_change change)
1589 {
1590 	int r;
1591 
1592 	/*
1593 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1594 	 * will be freed on "commit".  If logging is enabled in both old and
1595 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1596 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1597 	 * new bitmap.
1598 	 */
1599 	if (change != KVM_MR_DELETE) {
1600 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1601 			new->dirty_bitmap = NULL;
1602 		else if (old && old->dirty_bitmap)
1603 			new->dirty_bitmap = old->dirty_bitmap;
1604 		else if (!kvm->dirty_ring_size) {
1605 			r = kvm_alloc_dirty_bitmap(new);
1606 			if (r)
1607 				return r;
1608 
1609 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1610 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1611 		}
1612 	}
1613 
1614 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1615 
1616 	/* Free the bitmap on failure if it was allocated above. */
1617 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1618 		kvm_destroy_dirty_bitmap(new);
1619 
1620 	return r;
1621 }
1622 
1623 static void kvm_commit_memory_region(struct kvm *kvm,
1624 				     struct kvm_memory_slot *old,
1625 				     const struct kvm_memory_slot *new,
1626 				     enum kvm_mr_change change)
1627 {
1628 	/*
1629 	 * Update the total number of memslot pages before calling the arch
1630 	 * hook so that architectures can consume the result directly.
1631 	 */
1632 	if (change == KVM_MR_DELETE)
1633 		kvm->nr_memslot_pages -= old->npages;
1634 	else if (change == KVM_MR_CREATE)
1635 		kvm->nr_memslot_pages += new->npages;
1636 
1637 	kvm_arch_commit_memory_region(kvm, old, new, change);
1638 
1639 	switch (change) {
1640 	case KVM_MR_CREATE:
1641 		/* Nothing more to do. */
1642 		break;
1643 	case KVM_MR_DELETE:
1644 		/* Free the old memslot and all its metadata. */
1645 		kvm_free_memslot(kvm, old);
1646 		break;
1647 	case KVM_MR_MOVE:
1648 	case KVM_MR_FLAGS_ONLY:
1649 		/*
1650 		 * Free the dirty bitmap as needed; the below check encompasses
1651 		 * both the flags and whether a ring buffer is being used)
1652 		 */
1653 		if (old->dirty_bitmap && !new->dirty_bitmap)
1654 			kvm_destroy_dirty_bitmap(old);
1655 
1656 		/*
1657 		 * The final quirk.  Free the detached, old slot, but only its
1658 		 * memory, not any metadata.  Metadata, including arch specific
1659 		 * data, may be reused by @new.
1660 		 */
1661 		kfree(old);
1662 		break;
1663 	default:
1664 		BUG();
1665 	}
1666 }
1667 
1668 /*
1669  * Activate @new, which must be installed in the inactive slots by the caller,
1670  * by swapping the active slots and then propagating @new to @old once @old is
1671  * unreachable and can be safely modified.
1672  *
1673  * With NULL @old this simply adds @new to @active (while swapping the sets).
1674  * With NULL @new this simply removes @old from @active and frees it
1675  * (while also swapping the sets).
1676  */
1677 static void kvm_activate_memslot(struct kvm *kvm,
1678 				 struct kvm_memory_slot *old,
1679 				 struct kvm_memory_slot *new)
1680 {
1681 	int as_id = kvm_memslots_get_as_id(old, new);
1682 
1683 	kvm_swap_active_memslots(kvm, as_id);
1684 
1685 	/* Propagate the new memslot to the now inactive memslots. */
1686 	kvm_replace_memslot(kvm, old, new);
1687 }
1688 
1689 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1690 			     const struct kvm_memory_slot *src)
1691 {
1692 	dest->base_gfn = src->base_gfn;
1693 	dest->npages = src->npages;
1694 	dest->dirty_bitmap = src->dirty_bitmap;
1695 	dest->arch = src->arch;
1696 	dest->userspace_addr = src->userspace_addr;
1697 	dest->flags = src->flags;
1698 	dest->id = src->id;
1699 	dest->as_id = src->as_id;
1700 }
1701 
1702 static void kvm_invalidate_memslot(struct kvm *kvm,
1703 				   struct kvm_memory_slot *old,
1704 				   struct kvm_memory_slot *invalid_slot)
1705 {
1706 	/*
1707 	 * Mark the current slot INVALID.  As with all memslot modifications,
1708 	 * this must be done on an unreachable slot to avoid modifying the
1709 	 * current slot in the active tree.
1710 	 */
1711 	kvm_copy_memslot(invalid_slot, old);
1712 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1713 	kvm_replace_memslot(kvm, old, invalid_slot);
1714 
1715 	/*
1716 	 * Activate the slot that is now marked INVALID, but don't propagate
1717 	 * the slot to the now inactive slots. The slot is either going to be
1718 	 * deleted or recreated as a new slot.
1719 	 */
1720 	kvm_swap_active_memslots(kvm, old->as_id);
1721 
1722 	/*
1723 	 * From this point no new shadow pages pointing to a deleted, or moved,
1724 	 * memslot will be created.  Validation of sp->gfn happens in:
1725 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1726 	 *	- kvm_is_visible_gfn (mmu_check_root)
1727 	 */
1728 	kvm_arch_flush_shadow_memslot(kvm, old);
1729 	kvm_arch_guest_memory_reclaimed(kvm);
1730 
1731 	/* Was released by kvm_swap_active_memslots, reacquire. */
1732 	mutex_lock(&kvm->slots_arch_lock);
1733 
1734 	/*
1735 	 * Copy the arch-specific field of the newly-installed slot back to the
1736 	 * old slot as the arch data could have changed between releasing
1737 	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1738 	 * above.  Writers are required to retrieve memslots *after* acquiring
1739 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1740 	 */
1741 	old->arch = invalid_slot->arch;
1742 }
1743 
1744 static void kvm_create_memslot(struct kvm *kvm,
1745 			       struct kvm_memory_slot *new)
1746 {
1747 	/* Add the new memslot to the inactive set and activate. */
1748 	kvm_replace_memslot(kvm, NULL, new);
1749 	kvm_activate_memslot(kvm, NULL, new);
1750 }
1751 
1752 static void kvm_delete_memslot(struct kvm *kvm,
1753 			       struct kvm_memory_slot *old,
1754 			       struct kvm_memory_slot *invalid_slot)
1755 {
1756 	/*
1757 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1758 	 * the "new" slot, and for the invalid version in the active slots.
1759 	 */
1760 	kvm_replace_memslot(kvm, old, NULL);
1761 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1762 }
1763 
1764 static void kvm_move_memslot(struct kvm *kvm,
1765 			     struct kvm_memory_slot *old,
1766 			     struct kvm_memory_slot *new,
1767 			     struct kvm_memory_slot *invalid_slot)
1768 {
1769 	/*
1770 	 * Replace the old memslot in the inactive slots, and then swap slots
1771 	 * and replace the current INVALID with the new as well.
1772 	 */
1773 	kvm_replace_memslot(kvm, old, new);
1774 	kvm_activate_memslot(kvm, invalid_slot, new);
1775 }
1776 
1777 static void kvm_update_flags_memslot(struct kvm *kvm,
1778 				     struct kvm_memory_slot *old,
1779 				     struct kvm_memory_slot *new)
1780 {
1781 	/*
1782 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1783 	 * an intermediate step. Instead, the old memslot is simply replaced
1784 	 * with a new, updated copy in both memslot sets.
1785 	 */
1786 	kvm_replace_memslot(kvm, old, new);
1787 	kvm_activate_memslot(kvm, old, new);
1788 }
1789 
1790 static int kvm_set_memslot(struct kvm *kvm,
1791 			   struct kvm_memory_slot *old,
1792 			   struct kvm_memory_slot *new,
1793 			   enum kvm_mr_change change)
1794 {
1795 	struct kvm_memory_slot *invalid_slot;
1796 	int r;
1797 
1798 	/*
1799 	 * Released in kvm_swap_active_memslots.
1800 	 *
1801 	 * Must be held from before the current memslots are copied until
1802 	 * after the new memslots are installed with rcu_assign_pointer,
1803 	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1804 	 *
1805 	 * When modifying memslots outside of the slots_lock, must be held
1806 	 * before reading the pointer to the current memslots until after all
1807 	 * changes to those memslots are complete.
1808 	 *
1809 	 * These rules ensure that installing new memslots does not lose
1810 	 * changes made to the previous memslots.
1811 	 */
1812 	mutex_lock(&kvm->slots_arch_lock);
1813 
1814 	/*
1815 	 * Invalidate the old slot if it's being deleted or moved.  This is
1816 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1817 	 * continue running by ensuring there are no mappings or shadow pages
1818 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1819 	 * (and without a lock), a window would exist between effecting the
1820 	 * delete/move and committing the changes in arch code where KVM or a
1821 	 * guest could access a non-existent memslot.
1822 	 *
1823 	 * Modifications are done on a temporary, unreachable slot.  The old
1824 	 * slot needs to be preserved in case a later step fails and the
1825 	 * invalidation needs to be reverted.
1826 	 */
1827 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1828 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1829 		if (!invalid_slot) {
1830 			mutex_unlock(&kvm->slots_arch_lock);
1831 			return -ENOMEM;
1832 		}
1833 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1834 	}
1835 
1836 	r = kvm_prepare_memory_region(kvm, old, new, change);
1837 	if (r) {
1838 		/*
1839 		 * For DELETE/MOVE, revert the above INVALID change.  No
1840 		 * modifications required since the original slot was preserved
1841 		 * in the inactive slots.  Changing the active memslots also
1842 		 * release slots_arch_lock.
1843 		 */
1844 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845 			kvm_activate_memslot(kvm, invalid_slot, old);
1846 			kfree(invalid_slot);
1847 		} else {
1848 			mutex_unlock(&kvm->slots_arch_lock);
1849 		}
1850 		return r;
1851 	}
1852 
1853 	/*
1854 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1855 	 * version of the old slot.  MOVE is particularly special as it reuses
1856 	 * the old slot and returns a copy of the old slot (in working_slot).
1857 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1858 	 * old slot is detached but otherwise preserved.
1859 	 */
1860 	if (change == KVM_MR_CREATE)
1861 		kvm_create_memslot(kvm, new);
1862 	else if (change == KVM_MR_DELETE)
1863 		kvm_delete_memslot(kvm, old, invalid_slot);
1864 	else if (change == KVM_MR_MOVE)
1865 		kvm_move_memslot(kvm, old, new, invalid_slot);
1866 	else if (change == KVM_MR_FLAGS_ONLY)
1867 		kvm_update_flags_memslot(kvm, old, new);
1868 	else
1869 		BUG();
1870 
1871 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1872 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1873 		kfree(invalid_slot);
1874 
1875 	/*
1876 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1877 	 * will directly hit the final, active memslot.  Architectures are
1878 	 * responsible for knowing that new->arch may be stale.
1879 	 */
1880 	kvm_commit_memory_region(kvm, old, new, change);
1881 
1882 	return 0;
1883 }
1884 
1885 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1886 				      gfn_t start, gfn_t end)
1887 {
1888 	struct kvm_memslot_iter iter;
1889 
1890 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1891 		if (iter.slot->id != id)
1892 			return true;
1893 	}
1894 
1895 	return false;
1896 }
1897 
1898 /*
1899  * Allocate some memory and give it an address in the guest physical address
1900  * space.
1901  *
1902  * Discontiguous memory is allowed, mostly for framebuffers.
1903  *
1904  * Must be called holding kvm->slots_lock for write.
1905  */
1906 int __kvm_set_memory_region(struct kvm *kvm,
1907 			    const struct kvm_userspace_memory_region *mem)
1908 {
1909 	struct kvm_memory_slot *old, *new;
1910 	struct kvm_memslots *slots;
1911 	enum kvm_mr_change change;
1912 	unsigned long npages;
1913 	gfn_t base_gfn;
1914 	int as_id, id;
1915 	int r;
1916 
1917 	r = check_memory_region_flags(mem);
1918 	if (r)
1919 		return r;
1920 
1921 	as_id = mem->slot >> 16;
1922 	id = (u16)mem->slot;
1923 
1924 	/* General sanity checks */
1925 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1926 	    (mem->memory_size != (unsigned long)mem->memory_size))
1927 		return -EINVAL;
1928 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1929 		return -EINVAL;
1930 	/* We can read the guest memory with __xxx_user() later on. */
1931 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1932 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1933 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1934 			mem->memory_size))
1935 		return -EINVAL;
1936 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1937 		return -EINVAL;
1938 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1939 		return -EINVAL;
1940 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1941 		return -EINVAL;
1942 
1943 	slots = __kvm_memslots(kvm, as_id);
1944 
1945 	/*
1946 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1947 	 * and/or destroyed by kvm_set_memslot().
1948 	 */
1949 	old = id_to_memslot(slots, id);
1950 
1951 	if (!mem->memory_size) {
1952 		if (!old || !old->npages)
1953 			return -EINVAL;
1954 
1955 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1956 			return -EIO;
1957 
1958 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1959 	}
1960 
1961 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1962 	npages = (mem->memory_size >> PAGE_SHIFT);
1963 
1964 	if (!old || !old->npages) {
1965 		change = KVM_MR_CREATE;
1966 
1967 		/*
1968 		 * To simplify KVM internals, the total number of pages across
1969 		 * all memslots must fit in an unsigned long.
1970 		 */
1971 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1972 			return -EINVAL;
1973 	} else { /* Modify an existing slot. */
1974 		if ((mem->userspace_addr != old->userspace_addr) ||
1975 		    (npages != old->npages) ||
1976 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1977 			return -EINVAL;
1978 
1979 		if (base_gfn != old->base_gfn)
1980 			change = KVM_MR_MOVE;
1981 		else if (mem->flags != old->flags)
1982 			change = KVM_MR_FLAGS_ONLY;
1983 		else /* Nothing to change. */
1984 			return 0;
1985 	}
1986 
1987 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1988 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1989 		return -EEXIST;
1990 
1991 	/* Allocate a slot that will persist in the memslot. */
1992 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1993 	if (!new)
1994 		return -ENOMEM;
1995 
1996 	new->as_id = as_id;
1997 	new->id = id;
1998 	new->base_gfn = base_gfn;
1999 	new->npages = npages;
2000 	new->flags = mem->flags;
2001 	new->userspace_addr = mem->userspace_addr;
2002 
2003 	r = kvm_set_memslot(kvm, old, new, change);
2004 	if (r)
2005 		kfree(new);
2006 	return r;
2007 }
2008 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2009 
2010 int kvm_set_memory_region(struct kvm *kvm,
2011 			  const struct kvm_userspace_memory_region *mem)
2012 {
2013 	int r;
2014 
2015 	mutex_lock(&kvm->slots_lock);
2016 	r = __kvm_set_memory_region(kvm, mem);
2017 	mutex_unlock(&kvm->slots_lock);
2018 	return r;
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2021 
2022 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2023 					  struct kvm_userspace_memory_region *mem)
2024 {
2025 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2026 		return -EINVAL;
2027 
2028 	return kvm_set_memory_region(kvm, mem);
2029 }
2030 
2031 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2032 /**
2033  * kvm_get_dirty_log - get a snapshot of dirty pages
2034  * @kvm:	pointer to kvm instance
2035  * @log:	slot id and address to which we copy the log
2036  * @is_dirty:	set to '1' if any dirty pages were found
2037  * @memslot:	set to the associated memslot, always valid on success
2038  */
2039 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2040 		      int *is_dirty, struct kvm_memory_slot **memslot)
2041 {
2042 	struct kvm_memslots *slots;
2043 	int i, as_id, id;
2044 	unsigned long n;
2045 	unsigned long any = 0;
2046 
2047 	/* Dirty ring tracking is exclusive to dirty log tracking */
2048 	if (kvm->dirty_ring_size)
2049 		return -ENXIO;
2050 
2051 	*memslot = NULL;
2052 	*is_dirty = 0;
2053 
2054 	as_id = log->slot >> 16;
2055 	id = (u16)log->slot;
2056 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2057 		return -EINVAL;
2058 
2059 	slots = __kvm_memslots(kvm, as_id);
2060 	*memslot = id_to_memslot(slots, id);
2061 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2062 		return -ENOENT;
2063 
2064 	kvm_arch_sync_dirty_log(kvm, *memslot);
2065 
2066 	n = kvm_dirty_bitmap_bytes(*memslot);
2067 
2068 	for (i = 0; !any && i < n/sizeof(long); ++i)
2069 		any = (*memslot)->dirty_bitmap[i];
2070 
2071 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2072 		return -EFAULT;
2073 
2074 	if (any)
2075 		*is_dirty = 1;
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2079 
2080 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2081 /**
2082  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2083  *	and reenable dirty page tracking for the corresponding pages.
