xref: /openbmc/linux/virt/kvm/kvm_main.c (revision df388556)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 
18 #include "iodev.h"
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49 
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53 
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57 
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
69 
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72 
73 static cpumask_var_t cpus_hardware_enabled;
74 
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
77 
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
79 
80 struct dentry *kvm_debugfs_dir;
81 
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 			   unsigned long arg);
84 
85 static bool kvm_rebooting;
86 
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
88 
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
91 {
92 	int vcpu_id;
93 	struct kvm_vcpu *vcpu;
94 	struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 	int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 			>> MSI_ADDR_DEST_ID_SHIFT;
97 	int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 			>> MSI_DATA_VECTOR_SHIFT;
99 	int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 				(unsigned long *)&dev->guest_msi.address_lo);
101 	int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 				(unsigned long *)&dev->guest_msi.data);
103 	int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 				(unsigned long *)&dev->guest_msi.data);
105 	u32 deliver_bitmask;
106 
107 	BUG_ON(!ioapic);
108 
109 	deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 				dest_id, dest_mode);
111 	/* IOAPIC delivery mode value is the same as MSI here */
112 	switch (delivery_mode) {
113 	case IOAPIC_LOWEST_PRIORITY:
114 		vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 				deliver_bitmask);
116 		if (vcpu != NULL)
117 			kvm_apic_set_irq(vcpu, vector, trig_mode);
118 		else
119 			printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 		break;
121 	case IOAPIC_FIXED:
122 		for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 			if (!(deliver_bitmask & (1 << vcpu_id)))
124 				continue;
125 			deliver_bitmask &= ~(1 << vcpu_id);
126 			vcpu = ioapic->kvm->vcpus[vcpu_id];
127 			if (vcpu)
128 				kvm_apic_set_irq(vcpu, vector, trig_mode);
129 		}
130 		break;
131 	default:
132 		printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
133 	}
134 }
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
138 
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 						      int assigned_dev_id)
141 {
142 	struct list_head *ptr;
143 	struct kvm_assigned_dev_kernel *match;
144 
145 	list_for_each(ptr, head) {
146 		match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 		if (match->assigned_dev_id == assigned_dev_id)
148 			return match;
149 	}
150 	return NULL;
151 }
152 
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
154 {
155 	struct kvm_assigned_dev_kernel *assigned_dev;
156 
157 	assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 				    interrupt_work);
159 
160 	/* This is taken to safely inject irq inside the guest. When
161 	 * the interrupt injection (or the ioapic code) uses a
162 	 * finer-grained lock, update this
163 	 */
164 	mutex_lock(&assigned_dev->kvm->lock);
165 	if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 		kvm_set_irq(assigned_dev->kvm,
167 			    assigned_dev->irq_source_id,
168 			    assigned_dev->guest_irq, 1);
169 	else if (assigned_dev->irq_requested_type &
170 				KVM_ASSIGNED_DEV_GUEST_MSI) {
171 		assigned_device_msi_dispatch(assigned_dev);
172 		enable_irq(assigned_dev->host_irq);
173 		assigned_dev->host_irq_disabled = false;
174 	}
175 	mutex_unlock(&assigned_dev->kvm->lock);
176 }
177 
178 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
179 {
180 	struct kvm_assigned_dev_kernel *assigned_dev =
181 		(struct kvm_assigned_dev_kernel *) dev_id;
182 
183 	schedule_work(&assigned_dev->interrupt_work);
184 
185 	disable_irq_nosync(irq);
186 	assigned_dev->host_irq_disabled = true;
187 
188 	return IRQ_HANDLED;
189 }
190 
191 /* Ack the irq line for an assigned device */
192 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
193 {
194 	struct kvm_assigned_dev_kernel *dev;
195 
196 	if (kian->gsi == -1)
197 		return;
198 
199 	dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 			   ack_notifier);
201 
202 	kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
203 
204 	/* The guest irq may be shared so this ack may be
205 	 * from another device.
206 	 */
207 	if (dev->host_irq_disabled) {
208 		enable_irq(dev->host_irq);
209 		dev->host_irq_disabled = false;
210 	}
211 }
212 
213 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
214 static void kvm_free_assigned_irq(struct kvm *kvm,
215 				  struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217 	if (!irqchip_in_kernel(kvm))
218 		return;
219 
220 	kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
221 
222 	if (assigned_dev->irq_source_id != -1)
223 		kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
224 	assigned_dev->irq_source_id = -1;
225 
226 	if (!assigned_dev->irq_requested_type)
227 		return;
228 
229 	/*
230 	 * In kvm_free_device_irq, cancel_work_sync return true if:
231 	 * 1. work is scheduled, and then cancelled.
232 	 * 2. work callback is executed.
233 	 *
234 	 * The first one ensured that the irq is disabled and no more events
235 	 * would happen. But for the second one, the irq may be enabled (e.g.
236 	 * for MSI). So we disable irq here to prevent further events.
237 	 *
238 	 * Notice this maybe result in nested disable if the interrupt type is
239 	 * INTx, but it's OK for we are going to free it.
240 	 *
241 	 * If this function is a part of VM destroy, please ensure that till
242 	 * now, the kvm state is still legal for probably we also have to wait
243 	 * interrupt_work done.
244 	 */
245 	disable_irq_nosync(assigned_dev->host_irq);
246 	cancel_work_sync(&assigned_dev->interrupt_work);
247 
248 	free_irq(assigned_dev->host_irq, (void *)assigned_dev);
249 
250 	if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
251 		pci_disable_msi(assigned_dev->dev);
252 
253 	assigned_dev->irq_requested_type = 0;
254 }
255 
256 
257 static void kvm_free_assigned_device(struct kvm *kvm,
258 				     struct kvm_assigned_dev_kernel
259 				     *assigned_dev)
260 {
261 	kvm_free_assigned_irq(kvm, assigned_dev);
262 
263 	pci_reset_function(assigned_dev->dev);
264 
265 	pci_release_regions(assigned_dev->dev);
266 	pci_disable_device(assigned_dev->dev);
267 	pci_dev_put(assigned_dev->dev);
268 
269 	list_del(&assigned_dev->list);
270 	kfree(assigned_dev);
271 }
272 
273 void kvm_free_all_assigned_devices(struct kvm *kvm)
274 {
275 	struct list_head *ptr, *ptr2;
276 	struct kvm_assigned_dev_kernel *assigned_dev;
277 
278 	list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
279 		assigned_dev = list_entry(ptr,
280 					  struct kvm_assigned_dev_kernel,
281 					  list);
282 
283 		kvm_free_assigned_device(kvm, assigned_dev);
284 	}
285 }
286 
287 static int assigned_device_update_intx(struct kvm *kvm,
288 			struct kvm_assigned_dev_kernel *adev,
289 			struct kvm_assigned_irq *airq)
290 {
291 	adev->guest_irq = airq->guest_irq;
292 	adev->ack_notifier.gsi = airq->guest_irq;
293 
294 	if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
295 		return 0;
296 
297 	if (irqchip_in_kernel(kvm)) {
298 		if (!msi2intx &&
299 		    (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
300 			free_irq(adev->host_irq, (void *)adev);
301 			pci_disable_msi(adev->dev);
302 		}
303 
304 		if (!capable(CAP_SYS_RAWIO))
305 			return -EPERM;
306 
307 		if (airq->host_irq)
308 			adev->host_irq = airq->host_irq;
309 		else
310 			adev->host_irq = adev->dev->irq;
311 
312 		/* Even though this is PCI, we don't want to use shared
313 		 * interrupts. Sharing host devices with guest-assigned devices
314 		 * on the same interrupt line is not a happy situation: there
315 		 * are going to be long delays in accepting, acking, etc.
