1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 75 76 /* Default doubles per-vcpu halt_poll_ns. */ 77 static unsigned int halt_poll_ns_grow = 2; 78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 79 80 /* Default resets per-vcpu halt_poll_ns . */ 81 static unsigned int halt_poll_ns_shrink; 82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 83 84 /* 85 * Ordering of locks: 86 * 87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 88 */ 89 90 DEFINE_SPINLOCK(kvm_lock); 91 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 92 LIST_HEAD(vm_list); 93 94 static cpumask_var_t cpus_hardware_enabled; 95 static int kvm_usage_count; 96 static atomic_t hardware_enable_failed; 97 98 struct kmem_cache *kvm_vcpu_cache; 99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 100 101 static __read_mostly struct preempt_ops kvm_preempt_ops; 102 103 struct dentry *kvm_debugfs_dir; 104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 105 106 static int kvm_debugfs_num_entries; 107 static const struct file_operations *stat_fops_per_vm[]; 108 109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 110 unsigned long arg); 111 #ifdef CONFIG_KVM_COMPAT 112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 113 unsigned long arg); 114 #endif 115 static int hardware_enable_all(void); 116 static void hardware_disable_all(void); 117 118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 119 120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 122 123 __visible bool kvm_rebooting; 124 EXPORT_SYMBOL_GPL(kvm_rebooting); 125 126 static bool largepages_enabled = true; 127 128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 129 { 130 if (pfn_valid(pfn)) 131 return PageReserved(pfn_to_page(pfn)); 132 133 return true; 134 } 135 136 /* 137 * Switches to specified vcpu, until a matching vcpu_put() 138 */ 139 int vcpu_load(struct kvm_vcpu *vcpu) 140 { 141 int cpu; 142 143 if (mutex_lock_killable(&vcpu->mutex)) 144 return -EINTR; 145 cpu = get_cpu(); 146 preempt_notifier_register(&vcpu->preempt_notifier); 147 kvm_arch_vcpu_load(vcpu, cpu); 148 put_cpu(); 149 return 0; 150 } 151 EXPORT_SYMBOL_GPL(vcpu_load); 152 153 void vcpu_put(struct kvm_vcpu *vcpu) 154 { 155 preempt_disable(); 156 kvm_arch_vcpu_put(vcpu); 157 preempt_notifier_unregister(&vcpu->preempt_notifier); 158 preempt_enable(); 159 mutex_unlock(&vcpu->mutex); 160 } 161 EXPORT_SYMBOL_GPL(vcpu_put); 162 163 static void ack_flush(void *_completed) 164 { 165 } 166 167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 168 { 169 int i, cpu, me; 170 cpumask_var_t cpus; 171 bool called = true; 172 struct kvm_vcpu *vcpu; 173 174 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 175 176 me = get_cpu(); 177 kvm_for_each_vcpu(i, vcpu, kvm) { 178 kvm_make_request(req, vcpu); 179 cpu = vcpu->cpu; 180 181 /* Set ->requests bit before we read ->mode. */ 182 smp_mb__after_atomic(); 183 184 if (cpus != NULL && cpu != -1 && cpu != me && 185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 186 cpumask_set_cpu(cpu, cpus); 187 } 188 if (unlikely(cpus == NULL)) 189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 190 else if (!cpumask_empty(cpus)) 191 smp_call_function_many(cpus, ack_flush, NULL, 1); 192 else 193 called = false; 194 put_cpu(); 195 free_cpumask_var(cpus); 196 return called; 197 } 198 199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 200 void kvm_flush_remote_tlbs(struct kvm *kvm) 201 { 202 /* 203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 204 * kvm_make_all_cpus_request. 205 */ 206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 207 208 /* 209 * We want to publish modifications to the page tables before reading 210 * mode. Pairs with a memory barrier in arch-specific code. 211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 212 * and smp_mb in walk_shadow_page_lockless_begin/end. 213 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 214 * 215 * There is already an smp_mb__after_atomic() before 216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 217 * barrier here. 218 */ 219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 220 ++kvm->stat.remote_tlb_flush; 221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 222 } 223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 224 #endif 225 226 void kvm_reload_remote_mmus(struct kvm *kvm) 227 { 228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 229 } 230 231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 232 { 233 struct page *page; 234 int r; 235 236 mutex_init(&vcpu->mutex); 237 vcpu->cpu = -1; 238 vcpu->kvm = kvm; 239 vcpu->vcpu_id = id; 240 vcpu->pid = NULL; 241 init_swait_queue_head(&vcpu->wq); 242 kvm_async_pf_vcpu_init(vcpu); 243 244 vcpu->pre_pcpu = -1; 245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 246 247 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 248 if (!page) { 249 r = -ENOMEM; 250 goto fail; 251 } 252 vcpu->run = page_address(page); 253 254 kvm_vcpu_set_in_spin_loop(vcpu, false); 255 kvm_vcpu_set_dy_eligible(vcpu, false); 256 vcpu->preempted = false; 257 258 r = kvm_arch_vcpu_init(vcpu); 259 if (r < 0) 260 goto fail_free_run; 261 return 0; 262 263 fail_free_run: 264 free_page((unsigned long)vcpu->run); 265 fail: 266 return r; 267 } 268 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 269 270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 271 { 272 put_pid(vcpu->pid); 273 kvm_arch_vcpu_uninit(vcpu); 274 free_page((unsigned long)vcpu->run); 275 } 276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 277 278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 280 { 281 return container_of(mn, struct kvm, mmu_notifier); 282 } 283 284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 285 struct mm_struct *mm, 286 unsigned long address) 287 { 288 struct kvm *kvm = mmu_notifier_to_kvm(mn); 289 int need_tlb_flush, idx; 290 291 /* 292 * When ->invalidate_page runs, the linux pte has been zapped 293 * already but the page is still allocated until 294 * ->invalidate_page returns. So if we increase the sequence 295 * here the kvm page fault will notice if the spte can't be 296 * established because the page is going to be freed. If 297 * instead the kvm page fault establishes the spte before 298 * ->invalidate_page runs, kvm_unmap_hva will release it 299 * before returning. 300 * 301 * The sequence increase only need to be seen at spin_unlock 302 * time, and not at spin_lock time. 303 * 304 * Increasing the sequence after the spin_unlock would be 305 * unsafe because the kvm page fault could then establish the 306 * pte after kvm_unmap_hva returned, without noticing the page 307 * is going to be freed. 308 */ 309 idx = srcu_read_lock(&kvm->srcu); 310 spin_lock(&kvm->mmu_lock); 311 312 kvm->mmu_notifier_seq++; 313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 314 /* we've to flush the tlb before the pages can be freed */ 315 if (need_tlb_flush) 316 kvm_flush_remote_tlbs(kvm); 317 318 spin_unlock(&kvm->mmu_lock); 319 320 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 321 322 srcu_read_unlock(&kvm->srcu, idx); 323 } 324 325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 326 struct mm_struct *mm, 327 unsigned long address, 328 pte_t pte) 329 { 330 struct kvm *kvm = mmu_notifier_to_kvm(mn); 331 int idx; 332 333 idx = srcu_read_lock(&kvm->srcu); 334 spin_lock(&kvm->mmu_lock); 335 kvm->mmu_notifier_seq++; 336 kvm_set_spte_hva(kvm, address, pte); 337 spin_unlock(&kvm->mmu_lock); 338 srcu_read_unlock(&kvm->srcu, idx); 339 } 340 341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 342 struct mm_struct *mm, 343 unsigned long start, 344 unsigned long end) 345 { 346 struct kvm *kvm = mmu_notifier_to_kvm(mn); 347 int need_tlb_flush = 0, idx; 348 349 idx = srcu_read_lock(&kvm->srcu); 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * The count increase must become visible at unlock time as no 353 * spte can be established without taking the mmu_lock and 354 * count is also read inside the mmu_lock critical section. 355 */ 356 kvm->mmu_notifier_count++; 357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 358 need_tlb_flush |= kvm->tlbs_dirty; 359 /* we've to flush the tlb before the pages can be freed */ 360 if (need_tlb_flush) 361 kvm_flush_remote_tlbs(kvm); 362 363 spin_unlock(&kvm->mmu_lock); 364 srcu_read_unlock(&kvm->srcu, idx); 365 } 366 367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 368 struct mm_struct *mm, 369 unsigned long start, 370 unsigned long end) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 374 spin_lock(&kvm->mmu_lock); 375 /* 376 * This sequence increase will notify the kvm page fault that 377 * the page that is going to be mapped in the spte could have 378 * been freed. 379 */ 380 kvm->mmu_notifier_seq++; 381 smp_wmb(); 382 /* 383 * The above sequence increase must be visible before the 384 * below count decrease, which is ensured by the smp_wmb above 385 * in conjunction with the smp_rmb in mmu_notifier_retry(). 386 */ 387 kvm->mmu_notifier_count--; 388 spin_unlock(&kvm->mmu_lock); 389 390 BUG_ON(kvm->mmu_notifier_count < 0); 391 } 392 393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 394 struct mm_struct *mm, 395 unsigned long start, 396 unsigned long end) 397 { 398 struct kvm *kvm = mmu_notifier_to_kvm(mn); 399 int young, idx; 400 401 idx = srcu_read_lock(&kvm->srcu); 402 spin_lock(&kvm->mmu_lock); 403 404 young = kvm_age_hva(kvm, start, end); 405 if (young) 406 kvm_flush_remote_tlbs(kvm); 407 408 spin_unlock(&kvm->mmu_lock); 409 srcu_read_unlock(&kvm->srcu, idx); 410 411 return young; 412 } 413 414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 415 struct mm_struct *mm, 416 unsigned long start, 417 unsigned long end) 418 { 419 struct kvm *kvm = mmu_notifier_to_kvm(mn); 420 int young, idx; 421 422 idx = srcu_read_lock(&kvm->srcu); 423 spin_lock(&kvm->mmu_lock); 424 /* 425 * Even though we do not flush TLB, this will still adversely 426 * affect performance on pre-Haswell Intel EPT, where there is 427 * no EPT Access Bit to clear so that we have to tear down EPT 428 * tables instead. If we find this unacceptable, we can always 429 * add a parameter to kvm_age_hva so that it effectively doesn't 430 * do anything on clear_young. 431 * 432 * Also note that currently we never issue secondary TLB flushes 433 * from clear_young, leaving this job up to the regular system 434 * cadence. If we find this inaccurate, we might come up with a 435 * more sophisticated heuristic later. 436 */ 437 young = kvm_age_hva(kvm, start, end); 438 spin_unlock(&kvm->mmu_lock); 439 srcu_read_unlock(&kvm->srcu, idx); 440 441 return young; 442 } 443 444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 445 struct mm_struct *mm, 446 unsigned long address) 447 { 448 struct kvm *kvm = mmu_notifier_to_kvm(mn); 449 int young, idx; 450 451 idx = srcu_read_lock(&kvm->srcu); 452 spin_lock(&kvm->mmu_lock); 453 young = kvm_test_age_hva(kvm, address); 454 spin_unlock(&kvm->mmu_lock); 455 srcu_read_unlock(&kvm->srcu, idx); 456 457 return young; 458 } 459 460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 461 struct mm_struct *mm) 462 { 463 struct kvm *kvm = mmu_notifier_to_kvm(mn); 464 int idx; 465 466 idx = srcu_read_lock(&kvm->srcu); 467 kvm_arch_flush_shadow_all(kvm); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 472 .invalidate_page = kvm_mmu_notifier_invalidate_page, 473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 476 .clear_young = kvm_mmu_notifier_clear_young, 477 .test_young = kvm_mmu_notifier_test_young, 478 .change_pte = kvm_mmu_notifier_change_pte, 479 .release = kvm_mmu_notifier_release, 480 }; 481 482 static int kvm_init_mmu_notifier(struct kvm *kvm) 483 { 484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 486 } 487 488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 489 490 static int kvm_init_mmu_notifier(struct kvm *kvm) 491 { 492 return 0; 493 } 494 495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 496 497 static struct kvm_memslots *kvm_alloc_memslots(void) 498 { 499 int i; 500 struct kvm_memslots *slots; 501 502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 503 if (!slots) 504 return NULL; 505 506 /* 507 * Init kvm generation close to the maximum to easily test the 508 * code of handling generation number wrap-around. 