1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_page(struct page *page) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (WARN_ON_ONCE(!page_count(page))) 180 return false; 181 182 return is_zone_device_page(page); 183 } 184 185 /* 186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 188 * is likely incomplete, it has been compiled purely through people wanting to 189 * back guest with a certain type of memory and encountering issues. 190 */ 191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 192 { 193 struct page *page; 194 195 if (!pfn_valid(pfn)) 196 return NULL; 197 198 page = pfn_to_page(pfn); 199 if (!PageReserved(page)) 200 return page; 201 202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 203 if (is_zero_pfn(pfn)) 204 return page; 205 206 /* 207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 208 * perspective they are "normal" pages, albeit with slightly different 209 * usage rules. 210 */ 211 if (kvm_is_zone_device_page(page)) 212 return page; 213 214 return NULL; 215 } 216 217 /* 218 * Switches to specified vcpu, until a matching vcpu_put() 219 */ 220 void vcpu_load(struct kvm_vcpu *vcpu) 221 { 222 int cpu = get_cpu(); 223 224 __this_cpu_write(kvm_running_vcpu, vcpu); 225 preempt_notifier_register(&vcpu->preempt_notifier); 226 kvm_arch_vcpu_load(vcpu, cpu); 227 put_cpu(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_load); 230 231 void vcpu_put(struct kvm_vcpu *vcpu) 232 { 233 preempt_disable(); 234 kvm_arch_vcpu_put(vcpu); 235 preempt_notifier_unregister(&vcpu->preempt_notifier); 236 __this_cpu_write(kvm_running_vcpu, NULL); 237 preempt_enable(); 238 } 239 EXPORT_SYMBOL_GPL(vcpu_put); 240 241 /* TODO: merge with kvm_arch_vcpu_should_kick */ 242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 243 { 244 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 245 246 /* 247 * We need to wait for the VCPU to reenable interrupts and get out of 248 * READING_SHADOW_PAGE_TABLES mode. 249 */ 250 if (req & KVM_REQUEST_WAIT) 251 return mode != OUTSIDE_GUEST_MODE; 252 253 /* 254 * Need to kick a running VCPU, but otherwise there is nothing to do. 255 */ 256 return mode == IN_GUEST_MODE; 257 } 258 259 static void ack_kick(void *_completed) 260 { 261 } 262 263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 264 { 265 if (cpumask_empty(cpus)) 266 return false; 267 268 smp_call_function_many(cpus, ack_kick, NULL, wait); 269 return true; 270 } 271 272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 273 struct cpumask *tmp, int current_cpu) 274 { 275 int cpu; 276 277 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 278 __kvm_make_request(req, vcpu); 279 280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 281 return; 282 283 /* 284 * Note, the vCPU could get migrated to a different pCPU at any point 285 * after kvm_request_needs_ipi(), which could result in sending an IPI 286 * to the previous pCPU. But, that's OK because the purpose of the IPI 287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 289 * after this point is also OK, as the requirement is only that KVM wait 290 * for vCPUs that were reading SPTEs _before_ any changes were 291 * finalized. See kvm_vcpu_kick() for more details on handling requests. 292 */ 293 if (kvm_request_needs_ipi(vcpu, req)) { 294 cpu = READ_ONCE(vcpu->cpu); 295 if (cpu != -1 && cpu != current_cpu) 296 __cpumask_set_cpu(cpu, tmp); 297 } 298 } 299 300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 301 unsigned long *vcpu_bitmap) 302 { 303 struct kvm_vcpu *vcpu; 304 struct cpumask *cpus; 305 int i, me; 306 bool called; 307 308 me = get_cpu(); 309 310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 311 cpumask_clear(cpus); 312 313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 314 vcpu = kvm_get_vcpu(kvm, i); 315 if (!vcpu) 316 continue; 317 kvm_make_vcpu_request(vcpu, req, cpus, me); 318 } 319 320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 321 put_cpu(); 322 323 return called; 324 } 325 326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 327 struct kvm_vcpu *except) 328 { 329 struct kvm_vcpu *vcpu; 330 struct cpumask *cpus; 331 unsigned long i; 332 bool called; 333 int me; 334 335 me = get_cpu(); 336 337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 338 cpumask_clear(cpus); 339 340 kvm_for_each_vcpu(i, vcpu, kvm) { 341 if (vcpu == except) 342 continue; 343 kvm_make_vcpu_request(vcpu, req, cpus, me); 344 } 345 346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 347 put_cpu(); 348 349 return called; 350 } 351 352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 353 { 354 return kvm_make_all_cpus_request_except(kvm, req, NULL); 355 } 356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 357 358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 359 void kvm_flush_remote_tlbs(struct kvm *kvm) 360 { 361 ++kvm->stat.generic.remote_tlb_flush_requests; 362 363 /* 364 * We want to publish modifications to the page tables before reading 365 * mode. Pairs with a memory barrier in arch-specific code. 366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 367 * and smp_mb in walk_shadow_page_lockless_begin/end. 368 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 369 * 370 * There is already an smp_mb__after_atomic() before 371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 372 * barrier here. 373 */ 374 if (!kvm_arch_flush_remote_tlb(kvm) 375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 376 ++kvm->stat.generic.remote_tlb_flush; 377 } 378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 379 #endif 380 381 static void kvm_flush_shadow_all(struct kvm *kvm) 382 { 383 kvm_arch_flush_shadow_all(kvm); 384 kvm_arch_guest_memory_reclaimed(kvm); 385 } 386 387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 389 gfp_t gfp_flags) 390 { 391 gfp_flags |= mc->gfp_zero; 392 393 if (mc->kmem_cache) 394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 395 else 396 return (void *)__get_free_page(gfp_flags); 397 } 398 399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 400 { 401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 402 void *obj; 403 404 if (mc->nobjs >= min) 405 return 0; 406 407 if (unlikely(!mc->objects)) { 408 if (WARN_ON_ONCE(!capacity)) 409 return -EIO; 410 411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 412 if (!mc->objects) 413 return -ENOMEM; 414 415 mc->capacity = capacity; 416 } 417 418 /* It is illegal to request a different capacity across topups. */ 419 if (WARN_ON_ONCE(mc->capacity != capacity)) 420 return -EIO; 421 422 while (mc->nobjs < mc->capacity) { 423 obj = mmu_memory_cache_alloc_obj(mc, gfp); 424 if (!obj) 425 return mc->nobjs >= min ? 0 : -ENOMEM; 426 mc->objects[mc->nobjs++] = obj; 427 } 428 return 0; 429 } 430 431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 432 { 433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 434 } 435 436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 437 { 438 return mc->nobjs; 439 } 440 441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 442 { 443 while (mc->nobjs) { 444 if (mc->kmem_cache) 445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 446 else 447 free_page((unsigned long)mc->objects[--mc->nobjs]); 448 } 449 450 kvfree(mc->objects); 451 452 mc->objects = NULL; 453 mc->capacity = 0; 454 } 455 456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 457 { 458 void *p; 459 460 if (WARN_ON(!mc->nobjs)) 461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 462 else 463 p = mc->objects[--mc->nobjs]; 464 BUG_ON(!p); 465 return p; 466 } 467 #endif 468 469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 470 { 471 mutex_init(&vcpu->mutex); 472 vcpu->cpu = -1; 473 vcpu->kvm = kvm; 474 vcpu->vcpu_id = id; 475 vcpu->pid = NULL; 476 #ifndef __KVM_HAVE_ARCH_WQP 477 rcuwait_init(&vcpu->wait); 478 #endif 479 kvm_async_pf_vcpu_init(vcpu); 480 481 kvm_vcpu_set_in_spin_loop(vcpu, false); 482 kvm_vcpu_set_dy_eligible(vcpu, false); 483 vcpu->preempted = false; 484 vcpu->ready = false; 485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 486 vcpu->last_used_slot = NULL; 487 } 488 489 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 490 { 491 kvm_arch_vcpu_destroy(vcpu); 492 kvm_dirty_ring_free(&vcpu->dirty_ring); 493 494 /* 495 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 496 * the vcpu->pid pointer, and at destruction time all file descriptors 497 * are already gone. 498 */ 499 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 500 501 free_page((unsigned long)vcpu->run); 502 kmem_cache_free(kvm_vcpu_cache, vcpu); 503 } 504 505 void kvm_destroy_vcpus(struct kvm *kvm) 506 { 507 unsigned long i; 508 struct kvm_vcpu *vcpu; 509 510 kvm_for_each_vcpu(i, vcpu, kvm) { 511 kvm_vcpu_destroy(vcpu); 512 xa_erase(&kvm->vcpu_array, i); 513 } 514 515 atomic_set(&kvm->online_vcpus, 0); 516 } 517 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 518 519 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 520 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 521 { 522 return container_of(mn, struct kvm, mmu_notifier); 523 } 524 525 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 526 struct mm_struct *mm, 527 unsigned long start, unsigned long end) 528 { 529 struct kvm *kvm = mmu_notifier_to_kvm(mn); 530 int idx; 531 532 idx = srcu_read_lock(&kvm->srcu); 533 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 534 srcu_read_unlock(&kvm->srcu, idx); 535 } 536 537 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 538 539 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 540 unsigned long end); 541 542 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 543 544 struct kvm_hva_range { 545 unsigned long start; 546 unsigned long end; 547 pte_t pte; 548 hva_handler_t handler; 549 on_lock_fn_t on_lock; 550 on_unlock_fn_t on_unlock; 551 bool flush_on_ret; 552 bool may_block; 553 }; 554 555 /* 556 * Use a dedicated stub instead of NULL to indicate that there is no callback 557 * function/handler. The compiler technically can't guarantee that a real 558 * function will have a non-zero address, and so it will generate code to 559 * check for !NULL, whereas comparing against a stub will be elided at compile 560 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 561 */ 562 static void kvm_null_fn(void) 563 { 564 565 } 566 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 567 568 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 569 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 570 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 571 node; \ 572 node = interval_tree_iter_next(node, start, last)) \ 573 574 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 575 const struct kvm_hva_range *range) 576 { 577 bool ret = false, locked = false; 578 struct kvm_gfn_range gfn_range; 579 struct kvm_memory_slot *slot; 580 struct kvm_memslots *slots; 581 int i, idx; 582 583 if (WARN_ON_ONCE(range->end <= range->start)) 584 return 0; 585 586 /* A null handler is allowed if and only if on_lock() is provided. */ 587 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 588 IS_KVM_NULL_FN(range->handler))) 589 return 0; 590 591 idx = srcu_read_lock(&kvm->srcu); 592 593 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 594 struct interval_tree_node *node; 595 596 slots = __kvm_memslots(kvm, i); 597 kvm_for_each_memslot_in_hva_range(node, slots, 598 range->start, range->end - 1) { 599 unsigned long hva_start, hva_end; 600 601 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 602 hva_start = max(range->start, slot->userspace_addr); 603 hva_end = min(range->end, slot->userspace_addr + 604 (slot->npages << PAGE_SHIFT)); 605 606 /* 607 * To optimize for the likely case where the address 608 * range is covered by zero or one memslots, don't 609 * bother making these conditional (to avoid writes on 610 * the second or later invocation of the handler). 611 */ 612 gfn_range.pte = range->pte; 613 gfn_range.may_block = range->may_block; 614 615 /* 616 * {gfn(page) | page intersects with [hva_start, hva_end)} = 617 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 618 */ 619 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 620 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 621 gfn_range.slot = slot; 622 623 if (!locked) { 624 locked = true; 625 KVM_MMU_LOCK(kvm); 626 if (!IS_KVM_NULL_FN(range->on_lock)) 627 range->on_lock(kvm, range->start, range->end); 628 if (IS_KVM_NULL_FN(range->handler)) 629 break; 630 } 631 ret |= range->handler(kvm, &gfn_range); 632 } 633 } 634 635 if (range->flush_on_ret && ret) 636 kvm_flush_remote_tlbs(kvm); 637 638 if (locked) { 639 KVM_MMU_UNLOCK(kvm); 640 if (!IS_KVM_NULL_FN(range->on_unlock)) 641 range->on_unlock(kvm); 642 } 643 644 srcu_read_unlock(&kvm->srcu, idx); 645 646 /* The notifiers are averse to booleans. :-( */ 647 return (int)ret; 648 } 649 650 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 651 unsigned long start, 652 unsigned long end, 653 pte_t pte, 654 hva_handler_t handler) 655 { 656 struct kvm *kvm = mmu_notifier_to_kvm(mn); 657 const struct kvm_hva_range range = { 658 .start = start, 659 .end = end, 660 .pte = pte, 661 .handler = handler, 662 .on_lock = (void *)kvm_null_fn, 663 .on_unlock = (void *)kvm_null_fn, 664 .flush_on_ret = true, 665 .may_block = false, 666 }; 667 668 return __kvm_handle_hva_range(kvm, &range); 669 } 670 671 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 672 unsigned long start, 673 unsigned long end, 674 hva_handler_t handler) 675 { 676 struct kvm *kvm = mmu_notifier_to_kvm(mn); 677 const struct kvm_hva_range range = { 678 .start = start, 679 .end = end, 680 .pte = __pte(0), 681 .handler = handler, 682 .on_lock = (void *)kvm_null_fn, 683 .on_unlock = (void *)kvm_null_fn, 684 .flush_on_ret = false, 685 .may_block = false, 686 }; 687 688 return __kvm_handle_hva_range(kvm, &range); 689 } 690 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 691 struct mm_struct *mm, 692 unsigned long address, 693 pte_t pte) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 697 trace_kvm_set_spte_hva(address); 698 699 /* 700 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 701 * If mmu_notifier_count is zero, then no in-progress invalidations, 702 * including this one, found a relevant memslot at start(); rechecking 703 * memslots here is unnecessary. Note, a false positive (count elevated 704 * by a different invalidation) is sub-optimal but functionally ok. 705 */ 706 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 707 if (!READ_ONCE(kvm->mmu_notifier_count)) 708 return; 709 710 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 711 } 712 713 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 714 unsigned long end) 715 { 716 /* 717 * The count increase must become visible at unlock time as no 718 * spte can be established without taking the mmu_lock and 719 * count is also read inside the mmu_lock critical section. 720 */ 721 kvm->mmu_notifier_count++; 722 if (likely(kvm->mmu_notifier_count == 1)) { 723 kvm->mmu_notifier_range_start = start; 724 kvm->mmu_notifier_range_end = end; 725 } else { 726 /* 727 * Fully tracking multiple concurrent ranges has diminishing 728 * returns. Keep things simple and just find the minimal range 729 * which includes the current and new ranges. As there won't be 730 * enough information to subtract a range after its invalidate 731 * completes, any ranges invalidated concurrently will 732 * accumulate and persist until all outstanding invalidates 733 * complete. 734 */ 735 kvm->mmu_notifier_range_start = 736 min(kvm->mmu_notifier_range_start, start); 737 kvm->mmu_notifier_range_end = 738 max(kvm->mmu_notifier_range_end, end); 739 } 740 } 741 742 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 743 const struct mmu_notifier_range *range) 744 { 745 struct kvm *kvm = mmu_notifier_to_kvm(mn); 746 const struct kvm_hva_range hva_range = { 747 .start = range->start, 748 .end = range->end, 749 .pte = __pte(0), 750 .handler = kvm_unmap_gfn_range, 751 .on_lock = kvm_inc_notifier_count, 752 .on_unlock = kvm_arch_guest_memory_reclaimed, 753 .flush_on_ret = true, 754 .may_block = mmu_notifier_range_blockable(range), 755 }; 756 757 trace_kvm_unmap_hva_range(range->start, range->end); 758 759 /* 760 * Prevent memslot modification between range_start() and range_end() 761 * so that conditionally locking provides the same result in both 762 * functions. Without that guarantee, the mmu_notifier_count 763 * adjustments will be imbalanced. 764 * 765 * Pairs with the decrement in range_end(). 766 */ 767 spin_lock(&kvm->mn_invalidate_lock); 768 kvm->mn_active_invalidate_count++; 769 spin_unlock(&kvm->mn_invalidate_lock); 770 771 /* 772 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 773 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 774 * each cache's lock. There are relatively few caches in existence at 775 * any given time, and the caches themselves can check for hva overlap, 776 * i.e. don't need to rely on memslot overlap checks for performance. 777 * Because this runs without holding mmu_lock, the pfn caches must use 778 * mn_active_invalidate_count (see above) instead of mmu_notifier_count. 779 */ 780 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 781 hva_range.may_block); 782 783 __kvm_handle_hva_range(kvm, &hva_range); 784 785 return 0; 786 } 787 788 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 789 unsigned long end) 790 { 791 /* 792 * This sequence increase will notify the kvm page fault that 793 * the page that is going to be mapped in the spte could have 794 * been freed. 795 */ 796 kvm->mmu_notifier_seq++; 797 smp_wmb(); 798 /* 799 * The above sequence increase must be visible before the 800 * below count decrease, which is ensured by the smp_wmb above 801 * in conjunction with the smp_rmb in mmu_notifier_retry(). 802 */ 803 kvm->mmu_notifier_count--; 804 } 805 806 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 807 const struct mmu_notifier_range *range) 808 { 809 struct kvm *kvm = mmu_notifier_to_kvm(mn); 810 const struct kvm_hva_range hva_range = { 811 .start = range->start, 812 .end = range->end, 813 .pte = __pte(0), 814 .handler = (void *)kvm_null_fn, 815 .on_lock = kvm_dec_notifier_count, 816 .on_unlock = (void *)kvm_null_fn, 817 .flush_on_ret = false, 818 .may_block = mmu_notifier_range_blockable(range), 819 }; 820 bool wake; 821 822 __kvm_handle_hva_range(kvm, &hva_range); 823 824 /* Pairs with the increment in range_start(). */ 825 spin_lock(&kvm->mn_invalidate_lock); 826 wake = (--kvm->mn_active_invalidate_count == 0); 827 spin_unlock(&kvm->mn_invalidate_lock); 828 829 /* 830 * There can only be one waiter, since the wait happens under 831 * slots_lock. 832 */ 833 if (wake) 834 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 835 836 BUG_ON(kvm->mmu_notifier_count < 0); 837 } 838 839 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 840 struct mm_struct *mm, 841 unsigned long start, 842 unsigned long end) 843 { 844 trace_kvm_age_hva(start, end); 845 846 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 847 } 848 849 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 850 struct mm_struct *mm, 851 unsigned long start, 852 unsigned long end) 853 { 854 trace_kvm_age_hva(start, end); 855 856 /* 857 * Even though we do not flush TLB, this will still adversely 858 * affect performance on pre-Haswell Intel EPT, where there is 859 * no EPT Access Bit to clear so that we have to tear down EPT 860 * tables instead. If we find this unacceptable, we can always 861 * add a parameter to kvm_age_hva so that it effectively doesn't 862 * do anything on clear_young. 863 * 864 * Also note that currently we never issue secondary TLB flushes 865 * from clear_young, leaving this job up to the regular system 866 * cadence. If we find this inaccurate, we might come up with a 867 * more sophisticated heuristic later. 