316 		 */
317 		if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
318 				0, "kvm_assigned_intx_device", (void *)adev))
319 			return -EIO;
320 	}
321 
322 	adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
323 				   KVM_ASSIGNED_DEV_HOST_INTX;
324 	return 0;
325 }
326 
327 #ifdef CONFIG_X86
328 static int assigned_device_update_msi(struct kvm *kvm,
329 			struct kvm_assigned_dev_kernel *adev,
330 			struct kvm_assigned_irq *airq)
331 {
332 	int r;
333 
334 	if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
335 		/* x86 don't care upper address of guest msi message addr */
336 		adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
337 		adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
338 		adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
339 		adev->guest_msi.data = airq->guest_msi.data;
340 		adev->ack_notifier.gsi = -1;
341 	} else if (msi2intx) {
342 		adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
343 		adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
344 		adev->guest_irq = airq->guest_irq;
345 		adev->ack_notifier.gsi = airq->guest_irq;
346 	}
347 
348 	if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
349 		return 0;
350 
351 	if (irqchip_in_kernel(kvm)) {
352 		if (!msi2intx) {
353 			if (adev->irq_requested_type &
354 					KVM_ASSIGNED_DEV_HOST_INTX)
355 				free_irq(adev->host_irq, (void *)adev);
356 
357 			r = pci_enable_msi(adev->dev);
358 			if (r)
359 				return r;
360 		}
361 
362 		adev->host_irq = adev->dev->irq;
363 		if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
364 				"kvm_assigned_msi_device", (void *)adev))
365 			return -EIO;
366 	}
367 
368 	if (!msi2intx)
369 		adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
370 
371 	adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
372 	return 0;
373 }
374 #endif
375 
376 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
377 				   struct kvm_assigned_irq
378 				   *assigned_irq)
379 {
380 	int r = 0;
381 	struct kvm_assigned_dev_kernel *match;
382 
383 	mutex_lock(&kvm->lock);
384 
385 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
386 				      assigned_irq->assigned_dev_id);
387 	if (!match) {
388 		mutex_unlock(&kvm->lock);
389 		return -EINVAL;
390 	}
391 
392 	if (!match->irq_requested_type) {
393 		INIT_WORK(&match->interrupt_work,
394 				kvm_assigned_dev_interrupt_work_handler);
395 		if (irqchip_in_kernel(kvm)) {
396 			/* Register ack nofitier */
397 			match->ack_notifier.gsi = -1;
398 			match->ack_notifier.irq_acked =
399 					kvm_assigned_dev_ack_irq;
400 			kvm_register_irq_ack_notifier(kvm,
401 					&match->ack_notifier);
402 
403 			/* Request IRQ source ID */
404 			r = kvm_request_irq_source_id(kvm);
405 			if (r < 0)
406 				goto out_release;
407 			else
408 				match->irq_source_id = r;
409 
410 #ifdef CONFIG_X86
411 			/* Determine host device irq type, we can know the
412 			 * result from dev->msi_enabled */
413 			if (msi2intx)
414 				pci_enable_msi(match->dev);
415 #endif
416 		}
417 	}
418 
419 	if ((!msi2intx &&
420 	     (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
421 	    (msi2intx && match->dev->msi_enabled)) {
422 #ifdef CONFIG_X86
423 		r = assigned_device_update_msi(kvm, match, assigned_irq);
424 		if (r) {
425 			printk(KERN_WARNING "kvm: failed to enable "
426 					"MSI device!\n");
427 			goto out_release;
428 		}
429 #else
430 		r = -ENOTTY;
431 #endif
432 	} else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
433 		/* Host device IRQ 0 means don't support INTx */
434 		if (!msi2intx) {
435 			printk(KERN_WARNING
436 			       "kvm: wait device to enable MSI!\n");
437 			r = 0;
438 		} else {
439 			printk(KERN_WARNING
440 			       "kvm: failed to enable MSI device!\n");
441 			r = -ENOTTY;
442 			goto out_release;
443 		}
444 	} else {
445 		/* Non-sharing INTx mode */
446 		r = assigned_device_update_intx(kvm, match, assigned_irq);
447 		if (r) {
448 			printk(KERN_WARNING "kvm: failed to enable "
449 					"INTx device!\n");
450 			goto out_release;
451 		}
452 	}
453 
454 	mutex_unlock(&kvm->lock);
455 	return r;
456 out_release:
457 	mutex_unlock(&kvm->lock);
458 	kvm_free_assigned_device(kvm, match);
459 	return r;
460 }
461 
462 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
463 				      struct kvm_assigned_pci_dev *assigned_dev)
464 {
465 	int r = 0;
466 	struct kvm_assigned_dev_kernel *match;
467 	struct pci_dev *dev;
468 
469 	down_read(&kvm->slots_lock);
470 	mutex_lock(&kvm->lock);
471 
472 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
473 				      assigned_dev->assigned_dev_id);
474 	if (match) {
475 		/* device already assigned */
476 		r = -EINVAL;
477 		goto out;
478 	}
479 
480 	match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
481 	if (match == NULL) {
482 		printk(KERN_INFO "%s: Couldn't allocate memory\n",
483 		       __func__);
484 		r = -ENOMEM;
485 		goto out;
486 	}
487 	dev = pci_get_bus_and_slot(assigned_dev->busnr,
488 				   assigned_dev->devfn);
489 	if (!dev) {
490 		printk(KERN_INFO "%s: host device not found\n", __func__);
491 		r = -EINVAL;
492 		goto out_free;
493 	}
494 	if (pci_enable_device(dev)) {
495 		printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
496 		r = -EBUSY;
497 		goto out_put;
498 	}
499 	r = pci_request_regions(dev, "kvm_assigned_device");
500 	if (r) {
501 		printk(KERN_INFO "%s: Could not get access to device regions\n",
502 		       __func__);
503 		goto out_disable;
504 	}
505 
506 	pci_reset_function(dev);
507 
508 	match->assigned_dev_id = assigned_dev->assigned_dev_id;
509 	match->host_busnr = assigned_dev->busnr;
510 	match->host_devfn = assigned_dev->devfn;
511 	match->flags = assigned_dev->flags;
512 	match->dev = dev;
513 	match->irq_source_id = -1;
514 	match->kvm = kvm;
515 
516 	list_add(&match->list, &kvm->arch.assigned_dev_head);
517 
518 	if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
519 		if (!kvm->arch.iommu_domain) {
520 			r = kvm_iommu_map_guest(kvm);
521 			if (r)
522 				goto out_list_del;
523 		}
524 		r = kvm_assign_device(kvm, match);
525 		if (r)
526 			goto out_list_del;
527 	}
528 
529 out:
530 	mutex_unlock(&kvm->lock);
531 	up_read(&kvm->slots_lock);
532 	return r;
533 out_list_del:
534 	list_del(&match->list);
535 	pci_release_regions(dev);
536 out_disable:
537 	pci_disable_device(dev);
538 out_put:
539 	pci_dev_put(dev);
540 out_free:
541 	kfree(match);
542 	mutex_unlock(&kvm->lock);
543 	up_read(&kvm->slots_lock);
544 	return r;
545 }
546 #endif
547 
548 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
549 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
550 		struct kvm_assigned_pci_dev *assigned_dev)
551 {
552 	int r = 0;
553 	struct kvm_assigned_dev_kernel *match;
554 
555 	mutex_lock(&kvm->lock);
556 
557 	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
558 				      assigned_dev->assigned_dev_id);
559 	if (!match) {
560 		printk(KERN_INFO "%s: device hasn't been assigned before, "
561 		  "so cannot be deassigned\n", __func__);
562 		r = -EINVAL;
563 		goto out;
564 	}
565 
566 	if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
567 		kvm_deassign_device(kvm, match);
568 
569 	kvm_free_assigned_device(kvm, match);
570 
571 out:
572 	mutex_unlock(&kvm->lock);
573 	return r;
574 }
575 #endif
576 
577 static inline int valid_vcpu(int n)
578 {
579 	return likely(n >= 0 && n < KVM_MAX_VCPUS);
580 }
581 
582 inline int kvm_is_mmio_pfn(pfn_t pfn)
583 {
584 	if (pfn_valid(pfn))
585 		return PageReserved(pfn_to_page(pfn));
586 
587 	return true;
588 }
589 
590 /*
591  * Switches to specified vcpu, until a matching vcpu_put()
592  */
593 void vcpu_load(struct kvm_vcpu *vcpu)
594 {
595 	int cpu;
596 
597 	mutex_lock(&vcpu->mutex);
598 	cpu = get_cpu();
599 	preempt_notifier_register(&vcpu->preempt_notifier);
600 	kvm_arch_vcpu_load(vcpu, cpu);
601 	put_cpu();
602 }
603 
604 void vcpu_put(struct kvm_vcpu *vcpu)
605 {
606 	preempt_disable();
607 	kvm_arch_vcpu_put(vcpu);
608 	preempt_notifier_unregister(&vcpu->preempt_notifier);
609 	preempt_enable();
610 	mutex_unlock(&vcpu->mutex);
611 }
612 
613 static void ack_flush(void *_completed)
614 {
615 }
616 
617 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
618 {
619 	int i, cpu, me;
620 	cpumask_var_t cpus;
621 	bool called = true;
622 	struct kvm_vcpu *vcpu;
623 
624 	if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
625 		cpumask_clear(cpus);
626 
627 	me = get_cpu();
628 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
629 		vcpu = kvm->vcpus[i];
630 		if (!vcpu)
631 			continue;
632 		if (test_and_set_bit(req, &vcpu->requests))
633 			continue;
634 		cpu = vcpu->cpu;
635 		if (cpus != NULL && cpu != -1 && cpu != me)
636 			cpumask_set_cpu(cpu, cpus);
637 	}
638 	if (unlikely(cpus == NULL))
639 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
640 	else if (!cpumask_empty(cpus))
641 		smp_call_function_many(cpus, ack_flush, NULL, 1);
642 	else
643 		called = false;
644 	put_cpu();
645 	free_cpumask_var(cpus);
646 	return called;
647 }
648 
649 void kvm_flush_remote_tlbs(struct kvm *kvm)
650 {
651 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
652 		++kvm->stat.remote_tlb_flush;
653 }
654 
655 void kvm_reload_remote_mmus(struct kvm *kvm)
656 {
657 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
658 }
659 
660 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
661 {
662 	struct page *page;
663 	int r;
664 
665 	mutex_init(&vcpu->mutex);
666 	vcpu->cpu = -1;
667 	vcpu->kvm = kvm;
668 	vcpu->vcpu_id = id;
669 	init_waitqueue_head(&vcpu->wq);
670 
671 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
672 	if (!page) {
673 		r = -ENOMEM;
674 		goto fail;
675 	}
676 	vcpu->run = page_address(page);
677 
678 	r = kvm_arch_vcpu_init(vcpu);
679 	if (r < 0)
680 		goto fail_free_run;
681 	return 0;
682 
683 fail_free_run:
684 	free_page((unsigned long)vcpu->run);
685 fail:
686 	return r;
687 }
688 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
689 
690 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
691 {
692 	kvm_arch_vcpu_uninit(vcpu);
693 	free_page((unsigned long)vcpu->run);
694 }
695 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
696 
697 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
698 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
699 {
700 	return container_of(mn, struct kvm, mmu_notifier);
701 }
702 
703 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
704 					     struct mm_struct *mm,
705 					     unsigned long address)
706 {
707 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
708 	int need_tlb_flush;
709 
710 	/*
711 	 * When ->invalidate_page runs, the linux pte has been zapped
712 	 * already but the page is still allocated until
713 	 * ->invalidate_page returns. So if we increase the sequence
714 	 * here the kvm page fault will notice if the spte can't be
715 	 * established because the page is going to be freed. If
716 	 * instead the kvm page fault establishes the spte before
717 	 * ->invalidate_page runs, kvm_unmap_hva will release it
718 	 * before returning.
