xref: /openbmc/linux/virt/kvm/kvm_main.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static struct file_operations kvm_chardev_ops;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161 
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 						   unsigned long start, unsigned long end)
164 {
165 }
166 
167 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
168 {
169 	/*
170 	 * The metadata used by is_zone_device_page() to determine whether or
171 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
172 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
173 	 * page_count() is zero to help detect bad usage of this helper.
174 	 */
175 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
176 		return false;
177 
178 	return is_zone_device_page(pfn_to_page(pfn));
179 }
180 
181 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
182 {
183 	/*
184 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
185 	 * perspective they are "normal" pages, albeit with slightly different
186 	 * usage rules.
187 	 */
188 	if (pfn_valid(pfn))
189 		return PageReserved(pfn_to_page(pfn)) &&
190 		       !is_zero_pfn(pfn) &&
191 		       !kvm_is_zone_device_pfn(pfn);
192 
193 	return true;
194 }
195 
196 /*
197  * Switches to specified vcpu, until a matching vcpu_put()
198  */
199 void vcpu_load(struct kvm_vcpu *vcpu)
200 {
201 	int cpu = get_cpu();
202 
203 	__this_cpu_write(kvm_running_vcpu, vcpu);
204 	preempt_notifier_register(&vcpu->preempt_notifier);
205 	kvm_arch_vcpu_load(vcpu, cpu);
206 	put_cpu();
207 }
208 EXPORT_SYMBOL_GPL(vcpu_load);
209 
210 void vcpu_put(struct kvm_vcpu *vcpu)
211 {
212 	preempt_disable();
213 	kvm_arch_vcpu_put(vcpu);
214 	preempt_notifier_unregister(&vcpu->preempt_notifier);
215 	__this_cpu_write(kvm_running_vcpu, NULL);
216 	preempt_enable();
217 }
218 EXPORT_SYMBOL_GPL(vcpu_put);
219 
220 /* TODO: merge with kvm_arch_vcpu_should_kick */
221 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
222 {
223 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
224 
225 	/*
226 	 * We need to wait for the VCPU to reenable interrupts and get out of
227 	 * READING_SHADOW_PAGE_TABLES mode.
228 	 */
229 	if (req & KVM_REQUEST_WAIT)
230 		return mode != OUTSIDE_GUEST_MODE;
231 
232 	/*
233 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
234 	 */
235 	return mode == IN_GUEST_MODE;
236 }
237 
238 static void ack_flush(void *_completed)
239 {
240 }
241 
242 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
243 {
244 	if (cpumask_empty(cpus))
245 		return false;
246 
247 	smp_call_function_many(cpus, ack_flush, NULL, wait);
248 	return true;
249 }
250 
251 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
252 				  struct cpumask *tmp, int current_cpu)
253 {
254 	int cpu;
255 
256 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
257 		__kvm_make_request(req, vcpu);
258 
259 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
260 		return;
261 
262 	/*
263 	 * Note, the vCPU could get migrated to a different pCPU at any point
264 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
265 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
266 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
267 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
268 	 * after this point is also OK, as the requirement is only that KVM wait
269 	 * for vCPUs that were reading SPTEs _before_ any changes were
270 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
271 	 */
272 	if (kvm_request_needs_ipi(vcpu, req)) {
273 		cpu = READ_ONCE(vcpu->cpu);
274 		if (cpu != -1 && cpu != current_cpu)
275 			__cpumask_set_cpu(cpu, tmp);
276 	}
277 }
278 
279 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
280 				 unsigned long *vcpu_bitmap)
281 {
282 	struct kvm_vcpu *vcpu;
283 	struct cpumask *cpus;
284 	int i, me;
285 	bool called;
286 
287 	me = get_cpu();
288 
289 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
290 	cpumask_clear(cpus);
291 
292 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
293 		vcpu = kvm_get_vcpu(kvm, i);
294 		if (!vcpu)
295 			continue;
296 		kvm_make_vcpu_request(vcpu, req, cpus, me);
297 	}
298 
299 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
300 	put_cpu();
301 
302 	return called;
303 }
304 
305 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
306 				      struct kvm_vcpu *except)
307 {
308 	struct kvm_vcpu *vcpu;
309 	struct cpumask *cpus;
310 	unsigned long i;
311 	bool called;
312 	int me;
313 
314 	me = get_cpu();
315 
316 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
317 	cpumask_clear(cpus);
318 
319 	kvm_for_each_vcpu(i, vcpu, kvm) {
320 		if (vcpu == except)
321 			continue;
322 		kvm_make_vcpu_request(vcpu, req, cpus, me);
323 	}
324 
325 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
326 	put_cpu();
327 
328 	return called;
329 }
330 
331 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
332 {
333 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
334 }
335 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
336 
337 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
338 void kvm_flush_remote_tlbs(struct kvm *kvm)
339 {
340 	++kvm->stat.generic.remote_tlb_flush_requests;
341 
342 	/*
343 	 * We want to publish modifications to the page tables before reading
344 	 * mode. Pairs with a memory barrier in arch-specific code.
345 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
346 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
347 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
348 	 *
349 	 * There is already an smp_mb__after_atomic() before
350 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
351 	 * barrier here.
352 	 */
353 	if (!kvm_arch_flush_remote_tlb(kvm)
354 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
355 		++kvm->stat.generic.remote_tlb_flush;
356 }
357 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
358 #endif
359 
360 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
361 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
362 					       gfp_t gfp_flags)
363 {
364 	gfp_flags |= mc->gfp_zero;
365 
366 	if (mc->kmem_cache)
367 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
368 	else
369 		return (void *)__get_free_page(gfp_flags);
370 }
371 
372 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
373 {
374 	void *obj;
375 
376 	if (mc->nobjs >= min)
377 		return 0;
378 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
379 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
380 		if (!obj)
381 			return mc->nobjs >= min ? 0 : -ENOMEM;
382 		mc->objects[mc->nobjs++] = obj;
383 	}
384 	return 0;
385 }
386 
387 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
388 {
389 	return mc->nobjs;
390 }
391 
392 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
393 {
394 	while (mc->nobjs) {
395 		if (mc->kmem_cache)
396 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
397 		else
398 			free_page((unsigned long)mc->objects[--mc->nobjs]);
399 	}
400 }
401 
402 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
403 {
404 	void *p;
405 
406 	if (WARN_ON(!mc->nobjs))
407 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
408 	else
409 		p = mc->objects[--mc->nobjs];
410 	BUG_ON(!p);
411 	return p;
412 }
413 #endif
414 
415 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
416 {
417 	mutex_init(&vcpu->mutex);
418 	vcpu->cpu = -1;
419 	vcpu->kvm = kvm;
420 	vcpu->vcpu_id = id;
421 	vcpu->pid = NULL;
422 #ifndef __KVM_HAVE_ARCH_WQP
423 	rcuwait_init(&vcpu->wait);
424 #endif
425 	kvm_async_pf_vcpu_init(vcpu);
426 
427 	kvm_vcpu_set_in_spin_loop(vcpu, false);
428 	kvm_vcpu_set_dy_eligible(vcpu, false);
429 	vcpu->preempted = false;
430 	vcpu->ready = false;
431 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
432 	vcpu->last_used_slot = NULL;
433 }
434 
435 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
436 {
437 	kvm_dirty_ring_free(&vcpu->dirty_ring);
438 	kvm_arch_vcpu_destroy(vcpu);
439 
440 	/*
441 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
442 	 * the vcpu->pid pointer, and at destruction time all file descriptors
443 	 * are already gone.
