xref: /openbmc/linux/virt/kvm/kvm_main.c (revision cf9441ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125 				unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130 
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132 
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134 
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137 
138 static bool largepages_enabled = true;
139 
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145 
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147 		unsigned long start, unsigned long end, bool blockable)
148 {
149 	return 0;
150 }
151 
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154 	if (pfn_valid(pfn))
155 		return PageReserved(pfn_to_page(pfn));
156 
157 	return true;
158 }
159 
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165 	int cpu = get_cpu();
166 	preempt_notifier_register(&vcpu->preempt_notifier);
167 	kvm_arch_vcpu_load(vcpu, cpu);
168 	put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171 
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174 	preempt_disable();
175 	kvm_arch_vcpu_put(vcpu);
176 	preempt_notifier_unregister(&vcpu->preempt_notifier);
177 	preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180 
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185 
186 	/*
187 	 * We need to wait for the VCPU to reenable interrupts and get out of
188 	 * READING_SHADOW_PAGE_TABLES mode.
189 	 */
190 	if (req & KVM_REQUEST_WAIT)
191 		return mode != OUTSIDE_GUEST_MODE;
192 
193 	/*
194 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
195 	 */
196 	return mode == IN_GUEST_MODE;
197 }
198 
199 static void ack_flush(void *_completed)
200 {
201 }
202 
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205 	if (unlikely(!cpus))
206 		cpus = cpu_online_mask;
207 
208 	if (cpumask_empty(cpus))
209 		return false;
210 
211 	smp_call_function_many(cpus, ack_flush, NULL, wait);
212 	return true;
213 }
214 
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218 	int i, cpu, me;
219 	struct kvm_vcpu *vcpu;
220 	bool called;
221 
222 	me = get_cpu();
223 
224 	kvm_for_each_vcpu(i, vcpu, kvm) {
225 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226 			continue;
227 
228 		kvm_make_request(req, vcpu);
229 		cpu = vcpu->cpu;
230 
231 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232 			continue;
233 
234 		if (tmp != NULL && cpu != -1 && cpu != me &&
235 		    kvm_request_needs_ipi(vcpu, req))
236 			__cpumask_set_cpu(cpu, tmp);
237 	}
238 
239 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240 	put_cpu();
241 
242 	return called;
243 }
244 
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247 	cpumask_var_t cpus;
248 	bool called;
249 
250 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251 
252 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253 
254 	free_cpumask_var(cpus);
255 	return called;
256 }
257 
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261 	/*
262 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263 	 * kvm_make_all_cpus_request.
264 	 */
265 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266 
267 	/*
268 	 * We want to publish modifications to the page tables before reading
269 	 * mode. Pairs with a memory barrier in arch-specific code.
270 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
272 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273 	 *
274 	 * There is already an smp_mb__after_atomic() before
275 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276 	 * barrier here.
277 	 */
278 	if (!kvm_arch_flush_remote_tlb(kvm)
279 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280 		++kvm->stat.remote_tlb_flush;
281 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285 
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290 
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293 	struct page *page;
294 	int r;
295 
296 	mutex_init(&vcpu->mutex);
297 	vcpu->cpu = -1;
298 	vcpu->kvm = kvm;
299 	vcpu->vcpu_id = id;
300 	vcpu->pid = NULL;
301 	init_swait_queue_head(&vcpu->wq);
302 	kvm_async_pf_vcpu_init(vcpu);
303 
304 	vcpu->pre_pcpu = -1;
305 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306 
307 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308 	if (!page) {
309 		r = -ENOMEM;
310 		goto fail;
311 	}
312 	vcpu->run = page_address(page);
313 
314 	kvm_vcpu_set_in_spin_loop(vcpu, false);
315 	kvm_vcpu_set_dy_eligible(vcpu, false);
316 	vcpu->preempted = false;
317 	vcpu->ready = false;
318 
319 	r = kvm_arch_vcpu_init(vcpu);
320 	if (r < 0)
321 		goto fail_free_run;
322 	return 0;
323 
324 fail_free_run:
325 	free_page((unsigned long)vcpu->run);
326 fail:
327 	return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330 
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333 	/*
334 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
335 	 * will change the vcpu->pid pointer and on uninit all file
336 	 * descriptors are already gone.
337 	 */
338 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
339 	kvm_arch_vcpu_uninit(vcpu);
340 	free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343 
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347 	return container_of(mn, struct kvm, mmu_notifier);
348 }
349 
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351 					struct mm_struct *mm,
352 					unsigned long address,
353 					pte_t pte)
354 {
355 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
356 	int idx;
357 
358 	idx = srcu_read_lock(&kvm->srcu);
359 	spin_lock(&kvm->mmu_lock);
360 	kvm->mmu_notifier_seq++;
361 
362 	if (kvm_set_spte_hva(kvm, address, pte))
363 		kvm_flush_remote_tlbs(kvm);
364 
365 	spin_unlock(&kvm->mmu_lock);
366 	srcu_read_unlock(&kvm->srcu, idx);
367 }
368 
369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
370 					const struct mmu_notifier_range *range)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 	int need_tlb_flush = 0, idx;
374 	int ret;
375 
376 	idx = srcu_read_lock(&kvm->srcu);
377 	spin_lock(&kvm->mmu_lock);
378 	/*
379 	 * The count increase must become visible at unlock time as no
380 	 * spte can be established without taking the mmu_lock and
381 	 * count is also read inside the mmu_lock critical section.
382 	 */
383 	kvm->mmu_notifier_count++;
384 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
385 	need_tlb_flush |= kvm->tlbs_dirty;
386 	/* we've to flush the tlb before the pages can be freed */
387 	if (need_tlb_flush)
388 		kvm_flush_remote_tlbs(kvm);
389 
390 	spin_unlock(&kvm->mmu_lock);
391 
392 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
393 					range->end,
394 					mmu_notifier_range_blockable(range));
395 
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return ret;
399 }
400 
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402 					const struct mmu_notifier_range *range)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 
406 	spin_lock(&kvm->mmu_lock);
407 	/*
408 	 * This sequence increase will notify the kvm page fault that
409 	 * the page that is going to be mapped in the spte could have
410 	 * been freed.
411 	 */
412 	kvm->mmu_notifier_seq++;
413 	smp_wmb();
414 	/*
415 	 * The above sequence increase must be visible before the
416 	 * below count decrease, which is ensured by the smp_wmb above
417 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
418 	 */
419 	kvm->mmu_notifier_count--;
420 	spin_unlock(&kvm->mmu_lock);
421 
422 	BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424 
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426 					      struct mm_struct *mm,
427 					      unsigned long start,
428 					      unsigned long end)
429 {
430 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
431 	int young, idx;
432 
433 	idx = srcu_read_lock(&kvm->srcu);
434 	spin_lock(&kvm->mmu_lock);
435 
436 	young = kvm_age_hva(kvm, start, end);
437 	if (young)
438 		kvm_flush_remote_tlbs(kvm);
439 
440 	spin_unlock(&kvm->mmu_lock);
441 	srcu_read_unlock(&kvm->srcu, idx);
442 
443 	return young;
444 }
445 
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447 					struct mm_struct *mm,
448 					unsigned long start,
449 					unsigned long end)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	/*
457 	 * Even though we do not flush TLB, this will still adversely
458 	 * affect performance on pre-Haswell Intel EPT, where there is
459 	 * no EPT Access Bit to clear so that we have to tear down EPT
460 	 * tables instead. If we find this unacceptable, we can always
461 	 * add a parameter to kvm_age_hva so that it effectively doesn't
462 	 * do anything on clear_young.
463 	 *
464 	 * Also note that currently we never issue secondary TLB flushes
465 	 * from clear_young, leaving this job up to the regular system
466 	 * cadence. If we find this inaccurate, we might come up with a
467 	 * more sophisticated heuristic later.
468 	 */
469 	young = kvm_age_hva(kvm, start, end);
470 	spin_unlock(&kvm->mmu_lock);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 
473 	return young;
474 }
475 
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477 				       struct mm_struct *mm,
478 				       unsigned long address)
479 {
480 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 	int young, idx;
482 
483 	idx = srcu_read_lock(&kvm->srcu);
484 	spin_lock(&kvm->mmu_lock);
485 	young = kvm_test_age_hva(kvm, address);
486 	spin_unlock(&kvm->mmu_lock);
487 	srcu_read_unlock(&kvm->srcu, idx);
488 
489 	return young;
490 }
491 
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493 				     struct mm_struct *mm)
494 {
495 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
496 	int idx;
497 
498 	idx = srcu_read_lock(&kvm->srcu);
499 	kvm_arch_flush_shadow_all(kvm);
500 	srcu_read_unlock(&kvm->srcu, idx);
501 }
502 
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
505 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
506 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
507 	.clear_young		= kvm_mmu_notifier_clear_young,
508 	.test_young		= kvm_mmu_notifier_test_young,
509 	.change_pte		= kvm_mmu_notifier_change_pte,
510 	.release		= kvm_mmu_notifier_release,
511 };
512 
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518 
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523 	return 0;
524 }
525 
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530 	int i;
531 	struct kvm_memslots *slots;
532 
533 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534 	if (!slots)
535 		return NULL;
536 
537 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538 		slots->id_to_index[i] = slots->memslots[i].id = i;
539 
540 	return slots;
541 }
542 
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 	if (!memslot->dirty_bitmap)
546 		return;
547 
548 	kvfree(memslot->dirty_bitmap);
549 	memslot->dirty_bitmap = NULL;
550 }
551 
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556 			      struct kvm_memory_slot *dont)
557 {
558 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 		kvm_destroy_dirty_bitmap(free);
560 
561 	kvm_arch_free_memslot(kvm, free, dont);
562 
563 	free->npages = 0;
564 }
565 
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568 	struct kvm_memory_slot *memslot;
569 
570 	if (!slots)
571 		return;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_memslot(kvm, memslot, NULL);
575 
576 	kvfree(slots);
577 }
578 
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581 	int i;
582 
583 	if (!kvm->debugfs_dentry)
584 		return;
585 
586 	debugfs_remove_recursive(kvm->debugfs_dentry);
587 
588 	if (kvm->debugfs_stat_data) {
589 		for (i = 0; i < kvm_debugfs_num_entries; i++)
590 			kfree(kvm->debugfs_stat_data[i]);
591 		kfree(kvm->debugfs_stat_data);
592 	}
593 }
594 
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597 	char dir_name[ITOA_MAX_LEN * 2];
598 	struct kvm_stat_data *stat_data;
599 	struct kvm_stats_debugfs_item *p;
600 
601 	if (!debugfs_initialized())
602 		return 0;
603 
604 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606 
607 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608 					 sizeof(*kvm->debugfs_stat_data),
609 					 GFP_KERNEL_ACCOUNT);
610 	if (!kvm->debugfs_stat_data)
611 		return -ENOMEM;
612 
613 	for (p = debugfs_entries; p->name; p++) {
614 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615 		if (!stat_data)
616 			return -ENOMEM;
617 
618 		stat_data->kvm = kvm;
619 		stat_data->offset = p->offset;
620 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
621 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
622 				    stat_data, stat_fops_per_vm[p->kind]);
623 	}
624 	return 0;
625 }
626 
627 static struct kvm *kvm_create_vm(unsigned long type)
628 {
629 	int r, i;
630 	struct kvm *kvm = kvm_arch_alloc_vm();
631 
632 	if (!kvm)
633 		return ERR_PTR(-ENOMEM);
634 
635 	spin_lock_init(&kvm->mmu_lock);
636 	mmgrab(current->mm);
637 	kvm->mm = current->mm;
638 	kvm_eventfd_init(kvm);
639 	mutex_init(&kvm->lock);
640 	mutex_init(&kvm->irq_lock);
641 	mutex_init(&kvm->slots_lock);
642 	refcount_set(&kvm->users_count, 1);
643 	INIT_LIST_HEAD(&kvm->devices);
644 
645 	r = kvm_arch_init_vm(kvm, type);
646 	if (r)
647 		goto out_err_no_disable;
648 
649 	r = hardware_enable_all();
650 	if (r)
651 		goto out_err_no_disable;
652 
653 #ifdef CONFIG_HAVE_KVM_IRQFD
654 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
655 #endif
656 
657 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658 
659 	r = -ENOMEM;
660 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
661 		struct kvm_memslots *slots = kvm_alloc_memslots();
662 		if (!slots)
663 			goto out_err_no_srcu;
664 		/* Generations must be different for each address space. */
665 		slots->generation = i;
666 		rcu_assign_pointer(kvm->memslots[i], slots);
667 	}
668 
669 	if (init_srcu_struct(&kvm->srcu))
670 		goto out_err_no_srcu;
671 	if (init_srcu_struct(&kvm->irq_srcu))
672 		goto out_err_no_irq_srcu;
673 	for (i = 0; i < KVM_NR_BUSES; i++) {
674 		rcu_assign_pointer(kvm->buses[i],
675 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
676 		if (!kvm->buses[i])
677 			goto out_err;
678 	}
679 
680 	r = kvm_init_mmu_notifier(kvm);
681 	if (r)
682 		goto out_err;
683 
684 	mutex_lock(&kvm_lock);
685 	list_add(&kvm->vm_list, &vm_list);
686 	mutex_unlock(&kvm_lock);
687 
688 	preempt_notifier_inc();
689 
690 	return kvm;
691 
692 out_err:
693 	cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695 	cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697 	hardware_disable_all();
698 out_err_no_disable:
699 	refcount_set(&kvm->users_count, 0);
700 	for (i = 0; i < KVM_NR_BUSES; i++)
701 		kfree(kvm_get_bus(kvm, i));
702 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704 	kvm_arch_free_vm(kvm);
705 	mmdrop(current->mm);
706 	return ERR_PTR(r);
707 }
708 
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711 	struct kvm_device *dev, *tmp;
712 
713 	/*
714 	 * We do not need to take the kvm->lock here, because nobody else
715 	 * has a reference to the struct kvm at this point and therefore
716 	 * cannot access the devices list anyhow.