719 	 *
720 	 * The sequence increase only need to be seen at spin_unlock
721 	 * time, and not at spin_lock time.
722 	 *
723 	 * Increasing the sequence after the spin_unlock would be
724 	 * unsafe because the kvm page fault could then establish the
725 	 * pte after kvm_unmap_hva returned, without noticing the page
726 	 * is going to be freed.
727 	 */
728 	spin_lock(&kvm->mmu_lock);
729 	kvm->mmu_notifier_seq++;
730 	need_tlb_flush = kvm_unmap_hva(kvm, address);
731 	spin_unlock(&kvm->mmu_lock);
732 
733 	/* we've to flush the tlb before the pages can be freed */
734 	if (need_tlb_flush)
735 		kvm_flush_remote_tlbs(kvm);
736 
737 }
738 
739 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
740 						    struct mm_struct *mm,
741 						    unsigned long start,
742 						    unsigned long end)
743 {
744 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
745 	int need_tlb_flush = 0;
746 
747 	spin_lock(&kvm->mmu_lock);
748 	/*
749 	 * The count increase must become visible at unlock time as no
750 	 * spte can be established without taking the mmu_lock and
751 	 * count is also read inside the mmu_lock critical section.
752 	 */
753 	kvm->mmu_notifier_count++;
754 	for (; start < end; start += PAGE_SIZE)
755 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
756 	spin_unlock(&kvm->mmu_lock);
757 
758 	/* we've to flush the tlb before the pages can be freed */
759 	if (need_tlb_flush)
760 		kvm_flush_remote_tlbs(kvm);
761 }
762 
763 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
764 						  struct mm_struct *mm,
765 						  unsigned long start,
766 						  unsigned long end)
767 {
768 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
769 
770 	spin_lock(&kvm->mmu_lock);
771 	/*
772 	 * This sequence increase will notify the kvm page fault that
773 	 * the page that is going to be mapped in the spte could have
774 	 * been freed.
775 	 */
776 	kvm->mmu_notifier_seq++;
777 	/*
778 	 * The above sequence increase must be visible before the
779 	 * below count decrease but both values are read by the kvm
780 	 * page fault under mmu_lock spinlock so we don't need to add
781 	 * a smb_wmb() here in between the two.
782 	 */
783 	kvm->mmu_notifier_count--;
784 	spin_unlock(&kvm->mmu_lock);
785 
786 	BUG_ON(kvm->mmu_notifier_count < 0);
787 }
788 
789 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
790 					      struct mm_struct *mm,
791 					      unsigned long address)
792 {
793 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
794 	int young;
795 
796 	spin_lock(&kvm->mmu_lock);
797 	young = kvm_age_hva(kvm, address);
798 	spin_unlock(&kvm->mmu_lock);
799 
800 	if (young)
801 		kvm_flush_remote_tlbs(kvm);
802 
803 	return young;
804 }
805 
806 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
807 				     struct mm_struct *mm)
808 {
809 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
810 	kvm_arch_flush_shadow(kvm);
811 }
812 
813 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
814 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
815 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
816 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
817 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
818 	.release		= kvm_mmu_notifier_release,
819 };
820 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
821 
822 static struct kvm *kvm_create_vm(void)
823 {
824 	struct kvm *kvm = kvm_arch_create_vm();
825 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
826 	struct page *page;
827 #endif
828 
829 	if (IS_ERR(kvm))
830 		goto out;
831 
832 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
833 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
834 	if (!page) {
835 		kfree(kvm);
836 		return ERR_PTR(-ENOMEM);
837 	}
838 	kvm->coalesced_mmio_ring =
839 			(struct kvm_coalesced_mmio_ring *)page_address(page);
840 #endif
841 
842 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
843 	{
844 		int err;
845 		kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
846 		err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
847 		if (err) {
848 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
849 			put_page(page);
850 #endif
851 			kfree(kvm);
852 			return ERR_PTR(err);
853 		}
854 	}
855 #endif
856 
857 	kvm->mm = current->mm;
858 	atomic_inc(&kvm->mm->mm_count);
859 	spin_lock_init(&kvm->mmu_lock);
860 	kvm_io_bus_init(&kvm->pio_bus);
861 	mutex_init(&kvm->lock);
862 	kvm_io_bus_init(&kvm->mmio_bus);
863 	init_rwsem(&kvm->slots_lock);
864 	atomic_set(&kvm->users_count, 1);
865 	spin_lock(&kvm_lock);
866 	list_add(&kvm->vm_list, &vm_list);
867 	spin_unlock(&kvm_lock);
868 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
869 	kvm_coalesced_mmio_init(kvm);
870 #endif
871 out:
872 	return kvm;
873 }
874 
875 /*
876  * Free any memory in @free but not in @dont.
877  */
878 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
879 				  struct kvm_memory_slot *dont)
880 {
881 	if (!dont || free->rmap != dont->rmap)
882 		vfree(free->rmap);
883 
884 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
885 		vfree(free->dirty_bitmap);
886 
887 	if (!dont || free->lpage_info != dont->lpage_info)
888 		vfree(free->lpage_info);
889 
890 	free->npages = 0;
891 	free->dirty_bitmap = NULL;
892 	free->rmap = NULL;
893 	free->lpage_info = NULL;
894 }
895 
896 void kvm_free_physmem(struct kvm *kvm)
897 {
898 	int i;
899 
900 	for (i = 0; i < kvm->nmemslots; ++i)
901 		kvm_free_physmem_slot(&kvm->memslots[i], NULL);
902 }
903 
904 static void kvm_destroy_vm(struct kvm *kvm)
905 {
906 	struct mm_struct *mm = kvm->mm;
907 
908 	kvm_arch_sync_events(kvm);
909 	spin_lock(&kvm_lock);
910 	list_del(&kvm->vm_list);
911 	spin_unlock(&kvm_lock);
912 	kvm_io_bus_destroy(&kvm->pio_bus);
913 	kvm_io_bus_destroy(&kvm->mmio_bus);
914 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
915 	if (kvm->coalesced_mmio_ring != NULL)
916 		free_page((unsigned long)kvm->coalesced_mmio_ring);
917 #endif
918 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
919 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
920 #endif
921 	kvm_arch_destroy_vm(kvm);
922 	mmdrop(mm);
923 }
924 
925 void kvm_get_kvm(struct kvm *kvm)
926 {
927 	atomic_inc(&kvm->users_count);
928 }
929 EXPORT_SYMBOL_GPL(kvm_get_kvm);
930 
931 void kvm_put_kvm(struct kvm *kvm)
932 {
933 	if (atomic_dec_and_test(&kvm->users_count))
934 		kvm_destroy_vm(kvm);
935 }
936 EXPORT_SYMBOL_GPL(kvm_put_kvm);
937 
938 
939 static int kvm_vm_release(struct inode *inode, struct file *filp)
940 {
941 	struct kvm *kvm = filp->private_data;
942 
943 	kvm_put_kvm(kvm);
944 	return 0;
945 }
946 
947 /*
948  * Allocate some memory and give it an address in the guest physical address
949  * space.
