1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static struct file_operations kvm_chardev_ops; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 #define KVM_EVENT_CREATE_VM 0 150 #define KVM_EVENT_DESTROY_VM 1 151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 152 static unsigned long long kvm_createvm_count; 153 static unsigned long long kvm_active_vms; 154 155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 156 157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 158 { 159 } 160 161 bool kvm_is_zone_device_page(struct page *page) 162 { 163 /* 164 * The metadata used by is_zone_device_page() to determine whether or 165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 166 * the device has been pinned, e.g. by get_user_pages(). WARN if the 167 * page_count() is zero to help detect bad usage of this helper. 168 */ 169 if (WARN_ON_ONCE(!page_count(page))) 170 return false; 171 172 return is_zone_device_page(page); 173 } 174 175 /* 176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 178 * is likely incomplete, it has been compiled purely through people wanting to 179 * back guest with a certain type of memory and encountering issues. 180 */ 181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 182 { 183 struct page *page; 184 185 if (!pfn_valid(pfn)) 186 return NULL; 187 188 page = pfn_to_page(pfn); 189 if (!PageReserved(page)) 190 return page; 191 192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 193 if (is_zero_pfn(pfn)) 194 return page; 195 196 /* 197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 198 * perspective they are "normal" pages, albeit with slightly different 199 * usage rules. 200 */ 201 if (kvm_is_zone_device_page(page)) 202 return page; 203 204 return NULL; 205 } 206 207 /* 208 * Switches to specified vcpu, until a matching vcpu_put() 209 */ 210 void vcpu_load(struct kvm_vcpu *vcpu) 211 { 212 int cpu = get_cpu(); 213 214 __this_cpu_write(kvm_running_vcpu, vcpu); 215 preempt_notifier_register(&vcpu->preempt_notifier); 216 kvm_arch_vcpu_load(vcpu, cpu); 217 put_cpu(); 218 } 219 EXPORT_SYMBOL_GPL(vcpu_load); 220 221 void vcpu_put(struct kvm_vcpu *vcpu) 222 { 223 preempt_disable(); 224 kvm_arch_vcpu_put(vcpu); 225 preempt_notifier_unregister(&vcpu->preempt_notifier); 226 __this_cpu_write(kvm_running_vcpu, NULL); 227 preempt_enable(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_put); 230 231 /* TODO: merge with kvm_arch_vcpu_should_kick */ 232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 233 { 234 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 235 236 /* 237 * We need to wait for the VCPU to reenable interrupts and get out of 238 * READING_SHADOW_PAGE_TABLES mode. 239 */ 240 if (req & KVM_REQUEST_WAIT) 241 return mode != OUTSIDE_GUEST_MODE; 242 243 /* 244 * Need to kick a running VCPU, but otherwise there is nothing to do. 245 */ 246 return mode == IN_GUEST_MODE; 247 } 248 249 static void ack_kick(void *_completed) 250 { 251 } 252 253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 254 { 255 if (cpumask_empty(cpus)) 256 return false; 257 258 smp_call_function_many(cpus, ack_kick, NULL, wait); 259 return true; 260 } 261 262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 263 struct cpumask *tmp, int current_cpu) 264 { 265 int cpu; 266 267 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 268 __kvm_make_request(req, vcpu); 269 270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 271 return; 272 273 /* 274 * Note, the vCPU could get migrated to a different pCPU at any point 275 * after kvm_request_needs_ipi(), which could result in sending an IPI 276 * to the previous pCPU. But, that's OK because the purpose of the IPI 277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 279 * after this point is also OK, as the requirement is only that KVM wait 280 * for vCPUs that were reading SPTEs _before_ any changes were 281 * finalized. See kvm_vcpu_kick() for more details on handling requests. 282 */ 283 if (kvm_request_needs_ipi(vcpu, req)) { 284 cpu = READ_ONCE(vcpu->cpu); 285 if (cpu != -1 && cpu != current_cpu) 286 __cpumask_set_cpu(cpu, tmp); 287 } 288 } 289 290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 291 unsigned long *vcpu_bitmap) 292 { 293 struct kvm_vcpu *vcpu; 294 struct cpumask *cpus; 295 int i, me; 296 bool called; 297 298 me = get_cpu(); 299 300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 301 cpumask_clear(cpus); 302 303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 304 vcpu = kvm_get_vcpu(kvm, i); 305 if (!vcpu) 306 continue; 307 kvm_make_vcpu_request(vcpu, req, cpus, me); 308 } 309 310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 311 put_cpu(); 312 313 return called; 314 } 315 316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 317 struct kvm_vcpu *except) 318 { 319 struct kvm_vcpu *vcpu; 320 struct cpumask *cpus; 321 unsigned long i; 322 bool called; 323 int me; 324 325 me = get_cpu(); 326 327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 328 cpumask_clear(cpus); 329 330 kvm_for_each_vcpu(i, vcpu, kvm) { 331 if (vcpu == except) 332 continue; 333 kvm_make_vcpu_request(vcpu, req, cpus, me); 334 } 335 336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 337 put_cpu(); 338 339 return called; 340 } 341 342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 343 { 344 return kvm_make_all_cpus_request_except(kvm, req, NULL); 345 } 346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 347 348 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 349 void kvm_flush_remote_tlbs(struct kvm *kvm) 350 { 351 ++kvm->stat.generic.remote_tlb_flush_requests; 352 353 /* 354 * We want to publish modifications to the page tables before reading 355 * mode. Pairs with a memory barrier in arch-specific code. 356 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 357 * and smp_mb in walk_shadow_page_lockless_begin/end. 358 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 359 * 360 * There is already an smp_mb__after_atomic() before 361 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 362 * barrier here. 363 */ 364 if (!kvm_arch_flush_remote_tlb(kvm) 365 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 366 ++kvm->stat.generic.remote_tlb_flush; 367 } 368 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 369 #endif 370 371 static void kvm_flush_shadow_all(struct kvm *kvm) 372 { 373 kvm_arch_flush_shadow_all(kvm); 374 kvm_arch_guest_memory_reclaimed(kvm); 375 } 376 377 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 378 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 379 gfp_t gfp_flags) 380 { 381 gfp_flags |= mc->gfp_zero; 382 383 if (mc->kmem_cache) 384 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 385 else 386 return (void *)__get_free_page(gfp_flags); 387 } 388 389 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 390 { 391 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 392 void *obj; 393 394 if (mc->nobjs >= min) 395 return 0; 396 397 if (unlikely(!mc->objects)) { 398 if (WARN_ON_ONCE(!capacity)) 399 return -EIO; 400 401 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 402 if (!mc->objects) 403 return -ENOMEM; 404 405 mc->capacity = capacity; 406 } 407 408 /* It is illegal to request a different capacity across topups. */ 409 if (WARN_ON_ONCE(mc->capacity != capacity)) 410 return -EIO; 411 412 while (mc->nobjs < mc->capacity) { 413 obj = mmu_memory_cache_alloc_obj(mc, gfp); 414 if (!obj) 415 return mc->nobjs >= min ? 0 : -ENOMEM; 416 mc->objects[mc->nobjs++] = obj; 417 } 418 return 0; 419 } 420 421 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 422 { 423 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 424 } 425 426 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 427 { 428 return mc->nobjs; 429 } 430 431 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 432 { 433 while (mc->nobjs) { 434 if (mc->kmem_cache) 435 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 436 else 437 free_page((unsigned long)mc->objects[--mc->nobjs]); 438 } 439 440 kvfree(mc->objects); 441 442 mc->objects = NULL; 443 mc->capacity = 0; 444 } 445 446 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 447 { 448 void *p; 449 450 if (WARN_ON(!mc->nobjs)) 451 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 452 else 453 p = mc->objects[--mc->nobjs]; 454 BUG_ON(!p); 455 return p; 456 } 457 #endif 458 459 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 460 { 461 mutex_init(&vcpu->mutex); 462 vcpu->cpu = -1; 463 vcpu->kvm = kvm; 464 vcpu->vcpu_id = id; 465 vcpu->pid = NULL; 466 #ifndef __KVM_HAVE_ARCH_WQP 467 rcuwait_init(&vcpu->wait); 468 #endif 469 kvm_async_pf_vcpu_init(vcpu); 470 471 kvm_vcpu_set_in_spin_loop(vcpu, false); 472 kvm_vcpu_set_dy_eligible(vcpu, false); 473 vcpu->preempted = false; 474 vcpu->ready = false; 475 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 476 vcpu->last_used_slot = NULL; 477 478 /* Fill the stats id string for the vcpu */ 479 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 480 task_pid_nr(current), id); 481 } 482 483 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 484 { 485 kvm_arch_vcpu_destroy(vcpu); 486 kvm_dirty_ring_free(&vcpu->dirty_ring); 487 488 /* 489 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 490 * the vcpu->pid pointer, and at destruction time all file descriptors 491 * are already gone. 492 */ 493 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 494 495 free_page((unsigned long)vcpu->run); 496 kmem_cache_free(kvm_vcpu_cache, vcpu); 497 } 498 499 void kvm_destroy_vcpus(struct kvm *kvm) 500 { 501 unsigned long i; 502 struct kvm_vcpu *vcpu; 503 504 kvm_for_each_vcpu(i, vcpu, kvm) { 505 kvm_vcpu_destroy(vcpu); 506 xa_erase(&kvm->vcpu_array, i); 507 } 508 509 atomic_set(&kvm->online_vcpus, 0); 510 } 511 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 512 513 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 514 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 515 { 516 return container_of(mn, struct kvm, mmu_notifier); 517 } 518 519 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 520 521 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 522 unsigned long end); 523 524 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 525 526 struct kvm_hva_range { 527 unsigned long start; 528 unsigned long end; 529 pte_t pte; 530 hva_handler_t handler; 531 on_lock_fn_t on_lock; 532 on_unlock_fn_t on_unlock; 533 bool flush_on_ret; 534 bool may_block; 535 }; 536 537 /* 538 * Use a dedicated stub instead of NULL to indicate that there is no callback 539 * function/handler. The compiler technically can't guarantee that a real 540 * function will have a non-zero address, and so it will generate code to 541 * check for !NULL, whereas comparing against a stub will be elided at compile 542 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 543 */ 544 static void kvm_null_fn(void) 545 { 546 547 } 548 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 549 550 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 551 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 552 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 553 node; \ 554 node = interval_tree_iter_next(node, start, last)) \ 555 556 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 557 const struct kvm_hva_range *range) 558 { 559 bool ret = false, locked = false; 560 struct kvm_gfn_range gfn_range; 561 struct kvm_memory_slot *slot; 562 struct kvm_memslots *slots; 563 int i, idx; 564 565 if (WARN_ON_ONCE(range->end <= range->start)) 566 return 0; 567 568 /* A null handler is allowed if and only if on_lock() is provided. */ 569 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 570 IS_KVM_NULL_FN(range->handler))) 571 return 0; 572 573 idx = srcu_read_lock(&kvm->srcu); 574 575 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 576 struct interval_tree_node *node; 577 578 slots = __kvm_memslots(kvm, i); 579 kvm_for_each_memslot_in_hva_range(node, slots, 580 range->start, range->end - 1) { 581 unsigned long hva_start, hva_end; 582 583 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 584 hva_start = max(range->start, slot->userspace_addr); 585 hva_end = min(range->end, slot->userspace_addr + 586 (slot->npages << PAGE_SHIFT)); 587 588 /* 589 * To optimize for the likely case where the address 590 * range is covered by zero or one memslots, don't 591 * bother making these conditional (to avoid writes on 592 * the second or later invocation of the handler). 593 */ 594 gfn_range.pte = range->pte; 595 gfn_range.may_block = range->may_block; 596 597 /* 598 * {gfn(page) | page intersects with [hva_start, hva_end)} = 599 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 600 */ 601 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 602 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 603 gfn_range.slot = slot; 604 605 if (!locked) { 606 locked = true; 607 KVM_MMU_LOCK(kvm); 608 if (!IS_KVM_NULL_FN(range->on_lock)) 609 range->on_lock(kvm, range->start, range->end); 610 if (IS_KVM_NULL_FN(range->handler)) 611 break; 612 } 613 ret |= range->handler(kvm, &gfn_range); 614 } 615 } 616 617 if (range->flush_on_ret && ret) 618 kvm_flush_remote_tlbs(kvm); 619 620 if (locked) { 621 KVM_MMU_UNLOCK(kvm); 622 if (!IS_KVM_NULL_FN(range->on_unlock)) 623 range->on_unlock(kvm); 624 } 625 626 srcu_read_unlock(&kvm->srcu, idx); 627 628 /* The notifiers are averse to booleans. :-( */ 629 return (int)ret; 630 } 631 632 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 633 unsigned long start, 634 unsigned long end, 635 pte_t pte, 636 hva_handler_t handler) 637 { 638 struct kvm *kvm = mmu_notifier_to_kvm(mn); 639 const struct kvm_hva_range range = { 640 .start = start, 641 .end = end, 642 .pte = pte, 643 .handler = handler, 644 .on_lock = (void *)kvm_null_fn, 645 .on_unlock = (void *)kvm_null_fn, 646 .flush_on_ret = true, 647 .may_block = false, 648 }; 649 650 return __kvm_handle_hva_range(kvm, &range); 651 } 652 653 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 654 unsigned long start, 655 unsigned long end, 656 hva_handler_t handler) 657 { 658 struct kvm *kvm = mmu_notifier_to_kvm(mn); 659 const struct kvm_hva_range range = { 660 .start = start, 661 .end = end, 662 .pte = __pte(0), 663 .handler = handler, 664 .on_lock = (void *)kvm_null_fn, 665 .on_unlock = (void *)kvm_null_fn, 666 .flush_on_ret = false, 667 .may_block = false, 668 }; 669 670 return __kvm_handle_hva_range(kvm, &range); 671 } 672 673 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 674 { 675 /* 676 * Skipping invalid memslots is correct if and only change_pte() is 677 * surrounded by invalidate_range_{start,end}(), which is currently 678 * guaranteed by the primary MMU. If that ever changes, KVM needs to 679 * unmap the memslot instead of skipping the memslot to ensure that KVM 680 * doesn't hold references to the old PFN. 681 */ 682 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 683 684 if (range->slot->flags & KVM_MEMSLOT_INVALID) 685 return false; 686 687 return kvm_set_spte_gfn(kvm, range); 688 } 689 690 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 691 struct mm_struct *mm, 692 unsigned long address, 693 pte_t pte) 694 { 695 struct kvm *kvm = mmu_notifier_to_kvm(mn); 696 697 trace_kvm_set_spte_hva(address); 698 699 /* 700 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 701 * If mmu_invalidate_in_progress is zero, then no in-progress 702 * invalidations, including this one, found a relevant memslot at 703 * start(); rechecking memslots here is unnecessary. Note, a false 704 * positive (count elevated by a different invalidation) is sub-optimal 705 * but functionally ok. 706 */ 707 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 708 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 709 return; 710 711 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_change_spte_gfn); 712 } 713 714 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 715 unsigned long end) 716 { 717 /* 718 * The count increase must become visible at unlock time as no 719 * spte can be established without taking the mmu_lock and 720 * count is also read inside the mmu_lock critical section. 721 */ 722 kvm->mmu_invalidate_in_progress++; 723 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 724 kvm->mmu_invalidate_range_start = start; 725 kvm->mmu_invalidate_range_end = end; 726 } else { 727 /* 728 * Fully tracking multiple concurrent ranges has diminishing 729 * returns. Keep things simple and just find the minimal range 730 * which includes the current and new ranges. As there won't be 731 * enough information to subtract a range after its invalidate 732 * completes, any ranges invalidated concurrently will 733 * accumulate and persist until all outstanding invalidates 734 * complete. 735 */ 736 kvm->mmu_invalidate_range_start = 737 min(kvm->mmu_invalidate_range_start, start); 738 kvm->mmu_invalidate_range_end = 739 max(kvm->mmu_invalidate_range_end, end); 740 } 741 } 742 743 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 744 const struct mmu_notifier_range *range) 745 { 746 struct kvm *kvm = mmu_notifier_to_kvm(mn); 747 const struct kvm_hva_range hva_range = { 748 .start = range->start, 749 .end = range->end, 750 .pte = __pte(0), 751 .handler = kvm_unmap_gfn_range, 752 .on_lock = kvm_mmu_invalidate_begin, 753 .on_unlock = kvm_arch_guest_memory_reclaimed, 754 .flush_on_ret = true, 755 .may_block = mmu_notifier_range_blockable(range), 756 }; 757 758 trace_kvm_unmap_hva_range(range->start, range->end); 759 760 /* 761 * Prevent memslot modification between range_start() and range_end() 762 * so that conditionally locking provides the same result in both 763 * functions. Without that guarantee, the mmu_invalidate_in_progress 764 * adjustments will be imbalanced. 765 * 766 * Pairs with the decrement in range_end(). 767 */ 768 spin_lock(&kvm->mn_invalidate_lock); 769 kvm->mn_active_invalidate_count++; 770 spin_unlock(&kvm->mn_invalidate_lock); 771 772 /* 773 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 774 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 775 * each cache's lock. There are relatively few caches in existence at 776 * any given time, and the caches themselves can check for hva overlap, 777 * i.e. don't need to rely on memslot overlap checks for performance. 778 * Because this runs without holding mmu_lock, the pfn caches must use 779 * mn_active_invalidate_count (see above) instead of 780 * mmu_invalidate_in_progress. 781 */ 782 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 783 hva_range.may_block); 784 785 __kvm_handle_hva_range(kvm, &hva_range); 786 787 return 0; 788 } 789 790 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 791 unsigned long end) 792 { 793 /* 794 * This sequence increase will notify the kvm page fault that 795 * the page that is going to be mapped in the spte could have 796 * been freed. 797 */ 798 kvm->mmu_invalidate_seq++; 799 smp_wmb(); 800 /* 801 * The above sequence increase must be visible before the 802 * below count decrease, which is ensured by the smp_wmb above 803 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 804 */ 805 kvm->mmu_invalidate_in_progress--; 806 } 807 808 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 809 const struct mmu_notifier_range *range) 810 { 811 struct kvm *kvm = mmu_notifier_to_kvm(mn); 812 const struct kvm_hva_range hva_range = { 813 .start = range->start, 814 .end = range->end, 815 .pte = __pte(0), 816 .handler = (void *)kvm_null_fn, 817 .on_lock = kvm_mmu_invalidate_end, 818 .on_unlock = (void *)kvm_null_fn, 819 .flush_on_ret = false, 820 .may_block = mmu_notifier_range_blockable(range), 821 }; 822 bool wake; 823 824 __kvm_handle_hva_range(kvm, &hva_range); 825 826 /* Pairs with the increment in range_start(). */ 827 spin_lock(&kvm->mn_invalidate_lock); 828 wake = (--kvm->mn_active_invalidate_count == 0); 829 spin_unlock(&kvm->mn_invalidate_lock); 830 831 /* 832 * There can only be one waiter, since the wait happens under 833 * slots_lock. 834 */ 835 if (wake) 836 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 837 838 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 839 } 840 841 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 842 struct mm_struct *mm, 843 unsigned long start, 844 unsigned long end) 845 { 846 trace_kvm_age_hva(start, end); 847 848 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 849 } 850 851 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 852 struct mm_struct *mm, 853 unsigned long start, 854 unsigned long end) 855 { 856 trace_kvm_age_hva(start, end); 857 858 /* 859 * Even though we do not flush TLB, this will still adversely 860 * affect performance on pre-Haswell Intel EPT, where there is 861 * no EPT Access Bit to clear so that we have to tear down EPT 862 * tables instead. If we find this unacceptable, we can always 863 * add a parameter to kvm_age_hva so that it effectively doesn't 864 * do anything on clear_young. 865 * 866 * Also note that currently we never issue secondary TLB flushes 867 * from clear_young, leaving this job up to the regular system 868 * cadence. If we find this inaccurate, we might come up with a 869 * more sophisticated heuristic later. 