1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 180 return false; 181 182 return is_zone_device_page(pfn_to_page(pfn)); 183 } 184 185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 186 { 187 /* 188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 189 * perspective they are "normal" pages, albeit with slightly different 190 * usage rules. 191 */ 192 if (pfn_valid(pfn)) 193 return PageReserved(pfn_to_page(pfn)) && 194 !is_zero_pfn(pfn) && 195 !kvm_is_zone_device_pfn(pfn); 196 197 return true; 198 } 199 200 /* 201 * Switches to specified vcpu, until a matching vcpu_put() 202 */ 203 void vcpu_load(struct kvm_vcpu *vcpu) 204 { 205 int cpu = get_cpu(); 206 207 __this_cpu_write(kvm_running_vcpu, vcpu); 208 preempt_notifier_register(&vcpu->preempt_notifier); 209 kvm_arch_vcpu_load(vcpu, cpu); 210 put_cpu(); 211 } 212 EXPORT_SYMBOL_GPL(vcpu_load); 213 214 void vcpu_put(struct kvm_vcpu *vcpu) 215 { 216 preempt_disable(); 217 kvm_arch_vcpu_put(vcpu); 218 preempt_notifier_unregister(&vcpu->preempt_notifier); 219 __this_cpu_write(kvm_running_vcpu, NULL); 220 preempt_enable(); 221 } 222 EXPORT_SYMBOL_GPL(vcpu_put); 223 224 /* TODO: merge with kvm_arch_vcpu_should_kick */ 225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 226 { 227 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 228 229 /* 230 * We need to wait for the VCPU to reenable interrupts and get out of 231 * READING_SHADOW_PAGE_TABLES mode. 232 */ 233 if (req & KVM_REQUEST_WAIT) 234 return mode != OUTSIDE_GUEST_MODE; 235 236 /* 237 * Need to kick a running VCPU, but otherwise there is nothing to do. 238 */ 239 return mode == IN_GUEST_MODE; 240 } 241 242 static void ack_flush(void *_completed) 243 { 244 } 245 246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 247 { 248 if (cpumask_empty(cpus)) 249 return false; 250 251 smp_call_function_many(cpus, ack_flush, NULL, wait); 252 return true; 253 } 254 255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 256 struct cpumask *tmp, int current_cpu) 257 { 258 int cpu; 259 260 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 261 __kvm_make_request(req, vcpu); 262 263 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 264 return; 265 266 /* 267 * Note, the vCPU could get migrated to a different pCPU at any point 268 * after kvm_request_needs_ipi(), which could result in sending an IPI 269 * to the previous pCPU. But, that's OK because the purpose of the IPI 270 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 271 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 272 * after this point is also OK, as the requirement is only that KVM wait 273 * for vCPUs that were reading SPTEs _before_ any changes were 274 * finalized. See kvm_vcpu_kick() for more details on handling requests. 275 */ 276 if (kvm_request_needs_ipi(vcpu, req)) { 277 cpu = READ_ONCE(vcpu->cpu); 278 if (cpu != -1 && cpu != current_cpu) 279 __cpumask_set_cpu(cpu, tmp); 280 } 281 } 282 283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 284 unsigned long *vcpu_bitmap) 285 { 286 struct kvm_vcpu *vcpu; 287 struct cpumask *cpus; 288 int i, me; 289 bool called; 290 291 me = get_cpu(); 292 293 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 294 cpumask_clear(cpus); 295 296 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 297 vcpu = kvm_get_vcpu(kvm, i); 298 if (!vcpu) 299 continue; 300 kvm_make_vcpu_request(vcpu, req, cpus, me); 301 } 302 303 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 304 put_cpu(); 305 306 return called; 307 } 308 309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 310 struct kvm_vcpu *except) 311 { 312 struct kvm_vcpu *vcpu; 313 struct cpumask *cpus; 314 unsigned long i; 315 bool called; 316 int me; 317 318 me = get_cpu(); 319 320 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 321 cpumask_clear(cpus); 322 323 kvm_for_each_vcpu(i, vcpu, kvm) { 324 if (vcpu == except) 325 continue; 326 kvm_make_vcpu_request(vcpu, req, cpus, me); 327 } 328 329 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 330 put_cpu(); 331 332 return called; 333 } 334 335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 336 { 337 return kvm_make_all_cpus_request_except(kvm, req, NULL); 338 } 339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 340 341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 342 void kvm_flush_remote_tlbs(struct kvm *kvm) 343 { 344 ++kvm->stat.generic.remote_tlb_flush_requests; 345 346 /* 347 * We want to publish modifications to the page tables before reading 348 * mode. Pairs with a memory barrier in arch-specific code. 349 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 350 * and smp_mb in walk_shadow_page_lockless_begin/end. 351 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 352 * 353 * There is already an smp_mb__after_atomic() before 354 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 355 * barrier here. 356 */ 357 if (!kvm_arch_flush_remote_tlb(kvm) 358 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 359 ++kvm->stat.generic.remote_tlb_flush; 360 } 361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 362 #endif 363 364 static void kvm_flush_shadow_all(struct kvm *kvm) 365 { 366 kvm_arch_flush_shadow_all(kvm); 367 kvm_arch_guest_memory_reclaimed(kvm); 368 } 369 370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 372 gfp_t gfp_flags) 373 { 374 gfp_flags |= mc->gfp_zero; 375 376 if (mc->kmem_cache) 377 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 378 else 379 return (void *)__get_free_page(gfp_flags); 380 } 381 382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 383 { 384 void *obj; 385 386 if (mc->nobjs >= min) 387 return 0; 388 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 389 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 390 if (!obj) 391 return mc->nobjs >= min ? 0 : -ENOMEM; 392 mc->objects[mc->nobjs++] = obj; 393 } 394 return 0; 395 } 396 397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 398 { 399 return mc->nobjs; 400 } 401 402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 403 { 404 while (mc->nobjs) { 405 if (mc->kmem_cache) 406 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 407 else 408 free_page((unsigned long)mc->objects[--mc->nobjs]); 409 } 410 } 411 412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 413 { 414 void *p; 415 416 if (WARN_ON(!mc->nobjs)) 417 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 418 else 419 p = mc->objects[--mc->nobjs]; 420 BUG_ON(!p); 421 return p; 422 } 423 #endif 424 425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 426 { 427 mutex_init(&vcpu->mutex); 428 vcpu->cpu = -1; 429 vcpu->kvm = kvm; 430 vcpu->vcpu_id = id; 431 vcpu->pid = NULL; 432 #ifndef __KVM_HAVE_ARCH_WQP 433 rcuwait_init(&vcpu->wait); 434 #endif 435 kvm_async_pf_vcpu_init(vcpu); 436 437 kvm_vcpu_set_in_spin_loop(vcpu, false); 438 kvm_vcpu_set_dy_eligible(vcpu, false); 439 vcpu->preempted = false; 440 vcpu->ready = false; 441 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 442 vcpu->last_used_slot = NULL; 443 } 444 445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 446 { 447 kvm_arch_vcpu_destroy(vcpu); 448 kvm_dirty_ring_free(&vcpu->dirty_ring); 449 450 /* 451 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 452 * the vcpu->pid pointer, and at destruction time all file descriptors 453 * are already gone. 454 */ 455 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 456 457 free_page((unsigned long)vcpu->run); 458 kmem_cache_free(kvm_vcpu_cache, vcpu); 459 } 460 461 void kvm_destroy_vcpus(struct kvm *kvm) 462 { 463 unsigned long i; 464 struct kvm_vcpu *vcpu; 465 466 kvm_for_each_vcpu(i, vcpu, kvm) { 467 kvm_vcpu_destroy(vcpu); 468 xa_erase(&kvm->vcpu_array, i); 469 } 470 471 atomic_set(&kvm->online_vcpus, 0); 472 } 473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 474 475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 477 { 478 return container_of(mn, struct kvm, mmu_notifier); 479 } 480 481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 482 struct mm_struct *mm, 483 unsigned long start, unsigned long end) 484 { 485 struct kvm *kvm = mmu_notifier_to_kvm(mn); 486 int idx; 487 488 idx = srcu_read_lock(&kvm->srcu); 489 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 490 srcu_read_unlock(&kvm->srcu, idx); 491 } 492 493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 494 495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 496 unsigned long end); 497 498 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 499 500 struct kvm_hva_range { 501 unsigned long start; 502 unsigned long end; 503 pte_t pte; 504 hva_handler_t handler; 505 on_lock_fn_t on_lock; 506 on_unlock_fn_t on_unlock; 507 bool flush_on_ret; 508 bool may_block; 509 }; 510 511 /* 512 * Use a dedicated stub instead of NULL to indicate that there is no callback 513 * function/handler. The compiler technically can't guarantee that a real 514 * function will have a non-zero address, and so it will generate code to 515 * check for !NULL, whereas comparing against a stub will be elided at compile 516 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 517 */ 518 static void kvm_null_fn(void) 519 { 520 521 } 522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 523 524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 526 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 527 node; \ 528 node = interval_tree_iter_next(node, start, last)) \ 529 530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 531 const struct kvm_hva_range *range) 532 { 533 bool ret = false, locked = false; 534 struct kvm_gfn_range gfn_range; 535 struct kvm_memory_slot *slot; 536 struct kvm_memslots *slots; 537 int i, idx; 538 539 if (WARN_ON_ONCE(range->end <= range->start)) 540 return 0; 541 542 /* A null handler is allowed if and only if on_lock() is provided. */ 543 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 544 IS_KVM_NULL_FN(range->handler))) 545 return 0; 546 547 idx = srcu_read_lock(&kvm->srcu); 548 549 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 550 struct interval_tree_node *node; 551 552 slots = __kvm_memslots(kvm, i); 553 kvm_for_each_memslot_in_hva_range(node, slots, 554 range->start, range->end - 1) { 555 unsigned long hva_start, hva_end; 556 557 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 558 hva_start = max(range->start, slot->userspace_addr); 559 hva_end = min(range->end, slot->userspace_addr + 560 (slot->npages << PAGE_SHIFT)); 561 562 /* 563 * To optimize for the likely case where the address 564 * range is covered by zero or one memslots, don't 565 * bother making these conditional (to avoid writes on 566 * the second or later invocation of the handler). 567 */ 568 gfn_range.pte = range->pte; 569 gfn_range.may_block = range->may_block; 570 571 /* 572 * {gfn(page) | page intersects with [hva_start, hva_end)} = 573 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 574 */ 575 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 576 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 577 gfn_range.slot = slot; 578 579 if (!locked) { 580 locked = true; 581 KVM_MMU_LOCK(kvm); 582 if (!IS_KVM_NULL_FN(range->on_lock)) 583 range->on_lock(kvm, range->start, range->end); 584 if (IS_KVM_NULL_FN(range->handler)) 585 break; 586 } 587 ret |= range->handler(kvm, &gfn_range); 588 } 589 } 590 591 if (range->flush_on_ret && ret) 592 kvm_flush_remote_tlbs(kvm); 593 594 if (locked) { 595 KVM_MMU_UNLOCK(kvm); 596 if (!IS_KVM_NULL_FN(range->on_unlock)) 597 range->on_unlock(kvm); 598 } 599 600 srcu_read_unlock(&kvm->srcu, idx); 601 602 /* The notifiers are averse to booleans. :-( */ 603 return (int)ret; 604 } 605 606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 607 unsigned long start, 608 unsigned long end, 609 pte_t pte, 610 hva_handler_t handler) 611 { 612 struct kvm *kvm = mmu_notifier_to_kvm(mn); 613 const struct kvm_hva_range range = { 614 .start = start, 615 .end = end, 616 .pte = pte, 617 .handler = handler, 618 .on_lock = (void *)kvm_null_fn, 619 .on_unlock = (void *)kvm_null_fn, 620 .flush_on_ret = true, 621 .may_block = false, 622 }; 623 624 return __kvm_handle_hva_range(kvm, &range); 625 } 626 627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 628 unsigned long start, 629 unsigned long end, 630 hva_handler_t handler) 631 { 632 struct kvm *kvm = mmu_notifier_to_kvm(mn); 633 const struct kvm_hva_range range = { 634 .start = start, 635 .end = end, 636 .pte = __pte(0), 637 .handler = handler, 638 .on_lock = (void *)kvm_null_fn, 639 .on_unlock = (void *)kvm_null_fn, 640 .flush_on_ret = false, 641 .may_block = false, 642 }; 643 644 return __kvm_handle_hva_range(kvm, &range); 645 } 646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 647 struct mm_struct *mm, 648 unsigned long address, 649 pte_t pte) 650 { 651 struct kvm *kvm = mmu_notifier_to_kvm(mn); 652 653 trace_kvm_set_spte_hva(address); 654 655 /* 656 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 657 * If mmu_notifier_count is zero, then no in-progress invalidations, 658 * including this one, found a relevant memslot at start(); rechecking 659 * memslots here is unnecessary. Note, a false positive (count elevated 660 * by a different invalidation) is sub-optimal but functionally ok. 661 */ 662 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 663 if (!READ_ONCE(kvm->mmu_notifier_count)) 664 return; 665 666 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 667 } 668 669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 670 unsigned long end) 671 { 672 /* 673 * The count increase must become visible at unlock time as no 674 * spte can be established without taking the mmu_lock and 675 * count is also read inside the mmu_lock critical section. 676 */ 677 kvm->mmu_notifier_count++; 678 if (likely(kvm->mmu_notifier_count == 1)) { 679 kvm->mmu_notifier_range_start = start; 680 kvm->mmu_notifier_range_end = end; 681 } else { 682 /* 683 * Fully tracking multiple concurrent ranges has diminishing 684 * returns. Keep things simple and just find the minimal range 685 * which includes the current and new ranges. As there won't be 686 * enough information to subtract a range after its invalidate 687 * completes, any ranges invalidated concurrently will 688 * accumulate and persist until all outstanding invalidates 689 * complete. 690 */ 691 kvm->mmu_notifier_range_start = 692 min(kvm->mmu_notifier_range_start, start); 693 kvm->mmu_notifier_range_end = 694 max(kvm->mmu_notifier_range_end, end); 695 } 696 } 697 698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 699 const struct mmu_notifier_range *range) 700 { 701 struct kvm *kvm = mmu_notifier_to_kvm(mn); 702 const struct kvm_hva_range hva_range = { 703 .start = range->start, 704 .end = range->end, 705 .pte = __pte(0), 706 .handler = kvm_unmap_gfn_range, 707 .on_lock = kvm_inc_notifier_count, 708 .on_unlock = kvm_arch_guest_memory_reclaimed, 709 .flush_on_ret = true, 710 .may_block = mmu_notifier_range_blockable(range), 711 }; 712 713 trace_kvm_unmap_hva_range(range->start, range->end); 714 715 /* 716 * Prevent memslot modification between range_start() and range_end() 717 * so that conditionally locking provides the same result in both 718 * functions. Without that guarantee, the mmu_notifier_count 719 * adjustments will be imbalanced. 720 * 721 * Pairs with the decrement in range_end(). 722 */ 723 spin_lock(&kvm->mn_invalidate_lock); 724 kvm->mn_active_invalidate_count++; 725 spin_unlock(&kvm->mn_invalidate_lock); 726 727 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 728 hva_range.may_block); 729 730 __kvm_handle_hva_range(kvm, &hva_range); 731 732 return 0; 733 } 734 735 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 736 unsigned long end) 737 { 738 /* 739 * This sequence increase will notify the kvm page fault that 740 * the page that is going to be mapped in the spte could have 741 * been freed. 742 */ 743 kvm->mmu_notifier_seq++; 744 smp_wmb(); 745 /* 746 * The above sequence increase must be visible before the 747 * below count decrease, which is ensured by the smp_wmb above 748 * in conjunction with the smp_rmb in mmu_notifier_retry(). 749 */ 750 kvm->mmu_notifier_count--; 751 } 752 753 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 754 const struct mmu_notifier_range *range) 755 { 756 struct kvm *kvm = mmu_notifier_to_kvm(mn); 757 const struct kvm_hva_range hva_range = { 758 .start = range->start, 759 .end = range->end, 760 .pte = __pte(0), 761 .handler = (void *)kvm_null_fn, 762 .on_lock = kvm_dec_notifier_count, 763 .on_unlock = (void *)kvm_null_fn, 764 .flush_on_ret = false, 765 .may_block = mmu_notifier_range_blockable(range), 766 }; 767 bool wake; 768 769 __kvm_handle_hva_range(kvm, &hva_range); 770 771 /* Pairs with the increment in range_start(). */ 772 spin_lock(&kvm->mn_invalidate_lock); 773 wake = (--kvm->mn_active_invalidate_count == 0); 774 spin_unlock(&kvm->mn_invalidate_lock); 775 776 /* 777 * There can only be one waiter, since the wait happens under 778 * slots_lock. 779 */ 780 if (wake) 781 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 782 783 BUG_ON(kvm->mmu_notifier_count < 0); 784 } 785 786 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 787 struct mm_struct *mm, 788 unsigned long start, 789 unsigned long end) 790 { 791 trace_kvm_age_hva(start, end); 792 793 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 794 } 795 796 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 797 struct mm_struct *mm, 798 unsigned long start, 799 unsigned long end) 800 { 801 trace_kvm_age_hva(start, end); 802 803 /* 804 * Even though we do not flush TLB, this will still adversely 805 * affect performance on pre-Haswell Intel EPT, where there is 806 * no EPT Access Bit to clear so that we have to tear down EPT 807 * tables instead. If we find this unacceptable, we can always 808 * add a parameter to kvm_age_hva so that it effectively doesn't 809 * do anything on clear_young. 810 * 811 * Also note that currently we never issue secondary TLB flushes 812 * from clear_young, leaving this job up to the regular system 813 * cadence. If we find this inaccurate, we might come up with a 814 * more sophisticated heuristic later. 815 */ 816 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 817 } 818 819 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 820 struct mm_struct *mm, 821 unsigned long address) 822 { 823 trace_kvm_test_age_hva(address); 824 825 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 826 kvm_test_age_gfn); 827 } 828 829 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 830 struct mm_struct *mm) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 int idx; 834 835 idx = srcu_read_lock(&kvm->srcu); 836 kvm_flush_shadow_all(kvm); 837 srcu_read_unlock(&kvm->srcu, idx); 838 } 839 840 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 841 .invalidate_range = kvm_mmu_notifier_invalidate_range, 842 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 843 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 844 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 845 .clear_young = kvm_mmu_notifier_clear_young, 846 .test_young = kvm_mmu_notifier_test_young, 847 .change_pte = kvm_mmu_notifier_change_pte, 848 .release = kvm_mmu_notifier_release, 849 }; 850 851 static int kvm_init_mmu_notifier(struct kvm *kvm) 852 { 853 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 854 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 855 } 856 857 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 858 859 static int kvm_init_mmu_notifier(struct kvm *kvm) 860 { 861 return 0; 862 } 863 864 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 865 866 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 867 static int kvm_pm_notifier_call(struct notifier_block *bl, 868 unsigned long state, 869 void *unused) 870 { 871 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 872 873 return kvm_arch_pm_notifier(kvm, state); 874 } 875 876 static void kvm_init_pm_notifier(struct kvm *kvm) 877 { 878 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 879 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 880 kvm->pm_notifier.priority = INT_MAX; 881 register_pm_notifier(&kvm->pm_notifier); 882 } 883 884 static void kvm_destroy_pm_notifier(struct kvm *kvm) 885 { 886 unregister_pm_notifier(&kvm->pm_notifier); 887 } 888 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 889 static void kvm_init_pm_notifier(struct kvm *kvm) 890 { 891 } 892 893 static void kvm_destroy_pm_notifier(struct kvm *kvm) 894 { 895 } 896 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 897 898 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 899 { 900 if (!memslot->dirty_bitmap) 901 return; 902 903 kvfree(memslot->dirty_bitmap); 904 memslot->dirty_bitmap = NULL; 905 } 906 907 /* This does not remove the slot from struct kvm_memslots data structures */ 908 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 909 { 910 kvm_destroy_dirty_bitmap(slot); 911 912 kvm_arch_free_memslot(kvm, slot); 913 914 kfree(slot); 915 } 916 917 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 918 { 919 struct hlist_node *idnode; 920 struct kvm_memory_slot *memslot; 921 int bkt; 922 923 /* 924 * The same memslot objects live in both active and inactive sets, 925 * arbitrarily free using index '1' so the second invocation of this 926 * function isn't operating over a structure with dangling pointers 927 * (even though this function isn't actually touching them). 