950  *
951  * Discontiguous memory is allowed, mostly for framebuffers.
952  *
953  * Must be called holding mmap_sem for write.
954  */
955 int __kvm_set_memory_region(struct kvm *kvm,
956 			    struct kvm_userspace_memory_region *mem,
957 			    int user_alloc)
958 {
959 	int r;
960 	gfn_t base_gfn;
961 	unsigned long npages;
962 	unsigned long i;
963 	struct kvm_memory_slot *memslot;
964 	struct kvm_memory_slot old, new;
965 
966 	r = -EINVAL;
967 	/* General sanity checks */
968 	if (mem->memory_size & (PAGE_SIZE - 1))
969 		goto out;
970 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
971 		goto out;
972 	if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
973 		goto out;
974 	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
975 		goto out;
976 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
977 		goto out;
978 
979 	memslot = &kvm->memslots[mem->slot];
980 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
981 	npages = mem->memory_size >> PAGE_SHIFT;
982 
983 	if (!npages)
984 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
985 
986 	new = old = *memslot;
987 
988 	new.base_gfn = base_gfn;
989 	new.npages = npages;
990 	new.flags = mem->flags;
991 
992 	/* Disallow changing a memory slot's size. */
993 	r = -EINVAL;
994 	if (npages && old.npages && npages != old.npages)
995 		goto out_free;
996 
997 	/* Check for overlaps */
998 	r = -EEXIST;
999 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1000 		struct kvm_memory_slot *s = &kvm->memslots[i];
1001 
1002 		if (s == memslot)
1003 			continue;
1004 		if (!((base_gfn + npages <= s->base_gfn) ||
1005 		      (base_gfn >= s->base_gfn + s->npages)))
1006 			goto out_free;
1007 	}
1008 
1009 	/* Free page dirty bitmap if unneeded */
1010 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1011 		new.dirty_bitmap = NULL;
1012 
1013 	r = -ENOMEM;
1014 
1015 	/* Allocate if a slot is being created */
1016 #ifndef CONFIG_S390
1017 	if (npages && !new.rmap) {
1018 		new.rmap = vmalloc(npages * sizeof(struct page *));
1019 
1020 		if (!new.rmap)
1021 			goto out_free;
1022 
1023 		memset(new.rmap, 0, npages * sizeof(*new.rmap));
1024 
1025 		new.user_alloc = user_alloc;
1026 		/*
1027 		 * hva_to_rmmap() serialzies with the mmu_lock and to be
1028 		 * safe it has to ignore memslots with !user_alloc &&
1029 		 * !userspace_addr.
1030 		 */
1031 		if (user_alloc)
1032 			new.userspace_addr = mem->userspace_addr;
1033 		else
1034 			new.userspace_addr = 0;
1035 	}
1036 	if (npages && !new.lpage_info) {
1037 		int largepages = npages / KVM_PAGES_PER_HPAGE;
1038 		if (npages % KVM_PAGES_PER_HPAGE)
1039 			largepages++;
1040 		if (base_gfn % KVM_PAGES_PER_HPAGE)
1041 			largepages++;
1042 
1043 		new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1044 
1045 		if (!new.lpage_info)
1046 			goto out_free;
1047 
1048 		memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1049 
1050 		if (base_gfn % KVM_PAGES_PER_HPAGE)
1051 			new.lpage_info[0].write_count = 1;
1052 		if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1053 			new.lpage_info[largepages-1].write_count = 1;
1054 	}
1055 
1056 	/* Allocate page dirty bitmap if needed */
1057 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1058 		unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1059 
1060 		new.dirty_bitmap = vmalloc(dirty_bytes);
1061 		if (!new.dirty_bitmap)
1062 			goto out_free;
1063 		memset(new.dirty_bitmap, 0, dirty_bytes);
1064 	}
1065 #endif /* not defined CONFIG_S390 */
1066 
1067 	if (!npages)
1068 		kvm_arch_flush_shadow(kvm);
1069 
1070 	spin_lock(&kvm->mmu_lock);
1071 	if (mem->slot >= kvm->nmemslots)
1072 		kvm->nmemslots = mem->slot + 1;
1073 
1074 	*memslot = new;
1075 	spin_unlock(&kvm->mmu_lock);
1076 
1077 	r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1078 	if (r) {
1079 		spin_lock(&kvm->mmu_lock);
1080 		*memslot = old;
1081 		spin_unlock(&kvm->mmu_lock);
1082 		goto out_free;
1083 	}
1084 
1085 	kvm_free_physmem_slot(&old, npages ? &new : NULL);
1086 	/* Slot deletion case: we have to update the current slot */
1087 	if (!npages)
1088 		*memslot = old;
1089 #ifdef CONFIG_DMAR
1090 	/* map the pages in iommu page table */
1091 	r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1092 	if (r)
1093 		goto out;
1094 #endif
1095 	return 0;
1096 
1097 out_free:
1098 	kvm_free_physmem_slot(&new, &old);
1099 out:
1100 	return r;
1101 
1102 }
1103 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1104 
1105 int kvm_set_memory_region(struct kvm *kvm,
1106 			  struct kvm_userspace_memory_region *mem,
1107 			  int user_alloc)
1108 {
1109 	int r;
1110 
1111 	down_write(&kvm->slots_lock);
1112 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
1113 	up_write(&kvm->slots_lock);
1114 	return r;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1117 
1118 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1119 				   struct
1120 				   kvm_userspace_memory_region *mem,
1121 				   int user_alloc)
1122 {
1123 	if (mem->slot >= KVM_MEMORY_SLOTS)
1124 		return -EINVAL;
1125 	return kvm_set_memory_region(kvm, mem, user_alloc);
1126 }
1127 
1128 int kvm_get_dirty_log(struct kvm *kvm,
1129 			struct kvm_dirty_log *log, int *is_dirty)
1130 {
1131 	struct kvm_memory_slot *memslot;
1132 	int r, i;
1133 	int n;
1134 	unsigned long any = 0;
1135 
1136 	r = -EINVAL;
1137 	if (log->slot >= KVM_MEMORY_SLOTS)
1138 		goto out;
1139 
1140 	memslot = &kvm->memslots[log->slot];
1141 	r = -ENOENT;
1142 	if (!memslot->dirty_bitmap)
1143 		goto out;
1144 
1145 	n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1146 
1147 	for (i = 0; !any && i < n/sizeof(long); ++i)
1148 		any = memslot->dirty_bitmap[i];
1149 
1150 	r = -EFAULT;
1151 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1152 		goto out;
1153 
1154 	if (any)
1155 		*is_dirty = 1;
1156 
1157 	r = 0;
1158 out:
1159 	return r;
1160 }
1161 
1162 int is_error_page(struct page *page)
1163 {
1164 	return page == bad_page;
1165 }
1166 EXPORT_SYMBOL_GPL(is_error_page);
1167 
1168 int is_error_pfn(pfn_t pfn)
1169 {
1170 	return pfn == bad_pfn;
1171 }
1172 EXPORT_SYMBOL_GPL(is_error_pfn);
1173 
1174 static inline unsigned long bad_hva(void)
1175 {
1176 	return PAGE_OFFSET;
1177 }
1178 
1179 int kvm_is_error_hva(unsigned long addr)
1180 {
1181 	return addr == bad_hva();
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1184 
1185 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1186 {
1187 	int i;
1188 
1189 	for (i = 0; i < kvm->nmemslots; ++i) {
1190 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1191 
1192 		if (gfn >= memslot->base_gfn
1193 		    && gfn < memslot->base_gfn + memslot->npages)
1194 			return memslot;
1195 	}
1196 	return NULL;
1197 }
1198 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1199 
1200 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1201 {
1202 	gfn = unalias_gfn(kvm, gfn);
1203 	return gfn_to_memslot_unaliased(kvm, gfn);
1204 }
1205 
1206 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1207 {
1208 	int i;
1209 
1210 	gfn = unalias_gfn(kvm, gfn);
1211 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1212 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
1213 
1214 		if (gfn >= memslot->base_gfn
1215 		    && gfn < memslot->base_gfn + memslot->npages)
1216 			return 1;
1217 	}
1218 	return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1221 
1222 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1223 {
1224 	struct kvm_memory_slot *slot;
1225 
1226 	gfn = unalias_gfn(kvm, gfn);
1227 	slot = gfn_to_memslot_unaliased(kvm, gfn);
1228 	if (!slot)
1229 		return bad_hva();
1230 	return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_hva);
1233 
1234 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1235 {
1236 	struct page *page[1];
1237 	unsigned long addr;
1238 	int npages;
1239 	pfn_t pfn;
1240 
1241 	might_sleep();
1242 
1243 	addr = gfn_to_hva(kvm, gfn);
1244 	if (kvm_is_error_hva(addr)) {
1245 		get_page(bad_page);
1246 		return page_to_pfn(bad_page);
1247 	}
1248 
1249 	npages = get_user_pages_fast(addr, 1, 1, page);
1250 
1251 	if (unlikely(npages != 1)) {
1252 		struct vm_area_struct *vma;