870 */ 871 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 872 } 873 874 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 875 struct mm_struct *mm, 876 unsigned long address) 877 { 878 trace_kvm_test_age_hva(address); 879 880 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 881 kvm_test_age_gfn); 882 } 883 884 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 885 struct mm_struct *mm) 886 { 887 struct kvm *kvm = mmu_notifier_to_kvm(mn); 888 int idx; 889 890 idx = srcu_read_lock(&kvm->srcu); 891 kvm_flush_shadow_all(kvm); 892 srcu_read_unlock(&kvm->srcu, idx); 893 } 894 895 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 896 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 897 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 898 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 899 .clear_young = kvm_mmu_notifier_clear_young, 900 .test_young = kvm_mmu_notifier_test_young, 901 .change_pte = kvm_mmu_notifier_change_pte, 902 .release = kvm_mmu_notifier_release, 903 }; 904 905 static int kvm_init_mmu_notifier(struct kvm *kvm) 906 { 907 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 908 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 909 } 910 911 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 912 913 static int kvm_init_mmu_notifier(struct kvm *kvm) 914 { 915 return 0; 916 } 917 918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 919 920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 921 static int kvm_pm_notifier_call(struct notifier_block *bl, 922 unsigned long state, 923 void *unused) 924 { 925 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 926 927 return kvm_arch_pm_notifier(kvm, state); 928 } 929 930 static void kvm_init_pm_notifier(struct kvm *kvm) 931 { 932 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 933 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 934 kvm->pm_notifier.priority = INT_MAX; 935 register_pm_notifier(&kvm->pm_notifier); 936 } 937 938 static void kvm_destroy_pm_notifier(struct kvm *kvm) 939 { 940 unregister_pm_notifier(&kvm->pm_notifier); 941 } 942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 943 static void kvm_init_pm_notifier(struct kvm *kvm) 944 { 945 } 946 947 static void kvm_destroy_pm_notifier(struct kvm *kvm) 948 { 949 } 950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 951 952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 953 { 954 if (!memslot->dirty_bitmap) 955 return; 956 957 kvfree(memslot->dirty_bitmap); 958 memslot->dirty_bitmap = NULL; 959 } 960 961 /* This does not remove the slot from struct kvm_memslots data structures */ 962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 963 { 964 kvm_destroy_dirty_bitmap(slot); 965 966 kvm_arch_free_memslot(kvm, slot); 967 968 kfree(slot); 969 } 970 971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 972 { 973 struct hlist_node *idnode; 974 struct kvm_memory_slot *memslot; 975 int bkt; 976 977 /* 978 * The same memslot objects live in both active and inactive sets, 979 * arbitrarily free using index '1' so the second invocation of this 980 * function isn't operating over a structure with dangling pointers 981 * (even though this function isn't actually touching them). 982 */ 983 if (!slots->node_idx) 984 return; 985 986 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 987 kvm_free_memslot(kvm, memslot); 988 } 989 990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 991 { 992 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 993 case KVM_STATS_TYPE_INSTANT: 994 return 0444; 995 case KVM_STATS_TYPE_CUMULATIVE: 996 case KVM_STATS_TYPE_PEAK: 997 default: 998 return 0644; 999 } 1000 } 1001 1002 1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1004 { 1005 int i; 1006 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1007 kvm_vcpu_stats_header.num_desc; 1008 1009 if (IS_ERR(kvm->debugfs_dentry)) 1010 return; 1011 1012 debugfs_remove_recursive(kvm->debugfs_dentry); 1013 1014 if (kvm->debugfs_stat_data) { 1015 for (i = 0; i < kvm_debugfs_num_entries; i++) 1016 kfree(kvm->debugfs_stat_data[i]); 1017 kfree(kvm->debugfs_stat_data); 1018 } 1019 } 1020 1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1022 { 1023 static DEFINE_MUTEX(kvm_debugfs_lock); 1024 struct dentry *dent; 1025 char dir_name[ITOA_MAX_LEN * 2]; 1026 struct kvm_stat_data *stat_data; 1027 const struct _kvm_stats_desc *pdesc; 1028 int i, ret = -ENOMEM; 1029 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1030 kvm_vcpu_stats_header.num_desc; 1031 1032 if (!debugfs_initialized()) 1033 return 0; 1034 1035 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1036 mutex_lock(&kvm_debugfs_lock); 1037 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1038 if (dent) { 1039 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1040 dput(dent); 1041 mutex_unlock(&kvm_debugfs_lock); 1042 return 0; 1043 } 1044 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1045 mutex_unlock(&kvm_debugfs_lock); 1046 if (IS_ERR(dent)) 1047 return 0; 1048 1049 kvm->debugfs_dentry = dent; 1050 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1051 sizeof(*kvm->debugfs_stat_data), 1052 GFP_KERNEL_ACCOUNT); 1053 if (!kvm->debugfs_stat_data) 1054 goto out_err; 1055 1056 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1057 pdesc = &kvm_vm_stats_desc[i]; 1058 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1059 if (!stat_data) 1060 goto out_err; 1061 1062 stat_data->kvm = kvm; 1063 stat_data->desc = pdesc; 1064 stat_data->kind = KVM_STAT_VM; 1065 kvm->debugfs_stat_data[i] = stat_data; 1066 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1067 kvm->debugfs_dentry, stat_data, 1068 &stat_fops_per_vm); 1069 } 1070 1071 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1072 pdesc = &kvm_vcpu_stats_desc[i]; 1073 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1074 if (!stat_data) 1075 goto out_err; 1076 1077 stat_data->kvm = kvm; 1078 stat_data->desc = pdesc; 1079 stat_data->kind = KVM_STAT_VCPU; 1080 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1081 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1082 kvm->debugfs_dentry, stat_data, 1083 &stat_fops_per_vm); 1084 } 1085 1086 ret = kvm_arch_create_vm_debugfs(kvm); 1087 if (ret) 1088 goto out_err; 1089 1090 return 0; 1091 out_err: 1092 kvm_destroy_vm_debugfs(kvm); 1093 return ret; 1094 } 1095 1096 /* 1097 * Called after the VM is otherwise initialized, but just before adding it to 1098 * the vm_list. 1099 */ 1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1101 { 1102 return 0; 1103 } 1104 1105 /* 1106 * Called just after removing the VM from the vm_list, but before doing any 1107 * other destruction. 1108 */ 1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1110 { 1111 } 1112 1113 /* 1114 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1115 * be setup already, so we can create arch-specific debugfs entries under it. 1116 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1117 * a per-arch destroy interface is not needed. 1118 */ 1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1120 { 1121 return 0; 1122 } 1123 1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1125 { 1126 struct kvm *kvm = kvm_arch_alloc_vm(); 1127 struct kvm_memslots *slots; 1128 int r = -ENOMEM; 1129 int i, j; 1130 1131 if (!kvm) 1132 return ERR_PTR(-ENOMEM); 1133 1134 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1135 __module_get(kvm_chardev_ops.owner); 1136 1137 KVM_MMU_LOCK_INIT(kvm); 1138 mmgrab(current->mm); 1139 kvm->mm = current->mm; 1140 kvm_eventfd_init(kvm); 1141 mutex_init(&kvm->lock); 1142 mutex_init(&kvm->irq_lock); 1143 mutex_init(&kvm->slots_lock); 1144 mutex_init(&kvm->slots_arch_lock); 1145 spin_lock_init(&kvm->mn_invalidate_lock); 1146 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1147 xa_init(&kvm->vcpu_array); 1148 1149 INIT_LIST_HEAD(&kvm->gpc_list); 1150 spin_lock_init(&kvm->gpc_lock); 1151 1152 INIT_LIST_HEAD(&kvm->devices); 1153 kvm->max_vcpus = KVM_MAX_VCPUS; 1154 1155 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1156 1157 /* 1158 * Force subsequent debugfs file creations to fail if the VM directory 1159 * is not created (by kvm_create_vm_debugfs()). 1160 */ 1161 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1162 1163 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1164 task_pid_nr(current)); 1165 1166 if (init_srcu_struct(&kvm->srcu)) 1167 goto out_err_no_srcu; 1168 if (init_srcu_struct(&kvm->irq_srcu)) 1169 goto out_err_no_irq_srcu; 1170 1171 refcount_set(&kvm->users_count, 1); 1172 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1173 for (j = 0; j < 2; j++) { 1174 slots = &kvm->__memslots[i][j]; 1175 1176 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1177 slots->hva_tree = RB_ROOT_CACHED; 1178 slots->gfn_tree = RB_ROOT; 1179 hash_init(slots->id_hash); 1180 slots->node_idx = j; 1181 1182 /* Generations must be different for each address space. */ 1183 slots->generation = i; 1184 } 1185 1186 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1187 } 1188 1189 for (i = 0; i < KVM_NR_BUSES; i++) { 1190 rcu_assign_pointer(kvm->buses[i], 1191 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1192 if (!kvm->buses[i]) 1193 goto out_err_no_arch_destroy_vm; 1194 } 1195 1196 r = kvm_arch_init_vm(kvm, type); 1197 if (r) 1198 goto out_err_no_arch_destroy_vm; 1199 1200 r = hardware_enable_all(); 1201 if (r) 1202 goto out_err_no_disable; 1203 1204 #ifdef CONFIG_HAVE_KVM_IRQFD 1205 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1206 #endif 1207 1208 r = kvm_init_mmu_notifier(kvm); 1209 if (r) 1210 goto out_err_no_mmu_notifier; 1211 1212 r = kvm_coalesced_mmio_init(kvm); 1213 if (r < 0) 1214 goto out_no_coalesced_mmio; 1215 1216 r = kvm_create_vm_debugfs(kvm, fdname); 1217 if (r) 1218 goto out_err_no_debugfs; 1219 1220 r = kvm_arch_post_init_vm(kvm); 1221 if (r) 1222 goto out_err; 1223 1224 mutex_lock(&kvm_lock); 1225 list_add(&kvm->vm_list, &vm_list); 1226 mutex_unlock(&kvm_lock); 1227 1228 preempt_notifier_inc(); 1229 kvm_init_pm_notifier(kvm); 1230 1231 return kvm; 1232 1233 out_err: 1234 kvm_destroy_vm_debugfs(kvm); 1235 out_err_no_debugfs: 1236 kvm_coalesced_mmio_free(kvm); 1237 out_no_coalesced_mmio: 1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1239 if (kvm->mmu_notifier.ops) 1240 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1241 #endif 1242 out_err_no_mmu_notifier: 1243 hardware_disable_all(); 1244 out_err_no_disable: 1245 kvm_arch_destroy_vm(kvm); 1246 out_err_no_arch_destroy_vm: 1247 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1248 for (i = 0; i < KVM_NR_BUSES; i++) 1249 kfree(kvm_get_bus(kvm, i)); 1250 cleanup_srcu_struct(&kvm->irq_srcu); 1251 out_err_no_irq_srcu: 1252 cleanup_srcu_struct(&kvm->srcu); 1253 out_err_no_srcu: 1254 kvm_arch_free_vm(kvm); 1255 mmdrop(current->mm); 1256 module_put(kvm_chardev_ops.owner); 1257 return ERR_PTR(r); 1258 } 1259 1260 static void kvm_destroy_devices(struct kvm *kvm) 1261 { 1262 struct kvm_device *dev, *tmp; 1263 1264 /* 1265 * We do not need to take the kvm->lock here, because nobody else 1266 * has a reference to the struct kvm at this point and therefore 1267 * cannot access the devices list anyhow. 1268 */ 1269 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1270 list_del(&dev->vm_node); 1271 dev->ops->destroy(dev); 1272 } 1273 } 1274 1275 static void kvm_destroy_vm(struct kvm *kvm) 1276 { 1277 int i; 1278 struct mm_struct *mm = kvm->mm; 1279 1280 kvm_destroy_pm_notifier(kvm); 1281 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1282 kvm_destroy_vm_debugfs(kvm); 1283 kvm_arch_sync_events(kvm); 1284 mutex_lock(&kvm_lock); 1285 list_del(&kvm->vm_list); 1286 mutex_unlock(&kvm_lock); 1287 kvm_arch_pre_destroy_vm(kvm); 1288 1289 kvm_free_irq_routing(kvm); 1290 for (i = 0; i < KVM_NR_BUSES; i++) { 1291 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1292 1293 if (bus) 1294 kvm_io_bus_destroy(bus); 1295 kvm->buses[i] = NULL; 1296 } 1297 kvm_coalesced_mmio_free(kvm); 1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1299 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1300 /* 1301 * At this point, pending calls to invalidate_range_start() 1302 * have completed but no more MMU notifiers will run, so 1303 * mn_active_invalidate_count may remain unbalanced. 1304 * No threads can be waiting in kvm_swap_active_memslots() as the 1305 * last reference on KVM has been dropped, but freeing 1306 * memslots would deadlock without this manual intervention. 1307 */ 1308 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1309 kvm->mn_active_invalidate_count = 0; 1310 #else 1311 kvm_flush_shadow_all(kvm); 1312 #endif 1313 kvm_arch_destroy_vm(kvm); 1314 kvm_destroy_devices(kvm); 1315 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1316 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1317 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1318 } 1319 cleanup_srcu_struct(&kvm->irq_srcu); 1320 cleanup_srcu_struct(&kvm->srcu); 1321 kvm_arch_free_vm(kvm); 1322 preempt_notifier_dec(); 1323 hardware_disable_all(); 1324 mmdrop(mm); 1325 module_put(kvm_chardev_ops.owner); 1326 } 1327 1328 void kvm_get_kvm(struct kvm *kvm) 1329 { 1330 refcount_inc(&kvm->users_count); 1331 } 1332 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1333 1334 /* 1335 * Make sure the vm is not during destruction, which is a safe version of 1336 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1337 */ 1338 bool kvm_get_kvm_safe(struct kvm *kvm) 1339 { 1340 return refcount_inc_not_zero(&kvm->users_count); 1341 } 1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1343 1344 void kvm_put_kvm(struct kvm *kvm) 1345 { 1346 if (refcount_dec_and_test(&kvm->users_count)) 1347 kvm_destroy_vm(kvm); 1348 } 1349 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1350 1351 /* 1352 * Used to put a reference that was taken on behalf of an object associated 1353 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1354 * of the new file descriptor fails and the reference cannot be transferred to 1355 * its final owner. In such cases, the caller is still actively using @kvm and 1356 * will fail miserably if the refcount unexpectedly hits zero. 1357 */ 1358 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1359 { 1360 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1361 } 1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1363 1364 static int kvm_vm_release(struct inode *inode, struct file *filp) 1365 { 1366 struct kvm *kvm = filp->private_data; 1367 1368 kvm_irqfd_release(kvm); 1369 1370 kvm_put_kvm(kvm); 1371 return 0; 1372 } 1373 1374 /* 1375 * Allocation size is twice as large as the actual dirty bitmap size. 1376 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1377 */ 1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1379 { 1380 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1381 1382 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1383 if (!memslot->dirty_bitmap) 1384 return -ENOMEM; 1385 1386 return 0; 1387 } 1388 1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1390 { 1391 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1392 int node_idx_inactive = active->node_idx ^ 1; 1393 1394 return &kvm->__memslots[as_id][node_idx_inactive]; 1395 } 1396 1397 /* 1398 * Helper to get the address space ID when one of memslot pointers may be NULL. 1399 * This also serves as a sanity that at least one of the pointers is non-NULL, 1400 * and that their address space IDs don't diverge. 1401 */ 1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1403 struct kvm_memory_slot *b) 1404 { 1405 if (WARN_ON_ONCE(!a && !b)) 1406 return 0; 1407 1408 if (!a) 1409 return b->as_id; 1410 if (!b) 1411 return a->as_id; 1412 1413 WARN_ON_ONCE(a->as_id != b->as_id); 1414 return a->as_id; 1415 } 1416 1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1418 struct kvm_memory_slot *slot) 1419 { 1420 struct rb_root *gfn_tree = &slots->gfn_tree; 1421 struct rb_node **node, *parent; 1422 int idx = slots->node_idx; 1423 1424 parent = NULL; 1425 for (node = &gfn_tree->rb_node; *node; ) { 1426 struct kvm_memory_slot *tmp; 1427 1428 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1429 parent = *node; 1430 if (slot->base_gfn < tmp->base_gfn) 1431 node = &(*node)->rb_left; 1432 else if (slot->base_gfn > tmp->base_gfn) 1433 node = &(*node)->rb_right; 1434 else 1435 BUG(); 1436 } 1437 1438 rb_link_node(&slot->gfn_node[idx], parent, node); 1439 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1440 } 1441 1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1443 struct kvm_memory_slot *slot) 1444 { 1445 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1446 } 1447 1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1449 struct kvm_memory_slot *old, 1450 struct kvm_memory_slot *new) 1451 { 1452 int idx = slots->node_idx; 1453 1454 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1455 1456 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1457 &slots->gfn_tree); 1458 } 1459 1460 /* 1461 * Replace @old with @new in the inactive memslots. 1462 * 1463 * With NULL @old this simply adds @new. 1464 * With NULL @new this simply removes @old. 1465 * 1466 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1467 * appropriately. 1468 */ 1469 static void kvm_replace_memslot(struct kvm *kvm, 1470 struct kvm_memory_slot *old, 1471 struct kvm_memory_slot *new) 1472 { 1473 int as_id = kvm_memslots_get_as_id(old, new); 1474 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1475 int idx = slots->node_idx; 1476 1477 if (old) { 1478 hash_del(&old->id_node[idx]); 1479 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1480 1481 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1482 atomic_long_set(&slots->last_used_slot, (long)new); 1483 1484 if (!new) { 1485 kvm_erase_gfn_node(slots, old); 1486 return; 1487 } 1488 } 1489 1490 /* 1491 * Initialize @new's hva range. Do this even when replacing an @old 1492 * slot, kvm_copy_memslot() deliberately does not touch node data. 1493 */ 1494 new->hva_node[idx].start = new->userspace_addr; 1495 new->hva_node[idx].last = new->userspace_addr + 1496 (new->npages << PAGE_SHIFT) - 1; 1497 1498 /* 1499 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1500 * hva_node needs to be swapped with remove+insert even though hva can't 1501 * change when replacing an existing slot. 1502 */ 1503 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1504 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1505 1506 /* 1507 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1508 * switch the node in the gfn tree instead of removing the old and 1509 * inserting the new as two separate operations. Replacement is a 1510 * single O(1) operation versus two O(log(n)) operations for 1511 * remove+insert. 1512 */ 1513 if (old && old->base_gfn == new->base_gfn) { 1514 kvm_replace_gfn_node(slots, old, new); 1515 } else { 1516 if (old) 1517 kvm_erase_gfn_node(slots, old); 1518 kvm_insert_gfn_node(slots, new); 1519 } 1520 } 1521 1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1523 { 1524 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1525 1526 #ifdef __KVM_HAVE_READONLY_MEM 1527 valid_flags |= KVM_MEM_READONLY; 1528 #endif 1529 1530 if (mem->flags & ~valid_flags) 1531 return -EINVAL; 1532 1533 return 0; 1534 } 1535 1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1537 { 1538 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1539 1540 /* Grab the generation from the activate memslots. */ 1541 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1542 1543 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1544 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1545 1546 /* 1547 * Do not store the new memslots while there are invalidations in 1548 * progress, otherwise the locking in invalidate_range_start and 1549 * invalidate_range_end will be unbalanced. 1550 */ 1551 spin_lock(&kvm->mn_invalidate_lock); 1552 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1553 while (kvm->mn_active_invalidate_count) { 1554 set_current_state(TASK_UNINTERRUPTIBLE); 1555 spin_unlock(&kvm->mn_invalidate_lock); 1556 schedule(); 1557 spin_lock(&kvm->mn_invalidate_lock); 1558 } 1559 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1560 rcu_assign_pointer(kvm->memslots[as_id], slots); 1561 spin_unlock(&kvm->mn_invalidate_lock); 1562 1563 /* 1564 * Acquired in kvm_set_memslot. Must be released before synchronize 1565 * SRCU below in order to avoid deadlock with another thread 1566 * acquiring the slots_arch_lock in an srcu critical section. 1567 */ 1568 mutex_unlock(&kvm->slots_arch_lock); 1569 1570 synchronize_srcu_expedited(&kvm->srcu); 1571 1572 /* 1573 * Increment the new memslot generation a second time, dropping the 1574 * update in-progress flag and incrementing the generation based on 1575 * the number of address spaces. This provides a unique and easily 1576 * identifiable generation number while the memslots are in flux. 1577 */ 1578 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1579 1580 /* 1581 * Generations must be unique even across address spaces. We do not need 1582 * a global counter for that, instead the generation space is evenly split 1583 * across address spaces. For example, with two address spaces, address 1584 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1585 * use generations 1, 3, 5, ... 1586 */ 1587 gen += KVM_ADDRESS_SPACE_NUM; 1588 1589 kvm_arch_memslots_updated(kvm, gen); 1590 1591 slots->generation = gen; 1592 } 1593 1594 static int kvm_prepare_memory_region(struct kvm *kvm, 1595 const struct kvm_memory_slot *old, 1596 struct kvm_memory_slot *new, 1597 enum kvm_mr_change change) 1598 { 1599 int r; 1600 1601 /* 1602 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1603 * will be freed on "commit". If logging is enabled in both old and 1604 * new, reuse the existing bitmap. If logging is enabled only in the 1605 * new and KVM isn't using a ring buffer, allocate and initialize a 1606 * new bitmap. 