2084  * @kvm:	pointer to kvm instance
2085  * @log:	slot id and address to which we copy the log
2086  *
2087  * We need to keep it in mind that VCPU threads can write to the bitmap
2088  * concurrently. So, to avoid losing track of dirty pages we keep the
2089  * following order:
2090  *
2091  *    1. Take a snapshot of the bit and clear it if needed.
2092  *    2. Write protect the corresponding page.
2093  *    3. Copy the snapshot to the userspace.
2094  *    4. Upon return caller flushes TLB's if needed.
2095  *
2096  * Between 2 and 4, the guest may write to the page using the remaining TLB
2097  * entry.  This is not a problem because the page is reported dirty using
2098  * the snapshot taken before and step 4 ensures that writes done after
2099  * exiting to userspace will be logged for the next call.
2100  *
2101  */
2102 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2103 {
2104 	struct kvm_memslots *slots;
2105 	struct kvm_memory_slot *memslot;
2106 	int i, as_id, id;
2107 	unsigned long n;
2108 	unsigned long *dirty_bitmap;
2109 	unsigned long *dirty_bitmap_buffer;
2110 	bool flush;
2111 
2112 	/* Dirty ring tracking is exclusive to dirty log tracking */
2113 	if (kvm->dirty_ring_size)
2114 		return -ENXIO;
2115 
2116 	as_id = log->slot >> 16;
2117 	id = (u16)log->slot;
2118 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2119 		return -EINVAL;
2120 
2121 	slots = __kvm_memslots(kvm, as_id);
2122 	memslot = id_to_memslot(slots, id);
2123 	if (!memslot || !memslot->dirty_bitmap)
2124 		return -ENOENT;
2125 
2126 	dirty_bitmap = memslot->dirty_bitmap;
2127 
2128 	kvm_arch_sync_dirty_log(kvm, memslot);
2129 
2130 	n = kvm_dirty_bitmap_bytes(memslot);
2131 	flush = false;
2132 	if (kvm->manual_dirty_log_protect) {
2133 		/*
2134 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2135 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2136 		 * is some code duplication between this function and
2137 		 * kvm_get_dirty_log, but hopefully all architecture
2138 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2139 		 * can be eliminated.
2140 		 */
2141 		dirty_bitmap_buffer = dirty_bitmap;
2142 	} else {
2143 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2144 		memset(dirty_bitmap_buffer, 0, n);
2145 
2146 		KVM_MMU_LOCK(kvm);
2147 		for (i = 0; i < n / sizeof(long); i++) {
2148 			unsigned long mask;
2149 			gfn_t offset;
2150 
2151 			if (!dirty_bitmap[i])
2152 				continue;
2153 
2154 			flush = true;
2155 			mask = xchg(&dirty_bitmap[i], 0);
2156 			dirty_bitmap_buffer[i] = mask;
2157 
2158 			offset = i * BITS_PER_LONG;
2159 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2160 								offset, mask);
2161 		}
2162 		KVM_MMU_UNLOCK(kvm);
2163 	}
2164 
2165 	if (flush)
2166 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2167 
2168 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2169 		return -EFAULT;
2170 	return 0;
2171 }
2172 
2173 
2174 /**
2175  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2176  * @kvm: kvm instance
2177  * @log: slot id and address to which we copy the log
2178  *
2179  * Steps 1-4 below provide general overview of dirty page logging. See
2180  * kvm_get_dirty_log_protect() function description for additional details.
2181  *
2182  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2183  * always flush the TLB (step 4) even if previous step failed  and the dirty
2184  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2185  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2186  * writes will be marked dirty for next log read.
2187  *
2188  *   1. Take a snapshot of the bit and clear it if needed.
2189  *   2. Write protect the corresponding page.
2190  *   3. Copy the snapshot to the userspace.
2191  *   4. Flush TLB's if needed.
2192  */
2193 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2194 				      struct kvm_dirty_log *log)
2195 {
2196 	int r;
2197 
2198 	mutex_lock(&kvm->slots_lock);
2199 
2200 	r = kvm_get_dirty_log_protect(kvm, log);
2201 
2202 	mutex_unlock(&kvm->slots_lock);
2203 	return r;
2204 }
2205 
2206 /**
2207  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2208  *	and reenable dirty page tracking for the corresponding pages.
2209  * @kvm:	pointer to kvm instance
2210  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2211  */
2212 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2213 				       struct kvm_clear_dirty_log *log)
2214 {
2215 	struct kvm_memslots *slots;
2216 	struct kvm_memory_slot *memslot;
2217 	int as_id, id;
2218 	gfn_t offset;
2219 	unsigned long i, n;
2220 	unsigned long *dirty_bitmap;
2221 	unsigned long *dirty_bitmap_buffer;
2222 	bool flush;
2223 
2224 	/* Dirty ring tracking is exclusive to dirty log tracking */
2225 	if (kvm->dirty_ring_size)
2226 		return -ENXIO;
2227 
2228 	as_id = log->slot >> 16;
2229 	id = (u16)log->slot;
2230 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2231 		return -EINVAL;
2232 
2233 	if (log->first_page & 63)
2234 		return -EINVAL;
2235 
2236 	slots = __kvm_memslots(kvm, as_id);
2237 	memslot = id_to_memslot(slots, id);
2238 	if (!memslot || !memslot->dirty_bitmap)
2239 		return -ENOENT;
2240 
2241 	dirty_bitmap = memslot->dirty_bitmap;
2242 
2243 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2244 
2245 	if (log->first_page > memslot->npages ||
2246 	    log->num_pages > memslot->npages - log->first_page ||
2247 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2248 	    return -EINVAL;
2249 
2250 	kvm_arch_sync_dirty_log(kvm, memslot);
2251 
2252 	flush = false;
2253 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2254 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2255 		return -EFAULT;
2256 
2257 	KVM_MMU_LOCK(kvm);
2258 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2259 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2260 	     i++, offset += BITS_PER_LONG) {
2261 		unsigned long mask = *dirty_bitmap_buffer++;
2262 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2263 		if (!mask)
2264 			continue;
2265 
2266 		mask &= atomic_long_fetch_andnot(mask, p);
2267 
2268 		/*
2269 		 * mask contains the bits that really have been cleared.  This
2270 		 * never includes any bits beyond the length of the memslot (if
2271 		 * the length is not aligned to 64 pages), therefore it is not
2272 		 * a problem if userspace sets them in log->dirty_bitmap.
2273 		*/
2274 		if (mask) {
2275 			flush = true;
2276 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2277 								offset, mask);
2278 		}
2279 	}
2280 	KVM_MMU_UNLOCK(kvm);
2281 
2282 	if (flush)
2283 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2284 
2285 	return 0;
2286 }
2287 
2288 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2289 					struct kvm_clear_dirty_log *log)
2290 {
2291 	int r;
2292 
2293 	mutex_lock(&kvm->slots_lock);
2294 
2295 	r = kvm_clear_dirty_log_protect(kvm, log);
2296 
2297 	mutex_unlock(&kvm->slots_lock);
2298 	return r;
2299 }
2300 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2301 
2302 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2303 {
2304 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2305 }
2306 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2307 
2308 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2309 {
2310 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2311 	u64 gen = slots->generation;
2312 	struct kvm_memory_slot *slot;
2313 
2314 	/*
2315 	 * This also protects against using a memslot from a different address space,
2316 	 * since different address spaces have different generation numbers.
2317 	 */
2318 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2319 		vcpu->last_used_slot = NULL;
2320 		vcpu->last_used_slot_gen = gen;
2321 	}
2322 
2323 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2324 	if (slot)
2325 		return slot;
2326 
2327 	/*
2328 	 * Fall back to searching all memslots. We purposely use
2329 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2330 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2331 	 */
2332 	slot = search_memslots(slots, gfn, false);
2333 	if (slot) {
2334 		vcpu->last_used_slot = slot;
2335 		return slot;
2336 	}
2337 
2338 	return NULL;
2339 }
2340 
2341 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2342 {
2343 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2344 
2345 	return kvm_is_visible_memslot(memslot);
2346 }
2347 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2348 
2349 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2350 {
2351 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2352 
2353 	return kvm_is_visible_memslot(memslot);
2354 }
2355 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2356 
2357 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2358 {
2359 	struct vm_area_struct *vma;
2360 	unsigned long addr, size;
2361 
2362 	size = PAGE_SIZE;
2363 
2364 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2365 	if (kvm_is_error_hva(addr))
2366 		return PAGE_SIZE;
2367 
2368 	mmap_read_lock(current->mm);
2369 	vma = find_vma(current->mm, addr);
2370 	if (!vma)
2371 		goto out;
2372 
2373 	size = vma_kernel_pagesize(vma);
2374 
2375 out:
2376 	mmap_read_unlock(current->mm);
2377 
2378 	return size;
2379 }
2380 
2381 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2382 {
2383 	return slot->flags & KVM_MEM_READONLY;
2384 }
2385 
2386 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2387 				       gfn_t *nr_pages, bool write)
2388 {
2389 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2390 		return KVM_HVA_ERR_BAD;
2391 
2392 	if (memslot_is_readonly(slot) && write)
2393 		return KVM_HVA_ERR_RO_BAD;
2394 
2395 	if (nr_pages)
2396 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2397 
2398 	return __gfn_to_hva_memslot(slot, gfn);
2399 }
2400 
2401 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2402 				     gfn_t *nr_pages)
2403 {
2404 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2405 }
2406 
2407 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2408 					gfn_t gfn)
2409 {
2410 	return gfn_to_hva_many(slot, gfn, NULL);
2411 }
2412 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2413 
2414 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2415 {
2416 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2417 }
2418 EXPORT_SYMBOL_GPL(gfn_to_hva);
2419 
2420 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2421 {
2422 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2423 }
2424 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2425 
2426 /*
2427  * Return the hva of a @gfn and the R/W attribute if possible.
2428  *
2429  * @slot: the kvm_memory_slot which contains @gfn
2430  * @gfn: the gfn to be translated
2431  * @writable: used to return the read/write attribute of the @slot if the hva
2432  * is valid and @writable is not NULL
2433  */
2434 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2435 				      gfn_t gfn, bool *writable)
2436 {
2437 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2438 
2439 	if (!kvm_is_error_hva(hva) && writable)
2440 		*writable = !memslot_is_readonly(slot);
2441 
2442 	return hva;
2443 }
2444 
2445 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2446 {
2447 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2448 
2449 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2450 }
2451 
2452 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2453 {
2454 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2455 
2456 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2457 }
2458 
2459 static inline int check_user_page_hwpoison(unsigned long addr)
2460 {
2461 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2462 
2463 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2464 	return rc == -EHWPOISON;
2465 }
2466 
2467 /*
2468  * The fast path to get the writable pfn which will be stored in @pfn,
2469  * true indicates success, otherwise false is returned.  It's also the
2470  * only part that runs if we can in atomic context.
2471  */
2472 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2473 			    bool *writable, kvm_pfn_t *pfn)
2474 {
2475 	struct page *page[1];
2476 
2477 	/*
2478 	 * Fast pin a writable pfn only if it is a write fault request
2479 	 * or the caller allows to map a writable pfn for a read fault
2480 	 * request.
2481 	 */
2482 	if (!(write_fault || writable))
2483 		return false;
2484 
2485 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2486 		*pfn = page_to_pfn(page[0]);
2487 
2488 		if (writable)
2489 			*writable = true;
2490 		return true;
2491 	}
2492 
2493 	return false;
2494 }
2495 
2496 /*
2497  * The slow path to get the pfn of the specified host virtual address,
2498  * 1 indicates success, -errno is returned if error is detected.
2499  */
2500 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2501 			   bool *writable, kvm_pfn_t *pfn)
2502 {
2503 	unsigned int flags = FOLL_HWPOISON;
2504 	struct page *page;
2505 	int npages = 0;
2506 
2507 	might_sleep();
2508 
2509 	if (writable)
2510 		*writable = write_fault;
2511 
2512 	if (write_fault)
2513 		flags |= FOLL_WRITE;
2514 	if (async)
2515 		flags |= FOLL_NOWAIT;
2516 
2517 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2518 	if (npages != 1)
2519 		return npages;
2520 
2521 	/* map read fault as writable if possible */
2522 	if (unlikely(!write_fault) && writable) {
2523 		struct page *wpage;
2524 
2525 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2526 			*writable = true;
2527 			put_page(page);
2528 			page = wpage;
2529 		}
2530 	}
2531 	*pfn = page_to_pfn(page);
2532 	return npages;
2533 }
2534 
2535 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2536 {
2537 	if (unlikely(!(vma->vm_flags & VM_READ)))
2538 		return false;
2539 
2540 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2541 		return false;
2542 
2543 	return true;
2544 }
2545 
2546 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2547 {
2548 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2549 
2550 	if (!page)
2551 		return 1;
2552 
2553 	return get_page_unless_zero(page);
2554 }
2555 
2556 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2557 			       unsigned long addr, bool write_fault,
2558 			       bool *writable, kvm_pfn_t *p_pfn)
2559 {
2560 	kvm_pfn_t pfn;
2561 	pte_t *ptep;
2562 	spinlock_t *ptl;
2563 	int r;
2564 
2565 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2566 	if (r) {
2567 		/*
2568 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2569 		 * not call the fault handler, so do it here.
2570 		 */
2571 		bool unlocked = false;
2572 		r = fixup_user_fault(current->mm, addr,
2573 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2574 				     &unlocked);
2575 		if (unlocked)
2576 			return -EAGAIN;
2577 		if (r)
2578 			return r;
2579 
2580 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2581 		if (r)
2582 			return r;
2583 	}
2584 
2585 	if (write_fault && !pte_write(*ptep)) {
2586 		pfn = KVM_PFN_ERR_RO_FAULT;
2587 		goto out;
2588 	}
2589 
2590 	if (writable)
2591 		*writable = pte_write(*ptep);
2592 	pfn = pte_pfn(*ptep);
2593 
2594 	/*
2595 	 * Get a reference here because callers of *hva_to_pfn* and
2596 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2597 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2598 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2599 	 * simply do nothing for reserved pfns.
2600 	 *
2601 	 * Whoever called remap_pfn_range is also going to call e.g.
2602 	 * unmap_mapping_range before the underlying pages are freed,
2603 	 * causing a call to our MMU notifier.
2604 	 *
2605 	 * Certain IO or PFNMAP mappings can be backed with valid
2606 	 * struct pages, but be allocated without refcounting e.g.,
2607 	 * tail pages of non-compound higher order allocations, which
2608 	 * would then underflow the refcount when the caller does the
2609 	 * required put_page. Don't allow those pages here.
2610 	 */
2611 	if (!kvm_try_get_pfn(pfn))
2612 		r = -EFAULT;
2613 
2614 out:
2615 	pte_unmap_unlock(ptep, ptl);
2616 	*p_pfn = pfn;
2617 
2618 	return r;
2619 }
2620 
2621 /*
2622  * Pin guest page in memory and return its pfn.
2623  * @addr: host virtual address which maps memory to the guest
2624  * @atomic: whether this function can sleep
2625  * @async: whether this function need to wait IO complete if the
2626  *         host page is not in the memory
2627  * @write_fault: whether we should get a writable host page
2628  * @writable: whether it allows to map a writable host page for !@write_fault
2629  *
2630  * The function will map a writable host page for these two cases:
2631  * 1): @write_fault = true
2632  * 2): @write_fault = false && @writable, @writable will tell the caller
2633  *     whether the mapping is writable.