1253 
1254 		down_read(&current->mm->mmap_sem);
1255 		vma = find_vma(current->mm, addr);
1256 
1257 		if (vma == NULL || addr < vma->vm_start ||
1258 		    !(vma->vm_flags & VM_PFNMAP)) {
1259 			up_read(&current->mm->mmap_sem);
1260 			get_page(bad_page);
1261 			return page_to_pfn(bad_page);
1262 		}
1263 
1264 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1265 		up_read(&current->mm->mmap_sem);
1266 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1267 	} else
1268 		pfn = page_to_pfn(page[0]);
1269 
1270 	return pfn;
1271 }
1272 
1273 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1274 
1275 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1276 {
1277 	pfn_t pfn;
1278 
1279 	pfn = gfn_to_pfn(kvm, gfn);
1280 	if (!kvm_is_mmio_pfn(pfn))
1281 		return pfn_to_page(pfn);
1282 
1283 	WARN_ON(kvm_is_mmio_pfn(pfn));
1284 
1285 	get_page(bad_page);
1286 	return bad_page;
1287 }
1288 
1289 EXPORT_SYMBOL_GPL(gfn_to_page);
1290 
1291 void kvm_release_page_clean(struct page *page)
1292 {
1293 	kvm_release_pfn_clean(page_to_pfn(page));
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1296 
1297 void kvm_release_pfn_clean(pfn_t pfn)
1298 {
1299 	if (!kvm_is_mmio_pfn(pfn))
1300 		put_page(pfn_to_page(pfn));
1301 }
1302 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1303 
1304 void kvm_release_page_dirty(struct page *page)
1305 {
1306 	kvm_release_pfn_dirty(page_to_pfn(page));
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1309 
1310 void kvm_release_pfn_dirty(pfn_t pfn)
1311 {
1312 	kvm_set_pfn_dirty(pfn);
1313 	kvm_release_pfn_clean(pfn);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1316 
1317 void kvm_set_page_dirty(struct page *page)
1318 {
1319 	kvm_set_pfn_dirty(page_to_pfn(page));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1322 
1323 void kvm_set_pfn_dirty(pfn_t pfn)
1324 {
1325 	if (!kvm_is_mmio_pfn(pfn)) {
1326 		struct page *page = pfn_to_page(pfn);
1327 		if (!PageReserved(page))
1328 			SetPageDirty(page);
1329 	}
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1332 
1333 void kvm_set_pfn_accessed(pfn_t pfn)
1334 {
1335 	if (!kvm_is_mmio_pfn(pfn))
1336 		mark_page_accessed(pfn_to_page(pfn));
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1339 
1340 void kvm_get_pfn(pfn_t pfn)
1341 {
1342 	if (!kvm_is_mmio_pfn(pfn))
1343 		get_page(pfn_to_page(pfn));
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1346 
1347 static int next_segment(unsigned long len, int offset)
1348 {
1349 	if (len > PAGE_SIZE - offset)
1350 		return PAGE_SIZE - offset;
1351 	else
1352 		return len;
1353 }
1354 
1355 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1356 			int len)
1357 {
1358 	int r;
1359 	unsigned long addr;
1360 
1361 	addr = gfn_to_hva(kvm, gfn);
1362 	if (kvm_is_error_hva(addr))
1363 		return -EFAULT;
1364 	r = copy_from_user(data, (void __user *)addr + offset, len);
1365 	if (r)
1366 		return -EFAULT;
1367 	return 0;
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1370 
1371 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1372 {
1373 	gfn_t gfn = gpa >> PAGE_SHIFT;
1374 	int seg;
1375 	int offset = offset_in_page(gpa);
1376 	int ret;
1377 
1378 	while ((seg = next_segment(len, offset)) != 0) {
1379 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1380 		if (ret < 0)
1381 			return ret;
1382 		offset = 0;
1383 		len -= seg;
1384 		data += seg;
1385 		++gfn;
1386 	}
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_read_guest);
1390 
1391 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1392 			  unsigned long len)
1393 {
1394 	int r;
1395 	unsigned long addr;
1396 	gfn_t gfn = gpa >> PAGE_SHIFT;
1397 	int offset = offset_in_page(gpa);
1398 
1399 	addr = gfn_to_hva(kvm, gfn);
1400 	if (kvm_is_error_hva(addr))
1401 		return -EFAULT;
1402 	pagefault_disable();
1403 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1404 	pagefault_enable();
1405 	if (r)
1406 		return -EFAULT;
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL(kvm_read_guest_atomic);
1410 
1411 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1412 			 int offset, int len)
1413 {
1414 	int r;
1415 	unsigned long addr;
1416 
1417 	addr = gfn_to_hva(kvm, gfn);
1418 	if (kvm_is_error_hva(addr))
1419 		return -EFAULT;
1420 	r = copy_to_user((void __user *)addr + offset, data, len);
1421 	if (r)
1422 		return -EFAULT;
1423 	mark_page_dirty(kvm, gfn);
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1427 
1428 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1429 		    unsigned long len)
1430 {
1431 	gfn_t gfn = gpa >> PAGE_SHIFT;
1432 	int seg;
1433 	int offset = offset_in_page(gpa);
1434 	int ret;
1435 
1436 	while ((seg = next_segment(len, offset)) != 0) {
1437 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1438 		if (ret < 0)
1439 			return ret;
1440 		offset = 0;
1441 		len -= seg;
1442 		data += seg;
1443 		++gfn;
1444 	}
1445 	return 0;
1446 }
1447 
1448 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1449 {
1450 	return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1453 
1454 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1455 {
1456 	gfn_t gfn = gpa >> PAGE_SHIFT;
1457 	int seg;
1458 	int offset = offset_in_page(gpa);
1459 	int ret;
1460 
1461         while ((seg = next_segment(len, offset)) != 0) {
1462 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1463 		if (ret < 0)
1464 			return ret;
1465 		offset = 0;
1466 		len -= seg;
1467 		++gfn;
1468 	}
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1472 
1473 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1474 {
1475 	struct kvm_memory_slot *memslot;
1476 
1477 	gfn = unalias_gfn(kvm, gfn);
1478 	memslot = gfn_to_memslot_unaliased(kvm, gfn);
1479 	if (memslot && memslot->dirty_bitmap) {
1480 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1481 
1482 		/* avoid RMW */
1483 		if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1484 			set_bit(rel_gfn, memslot->dirty_bitmap);
1485 	}
1486 }
1487 
1488 /*
1489  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1490  */
1491 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1492 {
1493 	DEFINE_WAIT(wait);
1494 
1495 	for (;;) {
1496 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1497 
1498 		if (kvm_cpu_has_interrupt(vcpu) ||
1499 		    kvm_cpu_has_pending_timer(vcpu) ||
1500 		    kvm_arch_vcpu_runnable(vcpu)) {
1501 			set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1502 			break;
1503 		}
1504 		if (signal_pending(current))
1505 			break;
1506 
1507 		vcpu_put(vcpu);
1508 		schedule();
1509 		vcpu_load(vcpu);
1510 	}
1511 
1512 	finish_wait(&vcpu->wq, &wait);
1513 }
1514 
1515 void kvm_resched(struct kvm_vcpu *vcpu)
1516 {
1517 	if (!need_resched())
1518 		return;
1519 	cond_resched();
1520 }
1521 EXPORT_SYMBOL_GPL(kvm_resched);
1522 
1523 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1524 {
1525 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1526 	struct page *page;
1527 
1528 	if (vmf->pgoff == 0)
1529 		page = virt_to_page(vcpu->run);
1530 #ifdef CONFIG_X86
1531 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1532 		page = virt_to_page(vcpu->arch.pio_data);
1533 #endif
1534 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1535 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1536 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1537 #endif
1538 	else
1539 		return VM_FAULT_SIGBUS;
1540 	get_page(page);
1541 	vmf->page = page;
1542 	return 0;
1543 }
1544 
1545 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1546 	.fault = kvm_vcpu_fault,
1547 };
1548 
1549 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1550 {
1551 	vma->vm_ops = &kvm_vcpu_vm_ops;
1552 	return 0;
1553 }
1554 
1555 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1556 {
1557 	struct kvm_vcpu *vcpu = filp->private_data;
1558 
1559 	kvm_put_kvm(vcpu->kvm);
1560 	return 0;
1561 }
1562 
1563 static struct file_operations kvm_vcpu_fops = {
1564 	.release        = kvm_vcpu_release,
1565 	.unlocked_ioctl = kvm_vcpu_ioctl,
1566 	.compat_ioctl   = kvm_vcpu_ioctl,
1567 	.mmap           = kvm_vcpu_mmap,
1568 };
1569 
1570 /*
1571  * Allocates an inode for the vcpu.