1607 */ 1608 if (change != KVM_MR_DELETE) { 1609 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1610 new->dirty_bitmap = NULL; 1611 else if (old && old->dirty_bitmap) 1612 new->dirty_bitmap = old->dirty_bitmap; 1613 else if (kvm_use_dirty_bitmap(kvm)) { 1614 r = kvm_alloc_dirty_bitmap(new); 1615 if (r) 1616 return r; 1617 1618 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1619 bitmap_set(new->dirty_bitmap, 0, new->npages); 1620 } 1621 } 1622 1623 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1624 1625 /* Free the bitmap on failure if it was allocated above. */ 1626 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1627 kvm_destroy_dirty_bitmap(new); 1628 1629 return r; 1630 } 1631 1632 static void kvm_commit_memory_region(struct kvm *kvm, 1633 struct kvm_memory_slot *old, 1634 const struct kvm_memory_slot *new, 1635 enum kvm_mr_change change) 1636 { 1637 int old_flags = old ? old->flags : 0; 1638 int new_flags = new ? new->flags : 0; 1639 /* 1640 * Update the total number of memslot pages before calling the arch 1641 * hook so that architectures can consume the result directly. 1642 */ 1643 if (change == KVM_MR_DELETE) 1644 kvm->nr_memslot_pages -= old->npages; 1645 else if (change == KVM_MR_CREATE) 1646 kvm->nr_memslot_pages += new->npages; 1647 1648 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1649 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1650 atomic_set(&kvm->nr_memslots_dirty_logging, 1651 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1652 } 1653 1654 kvm_arch_commit_memory_region(kvm, old, new, change); 1655 1656 switch (change) { 1657 case KVM_MR_CREATE: 1658 /* Nothing more to do. */ 1659 break; 1660 case KVM_MR_DELETE: 1661 /* Free the old memslot and all its metadata. */ 1662 kvm_free_memslot(kvm, old); 1663 break; 1664 case KVM_MR_MOVE: 1665 case KVM_MR_FLAGS_ONLY: 1666 /* 1667 * Free the dirty bitmap as needed; the below check encompasses 1668 * both the flags and whether a ring buffer is being used) 1669 */ 1670 if (old->dirty_bitmap && !new->dirty_bitmap) 1671 kvm_destroy_dirty_bitmap(old); 1672 1673 /* 1674 * The final quirk. Free the detached, old slot, but only its 1675 * memory, not any metadata. Metadata, including arch specific 1676 * data, may be reused by @new. 1677 */ 1678 kfree(old); 1679 break; 1680 default: 1681 BUG(); 1682 } 1683 } 1684 1685 /* 1686 * Activate @new, which must be installed in the inactive slots by the caller, 1687 * by swapping the active slots and then propagating @new to @old once @old is 1688 * unreachable and can be safely modified. 1689 * 1690 * With NULL @old this simply adds @new to @active (while swapping the sets). 1691 * With NULL @new this simply removes @old from @active and frees it 1692 * (while also swapping the sets). 1693 */ 1694 static void kvm_activate_memslot(struct kvm *kvm, 1695 struct kvm_memory_slot *old, 1696 struct kvm_memory_slot *new) 1697 { 1698 int as_id = kvm_memslots_get_as_id(old, new); 1699 1700 kvm_swap_active_memslots(kvm, as_id); 1701 1702 /* Propagate the new memslot to the now inactive memslots. */ 1703 kvm_replace_memslot(kvm, old, new); 1704 } 1705 1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1707 const struct kvm_memory_slot *src) 1708 { 1709 dest->base_gfn = src->base_gfn; 1710 dest->npages = src->npages; 1711 dest->dirty_bitmap = src->dirty_bitmap; 1712 dest->arch = src->arch; 1713 dest->userspace_addr = src->userspace_addr; 1714 dest->flags = src->flags; 1715 dest->id = src->id; 1716 dest->as_id = src->as_id; 1717 } 1718 1719 static void kvm_invalidate_memslot(struct kvm *kvm, 1720 struct kvm_memory_slot *old, 1721 struct kvm_memory_slot *invalid_slot) 1722 { 1723 /* 1724 * Mark the current slot INVALID. As with all memslot modifications, 1725 * this must be done on an unreachable slot to avoid modifying the 1726 * current slot in the active tree. 1727 */ 1728 kvm_copy_memslot(invalid_slot, old); 1729 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1730 kvm_replace_memslot(kvm, old, invalid_slot); 1731 1732 /* 1733 * Activate the slot that is now marked INVALID, but don't propagate 1734 * the slot to the now inactive slots. The slot is either going to be 1735 * deleted or recreated as a new slot. 1736 */ 1737 kvm_swap_active_memslots(kvm, old->as_id); 1738 1739 /* 1740 * From this point no new shadow pages pointing to a deleted, or moved, 1741 * memslot will be created. Validation of sp->gfn happens in: 1742 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1743 * - kvm_is_visible_gfn (mmu_check_root) 1744 */ 1745 kvm_arch_flush_shadow_memslot(kvm, old); 1746 kvm_arch_guest_memory_reclaimed(kvm); 1747 1748 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1749 mutex_lock(&kvm->slots_arch_lock); 1750 1751 /* 1752 * Copy the arch-specific field of the newly-installed slot back to the 1753 * old slot as the arch data could have changed between releasing 1754 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1755 * above. Writers are required to retrieve memslots *after* acquiring 1756 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1757 */ 1758 old->arch = invalid_slot->arch; 1759 } 1760 1761 static void kvm_create_memslot(struct kvm *kvm, 1762 struct kvm_memory_slot *new) 1763 { 1764 /* Add the new memslot to the inactive set and activate. */ 1765 kvm_replace_memslot(kvm, NULL, new); 1766 kvm_activate_memslot(kvm, NULL, new); 1767 } 1768 1769 static void kvm_delete_memslot(struct kvm *kvm, 1770 struct kvm_memory_slot *old, 1771 struct kvm_memory_slot *invalid_slot) 1772 { 1773 /* 1774 * Remove the old memslot (in the inactive memslots) by passing NULL as 1775 * the "new" slot, and for the invalid version in the active slots. 1776 */ 1777 kvm_replace_memslot(kvm, old, NULL); 1778 kvm_activate_memslot(kvm, invalid_slot, NULL); 1779 } 1780 1781 static void kvm_move_memslot(struct kvm *kvm, 1782 struct kvm_memory_slot *old, 1783 struct kvm_memory_slot *new, 1784 struct kvm_memory_slot *invalid_slot) 1785 { 1786 /* 1787 * Replace the old memslot in the inactive slots, and then swap slots 1788 * and replace the current INVALID with the new as well. 1789 */ 1790 kvm_replace_memslot(kvm, old, new); 1791 kvm_activate_memslot(kvm, invalid_slot, new); 1792 } 1793 1794 static void kvm_update_flags_memslot(struct kvm *kvm, 1795 struct kvm_memory_slot *old, 1796 struct kvm_memory_slot *new) 1797 { 1798 /* 1799 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1800 * an intermediate step. Instead, the old memslot is simply replaced 1801 * with a new, updated copy in both memslot sets. 1802 */ 1803 kvm_replace_memslot(kvm, old, new); 1804 kvm_activate_memslot(kvm, old, new); 1805 } 1806 1807 static int kvm_set_memslot(struct kvm *kvm, 1808 struct kvm_memory_slot *old, 1809 struct kvm_memory_slot *new, 1810 enum kvm_mr_change change) 1811 { 1812 struct kvm_memory_slot *invalid_slot; 1813 int r; 1814 1815 /* 1816 * Released in kvm_swap_active_memslots(). 1817 * 1818 * Must be held from before the current memslots are copied until after 1819 * the new memslots are installed with rcu_assign_pointer, then 1820 * released before the synchronize srcu in kvm_swap_active_memslots(). 1821 * 1822 * When modifying memslots outside of the slots_lock, must be held 1823 * before reading the pointer to the current memslots until after all 1824 * changes to those memslots are complete. 1825 * 1826 * These rules ensure that installing new memslots does not lose 1827 * changes made to the previous memslots. 1828 */ 1829 mutex_lock(&kvm->slots_arch_lock); 1830 1831 /* 1832 * Invalidate the old slot if it's being deleted or moved. This is 1833 * done prior to actually deleting/moving the memslot to allow vCPUs to 1834 * continue running by ensuring there are no mappings or shadow pages 1835 * for the memslot when it is deleted/moved. Without pre-invalidation 1836 * (and without a lock), a window would exist between effecting the 1837 * delete/move and committing the changes in arch code where KVM or a 1838 * guest could access a non-existent memslot. 1839 * 1840 * Modifications are done on a temporary, unreachable slot. The old 1841 * slot needs to be preserved in case a later step fails and the 1842 * invalidation needs to be reverted. 1843 */ 1844 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1845 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1846 if (!invalid_slot) { 1847 mutex_unlock(&kvm->slots_arch_lock); 1848 return -ENOMEM; 1849 } 1850 kvm_invalidate_memslot(kvm, old, invalid_slot); 1851 } 1852 1853 r = kvm_prepare_memory_region(kvm, old, new, change); 1854 if (r) { 1855 /* 1856 * For DELETE/MOVE, revert the above INVALID change. No 1857 * modifications required since the original slot was preserved 1858 * in the inactive slots. Changing the active memslots also 1859 * release slots_arch_lock. 1860 */ 1861 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1862 kvm_activate_memslot(kvm, invalid_slot, old); 1863 kfree(invalid_slot); 1864 } else { 1865 mutex_unlock(&kvm->slots_arch_lock); 1866 } 1867 return r; 1868 } 1869 1870 /* 1871 * For DELETE and MOVE, the working slot is now active as the INVALID 1872 * version of the old slot. MOVE is particularly special as it reuses 1873 * the old slot and returns a copy of the old slot (in working_slot). 1874 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1875 * old slot is detached but otherwise preserved. 1876 */ 1877 if (change == KVM_MR_CREATE) 1878 kvm_create_memslot(kvm, new); 1879 else if (change == KVM_MR_DELETE) 1880 kvm_delete_memslot(kvm, old, invalid_slot); 1881 else if (change == KVM_MR_MOVE) 1882 kvm_move_memslot(kvm, old, new, invalid_slot); 1883 else if (change == KVM_MR_FLAGS_ONLY) 1884 kvm_update_flags_memslot(kvm, old, new); 1885 else 1886 BUG(); 1887 1888 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1889 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1890 kfree(invalid_slot); 1891 1892 /* 1893 * No need to refresh new->arch, changes after dropping slots_arch_lock 1894 * will directly hit the final, active memslot. Architectures are 1895 * responsible for knowing that new->arch may be stale. 1896 */ 1897 kvm_commit_memory_region(kvm, old, new, change); 1898 1899 return 0; 1900 } 1901 1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1903 gfn_t start, gfn_t end) 1904 { 1905 struct kvm_memslot_iter iter; 1906 1907 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1908 if (iter.slot->id != id) 1909 return true; 1910 } 1911 1912 return false; 1913 } 1914 1915 /* 1916 * Allocate some memory and give it an address in the guest physical address 1917 * space. 1918 * 1919 * Discontiguous memory is allowed, mostly for framebuffers. 1920 * 1921 * Must be called holding kvm->slots_lock for write. 1922 */ 1923 int __kvm_set_memory_region(struct kvm *kvm, 1924 const struct kvm_userspace_memory_region *mem) 1925 { 1926 struct kvm_memory_slot *old, *new; 1927 struct kvm_memslots *slots; 1928 enum kvm_mr_change change; 1929 unsigned long npages; 1930 gfn_t base_gfn; 1931 int as_id, id; 1932 int r; 1933 1934 r = check_memory_region_flags(mem); 1935 if (r) 1936 return r; 1937 1938 as_id = mem->slot >> 16; 1939 id = (u16)mem->slot; 1940 1941 /* General sanity checks */ 1942 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1943 (mem->memory_size != (unsigned long)mem->memory_size)) 1944 return -EINVAL; 1945 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1946 return -EINVAL; 1947 /* We can read the guest memory with __xxx_user() later on. */ 1948 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1949 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1950 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1951 mem->memory_size)) 1952 return -EINVAL; 1953 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1954 return -EINVAL; 1955 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1956 return -EINVAL; 1957 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1958 return -EINVAL; 1959 1960 slots = __kvm_memslots(kvm, as_id); 1961 1962 /* 1963 * Note, the old memslot (and the pointer itself!) may be invalidated 1964 * and/or destroyed by kvm_set_memslot(). 1965 */ 1966 old = id_to_memslot(slots, id); 1967 1968 if (!mem->memory_size) { 1969 if (!old || !old->npages) 1970 return -EINVAL; 1971 1972 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1973 return -EIO; 1974 1975 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1976 } 1977 1978 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1979 npages = (mem->memory_size >> PAGE_SHIFT); 1980 1981 if (!old || !old->npages) { 1982 change = KVM_MR_CREATE; 1983 1984 /* 1985 * To simplify KVM internals, the total number of pages across 1986 * all memslots must fit in an unsigned long. 1987 */ 1988 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1989 return -EINVAL; 1990 } else { /* Modify an existing slot. */ 1991 if ((mem->userspace_addr != old->userspace_addr) || 1992 (npages != old->npages) || 1993 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1994 return -EINVAL; 1995 1996 if (base_gfn != old->base_gfn) 1997 change = KVM_MR_MOVE; 1998 else if (mem->flags != old->flags) 1999 change = KVM_MR_FLAGS_ONLY; 2000 else /* Nothing to change. */ 2001 return 0; 2002 } 2003 2004 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2005 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2006 return -EEXIST; 2007 2008 /* Allocate a slot that will persist in the memslot. */ 2009 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2010 if (!new) 2011 return -ENOMEM; 2012 2013 new->as_id = as_id; 2014 new->id = id; 2015 new->base_gfn = base_gfn; 2016 new->npages = npages; 2017 new->flags = mem->flags; 2018 new->userspace_addr = mem->userspace_addr; 2019 2020 r = kvm_set_memslot(kvm, old, new, change); 2021 if (r) 2022 kfree(new); 2023 return r; 2024 } 2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2026 2027 int kvm_set_memory_region(struct kvm *kvm, 2028 const struct kvm_userspace_memory_region *mem) 2029 { 2030 int r; 2031 2032 mutex_lock(&kvm->slots_lock); 2033 r = __kvm_set_memory_region(kvm, mem); 2034 mutex_unlock(&kvm->slots_lock); 2035 return r; 2036 } 2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2038 2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2040 struct kvm_userspace_memory_region *mem) 2041 { 2042 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2043 return -EINVAL; 2044 2045 return kvm_set_memory_region(kvm, mem); 2046 } 2047 2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2049 /** 2050 * kvm_get_dirty_log - get a snapshot of dirty pages 2051 * @kvm: pointer to kvm instance 2052 * @log: slot id and address to which we copy the log 2053 * @is_dirty: set to '1' if any dirty pages were found 2054 * @memslot: set to the associated memslot, always valid on success 2055 */ 2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2057 int *is_dirty, struct kvm_memory_slot **memslot) 2058 { 2059 struct kvm_memslots *slots; 2060 int i, as_id, id; 2061 unsigned long n; 2062 unsigned long any = 0; 2063 2064 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2065 if (!kvm_use_dirty_bitmap(kvm)) 2066 return -ENXIO; 2067 2068 *memslot = NULL; 2069 *is_dirty = 0; 2070 2071 as_id = log->slot >> 16; 2072 id = (u16)log->slot; 2073 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2074 return -EINVAL; 2075 2076 slots = __kvm_memslots(kvm, as_id); 2077 *memslot = id_to_memslot(slots, id); 2078 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2079 return -ENOENT; 2080 2081 kvm_arch_sync_dirty_log(kvm, *memslot); 2082 2083 n = kvm_dirty_bitmap_bytes(*memslot); 2084 2085 for (i = 0; !any && i < n/sizeof(long); ++i) 2086 any = (*memslot)->dirty_bitmap[i]; 2087 2088 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2089 return -EFAULT; 2090 2091 if (any) 2092 *is_dirty = 1; 2093 return 0; 2094 } 2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2096 2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2098 /** 2099 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2100 * and reenable dirty page tracking for the corresponding pages. 2101 * @kvm: pointer to kvm instance 2102 * @log: slot id and address to which we copy the log 2103 * 2104 * We need to keep it in mind that VCPU threads can write to the bitmap 2105 * concurrently. So, to avoid losing track of dirty pages we keep the 2106 * following order: 2107 * 2108 * 1. Take a snapshot of the bit and clear it if needed. 2109 * 2. Write protect the corresponding page. 2110 * 3. Copy the snapshot to the userspace. 2111 * 4. Upon return caller flushes TLB's if needed. 2112 * 2113 * Between 2 and 4, the guest may write to the page using the remaining TLB 2114 * entry. This is not a problem because the page is reported dirty using 2115 * the snapshot taken before and step 4 ensures that writes done after 2116 * exiting to userspace will be logged for the next call. 2117 * 2118 */ 2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2120 { 2121 struct kvm_memslots *slots; 2122 struct kvm_memory_slot *memslot; 2123 int i, as_id, id; 2124 unsigned long n; 2125 unsigned long *dirty_bitmap; 2126 unsigned long *dirty_bitmap_buffer; 2127 bool flush; 2128 2129 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2130 if (!kvm_use_dirty_bitmap(kvm)) 2131 return -ENXIO; 2132 2133 as_id = log->slot >> 16; 2134 id = (u16)log->slot; 2135 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2136 return -EINVAL; 2137 2138 slots = __kvm_memslots(kvm, as_id); 2139 memslot = id_to_memslot(slots, id); 2140 if (!memslot || !memslot->dirty_bitmap) 2141 return -ENOENT; 2142 2143 dirty_bitmap = memslot->dirty_bitmap; 2144 2145 kvm_arch_sync_dirty_log(kvm, memslot); 2146 2147 n = kvm_dirty_bitmap_bytes(memslot); 2148 flush = false; 2149 if (kvm->manual_dirty_log_protect) { 2150 /* 2151 * Unlike kvm_get_dirty_log, we always return false in *flush, 2152 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2153 * is some code duplication between this function and 2154 * kvm_get_dirty_log, but hopefully all architecture 2155 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2156 * can be eliminated. 2157 */ 2158 dirty_bitmap_buffer = dirty_bitmap; 2159 } else { 2160 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2161 memset(dirty_bitmap_buffer, 0, n); 2162 2163 KVM_MMU_LOCK(kvm); 2164 for (i = 0; i < n / sizeof(long); i++) { 2165 unsigned long mask; 2166 gfn_t offset; 2167 2168 if (!dirty_bitmap[i]) 2169 continue; 2170 2171 flush = true; 2172 mask = xchg(&dirty_bitmap[i], 0); 2173 dirty_bitmap_buffer[i] = mask; 2174 2175 offset = i * BITS_PER_LONG; 2176 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2177 offset, mask); 2178 } 2179 KVM_MMU_UNLOCK(kvm); 2180 } 2181 2182 if (flush) 2183 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2184 2185 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2186 return -EFAULT; 2187 return 0; 2188 } 2189 2190 2191 /** 2192 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2193 * @kvm: kvm instance 2194 * @log: slot id and address to which we copy the log 2195 * 2196 * Steps 1-4 below provide general overview of dirty page logging. See 2197 * kvm_get_dirty_log_protect() function description for additional details. 2198 * 2199 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2200 * always flush the TLB (step 4) even if previous step failed and the dirty 2201 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2202 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2203 * writes will be marked dirty for next log read. 2204 * 2205 * 1. Take a snapshot of the bit and clear it if needed. 2206 * 2. Write protect the corresponding page. 2207 * 3. Copy the snapshot to the userspace. 2208 * 4. Flush TLB's if needed. 2209 */ 2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2211 struct kvm_dirty_log *log) 2212 { 2213 int r; 2214 2215 mutex_lock(&kvm->slots_lock); 2216 2217 r = kvm_get_dirty_log_protect(kvm, log); 2218 2219 mutex_unlock(&kvm->slots_lock); 2220 return r; 2221 } 2222 2223 /** 2224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2225 * and reenable dirty page tracking for the corresponding pages. 2226 * @kvm: pointer to kvm instance 2227 * @log: slot id and address from which to fetch the bitmap of dirty pages 2228 */ 2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2230 struct kvm_clear_dirty_log *log) 2231 { 2232 struct kvm_memslots *slots; 2233 struct kvm_memory_slot *memslot; 2234 int as_id, id; 2235 gfn_t offset; 2236 unsigned long i, n; 2237 unsigned long *dirty_bitmap; 2238 unsigned long *dirty_bitmap_buffer; 2239 bool flush; 2240 2241 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2242 if (!kvm_use_dirty_bitmap(kvm)) 2243 return -ENXIO; 2244 2245 as_id = log->slot >> 16; 2246 id = (u16)log->slot; 2247 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2248 return -EINVAL; 2249 2250 if (log->first_page & 63) 2251 return -EINVAL; 2252 2253 slots = __kvm_memslots(kvm, as_id); 2254 memslot = id_to_memslot(slots, id); 2255 if (!memslot || !memslot->dirty_bitmap) 2256 return -ENOENT; 2257 2258 dirty_bitmap = memslot->dirty_bitmap; 2259 2260 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2261 2262 if (log->first_page > memslot->npages || 2263 log->num_pages > memslot->npages - log->first_page || 2264 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2265 return -EINVAL; 2266 2267 kvm_arch_sync_dirty_log(kvm, memslot); 2268 2269 flush = false; 2270 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2271 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2272 return -EFAULT; 2273 2274 KVM_MMU_LOCK(kvm); 2275 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2276 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2277 i++, offset += BITS_PER_LONG) { 2278 unsigned long mask = *dirty_bitmap_buffer++; 2279 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2280 if (!mask) 2281 continue; 2282 2283 mask &= atomic_long_fetch_andnot(mask, p); 2284 2285 /* 2286 * mask contains the bits that really have been cleared. This 2287 * never includes any bits beyond the length of the memslot (if 2288 * the length is not aligned to 64 pages), therefore it is not 2289 * a problem if userspace sets them in log->dirty_bitmap. 