717 	 */
718 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 		list_del(&dev->vm_node);
720 		dev->ops->destroy(dev);
721 	}
722 }
723 
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726 	int i;
727 	struct mm_struct *mm = kvm->mm;
728 
729 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730 	kvm_destroy_vm_debugfs(kvm);
731 	kvm_arch_sync_events(kvm);
732 	mutex_lock(&kvm_lock);
733 	list_del(&kvm->vm_list);
734 	mutex_unlock(&kvm_lock);
735 	kvm_free_irq_routing(kvm);
736 	for (i = 0; i < KVM_NR_BUSES; i++) {
737 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738 
739 		if (bus)
740 			kvm_io_bus_destroy(bus);
741 		kvm->buses[i] = NULL;
742 	}
743 	kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747 	kvm_arch_flush_shadow_all(kvm);
748 #endif
749 	kvm_arch_destroy_vm(kvm);
750 	kvm_destroy_devices(kvm);
751 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753 	cleanup_srcu_struct(&kvm->irq_srcu);
754 	cleanup_srcu_struct(&kvm->srcu);
755 	kvm_arch_free_vm(kvm);
756 	preempt_notifier_dec();
757 	hardware_disable_all();
758 	mmdrop(mm);
759 }
760 
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763 	refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766 
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769 	if (refcount_dec_and_test(&kvm->users_count))
770 		kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773 
774 
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777 	struct kvm *kvm = filp->private_data;
778 
779 	kvm_irqfd_release(kvm);
780 
781 	kvm_put_kvm(kvm);
782 	return 0;
783 }
784 
785 /*
786  * Allocation size is twice as large as the actual dirty bitmap size.
787  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788  */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792 
793 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
794 	if (!memslot->dirty_bitmap)
795 		return -ENOMEM;
796 
797 	return 0;
798 }
799 
800 /*
801  * Insert memslot and re-sort memslots based on their GFN,
802  * so binary search could be used to lookup GFN.
803  * Sorting algorithm takes advantage of having initially
804  * sorted array and known changed memslot position.
805  */
806 static void update_memslots(struct kvm_memslots *slots,
807 			    struct kvm_memory_slot *new,
808 			    enum kvm_mr_change change)
809 {
810 	int id = new->id;
811 	int i = slots->id_to_index[id];
812 	struct kvm_memory_slot *mslots = slots->memslots;
813 
814 	WARN_ON(mslots[i].id != id);
815 	switch (change) {
816 	case KVM_MR_CREATE:
817 		slots->used_slots++;
818 		WARN_ON(mslots[i].npages || !new->npages);
819 		break;
820 	case KVM_MR_DELETE:
821 		slots->used_slots--;
822 		WARN_ON(new->npages || !mslots[i].npages);
823 		break;
824 	default:
825 		break;
826 	}
827 
828 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
829 	       new->base_gfn <= mslots[i + 1].base_gfn) {
830 		if (!mslots[i + 1].npages)
831 			break;
832 		mslots[i] = mslots[i + 1];
833 		slots->id_to_index[mslots[i].id] = i;
834 		i++;
835 	}
836 
837 	/*
838 	 * The ">=" is needed when creating a slot with base_gfn == 0,
839 	 * so that it moves before all those with base_gfn == npages == 0.
840 	 *
841 	 * On the other hand, if new->npages is zero, the above loop has
842 	 * already left i pointing to the beginning of the empty part of
843 	 * mslots, and the ">=" would move the hole backwards in this
844 	 * case---which is wrong.  So skip the loop when deleting a slot.
845 	 */
846 	if (new->npages) {
847 		while (i > 0 &&
848 		       new->base_gfn >= mslots[i - 1].base_gfn) {
849 			mslots[i] = mslots[i - 1];
850 			slots->id_to_index[mslots[i].id] = i;
851 			i--;
852 		}
853 	} else
854 		WARN_ON_ONCE(i != slots->used_slots);
855 
856 	mslots[i] = *new;
857 	slots->id_to_index[mslots[i].id] = i;
858 }
859 
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863 
864 #ifdef __KVM_HAVE_READONLY_MEM
865 	valid_flags |= KVM_MEM_READONLY;
866 #endif
867 
868 	if (mem->flags & ~valid_flags)
869 		return -EINVAL;
870 
871 	return 0;
872 }
873 
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875 		int as_id, struct kvm_memslots *slots)
876 {
877 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878 	u64 gen = old_memslots->generation;
879 
880 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
881 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
882 
883 	rcu_assign_pointer(kvm->memslots[as_id], slots);
884 	synchronize_srcu_expedited(&kvm->srcu);
885 
886 	/*
887 	 * Increment the new memslot generation a second time, dropping the
888 	 * update in-progress flag and incrementing then generation based on
889 	 * the number of address spaces.  This provides a unique and easily
890 	 * identifiable generation number while the memslots are in flux.
891 	 */
892 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
893 
894 	/*
895 	 * Generations must be unique even across address spaces.  We do not need
896 	 * a global counter for that, instead the generation space is evenly split
897 	 * across address spaces.  For example, with two address spaces, address
898 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
899 	 * use generations 1, 3, 5, ...
900 	 */
901 	gen += KVM_ADDRESS_SPACE_NUM;
902 
903 	kvm_arch_memslots_updated(kvm, gen);
904 
905 	slots->generation = gen;
906 
907 	return old_memslots;
908 }
909 
910 /*
911  * Allocate some memory and give it an address in the guest physical address
912  * space.
913  *
914  * Discontiguous memory is allowed, mostly for framebuffers.
915  *
916  * Must be called holding kvm->slots_lock for write.
917  */
918 int __kvm_set_memory_region(struct kvm *kvm,
919 			    const struct kvm_userspace_memory_region *mem)
920 {
921 	int r;
922 	gfn_t base_gfn;
923 	unsigned long npages;
924 	struct kvm_memory_slot *slot;
925 	struct kvm_memory_slot old, new;
926 	struct kvm_memslots *slots = NULL, *old_memslots;
927 	int as_id, id;
928 	enum kvm_mr_change change;
929 
930 	r = check_memory_region_flags(mem);
931 	if (r)
932 		goto out;
933 
934 	r = -EINVAL;
935 	as_id = mem->slot >> 16;
936 	id = (u16)mem->slot;
937 
938 	/* General sanity checks */
939 	if (mem->memory_size & (PAGE_SIZE - 1))
940 		goto out;
941 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
942 		goto out;
943 	/* We can read the guest memory with __xxx_user() later on. */
944 	if ((id < KVM_USER_MEM_SLOTS) &&
945 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
946 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
947 			mem->memory_size)))
948 		goto out;
949 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
950 		goto out;
951 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952 		goto out;
953 
954 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
955 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
956 	npages = mem->memory_size >> PAGE_SHIFT;
957 
958 	if (npages > KVM_MEM_MAX_NR_PAGES)
959 		goto out;
960 
961 	new = old = *slot;
962 
963 	new.id = id;
964 	new.base_gfn = base_gfn;
965 	new.npages = npages;
966 	new.flags = mem->flags;
967 
968 	if (npages) {
969 		if (!old.npages)
970 			change = KVM_MR_CREATE;
971 		else { /* Modify an existing slot. */
972 			if ((mem->userspace_addr != old.userspace_addr) ||
973 			    (npages != old.npages) ||
974 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
975 				goto out;
976 
977 			if (base_gfn != old.base_gfn)
978 				change = KVM_MR_MOVE;
979 			else if (new.flags != old.flags)
980 				change = KVM_MR_FLAGS_ONLY;
981 			else { /* Nothing to change. */
982 				r = 0;
983 				goto out;
984 			}
985 		}
986 	} else {
987 		if (!old.npages)
988 			goto out;
989 
990 		change = KVM_MR_DELETE;
991 		new.base_gfn = 0;
992 		new.flags = 0;
993 	}
994 
995 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
996 		/* Check for overlaps */
997 		r = -EEXIST;
998 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
999 			if (slot->id == id)
1000 				continue;
1001 			if (!((base_gfn + npages <= slot->base_gfn) ||
1002 			      (base_gfn >= slot->base_gfn + slot->npages)))
1003 				goto out;
1004 		}
1005 	}
1006 
1007 	/* Free page dirty bitmap if unneeded */
1008 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1009 		new.dirty_bitmap = NULL;
1010 
1011 	r = -ENOMEM;
1012 	if (change == KVM_MR_CREATE) {
1013 		new.userspace_addr = mem->userspace_addr;
1014 
1015 		if (kvm_arch_create_memslot(kvm, &new, npages))
1016 			goto out_free;
1017 	}
1018 
1019 	/* Allocate page dirty bitmap if needed */
1020 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1021 		if (kvm_create_dirty_bitmap(&new) < 0)
1022 			goto out_free;
1023 	}
1024 
1025 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1026 	if (!slots)
1027 		goto out_free;
1028 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029 
1030 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1031 		slot = id_to_memslot(slots, id);
1032 		slot->flags |= KVM_MEMSLOT_INVALID;
1033 
1034 		old_memslots = install_new_memslots(kvm, as_id, slots);
1035 
1036 		/* From this point no new shadow pages pointing to a deleted,
1037 		 * or moved, memslot will be created.
1038 		 *
1039 		 * validation of sp->gfn happens in:
1040 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1042 		 */
1043 		kvm_arch_flush_shadow_memslot(kvm, slot);
1044 
1045 		/*
1046 		 * We can re-use the old_memslots from above, the only difference
1047 		 * from the currently installed memslots is the invalid flag.  This
1048 		 * will get overwritten by update_memslots anyway.
1049 		 */
1050 		slots = old_memslots;
1051 	}
1052 
1053 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1054 	if (r)
1055 		goto out_slots;
1056 
1057 	/* actual memory is freed via old in kvm_free_memslot below */
1058 	if (change == KVM_MR_DELETE) {
1059 		new.dirty_bitmap = NULL;
1060 		memset(&new.arch, 0, sizeof(new.arch));
1061 	}
1062 
1063 	update_memslots(slots, &new, change);
1064 	old_memslots = install_new_memslots(kvm, as_id, slots);
1065 
1066 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067 
1068 	kvm_free_memslot(kvm, &old, &new);
1069 	kvfree(old_memslots);
1070 	return 0;
1071 
1072 out_slots:
1073 	kvfree(slots);
1074 out_free:
1075 	kvm_free_memslot(kvm, &new, &old);
1076 out:
1077 	return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080 
1081 int kvm_set_memory_region(struct kvm *kvm,
1082 			  const struct kvm_userspace_memory_region *mem)
1083 {
1084 	int r;
1085 
1086 	mutex_lock(&kvm->slots_lock);
1087 	r = __kvm_set_memory_region(kvm, mem);
1088 	mutex_unlock(&kvm->slots_lock);
1089 	return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092 
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094 					  struct kvm_userspace_memory_region *mem)
1095 {
1096 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097 		return -EINVAL;
1098 
1099 	return kvm_set_memory_region(kvm, mem);
1100 }
1101 
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103 			struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105 	struct kvm_memslots *slots;
1106 	struct kvm_memory_slot *memslot;
1107 	int i, as_id, id;
1108 	unsigned long n;
1109 	unsigned long any = 0;
1110 
1111 	as_id = log->slot >> 16;
1112 	id = (u16)log->slot;
1113 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114 		return -EINVAL;
1115 
1116 	slots = __kvm_memslots(kvm, as_id);
1117 	memslot = id_to_memslot(slots, id);
1118 	if (!memslot->dirty_bitmap)
1119 		return -ENOENT;
1120 
1121 	n = kvm_dirty_bitmap_bytes(memslot);
1122 
1123 	for (i = 0; !any && i < n/sizeof(long); ++i)
1124 		any = memslot->dirty_bitmap[i];
1125 
1126 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127 		return -EFAULT;
1128 
1129 	if (any)
1130 		*is_dirty = 1;
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134 
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1138  *	and reenable dirty page tracking for the corresponding pages.
1139  * @kvm:	pointer to kvm instance
1140  * @log:	slot id and address to which we copy the log
1141  * @flush:	true if TLB flush is needed by caller
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159 			struct kvm_dirty_log *log, bool *flush)
1160 {
1161 	struct kvm_memslots *slots;
1162 	struct kvm_memory_slot *memslot;
1163 	int i, as_id, id;
1164 	unsigned long n;
1165 	unsigned long *dirty_bitmap;
1166 	unsigned long *dirty_bitmap_buffer;
1167 
1168 	as_id = log->slot >> 16;
1169 	id = (u16)log->slot;
1170 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171 		return -EINVAL;
1172 
1173 	slots = __kvm_memslots(kvm, as_id);
1174 	memslot = id_to_memslot(slots, id);
1175 
1176 	dirty_bitmap = memslot->dirty_bitmap;
1177 	if (!dirty_bitmap)
1178 		return -ENOENT;
1179 
1180 	n = kvm_dirty_bitmap_bytes(memslot);
1181 	*flush = false;
1182 	if (kvm->manual_dirty_log_protect) {
1183 		/*
1184 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1185 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1186 		 * is some code duplication between this function and
1187 		 * kvm_get_dirty_log, but hopefully all architecture
1188 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189 		 * can be eliminated.
1190 		 */
1191 		dirty_bitmap_buffer = dirty_bitmap;
1192 	} else {
1193 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194 		memset(dirty_bitmap_buffer, 0, n);
1195 
1196 		spin_lock(&kvm->mmu_lock);
1197 		for (i = 0; i < n / sizeof(long); i++) {
1198 			unsigned long mask;
1199 			gfn_t offset;
1200 
1201 			if (!dirty_bitmap[i])
1202 				continue;
1203 
1204 			*flush = true;
1205 			mask = xchg(&dirty_bitmap[i], 0);
1206 			dirty_bitmap_buffer[i] = mask;
1207 
1208 			offset = i * BITS_PER_LONG;
1209 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210 								offset, mask);
1211 		}
1212 		spin_unlock(&kvm->mmu_lock);
1213 	}
1214 
1215 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216 		return -EFAULT;
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220 
1221 /**
1222  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223  *	and reenable dirty page tracking for the corresponding pages.