1572  */
1573 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1574 {
1575 	int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1576 	if (fd < 0)
1577 		kvm_put_kvm(vcpu->kvm);
1578 	return fd;
1579 }
1580 
1581 /*
1582  * Creates some virtual cpus.  Good luck creating more than one.
1583  */
1584 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1585 {
1586 	int r;
1587 	struct kvm_vcpu *vcpu;
1588 
1589 	if (!valid_vcpu(n))
1590 		return -EINVAL;
1591 
1592 	vcpu = kvm_arch_vcpu_create(kvm, n);
1593 	if (IS_ERR(vcpu))
1594 		return PTR_ERR(vcpu);
1595 
1596 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1597 
1598 	r = kvm_arch_vcpu_setup(vcpu);
1599 	if (r)
1600 		return r;
1601 
1602 	mutex_lock(&kvm->lock);
1603 	if (kvm->vcpus[n]) {
1604 		r = -EEXIST;
1605 		goto vcpu_destroy;
1606 	}
1607 	kvm->vcpus[n] = vcpu;
1608 	mutex_unlock(&kvm->lock);
1609 
1610 	/* Now it's all set up, let userspace reach it */
1611 	kvm_get_kvm(kvm);
1612 	r = create_vcpu_fd(vcpu);
1613 	if (r < 0)
1614 		goto unlink;
1615 	return r;
1616 
1617 unlink:
1618 	mutex_lock(&kvm->lock);
1619 	kvm->vcpus[n] = NULL;
1620 vcpu_destroy:
1621 	mutex_unlock(&kvm->lock);
1622 	kvm_arch_vcpu_destroy(vcpu);
1623 	return r;
1624 }
1625 
1626 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1627 {
1628 	if (sigset) {
1629 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1630 		vcpu->sigset_active = 1;
1631 		vcpu->sigset = *sigset;
1632 	} else
1633 		vcpu->sigset_active = 0;
1634 	return 0;
1635 }
1636 
1637 static long kvm_vcpu_ioctl(struct file *filp,
1638 			   unsigned int ioctl, unsigned long arg)
1639 {
1640 	struct kvm_vcpu *vcpu = filp->private_data;
1641 	void __user *argp = (void __user *)arg;
1642 	int r;
1643 	struct kvm_fpu *fpu = NULL;
1644 	struct kvm_sregs *kvm_sregs = NULL;
1645 
1646 	if (vcpu->kvm->mm != current->mm)
1647 		return -EIO;
1648 	switch (ioctl) {
1649 	case KVM_RUN:
1650 		r = -EINVAL;
1651 		if (arg)
1652 			goto out;
1653 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1654 		break;
1655 	case KVM_GET_REGS: {
1656 		struct kvm_regs *kvm_regs;
1657 
1658 		r = -ENOMEM;
1659 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1660 		if (!kvm_regs)
1661 			goto out;
1662 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1663 		if (r)
1664 			goto out_free1;
1665 		r = -EFAULT;
1666 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1667 			goto out_free1;
1668 		r = 0;
1669 out_free1:
1670 		kfree(kvm_regs);
1671 		break;
1672 	}
1673 	case KVM_SET_REGS: {
1674 		struct kvm_regs *kvm_regs;
1675 
1676 		r = -ENOMEM;
1677 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1678 		if (!kvm_regs)
1679 			goto out;
1680 		r = -EFAULT;
1681 		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1682 			goto out_free2;
1683 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1684 		if (r)
1685 			goto out_free2;
1686 		r = 0;
1687 out_free2:
1688 		kfree(kvm_regs);
1689 		break;
1690 	}
1691 	case KVM_GET_SREGS: {
1692 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1693 		r = -ENOMEM;
1694 		if (!kvm_sregs)
1695 			goto out;
1696 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1697 		if (r)
1698 			goto out;
1699 		r = -EFAULT;
1700 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1701 			goto out;
1702 		r = 0;
1703 		break;
1704 	}
1705 	case KVM_SET_SREGS: {
1706 		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1707 		r = -ENOMEM;
1708 		if (!kvm_sregs)
1709 			goto out;
1710 		r = -EFAULT;
1711 		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1712 			goto out;
1713 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1714 		if (r)
1715 			goto out;
1716 		r = 0;
1717 		break;
1718 	}
1719 	case KVM_GET_MP_STATE: {
1720 		struct kvm_mp_state mp_state;
1721 
1722 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1723 		if (r)
1724 			goto out;
1725 		r = -EFAULT;
1726 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1727 			goto out;
1728 		r = 0;
1729 		break;
1730 	}
1731 	case KVM_SET_MP_STATE: {
1732 		struct kvm_mp_state mp_state;
1733 
1734 		r = -EFAULT;
1735 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1736 			goto out;
1737 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1738 		if (r)
1739 			goto out;
1740 		r = 0;
1741 		break;
1742 	}
1743 	case KVM_TRANSLATE: {
1744 		struct kvm_translation tr;
1745 
1746 		r = -EFAULT;
1747 		if (copy_from_user(&tr, argp, sizeof tr))
1748 			goto out;
1749 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1750 		if (r)
1751 			goto out;
1752 		r = -EFAULT;
1753 		if (copy_to_user(argp, &tr, sizeof tr))
1754 			goto out;
1755 		r = 0;
1756 		break;
1757 	}
1758 	case KVM_DEBUG_GUEST: {
1759 		struct kvm_debug_guest dbg;
1760 
1761 		r = -EFAULT;
1762 		if (copy_from_user(&dbg, argp, sizeof dbg))
1763 			goto out;
1764 		r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1765 		if (r)
1766 			goto out;
1767 		r = 0;
1768 		break;
1769 	}
1770 	case KVM_SET_SIGNAL_MASK: {
1771 		struct kvm_signal_mask __user *sigmask_arg = argp;
1772 		struct kvm_signal_mask kvm_sigmask;
1773 		sigset_t sigset, *p;
1774 
1775 		p = NULL;
1776 		if (argp) {
1777 			r = -EFAULT;
1778 			if (copy_from_user(&kvm_sigmask, argp,
1779 					   sizeof kvm_sigmask))
1780 				goto out;
1781 			r = -EINVAL;
1782 			if (kvm_sigmask.len != sizeof sigset)
1783 				goto out;
1784 			r = -EFAULT;
1785 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1786 					   sizeof sigset))
1787 				goto out;
1788 			p = &sigset;
1789 		}
1790 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1791 		break;
1792 	}
1793 	case KVM_GET_FPU: {
1794 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1795 		r = -ENOMEM;
1796 		if (!fpu)
1797 			goto out;
1798 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1799 		if (r)
1800 			goto out;
1801 		r = -EFAULT;
1802 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1803 			goto out;
1804 		r = 0;
1805 		break;
1806 	}
1807 	case KVM_SET_FPU: {
1808 		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1809 		r = -ENOMEM;
1810 		if (!fpu)
1811 			goto out;
1812 		r = -EFAULT;
1813 		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1814 			goto out;
1815 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1816 		if (r)
1817 			goto out;
1818 		r = 0;
1819 		break;
1820 	}
1821 	default:
1822 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1823 	}
1824 out:
1825 	kfree(fpu);
1826 	kfree(kvm_sregs);
1827 	return r;
1828 }
1829 
1830 static long kvm_vm_ioctl(struct file *filp,
1831 			   unsigned int ioctl, unsigned long arg)
1832 {
1833 	struct kvm *kvm = filp->private_data;
1834 	void __user *argp = (void __user *)arg;
1835 	int r;
1836 
1837 	if (kvm->mm != current->mm)
1838 		return -EIO;
1839 	switch (ioctl) {
1840 	case KVM_CREATE_VCPU:
1841 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1842 		if (r < 0)
1843 			goto out;
1844 		break;
1845 	case KVM_SET_USER_MEMORY_REGION: {
1846 		struct kvm_userspace_memory_region kvm_userspace_mem;
1847 
1848 		r = -EFAULT;
1849 		if (copy_from_user(&kvm_userspace_mem, argp,