2290 */ 2291 if (mask) { 2292 flush = true; 2293 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2294 offset, mask); 2295 } 2296 } 2297 KVM_MMU_UNLOCK(kvm); 2298 2299 if (flush) 2300 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2301 2302 return 0; 2303 } 2304 2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2306 struct kvm_clear_dirty_log *log) 2307 { 2308 int r; 2309 2310 mutex_lock(&kvm->slots_lock); 2311 2312 r = kvm_clear_dirty_log_protect(kvm, log); 2313 2314 mutex_unlock(&kvm->slots_lock); 2315 return r; 2316 } 2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2318 2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2320 { 2321 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2322 } 2323 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2324 2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2326 { 2327 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2328 u64 gen = slots->generation; 2329 struct kvm_memory_slot *slot; 2330 2331 /* 2332 * This also protects against using a memslot from a different address space, 2333 * since different address spaces have different generation numbers. 2334 */ 2335 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2336 vcpu->last_used_slot = NULL; 2337 vcpu->last_used_slot_gen = gen; 2338 } 2339 2340 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2341 if (slot) 2342 return slot; 2343 2344 /* 2345 * Fall back to searching all memslots. We purposely use 2346 * search_memslots() instead of __gfn_to_memslot() to avoid 2347 * thrashing the VM-wide last_used_slot in kvm_memslots. 2348 */ 2349 slot = search_memslots(slots, gfn, false); 2350 if (slot) { 2351 vcpu->last_used_slot = slot; 2352 return slot; 2353 } 2354 2355 return NULL; 2356 } 2357 2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2359 { 2360 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2361 2362 return kvm_is_visible_memslot(memslot); 2363 } 2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2365 2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2367 { 2368 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2369 2370 return kvm_is_visible_memslot(memslot); 2371 } 2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2373 2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2375 { 2376 struct vm_area_struct *vma; 2377 unsigned long addr, size; 2378 2379 size = PAGE_SIZE; 2380 2381 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2382 if (kvm_is_error_hva(addr)) 2383 return PAGE_SIZE; 2384 2385 mmap_read_lock(current->mm); 2386 vma = find_vma(current->mm, addr); 2387 if (!vma) 2388 goto out; 2389 2390 size = vma_kernel_pagesize(vma); 2391 2392 out: 2393 mmap_read_unlock(current->mm); 2394 2395 return size; 2396 } 2397 2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2399 { 2400 return slot->flags & KVM_MEM_READONLY; 2401 } 2402 2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2404 gfn_t *nr_pages, bool write) 2405 { 2406 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2407 return KVM_HVA_ERR_BAD; 2408 2409 if (memslot_is_readonly(slot) && write) 2410 return KVM_HVA_ERR_RO_BAD; 2411 2412 if (nr_pages) 2413 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2414 2415 return __gfn_to_hva_memslot(slot, gfn); 2416 } 2417 2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2419 gfn_t *nr_pages) 2420 { 2421 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2422 } 2423 2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2425 gfn_t gfn) 2426 { 2427 return gfn_to_hva_many(slot, gfn, NULL); 2428 } 2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2430 2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2432 { 2433 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2434 } 2435 EXPORT_SYMBOL_GPL(gfn_to_hva); 2436 2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2438 { 2439 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2440 } 2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2442 2443 /* 2444 * Return the hva of a @gfn and the R/W attribute if possible. 2445 * 2446 * @slot: the kvm_memory_slot which contains @gfn 2447 * @gfn: the gfn to be translated 2448 * @writable: used to return the read/write attribute of the @slot if the hva 2449 * is valid and @writable is not NULL 2450 */ 2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2452 gfn_t gfn, bool *writable) 2453 { 2454 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2455 2456 if (!kvm_is_error_hva(hva) && writable) 2457 *writable = !memslot_is_readonly(slot); 2458 2459 return hva; 2460 } 2461 2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2463 { 2464 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2465 2466 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2467 } 2468 2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2470 { 2471 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2472 2473 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2474 } 2475 2476 static inline int check_user_page_hwpoison(unsigned long addr) 2477 { 2478 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2479 2480 rc = get_user_pages(addr, 1, flags, NULL); 2481 return rc == -EHWPOISON; 2482 } 2483 2484 /* 2485 * The fast path to get the writable pfn which will be stored in @pfn, 2486 * true indicates success, otherwise false is returned. It's also the 2487 * only part that runs if we can in atomic context. 2488 */ 2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2490 bool *writable, kvm_pfn_t *pfn) 2491 { 2492 struct page *page[1]; 2493 2494 /* 2495 * Fast pin a writable pfn only if it is a write fault request 2496 * or the caller allows to map a writable pfn for a read fault 2497 * request. 2498 */ 2499 if (!(write_fault || writable)) 2500 return false; 2501 2502 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2503 *pfn = page_to_pfn(page[0]); 2504 2505 if (writable) 2506 *writable = true; 2507 return true; 2508 } 2509 2510 return false; 2511 } 2512 2513 /* 2514 * The slow path to get the pfn of the specified host virtual address, 2515 * 1 indicates success, -errno is returned if error is detected. 2516 */ 2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2518 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2519 { 2520 /* 2521 * When a VCPU accesses a page that is not mapped into the secondary 2522 * MMU, we lookup the page using GUP to map it, so the guest VCPU can 2523 * make progress. We always want to honor NUMA hinting faults in that 2524 * case, because GUP usage corresponds to memory accesses from the VCPU. 2525 * Otherwise, we'd not trigger NUMA hinting faults once a page is 2526 * mapped into the secondary MMU and gets accessed by a VCPU. 2527 * 2528 * Note that get_user_page_fast_only() and FOLL_WRITE for now 2529 * implicitly honor NUMA hinting faults and don't need this flag. 2530 */ 2531 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT; 2532 struct page *page; 2533 int npages; 2534 2535 might_sleep(); 2536 2537 if (writable) 2538 *writable = write_fault; 2539 2540 if (write_fault) 2541 flags |= FOLL_WRITE; 2542 if (async) 2543 flags |= FOLL_NOWAIT; 2544 if (interruptible) 2545 flags |= FOLL_INTERRUPTIBLE; 2546 2547 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2548 if (npages != 1) 2549 return npages; 2550 2551 /* map read fault as writable if possible */ 2552 if (unlikely(!write_fault) && writable) { 2553 struct page *wpage; 2554 2555 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2556 *writable = true; 2557 put_page(page); 2558 page = wpage; 2559 } 2560 } 2561 *pfn = page_to_pfn(page); 2562 return npages; 2563 } 2564 2565 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2566 { 2567 if (unlikely(!(vma->vm_flags & VM_READ))) 2568 return false; 2569 2570 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2571 return false; 2572 2573 return true; 2574 } 2575 2576 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2577 { 2578 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2579 2580 if (!page) 2581 return 1; 2582 2583 return get_page_unless_zero(page); 2584 } 2585 2586 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2587 unsigned long addr, bool write_fault, 2588 bool *writable, kvm_pfn_t *p_pfn) 2589 { 2590 kvm_pfn_t pfn; 2591 pte_t *ptep; 2592 pte_t pte; 2593 spinlock_t *ptl; 2594 int r; 2595 2596 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2597 if (r) { 2598 /* 2599 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2600 * not call the fault handler, so do it here. 2601 */ 2602 bool unlocked = false; 2603 r = fixup_user_fault(current->mm, addr, 2604 (write_fault ? FAULT_FLAG_WRITE : 0), 2605 &unlocked); 2606 if (unlocked) 2607 return -EAGAIN; 2608 if (r) 2609 return r; 2610 2611 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2612 if (r) 2613 return r; 2614 } 2615 2616 pte = ptep_get(ptep); 2617 2618 if (write_fault && !pte_write(pte)) { 2619 pfn = KVM_PFN_ERR_RO_FAULT; 2620 goto out; 2621 } 2622 2623 if (writable) 2624 *writable = pte_write(pte); 2625 pfn = pte_pfn(pte); 2626 2627 /* 2628 * Get a reference here because callers of *hva_to_pfn* and 2629 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2630 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2631 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2632 * simply do nothing for reserved pfns. 2633 * 2634 * Whoever called remap_pfn_range is also going to call e.g. 2635 * unmap_mapping_range before the underlying pages are freed, 2636 * causing a call to our MMU notifier. 2637 * 2638 * Certain IO or PFNMAP mappings can be backed with valid 2639 * struct pages, but be allocated without refcounting e.g., 2640 * tail pages of non-compound higher order allocations, which 2641 * would then underflow the refcount when the caller does the 2642 * required put_page. Don't allow those pages here. 2643 */ 2644 if (!kvm_try_get_pfn(pfn)) 2645 r = -EFAULT; 2646 2647 out: 2648 pte_unmap_unlock(ptep, ptl); 2649 *p_pfn = pfn; 2650 2651 return r; 2652 } 2653 2654 /* 2655 * Pin guest page in memory and return its pfn. 2656 * @addr: host virtual address which maps memory to the guest 2657 * @atomic: whether this function can sleep 2658 * @interruptible: whether the process can be interrupted by non-fatal signals 2659 * @async: whether this function need to wait IO complete if the 2660 * host page is not in the memory 2661 * @write_fault: whether we should get a writable host page 2662 * @writable: whether it allows to map a writable host page for !@write_fault 2663 * 2664 * The function will map a writable host page for these two cases: 2665 * 1): @write_fault = true 2666 * 2): @write_fault = false && @writable, @writable will tell the caller 2667 * whether the mapping is writable. 2668 */ 2669 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2670 bool *async, bool write_fault, bool *writable) 2671 { 2672 struct vm_area_struct *vma; 2673 kvm_pfn_t pfn; 2674 int npages, r; 2675 2676 /* we can do it either atomically or asynchronously, not both */ 2677 BUG_ON(atomic && async); 2678 2679 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2680 return pfn; 2681 2682 if (atomic) 2683 return KVM_PFN_ERR_FAULT; 2684 2685 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2686 writable, &pfn); 2687 if (npages == 1) 2688 return pfn; 2689 if (npages == -EINTR) 2690 return KVM_PFN_ERR_SIGPENDING; 2691 2692 mmap_read_lock(current->mm); 2693 if (npages == -EHWPOISON || 2694 (!async && check_user_page_hwpoison(addr))) { 2695 pfn = KVM_PFN_ERR_HWPOISON; 2696 goto exit; 2697 } 2698 2699 retry: 2700 vma = vma_lookup(current->mm, addr); 2701 2702 if (vma == NULL) 2703 pfn = KVM_PFN_ERR_FAULT; 2704 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2705 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2706 if (r == -EAGAIN) 2707 goto retry; 2708 if (r < 0) 2709 pfn = KVM_PFN_ERR_FAULT; 2710 } else { 2711 if (async && vma_is_valid(vma, write_fault)) 2712 *async = true; 2713 pfn = KVM_PFN_ERR_FAULT; 2714 } 2715 exit: 2716 mmap_read_unlock(current->mm); 2717 return pfn; 2718 } 2719 2720 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2721 bool atomic, bool interruptible, bool *async, 2722 bool write_fault, bool *writable, hva_t *hva) 2723 { 2724 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2725 2726 if (hva) 2727 *hva = addr; 2728 2729 if (addr == KVM_HVA_ERR_RO_BAD) { 2730 if (writable) 2731 *writable = false; 2732 return KVM_PFN_ERR_RO_FAULT; 2733 } 2734 2735 if (kvm_is_error_hva(addr)) { 2736 if (writable) 2737 *writable = false; 2738 return KVM_PFN_NOSLOT; 2739 } 2740 2741 /* Do not map writable pfn in the readonly memslot. */ 2742 if (writable && memslot_is_readonly(slot)) { 2743 *writable = false; 2744 writable = NULL; 2745 } 2746 2747 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 2748 writable); 2749 } 2750 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2751 2752 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2753 bool *writable) 2754 { 2755 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 2756 NULL, write_fault, writable, NULL); 2757 } 2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2759 2760 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2761 { 2762 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 2763 NULL, NULL); 2764 } 2765 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2766 2767 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2768 { 2769 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 2770 NULL, NULL); 2771 } 2772 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2773 2774 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2775 { 2776 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2777 } 2778 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2779 2780 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2781 { 2782 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2783 } 2784 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2785 2786 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2787 { 2788 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2789 } 2790 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2791 2792 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2793 struct page **pages, int nr_pages) 2794 { 2795 unsigned long addr; 2796 gfn_t entry = 0; 2797 2798 addr = gfn_to_hva_many(slot, gfn, &entry); 2799 if (kvm_is_error_hva(addr)) 2800 return -1; 2801 2802 if (entry < nr_pages) 2803 return 0; 2804 2805 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2806 } 2807 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2808 2809 /* 2810 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2811 * backed by 'struct page'. A valid example is if the backing memslot is 2812 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2813 * been elevated by gfn_to_pfn(). 2814 */ 2815 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2816 { 2817 struct page *page; 2818 kvm_pfn_t pfn; 2819 2820 pfn = gfn_to_pfn(kvm, gfn); 2821 2822 if (is_error_noslot_pfn(pfn)) 2823 return KVM_ERR_PTR_BAD_PAGE; 2824 2825 page = kvm_pfn_to_refcounted_page(pfn); 2826 if (!page) 2827 return KVM_ERR_PTR_BAD_PAGE; 2828 2829 return page; 2830 } 2831 EXPORT_SYMBOL_GPL(gfn_to_page); 2832 2833 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2834 { 2835 if (dirty) 2836 kvm_release_pfn_dirty(pfn); 2837 else 2838 kvm_release_pfn_clean(pfn); 2839 } 2840 2841 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2842 { 2843 kvm_pfn_t pfn; 2844 void *hva = NULL; 2845 struct page *page = KVM_UNMAPPED_PAGE; 2846 2847 if (!map) 2848 return -EINVAL; 2849 2850 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2851 if (is_error_noslot_pfn(pfn)) 2852 return -EINVAL; 2853 2854 if (pfn_valid(pfn)) { 2855 page = pfn_to_page(pfn); 2856 hva = kmap(page); 2857 #ifdef CONFIG_HAS_IOMEM 2858 } else { 2859 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2860 #endif 2861 } 2862 2863 if (!hva) 2864 return -EFAULT; 2865 2866 map->page = page; 2867 map->hva = hva; 2868 map->pfn = pfn; 2869 map->gfn = gfn; 2870 2871 return 0; 2872 } 2873 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2874 2875 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2876 { 2877 if (!map) 2878 return; 2879 2880 if (!map->hva) 2881 return; 2882 2883 if (map->page != KVM_UNMAPPED_PAGE) 2884 kunmap(map->page); 2885 #ifdef CONFIG_HAS_IOMEM 2886 else 2887 memunmap(map->hva); 2888 #endif 2889 2890 if (dirty) 2891 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2892 2893 kvm_release_pfn(map->pfn, dirty); 2894 2895 map->hva = NULL; 2896 map->page = NULL; 2897 } 2898 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2899 2900 static bool kvm_is_ad_tracked_page(struct page *page) 2901 { 2902 /* 2903 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2904 * touched (e.g. set dirty) except by its owner". 2905 */ 2906 return !PageReserved(page); 2907 } 2908 2909 static void kvm_set_page_dirty(struct page *page) 2910 { 2911 if (kvm_is_ad_tracked_page(page)) 2912 SetPageDirty(page); 2913 } 2914 2915 static void kvm_set_page_accessed(struct page *page) 2916 { 2917 if (kvm_is_ad_tracked_page(page)) 2918 mark_page_accessed(page); 2919 } 2920 2921 void kvm_release_page_clean(struct page *page) 2922 { 2923 WARN_ON(is_error_page(page)); 2924 2925 kvm_set_page_accessed(page); 2926 put_page(page); 2927 } 2928 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2929 2930 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2931 { 2932 struct page *page; 2933 2934 if (is_error_noslot_pfn(pfn)) 2935 return; 2936 2937 page = kvm_pfn_to_refcounted_page(pfn); 2938 if (!page) 2939 return; 2940 2941 kvm_release_page_clean(page); 2942 } 2943 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2944 2945 void kvm_release_page_dirty(struct page *page) 2946 { 2947 WARN_ON(is_error_page(page)); 2948 2949 kvm_set_page_dirty(page); 2950 kvm_release_page_clean(page); 2951 } 2952 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2953 2954 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2955 { 2956 struct page *page; 2957 2958 if (is_error_noslot_pfn(pfn)) 2959 return; 2960 2961 page = kvm_pfn_to_refcounted_page(pfn); 2962 if (!page) 2963 return; 2964 2965 kvm_release_page_dirty(page); 2966 } 2967 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2968 2969 /* 2970 * Note, checking for an error/noslot pfn is the caller's responsibility when 2971 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2972 * "set" helpers are not to be used when the pfn might point at garbage. 