868 */ 869 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 870 } 871 872 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 873 struct mm_struct *mm, 874 unsigned long address) 875 { 876 trace_kvm_test_age_hva(address); 877 878 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 879 kvm_test_age_gfn); 880 } 881 882 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 883 struct mm_struct *mm) 884 { 885 struct kvm *kvm = mmu_notifier_to_kvm(mn); 886 int idx; 887 888 idx = srcu_read_lock(&kvm->srcu); 889 kvm_flush_shadow_all(kvm); 890 srcu_read_unlock(&kvm->srcu, idx); 891 } 892 893 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 894 .invalidate_range = kvm_mmu_notifier_invalidate_range, 895 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 896 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 897 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 898 .clear_young = kvm_mmu_notifier_clear_young, 899 .test_young = kvm_mmu_notifier_test_young, 900 .change_pte = kvm_mmu_notifier_change_pte, 901 .release = kvm_mmu_notifier_release, 902 }; 903 904 static int kvm_init_mmu_notifier(struct kvm *kvm) 905 { 906 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 907 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 908 } 909 910 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 911 912 static int kvm_init_mmu_notifier(struct kvm *kvm) 913 { 914 return 0; 915 } 916 917 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 918 919 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 920 static int kvm_pm_notifier_call(struct notifier_block *bl, 921 unsigned long state, 922 void *unused) 923 { 924 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 925 926 return kvm_arch_pm_notifier(kvm, state); 927 } 928 929 static void kvm_init_pm_notifier(struct kvm *kvm) 930 { 931 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 932 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 933 kvm->pm_notifier.priority = INT_MAX; 934 register_pm_notifier(&kvm->pm_notifier); 935 } 936 937 static void kvm_destroy_pm_notifier(struct kvm *kvm) 938 { 939 unregister_pm_notifier(&kvm->pm_notifier); 940 } 941 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 942 static void kvm_init_pm_notifier(struct kvm *kvm) 943 { 944 } 945 946 static void kvm_destroy_pm_notifier(struct kvm *kvm) 947 { 948 } 949 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 950 951 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 952 { 953 if (!memslot->dirty_bitmap) 954 return; 955 956 kvfree(memslot->dirty_bitmap); 957 memslot->dirty_bitmap = NULL; 958 } 959 960 /* This does not remove the slot from struct kvm_memslots data structures */ 961 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 962 { 963 kvm_destroy_dirty_bitmap(slot); 964 965 kvm_arch_free_memslot(kvm, slot); 966 967 kfree(slot); 968 } 969 970 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 971 { 972 struct hlist_node *idnode; 973 struct kvm_memory_slot *memslot; 974 int bkt; 975 976 /* 977 * The same memslot objects live in both active and inactive sets, 978 * arbitrarily free using index '1' so the second invocation of this 979 * function isn't operating over a structure with dangling pointers 980 * (even though this function isn't actually touching them). 981 */ 982 if (!slots->node_idx) 983 return; 984 985 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 986 kvm_free_memslot(kvm, memslot); 987 } 988 989 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 990 { 991 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 992 case KVM_STATS_TYPE_INSTANT: 993 return 0444; 994 case KVM_STATS_TYPE_CUMULATIVE: 995 case KVM_STATS_TYPE_PEAK: 996 default: 997 return 0644; 998 } 999 } 1000 1001 1002 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1003 { 1004 int i; 1005 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1006 kvm_vcpu_stats_header.num_desc; 1007 1008 if (IS_ERR(kvm->debugfs_dentry)) 1009 return; 1010 1011 debugfs_remove_recursive(kvm->debugfs_dentry); 1012 1013 if (kvm->debugfs_stat_data) { 1014 for (i = 0; i < kvm_debugfs_num_entries; i++) 1015 kfree(kvm->debugfs_stat_data[i]); 1016 kfree(kvm->debugfs_stat_data); 1017 } 1018 } 1019 1020 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 1021 { 1022 static DEFINE_MUTEX(kvm_debugfs_lock); 1023 struct dentry *dent; 1024 char dir_name[ITOA_MAX_LEN * 2]; 1025 struct kvm_stat_data *stat_data; 1026 const struct _kvm_stats_desc *pdesc; 1027 int i, ret; 1028 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1029 kvm_vcpu_stats_header.num_desc; 1030 1031 if (!debugfs_initialized()) 1032 return 0; 1033 1034 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 1035 mutex_lock(&kvm_debugfs_lock); 1036 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1037 if (dent) { 1038 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1039 dput(dent); 1040 mutex_unlock(&kvm_debugfs_lock); 1041 return 0; 1042 } 1043 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1044 mutex_unlock(&kvm_debugfs_lock); 1045 if (IS_ERR(dent)) 1046 return 0; 1047 1048 kvm->debugfs_dentry = dent; 1049 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1050 sizeof(*kvm->debugfs_stat_data), 1051 GFP_KERNEL_ACCOUNT); 1052 if (!kvm->debugfs_stat_data) 1053 return -ENOMEM; 1054 1055 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1056 pdesc = &kvm_vm_stats_desc[i]; 1057 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1058 if (!stat_data) 1059 return -ENOMEM; 1060 1061 stat_data->kvm = kvm; 1062 stat_data->desc = pdesc; 1063 stat_data->kind = KVM_STAT_VM; 1064 kvm->debugfs_stat_data[i] = stat_data; 1065 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1066 kvm->debugfs_dentry, stat_data, 1067 &stat_fops_per_vm); 1068 } 1069 1070 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1071 pdesc = &kvm_vcpu_stats_desc[i]; 1072 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1073 if (!stat_data) 1074 return -ENOMEM; 1075 1076 stat_data->kvm = kvm; 1077 stat_data->desc = pdesc; 1078 stat_data->kind = KVM_STAT_VCPU; 1079 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1080 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1081 kvm->debugfs_dentry, stat_data, 1082 &stat_fops_per_vm); 1083 } 1084 1085 ret = kvm_arch_create_vm_debugfs(kvm); 1086 if (ret) { 1087 kvm_destroy_vm_debugfs(kvm); 1088 return i; 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * Called after the VM is otherwise initialized, but just before adding it to 1096 * the vm_list. 1097 */ 1098 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1099 { 1100 return 0; 1101 } 1102 1103 /* 1104 * Called just after removing the VM from the vm_list, but before doing any 1105 * other destruction. 1106 */ 1107 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1108 { 1109 } 1110 1111 /* 1112 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1113 * be setup already, so we can create arch-specific debugfs entries under it. 1114 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1115 * a per-arch destroy interface is not needed. 1116 */ 1117 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1118 { 1119 return 0; 1120 } 1121 1122 static struct kvm *kvm_create_vm(unsigned long type) 1123 { 1124 struct kvm *kvm = kvm_arch_alloc_vm(); 1125 struct kvm_memslots *slots; 1126 int r = -ENOMEM; 1127 int i, j; 1128 1129 if (!kvm) 1130 return ERR_PTR(-ENOMEM); 1131 1132 KVM_MMU_LOCK_INIT(kvm); 1133 mmgrab(current->mm); 1134 kvm->mm = current->mm; 1135 kvm_eventfd_init(kvm); 1136 mutex_init(&kvm->lock); 1137 mutex_init(&kvm->irq_lock); 1138 mutex_init(&kvm->slots_lock); 1139 mutex_init(&kvm->slots_arch_lock); 1140 spin_lock_init(&kvm->mn_invalidate_lock); 1141 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1142 xa_init(&kvm->vcpu_array); 1143 1144 INIT_LIST_HEAD(&kvm->gpc_list); 1145 spin_lock_init(&kvm->gpc_lock); 1146 1147 INIT_LIST_HEAD(&kvm->devices); 1148 kvm->max_vcpus = KVM_MAX_VCPUS; 1149 1150 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1151 1152 /* 1153 * Force subsequent debugfs file creations to fail if the VM directory 1154 * is not created (by kvm_create_vm_debugfs()). 1155 */ 1156 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1157 1158 if (init_srcu_struct(&kvm->srcu)) 1159 goto out_err_no_srcu; 1160 if (init_srcu_struct(&kvm->irq_srcu)) 1161 goto out_err_no_irq_srcu; 1162 1163 refcount_set(&kvm->users_count, 1); 1164 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1165 for (j = 0; j < 2; j++) { 1166 slots = &kvm->__memslots[i][j]; 1167 1168 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1169 slots->hva_tree = RB_ROOT_CACHED; 1170 slots->gfn_tree = RB_ROOT; 1171 hash_init(slots->id_hash); 1172 slots->node_idx = j; 1173 1174 /* Generations must be different for each address space. */ 1175 slots->generation = i; 1176 } 1177 1178 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1179 } 1180 1181 for (i = 0; i < KVM_NR_BUSES; i++) { 1182 rcu_assign_pointer(kvm->buses[i], 1183 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1184 if (!kvm->buses[i]) 1185 goto out_err_no_arch_destroy_vm; 1186 } 1187 1188 kvm->max_halt_poll_ns = halt_poll_ns; 1189 1190 r = kvm_arch_init_vm(kvm, type); 1191 if (r) 1192 goto out_err_no_arch_destroy_vm; 1193 1194 r = hardware_enable_all(); 1195 if (r) 1196 goto out_err_no_disable; 1197 1198 #ifdef CONFIG_HAVE_KVM_IRQFD 1199 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1200 #endif 1201 1202 r = kvm_init_mmu_notifier(kvm); 1203 if (r) 1204 goto out_err_no_mmu_notifier; 1205 1206 r = kvm_arch_post_init_vm(kvm); 1207 if (r) 1208 goto out_err; 1209 1210 mutex_lock(&kvm_lock); 1211 list_add(&kvm->vm_list, &vm_list); 1212 mutex_unlock(&kvm_lock); 1213 1214 preempt_notifier_inc(); 1215 kvm_init_pm_notifier(kvm); 1216 1217 /* 1218 * When the fd passed to this ioctl() is opened it pins the module, 1219 * but try_module_get() also prevents getting a reference if the module 1220 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait"). 1221 */ 1222 if (!try_module_get(kvm_chardev_ops.owner)) { 1223 r = -ENODEV; 1224 goto out_err; 1225 } 1226 1227 return kvm; 1228 1229 out_err: 1230 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1231 if (kvm->mmu_notifier.ops) 1232 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1233 #endif 1234 out_err_no_mmu_notifier: 1235 hardware_disable_all(); 1236 out_err_no_disable: 1237 kvm_arch_destroy_vm(kvm); 1238 out_err_no_arch_destroy_vm: 1239 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1240 for (i = 0; i < KVM_NR_BUSES; i++) 1241 kfree(kvm_get_bus(kvm, i)); 1242 cleanup_srcu_struct(&kvm->irq_srcu); 1243 out_err_no_irq_srcu: 1244 cleanup_srcu_struct(&kvm->srcu); 1245 out_err_no_srcu: 1246 kvm_arch_free_vm(kvm); 1247 mmdrop(current->mm); 1248 return ERR_PTR(r); 1249 } 1250 1251 static void kvm_destroy_devices(struct kvm *kvm) 1252 { 1253 struct kvm_device *dev, *tmp; 1254 1255 /* 1256 * We do not need to take the kvm->lock here, because nobody else 1257 * has a reference to the struct kvm at this point and therefore 1258 * cannot access the devices list anyhow. 1259 */ 1260 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1261 list_del(&dev->vm_node); 1262 dev->ops->destroy(dev); 1263 } 1264 } 1265 1266 static void kvm_destroy_vm(struct kvm *kvm) 1267 { 1268 int i; 1269 struct mm_struct *mm = kvm->mm; 1270 1271 kvm_destroy_pm_notifier(kvm); 1272 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1273 kvm_destroy_vm_debugfs(kvm); 1274 kvm_arch_sync_events(kvm); 1275 mutex_lock(&kvm_lock); 1276 list_del(&kvm->vm_list); 1277 mutex_unlock(&kvm_lock); 1278 kvm_arch_pre_destroy_vm(kvm); 1279 1280 kvm_free_irq_routing(kvm); 1281 for (i = 0; i < KVM_NR_BUSES; i++) { 1282 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1283 1284 if (bus) 1285 kvm_io_bus_destroy(bus); 1286 kvm->buses[i] = NULL; 1287 } 1288 kvm_coalesced_mmio_free(kvm); 1289 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1290 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1291 /* 1292 * At this point, pending calls to invalidate_range_start() 1293 * have completed but no more MMU notifiers will run, so 1294 * mn_active_invalidate_count may remain unbalanced. 1295 * No threads can be waiting in install_new_memslots as the 1296 * last reference on KVM has been dropped, but freeing 1297 * memslots would deadlock without this manual intervention. 1298 */ 1299 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1300 kvm->mn_active_invalidate_count = 0; 1301 #else 1302 kvm_flush_shadow_all(kvm); 1303 #endif 1304 kvm_arch_destroy_vm(kvm); 1305 kvm_destroy_devices(kvm); 1306 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1307 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1308 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1309 } 1310 cleanup_srcu_struct(&kvm->irq_srcu); 1311 cleanup_srcu_struct(&kvm->srcu); 1312 kvm_arch_free_vm(kvm); 1313 preempt_notifier_dec(); 1314 hardware_disable_all(); 1315 mmdrop(mm); 1316 module_put(kvm_chardev_ops.owner); 1317 } 1318 1319 void kvm_get_kvm(struct kvm *kvm) 1320 { 1321 refcount_inc(&kvm->users_count); 1322 } 1323 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1324 1325 /* 1326 * Make sure the vm is not during destruction, which is a safe version of 1327 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1328 */ 1329 bool kvm_get_kvm_safe(struct kvm *kvm) 1330 { 1331 return refcount_inc_not_zero(&kvm->users_count); 1332 } 1333 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1334 1335 void kvm_put_kvm(struct kvm *kvm) 1336 { 1337 if (refcount_dec_and_test(&kvm->users_count)) 1338 kvm_destroy_vm(kvm); 1339 } 1340 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1341 1342 /* 1343 * Used to put a reference that was taken on behalf of an object associated 1344 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1345 * of the new file descriptor fails and the reference cannot be transferred to 1346 * its final owner. In such cases, the caller is still actively using @kvm and 1347 * will fail miserably if the refcount unexpectedly hits zero. 1348 */ 1349 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1350 { 1351 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1352 } 1353 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1354 1355 static int kvm_vm_release(struct inode *inode, struct file *filp) 1356 { 1357 struct kvm *kvm = filp->private_data; 1358 1359 kvm_irqfd_release(kvm); 1360 1361 kvm_put_kvm(kvm); 1362 return 0; 1363 } 1364 1365 /* 1366 * Allocation size is twice as large as the actual dirty bitmap size. 1367 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1368 */ 1369 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1370 { 1371 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1372 1373 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1374 if (!memslot->dirty_bitmap) 1375 return -ENOMEM; 1376 1377 return 0; 1378 } 1379 1380 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1381 { 1382 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1383 int node_idx_inactive = active->node_idx ^ 1; 1384 1385 return &kvm->__memslots[as_id][node_idx_inactive]; 1386 } 1387 1388 /* 1389 * Helper to get the address space ID when one of memslot pointers may be NULL. 1390 * This also serves as a sanity that at least one of the pointers is non-NULL, 1391 * and that their address space IDs don't diverge. 1392 */ 1393 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1394 struct kvm_memory_slot *b) 1395 { 1396 if (WARN_ON_ONCE(!a && !b)) 1397 return 0; 1398 1399 if (!a) 1400 return b->as_id; 1401 if (!b) 1402 return a->as_id; 1403 1404 WARN_ON_ONCE(a->as_id != b->as_id); 1405 return a->as_id; 1406 } 1407 1408 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1409 struct kvm_memory_slot *slot) 1410 { 1411 struct rb_root *gfn_tree = &slots->gfn_tree; 1412 struct rb_node **node, *parent; 1413 int idx = slots->node_idx; 1414 1415 parent = NULL; 1416 for (node = &gfn_tree->rb_node; *node; ) { 1417 struct kvm_memory_slot *tmp; 1418 1419 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1420 parent = *node; 1421 if (slot->base_gfn < tmp->base_gfn) 1422 node = &(*node)->rb_left; 1423 else if (slot->base_gfn > tmp->base_gfn) 1424 node = &(*node)->rb_right; 1425 else 1426 BUG(); 1427 } 1428 1429 rb_link_node(&slot->gfn_node[idx], parent, node); 1430 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1431 } 1432 1433 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1434 struct kvm_memory_slot *slot) 1435 { 1436 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1437 } 1438 1439 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1440 struct kvm_memory_slot *old, 1441 struct kvm_memory_slot *new) 1442 { 1443 int idx = slots->node_idx; 1444 1445 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1446 1447 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1448 &slots->gfn_tree); 1449 } 1450 1451 /* 1452 * Replace @old with @new in the inactive memslots. 1453 * 1454 * With NULL @old this simply adds @new. 1455 * With NULL @new this simply removes @old. 1456 * 1457 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1458 * appropriately. 1459 */ 1460 static void kvm_replace_memslot(struct kvm *kvm, 1461 struct kvm_memory_slot *old, 1462 struct kvm_memory_slot *new) 1463 { 1464 int as_id = kvm_memslots_get_as_id(old, new); 1465 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1466 int idx = slots->node_idx; 1467 1468 if (old) { 1469 hash_del(&old->id_node[idx]); 1470 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1471 1472 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1473 atomic_long_set(&slots->last_used_slot, (long)new); 1474 1475 if (!new) { 1476 kvm_erase_gfn_node(slots, old); 1477 return; 1478 } 1479 } 1480 1481 /* 1482 * Initialize @new's hva range. Do this even when replacing an @old 1483 * slot, kvm_copy_memslot() deliberately does not touch node data. 1484 */ 1485 new->hva_node[idx].start = new->userspace_addr; 1486 new->hva_node[idx].last = new->userspace_addr + 1487 (new->npages << PAGE_SHIFT) - 1; 1488 1489 /* 1490 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1491 * hva_node needs to be swapped with remove+insert even though hva can't 1492 * change when replacing an existing slot. 1493 */ 1494 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1495 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1496 1497 /* 1498 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1499 * switch the node in the gfn tree instead of removing the old and 1500 * inserting the new as two separate operations. Replacement is a 1501 * single O(1) operation versus two O(log(n)) operations for 1502 * remove+insert. 1503 */ 1504 if (old && old->base_gfn == new->base_gfn) { 1505 kvm_replace_gfn_node(slots, old, new); 1506 } else { 1507 if (old) 1508 kvm_erase_gfn_node(slots, old); 1509 kvm_insert_gfn_node(slots, new); 1510 } 1511 } 1512 1513 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1514 { 1515 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1516 1517 #ifdef __KVM_HAVE_READONLY_MEM 1518 valid_flags |= KVM_MEM_READONLY; 1519 #endif 1520 1521 if (mem->flags & ~valid_flags) 1522 return -EINVAL; 1523 1524 return 0; 1525 } 1526 1527 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1528 { 1529 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1530 1531 /* Grab the generation from the activate memslots. */ 1532 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1533 1534 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1535 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1536 1537 /* 1538 * Do not store the new memslots while there are invalidations in 1539 * progress, otherwise the locking in invalidate_range_start and 1540 * invalidate_range_end will be unbalanced. 1541 */ 1542 spin_lock(&kvm->mn_invalidate_lock); 1543 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1544 while (kvm->mn_active_invalidate_count) { 1545 set_current_state(TASK_UNINTERRUPTIBLE); 1546 spin_unlock(&kvm->mn_invalidate_lock); 1547 schedule(); 1548 spin_lock(&kvm->mn_invalidate_lock); 1549 } 1550 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1551 rcu_assign_pointer(kvm->memslots[as_id], slots); 1552 spin_unlock(&kvm->mn_invalidate_lock); 1553 1554 /* 1555 * Acquired in kvm_set_memslot. Must be released before synchronize 1556 * SRCU below in order to avoid deadlock with another thread 1557 * acquiring the slots_arch_lock in an srcu critical section. 1558 */ 1559 mutex_unlock(&kvm->slots_arch_lock); 1560 1561 synchronize_srcu_expedited(&kvm->srcu); 1562 1563 /* 1564 * Increment the new memslot generation a second time, dropping the 1565 * update in-progress flag and incrementing the generation based on 1566 * the number of address spaces. This provides a unique and easily 1567 * identifiable generation number while the memslots are in flux. 1568 */ 1569 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1570 1571 /* 1572 * Generations must be unique even across address spaces. We do not need 1573 * a global counter for that, instead the generation space is evenly split 1574 * across address spaces. For example, with two address spaces, address 1575 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1576 * use generations 1, 3, 5, ... 