509 */ 510 slots->generation = -150; 511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 512 slots->id_to_index[i] = slots->memslots[i].id = i; 513 514 return slots; 515 } 516 517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 518 { 519 if (!memslot->dirty_bitmap) 520 return; 521 522 kvfree(memslot->dirty_bitmap); 523 memslot->dirty_bitmap = NULL; 524 } 525 526 /* 527 * Free any memory in @free but not in @dont. 528 */ 529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 530 struct kvm_memory_slot *dont) 531 { 532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 533 kvm_destroy_dirty_bitmap(free); 534 535 kvm_arch_free_memslot(kvm, free, dont); 536 537 free->npages = 0; 538 } 539 540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 541 { 542 struct kvm_memory_slot *memslot; 543 544 if (!slots) 545 return; 546 547 kvm_for_each_memslot(memslot, slots) 548 kvm_free_memslot(kvm, memslot, NULL); 549 550 kvfree(slots); 551 } 552 553 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 554 { 555 int i; 556 557 if (!kvm->debugfs_dentry) 558 return; 559 560 debugfs_remove_recursive(kvm->debugfs_dentry); 561 562 if (kvm->debugfs_stat_data) { 563 for (i = 0; i < kvm_debugfs_num_entries; i++) 564 kfree(kvm->debugfs_stat_data[i]); 565 kfree(kvm->debugfs_stat_data); 566 } 567 } 568 569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 570 { 571 char dir_name[ITOA_MAX_LEN * 2]; 572 struct kvm_stat_data *stat_data; 573 struct kvm_stats_debugfs_item *p; 574 575 if (!debugfs_initialized()) 576 return 0; 577 578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 579 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 580 kvm_debugfs_dir); 581 if (!kvm->debugfs_dentry) 582 return -ENOMEM; 583 584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 585 sizeof(*kvm->debugfs_stat_data), 586 GFP_KERNEL); 587 if (!kvm->debugfs_stat_data) 588 return -ENOMEM; 589 590 for (p = debugfs_entries; p->name; p++) { 591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 592 if (!stat_data) 593 return -ENOMEM; 594 595 stat_data->kvm = kvm; 596 stat_data->offset = p->offset; 597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 598 if (!debugfs_create_file(p->name, 0444, 599 kvm->debugfs_dentry, 600 stat_data, 601 stat_fops_per_vm[p->kind])) 602 return -ENOMEM; 603 } 604 return 0; 605 } 606 607 static struct kvm *kvm_create_vm(unsigned long type) 608 { 609 int r, i; 610 struct kvm *kvm = kvm_arch_alloc_vm(); 611 612 if (!kvm) 613 return ERR_PTR(-ENOMEM); 614 615 spin_lock_init(&kvm->mmu_lock); 616 atomic_inc(¤t->mm->mm_count); 617 kvm->mm = current->mm; 618 kvm_eventfd_init(kvm); 619 mutex_init(&kvm->lock); 620 mutex_init(&kvm->irq_lock); 621 mutex_init(&kvm->slots_lock); 622 atomic_set(&kvm->users_count, 1); 623 INIT_LIST_HEAD(&kvm->devices); 624 625 r = kvm_arch_init_vm(kvm, type); 626 if (r) 627 goto out_err_no_disable; 628 629 r = hardware_enable_all(); 630 if (r) 631 goto out_err_no_disable; 632 633 #ifdef CONFIG_HAVE_KVM_IRQFD 634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 635 #endif 636 637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 638 639 r = -ENOMEM; 640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 641 kvm->memslots[i] = kvm_alloc_memslots(); 642 if (!kvm->memslots[i]) 643 goto out_err_no_srcu; 644 } 645 646 if (init_srcu_struct(&kvm->srcu)) 647 goto out_err_no_srcu; 648 if (init_srcu_struct(&kvm->irq_srcu)) 649 goto out_err_no_irq_srcu; 650 for (i = 0; i < KVM_NR_BUSES; i++) { 651 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 652 GFP_KERNEL); 653 if (!kvm->buses[i]) 654 goto out_err; 655 } 656 657 r = kvm_init_mmu_notifier(kvm); 658 if (r) 659 goto out_err; 660 661 spin_lock(&kvm_lock); 662 list_add(&kvm->vm_list, &vm_list); 663 spin_unlock(&kvm_lock); 664 665 preempt_notifier_inc(); 666 667 return kvm; 668 669 out_err: 670 cleanup_srcu_struct(&kvm->irq_srcu); 671 out_err_no_irq_srcu: 672 cleanup_srcu_struct(&kvm->srcu); 673 out_err_no_srcu: 674 hardware_disable_all(); 675 out_err_no_disable: 676 for (i = 0; i < KVM_NR_BUSES; i++) 677 kfree(kvm->buses[i]); 678 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 679 kvm_free_memslots(kvm, kvm->memslots[i]); 680 kvm_arch_free_vm(kvm); 681 mmdrop(current->mm); 682 return ERR_PTR(r); 683 } 684 685 /* 686 * Avoid using vmalloc for a small buffer. 687 * Should not be used when the size is statically known. 688 */ 689 void *kvm_kvzalloc(unsigned long size) 690 { 691 if (size > PAGE_SIZE) 692 return vzalloc(size); 693 else 694 return kzalloc(size, GFP_KERNEL); 695 } 696 697 static void kvm_destroy_devices(struct kvm *kvm) 698 { 699 struct kvm_device *dev, *tmp; 700 701 /* 702 * We do not need to take the kvm->lock here, because nobody else 703 * has a reference to the struct kvm at this point and therefore 704 * cannot access the devices list anyhow. 705 */ 706 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 707 list_del(&dev->vm_node); 708 dev->ops->destroy(dev); 709 } 710 } 711 712 static void kvm_destroy_vm(struct kvm *kvm) 713 { 714 int i; 715 struct mm_struct *mm = kvm->mm; 716 717 kvm_destroy_vm_debugfs(kvm); 718 kvm_arch_sync_events(kvm); 719 spin_lock(&kvm_lock); 720 list_del(&kvm->vm_list); 721 spin_unlock(&kvm_lock); 722 kvm_free_irq_routing(kvm); 723 for (i = 0; i < KVM_NR_BUSES; i++) 724 kvm_io_bus_destroy(kvm->buses[i]); 725 kvm_coalesced_mmio_free(kvm); 726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 727 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 728 #else 729 kvm_arch_flush_shadow_all(kvm); 730 #endif 731 kvm_arch_destroy_vm(kvm); 732 kvm_destroy_devices(kvm); 733 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 734 kvm_free_memslots(kvm, kvm->memslots[i]); 735 cleanup_srcu_struct(&kvm->irq_srcu); 736 cleanup_srcu_struct(&kvm->srcu); 737 kvm_arch_free_vm(kvm); 738 preempt_notifier_dec(); 739 hardware_disable_all(); 740 mmdrop(mm); 741 } 742 743 void kvm_get_kvm(struct kvm *kvm) 744 { 745 atomic_inc(&kvm->users_count); 746 } 747 EXPORT_SYMBOL_GPL(kvm_get_kvm); 748 749 void kvm_put_kvm(struct kvm *kvm) 750 { 751 if (atomic_dec_and_test(&kvm->users_count)) 752 kvm_destroy_vm(kvm); 753 } 754 EXPORT_SYMBOL_GPL(kvm_put_kvm); 755 756 757 static int kvm_vm_release(struct inode *inode, struct file *filp) 758 { 759 struct kvm *kvm = filp->private_data; 760 761 kvm_irqfd_release(kvm); 762 763 kvm_put_kvm(kvm); 764 return 0; 765 } 766 767 /* 768 * Allocation size is twice as large as the actual dirty bitmap size. 769 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 770 */ 771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 772 { 773 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 774 775 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 776 if (!memslot->dirty_bitmap) 777 return -ENOMEM; 778 779 return 0; 780 } 781 782 /* 783 * Insert memslot and re-sort memslots based on their GFN, 784 * so binary search could be used to lookup GFN. 785 * Sorting algorithm takes advantage of having initially 786 * sorted array and known changed memslot position. 787 */ 788 static void update_memslots(struct kvm_memslots *slots, 789 struct kvm_memory_slot *new) 790 { 791 int id = new->id; 792 int i = slots->id_to_index[id]; 793 struct kvm_memory_slot *mslots = slots->memslots; 794 795 WARN_ON(mslots[i].id != id); 796 if (!new->npages) { 797 WARN_ON(!mslots[i].npages); 798 if (mslots[i].npages) 799 slots->used_slots--; 800 } else { 801 if (!mslots[i].npages) 802 slots->used_slots++; 803 } 804 805 while (i < KVM_MEM_SLOTS_NUM - 1 && 806 new->base_gfn <= mslots[i + 1].base_gfn) { 807 if (!mslots[i + 1].npages) 808 break; 809 mslots[i] = mslots[i + 1]; 810 slots->id_to_index[mslots[i].id] = i; 811 i++; 812 } 813 814 /* 815 * The ">=" is needed when creating a slot with base_gfn == 0, 816 * so that it moves before all those with base_gfn == npages == 0. 817 * 818 * On the other hand, if new->npages is zero, the above loop has 819 * already left i pointing to the beginning of the empty part of 820 * mslots, and the ">=" would move the hole backwards in this 821 * case---which is wrong. So skip the loop when deleting a slot. 822 */ 823 if (new->npages) { 824 while (i > 0 && 825 new->base_gfn >= mslots[i - 1].base_gfn) { 826 mslots[i] = mslots[i - 1]; 827 slots->id_to_index[mslots[i].id] = i; 828 i--; 829 } 830 } else 831 WARN_ON_ONCE(i != slots->used_slots); 832 833 mslots[i] = *new; 834 slots->id_to_index[mslots[i].id] = i; 835 } 836 837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 838 { 839 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 840 841 #ifdef __KVM_HAVE_READONLY_MEM 842 valid_flags |= KVM_MEM_READONLY; 843 #endif 844 845 if (mem->flags & ~valid_flags) 846 return -EINVAL; 847 848 return 0; 849 } 850 851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 852 int as_id, struct kvm_memslots *slots) 853 { 854 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 855 856 /* 857 * Set the low bit in the generation, which disables SPTE caching 858 * until the end of synchronize_srcu_expedited. 859 */ 860 WARN_ON(old_memslots->generation & 1); 861 slots->generation = old_memslots->generation + 1; 862 863 rcu_assign_pointer(kvm->memslots[as_id], slots); 864 synchronize_srcu_expedited(&kvm->srcu); 865 866 /* 867 * Increment the new memslot generation a second time. This prevents 868 * vm exits that race with memslot updates from caching a memslot 869 * generation that will (potentially) be valid forever. 870 */ 871 slots->generation++; 872 873 kvm_arch_memslots_updated(kvm, slots); 874 875 return old_memslots; 876 } 877 878 /* 879 * Allocate some memory and give it an address in the guest physical address 880 * space. 881 * 882 * Discontiguous memory is allowed, mostly for framebuffers. 883 * 884 * Must be called holding kvm->slots_lock for write. 885 */ 886 int __kvm_set_memory_region(struct kvm *kvm, 887 const struct kvm_userspace_memory_region *mem) 888 { 889 int r; 890 gfn_t base_gfn; 891 unsigned long npages; 892 struct kvm_memory_slot *slot; 893 struct kvm_memory_slot old, new; 894 struct kvm_memslots *slots = NULL, *old_memslots; 895 int as_id, id; 896 enum kvm_mr_change change; 897 898 r = check_memory_region_flags(mem); 899 if (r) 900 goto out; 901 902 r = -EINVAL; 903 as_id = mem->slot >> 16; 904 id = (u16)mem->slot; 905 906 /* General sanity checks */ 907 if (mem->memory_size & (PAGE_SIZE - 1)) 908 goto out; 909 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 910 goto out; 911 /* We can read the guest memory with __xxx_user() later on. */ 912 if ((id < KVM_USER_MEM_SLOTS) && 913 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 914 !access_ok(VERIFY_WRITE, 915 (void __user *)(unsigned long)mem->userspace_addr, 916 mem->memory_size))) 917 goto out; 918 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 919 goto out; 920 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 921 goto out; 922 923 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 924 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 925 npages = mem->memory_size >> PAGE_SHIFT; 926 927 if (npages > KVM_MEM_MAX_NR_PAGES) 928 goto out; 929 930 new = old = *slot; 931 932 new.id = id; 933 new.base_gfn = base_gfn; 934 new.npages = npages; 935 new.flags = mem->flags; 936 937 if (npages) { 938 if (!old.npages) 939 change = KVM_MR_CREATE; 940 else { /* Modify an existing slot. */ 941 if ((mem->userspace_addr != old.userspace_addr) || 942 (npages != old.npages) || 943 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 944 goto out; 945 946 if (base_gfn != old.base_gfn) 947 change = KVM_MR_MOVE; 948 else if (new.flags != old.flags) 949 change = KVM_MR_FLAGS_ONLY; 950 else { /* Nothing to change. */ 951 r = 0; 952 goto out; 953 } 954 } 955 } else { 956 if (!old.npages) 957 goto out; 958 959 change = KVM_MR_DELETE; 960 new.base_gfn = 0; 961 new.flags = 0; 962 } 963 964 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 965 /* Check for overlaps */ 966 r = -EEXIST; 967 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 968 if ((slot->id >= KVM_USER_MEM_SLOTS) || 969 (slot->id == id)) 970 continue; 971 if (!((base_gfn + npages <= slot->base_gfn) || 972 (base_gfn >= slot->base_gfn + slot->npages))) 973 goto out; 974 } 975 } 976 977 /* Free page dirty bitmap if unneeded */ 978 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 979 new.dirty_bitmap = NULL; 980 981 r = -ENOMEM; 982 if (change == KVM_MR_CREATE) { 983 new.userspace_addr = mem->userspace_addr; 984 985 if (kvm_arch_create_memslot(kvm, &new, npages)) 986 goto out_free; 987 } 988 989 /* Allocate page dirty bitmap if needed */ 990 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 991 if (kvm_create_dirty_bitmap(&new) < 0) 992 goto out_free; 993 } 994 995 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 996 if (!slots) 997 goto out_free; 998 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 999 1000 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1001 slot = id_to_memslot(slots, id); 1002 slot->flags |= KVM_MEMSLOT_INVALID; 1003 1004 old_memslots = install_new_memslots(kvm, as_id, slots); 1005 1006 /* slot was deleted or moved, clear iommu mapping */ 1007 kvm_iommu_unmap_pages(kvm, &old); 1008 /* From this point no new shadow pages pointing to a deleted, 1009 * or moved, memslot will be created. 1010 * 1011 * validation of sp->gfn happens in: 1012 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1013 * - kvm_is_visible_gfn (mmu_check_roots) 1014 */ 1015 kvm_arch_flush_shadow_memslot(kvm, slot); 1016 1017 /* 1018 * We can re-use the old_memslots from above, the only difference 1019 * from the currently installed memslots is the invalid flag. This 1020 * will get overwritten by update_memslots anyway. 