2973 */ 2974 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2975 { 2976 if (WARN_ON(is_error_noslot_pfn(pfn))) 2977 return; 2978 2979 if (pfn_valid(pfn)) 2980 kvm_set_page_dirty(pfn_to_page(pfn)); 2981 } 2982 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2983 2984 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2985 { 2986 if (WARN_ON(is_error_noslot_pfn(pfn))) 2987 return; 2988 2989 if (pfn_valid(pfn)) 2990 kvm_set_page_accessed(pfn_to_page(pfn)); 2991 } 2992 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2993 2994 static int next_segment(unsigned long len, int offset) 2995 { 2996 if (len > PAGE_SIZE - offset) 2997 return PAGE_SIZE - offset; 2998 else 2999 return len; 3000 } 3001 3002 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 3003 void *data, int offset, int len) 3004 { 3005 int r; 3006 unsigned long addr; 3007 3008 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3009 if (kvm_is_error_hva(addr)) 3010 return -EFAULT; 3011 r = __copy_from_user(data, (void __user *)addr + offset, len); 3012 if (r) 3013 return -EFAULT; 3014 return 0; 3015 } 3016 3017 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3018 int len) 3019 { 3020 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3021 3022 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3023 } 3024 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3025 3026 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3027 int offset, int len) 3028 { 3029 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3030 3031 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3032 } 3033 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3034 3035 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3036 { 3037 gfn_t gfn = gpa >> PAGE_SHIFT; 3038 int seg; 3039 int offset = offset_in_page(gpa); 3040 int ret; 3041 3042 while ((seg = next_segment(len, offset)) != 0) { 3043 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3044 if (ret < 0) 3045 return ret; 3046 offset = 0; 3047 len -= seg; 3048 data += seg; 3049 ++gfn; 3050 } 3051 return 0; 3052 } 3053 EXPORT_SYMBOL_GPL(kvm_read_guest); 3054 3055 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3056 { 3057 gfn_t gfn = gpa >> PAGE_SHIFT; 3058 int seg; 3059 int offset = offset_in_page(gpa); 3060 int ret; 3061 3062 while ((seg = next_segment(len, offset)) != 0) { 3063 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3064 if (ret < 0) 3065 return ret; 3066 offset = 0; 3067 len -= seg; 3068 data += seg; 3069 ++gfn; 3070 } 3071 return 0; 3072 } 3073 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3074 3075 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3076 void *data, int offset, unsigned long len) 3077 { 3078 int r; 3079 unsigned long addr; 3080 3081 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3082 if (kvm_is_error_hva(addr)) 3083 return -EFAULT; 3084 pagefault_disable(); 3085 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3086 pagefault_enable(); 3087 if (r) 3088 return -EFAULT; 3089 return 0; 3090 } 3091 3092 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3093 void *data, unsigned long len) 3094 { 3095 gfn_t gfn = gpa >> PAGE_SHIFT; 3096 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3097 int offset = offset_in_page(gpa); 3098 3099 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3100 } 3101 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3102 3103 static int __kvm_write_guest_page(struct kvm *kvm, 3104 struct kvm_memory_slot *memslot, gfn_t gfn, 3105 const void *data, int offset, int len) 3106 { 3107 int r; 3108 unsigned long addr; 3109 3110 addr = gfn_to_hva_memslot(memslot, gfn); 3111 if (kvm_is_error_hva(addr)) 3112 return -EFAULT; 3113 r = __copy_to_user((void __user *)addr + offset, data, len); 3114 if (r) 3115 return -EFAULT; 3116 mark_page_dirty_in_slot(kvm, memslot, gfn); 3117 return 0; 3118 } 3119 3120 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3121 const void *data, int offset, int len) 3122 { 3123 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3124 3125 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3126 } 3127 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3128 3129 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3130 const void *data, int offset, int len) 3131 { 3132 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3133 3134 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3135 } 3136 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3137 3138 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3139 unsigned long len) 3140 { 3141 gfn_t gfn = gpa >> PAGE_SHIFT; 3142 int seg; 3143 int offset = offset_in_page(gpa); 3144 int ret; 3145 3146 while ((seg = next_segment(len, offset)) != 0) { 3147 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3148 if (ret < 0) 3149 return ret; 3150 offset = 0; 3151 len -= seg; 3152 data += seg; 3153 ++gfn; 3154 } 3155 return 0; 3156 } 3157 EXPORT_SYMBOL_GPL(kvm_write_guest); 3158 3159 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3160 unsigned long len) 3161 { 3162 gfn_t gfn = gpa >> PAGE_SHIFT; 3163 int seg; 3164 int offset = offset_in_page(gpa); 3165 int ret; 3166 3167 while ((seg = next_segment(len, offset)) != 0) { 3168 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3169 if (ret < 0) 3170 return ret; 3171 offset = 0; 3172 len -= seg; 3173 data += seg; 3174 ++gfn; 3175 } 3176 return 0; 3177 } 3178 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3179 3180 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3181 struct gfn_to_hva_cache *ghc, 3182 gpa_t gpa, unsigned long len) 3183 { 3184 int offset = offset_in_page(gpa); 3185 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3186 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3187 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3188 gfn_t nr_pages_avail; 3189 3190 /* Update ghc->generation before performing any error checks. */ 3191 ghc->generation = slots->generation; 3192 3193 if (start_gfn > end_gfn) { 3194 ghc->hva = KVM_HVA_ERR_BAD; 3195 return -EINVAL; 3196 } 3197 3198 /* 3199 * If the requested region crosses two memslots, we still 3200 * verify that the entire region is valid here. 3201 */ 3202 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3203 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3204 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3205 &nr_pages_avail); 3206 if (kvm_is_error_hva(ghc->hva)) 3207 return -EFAULT; 3208 } 3209 3210 /* Use the slow path for cross page reads and writes. */ 3211 if (nr_pages_needed == 1) 3212 ghc->hva += offset; 3213 else 3214 ghc->memslot = NULL; 3215 3216 ghc->gpa = gpa; 3217 ghc->len = len; 3218 return 0; 3219 } 3220 3221 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3222 gpa_t gpa, unsigned long len) 3223 { 3224 struct kvm_memslots *slots = kvm_memslots(kvm); 3225 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3226 } 3227 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3228 3229 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3230 void *data, unsigned int offset, 3231 unsigned long len) 3232 { 3233 struct kvm_memslots *slots = kvm_memslots(kvm); 3234 int r; 3235 gpa_t gpa = ghc->gpa + offset; 3236 3237 if (WARN_ON_ONCE(len + offset > ghc->len)) 3238 return -EINVAL; 3239 3240 if (slots->generation != ghc->generation) { 3241 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3242 return -EFAULT; 3243 } 3244 3245 if (kvm_is_error_hva(ghc->hva)) 3246 return -EFAULT; 3247 3248 if (unlikely(!ghc->memslot)) 3249 return kvm_write_guest(kvm, gpa, data, len); 3250 3251 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3252 if (r) 3253 return -EFAULT; 3254 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3255 3256 return 0; 3257 } 3258 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3259 3260 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3261 void *data, unsigned long len) 3262 { 3263 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3264 } 3265 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3266 3267 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3268 void *data, unsigned int offset, 3269 unsigned long len) 3270 { 3271 struct kvm_memslots *slots = kvm_memslots(kvm); 3272 int r; 3273 gpa_t gpa = ghc->gpa + offset; 3274 3275 if (WARN_ON_ONCE(len + offset > ghc->len)) 3276 return -EINVAL; 3277 3278 if (slots->generation != ghc->generation) { 3279 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3280 return -EFAULT; 3281 } 3282 3283 if (kvm_is_error_hva(ghc->hva)) 3284 return -EFAULT; 3285 3286 if (unlikely(!ghc->memslot)) 3287 return kvm_read_guest(kvm, gpa, data, len); 3288 3289 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3290 if (r) 3291 return -EFAULT; 3292 3293 return 0; 3294 } 3295 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3296 3297 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3298 void *data, unsigned long len) 3299 { 3300 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3301 } 3302 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3303 3304 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3305 { 3306 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3307 gfn_t gfn = gpa >> PAGE_SHIFT; 3308 int seg; 3309 int offset = offset_in_page(gpa); 3310 int ret; 3311 3312 while ((seg = next_segment(len, offset)) != 0) { 3313 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3314 if (ret < 0) 3315 return ret; 3316 offset = 0; 3317 len -= seg; 3318 ++gfn; 3319 } 3320 return 0; 3321 } 3322 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3323 3324 void mark_page_dirty_in_slot(struct kvm *kvm, 3325 const struct kvm_memory_slot *memslot, 3326 gfn_t gfn) 3327 { 3328 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3329 3330 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3331 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3332 return; 3333 3334 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3335 #endif 3336 3337 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3338 unsigned long rel_gfn = gfn - memslot->base_gfn; 3339 u32 slot = (memslot->as_id << 16) | memslot->id; 3340 3341 if (kvm->dirty_ring_size && vcpu) 3342 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3343 else if (memslot->dirty_bitmap) 3344 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3345 } 3346 } 3347 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3348 3349 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3350 { 3351 struct kvm_memory_slot *memslot; 3352 3353 memslot = gfn_to_memslot(kvm, gfn); 3354 mark_page_dirty_in_slot(kvm, memslot, gfn); 3355 } 3356 EXPORT_SYMBOL_GPL(mark_page_dirty); 3357 3358 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3359 { 3360 struct kvm_memory_slot *memslot; 3361 3362 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3363 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3364 } 3365 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3366 3367 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3368 { 3369 if (!vcpu->sigset_active) 3370 return; 3371 3372 /* 3373 * This does a lockless modification of ->real_blocked, which is fine 3374 * because, only current can change ->real_blocked and all readers of 3375 * ->real_blocked don't care as long ->real_blocked is always a subset 3376 * of ->blocked. 3377 */ 3378 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3379 } 3380 3381 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3382 { 3383 if (!vcpu->sigset_active) 3384 return; 3385 3386 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3387 sigemptyset(¤t->real_blocked); 3388 } 3389 3390 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3391 { 3392 unsigned int old, val, grow, grow_start; 3393 3394 old = val = vcpu->halt_poll_ns; 3395 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3396 grow = READ_ONCE(halt_poll_ns_grow); 3397 if (!grow) 3398 goto out; 3399 3400 val *= grow; 3401 if (val < grow_start) 3402 val = grow_start; 3403 3404 vcpu->halt_poll_ns = val; 3405 out: 3406 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3407 } 3408 3409 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3410 { 3411 unsigned int old, val, shrink, grow_start; 3412 3413 old = val = vcpu->halt_poll_ns; 3414 shrink = READ_ONCE(halt_poll_ns_shrink); 3415 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3416 if (shrink == 0) 3417 val = 0; 3418 else 3419 val /= shrink; 3420 3421 if (val < grow_start) 3422 val = 0; 3423 3424 vcpu->halt_poll_ns = val; 3425 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3426 } 3427 3428 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3429 { 3430 int ret = -EINTR; 3431 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3432 3433 if (kvm_arch_vcpu_runnable(vcpu)) 3434 goto out; 3435 if (kvm_cpu_has_pending_timer(vcpu)) 3436 goto out; 3437 if (signal_pending(current)) 3438 goto out; 3439 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3440 goto out; 3441 3442 ret = 0; 3443 out: 3444 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3445 return ret; 3446 } 3447 3448 /* 3449 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3450 * pending. This is mostly used when halting a vCPU, but may also be used 3451 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3452 */ 3453 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3454 { 3455 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3456 bool waited = false; 3457 3458 vcpu->stat.generic.blocking = 1; 3459 3460 preempt_disable(); 3461 kvm_arch_vcpu_blocking(vcpu); 3462 prepare_to_rcuwait(wait); 3463 preempt_enable(); 3464 3465 for (;;) { 3466 set_current_state(TASK_INTERRUPTIBLE); 3467 3468 if (kvm_vcpu_check_block(vcpu) < 0) 3469 break; 3470 3471 waited = true; 3472 schedule(); 3473 } 3474 3475 preempt_disable(); 3476 finish_rcuwait(wait); 3477 kvm_arch_vcpu_unblocking(vcpu); 3478 preempt_enable(); 3479 3480 vcpu->stat.generic.blocking = 0; 3481 3482 return waited; 3483 } 3484 3485 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3486 ktime_t end, bool success) 3487 { 3488 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3489 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3490 3491 ++vcpu->stat.generic.halt_attempted_poll; 3492 3493 if (success) { 3494 ++vcpu->stat.generic.halt_successful_poll; 3495 3496 if (!vcpu_valid_wakeup(vcpu)) 3497 ++vcpu->stat.generic.halt_poll_invalid; 3498 3499 stats->halt_poll_success_ns += poll_ns; 3500 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3501 } else { 3502 stats->halt_poll_fail_ns += poll_ns; 3503 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3504 } 3505 } 3506 3507 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3508 { 3509 struct kvm *kvm = vcpu->kvm; 3510 3511 if (kvm->override_halt_poll_ns) { 3512 /* 3513 * Ensure kvm->max_halt_poll_ns is not read before 3514 * kvm->override_halt_poll_ns. 3515 * 3516 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3517 */ 3518 smp_rmb(); 3519 return READ_ONCE(kvm->max_halt_poll_ns); 3520 } 3521 3522 return READ_ONCE(halt_poll_ns); 3523 } 3524 3525 /* 3526 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3527 * polling is enabled, busy wait for a short time before blocking to avoid the 3528 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3529 * is halted. 3530 */ 3531 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3532 { 3533 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3534 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3535 ktime_t start, cur, poll_end; 3536 bool waited = false; 3537 bool do_halt_poll; 3538 u64 halt_ns; 3539 3540 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3541 vcpu->halt_poll_ns = max_halt_poll_ns; 3542 3543 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3544 3545 start = cur = poll_end = ktime_get(); 3546 if (do_halt_poll) { 3547 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3548 3549 do { 3550 if (kvm_vcpu_check_block(vcpu) < 0) 3551 goto out; 3552 cpu_relax(); 3553 poll_end = cur = ktime_get(); 3554 } while (kvm_vcpu_can_poll(cur, stop)); 3555 } 3556 3557 waited = kvm_vcpu_block(vcpu); 3558 3559 cur = ktime_get(); 3560 if (waited) { 3561 vcpu->stat.generic.halt_wait_ns += 3562 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3563 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3564 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3565 } 3566 out: 3567 /* The total time the vCPU was "halted", including polling time. */ 3568 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3569 3570 /* 3571 * Note, halt-polling is considered successful so long as the vCPU was 3572 * never actually scheduled out, i.e. even if the wake event arrived 3573 * after of the halt-polling loop itself, but before the full wait. 3574 */ 3575 if (do_halt_poll) 3576 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3577 3578 if (halt_poll_allowed) { 3579 /* Recompute the max halt poll time in case it changed. */ 3580 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3581 3582 if (!vcpu_valid_wakeup(vcpu)) { 3583 shrink_halt_poll_ns(vcpu); 3584 } else if (max_halt_poll_ns) { 3585 if (halt_ns <= vcpu->halt_poll_ns) 3586 ; 3587 /* we had a long block, shrink polling */ 3588 else if (vcpu->halt_poll_ns && 3589 halt_ns > max_halt_poll_ns) 3590 shrink_halt_poll_ns(vcpu); 3591 /* we had a short halt and our poll time is too small */ 3592 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3593 halt_ns < max_halt_poll_ns) 3594 grow_halt_poll_ns(vcpu); 3595 } else { 3596 vcpu->halt_poll_ns = 0; 3597 } 3598 } 3599 3600 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3601 } 3602 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3603 3604 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3605 { 3606 if (__kvm_vcpu_wake_up(vcpu)) { 3607 WRITE_ONCE(vcpu->ready, true); 3608 ++vcpu->stat.generic.halt_wakeup; 3609 return true; 3610 } 3611 3612 return false; 3613 } 3614 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3615 3616 #ifndef CONFIG_S390 3617 /* 3618 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3619 */ 3620 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3621 { 3622 int me, cpu; 3623 3624 if (kvm_vcpu_wake_up(vcpu)) 3625 return; 3626 3627 me = get_cpu(); 3628 /* 3629 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3630 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3631 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3632 * within the vCPU thread itself. 3633 */ 3634 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3635 if (vcpu->mode == IN_GUEST_MODE) 3636 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3637 goto out; 3638 } 3639 3640 /* 3641 * Note, the vCPU could get migrated to a different pCPU at any point 3642 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3643 * IPI to the previous pCPU. But, that's ok because the purpose of the 3644 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3645 * vCPU also requires it to leave IN_GUEST_MODE. 3646 */ 3647 if (kvm_arch_vcpu_should_kick(vcpu)) { 3648 cpu = READ_ONCE(vcpu->cpu); 3649 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3650 smp_send_reschedule(cpu); 3651 } 3652 out: 3653 put_cpu(); 3654 } 3655 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3656 #endif /* !CONFIG_S390 */ 3657 3658 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3659 { 3660 struct pid *pid; 3661 struct task_struct *task = NULL; 3662 int ret = 0; 3663 3664 rcu_read_lock(); 3665 pid = rcu_dereference(target->pid); 3666 if (pid) 3667 task = get_pid_task(pid, PIDTYPE_PID); 3668 rcu_read_unlock(); 3669 if (!task) 3670 return ret; 3671 ret = yield_to(task, 1); 3672 put_task_struct(task); 3673 3674 return ret; 3675 } 3676 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3677 3678 /* 3679 * Helper that checks whether a VCPU is eligible for directed yield. 3680 * Most eligible candidate to yield is decided by following heuristics: 3681 * 3682 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3683 * (preempted lock holder), indicated by @in_spin_loop. 3684 * Set at the beginning and cleared at the end of interception/PLE handler. 3685 * 3686 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3687 * chance last time (mostly it has become eligible now since we have probably 3688 * yielded to lockholder in last iteration. This is done by toggling 3689 * @dy_eligible each time a VCPU checked for eligibility.) 3690 * 3691 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3692 * to preempted lock-holder could result in wrong VCPU selection and CPU 3693 * burning. Giving priority for a potential lock-holder increases lock 3694 * progress. 