928 */ 929 if (!slots->node_idx) 930 return; 931 932 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 933 kvm_free_memslot(kvm, memslot); 934 } 935 936 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 937 { 938 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 939 case KVM_STATS_TYPE_INSTANT: 940 return 0444; 941 case KVM_STATS_TYPE_CUMULATIVE: 942 case KVM_STATS_TYPE_PEAK: 943 default: 944 return 0644; 945 } 946 } 947 948 949 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 950 { 951 int i; 952 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 953 kvm_vcpu_stats_header.num_desc; 954 955 if (IS_ERR(kvm->debugfs_dentry)) 956 return; 957 958 debugfs_remove_recursive(kvm->debugfs_dentry); 959 960 if (kvm->debugfs_stat_data) { 961 for (i = 0; i < kvm_debugfs_num_entries; i++) 962 kfree(kvm->debugfs_stat_data[i]); 963 kfree(kvm->debugfs_stat_data); 964 } 965 } 966 967 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 968 { 969 static DEFINE_MUTEX(kvm_debugfs_lock); 970 struct dentry *dent; 971 char dir_name[ITOA_MAX_LEN * 2]; 972 struct kvm_stat_data *stat_data; 973 const struct _kvm_stats_desc *pdesc; 974 int i, ret; 975 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 976 kvm_vcpu_stats_header.num_desc; 977 978 if (!debugfs_initialized()) 979 return 0; 980 981 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 982 mutex_lock(&kvm_debugfs_lock); 983 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 984 if (dent) { 985 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 986 dput(dent); 987 mutex_unlock(&kvm_debugfs_lock); 988 return 0; 989 } 990 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 991 mutex_unlock(&kvm_debugfs_lock); 992 if (IS_ERR(dent)) 993 return 0; 994 995 kvm->debugfs_dentry = dent; 996 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 997 sizeof(*kvm->debugfs_stat_data), 998 GFP_KERNEL_ACCOUNT); 999 if (!kvm->debugfs_stat_data) 1000 return -ENOMEM; 1001 1002 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1003 pdesc = &kvm_vm_stats_desc[i]; 1004 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1005 if (!stat_data) 1006 return -ENOMEM; 1007 1008 stat_data->kvm = kvm; 1009 stat_data->desc = pdesc; 1010 stat_data->kind = KVM_STAT_VM; 1011 kvm->debugfs_stat_data[i] = stat_data; 1012 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1013 kvm->debugfs_dentry, stat_data, 1014 &stat_fops_per_vm); 1015 } 1016 1017 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1018 pdesc = &kvm_vcpu_stats_desc[i]; 1019 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1020 if (!stat_data) 1021 return -ENOMEM; 1022 1023 stat_data->kvm = kvm; 1024 stat_data->desc = pdesc; 1025 stat_data->kind = KVM_STAT_VCPU; 1026 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1027 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1028 kvm->debugfs_dentry, stat_data, 1029 &stat_fops_per_vm); 1030 } 1031 1032 ret = kvm_arch_create_vm_debugfs(kvm); 1033 if (ret) { 1034 kvm_destroy_vm_debugfs(kvm); 1035 return i; 1036 } 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * Called after the VM is otherwise initialized, but just before adding it to 1043 * the vm_list. 1044 */ 1045 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1046 { 1047 return 0; 1048 } 1049 1050 /* 1051 * Called just after removing the VM from the vm_list, but before doing any 1052 * other destruction. 1053 */ 1054 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1055 { 1056 } 1057 1058 /* 1059 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1060 * be setup already, so we can create arch-specific debugfs entries under it. 1061 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1062 * a per-arch destroy interface is not needed. 1063 */ 1064 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1065 { 1066 return 0; 1067 } 1068 1069 static struct kvm *kvm_create_vm(unsigned long type) 1070 { 1071 struct kvm *kvm = kvm_arch_alloc_vm(); 1072 struct kvm_memslots *slots; 1073 int r = -ENOMEM; 1074 int i, j; 1075 1076 if (!kvm) 1077 return ERR_PTR(-ENOMEM); 1078 1079 KVM_MMU_LOCK_INIT(kvm); 1080 mmgrab(current->mm); 1081 kvm->mm = current->mm; 1082 kvm_eventfd_init(kvm); 1083 mutex_init(&kvm->lock); 1084 mutex_init(&kvm->irq_lock); 1085 mutex_init(&kvm->slots_lock); 1086 mutex_init(&kvm->slots_arch_lock); 1087 spin_lock_init(&kvm->mn_invalidate_lock); 1088 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1089 xa_init(&kvm->vcpu_array); 1090 1091 INIT_LIST_HEAD(&kvm->gpc_list); 1092 spin_lock_init(&kvm->gpc_lock); 1093 1094 INIT_LIST_HEAD(&kvm->devices); 1095 1096 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1097 1098 /* 1099 * Force subsequent debugfs file creations to fail if the VM directory 1100 * is not created (by kvm_create_vm_debugfs()). 1101 */ 1102 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1103 1104 if (init_srcu_struct(&kvm->srcu)) 1105 goto out_err_no_srcu; 1106 if (init_srcu_struct(&kvm->irq_srcu)) 1107 goto out_err_no_irq_srcu; 1108 1109 refcount_set(&kvm->users_count, 1); 1110 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1111 for (j = 0; j < 2; j++) { 1112 slots = &kvm->__memslots[i][j]; 1113 1114 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1115 slots->hva_tree = RB_ROOT_CACHED; 1116 slots->gfn_tree = RB_ROOT; 1117 hash_init(slots->id_hash); 1118 slots->node_idx = j; 1119 1120 /* Generations must be different for each address space. */ 1121 slots->generation = i; 1122 } 1123 1124 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1125 } 1126 1127 for (i = 0; i < KVM_NR_BUSES; i++) { 1128 rcu_assign_pointer(kvm->buses[i], 1129 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1130 if (!kvm->buses[i]) 1131 goto out_err_no_arch_destroy_vm; 1132 } 1133 1134 kvm->max_halt_poll_ns = halt_poll_ns; 1135 1136 r = kvm_arch_init_vm(kvm, type); 1137 if (r) 1138 goto out_err_no_arch_destroy_vm; 1139 1140 r = hardware_enable_all(); 1141 if (r) 1142 goto out_err_no_disable; 1143 1144 #ifdef CONFIG_HAVE_KVM_IRQFD 1145 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1146 #endif 1147 1148 r = kvm_init_mmu_notifier(kvm); 1149 if (r) 1150 goto out_err_no_mmu_notifier; 1151 1152 r = kvm_arch_post_init_vm(kvm); 1153 if (r) 1154 goto out_err; 1155 1156 mutex_lock(&kvm_lock); 1157 list_add(&kvm->vm_list, &vm_list); 1158 mutex_unlock(&kvm_lock); 1159 1160 preempt_notifier_inc(); 1161 kvm_init_pm_notifier(kvm); 1162 1163 /* 1164 * When the fd passed to this ioctl() is opened it pins the module, 1165 * but try_module_get() also prevents getting a reference if the module 1166 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait"). 1167 */ 1168 if (!try_module_get(kvm_chardev_ops.owner)) { 1169 r = -ENODEV; 1170 goto out_err; 1171 } 1172 1173 return kvm; 1174 1175 out_err: 1176 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1177 if (kvm->mmu_notifier.ops) 1178 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1179 #endif 1180 out_err_no_mmu_notifier: 1181 hardware_disable_all(); 1182 out_err_no_disable: 1183 kvm_arch_destroy_vm(kvm); 1184 out_err_no_arch_destroy_vm: 1185 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1186 for (i = 0; i < KVM_NR_BUSES; i++) 1187 kfree(kvm_get_bus(kvm, i)); 1188 cleanup_srcu_struct(&kvm->irq_srcu); 1189 out_err_no_irq_srcu: 1190 cleanup_srcu_struct(&kvm->srcu); 1191 out_err_no_srcu: 1192 kvm_arch_free_vm(kvm); 1193 mmdrop(current->mm); 1194 return ERR_PTR(r); 1195 } 1196 1197 static void kvm_destroy_devices(struct kvm *kvm) 1198 { 1199 struct kvm_device *dev, *tmp; 1200 1201 /* 1202 * We do not need to take the kvm->lock here, because nobody else 1203 * has a reference to the struct kvm at this point and therefore 1204 * cannot access the devices list anyhow. 1205 */ 1206 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1207 list_del(&dev->vm_node); 1208 dev->ops->destroy(dev); 1209 } 1210 } 1211 1212 static void kvm_destroy_vm(struct kvm *kvm) 1213 { 1214 int i; 1215 struct mm_struct *mm = kvm->mm; 1216 1217 kvm_destroy_pm_notifier(kvm); 1218 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1219 kvm_destroy_vm_debugfs(kvm); 1220 kvm_arch_sync_events(kvm); 1221 mutex_lock(&kvm_lock); 1222 list_del(&kvm->vm_list); 1223 mutex_unlock(&kvm_lock); 1224 kvm_arch_pre_destroy_vm(kvm); 1225 1226 kvm_free_irq_routing(kvm); 1227 for (i = 0; i < KVM_NR_BUSES; i++) { 1228 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1229 1230 if (bus) 1231 kvm_io_bus_destroy(bus); 1232 kvm->buses[i] = NULL; 1233 } 1234 kvm_coalesced_mmio_free(kvm); 1235 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1236 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1237 /* 1238 * At this point, pending calls to invalidate_range_start() 1239 * have completed but no more MMU notifiers will run, so 1240 * mn_active_invalidate_count may remain unbalanced. 1241 * No threads can be waiting in install_new_memslots as the 1242 * last reference on KVM has been dropped, but freeing 1243 * memslots would deadlock without this manual intervention. 1244 */ 1245 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1246 kvm->mn_active_invalidate_count = 0; 1247 #else 1248 kvm_flush_shadow_all(kvm); 1249 #endif 1250 kvm_arch_destroy_vm(kvm); 1251 kvm_destroy_devices(kvm); 1252 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1253 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1254 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1255 } 1256 cleanup_srcu_struct(&kvm->irq_srcu); 1257 cleanup_srcu_struct(&kvm->srcu); 1258 kvm_arch_free_vm(kvm); 1259 preempt_notifier_dec(); 1260 hardware_disable_all(); 1261 mmdrop(mm); 1262 module_put(kvm_chardev_ops.owner); 1263 } 1264 1265 void kvm_get_kvm(struct kvm *kvm) 1266 { 1267 refcount_inc(&kvm->users_count); 1268 } 1269 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1270 1271 /* 1272 * Make sure the vm is not during destruction, which is a safe version of 1273 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1274 */ 1275 bool kvm_get_kvm_safe(struct kvm *kvm) 1276 { 1277 return refcount_inc_not_zero(&kvm->users_count); 1278 } 1279 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1280 1281 void kvm_put_kvm(struct kvm *kvm) 1282 { 1283 if (refcount_dec_and_test(&kvm->users_count)) 1284 kvm_destroy_vm(kvm); 1285 } 1286 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1287 1288 /* 1289 * Used to put a reference that was taken on behalf of an object associated 1290 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1291 * of the new file descriptor fails and the reference cannot be transferred to 1292 * its final owner. In such cases, the caller is still actively using @kvm and 1293 * will fail miserably if the refcount unexpectedly hits zero. 1294 */ 1295 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1296 { 1297 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1298 } 1299 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1300 1301 static int kvm_vm_release(struct inode *inode, struct file *filp) 1302 { 1303 struct kvm *kvm = filp->private_data; 1304 1305 kvm_irqfd_release(kvm); 1306 1307 kvm_put_kvm(kvm); 1308 return 0; 1309 } 1310 1311 /* 1312 * Allocation size is twice as large as the actual dirty bitmap size. 1313 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1314 */ 1315 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1316 { 1317 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1318 1319 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1320 if (!memslot->dirty_bitmap) 1321 return -ENOMEM; 1322 1323 return 0; 1324 } 1325 1326 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1327 { 1328 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1329 int node_idx_inactive = active->node_idx ^ 1; 1330 1331 return &kvm->__memslots[as_id][node_idx_inactive]; 1332 } 1333 1334 /* 1335 * Helper to get the address space ID when one of memslot pointers may be NULL. 1336 * This also serves as a sanity that at least one of the pointers is non-NULL, 1337 * and that their address space IDs don't diverge. 1338 */ 1339 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1340 struct kvm_memory_slot *b) 1341 { 1342 if (WARN_ON_ONCE(!a && !b)) 1343 return 0; 1344 1345 if (!a) 1346 return b->as_id; 1347 if (!b) 1348 return a->as_id; 1349 1350 WARN_ON_ONCE(a->as_id != b->as_id); 1351 return a->as_id; 1352 } 1353 1354 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1355 struct kvm_memory_slot *slot) 1356 { 1357 struct rb_root *gfn_tree = &slots->gfn_tree; 1358 struct rb_node **node, *parent; 1359 int idx = slots->node_idx; 1360 1361 parent = NULL; 1362 for (node = &gfn_tree->rb_node; *node; ) { 1363 struct kvm_memory_slot *tmp; 1364 1365 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1366 parent = *node; 1367 if (slot->base_gfn < tmp->base_gfn) 1368 node = &(*node)->rb_left; 1369 else if (slot->base_gfn > tmp->base_gfn) 1370 node = &(*node)->rb_right; 1371 else 1372 BUG(); 1373 } 1374 1375 rb_link_node(&slot->gfn_node[idx], parent, node); 1376 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1377 } 1378 1379 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1380 struct kvm_memory_slot *slot) 1381 { 1382 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1383 } 1384 1385 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1386 struct kvm_memory_slot *old, 1387 struct kvm_memory_slot *new) 1388 { 1389 int idx = slots->node_idx; 1390 1391 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1392 1393 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1394 &slots->gfn_tree); 1395 } 1396 1397 /* 1398 * Replace @old with @new in the inactive memslots. 1399 * 1400 * With NULL @old this simply adds @new. 1401 * With NULL @new this simply removes @old. 1402 * 1403 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1404 * appropriately. 1405 */ 1406 static void kvm_replace_memslot(struct kvm *kvm, 1407 struct kvm_memory_slot *old, 1408 struct kvm_memory_slot *new) 1409 { 1410 int as_id = kvm_memslots_get_as_id(old, new); 1411 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1412 int idx = slots->node_idx; 1413 1414 if (old) { 1415 hash_del(&old->id_node[idx]); 1416 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1417 1418 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1419 atomic_long_set(&slots->last_used_slot, (long)new); 1420 1421 if (!new) { 1422 kvm_erase_gfn_node(slots, old); 1423 return; 1424 } 1425 } 1426 1427 /* 1428 * Initialize @new's hva range. Do this even when replacing an @old 1429 * slot, kvm_copy_memslot() deliberately does not touch node data. 1430 */ 1431 new->hva_node[idx].start = new->userspace_addr; 1432 new->hva_node[idx].last = new->userspace_addr + 1433 (new->npages << PAGE_SHIFT) - 1; 1434 1435 /* 1436 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1437 * hva_node needs to be swapped with remove+insert even though hva can't 1438 * change when replacing an existing slot. 1439 */ 1440 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1441 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1442 1443 /* 1444 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1445 * switch the node in the gfn tree instead of removing the old and 1446 * inserting the new as two separate operations. Replacement is a 1447 * single O(1) operation versus two O(log(n)) operations for 1448 * remove+insert. 1449 */ 1450 if (old && old->base_gfn == new->base_gfn) { 1451 kvm_replace_gfn_node(slots, old, new); 1452 } else { 1453 if (old) 1454 kvm_erase_gfn_node(slots, old); 1455 kvm_insert_gfn_node(slots, new); 1456 } 1457 } 1458 1459 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1460 { 1461 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1462 1463 #ifdef __KVM_HAVE_READONLY_MEM 1464 valid_flags |= KVM_MEM_READONLY; 1465 #endif 1466 1467 if (mem->flags & ~valid_flags) 1468 return -EINVAL; 1469 1470 return 0; 1471 } 1472 1473 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1474 { 1475 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1476 1477 /* Grab the generation from the activate memslots. */ 1478 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1479 1480 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1481 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1482 1483 /* 1484 * Do not store the new memslots while there are invalidations in 1485 * progress, otherwise the locking in invalidate_range_start and 1486 * invalidate_range_end will be unbalanced. 1487 */ 1488 spin_lock(&kvm->mn_invalidate_lock); 1489 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1490 while (kvm->mn_active_invalidate_count) { 1491 set_current_state(TASK_UNINTERRUPTIBLE); 1492 spin_unlock(&kvm->mn_invalidate_lock); 1493 schedule(); 1494 spin_lock(&kvm->mn_invalidate_lock); 1495 } 1496 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1497 rcu_assign_pointer(kvm->memslots[as_id], slots); 1498 spin_unlock(&kvm->mn_invalidate_lock); 1499 1500 /* 1501 * Acquired in kvm_set_memslot. Must be released before synchronize 1502 * SRCU below in order to avoid deadlock with another thread 1503 * acquiring the slots_arch_lock in an srcu critical section. 1504 */ 1505 mutex_unlock(&kvm->slots_arch_lock); 1506 1507 synchronize_srcu_expedited(&kvm->srcu); 1508 1509 /* 1510 * Increment the new memslot generation a second time, dropping the 1511 * update in-progress flag and incrementing the generation based on 1512 * the number of address spaces. This provides a unique and easily 1513 * identifiable generation number while the memslots are in flux. 1514 */ 1515 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1516 1517 /* 1518 * Generations must be unique even across address spaces. We do not need 1519 * a global counter for that, instead the generation space is evenly split 1520 * across address spaces. For example, with two address spaces, address 1521 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1522 * use generations 1, 3, 5, ... 1523 */ 1524 gen += KVM_ADDRESS_SPACE_NUM; 1525 1526 kvm_arch_memslots_updated(kvm, gen); 1527 1528 slots->generation = gen; 1529 } 1530 1531 static int kvm_prepare_memory_region(struct kvm *kvm, 1532 const struct kvm_memory_slot *old, 1533 struct kvm_memory_slot *new, 1534 enum kvm_mr_change change) 1535 { 1536 int r; 1537 1538 /* 1539 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1540 * will be freed on "commit". If logging is enabled in both old and 1541 * new, reuse the existing bitmap. If logging is enabled only in the 1542 * new and KVM isn't using a ring buffer, allocate and initialize a 1543 * new bitmap. 