2634  */
2635 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2636 		     bool write_fault, bool *writable)
2637 {
2638 	struct vm_area_struct *vma;
2639 	kvm_pfn_t pfn;
2640 	int npages, r;
2641 
2642 	/* we can do it either atomically or asynchronously, not both */
2643 	BUG_ON(atomic && async);
2644 
2645 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2646 		return pfn;
2647 
2648 	if (atomic)
2649 		return KVM_PFN_ERR_FAULT;
2650 
2651 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2652 	if (npages == 1)
2653 		return pfn;
2654 
2655 	mmap_read_lock(current->mm);
2656 	if (npages == -EHWPOISON ||
2657 	      (!async && check_user_page_hwpoison(addr))) {
2658 		pfn = KVM_PFN_ERR_HWPOISON;
2659 		goto exit;
2660 	}
2661 
2662 retry:
2663 	vma = vma_lookup(current->mm, addr);
2664 
2665 	if (vma == NULL)
2666 		pfn = KVM_PFN_ERR_FAULT;
2667 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2668 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2669 		if (r == -EAGAIN)
2670 			goto retry;
2671 		if (r < 0)
2672 			pfn = KVM_PFN_ERR_FAULT;
2673 	} else {
2674 		if (async && vma_is_valid(vma, write_fault))
2675 			*async = true;
2676 		pfn = KVM_PFN_ERR_FAULT;
2677 	}
2678 exit:
2679 	mmap_read_unlock(current->mm);
2680 	return pfn;
2681 }
2682 
2683 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2684 			       bool atomic, bool *async, bool write_fault,
2685 			       bool *writable, hva_t *hva)
2686 {
2687 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2688 
2689 	if (hva)
2690 		*hva = addr;
2691 
2692 	if (addr == KVM_HVA_ERR_RO_BAD) {
2693 		if (writable)
2694 			*writable = false;
2695 		return KVM_PFN_ERR_RO_FAULT;
2696 	}
2697 
2698 	if (kvm_is_error_hva(addr)) {
2699 		if (writable)
2700 			*writable = false;
2701 		return KVM_PFN_NOSLOT;
2702 	}
2703 
2704 	/* Do not map writable pfn in the readonly memslot. */
2705 	if (writable && memslot_is_readonly(slot)) {
2706 		*writable = false;
2707 		writable = NULL;
2708 	}
2709 
2710 	return hva_to_pfn(addr, atomic, async, write_fault,
2711 			  writable);
2712 }
2713 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2714 
2715 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2716 		      bool *writable)
2717 {
2718 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2719 				    write_fault, writable, NULL);
2720 }
2721 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2722 
2723 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2724 {
2725 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2726 }
2727 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2728 
2729 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2730 {
2731 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2732 }
2733 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2734 
2735 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2736 {
2737 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2738 }
2739 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2740 
2741 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2742 {
2743 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2744 }
2745 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2746 
2747 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2748 {
2749 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2750 }
2751 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2752 
2753 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2754 			    struct page **pages, int nr_pages)
2755 {
2756 	unsigned long addr;
2757 	gfn_t entry = 0;
2758 
2759 	addr = gfn_to_hva_many(slot, gfn, &entry);
2760 	if (kvm_is_error_hva(addr))
2761 		return -1;
2762 
2763 	if (entry < nr_pages)
2764 		return 0;
2765 
2766 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2767 }
2768 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2769 
2770 /*
2771  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2772  * backed by 'struct page'.  A valid example is if the backing memslot is
2773  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2774  * been elevated by gfn_to_pfn().
2775  */
2776 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2777 {
2778 	struct page *page;
2779 	kvm_pfn_t pfn;
2780 
2781 	pfn = gfn_to_pfn(kvm, gfn);
2782 
2783 	if (is_error_noslot_pfn(pfn))
2784 		return KVM_ERR_PTR_BAD_PAGE;
2785 
2786 	page = kvm_pfn_to_refcounted_page(pfn);
2787 	if (!page)
2788 		return KVM_ERR_PTR_BAD_PAGE;
2789 
2790 	return page;
2791 }
2792 EXPORT_SYMBOL_GPL(gfn_to_page);
2793 
2794 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2795 {
2796 	if (dirty)
2797 		kvm_release_pfn_dirty(pfn);
2798 	else
2799 		kvm_release_pfn_clean(pfn);
2800 }
2801 
2802 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2803 {
2804 	kvm_pfn_t pfn;
2805 	void *hva = NULL;
2806 	struct page *page = KVM_UNMAPPED_PAGE;
2807 
2808 	if (!map)
2809 		return -EINVAL;
2810 
2811 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2812 	if (is_error_noslot_pfn(pfn))
2813 		return -EINVAL;
2814 
2815 	if (pfn_valid(pfn)) {
2816 		page = pfn_to_page(pfn);
2817 		hva = kmap(page);
2818 #ifdef CONFIG_HAS_IOMEM
2819 	} else {
2820 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2821 #endif
2822 	}
2823 
2824 	if (!hva)
2825 		return -EFAULT;
2826 
2827 	map->page = page;
2828 	map->hva = hva;
2829 	map->pfn = pfn;
2830 	map->gfn = gfn;
2831 
2832 	return 0;
2833 }
2834 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2835 
2836 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2837 {
2838 	if (!map)
2839 		return;
2840 
2841 	if (!map->hva)
2842 		return;
2843 
2844 	if (map->page != KVM_UNMAPPED_PAGE)
2845 		kunmap(map->page);
2846 #ifdef CONFIG_HAS_IOMEM
2847 	else
2848 		memunmap(map->hva);
2849 #endif
2850 
2851 	if (dirty)
2852 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2853 
2854 	kvm_release_pfn(map->pfn, dirty);
2855 
2856 	map->hva = NULL;
2857 	map->page = NULL;
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2860 
2861 static bool kvm_is_ad_tracked_page(struct page *page)
2862 {
2863 	/*
2864 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2865 	 * touched (e.g. set dirty) except by its owner".
2866 	 */
2867 	return !PageReserved(page);
2868 }
2869 
2870 static void kvm_set_page_dirty(struct page *page)
2871 {
2872 	if (kvm_is_ad_tracked_page(page))
2873 		SetPageDirty(page);
2874 }
2875 
2876 static void kvm_set_page_accessed(struct page *page)
2877 {
2878 	if (kvm_is_ad_tracked_page(page))
2879 		mark_page_accessed(page);
2880 }
2881 
2882 void kvm_release_page_clean(struct page *page)
2883 {
2884 	WARN_ON(is_error_page(page));
2885 
2886 	kvm_set_page_accessed(page);
2887 	put_page(page);
2888 }
2889 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2890 
2891 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2892 {
2893 	struct page *page;
2894 
2895 	if (is_error_noslot_pfn(pfn))
2896 		return;
2897 
2898 	page = kvm_pfn_to_refcounted_page(pfn);
2899 	if (!page)
2900 		return;
2901 
2902 	kvm_release_page_clean(page);
2903 }
2904 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2905 
2906 void kvm_release_page_dirty(struct page *page)
2907 {
2908 	WARN_ON(is_error_page(page));
2909 
2910 	kvm_set_page_dirty(page);
2911 	kvm_release_page_clean(page);
2912 }
2913 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2914 
2915 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2916 {
2917 	struct page *page;
2918 
2919 	if (is_error_noslot_pfn(pfn))
2920 		return;
2921 
2922 	page = kvm_pfn_to_refcounted_page(pfn);
2923 	if (!page)
2924 		return;
2925 
2926 	kvm_release_page_dirty(page);
2927 }
2928 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2929 
2930 /*
2931  * Note, checking for an error/noslot pfn is the caller's responsibility when
2932  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2933  * "set" helpers are not to be used when the pfn might point at garbage.
2934  */
2935 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2936 {
2937 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2938 		return;
2939 
2940 	if (pfn_valid(pfn))
2941 		kvm_set_page_dirty(pfn_to_page(pfn));
2942 }
2943 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2944 
2945 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2946 {
2947 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2948 		return;
2949 
2950 	if (pfn_valid(pfn))
2951 		kvm_set_page_accessed(pfn_to_page(pfn));
2952 }
2953 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2954 
2955 static int next_segment(unsigned long len, int offset)
2956 {
2957 	if (len > PAGE_SIZE - offset)
2958 		return PAGE_SIZE - offset;
2959 	else
2960 		return len;
2961 }
2962 
2963 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2964 				 void *data, int offset, int len)
2965 {
2966 	int r;
2967 	unsigned long addr;
2968 
2969 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2970 	if (kvm_is_error_hva(addr))
2971 		return -EFAULT;
2972 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2973 	if (r)
2974 		return -EFAULT;
2975 	return 0;
2976 }
2977 
2978 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2979 			int len)
2980 {
2981 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2982 
2983 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2984 }
2985 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2986 
2987 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2988 			     int offset, int len)
2989 {
2990 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2991 
2992 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2993 }
2994 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2995 
2996 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2997 {
2998 	gfn_t gfn = gpa >> PAGE_SHIFT;
2999 	int seg;
3000 	int offset = offset_in_page(gpa);
3001 	int ret;
3002 
3003 	while ((seg = next_segment(len, offset)) != 0) {
3004 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3005 		if (ret < 0)
3006 			return ret;
3007 		offset = 0;
3008 		len -= seg;
3009 		data += seg;
3010 		++gfn;
3011 	}
3012 	return 0;
3013 }
3014 EXPORT_SYMBOL_GPL(kvm_read_guest);
3015 
3016 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3017 {
3018 	gfn_t gfn = gpa >> PAGE_SHIFT;
3019 	int seg;
3020 	int offset = offset_in_page(gpa);
3021 	int ret;
3022 
3023 	while ((seg = next_segment(len, offset)) != 0) {
3024 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3025 		if (ret < 0)
3026 			return ret;
3027 		offset = 0;
3028 		len -= seg;
3029 		data += seg;
3030 		++gfn;
3031 	}
3032 	return 0;
3033 }
3034 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3035 
3036 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3037 			           void *data, int offset, unsigned long len)
3038 {
3039 	int r;
3040 	unsigned long addr;
3041 
3042 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3043 	if (kvm_is_error_hva(addr))
3044 		return -EFAULT;
3045 	pagefault_disable();
3046 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3047 	pagefault_enable();
3048 	if (r)
3049 		return -EFAULT;
3050 	return 0;
3051 }
3052 
3053 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3054 			       void *data, unsigned long len)
3055 {
3056 	gfn_t gfn = gpa >> PAGE_SHIFT;
3057 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3058 	int offset = offset_in_page(gpa);
3059 
3060 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3061 }
3062 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3063 
3064 static int __kvm_write_guest_page(struct kvm *kvm,
3065 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3066 			          const void *data, int offset, int len)
3067 {
3068 	int r;
3069 	unsigned long addr;
3070 
3071 	addr = gfn_to_hva_memslot(memslot, gfn);
3072 	if (kvm_is_error_hva(addr))
3073 		return -EFAULT;
3074 	r = __copy_to_user((void __user *)addr + offset, data, len);
3075 	if (r)
3076 		return -EFAULT;
3077 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3078 	return 0;
3079 }
3080 
3081 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3082 			 const void *data, int offset, int len)
3083 {
3084 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3085 
3086 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3087 }
3088 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3089 
3090 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3091 			      const void *data, int offset, int len)
3092 {
3093 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3094 
3095 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3096 }
3097 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3098 
3099 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3100 		    unsigned long len)
3101 {
3102 	gfn_t gfn = gpa >> PAGE_SHIFT;
3103 	int seg;
3104 	int offset = offset_in_page(gpa);
3105 	int ret;
3106 
3107 	while ((seg = next_segment(len, offset)) != 0) {
3108 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3109 		if (ret < 0)
3110 			return ret;
3111 		offset = 0;
3112 		len -= seg;
3113 		data += seg;
3114 		++gfn;
3115 	}
3116 	return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(kvm_write_guest);
3119 
3120 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3121 		         unsigned long len)
3122 {
3123 	gfn_t gfn = gpa >> PAGE_SHIFT;
3124 	int seg;
3125 	int offset = offset_in_page(gpa);
3126 	int ret;
3127 
3128 	while ((seg = next_segment(len, offset)) != 0) {
3129 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3130 		if (ret < 0)
3131 			return ret;
3132 		offset = 0;
3133 		len -= seg;
3134 		data += seg;
3135 		++gfn;
3136 	}
3137 	return 0;
3138 }
3139 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3140 
3141 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3142 				       struct gfn_to_hva_cache *ghc,
3143 				       gpa_t gpa, unsigned long len)
3144 {
3145 	int offset = offset_in_page(gpa);
3146 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3147 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3148 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3149 	gfn_t nr_pages_avail;
3150 
3151 	/* Update ghc->generation before performing any error checks. */
3152 	ghc->generation = slots->generation;
3153 
3154 	if (start_gfn > end_gfn) {
3155 		ghc->hva = KVM_HVA_ERR_BAD;
3156 		return -EINVAL;
3157 	}
3158 
3159 	/*
3160 	 * If the requested region crosses two memslots, we still
3161 	 * verify that the entire region is valid here.
3162 	 */
3163 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3164 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3165 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3166 					   &nr_pages_avail);
3167 		if (kvm_is_error_hva(ghc->hva))
3168 			return -EFAULT;
3169 	}
3170 
3171 	/* Use the slow path for cross page reads and writes. */
3172 	if (nr_pages_needed == 1)
3173 		ghc->hva += offset;
3174 	else
3175 		ghc->memslot = NULL;
3176 
3177 	ghc->gpa = gpa;
3178 	ghc->len = len;
3179 	return 0;
3180 }
3181 
3182 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3183 			      gpa_t gpa, unsigned long len)
3184 {
3185 	struct kvm_memslots *slots = kvm_memslots(kvm);
3186 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3187 }
3188 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3189 
3190 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3191 				  void *data, unsigned int offset,
3192 				  unsigned long len)
3193 {
3194 	struct kvm_memslots *slots = kvm_memslots(kvm);
3195 	int r;
3196 	gpa_t gpa = ghc->gpa + offset;
3197 
3198 	if (WARN_ON_ONCE(len + offset > ghc->len))
3199 		return -EINVAL;
3200 
3201 	if (slots->generation != ghc->generation) {
3202 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3203 			return -EFAULT;
3204 	}
3205 
3206 	if (kvm_is_error_hva(ghc->hva))
3207 		return -EFAULT;
3208 
3209 	if (unlikely(!ghc->memslot))
3210 		return kvm_write_guest(kvm, gpa, data, len);
3211 
3212 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3213 	if (r)
3214 		return -EFAULT;
3215 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3216 
3217 	return 0;
3218 }
3219 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3220 
3221 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3222 			   void *data, unsigned long len)
3223 {
3224 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3225 }
3226 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3227 
3228 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3229 				 void *data, unsigned int offset,
3230 				 unsigned long len)
3231 {
3232 	struct kvm_memslots *slots = kvm_memslots(kvm);
3233 	int r;
3234 	gpa_t gpa = ghc->gpa + offset;
3235 
3236 	if (WARN_ON_ONCE(len + offset > ghc->len))
3237 		return -EINVAL;
3238 
3239 	if (slots->generation != ghc->generation) {
3240 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3241 			return -EFAULT;
3242 	}
3243 
3244 	if (kvm_is_error_hva(ghc->hva))
3245 		return -EFAULT;
3246 
3247 	if (unlikely(!ghc->memslot))
3248 		return kvm_read_guest(kvm, gpa, data, len);
3249 
3250 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3251 	if (r)
3252 		return -EFAULT;
3253 
3254 	return 0;
3255 }
3256 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3257 
3258 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3259 			  void *data, unsigned long len)
3260 {
3261 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3262 }
3263 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3264 
3265 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3266 {
3267 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3268 	gfn_t gfn = gpa >> PAGE_SHIFT;
3269 	int seg;
3270 	int offset = offset_in_page(gpa);
3271 	int ret;
3272 
3273 	while ((seg = next_segment(len, offset)) != 0) {
3274 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3275 		if (ret < 0)
3276 			return ret;
3277 		offset = 0;
3278 		len -= seg;
3279 		++gfn;
3280 	}
3281 	return 0;
3282 }
3283 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3284 
3285 void mark_page_dirty_in_slot(struct kvm *kvm,
3286 			     const struct kvm_memory_slot *memslot,
3287 		 	     gfn_t gfn)
3288 {
3289 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3290 
3291 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3292 	if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3293 		return;
3294 #endif
3295 
3296 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3297 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3298 		u32 slot = (memslot->as_id << 16) | memslot->id;
3299 
3300 		if (kvm->dirty_ring_size)
3301 			kvm_dirty_ring_push(&vcpu->dirty_ring,
3302 					    slot, rel_gfn);
3303 		else
3304 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3305 	}
3306 }
3307 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3308 
3309 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3310 {
3311 	struct kvm_memory_slot *memslot;
3312 
3313 	memslot = gfn_to_memslot(kvm, gfn);
3314 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3315 }
3316 EXPORT_SYMBOL_GPL(mark_page_dirty);
3317 
3318 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3319 {
3320 	struct kvm_memory_slot *memslot;
3321 
3322 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3323 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3324 }
3325 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3326 
3327 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3328 {
3329 	if (!vcpu->sigset_active)
3330 		return;
3331 
3332 	/*
3333 	 * This does a lockless modification of ->real_blocked, which is fine
3334 	 * because, only current can change ->real_blocked and all readers of
3335 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3336 	 * of ->blocked.