1577 */ 1578 gen += KVM_ADDRESS_SPACE_NUM; 1579 1580 kvm_arch_memslots_updated(kvm, gen); 1581 1582 slots->generation = gen; 1583 } 1584 1585 static int kvm_prepare_memory_region(struct kvm *kvm, 1586 const struct kvm_memory_slot *old, 1587 struct kvm_memory_slot *new, 1588 enum kvm_mr_change change) 1589 { 1590 int r; 1591 1592 /* 1593 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1594 * will be freed on "commit". If logging is enabled in both old and 1595 * new, reuse the existing bitmap. If logging is enabled only in the 1596 * new and KVM isn't using a ring buffer, allocate and initialize a 1597 * new bitmap. 1598 */ 1599 if (change != KVM_MR_DELETE) { 1600 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1601 new->dirty_bitmap = NULL; 1602 else if (old && old->dirty_bitmap) 1603 new->dirty_bitmap = old->dirty_bitmap; 1604 else if (!kvm->dirty_ring_size) { 1605 r = kvm_alloc_dirty_bitmap(new); 1606 if (r) 1607 return r; 1608 1609 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1610 bitmap_set(new->dirty_bitmap, 0, new->npages); 1611 } 1612 } 1613 1614 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1615 1616 /* Free the bitmap on failure if it was allocated above. */ 1617 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1618 kvm_destroy_dirty_bitmap(new); 1619 1620 return r; 1621 } 1622 1623 static void kvm_commit_memory_region(struct kvm *kvm, 1624 struct kvm_memory_slot *old, 1625 const struct kvm_memory_slot *new, 1626 enum kvm_mr_change change) 1627 { 1628 /* 1629 * Update the total number of memslot pages before calling the arch 1630 * hook so that architectures can consume the result directly. 1631 */ 1632 if (change == KVM_MR_DELETE) 1633 kvm->nr_memslot_pages -= old->npages; 1634 else if (change == KVM_MR_CREATE) 1635 kvm->nr_memslot_pages += new->npages; 1636 1637 kvm_arch_commit_memory_region(kvm, old, new, change); 1638 1639 switch (change) { 1640 case KVM_MR_CREATE: 1641 /* Nothing more to do. */ 1642 break; 1643 case KVM_MR_DELETE: 1644 /* Free the old memslot and all its metadata. */ 1645 kvm_free_memslot(kvm, old); 1646 break; 1647 case KVM_MR_MOVE: 1648 case KVM_MR_FLAGS_ONLY: 1649 /* 1650 * Free the dirty bitmap as needed; the below check encompasses 1651 * both the flags and whether a ring buffer is being used) 1652 */ 1653 if (old->dirty_bitmap && !new->dirty_bitmap) 1654 kvm_destroy_dirty_bitmap(old); 1655 1656 /* 1657 * The final quirk. Free the detached, old slot, but only its 1658 * memory, not any metadata. Metadata, including arch specific 1659 * data, may be reused by @new. 1660 */ 1661 kfree(old); 1662 break; 1663 default: 1664 BUG(); 1665 } 1666 } 1667 1668 /* 1669 * Activate @new, which must be installed in the inactive slots by the caller, 1670 * by swapping the active slots and then propagating @new to @old once @old is 1671 * unreachable and can be safely modified. 1672 * 1673 * With NULL @old this simply adds @new to @active (while swapping the sets). 1674 * With NULL @new this simply removes @old from @active and frees it 1675 * (while also swapping the sets). 1676 */ 1677 static void kvm_activate_memslot(struct kvm *kvm, 1678 struct kvm_memory_slot *old, 1679 struct kvm_memory_slot *new) 1680 { 1681 int as_id = kvm_memslots_get_as_id(old, new); 1682 1683 kvm_swap_active_memslots(kvm, as_id); 1684 1685 /* Propagate the new memslot to the now inactive memslots. */ 1686 kvm_replace_memslot(kvm, old, new); 1687 } 1688 1689 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1690 const struct kvm_memory_slot *src) 1691 { 1692 dest->base_gfn = src->base_gfn; 1693 dest->npages = src->npages; 1694 dest->dirty_bitmap = src->dirty_bitmap; 1695 dest->arch = src->arch; 1696 dest->userspace_addr = src->userspace_addr; 1697 dest->flags = src->flags; 1698 dest->id = src->id; 1699 dest->as_id = src->as_id; 1700 } 1701 1702 static void kvm_invalidate_memslot(struct kvm *kvm, 1703 struct kvm_memory_slot *old, 1704 struct kvm_memory_slot *invalid_slot) 1705 { 1706 /* 1707 * Mark the current slot INVALID. As with all memslot modifications, 1708 * this must be done on an unreachable slot to avoid modifying the 1709 * current slot in the active tree. 1710 */ 1711 kvm_copy_memslot(invalid_slot, old); 1712 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1713 kvm_replace_memslot(kvm, old, invalid_slot); 1714 1715 /* 1716 * Activate the slot that is now marked INVALID, but don't propagate 1717 * the slot to the now inactive slots. The slot is either going to be 1718 * deleted or recreated as a new slot. 1719 */ 1720 kvm_swap_active_memslots(kvm, old->as_id); 1721 1722 /* 1723 * From this point no new shadow pages pointing to a deleted, or moved, 1724 * memslot will be created. Validation of sp->gfn happens in: 1725 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1726 * - kvm_is_visible_gfn (mmu_check_root) 1727 */ 1728 kvm_arch_flush_shadow_memslot(kvm, old); 1729 kvm_arch_guest_memory_reclaimed(kvm); 1730 1731 /* Was released by kvm_swap_active_memslots, reacquire. */ 1732 mutex_lock(&kvm->slots_arch_lock); 1733 1734 /* 1735 * Copy the arch-specific field of the newly-installed slot back to the 1736 * old slot as the arch data could have changed between releasing 1737 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1738 * above. Writers are required to retrieve memslots *after* acquiring 1739 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1740 */ 1741 old->arch = invalid_slot->arch; 1742 } 1743 1744 static void kvm_create_memslot(struct kvm *kvm, 1745 struct kvm_memory_slot *new) 1746 { 1747 /* Add the new memslot to the inactive set and activate. */ 1748 kvm_replace_memslot(kvm, NULL, new); 1749 kvm_activate_memslot(kvm, NULL, new); 1750 } 1751 1752 static void kvm_delete_memslot(struct kvm *kvm, 1753 struct kvm_memory_slot *old, 1754 struct kvm_memory_slot *invalid_slot) 1755 { 1756 /* 1757 * Remove the old memslot (in the inactive memslots) by passing NULL as 1758 * the "new" slot, and for the invalid version in the active slots. 1759 */ 1760 kvm_replace_memslot(kvm, old, NULL); 1761 kvm_activate_memslot(kvm, invalid_slot, NULL); 1762 } 1763 1764 static void kvm_move_memslot(struct kvm *kvm, 1765 struct kvm_memory_slot *old, 1766 struct kvm_memory_slot *new, 1767 struct kvm_memory_slot *invalid_slot) 1768 { 1769 /* 1770 * Replace the old memslot in the inactive slots, and then swap slots 1771 * and replace the current INVALID with the new as well. 1772 */ 1773 kvm_replace_memslot(kvm, old, new); 1774 kvm_activate_memslot(kvm, invalid_slot, new); 1775 } 1776 1777 static void kvm_update_flags_memslot(struct kvm *kvm, 1778 struct kvm_memory_slot *old, 1779 struct kvm_memory_slot *new) 1780 { 1781 /* 1782 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1783 * an intermediate step. Instead, the old memslot is simply replaced 1784 * with a new, updated copy in both memslot sets. 1785 */ 1786 kvm_replace_memslot(kvm, old, new); 1787 kvm_activate_memslot(kvm, old, new); 1788 } 1789 1790 static int kvm_set_memslot(struct kvm *kvm, 1791 struct kvm_memory_slot *old, 1792 struct kvm_memory_slot *new, 1793 enum kvm_mr_change change) 1794 { 1795 struct kvm_memory_slot *invalid_slot; 1796 int r; 1797 1798 /* 1799 * Released in kvm_swap_active_memslots. 1800 * 1801 * Must be held from before the current memslots are copied until 1802 * after the new memslots are installed with rcu_assign_pointer, 1803 * then released before the synchronize srcu in kvm_swap_active_memslots. 1804 * 1805 * When modifying memslots outside of the slots_lock, must be held 1806 * before reading the pointer to the current memslots until after all 1807 * changes to those memslots are complete. 1808 * 1809 * These rules ensure that installing new memslots does not lose 1810 * changes made to the previous memslots. 1811 */ 1812 mutex_lock(&kvm->slots_arch_lock); 1813 1814 /* 1815 * Invalidate the old slot if it's being deleted or moved. This is 1816 * done prior to actually deleting/moving the memslot to allow vCPUs to 1817 * continue running by ensuring there are no mappings or shadow pages 1818 * for the memslot when it is deleted/moved. Without pre-invalidation 1819 * (and without a lock), a window would exist between effecting the 1820 * delete/move and committing the changes in arch code where KVM or a 1821 * guest could access a non-existent memslot. 1822 * 1823 * Modifications are done on a temporary, unreachable slot. The old 1824 * slot needs to be preserved in case a later step fails and the 1825 * invalidation needs to be reverted. 1826 */ 1827 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1828 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1829 if (!invalid_slot) { 1830 mutex_unlock(&kvm->slots_arch_lock); 1831 return -ENOMEM; 1832 } 1833 kvm_invalidate_memslot(kvm, old, invalid_slot); 1834 } 1835 1836 r = kvm_prepare_memory_region(kvm, old, new, change); 1837 if (r) { 1838 /* 1839 * For DELETE/MOVE, revert the above INVALID change. No 1840 * modifications required since the original slot was preserved 1841 * in the inactive slots. Changing the active memslots also 1842 * release slots_arch_lock. 1843 */ 1844 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1845 kvm_activate_memslot(kvm, invalid_slot, old); 1846 kfree(invalid_slot); 1847 } else { 1848 mutex_unlock(&kvm->slots_arch_lock); 1849 } 1850 return r; 1851 } 1852 1853 /* 1854 * For DELETE and MOVE, the working slot is now active as the INVALID 1855 * version of the old slot. MOVE is particularly special as it reuses 1856 * the old slot and returns a copy of the old slot (in working_slot). 1857 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1858 * old slot is detached but otherwise preserved. 1859 */ 1860 if (change == KVM_MR_CREATE) 1861 kvm_create_memslot(kvm, new); 1862 else if (change == KVM_MR_DELETE) 1863 kvm_delete_memslot(kvm, old, invalid_slot); 1864 else if (change == KVM_MR_MOVE) 1865 kvm_move_memslot(kvm, old, new, invalid_slot); 1866 else if (change == KVM_MR_FLAGS_ONLY) 1867 kvm_update_flags_memslot(kvm, old, new); 1868 else 1869 BUG(); 1870 1871 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1872 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1873 kfree(invalid_slot); 1874 1875 /* 1876 * No need to refresh new->arch, changes after dropping slots_arch_lock 1877 * will directly hit the final, active memslot. Architectures are 1878 * responsible for knowing that new->arch may be stale. 1879 */ 1880 kvm_commit_memory_region(kvm, old, new, change); 1881 1882 return 0; 1883 } 1884 1885 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1886 gfn_t start, gfn_t end) 1887 { 1888 struct kvm_memslot_iter iter; 1889 1890 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1891 if (iter.slot->id != id) 1892 return true; 1893 } 1894 1895 return false; 1896 } 1897 1898 /* 1899 * Allocate some memory and give it an address in the guest physical address 1900 * space. 1901 * 1902 * Discontiguous memory is allowed, mostly for framebuffers. 1903 * 1904 * Must be called holding kvm->slots_lock for write. 1905 */ 1906 int __kvm_set_memory_region(struct kvm *kvm, 1907 const struct kvm_userspace_memory_region *mem) 1908 { 1909 struct kvm_memory_slot *old, *new; 1910 struct kvm_memslots *slots; 1911 enum kvm_mr_change change; 1912 unsigned long npages; 1913 gfn_t base_gfn; 1914 int as_id, id; 1915 int r; 1916 1917 r = check_memory_region_flags(mem); 1918 if (r) 1919 return r; 1920 1921 as_id = mem->slot >> 16; 1922 id = (u16)mem->slot; 1923 1924 /* General sanity checks */ 1925 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1926 (mem->memory_size != (unsigned long)mem->memory_size)) 1927 return -EINVAL; 1928 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1929 return -EINVAL; 1930 /* We can read the guest memory with __xxx_user() later on. */ 1931 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1932 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1933 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1934 mem->memory_size)) 1935 return -EINVAL; 1936 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1937 return -EINVAL; 1938 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1939 return -EINVAL; 1940 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1941 return -EINVAL; 1942 1943 slots = __kvm_memslots(kvm, as_id); 1944 1945 /* 1946 * Note, the old memslot (and the pointer itself!) may be invalidated 1947 * and/or destroyed by kvm_set_memslot(). 1948 */ 1949 old = id_to_memslot(slots, id); 1950 1951 if (!mem->memory_size) { 1952 if (!old || !old->npages) 1953 return -EINVAL; 1954 1955 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1956 return -EIO; 1957 1958 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1959 } 1960 1961 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1962 npages = (mem->memory_size >> PAGE_SHIFT); 1963 1964 if (!old || !old->npages) { 1965 change = KVM_MR_CREATE; 1966 1967 /* 1968 * To simplify KVM internals, the total number of pages across 1969 * all memslots must fit in an unsigned long. 1970 */ 1971 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1972 return -EINVAL; 1973 } else { /* Modify an existing slot. */ 1974 if ((mem->userspace_addr != old->userspace_addr) || 1975 (npages != old->npages) || 1976 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1977 return -EINVAL; 1978 1979 if (base_gfn != old->base_gfn) 1980 change = KVM_MR_MOVE; 1981 else if (mem->flags != old->flags) 1982 change = KVM_MR_FLAGS_ONLY; 1983 else /* Nothing to change. */ 1984 return 0; 1985 } 1986 1987 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1988 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1989 return -EEXIST; 1990 1991 /* Allocate a slot that will persist in the memslot. */ 1992 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1993 if (!new) 1994 return -ENOMEM; 1995 1996 new->as_id = as_id; 1997 new->id = id; 1998 new->base_gfn = base_gfn; 1999 new->npages = npages; 2000 new->flags = mem->flags; 2001 new->userspace_addr = mem->userspace_addr; 2002 2003 r = kvm_set_memslot(kvm, old, new, change); 2004 if (r) 2005 kfree(new); 2006 return r; 2007 } 2008 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2009 2010 int kvm_set_memory_region(struct kvm *kvm, 2011 const struct kvm_userspace_memory_region *mem) 2012 { 2013 int r; 2014 2015 mutex_lock(&kvm->slots_lock); 2016 r = __kvm_set_memory_region(kvm, mem); 2017 mutex_unlock(&kvm->slots_lock); 2018 return r; 2019 } 2020 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2021 2022 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2023 struct kvm_userspace_memory_region *mem) 2024 { 2025 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2026 return -EINVAL; 2027 2028 return kvm_set_memory_region(kvm, mem); 2029 } 2030 2031 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2032 /** 2033 * kvm_get_dirty_log - get a snapshot of dirty pages 2034 * @kvm: pointer to kvm instance 2035 * @log: slot id and address to which we copy the log 2036 * @is_dirty: set to '1' if any dirty pages were found 2037 * @memslot: set to the associated memslot, always valid on success 2038 */ 2039 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2040 int *is_dirty, struct kvm_memory_slot **memslot) 2041 { 2042 struct kvm_memslots *slots; 2043 int i, as_id, id; 2044 unsigned long n; 2045 unsigned long any = 0; 2046 2047 /* Dirty ring tracking is exclusive to dirty log tracking */ 2048 if (kvm->dirty_ring_size) 2049 return -ENXIO; 2050 2051 *memslot = NULL; 2052 *is_dirty = 0; 2053 2054 as_id = log->slot >> 16; 2055 id = (u16)log->slot; 2056 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2057 return -EINVAL; 2058 2059 slots = __kvm_memslots(kvm, as_id); 2060 *memslot = id_to_memslot(slots, id); 2061 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2062 return -ENOENT; 2063 2064 kvm_arch_sync_dirty_log(kvm, *memslot); 2065 2066 n = kvm_dirty_bitmap_bytes(*memslot); 2067 2068 for (i = 0; !any && i < n/sizeof(long); ++i) 2069 any = (*memslot)->dirty_bitmap[i]; 2070 2071 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2072 return -EFAULT; 2073 2074 if (any) 2075 *is_dirty = 1; 2076 return 0; 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2079 2080 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2081 /** 2082 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2083 * and reenable dirty page tracking for the corresponding pages. 2084 * @kvm: pointer to kvm instance 2085 * @log: slot id and address to which we copy the log 2086 * 2087 * We need to keep it in mind that VCPU threads can write to the bitmap 2088 * concurrently. So, to avoid losing track of dirty pages we keep the 2089 * following order: 2090 * 2091 * 1. Take a snapshot of the bit and clear it if needed. 2092 * 2. Write protect the corresponding page. 2093 * 3. Copy the snapshot to the userspace. 2094 * 4. Upon return caller flushes TLB's if needed. 2095 * 2096 * Between 2 and 4, the guest may write to the page using the remaining TLB 2097 * entry. This is not a problem because the page is reported dirty using 2098 * the snapshot taken before and step 4 ensures that writes done after 2099 * exiting to userspace will be logged for the next call. 2100 * 2101 */ 2102 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2103 { 2104 struct kvm_memslots *slots; 2105 struct kvm_memory_slot *memslot; 2106 int i, as_id, id; 2107 unsigned long n; 2108 unsigned long *dirty_bitmap; 2109 unsigned long *dirty_bitmap_buffer; 2110 bool flush; 2111 2112 /* Dirty ring tracking is exclusive to dirty log tracking */ 2113 if (kvm->dirty_ring_size) 2114 return -ENXIO; 2115 2116 as_id = log->slot >> 16; 2117 id = (u16)log->slot; 2118 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2119 return -EINVAL; 2120 2121 slots = __kvm_memslots(kvm, as_id); 2122 memslot = id_to_memslot(slots, id); 2123 if (!memslot || !memslot->dirty_bitmap) 2124 return -ENOENT; 2125 2126 dirty_bitmap = memslot->dirty_bitmap; 2127 2128 kvm_arch_sync_dirty_log(kvm, memslot); 2129 2130 n = kvm_dirty_bitmap_bytes(memslot); 2131 flush = false; 2132 if (kvm->manual_dirty_log_protect) { 2133 /* 2134 * Unlike kvm_get_dirty_log, we always return false in *flush, 2135 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2136 * is some code duplication between this function and 2137 * kvm_get_dirty_log, but hopefully all architecture 2138 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2139 * can be eliminated. 2140 */ 2141 dirty_bitmap_buffer = dirty_bitmap; 2142 } else { 2143 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2144 memset(dirty_bitmap_buffer, 0, n); 2145 2146 KVM_MMU_LOCK(kvm); 2147 for (i = 0; i < n / sizeof(long); i++) { 2148 unsigned long mask; 2149 gfn_t offset; 2150 2151 if (!dirty_bitmap[i]) 2152 continue; 2153 2154 flush = true; 2155 mask = xchg(&dirty_bitmap[i], 0); 2156 dirty_bitmap_buffer[i] = mask; 2157 2158 offset = i * BITS_PER_LONG; 2159 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2160 offset, mask); 2161 } 2162 KVM_MMU_UNLOCK(kvm); 2163 } 2164 2165 if (flush) 2166 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2167 2168 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2169 return -EFAULT; 2170 return 0; 2171 } 2172 2173 2174 /** 2175 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2176 * @kvm: kvm instance 2177 * @log: slot id and address to which we copy the log 2178 * 2179 * Steps 1-4 below provide general overview of dirty page logging. See 2180 * kvm_get_dirty_log_protect() function description for additional details. 2181 * 2182 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2183 * always flush the TLB (step 4) even if previous step failed and the dirty 2184 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2185 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2186 * writes will be marked dirty for next log read. 2187 * 2188 * 1. Take a snapshot of the bit and clear it if needed. 2189 * 2. Write protect the corresponding page. 2190 * 3. Copy the snapshot to the userspace. 2191 * 4. Flush TLB's if needed. 2192 */ 2193 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2194 struct kvm_dirty_log *log) 2195 { 2196 int r; 2197 2198 mutex_lock(&kvm->slots_lock); 2199 2200 r = kvm_get_dirty_log_protect(kvm, log); 2201 2202 mutex_unlock(&kvm->slots_lock); 2203 return r; 2204 } 2205 2206 /** 2207 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2208 * and reenable dirty page tracking for the corresponding pages. 