444 	 */
445 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
446 
447 	free_page((unsigned long)vcpu->run);
448 	kmem_cache_free(kvm_vcpu_cache, vcpu);
449 }
450 
451 void kvm_destroy_vcpus(struct kvm *kvm)
452 {
453 	unsigned long i;
454 	struct kvm_vcpu *vcpu;
455 
456 	kvm_for_each_vcpu(i, vcpu, kvm) {
457 		kvm_vcpu_destroy(vcpu);
458 		xa_erase(&kvm->vcpu_array, i);
459 	}
460 
461 	atomic_set(&kvm->online_vcpus, 0);
462 }
463 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
464 
465 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
466 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
467 {
468 	return container_of(mn, struct kvm, mmu_notifier);
469 }
470 
471 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
472 					      struct mm_struct *mm,
473 					      unsigned long start, unsigned long end)
474 {
475 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 	int idx;
477 
478 	idx = srcu_read_lock(&kvm->srcu);
479 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
480 	srcu_read_unlock(&kvm->srcu, idx);
481 }
482 
483 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
484 
485 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
486 			     unsigned long end);
487 
488 struct kvm_hva_range {
489 	unsigned long start;
490 	unsigned long end;
491 	pte_t pte;
492 	hva_handler_t handler;
493 	on_lock_fn_t on_lock;
494 	bool flush_on_ret;
495 	bool may_block;
496 };
497 
498 /*
499  * Use a dedicated stub instead of NULL to indicate that there is no callback
500  * function/handler.  The compiler technically can't guarantee that a real
501  * function will have a non-zero address, and so it will generate code to
502  * check for !NULL, whereas comparing against a stub will be elided at compile
503  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
504  */
505 static void kvm_null_fn(void)
506 {
507 
508 }
509 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
510 
511 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
512 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
513 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
514 	     node;							     \
515 	     node = interval_tree_iter_next(node, start, last))	     \
516 
517 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
518 						  const struct kvm_hva_range *range)
519 {
520 	bool ret = false, locked = false;
521 	struct kvm_gfn_range gfn_range;
522 	struct kvm_memory_slot *slot;
523 	struct kvm_memslots *slots;
524 	int i, idx;
525 
526 	if (WARN_ON_ONCE(range->end <= range->start))
527 		return 0;
528 
529 	/* A null handler is allowed if and only if on_lock() is provided. */
530 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
531 			 IS_KVM_NULL_FN(range->handler)))
532 		return 0;
533 
534 	idx = srcu_read_lock(&kvm->srcu);
535 
536 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
537 		struct interval_tree_node *node;
538 
539 		slots = __kvm_memslots(kvm, i);
540 		kvm_for_each_memslot_in_hva_range(node, slots,
541 						  range->start, range->end - 1) {
542 			unsigned long hva_start, hva_end;
543 
544 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
545 			hva_start = max(range->start, slot->userspace_addr);
546 			hva_end = min(range->end, slot->userspace_addr +
547 						  (slot->npages << PAGE_SHIFT));
548 
549 			/*
550 			 * To optimize for the likely case where the address
551 			 * range is covered by zero or one memslots, don't
552 			 * bother making these conditional (to avoid writes on
553 			 * the second or later invocation of the handler).
554 			 */
555 			gfn_range.pte = range->pte;
556 			gfn_range.may_block = range->may_block;
557 
558 			/*
559 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
560 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
561 			 */
562 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
563 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
564 			gfn_range.slot = slot;
565 
566 			if (!locked) {
567 				locked = true;
568 				KVM_MMU_LOCK(kvm);
569 				if (!IS_KVM_NULL_FN(range->on_lock))
570 					range->on_lock(kvm, range->start, range->end);
571 				if (IS_KVM_NULL_FN(range->handler))
572 					break;
573 			}
574 			ret |= range->handler(kvm, &gfn_range);
575 		}
576 	}
577 
578 	if (range->flush_on_ret && ret)
579 		kvm_flush_remote_tlbs(kvm);
580 
581 	if (locked)
582 		KVM_MMU_UNLOCK(kvm);
583 
584 	srcu_read_unlock(&kvm->srcu, idx);
585 
586 	/* The notifiers are averse to booleans. :-( */
587 	return (int)ret;
588 }
589 
590 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
591 						unsigned long start,
592 						unsigned long end,
593 						pte_t pte,
594 						hva_handler_t handler)
595 {
596 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
597 	const struct kvm_hva_range range = {
598 		.start		= start,
599 		.end		= end,
600 		.pte		= pte,
601 		.handler	= handler,
602 		.on_lock	= (void *)kvm_null_fn,
603 		.flush_on_ret	= true,
604 		.may_block	= false,
605 	};
606 
607 	return __kvm_handle_hva_range(kvm, &range);
608 }
609 
610 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
611 							 unsigned long start,
612 							 unsigned long end,
613 							 hva_handler_t handler)
614 {
615 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
616 	const struct kvm_hva_range range = {
617 		.start		= start,
618 		.end		= end,
619 		.pte		= __pte(0),
620 		.handler	= handler,
621 		.on_lock	= (void *)kvm_null_fn,
622 		.flush_on_ret	= false,
623 		.may_block	= false,
624 	};
625 
626 	return __kvm_handle_hva_range(kvm, &range);
627 }
628 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
629 					struct mm_struct *mm,
630 					unsigned long address,
631 					pte_t pte)
632 {
633 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
634 
635 	trace_kvm_set_spte_hva(address);
636 
637 	/*
638 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
639 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
640 	 * including this one, found a relevant memslot at start(); rechecking
641 	 * memslots here is unnecessary.  Note, a false positive (count elevated
642 	 * by a different invalidation) is sub-optimal but functionally ok.
643 	 */
644 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
645 	if (!READ_ONCE(kvm->mmu_notifier_count))
646 		return;
647 
648 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
649 }
650 
651 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
652 				   unsigned long end)
653 {
654 	/*
655 	 * The count increase must become visible at unlock time as no
656 	 * spte can be established without taking the mmu_lock and
657 	 * count is also read inside the mmu_lock critical section.
658 	 */
659 	kvm->mmu_notifier_count++;
660 	if (likely(kvm->mmu_notifier_count == 1)) {
661 		kvm->mmu_notifier_range_start = start;
662 		kvm->mmu_notifier_range_end = end;
663 	} else {
664 		/*
665 		 * Fully tracking multiple concurrent ranges has dimishing
666 		 * returns. Keep things simple and just find the minimal range
667 		 * which includes the current and new ranges. As there won't be
668 		 * enough information to subtract a range after its invalidate
669 		 * completes, any ranges invalidated concurrently will
670 		 * accumulate and persist until all outstanding invalidates
671 		 * complete.
672 		 */
673 		kvm->mmu_notifier_range_start =
674 			min(kvm->mmu_notifier_range_start, start);
675 		kvm->mmu_notifier_range_end =
676 			max(kvm->mmu_notifier_range_end, end);
677 	}
678 }
679 
680 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
681 					const struct mmu_notifier_range *range)
682 {
683 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
684 	const struct kvm_hva_range hva_range = {
685 		.start		= range->start,
686 		.end		= range->end,
687 		.pte		= __pte(0),
688 		.handler	= kvm_unmap_gfn_range,
689 		.on_lock	= kvm_inc_notifier_count,
690 		.flush_on_ret	= true,
691 		.may_block	= mmu_notifier_range_blockable(range),
692 	};
693 
694 	trace_kvm_unmap_hva_range(range->start, range->end);
695 
696 	/*
697 	 * Prevent memslot modification between range_start() and range_end()
698 	 * so that conditionally locking provides the same result in both
699 	 * functions.  Without that guarantee, the mmu_notifier_count
700 	 * adjustments will be imbalanced.
701 	 *
702 	 * Pairs with the decrement in range_end().
703 	 */
704 	spin_lock(&kvm->mn_invalidate_lock);
705 	kvm->mn_active_invalidate_count++;
706 	spin_unlock(&kvm->mn_invalidate_lock);
707 
708 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
709 					  hva_range.may_block);
710 
711 	__kvm_handle_hva_range(kvm, &hva_range);
712 
713 	return 0;
714 }
715 
716 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
717 				   unsigned long end)
718 {
719 	/*
720 	 * This sequence increase will notify the kvm page fault that
721 	 * the page that is going to be mapped in the spte could have
722 	 * been freed.
723 	 */
724 	kvm->mmu_notifier_seq++;
725 	smp_wmb();
726 	/*
727 	 * The above sequence increase must be visible before the
728 	 * below count decrease, which is ensured by the smp_wmb above
729 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
730 	 */
731 	kvm->mmu_notifier_count--;
732 }
733 
734 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
735 					const struct mmu_notifier_range *range)
736 {
737 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
738 	const struct kvm_hva_range hva_range = {
739 		.start		= range->start,
740 		.end		= range->end,
741 		.pte		= __pte(0),
742 		.handler	= (void *)kvm_null_fn,
743 		.on_lock	= kvm_dec_notifier_count,
744 		.flush_on_ret	= false,
745 		.may_block	= mmu_notifier_range_blockable(range),
746 	};
747 	bool wake;
748 
749 	__kvm_handle_hva_range(kvm, &hva_range);
750 
751 	/* Pairs with the increment in range_start(). */
752 	spin_lock(&kvm->mn_invalidate_lock);
753 	wake = (--kvm->mn_active_invalidate_count == 0);
754 	spin_unlock(&kvm->mn_invalidate_lock);
755 
756 	/*
757 	 * There can only be one waiter, since the wait happens under
758 	 * slots_lock.