1224  * @kvm:	pointer to kvm instance
1225  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1226  * @flush:	true if TLB flush is needed by caller
1227  */
1228 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1229 				struct kvm_clear_dirty_log *log, bool *flush)
1230 {
1231 	struct kvm_memslots *slots;
1232 	struct kvm_memory_slot *memslot;
1233 	int as_id, id;
1234 	gfn_t offset;
1235 	unsigned long i, n;
1236 	unsigned long *dirty_bitmap;
1237 	unsigned long *dirty_bitmap_buffer;
1238 
1239 	as_id = log->slot >> 16;
1240 	id = (u16)log->slot;
1241 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1242 		return -EINVAL;
1243 
1244 	if (log->first_page & 63)
1245 		return -EINVAL;
1246 
1247 	slots = __kvm_memslots(kvm, as_id);
1248 	memslot = id_to_memslot(slots, id);
1249 
1250 	dirty_bitmap = memslot->dirty_bitmap;
1251 	if (!dirty_bitmap)
1252 		return -ENOENT;
1253 
1254 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1255 
1256 	if (log->first_page > memslot->npages ||
1257 	    log->num_pages > memslot->npages - log->first_page ||
1258 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1259 	    return -EINVAL;
1260 
1261 	*flush = false;
1262 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1263 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1264 		return -EFAULT;
1265 
1266 	spin_lock(&kvm->mmu_lock);
1267 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1268 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1269 	     i++, offset += BITS_PER_LONG) {
1270 		unsigned long mask = *dirty_bitmap_buffer++;
1271 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1272 		if (!mask)
1273 			continue;
1274 
1275 		mask &= atomic_long_fetch_andnot(mask, p);
1276 
1277 		/*
1278 		 * mask contains the bits that really have been cleared.  This
1279 		 * never includes any bits beyond the length of the memslot (if
1280 		 * the length is not aligned to 64 pages), therefore it is not
1281 		 * a problem if userspace sets them in log->dirty_bitmap.
1282 		*/
1283 		if (mask) {
1284 			*flush = true;
1285 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286 								offset, mask);
1287 		}
1288 	}
1289 	spin_unlock(&kvm->mmu_lock);
1290 
1291 	return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1294 #endif
1295 
1296 bool kvm_largepages_enabled(void)
1297 {
1298 	return largepages_enabled;
1299 }
1300 
1301 void kvm_disable_largepages(void)
1302 {
1303 	largepages_enabled = false;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306 
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308 {
1309 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312 
1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314 {
1315 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1316 }
1317 
1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319 {
1320 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321 
1322 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1323 	      memslot->flags & KVM_MEMSLOT_INVALID)
1324 		return false;
1325 
1326 	return true;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329 
1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331 {
1332 	struct vm_area_struct *vma;
1333 	unsigned long addr, size;
1334 
1335 	size = PAGE_SIZE;
1336 
1337 	addr = gfn_to_hva(kvm, gfn);
1338 	if (kvm_is_error_hva(addr))
1339 		return PAGE_SIZE;
1340 
1341 	down_read(&current->mm->mmap_sem);
1342 	vma = find_vma(current->mm, addr);
1343 	if (!vma)
1344 		goto out;
1345 
1346 	size = vma_kernel_pagesize(vma);
1347 
1348 out:
1349 	up_read(&current->mm->mmap_sem);
1350 
1351 	return size;
1352 }
1353 
1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355 {
1356 	return slot->flags & KVM_MEM_READONLY;
1357 }
1358 
1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1360 				       gfn_t *nr_pages, bool write)
1361 {
1362 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1363 		return KVM_HVA_ERR_BAD;
1364 
1365 	if (memslot_is_readonly(slot) && write)
1366 		return KVM_HVA_ERR_RO_BAD;
1367 
1368 	if (nr_pages)
1369 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1370 
1371 	return __gfn_to_hva_memslot(slot, gfn);
1372 }
1373 
1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1375 				     gfn_t *nr_pages)
1376 {
1377 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1378 }
1379 
1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1381 					gfn_t gfn)
1382 {
1383 	return gfn_to_hva_many(slot, gfn, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386 
1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388 {
1389 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(gfn_to_hva);
1392 
1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394 {
1395 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1398 
1399 /*
1400  * Return the hva of a @gfn and the R/W attribute if possible.
1401  *
1402  * @slot: the kvm_memory_slot which contains @gfn
1403  * @gfn: the gfn to be translated
1404  * @writable: used to return the read/write attribute of the @slot if the hva
1405  * is valid and @writable is not NULL
1406  */
1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1408 				      gfn_t gfn, bool *writable)
1409 {
1410 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411 
1412 	if (!kvm_is_error_hva(hva) && writable)
1413 		*writable = !memslot_is_readonly(slot);
1414 
1415 	return hva;
1416 }
1417 
1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419 {
1420 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421 
1422 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423 }
1424 
1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426 {
1427 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428 
1429 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1430 }
1431 
1432 static inline int check_user_page_hwpoison(unsigned long addr)
1433 {
1434 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435 
1436 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1437 	return rc == -EHWPOISON;
1438 }
1439 
1440 /*
1441  * The fast path to get the writable pfn which will be stored in @pfn,
1442  * true indicates success, otherwise false is returned.  It's also the
1443  * only part that runs if we can are in atomic context.
1444  */
1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1446 			    bool *writable, kvm_pfn_t *pfn)
1447 {
1448 	struct page *page[1];
1449 	int npages;
1450 
1451 	/*
1452 	 * Fast pin a writable pfn only if it is a write fault request
1453 	 * or the caller allows to map a writable pfn for a read fault
1454 	 * request.
1455 	 */
1456 	if (!(write_fault || writable))
1457 		return false;
1458 
1459 	npages = __get_user_pages_fast(addr, 1, 1, page);
1460 	if (npages == 1) {
1461 		*pfn = page_to_pfn(page[0]);
1462 
1463 		if (writable)
1464 			*writable = true;
1465 		return true;
1466 	}
1467 
1468 	return false;
1469 }
1470 
1471 /*
1472  * The slow path to get the pfn of the specified host virtual address,
1473  * 1 indicates success, -errno is returned if error is detected.
1474  */
1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1476 			   bool *writable, kvm_pfn_t *pfn)
1477 {
1478 	unsigned int flags = FOLL_HWPOISON;
1479 	struct page *page;
1480 	int npages = 0;
1481 
1482 	might_sleep();
1483 
1484 	if (writable)
1485 		*writable = write_fault;
1486 
1487 	if (write_fault)
1488 		flags |= FOLL_WRITE;
1489 	if (async)
1490 		flags |= FOLL_NOWAIT;
1491 
1492 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1493 	if (npages != 1)
1494 		return npages;
1495 
1496 	/* map read fault as writable if possible */
1497 	if (unlikely(!write_fault) && writable) {
1498 		struct page *wpage;
1499 
1500 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1501 			*writable = true;
1502 			put_page(page);
1503 			page = wpage;
1504 		}
1505 	}
1506 	*pfn = page_to_pfn(page);
1507 	return npages;
1508 }
1509 
1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511 {
1512 	if (unlikely(!(vma->vm_flags & VM_READ)))
1513 		return false;
1514 
1515 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1516 		return false;
1517 
1518 	return true;
1519 }
1520 
1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1522 			       unsigned long addr, bool *async,
1523 			       bool write_fault, bool *writable,
1524 			       kvm_pfn_t *p_pfn)
1525 {
1526 	unsigned long pfn;
1527 	int r;
1528 
1529 	r = follow_pfn(vma, addr, &pfn);
1530 	if (r) {
1531 		/*
1532 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1533 		 * not call the fault handler, so do it here.
1534 		 */
1535 		bool unlocked = false;
1536 		r = fixup_user_fault(current, current->mm, addr,
1537 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1538 				     &unlocked);
1539 		if (unlocked)
1540 			return -EAGAIN;
1541 		if (r)
1542 			return r;
1543 
1544 		r = follow_pfn(vma, addr, &pfn);
1545 		if (r)
1546 			return r;
1547 
1548 	}
1549 
1550 	if (writable)
1551 		*writable = true;
1552 
1553 	/*
1554 	 * Get a reference here because callers of *hva_to_pfn* and
1555 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1556 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1557 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1558 	 * simply do nothing for reserved pfns.
1559 	 *
1560 	 * Whoever called remap_pfn_range is also going to call e.g.
1561 	 * unmap_mapping_range before the underlying pages are freed,
1562 	 * causing a call to our MMU notifier.
1563 	 */
1564 	kvm_get_pfn(pfn);
1565 
1566 	*p_pfn = pfn;
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Pin guest page in memory and return its pfn.
1572  * @addr: host virtual address which maps memory to the guest
1573  * @atomic: whether this function can sleep
1574  * @async: whether this function need to wait IO complete if the
1575  *         host page is not in the memory
1576  * @write_fault: whether we should get a writable host page
1577  * @writable: whether it allows to map a writable host page for !@write_fault
1578  *
1579  * The function will map a writable host page for these two cases:
1580  * 1): @write_fault = true
1581  * 2): @write_fault = false && @writable, @writable will tell the caller
1582  *     whether the mapping is writable.
1583  */
1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1585 			bool write_fault, bool *writable)
1586 {
1587 	struct vm_area_struct *vma;
1588 	kvm_pfn_t pfn = 0;
1589 	int npages, r;
1590 
1591 	/* we can do it either atomically or asynchronously, not both */
1592 	BUG_ON(atomic && async);
1593 
1594 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1595 		return pfn;
1596 
1597 	if (atomic)
1598 		return KVM_PFN_ERR_FAULT;
1599 
1600 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1601 	if (npages == 1)
1602 		return pfn;
1603 
1604 	down_read(&current->mm->mmap_sem);
1605 	if (npages == -EHWPOISON ||
1606 	      (!async && check_user_page_hwpoison(addr))) {
1607 		pfn = KVM_PFN_ERR_HWPOISON;
1608 		goto exit;
1609 	}
1610 
1611 retry:
1612 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1613 
1614 	if (vma == NULL)
1615 		pfn = KVM_PFN_ERR_FAULT;
1616 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1617 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1618 		if (r == -EAGAIN)
1619 			goto retry;
1620 		if (r < 0)
1621 			pfn = KVM_PFN_ERR_FAULT;
1622 	} else {
1623 		if (async && vma_is_valid(vma, write_fault))
1624 			*async = true;
1625 		pfn = KVM_PFN_ERR_FAULT;
1626 	}
1627 exit:
1628 	up_read(&current->mm->mmap_sem);
1629 	return pfn;
1630 }
1631 
1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1633 			       bool atomic, bool *async, bool write_fault,
1634 			       bool *writable)
1635 {
1636 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637 
1638 	if (addr == KVM_HVA_ERR_RO_BAD) {
1639 		if (writable)
1640 			*writable = false;
1641 		return KVM_PFN_ERR_RO_FAULT;
1642 	}
1643 
1644 	if (kvm_is_error_hva(addr)) {
1645 		if (writable)
1646 			*writable = false;
1647 		return KVM_PFN_NOSLOT;
1648 	}
1649 
1650 	/* Do not map writable pfn in the readonly memslot. */
1651 	if (writable && memslot_is_readonly(slot)) {
1652 		*writable = false;
1653 		writable = NULL;
1654 	}
1655 
1656 	return hva_to_pfn(addr, atomic, async, write_fault,
1657 			  writable);
1658 }
1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660 
1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1662 		      bool *writable)
1663 {
1664 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1665 				    write_fault, writable);
1666 }
1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668 
1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670 {
1671 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674 
1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676 {
1677 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680 
1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682 {
1683 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686 
1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692 
1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694 {
1695 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698 
1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700 {
1701 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704 
1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1706 			    struct page **pages, int nr_pages)
1707 {
1708 	unsigned long addr;
1709 	gfn_t entry = 0;
1710 
1711 	addr = gfn_to_hva_many(slot, gfn, &entry);
1712 	if (kvm_is_error_hva(addr))
1713 		return -1;
1714 
1715 	if (entry < nr_pages)
1716 		return 0;
1717 
1718 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719 }
1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721 
1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723 {
1724 	if (is_error_noslot_pfn(pfn))
1725 		return KVM_ERR_PTR_BAD_PAGE;
1726 
1727 	if (kvm_is_reserved_pfn(pfn)) {
1728 		WARN_ON(1);
1729 		return KVM_ERR_PTR_BAD_PAGE;
1730 	}
1731 
1732 	return pfn_to_page(pfn);
1733 }
1734 
1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736 {
1737 	kvm_pfn_t pfn;
1738 
1739 	pfn = gfn_to_pfn(kvm, gfn);
1740 
1741 	return kvm_pfn_to_page(pfn);
1742 }
1743 EXPORT_SYMBOL_GPL(gfn_to_page);
1744 
1745 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1746 			 struct kvm_host_map *map)
1747 {
1748 	kvm_pfn_t pfn;
1749 	void *hva = NULL;
1750 	struct page *page = KVM_UNMAPPED_PAGE;
1751 
1752 	if (!map)
1753 		return -EINVAL;
1754 
1755 	pfn = gfn_to_pfn_memslot(slot, gfn);
1756 	if (is_error_noslot_pfn(pfn))
1757 		return -EINVAL;
1758 
1759 	if (pfn_valid(pfn)) {
1760 		page = pfn_to_page(pfn);
1761 		hva = kmap(page);
1762 #ifdef CONFIG_HAS_IOMEM
1763 	} else {
1764 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1765 #endif
1766 	}
1767 
1768 	if (!hva)
1769 		return -EFAULT;
1770 
1771 	map->page = page;
1772 	map->hva = hva;
1773 	map->pfn = pfn;
1774 	map->gfn = gfn;
1775 
1776 	return 0;
1777 }
1778 
1779 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1780 {
1781 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1784 
1785 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1786 		    bool dirty)
1787 {
1788 	if (!map)
1789 		return;
1790 
1791 	if (!map->hva)
1792 		return;
1793 
1794 	if (map->page != KVM_UNMAPPED_PAGE)
1795 		kunmap(map->page);
1796 #ifdef CONFIG_HAS_IOMEM
1797 	else
1798 		memunmap(map->hva);
1799 #endif
1800 
1801 	if (dirty) {
1802 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1803 		kvm_release_pfn_dirty(map->pfn);
1804 	} else {
1805 		kvm_release_pfn_clean(map->pfn);
1806 	}
1807 
1808 	map->hva = NULL;
1809 	map->page = NULL;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1812 
1813 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1814 {
1815 	kvm_pfn_t pfn;
1816 
1817 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1818 
1819 	return kvm_pfn_to_page(pfn);
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1822 
1823 void kvm_release_page_clean(struct page *page)
1824 {
1825 	WARN_ON(is_error_page(page));
1826 
1827 	kvm_release_pfn_clean(page_to_pfn(page));
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1830 
1831 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1832 {
1833 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1834 		put_page(pfn_to_page(pfn));