1021 */ 1022 slots = old_memslots; 1023 } 1024 1025 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1026 if (r) 1027 goto out_slots; 1028 1029 /* actual memory is freed via old in kvm_free_memslot below */ 1030 if (change == KVM_MR_DELETE) { 1031 new.dirty_bitmap = NULL; 1032 memset(&new.arch, 0, sizeof(new.arch)); 1033 } 1034 1035 update_memslots(slots, &new); 1036 old_memslots = install_new_memslots(kvm, as_id, slots); 1037 1038 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1039 1040 kvm_free_memslot(kvm, &old, &new); 1041 kvfree(old_memslots); 1042 1043 /* 1044 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1045 * un-mapped and re-mapped if their base changes. Since base change 1046 * unmapping is handled above with slot deletion, mapping alone is 1047 * needed here. Anything else the iommu might care about for existing 1048 * slots (size changes, userspace addr changes and read-only flag 1049 * changes) is disallowed above, so any other attribute changes getting 1050 * here can be skipped. 1051 */ 1052 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1053 r = kvm_iommu_map_pages(kvm, &new); 1054 return r; 1055 } 1056 1057 return 0; 1058 1059 out_slots: 1060 kvfree(slots); 1061 out_free: 1062 kvm_free_memslot(kvm, &new, &old); 1063 out: 1064 return r; 1065 } 1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1067 1068 int kvm_set_memory_region(struct kvm *kvm, 1069 const struct kvm_userspace_memory_region *mem) 1070 { 1071 int r; 1072 1073 mutex_lock(&kvm->slots_lock); 1074 r = __kvm_set_memory_region(kvm, mem); 1075 mutex_unlock(&kvm->slots_lock); 1076 return r; 1077 } 1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1079 1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1081 struct kvm_userspace_memory_region *mem) 1082 { 1083 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1084 return -EINVAL; 1085 1086 return kvm_set_memory_region(kvm, mem); 1087 } 1088 1089 int kvm_get_dirty_log(struct kvm *kvm, 1090 struct kvm_dirty_log *log, int *is_dirty) 1091 { 1092 struct kvm_memslots *slots; 1093 struct kvm_memory_slot *memslot; 1094 int r, i, as_id, id; 1095 unsigned long n; 1096 unsigned long any = 0; 1097 1098 r = -EINVAL; 1099 as_id = log->slot >> 16; 1100 id = (u16)log->slot; 1101 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1102 goto out; 1103 1104 slots = __kvm_memslots(kvm, as_id); 1105 memslot = id_to_memslot(slots, id); 1106 r = -ENOENT; 1107 if (!memslot->dirty_bitmap) 1108 goto out; 1109 1110 n = kvm_dirty_bitmap_bytes(memslot); 1111 1112 for (i = 0; !any && i < n/sizeof(long); ++i) 1113 any = memslot->dirty_bitmap[i]; 1114 1115 r = -EFAULT; 1116 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1117 goto out; 1118 1119 if (any) 1120 *is_dirty = 1; 1121 1122 r = 0; 1123 out: 1124 return r; 1125 } 1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1127 1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1129 /** 1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1131 * are dirty write protect them for next write. 1132 * @kvm: pointer to kvm instance 1133 * @log: slot id and address to which we copy the log 1134 * @is_dirty: flag set if any page is dirty 1135 * 1136 * We need to keep it in mind that VCPU threads can write to the bitmap 1137 * concurrently. So, to avoid losing track of dirty pages we keep the 1138 * following order: 1139 * 1140 * 1. Take a snapshot of the bit and clear it if needed. 1141 * 2. Write protect the corresponding page. 1142 * 3. Copy the snapshot to the userspace. 1143 * 4. Upon return caller flushes TLB's if needed. 1144 * 1145 * Between 2 and 4, the guest may write to the page using the remaining TLB 1146 * entry. This is not a problem because the page is reported dirty using 1147 * the snapshot taken before and step 4 ensures that writes done after 1148 * exiting to userspace will be logged for the next call. 1149 * 1150 */ 1151 int kvm_get_dirty_log_protect(struct kvm *kvm, 1152 struct kvm_dirty_log *log, bool *is_dirty) 1153 { 1154 struct kvm_memslots *slots; 1155 struct kvm_memory_slot *memslot; 1156 int r, i, as_id, id; 1157 unsigned long n; 1158 unsigned long *dirty_bitmap; 1159 unsigned long *dirty_bitmap_buffer; 1160 1161 r = -EINVAL; 1162 as_id = log->slot >> 16; 1163 id = (u16)log->slot; 1164 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1165 goto out; 1166 1167 slots = __kvm_memslots(kvm, as_id); 1168 memslot = id_to_memslot(slots, id); 1169 1170 dirty_bitmap = memslot->dirty_bitmap; 1171 r = -ENOENT; 1172 if (!dirty_bitmap) 1173 goto out; 1174 1175 n = kvm_dirty_bitmap_bytes(memslot); 1176 1177 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1178 memset(dirty_bitmap_buffer, 0, n); 1179 1180 spin_lock(&kvm->mmu_lock); 1181 *is_dirty = false; 1182 for (i = 0; i < n / sizeof(long); i++) { 1183 unsigned long mask; 1184 gfn_t offset; 1185 1186 if (!dirty_bitmap[i]) 1187 continue; 1188 1189 *is_dirty = true; 1190 1191 mask = xchg(&dirty_bitmap[i], 0); 1192 dirty_bitmap_buffer[i] = mask; 1193 1194 if (mask) { 1195 offset = i * BITS_PER_LONG; 1196 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1197 offset, mask); 1198 } 1199 } 1200 1201 spin_unlock(&kvm->mmu_lock); 1202 1203 r = -EFAULT; 1204 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1205 goto out; 1206 1207 r = 0; 1208 out: 1209 return r; 1210 } 1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1212 #endif 1213 1214 bool kvm_largepages_enabled(void) 1215 { 1216 return largepages_enabled; 1217 } 1218 1219 void kvm_disable_largepages(void) 1220 { 1221 largepages_enabled = false; 1222 } 1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1224 1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1226 { 1227 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1228 } 1229 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1230 1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1232 { 1233 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1234 } 1235 1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1237 { 1238 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1239 1240 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1241 memslot->flags & KVM_MEMSLOT_INVALID) 1242 return false; 1243 1244 return true; 1245 } 1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1247 1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1249 { 1250 struct vm_area_struct *vma; 1251 unsigned long addr, size; 1252 1253 size = PAGE_SIZE; 1254 1255 addr = gfn_to_hva(kvm, gfn); 1256 if (kvm_is_error_hva(addr)) 1257 return PAGE_SIZE; 1258 1259 down_read(¤t->mm->mmap_sem); 1260 vma = find_vma(current->mm, addr); 1261 if (!vma) 1262 goto out; 1263 1264 size = vma_kernel_pagesize(vma); 1265 1266 out: 1267 up_read(¤t->mm->mmap_sem); 1268 1269 return size; 1270 } 1271 1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1273 { 1274 return slot->flags & KVM_MEM_READONLY; 1275 } 1276 1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1278 gfn_t *nr_pages, bool write) 1279 { 1280 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1281 return KVM_HVA_ERR_BAD; 1282 1283 if (memslot_is_readonly(slot) && write) 1284 return KVM_HVA_ERR_RO_BAD; 1285 1286 if (nr_pages) 1287 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1288 1289 return __gfn_to_hva_memslot(slot, gfn); 1290 } 1291 1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1293 gfn_t *nr_pages) 1294 { 1295 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1296 } 1297 1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1299 gfn_t gfn) 1300 { 1301 return gfn_to_hva_many(slot, gfn, NULL); 1302 } 1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1304 1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1306 { 1307 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1308 } 1309 EXPORT_SYMBOL_GPL(gfn_to_hva); 1310 1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1312 { 1313 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1314 } 1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1316 1317 /* 1318 * If writable is set to false, the hva returned by this function is only 1319 * allowed to be read. 1320 */ 1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1322 gfn_t gfn, bool *writable) 1323 { 1324 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1325 1326 if (!kvm_is_error_hva(hva) && writable) 1327 *writable = !memslot_is_readonly(slot); 1328 1329 return hva; 1330 } 1331 1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1333 { 1334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1335 1336 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1337 } 1338 1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1340 { 1341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1342 1343 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1344 } 1345 1346 static int get_user_page_nowait(unsigned long start, int write, 1347 struct page **page) 1348 { 1349 int flags = FOLL_NOWAIT | FOLL_HWPOISON; 1350 1351 if (write) 1352 flags |= FOLL_WRITE; 1353 1354 return get_user_pages(start, 1, flags, page, NULL); 1355 } 1356 1357 static inline int check_user_page_hwpoison(unsigned long addr) 1358 { 1359 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1360 1361 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1362 return rc == -EHWPOISON; 1363 } 1364 1365 /* 1366 * The atomic path to get the writable pfn which will be stored in @pfn, 1367 * true indicates success, otherwise false is returned. 1368 */ 1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1370 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1371 { 1372 struct page *page[1]; 1373 int npages; 1374 1375 if (!(async || atomic)) 1376 return false; 1377 1378 /* 1379 * Fast pin a writable pfn only if it is a write fault request 1380 * or the caller allows to map a writable pfn for a read fault 1381 * request. 1382 */ 1383 if (!(write_fault || writable)) 1384 return false; 1385 1386 npages = __get_user_pages_fast(addr, 1, 1, page); 1387 if (npages == 1) { 1388 *pfn = page_to_pfn(page[0]); 1389 1390 if (writable) 1391 *writable = true; 1392 return true; 1393 } 1394 1395 return false; 1396 } 1397 1398 /* 1399 * The slow path to get the pfn of the specified host virtual address, 1400 * 1 indicates success, -errno is returned if error is detected. 1401 */ 1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1403 bool *writable, kvm_pfn_t *pfn) 1404 { 1405 struct page *page[1]; 1406 int npages = 0; 1407 1408 might_sleep(); 1409 1410 if (writable) 1411 *writable = write_fault; 1412 1413 if (async) { 1414 down_read(¤t->mm->mmap_sem); 1415 npages = get_user_page_nowait(addr, write_fault, page); 1416 up_read(¤t->mm->mmap_sem); 1417 } else { 1418 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON; 1419 1420 if (write_fault) 1421 flags |= FOLL_WRITE; 1422 1423 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1424 page, flags); 1425 } 1426 if (npages != 1) 1427 return npages; 1428 1429 /* map read fault as writable if possible */ 1430 if (unlikely(!write_fault) && writable) { 1431 struct page *wpage[1]; 1432 1433 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1434 if (npages == 1) { 1435 *writable = true; 1436 put_page(page[0]); 1437 page[0] = wpage[0]; 1438 } 1439 1440 npages = 1; 1441 } 1442 *pfn = page_to_pfn(page[0]); 1443 return npages; 1444 } 1445 1446 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1447 { 1448 if (unlikely(!(vma->vm_flags & VM_READ))) 1449 return false; 1450 1451 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1452 return false; 1453 1454 return true; 1455 } 1456 1457 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1458 unsigned long addr, bool *async, 1459 bool write_fault, kvm_pfn_t *p_pfn) 1460 { 1461 unsigned long pfn; 1462 int r; 1463 1464 r = follow_pfn(vma, addr, &pfn); 1465 if (r) { 1466 /* 1467 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1468 * not call the fault handler, so do it here. 1469 */ 1470 bool unlocked = false; 1471 r = fixup_user_fault(current, current->mm, addr, 1472 (write_fault ? FAULT_FLAG_WRITE : 0), 1473 &unlocked); 1474 if (unlocked) 1475 return -EAGAIN; 1476 if (r) 1477 return r; 1478 1479 r = follow_pfn(vma, addr, &pfn); 1480 if (r) 1481 return r; 1482 1483 } 1484 1485 1486 /* 1487 * Get a reference here because callers of *hva_to_pfn* and 1488 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1489 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1490 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1491 * simply do nothing for reserved pfns. 1492 * 1493 * Whoever called remap_pfn_range is also going to call e.g. 1494 * unmap_mapping_range before the underlying pages are freed, 1495 * causing a call to our MMU notifier. 