759 	 */
760 	if (wake)
761 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
762 
763 	BUG_ON(kvm->mmu_notifier_count < 0);
764 }
765 
766 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
767 					      struct mm_struct *mm,
768 					      unsigned long start,
769 					      unsigned long end)
770 {
771 	trace_kvm_age_hva(start, end);
772 
773 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
774 }
775 
776 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
777 					struct mm_struct *mm,
778 					unsigned long start,
779 					unsigned long end)
780 {
781 	trace_kvm_age_hva(start, end);
782 
783 	/*
784 	 * Even though we do not flush TLB, this will still adversely
785 	 * affect performance on pre-Haswell Intel EPT, where there is
786 	 * no EPT Access Bit to clear so that we have to tear down EPT
787 	 * tables instead. If we find this unacceptable, we can always
788 	 * add a parameter to kvm_age_hva so that it effectively doesn't
789 	 * do anything on clear_young.
790 	 *
791 	 * Also note that currently we never issue secondary TLB flushes
792 	 * from clear_young, leaving this job up to the regular system
793 	 * cadence. If we find this inaccurate, we might come up with a
794 	 * more sophisticated heuristic later.
795 	 */
796 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
797 }
798 
799 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
800 				       struct mm_struct *mm,
801 				       unsigned long address)
802 {
803 	trace_kvm_test_age_hva(address);
804 
805 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
806 					     kvm_test_age_gfn);
807 }
808 
809 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
810 				     struct mm_struct *mm)
811 {
812 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
813 	int idx;
814 
815 	idx = srcu_read_lock(&kvm->srcu);
816 	kvm_arch_flush_shadow_all(kvm);
817 	srcu_read_unlock(&kvm->srcu, idx);
818 }
819 
820 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
821 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
822 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
823 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
824 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
825 	.clear_young		= kvm_mmu_notifier_clear_young,
826 	.test_young		= kvm_mmu_notifier_test_young,
827 	.change_pte		= kvm_mmu_notifier_change_pte,
828 	.release		= kvm_mmu_notifier_release,
829 };
830 
831 static int kvm_init_mmu_notifier(struct kvm *kvm)
832 {
833 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
834 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
835 }
836 
837 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
838 
839 static int kvm_init_mmu_notifier(struct kvm *kvm)
840 {
841 	return 0;
842 }
843 
844 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
845 
846 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
847 static int kvm_pm_notifier_call(struct notifier_block *bl,
848 				unsigned long state,
849 				void *unused)
850 {
851 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
852 
853 	return kvm_arch_pm_notifier(kvm, state);
854 }
855 
856 static void kvm_init_pm_notifier(struct kvm *kvm)
857 {
858 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
859 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
860 	kvm->pm_notifier.priority = INT_MAX;
861 	register_pm_notifier(&kvm->pm_notifier);
862 }
863 
864 static void kvm_destroy_pm_notifier(struct kvm *kvm)
865 {
866 	unregister_pm_notifier(&kvm->pm_notifier);
867 }
868 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
869 static void kvm_init_pm_notifier(struct kvm *kvm)
870 {
871 }
872 
873 static void kvm_destroy_pm_notifier(struct kvm *kvm)
874 {
875 }
876 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
877 
878 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
879 {
880 	if (!memslot->dirty_bitmap)
881 		return;
882 
883 	kvfree(memslot->dirty_bitmap);
884 	memslot->dirty_bitmap = NULL;
885 }
886 
887 /* This does not remove the slot from struct kvm_memslots data structures */
888 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
889 {
890 	kvm_destroy_dirty_bitmap(slot);
891 
892 	kvm_arch_free_memslot(kvm, slot);
893 
894 	kfree(slot);
895 }
896 
897 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
898 {
899 	struct hlist_node *idnode;
900 	struct kvm_memory_slot *memslot;
901 	int bkt;
902 
903 	/*
904 	 * The same memslot objects live in both active and inactive sets,
905 	 * arbitrarily free using index '1' so the second invocation of this
906 	 * function isn't operating over a structure with dangling pointers
907 	 * (even though this function isn't actually touching them).
908 	 */
909 	if (!slots->node_idx)
910 		return;
911 
912 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
913 		kvm_free_memslot(kvm, memslot);
914 }
915 
916 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
917 {
918 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
919 	case KVM_STATS_TYPE_INSTANT:
920 		return 0444;
921 	case KVM_STATS_TYPE_CUMULATIVE:
922 	case KVM_STATS_TYPE_PEAK:
923 	default:
924 		return 0644;
925 	}
926 }
927 
928 
929 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
930 {
931 	int i;
932 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
933 				      kvm_vcpu_stats_header.num_desc;
934 
935 	if (!kvm->debugfs_dentry)
936 		return;
937 
938 	debugfs_remove_recursive(kvm->debugfs_dentry);
939 
940 	if (kvm->debugfs_stat_data) {
941 		for (i = 0; i < kvm_debugfs_num_entries; i++)
942 			kfree(kvm->debugfs_stat_data[i]);
943 		kfree(kvm->debugfs_stat_data);
944 	}
945 }
946 
947 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
948 {
949 	static DEFINE_MUTEX(kvm_debugfs_lock);
950 	struct dentry *dent;
951 	char dir_name[ITOA_MAX_LEN * 2];
952 	struct kvm_stat_data *stat_data;
953 	const struct _kvm_stats_desc *pdesc;
954 	int i, ret;
955 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
956 				      kvm_vcpu_stats_header.num_desc;
957 
958 	if (!debugfs_initialized())
959 		return 0;
960 
961 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
962 	mutex_lock(&kvm_debugfs_lock);
963 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
964 	if (dent) {
965 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
966 		dput(dent);
967 		mutex_unlock(&kvm_debugfs_lock);
968 		return 0;
969 	}
970 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
971 	mutex_unlock(&kvm_debugfs_lock);
972 	if (IS_ERR(dent))
973 		return 0;
974 
975 	kvm->debugfs_dentry = dent;
976 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
977 					 sizeof(*kvm->debugfs_stat_data),
978 					 GFP_KERNEL_ACCOUNT);
979 	if (!kvm->debugfs_stat_data)
980 		return -ENOMEM;
981 
982 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
983 		pdesc = &kvm_vm_stats_desc[i];
984 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
985 		if (!stat_data)
986 			return -ENOMEM;
987 
988 		stat_data->kvm = kvm;
989 		stat_data->desc = pdesc;
990 		stat_data->kind = KVM_STAT_VM;
991 		kvm->debugfs_stat_data[i] = stat_data;
992 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
993 				    kvm->debugfs_dentry, stat_data,
994 				    &stat_fops_per_vm);
995 	}
996 
997 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
998 		pdesc = &kvm_vcpu_stats_desc[i];
999 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1000 		if (!stat_data)
1001 			return -ENOMEM;
1002 
1003 		stat_data->kvm = kvm;
1004 		stat_data->desc = pdesc;
1005 		stat_data->kind = KVM_STAT_VCPU;
1006 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1007 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1008 				    kvm->debugfs_dentry, stat_data,
1009 				    &stat_fops_per_vm);
1010 	}
1011 
1012 	ret = kvm_arch_create_vm_debugfs(kvm);
1013 	if (ret) {
1014 		kvm_destroy_vm_debugfs(kvm);
1015 		return i;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Called after the VM is otherwise initialized, but just before adding it to
1023  * the vm_list.
1024  */
1025 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1026 {
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Called just after removing the VM from the vm_list, but before doing any
1032  * other destruction.
1033  */
1034 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1035 {
1036 }
1037 
1038 /*
1039  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1040  * be setup already, so we can create arch-specific debugfs entries under it.
1041  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1042  * a per-arch destroy interface is not needed.