1544 */ 1545 if (change != KVM_MR_DELETE) { 1546 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1547 new->dirty_bitmap = NULL; 1548 else if (old && old->dirty_bitmap) 1549 new->dirty_bitmap = old->dirty_bitmap; 1550 else if (!kvm->dirty_ring_size) { 1551 r = kvm_alloc_dirty_bitmap(new); 1552 if (r) 1553 return r; 1554 1555 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1556 bitmap_set(new->dirty_bitmap, 0, new->npages); 1557 } 1558 } 1559 1560 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1561 1562 /* Free the bitmap on failure if it was allocated above. */ 1563 if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap) 1564 kvm_destroy_dirty_bitmap(new); 1565 1566 return r; 1567 } 1568 1569 static void kvm_commit_memory_region(struct kvm *kvm, 1570 struct kvm_memory_slot *old, 1571 const struct kvm_memory_slot *new, 1572 enum kvm_mr_change change) 1573 { 1574 /* 1575 * Update the total number of memslot pages before calling the arch 1576 * hook so that architectures can consume the result directly. 1577 */ 1578 if (change == KVM_MR_DELETE) 1579 kvm->nr_memslot_pages -= old->npages; 1580 else if (change == KVM_MR_CREATE) 1581 kvm->nr_memslot_pages += new->npages; 1582 1583 kvm_arch_commit_memory_region(kvm, old, new, change); 1584 1585 switch (change) { 1586 case KVM_MR_CREATE: 1587 /* Nothing more to do. */ 1588 break; 1589 case KVM_MR_DELETE: 1590 /* Free the old memslot and all its metadata. */ 1591 kvm_free_memslot(kvm, old); 1592 break; 1593 case KVM_MR_MOVE: 1594 case KVM_MR_FLAGS_ONLY: 1595 /* 1596 * Free the dirty bitmap as needed; the below check encompasses 1597 * both the flags and whether a ring buffer is being used) 1598 */ 1599 if (old->dirty_bitmap && !new->dirty_bitmap) 1600 kvm_destroy_dirty_bitmap(old); 1601 1602 /* 1603 * The final quirk. Free the detached, old slot, but only its 1604 * memory, not any metadata. Metadata, including arch specific 1605 * data, may be reused by @new. 1606 */ 1607 kfree(old); 1608 break; 1609 default: 1610 BUG(); 1611 } 1612 } 1613 1614 /* 1615 * Activate @new, which must be installed in the inactive slots by the caller, 1616 * by swapping the active slots and then propagating @new to @old once @old is 1617 * unreachable and can be safely modified. 1618 * 1619 * With NULL @old this simply adds @new to @active (while swapping the sets). 1620 * With NULL @new this simply removes @old from @active and frees it 1621 * (while also swapping the sets). 1622 */ 1623 static void kvm_activate_memslot(struct kvm *kvm, 1624 struct kvm_memory_slot *old, 1625 struct kvm_memory_slot *new) 1626 { 1627 int as_id = kvm_memslots_get_as_id(old, new); 1628 1629 kvm_swap_active_memslots(kvm, as_id); 1630 1631 /* Propagate the new memslot to the now inactive memslots. */ 1632 kvm_replace_memslot(kvm, old, new); 1633 } 1634 1635 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1636 const struct kvm_memory_slot *src) 1637 { 1638 dest->base_gfn = src->base_gfn; 1639 dest->npages = src->npages; 1640 dest->dirty_bitmap = src->dirty_bitmap; 1641 dest->arch = src->arch; 1642 dest->userspace_addr = src->userspace_addr; 1643 dest->flags = src->flags; 1644 dest->id = src->id; 1645 dest->as_id = src->as_id; 1646 } 1647 1648 static void kvm_invalidate_memslot(struct kvm *kvm, 1649 struct kvm_memory_slot *old, 1650 struct kvm_memory_slot *invalid_slot) 1651 { 1652 /* 1653 * Mark the current slot INVALID. As with all memslot modifications, 1654 * this must be done on an unreachable slot to avoid modifying the 1655 * current slot in the active tree. 1656 */ 1657 kvm_copy_memslot(invalid_slot, old); 1658 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1659 kvm_replace_memslot(kvm, old, invalid_slot); 1660 1661 /* 1662 * Activate the slot that is now marked INVALID, but don't propagate 1663 * the slot to the now inactive slots. The slot is either going to be 1664 * deleted or recreated as a new slot. 1665 */ 1666 kvm_swap_active_memslots(kvm, old->as_id); 1667 1668 /* 1669 * From this point no new shadow pages pointing to a deleted, or moved, 1670 * memslot will be created. Validation of sp->gfn happens in: 1671 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1672 * - kvm_is_visible_gfn (mmu_check_root) 1673 */ 1674 kvm_arch_flush_shadow_memslot(kvm, old); 1675 kvm_arch_guest_memory_reclaimed(kvm); 1676 1677 /* Was released by kvm_swap_active_memslots, reacquire. */ 1678 mutex_lock(&kvm->slots_arch_lock); 1679 1680 /* 1681 * Copy the arch-specific field of the newly-installed slot back to the 1682 * old slot as the arch data could have changed between releasing 1683 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1684 * above. Writers are required to retrieve memslots *after* acquiring 1685 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1686 */ 1687 old->arch = invalid_slot->arch; 1688 } 1689 1690 static void kvm_create_memslot(struct kvm *kvm, 1691 struct kvm_memory_slot *new) 1692 { 1693 /* Add the new memslot to the inactive set and activate. */ 1694 kvm_replace_memslot(kvm, NULL, new); 1695 kvm_activate_memslot(kvm, NULL, new); 1696 } 1697 1698 static void kvm_delete_memslot(struct kvm *kvm, 1699 struct kvm_memory_slot *old, 1700 struct kvm_memory_slot *invalid_slot) 1701 { 1702 /* 1703 * Remove the old memslot (in the inactive memslots) by passing NULL as 1704 * the "new" slot, and for the invalid version in the active slots. 1705 */ 1706 kvm_replace_memslot(kvm, old, NULL); 1707 kvm_activate_memslot(kvm, invalid_slot, NULL); 1708 } 1709 1710 static void kvm_move_memslot(struct kvm *kvm, 1711 struct kvm_memory_slot *old, 1712 struct kvm_memory_slot *new, 1713 struct kvm_memory_slot *invalid_slot) 1714 { 1715 /* 1716 * Replace the old memslot in the inactive slots, and then swap slots 1717 * and replace the current INVALID with the new as well. 1718 */ 1719 kvm_replace_memslot(kvm, old, new); 1720 kvm_activate_memslot(kvm, invalid_slot, new); 1721 } 1722 1723 static void kvm_update_flags_memslot(struct kvm *kvm, 1724 struct kvm_memory_slot *old, 1725 struct kvm_memory_slot *new) 1726 { 1727 /* 1728 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1729 * an intermediate step. Instead, the old memslot is simply replaced 1730 * with a new, updated copy in both memslot sets. 1731 */ 1732 kvm_replace_memslot(kvm, old, new); 1733 kvm_activate_memslot(kvm, old, new); 1734 } 1735 1736 static int kvm_set_memslot(struct kvm *kvm, 1737 struct kvm_memory_slot *old, 1738 struct kvm_memory_slot *new, 1739 enum kvm_mr_change change) 1740 { 1741 struct kvm_memory_slot *invalid_slot; 1742 int r; 1743 1744 /* 1745 * Released in kvm_swap_active_memslots. 1746 * 1747 * Must be held from before the current memslots are copied until 1748 * after the new memslots are installed with rcu_assign_pointer, 1749 * then released before the synchronize srcu in kvm_swap_active_memslots. 1750 * 1751 * When modifying memslots outside of the slots_lock, must be held 1752 * before reading the pointer to the current memslots until after all 1753 * changes to those memslots are complete. 1754 * 1755 * These rules ensure that installing new memslots does not lose 1756 * changes made to the previous memslots. 1757 */ 1758 mutex_lock(&kvm->slots_arch_lock); 1759 1760 /* 1761 * Invalidate the old slot if it's being deleted or moved. This is 1762 * done prior to actually deleting/moving the memslot to allow vCPUs to 1763 * continue running by ensuring there are no mappings or shadow pages 1764 * for the memslot when it is deleted/moved. Without pre-invalidation 1765 * (and without a lock), a window would exist between effecting the 1766 * delete/move and committing the changes in arch code where KVM or a 1767 * guest could access a non-existent memslot. 1768 * 1769 * Modifications are done on a temporary, unreachable slot. The old 1770 * slot needs to be preserved in case a later step fails and the 1771 * invalidation needs to be reverted. 1772 */ 1773 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1774 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1775 if (!invalid_slot) { 1776 mutex_unlock(&kvm->slots_arch_lock); 1777 return -ENOMEM; 1778 } 1779 kvm_invalidate_memslot(kvm, old, invalid_slot); 1780 } 1781 1782 r = kvm_prepare_memory_region(kvm, old, new, change); 1783 if (r) { 1784 /* 1785 * For DELETE/MOVE, revert the above INVALID change. No 1786 * modifications required since the original slot was preserved 1787 * in the inactive slots. Changing the active memslots also 1788 * release slots_arch_lock. 1789 */ 1790 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1791 kvm_activate_memslot(kvm, invalid_slot, old); 1792 kfree(invalid_slot); 1793 } else { 1794 mutex_unlock(&kvm->slots_arch_lock); 1795 } 1796 return r; 1797 } 1798 1799 /* 1800 * For DELETE and MOVE, the working slot is now active as the INVALID 1801 * version of the old slot. MOVE is particularly special as it reuses 1802 * the old slot and returns a copy of the old slot (in working_slot). 1803 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1804 * old slot is detached but otherwise preserved. 1805 */ 1806 if (change == KVM_MR_CREATE) 1807 kvm_create_memslot(kvm, new); 1808 else if (change == KVM_MR_DELETE) 1809 kvm_delete_memslot(kvm, old, invalid_slot); 1810 else if (change == KVM_MR_MOVE) 1811 kvm_move_memslot(kvm, old, new, invalid_slot); 1812 else if (change == KVM_MR_FLAGS_ONLY) 1813 kvm_update_flags_memslot(kvm, old, new); 1814 else 1815 BUG(); 1816 1817 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1818 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1819 kfree(invalid_slot); 1820 1821 /* 1822 * No need to refresh new->arch, changes after dropping slots_arch_lock 1823 * will directly hit the final, active memslot. Architectures are 1824 * responsible for knowing that new->arch may be stale. 1825 */ 1826 kvm_commit_memory_region(kvm, old, new, change); 1827 1828 return 0; 1829 } 1830 1831 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1832 gfn_t start, gfn_t end) 1833 { 1834 struct kvm_memslot_iter iter; 1835 1836 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1837 if (iter.slot->id != id) 1838 return true; 1839 } 1840 1841 return false; 1842 } 1843 1844 /* 1845 * Allocate some memory and give it an address in the guest physical address 1846 * space. 1847 * 1848 * Discontiguous memory is allowed, mostly for framebuffers. 1849 * 1850 * Must be called holding kvm->slots_lock for write. 1851 */ 1852 int __kvm_set_memory_region(struct kvm *kvm, 1853 const struct kvm_userspace_memory_region *mem) 1854 { 1855 struct kvm_memory_slot *old, *new; 1856 struct kvm_memslots *slots; 1857 enum kvm_mr_change change; 1858 unsigned long npages; 1859 gfn_t base_gfn; 1860 int as_id, id; 1861 int r; 1862 1863 r = check_memory_region_flags(mem); 1864 if (r) 1865 return r; 1866 1867 as_id = mem->slot >> 16; 1868 id = (u16)mem->slot; 1869 1870 /* General sanity checks */ 1871 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1872 (mem->memory_size != (unsigned long)mem->memory_size)) 1873 return -EINVAL; 1874 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1875 return -EINVAL; 1876 /* We can read the guest memory with __xxx_user() later on. */ 1877 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1878 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1879 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1880 mem->memory_size)) 1881 return -EINVAL; 1882 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1883 return -EINVAL; 1884 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1885 return -EINVAL; 1886 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1887 return -EINVAL; 1888 1889 slots = __kvm_memslots(kvm, as_id); 1890 1891 /* 1892 * Note, the old memslot (and the pointer itself!) may be invalidated 1893 * and/or destroyed by kvm_set_memslot(). 1894 */ 1895 old = id_to_memslot(slots, id); 1896 1897 if (!mem->memory_size) { 1898 if (!old || !old->npages) 1899 return -EINVAL; 1900 1901 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1902 return -EIO; 1903 1904 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1905 } 1906 1907 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1908 npages = (mem->memory_size >> PAGE_SHIFT); 1909 1910 if (!old || !old->npages) { 1911 change = KVM_MR_CREATE; 1912 1913 /* 1914 * To simplify KVM internals, the total number of pages across 1915 * all memslots must fit in an unsigned long. 1916 */ 1917 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1918 return -EINVAL; 1919 } else { /* Modify an existing slot. */ 1920 if ((mem->userspace_addr != old->userspace_addr) || 1921 (npages != old->npages) || 1922 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1923 return -EINVAL; 1924 1925 if (base_gfn != old->base_gfn) 1926 change = KVM_MR_MOVE; 1927 else if (mem->flags != old->flags) 1928 change = KVM_MR_FLAGS_ONLY; 1929 else /* Nothing to change. */ 1930 return 0; 1931 } 1932 1933 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1934 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1935 return -EEXIST; 1936 1937 /* Allocate a slot that will persist in the memslot. */ 1938 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1939 if (!new) 1940 return -ENOMEM; 1941 1942 new->as_id = as_id; 1943 new->id = id; 1944 new->base_gfn = base_gfn; 1945 new->npages = npages; 1946 new->flags = mem->flags; 1947 new->userspace_addr = mem->userspace_addr; 1948 1949 r = kvm_set_memslot(kvm, old, new, change); 1950 if (r) 1951 kfree(new); 1952 return r; 1953 } 1954 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1955 1956 int kvm_set_memory_region(struct kvm *kvm, 1957 const struct kvm_userspace_memory_region *mem) 1958 { 1959 int r; 1960 1961 mutex_lock(&kvm->slots_lock); 1962 r = __kvm_set_memory_region(kvm, mem); 1963 mutex_unlock(&kvm->slots_lock); 1964 return r; 1965 } 1966 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1967 1968 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1969 struct kvm_userspace_memory_region *mem) 1970 { 1971 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1972 return -EINVAL; 1973 1974 return kvm_set_memory_region(kvm, mem); 1975 } 1976 1977 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1978 /** 1979 * kvm_get_dirty_log - get a snapshot of dirty pages 1980 * @kvm: pointer to kvm instance 1981 * @log: slot id and address to which we copy the log 1982 * @is_dirty: set to '1' if any dirty pages were found 1983 * @memslot: set to the associated memslot, always valid on success 1984 */ 1985 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1986 int *is_dirty, struct kvm_memory_slot **memslot) 1987 { 1988 struct kvm_memslots *slots; 1989 int i, as_id, id; 1990 unsigned long n; 1991 unsigned long any = 0; 1992 1993 /* Dirty ring tracking is exclusive to dirty log tracking */ 1994 if (kvm->dirty_ring_size) 1995 return -ENXIO; 1996 1997 *memslot = NULL; 1998 *is_dirty = 0; 1999 2000 as_id = log->slot >> 16; 2001 id = (u16)log->slot; 2002 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2003 return -EINVAL; 2004 2005 slots = __kvm_memslots(kvm, as_id); 2006 *memslot = id_to_memslot(slots, id); 2007 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2008 return -ENOENT; 2009 2010 kvm_arch_sync_dirty_log(kvm, *memslot); 2011 2012 n = kvm_dirty_bitmap_bytes(*memslot); 2013 2014 for (i = 0; !any && i < n/sizeof(long); ++i) 2015 any = (*memslot)->dirty_bitmap[i]; 2016 2017 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2018 return -EFAULT; 2019 2020 if (any) 2021 *is_dirty = 1; 2022 return 0; 2023 } 2024 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2025 2026 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2027 /** 2028 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2029 * and reenable dirty page tracking for the corresponding pages. 2030 * @kvm: pointer to kvm instance 2031 * @log: slot id and address to which we copy the log 2032 * 2033 * We need to keep it in mind that VCPU threads can write to the bitmap 2034 * concurrently. So, to avoid losing track of dirty pages we keep the 2035 * following order: 2036 * 2037 * 1. Take a snapshot of the bit and clear it if needed. 2038 * 2. Write protect the corresponding page. 2039 * 3. Copy the snapshot to the userspace. 2040 * 4. Upon return caller flushes TLB's if needed. 2041 * 2042 * Between 2 and 4, the guest may write to the page using the remaining TLB 2043 * entry. This is not a problem because the page is reported dirty using 2044 * the snapshot taken before and step 4 ensures that writes done after 2045 * exiting to userspace will be logged for the next call. 2046 * 2047 */ 2048 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2049 { 2050 struct kvm_memslots *slots; 2051 struct kvm_memory_slot *memslot; 2052 int i, as_id, id; 2053 unsigned long n; 2054 unsigned long *dirty_bitmap; 2055 unsigned long *dirty_bitmap_buffer; 2056 bool flush; 2057 2058 /* Dirty ring tracking is exclusive to dirty log tracking */ 2059 if (kvm->dirty_ring_size) 2060 return -ENXIO; 2061 2062 as_id = log->slot >> 16; 2063 id = (u16)log->slot; 2064 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2065 return -EINVAL; 2066 2067 slots = __kvm_memslots(kvm, as_id); 2068 memslot = id_to_memslot(slots, id); 2069 if (!memslot || !memslot->dirty_bitmap) 2070 return -ENOENT; 2071 2072 dirty_bitmap = memslot->dirty_bitmap; 2073 2074 kvm_arch_sync_dirty_log(kvm, memslot); 2075 2076 n = kvm_dirty_bitmap_bytes(memslot); 2077 flush = false; 2078 if (kvm->manual_dirty_log_protect) { 2079 /* 2080 * Unlike kvm_get_dirty_log, we always return false in *flush, 2081 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2082 * is some code duplication between this function and 2083 * kvm_get_dirty_log, but hopefully all architecture 2084 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2085 * can be eliminated. 2086 */ 2087 dirty_bitmap_buffer = dirty_bitmap; 2088 } else { 2089 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2090 memset(dirty_bitmap_buffer, 0, n); 2091 2092 KVM_MMU_LOCK(kvm); 2093 for (i = 0; i < n / sizeof(long); i++) { 2094 unsigned long mask; 2095 gfn_t offset; 2096 2097 if (!dirty_bitmap[i]) 2098 continue; 2099 2100 flush = true; 2101 mask = xchg(&dirty_bitmap[i], 0); 2102 dirty_bitmap_buffer[i] = mask; 2103 2104 offset = i * BITS_PER_LONG; 2105 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2106 offset, mask); 2107 } 2108 KVM_MMU_UNLOCK(kvm); 2109 } 2110 2111 if (flush) 2112 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2113 2114 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2115 return -EFAULT; 2116 return 0; 2117 } 2118 2119 2120 /** 2121 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2122 * @kvm: kvm instance 2123 * @log: slot id and address to which we copy the log 2124 * 2125 * Steps 1-4 below provide general overview of dirty page logging. See 2126 * kvm_get_dirty_log_protect() function description for additional details. 2127 * 2128 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2129 * always flush the TLB (step 4) even if previous step failed and the dirty 2130 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2131 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2132 * writes will be marked dirty for next log read. 2133 * 2134 * 1. Take a snapshot of the bit and clear it if needed. 2135 * 2. Write protect the corresponding page. 2136 * 3. Copy the snapshot to the userspace. 2137 * 4. Flush TLB's if needed. 2138 */ 2139 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2140 struct kvm_dirty_log *log) 2141 { 2142 int r; 2143 2144 mutex_lock(&kvm->slots_lock); 2145 2146 r = kvm_get_dirty_log_protect(kvm, log); 2147 2148 mutex_unlock(&kvm->slots_lock); 2149 return r; 2150 } 2151 2152 /** 2153 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2154 * and reenable dirty page tracking for the corresponding pages. 