3695 * 3696 * Since algorithm is based on heuristics, accessing another VCPU data without 3697 * locking does not harm. It may result in trying to yield to same VCPU, fail 3698 * and continue with next VCPU and so on. 3699 */ 3700 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3701 { 3702 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3703 bool eligible; 3704 3705 eligible = !vcpu->spin_loop.in_spin_loop || 3706 vcpu->spin_loop.dy_eligible; 3707 3708 if (vcpu->spin_loop.in_spin_loop) 3709 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3710 3711 return eligible; 3712 #else 3713 return true; 3714 #endif 3715 } 3716 3717 /* 3718 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3719 * a vcpu_load/vcpu_put pair. However, for most architectures 3720 * kvm_arch_vcpu_runnable does not require vcpu_load. 3721 */ 3722 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3723 { 3724 return kvm_arch_vcpu_runnable(vcpu); 3725 } 3726 3727 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3728 { 3729 if (kvm_arch_dy_runnable(vcpu)) 3730 return true; 3731 3732 #ifdef CONFIG_KVM_ASYNC_PF 3733 if (!list_empty_careful(&vcpu->async_pf.done)) 3734 return true; 3735 #endif 3736 3737 return false; 3738 } 3739 3740 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3741 { 3742 return false; 3743 } 3744 3745 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3746 { 3747 struct kvm *kvm = me->kvm; 3748 struct kvm_vcpu *vcpu; 3749 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3750 unsigned long i; 3751 int yielded = 0; 3752 int try = 3; 3753 int pass; 3754 3755 kvm_vcpu_set_in_spin_loop(me, true); 3756 /* 3757 * We boost the priority of a VCPU that is runnable but not 3758 * currently running, because it got preempted by something 3759 * else and called schedule in __vcpu_run. Hopefully that 3760 * VCPU is holding the lock that we need and will release it. 3761 * We approximate round-robin by starting at the last boosted VCPU. 3762 */ 3763 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3764 kvm_for_each_vcpu(i, vcpu, kvm) { 3765 if (!pass && i <= last_boosted_vcpu) { 3766 i = last_boosted_vcpu; 3767 continue; 3768 } else if (pass && i > last_boosted_vcpu) 3769 break; 3770 if (!READ_ONCE(vcpu->ready)) 3771 continue; 3772 if (vcpu == me) 3773 continue; 3774 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3775 continue; 3776 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3777 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3778 !kvm_arch_vcpu_in_kernel(vcpu)) 3779 continue; 3780 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3781 continue; 3782 3783 yielded = kvm_vcpu_yield_to(vcpu); 3784 if (yielded > 0) { 3785 kvm->last_boosted_vcpu = i; 3786 break; 3787 } else if (yielded < 0) { 3788 try--; 3789 if (!try) 3790 break; 3791 } 3792 } 3793 } 3794 kvm_vcpu_set_in_spin_loop(me, false); 3795 3796 /* Ensure vcpu is not eligible during next spinloop */ 3797 kvm_vcpu_set_dy_eligible(me, false); 3798 } 3799 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3800 3801 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3802 { 3803 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3804 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3805 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3806 kvm->dirty_ring_size / PAGE_SIZE); 3807 #else 3808 return false; 3809 #endif 3810 } 3811 3812 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3813 { 3814 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3815 struct page *page; 3816 3817 if (vmf->pgoff == 0) 3818 page = virt_to_page(vcpu->run); 3819 #ifdef CONFIG_X86 3820 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3821 page = virt_to_page(vcpu->arch.pio_data); 3822 #endif 3823 #ifdef CONFIG_KVM_MMIO 3824 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3825 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3826 #endif 3827 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3828 page = kvm_dirty_ring_get_page( 3829 &vcpu->dirty_ring, 3830 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3831 else 3832 return kvm_arch_vcpu_fault(vcpu, vmf); 3833 get_page(page); 3834 vmf->page = page; 3835 return 0; 3836 } 3837 3838 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3839 .fault = kvm_vcpu_fault, 3840 }; 3841 3842 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3843 { 3844 struct kvm_vcpu *vcpu = file->private_data; 3845 unsigned long pages = vma_pages(vma); 3846 3847 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3848 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3849 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3850 return -EINVAL; 3851 3852 vma->vm_ops = &kvm_vcpu_vm_ops; 3853 return 0; 3854 } 3855 3856 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3857 { 3858 struct kvm_vcpu *vcpu = filp->private_data; 3859 3860 kvm_put_kvm(vcpu->kvm); 3861 return 0; 3862 } 3863 3864 static const struct file_operations kvm_vcpu_fops = { 3865 .release = kvm_vcpu_release, 3866 .unlocked_ioctl = kvm_vcpu_ioctl, 3867 .mmap = kvm_vcpu_mmap, 3868 .llseek = noop_llseek, 3869 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3870 }; 3871 3872 /* 3873 * Allocates an inode for the vcpu. 3874 */ 3875 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3876 { 3877 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3878 3879 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3880 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3881 } 3882 3883 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3884 static int vcpu_get_pid(void *data, u64 *val) 3885 { 3886 struct kvm_vcpu *vcpu = data; 3887 3888 rcu_read_lock(); 3889 *val = pid_nr(rcu_dereference(vcpu->pid)); 3890 rcu_read_unlock(); 3891 return 0; 3892 } 3893 3894 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3895 3896 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3897 { 3898 struct dentry *debugfs_dentry; 3899 char dir_name[ITOA_MAX_LEN * 2]; 3900 3901 if (!debugfs_initialized()) 3902 return; 3903 3904 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3905 debugfs_dentry = debugfs_create_dir(dir_name, 3906 vcpu->kvm->debugfs_dentry); 3907 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3908 &vcpu_get_pid_fops); 3909 3910 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3911 } 3912 #endif 3913 3914 /* 3915 * Creates some virtual cpus. Good luck creating more than one. 3916 */ 3917 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3918 { 3919 int r; 3920 struct kvm_vcpu *vcpu; 3921 struct page *page; 3922 3923 if (id >= KVM_MAX_VCPU_IDS) 3924 return -EINVAL; 3925 3926 mutex_lock(&kvm->lock); 3927 if (kvm->created_vcpus >= kvm->max_vcpus) { 3928 mutex_unlock(&kvm->lock); 3929 return -EINVAL; 3930 } 3931 3932 r = kvm_arch_vcpu_precreate(kvm, id); 3933 if (r) { 3934 mutex_unlock(&kvm->lock); 3935 return r; 3936 } 3937 3938 kvm->created_vcpus++; 3939 mutex_unlock(&kvm->lock); 3940 3941 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3942 if (!vcpu) { 3943 r = -ENOMEM; 3944 goto vcpu_decrement; 3945 } 3946 3947 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3948 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3949 if (!page) { 3950 r = -ENOMEM; 3951 goto vcpu_free; 3952 } 3953 vcpu->run = page_address(page); 3954 3955 kvm_vcpu_init(vcpu, kvm, id); 3956 3957 r = kvm_arch_vcpu_create(vcpu); 3958 if (r) 3959 goto vcpu_free_run_page; 3960 3961 if (kvm->dirty_ring_size) { 3962 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3963 id, kvm->dirty_ring_size); 3964 if (r) 3965 goto arch_vcpu_destroy; 3966 } 3967 3968 mutex_lock(&kvm->lock); 3969 3970 #ifdef CONFIG_LOCKDEP 3971 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 3972 mutex_lock(&vcpu->mutex); 3973 mutex_unlock(&vcpu->mutex); 3974 #endif 3975 3976 if (kvm_get_vcpu_by_id(kvm, id)) { 3977 r = -EEXIST; 3978 goto unlock_vcpu_destroy; 3979 } 3980 3981 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3982 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT); 3983 if (r) 3984 goto unlock_vcpu_destroy; 3985 3986 /* Now it's all set up, let userspace reach it */ 3987 kvm_get_kvm(kvm); 3988 r = create_vcpu_fd(vcpu); 3989 if (r < 0) 3990 goto kvm_put_xa_release; 3991 3992 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) { 3993 r = -EINVAL; 3994 goto kvm_put_xa_release; 3995 } 3996 3997 /* 3998 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3999 * pointer before kvm->online_vcpu's incremented value. 4000 */ 4001 smp_wmb(); 4002 atomic_inc(&kvm->online_vcpus); 4003 4004 mutex_unlock(&kvm->lock); 4005 kvm_arch_vcpu_postcreate(vcpu); 4006 kvm_create_vcpu_debugfs(vcpu); 4007 return r; 4008 4009 kvm_put_xa_release: 4010 kvm_put_kvm_no_destroy(kvm); 4011 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx); 4012 unlock_vcpu_destroy: 4013 mutex_unlock(&kvm->lock); 4014 kvm_dirty_ring_free(&vcpu->dirty_ring); 4015 arch_vcpu_destroy: 4016 kvm_arch_vcpu_destroy(vcpu); 4017 vcpu_free_run_page: 4018 free_page((unsigned long)vcpu->run); 4019 vcpu_free: 4020 kmem_cache_free(kvm_vcpu_cache, vcpu); 4021 vcpu_decrement: 4022 mutex_lock(&kvm->lock); 4023 kvm->created_vcpus--; 4024 mutex_unlock(&kvm->lock); 4025 return r; 4026 } 4027 4028 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4029 { 4030 if (sigset) { 4031 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4032 vcpu->sigset_active = 1; 4033 vcpu->sigset = *sigset; 4034 } else 4035 vcpu->sigset_active = 0; 4036 return 0; 4037 } 4038 4039 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4040 size_t size, loff_t *offset) 4041 { 4042 struct kvm_vcpu *vcpu = file->private_data; 4043 4044 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4045 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4046 sizeof(vcpu->stat), user_buffer, size, offset); 4047 } 4048 4049 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) 4050 { 4051 struct kvm_vcpu *vcpu = file->private_data; 4052 4053 kvm_put_kvm(vcpu->kvm); 4054 return 0; 4055 } 4056 4057 static const struct file_operations kvm_vcpu_stats_fops = { 4058 .read = kvm_vcpu_stats_read, 4059 .release = kvm_vcpu_stats_release, 4060 .llseek = noop_llseek, 4061 }; 4062 4063 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4064 { 4065 int fd; 4066 struct file *file; 4067 char name[15 + ITOA_MAX_LEN + 1]; 4068 4069 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4070 4071 fd = get_unused_fd_flags(O_CLOEXEC); 4072 if (fd < 0) 4073 return fd; 4074 4075 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4076 if (IS_ERR(file)) { 4077 put_unused_fd(fd); 4078 return PTR_ERR(file); 4079 } 4080 4081 kvm_get_kvm(vcpu->kvm); 4082 4083 file->f_mode |= FMODE_PREAD; 4084 fd_install(fd, file); 4085 4086 return fd; 4087 } 4088 4089 static long kvm_vcpu_ioctl(struct file *filp, 4090 unsigned int ioctl, unsigned long arg) 4091 { 4092 struct kvm_vcpu *vcpu = filp->private_data; 4093 void __user *argp = (void __user *)arg; 4094 int r; 4095 struct kvm_fpu *fpu = NULL; 4096 struct kvm_sregs *kvm_sregs = NULL; 4097 4098 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4099 return -EIO; 4100 4101 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4102 return -EINVAL; 4103 4104 /* 4105 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4106 * execution; mutex_lock() would break them. 4107 */ 4108 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4109 if (r != -ENOIOCTLCMD) 4110 return r; 4111 4112 if (mutex_lock_killable(&vcpu->mutex)) 4113 return -EINTR; 4114 switch (ioctl) { 4115 case KVM_RUN: { 4116 struct pid *oldpid; 4117 r = -EINVAL; 4118 if (arg) 4119 goto out; 4120 oldpid = rcu_access_pointer(vcpu->pid); 4121 if (unlikely(oldpid != task_pid(current))) { 4122 /* The thread running this VCPU changed. */ 4123 struct pid *newpid; 4124 4125 r = kvm_arch_vcpu_run_pid_change(vcpu); 4126 if (r) 4127 break; 4128 4129 newpid = get_task_pid(current, PIDTYPE_PID); 4130 rcu_assign_pointer(vcpu->pid, newpid); 4131 if (oldpid) 4132 synchronize_rcu(); 4133 put_pid(oldpid); 4134 } 4135 r = kvm_arch_vcpu_ioctl_run(vcpu); 4136 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4137 break; 4138 } 4139 case KVM_GET_REGS: { 4140 struct kvm_regs *kvm_regs; 4141 4142 r = -ENOMEM; 4143 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4144 if (!kvm_regs) 4145 goto out; 4146 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4147 if (r) 4148 goto out_free1; 4149 r = -EFAULT; 4150 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4151 goto out_free1; 4152 r = 0; 4153 out_free1: 4154 kfree(kvm_regs); 4155 break; 4156 } 4157 case KVM_SET_REGS: { 4158 struct kvm_regs *kvm_regs; 4159 4160 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4161 if (IS_ERR(kvm_regs)) { 4162 r = PTR_ERR(kvm_regs); 4163 goto out; 4164 } 4165 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4166 kfree(kvm_regs); 4167 break; 4168 } 4169 case KVM_GET_SREGS: { 4170 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4171 GFP_KERNEL_ACCOUNT); 4172 r = -ENOMEM; 4173 if (!kvm_sregs) 4174 goto out; 4175 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4176 if (r) 4177 goto out; 4178 r = -EFAULT; 4179 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4180 goto out; 4181 r = 0; 4182 break; 4183 } 4184 case KVM_SET_SREGS: { 4185 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4186 if (IS_ERR(kvm_sregs)) { 4187 r = PTR_ERR(kvm_sregs); 4188 kvm_sregs = NULL; 4189 goto out; 4190 } 4191 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4192 break; 4193 } 4194 case KVM_GET_MP_STATE: { 4195 struct kvm_mp_state mp_state; 4196 4197 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4198 if (r) 4199 goto out; 4200 r = -EFAULT; 4201 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4202 goto out; 4203 r = 0; 4204 break; 4205 } 4206 case KVM_SET_MP_STATE: { 4207 struct kvm_mp_state mp_state; 4208 4209 r = -EFAULT; 4210 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4211 goto out; 4212 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4213 break; 4214 } 4215 case KVM_TRANSLATE: { 4216 struct kvm_translation tr; 4217 4218 r = -EFAULT; 4219 if (copy_from_user(&tr, argp, sizeof(tr))) 4220 goto out; 4221 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4222 if (r) 4223 goto out; 4224 r = -EFAULT; 4225 if (copy_to_user(argp, &tr, sizeof(tr))) 4226 goto out; 4227 r = 0; 4228 break; 4229 } 4230 case KVM_SET_GUEST_DEBUG: { 4231 struct kvm_guest_debug dbg; 4232 4233 r = -EFAULT; 4234 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4235 goto out; 4236 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4237 break; 4238 } 4239 case KVM_SET_SIGNAL_MASK: { 4240 struct kvm_signal_mask __user *sigmask_arg = argp; 4241 struct kvm_signal_mask kvm_sigmask; 4242 sigset_t sigset, *p; 4243 4244 p = NULL; 4245 if (argp) { 4246 r = -EFAULT; 4247 if (copy_from_user(&kvm_sigmask, argp, 4248 sizeof(kvm_sigmask))) 4249 goto out; 4250 r = -EINVAL; 4251 if (kvm_sigmask.len != sizeof(sigset)) 4252 goto out; 4253 r = -EFAULT; 4254 if (copy_from_user(&sigset, sigmask_arg->sigset, 4255 sizeof(sigset))) 4256 goto out; 4257 p = &sigset; 4258 } 4259 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4260 break; 4261 } 4262 case KVM_GET_FPU: { 4263 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4264 r = -ENOMEM; 4265 if (!fpu) 4266 goto out; 4267 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4268 if (r) 4269 goto out; 4270 r = -EFAULT; 4271 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4272 goto out; 4273 r = 0; 4274 break; 4275 } 4276 case KVM_SET_FPU: { 4277 fpu = memdup_user(argp, sizeof(*fpu)); 4278 if (IS_ERR(fpu)) { 4279 r = PTR_ERR(fpu); 4280 fpu = NULL; 4281 goto out; 4282 } 4283 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4284 break; 4285 } 4286 case KVM_GET_STATS_FD: { 4287 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4288 break; 4289 } 4290 default: 4291 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4292 } 4293 out: 4294 mutex_unlock(&vcpu->mutex); 4295 kfree(fpu); 4296 kfree(kvm_sregs); 4297 return r; 4298 } 4299 4300 #ifdef CONFIG_KVM_COMPAT 4301 static long kvm_vcpu_compat_ioctl(struct file *filp, 4302 unsigned int ioctl, unsigned long arg) 4303 { 4304 struct kvm_vcpu *vcpu = filp->private_data; 4305 void __user *argp = compat_ptr(arg); 4306 int r; 4307 4308 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4309 return -EIO; 4310 4311 switch (ioctl) { 4312 case KVM_SET_SIGNAL_MASK: { 4313 struct kvm_signal_mask __user *sigmask_arg = argp; 4314 struct kvm_signal_mask kvm_sigmask; 4315 sigset_t sigset; 4316 4317 if (argp) { 4318 r = -EFAULT; 4319 if (copy_from_user(&kvm_sigmask, argp, 4320 sizeof(kvm_sigmask))) 4321 goto out; 4322 r = -EINVAL; 4323 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4324 goto out; 4325 r = -EFAULT; 4326 if (get_compat_sigset(&sigset, 4327 (compat_sigset_t __user *)sigmask_arg->sigset)) 4328 goto out; 4329 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4330 } else 4331 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4332 break; 4333 } 4334 default: 4335 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4336 } 4337 4338 out: 4339 return r; 4340 } 4341 #endif 4342 4343 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4344 { 4345 struct kvm_device *dev = filp->private_data; 4346 4347 if (dev->ops->mmap) 4348 return dev->ops->mmap(dev, vma); 4349 4350 return -ENODEV; 4351 } 4352 4353 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4354 int (*accessor)(struct kvm_device *dev, 4355 struct kvm_device_attr *attr), 4356 unsigned long arg) 4357 { 4358 struct kvm_device_attr attr; 4359 4360 if (!accessor) 4361 return -EPERM; 4362 4363 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4364 return -EFAULT; 4365 4366 return accessor(dev, &attr); 4367 } 4368 4369 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4370 unsigned long arg) 4371 { 4372 struct kvm_device *dev = filp->private_data; 4373 4374 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4375 return -EIO; 4376 4377 switch (ioctl) { 4378 case KVM_SET_DEVICE_ATTR: 4379 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4380 case KVM_GET_DEVICE_ATTR: 4381 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4382 case KVM_HAS_DEVICE_ATTR: 4383 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4384 default: 4385 if (dev->ops->ioctl) 4386 return dev->ops->ioctl(dev, ioctl, arg); 4387 4388 return -ENOTTY; 4389 } 4390 } 4391 4392 static int kvm_device_release(struct inode *inode, struct file *filp) 4393 { 4394 struct kvm_device *dev = filp->private_data; 4395 struct kvm *kvm = dev->kvm; 4396 4397 if (dev->ops->release) { 4398 mutex_lock(&kvm->lock); 4399 list_del(&dev->vm_node); 4400 dev->ops->release(dev); 4401 mutex_unlock(&kvm->lock); 4402 } 4403 4404 kvm_put_kvm(kvm); 4405 return 0; 4406 } 4407 4408 static const struct file_operations kvm_device_fops = { 4409 .unlocked_ioctl = kvm_device_ioctl, 4410 .release = kvm_device_release, 4411 KVM_COMPAT(kvm_device_ioctl), 4412 .mmap = kvm_device_mmap, 4413 }; 4414 4415 struct kvm_device *kvm_device_from_filp(struct file *filp) 4416 { 4417 if (filp->f_op != &kvm_device_fops) 4418 return NULL; 4419 4420 return filp->private_data; 4421 } 4422 4423 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4424 #ifdef CONFIG_KVM_MPIC 4425 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4426 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4427 #endif 4428 }; 4429 4430 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4431 { 4432 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4433 return -ENOSPC; 4434 4435 if (kvm_device_ops_table[type] != NULL) 4436 return -EEXIST; 4437 4438 kvm_device_ops_table[type] = ops; 4439 return 0; 4440 } 4441 4442 void kvm_unregister_device_ops(u32 type) 4443 { 4444 if (kvm_device_ops_table[type] != NULL) 4445 kvm_device_ops_table[type] = NULL; 4446 } 4447 4448 static int kvm_ioctl_create_device(struct kvm *kvm, 4449 struct kvm_create_device *cd) 4450 { 4451 const struct kvm_device_ops *ops; 4452 struct kvm_device *dev; 4453 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4454 int type; 4455 int ret; 4456 4457 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4458 return -ENODEV; 4459 4460 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4461 ops = kvm_device_ops_table[type]; 4462 if (ops == NULL) 4463 return -ENODEV; 4464 4465 if (test) 4466 return 0; 4467 4468 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4469 if (!dev) 4470 return -ENOMEM; 4471 4472 dev->ops = ops; 4473 dev->kvm = kvm; 4474 4475 mutex_lock(&kvm->lock); 4476 ret = ops->create(dev, type); 4477 if (ret < 0) { 4478 mutex_unlock(&kvm->lock); 4479 kfree(dev); 4480 return ret; 4481 } 4482 list_add(&dev->vm_node, &kvm->devices); 4483 mutex_unlock(&kvm->lock); 4484 4485 if (ops->init) 4486 ops->init(dev); 4487 4488 kvm_get_kvm(kvm); 4489 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4490 if (ret < 0) { 4491 kvm_put_kvm_no_destroy(kvm); 4492 mutex_lock(&kvm->lock); 4493 list_del(&dev->vm_node); 4494 if (ops->release) 4495 ops->release(dev); 4496 mutex_unlock(&kvm->lock); 4497 if (ops->destroy) 4498 ops->destroy(dev); 4499 return ret; 4500 } 4501 4502 cd->fd = ret; 4503 return 0; 4504 } 4505 4506 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4507 { 4508 switch (arg) { 4509 case KVM_CAP_USER_MEMORY: 4510 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4511 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4512 case KVM_CAP_INTERNAL_ERROR_DATA: 4513 #ifdef CONFIG_HAVE_KVM_MSI 4514 case KVM_CAP_SIGNAL_MSI: 4515 #endif 4516 #ifdef CONFIG_HAVE_KVM_IRQFD 4517 case KVM_CAP_IRQFD: 4518 #endif 4519 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4520 case KVM_CAP_CHECK_EXTENSION_VM: 4521 case KVM_CAP_ENABLE_CAP_VM: 4522 case KVM_CAP_HALT_POLL: 4523 return 1; 4524 #ifdef CONFIG_KVM_MMIO 4525 case KVM_CAP_COALESCED_MMIO: 4526 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4527 case KVM_CAP_COALESCED_PIO: 4528 return 1; 4529 #endif 4530 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4531 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4532 return KVM_DIRTY_LOG_MANUAL_CAPS; 4533 #endif 4534 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4535 case KVM_CAP_IRQ_ROUTING: 4536 return KVM_MAX_IRQ_ROUTES; 4537 #endif 4538 #if KVM_ADDRESS_SPACE_NUM > 1 4539 case KVM_CAP_MULTI_ADDRESS_SPACE: 4540 return KVM_ADDRESS_SPACE_NUM; 4541 #endif 4542 case KVM_CAP_NR_MEMSLOTS: 4543 return KVM_USER_MEM_SLOTS; 4544 case KVM_CAP_DIRTY_LOG_RING: 4545 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4546 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4547 #else 4548 return 0; 4549 #endif 4550 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4551 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4552 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4553 #else 4554 return 0; 4555 #endif 4556 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4557 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4558 #endif 4559 case KVM_CAP_BINARY_STATS_FD: 4560 case KVM_CAP_SYSTEM_EVENT_DATA: 4561 return 1; 4562 default: 4563 break; 4564 } 4565 return kvm_vm_ioctl_check_extension(kvm, arg); 4566 } 4567 4568 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4569 { 4570 int r; 4571 4572 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4573 return -EINVAL; 4574 4575 /* the size should be power of 2 */ 4576 if (!size || (size & (size - 1))) 4577 return -EINVAL; 4578 4579 /* Should be bigger to keep the reserved entries, or a page */ 4580 if (size < kvm_dirty_ring_get_rsvd_entries() * 4581 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4582 return -EINVAL; 4583 4584 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4585 sizeof(struct kvm_dirty_gfn)) 4586 return -E2BIG; 4587 4588 /* We only allow it to set once */ 4589 if (kvm->dirty_ring_size) 4590 return -EINVAL; 4591 4592 mutex_lock(&kvm->lock); 4593 4594 if (kvm->created_vcpus) { 4595 /* We don't allow to change this value after vcpu created */ 4596 r = -EINVAL; 4597 } else { 4598 kvm->dirty_ring_size = size; 4599 r = 0; 4600 } 4601 4602 mutex_unlock(&kvm->lock); 4603 return r; 4604 } 4605 4606 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4607 { 4608 unsigned long i; 4609 struct kvm_vcpu *vcpu; 4610 int cleared = 0; 4611 4612 if (!kvm->dirty_ring_size) 4613 return -EINVAL; 4614 4615 mutex_lock(&kvm->slots_lock); 4616 4617 kvm_for_each_vcpu(i, vcpu, kvm) 4618 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4619 4620 mutex_unlock(&kvm->slots_lock); 4621 4622 if (cleared) 4623 kvm_flush_remote_tlbs(kvm); 4624 4625 return cleared; 4626 } 4627 4628 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4629 struct kvm_enable_cap *cap) 4630 { 4631 return -EINVAL; 4632 } 4633 4634 bool kvm_are_all_memslots_empty(struct kvm *kvm) 4635 { 4636 int i; 4637 4638 lockdep_assert_held(&kvm->slots_lock); 4639 4640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 4641 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4642 return false; 4643 } 4644 4645 return true; 4646 } 4647 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty); 4648 4649 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4650 struct kvm_enable_cap *cap) 4651 { 4652 switch (cap->cap) { 4653 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4654 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4655 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4656 4657 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4658 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4659 4660 if (cap->flags || (cap->args[0] & ~allowed_options)) 4661 return -EINVAL; 4662 kvm->manual_dirty_log_protect = cap->args[0]; 4663 return 0; 4664 } 4665 #endif 4666 case KVM_CAP_HALT_POLL: { 4667 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4668 return -EINVAL; 4669 4670 kvm->max_halt_poll_ns = cap->args[0]; 4671 4672 /* 4673 * Ensure kvm->override_halt_poll_ns does not become visible 4674 * before kvm->max_halt_poll_ns. 4675 * 4676 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4677 */ 4678 smp_wmb(); 4679 kvm->override_halt_poll_ns = true; 4680 4681 return 0; 4682 } 4683 case KVM_CAP_DIRTY_LOG_RING: 4684 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4685 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4686 return -EINVAL; 4687 4688 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4689 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4690 int r = -EINVAL; 4691 4692 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4693 !kvm->dirty_ring_size || cap->flags) 4694 return r; 4695 4696 mutex_lock(&kvm->slots_lock); 4697 4698 /* 4699 * For simplicity, allow enabling ring+bitmap if and only if 4700 * there are no memslots, e.g. to ensure all memslots allocate 4701 * a bitmap after the capability is enabled. 