1496 */ 1497 kvm_get_pfn(pfn); 1498 1499 *p_pfn = pfn; 1500 return 0; 1501 } 1502 1503 /* 1504 * Pin guest page in memory and return its pfn. 1505 * @addr: host virtual address which maps memory to the guest 1506 * @atomic: whether this function can sleep 1507 * @async: whether this function need to wait IO complete if the 1508 * host page is not in the memory 1509 * @write_fault: whether we should get a writable host page 1510 * @writable: whether it allows to map a writable host page for !@write_fault 1511 * 1512 * The function will map a writable host page for these two cases: 1513 * 1): @write_fault = true 1514 * 2): @write_fault = false && @writable, @writable will tell the caller 1515 * whether the mapping is writable. 1516 */ 1517 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1518 bool write_fault, bool *writable) 1519 { 1520 struct vm_area_struct *vma; 1521 kvm_pfn_t pfn = 0; 1522 int npages, r; 1523 1524 /* we can do it either atomically or asynchronously, not both */ 1525 BUG_ON(atomic && async); 1526 1527 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1528 return pfn; 1529 1530 if (atomic) 1531 return KVM_PFN_ERR_FAULT; 1532 1533 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1534 if (npages == 1) 1535 return pfn; 1536 1537 down_read(¤t->mm->mmap_sem); 1538 if (npages == -EHWPOISON || 1539 (!async && check_user_page_hwpoison(addr))) { 1540 pfn = KVM_PFN_ERR_HWPOISON; 1541 goto exit; 1542 } 1543 1544 retry: 1545 vma = find_vma_intersection(current->mm, addr, addr + 1); 1546 1547 if (vma == NULL) 1548 pfn = KVM_PFN_ERR_FAULT; 1549 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1550 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1551 if (r == -EAGAIN) 1552 goto retry; 1553 if (r < 0) 1554 pfn = KVM_PFN_ERR_FAULT; 1555 } else { 1556 if (async && vma_is_valid(vma, write_fault)) 1557 *async = true; 1558 pfn = KVM_PFN_ERR_FAULT; 1559 } 1560 exit: 1561 up_read(¤t->mm->mmap_sem); 1562 return pfn; 1563 } 1564 1565 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1566 bool atomic, bool *async, bool write_fault, 1567 bool *writable) 1568 { 1569 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1570 1571 if (addr == KVM_HVA_ERR_RO_BAD) { 1572 if (writable) 1573 *writable = false; 1574 return KVM_PFN_ERR_RO_FAULT; 1575 } 1576 1577 if (kvm_is_error_hva(addr)) { 1578 if (writable) 1579 *writable = false; 1580 return KVM_PFN_NOSLOT; 1581 } 1582 1583 /* Do not map writable pfn in the readonly memslot. */ 1584 if (writable && memslot_is_readonly(slot)) { 1585 *writable = false; 1586 writable = NULL; 1587 } 1588 1589 return hva_to_pfn(addr, atomic, async, write_fault, 1590 writable); 1591 } 1592 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1593 1594 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1595 bool *writable) 1596 { 1597 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1598 write_fault, writable); 1599 } 1600 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1601 1602 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1603 { 1604 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1605 } 1606 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1607 1608 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1609 { 1610 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1611 } 1612 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1613 1614 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1615 { 1616 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1617 } 1618 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1619 1620 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1621 { 1622 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1623 } 1624 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1625 1626 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1627 { 1628 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1629 } 1630 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1631 1632 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1633 { 1634 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1635 } 1636 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1637 1638 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1639 struct page **pages, int nr_pages) 1640 { 1641 unsigned long addr; 1642 gfn_t entry; 1643 1644 addr = gfn_to_hva_many(slot, gfn, &entry); 1645 if (kvm_is_error_hva(addr)) 1646 return -1; 1647 1648 if (entry < nr_pages) 1649 return 0; 1650 1651 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1652 } 1653 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1654 1655 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1656 { 1657 if (is_error_noslot_pfn(pfn)) 1658 return KVM_ERR_PTR_BAD_PAGE; 1659 1660 if (kvm_is_reserved_pfn(pfn)) { 1661 WARN_ON(1); 1662 return KVM_ERR_PTR_BAD_PAGE; 1663 } 1664 1665 return pfn_to_page(pfn); 1666 } 1667 1668 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1669 { 1670 kvm_pfn_t pfn; 1671 1672 pfn = gfn_to_pfn(kvm, gfn); 1673 1674 return kvm_pfn_to_page(pfn); 1675 } 1676 EXPORT_SYMBOL_GPL(gfn_to_page); 1677 1678 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1679 { 1680 kvm_pfn_t pfn; 1681 1682 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1683 1684 return kvm_pfn_to_page(pfn); 1685 } 1686 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1687 1688 void kvm_release_page_clean(struct page *page) 1689 { 1690 WARN_ON(is_error_page(page)); 1691 1692 kvm_release_pfn_clean(page_to_pfn(page)); 1693 } 1694 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1695 1696 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1697 { 1698 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1699 put_page(pfn_to_page(pfn)); 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1702 1703 void kvm_release_page_dirty(struct page *page) 1704 { 1705 WARN_ON(is_error_page(page)); 1706 1707 kvm_release_pfn_dirty(page_to_pfn(page)); 1708 } 1709 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1710 1711 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1712 { 1713 kvm_set_pfn_dirty(pfn); 1714 kvm_release_pfn_clean(pfn); 1715 } 1716 1717 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1718 { 1719 if (!kvm_is_reserved_pfn(pfn)) { 1720 struct page *page = pfn_to_page(pfn); 1721 1722 if (!PageReserved(page)) 1723 SetPageDirty(page); 1724 } 1725 } 1726 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1727 1728 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1729 { 1730 if (!kvm_is_reserved_pfn(pfn)) 1731 mark_page_accessed(pfn_to_page(pfn)); 1732 } 1733 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1734 1735 void kvm_get_pfn(kvm_pfn_t pfn) 1736 { 1737 if (!kvm_is_reserved_pfn(pfn)) 1738 get_page(pfn_to_page(pfn)); 1739 } 1740 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1741 1742 static int next_segment(unsigned long len, int offset) 1743 { 1744 if (len > PAGE_SIZE - offset) 1745 return PAGE_SIZE - offset; 1746 else 1747 return len; 1748 } 1749 1750 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1751 void *data, int offset, int len) 1752 { 1753 int r; 1754 unsigned long addr; 1755 1756 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1757 if (kvm_is_error_hva(addr)) 1758 return -EFAULT; 1759 r = __copy_from_user(data, (void __user *)addr + offset, len); 1760 if (r) 1761 return -EFAULT; 1762 return 0; 1763 } 1764 1765 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1766 int len) 1767 { 1768 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1769 1770 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1771 } 1772 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1773 1774 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1775 int offset, int len) 1776 { 1777 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1778 1779 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1780 } 1781 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1782 1783 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1784 { 1785 gfn_t gfn = gpa >> PAGE_SHIFT; 1786 int seg; 1787 int offset = offset_in_page(gpa); 1788 int ret; 1789 1790 while ((seg = next_segment(len, offset)) != 0) { 1791 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1792 if (ret < 0) 1793 return ret; 1794 offset = 0; 1795 len -= seg; 1796 data += seg; 1797 ++gfn; 1798 } 1799 return 0; 1800 } 1801 EXPORT_SYMBOL_GPL(kvm_read_guest); 1802 1803 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1804 { 1805 gfn_t gfn = gpa >> PAGE_SHIFT; 1806 int seg; 1807 int offset = offset_in_page(gpa); 1808 int ret; 1809 1810 while ((seg = next_segment(len, offset)) != 0) { 1811 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1812 if (ret < 0) 1813 return ret; 1814 offset = 0; 1815 len -= seg; 1816 data += seg; 1817 ++gfn; 1818 } 1819 return 0; 1820 } 1821 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1822 1823 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1824 void *data, int offset, unsigned long len) 1825 { 1826 int r; 1827 unsigned long addr; 1828 1829 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1830 if (kvm_is_error_hva(addr)) 1831 return -EFAULT; 1832 pagefault_disable(); 1833 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1834 pagefault_enable(); 1835 if (r) 1836 return -EFAULT; 1837 return 0; 1838 } 1839 1840 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1841 unsigned long len) 1842 { 1843 gfn_t gfn = gpa >> PAGE_SHIFT; 1844 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1845 int offset = offset_in_page(gpa); 1846 1847 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1848 } 1849 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1850 1851 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1852 void *data, unsigned long len) 1853 { 1854 gfn_t gfn = gpa >> PAGE_SHIFT; 1855 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1856 int offset = offset_in_page(gpa); 1857 1858 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1859 } 1860 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1861 1862 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1863 const void *data, int offset, int len) 1864 { 1865 int r; 1866 unsigned long addr; 1867 1868 addr = gfn_to_hva_memslot(memslot, gfn); 1869 if (kvm_is_error_hva(addr)) 1870 return -EFAULT; 1871 r = __copy_to_user((void __user *)addr + offset, data, len); 1872 if (r) 1873 return -EFAULT; 1874 mark_page_dirty_in_slot(memslot, gfn); 1875 return 0; 1876 } 1877 1878 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1879 const void *data, int offset, int len) 1880 { 1881 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1882 1883 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1884 } 1885 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1886 1887 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1888 const void *data, int offset, int len) 1889 { 1890 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1891 1892 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1893 } 1894 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1895 1896 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1897 unsigned long len) 1898 { 1899 gfn_t gfn = gpa >> PAGE_SHIFT; 1900 int seg; 1901 int offset = offset_in_page(gpa); 1902 int ret; 1903 1904 while ((seg = next_segment(len, offset)) != 0) { 1905 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1906 if (ret < 0) 1907 return ret; 1908 offset = 0; 1909 len -= seg; 1910 data += seg; 1911 ++gfn; 1912 } 1913 return 0; 1914 } 1915 EXPORT_SYMBOL_GPL(kvm_write_guest); 1916 1917 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1918 unsigned long len) 1919 { 1920 gfn_t gfn = gpa >> PAGE_SHIFT; 1921 int seg; 1922 int offset = offset_in_page(gpa); 1923 int ret; 1924 1925 while ((seg = next_segment(len, offset)) != 0) { 1926 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1927 if (ret < 0) 1928 return ret; 1929 offset = 0; 1930 len -= seg; 1931 data += seg; 1932 ++gfn; 1933 } 1934 return 0; 1935 } 1936 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1937 1938 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1939 gpa_t gpa, unsigned long len) 1940 { 1941 struct kvm_memslots *slots = kvm_memslots(kvm); 1942 int offset = offset_in_page(gpa); 1943 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1944 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1945 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1946 gfn_t nr_pages_avail; 1947 1948 ghc->gpa = gpa; 1949 ghc->generation = slots->generation; 1950 ghc->len = len; 1951 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1952 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1953 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1954 ghc->hva += offset; 1955 } else { 1956 /* 1957 * If the requested region crosses two memslots, we still 1958 * verify that the entire region is valid here. 1959 */ 1960 while (start_gfn <= end_gfn) { 1961 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1962 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1963 &nr_pages_avail); 1964 