1850 						sizeof kvm_userspace_mem))
1851 			goto out;
1852 
1853 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1854 		if (r)
1855 			goto out;
1856 		break;
1857 	}
1858 	case KVM_GET_DIRTY_LOG: {
1859 		struct kvm_dirty_log log;
1860 
1861 		r = -EFAULT;
1862 		if (copy_from_user(&log, argp, sizeof log))
1863 			goto out;
1864 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1865 		if (r)
1866 			goto out;
1867 		break;
1868 	}
1869 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1870 	case KVM_REGISTER_COALESCED_MMIO: {
1871 		struct kvm_coalesced_mmio_zone zone;
1872 		r = -EFAULT;
1873 		if (copy_from_user(&zone, argp, sizeof zone))
1874 			goto out;
1875 		r = -ENXIO;
1876 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1877 		if (r)
1878 			goto out;
1879 		r = 0;
1880 		break;
1881 	}
1882 	case KVM_UNREGISTER_COALESCED_MMIO: {
1883 		struct kvm_coalesced_mmio_zone zone;
1884 		r = -EFAULT;
1885 		if (copy_from_user(&zone, argp, sizeof zone))
1886 			goto out;
1887 		r = -ENXIO;
1888 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1889 		if (r)
1890 			goto out;
1891 		r = 0;
1892 		break;
1893 	}
1894 #endif
1895 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1896 	case KVM_ASSIGN_PCI_DEVICE: {
1897 		struct kvm_assigned_pci_dev assigned_dev;
1898 
1899 		r = -EFAULT;
1900 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1901 			goto out;
1902 		r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1903 		if (r)
1904 			goto out;
1905 		break;
1906 	}
1907 	case KVM_ASSIGN_IRQ: {
1908 		struct kvm_assigned_irq assigned_irq;
1909 
1910 		r = -EFAULT;
1911 		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1912 			goto out;
1913 		r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1914 		if (r)
1915 			goto out;
1916 		break;
1917 	}
1918 #endif
1919 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1920 	case KVM_DEASSIGN_PCI_DEVICE: {
1921 		struct kvm_assigned_pci_dev assigned_dev;
1922 
1923 		r = -EFAULT;
1924 		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1925 			goto out;
1926 		r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
1927 		if (r)
1928 			goto out;
1929 		break;
1930 	}
1931 #endif
1932 	default:
1933 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1934 	}
1935 out:
1936 	return r;
1937 }
1938 
1939 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1940 {
1941 	struct page *page[1];
1942 	unsigned long addr;
1943 	int npages;
1944 	gfn_t gfn = vmf->pgoff;
1945 	struct kvm *kvm = vma->vm_file->private_data;
1946 
1947 	addr = gfn_to_hva(kvm, gfn);
1948 	if (kvm_is_error_hva(addr))
1949 		return VM_FAULT_SIGBUS;
1950 
1951 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1952 				NULL);
1953 	if (unlikely(npages != 1))
1954 		return VM_FAULT_SIGBUS;
1955 
1956 	vmf->page = page[0];
1957 	return 0;
1958 }
1959 
1960 static struct vm_operations_struct kvm_vm_vm_ops = {
1961 	.fault = kvm_vm_fault,
1962 };
1963 
1964 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1965 {
1966 	vma->vm_ops = &kvm_vm_vm_ops;
1967 	return 0;
1968 }
1969 
1970 static struct file_operations kvm_vm_fops = {
1971 	.release        = kvm_vm_release,
1972 	.unlocked_ioctl = kvm_vm_ioctl,
1973 	.compat_ioctl   = kvm_vm_ioctl,
1974 	.mmap           = kvm_vm_mmap,
1975 };
1976 
1977 static int kvm_dev_ioctl_create_vm(void)
1978 {
1979 	int fd;
1980 	struct kvm *kvm;
1981 
1982 	kvm = kvm_create_vm();
1983 	if (IS_ERR(kvm))
1984 		return PTR_ERR(kvm);
1985 	fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1986 	if (fd < 0)
1987 		kvm_put_kvm(kvm);
1988 
1989 	return fd;
1990 }
1991 
1992 static long kvm_dev_ioctl_check_extension_generic(long arg)
1993 {
1994 	switch (arg) {
1995 	case KVM_CAP_USER_MEMORY:
1996 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1997 		return 1;
1998 	default:
1999 		break;
2000 	}
2001 	return kvm_dev_ioctl_check_extension(arg);
2002 }
2003 
2004 static long kvm_dev_ioctl(struct file *filp,
2005 			  unsigned int ioctl, unsigned long arg)
2006 {
2007 	long r = -EINVAL;
2008 
2009 	switch (ioctl) {
2010 	case KVM_GET_API_VERSION:
2011 		r = -EINVAL;
2012 		if (arg)
2013 			goto out;
2014 		r = KVM_API_VERSION;
2015 		break;
2016 	case KVM_CREATE_VM:
2017 		r = -EINVAL;
2018 		if (arg)
2019 			goto out;
2020 		r = kvm_dev_ioctl_create_vm();
2021 		break;
2022 	case KVM_CHECK_EXTENSION:
2023 		r = kvm_dev_ioctl_check_extension_generic(arg);
2024 		break;
2025 	case KVM_GET_VCPU_MMAP_SIZE:
2026 		r = -EINVAL;
2027 		if (arg)
2028 			goto out;
2029 		r = PAGE_SIZE;     /* struct kvm_run */
2030 #ifdef CONFIG_X86
2031 		r += PAGE_SIZE;    /* pio data page */
2032 #endif
2033 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2034 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2035 #endif
2036 		break;
2037 	case KVM_TRACE_ENABLE:
2038 	case KVM_TRACE_PAUSE:
2039 	case KVM_TRACE_DISABLE:
2040 		r = kvm_trace_ioctl(ioctl, arg);
2041 		break;
2042 	default:
2043 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2044 	}
2045 out:
2046 	return r;
2047 }
2048 
2049 static struct file_operations kvm_chardev_ops = {
2050 	.unlocked_ioctl = kvm_dev_ioctl,
2051 	.compat_ioctl   = kvm_dev_ioctl,
2052 };
2053 
2054 static struct miscdevice kvm_dev = {
2055 	KVM_MINOR,
2056 	"kvm",
2057 	&kvm_chardev_ops,
2058 };
2059 
2060 static void hardware_enable(void *junk)
2061 {
2062 	int cpu = raw_smp_processor_id();
2063 
2064 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2065 		return;
2066 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2067 	kvm_arch_hardware_enable(NULL);
2068 }
2069 
2070 static void hardware_disable(void *junk)
2071 {
2072 	int cpu = raw_smp_processor_id();
2073 
2074 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2075 		return;
2076 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2077 	kvm_arch_hardware_disable(NULL);
2078 }
2079 
2080 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2081 			   void *v)
2082 {
2083 	int cpu = (long)v;
2084 
2085 	val &= ~CPU_TASKS_FROZEN;
2086 	switch (val) {
2087 	case CPU_DYING:
2088 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2089 		       cpu);
2090 		hardware_disable(NULL);
2091 		break;
2092 	case CPU_UP_CANCELED:
2093 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2094 		       cpu);
2095 		smp_call_function_single(cpu, hardware_disable, NULL, 1);
2096 		break;
2097 	case CPU_ONLINE:
2098 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2099 		       cpu);
2100 		smp_call_function_single(cpu, hardware_enable, NULL, 1);
2101 		break;
2102 	}
2103 	return NOTIFY_OK;
2104 }
2105 
2106 
2107 asmlinkage void kvm_handle_fault_on_reboot(void)
2108 {
2109 	if (kvm_rebooting)
2110 		/* spin while reset goes on */
2111 		while (true)
2112 			;
2113 	/* Fault while not rebooting.  We want the trace. */
2114 	BUG();
2115 }
2116 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2117 
2118 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2119 		      void *v)
2120 {
2121 	if (val == SYS_RESTART) {
2122 		/*
2123 		 * Some (well, at least mine) BIOSes hang on reboot if
2124 		 * in vmx root mode.