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1837 
1838 void kvm_release_page_dirty(struct page *page)
1839 {
1840 	WARN_ON(is_error_page(page));
1841 
1842 	kvm_release_pfn_dirty(page_to_pfn(page));
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1845 
1846 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1847 {
1848 	kvm_set_pfn_dirty(pfn);
1849 	kvm_release_pfn_clean(pfn);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1852 
1853 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1854 {
1855 	if (!kvm_is_reserved_pfn(pfn)) {
1856 		struct page *page = pfn_to_page(pfn);
1857 
1858 		if (!PageReserved(page))
1859 			SetPageDirty(page);
1860 	}
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1863 
1864 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1865 {
1866 	if (!kvm_is_reserved_pfn(pfn))
1867 		mark_page_accessed(pfn_to_page(pfn));
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1870 
1871 void kvm_get_pfn(kvm_pfn_t pfn)
1872 {
1873 	if (!kvm_is_reserved_pfn(pfn))
1874 		get_page(pfn_to_page(pfn));
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1877 
1878 static int next_segment(unsigned long len, int offset)
1879 {
1880 	if (len > PAGE_SIZE - offset)
1881 		return PAGE_SIZE - offset;
1882 	else
1883 		return len;
1884 }
1885 
1886 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1887 				 void *data, int offset, int len)
1888 {
1889 	int r;
1890 	unsigned long addr;
1891 
1892 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1893 	if (kvm_is_error_hva(addr))
1894 		return -EFAULT;
1895 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1896 	if (r)
1897 		return -EFAULT;
1898 	return 0;
1899 }
1900 
1901 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1902 			int len)
1903 {
1904 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905 
1906 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1909 
1910 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1911 			     int offset, int len)
1912 {
1913 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1914 
1915 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1918 
1919 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1920 {
1921 	gfn_t gfn = gpa >> PAGE_SHIFT;
1922 	int seg;
1923 	int offset = offset_in_page(gpa);
1924 	int ret;
1925 
1926 	while ((seg = next_segment(len, offset)) != 0) {
1927 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1928 		if (ret < 0)
1929 			return ret;
1930 		offset = 0;
1931 		len -= seg;
1932 		data += seg;
1933 		++gfn;
1934 	}
1935 	return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_read_guest);
1938 
1939 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1940 {
1941 	gfn_t gfn = gpa >> PAGE_SHIFT;
1942 	int seg;
1943 	int offset = offset_in_page(gpa);
1944 	int ret;
1945 
1946 	while ((seg = next_segment(len, offset)) != 0) {
1947 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1948 		if (ret < 0)
1949 			return ret;
1950 		offset = 0;
1951 		len -= seg;
1952 		data += seg;
1953 		++gfn;
1954 	}
1955 	return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1958 
1959 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1960 			           void *data, int offset, unsigned long len)
1961 {
1962 	int r;
1963 	unsigned long addr;
1964 
1965 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1966 	if (kvm_is_error_hva(addr))
1967 		return -EFAULT;
1968 	pagefault_disable();
1969 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1970 	pagefault_enable();
1971 	if (r)
1972 		return -EFAULT;
1973 	return 0;
1974 }
1975 
1976 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1977 			  unsigned long len)
1978 {
1979 	gfn_t gfn = gpa >> PAGE_SHIFT;
1980 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1981 	int offset = offset_in_page(gpa);
1982 
1983 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1986 
1987 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1988 			       void *data, unsigned long len)
1989 {
1990 	gfn_t gfn = gpa >> PAGE_SHIFT;
1991 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992 	int offset = offset_in_page(gpa);
1993 
1994 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1997 
1998 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1999 			          const void *data, int offset, int len)
2000 {
2001 	int r;
2002 	unsigned long addr;
2003 
2004 	addr = gfn_to_hva_memslot(memslot, gfn);
2005 	if (kvm_is_error_hva(addr))
2006 		return -EFAULT;
2007 	r = __copy_to_user((void __user *)addr + offset, data, len);
2008 	if (r)
2009 		return -EFAULT;
2010 	mark_page_dirty_in_slot(memslot, gfn);
2011 	return 0;
2012 }
2013 
2014 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2015 			 const void *data, int offset, int len)
2016 {
2017 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2018 
2019 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2022 
2023 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2024 			      const void *data, int offset, int len)
2025 {
2026 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2027 
2028 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2031 
2032 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2033 		    unsigned long len)
2034 {
2035 	gfn_t gfn = gpa >> PAGE_SHIFT;
2036 	int seg;
2037 	int offset = offset_in_page(gpa);
2038 	int ret;
2039 
2040 	while ((seg = next_segment(len, offset)) != 0) {
2041 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2042 		if (ret < 0)
2043 			return ret;
2044 		offset = 0;
2045 		len -= seg;
2046 		data += seg;
2047 		++gfn;
2048 	}
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_write_guest);
2052 
2053 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2054 		         unsigned long len)
2055 {
2056 	gfn_t gfn = gpa >> PAGE_SHIFT;
2057 	int seg;
2058 	int offset = offset_in_page(gpa);
2059 	int ret;
2060 
2061 	while ((seg = next_segment(len, offset)) != 0) {
2062 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2063 		if (ret < 0)
2064 			return ret;
2065 		offset = 0;
2066 		len -= seg;
2067 		data += seg;
2068 		++gfn;
2069 	}
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2073 
2074 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2075 				       struct gfn_to_hva_cache *ghc,
2076 				       gpa_t gpa, unsigned long len)
2077 {
2078 	int offset = offset_in_page(gpa);
2079 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2080 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2081 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2082 	gfn_t nr_pages_avail;
2083 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2084 
2085 	ghc->gpa = gpa;
2086 	ghc->generation = slots->generation;
2087 	ghc->len = len;
2088 	ghc->hva = KVM_HVA_ERR_BAD;
2089 
2090 	/*
2091 	 * If the requested region crosses two memslots, we still
2092 	 * verify that the entire region is valid here.
2093 	 */
2094 	while (!r && start_gfn <= end_gfn) {
2095 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2096 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2097 					   &nr_pages_avail);
2098 		if (kvm_is_error_hva(ghc->hva))
2099 			r = -EFAULT;
2100 		start_gfn += nr_pages_avail;
2101 	}
2102 
2103 	/* Use the slow path for cross page reads and writes. */
2104 	if (!r && nr_pages_needed == 1)
2105 		ghc->hva += offset;
2106 	else
2107 		ghc->memslot = NULL;
2108 
2109 	return r;
2110 }
2111 
2112 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2113 			      gpa_t gpa, unsigned long len)
2114 {
2115 	struct kvm_memslots *slots = kvm_memslots(kvm);
2116 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2119 
2120 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2121 				  void *data, unsigned int offset,
2122 				  unsigned long len)
2123 {
2124 	struct kvm_memslots *slots = kvm_memslots(kvm);
2125 	int r;
2126 	gpa_t gpa = ghc->gpa + offset;
2127 
2128 	BUG_ON(len + offset > ghc->len);
2129 
2130 	if (slots->generation != ghc->generation)
2131 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2132 
2133 	if (unlikely(!ghc->memslot))
2134 		return kvm_write_guest(kvm, gpa, data, len);
2135 
2136 	if (kvm_is_error_hva(ghc->hva))
2137 		return -EFAULT;
2138 
2139 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2140 	if (r)
2141 		return -EFAULT;
2142 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2143 
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2147 
2148 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2149 			   void *data, unsigned long len)
2150 {
2151 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2152 }
2153 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2154 
2155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2156 			   void *data, unsigned long len)
2157 {
2158 	struct kvm_memslots *slots = kvm_memslots(kvm);
2159 	int r;
2160 
2161 	BUG_ON(len > ghc->len);
2162 
2163 	if (slots->generation != ghc->generation)
2164 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165 
2166 	if (unlikely(!ghc->memslot))
2167 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2168 
2169 	if (kvm_is_error_hva(ghc->hva))
2170 		return -EFAULT;
2171 
2172 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2173 	if (r)
2174 		return -EFAULT;
2175 
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2179 
2180 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2181 {
2182 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2183 
2184 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2187 
2188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2189 {
2190 	gfn_t gfn = gpa >> PAGE_SHIFT;
2191 	int seg;
2192 	int offset = offset_in_page(gpa);
2193 	int ret;
2194 
2195 	while ((seg = next_segment(len, offset)) != 0) {
2196 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2197 		if (ret < 0)
2198 			return ret;
2199 		offset = 0;
2200 		len -= seg;
2201 		++gfn;
2202 	}
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2206 
2207 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2208 				    gfn_t gfn)
2209 {
2210 	if (memslot && memslot->dirty_bitmap) {
2211 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2212 
2213 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2214 	}
2215 }
2216 
2217 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2218 {
2219 	struct kvm_memory_slot *memslot;
2220 
2221 	memslot = gfn_to_memslot(kvm, gfn);
2222 	mark_page_dirty_in_slot(memslot, gfn);
2223 }
2224 EXPORT_SYMBOL_GPL(mark_page_dirty);
2225 
2226 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2227 {
2228 	struct kvm_memory_slot *memslot;
2229 
2230 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2231 	mark_page_dirty_in_slot(memslot, gfn);
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2234 
2235 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2236 {
2237 	if (!vcpu->sigset_active)
2238 		return;
2239 
2240 	/*
2241 	 * This does a lockless modification of ->real_blocked, which is fine
2242 	 * because, only current can change ->real_blocked and all readers of
2243 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2244 	 * of ->blocked.
2245 	 */
2246 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2247 }
2248 
2249 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2250 {
2251 	if (!vcpu->sigset_active)
2252 		return;
2253 
2254 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2255 	sigemptyset(&current->real_blocked);
2256 }
2257 
2258 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2259 {
2260 	unsigned int old, val, grow, grow_start;
2261 
2262 	old = val = vcpu->halt_poll_ns;
2263 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2264 	grow = READ_ONCE(halt_poll_ns_grow);
2265 	if (!grow)
2266 		goto out;
2267 
2268 	val *= grow;
2269 	if (val < grow_start)
2270 		val = grow_start;
2271 
2272 	if (val > halt_poll_ns)
2273 		val = halt_poll_ns;
2274 
2275 	vcpu->halt_poll_ns = val;
2276 out:
2277 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2278 }
2279 
2280 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2281 {
2282 	unsigned int old, val, shrink;
2283 
2284 	old = val = vcpu->halt_poll_ns;
2285 	shrink = READ_ONCE(halt_poll_ns_shrink);
2286 	if (shrink == 0)
2287 		val = 0;
2288 	else
2289 		val /= shrink;
2290 
2291 	vcpu->halt_poll_ns = val;
2292 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2293 }
2294 
2295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2296 {
2297 	int ret = -EINTR;
2298 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2299 
2300 	if (kvm_arch_vcpu_runnable(vcpu)) {
2301 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2302 		goto out;
2303 	}
2304 	if (kvm_cpu_has_pending_timer(vcpu))
2305 		goto out;
2306 	if (signal_pending(current))
2307 		goto out;
2308 
2309 	ret = 0;
2310 out:
2311 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2312 	return ret;
2313 }
2314 
2315 /*
2316  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2317  */
2318 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2319 {
2320 	ktime_t start, cur;
2321 	DECLARE_SWAITQUEUE(wait);
2322 	bool waited = false;
2323 	u64 block_ns;
2324 
2325 	start = cur = ktime_get();
2326 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2327 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2328 
2329 		++vcpu->stat.halt_attempted_poll;
2330 		do {
2331 			/*
2332 			 * This sets KVM_REQ_UNHALT if an interrupt
2333 			 * arrives.
2334 			 */
2335 			if (kvm_vcpu_check_block(vcpu) < 0) {
2336 				++vcpu->stat.halt_successful_poll;
2337 				if (!vcpu_valid_wakeup(vcpu))
2338 					++vcpu->stat.halt_poll_invalid;
2339 				goto out;
2340 			}
2341 			cur = ktime_get();
2342 		} while (single_task_running() && ktime_before(cur, stop));
2343 	}
2344 
2345 	kvm_arch_vcpu_blocking(vcpu);
2346 
2347 	for (;;) {
2348 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2349 
2350 		if (kvm_vcpu_check_block(vcpu) < 0)
2351 			break;
2352 
2353 		waited = true;
2354 		schedule();
2355 	}
2356 
2357 	finish_swait(&vcpu->wq, &wait);
2358 	cur = ktime_get();
2359 
2360 	kvm_arch_vcpu_unblocking(vcpu);
2361 out:
2362 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2363 
2364 	if (!vcpu_valid_wakeup(vcpu))
2365 		shrink_halt_poll_ns(vcpu);
2366 	else if (halt_poll_ns) {
2367 		if (block_ns <= vcpu->halt_poll_ns)
2368 			;
2369 		/* we had a long block, shrink polling */
2370 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2371 			shrink_halt_poll_ns(vcpu);
2372 		/* we had a short halt and our poll time is too small */
2373 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2374 			block_ns < halt_poll_ns)
2375 			grow_halt_poll_ns(vcpu);
2376 	} else
2377 		vcpu->halt_poll_ns = 0;
2378 
2379 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2380 	kvm_arch_vcpu_block_finish(vcpu);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2383 
2384 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2385 {
2386 	struct swait_queue_head *wqp;
2387 
2388 	wqp = kvm_arch_vcpu_wq(vcpu);
2389 	if (swq_has_sleeper(wqp)) {
2390 		swake_up_one(wqp);
2391 		WRITE_ONCE(vcpu->ready, true);
2392 		++vcpu->stat.halt_wakeup;
2393 		return true;
2394 	}
2395 
2396 	return false;
2397 }
2398 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2399 
2400 #ifndef CONFIG_S390
2401 /*
2402  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2403  */
2404 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2405 {
2406 	int me;
2407 	int cpu = vcpu->cpu;
2408 
2409 	if (kvm_vcpu_wake_up(vcpu))
2410 		return;
2411 
2412 	me = get_cpu();
2413 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2414 		if (kvm_arch_vcpu_should_kick(vcpu))
2415 			smp_send_reschedule(cpu);
2416 	put_cpu();
2417 }
2418 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2419 #endif /* !CONFIG_S390 */
2420 
2421 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2422 {
2423 	struct pid *pid;
2424 	struct task_struct *task = NULL;
2425 	int ret = 0;
2426 
2427 	rcu_read_lock();
2428 	pid = rcu_dereference(target->pid);
2429 	if (pid)
2430 		task = get_pid_task(pid, PIDTYPE_PID);
2431 	rcu_read_unlock();
2432 	if (!task)
2433 		return ret;
2434 	ret = yield_to(task, 1);
2435 	put_task_struct(task);
2436 
2437 	return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2440 
2441 /*
2442  * Helper that checks whether a VCPU is eligible for directed yield.