2209 * @kvm: pointer to kvm instance 2210 * @log: slot id and address from which to fetch the bitmap of dirty pages 2211 */ 2212 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2213 struct kvm_clear_dirty_log *log) 2214 { 2215 struct kvm_memslots *slots; 2216 struct kvm_memory_slot *memslot; 2217 int as_id, id; 2218 gfn_t offset; 2219 unsigned long i, n; 2220 unsigned long *dirty_bitmap; 2221 unsigned long *dirty_bitmap_buffer; 2222 bool flush; 2223 2224 /* Dirty ring tracking is exclusive to dirty log tracking */ 2225 if (kvm->dirty_ring_size) 2226 return -ENXIO; 2227 2228 as_id = log->slot >> 16; 2229 id = (u16)log->slot; 2230 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2231 return -EINVAL; 2232 2233 if (log->first_page & 63) 2234 return -EINVAL; 2235 2236 slots = __kvm_memslots(kvm, as_id); 2237 memslot = id_to_memslot(slots, id); 2238 if (!memslot || !memslot->dirty_bitmap) 2239 return -ENOENT; 2240 2241 dirty_bitmap = memslot->dirty_bitmap; 2242 2243 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2244 2245 if (log->first_page > memslot->npages || 2246 log->num_pages > memslot->npages - log->first_page || 2247 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2248 return -EINVAL; 2249 2250 kvm_arch_sync_dirty_log(kvm, memslot); 2251 2252 flush = false; 2253 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2254 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2255 return -EFAULT; 2256 2257 KVM_MMU_LOCK(kvm); 2258 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2259 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2260 i++, offset += BITS_PER_LONG) { 2261 unsigned long mask = *dirty_bitmap_buffer++; 2262 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2263 if (!mask) 2264 continue; 2265 2266 mask &= atomic_long_fetch_andnot(mask, p); 2267 2268 /* 2269 * mask contains the bits that really have been cleared. This 2270 * never includes any bits beyond the length of the memslot (if 2271 * the length is not aligned to 64 pages), therefore it is not 2272 * a problem if userspace sets them in log->dirty_bitmap. 2273 */ 2274 if (mask) { 2275 flush = true; 2276 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2277 offset, mask); 2278 } 2279 } 2280 KVM_MMU_UNLOCK(kvm); 2281 2282 if (flush) 2283 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2284 2285 return 0; 2286 } 2287 2288 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2289 struct kvm_clear_dirty_log *log) 2290 { 2291 int r; 2292 2293 mutex_lock(&kvm->slots_lock); 2294 2295 r = kvm_clear_dirty_log_protect(kvm, log); 2296 2297 mutex_unlock(&kvm->slots_lock); 2298 return r; 2299 } 2300 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2301 2302 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2303 { 2304 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2305 } 2306 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2307 2308 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2309 { 2310 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2311 u64 gen = slots->generation; 2312 struct kvm_memory_slot *slot; 2313 2314 /* 2315 * This also protects against using a memslot from a different address space, 2316 * since different address spaces have different generation numbers. 2317 */ 2318 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2319 vcpu->last_used_slot = NULL; 2320 vcpu->last_used_slot_gen = gen; 2321 } 2322 2323 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2324 if (slot) 2325 return slot; 2326 2327 /* 2328 * Fall back to searching all memslots. We purposely use 2329 * search_memslots() instead of __gfn_to_memslot() to avoid 2330 * thrashing the VM-wide last_used_slot in kvm_memslots. 2331 */ 2332 slot = search_memslots(slots, gfn, false); 2333 if (slot) { 2334 vcpu->last_used_slot = slot; 2335 return slot; 2336 } 2337 2338 return NULL; 2339 } 2340 2341 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2342 { 2343 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2344 2345 return kvm_is_visible_memslot(memslot); 2346 } 2347 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2348 2349 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2350 { 2351 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2352 2353 return kvm_is_visible_memslot(memslot); 2354 } 2355 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2356 2357 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2358 { 2359 struct vm_area_struct *vma; 2360 unsigned long addr, size; 2361 2362 size = PAGE_SIZE; 2363 2364 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2365 if (kvm_is_error_hva(addr)) 2366 return PAGE_SIZE; 2367 2368 mmap_read_lock(current->mm); 2369 vma = find_vma(current->mm, addr); 2370 if (!vma) 2371 goto out; 2372 2373 size = vma_kernel_pagesize(vma); 2374 2375 out: 2376 mmap_read_unlock(current->mm); 2377 2378 return size; 2379 } 2380 2381 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2382 { 2383 return slot->flags & KVM_MEM_READONLY; 2384 } 2385 2386 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2387 gfn_t *nr_pages, bool write) 2388 { 2389 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2390 return KVM_HVA_ERR_BAD; 2391 2392 if (memslot_is_readonly(slot) && write) 2393 return KVM_HVA_ERR_RO_BAD; 2394 2395 if (nr_pages) 2396 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2397 2398 return __gfn_to_hva_memslot(slot, gfn); 2399 } 2400 2401 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2402 gfn_t *nr_pages) 2403 { 2404 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2405 } 2406 2407 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2408 gfn_t gfn) 2409 { 2410 return gfn_to_hva_many(slot, gfn, NULL); 2411 } 2412 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2413 2414 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2415 { 2416 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2417 } 2418 EXPORT_SYMBOL_GPL(gfn_to_hva); 2419 2420 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2421 { 2422 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2423 } 2424 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2425 2426 /* 2427 * Return the hva of a @gfn and the R/W attribute if possible. 2428 * 2429 * @slot: the kvm_memory_slot which contains @gfn 2430 * @gfn: the gfn to be translated 2431 * @writable: used to return the read/write attribute of the @slot if the hva 2432 * is valid and @writable is not NULL 2433 */ 2434 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2435 gfn_t gfn, bool *writable) 2436 { 2437 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2438 2439 if (!kvm_is_error_hva(hva) && writable) 2440 *writable = !memslot_is_readonly(slot); 2441 2442 return hva; 2443 } 2444 2445 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2446 { 2447 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2448 2449 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2450 } 2451 2452 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2453 { 2454 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2455 2456 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2457 } 2458 2459 static inline int check_user_page_hwpoison(unsigned long addr) 2460 { 2461 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2462 2463 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2464 return rc == -EHWPOISON; 2465 } 2466 2467 /* 2468 * The fast path to get the writable pfn which will be stored in @pfn, 2469 * true indicates success, otherwise false is returned. It's also the 2470 * only part that runs if we can in atomic context. 2471 */ 2472 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2473 bool *writable, kvm_pfn_t *pfn) 2474 { 2475 struct page *page[1]; 2476 2477 /* 2478 * Fast pin a writable pfn only if it is a write fault request 2479 * or the caller allows to map a writable pfn for a read fault 2480 * request. 2481 */ 2482 if (!(write_fault || writable)) 2483 return false; 2484 2485 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2486 *pfn = page_to_pfn(page[0]); 2487 2488 if (writable) 2489 *writable = true; 2490 return true; 2491 } 2492 2493 return false; 2494 } 2495 2496 /* 2497 * The slow path to get the pfn of the specified host virtual address, 2498 * 1 indicates success, -errno is returned if error is detected. 2499 */ 2500 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2501 bool *writable, kvm_pfn_t *pfn) 2502 { 2503 unsigned int flags = FOLL_HWPOISON; 2504 struct page *page; 2505 int npages = 0; 2506 2507 might_sleep(); 2508 2509 if (writable) 2510 *writable = write_fault; 2511 2512 if (write_fault) 2513 flags |= FOLL_WRITE; 2514 if (async) 2515 flags |= FOLL_NOWAIT; 2516 2517 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2518 if (npages != 1) 2519 return npages; 2520 2521 /* map read fault as writable if possible */ 2522 if (unlikely(!write_fault) && writable) { 2523 struct page *wpage; 2524 2525 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2526 *writable = true; 2527 put_page(page); 2528 page = wpage; 2529 } 2530 } 2531 *pfn = page_to_pfn(page); 2532 return npages; 2533 } 2534 2535 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2536 { 2537 if (unlikely(!(vma->vm_flags & VM_READ))) 2538 return false; 2539 2540 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2541 return false; 2542 2543 return true; 2544 } 2545 2546 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2547 { 2548 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2549 2550 if (!page) 2551 return 1; 2552 2553 return get_page_unless_zero(page); 2554 } 2555 2556 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2557 unsigned long addr, bool write_fault, 2558 bool *writable, kvm_pfn_t *p_pfn) 2559 { 2560 kvm_pfn_t pfn; 2561 pte_t *ptep; 2562 spinlock_t *ptl; 2563 int r; 2564 2565 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2566 if (r) { 2567 /* 2568 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2569 * not call the fault handler, so do it here. 2570 */ 2571 bool unlocked = false; 2572 r = fixup_user_fault(current->mm, addr, 2573 (write_fault ? FAULT_FLAG_WRITE : 0), 2574 &unlocked); 2575 if (unlocked) 2576 return -EAGAIN; 2577 if (r) 2578 return r; 2579 2580 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2581 if (r) 2582 return r; 2583 } 2584 2585 if (write_fault && !pte_write(*ptep)) { 2586 pfn = KVM_PFN_ERR_RO_FAULT; 2587 goto out; 2588 } 2589 2590 if (writable) 2591 *writable = pte_write(*ptep); 2592 pfn = pte_pfn(*ptep); 2593 2594 /* 2595 * Get a reference here because callers of *hva_to_pfn* and 2596 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2597 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2598 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2599 * simply do nothing for reserved pfns. 2600 * 2601 * Whoever called remap_pfn_range is also going to call e.g. 2602 * unmap_mapping_range before the underlying pages are freed, 2603 * causing a call to our MMU notifier. 2604 * 2605 * Certain IO or PFNMAP mappings can be backed with valid 2606 * struct pages, but be allocated without refcounting e.g., 2607 * tail pages of non-compound higher order allocations, which 2608 * would then underflow the refcount when the caller does the 2609 * required put_page. Don't allow those pages here. 2610 */ 2611 if (!kvm_try_get_pfn(pfn)) 2612 r = -EFAULT; 2613 2614 out: 2615 pte_unmap_unlock(ptep, ptl); 2616 *p_pfn = pfn; 2617 2618 return r; 2619 } 2620 2621 /* 2622 * Pin guest page in memory and return its pfn. 2623 * @addr: host virtual address which maps memory to the guest 2624 * @atomic: whether this function can sleep 2625 * @async: whether this function need to wait IO complete if the 2626 * host page is not in the memory 2627 * @write_fault: whether we should get a writable host page 2628 * @writable: whether it allows to map a writable host page for !@write_fault 2629 * 2630 * The function will map a writable host page for these two cases: 2631 * 1): @write_fault = true 2632 * 2): @write_fault = false && @writable, @writable will tell the caller 2633 * whether the mapping is writable. 2634 */ 2635 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2636 bool write_fault, bool *writable) 2637 { 2638 struct vm_area_struct *vma; 2639 kvm_pfn_t pfn; 2640 int npages, r; 2641 2642 /* we can do it either atomically or asynchronously, not both */ 2643 BUG_ON(atomic && async); 2644 2645 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2646 return pfn; 2647 2648 if (atomic) 2649 return KVM_PFN_ERR_FAULT; 2650 2651 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2652 if (npages == 1) 2653 return pfn; 2654 2655 mmap_read_lock(current->mm); 2656 if (npages == -EHWPOISON || 2657 (!async && check_user_page_hwpoison(addr))) { 2658 pfn = KVM_PFN_ERR_HWPOISON; 2659 goto exit; 2660 } 2661 2662 retry: 2663 vma = vma_lookup(current->mm, addr); 2664 2665 if (vma == NULL) 2666 pfn = KVM_PFN_ERR_FAULT; 2667 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2668 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2669 if (r == -EAGAIN) 2670 goto retry; 2671 if (r < 0) 2672 pfn = KVM_PFN_ERR_FAULT; 2673 } else { 2674 if (async && vma_is_valid(vma, write_fault)) 2675 *async = true; 2676 pfn = KVM_PFN_ERR_FAULT; 2677 } 2678 exit: 2679 mmap_read_unlock(current->mm); 2680 return pfn; 2681 } 2682 2683 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2684 bool atomic, bool *async, bool write_fault, 2685 bool *writable, hva_t *hva) 2686 { 2687 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2688 2689 if (hva) 2690 *hva = addr; 2691 2692 if (addr == KVM_HVA_ERR_RO_BAD) { 2693 if (writable) 2694 *writable = false; 2695 return KVM_PFN_ERR_RO_FAULT; 2696 } 2697 2698 if (kvm_is_error_hva(addr)) { 2699 if (writable) 2700 *writable = false; 2701 return KVM_PFN_NOSLOT; 2702 } 2703 2704 /* Do not map writable pfn in the readonly memslot. */ 2705 if (writable && memslot_is_readonly(slot)) { 2706 *writable = false; 2707 writable = NULL; 2708 } 2709 2710 return hva_to_pfn(addr, atomic, async, write_fault, 2711 writable); 2712 } 2713 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2714 2715 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2716 bool *writable) 2717 { 2718 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2719 write_fault, writable, NULL); 2720 } 2721 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2722 2723 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2724 { 2725 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2726 } 2727 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2728 2729 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2730 { 2731 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2732 } 2733 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2734 2735 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2736 { 2737 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2738 } 2739 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2740 2741 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2742 { 2743 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2744 } 2745 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2746 2747 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2748 { 2749 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2750 } 2751 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2752 2753 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2754 struct page **pages, int nr_pages) 2755 { 2756 unsigned long addr; 2757 gfn_t entry = 0; 2758 2759 addr = gfn_to_hva_many(slot, gfn, &entry); 2760 if (kvm_is_error_hva(addr)) 2761 return -1; 2762 2763 if (entry < nr_pages) 2764 return 0; 2765 2766 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2767 } 2768 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2769 2770 /* 2771 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2772 * backed by 'struct page'. A valid example is if the backing memslot is 2773 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2774 * been elevated by gfn_to_pfn(). 2775 */ 2776 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2777 { 2778 struct page *page; 2779 kvm_pfn_t pfn; 2780 2781 pfn = gfn_to_pfn(kvm, gfn); 2782 2783 if (is_error_noslot_pfn(pfn)) 2784 return KVM_ERR_PTR_BAD_PAGE; 2785 2786 page = kvm_pfn_to_refcounted_page(pfn); 2787 if (!page) 2788 return KVM_ERR_PTR_BAD_PAGE; 2789 2790 return page; 2791 } 2792 EXPORT_SYMBOL_GPL(gfn_to_page); 2793 2794 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2795 { 2796 if (dirty) 2797 kvm_release_pfn_dirty(pfn); 2798 else 2799 kvm_release_pfn_clean(pfn); 2800 } 2801 2802 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2803 { 2804 kvm_pfn_t pfn; 2805 void *hva = NULL; 2806 struct page *page = KVM_UNMAPPED_PAGE; 2807 2808 if (!map) 2809 return -EINVAL; 2810 2811 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2812 if (is_error_noslot_pfn(pfn)) 2813 return -EINVAL; 2814 2815 if (pfn_valid(pfn)) { 2816 page = pfn_to_page(pfn); 2817 hva = kmap(page); 2818 #ifdef CONFIG_HAS_IOMEM 2819 } else { 2820 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2821 #endif 2822 } 2823 2824 if (!hva) 2825 return -EFAULT; 2826 2827 map->page = page; 2828 map->hva = hva; 2829 map->pfn = pfn; 2830 map->gfn = gfn; 2831 2832 return 0; 2833 } 2834 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2835 2836 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2837 { 2838 if (!map) 2839 return; 2840 2841 if (!map->hva) 2842 return; 2843 2844 if (map->page != KVM_UNMAPPED_PAGE) 2845 kunmap(map->page); 2846 #ifdef CONFIG_HAS_IOMEM 2847 else 2848 memunmap(map->hva); 2849 #endif 2850 2851 if (dirty) 2852 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2853 2854 kvm_release_pfn(map->pfn, dirty); 2855 2856 map->hva = NULL; 2857 map->page = NULL; 2858 } 2859 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2860 2861 static bool kvm_is_ad_tracked_page(struct page *page) 2862 { 2863 /* 2864 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2865 * touched (e.g. set dirty) except by its owner". 2866 */ 2867 return !PageReserved(page); 2868 } 2869 2870 static void kvm_set_page_dirty(struct page *page) 2871 { 2872 if (kvm_is_ad_tracked_page(page)) 2873 SetPageDirty(page); 2874 } 2875 2876 static void kvm_set_page_accessed(struct page *page) 2877 { 2878 if (kvm_is_ad_tracked_page(page)) 2879 mark_page_accessed(page); 2880 } 2881 2882 void kvm_release_page_clean(struct page *page) 2883 { 2884 WARN_ON(is_error_page(page)); 2885 2886 kvm_set_page_accessed(page); 2887 put_page(page); 2888 } 2889 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2890 2891 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2892 { 2893 struct page *page; 2894 2895 if (is_error_noslot_pfn(pfn)) 2896 return; 2897 2898 page = kvm_pfn_to_refcounted_page(pfn); 2899 if (!page) 2900 return; 2901 2902 kvm_release_page_clean(page); 2903 } 2904 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2905 2906 void kvm_release_page_dirty(struct page *page) 2907 { 2908 WARN_ON(is_error_page(page)); 2909 2910 kvm_set_page_dirty(page); 2911 kvm_release_page_clean(page); 2912 } 2913 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2914 2915 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2916 { 2917 struct page *page; 2918 2919 if (is_error_noslot_pfn(pfn)) 2920 return; 2921 2922 page = kvm_pfn_to_refcounted_page(pfn); 2923 if (!page) 2924 return; 2925 2926 kvm_release_page_dirty(page); 2927 } 2928 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2929 2930 /* 2931 * Note, checking for an error/noslot pfn is the caller's responsibility when 2932 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2933 * "set" helpers are not to be used when the pfn might point at garbage. 