if (kvm_is_error_hva(ghc->hva)) 1965 return -EFAULT; 1966 start_gfn += nr_pages_avail; 1967 } 1968 /* Use the slow path for cross page reads and writes. */ 1969 ghc->memslot = NULL; 1970 } 1971 return 0; 1972 } 1973 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1974 1975 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1976 void *data, unsigned long len) 1977 { 1978 struct kvm_memslots *slots = kvm_memslots(kvm); 1979 int r; 1980 1981 BUG_ON(len > ghc->len); 1982 1983 if (slots->generation != ghc->generation) 1984 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1985 1986 if (unlikely(!ghc->memslot)) 1987 return kvm_write_guest(kvm, ghc->gpa, data, len); 1988 1989 if (kvm_is_error_hva(ghc->hva)) 1990 return -EFAULT; 1991 1992 r = __copy_to_user((void __user *)ghc->hva, data, len); 1993 if (r) 1994 return -EFAULT; 1995 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1996 1997 return 0; 1998 } 1999 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2000 2001 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2002 void *data, unsigned long len) 2003 { 2004 struct kvm_memslots *slots = kvm_memslots(kvm); 2005 int r; 2006 2007 BUG_ON(len > ghc->len); 2008 2009 if (slots->generation != ghc->generation) 2010 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 2011 2012 if (unlikely(!ghc->memslot)) 2013 return kvm_read_guest(kvm, ghc->gpa, data, len); 2014 2015 if (kvm_is_error_hva(ghc->hva)) 2016 return -EFAULT; 2017 2018 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2019 if (r) 2020 return -EFAULT; 2021 2022 return 0; 2023 } 2024 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2025 2026 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2027 { 2028 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2029 2030 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2031 } 2032 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2033 2034 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2035 { 2036 gfn_t gfn = gpa >> PAGE_SHIFT; 2037 int seg; 2038 int offset = offset_in_page(gpa); 2039 int ret; 2040 2041 while ((seg = next_segment(len, offset)) != 0) { 2042 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2043 if (ret < 0) 2044 return ret; 2045 offset = 0; 2046 len -= seg; 2047 ++gfn; 2048 } 2049 return 0; 2050 } 2051 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2052 2053 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2054 gfn_t gfn) 2055 { 2056 if (memslot && memslot->dirty_bitmap) { 2057 unsigned long rel_gfn = gfn - memslot->base_gfn; 2058 2059 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2060 } 2061 } 2062 2063 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2064 { 2065 struct kvm_memory_slot *memslot; 2066 2067 memslot = gfn_to_memslot(kvm, gfn); 2068 mark_page_dirty_in_slot(memslot, gfn); 2069 } 2070 EXPORT_SYMBOL_GPL(mark_page_dirty); 2071 2072 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2073 { 2074 struct kvm_memory_slot *memslot; 2075 2076 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2077 mark_page_dirty_in_slot(memslot, gfn); 2078 } 2079 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2080 2081 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2082 { 2083 unsigned int old, val, grow; 2084 2085 old = val = vcpu->halt_poll_ns; 2086 grow = READ_ONCE(halt_poll_ns_grow); 2087 /* 10us base */ 2088 if (val == 0 && grow) 2089 val = 10000; 2090 else 2091 val *= grow; 2092 2093 if (val > halt_poll_ns) 2094 val = halt_poll_ns; 2095 2096 vcpu->halt_poll_ns = val; 2097 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2098 } 2099 2100 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2101 { 2102 unsigned int old, val, shrink; 2103 2104 old = val = vcpu->halt_poll_ns; 2105 shrink = READ_ONCE(halt_poll_ns_shrink); 2106 if (shrink == 0) 2107 val = 0; 2108 else 2109 val /= shrink; 2110 2111 vcpu->halt_poll_ns = val; 2112 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2113 } 2114 2115 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2116 { 2117 if (kvm_arch_vcpu_runnable(vcpu)) { 2118 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2119 return -EINTR; 2120 } 2121 if (kvm_cpu_has_pending_timer(vcpu)) 2122 return -EINTR; 2123 if (signal_pending(current)) 2124 return -EINTR; 2125 2126 return 0; 2127 } 2128 2129 /* 2130 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2131 */ 2132 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2133 { 2134 ktime_t start, cur; 2135 DECLARE_SWAITQUEUE(wait); 2136 bool waited = false; 2137 u64 block_ns; 2138 2139 start = cur = ktime_get(); 2140 if (vcpu->halt_poll_ns) { 2141 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2142 2143 ++vcpu->stat.halt_attempted_poll; 2144 do { 2145 /* 2146 * This sets KVM_REQ_UNHALT if an interrupt 2147 * arrives. 2148 */ 2149 if (kvm_vcpu_check_block(vcpu) < 0) { 2150 ++vcpu->stat.halt_successful_poll; 2151 if (!vcpu_valid_wakeup(vcpu)) 2152 ++vcpu->stat.halt_poll_invalid; 2153 goto out; 2154 } 2155 cur = ktime_get(); 2156 } while (single_task_running() && ktime_before(cur, stop)); 2157 } 2158 2159 kvm_arch_vcpu_blocking(vcpu); 2160 2161 for (;;) { 2162 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2163 2164 if (kvm_vcpu_check_block(vcpu) < 0) 2165 break; 2166 2167 waited = true; 2168 schedule(); 2169 } 2170 2171 finish_swait(&vcpu->wq, &wait); 2172 cur = ktime_get(); 2173 2174 kvm_arch_vcpu_unblocking(vcpu); 2175 out: 2176 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2177 2178 if (!vcpu_valid_wakeup(vcpu)) 2179 shrink_halt_poll_ns(vcpu); 2180 else if (halt_poll_ns) { 2181 if (block_ns <= vcpu->halt_poll_ns) 2182 ; 2183 /* we had a long block, shrink polling */ 2184 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2185 shrink_halt_poll_ns(vcpu); 2186 /* we had a short halt and our poll time is too small */ 2187 else if (vcpu->halt_poll_ns < halt_poll_ns && 2188 block_ns < halt_poll_ns) 2189 grow_halt_poll_ns(vcpu); 2190 } else 2191 vcpu->halt_poll_ns = 0; 2192 2193 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2194 kvm_arch_vcpu_block_finish(vcpu); 2195 } 2196 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2197 2198 #ifndef CONFIG_S390 2199 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2200 { 2201 struct swait_queue_head *wqp; 2202 2203 wqp = kvm_arch_vcpu_wq(vcpu); 2204 if (swait_active(wqp)) { 2205 swake_up(wqp); 2206 ++vcpu->stat.halt_wakeup; 2207 } 2208 2209 } 2210 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2211 2212 /* 2213 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2214 */ 2215 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2216 { 2217 int me; 2218 int cpu = vcpu->cpu; 2219 2220 kvm_vcpu_wake_up(vcpu); 2221 me = get_cpu(); 2222 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2223 if (kvm_arch_vcpu_should_kick(vcpu)) 2224 smp_send_reschedule(cpu); 2225 put_cpu(); 2226 } 2227 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2228 #endif /* !CONFIG_S390 */ 2229 2230 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2231 { 2232 struct pid *pid; 2233 struct task_struct *task = NULL; 2234 int ret = 0; 2235 2236 rcu_read_lock(); 2237 pid = rcu_dereference(target->pid); 2238 if (pid) 2239 task = get_pid_task(pid, PIDTYPE_PID); 2240 rcu_read_unlock(); 2241 if (!task) 2242 return ret; 2243 ret = yield_to(task, 1); 2244 put_task_struct(task); 2245 2246 return ret; 2247 } 2248 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2249 2250 /* 2251 * Helper that checks whether a VCPU is eligible for directed yield. 2252 * Most eligible candidate to yield is decided by following heuristics: 2253 * 2254 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2255 * (preempted lock holder), indicated by @in_spin_loop. 2256 * Set at the beiginning and cleared at the end of interception/PLE handler. 2257 * 2258 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2259 * chance last time (mostly it has become eligible now since we have probably 2260 * yielded to lockholder in last iteration. This is done by toggling 2261 * @dy_eligible each time a VCPU checked for eligibility.) 2262 * 2263 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2264 * to preempted lock-holder could result in wrong VCPU selection and CPU 2265 * burning. Giving priority for a potential lock-holder increases lock 2266 * progress. 2267 * 2268 * Since algorithm is based on heuristics, accessing another VCPU data without 2269 * locking does not harm. It may result in trying to yield to same VCPU, fail 2270 * and continue with next VCPU and so on. 2271 */ 2272 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2273 { 2274 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2275 bool eligible; 2276 2277 eligible = !vcpu->spin_loop.in_spin_loop || 2278 vcpu->spin_loop.dy_eligible; 2279 2280 if (vcpu->spin_loop.in_spin_loop) 2281 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2282 2283 return eligible; 2284 #else 2285 return true; 2286 #endif 2287 } 2288 2289 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2290 { 2291 struct kvm *kvm = me->kvm; 2292 struct kvm_vcpu *vcpu; 2293 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2294 int yielded = 0; 2295 int try = 3; 2296 int pass; 2297 int i; 2298 2299 kvm_vcpu_set_in_spin_loop(me, true); 2300 /* 2301 * We boost the priority of a VCPU that is runnable but not 2302 * currently running, because it got preempted by something 2303 * else and called schedule in __vcpu_run. Hopefully that 2304 * VCPU is holding the lock that we need and will release it. 2305 * We approximate round-robin by starting at the last boosted VCPU. 2306 */ 2307 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2308 kvm_for_each_vcpu(i, vcpu, kvm) { 2309 if (!pass && i <= last_boosted_vcpu) { 2310 i = last_boosted_vcpu; 2311 continue; 2312 } else if (pass && i > last_boosted_vcpu) 2313 break; 2314 if (!ACCESS_ONCE(vcpu->preempted)) 2315 continue; 2316 if (vcpu == me) 2317 continue; 2318 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2319 continue; 2320 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2321 continue; 2322 2323 yielded = kvm_vcpu_yield_to(vcpu); 2324 if (yielded > 0) { 2325 kvm->last_boosted_vcpu = i; 2326 break; 2327 } else if (yielded < 0) { 2328 try--; 2329 if (!try) 2330 break; 2331 } 2332 } 2333 } 2334 kvm_vcpu_set_in_spin_loop(me, false); 2335 2336 /* Ensure vcpu is not eligible during next spinloop */ 2337 kvm_vcpu_set_dy_eligible(me, false); 2338 } 2339 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2340 2341 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2342 { 2343 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2344 struct page *page; 2345 2346 if (vmf->pgoff == 0) 2347 page = virt_to_page(vcpu->run); 2348 #ifdef CONFIG_X86 2349 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2350 page = virt_to_page(vcpu->arch.pio_data); 2351 #endif 2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2353 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2354 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2355 #endif 2356 else 2357 return kvm_arch_vcpu_fault(vcpu, vmf); 2358 get_page(page); 2359 vmf->page = page; 2360 return 0; 2361 } 2362 2363 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2364 .fault = kvm_vcpu_fault, 2365 }; 2366 2367 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2368 { 2369 vma->vm_ops = &kvm_vcpu_vm_ops; 2370 return 0; 2371 } 2372 2373 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2374 { 2375 struct kvm_vcpu *vcpu = filp->private_data; 2376 2377 debugfs_remove_recursive(vcpu->debugfs_dentry); 2378 kvm_put_kvm(vcpu->kvm); 2379 return 0; 2380 } 2381 2382 static struct file_operations kvm_vcpu_fops = { 2383 .release = kvm_vcpu_release, 2384 .unlocked_ioctl = kvm_vcpu_ioctl, 2385 #ifdef CONFIG_KVM_COMPAT 2386 .compat_ioctl = kvm_vcpu_compat_ioctl, 2387 #endif 2388 .mmap = kvm_vcpu_mmap, 2389 .llseek = noop_llseek, 2390 }; 2391 2392 /* 2393 * Allocates an inode for the vcpu. 2394 */ 2395 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2396 { 2397 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2398 } 2399 2400 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2401 { 2402 char dir_name[ITOA_MAX_LEN * 2]; 2403 int ret; 2404 2405 if (!kvm_arch_has_vcpu_debugfs()) 2406 return 0; 2407 2408 if (!debugfs_initialized()) 2409 return 0; 2410 2411 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2412 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2413 vcpu->kvm->debugfs_dentry); 2414 if (!vcpu->debugfs_dentry) 2415 return -ENOMEM; 2416 2417 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2418 if (ret < 0) { 2419 debugfs_remove_recursive(vcpu->debugfs_dentry); 2420 return ret; 2421 } 2422 2423 return 0; 2424 } 2425 2426 /* 2427 * Creates some virtual cpus. Good luck creating more than one. 2428 */ 2429 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2430 { 2431 int r; 2432 struct kvm_vcpu *vcpu; 2433 2434 if (id >= KVM_MAX_VCPU_ID) 2435 return -EINVAL; 2436 2437 mutex_lock(&kvm->lock); 2438 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2439 mutex_unlock(&kvm->lock); 2440 return -EINVAL; 2441 } 2442 2443 kvm->created_vcpus++; 2444 mutex_unlock(&kvm->lock); 2445 2446 vcpu = kvm_arch_vcpu_create(kvm, id); 2447 if (IS_ERR(vcpu)) { 2448 r = PTR_ERR(vcpu); 2449 goto vcpu_decrement; 2450 } 2451 2452 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2453 2454 r = kvm_arch_vcpu_setup(vcpu); 2455 if (r) 2456 goto vcpu_destroy; 2457 2458 r = kvm_create_vcpu_debugfs(vcpu); 2459 if (r) 2460 goto vcpu_destroy; 2461 2462 mutex_lock(&kvm->lock); 2463 if (kvm_get_vcpu_by_id(kvm, id)) { 2464 r = -EEXIST; 2465 goto unlock_vcpu_destroy; 2466 } 2467 2468 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2469 2470 /* Now it's all set up, let userspace reach it */ 2471 kvm_get_kvm(kvm); 2472 r = create_vcpu_fd(vcpu); 2473 if (r < 0) { 2474 kvm_put_kvm(kvm); 2475 goto unlock_vcpu_destroy; 2476 } 2477 2478 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2479 2480 /* 2481 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2482 * before kvm->online_vcpu's incremented value. 