4702 */ 4703 if (kvm_are_all_memslots_empty(kvm)) { 4704 kvm->dirty_ring_with_bitmap = true; 4705 r = 0; 4706 } 4707 4708 mutex_unlock(&kvm->slots_lock); 4709 4710 return r; 4711 } 4712 default: 4713 return kvm_vm_ioctl_enable_cap(kvm, cap); 4714 } 4715 } 4716 4717 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4718 size_t size, loff_t *offset) 4719 { 4720 struct kvm *kvm = file->private_data; 4721 4722 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4723 &kvm_vm_stats_desc[0], &kvm->stat, 4724 sizeof(kvm->stat), user_buffer, size, offset); 4725 } 4726 4727 static int kvm_vm_stats_release(struct inode *inode, struct file *file) 4728 { 4729 struct kvm *kvm = file->private_data; 4730 4731 kvm_put_kvm(kvm); 4732 return 0; 4733 } 4734 4735 static const struct file_operations kvm_vm_stats_fops = { 4736 .read = kvm_vm_stats_read, 4737 .release = kvm_vm_stats_release, 4738 .llseek = noop_llseek, 4739 }; 4740 4741 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4742 { 4743 int fd; 4744 struct file *file; 4745 4746 fd = get_unused_fd_flags(O_CLOEXEC); 4747 if (fd < 0) 4748 return fd; 4749 4750 file = anon_inode_getfile("kvm-vm-stats", 4751 &kvm_vm_stats_fops, kvm, O_RDONLY); 4752 if (IS_ERR(file)) { 4753 put_unused_fd(fd); 4754 return PTR_ERR(file); 4755 } 4756 4757 kvm_get_kvm(kvm); 4758 4759 file->f_mode |= FMODE_PREAD; 4760 fd_install(fd, file); 4761 4762 return fd; 4763 } 4764 4765 static long kvm_vm_ioctl(struct file *filp, 4766 unsigned int ioctl, unsigned long arg) 4767 { 4768 struct kvm *kvm = filp->private_data; 4769 void __user *argp = (void __user *)arg; 4770 int r; 4771 4772 if (kvm->mm != current->mm || kvm->vm_dead) 4773 return -EIO; 4774 switch (ioctl) { 4775 case KVM_CREATE_VCPU: 4776 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4777 break; 4778 case KVM_ENABLE_CAP: { 4779 struct kvm_enable_cap cap; 4780 4781 r = -EFAULT; 4782 if (copy_from_user(&cap, argp, sizeof(cap))) 4783 goto out; 4784 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4785 break; 4786 } 4787 case KVM_SET_USER_MEMORY_REGION: { 4788 struct kvm_userspace_memory_region kvm_userspace_mem; 4789 4790 r = -EFAULT; 4791 if (copy_from_user(&kvm_userspace_mem, argp, 4792 sizeof(kvm_userspace_mem))) 4793 goto out; 4794 4795 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4796 break; 4797 } 4798 case KVM_GET_DIRTY_LOG: { 4799 struct kvm_dirty_log log; 4800 4801 r = -EFAULT; 4802 if (copy_from_user(&log, argp, sizeof(log))) 4803 goto out; 4804 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4805 break; 4806 } 4807 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4808 case KVM_CLEAR_DIRTY_LOG: { 4809 struct kvm_clear_dirty_log log; 4810 4811 r = -EFAULT; 4812 if (copy_from_user(&log, argp, sizeof(log))) 4813 goto out; 4814 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4815 break; 4816 } 4817 #endif 4818 #ifdef CONFIG_KVM_MMIO 4819 case KVM_REGISTER_COALESCED_MMIO: { 4820 struct kvm_coalesced_mmio_zone zone; 4821 4822 r = -EFAULT; 4823 if (copy_from_user(&zone, argp, sizeof(zone))) 4824 goto out; 4825 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4826 break; 4827 } 4828 case KVM_UNREGISTER_COALESCED_MMIO: { 4829 struct kvm_coalesced_mmio_zone zone; 4830 4831 r = -EFAULT; 4832 if (copy_from_user(&zone, argp, sizeof(zone))) 4833 goto out; 4834 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4835 break; 4836 } 4837 #endif 4838 case KVM_IRQFD: { 4839 struct kvm_irqfd data; 4840 4841 r = -EFAULT; 4842 if (copy_from_user(&data, argp, sizeof(data))) 4843 goto out; 4844 r = kvm_irqfd(kvm, &data); 4845 break; 4846 } 4847 case KVM_IOEVENTFD: { 4848 struct kvm_ioeventfd data; 4849 4850 r = -EFAULT; 4851 if (copy_from_user(&data, argp, sizeof(data))) 4852 goto out; 4853 r = kvm_ioeventfd(kvm, &data); 4854 break; 4855 } 4856 #ifdef CONFIG_HAVE_KVM_MSI 4857 case KVM_SIGNAL_MSI: { 4858 struct kvm_msi msi; 4859 4860 r = -EFAULT; 4861 if (copy_from_user(&msi, argp, sizeof(msi))) 4862 goto out; 4863 r = kvm_send_userspace_msi(kvm, &msi); 4864 break; 4865 } 4866 #endif 4867 #ifdef __KVM_HAVE_IRQ_LINE 4868 case KVM_IRQ_LINE_STATUS: 4869 case KVM_IRQ_LINE: { 4870 struct kvm_irq_level irq_event; 4871 4872 r = -EFAULT; 4873 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4874 goto out; 4875 4876 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4877 ioctl == KVM_IRQ_LINE_STATUS); 4878 if (r) 4879 goto out; 4880 4881 r = -EFAULT; 4882 if (ioctl == KVM_IRQ_LINE_STATUS) { 4883 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4884 goto out; 4885 } 4886 4887 r = 0; 4888 break; 4889 } 4890 #endif 4891 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4892 case KVM_SET_GSI_ROUTING: { 4893 struct kvm_irq_routing routing; 4894 struct kvm_irq_routing __user *urouting; 4895 struct kvm_irq_routing_entry *entries = NULL; 4896 4897 r = -EFAULT; 4898 if (copy_from_user(&routing, argp, sizeof(routing))) 4899 goto out; 4900 r = -EINVAL; 4901 if (!kvm_arch_can_set_irq_routing(kvm)) 4902 goto out; 4903 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4904 goto out; 4905 if (routing.flags) 4906 goto out; 4907 if (routing.nr) { 4908 urouting = argp; 4909 entries = vmemdup_user(urouting->entries, 4910 array_size(sizeof(*entries), 4911 routing.nr)); 4912 if (IS_ERR(entries)) { 4913 r = PTR_ERR(entries); 4914 goto out; 4915 } 4916 } 4917 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4918 routing.flags); 4919 kvfree(entries); 4920 break; 4921 } 4922 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4923 case KVM_CREATE_DEVICE: { 4924 struct kvm_create_device cd; 4925 4926 r = -EFAULT; 4927 if (copy_from_user(&cd, argp, sizeof(cd))) 4928 goto out; 4929 4930 r = kvm_ioctl_create_device(kvm, &cd); 4931 if (r) 4932 goto out; 4933 4934 r = -EFAULT; 4935 if (copy_to_user(argp, &cd, sizeof(cd))) 4936 goto out; 4937 4938 r = 0; 4939 break; 4940 } 4941 case KVM_CHECK_EXTENSION: 4942 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4943 break; 4944 case KVM_RESET_DIRTY_RINGS: 4945 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4946 break; 4947 case KVM_GET_STATS_FD: 4948 r = kvm_vm_ioctl_get_stats_fd(kvm); 4949 break; 4950 default: 4951 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4952 } 4953 out: 4954 return r; 4955 } 4956 4957 #ifdef CONFIG_KVM_COMPAT 4958 struct compat_kvm_dirty_log { 4959 __u32 slot; 4960 __u32 padding1; 4961 union { 4962 compat_uptr_t dirty_bitmap; /* one bit per page */ 4963 __u64 padding2; 4964 }; 4965 }; 4966 4967 struct compat_kvm_clear_dirty_log { 4968 __u32 slot; 4969 __u32 num_pages; 4970 __u64 first_page; 4971 union { 4972 compat_uptr_t dirty_bitmap; /* one bit per page */ 4973 __u64 padding2; 4974 }; 4975 }; 4976 4977 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 4978 unsigned long arg) 4979 { 4980 return -ENOTTY; 4981 } 4982 4983 static long kvm_vm_compat_ioctl(struct file *filp, 4984 unsigned int ioctl, unsigned long arg) 4985 { 4986 struct kvm *kvm = filp->private_data; 4987 int r; 4988 4989 if (kvm->mm != current->mm || kvm->vm_dead) 4990 return -EIO; 4991 4992 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 4993 if (r != -ENOTTY) 4994 return r; 4995 4996 switch (ioctl) { 4997 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4998 case KVM_CLEAR_DIRTY_LOG: { 4999 struct compat_kvm_clear_dirty_log compat_log; 5000 struct kvm_clear_dirty_log log; 5001 5002 if (copy_from_user(&compat_log, (void __user *)arg, 5003 sizeof(compat_log))) 5004 return -EFAULT; 5005 log.slot = compat_log.slot; 5006 log.num_pages = compat_log.num_pages; 5007 log.first_page = compat_log.first_page; 5008 log.padding2 = compat_log.padding2; 5009 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5010 5011 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 5012 break; 5013 } 5014 #endif 5015 case KVM_GET_DIRTY_LOG: { 5016 struct compat_kvm_dirty_log compat_log; 5017 struct kvm_dirty_log log; 5018 5019 if (copy_from_user(&compat_log, (void __user *)arg, 5020 sizeof(compat_log))) 5021 return -EFAULT; 5022 log.slot = compat_log.slot; 5023 log.padding1 = compat_log.padding1; 5024 log.padding2 = compat_log.padding2; 5025 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 5026 5027 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 5028 break; 5029 } 5030 default: 5031 r = kvm_vm_ioctl(filp, ioctl, arg); 5032 } 5033 return r; 5034 } 5035 #endif 5036 5037 static const struct file_operations kvm_vm_fops = { 5038 .release = kvm_vm_release, 5039 .unlocked_ioctl = kvm_vm_ioctl, 5040 .llseek = noop_llseek, 5041 KVM_COMPAT(kvm_vm_compat_ioctl), 5042 }; 5043 5044 bool file_is_kvm(struct file *file) 5045 { 5046 return file && file->f_op == &kvm_vm_fops; 5047 } 5048 EXPORT_SYMBOL_GPL(file_is_kvm); 5049 5050 static int kvm_dev_ioctl_create_vm(unsigned long type) 5051 { 5052 char fdname[ITOA_MAX_LEN + 1]; 5053 int r, fd; 5054 struct kvm *kvm; 5055 struct file *file; 5056 5057 fd = get_unused_fd_flags(O_CLOEXEC); 5058 if (fd < 0) 5059 return fd; 5060 5061 snprintf(fdname, sizeof(fdname), "%d", fd); 5062 5063 kvm = kvm_create_vm(type, fdname); 5064 if (IS_ERR(kvm)) { 5065 r = PTR_ERR(kvm); 5066 goto put_fd; 5067 } 5068 5069 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5070 if (IS_ERR(file)) { 5071 r = PTR_ERR(file); 5072 goto put_kvm; 5073 } 5074 5075 /* 5076 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5077 * already set, with ->release() being kvm_vm_release(). In error 5078 * cases it will be called by the final fput(file) and will take 5079 * care of doing kvm_put_kvm(kvm). 5080 */ 5081 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5082 5083 fd_install(fd, file); 5084 return fd; 5085 5086 put_kvm: 5087 kvm_put_kvm(kvm); 5088 put_fd: 5089 put_unused_fd(fd); 5090 return r; 5091 } 5092 5093 static long kvm_dev_ioctl(struct file *filp, 5094 unsigned int ioctl, unsigned long arg) 5095 { 5096 int r = -EINVAL; 5097 5098 switch (ioctl) { 5099 case KVM_GET_API_VERSION: 5100 if (arg) 5101 goto out; 5102 r = KVM_API_VERSION; 5103 break; 5104 case KVM_CREATE_VM: 5105 r = kvm_dev_ioctl_create_vm(arg); 5106 break; 5107 case KVM_CHECK_EXTENSION: 5108 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5109 break; 5110 case KVM_GET_VCPU_MMAP_SIZE: 5111 if (arg) 5112 goto out; 5113 r = PAGE_SIZE; /* struct kvm_run */ 5114 #ifdef CONFIG_X86 5115 r += PAGE_SIZE; /* pio data page */ 5116 #endif 5117 #ifdef CONFIG_KVM_MMIO 5118 r += PAGE_SIZE; /* coalesced mmio ring page */ 5119 #endif 5120 break; 5121 case KVM_TRACE_ENABLE: 5122 case KVM_TRACE_PAUSE: 5123 case KVM_TRACE_DISABLE: 5124 r = -EOPNOTSUPP; 5125 break; 5126 default: 5127 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5128 } 5129 out: 5130 return r; 5131 } 5132 5133 static struct file_operations kvm_chardev_ops = { 5134 .unlocked_ioctl = kvm_dev_ioctl, 5135 .llseek = noop_llseek, 5136 KVM_COMPAT(kvm_dev_ioctl), 5137 }; 5138 5139 static struct miscdevice kvm_dev = { 5140 KVM_MINOR, 5141 "kvm", 5142 &kvm_chardev_ops, 5143 }; 5144 5145 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5146 __visible bool kvm_rebooting; 5147 EXPORT_SYMBOL_GPL(kvm_rebooting); 5148 5149 static DEFINE_PER_CPU(bool, hardware_enabled); 5150 static int kvm_usage_count; 5151 5152 static int __hardware_enable_nolock(void) 5153 { 5154 if (__this_cpu_read(hardware_enabled)) 5155 return 0; 5156 5157 if (kvm_arch_hardware_enable()) { 5158 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5159 raw_smp_processor_id()); 5160 return -EIO; 5161 } 5162 5163 __this_cpu_write(hardware_enabled, true); 5164 return 0; 5165 } 5166 5167 static void hardware_enable_nolock(void *failed) 5168 { 5169 if (__hardware_enable_nolock()) 5170 atomic_inc(failed); 5171 } 5172 5173 static int kvm_online_cpu(unsigned int cpu) 5174 { 5175 int ret = 0; 5176 5177 /* 5178 * Abort the CPU online process if hardware virtualization cannot 5179 * be enabled. Otherwise running VMs would encounter unrecoverable 5180 * errors when scheduled to this CPU. 5181 */ 5182 mutex_lock(&kvm_lock); 5183 if (kvm_usage_count) 5184 ret = __hardware_enable_nolock(); 5185 mutex_unlock(&kvm_lock); 5186 return ret; 5187 } 5188 5189 static void hardware_disable_nolock(void *junk) 5190 { 5191 /* 5192 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5193 * hardware, not just CPUs that successfully enabled hardware! 5194 */ 5195 if (!__this_cpu_read(hardware_enabled)) 5196 return; 5197 5198 kvm_arch_hardware_disable(); 5199 5200 __this_cpu_write(hardware_enabled, false); 5201 } 5202 5203 static int kvm_offline_cpu(unsigned int cpu) 5204 { 5205 mutex_lock(&kvm_lock); 5206 if (kvm_usage_count) 5207 hardware_disable_nolock(NULL); 5208 mutex_unlock(&kvm_lock); 5209 return 0; 5210 } 5211 5212 static void hardware_disable_all_nolock(void) 5213 { 5214 BUG_ON(!kvm_usage_count); 5215 5216 kvm_usage_count--; 5217 if (!kvm_usage_count) 5218 on_each_cpu(hardware_disable_nolock, NULL, 1); 5219 } 5220 5221 static void hardware_disable_all(void) 5222 { 5223 cpus_read_lock(); 5224 mutex_lock(&kvm_lock); 5225 hardware_disable_all_nolock(); 5226 mutex_unlock(&kvm_lock); 5227 cpus_read_unlock(); 5228 } 5229 5230 static int hardware_enable_all(void) 5231 { 5232 atomic_t failed = ATOMIC_INIT(0); 5233 int r; 5234 5235 /* 5236 * Do not enable hardware virtualization if the system is going down. 5237 * If userspace initiated a forced reboot, e.g. reboot -f, then it's 5238 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling 5239 * after kvm_reboot() is called. Note, this relies on system_state 5240 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops 5241 * hook instead of registering a dedicated reboot notifier (the latter 5242 * runs before system_state is updated). 5243 */ 5244 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || 5245 system_state == SYSTEM_RESTART) 5246 return -EBUSY; 5247 5248 /* 5249 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5250 * is called, and so on_each_cpu() between them includes the CPU that 5251 * is being onlined. As a result, hardware_enable_nolock() may get 5252 * invoked before kvm_online_cpu(), which also enables hardware if the 5253 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5254 * enable hardware multiple times. 5255 */ 5256 cpus_read_lock(); 5257 mutex_lock(&kvm_lock); 5258 5259 r = 0; 5260 5261 kvm_usage_count++; 5262 if (kvm_usage_count == 1) { 5263 on_each_cpu(hardware_enable_nolock, &failed, 1); 5264 5265 if (atomic_read(&failed)) { 5266 hardware_disable_all_nolock(); 5267 r = -EBUSY; 5268 } 5269 } 5270 5271 mutex_unlock(&kvm_lock); 5272 cpus_read_unlock(); 5273 5274 return r; 5275 } 5276 5277 static void kvm_shutdown(void) 5278 { 5279 /* 5280 * Disable hardware virtualization and set kvm_rebooting to indicate 5281 * that KVM has asynchronously disabled hardware virtualization, i.e. 5282 * that relevant errors and exceptions aren't entirely unexpected. 5283 * Some flavors of hardware virtualization need to be disabled before 5284 * transferring control to firmware (to perform shutdown/reboot), e.g. 5285 * on x86, virtualization can block INIT interrupts, which are used by 5286 * firmware to pull APs back under firmware control. Note, this path 5287 * is used for both shutdown and reboot scenarios, i.e. neither name is 5288 * 100% comprehensive. 5289 */ 5290 pr_info("kvm: exiting hardware virtualization\n"); 5291 kvm_rebooting = true; 5292 on_each_cpu(hardware_disable_nolock, NULL, 1); 5293 } 5294 5295 static int kvm_suspend(void) 5296 { 5297 /* 5298 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5299 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5300 * is stable. Assert that kvm_lock is not held to ensure the system 5301 * isn't suspended while KVM is enabling hardware. Hardware enabling 5302 * can be preempted, but the task cannot be frozen until it has dropped 5303 * all locks (userspace tasks are frozen via a fake signal). 5304 */ 5305 lockdep_assert_not_held(&kvm_lock); 5306 lockdep_assert_irqs_disabled(); 5307 5308 if (kvm_usage_count) 5309 hardware_disable_nolock(NULL); 5310 return 0; 5311 } 5312 5313 static void kvm_resume(void) 5314 { 5315 lockdep_assert_not_held(&kvm_lock); 5316 lockdep_assert_irqs_disabled(); 5317 5318 if (kvm_usage_count) 5319 WARN_ON_ONCE(__hardware_enable_nolock()); 5320 } 5321 5322 static struct syscore_ops kvm_syscore_ops = { 5323 .suspend = kvm_suspend, 5324 .resume = kvm_resume, 5325 .shutdown = kvm_shutdown, 5326 }; 5327 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5328 static int hardware_enable_all(void) 5329 { 5330 return 0; 5331 } 5332 5333 static void hardware_disable_all(void) 5334 { 5335 5336 } 5337 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5338 5339 static void kvm_iodevice_destructor(struct kvm_io_device *dev) 5340 { 5341 if (dev->ops->destructor) 5342 dev->ops->destructor(dev); 5343 } 5344 5345 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5346 { 5347 int i; 5348 5349 for (i = 0; i < bus->dev_count; i++) { 5350 struct kvm_io_device *pos = bus->range[i].dev; 5351 5352 kvm_iodevice_destructor(pos); 5353 } 5354 kfree(bus); 5355 } 5356 5357 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5358 const struct kvm_io_range *r2) 5359 { 5360 gpa_t addr1 = r1->addr; 5361 gpa_t addr2 = r2->addr; 5362 5363 if (addr1 < addr2) 5364 return -1; 5365 5366 /* If r2->len == 0, match the exact address. If r2->len != 0, 5367 * accept any overlapping write. Any order is acceptable for 5368 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5369 * we process all of them. 5370 */ 5371 if (r2->len) { 5372 addr1 += r1->len; 5373 addr2 += r2->len; 5374 } 5375 5376 if (addr1 > addr2) 5377 return 1; 5378 5379 return 0; 5380 } 5381 5382 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5383 { 5384 return kvm_io_bus_cmp(p1, p2); 5385 } 5386 5387 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5388 gpa_t addr, int len) 5389 { 5390 struct kvm_io_range *range, key; 5391 int off; 5392 5393 key = (struct kvm_io_range) { 5394 .addr = addr, 5395 .len = len, 5396 }; 5397 5398 range = bsearch(&key, bus->range, bus->dev_count, 5399 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5400 if (range == NULL) 5401 return -ENOENT; 5402 5403 off = range - bus->range; 5404 5405 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5406 off--; 5407 5408 return off; 5409 } 5410 5411 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5412 struct kvm_io_range *range, const void *val) 5413 { 5414 int idx; 5415 5416 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5417 if (idx < 0) 5418 return -EOPNOTSUPP; 5419 5420 while (idx < bus->dev_count && 5421 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5422 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5423 range->len, val)) 5424 return idx; 5425 idx++; 5426 } 5427 5428 return -EOPNOTSUPP; 5429 } 5430 5431 /* kvm_io_bus_write - called under kvm->slots_lock */ 5432 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5433 int len, const void *val) 5434 { 5435 struct kvm_io_bus *bus; 5436 struct kvm_io_range range; 5437 int r; 5438 5439 range = (struct kvm_io_range) { 5440 .addr = addr, 5441 .len = len, 5442 }; 5443 5444 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5445 if (!bus) 5446 return -ENOMEM; 5447 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5448 return r < 0 ? r : 0; 5449 } 5450 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5451 5452 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5453 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5454 gpa_t addr, int len, const void *val, long cookie) 5455 { 5456 struct kvm_io_bus *bus; 5457 struct kvm_io_range range; 5458 5459 range = (struct kvm_io_range) { 5460 .addr = addr, 5461 .len = len, 5462 }; 5463 5464 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5465 if (!bus) 5466 return -ENOMEM; 5467 5468 /* First try the device referenced by cookie. */ 5469 if ((cookie >= 0) && (cookie < bus->dev_count) && 5470 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5471 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5472 val)) 5473 return cookie; 5474 5475 /* 5476 * cookie contained garbage; fall back to search and return the 5477 * correct cookie value. 