3337 	 */
3338 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3339 }
3340 
3341 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3342 {
3343 	if (!vcpu->sigset_active)
3344 		return;
3345 
3346 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3347 	sigemptyset(&current->real_blocked);
3348 }
3349 
3350 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3351 {
3352 	unsigned int old, val, grow, grow_start;
3353 
3354 	old = val = vcpu->halt_poll_ns;
3355 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3356 	grow = READ_ONCE(halt_poll_ns_grow);
3357 	if (!grow)
3358 		goto out;
3359 
3360 	val *= grow;
3361 	if (val < grow_start)
3362 		val = grow_start;
3363 
3364 	if (val > vcpu->kvm->max_halt_poll_ns)
3365 		val = vcpu->kvm->max_halt_poll_ns;
3366 
3367 	vcpu->halt_poll_ns = val;
3368 out:
3369 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3370 }
3371 
3372 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3373 {
3374 	unsigned int old, val, shrink, grow_start;
3375 
3376 	old = val = vcpu->halt_poll_ns;
3377 	shrink = READ_ONCE(halt_poll_ns_shrink);
3378 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3379 	if (shrink == 0)
3380 		val = 0;
3381 	else
3382 		val /= shrink;
3383 
3384 	if (val < grow_start)
3385 		val = 0;
3386 
3387 	vcpu->halt_poll_ns = val;
3388 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3389 }
3390 
3391 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3392 {
3393 	int ret = -EINTR;
3394 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3395 
3396 	if (kvm_arch_vcpu_runnable(vcpu)) {
3397 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3398 		goto out;
3399 	}
3400 	if (kvm_cpu_has_pending_timer(vcpu))
3401 		goto out;
3402 	if (signal_pending(current))
3403 		goto out;
3404 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3405 		goto out;
3406 
3407 	ret = 0;
3408 out:
3409 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3410 	return ret;
3411 }
3412 
3413 /*
3414  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3415  * pending.  This is mostly used when halting a vCPU, but may also be used
3416  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3417  */
3418 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3419 {
3420 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3421 	bool waited = false;
3422 
3423 	vcpu->stat.generic.blocking = 1;
3424 
3425 	preempt_disable();
3426 	kvm_arch_vcpu_blocking(vcpu);
3427 	prepare_to_rcuwait(wait);
3428 	preempt_enable();
3429 
3430 	for (;;) {
3431 		set_current_state(TASK_INTERRUPTIBLE);
3432 
3433 		if (kvm_vcpu_check_block(vcpu) < 0)
3434 			break;
3435 
3436 		waited = true;
3437 		schedule();
3438 	}
3439 
3440 	preempt_disable();
3441 	finish_rcuwait(wait);
3442 	kvm_arch_vcpu_unblocking(vcpu);
3443 	preempt_enable();
3444 
3445 	vcpu->stat.generic.blocking = 0;
3446 
3447 	return waited;
3448 }
3449 
3450 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3451 					  ktime_t end, bool success)
3452 {
3453 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3454 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3455 
3456 	++vcpu->stat.generic.halt_attempted_poll;
3457 
3458 	if (success) {
3459 		++vcpu->stat.generic.halt_successful_poll;
3460 
3461 		if (!vcpu_valid_wakeup(vcpu))
3462 			++vcpu->stat.generic.halt_poll_invalid;
3463 
3464 		stats->halt_poll_success_ns += poll_ns;
3465 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3466 	} else {
3467 		stats->halt_poll_fail_ns += poll_ns;
3468 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3469 	}
3470 }
3471 
3472 /*
3473  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3474  * polling is enabled, busy wait for a short time before blocking to avoid the
3475  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3476  * is halted.
3477  */
3478 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3479 {
3480 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3481 	bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3482 	ktime_t start, cur, poll_end;
3483 	bool waited = false;
3484 	u64 halt_ns;
3485 
3486 	start = cur = poll_end = ktime_get();
3487 	if (do_halt_poll) {
3488 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3489 
3490 		do {
3491 			/*
3492 			 * This sets KVM_REQ_UNHALT if an interrupt
3493 			 * arrives.
3494 			 */
3495 			if (kvm_vcpu_check_block(vcpu) < 0)
3496 				goto out;
3497 			cpu_relax();
3498 			poll_end = cur = ktime_get();
3499 		} while (kvm_vcpu_can_poll(cur, stop));
3500 	}
3501 
3502 	waited = kvm_vcpu_block(vcpu);
3503 
3504 	cur = ktime_get();
3505 	if (waited) {
3506 		vcpu->stat.generic.halt_wait_ns +=
3507 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3508 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3509 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3510 	}
3511 out:
3512 	/* The total time the vCPU was "halted", including polling time. */
3513 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3514 
3515 	/*
3516 	 * Note, halt-polling is considered successful so long as the vCPU was
3517 	 * never actually scheduled out, i.e. even if the wake event arrived
3518 	 * after of the halt-polling loop itself, but before the full wait.
3519 	 */
3520 	if (do_halt_poll)
3521 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3522 
3523 	if (halt_poll_allowed) {
3524 		if (!vcpu_valid_wakeup(vcpu)) {
3525 			shrink_halt_poll_ns(vcpu);
3526 		} else if (vcpu->kvm->max_halt_poll_ns) {
3527 			if (halt_ns <= vcpu->halt_poll_ns)
3528 				;
3529 			/* we had a long block, shrink polling */
3530 			else if (vcpu->halt_poll_ns &&
3531 				 halt_ns > vcpu->kvm->max_halt_poll_ns)
3532 				shrink_halt_poll_ns(vcpu);
3533 			/* we had a short halt and our poll time is too small */
3534 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3535 				 halt_ns < vcpu->kvm->max_halt_poll_ns)
3536 				grow_halt_poll_ns(vcpu);
3537 		} else {
3538 			vcpu->halt_poll_ns = 0;
3539 		}
3540 	}
3541 
3542 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3543 }
3544 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3545 
3546 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3547 {
3548 	if (__kvm_vcpu_wake_up(vcpu)) {
3549 		WRITE_ONCE(vcpu->ready, true);
3550 		++vcpu->stat.generic.halt_wakeup;
3551 		return true;
3552 	}
3553 
3554 	return false;
3555 }
3556 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3557 
3558 #ifndef CONFIG_S390
3559 /*
3560  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3561  */
3562 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3563 {
3564 	int me, cpu;
3565 
3566 	if (kvm_vcpu_wake_up(vcpu))
3567 		return;
3568 
3569 	me = get_cpu();
3570 	/*
3571 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3572 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3573 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3574 	 * within the vCPU thread itself.
3575 	 */
3576 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3577 		if (vcpu->mode == IN_GUEST_MODE)
3578 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3579 		goto out;
3580 	}
3581 
3582 	/*
3583 	 * Note, the vCPU could get migrated to a different pCPU at any point
3584 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3585 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3586 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3587 	 * vCPU also requires it to leave IN_GUEST_MODE.
3588 	 */
3589 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3590 		cpu = READ_ONCE(vcpu->cpu);
3591 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3592 			smp_send_reschedule(cpu);
3593 	}
3594 out:
3595 	put_cpu();
3596 }
3597 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3598 #endif /* !CONFIG_S390 */
3599 
3600 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3601 {
3602 	struct pid *pid;
3603 	struct task_struct *task = NULL;
3604 	int ret = 0;
3605 
3606 	rcu_read_lock();
3607 	pid = rcu_dereference(target->pid);
3608 	if (pid)
3609 		task = get_pid_task(pid, PIDTYPE_PID);
3610 	rcu_read_unlock();
3611 	if (!task)
3612 		return ret;
3613 	ret = yield_to(task, 1);
3614 	put_task_struct(task);
3615 
3616 	return ret;
3617 }
3618 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3619 
3620 /*
3621  * Helper that checks whether a VCPU is eligible for directed yield.
3622  * Most eligible candidate to yield is decided by following heuristics:
3623  *
3624  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3625  *  (preempted lock holder), indicated by @in_spin_loop.
3626  *  Set at the beginning and cleared at the end of interception/PLE handler.
3627  *
3628  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3629  *  chance last time (mostly it has become eligible now since we have probably
3630  *  yielded to lockholder in last iteration. This is done by toggling
3631  *  @dy_eligible each time a VCPU checked for eligibility.)
3632  *
3633  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3634  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3635  *  burning. Giving priority for a potential lock-holder increases lock
3636  *  progress.
3637  *
3638  *  Since algorithm is based on heuristics, accessing another VCPU data without
3639  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3640  *  and continue with next VCPU and so on.
3641  */
3642 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3643 {
3644 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3645 	bool eligible;
3646 
3647 	eligible = !vcpu->spin_loop.in_spin_loop ||
3648 		    vcpu->spin_loop.dy_eligible;
3649 
3650 	if (vcpu->spin_loop.in_spin_loop)
3651 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3652 
3653 	return eligible;
3654 #else
3655 	return true;
3656 #endif
3657 }
3658 
3659 /*
3660  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3661  * a vcpu_load/vcpu_put pair.  However, for most architectures
3662  * kvm_arch_vcpu_runnable does not require vcpu_load.
3663  */
3664 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3665 {
3666 	return kvm_arch_vcpu_runnable(vcpu);
3667 }
3668 
3669 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3670 {
3671 	if (kvm_arch_dy_runnable(vcpu))
3672 		return true;
3673 
3674 #ifdef CONFIG_KVM_ASYNC_PF
3675 	if (!list_empty_careful(&vcpu->async_pf.done))
3676 		return true;
3677 #endif
3678 
3679 	return false;
3680 }
3681 
3682 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3683 {
3684 	return false;
3685 }
3686 
3687 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3688 {
3689 	struct kvm *kvm = me->kvm;
3690 	struct kvm_vcpu *vcpu;
3691 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3692 	unsigned long i;
3693 	int yielded = 0;
3694 	int try = 3;
3695 	int pass;
3696 
3697 	kvm_vcpu_set_in_spin_loop(me, true);
3698 	/*
3699 	 * We boost the priority of a VCPU that is runnable but not
3700 	 * currently running, because it got preempted by something
3701 	 * else and called schedule in __vcpu_run.  Hopefully that
3702 	 * VCPU is holding the lock that we need and will release it.
3703 	 * We approximate round-robin by starting at the last boosted VCPU.
3704 	 */
3705 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3706 		kvm_for_each_vcpu(i, vcpu, kvm) {
3707 			if (!pass && i <= last_boosted_vcpu) {
3708 				i = last_boosted_vcpu;
3709 				continue;
3710 			} else if (pass && i > last_boosted_vcpu)
3711 				break;
3712 			if (!READ_ONCE(vcpu->ready))
3713 				continue;
3714 			if (vcpu == me)
3715 				continue;
3716 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3717 				continue;
3718 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3719 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3720 			    !kvm_arch_vcpu_in_kernel(vcpu))
3721 				continue;
3722 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3723 				continue;
3724 
3725 			yielded = kvm_vcpu_yield_to(vcpu);
3726 			if (yielded > 0) {
3727 				kvm->last_boosted_vcpu = i;
3728 				break;
3729 			} else if (yielded < 0) {
3730 				try--;
3731 				if (!try)
3732 					break;
3733 			}
3734 		}
3735 	}
3736 	kvm_vcpu_set_in_spin_loop(me, false);
3737 
3738 	/* Ensure vcpu is not eligible during next spinloop */
3739 	kvm_vcpu_set_dy_eligible(me, false);
3740 }
3741 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3742 
3743 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3744 {
3745 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3746 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3747 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3748 	     kvm->dirty_ring_size / PAGE_SIZE);
3749 #else
3750 	return false;
3751 #endif
3752 }
3753 
3754 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3755 {
3756 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3757 	struct page *page;
3758 
3759 	if (vmf->pgoff == 0)
3760 		page = virt_to_page(vcpu->run);
3761 #ifdef CONFIG_X86
3762 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3763 		page = virt_to_page(vcpu->arch.pio_data);
3764 #endif
3765 #ifdef CONFIG_KVM_MMIO
3766 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3767 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3768 #endif
3769 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3770 		page = kvm_dirty_ring_get_page(
3771 		    &vcpu->dirty_ring,
3772 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3773 	else
3774 		return kvm_arch_vcpu_fault(vcpu, vmf);
3775 	get_page(page);
3776 	vmf->page = page;
3777 	return 0;
3778 }
3779 
3780 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3781 	.fault = kvm_vcpu_fault,
3782 };
3783 
3784 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3785 {
3786 	struct kvm_vcpu *vcpu = file->private_data;
3787 	unsigned long pages = vma_pages(vma);
3788 
3789 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3790 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3791 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3792 		return -EINVAL;
3793 
3794 	vma->vm_ops = &kvm_vcpu_vm_ops;
3795 	return 0;
3796 }
3797 
3798 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3799 {
3800 	struct kvm_vcpu *vcpu = filp->private_data;
3801 
3802 	kvm_put_kvm(vcpu->kvm);
3803 	return 0;
3804 }
3805 
3806 static const struct file_operations kvm_vcpu_fops = {
3807 	.release        = kvm_vcpu_release,
3808 	.unlocked_ioctl = kvm_vcpu_ioctl,
3809 	.mmap           = kvm_vcpu_mmap,
3810 	.llseek		= noop_llseek,
3811 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3812 };
3813 
3814 /*
3815  * Allocates an inode for the vcpu.
3816  */
3817 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3818 {
3819 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3820 
3821 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3822 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3823 }
3824 
3825 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3826 static int vcpu_get_pid(void *data, u64 *val)
3827 {
3828 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3829 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3830 	return 0;
3831 }
3832 
3833 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3834 
3835 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3836 {
3837 	struct dentry *debugfs_dentry;
3838 	char dir_name[ITOA_MAX_LEN * 2];
3839 
3840 	if (!debugfs_initialized())
3841 		return;
3842 
3843 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3844 	debugfs_dentry = debugfs_create_dir(dir_name,
3845 					    vcpu->kvm->debugfs_dentry);
3846 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3847 			    &vcpu_get_pid_fops);
3848 
3849 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3850 }
3851 #endif
3852 
3853 /*
3854  * Creates some virtual cpus.  Good luck creating more than one.