1043  */
1044 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1045 {
1046 	return 0;
1047 }
1048 
1049 static struct kvm *kvm_create_vm(unsigned long type)
1050 {
1051 	struct kvm *kvm = kvm_arch_alloc_vm();
1052 	struct kvm_memslots *slots;
1053 	int r = -ENOMEM;
1054 	int i, j;
1055 
1056 	if (!kvm)
1057 		return ERR_PTR(-ENOMEM);
1058 
1059 	KVM_MMU_LOCK_INIT(kvm);
1060 	mmgrab(current->mm);
1061 	kvm->mm = current->mm;
1062 	kvm_eventfd_init(kvm);
1063 	mutex_init(&kvm->lock);
1064 	mutex_init(&kvm->irq_lock);
1065 	mutex_init(&kvm->slots_lock);
1066 	mutex_init(&kvm->slots_arch_lock);
1067 	spin_lock_init(&kvm->mn_invalidate_lock);
1068 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1069 	xa_init(&kvm->vcpu_array);
1070 
1071 	INIT_LIST_HEAD(&kvm->gpc_list);
1072 	spin_lock_init(&kvm->gpc_lock);
1073 
1074 	INIT_LIST_HEAD(&kvm->devices);
1075 
1076 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1077 
1078 	if (init_srcu_struct(&kvm->srcu))
1079 		goto out_err_no_srcu;
1080 	if (init_srcu_struct(&kvm->irq_srcu))
1081 		goto out_err_no_irq_srcu;
1082 
1083 	refcount_set(&kvm->users_count, 1);
1084 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1085 		for (j = 0; j < 2; j++) {
1086 			slots = &kvm->__memslots[i][j];
1087 
1088 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1089 			slots->hva_tree = RB_ROOT_CACHED;
1090 			slots->gfn_tree = RB_ROOT;
1091 			hash_init(slots->id_hash);
1092 			slots->node_idx = j;
1093 
1094 			/* Generations must be different for each address space. */
1095 			slots->generation = i;
1096 		}
1097 
1098 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1099 	}
1100 
1101 	for (i = 0; i < KVM_NR_BUSES; i++) {
1102 		rcu_assign_pointer(kvm->buses[i],
1103 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1104 		if (!kvm->buses[i])
1105 			goto out_err_no_arch_destroy_vm;
1106 	}
1107 
1108 	kvm->max_halt_poll_ns = halt_poll_ns;
1109 
1110 	r = kvm_arch_init_vm(kvm, type);
1111 	if (r)
1112 		goto out_err_no_arch_destroy_vm;
1113 
1114 	r = hardware_enable_all();
1115 	if (r)
1116 		goto out_err_no_disable;
1117 
1118 #ifdef CONFIG_HAVE_KVM_IRQFD
1119 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1120 #endif
1121 
1122 	r = kvm_init_mmu_notifier(kvm);
1123 	if (r)
1124 		goto out_err_no_mmu_notifier;
1125 
1126 	r = kvm_arch_post_init_vm(kvm);
1127 	if (r)
1128 		goto out_err;
1129 
1130 	mutex_lock(&kvm_lock);
1131 	list_add(&kvm->vm_list, &vm_list);
1132 	mutex_unlock(&kvm_lock);
1133 
1134 	preempt_notifier_inc();
1135 	kvm_init_pm_notifier(kvm);
1136 
1137 	/*
1138 	 * When the fd passed to this ioctl() is opened it pins the module,
1139 	 * but try_module_get() also prevents getting a reference if the module
1140 	 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1141 	 */
1142 	if (!try_module_get(kvm_chardev_ops.owner)) {
1143 		r = -ENODEV;
1144 		goto out_err;
1145 	}
1146 
1147 	return kvm;
1148 
1149 out_err:
1150 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1151 	if (kvm->mmu_notifier.ops)
1152 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1153 #endif
1154 out_err_no_mmu_notifier:
1155 	hardware_disable_all();
1156 out_err_no_disable:
1157 	kvm_arch_destroy_vm(kvm);
1158 out_err_no_arch_destroy_vm:
1159 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1160 	for (i = 0; i < KVM_NR_BUSES; i++)
1161 		kfree(kvm_get_bus(kvm, i));
1162 	cleanup_srcu_struct(&kvm->irq_srcu);
1163 out_err_no_irq_srcu:
1164 	cleanup_srcu_struct(&kvm->srcu);
1165 out_err_no_srcu:
1166 	kvm_arch_free_vm(kvm);
1167 	mmdrop(current->mm);
1168 	return ERR_PTR(r);
1169 }
1170 
1171 static void kvm_destroy_devices(struct kvm *kvm)
1172 {
1173 	struct kvm_device *dev, *tmp;
1174 
1175 	/*
1176 	 * We do not need to take the kvm->lock here, because nobody else
1177 	 * has a reference to the struct kvm at this point and therefore
1178 	 * cannot access the devices list anyhow.
1179 	 */
1180 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1181 		list_del(&dev->vm_node);
1182 		dev->ops->destroy(dev);
1183 	}
1184 }
1185 
1186 static void kvm_destroy_vm(struct kvm *kvm)
1187 {
1188 	int i;
1189 	struct mm_struct *mm = kvm->mm;
1190 
1191 	kvm_destroy_pm_notifier(kvm);
1192 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1193 	kvm_destroy_vm_debugfs(kvm);
1194 	kvm_arch_sync_events(kvm);
1195 	mutex_lock(&kvm_lock);
1196 	list_del(&kvm->vm_list);
1197 	mutex_unlock(&kvm_lock);
1198 	kvm_arch_pre_destroy_vm(kvm);
1199 
1200 	kvm_free_irq_routing(kvm);
1201 	for (i = 0; i < KVM_NR_BUSES; i++) {
1202 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1203 
1204 		if (bus)
1205 			kvm_io_bus_destroy(bus);
1206 		kvm->buses[i] = NULL;
1207 	}
1208 	kvm_coalesced_mmio_free(kvm);
1209 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1210 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1211 	/*
1212 	 * At this point, pending calls to invalidate_range_start()
1213 	 * have completed but no more MMU notifiers will run, so
1214 	 * mn_active_invalidate_count may remain unbalanced.
1215 	 * No threads can be waiting in install_new_memslots as the
1216 	 * last reference on KVM has been dropped, but freeing
1217 	 * memslots would deadlock without this manual intervention.
1218 	 */
1219 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1220 	kvm->mn_active_invalidate_count = 0;
1221 #else
1222 	kvm_arch_flush_shadow_all(kvm);
1223 #endif
1224 	kvm_arch_destroy_vm(kvm);
1225 	kvm_destroy_devices(kvm);
1226 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1227 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1228 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1229 	}
1230 	cleanup_srcu_struct(&kvm->irq_srcu);
1231 	cleanup_srcu_struct(&kvm->srcu);
1232 	kvm_arch_free_vm(kvm);
1233 	preempt_notifier_dec();
1234 	hardware_disable_all();
1235 	mmdrop(mm);
1236 	module_put(kvm_chardev_ops.owner);
1237 }
1238 
1239 void kvm_get_kvm(struct kvm *kvm)
1240 {
1241 	refcount_inc(&kvm->users_count);
1242 }
1243 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1244 
1245 /*
1246  * Make sure the vm is not during destruction, which is a safe version of
1247  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1248  */
1249 bool kvm_get_kvm_safe(struct kvm *kvm)
1250 {
1251 	return refcount_inc_not_zero(&kvm->users_count);
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1254 
1255 void kvm_put_kvm(struct kvm *kvm)
1256 {
1257 	if (refcount_dec_and_test(&kvm->users_count))
1258 		kvm_destroy_vm(kvm);
1259 }
1260 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1261 
1262 /*
1263  * Used to put a reference that was taken on behalf of an object associated
1264  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1265  * of the new file descriptor fails and the reference cannot be transferred to
1266  * its final owner.  In such cases, the caller is still actively using @kvm and
1267  * will fail miserably if the refcount unexpectedly hits zero.
1268  */
1269 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1270 {
1271 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1272 }
1273 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1274 
1275 static int kvm_vm_release(struct inode *inode, struct file *filp)
1276 {
1277 	struct kvm *kvm = filp->private_data;
1278 
1279 	kvm_irqfd_release(kvm);
1280 
1281 	kvm_put_kvm(kvm);
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Allocation size is twice as large as the actual dirty bitmap size.