2934 */ 2935 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2936 { 2937 if (WARN_ON(is_error_noslot_pfn(pfn))) 2938 return; 2939 2940 if (pfn_valid(pfn)) 2941 kvm_set_page_dirty(pfn_to_page(pfn)); 2942 } 2943 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2944 2945 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2946 { 2947 if (WARN_ON(is_error_noslot_pfn(pfn))) 2948 return; 2949 2950 if (pfn_valid(pfn)) 2951 kvm_set_page_accessed(pfn_to_page(pfn)); 2952 } 2953 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2954 2955 static int next_segment(unsigned long len, int offset) 2956 { 2957 if (len > PAGE_SIZE - offset) 2958 return PAGE_SIZE - offset; 2959 else 2960 return len; 2961 } 2962 2963 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2964 void *data, int offset, int len) 2965 { 2966 int r; 2967 unsigned long addr; 2968 2969 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2970 if (kvm_is_error_hva(addr)) 2971 return -EFAULT; 2972 r = __copy_from_user(data, (void __user *)addr + offset, len); 2973 if (r) 2974 return -EFAULT; 2975 return 0; 2976 } 2977 2978 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2979 int len) 2980 { 2981 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2982 2983 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2984 } 2985 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2986 2987 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2988 int offset, int len) 2989 { 2990 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2991 2992 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2993 } 2994 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2995 2996 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2997 { 2998 gfn_t gfn = gpa >> PAGE_SHIFT; 2999 int seg; 3000 int offset = offset_in_page(gpa); 3001 int ret; 3002 3003 while ((seg = next_segment(len, offset)) != 0) { 3004 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3005 if (ret < 0) 3006 return ret; 3007 offset = 0; 3008 len -= seg; 3009 data += seg; 3010 ++gfn; 3011 } 3012 return 0; 3013 } 3014 EXPORT_SYMBOL_GPL(kvm_read_guest); 3015 3016 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3017 { 3018 gfn_t gfn = gpa >> PAGE_SHIFT; 3019 int seg; 3020 int offset = offset_in_page(gpa); 3021 int ret; 3022 3023 while ((seg = next_segment(len, offset)) != 0) { 3024 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3025 if (ret < 0) 3026 return ret; 3027 offset = 0; 3028 len -= seg; 3029 data += seg; 3030 ++gfn; 3031 } 3032 return 0; 3033 } 3034 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3035 3036 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3037 void *data, int offset, unsigned long len) 3038 { 3039 int r; 3040 unsigned long addr; 3041 3042 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3043 if (kvm_is_error_hva(addr)) 3044 return -EFAULT; 3045 pagefault_disable(); 3046 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3047 pagefault_enable(); 3048 if (r) 3049 return -EFAULT; 3050 return 0; 3051 } 3052 3053 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3054 void *data, unsigned long len) 3055 { 3056 gfn_t gfn = gpa >> PAGE_SHIFT; 3057 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3058 int offset = offset_in_page(gpa); 3059 3060 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3061 } 3062 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3063 3064 static int __kvm_write_guest_page(struct kvm *kvm, 3065 struct kvm_memory_slot *memslot, gfn_t gfn, 3066 const void *data, int offset, int len) 3067 { 3068 int r; 3069 unsigned long addr; 3070 3071 addr = gfn_to_hva_memslot(memslot, gfn); 3072 if (kvm_is_error_hva(addr)) 3073 return -EFAULT; 3074 r = __copy_to_user((void __user *)addr + offset, data, len); 3075 if (r) 3076 return -EFAULT; 3077 mark_page_dirty_in_slot(kvm, memslot, gfn); 3078 return 0; 3079 } 3080 3081 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3082 const void *data, int offset, int len) 3083 { 3084 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3085 3086 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3087 } 3088 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3089 3090 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3091 const void *data, int offset, int len) 3092 { 3093 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3094 3095 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3096 } 3097 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3098 3099 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3100 unsigned long len) 3101 { 3102 gfn_t gfn = gpa >> PAGE_SHIFT; 3103 int seg; 3104 int offset = offset_in_page(gpa); 3105 int ret; 3106 3107 while ((seg = next_segment(len, offset)) != 0) { 3108 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3109 if (ret < 0) 3110 return ret; 3111 offset = 0; 3112 len -= seg; 3113 data += seg; 3114 ++gfn; 3115 } 3116 return 0; 3117 } 3118 EXPORT_SYMBOL_GPL(kvm_write_guest); 3119 3120 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3121 unsigned long len) 3122 { 3123 gfn_t gfn = gpa >> PAGE_SHIFT; 3124 int seg; 3125 int offset = offset_in_page(gpa); 3126 int ret; 3127 3128 while ((seg = next_segment(len, offset)) != 0) { 3129 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3130 if (ret < 0) 3131 return ret; 3132 offset = 0; 3133 len -= seg; 3134 data += seg; 3135 ++gfn; 3136 } 3137 return 0; 3138 } 3139 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3140 3141 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3142 struct gfn_to_hva_cache *ghc, 3143 gpa_t gpa, unsigned long len) 3144 { 3145 int offset = offset_in_page(gpa); 3146 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3147 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3148 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3149 gfn_t nr_pages_avail; 3150 3151 /* Update ghc->generation before performing any error checks. */ 3152 ghc->generation = slots->generation; 3153 3154 if (start_gfn > end_gfn) { 3155 ghc->hva = KVM_HVA_ERR_BAD; 3156 return -EINVAL; 3157 } 3158 3159 /* 3160 * If the requested region crosses two memslots, we still 3161 * verify that the entire region is valid here. 3162 */ 3163 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3164 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3165 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3166 &nr_pages_avail); 3167 if (kvm_is_error_hva(ghc->hva)) 3168 return -EFAULT; 3169 } 3170 3171 /* Use the slow path for cross page reads and writes. */ 3172 if (nr_pages_needed == 1) 3173 ghc->hva += offset; 3174 else 3175 ghc->memslot = NULL; 3176 3177 ghc->gpa = gpa; 3178 ghc->len = len; 3179 return 0; 3180 } 3181 3182 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3183 gpa_t gpa, unsigned long len) 3184 { 3185 struct kvm_memslots *slots = kvm_memslots(kvm); 3186 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3187 } 3188 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3189 3190 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3191 void *data, unsigned int offset, 3192 unsigned long len) 3193 { 3194 struct kvm_memslots *slots = kvm_memslots(kvm); 3195 int r; 3196 gpa_t gpa = ghc->gpa + offset; 3197 3198 if (WARN_ON_ONCE(len + offset > ghc->len)) 3199 return -EINVAL; 3200 3201 if (slots->generation != ghc->generation) { 3202 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3203 return -EFAULT; 3204 } 3205 3206 if (kvm_is_error_hva(ghc->hva)) 3207 return -EFAULT; 3208 3209 if (unlikely(!ghc->memslot)) 3210 return kvm_write_guest(kvm, gpa, data, len); 3211 3212 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3213 if (r) 3214 return -EFAULT; 3215 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3216 3217 return 0; 3218 } 3219 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3220 3221 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3222 void *data, unsigned long len) 3223 { 3224 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3225 } 3226 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3227 3228 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3229 void *data, unsigned int offset, 3230 unsigned long len) 3231 { 3232 struct kvm_memslots *slots = kvm_memslots(kvm); 3233 int r; 3234 gpa_t gpa = ghc->gpa + offset; 3235 3236 if (WARN_ON_ONCE(len + offset > ghc->len)) 3237 return -EINVAL; 3238 3239 if (slots->generation != ghc->generation) { 3240 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3241 return -EFAULT; 3242 } 3243 3244 if (kvm_is_error_hva(ghc->hva)) 3245 return -EFAULT; 3246 3247 if (unlikely(!ghc->memslot)) 3248 return kvm_read_guest(kvm, gpa, data, len); 3249 3250 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3251 if (r) 3252 return -EFAULT; 3253 3254 return 0; 3255 } 3256 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3257 3258 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3259 void *data, unsigned long len) 3260 { 3261 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3262 } 3263 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3264 3265 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3266 { 3267 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3268 gfn_t gfn = gpa >> PAGE_SHIFT; 3269 int seg; 3270 int offset = offset_in_page(gpa); 3271 int ret; 3272 3273 while ((seg = next_segment(len, offset)) != 0) { 3274 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3275 if (ret < 0) 3276 return ret; 3277 offset = 0; 3278 len -= seg; 3279 ++gfn; 3280 } 3281 return 0; 3282 } 3283 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3284 3285 void mark_page_dirty_in_slot(struct kvm *kvm, 3286 const struct kvm_memory_slot *memslot, 3287 gfn_t gfn) 3288 { 3289 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3290 3291 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3292 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3293 return; 3294 #endif 3295 3296 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3297 unsigned long rel_gfn = gfn - memslot->base_gfn; 3298 u32 slot = (memslot->as_id << 16) | memslot->id; 3299 3300 if (kvm->dirty_ring_size) 3301 kvm_dirty_ring_push(&vcpu->dirty_ring, 3302 slot, rel_gfn); 3303 else 3304 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3305 } 3306 } 3307 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3308 3309 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3310 { 3311 struct kvm_memory_slot *memslot; 3312 3313 memslot = gfn_to_memslot(kvm, gfn); 3314 mark_page_dirty_in_slot(kvm, memslot, gfn); 3315 } 3316 EXPORT_SYMBOL_GPL(mark_page_dirty); 3317 3318 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3319 { 3320 struct kvm_memory_slot *memslot; 3321 3322 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3323 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3324 } 3325 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3326 3327 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3328 { 3329 if (!vcpu->sigset_active) 3330 return; 3331 3332 /* 3333 * This does a lockless modification of ->real_blocked, which is fine 3334 * because, only current can change ->real_blocked and all readers of 3335 * ->real_blocked don't care as long ->real_blocked is always a subset 3336 * of ->blocked. 3337 */ 3338 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3339 } 3340 3341 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3342 { 3343 if (!vcpu->sigset_active) 3344 return; 3345 3346 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3347 sigemptyset(¤t->real_blocked); 3348 } 3349 3350 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3351 { 3352 unsigned int old, val, grow, grow_start; 3353 3354 old = val = vcpu->halt_poll_ns; 3355 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3356 grow = READ_ONCE(halt_poll_ns_grow); 3357 if (!grow) 3358 goto out; 3359 3360 val *= grow; 3361 if (val < grow_start) 3362 val = grow_start; 3363 3364 if (val > vcpu->kvm->max_halt_poll_ns) 3365 val = vcpu->kvm->max_halt_poll_ns; 3366 3367 vcpu->halt_poll_ns = val; 3368 out: 3369 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3370 } 3371 3372 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3373 { 3374 unsigned int old, val, shrink, grow_start; 3375 3376 old = val = vcpu->halt_poll_ns; 3377 shrink = READ_ONCE(halt_poll_ns_shrink); 3378 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3379 if (shrink == 0) 3380 val = 0; 3381 else 3382 val /= shrink; 3383 3384 if (val < grow_start) 3385 val = 0; 3386 3387 vcpu->halt_poll_ns = val; 3388 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3389 } 3390 3391 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3392 { 3393 int ret = -EINTR; 3394 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3395 3396 if (kvm_arch_vcpu_runnable(vcpu)) { 3397 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3398 goto out; 3399 } 3400 if (kvm_cpu_has_pending_timer(vcpu)) 3401 goto out; 3402 if (signal_pending(current)) 3403 goto out; 3404 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3405 goto out; 3406 3407 ret = 0; 3408 out: 3409 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3410 return ret; 3411 } 3412 3413 /* 3414 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3415 * pending. This is mostly used when halting a vCPU, but may also be used 3416 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3417 */ 3418 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3419 { 3420 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3421 bool waited = false; 3422 3423 vcpu->stat.generic.blocking = 1; 3424 3425 preempt_disable(); 3426 kvm_arch_vcpu_blocking(vcpu); 3427 prepare_to_rcuwait(wait); 3428 preempt_enable(); 3429 3430 for (;;) { 3431 set_current_state(TASK_INTERRUPTIBLE); 3432 3433 if (kvm_vcpu_check_block(vcpu) < 0) 3434 break; 3435 3436 waited = true; 3437 schedule(); 3438 } 3439 3440 preempt_disable(); 3441 finish_rcuwait(wait); 3442 kvm_arch_vcpu_unblocking(vcpu); 3443 preempt_enable(); 3444 3445 vcpu->stat.generic.blocking = 0; 3446 3447 return waited; 3448 } 3449 3450 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3451 ktime_t end, bool success) 3452 { 3453 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3454 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3455 3456 ++vcpu->stat.generic.halt_attempted_poll; 3457 3458 if (success) { 3459 ++vcpu->stat.generic.halt_successful_poll; 3460 3461 if (!vcpu_valid_wakeup(vcpu)) 3462 ++vcpu->stat.generic.halt_poll_invalid; 3463 3464 stats->halt_poll_success_ns += poll_ns; 3465 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3466 } else { 3467 stats->halt_poll_fail_ns += poll_ns; 3468 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3469 } 3470 } 3471 3472 /* 3473 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3474 * polling is enabled, busy wait for a short time before blocking to avoid the 3475 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3476 * is halted. 3477 */ 3478 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3479 { 3480 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3481 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3482 ktime_t start, cur, poll_end; 3483 bool waited = false; 3484 u64 halt_ns; 3485 3486 start = cur = poll_end = ktime_get(); 3487 if (do_halt_poll) { 3488 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3489 3490 do { 3491 /* 3492 * This sets KVM_REQ_UNHALT if an interrupt 3493 * arrives. 3494 */ 3495 if (kvm_vcpu_check_block(vcpu) < 0) 3496 goto out; 3497 cpu_relax(); 3498 poll_end = cur = ktime_get(); 3499 } while (kvm_vcpu_can_poll(cur, stop)); 3500 } 3501 3502 waited = kvm_vcpu_block(vcpu); 3503 3504 cur = ktime_get(); 3505 if (waited) { 3506 vcpu->stat.generic.halt_wait_ns += 3507 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3508 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3509 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3510 } 3511 out: 3512 /* The total time the vCPU was "halted", including polling time. */ 3513 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3514 3515 /* 3516 * Note, halt-polling is considered successful so long as the vCPU was 3517 * never actually scheduled out, i.e. even if the wake event arrived 3518 * after of the halt-polling loop itself, but before the full wait. 3519 */ 3520 if (do_halt_poll) 3521 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3522 3523 if (halt_poll_allowed) { 3524 if (!vcpu_valid_wakeup(vcpu)) { 3525 shrink_halt_poll_ns(vcpu); 3526 } else if (vcpu->kvm->max_halt_poll_ns) { 3527 if (halt_ns <= vcpu->halt_poll_ns) 3528 ; 3529 /* we had a long block, shrink polling */ 3530 else if (vcpu->halt_poll_ns && 3531 halt_ns > vcpu->kvm->max_halt_poll_ns) 3532 shrink_halt_poll_ns(vcpu); 3533 /* we had a short halt and our poll time is too small */ 3534 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3535 halt_ns < vcpu->kvm->max_halt_poll_ns) 3536 grow_halt_poll_ns(vcpu); 3537 } else { 3538 vcpu->halt_poll_ns = 0; 3539 } 3540 } 3541 3542 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3543 } 3544 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3545 3546 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3547 { 3548 if (__kvm_vcpu_wake_up(vcpu)) { 3549 WRITE_ONCE(vcpu->ready, true); 3550 ++vcpu->stat.generic.halt_wakeup; 3551 return true; 3552 } 3553 3554 return false; 3555 } 3556 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3557 3558 #ifndef CONFIG_S390 3559 /* 3560 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3561 */ 3562 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3563 { 3564 int me, cpu; 3565 3566 if (kvm_vcpu_wake_up(vcpu)) 3567 return; 3568 3569 me = get_cpu(); 3570 /* 3571 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3572 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3573 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3574 * within the vCPU thread itself. 3575 */ 3576 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3577 if (vcpu->mode == IN_GUEST_MODE) 3578 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3579 goto out; 3580 } 3581 3582 /* 3583 * Note, the vCPU could get migrated to a different pCPU at any point 3584 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3585 * IPI to the previous pCPU. But, that's ok because the purpose of the 3586 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3587 * vCPU also requires it to leave IN_GUEST_MODE. 3588 */ 3589 if (kvm_arch_vcpu_should_kick(vcpu)) { 3590 cpu = READ_ONCE(vcpu->cpu); 3591 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3592 smp_send_reschedule(cpu); 3593 } 3594 out: 3595 put_cpu(); 3596 } 3597 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3598 #endif /* !CONFIG_S390 */ 3599 3600 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3601 { 3602 struct pid *pid; 3603 struct task_struct *task = NULL; 3604 int ret = 0; 3605 3606 rcu_read_lock(); 3607 pid = rcu_dereference(target->pid); 3608 if (pid) 3609 task = get_pid_task(pid, PIDTYPE_PID); 3610 rcu_read_unlock(); 3611 if (!task) 3612 return ret; 3613 ret = yield_to(task, 1); 3614 put_task_struct(task); 3615 3616 return ret; 3617 } 3618 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3619 3620 /* 3621 * Helper that checks whether a VCPU is eligible for directed yield. 3622 * Most eligible candidate to yield is decided by following heuristics: 3623 * 3624 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3625 * (preempted lock holder), indicated by @in_spin_loop. 3626 * Set at the beginning and cleared at the end of interception/PLE handler. 3627 * 3628 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3629 * chance last time (mostly it has become eligible now since we have probably 3630 * yielded to lockholder in last iteration. This is done by toggling 3631 * @dy_eligible each time a VCPU checked for eligibility.) 3632 * 3633 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3634 * to preempted lock-holder could result in wrong VCPU selection and CPU 3635 * burning. Giving priority for a potential lock-holder increases lock 3636 * progress. 