2155 * @kvm: pointer to kvm instance 2156 * @log: slot id and address from which to fetch the bitmap of dirty pages 2157 */ 2158 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2159 struct kvm_clear_dirty_log *log) 2160 { 2161 struct kvm_memslots *slots; 2162 struct kvm_memory_slot *memslot; 2163 int as_id, id; 2164 gfn_t offset; 2165 unsigned long i, n; 2166 unsigned long *dirty_bitmap; 2167 unsigned long *dirty_bitmap_buffer; 2168 bool flush; 2169 2170 /* Dirty ring tracking is exclusive to dirty log tracking */ 2171 if (kvm->dirty_ring_size) 2172 return -ENXIO; 2173 2174 as_id = log->slot >> 16; 2175 id = (u16)log->slot; 2176 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2177 return -EINVAL; 2178 2179 if (log->first_page & 63) 2180 return -EINVAL; 2181 2182 slots = __kvm_memslots(kvm, as_id); 2183 memslot = id_to_memslot(slots, id); 2184 if (!memslot || !memslot->dirty_bitmap) 2185 return -ENOENT; 2186 2187 dirty_bitmap = memslot->dirty_bitmap; 2188 2189 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2190 2191 if (log->first_page > memslot->npages || 2192 log->num_pages > memslot->npages - log->first_page || 2193 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2194 return -EINVAL; 2195 2196 kvm_arch_sync_dirty_log(kvm, memslot); 2197 2198 flush = false; 2199 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2200 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2201 return -EFAULT; 2202 2203 KVM_MMU_LOCK(kvm); 2204 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2205 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2206 i++, offset += BITS_PER_LONG) { 2207 unsigned long mask = *dirty_bitmap_buffer++; 2208 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2209 if (!mask) 2210 continue; 2211 2212 mask &= atomic_long_fetch_andnot(mask, p); 2213 2214 /* 2215 * mask contains the bits that really have been cleared. This 2216 * never includes any bits beyond the length of the memslot (if 2217 * the length is not aligned to 64 pages), therefore it is not 2218 * a problem if userspace sets them in log->dirty_bitmap. 2219 */ 2220 if (mask) { 2221 flush = true; 2222 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2223 offset, mask); 2224 } 2225 } 2226 KVM_MMU_UNLOCK(kvm); 2227 2228 if (flush) 2229 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2230 2231 return 0; 2232 } 2233 2234 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2235 struct kvm_clear_dirty_log *log) 2236 { 2237 int r; 2238 2239 mutex_lock(&kvm->slots_lock); 2240 2241 r = kvm_clear_dirty_log_protect(kvm, log); 2242 2243 mutex_unlock(&kvm->slots_lock); 2244 return r; 2245 } 2246 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2247 2248 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2249 { 2250 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2251 } 2252 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2253 2254 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2255 { 2256 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2257 u64 gen = slots->generation; 2258 struct kvm_memory_slot *slot; 2259 2260 /* 2261 * This also protects against using a memslot from a different address space, 2262 * since different address spaces have different generation numbers. 2263 */ 2264 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2265 vcpu->last_used_slot = NULL; 2266 vcpu->last_used_slot_gen = gen; 2267 } 2268 2269 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2270 if (slot) 2271 return slot; 2272 2273 /* 2274 * Fall back to searching all memslots. We purposely use 2275 * search_memslots() instead of __gfn_to_memslot() to avoid 2276 * thrashing the VM-wide last_used_slot in kvm_memslots. 2277 */ 2278 slot = search_memslots(slots, gfn, false); 2279 if (slot) { 2280 vcpu->last_used_slot = slot; 2281 return slot; 2282 } 2283 2284 return NULL; 2285 } 2286 2287 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2288 { 2289 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2290 2291 return kvm_is_visible_memslot(memslot); 2292 } 2293 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2294 2295 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2296 { 2297 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2298 2299 return kvm_is_visible_memslot(memslot); 2300 } 2301 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2302 2303 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2304 { 2305 struct vm_area_struct *vma; 2306 unsigned long addr, size; 2307 2308 size = PAGE_SIZE; 2309 2310 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2311 if (kvm_is_error_hva(addr)) 2312 return PAGE_SIZE; 2313 2314 mmap_read_lock(current->mm); 2315 vma = find_vma(current->mm, addr); 2316 if (!vma) 2317 goto out; 2318 2319 size = vma_kernel_pagesize(vma); 2320 2321 out: 2322 mmap_read_unlock(current->mm); 2323 2324 return size; 2325 } 2326 2327 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2328 { 2329 return slot->flags & KVM_MEM_READONLY; 2330 } 2331 2332 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2333 gfn_t *nr_pages, bool write) 2334 { 2335 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2336 return KVM_HVA_ERR_BAD; 2337 2338 if (memslot_is_readonly(slot) && write) 2339 return KVM_HVA_ERR_RO_BAD; 2340 2341 if (nr_pages) 2342 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2343 2344 return __gfn_to_hva_memslot(slot, gfn); 2345 } 2346 2347 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2348 gfn_t *nr_pages) 2349 { 2350 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2351 } 2352 2353 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2354 gfn_t gfn) 2355 { 2356 return gfn_to_hva_many(slot, gfn, NULL); 2357 } 2358 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2359 2360 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2361 { 2362 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2363 } 2364 EXPORT_SYMBOL_GPL(gfn_to_hva); 2365 2366 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2367 { 2368 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2369 } 2370 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2371 2372 /* 2373 * Return the hva of a @gfn and the R/W attribute if possible. 2374 * 2375 * @slot: the kvm_memory_slot which contains @gfn 2376 * @gfn: the gfn to be translated 2377 * @writable: used to return the read/write attribute of the @slot if the hva 2378 * is valid and @writable is not NULL 2379 */ 2380 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2381 gfn_t gfn, bool *writable) 2382 { 2383 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2384 2385 if (!kvm_is_error_hva(hva) && writable) 2386 *writable = !memslot_is_readonly(slot); 2387 2388 return hva; 2389 } 2390 2391 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2392 { 2393 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2394 2395 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2396 } 2397 2398 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2399 { 2400 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2401 2402 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2403 } 2404 2405 static inline int check_user_page_hwpoison(unsigned long addr) 2406 { 2407 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2408 2409 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2410 return rc == -EHWPOISON; 2411 } 2412 2413 /* 2414 * The fast path to get the writable pfn which will be stored in @pfn, 2415 * true indicates success, otherwise false is returned. It's also the 2416 * only part that runs if we can in atomic context. 2417 */ 2418 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2419 bool *writable, kvm_pfn_t *pfn) 2420 { 2421 struct page *page[1]; 2422 2423 /* 2424 * Fast pin a writable pfn only if it is a write fault request 2425 * or the caller allows to map a writable pfn for a read fault 2426 * request. 2427 */ 2428 if (!(write_fault || writable)) 2429 return false; 2430 2431 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2432 *pfn = page_to_pfn(page[0]); 2433 2434 if (writable) 2435 *writable = true; 2436 return true; 2437 } 2438 2439 return false; 2440 } 2441 2442 /* 2443 * The slow path to get the pfn of the specified host virtual address, 2444 * 1 indicates success, -errno is returned if error is detected. 2445 */ 2446 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2447 bool *writable, kvm_pfn_t *pfn) 2448 { 2449 unsigned int flags = FOLL_HWPOISON; 2450 struct page *page; 2451 int npages = 0; 2452 2453 might_sleep(); 2454 2455 if (writable) 2456 *writable = write_fault; 2457 2458 if (write_fault) 2459 flags |= FOLL_WRITE; 2460 if (async) 2461 flags |= FOLL_NOWAIT; 2462 2463 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2464 if (npages != 1) 2465 return npages; 2466 2467 /* map read fault as writable if possible */ 2468 if (unlikely(!write_fault) && writable) { 2469 struct page *wpage; 2470 2471 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2472 *writable = true; 2473 put_page(page); 2474 page = wpage; 2475 } 2476 } 2477 *pfn = page_to_pfn(page); 2478 return npages; 2479 } 2480 2481 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2482 { 2483 if (unlikely(!(vma->vm_flags & VM_READ))) 2484 return false; 2485 2486 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2487 return false; 2488 2489 return true; 2490 } 2491 2492 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2493 { 2494 if (kvm_is_reserved_pfn(pfn)) 2495 return 1; 2496 return get_page_unless_zero(pfn_to_page(pfn)); 2497 } 2498 2499 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2500 unsigned long addr, bool write_fault, 2501 bool *writable, kvm_pfn_t *p_pfn) 2502 { 2503 kvm_pfn_t pfn; 2504 pte_t *ptep; 2505 spinlock_t *ptl; 2506 int r; 2507 2508 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2509 if (r) { 2510 /* 2511 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2512 * not call the fault handler, so do it here. 2513 */ 2514 bool unlocked = false; 2515 r = fixup_user_fault(current->mm, addr, 2516 (write_fault ? FAULT_FLAG_WRITE : 0), 2517 &unlocked); 2518 if (unlocked) 2519 return -EAGAIN; 2520 if (r) 2521 return r; 2522 2523 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2524 if (r) 2525 return r; 2526 } 2527 2528 if (write_fault && !pte_write(*ptep)) { 2529 pfn = KVM_PFN_ERR_RO_FAULT; 2530 goto out; 2531 } 2532 2533 if (writable) 2534 *writable = pte_write(*ptep); 2535 pfn = pte_pfn(*ptep); 2536 2537 /* 2538 * Get a reference here because callers of *hva_to_pfn* and 2539 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2540 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2541 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2542 * simply do nothing for reserved pfns. 2543 * 2544 * Whoever called remap_pfn_range is also going to call e.g. 2545 * unmap_mapping_range before the underlying pages are freed, 2546 * causing a call to our MMU notifier. 2547 * 2548 * Certain IO or PFNMAP mappings can be backed with valid 2549 * struct pages, but be allocated without refcounting e.g., 2550 * tail pages of non-compound higher order allocations, which 2551 * would then underflow the refcount when the caller does the 2552 * required put_page. Don't allow those pages here. 2553 */ 2554 if (!kvm_try_get_pfn(pfn)) 2555 r = -EFAULT; 2556 2557 out: 2558 pte_unmap_unlock(ptep, ptl); 2559 *p_pfn = pfn; 2560 2561 return r; 2562 } 2563 2564 /* 2565 * Pin guest page in memory and return its pfn. 2566 * @addr: host virtual address which maps memory to the guest 2567 * @atomic: whether this function can sleep 2568 * @async: whether this function need to wait IO complete if the 2569 * host page is not in the memory 2570 * @write_fault: whether we should get a writable host page 2571 * @writable: whether it allows to map a writable host page for !@write_fault 2572 * 2573 * The function will map a writable host page for these two cases: 2574 * 1): @write_fault = true 2575 * 2): @write_fault = false && @writable, @writable will tell the caller 2576 * whether the mapping is writable. 2577 */ 2578 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2579 bool write_fault, bool *writable) 2580 { 2581 struct vm_area_struct *vma; 2582 kvm_pfn_t pfn = 0; 2583 int npages, r; 2584 2585 /* we can do it either atomically or asynchronously, not both */ 2586 BUG_ON(atomic && async); 2587 2588 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2589 return pfn; 2590 2591 if (atomic) 2592 return KVM_PFN_ERR_FAULT; 2593 2594 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2595 if (npages == 1) 2596 return pfn; 2597 2598 mmap_read_lock(current->mm); 2599 if (npages == -EHWPOISON || 2600 (!async && check_user_page_hwpoison(addr))) { 2601 pfn = KVM_PFN_ERR_HWPOISON; 2602 goto exit; 2603 } 2604 2605 retry: 2606 vma = vma_lookup(current->mm, addr); 2607 2608 if (vma == NULL) 2609 pfn = KVM_PFN_ERR_FAULT; 2610 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2611 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2612 if (r == -EAGAIN) 2613 goto retry; 2614 if (r < 0) 2615 pfn = KVM_PFN_ERR_FAULT; 2616 } else { 2617 if (async && vma_is_valid(vma, write_fault)) 2618 *async = true; 2619 pfn = KVM_PFN_ERR_FAULT; 2620 } 2621 exit: 2622 mmap_read_unlock(current->mm); 2623 return pfn; 2624 } 2625 2626 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2627 bool atomic, bool *async, bool write_fault, 2628 bool *writable, hva_t *hva) 2629 { 2630 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2631 2632 if (hva) 2633 *hva = addr; 2634 2635 if (addr == KVM_HVA_ERR_RO_BAD) { 2636 if (writable) 2637 *writable = false; 2638 return KVM_PFN_ERR_RO_FAULT; 2639 } 2640 2641 if (kvm_is_error_hva(addr)) { 2642 if (writable) 2643 *writable = false; 2644 return KVM_PFN_NOSLOT; 2645 } 2646 2647 /* Do not map writable pfn in the readonly memslot. */ 2648 if (writable && memslot_is_readonly(slot)) { 2649 *writable = false; 2650 writable = NULL; 2651 } 2652 2653 return hva_to_pfn(addr, atomic, async, write_fault, 2654 writable); 2655 } 2656 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2657 2658 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2659 bool *writable) 2660 { 2661 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2662 write_fault, writable, NULL); 2663 } 2664 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2665 2666 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2667 { 2668 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2669 } 2670 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2671 2672 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2673 { 2674 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2675 } 2676 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2677 2678 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2679 { 2680 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2681 } 2682 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2683 2684 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2685 { 2686 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2687 } 2688 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2689 2690 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2691 { 2692 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2693 } 2694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2695 2696 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2697 struct page **pages, int nr_pages) 2698 { 2699 unsigned long addr; 2700 gfn_t entry = 0; 2701 2702 addr = gfn_to_hva_many(slot, gfn, &entry); 2703 if (kvm_is_error_hva(addr)) 2704 return -1; 2705 2706 if (entry < nr_pages) 2707 return 0; 2708 2709 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2710 } 2711 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2712 2713 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2714 { 2715 if (is_error_noslot_pfn(pfn)) 2716 return KVM_ERR_PTR_BAD_PAGE; 2717 2718 if (kvm_is_reserved_pfn(pfn)) { 2719 WARN_ON(1); 2720 return KVM_ERR_PTR_BAD_PAGE; 2721 } 2722 2723 return pfn_to_page(pfn); 2724 } 2725 2726 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2727 { 2728 kvm_pfn_t pfn; 2729 2730 pfn = gfn_to_pfn(kvm, gfn); 2731 2732 return kvm_pfn_to_page(pfn); 2733 } 2734 EXPORT_SYMBOL_GPL(gfn_to_page); 2735 2736 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2737 { 2738 if (pfn == 0) 2739 return; 2740 2741 if (dirty) 2742 kvm_release_pfn_dirty(pfn); 2743 else 2744 kvm_release_pfn_clean(pfn); 2745 } 2746 2747 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2748 { 2749 kvm_pfn_t pfn; 2750 void *hva = NULL; 2751 struct page *page = KVM_UNMAPPED_PAGE; 2752 2753 if (!map) 2754 return -EINVAL; 2755 2756 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2757 if (is_error_noslot_pfn(pfn)) 2758 return -EINVAL; 2759 2760 if (pfn_valid(pfn)) { 2761 page = pfn_to_page(pfn); 2762 hva = kmap(page); 2763 #ifdef CONFIG_HAS_IOMEM 2764 } else { 2765 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2766 #endif 2767 } 2768 2769 if (!hva) 2770 return -EFAULT; 2771 2772 map->page = page; 2773 map->hva = hva; 2774 map->pfn = pfn; 2775 map->gfn = gfn; 2776 2777 return 0; 2778 } 2779 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2780 2781 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2782 { 2783 if (!map) 2784 return; 2785 2786 if (!map->hva) 2787 return; 2788 2789 if (map->page != KVM_UNMAPPED_PAGE) 2790 kunmap(map->page); 2791 #ifdef CONFIG_HAS_IOMEM 2792 else 2793 memunmap(map->hva); 2794 #endif 2795 2796 if (dirty) 2797 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2798 2799 kvm_release_pfn(map->pfn, dirty); 2800 2801 map->hva = NULL; 2802 map->page = NULL; 2803 } 2804 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2805 2806 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2807 { 2808 kvm_pfn_t pfn; 2809 2810 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2811 2812 return kvm_pfn_to_page(pfn); 2813 } 2814 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2815 2816 void kvm_release_page_clean(struct page *page) 2817 { 2818 WARN_ON(is_error_page(page)); 2819 2820 kvm_release_pfn_clean(page_to_pfn(page)); 2821 } 2822 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2823 2824 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2825 { 2826 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2827 put_page(pfn_to_page(pfn)); 2828 } 2829 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2830 2831 void kvm_release_page_dirty(struct page *page) 2832 { 2833 WARN_ON(is_error_page(page)); 2834 2835 kvm_release_pfn_dirty(page_to_pfn(page)); 2836 } 2837 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2838 2839 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2840 { 2841 kvm_set_pfn_dirty(pfn); 2842 kvm_release_pfn_clean(pfn); 2843 } 2844 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2845 2846 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2847 { 2848 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2849 SetPageDirty(pfn_to_page(pfn)); 2850 } 2851 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2852 2853 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2854 { 2855 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2856 mark_page_accessed(pfn_to_page(pfn)); 2857 } 2858 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2859 2860 static int next_segment(unsigned long len, int offset) 2861 { 2862 if (len > PAGE_SIZE - offset) 2863 return PAGE_SIZE - offset; 2864 else 2865 return len; 2866 } 2867 2868 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2869 void *data, int offset, int len) 2870 { 2871 int r; 2872 unsigned long addr; 2873 2874 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2875 if (kvm_is_error_hva(addr)) 2876 return -EFAULT; 2877 r = __copy_from_user(data, (void __user *)addr + offset, len); 2878 if (r) 2879 return -EFAULT; 2880 return 0; 2881 } 2882 2883 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2884 int len) 2885 { 2886 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2887 2888 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2889 } 2890 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2891 2892 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2893 int offset, int len) 2894 { 2895 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2896 2897 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2898 } 2899 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2900 2901 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2902 { 2903 gfn_t gfn = gpa >> PAGE_SHIFT; 2904 int seg; 2905 int offset = offset_in_page(gpa); 2906 int ret; 2907 2908 while ((seg = next_segment(len, offset)) != 0) { 2909 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2910 if (ret < 0) 2911 return ret; 2912 offset = 0; 2913 len -= seg; 2914 data += seg; 2915 ++gfn; 2916 } 2917 return 0; 2918 } 2919 EXPORT_SYMBOL_GPL(kvm_read_guest); 2920 2921 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2922 { 2923 gfn_t gfn = gpa >> PAGE_SHIFT; 2924 int seg; 2925 int offset = offset_in_page(gpa); 2926 int ret; 2927 2928 while ((seg = next_segment(len, offset)) != 0) { 2929 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2930 if (ret < 0) 2931 return ret; 2932 offset = 0; 2933 len -= seg; 2934 data += seg; 2935 ++gfn; 2936 } 2937 return 0; 2938 } 2939 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2940 2941 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2942 void *data, int offset, unsigned long len) 2943 { 2944 int r; 2945 unsigned long addr; 2946 2947 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2948 if (kvm_is_error_hva(addr)) 2949 return -EFAULT; 2950 pagefault_disable(); 2951 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2952 pagefault_enable(); 2953 if (r) 2954 return -EFAULT; 2955 return 0; 2956 } 2957 2958 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2959 void *data, unsigned long len) 2960 { 2961 gfn_t gfn = gpa >> PAGE_SHIFT; 2962 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2963 int offset = offset_in_page(gpa); 2964 2965 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2966 } 2967 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2968 2969 static int __kvm_write_guest_page(struct kvm *kvm, 2970 struct kvm_memory_slot *memslot, gfn_t gfn, 2971 const void *data, int offset, int len) 2972 { 2973 int r; 2974 unsigned long addr; 2975 2976 addr = gfn_to_hva_memslot(memslot, gfn); 2977 if (kvm_is_error_hva(addr)) 2978 return -EFAULT; 2979 r = __copy_to_user((void __user *)addr + offset, data, len); 2980 if (r) 2981 return -EFAULT; 2982 mark_page_dirty_in_slot(kvm, memslot, gfn); 2983 return 0; 2984 } 2985 2986 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2987 const void *data, int offset, int len) 2988 { 2989 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2990 2991 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2992 } 2993 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2994 2995 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2996 const void *data, int offset, int len) 2997 { 2998 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2999 3000 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3001 } 3002 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3003 3004 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3005 unsigned long len) 3006 { 3007 gfn_t gfn = gpa >> PAGE_SHIFT; 3008 int seg; 3009 int offset = offset_in_page(gpa); 3010 int ret; 3011 3012 while ((seg = next_segment(len, offset)) != 0) { 3013 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3014 if (ret < 0) 3015 return ret; 3016 offset = 0; 3017 len -= seg; 3018 data += seg; 3019 ++gfn; 3020 } 3021 return 0; 3022 } 3023 EXPORT_SYMBOL_GPL(kvm_write_guest); 3024 3025 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3026 unsigned long len) 3027 { 3028 gfn_t gfn = gpa >> PAGE_SHIFT; 3029 int seg; 3030 int offset = offset_in_page(gpa); 3031 int ret; 3032 3033 while ((seg = next_segment(len, offset)) != 0) { 3034 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3035 if (ret < 0) 3036 return ret; 3037 offset = 0; 3038 len -= seg; 3039 data += seg; 3040 ++gfn; 3041 } 3042 return 0; 3043 } 3044 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3045 3046 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3047 struct gfn_to_hva_cache *ghc, 3048 gpa_t gpa, unsigned long len) 3049 { 3050 int offset = offset_in_page(gpa); 3051 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3052 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3053 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3054 gfn_t nr_pages_avail; 3055 3056 /* Update ghc->generation before performing any error checks. */ 3057 ghc->generation = slots->generation; 3058 3059 if (start_gfn > end_gfn) { 3060 ghc->hva = KVM_HVA_ERR_BAD; 3061 return -EINVAL; 3062 } 3063 3064 /* 3065 * If the requested region crosses two memslots, we still 3066 * verify that the entire region is valid here. 3067 */ 3068 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3069 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3070 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3071 &nr_pages_avail); 3072 if (kvm_is_error_hva(ghc->hva)) 3073 return -EFAULT; 3074 } 3075 3076 /* Use the slow path for cross page reads and writes. */ 3077 if (nr_pages_needed == 1) 3078 ghc->hva += offset; 3079 else 3080 ghc->memslot = NULL; 3081 3082 ghc->gpa = gpa; 3083 ghc->len = len; 3084 return 0; 3085 } 3086 3087 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3088 gpa_t gpa, unsigned long len) 3089 { 3090 struct kvm_memslots *slots = kvm_memslots(kvm); 3091 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3092 } 3093 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3094 3095 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3096 void *data, unsigned int offset, 3097 unsigned long len) 3098 { 3099 struct kvm_memslots *slots = kvm_memslots(kvm); 3100 int r; 3101 gpa_t gpa = ghc->gpa + offset; 3102 3103 if (WARN_ON_ONCE(len + offset > ghc->len)) 3104 return -EINVAL; 3105 3106 if (slots->generation != ghc->generation) { 3107 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3108 return -EFAULT; 3109 } 3110 3111 if (kvm_is_error_hva(ghc->hva)) 3112 return -EFAULT; 3113 3114 if (unlikely(!ghc->memslot)) 3115 return kvm_write_guest(kvm, gpa, data, len); 3116 3117 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3118 if (r) 3119 return -EFAULT; 3120 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3121 3122 return 0; 3123 } 3124 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3125 3126 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3127 void *data, unsigned long len) 3128 { 3129 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3130 } 3131 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3132 3133 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3134 void *data, unsigned int offset, 3135 unsigned long len) 3136 { 3137 struct kvm_memslots *slots = kvm_memslots(kvm); 3138 int r; 3139 gpa_t gpa = ghc->gpa + offset; 3140 3141 if (WARN_ON_ONCE(len + offset > ghc->len)) 3142 return -EINVAL; 3143 3144 if (slots->generation != ghc->generation) { 3145 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3146 return -EFAULT; 3147 } 3148 3149 if (kvm_is_error_hva(ghc->hva)) 3150 return -EFAULT; 3151 3152 if (unlikely(!ghc->memslot)) 3153 return kvm_read_guest(kvm, gpa, data, len); 3154 3155 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3156 if (r) 3157 return -EFAULT; 3158 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3162 3163 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3164 void *data, unsigned long len) 3165 { 3166 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3167 } 3168 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3169 3170 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3171 { 3172 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3173 gfn_t gfn = gpa >> PAGE_SHIFT; 3174 int seg; 3175 int offset = offset_in_page(gpa); 3176 int ret; 3177 3178 while ((seg = next_segment(len, offset)) != 0) { 3179 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3180 if (ret < 0) 3181 return ret; 3182 offset = 0; 3183 len -= seg; 3184 ++gfn; 3185 } 3186 return 0; 3187 } 3188 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3189 3190 void mark_page_dirty_in_slot(struct kvm *kvm, 3191 const struct kvm_memory_slot *memslot, 3192 gfn_t gfn) 3193 { 3194 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3195 3196 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3197 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3198 return; 3199 #endif 3200 3201 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3202 unsigned long rel_gfn = gfn - memslot->base_gfn; 3203 u32 slot = (memslot->as_id << 16) | memslot->id; 3204 3205 if (kvm->dirty_ring_size) 3206 kvm_dirty_ring_push(&vcpu->dirty_ring, 3207 slot, rel_gfn); 3208 else 3209 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3210 } 3211 } 3212 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3213 3214 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3215 { 3216 struct kvm_memory_slot *memslot; 3217 3218 memslot = gfn_to_memslot(kvm, gfn); 3219 mark_page_dirty_in_slot(kvm, memslot, gfn); 3220 } 3221 EXPORT_SYMBOL_GPL(mark_page_dirty); 3222 3223 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3224 { 3225 struct kvm_memory_slot *memslot; 3226 3227 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3228 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3229 } 3230 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3231 3232 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3233 { 3234 if (!vcpu->sigset_active) 3235 return; 3236 3237 /* 3238 * This does a lockless modification of ->real_blocked, which is fine 3239 * because, only current can change ->real_blocked and all readers of 3240 * ->real_blocked don't care as long ->real_blocked is always a subset 3241 * of ->blocked. 3242 */ 3243 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3244 } 3245 3246 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3247 { 3248 if (!vcpu->sigset_active) 3249 return; 3250 3251 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3252 sigemptyset(¤t->real_blocked); 3253 } 3254 3255 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3256 { 3257 unsigned int old, val, grow, grow_start; 3258 3259 old = val = vcpu->halt_poll_ns; 3260 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3261 grow = READ_ONCE(halt_poll_ns_grow); 3262 if (!grow) 3263 goto out; 3264 3265 val *= grow; 3266 if (val < grow_start) 3267 val = grow_start; 3268 3269 if (val > vcpu->kvm->max_halt_poll_ns) 3270 val = vcpu->kvm->max_halt_poll_ns; 3271 3272 vcpu->halt_poll_ns = val; 3273 out: 3274 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3275 } 3276 3277 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3278 { 3279 unsigned int old, val, shrink, grow_start; 3280 3281 old = val = vcpu->halt_poll_ns; 3282 shrink = READ_ONCE(halt_poll_ns_shrink); 3283 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3284 if (shrink == 0) 3285 val = 0; 3286 else 3287 val /= shrink; 3288 3289 if (val < grow_start) 3290 val = 0; 3291 3292 vcpu->halt_poll_ns = val; 3293 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3294 } 3295 3296 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3297 { 3298 int ret = -EINTR; 3299 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3300 3301 if (kvm_arch_vcpu_runnable(vcpu)) { 3302 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3303 goto out; 3304 } 3305 if (kvm_cpu_has_pending_timer(vcpu)) 3306 goto out; 3307 if (signal_pending(current)) 3308 goto out; 3309 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3310 goto out; 3311 3312 ret = 0; 3313 out: 3314 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3315 return ret; 3316 } 3317 3318 /* 3319 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3320 * pending. This is mostly used when halting a vCPU, but may also be used 3321 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3322 */ 3323 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3324 { 3325 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3326 bool waited = false; 3327 3328 vcpu->stat.generic.blocking = 1; 3329 3330 kvm_arch_vcpu_blocking(vcpu); 3331 3332 prepare_to_rcuwait(wait); 3333 for (;;) { 3334 set_current_state(TASK_INTERRUPTIBLE); 3335 3336 if (kvm_vcpu_check_block(vcpu) < 0) 3337 break; 3338 3339 waited = true; 3340 schedule(); 3341 } 3342 finish_rcuwait(wait); 3343 3344 kvm_arch_vcpu_unblocking(vcpu); 3345 3346 vcpu->stat.generic.blocking = 0; 3347 3348 return waited; 3349 } 3350 3351 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3352 ktime_t end, bool success) 3353 { 3354 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3355 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3356 3357 ++vcpu->stat.generic.halt_attempted_poll; 3358 3359 if (success) { 3360 ++vcpu->stat.generic.halt_successful_poll; 3361 3362 if (!vcpu_valid_wakeup(vcpu)) 3363 ++vcpu->stat.generic.halt_poll_invalid; 3364 3365 stats->halt_poll_success_ns += poll_ns; 3366 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3367 } else { 3368 stats->halt_poll_fail_ns += poll_ns; 3369 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3370 } 3371 } 3372 3373 /* 3374 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3375 * polling is enabled, busy wait for a short time before blocking to avoid the 3376 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3377 * is halted. 3378 */ 3379 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3380 { 3381 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3382 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3383 ktime_t start, cur, poll_end; 3384 bool waited = false; 3385 u64 halt_ns; 3386 3387 start = cur = poll_end = ktime_get(); 3388 if (do_halt_poll) { 3389 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3390 3391 do { 3392 /* 3393 * This sets KVM_REQ_UNHALT if an interrupt 3394 * arrives. 3395 */ 3396 if (kvm_vcpu_check_block(vcpu) < 0) 3397 goto out; 3398 cpu_relax(); 3399 poll_end = cur = ktime_get(); 3400 } while (kvm_vcpu_can_poll(cur, stop)); 3401 } 3402 3403 waited = kvm_vcpu_block(vcpu); 3404 3405 cur = ktime_get(); 3406 if (waited) { 3407 vcpu->stat.generic.halt_wait_ns += 3408 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3409 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3410 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3411 } 3412 out: 3413 /* The total time the vCPU was "halted", including polling time. */ 3414 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3415 3416 /* 3417 * Note, halt-polling is considered successful so long as the vCPU was 3418 * never actually scheduled out, i.e. even if the wake event arrived 3419 * after of the halt-polling loop itself, but before the full wait. 3420 */ 3421 if (do_halt_poll) 3422 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3423 3424 if (halt_poll_allowed) { 3425 if (!vcpu_valid_wakeup(vcpu)) { 3426 shrink_halt_poll_ns(vcpu); 3427 } else if (vcpu->kvm->max_halt_poll_ns) { 3428 if (halt_ns <= vcpu->halt_poll_ns) 3429 ; 3430 /* we had a long block, shrink polling */ 3431 else if (vcpu->halt_poll_ns && 3432 halt_ns > vcpu->kvm->max_halt_poll_ns) 3433 shrink_halt_poll_ns(vcpu); 3434 /* we had a short halt and our poll time is too small */ 3435 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3436 halt_ns < vcpu->kvm->max_halt_poll_ns) 3437 grow_halt_poll_ns(vcpu); 3438 } else { 3439 vcpu->halt_poll_ns = 0; 3440 } 3441 } 3442 3443 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3444 } 3445 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3446 3447 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3448 { 3449 if (__kvm_vcpu_wake_up(vcpu)) { 3450 WRITE_ONCE(vcpu->ready, true); 3451 ++vcpu->stat.generic.halt_wakeup; 3452 return true; 3453 } 3454 3455 return false; 3456 } 3457 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3458 3459 #ifndef CONFIG_S390 3460 /* 3461 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3462 */ 3463 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3464 { 3465 int me, cpu; 3466 3467 if (kvm_vcpu_wake_up(vcpu)) 3468 return; 3469 3470 me = get_cpu(); 3471 /* 3472 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3473 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3474 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3475 * within the vCPU thread itself. 3476 */ 3477 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3478 if (vcpu->mode == IN_GUEST_MODE) 3479 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3480 goto out; 3481 } 3482 3483 /* 3484 * Note, the vCPU could get migrated to a different pCPU at any point 3485 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3486 * IPI to the previous pCPU. But, that's ok because the purpose of the 3487 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3488 * vCPU also requires it to leave IN_GUEST_MODE. 3489 */ 3490 if (kvm_arch_vcpu_should_kick(vcpu)) { 3491 cpu = READ_ONCE(vcpu->cpu); 3492 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3493 smp_send_reschedule(cpu); 3494 } 3495 out: 3496 put_cpu(); 3497 } 3498 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3499 #endif /* !CONFIG_S390 */ 3500 3501 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3502 { 3503 struct pid *pid; 3504 struct task_struct *task = NULL; 3505 int ret = 0; 3506 3507 rcu_read_lock(); 3508 pid = rcu_dereference(target->pid); 3509 if (pid) 3510 task = get_pid_task(pid, PIDTYPE_PID); 3511 rcu_read_unlock(); 3512 if (!task) 3513 return ret; 3514 ret = yield_to(task, 1); 3515 put_task_struct(task); 3516 3517 return ret; 3518 } 3519 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3520 3521 /* 3522 * Helper that checks whether a VCPU is eligible for directed yield. 3523 * Most eligible candidate to yield is decided by following heuristics: 3524 * 3525 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3526 * (preempted lock holder), indicated by @in_spin_loop. 3527 * Set at the beginning and cleared at the end of interception/PLE handler. 3528 * 3529 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3530 * chance last time (mostly it has become eligible now since we have probably 3531 * yielded to lockholder in last iteration. This is done by toggling 3532 * @dy_eligible each time a VCPU checked for eligibility.) 3533 * 3534 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3535 * to preempted lock-holder could result in wrong VCPU selection and CPU 3536 * burning. Giving priority for a potential lock-holder increases lock 3537 * progress. 