1287  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1288  */
1289 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1290 {
1291 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1292 
1293 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1294 	if (!memslot->dirty_bitmap)
1295 		return -ENOMEM;
1296 
1297 	return 0;
1298 }
1299 
1300 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1301 {
1302 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1303 	int node_idx_inactive = active->node_idx ^ 1;
1304 
1305 	return &kvm->__memslots[as_id][node_idx_inactive];
1306 }
1307 
1308 /*
1309  * Helper to get the address space ID when one of memslot pointers may be NULL.
1310  * This also serves as a sanity that at least one of the pointers is non-NULL,
1311  * and that their address space IDs don't diverge.
1312  */
1313 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1314 				  struct kvm_memory_slot *b)
1315 {
1316 	if (WARN_ON_ONCE(!a && !b))
1317 		return 0;
1318 
1319 	if (!a)
1320 		return b->as_id;
1321 	if (!b)
1322 		return a->as_id;
1323 
1324 	WARN_ON_ONCE(a->as_id != b->as_id);
1325 	return a->as_id;
1326 }
1327 
1328 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1329 				struct kvm_memory_slot *slot)
1330 {
1331 	struct rb_root *gfn_tree = &slots->gfn_tree;
1332 	struct rb_node **node, *parent;
1333 	int idx = slots->node_idx;
1334 
1335 	parent = NULL;
1336 	for (node = &gfn_tree->rb_node; *node; ) {
1337 		struct kvm_memory_slot *tmp;
1338 
1339 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1340 		parent = *node;
1341 		if (slot->base_gfn < tmp->base_gfn)
1342 			node = &(*node)->rb_left;
1343 		else if (slot->base_gfn > tmp->base_gfn)
1344 			node = &(*node)->rb_right;
1345 		else
1346 			BUG();
1347 	}
1348 
1349 	rb_link_node(&slot->gfn_node[idx], parent, node);
1350 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1351 }
1352 
1353 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1354 			       struct kvm_memory_slot *slot)
1355 {
1356 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1357 }
1358 
1359 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1360 				 struct kvm_memory_slot *old,
1361 				 struct kvm_memory_slot *new)
1362 {
1363 	int idx = slots->node_idx;
1364 
1365 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1366 
1367 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1368 			&slots->gfn_tree);
1369 }
1370 
1371 /*
1372  * Replace @old with @new in the inactive memslots.
1373  *
1374  * With NULL @old this simply adds @new.
1375  * With NULL @new this simply removes @old.
1376  *
1377  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1378  * appropriately.
1379  */
1380 static void kvm_replace_memslot(struct kvm *kvm,
1381 				struct kvm_memory_slot *old,
1382 				struct kvm_memory_slot *new)
1383 {
1384 	int as_id = kvm_memslots_get_as_id(old, new);
1385 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1386 	int idx = slots->node_idx;
1387 
1388 	if (old) {
1389 		hash_del(&old->id_node[idx]);
1390 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1391 
1392 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1393 			atomic_long_set(&slots->last_used_slot, (long)new);
1394 
1395 		if (!new) {
1396 			kvm_erase_gfn_node(slots, old);
1397 			return;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Initialize @new's hva range.  Do this even when replacing an @old
1403 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1404 	 */
1405 	new->hva_node[idx].start = new->userspace_addr;
1406 	new->hva_node[idx].last = new->userspace_addr +
1407 				  (new->npages << PAGE_SHIFT) - 1;
1408 
1409 	/*
1410 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1411 	 * hva_node needs to be swapped with remove+insert even though hva can't
1412 	 * change when replacing an existing slot.
1413 	 */
1414 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1415 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1416 
1417 	/*
1418 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1419 	 * switch the node in the gfn tree instead of removing the old and
1420 	 * inserting the new as two separate operations. Replacement is a
1421 	 * single O(1) operation versus two O(log(n)) operations for
1422 	 * remove+insert.
1423 	 */
1424 	if (old && old->base_gfn == new->base_gfn) {
1425 		kvm_replace_gfn_node(slots, old, new);
1426 	} else {
1427 		if (old)
1428 			kvm_erase_gfn_node(slots, old);
1429 		kvm_insert_gfn_node(slots, new);
1430 	}
1431 }
1432 
1433 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1434 {
1435 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1436 
1437 #ifdef __KVM_HAVE_READONLY_MEM
1438 	valid_flags |= KVM_MEM_READONLY;
1439 #endif
1440 
1441 	if (mem->flags & ~valid_flags)
1442 		return -EINVAL;
1443 
1444 	return 0;
1445 }
1446 
1447 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1448 {
1449 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1450 
1451 	/* Grab the generation from the activate memslots. */
1452 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1453 
1454 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1455 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1456 
1457 	/*
1458 	 * Do not store the new memslots while there are invalidations in
1459 	 * progress, otherwise the locking in invalidate_range_start and
1460 	 * invalidate_range_end will be unbalanced.
1461 	 */
1462 	spin_lock(&kvm->mn_invalidate_lock);
1463 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1464 	while (kvm->mn_active_invalidate_count) {
1465 		set_current_state(TASK_UNINTERRUPTIBLE);
1466 		spin_unlock(&kvm->mn_invalidate_lock);
1467 		schedule();
1468 		spin_lock(&kvm->mn_invalidate_lock);
1469 	}
1470 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1471 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1472 	spin_unlock(&kvm->mn_invalidate_lock);
1473 
1474 	/*
1475 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1476 	 * SRCU below in order to avoid deadlock with another thread
1477 	 * acquiring the slots_arch_lock in an srcu critical section.
1478 	 */
1479 	mutex_unlock(&kvm->slots_arch_lock);
1480 
1481 	synchronize_srcu_expedited(&kvm->srcu);
1482 
1483 	/*
1484 	 * Increment the new memslot generation a second time, dropping the
1485 	 * update in-progress flag and incrementing the generation based on
1486 	 * the number of address spaces.  This provides a unique and easily
1487 	 * identifiable generation number while the memslots are in flux.
1488 	 */
1489 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1490 
1491 	/*
1492 	 * Generations must be unique even across address spaces.  We do not need
1493 	 * a global counter for that, instead the generation space is evenly split
1494 	 * across address spaces.  For example, with two address spaces, address
1495 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1496 	 * use generations 1, 3, 5, ...
1497 	 */
1498 	gen += KVM_ADDRESS_SPACE_NUM;
1499 
1500 	kvm_arch_memslots_updated(kvm, gen);
1501 
1502 	slots->generation = gen;
1503 }
1504 
1505 static int kvm_prepare_memory_region(struct kvm *kvm,
1506 				     const struct kvm_memory_slot *old,
1507 				     struct kvm_memory_slot *new,
1508 				     enum kvm_mr_change change)
1509 {
1510 	int r;
1511 
1512 	/*
1513 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1514 	 * will be freed on "commit".  If logging is enabled in both old and
1515 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1516 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1517 	 * new bitmap.
1518 	 */
1519 	if (change != KVM_MR_DELETE) {
1520 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1521 			new->dirty_bitmap = NULL;
1522 		else if (old && old->dirty_bitmap)
1523 			new->dirty_bitmap = old->dirty_bitmap;
1524 		else if (!kvm->dirty_ring_size) {
1525 			r = kvm_alloc_dirty_bitmap(new);
1526 			if (r)
1527 				return r;
1528 
1529 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1530 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1531 		}
1532 	}
1533 
1534 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1535 
1536 	/* Free the bitmap on failure if it was allocated above. */
1537 	if (r && new && new->dirty_bitmap && old && !old->dirty_bitmap)
1538 		kvm_destroy_dirty_bitmap(new);
1539 
1540 	return r;
1541 }
1542 
1543 static void kvm_commit_memory_region(struct kvm *kvm,
1544 				     struct kvm_memory_slot *old,
1545 				     const struct kvm_memory_slot *new,
1546 				     enum kvm_mr_change change)
1547 {
1548 	/*
1549 	 * Update the total number of memslot pages before calling the arch
1550 	 * hook so that architectures can consume the result directly.