3637 * 3638 * Since algorithm is based on heuristics, accessing another VCPU data without 3639 * locking does not harm. It may result in trying to yield to same VCPU, fail 3640 * and continue with next VCPU and so on. 3641 */ 3642 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3643 { 3644 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3645 bool eligible; 3646 3647 eligible = !vcpu->spin_loop.in_spin_loop || 3648 vcpu->spin_loop.dy_eligible; 3649 3650 if (vcpu->spin_loop.in_spin_loop) 3651 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3652 3653 return eligible; 3654 #else 3655 return true; 3656 #endif 3657 } 3658 3659 /* 3660 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3661 * a vcpu_load/vcpu_put pair. However, for most architectures 3662 * kvm_arch_vcpu_runnable does not require vcpu_load. 3663 */ 3664 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3665 { 3666 return kvm_arch_vcpu_runnable(vcpu); 3667 } 3668 3669 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3670 { 3671 if (kvm_arch_dy_runnable(vcpu)) 3672 return true; 3673 3674 #ifdef CONFIG_KVM_ASYNC_PF 3675 if (!list_empty_careful(&vcpu->async_pf.done)) 3676 return true; 3677 #endif 3678 3679 return false; 3680 } 3681 3682 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3683 { 3684 return false; 3685 } 3686 3687 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3688 { 3689 struct kvm *kvm = me->kvm; 3690 struct kvm_vcpu *vcpu; 3691 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3692 unsigned long i; 3693 int yielded = 0; 3694 int try = 3; 3695 int pass; 3696 3697 kvm_vcpu_set_in_spin_loop(me, true); 3698 /* 3699 * We boost the priority of a VCPU that is runnable but not 3700 * currently running, because it got preempted by something 3701 * else and called schedule in __vcpu_run. Hopefully that 3702 * VCPU is holding the lock that we need and will release it. 3703 * We approximate round-robin by starting at the last boosted VCPU. 3704 */ 3705 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3706 kvm_for_each_vcpu(i, vcpu, kvm) { 3707 if (!pass && i <= last_boosted_vcpu) { 3708 i = last_boosted_vcpu; 3709 continue; 3710 } else if (pass && i > last_boosted_vcpu) 3711 break; 3712 if (!READ_ONCE(vcpu->ready)) 3713 continue; 3714 if (vcpu == me) 3715 continue; 3716 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3717 continue; 3718 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3719 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3720 !kvm_arch_vcpu_in_kernel(vcpu)) 3721 continue; 3722 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3723 continue; 3724 3725 yielded = kvm_vcpu_yield_to(vcpu); 3726 if (yielded > 0) { 3727 kvm->last_boosted_vcpu = i; 3728 break; 3729 } else if (yielded < 0) { 3730 try--; 3731 if (!try) 3732 break; 3733 } 3734 } 3735 } 3736 kvm_vcpu_set_in_spin_loop(me, false); 3737 3738 /* Ensure vcpu is not eligible during next spinloop */ 3739 kvm_vcpu_set_dy_eligible(me, false); 3740 } 3741 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3742 3743 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3744 { 3745 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3746 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3747 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3748 kvm->dirty_ring_size / PAGE_SIZE); 3749 #else 3750 return false; 3751 #endif 3752 } 3753 3754 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3755 { 3756 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3757 struct page *page; 3758 3759 if (vmf->pgoff == 0) 3760 page = virt_to_page(vcpu->run); 3761 #ifdef CONFIG_X86 3762 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3763 page = virt_to_page(vcpu->arch.pio_data); 3764 #endif 3765 #ifdef CONFIG_KVM_MMIO 3766 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3767 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3768 #endif 3769 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3770 page = kvm_dirty_ring_get_page( 3771 &vcpu->dirty_ring, 3772 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3773 else 3774 return kvm_arch_vcpu_fault(vcpu, vmf); 3775 get_page(page); 3776 vmf->page = page; 3777 return 0; 3778 } 3779 3780 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3781 .fault = kvm_vcpu_fault, 3782 }; 3783 3784 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3785 { 3786 struct kvm_vcpu *vcpu = file->private_data; 3787 unsigned long pages = vma_pages(vma); 3788 3789 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3790 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3791 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3792 return -EINVAL; 3793 3794 vma->vm_ops = &kvm_vcpu_vm_ops; 3795 return 0; 3796 } 3797 3798 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3799 { 3800 struct kvm_vcpu *vcpu = filp->private_data; 3801 3802 kvm_put_kvm(vcpu->kvm); 3803 return 0; 3804 } 3805 3806 static const struct file_operations kvm_vcpu_fops = { 3807 .release = kvm_vcpu_release, 3808 .unlocked_ioctl = kvm_vcpu_ioctl, 3809 .mmap = kvm_vcpu_mmap, 3810 .llseek = noop_llseek, 3811 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3812 }; 3813 3814 /* 3815 * Allocates an inode for the vcpu. 3816 */ 3817 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3818 { 3819 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3820 3821 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3822 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3823 } 3824 3825 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3826 static int vcpu_get_pid(void *data, u64 *val) 3827 { 3828 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data; 3829 *val = pid_nr(rcu_access_pointer(vcpu->pid)); 3830 return 0; 3831 } 3832 3833 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3834 3835 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3836 { 3837 struct dentry *debugfs_dentry; 3838 char dir_name[ITOA_MAX_LEN * 2]; 3839 3840 if (!debugfs_initialized()) 3841 return; 3842 3843 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3844 debugfs_dentry = debugfs_create_dir(dir_name, 3845 vcpu->kvm->debugfs_dentry); 3846 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3847 &vcpu_get_pid_fops); 3848 3849 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3850 } 3851 #endif 3852 3853 /* 3854 * Creates some virtual cpus. Good luck creating more than one. 3855 */ 3856 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3857 { 3858 int r; 3859 struct kvm_vcpu *vcpu; 3860 struct page *page; 3861 3862 if (id >= KVM_MAX_VCPU_IDS) 3863 return -EINVAL; 3864 3865 mutex_lock(&kvm->lock); 3866 if (kvm->created_vcpus >= kvm->max_vcpus) { 3867 mutex_unlock(&kvm->lock); 3868 return -EINVAL; 3869 } 3870 3871 r = kvm_arch_vcpu_precreate(kvm, id); 3872 if (r) { 3873 mutex_unlock(&kvm->lock); 3874 return r; 3875 } 3876 3877 kvm->created_vcpus++; 3878 mutex_unlock(&kvm->lock); 3879 3880 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3881 if (!vcpu) { 3882 r = -ENOMEM; 3883 goto vcpu_decrement; 3884 } 3885 3886 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3887 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3888 if (!page) { 3889 r = -ENOMEM; 3890 goto vcpu_free; 3891 } 3892 vcpu->run = page_address(page); 3893 3894 kvm_vcpu_init(vcpu, kvm, id); 3895 3896 r = kvm_arch_vcpu_create(vcpu); 3897 if (r) 3898 goto vcpu_free_run_page; 3899 3900 if (kvm->dirty_ring_size) { 3901 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3902 id, kvm->dirty_ring_size); 3903 if (r) 3904 goto arch_vcpu_destroy; 3905 } 3906 3907 mutex_lock(&kvm->lock); 3908 if (kvm_get_vcpu_by_id(kvm, id)) { 3909 r = -EEXIST; 3910 goto unlock_vcpu_destroy; 3911 } 3912 3913 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3914 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3915 BUG_ON(r == -EBUSY); 3916 if (r) 3917 goto unlock_vcpu_destroy; 3918 3919 /* Fill the stats id string for the vcpu */ 3920 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3921 task_pid_nr(current), id); 3922 3923 /* Now it's all set up, let userspace reach it */ 3924 kvm_get_kvm(kvm); 3925 r = create_vcpu_fd(vcpu); 3926 if (r < 0) { 3927 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3928 kvm_put_kvm_no_destroy(kvm); 3929 goto unlock_vcpu_destroy; 3930 } 3931 3932 /* 3933 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3934 * pointer before kvm->online_vcpu's incremented value. 3935 */ 3936 smp_wmb(); 3937 atomic_inc(&kvm->online_vcpus); 3938 3939 mutex_unlock(&kvm->lock); 3940 kvm_arch_vcpu_postcreate(vcpu); 3941 kvm_create_vcpu_debugfs(vcpu); 3942 return r; 3943 3944 unlock_vcpu_destroy: 3945 mutex_unlock(&kvm->lock); 3946 kvm_dirty_ring_free(&vcpu->dirty_ring); 3947 arch_vcpu_destroy: 3948 kvm_arch_vcpu_destroy(vcpu); 3949 vcpu_free_run_page: 3950 free_page((unsigned long)vcpu->run); 3951 vcpu_free: 3952 kmem_cache_free(kvm_vcpu_cache, vcpu); 3953 vcpu_decrement: 3954 mutex_lock(&kvm->lock); 3955 kvm->created_vcpus--; 3956 mutex_unlock(&kvm->lock); 3957 return r; 3958 } 3959 3960 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3961 { 3962 if (sigset) { 3963 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3964 vcpu->sigset_active = 1; 3965 vcpu->sigset = *sigset; 3966 } else 3967 vcpu->sigset_active = 0; 3968 return 0; 3969 } 3970 3971 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3972 size_t size, loff_t *offset) 3973 { 3974 struct kvm_vcpu *vcpu = file->private_data; 3975 3976 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3977 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3978 sizeof(vcpu->stat), user_buffer, size, offset); 3979 } 3980 3981 static const struct file_operations kvm_vcpu_stats_fops = { 3982 .read = kvm_vcpu_stats_read, 3983 .llseek = noop_llseek, 3984 }; 3985 3986 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3987 { 3988 int fd; 3989 struct file *file; 3990 char name[15 + ITOA_MAX_LEN + 1]; 3991 3992 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3993 3994 fd = get_unused_fd_flags(O_CLOEXEC); 3995 if (fd < 0) 3996 return fd; 3997 3998 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3999 if (IS_ERR(file)) { 4000 put_unused_fd(fd); 4001 return PTR_ERR(file); 4002 } 4003 file->f_mode |= FMODE_PREAD; 4004 fd_install(fd, file); 4005 4006 return fd; 4007 } 4008 4009 static long kvm_vcpu_ioctl(struct file *filp, 4010 unsigned int ioctl, unsigned long arg) 4011 { 4012 struct kvm_vcpu *vcpu = filp->private_data; 4013 void __user *argp = (void __user *)arg; 4014 int r; 4015 struct kvm_fpu *fpu = NULL; 4016 struct kvm_sregs *kvm_sregs = NULL; 4017 4018 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4019 return -EIO; 4020 4021 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4022 return -EINVAL; 4023 4024 /* 4025 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4026 * execution; mutex_lock() would break them. 4027 */ 4028 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4029 if (r != -ENOIOCTLCMD) 4030 return r; 4031 4032 if (mutex_lock_killable(&vcpu->mutex)) 4033 return -EINTR; 4034 switch (ioctl) { 4035 case KVM_RUN: { 4036 struct pid *oldpid; 4037 r = -EINVAL; 4038 if (arg) 4039 goto out; 4040 oldpid = rcu_access_pointer(vcpu->pid); 4041 if (unlikely(oldpid != task_pid(current))) { 4042 /* The thread running this VCPU changed. */ 4043 struct pid *newpid; 4044 4045 r = kvm_arch_vcpu_run_pid_change(vcpu); 4046 if (r) 4047 break; 4048 4049 newpid = get_task_pid(current, PIDTYPE_PID); 4050 rcu_assign_pointer(vcpu->pid, newpid); 4051 if (oldpid) 4052 synchronize_rcu(); 4053 put_pid(oldpid); 4054 } 4055 r = kvm_arch_vcpu_ioctl_run(vcpu); 4056 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4057 break; 4058 } 4059 case KVM_GET_REGS: { 4060 struct kvm_regs *kvm_regs; 4061 4062 r = -ENOMEM; 4063 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4064 if (!kvm_regs) 4065 goto out; 4066 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4067 if (r) 4068 goto out_free1; 4069 r = -EFAULT; 4070 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4071 goto out_free1; 4072 r = 0; 4073 out_free1: 4074 kfree(kvm_regs); 4075 break; 4076 } 4077 case KVM_SET_REGS: { 4078 struct kvm_regs *kvm_regs; 4079 4080 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4081 if (IS_ERR(kvm_regs)) { 4082 r = PTR_ERR(kvm_regs); 4083 goto out; 4084 } 4085 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4086 kfree(kvm_regs); 4087 break; 4088 } 4089 case KVM_GET_SREGS: { 4090 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4091 GFP_KERNEL_ACCOUNT); 4092 r = -ENOMEM; 4093 if (!kvm_sregs) 4094 goto out; 4095 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4096 if (r) 4097 goto out; 4098 r = -EFAULT; 4099 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4100 goto out; 4101 r = 0; 4102 break; 4103 } 4104 case KVM_SET_SREGS: { 4105 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4106 if (IS_ERR(kvm_sregs)) { 4107 r = PTR_ERR(kvm_sregs); 4108 kvm_sregs = NULL; 4109 goto out; 4110 } 4111 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4112 break; 4113 } 4114 case KVM_GET_MP_STATE: { 4115 struct kvm_mp_state mp_state; 4116 4117 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4118 if (r) 4119 goto out; 4120 r = -EFAULT; 4121 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4122 goto out; 4123 r = 0; 4124 break; 4125 } 4126 case KVM_SET_MP_STATE: { 4127 struct kvm_mp_state mp_state; 4128 4129 r = -EFAULT; 4130 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4131 goto out; 4132 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4133 break; 4134 } 4135 case KVM_TRANSLATE: { 4136 struct kvm_translation tr; 4137 4138 r = -EFAULT; 4139 if (copy_from_user(&tr, argp, sizeof(tr))) 4140 goto out; 4141 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4142 if (r) 4143 goto out; 4144 r = -EFAULT; 4145 if (copy_to_user(argp, &tr, sizeof(tr))) 4146 goto out; 4147 r = 0; 4148 break; 4149 } 4150 case KVM_SET_GUEST_DEBUG: { 4151 struct kvm_guest_debug dbg; 4152 4153 r = -EFAULT; 4154 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4155 goto out; 4156 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4157 break; 4158 } 4159 case KVM_SET_SIGNAL_MASK: { 4160 struct kvm_signal_mask __user *sigmask_arg = argp; 4161 struct kvm_signal_mask kvm_sigmask; 4162 sigset_t sigset, *p; 4163 4164 p = NULL; 4165 if (argp) { 4166 r = -EFAULT; 4167 if (copy_from_user(&kvm_sigmask, argp, 4168 sizeof(kvm_sigmask))) 4169 goto out; 4170 r = -EINVAL; 4171 if (kvm_sigmask.len != sizeof(sigset)) 4172 goto out; 4173 r = -EFAULT; 4174 if (copy_from_user(&sigset, sigmask_arg->sigset, 4175 sizeof(sigset))) 4176 goto out; 4177 p = &sigset; 4178 } 4179 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4180 break; 4181 } 4182 case KVM_GET_FPU: { 4183 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4184 r = -ENOMEM; 4185 if (!fpu) 4186 goto out; 4187 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4188 if (r) 4189 goto out; 4190 r = -EFAULT; 4191 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4192 goto out; 4193 r = 0; 4194 break; 4195 } 4196 case KVM_SET_FPU: { 4197 fpu = memdup_user(argp, sizeof(*fpu)); 4198 if (IS_ERR(fpu)) { 4199 r = PTR_ERR(fpu); 4200 fpu = NULL; 4201 goto out; 4202 } 4203 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4204 break; 4205 } 4206 case KVM_GET_STATS_FD: { 4207 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4208 break; 4209 } 4210 default: 4211 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4212 } 4213 out: 4214 mutex_unlock(&vcpu->mutex); 4215 kfree(fpu); 4216 kfree(kvm_sregs); 4217 return r; 4218 } 4219 4220 #ifdef CONFIG_KVM_COMPAT 4221 static long kvm_vcpu_compat_ioctl(struct file *filp, 4222 unsigned int ioctl, unsigned long arg) 4223 { 4224 struct kvm_vcpu *vcpu = filp->private_data; 4225 void __user *argp = compat_ptr(arg); 4226 int r; 4227 4228 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4229 return -EIO; 4230 4231 switch (ioctl) { 4232 case KVM_SET_SIGNAL_MASK: { 4233 struct kvm_signal_mask __user *sigmask_arg = argp; 4234 struct kvm_signal_mask kvm_sigmask; 4235 sigset_t sigset; 4236 4237 if (argp) { 4238 r = -EFAULT; 4239 if (copy_from_user(&kvm_sigmask, argp, 4240 sizeof(kvm_sigmask))) 4241 goto out; 4242 r = -EINVAL; 4243 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4244 goto out; 4245 r = -EFAULT; 4246 if (get_compat_sigset(&sigset, 4247 (compat_sigset_t __user *)sigmask_arg->sigset)) 4248 goto out; 4249 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4250 } else 4251 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4252 break; 4253 } 4254 default: 4255 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4256 } 4257 4258 out: 4259 return r; 4260 } 4261 #endif 4262 4263 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4264 { 4265 struct kvm_device *dev = filp->private_data; 4266 4267 if (dev->ops->mmap) 4268 return dev->ops->mmap(dev, vma); 4269 4270 return -ENODEV; 4271 } 4272 4273 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4274 int (*accessor)(struct kvm_device *dev, 4275 struct kvm_device_attr *attr), 4276 unsigned long arg) 4277 { 4278 struct kvm_device_attr attr; 4279 4280 if (!accessor) 4281 return -EPERM; 4282 4283 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4284 return -EFAULT; 4285 4286 return accessor(dev, &attr); 4287 } 4288 4289 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4290 unsigned long arg) 4291 { 4292 struct kvm_device *dev = filp->private_data; 4293 4294 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4295 return -EIO; 4296 4297 switch (ioctl) { 4298 case KVM_SET_DEVICE_ATTR: 4299 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4300 case KVM_GET_DEVICE_ATTR: 4301 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4302 case KVM_HAS_DEVICE_ATTR: 4303 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4304 default: 4305 if (dev->ops->ioctl) 4306 return dev->ops->ioctl(dev, ioctl, arg); 4307 4308 return -ENOTTY; 4309 } 4310 } 4311 4312 static int kvm_device_release(struct inode *inode, struct file *filp) 4313 { 4314 struct kvm_device *dev = filp->private_data; 4315 struct kvm *kvm = dev->kvm; 4316 4317 if (dev->ops->release) { 4318 mutex_lock(&kvm->lock); 4319 list_del(&dev->vm_node); 4320 dev->ops->release(dev); 4321 mutex_unlock(&kvm->lock); 4322 } 4323 4324 kvm_put_kvm(kvm); 4325 return 0; 4326 } 4327 4328 static const struct file_operations kvm_device_fops = { 4329 .unlocked_ioctl = kvm_device_ioctl, 4330 .release = kvm_device_release, 4331 KVM_COMPAT(kvm_device_ioctl), 4332 .mmap = kvm_device_mmap, 4333 }; 4334 4335 struct kvm_device *kvm_device_from_filp(struct file *filp) 4336 { 4337 if (filp->f_op != &kvm_device_fops) 4338 return NULL; 4339 4340 return filp->private_data; 4341 } 4342 4343 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4344 #ifdef CONFIG_KVM_MPIC 4345 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4346 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4347 #endif 4348 }; 4349 4350 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4351 { 4352 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4353 return -ENOSPC; 4354 4355 if (kvm_device_ops_table[type] != NULL) 4356 return -EEXIST; 4357 4358 kvm_device_ops_table[type] = ops; 4359 return 0; 4360 } 4361 4362 void kvm_unregister_device_ops(u32 type) 4363 { 4364 if (kvm_device_ops_table[type] != NULL) 4365 kvm_device_ops_table[type] = NULL; 4366 } 4367 4368 static int kvm_ioctl_create_device(struct kvm *kvm, 4369 struct kvm_create_device *cd) 4370 { 4371 const struct kvm_device_ops *ops = NULL; 4372 struct kvm_device *dev; 4373 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4374 int type; 4375 int ret; 4376 4377 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4378 return -ENODEV; 4379 4380 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4381 ops = kvm_device_ops_table[type]; 4382 if (ops == NULL) 4383 return -ENODEV; 4384 4385 if (test) 4386 return 0; 4387 4388 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4389 if (!dev) 4390 return -ENOMEM; 4391 4392 dev->ops = ops; 4393 dev->kvm = kvm; 4394 4395 mutex_lock(&kvm->lock); 4396 ret = ops->create(dev, type); 4397 if (ret < 0) { 4398 mutex_unlock(&kvm->lock); 4399 kfree(dev); 4400 return ret; 4401 } 4402 list_add(&dev->vm_node, &kvm->devices); 4403 mutex_unlock(&kvm->lock); 4404 4405 if (ops->init) 4406 ops->init(dev); 4407 4408 kvm_get_kvm(kvm); 4409 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4410 if (ret < 0) { 4411 kvm_put_kvm_no_destroy(kvm); 4412 mutex_lock(&kvm->lock); 4413 list_del(&dev->vm_node); 4414 if (ops->release) 4415 ops->release(dev); 4416 mutex_unlock(&kvm->lock); 4417 if (ops->destroy) 4418 ops->destroy(dev); 4419 return ret; 4420 } 4421 4422 cd->fd = ret; 4423 return 0; 4424 } 4425 4426 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4427 { 4428 switch (arg) { 4429 case KVM_CAP_USER_MEMORY: 4430 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4431 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4432 case KVM_CAP_INTERNAL_ERROR_DATA: 4433 #ifdef CONFIG_HAVE_KVM_MSI 4434 case KVM_CAP_SIGNAL_MSI: 4435 #endif 4436 #ifdef CONFIG_HAVE_KVM_IRQFD 4437 case KVM_CAP_IRQFD: 4438 case KVM_CAP_IRQFD_RESAMPLE: 4439 #endif 4440 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4441 case KVM_CAP_CHECK_EXTENSION_VM: 4442 case KVM_CAP_ENABLE_CAP_VM: 4443 case KVM_CAP_HALT_POLL: 4444 return 1; 4445 #ifdef CONFIG_KVM_MMIO 4446 case KVM_CAP_COALESCED_MMIO: 4447 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4448 case KVM_CAP_COALESCED_PIO: 4449 return 1; 4450 #endif 4451 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4452 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4453 return KVM_DIRTY_LOG_MANUAL_CAPS; 4454 #endif 4455 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4456 case KVM_CAP_IRQ_ROUTING: 4457 return KVM_MAX_IRQ_ROUTES; 4458 #endif 4459 #if KVM_ADDRESS_SPACE_NUM > 1 4460 case KVM_CAP_MULTI_ADDRESS_SPACE: 4461 return KVM_ADDRESS_SPACE_NUM; 4462 #endif 4463 case KVM_CAP_NR_MEMSLOTS: 4464 return KVM_USER_MEM_SLOTS; 