2443  * Most eligible candidate to yield is decided by following heuristics:
2444  *
2445  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2446  *  (preempted lock holder), indicated by @in_spin_loop.
2447  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2448  *
2449  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2450  *  chance last time (mostly it has become eligible now since we have probably
2451  *  yielded to lockholder in last iteration. This is done by toggling
2452  *  @dy_eligible each time a VCPU checked for eligibility.)
2453  *
2454  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2455  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2456  *  burning. Giving priority for a potential lock-holder increases lock
2457  *  progress.
2458  *
2459  *  Since algorithm is based on heuristics, accessing another VCPU data without
2460  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2461  *  and continue with next VCPU and so on.
2462  */
2463 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2464 {
2465 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2466 	bool eligible;
2467 
2468 	eligible = !vcpu->spin_loop.in_spin_loop ||
2469 		    vcpu->spin_loop.dy_eligible;
2470 
2471 	if (vcpu->spin_loop.in_spin_loop)
2472 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2473 
2474 	return eligible;
2475 #else
2476 	return true;
2477 #endif
2478 }
2479 
2480 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2481 {
2482 	struct kvm *kvm = me->kvm;
2483 	struct kvm_vcpu *vcpu;
2484 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2485 	int yielded = 0;
2486 	int try = 3;
2487 	int pass;
2488 	int i;
2489 
2490 	kvm_vcpu_set_in_spin_loop(me, true);
2491 	/*
2492 	 * We boost the priority of a VCPU that is runnable but not
2493 	 * currently running, because it got preempted by something
2494 	 * else and called schedule in __vcpu_run.  Hopefully that
2495 	 * VCPU is holding the lock that we need and will release it.
2496 	 * We approximate round-robin by starting at the last boosted VCPU.
2497 	 */
2498 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2499 		kvm_for_each_vcpu(i, vcpu, kvm) {
2500 			if (!pass && i <= last_boosted_vcpu) {
2501 				i = last_boosted_vcpu;
2502 				continue;
2503 			} else if (pass && i > last_boosted_vcpu)
2504 				break;
2505 			if (!READ_ONCE(vcpu->ready))
2506 				continue;
2507 			if (vcpu == me)
2508 				continue;
2509 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2510 				continue;
2511 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2512 				continue;
2513 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2514 				continue;
2515 
2516 			yielded = kvm_vcpu_yield_to(vcpu);
2517 			if (yielded > 0) {
2518 				kvm->last_boosted_vcpu = i;
2519 				break;
2520 			} else if (yielded < 0) {
2521 				try--;
2522 				if (!try)
2523 					break;
2524 			}
2525 		}
2526 	}
2527 	kvm_vcpu_set_in_spin_loop(me, false);
2528 
2529 	/* Ensure vcpu is not eligible during next spinloop */
2530 	kvm_vcpu_set_dy_eligible(me, false);
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2533 
2534 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2535 {
2536 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2537 	struct page *page;
2538 
2539 	if (vmf->pgoff == 0)
2540 		page = virt_to_page(vcpu->run);
2541 #ifdef CONFIG_X86
2542 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2543 		page = virt_to_page(vcpu->arch.pio_data);
2544 #endif
2545 #ifdef CONFIG_KVM_MMIO
2546 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2547 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2548 #endif
2549 	else
2550 		return kvm_arch_vcpu_fault(vcpu, vmf);
2551 	get_page(page);
2552 	vmf->page = page;
2553 	return 0;
2554 }
2555 
2556 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2557 	.fault = kvm_vcpu_fault,
2558 };
2559 
2560 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2561 {
2562 	vma->vm_ops = &kvm_vcpu_vm_ops;
2563 	return 0;
2564 }
2565 
2566 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2567 {
2568 	struct kvm_vcpu *vcpu = filp->private_data;
2569 
2570 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2571 	kvm_put_kvm(vcpu->kvm);
2572 	return 0;
2573 }
2574 
2575 static struct file_operations kvm_vcpu_fops = {
2576 	.release        = kvm_vcpu_release,
2577 	.unlocked_ioctl = kvm_vcpu_ioctl,
2578 	.mmap           = kvm_vcpu_mmap,
2579 	.llseek		= noop_llseek,
2580 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2581 };
2582 
2583 /*
2584  * Allocates an inode for the vcpu.
2585  */
2586 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2587 {
2588 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2589 
2590 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2591 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2592 }
2593 
2594 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2595 {
2596 	char dir_name[ITOA_MAX_LEN * 2];
2597 	int ret;
2598 
2599 	if (!kvm_arch_has_vcpu_debugfs())
2600 		return 0;
2601 
2602 	if (!debugfs_initialized())
2603 		return 0;
2604 
2605 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2606 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2607 								vcpu->kvm->debugfs_dentry);
2608 	if (!vcpu->debugfs_dentry)
2609 		return -ENOMEM;
2610 
2611 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2612 	if (ret < 0) {
2613 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2614 		return ret;
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 /*
2621  * Creates some virtual cpus.  Good luck creating more than one.
2622  */
2623 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2624 {
2625 	int r;
2626 	struct kvm_vcpu *vcpu;
2627 
2628 	if (id >= KVM_MAX_VCPU_ID)
2629 		return -EINVAL;
2630 
2631 	mutex_lock(&kvm->lock);
2632 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2633 		mutex_unlock(&kvm->lock);
2634 		return -EINVAL;
2635 	}
2636 
2637 	kvm->created_vcpus++;
2638 	mutex_unlock(&kvm->lock);
2639 
2640 	vcpu = kvm_arch_vcpu_create(kvm, id);
2641 	if (IS_ERR(vcpu)) {
2642 		r = PTR_ERR(vcpu);
2643 		goto vcpu_decrement;
2644 	}
2645 
2646 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2647 
2648 	r = kvm_arch_vcpu_setup(vcpu);
2649 	if (r)
2650 		goto vcpu_destroy;
2651 
2652 	r = kvm_create_vcpu_debugfs(vcpu);
2653 	if (r)
2654 		goto vcpu_destroy;
2655 
2656 	mutex_lock(&kvm->lock);
2657 	if (kvm_get_vcpu_by_id(kvm, id)) {
2658 		r = -EEXIST;
2659 		goto unlock_vcpu_destroy;
2660 	}
2661 
2662 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2663 
2664 	/* Now it's all set up, let userspace reach it */
2665 	kvm_get_kvm(kvm);
2666 	r = create_vcpu_fd(vcpu);
2667 	if (r < 0) {
2668 		kvm_put_kvm(kvm);
2669 		goto unlock_vcpu_destroy;
2670 	}
2671 
2672 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2673 
2674 	/*
2675 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2676 	 * before kvm->online_vcpu's incremented value.
2677 	 */
2678 	smp_wmb();
2679 	atomic_inc(&kvm->online_vcpus);
2680 
2681 	mutex_unlock(&kvm->lock);
2682 	kvm_arch_vcpu_postcreate(vcpu);
2683 	return r;
2684 
2685 unlock_vcpu_destroy:
2686 	mutex_unlock(&kvm->lock);
2687 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2688 vcpu_destroy:
2689 	kvm_arch_vcpu_destroy(vcpu);
2690 vcpu_decrement:
2691 	mutex_lock(&kvm->lock);
2692 	kvm->created_vcpus--;
2693 	mutex_unlock(&kvm->lock);
2694 	return r;
2695 }
2696 
2697 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2698 {
2699 	if (sigset) {
2700 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2701 		vcpu->sigset_active = 1;
2702 		vcpu->sigset = *sigset;
2703 	} else
2704 		vcpu->sigset_active = 0;
2705 	return 0;
2706 }
2707 
2708 static long kvm_vcpu_ioctl(struct file *filp,
2709 			   unsigned int ioctl, unsigned long arg)
2710 {
2711 	struct kvm_vcpu *vcpu = filp->private_data;
2712 	void __user *argp = (void __user *)arg;
2713 	int r;
2714 	struct kvm_fpu *fpu = NULL;
2715 	struct kvm_sregs *kvm_sregs = NULL;
2716 
2717 	if (vcpu->kvm->mm != current->mm)
2718 		return -EIO;
2719 
2720 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2721 		return -EINVAL;
2722 
2723 	/*
2724 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2725 	 * execution; mutex_lock() would break them.
2726 	 */
2727 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2728 	if (r != -ENOIOCTLCMD)
2729 		return r;
2730 
2731 	if (mutex_lock_killable(&vcpu->mutex))
2732 		return -EINTR;
2733 	switch (ioctl) {
2734 	case KVM_RUN: {
2735 		struct pid *oldpid;
2736 		r = -EINVAL;
2737 		if (arg)
2738 			goto out;
2739 		oldpid = rcu_access_pointer(vcpu->pid);
2740 		if (unlikely(oldpid != task_pid(current))) {
2741 			/* The thread running this VCPU changed. */
2742 			struct pid *newpid;
2743 
2744 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2745 			if (r)
2746 				break;
2747 
2748 			newpid = get_task_pid(current, PIDTYPE_PID);
2749 			rcu_assign_pointer(vcpu->pid, newpid);
2750 			if (oldpid)
2751 				synchronize_rcu();
2752 			put_pid(oldpid);
2753 		}
2754 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2755 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2756 		break;
2757 	}
2758 	case KVM_GET_REGS: {
2759 		struct kvm_regs *kvm_regs;
2760 
2761 		r = -ENOMEM;
2762 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2763 		if (!kvm_regs)
2764 			goto out;
2765 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2766 		if (r)
2767 			goto out_free1;
2768 		r = -EFAULT;
2769 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2770 			goto out_free1;
2771 		r = 0;
2772 out_free1:
2773 		kfree(kvm_regs);
2774 		break;
2775 	}
2776 	case KVM_SET_REGS: {
2777 		struct kvm_regs *kvm_regs;
2778 
2779 		r = -ENOMEM;
2780 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2781 		if (IS_ERR(kvm_regs)) {
2782 			r = PTR_ERR(kvm_regs);
2783 			goto out;
2784 		}
2785 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2786 		kfree(kvm_regs);
2787 		break;
2788 	}
2789 	case KVM_GET_SREGS: {
2790 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2791 				    GFP_KERNEL_ACCOUNT);
2792 		r = -ENOMEM;
2793 		if (!kvm_sregs)
2794 			goto out;
2795 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2796 		if (r)
2797 			goto out;
2798 		r = -EFAULT;
2799 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2800 			goto out;
2801 		r = 0;
2802 		break;
2803 	}
2804 	case KVM_SET_SREGS: {
2805 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2806 		if (IS_ERR(kvm_sregs)) {
2807 			r = PTR_ERR(kvm_sregs);
2808 			kvm_sregs = NULL;
2809 			goto out;
2810 		}
2811 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2812 		break;
2813 	}
2814 	case KVM_GET_MP_STATE: {
2815 		struct kvm_mp_state mp_state;
2816 
2817 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2818 		if (r)
2819 			goto out;
2820 		r = -EFAULT;
2821 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2822 			goto out;
2823 		r = 0;
2824 		break;
2825 	}
2826 	case KVM_SET_MP_STATE: {
2827 		struct kvm_mp_state mp_state;
2828 
2829 		r = -EFAULT;
2830 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2831 			goto out;
2832 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2833 		break;
2834 	}
2835 	case KVM_TRANSLATE: {
2836 		struct kvm_translation tr;
2837 
2838 		r = -EFAULT;
2839 		if (copy_from_user(&tr, argp, sizeof(tr)))
2840 			goto out;
2841 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2842 		if (r)
2843 			goto out;
2844 		r = -EFAULT;
2845 		if (copy_to_user(argp, &tr, sizeof(tr)))
2846 			goto out;
2847 		r = 0;
2848 		break;
2849 	}
2850 	case KVM_SET_GUEST_DEBUG: {
2851 		struct kvm_guest_debug dbg;
2852 
2853 		r = -EFAULT;
2854 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2855 			goto out;
2856 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2857 		break;
2858 	}
2859 	case KVM_SET_SIGNAL_MASK: {
2860 		struct kvm_signal_mask __user *sigmask_arg = argp;
2861 		struct kvm_signal_mask kvm_sigmask;
2862 		sigset_t sigset, *p;
2863 
2864 		p = NULL;
2865 		if (argp) {
2866 			r = -EFAULT;
2867 			if (copy_from_user(&kvm_sigmask, argp,
2868 					   sizeof(kvm_sigmask)))
2869 				goto out;
2870 			r = -EINVAL;
2871 			if (kvm_sigmask.len != sizeof(sigset))
2872 				goto out;
2873 			r = -EFAULT;
2874 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2875 					   sizeof(sigset)))
2876 				goto out;
2877 			p = &sigset;
2878 		}
2879 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2880 		break;
2881 	}
2882 	case KVM_GET_FPU: {
2883 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2884 		r = -ENOMEM;
2885 		if (!fpu)
2886 			goto out;
2887 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2888 		if (r)
2889 			goto out;
2890 		r = -EFAULT;
2891 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2892 			goto out;
2893 		r = 0;
2894 		break;
2895 	}
2896 	case KVM_SET_FPU: {
2897 		fpu = memdup_user(argp, sizeof(*fpu));
2898 		if (IS_ERR(fpu)) {
2899 			r = PTR_ERR(fpu);
2900 			fpu = NULL;
2901 			goto out;
2902 		}
2903 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2904 		break;
2905 	}
2906 	default:
2907 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2908 	}
2909 out:
2910 	mutex_unlock(&vcpu->mutex);
2911 	kfree(fpu);
2912 	kfree(kvm_sregs);
2913 	return r;
2914 }
2915 
2916 #ifdef CONFIG_KVM_COMPAT
2917 static long kvm_vcpu_compat_ioctl(struct file *filp,
2918 				  unsigned int ioctl, unsigned long arg)
2919 {
2920 	struct kvm_vcpu *vcpu = filp->private_data;
2921 	void __user *argp = compat_ptr(arg);
2922 	int r;
2923 
2924 	if (vcpu->kvm->mm != current->mm)
2925 		return -EIO;
2926 
2927 	switch (ioctl) {
2928 	case KVM_SET_SIGNAL_MASK: {
2929 		struct kvm_signal_mask __user *sigmask_arg = argp;
2930 		struct kvm_signal_mask kvm_sigmask;
2931 		sigset_t sigset;
2932 
2933 		if (argp) {
2934 			r = -EFAULT;
2935 			if (copy_from_user(&kvm_sigmask, argp,