3538 * 3539 * Since algorithm is based on heuristics, accessing another VCPU data without 3540 * locking does not harm. It may result in trying to yield to same VCPU, fail 3541 * and continue with next VCPU and so on. 3542 */ 3543 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3544 { 3545 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3546 bool eligible; 3547 3548 eligible = !vcpu->spin_loop.in_spin_loop || 3549 vcpu->spin_loop.dy_eligible; 3550 3551 if (vcpu->spin_loop.in_spin_loop) 3552 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3553 3554 return eligible; 3555 #else 3556 return true; 3557 #endif 3558 } 3559 3560 /* 3561 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3562 * a vcpu_load/vcpu_put pair. However, for most architectures 3563 * kvm_arch_vcpu_runnable does not require vcpu_load. 3564 */ 3565 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3566 { 3567 return kvm_arch_vcpu_runnable(vcpu); 3568 } 3569 3570 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3571 { 3572 if (kvm_arch_dy_runnable(vcpu)) 3573 return true; 3574 3575 #ifdef CONFIG_KVM_ASYNC_PF 3576 if (!list_empty_careful(&vcpu->async_pf.done)) 3577 return true; 3578 #endif 3579 3580 return false; 3581 } 3582 3583 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3584 { 3585 return false; 3586 } 3587 3588 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3589 { 3590 struct kvm *kvm = me->kvm; 3591 struct kvm_vcpu *vcpu; 3592 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3593 unsigned long i; 3594 int yielded = 0; 3595 int try = 3; 3596 int pass; 3597 3598 kvm_vcpu_set_in_spin_loop(me, true); 3599 /* 3600 * We boost the priority of a VCPU that is runnable but not 3601 * currently running, because it got preempted by something 3602 * else and called schedule in __vcpu_run. Hopefully that 3603 * VCPU is holding the lock that we need and will release it. 3604 * We approximate round-robin by starting at the last boosted VCPU. 3605 */ 3606 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3607 kvm_for_each_vcpu(i, vcpu, kvm) { 3608 if (!pass && i <= last_boosted_vcpu) { 3609 i = last_boosted_vcpu; 3610 continue; 3611 } else if (pass && i > last_boosted_vcpu) 3612 break; 3613 if (!READ_ONCE(vcpu->ready)) 3614 continue; 3615 if (vcpu == me) 3616 continue; 3617 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3618 continue; 3619 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3620 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3621 !kvm_arch_vcpu_in_kernel(vcpu)) 3622 continue; 3623 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3624 continue; 3625 3626 yielded = kvm_vcpu_yield_to(vcpu); 3627 if (yielded > 0) { 3628 kvm->last_boosted_vcpu = i; 3629 break; 3630 } else if (yielded < 0) { 3631 try--; 3632 if (!try) 3633 break; 3634 } 3635 } 3636 } 3637 kvm_vcpu_set_in_spin_loop(me, false); 3638 3639 /* Ensure vcpu is not eligible during next spinloop */ 3640 kvm_vcpu_set_dy_eligible(me, false); 3641 } 3642 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3643 3644 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3645 { 3646 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3647 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3648 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3649 kvm->dirty_ring_size / PAGE_SIZE); 3650 #else 3651 return false; 3652 #endif 3653 } 3654 3655 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3656 { 3657 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3658 struct page *page; 3659 3660 if (vmf->pgoff == 0) 3661 page = virt_to_page(vcpu->run); 3662 #ifdef CONFIG_X86 3663 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3664 page = virt_to_page(vcpu->arch.pio_data); 3665 #endif 3666 #ifdef CONFIG_KVM_MMIO 3667 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3668 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3669 #endif 3670 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3671 page = kvm_dirty_ring_get_page( 3672 &vcpu->dirty_ring, 3673 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3674 else 3675 return kvm_arch_vcpu_fault(vcpu, vmf); 3676 get_page(page); 3677 vmf->page = page; 3678 return 0; 3679 } 3680 3681 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3682 .fault = kvm_vcpu_fault, 3683 }; 3684 3685 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3686 { 3687 struct kvm_vcpu *vcpu = file->private_data; 3688 unsigned long pages = vma_pages(vma); 3689 3690 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3691 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3692 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3693 return -EINVAL; 3694 3695 vma->vm_ops = &kvm_vcpu_vm_ops; 3696 return 0; 3697 } 3698 3699 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3700 { 3701 struct kvm_vcpu *vcpu = filp->private_data; 3702 3703 kvm_put_kvm(vcpu->kvm); 3704 return 0; 3705 } 3706 3707 static const struct file_operations kvm_vcpu_fops = { 3708 .release = kvm_vcpu_release, 3709 .unlocked_ioctl = kvm_vcpu_ioctl, 3710 .mmap = kvm_vcpu_mmap, 3711 .llseek = noop_llseek, 3712 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3713 }; 3714 3715 /* 3716 * Allocates an inode for the vcpu. 3717 */ 3718 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3719 { 3720 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3721 3722 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3723 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3724 } 3725 3726 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3727 { 3728 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3729 struct dentry *debugfs_dentry; 3730 char dir_name[ITOA_MAX_LEN * 2]; 3731 3732 if (!debugfs_initialized()) 3733 return; 3734 3735 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3736 debugfs_dentry = debugfs_create_dir(dir_name, 3737 vcpu->kvm->debugfs_dentry); 3738 3739 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3740 #endif 3741 } 3742 3743 /* 3744 * Creates some virtual cpus. Good luck creating more than one. 3745 */ 3746 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3747 { 3748 int r; 3749 struct kvm_vcpu *vcpu; 3750 struct page *page; 3751 3752 if (id >= KVM_MAX_VCPU_IDS) 3753 return -EINVAL; 3754 3755 mutex_lock(&kvm->lock); 3756 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3757 mutex_unlock(&kvm->lock); 3758 return -EINVAL; 3759 } 3760 3761 kvm->created_vcpus++; 3762 mutex_unlock(&kvm->lock); 3763 3764 r = kvm_arch_vcpu_precreate(kvm, id); 3765 if (r) 3766 goto vcpu_decrement; 3767 3768 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3769 if (!vcpu) { 3770 r = -ENOMEM; 3771 goto vcpu_decrement; 3772 } 3773 3774 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3775 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3776 if (!page) { 3777 r = -ENOMEM; 3778 goto vcpu_free; 3779 } 3780 vcpu->run = page_address(page); 3781 3782 kvm_vcpu_init(vcpu, kvm, id); 3783 3784 r = kvm_arch_vcpu_create(vcpu); 3785 if (r) 3786 goto vcpu_free_run_page; 3787 3788 if (kvm->dirty_ring_size) { 3789 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3790 id, kvm->dirty_ring_size); 3791 if (r) 3792 goto arch_vcpu_destroy; 3793 } 3794 3795 mutex_lock(&kvm->lock); 3796 if (kvm_get_vcpu_by_id(kvm, id)) { 3797 r = -EEXIST; 3798 goto unlock_vcpu_destroy; 3799 } 3800 3801 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3802 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3803 BUG_ON(r == -EBUSY); 3804 if (r) 3805 goto unlock_vcpu_destroy; 3806 3807 /* Fill the stats id string for the vcpu */ 3808 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3809 task_pid_nr(current), id); 3810 3811 /* Now it's all set up, let userspace reach it */ 3812 kvm_get_kvm(kvm); 3813 r = create_vcpu_fd(vcpu); 3814 if (r < 0) { 3815 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3816 kvm_put_kvm_no_destroy(kvm); 3817 goto unlock_vcpu_destroy; 3818 } 3819 3820 /* 3821 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3822 * pointer before kvm->online_vcpu's incremented value. 3823 */ 3824 smp_wmb(); 3825 atomic_inc(&kvm->online_vcpus); 3826 3827 mutex_unlock(&kvm->lock); 3828 kvm_arch_vcpu_postcreate(vcpu); 3829 kvm_create_vcpu_debugfs(vcpu); 3830 return r; 3831 3832 unlock_vcpu_destroy: 3833 mutex_unlock(&kvm->lock); 3834 kvm_dirty_ring_free(&vcpu->dirty_ring); 3835 arch_vcpu_destroy: 3836 kvm_arch_vcpu_destroy(vcpu); 3837 vcpu_free_run_page: 3838 free_page((unsigned long)vcpu->run); 3839 vcpu_free: 3840 kmem_cache_free(kvm_vcpu_cache, vcpu); 3841 vcpu_decrement: 3842 mutex_lock(&kvm->lock); 3843 kvm->created_vcpus--; 3844 mutex_unlock(&kvm->lock); 3845 return r; 3846 } 3847 3848 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3849 { 3850 if (sigset) { 3851 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3852 vcpu->sigset_active = 1; 3853 vcpu->sigset = *sigset; 3854 } else 3855 vcpu->sigset_active = 0; 3856 return 0; 3857 } 3858 3859 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3860 size_t size, loff_t *offset) 3861 { 3862 struct kvm_vcpu *vcpu = file->private_data; 3863 3864 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3865 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3866 sizeof(vcpu->stat), user_buffer, size, offset); 3867 } 3868 3869 static const struct file_operations kvm_vcpu_stats_fops = { 3870 .read = kvm_vcpu_stats_read, 3871 .llseek = noop_llseek, 3872 }; 3873 3874 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3875 { 3876 int fd; 3877 struct file *file; 3878 char name[15 + ITOA_MAX_LEN + 1]; 3879 3880 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3881 3882 fd = get_unused_fd_flags(O_CLOEXEC); 3883 if (fd < 0) 3884 return fd; 3885 3886 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3887 if (IS_ERR(file)) { 3888 put_unused_fd(fd); 3889 return PTR_ERR(file); 3890 } 3891 file->f_mode |= FMODE_PREAD; 3892 fd_install(fd, file); 3893 3894 return fd; 3895 } 3896 3897 static long kvm_vcpu_ioctl(struct file *filp, 3898 unsigned int ioctl, unsigned long arg) 3899 { 3900 struct kvm_vcpu *vcpu = filp->private_data; 3901 void __user *argp = (void __user *)arg; 3902 int r; 3903 struct kvm_fpu *fpu = NULL; 3904 struct kvm_sregs *kvm_sregs = NULL; 3905 3906 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3907 return -EIO; 3908 3909 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3910 return -EINVAL; 3911 3912 /* 3913 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3914 * execution; mutex_lock() would break them. 3915 */ 3916 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3917 if (r != -ENOIOCTLCMD) 3918 return r; 3919 3920 if (mutex_lock_killable(&vcpu->mutex)) 3921 return -EINTR; 3922 switch (ioctl) { 3923 case KVM_RUN: { 3924 struct pid *oldpid; 3925 r = -EINVAL; 3926 if (arg) 3927 goto out; 3928 oldpid = rcu_access_pointer(vcpu->pid); 3929 if (unlikely(oldpid != task_pid(current))) { 3930 /* The thread running this VCPU changed. */ 3931 struct pid *newpid; 3932 3933 r = kvm_arch_vcpu_run_pid_change(vcpu); 3934 if (r) 3935 break; 3936 3937 newpid = get_task_pid(current, PIDTYPE_PID); 3938 rcu_assign_pointer(vcpu->pid, newpid); 3939 if (oldpid) 3940 synchronize_rcu(); 3941 put_pid(oldpid); 3942 } 3943 r = kvm_arch_vcpu_ioctl_run(vcpu); 3944 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3945 break; 3946 } 3947 case KVM_GET_REGS: { 3948 struct kvm_regs *kvm_regs; 3949 3950 r = -ENOMEM; 3951 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3952 if (!kvm_regs) 3953 goto out; 3954 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3955 if (r) 3956 goto out_free1; 3957 r = -EFAULT; 3958 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3959 goto out_free1; 3960 r = 0; 3961 out_free1: 3962 kfree(kvm_regs); 3963 break; 3964 } 3965 case KVM_SET_REGS: { 3966 struct kvm_regs *kvm_regs; 3967 3968 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3969 if (IS_ERR(kvm_regs)) { 3970 r = PTR_ERR(kvm_regs); 3971 goto out; 3972 } 3973 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3974 kfree(kvm_regs); 3975 break; 3976 } 3977 case KVM_GET_SREGS: { 3978 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3979 GFP_KERNEL_ACCOUNT); 3980 r = -ENOMEM; 3981 if (!kvm_sregs) 3982 goto out; 3983 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3984 if (r) 3985 goto out; 3986 r = -EFAULT; 3987 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3988 goto out; 3989 r = 0; 3990 break; 3991 } 3992 case KVM_SET_SREGS: { 3993 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3994 if (IS_ERR(kvm_sregs)) { 3995 r = PTR_ERR(kvm_sregs); 3996 kvm_sregs = NULL; 3997 goto out; 3998 } 3999 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4000 break; 4001 } 4002 case KVM_GET_MP_STATE: { 4003 struct kvm_mp_state mp_state; 4004 4005 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4006 if (r) 4007 goto out; 4008 r = -EFAULT; 4009 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4010 goto out; 4011 r = 0; 4012 break; 4013 } 4014 case KVM_SET_MP_STATE: { 4015 struct kvm_mp_state mp_state; 4016 4017 r = -EFAULT; 4018 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4019 goto out; 4020 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4021 break; 4022 } 4023 case KVM_TRANSLATE: { 4024 struct kvm_translation tr; 4025 4026 r = -EFAULT; 4027 if (copy_from_user(&tr, argp, sizeof(tr))) 4028 goto out; 4029 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4030 if (r) 4031 goto out; 4032 r = -EFAULT; 4033 if (copy_to_user(argp, &tr, sizeof(tr))) 4034 goto out; 4035 r = 0; 4036 break; 4037 } 4038 case KVM_SET_GUEST_DEBUG: { 4039 struct kvm_guest_debug dbg; 4040 4041 r = -EFAULT; 4042 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4043 goto out; 4044 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4045 break; 4046 } 4047 case KVM_SET_SIGNAL_MASK: { 4048 struct kvm_signal_mask __user *sigmask_arg = argp; 4049 struct kvm_signal_mask kvm_sigmask; 4050 sigset_t sigset, *p; 4051 4052 p = NULL; 4053 if (argp) { 4054 r = -EFAULT; 4055 if (copy_from_user(&kvm_sigmask, argp, 4056 sizeof(kvm_sigmask))) 4057 goto out; 4058 r = -EINVAL; 4059 if (kvm_sigmask.len != sizeof(sigset)) 4060 goto out; 4061 r = -EFAULT; 4062 if (copy_from_user(&sigset, sigmask_arg->sigset, 4063 sizeof(sigset))) 4064 goto out; 4065 p = &sigset; 4066 } 4067 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4068 break; 4069 } 4070 case KVM_GET_FPU: { 4071 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4072 r = -ENOMEM; 4073 if (!fpu) 4074 goto out; 4075 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4076 if (r) 4077 goto out; 4078 r = -EFAULT; 4079 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4080 goto out; 4081 r = 0; 4082 break; 4083 } 4084 case KVM_SET_FPU: { 4085 fpu = memdup_user(argp, sizeof(*fpu)); 4086 if (IS_ERR(fpu)) { 4087 r = PTR_ERR(fpu); 4088 fpu = NULL; 4089 goto out; 4090 } 4091 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4092 break; 4093 } 4094 case KVM_GET_STATS_FD: { 4095 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4096 break; 4097 } 4098 default: 4099 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4100 } 4101 out: 4102 mutex_unlock(&vcpu->mutex); 4103 kfree(fpu); 4104 kfree(kvm_sregs); 4105 return r; 4106 } 4107 4108 #ifdef CONFIG_KVM_COMPAT 4109 static long kvm_vcpu_compat_ioctl(struct file *filp, 4110 unsigned int ioctl, unsigned long arg) 4111 { 4112 struct kvm_vcpu *vcpu = filp->private_data; 4113 void __user *argp = compat_ptr(arg); 4114 int r; 4115 4116 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4117 return -EIO; 4118 4119 switch (ioctl) { 4120 case KVM_SET_SIGNAL_MASK: { 4121 struct kvm_signal_mask __user *sigmask_arg = argp; 4122 struct kvm_signal_mask kvm_sigmask; 4123 sigset_t sigset; 4124 4125 if (argp) { 4126 r = -EFAULT; 4127 if (copy_from_user(&kvm_sigmask, argp, 4128 sizeof(kvm_sigmask))) 4129 goto out; 4130 r = -EINVAL; 4131 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4132 goto out; 4133 r = -EFAULT; 4134 if (get_compat_sigset(&sigset, 4135 (compat_sigset_t __user *)sigmask_arg->sigset)) 4136 goto out; 4137 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4138 } else 4139 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4140 break; 4141 } 4142 default: 4143 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4144 } 4145 4146 out: 4147 return r; 4148 } 4149 #endif 4150 4151 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4152 { 4153 struct kvm_device *dev = filp->private_data; 4154 4155 if (dev->ops->mmap) 4156 return dev->ops->mmap(dev, vma); 4157 4158 return -ENODEV; 4159 } 4160 4161 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4162 int (*accessor)(struct kvm_device *dev, 4163 struct kvm_device_attr *attr), 4164 unsigned long arg) 4165 { 4166 struct kvm_device_attr attr; 4167 4168 if (!accessor) 4169 return -EPERM; 4170 4171 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4172 return -EFAULT; 4173 4174 return accessor(dev, &attr); 4175 } 4176 4177 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4178 unsigned long arg) 4179 { 4180 struct kvm_device *dev = filp->private_data; 4181 4182 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4183 return -EIO; 4184 4185 switch (ioctl) { 4186 case KVM_SET_DEVICE_ATTR: 4187 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4188 case KVM_GET_DEVICE_ATTR: 4189 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4190 case KVM_HAS_DEVICE_ATTR: 4191 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4192 default: 4193 if (dev->ops->ioctl) 4194 return dev->ops->ioctl(dev, ioctl, arg); 4195 4196 return -ENOTTY; 4197 } 4198 } 4199 4200 static int kvm_device_release(struct inode *inode, struct file *filp) 4201 { 4202 struct kvm_device *dev = filp->private_data; 4203 struct kvm *kvm = dev->kvm; 4204 4205 if (dev->ops->release) { 4206 mutex_lock(&kvm->lock); 4207 list_del(&dev->vm_node); 4208 dev->ops->release(dev); 4209 mutex_unlock(&kvm->lock); 4210 } 4211 4212 kvm_put_kvm(kvm); 4213 return 0; 4214 } 4215 4216 static const struct file_operations kvm_device_fops = { 4217 .unlocked_ioctl = kvm_device_ioctl, 4218 .release = kvm_device_release, 4219 KVM_COMPAT(kvm_device_ioctl), 4220 .mmap = kvm_device_mmap, 4221 }; 4222 4223 struct kvm_device *kvm_device_from_filp(struct file *filp) 4224 { 4225 if (filp->f_op != &kvm_device_fops) 4226 return NULL; 4227 4228 return filp->private_data; 4229 } 4230 4231 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4232 #ifdef CONFIG_KVM_MPIC 4233 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4234 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4235 #endif 4236 }; 4237 4238 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4239 { 4240 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4241 return -ENOSPC; 4242 4243 if (kvm_device_ops_table[type] != NULL) 4244 return -EEXIST; 4245 4246 kvm_device_ops_table[type] = ops; 4247 return 0; 4248 } 4249 4250 void kvm_unregister_device_ops(u32 type) 4251 { 4252 if (kvm_device_ops_table[type] != NULL) 4253 kvm_device_ops_table[type] = NULL; 4254 } 4255 4256 static int kvm_ioctl_create_device(struct kvm *kvm, 4257 struct kvm_create_device *cd) 4258 { 4259 const struct kvm_device_ops *ops = NULL; 4260 struct kvm_device *dev; 4261 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4262 int type; 4263 int ret; 4264 4265 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4266 return -ENODEV; 4267 4268 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4269 ops = kvm_device_ops_table[type]; 4270 if (ops == NULL) 4271 return -ENODEV; 4272 4273 if (test) 4274 return 0; 4275 4276 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4277 if (!dev) 4278 return -ENOMEM; 4279 4280 dev->ops = ops; 4281 dev->kvm = kvm; 4282 4283 mutex_lock(&kvm->lock); 4284 ret = ops->create(dev, type); 4285 if (ret < 0) { 4286 mutex_unlock(&kvm->lock); 4287 kfree(dev); 4288 return ret; 4289 } 4290 list_add(&dev->vm_node, &kvm->devices); 4291 mutex_unlock(&kvm->lock); 4292 4293 if (ops->init) 4294 ops->init(dev); 4295 4296 kvm_get_kvm(kvm); 4297 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4298 if (ret < 0) { 4299 kvm_put_kvm_no_destroy(kvm); 4300 mutex_lock(&kvm->lock); 4301 list_del(&dev->vm_node); 4302 mutex_unlock(&kvm->lock); 4303 ops->destroy(dev); 4304 return ret; 4305 } 4306 4307 cd->fd = ret; 4308 return 0; 4309 } 4310 4311 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4312 { 4313 switch (arg) { 4314 case KVM_CAP_USER_MEMORY: 4315 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4316 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4317 case KVM_CAP_INTERNAL_ERROR_DATA: 4318 #ifdef CONFIG_HAVE_KVM_MSI 4319 case KVM_CAP_SIGNAL_MSI: 4320 #endif 4321 #ifdef CONFIG_HAVE_KVM_IRQFD 4322 case KVM_CAP_IRQFD: 4323 case KVM_CAP_IRQFD_RESAMPLE: 4324 #endif 4325 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4326 case KVM_CAP_CHECK_EXTENSION_VM: 4327 case KVM_CAP_ENABLE_CAP_VM: 4328 case KVM_CAP_HALT_POLL: 4329 return 1; 4330 #ifdef CONFIG_KVM_MMIO 4331 case KVM_CAP_COALESCED_MMIO: 4332 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4333 case KVM_CAP_COALESCED_PIO: 4334 return 1; 4335 #endif 4336 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4337 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4338 return KVM_DIRTY_LOG_MANUAL_CAPS; 4339 #endif 4340 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4341 case KVM_CAP_IRQ_ROUTING: 4342 return KVM_MAX_IRQ_ROUTES; 4343 #endif 4344 #if KVM_ADDRESS_SPACE_NUM > 1 4345 case KVM_CAP_MULTI_ADDRESS_SPACE: 4346 return KVM_ADDRESS_SPACE_NUM; 4347 #endif 4348 case KVM_CAP_NR_MEMSLOTS: 4349 return KVM_USER_MEM_SLOTS; 4350 case KVM_CAP_DIRTY_LOG_RING: 4351 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4352 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4353 #else 4354 return 0; 4355 #endif 4356 case KVM_CAP_BINARY_STATS_FD: 4357 case KVM_CAP_SYSTEM_EVENT_DATA: 4358 return 1; 4359 default: 4360 break; 4361 } 4362 return kvm_vm_ioctl_check_extension(kvm, arg); 4363 } 4364 4365 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4366 { 4367 int r; 4368 4369 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4370 return -EINVAL; 4371 4372 /* the size should be power of 2 */ 4373 if (!size || (size & (size - 1))) 4374 return -EINVAL; 4375 4376 /* Should be bigger to keep the reserved entries, or a page */ 4377 if (size < kvm_dirty_ring_get_rsvd_entries() * 4378 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4379 