4465 case KVM_CAP_DIRTY_LOG_RING: 4466 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4467 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4468 #else 4469 return 0; 4470 #endif 4471 case KVM_CAP_BINARY_STATS_FD: 4472 case KVM_CAP_SYSTEM_EVENT_DATA: 4473 return 1; 4474 default: 4475 break; 4476 } 4477 return kvm_vm_ioctl_check_extension(kvm, arg); 4478 } 4479 4480 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4481 { 4482 int r; 4483 4484 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4485 return -EINVAL; 4486 4487 /* the size should be power of 2 */ 4488 if (!size || (size & (size - 1))) 4489 return -EINVAL; 4490 4491 /* Should be bigger to keep the reserved entries, or a page */ 4492 if (size < kvm_dirty_ring_get_rsvd_entries() * 4493 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4494 return -EINVAL; 4495 4496 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4497 sizeof(struct kvm_dirty_gfn)) 4498 return -E2BIG; 4499 4500 /* We only allow it to set once */ 4501 if (kvm->dirty_ring_size) 4502 return -EINVAL; 4503 4504 mutex_lock(&kvm->lock); 4505 4506 if (kvm->created_vcpus) { 4507 /* We don't allow to change this value after vcpu created */ 4508 r = -EINVAL; 4509 } else { 4510 kvm->dirty_ring_size = size; 4511 r = 0; 4512 } 4513 4514 mutex_unlock(&kvm->lock); 4515 return r; 4516 } 4517 4518 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4519 { 4520 unsigned long i; 4521 struct kvm_vcpu *vcpu; 4522 int cleared = 0; 4523 4524 if (!kvm->dirty_ring_size) 4525 return -EINVAL; 4526 4527 mutex_lock(&kvm->slots_lock); 4528 4529 kvm_for_each_vcpu(i, vcpu, kvm) 4530 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4531 4532 mutex_unlock(&kvm->slots_lock); 4533 4534 if (cleared) 4535 kvm_flush_remote_tlbs(kvm); 4536 4537 return cleared; 4538 } 4539 4540 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4541 struct kvm_enable_cap *cap) 4542 { 4543 return -EINVAL; 4544 } 4545 4546 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4547 struct kvm_enable_cap *cap) 4548 { 4549 switch (cap->cap) { 4550 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4551 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4552 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4553 4554 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4555 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4556 4557 if (cap->flags || (cap->args[0] & ~allowed_options)) 4558 return -EINVAL; 4559 kvm->manual_dirty_log_protect = cap->args[0]; 4560 return 0; 4561 } 4562 #endif 4563 case KVM_CAP_HALT_POLL: { 4564 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4565 return -EINVAL; 4566 4567 kvm->max_halt_poll_ns = cap->args[0]; 4568 return 0; 4569 } 4570 case KVM_CAP_DIRTY_LOG_RING: 4571 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4572 default: 4573 return kvm_vm_ioctl_enable_cap(kvm, cap); 4574 } 4575 } 4576 4577 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4578 size_t size, loff_t *offset) 4579 { 4580 struct kvm *kvm = file->private_data; 4581 4582 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4583 &kvm_vm_stats_desc[0], &kvm->stat, 4584 sizeof(kvm->stat), user_buffer, size, offset); 4585 } 4586 4587 static const struct file_operations kvm_vm_stats_fops = { 4588 .read = kvm_vm_stats_read, 4589 .llseek = noop_llseek, 4590 }; 4591 4592 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4593 { 4594 int fd; 4595 struct file *file; 4596 4597 fd = get_unused_fd_flags(O_CLOEXEC); 4598 if (fd < 0) 4599 return fd; 4600 4601 file = anon_inode_getfile("kvm-vm-stats", 4602 &kvm_vm_stats_fops, kvm, O_RDONLY); 4603 if (IS_ERR(file)) { 4604 put_unused_fd(fd); 4605 return PTR_ERR(file); 4606 } 4607 file->f_mode |= FMODE_PREAD; 4608 fd_install(fd, file); 4609 4610 return fd; 4611 } 4612 4613 static long kvm_vm_ioctl(struct file *filp, 4614 unsigned int ioctl, unsigned long arg) 4615 { 4616 struct kvm *kvm = filp->private_data; 4617 void __user *argp = (void __user *)arg; 4618 int r; 4619 4620 if (kvm->mm != current->mm || kvm->vm_dead) 4621 return -EIO; 4622 switch (ioctl) { 4623 case KVM_CREATE_VCPU: 4624 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4625 break; 4626 case KVM_ENABLE_CAP: { 4627 struct kvm_enable_cap cap; 4628 4629 r = -EFAULT; 4630 if (copy_from_user(&cap, argp, sizeof(cap))) 4631 goto out; 4632 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4633 break; 4634 } 4635 case KVM_SET_USER_MEMORY_REGION: { 4636 struct kvm_userspace_memory_region kvm_userspace_mem; 4637 4638 r = -EFAULT; 4639 if (copy_from_user(&kvm_userspace_mem, argp, 4640 sizeof(kvm_userspace_mem))) 4641 goto out; 4642 4643 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4644 break; 4645 } 4646 case KVM_GET_DIRTY_LOG: { 4647 struct kvm_dirty_log log; 4648 4649 r = -EFAULT; 4650 if (copy_from_user(&log, argp, sizeof(log))) 4651 goto out; 4652 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4653 break; 4654 } 4655 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4656 case KVM_CLEAR_DIRTY_LOG: { 4657 struct kvm_clear_dirty_log log; 4658 4659 r = -EFAULT; 4660 if (copy_from_user(&log, argp, sizeof(log))) 4661 goto out; 4662 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4663 break; 4664 } 4665 #endif 4666 #ifdef CONFIG_KVM_MMIO 4667 case KVM_REGISTER_COALESCED_MMIO: { 4668 struct kvm_coalesced_mmio_zone zone; 4669 4670 r = -EFAULT; 4671 if (copy_from_user(&zone, argp, sizeof(zone))) 4672 goto out; 4673 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4674 break; 4675 } 4676 case KVM_UNREGISTER_COALESCED_MMIO: { 4677 struct kvm_coalesced_mmio_zone zone; 4678 4679 r = -EFAULT; 4680 if (copy_from_user(&zone, argp, sizeof(zone))) 4681 goto out; 4682 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4683 break; 4684 } 4685 #endif 4686 case KVM_IRQFD: { 4687 struct kvm_irqfd data; 4688 4689 r = -EFAULT; 4690 if (copy_from_user(&data, argp, sizeof(data))) 4691 goto out; 4692 r = kvm_irqfd(kvm, &data); 4693 break; 4694 } 4695 case KVM_IOEVENTFD: { 4696 struct kvm_ioeventfd data; 4697 4698 r = -EFAULT; 4699 if (copy_from_user(&data, argp, sizeof(data))) 4700 goto out; 4701 r = kvm_ioeventfd(kvm, &data); 4702 break; 4703 } 4704 #ifdef CONFIG_HAVE_KVM_MSI 4705 case KVM_SIGNAL_MSI: { 4706 struct kvm_msi msi; 4707 4708 r = -EFAULT; 4709 if (copy_from_user(&msi, argp, sizeof(msi))) 4710 goto out; 4711 r = kvm_send_userspace_msi(kvm, &msi); 4712 break; 4713 } 4714 #endif 4715 #ifdef __KVM_HAVE_IRQ_LINE 4716 case KVM_IRQ_LINE_STATUS: 4717 case KVM_IRQ_LINE: { 4718 struct kvm_irq_level irq_event; 4719 4720 r = -EFAULT; 4721 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4722 goto out; 4723 4724 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4725 ioctl == KVM_IRQ_LINE_STATUS); 4726 if (r) 4727 goto out; 4728 4729 r = -EFAULT; 4730 if (ioctl == KVM_IRQ_LINE_STATUS) { 4731 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4732 goto out; 4733 } 4734 4735 r = 0; 4736 break; 4737 } 4738 #endif 4739 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4740 case KVM_SET_GSI_ROUTING: { 4741 struct kvm_irq_routing routing; 4742 struct kvm_irq_routing __user *urouting; 4743 struct kvm_irq_routing_entry *entries = NULL; 4744 4745 r = -EFAULT; 4746 if (copy_from_user(&routing, argp, sizeof(routing))) 4747 goto out; 4748 r = -EINVAL; 4749 if (!kvm_arch_can_set_irq_routing(kvm)) 4750 goto out; 4751 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4752 goto out; 4753 if (routing.flags) 4754 goto out; 4755 if (routing.nr) { 4756 urouting = argp; 4757 entries = vmemdup_user(urouting->entries, 4758 array_size(sizeof(*entries), 4759 routing.nr)); 4760 if (IS_ERR(entries)) { 4761 r = PTR_ERR(entries); 4762 goto out; 4763 } 4764 } 4765 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4766 routing.flags); 4767 kvfree(entries); 4768 break; 4769 } 4770 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4771 case KVM_CREATE_DEVICE: { 4772 struct kvm_create_device cd; 4773 4774 r = -EFAULT; 4775 if (copy_from_user(&cd, argp, sizeof(cd))) 4776 goto out; 4777 4778 r = kvm_ioctl_create_device(kvm, &cd); 4779 if (r) 4780 goto out; 4781 4782 r = -EFAULT; 4783 if (copy_to_user(argp, &cd, sizeof(cd))) 4784 goto out; 4785 4786 r = 0; 4787 break; 4788 } 4789 case KVM_CHECK_EXTENSION: 4790 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4791 break; 4792 case KVM_RESET_DIRTY_RINGS: 4793 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4794 break; 4795 case KVM_GET_STATS_FD: 4796 r = kvm_vm_ioctl_get_stats_fd(kvm); 4797 break; 4798 default: 4799 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4800 } 4801 out: 4802 return r; 4803 } 4804 4805 #ifdef CONFIG_KVM_COMPAT 4806 struct compat_kvm_dirty_log { 4807 __u32 slot; 4808 __u32 padding1; 4809 union { 4810 compat_uptr_t dirty_bitmap; /* one bit per page */ 4811 __u64 padding2; 4812 }; 4813 }; 4814 4815 struct compat_kvm_clear_dirty_log { 4816 __u32 slot; 4817 __u32 num_pages; 4818 __u64 first_page; 4819 union { 4820 compat_uptr_t dirty_bitmap; /* one bit per page */ 4821 __u64 padding2; 4822 }; 4823 }; 4824 4825 static long kvm_vm_compat_ioctl(struct file *filp, 4826 unsigned int ioctl, unsigned long arg) 4827 { 4828 struct kvm *kvm = filp->private_data; 4829 int r; 4830 4831 if (kvm->mm != current->mm || kvm->vm_dead) 4832 return -EIO; 4833 switch (ioctl) { 4834 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4835 case KVM_CLEAR_DIRTY_LOG: { 4836 struct compat_kvm_clear_dirty_log compat_log; 4837 struct kvm_clear_dirty_log log; 4838 4839 if (copy_from_user(&compat_log, (void __user *)arg, 4840 sizeof(compat_log))) 4841 return -EFAULT; 4842 log.slot = compat_log.slot; 4843 log.num_pages = compat_log.num_pages; 4844 log.first_page = compat_log.first_page; 4845 log.padding2 = compat_log.padding2; 4846 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4847 4848 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4849 break; 4850 } 4851 #endif 4852 case KVM_GET_DIRTY_LOG: { 4853 struct compat_kvm_dirty_log compat_log; 4854 struct kvm_dirty_log log; 4855 4856 if (copy_from_user(&compat_log, (void __user *)arg, 4857 sizeof(compat_log))) 4858 return -EFAULT; 4859 log.slot = compat_log.slot; 4860 log.padding1 = compat_log.padding1; 4861 log.padding2 = compat_log.padding2; 4862 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4863 4864 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4865 break; 4866 } 4867 default: 4868 r = kvm_vm_ioctl(filp, ioctl, arg); 4869 } 4870 return r; 4871 } 4872 #endif 4873 4874 static const struct file_operations kvm_vm_fops = { 4875 .release = kvm_vm_release, 4876 .unlocked_ioctl = kvm_vm_ioctl, 4877 .llseek = noop_llseek, 4878 KVM_COMPAT(kvm_vm_compat_ioctl), 4879 }; 4880 4881 bool file_is_kvm(struct file *file) 4882 { 4883 return file && file->f_op == &kvm_vm_fops; 4884 } 4885 EXPORT_SYMBOL_GPL(file_is_kvm); 4886 4887 static int kvm_dev_ioctl_create_vm(unsigned long type) 4888 { 4889 int r; 4890 struct kvm *kvm; 4891 struct file *file; 4892 4893 kvm = kvm_create_vm(type); 4894 if (IS_ERR(kvm)) 4895 return PTR_ERR(kvm); 4896 #ifdef CONFIG_KVM_MMIO 4897 r = kvm_coalesced_mmio_init(kvm); 4898 if (r < 0) 4899 goto put_kvm; 4900 #endif 4901 r = get_unused_fd_flags(O_CLOEXEC); 4902 if (r < 0) 4903 goto put_kvm; 4904 4905 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4906 "kvm-%d", task_pid_nr(current)); 4907 4908 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4909 if (IS_ERR(file)) { 4910 put_unused_fd(r); 4911 r = PTR_ERR(file); 4912 goto put_kvm; 4913 } 4914 4915 /* 4916 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4917 * already set, with ->release() being kvm_vm_release(). In error 4918 * cases it will be called by the final fput(file) and will take 4919 * care of doing kvm_put_kvm(kvm). 4920 */ 4921 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4922 put_unused_fd(r); 4923 fput(file); 4924 return -ENOMEM; 4925 } 4926 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4927 4928 fd_install(r, file); 4929 return r; 4930 4931 put_kvm: 4932 kvm_put_kvm(kvm); 4933 return r; 4934 } 4935 4936 static long kvm_dev_ioctl(struct file *filp, 4937 unsigned int ioctl, unsigned long arg) 4938 { 4939 long r = -EINVAL; 4940 4941 switch (ioctl) { 4942 case KVM_GET_API_VERSION: 4943 if (arg) 4944 goto out; 4945 r = KVM_API_VERSION; 4946 break; 4947 case KVM_CREATE_VM: 4948 r = kvm_dev_ioctl_create_vm(arg); 4949 break; 4950 case KVM_CHECK_EXTENSION: 4951 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4952 break; 4953 case KVM_GET_VCPU_MMAP_SIZE: 4954 if (arg) 4955 goto out; 4956 r = PAGE_SIZE; /* struct kvm_run */ 4957 #ifdef CONFIG_X86 4958 r += PAGE_SIZE; /* pio data page */ 4959 #endif 4960 #ifdef CONFIG_KVM_MMIO 4961 r += PAGE_SIZE; /* coalesced mmio ring page */ 4962 #endif 4963 break; 4964 case KVM_TRACE_ENABLE: 4965 case KVM_TRACE_PAUSE: 4966 case KVM_TRACE_DISABLE: 4967 r = -EOPNOTSUPP; 4968 break; 4969 default: 4970 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4971 } 4972 out: 4973 return r; 4974 } 4975 4976 static struct file_operations kvm_chardev_ops = { 4977 .unlocked_ioctl = kvm_dev_ioctl, 4978 .llseek = noop_llseek, 4979 KVM_COMPAT(kvm_dev_ioctl), 4980 }; 4981 4982 static struct miscdevice kvm_dev = { 4983 KVM_MINOR, 4984 "kvm", 4985 &kvm_chardev_ops, 4986 }; 4987 4988 static void hardware_enable_nolock(void *junk) 4989 { 4990 int cpu = raw_smp_processor_id(); 4991 int r; 4992 4993 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4994 return; 4995 4996 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4997 4998 r = kvm_arch_hardware_enable(); 4999 5000 if (r) { 5001 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5002 atomic_inc(&hardware_enable_failed); 5003 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 5004 } 5005 } 5006 5007 static int kvm_starting_cpu(unsigned int cpu) 5008 { 5009 raw_spin_lock(&kvm_count_lock); 5010 if (kvm_usage_count) 5011 hardware_enable_nolock(NULL); 5012 raw_spin_unlock(&kvm_count_lock); 5013 return 0; 5014 } 5015 5016 static void hardware_disable_nolock(void *junk) 5017 { 5018 int cpu = raw_smp_processor_id(); 5019 5020 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5021 return; 5022 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5023 kvm_arch_hardware_disable(); 5024 } 5025 5026 static int kvm_dying_cpu(unsigned int cpu) 5027 { 5028 raw_spin_lock(&kvm_count_lock); 5029 if (kvm_usage_count) 5030 hardware_disable_nolock(NULL); 5031 raw_spin_unlock(&kvm_count_lock); 5032 return 0; 5033 } 5034 5035 static void hardware_disable_all_nolock(void) 5036 { 5037 BUG_ON(!kvm_usage_count); 5038 5039 kvm_usage_count--; 5040 if (!kvm_usage_count) 5041 on_each_cpu(hardware_disable_nolock, NULL, 1); 5042 } 5043 5044 static void hardware_disable_all(void) 5045 { 5046 raw_spin_lock(&kvm_count_lock); 5047 hardware_disable_all_nolock(); 5048 raw_spin_unlock(&kvm_count_lock); 5049 } 5050 5051 static int hardware_enable_all(void) 5052 { 5053 int r = 0; 5054 5055 raw_spin_lock(&kvm_count_lock); 5056 5057 kvm_usage_count++; 5058 if (kvm_usage_count == 1) { 5059 atomic_set(&hardware_enable_failed, 0); 5060 on_each_cpu(hardware_enable_nolock, NULL, 1); 5061 5062 if (atomic_read(&hardware_enable_failed)) { 5063 hardware_disable_all_nolock(); 5064 r = -EBUSY; 5065 } 5066 } 5067 5068 raw_spin_unlock(&kvm_count_lock); 5069 5070 return r; 5071 } 5072 5073 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 5074 void *v) 5075 { 5076 /* 5077 * Some (well, at least mine) BIOSes hang on reboot if 5078 * in vmx root mode. 5079 * 5080 * And Intel TXT required VMX off for all cpu when system shutdown. 5081 */ 5082 pr_info("kvm: exiting hardware virtualization\n"); 5083 kvm_rebooting = true; 5084 on_each_cpu(hardware_disable_nolock, NULL, 1); 5085 return NOTIFY_OK; 5086 } 5087 5088 static struct notifier_block kvm_reboot_notifier = { 5089 .notifier_call = kvm_reboot, 5090 .priority = 0, 5091 }; 5092 5093 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5094 { 5095 int i; 5096 5097 for (i = 0; i < bus->dev_count; i++) { 5098 struct kvm_io_device *pos = bus->range[i].dev; 5099 5100 kvm_iodevice_destructor(pos); 5101 } 5102 kfree(bus); 5103 } 5104 5105 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5106 const struct kvm_io_range *r2) 5107 { 5108 gpa_t addr1 = r1->addr; 5109 gpa_t addr2 = r2->addr; 5110 5111 if (addr1 < addr2) 5112 return -1; 5113 5114 /* If r2->len == 0, match the exact address. If r2->len != 0, 5115 * accept any overlapping write. Any order is acceptable for 5116 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5117 * we process all of them. 5118 */ 5119 if (r2->len) { 5120 addr1 += r1->len; 5121 addr2 += r2->len; 5122 } 5123 5124 if (addr1 > addr2) 5125 return 1; 5126 5127 return 0; 5128 } 5129 5130 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5131 { 5132 return kvm_io_bus_cmp(p1, p2); 5133 } 5134 5135 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5136 gpa_t addr, int len) 5137 { 5138 struct kvm_io_range *range, key; 5139 int off; 5140 5141 key = (struct kvm_io_range) { 5142 .addr = addr, 5143 .len = len, 5144 }; 5145 5146 range = bsearch(&key, bus->range, bus->dev_count, 5147 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5148 if (range == NULL) 5149 return -ENOENT; 5150 5151 off = range - bus->range; 5152 5153 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5154 off--; 5155 5156 return off; 5157 } 5158 5159 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5160 struct kvm_io_range *range, const void *val) 5161 { 5162 int idx; 5163 5164 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5165 if (idx < 0) 5166 return -EOPNOTSUPP; 5167 5168 while (idx < bus->dev_count && 5169 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5170 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5171 range->len, val)) 5172 return idx; 5173 idx++; 5174 } 5175 5176 return -EOPNOTSUPP; 5177 } 5178 5179 /* kvm_io_bus_write - called under kvm->slots_lock */ 5180 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5181 int len, const void *val) 5182 { 5183 struct kvm_io_bus *bus; 5184 struct kvm_io_range range; 5185 int r; 5186 5187 range = (struct kvm_io_range) { 5188 .addr = addr, 5189 .len = len, 5190 }; 5191 5192 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5193 if (!bus) 5194 return -ENOMEM; 5195 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5196 return r < 0 ? r : 0; 5197 } 5198 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5199 5200 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5201 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5202 gpa_t addr, int len, const void *val, long cookie) 5203 { 5204 struct kvm_io_bus *bus; 5205 struct kvm_io_range range; 5206 5207 range = (struct kvm_io_range) { 5208 .addr = addr, 5209 .len = len, 5210 }; 5211 5212 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5213 if (!bus) 5214 return -ENOMEM; 5215 5216 /* First try the device referenced by cookie. */ 5217 if ((cookie >= 0) && (cookie < bus->dev_count) && 5218 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5219 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5220 val)) 5221 return cookie; 5222 5223 /* 5224 * cookie contained garbage; fall back to search and return the 5225 * correct cookie value. 