3855  */
3856 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3857 {
3858 	int r;
3859 	struct kvm_vcpu *vcpu;
3860 	struct page *page;
3861 
3862 	if (id >= KVM_MAX_VCPU_IDS)
3863 		return -EINVAL;
3864 
3865 	mutex_lock(&kvm->lock);
3866 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3867 		mutex_unlock(&kvm->lock);
3868 		return -EINVAL;
3869 	}
3870 
3871 	r = kvm_arch_vcpu_precreate(kvm, id);
3872 	if (r) {
3873 		mutex_unlock(&kvm->lock);
3874 		return r;
3875 	}
3876 
3877 	kvm->created_vcpus++;
3878 	mutex_unlock(&kvm->lock);
3879 
3880 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3881 	if (!vcpu) {
3882 		r = -ENOMEM;
3883 		goto vcpu_decrement;
3884 	}
3885 
3886 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3887 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3888 	if (!page) {
3889 		r = -ENOMEM;
3890 		goto vcpu_free;
3891 	}
3892 	vcpu->run = page_address(page);
3893 
3894 	kvm_vcpu_init(vcpu, kvm, id);
3895 
3896 	r = kvm_arch_vcpu_create(vcpu);
3897 	if (r)
3898 		goto vcpu_free_run_page;
3899 
3900 	if (kvm->dirty_ring_size) {
3901 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3902 					 id, kvm->dirty_ring_size);
3903 		if (r)
3904 			goto arch_vcpu_destroy;
3905 	}
3906 
3907 	mutex_lock(&kvm->lock);
3908 	if (kvm_get_vcpu_by_id(kvm, id)) {
3909 		r = -EEXIST;
3910 		goto unlock_vcpu_destroy;
3911 	}
3912 
3913 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3914 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3915 	BUG_ON(r == -EBUSY);
3916 	if (r)
3917 		goto unlock_vcpu_destroy;
3918 
3919 	/* Fill the stats id string for the vcpu */
3920 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3921 		 task_pid_nr(current), id);
3922 
3923 	/* Now it's all set up, let userspace reach it */
3924 	kvm_get_kvm(kvm);
3925 	r = create_vcpu_fd(vcpu);
3926 	if (r < 0) {
3927 		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3928 		kvm_put_kvm_no_destroy(kvm);
3929 		goto unlock_vcpu_destroy;
3930 	}
3931 
3932 	/*
3933 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3934 	 * pointer before kvm->online_vcpu's incremented value.
3935 	 */
3936 	smp_wmb();
3937 	atomic_inc(&kvm->online_vcpus);
3938 
3939 	mutex_unlock(&kvm->lock);
3940 	kvm_arch_vcpu_postcreate(vcpu);
3941 	kvm_create_vcpu_debugfs(vcpu);
3942 	return r;
3943 
3944 unlock_vcpu_destroy:
3945 	mutex_unlock(&kvm->lock);
3946 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3947 arch_vcpu_destroy:
3948 	kvm_arch_vcpu_destroy(vcpu);
3949 vcpu_free_run_page:
3950 	free_page((unsigned long)vcpu->run);
3951 vcpu_free:
3952 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3953 vcpu_decrement:
3954 	mutex_lock(&kvm->lock);
3955 	kvm->created_vcpus--;
3956 	mutex_unlock(&kvm->lock);
3957 	return r;
3958 }
3959 
3960 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3961 {
3962 	if (sigset) {
3963 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3964 		vcpu->sigset_active = 1;
3965 		vcpu->sigset = *sigset;
3966 	} else
3967 		vcpu->sigset_active = 0;
3968 	return 0;
3969 }
3970 
3971 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3972 			      size_t size, loff_t *offset)
3973 {
3974 	struct kvm_vcpu *vcpu = file->private_data;
3975 
3976 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3977 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3978 			sizeof(vcpu->stat), user_buffer, size, offset);
3979 }
3980 
3981 static const struct file_operations kvm_vcpu_stats_fops = {
3982 	.read = kvm_vcpu_stats_read,
3983 	.llseek = noop_llseek,
3984 };
3985 
3986 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3987 {
3988 	int fd;
3989 	struct file *file;
3990 	char name[15 + ITOA_MAX_LEN + 1];
3991 
3992 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3993 
3994 	fd = get_unused_fd_flags(O_CLOEXEC);
3995 	if (fd < 0)
3996 		return fd;
3997 
3998 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3999 	if (IS_ERR(file)) {
4000 		put_unused_fd(fd);
4001 		return PTR_ERR(file);
4002 	}
4003 	file->f_mode |= FMODE_PREAD;
4004 	fd_install(fd, file);
4005 
4006 	return fd;
4007 }
4008 
4009 static long kvm_vcpu_ioctl(struct file *filp,
4010 			   unsigned int ioctl, unsigned long arg)
4011 {
4012 	struct kvm_vcpu *vcpu = filp->private_data;
4013 	void __user *argp = (void __user *)arg;
4014 	int r;
4015 	struct kvm_fpu *fpu = NULL;
4016 	struct kvm_sregs *kvm_sregs = NULL;
4017 
4018 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4019 		return -EIO;
4020 
4021 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4022 		return -EINVAL;
4023 
4024 	/*
4025 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4026 	 * execution; mutex_lock() would break them.
4027 	 */
4028 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4029 	if (r != -ENOIOCTLCMD)
4030 		return r;
4031 
4032 	if (mutex_lock_killable(&vcpu->mutex))
4033 		return -EINTR;
4034 	switch (ioctl) {
4035 	case KVM_RUN: {
4036 		struct pid *oldpid;
4037 		r = -EINVAL;
4038 		if (arg)
4039 			goto out;
4040 		oldpid = rcu_access_pointer(vcpu->pid);
4041 		if (unlikely(oldpid != task_pid(current))) {
4042 			/* The thread running this VCPU changed. */
4043 			struct pid *newpid;
4044 
4045 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4046 			if (r)
4047 				break;
4048 
4049 			newpid = get_task_pid(current, PIDTYPE_PID);
4050 			rcu_assign_pointer(vcpu->pid, newpid);
4051 			if (oldpid)
4052 				synchronize_rcu();
4053 			put_pid(oldpid);
4054 		}
4055 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4056 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4057 		break;
4058 	}
4059 	case KVM_GET_REGS: {
4060 		struct kvm_regs *kvm_regs;
4061 
4062 		r = -ENOMEM;
4063 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4064 		if (!kvm_regs)
4065 			goto out;
4066 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4067 		if (r)
4068 			goto out_free1;
4069 		r = -EFAULT;
4070 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4071 			goto out_free1;
4072 		r = 0;
4073 out_free1:
4074 		kfree(kvm_regs);
4075 		break;
4076 	}
4077 	case KVM_SET_REGS: {
4078 		struct kvm_regs *kvm_regs;
4079 
4080 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4081 		if (IS_ERR(kvm_regs)) {
4082 			r = PTR_ERR(kvm_regs);
4083 			goto out;
4084 		}
4085 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4086 		kfree(kvm_regs);
4087 		break;
4088 	}
4089 	case KVM_GET_SREGS: {
4090 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4091 				    GFP_KERNEL_ACCOUNT);
4092 		r = -ENOMEM;
4093 		if (!kvm_sregs)
4094 			goto out;
4095 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4096 		if (r)
4097 			goto out;
4098 		r = -EFAULT;
4099 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4100 			goto out;
4101 		r = 0;
4102 		break;
4103 	}
4104 	case KVM_SET_SREGS: {
4105 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4106 		if (IS_ERR(kvm_sregs)) {
4107 			r = PTR_ERR(kvm_sregs);
4108 			kvm_sregs = NULL;
4109 			goto out;
4110 		}
4111 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4112 		break;
4113 	}
4114 	case KVM_GET_MP_STATE: {
4115 		struct kvm_mp_state mp_state;
4116 
4117 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4118 		if (r)
4119 			goto out;
4120 		r = -EFAULT;
4121 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4122 			goto out;
4123 		r = 0;
4124 		break;
4125 	}
4126 	case KVM_SET_MP_STATE: {
4127 		struct kvm_mp_state mp_state;
4128 
4129 		r = -EFAULT;
4130 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4131 			goto out;
4132 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4133 		break;
4134 	}
4135 	case KVM_TRANSLATE: {
4136 		struct kvm_translation tr;
4137 
4138 		r = -EFAULT;
4139 		if (copy_from_user(&tr, argp, sizeof(tr)))
4140 			goto out;
4141 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4142 		if (r)
4143 			goto out;
4144 		r = -EFAULT;
4145 		if (copy_to_user(argp, &tr, sizeof(tr)))
4146 			goto out;
4147 		r = 0;
4148 		break;
4149 	}
4150 	case KVM_SET_GUEST_DEBUG: {
4151 		struct kvm_guest_debug dbg;
4152 
4153 		r = -EFAULT;
4154 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4155 			goto out;
4156 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4157 		break;
4158 	}
4159 	case KVM_SET_SIGNAL_MASK: {
4160 		struct kvm_signal_mask __user *sigmask_arg = argp;
4161 		struct kvm_signal_mask kvm_sigmask;
4162 		sigset_t sigset, *p;
4163 
4164 		p = NULL;
4165 		if (argp) {
4166 			r = -EFAULT;
4167 			if (copy_from_user(&kvm_sigmask, argp,
4168 					   sizeof(kvm_sigmask)))
4169 				goto out;
4170 			r = -EINVAL;
4171 			if (kvm_sigmask.len != sizeof(sigset))
4172 				goto out;
4173 			r = -EFAULT;
4174 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4175 					   sizeof(sigset)))
4176 				goto out;
4177 			p = &sigset;
4178 		}
4179 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4180 		break;
4181 	}
4182 	case KVM_GET_FPU: {
4183 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4184 		r = -ENOMEM;
4185 		if (!fpu)
4186 			goto out;
4187 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4188 		if (r)
4189 			goto out;
4190 		r = -EFAULT;
4191 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4192 			goto out;
4193 		r = 0;
4194 		break;
4195 	}
4196 	case KVM_SET_FPU: {
4197 		fpu = memdup_user(argp, sizeof(*fpu));
4198 		if (IS_ERR(fpu)) {
4199 			r = PTR_ERR(fpu);
4200 			fpu = NULL;
4201 			goto out;
4202 		}
4203 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4204 		break;
4205 	}
4206 	case KVM_GET_STATS_FD: {
4207 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4208 		break;
4209 	}
4210 	default:
4211 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4212 	}
4213 out:
4214 	mutex_unlock(&vcpu->mutex);
4215 	kfree(fpu);
4216 	kfree(kvm_sregs);
4217 	return r;
4218 }
4219 
4220 #ifdef CONFIG_KVM_COMPAT
4221 static long kvm_vcpu_compat_ioctl(struct file *filp,
4222 				  unsigned int ioctl, unsigned long arg)
4223 {
4224 	struct kvm_vcpu *vcpu = filp->private_data;
4225 	void __user *argp = compat_ptr(arg);
4226 	int r;
4227 
4228 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4229 		return -EIO;
4230 
4231 	switch (ioctl) {
4232 	case KVM_SET_SIGNAL_MASK: {
4233 		struct kvm_signal_mask __user *sigmask_arg = argp;
4234 		struct kvm_signal_mask kvm_sigmask;
4235 		sigset_t sigset;
4236 
4237 		if (argp) {
4238 			r = -EFAULT;
4239 			if (copy_from_user(&kvm_sigmask, argp,
4240 					   sizeof(kvm_sigmask)))
4241 				goto out;
4242 			r = -EINVAL;
4243 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4244 				goto out;
4245 			r = -EFAULT;
4246 			if (get_compat_sigset(&sigset,
4247 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4248 				goto out;
4249 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4250 		} else
4251 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4252 		break;
4253 	}
4254 	default:
4255 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4256 	}
4257 
4258 out:
4259 	return r;
4260 }
4261 #endif
4262 
4263 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4264 {
4265 	struct kvm_device *dev = filp->private_data;
4266 
4267 	if (dev->ops->mmap)
4268 		return dev->ops->mmap(dev, vma);
4269 
4270 	return -ENODEV;
4271 }
4272 
4273 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4274 				 int (*accessor)(struct kvm_device *dev,
4275 						 struct kvm_device_attr *attr),
4276 				 unsigned long arg)
4277 {
4278 	struct kvm_device_attr attr;
4279 
4280 	if (!accessor)
4281 		return -EPERM;
4282 
4283 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4284 		return -EFAULT;
4285 
4286 	return accessor(dev, &attr);
4287 }
4288 
4289 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4290 			     unsigned long arg)
4291 {
4292 	struct kvm_device *dev = filp->private_data;
4293 
4294 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4295 		return -EIO;
4296 
4297 	switch (ioctl) {
4298 	case KVM_SET_DEVICE_ATTR:
4299 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4300 	case KVM_GET_DEVICE_ATTR:
4301 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4302 	case KVM_HAS_DEVICE_ATTR:
4303 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4304 	default:
4305 		if (dev->ops->ioctl)
4306 			return dev->ops->ioctl(dev, ioctl, arg);
4307 
4308 		return -ENOTTY;
4309 	}
4310 }
4311 
4312 static int kvm_device_release(struct inode *inode, struct file *filp)
4313 {
4314 	struct kvm_device *dev = filp->private_data;
4315 	struct kvm *kvm = dev->kvm;
4316 
4317 	if (dev->ops->release) {
4318 		mutex_lock(&kvm->lock);
4319 		list_del(&dev->vm_node);
4320 		dev->ops->release(dev);
4321 		mutex_unlock(&kvm->lock);
4322 	}
4323 
4324 	kvm_put_kvm(kvm);
4325 	return 0;
4326 }
4327 
4328 static const struct file_operations kvm_device_fops = {
4329 	.unlocked_ioctl = kvm_device_ioctl,
4330 	.release = kvm_device_release,
4331 	KVM_COMPAT(kvm_device_ioctl),
4332 	.mmap = kvm_device_mmap,
4333 };
4334 
4335 struct kvm_device *kvm_device_from_filp(struct file *filp)
4336 {
4337 	if (filp->f_op != &kvm_device_fops)
4338 		return NULL;
4339 
4340 	return filp->private_data;
4341 }
4342 
4343 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4344 #ifdef CONFIG_KVM_MPIC
4345 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4346 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4347 #endif
4348 };
4349 
4350 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4351 {
4352 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4353 		return -ENOSPC;
4354 
4355 	if (kvm_device_ops_table[type] != NULL)
4356 		return -EEXIST;
4357 
4358 	kvm_device_ops_table[type] = ops;
4359 	return 0;
4360 }
4361 
4362 void kvm_unregister_device_ops(u32 type)
4363 {
4364 	if (kvm_device_ops_table[type] != NULL)
4365 		kvm_device_ops_table[type] = NULL;
4366 }
4367 
4368 static int kvm_ioctl_create_device(struct kvm *kvm,
4369 				   struct kvm_create_device *cd)
4370 {
4371 	const struct kvm_device_ops *ops = NULL;
4372 	struct kvm_device *dev;
4373 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4374 	int type;
4375 	int ret;
4376 
4377 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4378 		return -ENODEV;
4379 
4380 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4381 	ops = kvm_device_ops_table[type];
4382 	if (ops == NULL)
4383 		return -ENODEV;
4384 
4385 	if (test)
4386 		return 0;
4387 
4388 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4389 	if (!dev)
4390 		return -ENOMEM;
4391 
4392 	dev->ops = ops;
4393 	dev->kvm = kvm;
4394 