2936 					   sizeof(kvm_sigmask)))
2937 				goto out;
2938 			r = -EINVAL;
2939 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2940 				goto out;
2941 			r = -EFAULT;
2942 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2943 				goto out;
2944 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2945 		} else
2946 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2947 		break;
2948 	}
2949 	default:
2950 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2951 	}
2952 
2953 out:
2954 	return r;
2955 }
2956 #endif
2957 
2958 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2959 {
2960 	struct kvm_device *dev = filp->private_data;
2961 
2962 	if (dev->ops->mmap)
2963 		return dev->ops->mmap(dev, vma);
2964 
2965 	return -ENODEV;
2966 }
2967 
2968 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2969 				 int (*accessor)(struct kvm_device *dev,
2970 						 struct kvm_device_attr *attr),
2971 				 unsigned long arg)
2972 {
2973 	struct kvm_device_attr attr;
2974 
2975 	if (!accessor)
2976 		return -EPERM;
2977 
2978 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2979 		return -EFAULT;
2980 
2981 	return accessor(dev, &attr);
2982 }
2983 
2984 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2985 			     unsigned long arg)
2986 {
2987 	struct kvm_device *dev = filp->private_data;
2988 
2989 	if (dev->kvm->mm != current->mm)
2990 		return -EIO;
2991 
2992 	switch (ioctl) {
2993 	case KVM_SET_DEVICE_ATTR:
2994 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2995 	case KVM_GET_DEVICE_ATTR:
2996 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2997 	case KVM_HAS_DEVICE_ATTR:
2998 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2999 	default:
3000 		if (dev->ops->ioctl)
3001 			return dev->ops->ioctl(dev, ioctl, arg);
3002 
3003 		return -ENOTTY;
3004 	}
3005 }
3006 
3007 static int kvm_device_release(struct inode *inode, struct file *filp)
3008 {
3009 	struct kvm_device *dev = filp->private_data;
3010 	struct kvm *kvm = dev->kvm;
3011 
3012 	if (dev->ops->release) {
3013 		mutex_lock(&kvm->lock);
3014 		list_del(&dev->vm_node);
3015 		dev->ops->release(dev);
3016 		mutex_unlock(&kvm->lock);
3017 	}
3018 
3019 	kvm_put_kvm(kvm);
3020 	return 0;
3021 }
3022 
3023 static const struct file_operations kvm_device_fops = {
3024 	.unlocked_ioctl = kvm_device_ioctl,
3025 	.release = kvm_device_release,
3026 	KVM_COMPAT(kvm_device_ioctl),
3027 	.mmap = kvm_device_mmap,
3028 };
3029 
3030 struct kvm_device *kvm_device_from_filp(struct file *filp)
3031 {
3032 	if (filp->f_op != &kvm_device_fops)
3033 		return NULL;
3034 
3035 	return filp->private_data;
3036 }
3037 
3038 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3039 #ifdef CONFIG_KVM_MPIC
3040 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3041 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3042 #endif
3043 };
3044 
3045 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3046 {
3047 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3048 		return -ENOSPC;
3049 
3050 	if (kvm_device_ops_table[type] != NULL)
3051 		return -EEXIST;
3052 
3053 	kvm_device_ops_table[type] = ops;
3054 	return 0;
3055 }
3056 
3057 void kvm_unregister_device_ops(u32 type)
3058 {
3059 	if (kvm_device_ops_table[type] != NULL)
3060 		kvm_device_ops_table[type] = NULL;
3061 }
3062 
3063 static int kvm_ioctl_create_device(struct kvm *kvm,
3064 				   struct kvm_create_device *cd)
3065 {
3066 	struct kvm_device_ops *ops = NULL;
3067 	struct kvm_device *dev;
3068 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3069 	int type;
3070 	int ret;
3071 
3072 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3073 		return -ENODEV;
3074 
3075 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3076 	ops = kvm_device_ops_table[type];
3077 	if (ops == NULL)
3078 		return -ENODEV;
3079 
3080 	if (test)
3081 		return 0;
3082 
3083 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3084 	if (!dev)
3085 		return -ENOMEM;
3086 
3087 	dev->ops = ops;
3088 	dev->kvm = kvm;
3089 
3090 	mutex_lock(&kvm->lock);
3091 	ret = ops->create(dev, type);
3092 	if (ret < 0) {
3093 		mutex_unlock(&kvm->lock);
3094 		kfree(dev);
3095 		return ret;
3096 	}
3097 	list_add(&dev->vm_node, &kvm->devices);
3098 	mutex_unlock(&kvm->lock);
3099 
3100 	if (ops->init)
3101 		ops->init(dev);
3102 
3103 	kvm_get_kvm(kvm);
3104 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3105 	if (ret < 0) {
3106 		kvm_put_kvm(kvm);
3107 		mutex_lock(&kvm->lock);
3108 		list_del(&dev->vm_node);
3109 		mutex_unlock(&kvm->lock);
3110 		ops->destroy(dev);
3111 		return ret;
3112 	}
3113 
3114 	cd->fd = ret;
3115 	return 0;
3116 }
3117 
3118 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3119 {
3120 	switch (arg) {
3121 	case KVM_CAP_USER_MEMORY:
3122 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3123 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3124 	case KVM_CAP_INTERNAL_ERROR_DATA:
3125 #ifdef CONFIG_HAVE_KVM_MSI
3126 	case KVM_CAP_SIGNAL_MSI:
3127 #endif
3128 #ifdef CONFIG_HAVE_KVM_IRQFD
3129 	case KVM_CAP_IRQFD:
3130 	case KVM_CAP_IRQFD_RESAMPLE:
3131 #endif
3132 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3133 	case KVM_CAP_CHECK_EXTENSION_VM:
3134 	case KVM_CAP_ENABLE_CAP_VM:
3135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3136 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3137 #endif
3138 		return 1;
3139 #ifdef CONFIG_KVM_MMIO
3140 	case KVM_CAP_COALESCED_MMIO:
3141 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3142 	case KVM_CAP_COALESCED_PIO:
3143 		return 1;
3144 #endif
3145 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3146 	case KVM_CAP_IRQ_ROUTING:
3147 		return KVM_MAX_IRQ_ROUTES;
3148 #endif
3149 #if KVM_ADDRESS_SPACE_NUM > 1
3150 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3151 		return KVM_ADDRESS_SPACE_NUM;
3152 #endif
3153 	case KVM_CAP_NR_MEMSLOTS:
3154 		return KVM_USER_MEM_SLOTS;
3155 	default:
3156 		break;
3157 	}
3158 	return kvm_vm_ioctl_check_extension(kvm, arg);
3159 }
3160 
3161 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3162 						  struct kvm_enable_cap *cap)
3163 {
3164 	return -EINVAL;
3165 }
3166 
3167 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3168 					   struct kvm_enable_cap *cap)
3169 {
3170 	switch (cap->cap) {
3171 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3172 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3173 		if (cap->flags || (cap->args[0] & ~1))
3174 			return -EINVAL;
3175 		kvm->manual_dirty_log_protect = cap->args[0];
3176 		return 0;
3177 #endif
3178 	default:
3179 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3180 	}
3181 }
3182 
3183 static long kvm_vm_ioctl(struct file *filp,
3184 			   unsigned int ioctl, unsigned long arg)
3185 {
3186 	struct kvm *kvm = filp->private_data;
3187 	void __user *argp = (void __user *)arg;
3188 	int r;
3189 
3190 	if (kvm->mm != current->mm)
3191 		return -EIO;
3192 	switch (ioctl) {
3193 	case KVM_CREATE_VCPU:
3194 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3195 		break;
3196 	case KVM_ENABLE_CAP: {
3197 		struct kvm_enable_cap cap;
3198 
3199 		r = -EFAULT;
3200 		if (copy_from_user(&cap, argp, sizeof(cap)))
3201 			goto out;
3202 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3203 		break;
3204 	}
3205 	case KVM_SET_USER_MEMORY_REGION: {
3206 		struct kvm_userspace_memory_region kvm_userspace_mem;
3207 
3208 		r = -EFAULT;
3209 		if (copy_from_user(&kvm_userspace_mem, argp,
3210 						sizeof(kvm_userspace_mem)))
3211 			goto out;
3212 
3213 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3214 		break;
3215 	}
3216 	case KVM_GET_DIRTY_LOG: {
3217 		struct kvm_dirty_log log;
3218 
3219 		r = -EFAULT;
3220 		if (copy_from_user(&log, argp, sizeof(log)))
3221 			goto out;
3222 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3223 		break;
3224 	}
3225 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3226 	case KVM_CLEAR_DIRTY_LOG: {
3227 		struct kvm_clear_dirty_log log;
3228 
3229 		r = -EFAULT;
3230 		if (copy_from_user(&log, argp, sizeof(log)))
3231 			goto out;
3232 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3233 		break;
3234 	}
3235 #endif
3236 #ifdef CONFIG_KVM_MMIO
3237 	case KVM_REGISTER_COALESCED_MMIO: {
3238 		struct kvm_coalesced_mmio_zone zone;
3239 
3240 		r = -EFAULT;
3241 		if (copy_from_user(&zone, argp, sizeof(zone)))
3242 			goto out;
3243 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3244 		break;
3245 	}
3246 	case KVM_UNREGISTER_COALESCED_MMIO: {
3247 		struct kvm_coalesced_mmio_zone zone;
3248 
3249 		r = -EFAULT;
3250 		if (copy_from_user(&zone, argp, sizeof(zone)))
3251 			goto out;
3252 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3253 		break;
3254 	}
3255 #endif
3256 	case KVM_IRQFD: {
3257 		struct kvm_irqfd data;
3258 
3259 		r = -EFAULT;
3260 		if (copy_from_user(&data, argp, sizeof(data)))
3261 			goto out;
3262 		r = kvm_irqfd(kvm, &data);
3263 		break;
3264 	}
3265 	case KVM_IOEVENTFD: {
3266 		struct kvm_ioeventfd data;
3267 
3268 		r = -EFAULT;
3269 		if (copy_from_user(&data, argp, sizeof(data)))
3270 			goto out;
3271 		r = kvm_ioeventfd(kvm, &data);
3272 		break;
3273 	}
3274 #ifdef CONFIG_HAVE_KVM_MSI
3275 	case KVM_SIGNAL_MSI: {
3276 		struct kvm_msi msi;
3277 
3278 		r = -EFAULT;
3279 		if (copy_from_user(&msi, argp, sizeof(msi)))
3280 			goto out;
3281 		r = kvm_send_userspace_msi(kvm, &msi);
3282 		break;
3283 	}
3284 #endif
3285 #ifdef __KVM_HAVE_IRQ_LINE
3286 	case KVM_IRQ_LINE_STATUS:
3287 	case KVM_IRQ_LINE: {
3288 		struct kvm_irq_level irq_event;
3289 
3290 		r = -EFAULT;
3291 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3292 			goto out;
3293 
3294 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3295 					ioctl == KVM_IRQ_LINE_STATUS);
3296 		if (r)
3297 			goto out;
3298 
3299 		r = -EFAULT;
3300 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3301 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3302 				goto out;
3303 		}
3304 
3305 		r = 0;
3306 		break;
3307 	}
3308 #endif
3309 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3310 	case KVM_SET_GSI_ROUTING: {
3311 		struct kvm_irq_routing routing;
3312 		struct kvm_irq_routing __user *urouting;
3313 		struct kvm_irq_routing_entry *entries = NULL;
3314 
3315 		r = -EFAULT;
3316 		if (copy_from_user(&routing, argp, sizeof(routing)))
3317 			goto out;
3318 		r = -EINVAL;
3319 		if (!kvm_arch_can_set_irq_routing(kvm))
3320 			goto out;
3321 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3322 			goto out;
3323 		if (routing.flags)
3324 			goto out;
3325 		if (routing.nr) {
3326 			r = -ENOMEM;
3327 			entries = vmalloc(array_size(sizeof(*entries),
3328 						     routing.nr));
3329 			if (!entries)
3330 				goto out;
3331 			r = -EFAULT;
3332 			urouting = argp;
3333 			if (copy_from_user(entries, urouting->entries,
3334 					   routing.nr * sizeof(*entries)))
3335 				goto out_free_irq_routing;
3336 		}
3337 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3338 					routing.flags);
3339 out_free_irq_routing:
3340 		vfree(entries);
3341 		break;
3342 	}
3343 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3344 	case KVM_CREATE_DEVICE: {
3345 		struct kvm_create_device cd;
3346 
3347 		r = -EFAULT;
3348 		if (copy_from_user(&cd, argp, sizeof(cd)))
3349 			goto out;
3350 
3351 		r = kvm_ioctl_create_device(kvm, &cd);
3352 		if (r)
3353 			goto out;
3354 
3355 		r = -EFAULT;
3356 		if (copy_to_user(argp, &cd, sizeof(cd)))
3357 			goto out;
3358 
3359 		r = 0;
3360 		break;
3361 	}
3362 	case KVM_CHECK_EXTENSION:
3363 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3364 		break;
3365 	default:
3366 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3367 	}
3368 out:
3369 	return r;
3370 }
3371 
3372 #ifdef CONFIG_KVM_COMPAT
3373 struct compat_kvm_dirty_log {
3374 	__u32 slot;
3375 	__u32 padding1;
3376 	union {
3377 		compat_uptr_t dirty_bitmap; /* one bit per page */
3378 		__u64 padding2;
3379 	};
3380 };
3381 
3382 static long kvm_vm_compat_ioctl(struct file *filp,
3383 			   unsigned int ioctl, unsigned long arg)
3384 {
3385 	struct kvm *kvm = filp->private_data;
3386 	int r;
3387 
3388 	if (kvm->mm != current->mm)
3389 		return -EIO;
3390 	switch (ioctl) {
3391 	case KVM_GET_DIRTY_LOG: {
3392 		struct compat_kvm_dirty_log compat_log;
3393 		struct kvm_dirty_log log;
3394 
3395 		if (copy_from_user(&compat_log, (void __user *)arg,
3396 				   sizeof(compat_log)))
3397 			return -EFAULT;
3398 		log.slot	 = compat_log.slot;
3399 		log.padding1	 = compat_log.padding1;
3400 		log.padding2	 = compat_log.padding2;
3401 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3402 
3403 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3404 		break;
3405 	}
3406 	default:
3407 		r = kvm_vm_ioctl(filp, ioctl, arg);
3408 	}
3409 	return r;
3410 }
3411 #endif
3412 
3413 static struct file_operations kvm_vm_fops = {
3414 	.release        = kvm_vm_release,
3415 	.unlocked_ioctl = kvm_vm_ioctl,
3416 	.llseek		= noop_llseek,
3417 	KVM_COMPAT(kvm_vm_compat_ioctl),
3418 };
3419 
3420 static int kvm_dev_ioctl_create_vm(unsigned long type)
3421 {
3422 	int r;
3423 	struct kvm *kvm;
3424 	struct file *file;
3425 
3426 	kvm = kvm_create_vm(type);
3427 	if (IS_ERR(kvm))
3428 		return PTR_ERR(kvm);
3429 #ifdef CONFIG_KVM_MMIO
3430 	r = kvm_coalesced_mmio_init(kvm);
3431 	if (r < 0)
3432 		goto put_kvm;
3433 #endif
3434 	r = get_unused_fd_flags(O_CLOEXEC);
3435 	if (r < 0)
3436 		goto put_kvm;
3437 
3438 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3439 	if (IS_ERR(file)) {
3440 		put_unused_fd(r);
3441 		r = PTR_ERR(file);
3442 		goto put_kvm;
3443 	}
3444 
3445 	/*
3446 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3447 	 * already set, with ->release() being kvm_vm_release().  In error
3448 	 * cases it will be called by the final fput(file) and will take
3449 	 * care of doing kvm_put_kvm(kvm).