5226 */ 5227 return __kvm_io_bus_write(vcpu, bus, &range, val); 5228 } 5229 5230 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5231 struct kvm_io_range *range, void *val) 5232 { 5233 int idx; 5234 5235 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5236 if (idx < 0) 5237 return -EOPNOTSUPP; 5238 5239 while (idx < bus->dev_count && 5240 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5241 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5242 range->len, val)) 5243 return idx; 5244 idx++; 5245 } 5246 5247 return -EOPNOTSUPP; 5248 } 5249 5250 /* kvm_io_bus_read - called under kvm->slots_lock */ 5251 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5252 int len, void *val) 5253 { 5254 struct kvm_io_bus *bus; 5255 struct kvm_io_range range; 5256 int r; 5257 5258 range = (struct kvm_io_range) { 5259 .addr = addr, 5260 .len = len, 5261 }; 5262 5263 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5264 if (!bus) 5265 return -ENOMEM; 5266 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5267 return r < 0 ? r : 0; 5268 } 5269 5270 /* Caller must hold slots_lock. */ 5271 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5272 int len, struct kvm_io_device *dev) 5273 { 5274 int i; 5275 struct kvm_io_bus *new_bus, *bus; 5276 struct kvm_io_range range; 5277 5278 bus = kvm_get_bus(kvm, bus_idx); 5279 if (!bus) 5280 return -ENOMEM; 5281 5282 /* exclude ioeventfd which is limited by maximum fd */ 5283 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5284 return -ENOSPC; 5285 5286 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5287 GFP_KERNEL_ACCOUNT); 5288 if (!new_bus) 5289 return -ENOMEM; 5290 5291 range = (struct kvm_io_range) { 5292 .addr = addr, 5293 .len = len, 5294 .dev = dev, 5295 }; 5296 5297 for (i = 0; i < bus->dev_count; i++) 5298 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5299 break; 5300 5301 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5302 new_bus->dev_count++; 5303 new_bus->range[i] = range; 5304 memcpy(new_bus->range + i + 1, bus->range + i, 5305 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5306 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5307 synchronize_srcu_expedited(&kvm->srcu); 5308 kfree(bus); 5309 5310 return 0; 5311 } 5312 5313 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5314 struct kvm_io_device *dev) 5315 { 5316 int i, j; 5317 struct kvm_io_bus *new_bus, *bus; 5318 5319 lockdep_assert_held(&kvm->slots_lock); 5320 5321 bus = kvm_get_bus(kvm, bus_idx); 5322 if (!bus) 5323 return 0; 5324 5325 for (i = 0; i < bus->dev_count; i++) { 5326 if (bus->range[i].dev == dev) { 5327 break; 5328 } 5329 } 5330 5331 if (i == bus->dev_count) 5332 return 0; 5333 5334 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5335 GFP_KERNEL_ACCOUNT); 5336 if (new_bus) { 5337 memcpy(new_bus, bus, struct_size(bus, range, i)); 5338 new_bus->dev_count--; 5339 memcpy(new_bus->range + i, bus->range + i + 1, 5340 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5341 } 5342 5343 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5344 synchronize_srcu_expedited(&kvm->srcu); 5345 5346 /* Destroy the old bus _after_ installing the (null) bus. */ 5347 if (!new_bus) { 5348 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5349 for (j = 0; j < bus->dev_count; j++) { 5350 if (j == i) 5351 continue; 5352 kvm_iodevice_destructor(bus->range[j].dev); 5353 } 5354 } 5355 5356 kfree(bus); 5357 return new_bus ? 0 : -ENOMEM; 5358 } 5359 5360 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5361 gpa_t addr) 5362 { 5363 struct kvm_io_bus *bus; 5364 int dev_idx, srcu_idx; 5365 struct kvm_io_device *iodev = NULL; 5366 5367 srcu_idx = srcu_read_lock(&kvm->srcu); 5368 5369 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5370 if (!bus) 5371 goto out_unlock; 5372 5373 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5374 if (dev_idx < 0) 5375 goto out_unlock; 5376 5377 iodev = bus->range[dev_idx].dev; 5378 5379 out_unlock: 5380 srcu_read_unlock(&kvm->srcu, srcu_idx); 5381 5382 return iodev; 5383 } 5384 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5385 5386 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5387 int (*get)(void *, u64 *), int (*set)(void *, u64), 5388 const char *fmt) 5389 { 5390 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5391 inode->i_private; 5392 5393 /* 5394 * The debugfs files are a reference to the kvm struct which 5395 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5396 * avoids the race between open and the removal of the debugfs directory. 5397 */ 5398 if (!kvm_get_kvm_safe(stat_data->kvm)) 5399 return -ENOENT; 5400 5401 if (simple_attr_open(inode, file, get, 5402 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5403 ? set : NULL, 5404 fmt)) { 5405 kvm_put_kvm(stat_data->kvm); 5406 return -ENOMEM; 5407 } 5408 5409 return 0; 5410 } 5411 5412 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5413 { 5414 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5415 inode->i_private; 5416 5417 simple_attr_release(inode, file); 5418 kvm_put_kvm(stat_data->kvm); 5419 5420 return 0; 5421 } 5422 5423 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5424 { 5425 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5426 5427 return 0; 5428 } 5429 5430 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5431 { 5432 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5433 5434 return 0; 5435 } 5436 5437 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5438 { 5439 unsigned long i; 5440 struct kvm_vcpu *vcpu; 5441 5442 *val = 0; 5443 5444 kvm_for_each_vcpu(i, vcpu, kvm) 5445 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5446 5447 return 0; 5448 } 5449 5450 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5451 { 5452 unsigned long i; 5453 struct kvm_vcpu *vcpu; 5454 5455 kvm_for_each_vcpu(i, vcpu, kvm) 5456 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5457 5458 return 0; 5459 } 5460 5461 static int kvm_stat_data_get(void *data, u64 *val) 5462 { 5463 int r = -EFAULT; 5464 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5465 5466 switch (stat_data->kind) { 5467 case KVM_STAT_VM: 5468 r = kvm_get_stat_per_vm(stat_data->kvm, 5469 stat_data->desc->desc.offset, val); 5470 break; 5471 case KVM_STAT_VCPU: 5472 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5473 stat_data->desc->desc.offset, val); 5474 break; 5475 } 5476 5477 return r; 5478 } 5479 5480 static int kvm_stat_data_clear(void *data, u64 val) 5481 { 5482 int r = -EFAULT; 5483 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5484 5485 if (val) 5486 return -EINVAL; 5487 5488 switch (stat_data->kind) { 5489 case KVM_STAT_VM: 5490 r = kvm_clear_stat_per_vm(stat_data->kvm, 5491 stat_data->desc->desc.offset); 5492 break; 5493 case KVM_STAT_VCPU: 5494 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5495 stat_data->desc->desc.offset); 5496 break; 5497 } 5498 5499 return r; 5500 } 5501 5502 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5503 { 5504 __simple_attr_check_format("%llu\n", 0ull); 5505 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5506 kvm_stat_data_clear, "%llu\n"); 5507 } 5508 5509 static const struct file_operations stat_fops_per_vm = { 5510 .owner = THIS_MODULE, 5511 .open = kvm_stat_data_open, 5512 .release = kvm_debugfs_release, 5513 .read = simple_attr_read, 5514 .write = simple_attr_write, 5515 .llseek = no_llseek, 5516 }; 5517 5518 static int vm_stat_get(void *_offset, u64 *val) 5519 { 5520 unsigned offset = (long)_offset; 5521 struct kvm *kvm; 5522 u64 tmp_val; 5523 5524 *val = 0; 5525 mutex_lock(&kvm_lock); 5526 list_for_each_entry(kvm, &vm_list, vm_list) { 5527 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5528 *val += tmp_val; 5529 } 5530 mutex_unlock(&kvm_lock); 5531 return 0; 5532 } 5533 5534 static int vm_stat_clear(void *_offset, u64 val) 5535 { 5536 unsigned offset = (long)_offset; 5537 struct kvm *kvm; 5538 5539 if (val) 5540 return -EINVAL; 5541 5542 mutex_lock(&kvm_lock); 5543 list_for_each_entry(kvm, &vm_list, vm_list) { 5544 kvm_clear_stat_per_vm(kvm, offset); 5545 } 5546 mutex_unlock(&kvm_lock); 5547 5548 return 0; 5549 } 5550 5551 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5552 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5553 5554 static int vcpu_stat_get(void *_offset, u64 *val) 5555 { 5556 unsigned offset = (long)_offset; 5557 struct kvm *kvm; 5558 u64 tmp_val; 5559 5560 *val = 0; 5561 mutex_lock(&kvm_lock); 5562 list_for_each_entry(kvm, &vm_list, vm_list) { 5563 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5564 *val += tmp_val; 5565 } 5566 mutex_unlock(&kvm_lock); 5567 return 0; 5568 } 5569 5570 static int vcpu_stat_clear(void *_offset, u64 val) 5571 { 5572 unsigned offset = (long)_offset; 5573 struct kvm *kvm; 5574 5575 if (val) 5576 return -EINVAL; 5577 5578 mutex_lock(&kvm_lock); 5579 list_for_each_entry(kvm, &vm_list, vm_list) { 5580 kvm_clear_stat_per_vcpu(kvm, offset); 5581 } 5582 mutex_unlock(&kvm_lock); 5583 5584 return 0; 5585 } 5586 5587 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5588 "%llu\n"); 5589 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5590 5591 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5592 { 5593 struct kobj_uevent_env *env; 5594 unsigned long long created, active; 5595 5596 if (!kvm_dev.this_device || !kvm) 5597 return; 5598 5599 mutex_lock(&kvm_lock); 5600 if (type == KVM_EVENT_CREATE_VM) { 5601 kvm_createvm_count++; 5602 kvm_active_vms++; 5603 } else if (type == KVM_EVENT_DESTROY_VM) { 5604 kvm_active_vms--; 5605 } 5606 created = kvm_createvm_count; 5607 active = kvm_active_vms; 5608 mutex_unlock(&kvm_lock); 5609 5610 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5611 if (!env) 5612 return; 5613 5614 add_uevent_var(env, "CREATED=%llu", created); 5615 add_uevent_var(env, "COUNT=%llu", active); 5616 5617 if (type == KVM_EVENT_CREATE_VM) { 5618 add_uevent_var(env, "EVENT=create"); 5619 kvm->userspace_pid = task_pid_nr(current); 5620 } else if (type == KVM_EVENT_DESTROY_VM) { 5621 add_uevent_var(env, "EVENT=destroy"); 5622 } 5623 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5624 5625 if (!IS_ERR(kvm->debugfs_dentry)) { 5626 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5627 5628 if (p) { 5629 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5630 if (!IS_ERR(tmp)) 5631 add_uevent_var(env, "STATS_PATH=%s", tmp); 5632 kfree(p); 5633 } 5634 } 5635 /* no need for checks, since we are adding at most only 5 keys */ 5636 env->envp[env->envp_idx++] = NULL; 5637 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5638 kfree(env); 5639 } 5640 5641 static void kvm_init_debug(void) 5642 { 5643 const struct file_operations *fops; 5644 const struct _kvm_stats_desc *pdesc; 5645 int i; 5646 5647 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5648 5649 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5650 pdesc = &kvm_vm_stats_desc[i]; 5651 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5652 fops = &vm_stat_fops; 5653 else 5654 fops = &vm_stat_readonly_fops; 5655 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5656 kvm_debugfs_dir, 5657 (void *)(long)pdesc->desc.offset, fops); 5658 } 5659 5660 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5661 pdesc = &kvm_vcpu_stats_desc[i]; 5662 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5663 fops = &vcpu_stat_fops; 5664 else 5665 fops = &vcpu_stat_readonly_fops; 5666 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5667 kvm_debugfs_dir, 5668 (void *)(long)pdesc->desc.offset, fops); 5669 } 5670 } 5671 5672 static int kvm_suspend(void) 5673 { 5674 if (kvm_usage_count) 5675 hardware_disable_nolock(NULL); 5676 return 0; 5677 } 5678 5679 static void kvm_resume(void) 5680 { 5681 if (kvm_usage_count) { 5682 lockdep_assert_not_held(&kvm_count_lock); 5683 hardware_enable_nolock(NULL); 5684 } 5685 } 5686 5687 static struct syscore_ops kvm_syscore_ops = { 5688 .suspend = kvm_suspend, 5689 .resume = kvm_resume, 5690 }; 5691 5692 static inline 5693 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5694 { 5695 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5696 } 5697 5698 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5699 { 5700 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5701 5702 WRITE_ONCE(vcpu->preempted, false); 5703 WRITE_ONCE(vcpu->ready, false); 5704 5705 __this_cpu_write(kvm_running_vcpu, vcpu); 5706 kvm_arch_sched_in(vcpu, cpu); 5707 kvm_arch_vcpu_load(vcpu, cpu); 5708 } 5709 5710 static void kvm_sched_out(struct preempt_notifier *pn, 5711 struct task_struct *next) 5712 { 5713 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5714 5715 if (current->on_rq) { 5716 WRITE_ONCE(vcpu->preempted, true); 5717 WRITE_ONCE(vcpu->ready, true); 5718 } 5719 kvm_arch_vcpu_put(vcpu); 5720 __this_cpu_write(kvm_running_vcpu, NULL); 5721 } 5722 5723 /** 5724 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5725 * 5726 * We can disable preemption locally around accessing the per-CPU variable, 5727 * and use the resolved vcpu pointer after enabling preemption again, 5728 * because even if the current thread is migrated to another CPU, reading 5729 * the per-CPU value later will give us the same value as we update the 5730 * per-CPU variable in the preempt notifier handlers. 5731 */ 5732 struct kvm_vcpu *kvm_get_running_vcpu(void) 5733 { 5734 struct kvm_vcpu *vcpu; 5735 5736 preempt_disable(); 5737 vcpu = __this_cpu_read(kvm_running_vcpu); 5738 preempt_enable(); 5739 5740 return vcpu; 5741 } 5742 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5743 5744 /** 5745 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5746 */ 5747 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5748 { 5749 return &kvm_running_vcpu; 5750 } 5751 5752 #ifdef CONFIG_GUEST_PERF_EVENTS 5753 static unsigned int kvm_guest_state(void) 5754 { 5755 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5756 unsigned int state; 5757 5758 if (!kvm_arch_pmi_in_guest(vcpu)) 5759 return 0; 5760 5761 state = PERF_GUEST_ACTIVE; 5762 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5763 state |= PERF_GUEST_USER; 5764 5765 return state; 5766 } 5767 5768 static unsigned long kvm_guest_get_ip(void) 5769 { 5770 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5771 5772 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5773 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5774 return 0; 5775 5776 return kvm_arch_vcpu_get_ip(vcpu); 5777 } 5778 5779 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5780 .state = kvm_guest_state, 5781 .get_ip = kvm_guest_get_ip, 5782 .handle_intel_pt_intr = NULL, 5783 }; 5784 5785 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5786 { 5787 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5788 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5789 } 5790 void kvm_unregister_perf_callbacks(void) 5791 { 5792 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5793 } 5794 #endif 5795 5796 struct kvm_cpu_compat_check { 5797 void *opaque; 5798 int *ret; 5799 }; 5800 5801 static void check_processor_compat(void *data) 5802 { 5803 struct kvm_cpu_compat_check *c = data; 5804 5805 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5806 } 5807 5808 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5809 struct module *module) 5810 { 5811 struct kvm_cpu_compat_check c; 5812 int r; 5813 int cpu; 5814 5815 r = kvm_arch_init(opaque); 5816 if (r) 5817 goto out_fail; 5818 5819 /* 5820 * kvm_arch_init makes sure there's at most one caller 5821 * for architectures that support multiple implementations, 5822 * like intel and amd on x86. 5823 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5824 * conflicts in case kvm is already setup for another implementation. 5825 */ 5826 r = kvm_irqfd_init(); 5827 if (r) 5828 goto out_irqfd; 5829 5830 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5831 r = -ENOMEM; 5832 goto out_free_0; 5833 } 5834 5835 r = kvm_arch_hardware_setup(opaque); 5836 if (r < 0) 5837 goto out_free_1; 5838 5839 c.ret = &r; 5840 c.opaque = opaque; 5841 for_each_online_cpu(cpu) { 5842 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5843 if (r < 0) 5844 goto out_free_2; 5845 } 5846 5847 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5848 kvm_starting_cpu, kvm_dying_cpu); 5849 if (r) 5850 goto out_free_2; 5851 register_reboot_notifier(&kvm_reboot_notifier); 5852 5853 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5854 if (!vcpu_align) 5855 vcpu_align = __alignof__(struct kvm_vcpu); 5856 kvm_vcpu_cache = 5857 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5858 SLAB_ACCOUNT, 5859 offsetof(struct kvm_vcpu, arch), 5860 offsetofend(struct kvm_vcpu, stats_id) 5861 - offsetof(struct kvm_vcpu, arch), 5862 NULL); 5863 if (!kvm_vcpu_cache) { 5864 r = -ENOMEM; 5865 goto out_free_3; 5866 } 5867 5868 for_each_possible_cpu(cpu) { 5869 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5870 GFP_KERNEL, cpu_to_node(cpu))) { 5871 r = -ENOMEM; 5872 goto out_free_4; 5873 } 5874 } 5875 5876 r = kvm_async_pf_init(); 5877 if (r) 5878 goto out_free_5; 5879 5880 kvm_chardev_ops.owner = module; 5881 5882 r = misc_register(&kvm_dev); 5883 if (r) { 5884 pr_err("kvm: misc device register failed\n"); 5885 goto out_unreg; 5886 } 5887 5888 register_syscore_ops(&kvm_syscore_ops); 5889 5890 kvm_preempt_ops.sched_in = kvm_sched_in; 5891 kvm_preempt_ops.sched_out = kvm_sched_out; 5892 5893 kvm_init_debug(); 5894 5895 r = kvm_vfio_ops_init(); 5896 WARN_ON(r); 5897 5898 return 0; 5899 5900 out_unreg: 5901 kvm_async_pf_deinit(); 5902 out_free_5: 5903 for_each_possible_cpu(cpu) 5904 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5905 out_free_4: 5906 kmem_cache_destroy(kvm_vcpu_cache); 5907 out_free_3: 5908 unregister_reboot_notifier(&kvm_reboot_notifier); 5909 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5910 out_free_2: 5911 kvm_arch_hardware_unsetup(); 5912 out_free_1: 5913 free_cpumask_var(cpus_hardware_enabled); 5914 out_free_0: 5915 kvm_irqfd_exit(); 5916 out_irqfd: 5917 kvm_arch_exit(); 5918 out_fail: 5919 return r; 5920 } 5921 EXPORT_SYMBOL_GPL(kvm_init); 5922 5923 void kvm_exit(void) 5924 { 5925 int cpu; 5926 5927 debugfs_remove_recursive(kvm_debugfs_dir); 5928 misc_deregister(&kvm_dev); 5929 for_each_possible_cpu(cpu) 5930 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5931 kmem_cache_destroy(kvm_vcpu_cache); 5932 kvm_async_pf_deinit(); 5933 unregister_syscore_ops(&kvm_syscore_ops); 5934 unregister_reboot_notifier(&kvm_reboot_notifier); 5935 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5936 on_each_cpu(hardware_disable_nolock, NULL, 1); 5937 kvm_arch_hardware_unsetup(); 5938 kvm_arch_exit(); 5939 kvm_irqfd_exit(); 5940 free_cpumask_var(cpus_hardware_enabled); 5941 kvm_vfio_ops_exit(); 5942 } 5943 EXPORT_SYMBOL_GPL(kvm_exit); 5944 5945 struct kvm_vm_worker_thread_context { 5946 struct kvm *kvm; 5947 struct task_struct *parent; 5948 struct completion init_done; 5949 kvm_vm_thread_fn_t thread_fn; 5950 uintptr_t data; 5951 int err; 5952 }; 5953 5954 static int kvm_vm_worker_thread(void *context) 5955 { 5956 /* 5957 * The init_context is allocated on the stack of the parent thread, so 5958 * we have to locally copy anything that is needed beyond initialization 5959 */ 5960 struct kvm_vm_worker_thread_context *init_context = context; 5961 struct task_struct *parent; 5962 struct kvm *kvm = init_context->kvm; 5963 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5964 uintptr_t data = init_context->data; 5965 int err; 5966 5967 err = kthread_park(current); 5968 /* kthread_park(current) is never supposed to return an error */ 5969 WARN_ON(err != 0); 5970 if (err) 5971 goto init_complete; 5972 5973 err = cgroup_attach_task_all(init_context->parent, current); 5974 if (err) { 5975 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5976 __func__, err); 5977 goto init_complete; 5978 } 5979 5980 set_user_nice(current, task_nice(init_context->parent)); 5981 5982 init_complete: 5983 init_context->err = err; 5984 complete(&init_context->init_done); 5985 init_context = NULL; 5986 5987 if (err) 5988 goto out; 5989 5990 /* Wait to be woken up by the spawner before proceeding. */ 5991 kthread_parkme(); 5992 5993 if (!kthread_should_stop()) 5994 err = thread_fn(kvm, data); 5995 5996 out: 5997 /* 5998 * Move kthread back to its original cgroup to prevent it lingering in 5999 * the cgroup of the VM process, after the latter finishes its 6000 * execution. 6001 * 6002 * kthread_stop() waits on the 'exited' completion condition which is 6003 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6004 * kthread is removed from the cgroup in the cgroup_exit() which is 6005 * called after the exit_mm(). This causes the kthread_stop() to return 6006 * before the kthread actually quits the cgroup. 6007 */ 6008 rcu_read_lock(); 6009 parent = rcu_dereference(current->real_parent); 6010 get_task_struct(parent); 6011 rcu_read_unlock(); 6012 cgroup_attach_task_all(parent, current); 6013 put_task_struct(parent); 6014 6015 return err; 6016 } 6017 6018 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6019 uintptr_t data, const char *name, 6020 struct task_struct **thread_ptr) 6021 { 6022 struct kvm_vm_worker_thread_context init_context = {}; 6023 struct task_struct *thread; 6024 6025 *thread_ptr = NULL; 6026 init_context.kvm = kvm; 6027 init_context.parent = current; 6028 init_context.thread_fn = thread_fn; 6029 init_context.data = data; 6030 init_completion(&init_context.init_done); 6031 6032 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6033 "%s-%d", name, task_pid_nr(current)); 6034 if (IS_ERR(thread)) 6035 return PTR_ERR(thread); 6036 6037 /* kthread_run is never supposed to return NULL */ 6038 WARN_ON(thread == NULL); 6039 6040 wait_for_completion(&init_context.init_done); 6041 6042 if (!init_context.err) 6043 *thread_ptr = thread; 6044 6045 return init_context.err; 6046 } 6047