4395 	mutex_lock(&kvm->lock);
4396 	ret = ops->create(dev, type);
4397 	if (ret < 0) {
4398 		mutex_unlock(&kvm->lock);
4399 		kfree(dev);
4400 		return ret;
4401 	}
4402 	list_add(&dev->vm_node, &kvm->devices);
4403 	mutex_unlock(&kvm->lock);
4404 
4405 	if (ops->init)
4406 		ops->init(dev);
4407 
4408 	kvm_get_kvm(kvm);
4409 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4410 	if (ret < 0) {
4411 		kvm_put_kvm_no_destroy(kvm);
4412 		mutex_lock(&kvm->lock);
4413 		list_del(&dev->vm_node);
4414 		if (ops->release)
4415 			ops->release(dev);
4416 		mutex_unlock(&kvm->lock);
4417 		if (ops->destroy)
4418 			ops->destroy(dev);
4419 		return ret;
4420 	}
4421 
4422 	cd->fd = ret;
4423 	return 0;
4424 }
4425 
4426 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4427 {
4428 	switch (arg) {
4429 	case KVM_CAP_USER_MEMORY:
4430 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4431 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4432 	case KVM_CAP_INTERNAL_ERROR_DATA:
4433 #ifdef CONFIG_HAVE_KVM_MSI
4434 	case KVM_CAP_SIGNAL_MSI:
4435 #endif
4436 #ifdef CONFIG_HAVE_KVM_IRQFD
4437 	case KVM_CAP_IRQFD:
4438 	case KVM_CAP_IRQFD_RESAMPLE:
4439 #endif
4440 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4441 	case KVM_CAP_CHECK_EXTENSION_VM:
4442 	case KVM_CAP_ENABLE_CAP_VM:
4443 	case KVM_CAP_HALT_POLL:
4444 		return 1;
4445 #ifdef CONFIG_KVM_MMIO
4446 	case KVM_CAP_COALESCED_MMIO:
4447 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4448 	case KVM_CAP_COALESCED_PIO:
4449 		return 1;
4450 #endif
4451 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4452 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4453 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4454 #endif
4455 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4456 	case KVM_CAP_IRQ_ROUTING:
4457 		return KVM_MAX_IRQ_ROUTES;
4458 #endif
4459 #if KVM_ADDRESS_SPACE_NUM > 1
4460 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4461 		return KVM_ADDRESS_SPACE_NUM;
4462 #endif
4463 	case KVM_CAP_NR_MEMSLOTS:
4464 		return KVM_USER_MEM_SLOTS;
4465 	case KVM_CAP_DIRTY_LOG_RING:
4466 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4467 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4468 #else
4469 		return 0;
4470 #endif
4471 	case KVM_CAP_BINARY_STATS_FD:
4472 	case KVM_CAP_SYSTEM_EVENT_DATA:
4473 		return 1;
4474 	default:
4475 		break;
4476 	}
4477 	return kvm_vm_ioctl_check_extension(kvm, arg);
4478 }
4479 
4480 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4481 {
4482 	int r;
4483 
4484 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4485 		return -EINVAL;
4486 
4487 	/* the size should be power of 2 */
4488 	if (!size || (size & (size - 1)))
4489 		return -EINVAL;
4490 
4491 	/* Should be bigger to keep the reserved entries, or a page */
4492 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4493 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4494 		return -EINVAL;
4495 
4496 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4497 	    sizeof(struct kvm_dirty_gfn))
4498 		return -E2BIG;
4499 
4500 	/* We only allow it to set once */
4501 	if (kvm->dirty_ring_size)
4502 		return -EINVAL;
4503 
4504 	mutex_lock(&kvm->lock);
4505 
4506 	if (kvm->created_vcpus) {
4507 		/* We don't allow to change this value after vcpu created */
4508 		r = -EINVAL;
4509 	} else {
4510 		kvm->dirty_ring_size = size;
4511 		r = 0;
4512 	}
4513 
4514 	mutex_unlock(&kvm->lock);
4515 	return r;
4516 }
4517 
4518 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4519 {
4520 	unsigned long i;
4521 	struct kvm_vcpu *vcpu;
4522 	int cleared = 0;
4523 
4524 	if (!kvm->dirty_ring_size)
4525 		return -EINVAL;
4526 
4527 	mutex_lock(&kvm->slots_lock);
4528 
4529 	kvm_for_each_vcpu(i, vcpu, kvm)
4530 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4531 
4532 	mutex_unlock(&kvm->slots_lock);
4533 
4534 	if (cleared)
4535 		kvm_flush_remote_tlbs(kvm);
4536 
4537 	return cleared;
4538 }
4539 
4540 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4541 						  struct kvm_enable_cap *cap)
4542 {
4543 	return -EINVAL;
4544 }
4545 
4546 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4547 					   struct kvm_enable_cap *cap)
4548 {
4549 	switch (cap->cap) {
4550 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4551 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4552 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4553 
4554 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4555 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4556 
4557 		if (cap->flags || (cap->args[0] & ~allowed_options))
4558 			return -EINVAL;
4559 		kvm->manual_dirty_log_protect = cap->args[0];
4560 		return 0;
4561 	}
4562 #endif
4563 	case KVM_CAP_HALT_POLL: {
4564 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4565 			return -EINVAL;
4566 
4567 		kvm->max_halt_poll_ns = cap->args[0];
4568 		return 0;
4569 	}
4570 	case KVM_CAP_DIRTY_LOG_RING:
4571 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4572 	default:
4573 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4574 	}
4575 }
4576 
4577 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4578 			      size_t size, loff_t *offset)
4579 {
4580 	struct kvm *kvm = file->private_data;
4581 
4582 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4583 				&kvm_vm_stats_desc[0], &kvm->stat,
4584 				sizeof(kvm->stat), user_buffer, size, offset);
4585 }
4586 
4587 static const struct file_operations kvm_vm_stats_fops = {
4588 	.read = kvm_vm_stats_read,
4589 	.llseek = noop_llseek,
4590 };
4591 
4592 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4593 {
4594 	int fd;
4595 	struct file *file;
4596 
4597 	fd = get_unused_fd_flags(O_CLOEXEC);
4598 	if (fd < 0)
4599 		return fd;
4600 
4601 	file = anon_inode_getfile("kvm-vm-stats",
4602 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4603 	if (IS_ERR(file)) {
4604 		put_unused_fd(fd);
4605 		return PTR_ERR(file);
4606 	}
4607 	file->f_mode |= FMODE_PREAD;
4608 	fd_install(fd, file);
4609 
4610 	return fd;
4611 }
4612 
4613 static long kvm_vm_ioctl(struct file *filp,
4614 			   unsigned int ioctl, unsigned long arg)
4615 {
4616 	struct kvm *kvm = filp->private_data;
4617 	void __user *argp = (void __user *)arg;
4618 	int r;
4619 
4620 	if (kvm->mm != current->mm || kvm->vm_dead)
4621 		return -EIO;
4622 	switch (ioctl) {
4623 	case KVM_CREATE_VCPU:
4624 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4625 		break;
4626 	case KVM_ENABLE_CAP: {
4627 		struct kvm_enable_cap cap;
4628 
4629 		r = -EFAULT;
4630 		if (copy_from_user(&cap, argp, sizeof(cap)))
4631 			goto out;
4632 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4633 		break;
4634 	}
4635 	case KVM_SET_USER_MEMORY_REGION: {
4636 		struct kvm_userspace_memory_region kvm_userspace_mem;
4637 
4638 		r = -EFAULT;
4639 		if (copy_from_user(&kvm_userspace_mem, argp,
4640 						sizeof(kvm_userspace_mem)))
4641 			goto out;
4642 
4643 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4644 		break;
4645 	}
4646 	case KVM_GET_DIRTY_LOG: {
4647 		struct kvm_dirty_log log;
4648 
4649 		r = -EFAULT;
4650 		if (copy_from_user(&log, argp, sizeof(log)))
4651 			goto out;
4652 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4653 		break;
4654 	}
4655 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4656 	case KVM_CLEAR_DIRTY_LOG: {
4657 		struct kvm_clear_dirty_log log;
4658 
4659 		r = -EFAULT;
4660 		if (copy_from_user(&log, argp, sizeof(log)))
4661 			goto out;
4662 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4663 		break;
4664 	}
4665 #endif
4666 #ifdef CONFIG_KVM_MMIO
4667 	case KVM_REGISTER_COALESCED_MMIO: {
4668 		struct kvm_coalesced_mmio_zone zone;
4669 
4670 		r = -EFAULT;
4671 		if (copy_from_user(&zone, argp, sizeof(zone)))
4672 			goto out;
4673 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4674 		break;
4675 	}
4676 	case KVM_UNREGISTER_COALESCED_MMIO: {
4677 		struct kvm_coalesced_mmio_zone zone;
4678 
4679 		r = -EFAULT;
4680 		if (copy_from_user(&zone, argp, sizeof(zone)))
4681 			goto out;
4682 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4683 		break;
4684 	}
4685 #endif
4686 	case KVM_IRQFD: {
4687 		struct kvm_irqfd data;
4688 
4689 		r = -EFAULT;
4690 		if (copy_from_user(&data, argp, sizeof(data)))
4691 			goto out;
4692 		r = kvm_irqfd(kvm, &data);
4693 		break;
4694 	}
4695 	case KVM_IOEVENTFD: {
4696 		struct kvm_ioeventfd data;
4697 
4698 		r = -EFAULT;
4699 		if (copy_from_user(&data, argp, sizeof(data)))
4700 			goto out;
4701 		r = kvm_ioeventfd(kvm, &data);
4702 		break;
4703 	}
4704 #ifdef CONFIG_HAVE_KVM_MSI
4705 	case KVM_SIGNAL_MSI: {
4706 		struct kvm_msi msi;
4707 
4708 		r = -EFAULT;
4709 		if (copy_from_user(&msi, argp, sizeof(msi)))
4710 			goto out;
4711 		r = kvm_send_userspace_msi(kvm, &msi);
4712 		break;
4713 	}
4714 #endif
4715 #ifdef __KVM_HAVE_IRQ_LINE
4716 	case KVM_IRQ_LINE_STATUS:
4717 	case KVM_IRQ_LINE: {
4718 		struct kvm_irq_level irq_event;
4719 
4720 		r = -EFAULT;
4721 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4722 			goto out;
4723 
4724 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4725 					ioctl == KVM_IRQ_LINE_STATUS);
4726 		if (r)
4727 			goto out;
4728 
4729 		r = -EFAULT;
4730 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4731 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4732 				goto out;
4733 		}
4734 
4735 		r = 0;
4736 		break;
4737 	}
4738 #endif
4739 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4740 	case KVM_SET_GSI_ROUTING: {
4741 		struct kvm_irq_routing routing;
4742 		struct kvm_irq_routing __user *urouting;
4743 		struct kvm_irq_routing_entry *entries = NULL;
4744 
4745 		r = -EFAULT;
4746 		if (copy_from_user(&routing, argp, sizeof(routing)))
4747 			goto out;
4748 		r = -EINVAL;
4749 		if (!kvm_arch_can_set_irq_routing(kvm))
4750 			goto out;
4751 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4752 			goto out;
4753 		if (routing.flags)
4754 			goto out;
4755 		if (routing.nr) {
4756 			urouting = argp;
4757 			entries = vmemdup_user(urouting->entries,
4758 					       array_size(sizeof(*entries),
4759 							  routing.nr));
4760 			if (IS_ERR(entries)) {
4761 				r = PTR_ERR(entries);
4762 				goto out;
4763 			}
4764 		}
4765 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4766 					routing.flags);
4767 		kvfree(entries);
4768 		break;
4769 	}
4770 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4771 	case KVM_CREATE_DEVICE: {
4772 		struct kvm_create_device cd;
4773 
4774 		r = -EFAULT;
4775 		if (copy_from_user(&cd, argp, sizeof(cd)))
4776 			goto out;
4777 
4778 		r = kvm_ioctl_create_device(kvm, &cd);
4779 		if (r)
4780 			goto out;
4781 
4782 		r = -EFAULT;
4783 		if (copy_to_user(argp, &cd, sizeof(cd)))
4784 			goto out;
4785 
4786 		r = 0;
4787 		break;
4788 	}
4789 	case KVM_CHECK_EXTENSION:
4790 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4791 		break;
4792 	case KVM_RESET_DIRTY_RINGS:
4793 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4794 		break;
4795 	case KVM_GET_STATS_FD:
4796 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4797 		break;
4798 	default:
4799 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4800 	}
4801 out:
4802 	return r;
4803 }
4804 
4805 #ifdef CONFIG_KVM_COMPAT
4806 struct compat_kvm_dirty_log {
4807 	__u32 slot;
4808 	__u32 padding1;
4809 	union {
4810 		compat_uptr_t dirty_bitmap; /* one bit per page */
4811 		__u64 padding2;
4812 	};
4813 };
4814 
4815 struct compat_kvm_clear_dirty_log {
4816 	__u32 slot;
4817 	__u32 num_pages;
4818 	__u64 first_page;
4819 	union {
4820 		compat_uptr_t dirty_bitmap; /* one bit per page */
4821 		__u64 padding2;
4822 	};
4823 };
4824 
4825 static long kvm_vm_compat_ioctl(struct file *filp,
4826 			   unsigned int ioctl, unsigned long arg)
4827 {
4828 	struct kvm *kvm = filp->private_data;
4829 	int r;
4830 
4831 	if (kvm->mm != current->mm || kvm->vm_dead)
4832 		return -EIO;
4833 	switch (ioctl) {
4834 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4835 	case KVM_CLEAR_DIRTY_LOG: {
4836 		struct compat_kvm_clear_dirty_log compat_log;
4837 		struct kvm_clear_dirty_log log;
4838 
4839 		if (copy_from_user(&compat_log, (void __user *)arg,
4840 				   sizeof(compat_log)))
4841 			return -EFAULT;
4842 		log.slot	 = compat_log.slot;
4843 		log.num_pages	 = compat_log.num_pages;
4844 		log.first_page	 = compat_log.first_page;
4845 		log.padding2	 = compat_log.padding2;
4846 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4847 
4848 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4849 		break;
4850 	}
4851 #endif
4852 	case KVM_GET_DIRTY_LOG: {
4853 		struct compat_kvm_dirty_log compat_log;
4854 		struct kvm_dirty_log log;
4855 
4856 		if (copy_from_user(&compat_log, (void __user *)arg,
4857 				   sizeof(compat_log)))
4858 			return -EFAULT;
4859 		log.slot	 = compat_log.slot;
4860 		log.padding1	 = compat_log.padding1;
4861 		log.padding2	 = compat_log.padding2;
4862 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4863 
4864 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4865 		break;
4866 	}
4867 	default:
4868 		r = kvm_vm_ioctl(filp, ioctl, arg);
4869 	}
4870 	return r;
4871 }
4872 #endif
4873 
4874 static const struct file_operations kvm_vm_fops = {
4875 	.release        = kvm_vm_release,
4876 	.unlocked_ioctl = kvm_vm_ioctl,
4877 	.llseek		= noop_llseek,
4878 	KVM_COMPAT(kvm_vm_compat_ioctl),
4879 };
4880 
4881 bool file_is_kvm(struct file *file)
4882 {
4883 	return file && file->f_op == &kvm_vm_fops;
4884 }
4885 EXPORT_SYMBOL_GPL(file_is_kvm);
4886 
4887 static int kvm_dev_ioctl_create_vm(unsigned long type)
4888 {
4889 	int r;
4890 	struct kvm *kvm;
4891 	struct file *file;
4892 
4893 	kvm = kvm_create_vm(type);
4894 	if (IS_ERR(kvm))
4895 		return PTR_ERR(kvm);
4896 #ifdef CONFIG_KVM_MMIO
4897 	r = kvm_coalesced_mmio_init(kvm);
4898 	if (r < 0)
4899 		goto put_kvm;
4900 #endif
4901 	r = get_unused_fd_flags(O_CLOEXEC);
4902 	if (r < 0)
4903 		goto put_kvm;
4904 
4905 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4906 			"kvm-%d", task_pid_nr(current));
4907 
4908 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4909 	if (IS_ERR(file)) {
4910 		put_unused_fd(r);
4911 		r = PTR_ERR(file);
4912 		goto put_kvm;
4913 	}
4914 
4915 	/*
4916 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4917 	 * already set, with ->release() being kvm_vm_release().  In error
4918 	 * cases it will be called by the final fput(file) and will take
4919 	 * care of doing kvm_put_kvm(kvm).