3450 	 */
3451 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3452 		put_unused_fd(r);
3453 		fput(file);
3454 		return -ENOMEM;
3455 	}
3456 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3457 
3458 	fd_install(r, file);
3459 	return r;
3460 
3461 put_kvm:
3462 	kvm_put_kvm(kvm);
3463 	return r;
3464 }
3465 
3466 static long kvm_dev_ioctl(struct file *filp,
3467 			  unsigned int ioctl, unsigned long arg)
3468 {
3469 	long r = -EINVAL;
3470 
3471 	switch (ioctl) {
3472 	case KVM_GET_API_VERSION:
3473 		if (arg)
3474 			goto out;
3475 		r = KVM_API_VERSION;
3476 		break;
3477 	case KVM_CREATE_VM:
3478 		r = kvm_dev_ioctl_create_vm(arg);
3479 		break;
3480 	case KVM_CHECK_EXTENSION:
3481 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3482 		break;
3483 	case KVM_GET_VCPU_MMAP_SIZE:
3484 		if (arg)
3485 			goto out;
3486 		r = PAGE_SIZE;     /* struct kvm_run */
3487 #ifdef CONFIG_X86
3488 		r += PAGE_SIZE;    /* pio data page */
3489 #endif
3490 #ifdef CONFIG_KVM_MMIO
3491 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3492 #endif
3493 		break;
3494 	case KVM_TRACE_ENABLE:
3495 	case KVM_TRACE_PAUSE:
3496 	case KVM_TRACE_DISABLE:
3497 		r = -EOPNOTSUPP;
3498 		break;
3499 	default:
3500 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3501 	}
3502 out:
3503 	return r;
3504 }
3505 
3506 static struct file_operations kvm_chardev_ops = {
3507 	.unlocked_ioctl = kvm_dev_ioctl,
3508 	.llseek		= noop_llseek,
3509 	KVM_COMPAT(kvm_dev_ioctl),
3510 };
3511 
3512 static struct miscdevice kvm_dev = {
3513 	KVM_MINOR,
3514 	"kvm",
3515 	&kvm_chardev_ops,
3516 };
3517 
3518 static void hardware_enable_nolock(void *junk)
3519 {
3520 	int cpu = raw_smp_processor_id();
3521 	int r;
3522 
3523 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3524 		return;
3525 
3526 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3527 
3528 	r = kvm_arch_hardware_enable();
3529 
3530 	if (r) {
3531 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3532 		atomic_inc(&hardware_enable_failed);
3533 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3534 	}
3535 }
3536 
3537 static int kvm_starting_cpu(unsigned int cpu)
3538 {
3539 	raw_spin_lock(&kvm_count_lock);
3540 	if (kvm_usage_count)
3541 		hardware_enable_nolock(NULL);
3542 	raw_spin_unlock(&kvm_count_lock);
3543 	return 0;
3544 }
3545 
3546 static void hardware_disable_nolock(void *junk)
3547 {
3548 	int cpu = raw_smp_processor_id();
3549 
3550 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3551 		return;
3552 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3553 	kvm_arch_hardware_disable();
3554 }
3555 
3556 static int kvm_dying_cpu(unsigned int cpu)
3557 {
3558 	raw_spin_lock(&kvm_count_lock);
3559 	if (kvm_usage_count)
3560 		hardware_disable_nolock(NULL);
3561 	raw_spin_unlock(&kvm_count_lock);
3562 	return 0;
3563 }
3564 
3565 static void hardware_disable_all_nolock(void)
3566 {
3567 	BUG_ON(!kvm_usage_count);
3568 
3569 	kvm_usage_count--;
3570 	if (!kvm_usage_count)
3571 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3572 }
3573 
3574 static void hardware_disable_all(void)
3575 {
3576 	raw_spin_lock(&kvm_count_lock);
3577 	hardware_disable_all_nolock();
3578 	raw_spin_unlock(&kvm_count_lock);
3579 }
3580 
3581 static int hardware_enable_all(void)
3582 {
3583 	int r = 0;
3584 
3585 	raw_spin_lock(&kvm_count_lock);
3586 
3587 	kvm_usage_count++;
3588 	if (kvm_usage_count == 1) {
3589 		atomic_set(&hardware_enable_failed, 0);
3590 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3591 
3592 		if (atomic_read(&hardware_enable_failed)) {
3593 			hardware_disable_all_nolock();
3594 			r = -EBUSY;
3595 		}
3596 	}
3597 
3598 	raw_spin_unlock(&kvm_count_lock);
3599 
3600 	return r;
3601 }
3602 
3603 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3604 		      void *v)
3605 {
3606 	/*
3607 	 * Some (well, at least mine) BIOSes hang on reboot if
3608 	 * in vmx root mode.
3609 	 *
3610 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3611 	 */
3612 	pr_info("kvm: exiting hardware virtualization\n");
3613 	kvm_rebooting = true;
3614 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3615 	return NOTIFY_OK;
3616 }
3617 
3618 static struct notifier_block kvm_reboot_notifier = {
3619 	.notifier_call = kvm_reboot,
3620 	.priority = 0,
3621 };
3622 
3623 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3624 {
3625 	int i;
3626 
3627 	for (i = 0; i < bus->dev_count; i++) {
3628 		struct kvm_io_device *pos = bus->range[i].dev;
3629 
3630 		kvm_iodevice_destructor(pos);
3631 	}
3632 	kfree(bus);
3633 }
3634 
3635 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3636 				 const struct kvm_io_range *r2)
3637 {
3638 	gpa_t addr1 = r1->addr;
3639 	gpa_t addr2 = r2->addr;
3640 
3641 	if (addr1 < addr2)
3642 		return -1;
3643 
3644 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3645 	 * accept any overlapping write.  Any order is acceptable for
3646 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3647 	 * we process all of them.
3648 	 */
3649 	if (r2->len) {
3650 		addr1 += r1->len;
3651 		addr2 += r2->len;
3652 	}
3653 
3654 	if (addr1 > addr2)
3655 		return 1;
3656 
3657 	return 0;
3658 }
3659 
3660 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3661 {
3662 	return kvm_io_bus_cmp(p1, p2);
3663 }
3664 
3665 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3666 			     gpa_t addr, int len)
3667 {
3668 	struct kvm_io_range *range, key;
3669 	int off;
3670 
3671 	key = (struct kvm_io_range) {
3672 		.addr = addr,
3673 		.len = len,
3674 	};
3675 
3676 	range = bsearch(&key, bus->range, bus->dev_count,
3677 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3678 	if (range == NULL)
3679 		return -ENOENT;
3680 
3681 	off = range - bus->range;
3682 
3683 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3684 		off--;
3685 
3686 	return off;
3687 }
3688 
3689 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3690 			      struct kvm_io_range *range, const void *val)
3691 {
3692 	int idx;
3693 
3694 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3695 	if (idx < 0)
3696 		return -EOPNOTSUPP;
3697 
3698 	while (idx < bus->dev_count &&
3699 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3700 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3701 					range->len, val))
3702 			return idx;
3703 		idx++;
3704 	}
3705 
3706 	return -EOPNOTSUPP;
3707 }
3708 
3709 /* kvm_io_bus_write - called under kvm->slots_lock */
3710 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3711 		     int len, const void *val)
3712 {
3713 	struct kvm_io_bus *bus;
3714 	struct kvm_io_range range;
3715 	int r;
3716 
3717 	range = (struct kvm_io_range) {
3718 		.addr = addr,
3719 		.len = len,
3720 	};
3721 
3722 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3723 	if (!bus)
3724 		return -ENOMEM;
3725 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3726 	return r < 0 ? r : 0;
3727 }
3728 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3729 
3730 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3731 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3732 			    gpa_t addr, int len, const void *val, long cookie)
3733 {
3734 	struct kvm_io_bus *bus;
3735 	struct kvm_io_range range;
3736 
3737 	range = (struct kvm_io_range) {
3738 		.addr = addr,
3739 		.len = len,
3740 	};
3741 
3742 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3743 	if (!bus)
3744 		return -ENOMEM;
3745 
3746 	/* First try the device referenced by cookie. */
3747 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3748 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3749 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3750 					val))
3751 			return cookie;
3752 
3753 	/*
3754 	 * cookie contained garbage; fall back to search and return the
3755 	 * correct cookie value.
3756 	 */
3757 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3758 }
3759 
3760 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3761 			     struct kvm_io_range *range, void *val)
3762 {
3763 	int idx;
3764 
3765 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3766 	if (idx < 0)
3767 		return -EOPNOTSUPP;
3768 
3769 	while (idx < bus->dev_count &&
3770 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3771 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3772 				       range->len, val))
3773 			return idx;
3774 		idx++;
3775 	}
3776 
3777 	return -EOPNOTSUPP;
3778 }
3779 
3780 /* kvm_io_bus_read - called under kvm->slots_lock */
3781 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3782 		    int len, void *val)
3783 {
3784 	struct kvm_io_bus *bus;
3785 	struct kvm_io_range range;
3786 	int r;
3787 
3788 	range = (struct kvm_io_range) {
3789 		.addr = addr,
3790 		.len = len,
3791 	};
3792 
3793 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3794 	if (!bus)
3795 		return -ENOMEM;
3796 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3797 	return r < 0 ? r : 0;
3798 }
3799 
3800 /* Caller must hold slots_lock. */
3801 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3802 			    int len, struct kvm_io_device *dev)
3803 {
3804 	int i;
3805 	struct kvm_io_bus *new_bus, *bus;
3806 	struct kvm_io_range range;
3807 
3808 	bus = kvm_get_bus(kvm, bus_idx);
3809 	if (!bus)
3810 		return -ENOMEM;
3811 
3812 	/* exclude ioeventfd which is limited by maximum fd */
3813 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3814 		return -ENOSPC;
3815 
3816 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3817 			  GFP_KERNEL_ACCOUNT);
3818 	if (!new_bus)
3819 		return -ENOMEM;
3820 
3821 	range = (struct kvm_io_range) {
3822 		.addr = addr,
3823 		.len = len,
3824 		.dev = dev,
3825 	};
3826 
3827 	for (i = 0; i < bus->dev_count; i++)
3828 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3829 			break;
3830 
3831 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3832 	new_bus->dev_count++;
3833 	new_bus->range[i] = range;
3834 	memcpy(new_bus->range + i + 1, bus->range + i,
3835 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3836 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3837 	synchronize_srcu_expedited(&kvm->srcu);
3838 	kfree(bus);
3839 
3840 	return 0;
3841 }
3842 
3843 /* Caller must hold slots_lock. */
3844 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3845 			       struct kvm_io_device *dev)
3846 {
3847 	int i;
3848 	struct kvm_io_bus *new_bus, *bus;
3849 
3850 	bus = kvm_get_bus(kvm, bus_idx);
3851 	if (!bus)
3852 		return;
3853 
3854 	for (i = 0; i < bus->dev_count; i++)
3855 		if (bus->range[i].dev == dev) {
3856 			break;
3857 		}
3858 
3859 	if (i == bus->dev_count)
3860 		return;
3861 
3862 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3863 			  GFP_KERNEL_ACCOUNT);
3864 	if (!new_bus)  {
3865 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3866 		goto broken;
3867 	}
3868 
3869 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3870 	new_bus->dev_count--;
3871 	memcpy(new_bus->range + i, bus->range + i + 1,
3872 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3873 
3874 broken:
3875 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3876 	synchronize_srcu_expedited(&kvm->srcu);
3877 	kfree(bus);
3878 	return;
3879 }
3880 
3881 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3882 					 gpa_t addr)
3883 {
3884 	struct kvm_io_bus *bus;
3885 	int dev_idx, srcu_idx;
3886 	struct kvm_io_device *iodev = NULL;
3887 
3888 	srcu_idx = srcu_read_lock(&kvm->srcu);
3889 
3890 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3891 	if (!bus)
3892 		goto out_unlock;
3893 
3894 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3895 	if (dev_idx < 0)
3896 		goto out_unlock;
3897 
3898 	iodev = bus->range[dev_idx].dev;
3899 
3900 out_unlock:
3901 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3902 
3903 	return iodev;
3904 }
3905 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3906 
3907 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3908 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3909 			   const char *fmt)
3910 {
3911 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3912 					  inode->i_private;
3913 
3914 	/* The debugfs files are a reference to the kvm struct which
3915 	 * is still valid when kvm_destroy_vm is called.