1551 	 */
1552 	if (change == KVM_MR_DELETE)
1553 		kvm->nr_memslot_pages -= old->npages;
1554 	else if (change == KVM_MR_CREATE)
1555 		kvm->nr_memslot_pages += new->npages;
1556 
1557 	kvm_arch_commit_memory_region(kvm, old, new, change);
1558 
1559 	switch (change) {
1560 	case KVM_MR_CREATE:
1561 		/* Nothing more to do. */
1562 		break;
1563 	case KVM_MR_DELETE:
1564 		/* Free the old memslot and all its metadata. */
1565 		kvm_free_memslot(kvm, old);
1566 		break;
1567 	case KVM_MR_MOVE:
1568 	case KVM_MR_FLAGS_ONLY:
1569 		/*
1570 		 * Free the dirty bitmap as needed; the below check encompasses
1571 		 * both the flags and whether a ring buffer is being used)
1572 		 */
1573 		if (old->dirty_bitmap && !new->dirty_bitmap)
1574 			kvm_destroy_dirty_bitmap(old);
1575 
1576 		/*
1577 		 * The final quirk.  Free the detached, old slot, but only its
1578 		 * memory, not any metadata.  Metadata, including arch specific
1579 		 * data, may be reused by @new.
1580 		 */
1581 		kfree(old);
1582 		break;
1583 	default:
1584 		BUG();
1585 	}
1586 }
1587 
1588 /*
1589  * Activate @new, which must be installed in the inactive slots by the caller,
1590  * by swapping the active slots and then propagating @new to @old once @old is
1591  * unreachable and can be safely modified.
1592  *
1593  * With NULL @old this simply adds @new to @active (while swapping the sets).
1594  * With NULL @new this simply removes @old from @active and frees it
1595  * (while also swapping the sets).
1596  */
1597 static void kvm_activate_memslot(struct kvm *kvm,
1598 				 struct kvm_memory_slot *old,
1599 				 struct kvm_memory_slot *new)
1600 {
1601 	int as_id = kvm_memslots_get_as_id(old, new);
1602 
1603 	kvm_swap_active_memslots(kvm, as_id);
1604 
1605 	/* Propagate the new memslot to the now inactive memslots. */
1606 	kvm_replace_memslot(kvm, old, new);
1607 }
1608 
1609 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1610 			     const struct kvm_memory_slot *src)
1611 {
1612 	dest->base_gfn = src->base_gfn;
1613 	dest->npages = src->npages;
1614 	dest->dirty_bitmap = src->dirty_bitmap;
1615 	dest->arch = src->arch;
1616 	dest->userspace_addr = src->userspace_addr;
1617 	dest->flags = src->flags;
1618 	dest->id = src->id;
1619 	dest->as_id = src->as_id;
1620 }
1621 
1622 static void kvm_invalidate_memslot(struct kvm *kvm,
1623 				   struct kvm_memory_slot *old,
1624 				   struct kvm_memory_slot *invalid_slot)
1625 {
1626 	/*
1627 	 * Mark the current slot INVALID.  As with all memslot modifications,
1628 	 * this must be done on an unreachable slot to avoid modifying the
1629 	 * current slot in the active tree.
1630 	 */
1631 	kvm_copy_memslot(invalid_slot, old);
1632 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1633 	kvm_replace_memslot(kvm, old, invalid_slot);
1634 
1635 	/*
1636 	 * Activate the slot that is now marked INVALID, but don't propagate
1637 	 * the slot to the now inactive slots. The slot is either going to be
1638 	 * deleted or recreated as a new slot.
1639 	 */
1640 	kvm_swap_active_memslots(kvm, old->as_id);
1641 
1642 	/*
1643 	 * From this point no new shadow pages pointing to a deleted, or moved,
1644 	 * memslot will be created.  Validation of sp->gfn happens in:
1645 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1646 	 *	- kvm_is_visible_gfn (mmu_check_root)
1647 	 */
1648 	kvm_arch_flush_shadow_memslot(kvm, old);
1649 
1650 	/* Was released by kvm_swap_active_memslots, reacquire. */
1651 	mutex_lock(&kvm->slots_arch_lock);
1652 
1653 	/*
1654 	 * Copy the arch-specific field of the newly-installed slot back to the
1655 	 * old slot as the arch data could have changed between releasing
1656 	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1657 	 * above.  Writers are required to retrieve memslots *after* acquiring
1658 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1659 	 */
1660 	old->arch = invalid_slot->arch;
1661 }
1662 
1663 static void kvm_create_memslot(struct kvm *kvm,
1664 			       struct kvm_memory_slot *new)
1665 {
1666 	/* Add the new memslot to the inactive set and activate. */
1667 	kvm_replace_memslot(kvm, NULL, new);
1668 	kvm_activate_memslot(kvm, NULL, new);
1669 }
1670 
1671 static void kvm_delete_memslot(struct kvm *kvm,
1672 			       struct kvm_memory_slot *old,
1673 			       struct kvm_memory_slot *invalid_slot)
1674 {
1675 	/*
1676 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1677 	 * the "new" slot, and for the invalid version in the active slots.
1678 	 */
1679 	kvm_replace_memslot(kvm, old, NULL);
1680 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1681 }
1682 
1683 static void kvm_move_memslot(struct kvm *kvm,
1684 			     struct kvm_memory_slot *old,
1685 			     struct kvm_memory_slot *new,
1686 			     struct kvm_memory_slot *invalid_slot)
1687 {
1688 	/*
1689 	 * Replace the old memslot in the inactive slots, and then swap slots
1690 	 * and replace the current INVALID with the new as well.
1691 	 */
1692 	kvm_replace_memslot(kvm, old, new);
1693 	kvm_activate_memslot(kvm, invalid_slot, new);
1694 }
1695 
1696 static void kvm_update_flags_memslot(struct kvm *kvm,
1697 				     struct kvm_memory_slot *old,
1698 				     struct kvm_memory_slot *new)
1699 {
1700 	/*
1701 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1702 	 * an intermediate step. Instead, the old memslot is simply replaced
1703 	 * with a new, updated copy in both memslot sets.
1704 	 */
1705 	kvm_replace_memslot(kvm, old, new);
1706 	kvm_activate_memslot(kvm, old, new);
1707 }
1708 
1709 static int kvm_set_memslot(struct kvm *kvm,
1710 			   struct kvm_memory_slot *old,
1711 			   struct kvm_memory_slot *new,
1712 			   enum kvm_mr_change change)
1713 {
1714 	struct kvm_memory_slot *invalid_slot;
1715 	int r;
1716 
1717 	/*
1718 	 * Released in kvm_swap_active_memslots.
1719 	 *
1720 	 * Must be held from before the current memslots are copied until
1721 	 * after the new memslots are installed with rcu_assign_pointer,
1722 	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1723 	 *
1724 	 * When modifying memslots outside of the slots_lock, must be held
1725 	 * before reading the pointer to the current memslots until after all
1726 	 * changes to those memslots are complete.
1727 	 *
1728 	 * These rules ensure that installing new memslots does not lose
1729 	 * changes made to the previous memslots.
1730 	 */
1731 	mutex_lock(&kvm->slots_arch_lock);
1732 
1733 	/*
1734 	 * Invalidate the old slot if it's being deleted or moved.  This is
1735 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1736 	 * continue running by ensuring there are no mappings or shadow pages
1737 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1738 	 * (and without a lock), a window would exist between effecting the
1739 	 * delete/move and committing the changes in arch code where KVM or a
1740 	 * guest could access a non-existent memslot.
1741 	 *
1742 	 * Modifications are done on a temporary, unreachable slot.  The old
1743 	 * slot needs to be preserved in case a later step fails and the
1744 	 * invalidation needs to be reverted.
1745 	 */
1746 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1747 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1748 		if (!invalid_slot) {
1749 			mutex_unlock(&kvm->slots_arch_lock);
1750 			return -ENOMEM;
1751 		}
1752 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1753 	}
1754 
1755 	r = kvm_prepare_memory_region(kvm, old, new, change);
1756 	if (r) {
1757 		/*
1758 		 * For DELETE/MOVE, revert the above INVALID change.  No
1759 		 * modifications required since the original slot was preserved
1760 		 * in the inactive slots.  Changing the active memslots also
1761 		 * release slots_arch_lock.
1762 		 */
1763 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1764 			kvm_activate_memslot(kvm, invalid_slot, old);
1765 			kfree(invalid_slot);
1766 		} else {
1767 			mutex_unlock(&kvm->slots_arch_lock);
1768 		}
1769 		return r;
1770 	}
1771 
1772 	/*
1773 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1774 	 * version of the old slot.  MOVE is particularly special as it reuses
1775 	 * the old slot and returns a copy of the old slot (in working_slot).