4920 	 */
4921 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4922 		put_unused_fd(r);
4923 		fput(file);
4924 		return -ENOMEM;
4925 	}
4926 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4927 
4928 	fd_install(r, file);
4929 	return r;
4930 
4931 put_kvm:
4932 	kvm_put_kvm(kvm);
4933 	return r;
4934 }
4935 
4936 static long kvm_dev_ioctl(struct file *filp,
4937 			  unsigned int ioctl, unsigned long arg)
4938 {
4939 	long r = -EINVAL;
4940 
4941 	switch (ioctl) {
4942 	case KVM_GET_API_VERSION:
4943 		if (arg)
4944 			goto out;
4945 		r = KVM_API_VERSION;
4946 		break;
4947 	case KVM_CREATE_VM:
4948 		r = kvm_dev_ioctl_create_vm(arg);
4949 		break;
4950 	case KVM_CHECK_EXTENSION:
4951 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4952 		break;
4953 	case KVM_GET_VCPU_MMAP_SIZE:
4954 		if (arg)
4955 			goto out;
4956 		r = PAGE_SIZE;     /* struct kvm_run */
4957 #ifdef CONFIG_X86
4958 		r += PAGE_SIZE;    /* pio data page */
4959 #endif
4960 #ifdef CONFIG_KVM_MMIO
4961 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4962 #endif
4963 		break;
4964 	case KVM_TRACE_ENABLE:
4965 	case KVM_TRACE_PAUSE:
4966 	case KVM_TRACE_DISABLE:
4967 		r = -EOPNOTSUPP;
4968 		break;
4969 	default:
4970 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4971 	}
4972 out:
4973 	return r;
4974 }
4975 
4976 static struct file_operations kvm_chardev_ops = {
4977 	.unlocked_ioctl = kvm_dev_ioctl,
4978 	.llseek		= noop_llseek,
4979 	KVM_COMPAT(kvm_dev_ioctl),
4980 };
4981 
4982 static struct miscdevice kvm_dev = {
4983 	KVM_MINOR,
4984 	"kvm",
4985 	&kvm_chardev_ops,
4986 };
4987 
4988 static void hardware_enable_nolock(void *junk)
4989 {
4990 	int cpu = raw_smp_processor_id();
4991 	int r;
4992 
4993 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4994 		return;
4995 
4996 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4997 
4998 	r = kvm_arch_hardware_enable();
4999 
5000 	if (r) {
5001 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5002 		atomic_inc(&hardware_enable_failed);
5003 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5004 	}
5005 }
5006 
5007 static int kvm_starting_cpu(unsigned int cpu)
5008 {
5009 	raw_spin_lock(&kvm_count_lock);
5010 	if (kvm_usage_count)
5011 		hardware_enable_nolock(NULL);
5012 	raw_spin_unlock(&kvm_count_lock);
5013 	return 0;
5014 }
5015 
5016 static void hardware_disable_nolock(void *junk)
5017 {
5018 	int cpu = raw_smp_processor_id();
5019 
5020 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5021 		return;
5022 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5023 	kvm_arch_hardware_disable();
5024 }
5025 
5026 static int kvm_dying_cpu(unsigned int cpu)
5027 {
5028 	raw_spin_lock(&kvm_count_lock);
5029 	if (kvm_usage_count)
5030 		hardware_disable_nolock(NULL);
5031 	raw_spin_unlock(&kvm_count_lock);
5032 	return 0;
5033 }
5034 
5035 static void hardware_disable_all_nolock(void)
5036 {
5037 	BUG_ON(!kvm_usage_count);
5038 
5039 	kvm_usage_count--;
5040 	if (!kvm_usage_count)
5041 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5042 }
5043 
5044 static void hardware_disable_all(void)
5045 {
5046 	raw_spin_lock(&kvm_count_lock);
5047 	hardware_disable_all_nolock();
5048 	raw_spin_unlock(&kvm_count_lock);
5049 }
5050 
5051 static int hardware_enable_all(void)
5052 {
5053 	int r = 0;
5054 
5055 	raw_spin_lock(&kvm_count_lock);
5056 
5057 	kvm_usage_count++;
5058 	if (kvm_usage_count == 1) {
5059 		atomic_set(&hardware_enable_failed, 0);
5060 		on_each_cpu(hardware_enable_nolock, NULL, 1);
5061 
5062 		if (atomic_read(&hardware_enable_failed)) {
5063 			hardware_disable_all_nolock();
5064 			r = -EBUSY;
5065 		}
5066 	}
5067 
5068 	raw_spin_unlock(&kvm_count_lock);
5069 
5070 	return r;
5071 }
5072 
5073 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5074 		      void *v)
5075 {
5076 	/*
5077 	 * Some (well, at least mine) BIOSes hang on reboot if
5078 	 * in vmx root mode.
5079 	 *
5080 	 * And Intel TXT required VMX off for all cpu when system shutdown.
5081 	 */
5082 	pr_info("kvm: exiting hardware virtualization\n");
5083 	kvm_rebooting = true;
5084 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5085 	return NOTIFY_OK;
5086 }
5087 
5088 static struct notifier_block kvm_reboot_notifier = {
5089 	.notifier_call = kvm_reboot,
5090 	.priority = 0,
5091 };
5092 
5093 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5094 {
5095 	int i;
5096 
5097 	for (i = 0; i < bus->dev_count; i++) {
5098 		struct kvm_io_device *pos = bus->range[i].dev;
5099 
5100 		kvm_iodevice_destructor(pos);
5101 	}
5102 	kfree(bus);
5103 }
5104 
5105 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5106 				 const struct kvm_io_range *r2)
5107 {
5108 	gpa_t addr1 = r1->addr;
5109 	gpa_t addr2 = r2->addr;
5110 
5111 	if (addr1 < addr2)
5112 		return -1;
5113 
5114 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5115 	 * accept any overlapping write.  Any order is acceptable for
5116 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5117 	 * we process all of them.
5118 	 */
5119 	if (r2->len) {
5120 		addr1 += r1->len;
5121 		addr2 += r2->len;
5122 	}
5123 
5124 	if (addr1 > addr2)
5125 		return 1;
5126 
5127 	return 0;
5128 }
5129 
5130 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5131 {
5132 	return kvm_io_bus_cmp(p1, p2);
5133 }
5134 
5135 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5136 			     gpa_t addr, int len)
5137 {
5138 	struct kvm_io_range *range, key;
5139 	int off;
5140 
5141 	key = (struct kvm_io_range) {
5142 		.addr = addr,
5143 		.len = len,
5144 	};
5145 
5146 	range = bsearch(&key, bus->range, bus->dev_count,
5147 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5148 	if (range == NULL)
5149 		return -ENOENT;
5150 
5151 	off = range - bus->range;
5152 
5153 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5154 		off--;
5155 
5156 	return off;
5157 }
5158 
5159 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5160 			      struct kvm_io_range *range, const void *val)
5161 {
5162 	int idx;
5163 
5164 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5165 	if (idx < 0)
5166 		return -EOPNOTSUPP;
5167 
5168 	while (idx < bus->dev_count &&
5169 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5170 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5171 					range->len, val))
5172 			return idx;
5173 		idx++;
5174 	}
5175 
5176 	return -EOPNOTSUPP;
5177 }
5178 
5179 /* kvm_io_bus_write - called under kvm->slots_lock */
5180 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5181 		     int len, const void *val)
5182 {
5183 	struct kvm_io_bus *bus;
5184 	struct kvm_io_range range;
5185 	int r;
5186 
5187 	range = (struct kvm_io_range) {
5188 		.addr = addr,
5189 		.len = len,
5190 	};
5191 
5192 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5193 	if (!bus)
5194 		return -ENOMEM;
5195 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5196 	return r < 0 ? r : 0;
5197 }
5198 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5199 
5200 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5201 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5202 			    gpa_t addr, int len, const void *val, long cookie)
5203 {
5204 	struct kvm_io_bus *bus;
5205 	struct kvm_io_range range;
5206 
5207 	range = (struct kvm_io_range) {
5208 		.addr = addr,
5209 		.len = len,
5210 	};
5211 
5212 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5213 	if (!bus)
5214 		return -ENOMEM;
5215 
5216 	/* First try the device referenced by cookie. */
5217 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5218 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5219 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5220 					val))
5221 			return cookie;
5222 
5223 	/*
5224 	 * cookie contained garbage; fall back to search and return the
5225 	 * correct cookie value.
5226 	 */
5227 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5228 }
5229 
5230 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5231 			     struct kvm_io_range *range, void *val)
5232 {
5233 	int idx;
5234 
5235 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5236 	if (idx < 0)
5237 		return -EOPNOTSUPP;
5238 
5239 	while (idx < bus->dev_count &&
5240 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5241 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5242 				       range->len, val))
5243 			return idx;
5244 		idx++;
5245 	}
5246 
5247 	return -EOPNOTSUPP;
5248 }
5249 
5250 /* kvm_io_bus_read - called under kvm->slots_lock */
5251 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5252 		    int len, void *val)
5253 {
5254 	struct kvm_io_bus *bus;
5255 	struct kvm_io_range range;
5256 	int r;
5257 
5258 	range = (struct kvm_io_range) {
5259 		.addr = addr,
5260 		.len = len,
5261 	};
5262 
5263 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5264 	if (!bus)
5265 		return -ENOMEM;
5266 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5267 	return r < 0 ? r : 0;
5268 }
5269 
5270 /* Caller must hold slots_lock. */
5271 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5272 			    int len, struct kvm_io_device *dev)
5273 {
5274 	int i;
5275 	struct kvm_io_bus *new_bus, *bus;
5276 	struct kvm_io_range range;
5277 
5278 	bus = kvm_get_bus(kvm, bus_idx);
5279 	if (!bus)
5280 		return -ENOMEM;
5281 
5282 	/* exclude ioeventfd which is limited by maximum fd */
5283 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5284 		return -ENOSPC;
5285 
5286 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5287 			  GFP_KERNEL_ACCOUNT);
5288 	if (!new_bus)
5289 		return -ENOMEM;
5290 
5291 	range = (struct kvm_io_range) {
5292 		.addr = addr,
5293 		.len = len,
5294 		.dev = dev,
5295 	};
5296 
5297 	for (i = 0; i < bus->dev_count; i++)
5298 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5299 			break;
5300 
5301 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5302 	new_bus->dev_count++;
5303 	new_bus->range[i] = range;
5304 	memcpy(new_bus->range + i + 1, bus->range + i,
5305 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5306 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5307 	synchronize_srcu_expedited(&kvm->srcu);
5308 	kfree(bus);
5309 
5310 	return 0;
5311 }
5312 
5313 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5314 			      struct kvm_io_device *dev)
5315 {
5316 	int i, j;
5317 	struct kvm_io_bus *new_bus, *bus;
5318 
5319 	lockdep_assert_held(&kvm->slots_lock);
5320 
5321 	bus = kvm_get_bus(kvm, bus_idx);
5322 	if (!bus)
5323 		return 0;
5324 
5325 	for (i = 0; i < bus->dev_count; i++) {
5326 		if (bus->range[i].dev == dev) {
5327 			break;
5328 		}
5329 	}
5330 
5331 	if (i == bus->dev_count)
5332 		return 0;
5333 
5334 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5335 			  GFP_KERNEL_ACCOUNT);
5336 	if (new_bus) {
5337 		memcpy(new_bus, bus, struct_size(bus, range, i));
5338 		new_bus->dev_count--;
5339 		memcpy(new_bus->range + i, bus->range + i + 1,
5340 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5341 	}
5342 
5343 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5344 	synchronize_srcu_expedited(&kvm->srcu);
5345 
5346 	/* Destroy the old bus _after_ installing the (null) bus. */
5347 	if (!new_bus) {
5348 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5349 		for (j = 0; j < bus->dev_count; j++) {
5350 			if (j == i)
5351 				continue;
5352 			kvm_iodevice_destructor(bus->range[j].dev);
5353 		}
5354 	}
5355 
5356 	kfree(bus);
5357 	return new_bus ? 0 : -ENOMEM;
5358 }
5359 
5360 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5361 					 gpa_t addr)
5362 {
5363 	struct kvm_io_bus *bus;
5364 	int dev_idx, srcu_idx;
5365 	struct kvm_io_device *iodev = NULL;
5366 
5367 	srcu_idx = srcu_read_lock(&kvm->srcu);
5368 
5369 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5370 	if (!bus)
5371 		goto out_unlock;
5372 
5373 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5374 	if (dev_idx < 0)
5375 		goto out_unlock;
5376 
5377 	iodev = bus->range[dev_idx].dev;
5378 
5379 out_unlock:
5380 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5381 
5382 	return iodev;
5383 }
5384 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5385 
5386 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5387 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5388 			   const char *fmt)
5389 {
5390 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5391 					  inode->i_private;
5392 
5393 	/*
5394 	 * The debugfs files are a reference to the kvm struct which
5395         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5396         * avoids the race between open and the removal of the debugfs directory.