return -EINVAL; 4380 4381 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4382 sizeof(struct kvm_dirty_gfn)) 4383 return -E2BIG; 4384 4385 /* We only allow it to set once */ 4386 if (kvm->dirty_ring_size) 4387 return -EINVAL; 4388 4389 mutex_lock(&kvm->lock); 4390 4391 if (kvm->created_vcpus) { 4392 /* We don't allow to change this value after vcpu created */ 4393 r = -EINVAL; 4394 } else { 4395 kvm->dirty_ring_size = size; 4396 r = 0; 4397 } 4398 4399 mutex_unlock(&kvm->lock); 4400 return r; 4401 } 4402 4403 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4404 { 4405 unsigned long i; 4406 struct kvm_vcpu *vcpu; 4407 int cleared = 0; 4408 4409 if (!kvm->dirty_ring_size) 4410 return -EINVAL; 4411 4412 mutex_lock(&kvm->slots_lock); 4413 4414 kvm_for_each_vcpu(i, vcpu, kvm) 4415 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4416 4417 mutex_unlock(&kvm->slots_lock); 4418 4419 if (cleared) 4420 kvm_flush_remote_tlbs(kvm); 4421 4422 return cleared; 4423 } 4424 4425 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4426 struct kvm_enable_cap *cap) 4427 { 4428 return -EINVAL; 4429 } 4430 4431 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4432 struct kvm_enable_cap *cap) 4433 { 4434 switch (cap->cap) { 4435 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4436 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4437 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4438 4439 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4440 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4441 4442 if (cap->flags || (cap->args[0] & ~allowed_options)) 4443 return -EINVAL; 4444 kvm->manual_dirty_log_protect = cap->args[0]; 4445 return 0; 4446 } 4447 #endif 4448 case KVM_CAP_HALT_POLL: { 4449 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4450 return -EINVAL; 4451 4452 kvm->max_halt_poll_ns = cap->args[0]; 4453 return 0; 4454 } 4455 case KVM_CAP_DIRTY_LOG_RING: 4456 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4457 default: 4458 return kvm_vm_ioctl_enable_cap(kvm, cap); 4459 } 4460 } 4461 4462 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4463 size_t size, loff_t *offset) 4464 { 4465 struct kvm *kvm = file->private_data; 4466 4467 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4468 &kvm_vm_stats_desc[0], &kvm->stat, 4469 sizeof(kvm->stat), user_buffer, size, offset); 4470 } 4471 4472 static const struct file_operations kvm_vm_stats_fops = { 4473 .read = kvm_vm_stats_read, 4474 .llseek = noop_llseek, 4475 }; 4476 4477 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4478 { 4479 int fd; 4480 struct file *file; 4481 4482 fd = get_unused_fd_flags(O_CLOEXEC); 4483 if (fd < 0) 4484 return fd; 4485 4486 file = anon_inode_getfile("kvm-vm-stats", 4487 &kvm_vm_stats_fops, kvm, O_RDONLY); 4488 if (IS_ERR(file)) { 4489 put_unused_fd(fd); 4490 return PTR_ERR(file); 4491 } 4492 file->f_mode |= FMODE_PREAD; 4493 fd_install(fd, file); 4494 4495 return fd; 4496 } 4497 4498 static long kvm_vm_ioctl(struct file *filp, 4499 unsigned int ioctl, unsigned long arg) 4500 { 4501 struct kvm *kvm = filp->private_data; 4502 void __user *argp = (void __user *)arg; 4503 int r; 4504 4505 if (kvm->mm != current->mm || kvm->vm_dead) 4506 return -EIO; 4507 switch (ioctl) { 4508 case KVM_CREATE_VCPU: 4509 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4510 break; 4511 case KVM_ENABLE_CAP: { 4512 struct kvm_enable_cap cap; 4513 4514 r = -EFAULT; 4515 if (copy_from_user(&cap, argp, sizeof(cap))) 4516 goto out; 4517 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4518 break; 4519 } 4520 case KVM_SET_USER_MEMORY_REGION: { 4521 struct kvm_userspace_memory_region kvm_userspace_mem; 4522 4523 r = -EFAULT; 4524 if (copy_from_user(&kvm_userspace_mem, argp, 4525 sizeof(kvm_userspace_mem))) 4526 goto out; 4527 4528 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4529 break; 4530 } 4531 case KVM_GET_DIRTY_LOG: { 4532 struct kvm_dirty_log log; 4533 4534 r = -EFAULT; 4535 if (copy_from_user(&log, argp, sizeof(log))) 4536 goto out; 4537 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4538 break; 4539 } 4540 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4541 case KVM_CLEAR_DIRTY_LOG: { 4542 struct kvm_clear_dirty_log log; 4543 4544 r = -EFAULT; 4545 if (copy_from_user(&log, argp, sizeof(log))) 4546 goto out; 4547 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4548 break; 4549 } 4550 #endif 4551 #ifdef CONFIG_KVM_MMIO 4552 case KVM_REGISTER_COALESCED_MMIO: { 4553 struct kvm_coalesced_mmio_zone zone; 4554 4555 r = -EFAULT; 4556 if (copy_from_user(&zone, argp, sizeof(zone))) 4557 goto out; 4558 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4559 break; 4560 } 4561 case KVM_UNREGISTER_COALESCED_MMIO: { 4562 struct kvm_coalesced_mmio_zone zone; 4563 4564 r = -EFAULT; 4565 if (copy_from_user(&zone, argp, sizeof(zone))) 4566 goto out; 4567 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4568 break; 4569 } 4570 #endif 4571 case KVM_IRQFD: { 4572 struct kvm_irqfd data; 4573 4574 r = -EFAULT; 4575 if (copy_from_user(&data, argp, sizeof(data))) 4576 goto out; 4577 r = kvm_irqfd(kvm, &data); 4578 break; 4579 } 4580 case KVM_IOEVENTFD: { 4581 struct kvm_ioeventfd data; 4582 4583 r = -EFAULT; 4584 if (copy_from_user(&data, argp, sizeof(data))) 4585 goto out; 4586 r = kvm_ioeventfd(kvm, &data); 4587 break; 4588 } 4589 #ifdef CONFIG_HAVE_KVM_MSI 4590 case KVM_SIGNAL_MSI: { 4591 struct kvm_msi msi; 4592 4593 r = -EFAULT; 4594 if (copy_from_user(&msi, argp, sizeof(msi))) 4595 goto out; 4596 r = kvm_send_userspace_msi(kvm, &msi); 4597 break; 4598 } 4599 #endif 4600 #ifdef __KVM_HAVE_IRQ_LINE 4601 case KVM_IRQ_LINE_STATUS: 4602 case KVM_IRQ_LINE: { 4603 struct kvm_irq_level irq_event; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4607 goto out; 4608 4609 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4610 ioctl == KVM_IRQ_LINE_STATUS); 4611 if (r) 4612 goto out; 4613 4614 r = -EFAULT; 4615 if (ioctl == KVM_IRQ_LINE_STATUS) { 4616 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4617 goto out; 4618 } 4619 4620 r = 0; 4621 break; 4622 } 4623 #endif 4624 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4625 case KVM_SET_GSI_ROUTING: { 4626 struct kvm_irq_routing routing; 4627 struct kvm_irq_routing __user *urouting; 4628 struct kvm_irq_routing_entry *entries = NULL; 4629 4630 r = -EFAULT; 4631 if (copy_from_user(&routing, argp, sizeof(routing))) 4632 goto out; 4633 r = -EINVAL; 4634 if (!kvm_arch_can_set_irq_routing(kvm)) 4635 goto out; 4636 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4637 goto out; 4638 if (routing.flags) 4639 goto out; 4640 if (routing.nr) { 4641 urouting = argp; 4642 entries = vmemdup_user(urouting->entries, 4643 array_size(sizeof(*entries), 4644 routing.nr)); 4645 if (IS_ERR(entries)) { 4646 r = PTR_ERR(entries); 4647 goto out; 4648 } 4649 } 4650 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4651 routing.flags); 4652 kvfree(entries); 4653 break; 4654 } 4655 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4656 case KVM_CREATE_DEVICE: { 4657 struct kvm_create_device cd; 4658 4659 r = -EFAULT; 4660 if (copy_from_user(&cd, argp, sizeof(cd))) 4661 goto out; 4662 4663 r = kvm_ioctl_create_device(kvm, &cd); 4664 if (r) 4665 goto out; 4666 4667 r = -EFAULT; 4668 if (copy_to_user(argp, &cd, sizeof(cd))) 4669 goto out; 4670 4671 r = 0; 4672 break; 4673 } 4674 case KVM_CHECK_EXTENSION: 4675 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4676 break; 4677 case KVM_RESET_DIRTY_RINGS: 4678 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4679 break; 4680 case KVM_GET_STATS_FD: 4681 r = kvm_vm_ioctl_get_stats_fd(kvm); 4682 break; 4683 default: 4684 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4685 } 4686 out: 4687 return r; 4688 } 4689 4690 #ifdef CONFIG_KVM_COMPAT 4691 struct compat_kvm_dirty_log { 4692 __u32 slot; 4693 __u32 padding1; 4694 union { 4695 compat_uptr_t dirty_bitmap; /* one bit per page */ 4696 __u64 padding2; 4697 }; 4698 }; 4699 4700 struct compat_kvm_clear_dirty_log { 4701 __u32 slot; 4702 __u32 num_pages; 4703 __u64 first_page; 4704 union { 4705 compat_uptr_t dirty_bitmap; /* one bit per page */ 4706 __u64 padding2; 4707 }; 4708 }; 4709 4710 static long kvm_vm_compat_ioctl(struct file *filp, 4711 unsigned int ioctl, unsigned long arg) 4712 { 4713 struct kvm *kvm = filp->private_data; 4714 int r; 4715 4716 if (kvm->mm != current->mm || kvm->vm_dead) 4717 return -EIO; 4718 switch (ioctl) { 4719 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4720 case KVM_CLEAR_DIRTY_LOG: { 4721 struct compat_kvm_clear_dirty_log compat_log; 4722 struct kvm_clear_dirty_log log; 4723 4724 if (copy_from_user(&compat_log, (void __user *)arg, 4725 sizeof(compat_log))) 4726 return -EFAULT; 4727 log.slot = compat_log.slot; 4728 log.num_pages = compat_log.num_pages; 4729 log.first_page = compat_log.first_page; 4730 log.padding2 = compat_log.padding2; 4731 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4732 4733 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4734 break; 4735 } 4736 #endif 4737 case KVM_GET_DIRTY_LOG: { 4738 struct compat_kvm_dirty_log compat_log; 4739 struct kvm_dirty_log log; 4740 4741 if (copy_from_user(&compat_log, (void __user *)arg, 4742 sizeof(compat_log))) 4743 return -EFAULT; 4744 log.slot = compat_log.slot; 4745 log.padding1 = compat_log.padding1; 4746 log.padding2 = compat_log.padding2; 4747 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4748 4749 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4750 break; 4751 } 4752 default: 4753 r = kvm_vm_ioctl(filp, ioctl, arg); 4754 } 4755 return r; 4756 } 4757 #endif 4758 4759 static const struct file_operations kvm_vm_fops = { 4760 .release = kvm_vm_release, 4761 .unlocked_ioctl = kvm_vm_ioctl, 4762 .llseek = noop_llseek, 4763 KVM_COMPAT(kvm_vm_compat_ioctl), 4764 }; 4765 4766 bool file_is_kvm(struct file *file) 4767 { 4768 return file && file->f_op == &kvm_vm_fops; 4769 } 4770 EXPORT_SYMBOL_GPL(file_is_kvm); 4771 4772 static int kvm_dev_ioctl_create_vm(unsigned long type) 4773 { 4774 int r; 4775 struct kvm *kvm; 4776 struct file *file; 4777 4778 kvm = kvm_create_vm(type); 4779 if (IS_ERR(kvm)) 4780 return PTR_ERR(kvm); 4781 #ifdef CONFIG_KVM_MMIO 4782 r = kvm_coalesced_mmio_init(kvm); 4783 if (r < 0) 4784 goto put_kvm; 4785 #endif 4786 r = get_unused_fd_flags(O_CLOEXEC); 4787 if (r < 0) 4788 goto put_kvm; 4789 4790 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4791 "kvm-%d", task_pid_nr(current)); 4792 4793 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4794 if (IS_ERR(file)) { 4795 put_unused_fd(r); 4796 r = PTR_ERR(file); 4797 goto put_kvm; 4798 } 4799 4800 /* 4801 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4802 * already set, with ->release() being kvm_vm_release(). In error 4803 * cases it will be called by the final fput(file) and will take 4804 * care of doing kvm_put_kvm(kvm). 4805 */ 4806 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4807 put_unused_fd(r); 4808 fput(file); 4809 return -ENOMEM; 4810 } 4811 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4812 4813 fd_install(r, file); 4814 return r; 4815 4816 put_kvm: 4817 kvm_put_kvm(kvm); 4818 return r; 4819 } 4820 4821 static long kvm_dev_ioctl(struct file *filp, 4822 unsigned int ioctl, unsigned long arg) 4823 { 4824 long r = -EINVAL; 4825 4826 switch (ioctl) { 4827 case KVM_GET_API_VERSION: 4828 if (arg) 4829 goto out; 4830 r = KVM_API_VERSION; 4831 break; 4832 case KVM_CREATE_VM: 4833 r = kvm_dev_ioctl_create_vm(arg); 4834 break; 4835 case KVM_CHECK_EXTENSION: 4836 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4837 break; 4838 case KVM_GET_VCPU_MMAP_SIZE: 4839 if (arg) 4840 goto out; 4841 r = PAGE_SIZE; /* struct kvm_run */ 4842 #ifdef CONFIG_X86 4843 r += PAGE_SIZE; /* pio data page */ 4844 #endif 4845 #ifdef CONFIG_KVM_MMIO 4846 r += PAGE_SIZE; /* coalesced mmio ring page */ 4847 #endif 4848 break; 4849 case KVM_TRACE_ENABLE: 4850 case KVM_TRACE_PAUSE: 4851 case KVM_TRACE_DISABLE: 4852 r = -EOPNOTSUPP; 4853 break; 4854 default: 4855 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4856 } 4857 out: 4858 return r; 4859 } 4860 4861 static struct file_operations kvm_chardev_ops = { 4862 .unlocked_ioctl = kvm_dev_ioctl, 4863 .llseek = noop_llseek, 4864 KVM_COMPAT(kvm_dev_ioctl), 4865 }; 4866 4867 static struct miscdevice kvm_dev = { 4868 KVM_MINOR, 4869 "kvm", 4870 &kvm_chardev_ops, 4871 }; 4872 4873 static void hardware_enable_nolock(void *junk) 4874 { 4875 int cpu = raw_smp_processor_id(); 4876 int r; 4877 4878 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4879 return; 4880 4881 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4882 4883 r = kvm_arch_hardware_enable(); 4884 4885 if (r) { 4886 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4887 atomic_inc(&hardware_enable_failed); 4888 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4889 } 4890 } 4891 4892 static int kvm_starting_cpu(unsigned int cpu) 4893 { 4894 raw_spin_lock(&kvm_count_lock); 4895 if (kvm_usage_count) 4896 hardware_enable_nolock(NULL); 4897 raw_spin_unlock(&kvm_count_lock); 4898 return 0; 4899 } 4900 4901 static void hardware_disable_nolock(void *junk) 4902 { 4903 int cpu = raw_smp_processor_id(); 4904 4905 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4906 return; 4907 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4908 kvm_arch_hardware_disable(); 4909 } 4910 4911 static int kvm_dying_cpu(unsigned int cpu) 4912 { 4913 raw_spin_lock(&kvm_count_lock); 4914 if (kvm_usage_count) 4915 hardware_disable_nolock(NULL); 4916 raw_spin_unlock(&kvm_count_lock); 4917 return 0; 4918 } 4919 4920 static void hardware_disable_all_nolock(void) 4921 { 4922 BUG_ON(!kvm_usage_count); 4923 4924 kvm_usage_count--; 4925 if (!kvm_usage_count) 4926 on_each_cpu(hardware_disable_nolock, NULL, 1); 4927 } 4928 4929 static void hardware_disable_all(void) 4930 { 4931 raw_spin_lock(&kvm_count_lock); 4932 hardware_disable_all_nolock(); 4933 raw_spin_unlock(&kvm_count_lock); 4934 } 4935 4936 static int hardware_enable_all(void) 4937 { 4938 int r = 0; 4939 4940 raw_spin_lock(&kvm_count_lock); 4941 4942 kvm_usage_count++; 4943 if (kvm_usage_count == 1) { 4944 atomic_set(&hardware_enable_failed, 0); 4945 on_each_cpu(hardware_enable_nolock, NULL, 1); 4946 4947 if (atomic_read(&hardware_enable_failed)) { 4948 hardware_disable_all_nolock(); 4949 r = -EBUSY; 4950 } 4951 } 4952 4953 raw_spin_unlock(&kvm_count_lock); 4954 4955 return r; 4956 } 4957 4958 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4959 void *v) 4960 { 4961 /* 4962 * Some (well, at least mine) BIOSes hang on reboot if 4963 * in vmx root mode. 4964 * 4965 * And Intel TXT required VMX off for all cpu when system shutdown. 4966 */ 4967 pr_info("kvm: exiting hardware virtualization\n"); 4968 kvm_rebooting = true; 4969 on_each_cpu(hardware_disable_nolock, NULL, 1); 4970 return NOTIFY_OK; 4971 } 4972 4973 static struct notifier_block kvm_reboot_notifier = { 4974 .notifier_call = kvm_reboot, 4975 .priority = 0, 4976 }; 4977 4978 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4979 { 4980 int i; 4981 4982 for (i = 0; i < bus->dev_count; i++) { 4983 struct kvm_io_device *pos = bus->range[i].dev; 4984 4985 kvm_iodevice_destructor(pos); 4986 } 4987 kfree(bus); 4988 } 4989 4990 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4991 const struct kvm_io_range *r2) 4992 { 4993 gpa_t addr1 = r1->addr; 4994 gpa_t addr2 = r2->addr; 4995 4996 if (addr1 < addr2) 4997 return -1; 4998 4999 /* If r2->len == 0, match the exact address. If r2->len != 0, 5000 * accept any overlapping write. Any order is acceptable for 5001 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5002 * we process all of them. 5003 */ 5004 if (r2->len) { 5005 addr1 += r1->len; 5006 addr2 += r2->len; 5007 } 5008 5009 if (addr1 > addr2) 5010 return 1; 5011 5012 return 0; 5013 } 5014 5015 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5016 { 5017 return kvm_io_bus_cmp(p1, p2); 5018 } 5019 5020 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5021 gpa_t addr, int len) 5022 { 5023 struct kvm_io_range *range, key; 5024 int off; 5025 5026 key = (struct kvm_io_range) { 5027 .addr = addr, 5028 .len = len, 5029 }; 5030 5031 range = bsearch(&key, bus->range, bus->dev_count, 5032 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5033 if (range == NULL) 5034 return -ENOENT; 5035 5036 off = range - bus->range; 5037 5038 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5039 off--; 5040 5041 return off; 5042 } 5043 5044 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5045 struct kvm_io_range *range, const void *val) 5046 { 5047 int idx; 5048 5049 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5050 if (idx < 0) 5051 return -EOPNOTSUPP; 5052 5053 while (idx < bus->dev_count && 5054 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5055 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5056 range->len, val)) 5057 return idx; 5058 idx++; 5059 } 5060 5061 return -EOPNOTSUPP; 5062 } 5063 5064 /* kvm_io_bus_write - called under kvm->slots_lock */ 5065 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5066 int len, const void *val) 5067 { 5068 struct kvm_io_bus *bus; 5069 struct kvm_io_range range; 5070 int r; 5071 5072 range = (struct kvm_io_range) { 5073 .addr = addr, 5074 .len = len, 5075 }; 5076 5077 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5078 if (!bus) 5079 return -ENOMEM; 5080 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5081 return r < 0 ? r : 0; 5082 } 5083 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5084 5085 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5086 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5087 gpa_t addr, int len, const void *val, long cookie) 5088 { 5089 struct kvm_io_bus *bus; 5090 struct kvm_io_range range; 5091 5092 range = (struct kvm_io_range) { 5093 .addr = addr, 5094 .len = len, 5095 }; 5096 5097 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5098 if (!bus) 5099 return -ENOMEM; 5100 5101 /* First try the device referenced by cookie. */ 5102 if ((cookie >= 0) && (cookie < bus->dev_count) && 5103 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5104 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5105 val)) 5106 return cookie; 5107 5108 /* 5109 * cookie contained garbage; fall back to search and return the 5110 * correct cookie value. 5111 */ 5112 return __kvm_io_bus_write(vcpu, bus, &range, val); 5113 } 5114 5115 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5116 struct kvm_io_range *range, void *val) 5117 { 5118 int idx; 5119 5120 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5121 if (idx < 0) 5122 return -EOPNOTSUPP; 5123 5124 while (idx < bus->dev_count && 5125 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5126 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5127 range->len, val)) 5128 return idx; 5129 idx++; 5130 } 5131 5132 return -EOPNOTSUPP; 5133 } 5134 5135 /* kvm_io_bus_read - called under kvm->slots_lock */ 5136 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5137 int len, void *val) 5138 { 5139 struct kvm_io_bus *bus; 5140 struct kvm_io_range range; 5141 int r; 5142 5143 range = (struct kvm_io_range) { 5144 .addr = addr, 5145 .len = len, 5146 }; 5147 5148 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5149 if (!bus) 5150 return -ENOMEM; 5151 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5152 return r < 0 ? r : 0; 5153 } 5154 5155 /* Caller must hold slots_lock. */ 5156 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5157 int len, struct kvm_io_device *dev) 5158 { 5159 int i; 5160 struct kvm_io_bus *new_bus, *bus; 5161 struct kvm_io_range range; 5162 5163 bus = kvm_get_bus(kvm, bus_idx); 5164 if (!bus) 5165 return -ENOMEM; 5166 5167 /* exclude ioeventfd which is limited by maximum fd */ 5168 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5169 return -ENOSPC; 5170 5171 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5172 GFP_KERNEL_ACCOUNT); 5173 if (!new_bus) 5174 return -ENOMEM; 5175 5176 range = (struct kvm_io_range) { 5177 .addr = addr, 5178 .len = len, 5179 .dev = dev, 5180 }; 5181 5182 for (i = 0; i < bus->dev_count; i++) 5183 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5184 break; 5185 5186 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5187 new_bus->dev_count++; 5188 new_bus->range[i] = range; 5189 memcpy(new_bus->range + i + 1, bus->range + i, 5190 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5191 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5192 synchronize_srcu_expedited(&kvm->srcu); 5193 kfree(bus); 5194 5195 return 0; 5196 } 5197 5198 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5199 struct kvm_io_device *dev) 5200 { 5201 int i, j; 5202 struct kvm_io_bus *new_bus, *bus; 5203 5204 lockdep_assert_held(&kvm->slots_lock); 5205 5206 bus = kvm_get_bus(kvm, bus_idx); 5207 if (!bus) 5208 return 0; 5209 5210 for (i = 0; i < bus->dev_count; i++) { 5211 if (bus->range[i].dev == dev) { 5212 break; 5213 } 5214 } 5215 5216 if (i == bus->dev_count) 5217 return 0; 5218 5219 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5220 GFP_KERNEL_ACCOUNT); 5221 if (new_bus) { 5222 memcpy(new_bus, bus, struct_size(bus, range, i)); 5223 new_bus->dev_count--; 5224 memcpy(new_bus->range + i, bus->range + i + 1, 5225 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5226 } 5227 5228 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5229 synchronize_srcu_expedited(&kvm->srcu); 5230 5231 /* Destroy the old bus _after_ installing the (null) bus. */ 5232 if (!new_bus) { 5233 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5234 for (j = 0; j < bus->dev_count; j++) { 5235 if (j == i) 5236 continue; 5237 kvm_iodevice_destructor(bus->range[j].dev); 5238 } 5239 } 5240 5241 kfree(bus); 5242 return new_bus ? 