2483 */ 2484 smp_wmb(); 2485 atomic_inc(&kvm->online_vcpus); 2486 2487 mutex_unlock(&kvm->lock); 2488 kvm_arch_vcpu_postcreate(vcpu); 2489 return r; 2490 2491 unlock_vcpu_destroy: 2492 mutex_unlock(&kvm->lock); 2493 debugfs_remove_recursive(vcpu->debugfs_dentry); 2494 vcpu_destroy: 2495 kvm_arch_vcpu_destroy(vcpu); 2496 vcpu_decrement: 2497 mutex_lock(&kvm->lock); 2498 kvm->created_vcpus--; 2499 mutex_unlock(&kvm->lock); 2500 return r; 2501 } 2502 2503 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2504 { 2505 if (sigset) { 2506 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2507 vcpu->sigset_active = 1; 2508 vcpu->sigset = *sigset; 2509 } else 2510 vcpu->sigset_active = 0; 2511 return 0; 2512 } 2513 2514 static long kvm_vcpu_ioctl(struct file *filp, 2515 unsigned int ioctl, unsigned long arg) 2516 { 2517 struct kvm_vcpu *vcpu = filp->private_data; 2518 void __user *argp = (void __user *)arg; 2519 int r; 2520 struct kvm_fpu *fpu = NULL; 2521 struct kvm_sregs *kvm_sregs = NULL; 2522 2523 if (vcpu->kvm->mm != current->mm) 2524 return -EIO; 2525 2526 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2527 return -EINVAL; 2528 2529 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2530 /* 2531 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2532 * so vcpu_load() would break it. 2533 */ 2534 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2535 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2536 #endif 2537 2538 2539 r = vcpu_load(vcpu); 2540 if (r) 2541 return r; 2542 switch (ioctl) { 2543 case KVM_RUN: 2544 r = -EINVAL; 2545 if (arg) 2546 goto out; 2547 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2548 /* The thread running this VCPU changed. */ 2549 struct pid *oldpid = vcpu->pid; 2550 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2551 2552 rcu_assign_pointer(vcpu->pid, newpid); 2553 if (oldpid) 2554 synchronize_rcu(); 2555 put_pid(oldpid); 2556 } 2557 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2558 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2559 break; 2560 case KVM_GET_REGS: { 2561 struct kvm_regs *kvm_regs; 2562 2563 r = -ENOMEM; 2564 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2565 if (!kvm_regs) 2566 goto out; 2567 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2568 if (r) 2569 goto out_free1; 2570 r = -EFAULT; 2571 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2572 goto out_free1; 2573 r = 0; 2574 out_free1: 2575 kfree(kvm_regs); 2576 break; 2577 } 2578 case KVM_SET_REGS: { 2579 struct kvm_regs *kvm_regs; 2580 2581 r = -ENOMEM; 2582 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2583 if (IS_ERR(kvm_regs)) { 2584 r = PTR_ERR(kvm_regs); 2585 goto out; 2586 } 2587 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2588 kfree(kvm_regs); 2589 break; 2590 } 2591 case KVM_GET_SREGS: { 2592 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2593 r = -ENOMEM; 2594 if (!kvm_sregs) 2595 goto out; 2596 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2597 if (r) 2598 goto out; 2599 r = -EFAULT; 2600 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2601 goto out; 2602 r = 0; 2603 break; 2604 } 2605 case KVM_SET_SREGS: { 2606 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2607 if (IS_ERR(kvm_sregs)) { 2608 r = PTR_ERR(kvm_sregs); 2609 kvm_sregs = NULL; 2610 goto out; 2611 } 2612 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2613 break; 2614 } 2615 case KVM_GET_MP_STATE: { 2616 struct kvm_mp_state mp_state; 2617 2618 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2619 if (r) 2620 goto out; 2621 r = -EFAULT; 2622 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2623 goto out; 2624 r = 0; 2625 break; 2626 } 2627 case KVM_SET_MP_STATE: { 2628 struct kvm_mp_state mp_state; 2629 2630 r = -EFAULT; 2631 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2632 goto out; 2633 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2634 break; 2635 } 2636 case KVM_TRANSLATE: { 2637 struct kvm_translation tr; 2638 2639 r = -EFAULT; 2640 if (copy_from_user(&tr, argp, sizeof(tr))) 2641 goto out; 2642 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2643 if (r) 2644 goto out; 2645 r = -EFAULT; 2646 if (copy_to_user(argp, &tr, sizeof(tr))) 2647 goto out; 2648 r = 0; 2649 break; 2650 } 2651 case KVM_SET_GUEST_DEBUG: { 2652 struct kvm_guest_debug dbg; 2653 2654 r = -EFAULT; 2655 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2656 goto out; 2657 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2658 break; 2659 } 2660 case KVM_SET_SIGNAL_MASK: { 2661 struct kvm_signal_mask __user *sigmask_arg = argp; 2662 struct kvm_signal_mask kvm_sigmask; 2663 sigset_t sigset, *p; 2664 2665 p = NULL; 2666 if (argp) { 2667 r = -EFAULT; 2668 if (copy_from_user(&kvm_sigmask, argp, 2669 sizeof(kvm_sigmask))) 2670 goto out; 2671 r = -EINVAL; 2672 if (kvm_sigmask.len != sizeof(sigset)) 2673 goto out; 2674 r = -EFAULT; 2675 if (copy_from_user(&sigset, sigmask_arg->sigset, 2676 sizeof(sigset))) 2677 goto out; 2678 p = &sigset; 2679 } 2680 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2681 break; 2682 } 2683 case KVM_GET_FPU: { 2684 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2685 r = -ENOMEM; 2686 if (!fpu) 2687 goto out; 2688 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2689 if (r) 2690 goto out; 2691 r = -EFAULT; 2692 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2693 goto out; 2694 r = 0; 2695 break; 2696 } 2697 case KVM_SET_FPU: { 2698 fpu = memdup_user(argp, sizeof(*fpu)); 2699 if (IS_ERR(fpu)) { 2700 r = PTR_ERR(fpu); 2701 fpu = NULL; 2702 goto out; 2703 } 2704 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2705 break; 2706 } 2707 default: 2708 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2709 } 2710 out: 2711 vcpu_put(vcpu); 2712 kfree(fpu); 2713 kfree(kvm_sregs); 2714 return r; 2715 } 2716 2717 #ifdef CONFIG_KVM_COMPAT 2718 static long kvm_vcpu_compat_ioctl(struct file *filp, 2719 unsigned int ioctl, unsigned long arg) 2720 { 2721 struct kvm_vcpu *vcpu = filp->private_data; 2722 void __user *argp = compat_ptr(arg); 2723 int r; 2724 2725 if (vcpu->kvm->mm != current->mm) 2726 return -EIO; 2727 2728 switch (ioctl) { 2729 case KVM_SET_SIGNAL_MASK: { 2730 struct kvm_signal_mask __user *sigmask_arg = argp; 2731 struct kvm_signal_mask kvm_sigmask; 2732 compat_sigset_t csigset; 2733 sigset_t sigset; 2734 2735 if (argp) { 2736 r = -EFAULT; 2737 if (copy_from_user(&kvm_sigmask, argp, 2738 sizeof(kvm_sigmask))) 2739 goto out; 2740 r = -EINVAL; 2741 if (kvm_sigmask.len != sizeof(csigset)) 2742 goto out; 2743 r = -EFAULT; 2744 if (copy_from_user(&csigset, sigmask_arg->sigset, 2745 sizeof(csigset))) 2746 goto out; 2747 sigset_from_compat(&sigset, &csigset); 2748 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2749 } else 2750 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2751 break; 2752 } 2753 default: 2754 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2755 } 2756 2757 out: 2758 return r; 2759 } 2760 #endif 2761 2762 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2763 int (*accessor)(struct kvm_device *dev, 2764 struct kvm_device_attr *attr), 2765 unsigned long arg) 2766 { 2767 struct kvm_device_attr attr; 2768 2769 if (!accessor) 2770 return -EPERM; 2771 2772 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2773 return -EFAULT; 2774 2775 return accessor(dev, &attr); 2776 } 2777 2778 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2779 unsigned long arg) 2780 { 2781 struct kvm_device *dev = filp->private_data; 2782 2783 switch (ioctl) { 2784 case KVM_SET_DEVICE_ATTR: 2785 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2786 case KVM_GET_DEVICE_ATTR: 2787 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2788 case KVM_HAS_DEVICE_ATTR: 2789 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2790 default: 2791 if (dev->ops->ioctl) 2792 return dev->ops->ioctl(dev, ioctl, arg); 2793 2794 return -ENOTTY; 2795 } 2796 } 2797 2798 static int kvm_device_release(struct inode *inode, struct file *filp) 2799 { 2800 struct kvm_device *dev = filp->private_data; 2801 struct kvm *kvm = dev->kvm; 2802 2803 kvm_put_kvm(kvm); 2804 return 0; 2805 } 2806 2807 static const struct file_operations kvm_device_fops = { 2808 .unlocked_ioctl = kvm_device_ioctl, 2809 #ifdef CONFIG_KVM_COMPAT 2810 .compat_ioctl = kvm_device_ioctl, 2811 #endif 2812 .release = kvm_device_release, 2813 }; 2814 2815 struct kvm_device *kvm_device_from_filp(struct file *filp) 2816 { 2817 if (filp->f_op != &kvm_device_fops) 2818 return NULL; 2819 2820 return filp->private_data; 2821 } 2822 2823 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2824 #ifdef CONFIG_KVM_MPIC 2825 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2826 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2827 #endif 2828 2829 #ifdef CONFIG_KVM_XICS 2830 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2831 #endif 2832 }; 2833 2834 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2835 { 2836 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2837 return -ENOSPC; 2838 2839 if (kvm_device_ops_table[type] != NULL) 2840 return -EEXIST; 2841 2842 kvm_device_ops_table[type] = ops; 2843 return 0; 2844 } 2845 2846 void kvm_unregister_device_ops(u32 type) 2847 { 2848 if (kvm_device_ops_table[type] != NULL) 2849 kvm_device_ops_table[type] = NULL; 2850 } 2851 2852 static int kvm_ioctl_create_device(struct kvm *kvm, 2853 struct kvm_create_device *cd) 2854 { 2855 struct kvm_device_ops *ops = NULL; 2856 struct kvm_device *dev; 2857 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2858 int ret; 2859 2860 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2861 return -ENODEV; 2862 2863 ops = kvm_device_ops_table[cd->type]; 2864 if (ops == NULL) 2865 return -ENODEV; 2866 2867 if (test) 2868 return 0; 2869 2870 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2871 if (!dev) 2872 return -ENOMEM; 2873 2874 dev->ops = ops; 2875 dev->kvm = kvm; 2876 2877 mutex_lock(&kvm->lock); 2878 ret = ops->create(dev, cd->type); 2879 if (ret < 0) { 2880 mutex_unlock(&kvm->lock); 2881 kfree(dev); 2882 return ret; 2883 } 2884 list_add(&dev->vm_node, &kvm->devices); 2885 mutex_unlock(&kvm->lock); 2886 2887 if (ops->init) 2888 ops->init(dev); 2889 2890 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2891 if (ret < 0) { 2892 ops->destroy(dev); 2893 mutex_lock(&kvm->lock); 2894 list_del(&dev->vm_node); 2895 mutex_unlock(&kvm->lock); 2896 return ret; 2897 } 2898 2899 kvm_get_kvm(kvm); 2900 cd->fd = ret; 2901 return 0; 2902 } 2903 2904 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2905 { 2906 switch (arg) { 2907 case KVM_CAP_USER_MEMORY: 2908 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2909 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2910 case KVM_CAP_INTERNAL_ERROR_DATA: 2911 #ifdef CONFIG_HAVE_KVM_MSI 2912 case KVM_CAP_SIGNAL_MSI: 2913 #endif 2914 #ifdef CONFIG_HAVE_KVM_IRQFD 2915 case KVM_CAP_IRQFD: 2916 case KVM_CAP_IRQFD_RESAMPLE: 2917 #endif 2918 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2919 case KVM_CAP_CHECK_EXTENSION_VM: 2920 return 1; 2921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2922 case KVM_CAP_IRQ_ROUTING: 2923 return KVM_MAX_IRQ_ROUTES; 2924 #endif 2925 #if KVM_ADDRESS_SPACE_NUM > 1 2926 case KVM_CAP_MULTI_ADDRESS_SPACE: 2927 return KVM_ADDRESS_SPACE_NUM; 2928 #endif 2929 case KVM_CAP_MAX_VCPU_ID: 2930 return KVM_MAX_VCPU_ID; 2931 default: 2932 break; 2933 } 2934 return kvm_vm_ioctl_check_extension(kvm, arg); 2935 } 2936 2937 static long kvm_vm_ioctl(struct file *filp, 2938 unsigned int ioctl, unsigned long arg) 2939 { 2940 struct kvm *kvm = filp->private_data; 2941 void __user *argp = (void __user *)arg; 2942 int r; 2943 2944 if (kvm->mm != current->mm) 2945 return -EIO; 2946 switch (ioctl) { 2947 case KVM_CREATE_VCPU: 2948 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2949 break; 2950 case KVM_SET_USER_MEMORY_REGION: { 2951 struct kvm_userspace_memory_region kvm_userspace_mem; 2952 2953 r = -EFAULT; 2954 if (copy_from_user(&kvm_userspace_mem, argp, 2955 sizeof(kvm_userspace_mem))) 2956 goto out; 2957 2958 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2959 break; 2960 } 2961 case KVM_GET_DIRTY_LOG: { 2962 struct kvm_dirty_log log; 2963 2964 r = -EFAULT; 2965 if (copy_from_user(&log, argp, sizeof(log))) 2966 goto out; 2967 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2968 break; 2969 } 2970 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2971 case KVM_REGISTER_COALESCED_MMIO: { 2972 struct kvm_coalesced_mmio_zone zone; 2973 2974 r = -EFAULT; 2975 if (copy_from_user(&zone, argp, sizeof(zone))) 2976 goto out; 2977 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2978 break; 2979 } 2980 case KVM_UNREGISTER_COALESCED_MMIO: { 2981 struct kvm_coalesced_mmio_zone zone; 2982 2983 r = -EFAULT; 2984 if (copy_from_user(&zone, argp, sizeof(zone))) 2985 goto out; 2986 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2987 break; 2988 } 2989 #endif 2990 case KVM_IRQFD: { 2991 struct kvm_irqfd data; 2992 2993 r = -EFAULT; 2994 if (copy_from_user(&data, argp, sizeof(data))) 2995 goto out; 2996 r = kvm_irqfd(kvm, &data); 2997 break; 2998 } 2999 case KVM_IOEVENTFD: { 3000 struct kvm_ioeventfd data; 3001 3002 r = -EFAULT; 3003 if (copy_from_user(&data, argp, sizeof(data))) 3004 goto out; 3005 r = kvm_ioeventfd(kvm, &data); 3006 break; 3007 } 3008 #ifdef CONFIG_HAVE_KVM_MSI 3009 case KVM_SIGNAL_MSI: { 3010 struct kvm_msi msi; 3011 3012 r = -EFAULT; 3013 if (copy_from_user(&msi, argp, sizeof(msi))) 3014 goto out; 3015 r = kvm_send_userspace_msi(kvm, &msi); 3016 break; 3017 } 3018 #endif 3019 #ifdef __KVM_HAVE_IRQ_LINE 3020 case KVM_IRQ_LINE_STATUS: 3021 case KVM_IRQ_LINE: { 3022 struct kvm_irq_level irq_event; 3023 3024 r = -EFAULT; 3025 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3026 goto out; 3027 3028 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3029 ioctl == KVM_IRQ_LINE_STATUS); 3030 if (r) 3031 goto out; 3032 3033 r = -EFAULT; 3034 if (ioctl == KVM_IRQ_LINE_STATUS) { 3035 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3036 goto out; 3037 } 3038 3039 r = 0; 3040 break; 3041 } 3042 #endif 3043 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3044 case KVM_SET_GSI_ROUTING: { 3045 struct kvm_irq_routing routing; 3046 struct kvm_irq_routing __user *urouting; 3047 struct kvm_irq_routing_entry *entries = NULL; 3048 3049 r = -EFAULT; 3050 if (copy_from_user(&routing, argp, sizeof(routing))) 3051 goto out; 3052 r = -EINVAL; 3053 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3054 goto out; 3055 if (routing.flags) 3056 goto out; 3057 if (routing.nr) { 3058 r = -ENOMEM; 3059 entries = vmalloc(routing.nr * sizeof(*entries)); 3060 if (!entries) 3061 goto out; 3062 r = -EFAULT; 3063 urouting = argp; 3064 if (copy_from_user(entries, urouting->entries, 3065 routing.nr * sizeof(*entries))) 3066 goto out_free_irq_routing; 3067 } 3068 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3069 routing.flags); 3070 out_free_irq_routing: 3071 vfree(entries); 3072 break; 3073 } 3074 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3075 case KVM_CREATE_DEVICE: { 3076 struct kvm_create_device cd; 3077 3078 r = -EFAULT; 3079 if (copy_from_user(&cd, argp, sizeof(cd))) 3080 goto out; 3081 3082 r = kvm_ioctl_create_device(kvm, &cd); 3083 if (r) 3084 goto out; 3085 3086 r = -EFAULT; 3087 if (copy_to_user(argp, &cd, sizeof(cd))) 3088 goto out; 3089 3090 r = 0; 3091 break; 3092 } 3093 case KVM_CHECK_EXTENSION: 3094 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3095 break; 3096 default: 3097 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3098 } 3099 out: 3100 return r; 3101 } 3102 3103 #ifdef CONFIG_KVM_COMPAT 3104 struct compat_kvm_dirty_log { 3105 __u32 slot; 3106 __u32 padding1; 3107 union { 3108 compat_uptr_t dirty_bitmap; /* one bit per page */ 3109 __u64 padding2; 3110 }; 3111 }; 3112 3113 static long kvm_vm_compat_ioctl(struct file *filp, 3114 unsigned int ioctl, unsigned long arg) 3115 { 3116 struct kvm *kvm = filp->private_data; 3117 int r; 3118 3119 if (kvm->mm != current->mm) 3120 return -EIO; 3121 switch (ioctl) { 3122 case KVM_GET_DIRTY_LOG: { 3123 struct compat_kvm_dirty_log compat_log; 3124 struct kvm_dirty_log log; 3125 3126 r = -EFAULT; 3127 if (copy_from_user(&compat_log, (void __user *)arg, 3128 sizeof(compat_log))) 3129 goto out; 3130 log.slot = compat_log.slot; 3131 log.padding1 = compat_log.padding1; 3132 log.padding2 = compat_log.padding2; 3133 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3134 3135 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3136 break; 3137 } 3138 default: 3139 r = kvm_vm_ioctl(filp, ioctl, arg); 3140 } 3141 3142 out: 3143 return r; 3144 } 3145 #endif 3146 3147 static struct file_operations kvm_vm_fops = { 3148 .release = kvm_vm_release, 3149 .unlocked_ioctl = kvm_vm_ioctl, 3150 #ifdef CONFIG_KVM_COMPAT 3151 .compat_ioctl = kvm_vm_compat_ioctl, 3152 #endif 3153 .llseek = noop_llseek, 3154 }; 3155 3156 static int kvm_dev_ioctl_create_vm(unsigned long type) 3157 { 3158 int r; 3159 struct kvm *kvm; 3160 struct file *file; 3161 3162 kvm = kvm_create_vm(type); 3163 if (IS_ERR(kvm)) 3164 return PTR_ERR(kvm); 3165 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3166 r = kvm_coalesced_mmio_init(kvm); 3167 if (r < 0) { 3168 kvm_put_kvm(kvm); 3169 return r; 3170 } 3171 #endif 3172 r = get_unused_fd_flags(O_CLOEXEC); 3173 if (r < 0) { 3174 kvm_put_kvm(kvm); 3175 return r; 3176 } 3177 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3178 if (IS_ERR(file)) { 3179 put_unused_fd(r); 3180 kvm_put_kvm(kvm); 3181 return PTR_ERR(file); 3182 } 3183 3184 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3185 put_unused_fd(r); 3186 fput(file); 3187 return -ENOMEM; 3188 } 3189 3190 fd_install(r, file); 3191 return r; 3192 } 3193 3194 static long kvm_dev_ioctl(struct file *filp, 3195 unsigned int ioctl, unsigned long arg) 3196 { 3197 long r = -EINVAL; 3198 3199 switch (ioctl) { 3200 case KVM_GET_API_VERSION: 3201 if (arg) 3202 goto out; 3203 r = KVM_API_VERSION; 3204 break; 3205 case KVM_CREATE_VM: 3206 r = kvm_dev_ioctl_create_vm(arg); 3207 break; 3208 case KVM_CHECK_EXTENSION: 3209 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3210 break; 3211 case KVM_GET_VCPU_MMAP_SIZE: 3212 if (arg) 3213 goto out; 3214 r = PAGE_SIZE; /* struct kvm_run */ 3215 #ifdef CONFIG_X86 3216 r += PAGE_SIZE; /* pio data page */ 3217 #endif 3218 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3219 r += PAGE_SIZE; /* coalesced mmio ring page */ 3220 #endif 3221 break; 3222 case KVM_TRACE_ENABLE: 3223 case KVM_TRACE_PAUSE: 3224 case KVM_TRACE_DISABLE: 3225 r = -EOPNOTSUPP; 3226 break; 3227 default: 3228 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3229 } 3230 out: 3231 return r; 3232 } 3233 3234 static struct file_operations kvm_chardev_ops = { 3235 .unlocked_ioctl = kvm_dev_ioctl, 3236 .compat_ioctl = kvm_dev_ioctl, 3237 .llseek = noop_llseek, 3238 }; 3239 3240 static struct miscdevice kvm_dev = { 3241 KVM_MINOR, 3242 "kvm", 3243 &kvm_chardev_ops, 3244 }; 3245 3246 static void hardware_enable_nolock(void *junk) 3247 { 3248 int cpu = raw_smp_processor_id(); 3249 int r; 3250 3251 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3252 return; 3253 3254 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3255 3256 r = kvm_arch_hardware_enable(); 3257 3258 if (r) { 3259 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3260 atomic_inc(&hardware_enable_failed); 3261 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3262 } 3263 } 3264 3265 static int kvm_starting_cpu(unsigned int cpu) 3266 { 3267 raw_spin_lock(&kvm_count_lock); 3268 if (kvm_usage_count) 3269 hardware_enable_nolock(NULL); 3270 raw_spin_unlock(&kvm_count_lock); 3271 return 0; 3272 } 3273 3274 static void hardware_disable_nolock(void *junk) 3275 { 3276 int cpu = raw_smp_processor_id(); 3277 3278 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3279 return; 3280 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3281 kvm_arch_hardware_disable(); 3282 } 3283 3284 static int kvm_dying_cpu(unsigned int cpu) 3285 { 3286 raw_spin_lock(&kvm_count_lock); 3287 if (kvm_usage_count) 3288 hardware_disable_nolock(NULL); 3289 raw_spin_unlock(&kvm_count_lock); 3290 return 0; 3291 } 3292 3293 static void hardware_disable_all_nolock(void) 3294 { 3295 BUG_ON(!kvm_usage_count); 3296 3297 kvm_usage_count--; 3298 if (!kvm_usage_count) 3299 on_each_cpu(hardware_disable_nolock, NULL, 1); 3300 } 3301 3302 static void hardware_disable_all(void) 3303 { 3304 raw_spin_lock(&kvm_count_lock); 3305 hardware_disable_all_nolock(); 3306 raw_spin_unlock(&kvm_count_lock); 3307 } 3308 3309 static int hardware_enable_all(void) 3310 { 3311 int r = 0; 3312 3313 raw_spin_lock(&kvm_count_lock); 3314 3315 kvm_usage_count++; 3316 if (kvm_usage_count == 1) { 3317 atomic_set(&hardware_enable_failed, 0); 3318 on_each_cpu(hardware_enable_nolock, NULL, 1); 3319 3320 if (atomic_read(&hardware_enable_failed)) { 3321 hardware_disable_all_nolock(); 3322 r = -EBUSY; 3323 } 3324 } 3325 3326 raw_spin_unlock(&kvm_count_lock); 3327 3328 return r; 3329 } 3330 3331 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3332 void *v) 3333 { 3334 /* 3335 * Some (well, at least mine) BIOSes hang on reboot if 3336 * in vmx root mode. 3337 * 3338 * And Intel TXT required VMX off for all cpu when system shutdown. 3339 */ 3340 pr_info("kvm: exiting hardware virtualization\n"); 3341 kvm_rebooting = true; 3342 on_each_cpu(hardware_disable_nolock, NULL, 1); 3343 return NOTIFY_OK; 3344 } 3345 3346 static struct notifier_block kvm_reboot_notifier = { 3347 .notifier_call = kvm_reboot, 3348 .priority = 0, 3349 }; 3350 3351 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3352 { 3353 int i; 3354 3355 for (i = 0; i < bus->dev_count; i++) { 3356 struct kvm_io_device *pos = bus->range[i].dev; 3357 3358 kvm_iodevice_destructor(pos); 3359 } 3360 kfree(bus); 3361 } 3362 3363 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3364 const struct kvm_io_range *r2) 3365 { 3366 gpa_t addr1 = r1->addr; 3367 gpa_t addr2 = r2->addr; 3368 3369 if (addr1 < addr2) 3370 return -1; 3371 3372 /* If r2->len == 0, match the exact address. If r2->len != 0, 3373 * accept any overlapping write. Any order is acceptable for 3374 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3375 * we process all of them. 3376 */ 3377 if (r2->len) { 3378 addr1 += r1->len; 3379 addr2 += r2->len; 3380 } 3381 3382 if (addr1 > addr2) 3383 return 1; 3384 3385 return 0; 3386 } 3387 3388 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3389 { 3390 return kvm_io_bus_cmp(p1, p2); 3391 } 3392 3393 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3394 gpa_t addr, int len) 3395 { 3396 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3397 .addr = addr, 3398 .len = len, 3399 .dev = dev, 3400 }; 3401 3402 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3403 kvm_io_bus_sort_cmp, NULL); 3404 3405 return 0; 3406 } 3407 3408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3409 gpa_t addr, int len) 3410 { 3411 struct kvm_io_range *range, key; 3412 int off; 3413 3414 key = (struct kvm_io_range) { 3415 .addr = addr, 3416 .len = len, 3417 }; 3418 3419 range = bsearch(&key, bus->range, bus->dev_count, 3420 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3421 if (range == NULL) 3422 return -ENOENT; 3423 3424 off = range - bus->range; 3425 3426 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3427 off--; 3428 3429 return off; 3430 } 3431 3432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3433 struct kvm_io_range *range, const void *val) 3434 { 3435 int idx; 3436 3437 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3438 if (idx < 0) 3439 return -EOPNOTSUPP; 3440 3441 while (idx < bus->dev_count && 3442 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3443 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3444 range->len, val)) 3445 return idx; 3446 idx++; 3447 } 3448 3449 return -EOPNOTSUPP; 3450 } 3451 3452 /* kvm_io_bus_write - called under kvm->slots_lock */ 3453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3454 int len, const void *val) 3455 { 3456 struct kvm_io_bus *bus; 3457 struct kvm_io_range range; 3458 int r; 3459 3460 range = (struct kvm_io_range) { 3461 .addr = addr, 3462 .len = len, 3463 }; 3464 3465 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3466 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3467 return r < 0 ? r : 0; 3468 } 3469 3470 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3471 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3472 gpa_t addr, int len, const void *val, long cookie) 3473 { 3474 struct kvm_io_bus *bus; 3475 struct kvm_io_range range; 3476 3477 range = (struct kvm_io_range) { 3478 .addr = addr, 3479 .len = len, 3480 }; 3481 3482 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3483 3484 /* First try the device referenced by cookie. */ 3485 if ((cookie >= 0) && (cookie < bus->dev_count) && 3486 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3487 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3488 val)) 3489 return cookie; 3490 3491 /* 3492 * cookie contained garbage; fall back to search and return the 3493 * correct cookie value. 