1776 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1777 	 * old slot is detached but otherwise preserved.
1778 	 */
1779 	if (change == KVM_MR_CREATE)
1780 		kvm_create_memslot(kvm, new);
1781 	else if (change == KVM_MR_DELETE)
1782 		kvm_delete_memslot(kvm, old, invalid_slot);
1783 	else if (change == KVM_MR_MOVE)
1784 		kvm_move_memslot(kvm, old, new, invalid_slot);
1785 	else if (change == KVM_MR_FLAGS_ONLY)
1786 		kvm_update_flags_memslot(kvm, old, new);
1787 	else
1788 		BUG();
1789 
1790 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1791 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1792 		kfree(invalid_slot);
1793 
1794 	/*
1795 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1796 	 * will directly hit the final, active memsot.  Architectures are
1797 	 * responsible for knowing that new->arch may be stale.
1798 	 */
1799 	kvm_commit_memory_region(kvm, old, new, change);
1800 
1801 	return 0;
1802 }
1803 
1804 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1805 				      gfn_t start, gfn_t end)
1806 {
1807 	struct kvm_memslot_iter iter;
1808 
1809 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1810 		if (iter.slot->id != id)
1811 			return true;
1812 	}
1813 
1814 	return false;
1815 }
1816 
1817 /*
1818  * Allocate some memory and give it an address in the guest physical address
1819  * space.
1820  *
1821  * Discontiguous memory is allowed, mostly for framebuffers.
1822  *
1823  * Must be called holding kvm->slots_lock for write.
1824  */
1825 int __kvm_set_memory_region(struct kvm *kvm,
1826 			    const struct kvm_userspace_memory_region *mem)
1827 {
1828 	struct kvm_memory_slot *old, *new;
1829 	struct kvm_memslots *slots;
1830 	enum kvm_mr_change change;
1831 	unsigned long npages;
1832 	gfn_t base_gfn;
1833 	int as_id, id;
1834 	int r;
1835 
1836 	r = check_memory_region_flags(mem);
1837 	if (r)
1838 		return r;
1839 
1840 	as_id = mem->slot >> 16;
1841 	id = (u16)mem->slot;
1842 
1843 	/* General sanity checks */
1844 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1845 	    (mem->memory_size != (unsigned long)mem->memory_size))
1846 		return -EINVAL;
1847 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1848 		return -EINVAL;
1849 	/* We can read the guest memory with __xxx_user() later on. */
1850 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1851 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1852 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1853 			mem->memory_size))
1854 		return -EINVAL;
1855 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1856 		return -EINVAL;
1857 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1858 		return -EINVAL;
1859 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1860 		return -EINVAL;
1861 
1862 	slots = __kvm_memslots(kvm, as_id);
1863 
1864 	/*
1865 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1866 	 * and/or destroyed by kvm_set_memslot().
1867 	 */
1868 	old = id_to_memslot(slots, id);
1869 
1870 	if (!mem->memory_size) {
1871 		if (!old || !old->npages)
1872 			return -EINVAL;
1873 
1874 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1875 			return -EIO;
1876 
1877 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1878 	}
1879 
1880 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1881 	npages = (mem->memory_size >> PAGE_SHIFT);
1882 
1883 	if (!old || !old->npages) {
1884 		change = KVM_MR_CREATE;
1885 
1886 		/*
1887 		 * To simplify KVM internals, the total number of pages across
1888 		 * all memslots must fit in an unsigned long.
1889 		 */
1890 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1891 			return -EINVAL;
1892 	} else { /* Modify an existing slot. */
1893 		if ((mem->userspace_addr != old->userspace_addr) ||
1894 		    (npages != old->npages) ||
1895 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1896 			return -EINVAL;
1897 
1898 		if (base_gfn != old->base_gfn)
1899 			change = KVM_MR_MOVE;
1900 		else if (mem->flags != old->flags)
1901 			change = KVM_MR_FLAGS_ONLY;
1902 		else /* Nothing to change. */
1903 			return 0;
1904 	}
1905 
1906 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
1907 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
1908 		return -EEXIST;
1909 
1910 	/* Allocate a slot that will persist in the memslot. */
1911 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
1912 	if (!new)
1913 		return -ENOMEM;
1914 
1915 	new->as_id = as_id;
1916 	new->id = id;
1917 	new->base_gfn = base_gfn;
1918 	new->npages = npages;
1919 	new->flags = mem->flags;
1920 	new->userspace_addr = mem->userspace_addr;
1921 
1922 	r = kvm_set_memslot(kvm, old, new, change);
1923 	if (r)
1924 		kfree(new);
1925 	return r;
1926 }
1927 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1928 
1929 int kvm_set_memory_region(struct kvm *kvm,
1930 			  const struct kvm_userspace_memory_region *mem)
1931 {
1932 	int r;
1933 
1934 	mutex_lock(&kvm->slots_lock);
1935 	r = __kvm_set_memory_region(kvm, mem);
1936 	mutex_unlock(&kvm->slots_lock);
1937 	return r;
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1940 
1941 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1942 					  struct kvm_userspace_memory_region *mem)
1943 {
1944 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1945 		return -EINVAL;
1946 
1947 	return kvm_set_memory_region(kvm, mem);
1948 }
1949 
1950 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1951 /**
1952  * kvm_get_dirty_log - get a snapshot of dirty pages
1953  * @kvm:	pointer to kvm instance
1954  * @log:	slot id and address to which we copy the log
1955  * @is_dirty:	set to '1' if any dirty pages were found
1956  * @memslot:	set to the associated memslot, always valid on success
1957  */
1958 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1959 		      int *is_dirty, struct kvm_memory_slot **memslot)
1960 {
1961 	struct kvm_memslots *slots;
1962 	int i, as_id, id;
1963 	unsigned long n;
1964 	unsigned long any = 0;
1965 
1966 	/* Dirty ring tracking is exclusive to dirty log tracking */
1967 	if (kvm->dirty_ring_size)
1968 		return -ENXIO;
1969 
1970 	*memslot = NULL;
1971 	*is_dirty = 0;
1972 
1973 	as_id = log->slot >> 16;
1974 	id = (u16)log->slot;
1975 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1976 		return -EINVAL;
1977 
1978 	slots = __kvm_memslots(kvm, as_id);
1979 	*memslot = id_to_memslot(slots, id);
1980 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1981 		return -ENOENT;
1982 
1983 	kvm_arch_sync_dirty_log(kvm, *memslot);
1984 
1985 	n = kvm_dirty_bitmap_bytes(*memslot);
1986 
1987 	for (i = 0; !any && i < n/sizeof(long); ++i)
1988 		any = (*memslot)->dirty_bitmap[i];
1989 
1990 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1991 		return -EFAULT;
1992 
1993 	if (any)
1994 		*is_dirty = 1;
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1998 
1999 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2000 /**
2001  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2002  *	and reenable dirty page tracking for the corresponding pages.
2003  * @kvm:	pointer to kvm instance
2004  * @log:	slot id and address to which we copy the log
2005  *
2006  * We need to keep it in mind that VCPU threads can write to the bitmap
2007  * concurrently. So, to avoid losing track of dirty pages we keep the
2008  * following order:
2009  *
2010  *    1. Take a snapshot of the bit and clear it if needed.
2011  *    2. Write protect the corresponding page.
2012  *    3. Copy the snapshot to the userspace.
2013  *    4. Upon return caller flushes TLB's if needed.
2014  *
2015  * Between 2 and 4, the guest may write to the page using the remaining TLB
2016  * entry.  This is not a problem because the page is reported dirty using
2017  * the snapshot taken before and step 4 ensures that writes done after
2018  * exiting to userspace will be logged for the next call.