0 : -ENOMEM; 5243 } 5244 5245 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5246 gpa_t addr) 5247 { 5248 struct kvm_io_bus *bus; 5249 int dev_idx, srcu_idx; 5250 struct kvm_io_device *iodev = NULL; 5251 5252 srcu_idx = srcu_read_lock(&kvm->srcu); 5253 5254 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5255 if (!bus) 5256 goto out_unlock; 5257 5258 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5259 if (dev_idx < 0) 5260 goto out_unlock; 5261 5262 iodev = bus->range[dev_idx].dev; 5263 5264 out_unlock: 5265 srcu_read_unlock(&kvm->srcu, srcu_idx); 5266 5267 return iodev; 5268 } 5269 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5270 5271 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5272 int (*get)(void *, u64 *), int (*set)(void *, u64), 5273 const char *fmt) 5274 { 5275 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5276 inode->i_private; 5277 5278 /* 5279 * The debugfs files are a reference to the kvm struct which 5280 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5281 * avoids the race between open and the removal of the debugfs directory. 5282 */ 5283 if (!kvm_get_kvm_safe(stat_data->kvm)) 5284 return -ENOENT; 5285 5286 if (simple_attr_open(inode, file, get, 5287 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5288 ? set : NULL, 5289 fmt)) { 5290 kvm_put_kvm(stat_data->kvm); 5291 return -ENOMEM; 5292 } 5293 5294 return 0; 5295 } 5296 5297 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5298 { 5299 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5300 inode->i_private; 5301 5302 simple_attr_release(inode, file); 5303 kvm_put_kvm(stat_data->kvm); 5304 5305 return 0; 5306 } 5307 5308 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5309 { 5310 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5311 5312 return 0; 5313 } 5314 5315 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5316 { 5317 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5318 5319 return 0; 5320 } 5321 5322 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5323 { 5324 unsigned long i; 5325 struct kvm_vcpu *vcpu; 5326 5327 *val = 0; 5328 5329 kvm_for_each_vcpu(i, vcpu, kvm) 5330 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5331 5332 return 0; 5333 } 5334 5335 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5336 { 5337 unsigned long i; 5338 struct kvm_vcpu *vcpu; 5339 5340 kvm_for_each_vcpu(i, vcpu, kvm) 5341 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5342 5343 return 0; 5344 } 5345 5346 static int kvm_stat_data_get(void *data, u64 *val) 5347 { 5348 int r = -EFAULT; 5349 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5350 5351 switch (stat_data->kind) { 5352 case KVM_STAT_VM: 5353 r = kvm_get_stat_per_vm(stat_data->kvm, 5354 stat_data->desc->desc.offset, val); 5355 break; 5356 case KVM_STAT_VCPU: 5357 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5358 stat_data->desc->desc.offset, val); 5359 break; 5360 } 5361 5362 return r; 5363 } 5364 5365 static int kvm_stat_data_clear(void *data, u64 val) 5366 { 5367 int r = -EFAULT; 5368 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5369 5370 if (val) 5371 return -EINVAL; 5372 5373 switch (stat_data->kind) { 5374 case KVM_STAT_VM: 5375 r = kvm_clear_stat_per_vm(stat_data->kvm, 5376 stat_data->desc->desc.offset); 5377 break; 5378 case KVM_STAT_VCPU: 5379 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5380 stat_data->desc->desc.offset); 5381 break; 5382 } 5383 5384 return r; 5385 } 5386 5387 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5388 { 5389 __simple_attr_check_format("%llu\n", 0ull); 5390 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5391 kvm_stat_data_clear, "%llu\n"); 5392 } 5393 5394 static const struct file_operations stat_fops_per_vm = { 5395 .owner = THIS_MODULE, 5396 .open = kvm_stat_data_open, 5397 .release = kvm_debugfs_release, 5398 .read = simple_attr_read, 5399 .write = simple_attr_write, 5400 .llseek = no_llseek, 5401 }; 5402 5403 static int vm_stat_get(void *_offset, u64 *val) 5404 { 5405 unsigned offset = (long)_offset; 5406 struct kvm *kvm; 5407 u64 tmp_val; 5408 5409 *val = 0; 5410 mutex_lock(&kvm_lock); 5411 list_for_each_entry(kvm, &vm_list, vm_list) { 5412 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5413 *val += tmp_val; 5414 } 5415 mutex_unlock(&kvm_lock); 5416 return 0; 5417 } 5418 5419 static int vm_stat_clear(void *_offset, u64 val) 5420 { 5421 unsigned offset = (long)_offset; 5422 struct kvm *kvm; 5423 5424 if (val) 5425 return -EINVAL; 5426 5427 mutex_lock(&kvm_lock); 5428 list_for_each_entry(kvm, &vm_list, vm_list) { 5429 kvm_clear_stat_per_vm(kvm, offset); 5430 } 5431 mutex_unlock(&kvm_lock); 5432 5433 return 0; 5434 } 5435 5436 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5437 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5438 5439 static int vcpu_stat_get(void *_offset, u64 *val) 5440 { 5441 unsigned offset = (long)_offset; 5442 struct kvm *kvm; 5443 u64 tmp_val; 5444 5445 *val = 0; 5446 mutex_lock(&kvm_lock); 5447 list_for_each_entry(kvm, &vm_list, vm_list) { 5448 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5449 *val += tmp_val; 5450 } 5451 mutex_unlock(&kvm_lock); 5452 return 0; 5453 } 5454 5455 static int vcpu_stat_clear(void *_offset, u64 val) 5456 { 5457 unsigned offset = (long)_offset; 5458 struct kvm *kvm; 5459 5460 if (val) 5461 return -EINVAL; 5462 5463 mutex_lock(&kvm_lock); 5464 list_for_each_entry(kvm, &vm_list, vm_list) { 5465 kvm_clear_stat_per_vcpu(kvm, offset); 5466 } 5467 mutex_unlock(&kvm_lock); 5468 5469 return 0; 5470 } 5471 5472 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5473 "%llu\n"); 5474 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5475 5476 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5477 { 5478 struct kobj_uevent_env *env; 5479 unsigned long long created, active; 5480 5481 if (!kvm_dev.this_device || !kvm) 5482 return; 5483 5484 mutex_lock(&kvm_lock); 5485 if (type == KVM_EVENT_CREATE_VM) { 5486 kvm_createvm_count++; 5487 kvm_active_vms++; 5488 } else if (type == KVM_EVENT_DESTROY_VM) { 5489 kvm_active_vms--; 5490 } 5491 created = kvm_createvm_count; 5492 active = kvm_active_vms; 5493 mutex_unlock(&kvm_lock); 5494 5495 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5496 if (!env) 5497 return; 5498 5499 add_uevent_var(env, "CREATED=%llu", created); 5500 add_uevent_var(env, "COUNT=%llu", active); 5501 5502 if (type == KVM_EVENT_CREATE_VM) { 5503 add_uevent_var(env, "EVENT=create"); 5504 kvm->userspace_pid = task_pid_nr(current); 5505 } else if (type == KVM_EVENT_DESTROY_VM) { 5506 add_uevent_var(env, "EVENT=destroy"); 5507 } 5508 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5509 5510 if (!IS_ERR(kvm->debugfs_dentry)) { 5511 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5512 5513 if (p) { 5514 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5515 if (!IS_ERR(tmp)) 5516 add_uevent_var(env, "STATS_PATH=%s", tmp); 5517 kfree(p); 5518 } 5519 } 5520 /* no need for checks, since we are adding at most only 5 keys */ 5521 env->envp[env->envp_idx++] = NULL; 5522 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5523 kfree(env); 5524 } 5525 5526 static void kvm_init_debug(void) 5527 { 5528 const struct file_operations *fops; 5529 const struct _kvm_stats_desc *pdesc; 5530 int i; 5531 5532 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5533 5534 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5535 pdesc = &kvm_vm_stats_desc[i]; 5536 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5537 fops = &vm_stat_fops; 5538 else 5539 fops = &vm_stat_readonly_fops; 5540 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5541 kvm_debugfs_dir, 5542 (void *)(long)pdesc->desc.offset, fops); 5543 } 5544 5545 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5546 pdesc = &kvm_vcpu_stats_desc[i]; 5547 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5548 fops = &vcpu_stat_fops; 5549 else 5550 fops = &vcpu_stat_readonly_fops; 5551 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5552 kvm_debugfs_dir, 5553 (void *)(long)pdesc->desc.offset, fops); 5554 } 5555 } 5556 5557 static int kvm_suspend(void) 5558 { 5559 if (kvm_usage_count) 5560 hardware_disable_nolock(NULL); 5561 return 0; 5562 } 5563 5564 static void kvm_resume(void) 5565 { 5566 if (kvm_usage_count) { 5567 lockdep_assert_not_held(&kvm_count_lock); 5568 hardware_enable_nolock(NULL); 5569 } 5570 } 5571 5572 static struct syscore_ops kvm_syscore_ops = { 5573 .suspend = kvm_suspend, 5574 .resume = kvm_resume, 5575 }; 5576 5577 static inline 5578 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5579 { 5580 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5581 } 5582 5583 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5584 { 5585 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5586 5587 WRITE_ONCE(vcpu->preempted, false); 5588 WRITE_ONCE(vcpu->ready, false); 5589 5590 __this_cpu_write(kvm_running_vcpu, vcpu); 5591 kvm_arch_sched_in(vcpu, cpu); 5592 kvm_arch_vcpu_load(vcpu, cpu); 5593 } 5594 5595 static void kvm_sched_out(struct preempt_notifier *pn, 5596 struct task_struct *next) 5597 { 5598 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5599 5600 if (current->on_rq) { 5601 WRITE_ONCE(vcpu->preempted, true); 5602 WRITE_ONCE(vcpu->ready, true); 5603 } 5604 kvm_arch_vcpu_put(vcpu); 5605 __this_cpu_write(kvm_running_vcpu, NULL); 5606 } 5607 5608 /** 5609 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5610 * 5611 * We can disable preemption locally around accessing the per-CPU variable, 5612 * and use the resolved vcpu pointer after enabling preemption again, 5613 * because even if the current thread is migrated to another CPU, reading 5614 * the per-CPU value later will give us the same value as we update the 5615 * per-CPU variable in the preempt notifier handlers. 5616 */ 5617 struct kvm_vcpu *kvm_get_running_vcpu(void) 5618 { 5619 struct kvm_vcpu *vcpu; 5620 5621 preempt_disable(); 5622 vcpu = __this_cpu_read(kvm_running_vcpu); 5623 preempt_enable(); 5624 5625 return vcpu; 5626 } 5627 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5628 5629 /** 5630 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5631 */ 5632 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5633 { 5634 return &kvm_running_vcpu; 5635 } 5636 5637 #ifdef CONFIG_GUEST_PERF_EVENTS 5638 static unsigned int kvm_guest_state(void) 5639 { 5640 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5641 unsigned int state; 5642 5643 if (!kvm_arch_pmi_in_guest(vcpu)) 5644 return 0; 5645 5646 state = PERF_GUEST_ACTIVE; 5647 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5648 state |= PERF_GUEST_USER; 5649 5650 return state; 5651 } 5652 5653 static unsigned long kvm_guest_get_ip(void) 5654 { 5655 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5656 5657 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5658 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5659 return 0; 5660 5661 return kvm_arch_vcpu_get_ip(vcpu); 5662 } 5663 5664 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5665 .state = kvm_guest_state, 5666 .get_ip = kvm_guest_get_ip, 5667 .handle_intel_pt_intr = NULL, 5668 }; 5669 5670 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5671 { 5672 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5673 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5674 } 5675 void kvm_unregister_perf_callbacks(void) 5676 { 5677 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5678 } 5679 #endif 5680 5681 struct kvm_cpu_compat_check { 5682 void *opaque; 5683 int *ret; 5684 }; 5685 5686 static void check_processor_compat(void *data) 5687 { 5688 struct kvm_cpu_compat_check *c = data; 5689 5690 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5691 } 5692 5693 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5694 struct module *module) 5695 { 5696 struct kvm_cpu_compat_check c; 5697 int r; 5698 int cpu; 5699 5700 r = kvm_arch_init(opaque); 5701 if (r) 5702 goto out_fail; 5703 5704 /* 5705 * kvm_arch_init makes sure there's at most one caller 5706 * for architectures that support multiple implementations, 5707 * like intel and amd on x86. 5708 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5709 * conflicts in case kvm is already setup for another implementation. 5710 */ 5711 r = kvm_irqfd_init(); 5712 if (r) 5713 goto out_irqfd; 5714 5715 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5716 r = -ENOMEM; 5717 goto out_free_0; 5718 } 5719 5720 r = kvm_arch_hardware_setup(opaque); 5721 if (r < 0) 5722 goto out_free_1; 5723 5724 c.ret = &r; 5725 c.opaque = opaque; 5726 for_each_online_cpu(cpu) { 5727 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5728 if (r < 0) 5729 goto out_free_2; 5730 } 5731 5732 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5733 kvm_starting_cpu, kvm_dying_cpu); 5734 if (r) 5735 goto out_free_2; 5736 register_reboot_notifier(&kvm_reboot_notifier); 5737 5738 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5739 if (!vcpu_align) 5740 vcpu_align = __alignof__(struct kvm_vcpu); 5741 kvm_vcpu_cache = 5742 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5743 SLAB_ACCOUNT, 5744 offsetof(struct kvm_vcpu, arch), 5745 offsetofend(struct kvm_vcpu, stats_id) 5746 - offsetof(struct kvm_vcpu, arch), 5747 NULL); 5748 if (!kvm_vcpu_cache) { 5749 r = -ENOMEM; 5750 goto out_free_3; 5751 } 5752 5753 for_each_possible_cpu(cpu) { 5754 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5755 GFP_KERNEL, cpu_to_node(cpu))) { 5756 r = -ENOMEM; 5757 goto out_free_4; 5758 } 5759 } 5760 5761 r = kvm_async_pf_init(); 5762 if (r) 5763 goto out_free_5; 5764 5765 kvm_chardev_ops.owner = module; 5766 5767 r = misc_register(&kvm_dev); 5768 if (r) { 5769 pr_err("kvm: misc device register failed\n"); 5770 goto out_unreg; 5771 } 5772 5773 register_syscore_ops(&kvm_syscore_ops); 5774 5775 kvm_preempt_ops.sched_in = kvm_sched_in; 5776 kvm_preempt_ops.sched_out = kvm_sched_out; 5777 5778 kvm_init_debug(); 5779 5780 r = kvm_vfio_ops_init(); 5781 WARN_ON(r); 5782 5783 return 0; 5784 5785 out_unreg: 5786 kvm_async_pf_deinit(); 5787 out_free_5: 5788 for_each_possible_cpu(cpu) 5789 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5790 out_free_4: 5791 kmem_cache_destroy(kvm_vcpu_cache); 5792 out_free_3: 5793 unregister_reboot_notifier(&kvm_reboot_notifier); 5794 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5795 out_free_2: 5796 kvm_arch_hardware_unsetup(); 5797 out_free_1: 5798 free_cpumask_var(cpus_hardware_enabled); 5799 out_free_0: 5800 kvm_irqfd_exit(); 5801 out_irqfd: 5802 kvm_arch_exit(); 5803 out_fail: 5804 return r; 5805 } 5806 EXPORT_SYMBOL_GPL(kvm_init); 5807 5808 void kvm_exit(void) 5809 { 5810 int cpu; 5811 5812 debugfs_remove_recursive(kvm_debugfs_dir); 5813 misc_deregister(&kvm_dev); 5814 for_each_possible_cpu(cpu) 5815 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5816 kmem_cache_destroy(kvm_vcpu_cache); 5817 kvm_async_pf_deinit(); 5818 unregister_syscore_ops(&kvm_syscore_ops); 5819 unregister_reboot_notifier(&kvm_reboot_notifier); 5820 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5821 on_each_cpu(hardware_disable_nolock, NULL, 1); 5822 kvm_arch_hardware_unsetup(); 5823 kvm_arch_exit(); 5824 kvm_irqfd_exit(); 5825 free_cpumask_var(cpus_hardware_enabled); 5826 kvm_vfio_ops_exit(); 5827 } 5828 EXPORT_SYMBOL_GPL(kvm_exit); 5829 5830 struct kvm_vm_worker_thread_context { 5831 struct kvm *kvm; 5832 struct task_struct *parent; 5833 struct completion init_done; 5834 kvm_vm_thread_fn_t thread_fn; 5835 uintptr_t data; 5836 int err; 5837 }; 5838 5839 static int kvm_vm_worker_thread(void *context) 5840 { 5841 /* 5842 * The init_context is allocated on the stack of the parent thread, so 5843 * we have to locally copy anything that is needed beyond initialization 5844 */ 5845 struct kvm_vm_worker_thread_context *init_context = context; 5846 struct task_struct *parent; 5847 struct kvm *kvm = init_context->kvm; 5848 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5849 uintptr_t data = init_context->data; 5850 int err; 5851 5852 err = kthread_park(current); 5853 /* kthread_park(current) is never supposed to return an error */ 5854 WARN_ON(err != 0); 5855 if (err) 5856 goto init_complete; 5857 5858 err = cgroup_attach_task_all(init_context->parent, current); 5859 if (err) { 5860 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5861 __func__, err); 5862 goto init_complete; 5863 } 5864 5865 set_user_nice(current, task_nice(init_context->parent)); 5866 5867 init_complete: 5868 init_context->err = err; 5869 complete(&init_context->init_done); 5870 init_context = NULL; 5871 5872 if (err) 5873 goto out; 5874 5875 /* Wait to be woken up by the spawner before proceeding. */ 5876 kthread_parkme(); 5877 5878 if (!kthread_should_stop()) 5879 err = thread_fn(kvm, data); 5880 5881 out: 5882 /* 5883 * Move kthread back to its original cgroup to prevent it lingering in 5884 * the cgroup of the VM process, after the latter finishes its 5885 * execution. 5886 * 5887 * kthread_stop() waits on the 'exited' completion condition which is 5888 * set in exit_mm(), via mm_release(), in do_exit(). However, the 5889 * kthread is removed from the cgroup in the cgroup_exit() which is 5890 * called after the exit_mm(). This causes the kthread_stop() to return 5891 * before the kthread actually quits the cgroup. 5892 */ 5893 rcu_read_lock(); 5894 parent = rcu_dereference(current->real_parent); 5895 get_task_struct(parent); 5896 rcu_read_unlock(); 5897 cgroup_attach_task_all(parent, current); 5898 put_task_struct(parent); 5899 5900 return err; 5901 } 5902 5903 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5904 uintptr_t data, const char *name, 5905 struct task_struct **thread_ptr) 5906 { 5907 struct kvm_vm_worker_thread_context init_context = {}; 5908 struct task_struct *thread; 5909 5910 *thread_ptr = NULL; 5911 init_context.kvm = kvm; 5912 init_context.parent = current; 5913 init_context.thread_fn = thread_fn; 5914 init_context.data = data; 5915 init_completion(&init_context.init_done); 5916 5917 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5918 "%s-%d", name, task_pid_nr(current)); 5919 if (IS_ERR(thread)) 5920 return PTR_ERR(thread); 5921 5922 /* kthread_run is never supposed to return NULL */ 5923 WARN_ON(thread == NULL); 5924 5925 wait_for_completion(&init_context.init_done); 5926 5927 if (!init_context.err) 5928 *thread_ptr = thread; 5929 5930 return init_context.err; 5931 } 5932