3916 	 * To avoid the race between open and the removal of the debugfs
3917 	 * directory we test against the users count.
3918 	 */
3919 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3920 		return -ENOENT;
3921 
3922 	if (simple_attr_open(inode, file, get, set, fmt)) {
3923 		kvm_put_kvm(stat_data->kvm);
3924 		return -ENOMEM;
3925 	}
3926 
3927 	return 0;
3928 }
3929 
3930 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3931 {
3932 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3933 					  inode->i_private;
3934 
3935 	simple_attr_release(inode, file);
3936 	kvm_put_kvm(stat_data->kvm);
3937 
3938 	return 0;
3939 }
3940 
3941 static int vm_stat_get_per_vm(void *data, u64 *val)
3942 {
3943 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3944 
3945 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3946 
3947 	return 0;
3948 }
3949 
3950 static int vm_stat_clear_per_vm(void *data, u64 val)
3951 {
3952 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3953 
3954 	if (val)
3955 		return -EINVAL;
3956 
3957 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3958 
3959 	return 0;
3960 }
3961 
3962 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3963 {
3964 	__simple_attr_check_format("%llu\n", 0ull);
3965 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3966 				vm_stat_clear_per_vm, "%llu\n");
3967 }
3968 
3969 static const struct file_operations vm_stat_get_per_vm_fops = {
3970 	.owner   = THIS_MODULE,
3971 	.open    = vm_stat_get_per_vm_open,
3972 	.release = kvm_debugfs_release,
3973 	.read    = simple_attr_read,
3974 	.write   = simple_attr_write,
3975 	.llseek  = no_llseek,
3976 };
3977 
3978 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3979 {
3980 	int i;
3981 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3982 	struct kvm_vcpu *vcpu;
3983 
3984 	*val = 0;
3985 
3986 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3987 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3988 
3989 	return 0;
3990 }
3991 
3992 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3993 {
3994 	int i;
3995 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3996 	struct kvm_vcpu *vcpu;
3997 
3998 	if (val)
3999 		return -EINVAL;
4000 
4001 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4002 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4003 
4004 	return 0;
4005 }
4006 
4007 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4008 {
4009 	__simple_attr_check_format("%llu\n", 0ull);
4010 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4011 				 vcpu_stat_clear_per_vm, "%llu\n");
4012 }
4013 
4014 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4015 	.owner   = THIS_MODULE,
4016 	.open    = vcpu_stat_get_per_vm_open,
4017 	.release = kvm_debugfs_release,
4018 	.read    = simple_attr_read,
4019 	.write   = simple_attr_write,
4020 	.llseek  = no_llseek,
4021 };
4022 
4023 static const struct file_operations *stat_fops_per_vm[] = {
4024 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4025 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4026 };
4027 
4028 static int vm_stat_get(void *_offset, u64 *val)
4029 {
4030 	unsigned offset = (long)_offset;
4031 	struct kvm *kvm;
4032 	struct kvm_stat_data stat_tmp = {.offset = offset};
4033 	u64 tmp_val;
4034 
4035 	*val = 0;
4036 	mutex_lock(&kvm_lock);
4037 	list_for_each_entry(kvm, &vm_list, vm_list) {
4038 		stat_tmp.kvm = kvm;
4039 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4040 		*val += tmp_val;
4041 	}
4042 	mutex_unlock(&kvm_lock);
4043 	return 0;
4044 }
4045 
4046 static int vm_stat_clear(void *_offset, u64 val)
4047 {
4048 	unsigned offset = (long)_offset;
4049 	struct kvm *kvm;
4050 	struct kvm_stat_data stat_tmp = {.offset = offset};
4051 
4052 	if (val)
4053 		return -EINVAL;
4054 
4055 	mutex_lock(&kvm_lock);
4056 	list_for_each_entry(kvm, &vm_list, vm_list) {
4057 		stat_tmp.kvm = kvm;
4058 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4059 	}
4060 	mutex_unlock(&kvm_lock);
4061 
4062 	return 0;
4063 }
4064 
4065 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4066 
4067 static int vcpu_stat_get(void *_offset, u64 *val)
4068 {
4069 	unsigned offset = (long)_offset;
4070 	struct kvm *kvm;
4071 	struct kvm_stat_data stat_tmp = {.offset = offset};
4072 	u64 tmp_val;
4073 
4074 	*val = 0;
4075 	mutex_lock(&kvm_lock);
4076 	list_for_each_entry(kvm, &vm_list, vm_list) {
4077 		stat_tmp.kvm = kvm;
4078 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4079 		*val += tmp_val;
4080 	}
4081 	mutex_unlock(&kvm_lock);
4082 	return 0;
4083 }
4084 
4085 static int vcpu_stat_clear(void *_offset, u64 val)
4086 {
4087 	unsigned offset = (long)_offset;
4088 	struct kvm *kvm;
4089 	struct kvm_stat_data stat_tmp = {.offset = offset};
4090 
4091 	if (val)
4092 		return -EINVAL;
4093 
4094 	mutex_lock(&kvm_lock);
4095 	list_for_each_entry(kvm, &vm_list, vm_list) {
4096 		stat_tmp.kvm = kvm;
4097 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4098 	}
4099 	mutex_unlock(&kvm_lock);
4100 
4101 	return 0;
4102 }
4103 
4104 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4105 			"%llu\n");
4106 
4107 static const struct file_operations *stat_fops[] = {
4108 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4109 	[KVM_STAT_VM]   = &vm_stat_fops,
4110 };
4111 
4112 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4113 {
4114 	struct kobj_uevent_env *env;
4115 	unsigned long long created, active;
4116 
4117 	if (!kvm_dev.this_device || !kvm)
4118 		return;
4119 
4120 	mutex_lock(&kvm_lock);
4121 	if (type == KVM_EVENT_CREATE_VM) {
4122 		kvm_createvm_count++;
4123 		kvm_active_vms++;
4124 	} else if (type == KVM_EVENT_DESTROY_VM) {
4125 		kvm_active_vms--;
4126 	}
4127 	created = kvm_createvm_count;
4128 	active = kvm_active_vms;
4129 	mutex_unlock(&kvm_lock);
4130 
4131 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4132 	if (!env)
4133 		return;
4134 
4135 	add_uevent_var(env, "CREATED=%llu", created);
4136 	add_uevent_var(env, "COUNT=%llu", active);
4137 
4138 	if (type == KVM_EVENT_CREATE_VM) {
4139 		add_uevent_var(env, "EVENT=create");
4140 		kvm->userspace_pid = task_pid_nr(current);
4141 	} else if (type == KVM_EVENT_DESTROY_VM) {
4142 		add_uevent_var(env, "EVENT=destroy");
4143 	}
4144 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4145 
4146 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4147 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4148 
4149 		if (p) {
4150 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4151 			if (!IS_ERR(tmp))
4152 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4153 			kfree(p);
4154 		}
4155 	}
4156 	/* no need for checks, since we are adding at most only 5 keys */
4157 	env->envp[env->envp_idx++] = NULL;
4158 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4159 	kfree(env);
4160 }
4161 
4162 static void kvm_init_debug(void)
4163 {
4164 	struct kvm_stats_debugfs_item *p;
4165 
4166 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4167 
4168 	kvm_debugfs_num_entries = 0;
4169 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4170 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4171 				    (void *)(long)p->offset,
4172 				    stat_fops[p->kind]);
4173 	}
4174 }
4175 
4176 static int kvm_suspend(void)
4177 {
4178 	if (kvm_usage_count)
4179 		hardware_disable_nolock(NULL);
4180 	return 0;
4181 }
4182 
4183 static void kvm_resume(void)
4184 {
4185 	if (kvm_usage_count) {
4186 #ifdef CONFIG_LOCKDEP
4187 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4188 #endif
4189 		hardware_enable_nolock(NULL);
4190 	}
4191 }
4192 
4193 static struct syscore_ops kvm_syscore_ops = {
4194 	.suspend = kvm_suspend,
4195 	.resume = kvm_resume,
4196 };
4197 
4198 static inline
4199 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4200 {
4201 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4202 }
4203 
4204 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4205 {
4206 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4207 
4208 	vcpu->preempted = false;
4209 	WRITE_ONCE(vcpu->ready, false);
4210 
4211 	kvm_arch_sched_in(vcpu, cpu);
4212 
4213 	kvm_arch_vcpu_load(vcpu, cpu);
4214 }
4215 
4216 static void kvm_sched_out(struct preempt_notifier *pn,
4217 			  struct task_struct *next)
4218 {
4219 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4220 
4221 	if (current->state == TASK_RUNNING) {
4222 		vcpu->preempted = true;
4223 		WRITE_ONCE(vcpu->ready, true);
4224 	}
4225 	kvm_arch_vcpu_put(vcpu);
4226 }
4227 
4228 static void check_processor_compat(void *rtn)
4229 {
4230 	*(int *)rtn = kvm_arch_check_processor_compat();
4231 }
4232 
4233 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4234 		  struct module *module)
4235 {
4236 	int r;
4237 	int cpu;
4238 
4239 	r = kvm_arch_init(opaque);
4240 	if (r)
4241 		goto out_fail;
4242 
4243 	/*
4244 	 * kvm_arch_init makes sure there's at most one caller
4245 	 * for architectures that support multiple implementations,
4246 	 * like intel and amd on x86.
4247 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4248 	 * conflicts in case kvm is already setup for another implementation.
4249 	 */
4250 	r = kvm_irqfd_init();
4251 	if (r)
4252 		goto out_irqfd;
4253 
4254 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4255 		r = -ENOMEM;
4256 		goto out_free_0;
4257 	}
4258 
4259 	r = kvm_arch_hardware_setup();
4260 	if (r < 0)
4261 		goto out_free_0a;
4262 
4263 	for_each_online_cpu(cpu) {
4264 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4265 		if (r < 0)
4266 			goto out_free_1;
4267 	}
4268 
4269 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4270 				      kvm_starting_cpu, kvm_dying_cpu);
4271 	if (r)
4272 		goto out_free_2;
4273 	register_reboot_notifier(&kvm_reboot_notifier);
4274 
4275 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4276 	if (!vcpu_align)
4277 		vcpu_align = __alignof__(struct kvm_vcpu);
4278 	kvm_vcpu_cache =
4279 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4280 					   SLAB_ACCOUNT,
4281 					   offsetof(struct kvm_vcpu, arch),
4282 					   sizeof_field(struct kvm_vcpu, arch),
4283 					   NULL);
4284 	if (!kvm_vcpu_cache) {
4285 		r = -ENOMEM;
4286 		goto out_free_3;
4287 	}
4288 
4289 	r = kvm_async_pf_init();
4290 	if (r)
4291 		goto out_free;
4292 
4293 	kvm_chardev_ops.owner = module;
4294 	kvm_vm_fops.owner = module;
4295 	kvm_vcpu_fops.owner = module;
4296 
4297 	r = misc_register(&kvm_dev);
4298 	if (r) {
4299 		pr_err("kvm: misc device register failed\n");
4300 		goto out_unreg;
4301 	}
4302 
4303 	register_syscore_ops(&kvm_syscore_ops);
4304 
4305 	kvm_preempt_ops.sched_in = kvm_sched_in;
4306 	kvm_preempt_ops.sched_out = kvm_sched_out;
4307 
4308 	kvm_init_debug();
4309 
4310 	r = kvm_vfio_ops_init();
4311 	WARN_ON(r);
4312 
4313 	return 0;
4314 
4315 out_unreg:
4316 	kvm_async_pf_deinit();
4317 out_free:
4318 	kmem_cache_destroy(kvm_vcpu_cache);
4319 out_free_3:
4320 	unregister_reboot_notifier(&kvm_reboot_notifier);
4321 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4322 out_free_2:
4323 out_free_1:
4324 	kvm_arch_hardware_unsetup();
4325 out_free_0a:
4326 	free_cpumask_var(cpus_hardware_enabled);
4327 out_free_0:
4328 	kvm_irqfd_exit();
4329 out_irqfd:
4330 	kvm_arch_exit();
4331 out_fail:
4332 	return r;
4333 }
4334 EXPORT_SYMBOL_GPL(kvm_init);
4335 
4336 void kvm_exit(void)
4337 {
4338 	debugfs_remove_recursive(kvm_debugfs_dir);
4339 	misc_deregister(&kvm_dev);
4340 	kmem_cache_destroy(kvm_vcpu_cache);
4341 	kvm_async_pf_deinit();
4342 	unregister_syscore_ops(&kvm_syscore_ops);
4343 	unregister_reboot_notifier(&kvm_reboot_notifier);
4344 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4345 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4346 	kvm_arch_hardware_unsetup();
4347 	kvm_arch_exit();
4348 	kvm_irqfd_exit();
4349 	free_cpumask_var(cpus_hardware_enabled);
4350 	kvm_vfio_ops_exit();
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_exit);
4353