5478 */ 5479 return __kvm_io_bus_write(vcpu, bus, &range, val); 5480 } 5481 5482 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5483 struct kvm_io_range *range, void *val) 5484 { 5485 int idx; 5486 5487 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5488 if (idx < 0) 5489 return -EOPNOTSUPP; 5490 5491 while (idx < bus->dev_count && 5492 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5493 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5494 range->len, val)) 5495 return idx; 5496 idx++; 5497 } 5498 5499 return -EOPNOTSUPP; 5500 } 5501 5502 /* kvm_io_bus_read - called under kvm->slots_lock */ 5503 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5504 int len, void *val) 5505 { 5506 struct kvm_io_bus *bus; 5507 struct kvm_io_range range; 5508 int r; 5509 5510 range = (struct kvm_io_range) { 5511 .addr = addr, 5512 .len = len, 5513 }; 5514 5515 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5516 if (!bus) 5517 return -ENOMEM; 5518 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5519 return r < 0 ? r : 0; 5520 } 5521 5522 /* Caller must hold slots_lock. */ 5523 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5524 int len, struct kvm_io_device *dev) 5525 { 5526 int i; 5527 struct kvm_io_bus *new_bus, *bus; 5528 struct kvm_io_range range; 5529 5530 bus = kvm_get_bus(kvm, bus_idx); 5531 if (!bus) 5532 return -ENOMEM; 5533 5534 /* exclude ioeventfd which is limited by maximum fd */ 5535 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5536 return -ENOSPC; 5537 5538 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5539 GFP_KERNEL_ACCOUNT); 5540 if (!new_bus) 5541 return -ENOMEM; 5542 5543 range = (struct kvm_io_range) { 5544 .addr = addr, 5545 .len = len, 5546 .dev = dev, 5547 }; 5548 5549 for (i = 0; i < bus->dev_count; i++) 5550 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5551 break; 5552 5553 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5554 new_bus->dev_count++; 5555 new_bus->range[i] = range; 5556 memcpy(new_bus->range + i + 1, bus->range + i, 5557 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5558 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5559 synchronize_srcu_expedited(&kvm->srcu); 5560 kfree(bus); 5561 5562 return 0; 5563 } 5564 5565 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5566 struct kvm_io_device *dev) 5567 { 5568 int i; 5569 struct kvm_io_bus *new_bus, *bus; 5570 5571 lockdep_assert_held(&kvm->slots_lock); 5572 5573 bus = kvm_get_bus(kvm, bus_idx); 5574 if (!bus) 5575 return 0; 5576 5577 for (i = 0; i < bus->dev_count; i++) { 5578 if (bus->range[i].dev == dev) { 5579 break; 5580 } 5581 } 5582 5583 if (i == bus->dev_count) 5584 return 0; 5585 5586 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5587 GFP_KERNEL_ACCOUNT); 5588 if (new_bus) { 5589 memcpy(new_bus, bus, struct_size(bus, range, i)); 5590 new_bus->dev_count--; 5591 memcpy(new_bus->range + i, bus->range + i + 1, 5592 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5593 } 5594 5595 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5596 synchronize_srcu_expedited(&kvm->srcu); 5597 5598 /* 5599 * If NULL bus is installed, destroy the old bus, including all the 5600 * attached devices. Otherwise, destroy the caller's device only. 5601 */ 5602 if (!new_bus) { 5603 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5604 kvm_io_bus_destroy(bus); 5605 return -ENOMEM; 5606 } 5607 5608 kvm_iodevice_destructor(dev); 5609 kfree(bus); 5610 return 0; 5611 } 5612 5613 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5614 gpa_t addr) 5615 { 5616 struct kvm_io_bus *bus; 5617 int dev_idx, srcu_idx; 5618 struct kvm_io_device *iodev = NULL; 5619 5620 srcu_idx = srcu_read_lock(&kvm->srcu); 5621 5622 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5623 if (!bus) 5624 goto out_unlock; 5625 5626 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5627 if (dev_idx < 0) 5628 goto out_unlock; 5629 5630 iodev = bus->range[dev_idx].dev; 5631 5632 out_unlock: 5633 srcu_read_unlock(&kvm->srcu, srcu_idx); 5634 5635 return iodev; 5636 } 5637 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5638 5639 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5640 int (*get)(void *, u64 *), int (*set)(void *, u64), 5641 const char *fmt) 5642 { 5643 int ret; 5644 struct kvm_stat_data *stat_data = inode->i_private; 5645 5646 /* 5647 * The debugfs files are a reference to the kvm struct which 5648 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5649 * avoids the race between open and the removal of the debugfs directory. 5650 */ 5651 if (!kvm_get_kvm_safe(stat_data->kvm)) 5652 return -ENOENT; 5653 5654 ret = simple_attr_open(inode, file, get, 5655 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5656 ? set : NULL, fmt); 5657 if (ret) 5658 kvm_put_kvm(stat_data->kvm); 5659 5660 return ret; 5661 } 5662 5663 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5664 { 5665 struct kvm_stat_data *stat_data = inode->i_private; 5666 5667 simple_attr_release(inode, file); 5668 kvm_put_kvm(stat_data->kvm); 5669 5670 return 0; 5671 } 5672 5673 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5674 { 5675 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5676 5677 return 0; 5678 } 5679 5680 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5681 { 5682 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5683 5684 return 0; 5685 } 5686 5687 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5688 { 5689 unsigned long i; 5690 struct kvm_vcpu *vcpu; 5691 5692 *val = 0; 5693 5694 kvm_for_each_vcpu(i, vcpu, kvm) 5695 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5696 5697 return 0; 5698 } 5699 5700 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5701 { 5702 unsigned long i; 5703 struct kvm_vcpu *vcpu; 5704 5705 kvm_for_each_vcpu(i, vcpu, kvm) 5706 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5707 5708 return 0; 5709 } 5710 5711 static int kvm_stat_data_get(void *data, u64 *val) 5712 { 5713 int r = -EFAULT; 5714 struct kvm_stat_data *stat_data = data; 5715 5716 switch (stat_data->kind) { 5717 case KVM_STAT_VM: 5718 r = kvm_get_stat_per_vm(stat_data->kvm, 5719 stat_data->desc->desc.offset, val); 5720 break; 5721 case KVM_STAT_VCPU: 5722 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5723 stat_data->desc->desc.offset, val); 5724 break; 5725 } 5726 5727 return r; 5728 } 5729 5730 static int kvm_stat_data_clear(void *data, u64 val) 5731 { 5732 int r = -EFAULT; 5733 struct kvm_stat_data *stat_data = data; 5734 5735 if (val) 5736 return -EINVAL; 5737 5738 switch (stat_data->kind) { 5739 case KVM_STAT_VM: 5740 r = kvm_clear_stat_per_vm(stat_data->kvm, 5741 stat_data->desc->desc.offset); 5742 break; 5743 case KVM_STAT_VCPU: 5744 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5745 stat_data->desc->desc.offset); 5746 break; 5747 } 5748 5749 return r; 5750 } 5751 5752 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5753 { 5754 __simple_attr_check_format("%llu\n", 0ull); 5755 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5756 kvm_stat_data_clear, "%llu\n"); 5757 } 5758 5759 static const struct file_operations stat_fops_per_vm = { 5760 .owner = THIS_MODULE, 5761 .open = kvm_stat_data_open, 5762 .release = kvm_debugfs_release, 5763 .read = simple_attr_read, 5764 .write = simple_attr_write, 5765 .llseek = no_llseek, 5766 }; 5767 5768 static int vm_stat_get(void *_offset, u64 *val) 5769 { 5770 unsigned offset = (long)_offset; 5771 struct kvm *kvm; 5772 u64 tmp_val; 5773 5774 *val = 0; 5775 mutex_lock(&kvm_lock); 5776 list_for_each_entry(kvm, &vm_list, vm_list) { 5777 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5778 *val += tmp_val; 5779 } 5780 mutex_unlock(&kvm_lock); 5781 return 0; 5782 } 5783 5784 static int vm_stat_clear(void *_offset, u64 val) 5785 { 5786 unsigned offset = (long)_offset; 5787 struct kvm *kvm; 5788 5789 if (val) 5790 return -EINVAL; 5791 5792 mutex_lock(&kvm_lock); 5793 list_for_each_entry(kvm, &vm_list, vm_list) { 5794 kvm_clear_stat_per_vm(kvm, offset); 5795 } 5796 mutex_unlock(&kvm_lock); 5797 5798 return 0; 5799 } 5800 5801 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5802 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5803 5804 static int vcpu_stat_get(void *_offset, u64 *val) 5805 { 5806 unsigned offset = (long)_offset; 5807 struct kvm *kvm; 5808 u64 tmp_val; 5809 5810 *val = 0; 5811 mutex_lock(&kvm_lock); 5812 list_for_each_entry(kvm, &vm_list, vm_list) { 5813 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5814 *val += tmp_val; 5815 } 5816 mutex_unlock(&kvm_lock); 5817 return 0; 5818 } 5819 5820 static int vcpu_stat_clear(void *_offset, u64 val) 5821 { 5822 unsigned offset = (long)_offset; 5823 struct kvm *kvm; 5824 5825 if (val) 5826 return -EINVAL; 5827 5828 mutex_lock(&kvm_lock); 5829 list_for_each_entry(kvm, &vm_list, vm_list) { 5830 kvm_clear_stat_per_vcpu(kvm, offset); 5831 } 5832 mutex_unlock(&kvm_lock); 5833 5834 return 0; 5835 } 5836 5837 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5838 "%llu\n"); 5839 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5840 5841 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5842 { 5843 struct kobj_uevent_env *env; 5844 unsigned long long created, active; 5845 5846 if (!kvm_dev.this_device || !kvm) 5847 return; 5848 5849 mutex_lock(&kvm_lock); 5850 if (type == KVM_EVENT_CREATE_VM) { 5851 kvm_createvm_count++; 5852 kvm_active_vms++; 5853 } else if (type == KVM_EVENT_DESTROY_VM) { 5854 kvm_active_vms--; 5855 } 5856 created = kvm_createvm_count; 5857 active = kvm_active_vms; 5858 mutex_unlock(&kvm_lock); 5859 5860 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5861 if (!env) 5862 return; 5863 5864 add_uevent_var(env, "CREATED=%llu", created); 5865 add_uevent_var(env, "COUNT=%llu", active); 5866 5867 if (type == KVM_EVENT_CREATE_VM) { 5868 add_uevent_var(env, "EVENT=create"); 5869 kvm->userspace_pid = task_pid_nr(current); 5870 } else if (type == KVM_EVENT_DESTROY_VM) { 5871 add_uevent_var(env, "EVENT=destroy"); 5872 } 5873 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5874 5875 if (!IS_ERR(kvm->debugfs_dentry)) { 5876 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5877 5878 if (p) { 5879 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5880 if (!IS_ERR(tmp)) 5881 add_uevent_var(env, "STATS_PATH=%s", tmp); 5882 kfree(p); 5883 } 5884 } 5885 /* no need for checks, since we are adding at most only 5 keys */ 5886 env->envp[env->envp_idx++] = NULL; 5887 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5888 kfree(env); 5889 } 5890 5891 static void kvm_init_debug(void) 5892 { 5893 const struct file_operations *fops; 5894 const struct _kvm_stats_desc *pdesc; 5895 int i; 5896 5897 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5898 5899 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5900 pdesc = &kvm_vm_stats_desc[i]; 5901 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5902 fops = &vm_stat_fops; 5903 else 5904 fops = &vm_stat_readonly_fops; 5905 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5906 kvm_debugfs_dir, 5907 (void *)(long)pdesc->desc.offset, fops); 5908 } 5909 5910 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5911 pdesc = &kvm_vcpu_stats_desc[i]; 5912 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5913 fops = &vcpu_stat_fops; 5914 else 5915 fops = &vcpu_stat_readonly_fops; 5916 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5917 kvm_debugfs_dir, 5918 (void *)(long)pdesc->desc.offset, fops); 5919 } 5920 } 5921 5922 static inline 5923 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5924 { 5925 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5926 } 5927 5928 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5929 { 5930 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5931 5932 WRITE_ONCE(vcpu->preempted, false); 5933 WRITE_ONCE(vcpu->ready, false); 5934 5935 __this_cpu_write(kvm_running_vcpu, vcpu); 5936 kvm_arch_sched_in(vcpu, cpu); 5937 kvm_arch_vcpu_load(vcpu, cpu); 5938 } 5939 5940 static void kvm_sched_out(struct preempt_notifier *pn, 5941 struct task_struct *next) 5942 { 5943 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5944 5945 if (current->on_rq) { 5946 WRITE_ONCE(vcpu->preempted, true); 5947 WRITE_ONCE(vcpu->ready, true); 5948 } 5949 kvm_arch_vcpu_put(vcpu); 5950 __this_cpu_write(kvm_running_vcpu, NULL); 5951 } 5952 5953 /** 5954 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5955 * 5956 * We can disable preemption locally around accessing the per-CPU variable, 5957 * and use the resolved vcpu pointer after enabling preemption again, 5958 * because even if the current thread is migrated to another CPU, reading 5959 * the per-CPU value later will give us the same value as we update the 5960 * per-CPU variable in the preempt notifier handlers. 5961 */ 5962 struct kvm_vcpu *kvm_get_running_vcpu(void) 5963 { 5964 struct kvm_vcpu *vcpu; 5965 5966 preempt_disable(); 5967 vcpu = __this_cpu_read(kvm_running_vcpu); 5968 preempt_enable(); 5969 5970 return vcpu; 5971 } 5972 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5973 5974 /** 5975 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5976 */ 5977 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5978 { 5979 return &kvm_running_vcpu; 5980 } 5981 5982 #ifdef CONFIG_GUEST_PERF_EVENTS 5983 static unsigned int kvm_guest_state(void) 5984 { 5985 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5986 unsigned int state; 5987 5988 if (!kvm_arch_pmi_in_guest(vcpu)) 5989 return 0; 5990 5991 state = PERF_GUEST_ACTIVE; 5992 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5993 state |= PERF_GUEST_USER; 5994 5995 return state; 5996 } 5997 5998 static unsigned long kvm_guest_get_ip(void) 5999 { 6000 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 6001 6002 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 6003 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 6004 return 0; 6005 6006 return kvm_arch_vcpu_get_ip(vcpu); 6007 } 6008 6009 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6010 .state = kvm_guest_state, 6011 .get_ip = kvm_guest_get_ip, 6012 .handle_intel_pt_intr = NULL, 6013 }; 6014 6015 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 6016 { 6017 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 6018 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6019 } 6020 void kvm_unregister_perf_callbacks(void) 6021 { 6022 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6023 } 6024 #endif 6025 6026 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 6027 { 6028 int r; 6029 int cpu; 6030 6031 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6032 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 6033 kvm_online_cpu, kvm_offline_cpu); 6034 if (r) 6035 return r; 6036 6037 register_syscore_ops(&kvm_syscore_ops); 6038 #endif 6039 6040 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 6041 if (!vcpu_align) 6042 vcpu_align = __alignof__(struct kvm_vcpu); 6043 kvm_vcpu_cache = 6044 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 6045 SLAB_ACCOUNT, 6046 offsetof(struct kvm_vcpu, arch), 6047 offsetofend(struct kvm_vcpu, stats_id) 6048 - offsetof(struct kvm_vcpu, arch), 6049 NULL); 6050 if (!kvm_vcpu_cache) { 6051 r = -ENOMEM; 6052 goto err_vcpu_cache; 6053 } 6054 6055 for_each_possible_cpu(cpu) { 6056 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 6057 GFP_KERNEL, cpu_to_node(cpu))) { 6058 r = -ENOMEM; 6059 goto err_cpu_kick_mask; 6060 } 6061 } 6062 6063 r = kvm_irqfd_init(); 6064 if (r) 6065 goto err_irqfd; 6066 6067 r = kvm_async_pf_init(); 6068 if (r) 6069 goto err_async_pf; 6070 6071 kvm_chardev_ops.owner = module; 6072 6073 kvm_preempt_ops.sched_in = kvm_sched_in; 6074 kvm_preempt_ops.sched_out = kvm_sched_out; 6075 6076 kvm_init_debug(); 6077 6078 r = kvm_vfio_ops_init(); 6079 if (WARN_ON_ONCE(r)) 6080 goto err_vfio; 6081 6082 /* 6083 * Registration _must_ be the very last thing done, as this exposes 6084 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6085 */ 6086 r = misc_register(&kvm_dev); 6087 if (r) { 6088 pr_err("kvm: misc device register failed\n"); 6089 goto err_register; 6090 } 6091 6092 return 0; 6093 6094 err_register: 6095 kvm_vfio_ops_exit(); 6096 err_vfio: 6097 kvm_async_pf_deinit(); 6098 err_async_pf: 6099 kvm_irqfd_exit(); 6100 err_irqfd: 6101 err_cpu_kick_mask: 6102 for_each_possible_cpu(cpu) 6103 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6104 kmem_cache_destroy(kvm_vcpu_cache); 6105 err_vcpu_cache: 6106 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6107 unregister_syscore_ops(&kvm_syscore_ops); 6108 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6109 #endif 6110 return r; 6111 } 6112 EXPORT_SYMBOL_GPL(kvm_init); 6113 6114 void kvm_exit(void) 6115 { 6116 int cpu; 6117 6118 /* 6119 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6120 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6121 * to KVM while the module is being stopped. 6122 */ 6123 misc_deregister(&kvm_dev); 6124 6125 debugfs_remove_recursive(kvm_debugfs_dir); 6126 for_each_possible_cpu(cpu) 6127 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6128 kmem_cache_destroy(kvm_vcpu_cache); 6129 kvm_vfio_ops_exit(); 6130 kvm_async_pf_deinit(); 6131 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6132 unregister_syscore_ops(&kvm_syscore_ops); 6133 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6134 #endif 6135 kvm_irqfd_exit(); 6136 } 6137 EXPORT_SYMBOL_GPL(kvm_exit); 6138 6139 struct kvm_vm_worker_thread_context { 6140 struct kvm *kvm; 6141 struct task_struct *parent; 6142 struct completion init_done; 6143 kvm_vm_thread_fn_t thread_fn; 6144 uintptr_t data; 6145 int err; 6146 }; 6147 6148 static int kvm_vm_worker_thread(void *context) 6149 { 6150 /* 6151 * The init_context is allocated on the stack of the parent thread, so 6152 * we have to locally copy anything that is needed beyond initialization 6153 */ 6154 struct kvm_vm_worker_thread_context *init_context = context; 6155 struct task_struct *parent; 6156 struct kvm *kvm = init_context->kvm; 6157 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6158 uintptr_t data = init_context->data; 6159 int err; 6160 6161 err = kthread_park(current); 6162 /* kthread_park(current) is never supposed to return an error */ 6163 WARN_ON(err != 0); 6164 if (err) 6165 goto init_complete; 6166 6167 err = cgroup_attach_task_all(init_context->parent, current); 6168 if (err) { 6169 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6170 __func__, err); 6171 goto init_complete; 6172 } 6173 6174 set_user_nice(current, task_nice(init_context->parent)); 6175 6176 init_complete: 6177 init_context->err = err; 6178 complete(&init_context->init_done); 6179 init_context = NULL; 6180 6181 if (err) 6182 goto out; 6183 6184 /* Wait to be woken up by the spawner before proceeding. */ 6185 kthread_parkme(); 6186 6187 if (!kthread_should_stop()) 6188 err = thread_fn(kvm, data); 6189 6190 out: 6191 /* 6192 * Move kthread back to its original cgroup to prevent it lingering in 6193 * the cgroup of the VM process, after the latter finishes its 6194 * execution. 6195 * 6196 * kthread_stop() waits on the 'exited' completion condition which is 6197 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6198 * kthread is removed from the cgroup in the cgroup_exit() which is 6199 * called after the exit_mm(). This causes the kthread_stop() to return 6200 * before the kthread actually quits the cgroup. 6201 */ 6202 rcu_read_lock(); 6203 parent = rcu_dereference(current->real_parent); 6204 get_task_struct(parent); 6205 rcu_read_unlock(); 6206 cgroup_attach_task_all(parent, current); 6207 put_task_struct(parent); 6208 6209 return err; 6210 } 6211 6212 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6213 uintptr_t data, const char *name, 6214 struct task_struct **thread_ptr) 6215 { 6216 struct kvm_vm_worker_thread_context init_context = {}; 6217 struct task_struct *thread; 6218 6219 *thread_ptr = NULL; 6220 init_context.kvm = kvm; 6221 init_context.parent = current; 6222 init_context.thread_fn = thread_fn; 6223 init_context.data = data; 6224 init_completion(&init_context.init_done); 6225 6226 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6227 "%s-%d", name, task_pid_nr(current)); 6228 if (IS_ERR(thread)) 6229 return PTR_ERR(thread); 6230 6231 /* kthread_run is never supposed to return NULL */ 6232 WARN_ON(thread == NULL); 6233 6234 wait_for_completion(&init_context.init_done); 6235 6236 if (!init_context.err) 6237 *thread_ptr = thread; 6238 6239 return init_context.err; 6240 } 6241