3494 */ 3495 return __kvm_io_bus_write(vcpu, bus, &range, val); 3496 } 3497 3498 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3499 struct kvm_io_range *range, void *val) 3500 { 3501 int idx; 3502 3503 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3504 if (idx < 0) 3505 return -EOPNOTSUPP; 3506 3507 while (idx < bus->dev_count && 3508 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3509 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3510 range->len, val)) 3511 return idx; 3512 idx++; 3513 } 3514 3515 return -EOPNOTSUPP; 3516 } 3517 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3518 3519 /* kvm_io_bus_read - called under kvm->slots_lock */ 3520 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3521 int len, void *val) 3522 { 3523 struct kvm_io_bus *bus; 3524 struct kvm_io_range range; 3525 int r; 3526 3527 range = (struct kvm_io_range) { 3528 .addr = addr, 3529 .len = len, 3530 }; 3531 3532 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3533 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3534 return r < 0 ? r : 0; 3535 } 3536 3537 3538 /* Caller must hold slots_lock. */ 3539 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3540 int len, struct kvm_io_device *dev) 3541 { 3542 struct kvm_io_bus *new_bus, *bus; 3543 3544 bus = kvm->buses[bus_idx]; 3545 /* exclude ioeventfd which is limited by maximum fd */ 3546 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3547 return -ENOSPC; 3548 3549 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3550 sizeof(struct kvm_io_range)), GFP_KERNEL); 3551 if (!new_bus) 3552 return -ENOMEM; 3553 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3554 sizeof(struct kvm_io_range))); 3555 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3556 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3557 synchronize_srcu_expedited(&kvm->srcu); 3558 kfree(bus); 3559 3560 return 0; 3561 } 3562 3563 /* Caller must hold slots_lock. */ 3564 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3565 struct kvm_io_device *dev) 3566 { 3567 int i, r; 3568 struct kvm_io_bus *new_bus, *bus; 3569 3570 bus = kvm->buses[bus_idx]; 3571 r = -ENOENT; 3572 for (i = 0; i < bus->dev_count; i++) 3573 if (bus->range[i].dev == dev) { 3574 r = 0; 3575 break; 3576 } 3577 3578 if (r) 3579 return r; 3580 3581 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3582 sizeof(struct kvm_io_range)), GFP_KERNEL); 3583 if (!new_bus) 3584 return -ENOMEM; 3585 3586 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3587 new_bus->dev_count--; 3588 memcpy(new_bus->range + i, bus->range + i + 1, 3589 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3590 3591 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3592 synchronize_srcu_expedited(&kvm->srcu); 3593 kfree(bus); 3594 return r; 3595 } 3596 3597 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3598 gpa_t addr) 3599 { 3600 struct kvm_io_bus *bus; 3601 int dev_idx, srcu_idx; 3602 struct kvm_io_device *iodev = NULL; 3603 3604 srcu_idx = srcu_read_lock(&kvm->srcu); 3605 3606 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3607 3608 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3609 if (dev_idx < 0) 3610 goto out_unlock; 3611 3612 iodev = bus->range[dev_idx].dev; 3613 3614 out_unlock: 3615 srcu_read_unlock(&kvm->srcu, srcu_idx); 3616 3617 return iodev; 3618 } 3619 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3620 3621 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3622 int (*get)(void *, u64 *), int (*set)(void *, u64), 3623 const char *fmt) 3624 { 3625 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3626 inode->i_private; 3627 3628 /* The debugfs files are a reference to the kvm struct which 3629 * is still valid when kvm_destroy_vm is called. 3630 * To avoid the race between open and the removal of the debugfs 3631 * directory we test against the users count. 3632 */ 3633 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0)) 3634 return -ENOENT; 3635 3636 if (simple_attr_open(inode, file, get, set, fmt)) { 3637 kvm_put_kvm(stat_data->kvm); 3638 return -ENOMEM; 3639 } 3640 3641 return 0; 3642 } 3643 3644 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3645 { 3646 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3647 inode->i_private; 3648 3649 simple_attr_release(inode, file); 3650 kvm_put_kvm(stat_data->kvm); 3651 3652 return 0; 3653 } 3654 3655 static int vm_stat_get_per_vm(void *data, u64 *val) 3656 { 3657 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3658 3659 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3660 3661 return 0; 3662 } 3663 3664 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3665 { 3666 __simple_attr_check_format("%llu\n", 0ull); 3667 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3668 NULL, "%llu\n"); 3669 } 3670 3671 static const struct file_operations vm_stat_get_per_vm_fops = { 3672 .owner = THIS_MODULE, 3673 .open = vm_stat_get_per_vm_open, 3674 .release = kvm_debugfs_release, 3675 .read = simple_attr_read, 3676 .write = simple_attr_write, 3677 .llseek = generic_file_llseek, 3678 }; 3679 3680 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3681 { 3682 int i; 3683 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3684 struct kvm_vcpu *vcpu; 3685 3686 *val = 0; 3687 3688 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3689 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3690 3691 return 0; 3692 } 3693 3694 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3695 { 3696 __simple_attr_check_format("%llu\n", 0ull); 3697 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3698 NULL, "%llu\n"); 3699 } 3700 3701 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3702 .owner = THIS_MODULE, 3703 .open = vcpu_stat_get_per_vm_open, 3704 .release = kvm_debugfs_release, 3705 .read = simple_attr_read, 3706 .write = simple_attr_write, 3707 .llseek = generic_file_llseek, 3708 }; 3709 3710 static const struct file_operations *stat_fops_per_vm[] = { 3711 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3712 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3713 }; 3714 3715 static int vm_stat_get(void *_offset, u64 *val) 3716 { 3717 unsigned offset = (long)_offset; 3718 struct kvm *kvm; 3719 struct kvm_stat_data stat_tmp = {.offset = offset}; 3720 u64 tmp_val; 3721 3722 *val = 0; 3723 spin_lock(&kvm_lock); 3724 list_for_each_entry(kvm, &vm_list, vm_list) { 3725 stat_tmp.kvm = kvm; 3726 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3727 *val += tmp_val; 3728 } 3729 spin_unlock(&kvm_lock); 3730 return 0; 3731 } 3732 3733 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3734 3735 static int vcpu_stat_get(void *_offset, u64 *val) 3736 { 3737 unsigned offset = (long)_offset; 3738 struct kvm *kvm; 3739 struct kvm_stat_data stat_tmp = {.offset = offset}; 3740 u64 tmp_val; 3741 3742 *val = 0; 3743 spin_lock(&kvm_lock); 3744 list_for_each_entry(kvm, &vm_list, vm_list) { 3745 stat_tmp.kvm = kvm; 3746 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3747 *val += tmp_val; 3748 } 3749 spin_unlock(&kvm_lock); 3750 return 0; 3751 } 3752 3753 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3754 3755 static const struct file_operations *stat_fops[] = { 3756 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3757 [KVM_STAT_VM] = &vm_stat_fops, 3758 }; 3759 3760 static int kvm_init_debug(void) 3761 { 3762 int r = -EEXIST; 3763 struct kvm_stats_debugfs_item *p; 3764 3765 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3766 if (kvm_debugfs_dir == NULL) 3767 goto out; 3768 3769 kvm_debugfs_num_entries = 0; 3770 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3771 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3772 (void *)(long)p->offset, 3773 stat_fops[p->kind])) 3774 goto out_dir; 3775 } 3776 3777 return 0; 3778 3779 out_dir: 3780 debugfs_remove_recursive(kvm_debugfs_dir); 3781 out: 3782 return r; 3783 } 3784 3785 static int kvm_suspend(void) 3786 { 3787 if (kvm_usage_count) 3788 hardware_disable_nolock(NULL); 3789 return 0; 3790 } 3791 3792 static void kvm_resume(void) 3793 { 3794 if (kvm_usage_count) { 3795 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3796 hardware_enable_nolock(NULL); 3797 } 3798 } 3799 3800 static struct syscore_ops kvm_syscore_ops = { 3801 .suspend = kvm_suspend, 3802 .resume = kvm_resume, 3803 }; 3804 3805 static inline 3806 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3807 { 3808 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3809 } 3810 3811 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3812 { 3813 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3814 3815 if (vcpu->preempted) 3816 vcpu->preempted = false; 3817 3818 kvm_arch_sched_in(vcpu, cpu); 3819 3820 kvm_arch_vcpu_load(vcpu, cpu); 3821 } 3822 3823 static void kvm_sched_out(struct preempt_notifier *pn, 3824 struct task_struct *next) 3825 { 3826 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3827 3828 if (current->state == TASK_RUNNING) 3829 vcpu->preempted = true; 3830 kvm_arch_vcpu_put(vcpu); 3831 } 3832 3833 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3834 struct module *module) 3835 { 3836 int r; 3837 int cpu; 3838 3839 r = kvm_arch_init(opaque); 3840 if (r) 3841 goto out_fail; 3842 3843 /* 3844 * kvm_arch_init makes sure there's at most one caller 3845 * for architectures that support multiple implementations, 3846 * like intel and amd on x86. 3847 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3848 * conflicts in case kvm is already setup for another implementation. 3849 */ 3850 r = kvm_irqfd_init(); 3851 if (r) 3852 goto out_irqfd; 3853 3854 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3855 r = -ENOMEM; 3856 goto out_free_0; 3857 } 3858 3859 r = kvm_arch_hardware_setup(); 3860 if (r < 0) 3861 goto out_free_0a; 3862 3863 for_each_online_cpu(cpu) { 3864 smp_call_function_single(cpu, 3865 kvm_arch_check_processor_compat, 3866 &r, 1); 3867 if (r < 0) 3868 goto out_free_1; 3869 } 3870 3871 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING", 3872 kvm_starting_cpu, kvm_dying_cpu); 3873 if (r) 3874 goto out_free_2; 3875 register_reboot_notifier(&kvm_reboot_notifier); 3876 3877 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3878 if (!vcpu_align) 3879 vcpu_align = __alignof__(struct kvm_vcpu); 3880 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3881 0, NULL); 3882 if (!kvm_vcpu_cache) { 3883 r = -ENOMEM; 3884 goto out_free_3; 3885 } 3886 3887 r = kvm_async_pf_init(); 3888 if (r) 3889 goto out_free; 3890 3891 kvm_chardev_ops.owner = module; 3892 kvm_vm_fops.owner = module; 3893 kvm_vcpu_fops.owner = module; 3894 3895 r = misc_register(&kvm_dev); 3896 if (r) { 3897 pr_err("kvm: misc device register failed\n"); 3898 goto out_unreg; 3899 } 3900 3901 register_syscore_ops(&kvm_syscore_ops); 3902 3903 kvm_preempt_ops.sched_in = kvm_sched_in; 3904 kvm_preempt_ops.sched_out = kvm_sched_out; 3905 3906 r = kvm_init_debug(); 3907 if (r) { 3908 pr_err("kvm: create debugfs files failed\n"); 3909 goto out_undebugfs; 3910 } 3911 3912 r = kvm_vfio_ops_init(); 3913 WARN_ON(r); 3914 3915 return 0; 3916 3917 out_undebugfs: 3918 unregister_syscore_ops(&kvm_syscore_ops); 3919 misc_deregister(&kvm_dev); 3920 out_unreg: 3921 kvm_async_pf_deinit(); 3922 out_free: 3923 kmem_cache_destroy(kvm_vcpu_cache); 3924 out_free_3: 3925 unregister_reboot_notifier(&kvm_reboot_notifier); 3926 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3927 out_free_2: 3928 out_free_1: 3929 kvm_arch_hardware_unsetup(); 3930 out_free_0a: 3931 free_cpumask_var(cpus_hardware_enabled); 3932 out_free_0: 3933 kvm_irqfd_exit(); 3934 out_irqfd: 3935 kvm_arch_exit(); 3936 out_fail: 3937 return r; 3938 } 3939 EXPORT_SYMBOL_GPL(kvm_init); 3940 3941 void kvm_exit(void) 3942 { 3943 debugfs_remove_recursive(kvm_debugfs_dir); 3944 misc_deregister(&kvm_dev); 3945 kmem_cache_destroy(kvm_vcpu_cache); 3946 kvm_async_pf_deinit(); 3947 unregister_syscore_ops(&kvm_syscore_ops); 3948 unregister_reboot_notifier(&kvm_reboot_notifier); 3949 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3950 on_each_cpu(hardware_disable_nolock, NULL, 1); 3951 kvm_arch_hardware_unsetup(); 3952 kvm_arch_exit(); 3953 kvm_irqfd_exit(); 3954 free_cpumask_var(cpus_hardware_enabled); 3955 kvm_vfio_ops_exit(); 3956 } 3957 EXPORT_SYMBOL_GPL(kvm_exit); 3958