2125 		 */
2126 		printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2127 		kvm_rebooting = true;
2128 		on_each_cpu(hardware_disable, NULL, 1);
2129 	}
2130 	return NOTIFY_OK;
2131 }
2132 
2133 static struct notifier_block kvm_reboot_notifier = {
2134 	.notifier_call = kvm_reboot,
2135 	.priority = 0,
2136 };
2137 
2138 void kvm_io_bus_init(struct kvm_io_bus *bus)
2139 {
2140 	memset(bus, 0, sizeof(*bus));
2141 }
2142 
2143 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2144 {
2145 	int i;
2146 
2147 	for (i = 0; i < bus->dev_count; i++) {
2148 		struct kvm_io_device *pos = bus->devs[i];
2149 
2150 		kvm_iodevice_destructor(pos);
2151 	}
2152 }
2153 
2154 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2155 					  gpa_t addr, int len, int is_write)
2156 {
2157 	int i;
2158 
2159 	for (i = 0; i < bus->dev_count; i++) {
2160 		struct kvm_io_device *pos = bus->devs[i];
2161 
2162 		if (pos->in_range(pos, addr, len, is_write))
2163 			return pos;
2164 	}
2165 
2166 	return NULL;
2167 }
2168 
2169 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2170 {
2171 	BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2172 
2173 	bus->devs[bus->dev_count++] = dev;
2174 }
2175 
2176 static struct notifier_block kvm_cpu_notifier = {
2177 	.notifier_call = kvm_cpu_hotplug,
2178 	.priority = 20, /* must be > scheduler priority */
2179 };
2180 
2181 static int vm_stat_get(void *_offset, u64 *val)
2182 {
2183 	unsigned offset = (long)_offset;
2184 	struct kvm *kvm;
2185 
2186 	*val = 0;
2187 	spin_lock(&kvm_lock);
2188 	list_for_each_entry(kvm, &vm_list, vm_list)
2189 		*val += *(u32 *)((void *)kvm + offset);
2190 	spin_unlock(&kvm_lock);
2191 	return 0;
2192 }
2193 
2194 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2195 
2196 static int vcpu_stat_get(void *_offset, u64 *val)
2197 {
2198 	unsigned offset = (long)_offset;
2199 	struct kvm *kvm;
2200 	struct kvm_vcpu *vcpu;
2201 	int i;
2202 
2203 	*val = 0;
2204 	spin_lock(&kvm_lock);
2205 	list_for_each_entry(kvm, &vm_list, vm_list)
2206 		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2207 			vcpu = kvm->vcpus[i];
2208 			if (vcpu)
2209 				*val += *(u32 *)((void *)vcpu + offset);
2210 		}
2211 	spin_unlock(&kvm_lock);
2212 	return 0;
2213 }
2214 
2215 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2216 
2217 static struct file_operations *stat_fops[] = {
2218 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2219 	[KVM_STAT_VM]   = &vm_stat_fops,
2220 };
2221 
2222 static void kvm_init_debug(void)
2223 {
2224 	struct kvm_stats_debugfs_item *p;
2225 
2226 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2227 	for (p = debugfs_entries; p->name; ++p)
2228 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2229 						(void *)(long)p->offset,
2230 						stat_fops[p->kind]);
2231 }
2232 
2233 static void kvm_exit_debug(void)
2234 {
2235 	struct kvm_stats_debugfs_item *p;
2236 
2237 	for (p = debugfs_entries; p->name; ++p)
2238 		debugfs_remove(p->dentry);
2239 	debugfs_remove(kvm_debugfs_dir);
2240 }
2241 
2242 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2243 {
2244 	hardware_disable(NULL);
2245 	return 0;
2246 }
2247 
2248 static int kvm_resume(struct sys_device *dev)
2249 {
2250 	hardware_enable(NULL);
2251 	return 0;
2252 }
2253 
2254 static struct sysdev_class kvm_sysdev_class = {
2255 	.name = "kvm",
2256 	.suspend = kvm_suspend,
2257 	.resume = kvm_resume,
2258 };
2259 
2260 static struct sys_device kvm_sysdev = {
2261 	.id = 0,
2262 	.cls = &kvm_sysdev_class,
2263 };
2264 
2265 struct page *bad_page;
2266 pfn_t bad_pfn;
2267 
2268 static inline
2269 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2270 {
2271 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2272 }
2273 
2274 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2275 {
2276 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2277 
2278 	kvm_arch_vcpu_load(vcpu, cpu);
2279 }
2280 
2281 static void kvm_sched_out(struct preempt_notifier *pn,
2282 			  struct task_struct *next)
2283 {
2284 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2285 
2286 	kvm_arch_vcpu_put(vcpu);
2287 }
2288 
2289 int kvm_init(void *opaque, unsigned int vcpu_size,
2290 		  struct module *module)
2291 {
2292 	int r;
2293 	int cpu;
2294 
2295 	kvm_init_debug();
2296 
2297 	r = kvm_arch_init(opaque);
2298 	if (r)
2299 		goto out_fail;
2300 
2301 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2302 
2303 	if (bad_page == NULL) {
2304 		r = -ENOMEM;
2305 		goto out;
2306 	}
2307 
2308 	bad_pfn = page_to_pfn(bad_page);
2309 
2310 	if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2311 		r = -ENOMEM;
2312 		goto out_free_0;
2313 	}
2314 
2315 	r = kvm_arch_hardware_setup();
2316 	if (r < 0)
2317 		goto out_free_0a;
2318 
2319 	for_each_online_cpu(cpu) {
2320 		smp_call_function_single(cpu,
2321 				kvm_arch_check_processor_compat,
2322 				&r, 1);
2323 		if (r < 0)
2324 			goto out_free_1;
2325 	}
2326 
2327 	on_each_cpu(hardware_enable, NULL, 1);
2328 	r = register_cpu_notifier(&kvm_cpu_notifier);
2329 	if (r)
2330 		goto out_free_2;
2331 	register_reboot_notifier(&kvm_reboot_notifier);
2332 
2333 	r = sysdev_class_register(&kvm_sysdev_class);
2334 	if (r)
2335 		goto out_free_3;
2336 
2337 	r = sysdev_register(&kvm_sysdev);
2338 	if (r)
2339 		goto out_free_4;
2340 
2341 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2342 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2343 					   __alignof__(struct kvm_vcpu),
2344 					   0, NULL);
2345 	if (!kvm_vcpu_cache) {
2346 		r = -ENOMEM;
2347 		goto out_free_5;
2348 	}
2349 
2350 	kvm_chardev_ops.owner = module;
2351 	kvm_vm_fops.owner = module;
2352 	kvm_vcpu_fops.owner = module;
2353 
2354 	r = misc_register(&kvm_dev);
2355 	if (r) {
2356 		printk(KERN_ERR "kvm: misc device register failed\n");
2357 		goto out_free;
2358 	}
2359 
2360 	kvm_preempt_ops.sched_in = kvm_sched_in;
2361 	kvm_preempt_ops.sched_out = kvm_sched_out;
2362 #ifndef CONFIG_X86
2363 	msi2intx = 0;
2364 #endif
2365 
2366 	return 0;
2367 
2368 out_free:
2369 	kmem_cache_destroy(kvm_vcpu_cache);
2370 out_free_5:
2371 	sysdev_unregister(&kvm_sysdev);
2372 out_free_4:
2373 	sysdev_class_unregister(&kvm_sysdev_class);
2374 out_free_3:
2375 	unregister_reboot_notifier(&kvm_reboot_notifier);
2376 	unregister_cpu_notifier(&kvm_cpu_notifier);
2377 out_free_2:
2378 	on_each_cpu(hardware_disable, NULL, 1);
2379 out_free_1:
2380 	kvm_arch_hardware_unsetup();
2381 out_free_0a:
2382 	free_cpumask_var(cpus_hardware_enabled);
2383 out_free_0:
2384 	__free_page(bad_page);
2385 out:
2386 	kvm_arch_exit();
2387 	kvm_exit_debug();
2388 out_fail:
2389 	return r;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_init);
2392 
2393 void kvm_exit(void)
2394 {
2395 	kvm_trace_cleanup();
2396 	misc_deregister(&kvm_dev);
2397 	kmem_cache_destroy(kvm_vcpu_cache);
2398 	sysdev_unregister(&kvm_sysdev);
2399 	sysdev_class_unregister(&kvm_sysdev_class);
2400 	unregister_reboot_notifier(&kvm_reboot_notifier);
2401 	unregister_cpu_notifier(&kvm_cpu_notifier);
2402 	on_each_cpu(hardware_disable, NULL, 1);
2403 	kvm_arch_hardware_unsetup();
2404 	kvm_arch_exit();
2405 	kvm_exit_debug();
2406 	free_cpumask_var(cpus_hardware_enabled);
2407 	__free_page(bad_page);
2408 }
2409 EXPORT_SYMBOL_GPL(kvm_exit);
2410