5397 	 */
5398 	if (!kvm_get_kvm_safe(stat_data->kvm))
5399 		return -ENOENT;
5400 
5401 	if (simple_attr_open(inode, file, get,
5402 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5403 		    ? set : NULL,
5404 		    fmt)) {
5405 		kvm_put_kvm(stat_data->kvm);
5406 		return -ENOMEM;
5407 	}
5408 
5409 	return 0;
5410 }
5411 
5412 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5413 {
5414 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5415 					  inode->i_private;
5416 
5417 	simple_attr_release(inode, file);
5418 	kvm_put_kvm(stat_data->kvm);
5419 
5420 	return 0;
5421 }
5422 
5423 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5424 {
5425 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5426 
5427 	return 0;
5428 }
5429 
5430 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5431 {
5432 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5433 
5434 	return 0;
5435 }
5436 
5437 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5438 {
5439 	unsigned long i;
5440 	struct kvm_vcpu *vcpu;
5441 
5442 	*val = 0;
5443 
5444 	kvm_for_each_vcpu(i, vcpu, kvm)
5445 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5446 
5447 	return 0;
5448 }
5449 
5450 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5451 {
5452 	unsigned long i;
5453 	struct kvm_vcpu *vcpu;
5454 
5455 	kvm_for_each_vcpu(i, vcpu, kvm)
5456 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5457 
5458 	return 0;
5459 }
5460 
5461 static int kvm_stat_data_get(void *data, u64 *val)
5462 {
5463 	int r = -EFAULT;
5464 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5465 
5466 	switch (stat_data->kind) {
5467 	case KVM_STAT_VM:
5468 		r = kvm_get_stat_per_vm(stat_data->kvm,
5469 					stat_data->desc->desc.offset, val);
5470 		break;
5471 	case KVM_STAT_VCPU:
5472 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5473 					  stat_data->desc->desc.offset, val);
5474 		break;
5475 	}
5476 
5477 	return r;
5478 }
5479 
5480 static int kvm_stat_data_clear(void *data, u64 val)
5481 {
5482 	int r = -EFAULT;
5483 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5484 
5485 	if (val)
5486 		return -EINVAL;
5487 
5488 	switch (stat_data->kind) {
5489 	case KVM_STAT_VM:
5490 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5491 					  stat_data->desc->desc.offset);
5492 		break;
5493 	case KVM_STAT_VCPU:
5494 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5495 					    stat_data->desc->desc.offset);
5496 		break;
5497 	}
5498 
5499 	return r;
5500 }
5501 
5502 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5503 {
5504 	__simple_attr_check_format("%llu\n", 0ull);
5505 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5506 				kvm_stat_data_clear, "%llu\n");
5507 }
5508 
5509 static const struct file_operations stat_fops_per_vm = {
5510 	.owner = THIS_MODULE,
5511 	.open = kvm_stat_data_open,
5512 	.release = kvm_debugfs_release,
5513 	.read = simple_attr_read,
5514 	.write = simple_attr_write,
5515 	.llseek = no_llseek,
5516 };
5517 
5518 static int vm_stat_get(void *_offset, u64 *val)
5519 {
5520 	unsigned offset = (long)_offset;
5521 	struct kvm *kvm;
5522 	u64 tmp_val;
5523 
5524 	*val = 0;
5525 	mutex_lock(&kvm_lock);
5526 	list_for_each_entry(kvm, &vm_list, vm_list) {
5527 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5528 		*val += tmp_val;
5529 	}
5530 	mutex_unlock(&kvm_lock);
5531 	return 0;
5532 }
5533 
5534 static int vm_stat_clear(void *_offset, u64 val)
5535 {
5536 	unsigned offset = (long)_offset;
5537 	struct kvm *kvm;
5538 
5539 	if (val)
5540 		return -EINVAL;
5541 
5542 	mutex_lock(&kvm_lock);
5543 	list_for_each_entry(kvm, &vm_list, vm_list) {
5544 		kvm_clear_stat_per_vm(kvm, offset);
5545 	}
5546 	mutex_unlock(&kvm_lock);
5547 
5548 	return 0;
5549 }
5550 
5551 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5552 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5553 
5554 static int vcpu_stat_get(void *_offset, u64 *val)
5555 {
5556 	unsigned offset = (long)_offset;
5557 	struct kvm *kvm;
5558 	u64 tmp_val;
5559 
5560 	*val = 0;
5561 	mutex_lock(&kvm_lock);
5562 	list_for_each_entry(kvm, &vm_list, vm_list) {
5563 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5564 		*val += tmp_val;
5565 	}
5566 	mutex_unlock(&kvm_lock);
5567 	return 0;
5568 }
5569 
5570 static int vcpu_stat_clear(void *_offset, u64 val)
5571 {
5572 	unsigned offset = (long)_offset;
5573 	struct kvm *kvm;
5574 
5575 	if (val)
5576 		return -EINVAL;
5577 
5578 	mutex_lock(&kvm_lock);
5579 	list_for_each_entry(kvm, &vm_list, vm_list) {
5580 		kvm_clear_stat_per_vcpu(kvm, offset);
5581 	}
5582 	mutex_unlock(&kvm_lock);
5583 
5584 	return 0;
5585 }
5586 
5587 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5588 			"%llu\n");
5589 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5590 
5591 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5592 {
5593 	struct kobj_uevent_env *env;
5594 	unsigned long long created, active;
5595 
5596 	if (!kvm_dev.this_device || !kvm)
5597 		return;
5598 
5599 	mutex_lock(&kvm_lock);
5600 	if (type == KVM_EVENT_CREATE_VM) {
5601 		kvm_createvm_count++;
5602 		kvm_active_vms++;
5603 	} else if (type == KVM_EVENT_DESTROY_VM) {
5604 		kvm_active_vms--;
5605 	}
5606 	created = kvm_createvm_count;
5607 	active = kvm_active_vms;
5608 	mutex_unlock(&kvm_lock);
5609 
5610 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5611 	if (!env)
5612 		return;
5613 
5614 	add_uevent_var(env, "CREATED=%llu", created);
5615 	add_uevent_var(env, "COUNT=%llu", active);
5616 
5617 	if (type == KVM_EVENT_CREATE_VM) {
5618 		add_uevent_var(env, "EVENT=create");
5619 		kvm->userspace_pid = task_pid_nr(current);
5620 	} else if (type == KVM_EVENT_DESTROY_VM) {
5621 		add_uevent_var(env, "EVENT=destroy");
5622 	}
5623 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5624 
5625 	if (!IS_ERR(kvm->debugfs_dentry)) {
5626 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5627 
5628 		if (p) {
5629 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5630 			if (!IS_ERR(tmp))
5631 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5632 			kfree(p);
5633 		}
5634 	}
5635 	/* no need for checks, since we are adding at most only 5 keys */
5636 	env->envp[env->envp_idx++] = NULL;
5637 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5638 	kfree(env);
5639 }
5640 
5641 static void kvm_init_debug(void)
5642 {
5643 	const struct file_operations *fops;
5644 	const struct _kvm_stats_desc *pdesc;
5645 	int i;
5646 
5647 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5648 
5649 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5650 		pdesc = &kvm_vm_stats_desc[i];
5651 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5652 			fops = &vm_stat_fops;
5653 		else
5654 			fops = &vm_stat_readonly_fops;
5655 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5656 				kvm_debugfs_dir,
5657 				(void *)(long)pdesc->desc.offset, fops);
5658 	}
5659 
5660 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5661 		pdesc = &kvm_vcpu_stats_desc[i];
5662 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5663 			fops = &vcpu_stat_fops;
5664 		else
5665 			fops = &vcpu_stat_readonly_fops;
5666 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5667 				kvm_debugfs_dir,
5668 				(void *)(long)pdesc->desc.offset, fops);
5669 	}
5670 }
5671 
5672 static int kvm_suspend(void)
5673 {
5674 	if (kvm_usage_count)
5675 		hardware_disable_nolock(NULL);
5676 	return 0;
5677 }
5678 
5679 static void kvm_resume(void)
5680 {
5681 	if (kvm_usage_count) {
5682 		lockdep_assert_not_held(&kvm_count_lock);
5683 		hardware_enable_nolock(NULL);
5684 	}
5685 }
5686 
5687 static struct syscore_ops kvm_syscore_ops = {
5688 	.suspend = kvm_suspend,
5689 	.resume = kvm_resume,
5690 };
5691 
5692 static inline
5693 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5694 {
5695 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5696 }
5697 
5698 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5699 {
5700 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5701 
5702 	WRITE_ONCE(vcpu->preempted, false);
5703 	WRITE_ONCE(vcpu->ready, false);
5704 
5705 	__this_cpu_write(kvm_running_vcpu, vcpu);
5706 	kvm_arch_sched_in(vcpu, cpu);
5707 	kvm_arch_vcpu_load(vcpu, cpu);
5708 }
5709 
5710 static void kvm_sched_out(struct preempt_notifier *pn,
5711 			  struct task_struct *next)
5712 {
5713 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5714 
5715 	if (current->on_rq) {
5716 		WRITE_ONCE(vcpu->preempted, true);
5717 		WRITE_ONCE(vcpu->ready, true);
5718 	}
5719 	kvm_arch_vcpu_put(vcpu);
5720 	__this_cpu_write(kvm_running_vcpu, NULL);
5721 }
5722 
5723 /**
5724  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5725  *
5726  * We can disable preemption locally around accessing the per-CPU variable,
5727  * and use the resolved vcpu pointer after enabling preemption again,
5728  * because even if the current thread is migrated to another CPU, reading
5729  * the per-CPU value later will give us the same value as we update the
5730  * per-CPU variable in the preempt notifier handlers.
5731  */
5732 struct kvm_vcpu *kvm_get_running_vcpu(void)
5733 {
5734 	struct kvm_vcpu *vcpu;
5735 
5736 	preempt_disable();
5737 	vcpu = __this_cpu_read(kvm_running_vcpu);
5738 	preempt_enable();
5739 
5740 	return vcpu;
5741 }
5742 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5743 
5744 /**
5745  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5746  */
5747 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5748 {
5749         return &kvm_running_vcpu;
5750 }
5751 
5752 #ifdef CONFIG_GUEST_PERF_EVENTS
5753 static unsigned int kvm_guest_state(void)
5754 {
5755 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5756 	unsigned int state;
5757 
5758 	if (!kvm_arch_pmi_in_guest(vcpu))
5759 		return 0;
5760 
5761 	state = PERF_GUEST_ACTIVE;
5762 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5763 		state |= PERF_GUEST_USER;
5764 
5765 	return state;
5766 }
5767 
5768 static unsigned long kvm_guest_get_ip(void)
5769 {
5770 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5771 
5772 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5773 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5774 		return 0;
5775 
5776 	return kvm_arch_vcpu_get_ip(vcpu);
5777 }
5778 
5779 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5780 	.state			= kvm_guest_state,
5781 	.get_ip			= kvm_guest_get_ip,
5782 	.handle_intel_pt_intr	= NULL,
5783 };
5784 
5785 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5786 {
5787 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5788 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5789 }
5790 void kvm_unregister_perf_callbacks(void)
5791 {
5792 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5793 }
5794 #endif
5795 
5796 struct kvm_cpu_compat_check {
5797 	void *opaque;
5798 	int *ret;
5799 };
5800 
5801 static void check_processor_compat(void *data)
5802 {
5803 	struct kvm_cpu_compat_check *c = data;
5804 
5805 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5806 }
5807 
5808 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5809 		  struct module *module)
5810 {
5811 	struct kvm_cpu_compat_check c;
5812 	int r;
5813 	int cpu;
5814 
5815 	r = kvm_arch_init(opaque);
5816 	if (r)
5817 		goto out_fail;
5818 
5819 	/*
5820 	 * kvm_arch_init makes sure there's at most one caller
5821 	 * for architectures that support multiple implementations,
5822 	 * like intel and amd on x86.
5823 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5824 	 * conflicts in case kvm is already setup for another implementation.
5825 	 */
5826 	r = kvm_irqfd_init();
5827 	if (r)
5828 		goto out_irqfd;
5829 
5830 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5831 		r = -ENOMEM;
5832 		goto out_free_0;
5833 	}
5834 
5835 	r = kvm_arch_hardware_setup(opaque);
5836 	if (r < 0)
5837 		goto out_free_1;
5838 
5839 	c.ret = &r;
5840 	c.opaque = opaque;
5841 	for_each_online_cpu(cpu) {
5842 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5843 		if (r < 0)
5844 			goto out_free_2;
5845 	}
5846 
5847 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5848 				      kvm_starting_cpu, kvm_dying_cpu);
5849 	if (r)
5850 		goto out_free_2;
5851 	register_reboot_notifier(&kvm_reboot_notifier);
5852 
5853 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5854 	if (!vcpu_align)
5855 		vcpu_align = __alignof__(struct kvm_vcpu);
5856 	kvm_vcpu_cache =
5857 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5858 					   SLAB_ACCOUNT,
5859 					   offsetof(struct kvm_vcpu, arch),
5860 					   offsetofend(struct kvm_vcpu, stats_id)
5861 					   - offsetof(struct kvm_vcpu, arch),
5862 					   NULL);
5863 	if (!kvm_vcpu_cache) {
5864 		r = -ENOMEM;
5865 		goto out_free_3;
5866 	}
5867 
5868 	for_each_possible_cpu(cpu) {
5869 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5870 					    GFP_KERNEL, cpu_to_node(cpu))) {
5871 			r = -ENOMEM;
5872 			goto out_free_4;
5873 		}
5874 	}
5875 
5876 	r = kvm_async_pf_init();
5877 	if (r)
5878 		goto out_free_5;
5879 
5880 	kvm_chardev_ops.owner = module;
5881 
5882 	r = misc_register(&kvm_dev);
5883 	if (r) {
5884 		pr_err("kvm: misc device register failed\n");
5885 		goto out_unreg;
5886 	}
5887 
5888 	register_syscore_ops(&kvm_syscore_ops);
5889 
5890 	kvm_preempt_ops.sched_in = kvm_sched_in;
5891 	kvm_preempt_ops.sched_out = kvm_sched_out;
5892 
5893 	kvm_init_debug();
5894 
5895 	r = kvm_vfio_ops_init();
5896 	WARN_ON(r);
5897 
5898 	return 0;
5899 
5900 out_unreg:
5901 	kvm_async_pf_deinit();
5902 out_free_5:
5903 	for_each_possible_cpu(cpu)
5904 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5905 out_free_4:
5906 	kmem_cache_destroy(kvm_vcpu_cache);
5907 out_free_3:
5908 	unregister_reboot_notifier(&kvm_reboot_notifier);
5909 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5910 out_free_2:
5911 	kvm_arch_hardware_unsetup();
5912 out_free_1:
5913 	free_cpumask_var(cpus_hardware_enabled);
5914 out_free_0:
5915 	kvm_irqfd_exit();
5916 out_irqfd:
5917 	kvm_arch_exit();
5918 out_fail:
5919 	return r;
5920 }
5921 EXPORT_SYMBOL_GPL(kvm_init);
5922 
5923 void kvm_exit(void)
5924 {
5925 	int cpu;
5926 
5927 	debugfs_remove_recursive(kvm_debugfs_dir);
5928 	misc_deregister(&kvm_dev);
5929 	for_each_possible_cpu(cpu)
5930 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5931 	kmem_cache_destroy(kvm_vcpu_cache);
5932 	kvm_async_pf_deinit();
5933 	unregister_syscore_ops(&kvm_syscore_ops);
5934 	unregister_reboot_notifier(&kvm_reboot_notifier);
5935 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5936 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5937 	kvm_arch_hardware_unsetup();
5938 	kvm_arch_exit();
5939 	kvm_irqfd_exit();
5940 	free_cpumask_var(cpus_hardware_enabled);
5941 	kvm_vfio_ops_exit();
5942 }
5943 EXPORT_SYMBOL_GPL(kvm_exit);
5944 
5945 struct kvm_vm_worker_thread_context {
5946 	struct kvm *kvm;
5947 	struct task_struct *parent;
5948 	struct completion init_done;
5949 	kvm_vm_thread_fn_t thread_fn;
5950 	uintptr_t data;
5951 	int err;
5952 };
5953 
5954 static int kvm_vm_worker_thread(void *context)
5955 {
5956 	/*
5957 	 * The init_context is allocated on the stack of the parent thread, so
5958 	 * we have to locally copy anything that is needed beyond initialization
5959 	 */
5960 	struct kvm_vm_worker_thread_context *init_context = context;
5961 	struct task_struct *parent;
5962 	struct kvm *kvm = init_context->kvm;
5963 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5964 	uintptr_t data = init_context->data;
5965 	int err;
5966 
5967 	err = kthread_park(current);
5968 	/* kthread_park(current) is never supposed to return an error */
5969 	WARN_ON(err != 0);
5970 	if (err)
5971 		goto init_complete;
5972 
5973 	err = cgroup_attach_task_all(init_context->parent, current);
5974 	if (err) {
5975 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5976 			__func__, err);
5977 		goto init_complete;
5978 	}
5979 
5980 	set_user_nice(current, task_nice(init_context->parent));
5981 
5982 init_complete:
5983 	init_context->err = err;
5984 	complete(&init_context->init_done);
5985 	init_context = NULL;
5986 
5987 	if (err)
5988 		goto out;
5989 
5990 	/* Wait to be woken up by the spawner before proceeding. */
5991 	kthread_parkme();
5992 
5993 	if (!kthread_should_stop())
5994 		err = thread_fn(kvm, data);
5995 
5996 out:
5997 	/*
5998 	 * Move kthread back to its original cgroup to prevent it lingering in
5999 	 * the cgroup of the VM process, after the latter finishes its
6000 	 * execution.
6001 	 *
6002 	 * kthread_stop() waits on the 'exited' completion condition which is
6003 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6004 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6005 	 * called after the exit_mm(). This causes the kthread_stop() to return
6006 	 * before the kthread actually quits the cgroup.
6007 	 */
6008 	rcu_read_lock();
6009 	parent = rcu_dereference(current->real_parent);
6010 	get_task_struct(parent);
6011 	rcu_read_unlock();
6012 	cgroup_attach_task_all(parent, current);
6013 	put_task_struct(parent);
6014 
6015 	return err;
6016 }
6017 
6018 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6019 				uintptr_t data, const char *name,
6020 				struct task_struct **thread_ptr)
6021 {
6022 	struct kvm_vm_worker_thread_context init_context = {};
6023 	struct task_struct *thread;
6024 
6025 	*thread_ptr = NULL;
6026 	init_context.kvm = kvm;
6027 	init_context.parent = current;
6028 	init_context.thread_fn = thread_fn;
6029 	init_context.data = data;
6030 	init_completion(&init_context.init_done);
6031 
6032 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6033 			     "%s-%d", name, task_pid_nr(current));
6034 	if (IS_ERR(thread))
6035 		return PTR_ERR(thread);
6036 
6037 	/* kthread_run is never supposed to return NULL */
6038 	WARN_ON(thread == NULL);
6039 
6040 	wait_for_completion(&init_context.init_done);
6041 
6042 	if (!init_context.err)
6043 		*thread_ptr = thread;
6044 
6045 	return init_context.err;
6046 }
6047