2019  *
2020  */
2021 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2022 {
2023 	struct kvm_memslots *slots;
2024 	struct kvm_memory_slot *memslot;
2025 	int i, as_id, id;
2026 	unsigned long n;
2027 	unsigned long *dirty_bitmap;
2028 	unsigned long *dirty_bitmap_buffer;
2029 	bool flush;
2030 
2031 	/* Dirty ring tracking is exclusive to dirty log tracking */
2032 	if (kvm->dirty_ring_size)
2033 		return -ENXIO;
2034 
2035 	as_id = log->slot >> 16;
2036 	id = (u16)log->slot;
2037 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2038 		return -EINVAL;
2039 
2040 	slots = __kvm_memslots(kvm, as_id);
2041 	memslot = id_to_memslot(slots, id);
2042 	if (!memslot || !memslot->dirty_bitmap)
2043 		return -ENOENT;
2044 
2045 	dirty_bitmap = memslot->dirty_bitmap;
2046 
2047 	kvm_arch_sync_dirty_log(kvm, memslot);
2048 
2049 	n = kvm_dirty_bitmap_bytes(memslot);
2050 	flush = false;
2051 	if (kvm->manual_dirty_log_protect) {
2052 		/*
2053 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2054 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2055 		 * is some code duplication between this function and
2056 		 * kvm_get_dirty_log, but hopefully all architecture
2057 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2058 		 * can be eliminated.
2059 		 */
2060 		dirty_bitmap_buffer = dirty_bitmap;
2061 	} else {
2062 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2063 		memset(dirty_bitmap_buffer, 0, n);
2064 
2065 		KVM_MMU_LOCK(kvm);
2066 		for (i = 0; i < n / sizeof(long); i++) {
2067 			unsigned long mask;
2068 			gfn_t offset;
2069 
2070 			if (!dirty_bitmap[i])
2071 				continue;
2072 
2073 			flush = true;
2074 			mask = xchg(&dirty_bitmap[i], 0);
2075 			dirty_bitmap_buffer[i] = mask;
2076 
2077 			offset = i * BITS_PER_LONG;
2078 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2079 								offset, mask);
2080 		}
2081 		KVM_MMU_UNLOCK(kvm);
2082 	}
2083 
2084 	if (flush)
2085 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2086 
2087 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2088 		return -EFAULT;
2089 	return 0;
2090 }
2091 
2092 
2093 /**
2094  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2095  * @kvm: kvm instance
2096  * @log: slot id and address to which we copy the log
2097  *
2098  * Steps 1-4 below provide general overview of dirty page logging. See
2099  * kvm_get_dirty_log_protect() function description for additional details.
2100  *
2101  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2102  * always flush the TLB (step 4) even if previous step failed  and the dirty
2103  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2104  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2105  * writes will be marked dirty for next log read.
2106  *
2107  *   1. Take a snapshot of the bit and clear it if needed.
2108  *   2. Write protect the corresponding page.
2109  *   3. Copy the snapshot to the userspace.
2110  *   4. Flush TLB's if needed.
2111  */
2112 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2113 				      struct kvm_dirty_log *log)
2114 {
2115 	int r;
2116 
2117 	mutex_lock(&kvm->slots_lock);
2118 
2119 	r = kvm_get_dirty_log_protect(kvm, log);
2120 
2121 	mutex_unlock(&kvm->slots_lock);
2122 	return r;
2123 }
2124 
2125 /**
2126  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2127  *	and reenable dirty page tracking for the corresponding pages.
2128  * @kvm:	pointer to kvm instance
2129  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2130  */
2131 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2132 				       struct kvm_clear_dirty_log *log)
2133 {
2134 	struct kvm_memslots *slots;
2135 	struct kvm_memory_slot *memslot;
2136 	int as_id, id;
2137 	gfn_t offset;
2138 	unsigned long i, n;
2139 	unsigned long *dirty_bitmap;
2140 	unsigned long *dirty_bitmap_buffer;
2141 	bool flush;
2142 
2143 	/* Dirty ring tracking is exclusive to dirty log tracking */
2144 	if (kvm->dirty_ring_size)
2145 		return -ENXIO;
2146 
2147 	as_id = log->slot >> 16;
2148 	id = (u16)log->slot;
2149 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2150 		return -EINVAL;
2151 
2152 	if (log->first_page & 63)
2153 		return -EINVAL;
2154 
2155 	slots = __kvm_memslots(kvm, as_id);
2156 	memslot = id_to_memslot(slots, id);
2157 	if (!memslot || !memslot->dirty_bitmap)
2158 		return -ENOENT;
2159 
2160 	dirty_bitmap = memslot->dirty_bitmap;
2161 
2162 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2163 
2164 	if (log->first_page > memslot->npages ||
2165 	    log->num_pages > memslot->npages - log->first_page ||
2166 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2167 	    return -EINVAL;
2168 
2169 	kvm_arch_sync_dirty_log(kvm, memslot);
2170 
2171 	flush = false;
2172 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2173 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2174 		return -EFAULT;
2175 
2176 	KVM_MMU_LOCK(kvm);
2177 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2178 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2179 	     i++, offset += BITS_PER_LONG) {
2180 		unsigned long mask = *dirty_bitmap_buffer++;
2181 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2182 		if (!mask)
2183 			continue;
2184 
2185 		mask &= atomic_long_fetch_andnot(mask, p);
2186 
2187 		/*
2188 		 * mask contains the bits that really have been cleared.  This
2189 		 * never includes any bits beyond the length of the memslot (if
2190 		 * the length is not aligned to 64 pages), therefore it is not
2191 		 * a problem if userspace sets them in log->dirty_bitmap.
2192 		*/
2193 		if (mask) {
2194 			flush = true;
2195 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2196 								offset, mask);
2197 		}
2198 	}
2199 	KVM_MMU_UNLOCK(kvm);
2200 
2201 	if (flush)
2202 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2203 
2204 	return 0;
2205 }
2206 
2207 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2208 					struct kvm_clear_dirty_log *log)
2209 {
2210 	int r;
2211 
2212 	mutex_lock(&kvm->slots_lock);
2213 
2214 	r = kvm_clear_dirty_log_protect(kvm, log);
2215 
2216 	mutex_unlock(&kvm->slots_lock);
2217 	return r;
2218 }
2219 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2220 
2221 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2222 {
2223 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2224 }
2225 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2226 
2227 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2228 {
2229 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2230 	u64 gen = slots->generation;
2231 	struct kvm_memory_slot *slot;
2232 
2233 	/*
2234 	 * This also protects against using a memslot from a different address space,
2235 	 * since different address spaces have different generation numbers.
2236 	 */
2237 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2238 		vcpu->last_used_slot = NULL;
2239 		vcpu->last_used_slot_gen = gen;
2240 	}
2241 
2242 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2243 	if (slot)
2244 		return slot;
2245 
2246 	/*
2247 	 * Fall back to searching all memslots. We purposely use
2248 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2249 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2250 	 */
2251 	slot = search_memslots(slots, gfn, false);
2252 	if (slot) {
2253 		vcpu->last_used_slot = slot;
2254 		return slot;
2255 	}
2256 
2257 	return NULL;
2258 }
2259 
2260 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2261 {
2262 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2263 
2264 	return kvm_is_visible_memslot(memslot);
2265 }
2266 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2267 
2268 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2269 {
2270 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2271 
2272 	return kvm_is_visible_memslot(memslot);
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2275 
2276 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2277 {
2278 	struct vm_area_struct *vma;
2279 	unsigned long addr, size;
2280 
2281 	size = PAGE_SIZE;
2282 
2283 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2284 	if (kvm_is_error_hva(addr))
2285 		return PAGE_SIZE;
2286 
2287 	mmap_read_lock(current->mm);
2288 	vma = find_vma(current->mm, addr);
2289 	if (!vma)
2290 		goto out;
2291 
2292 	size = vma_kernel_pagesize(vma);
2293 
2294 out:
2295 	mmap_read_unlock(current->mm);
2296 
2297 	return size;
2298 }
2299 
2300 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2301 {
2302 	return slot->flags & KVM_MEM_READONLY;
2303 }
2304 
2305 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2306 				       gfn_t *nr_pages, bool write)
2307 {
2308 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2309 		return KVM_HVA_ERR_BAD;
2310 
2311 	if (memslot_is_readonly(slot) && write)
2312 		return KVM_HVA_ERR_RO_BAD;
2313 
2314 	if (nr_pages)
2315 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2316 
2317 	return __gfn_to_hva_memslot(slot, gfn);
2318 }
2319 
2320 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2321 				     gfn_t *nr_pages)
2322 {
2323 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2324 }
2325 
2326 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2327 					gfn_t gfn)
2328 {
2329 	return gfn_to_hva_many(slot, gfn, NULL);
2330 }
2331 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2332 
2333 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2334 {
2335 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2336 }
2337 EXPORT_SYMBOL_GPL(gfn_to_hva);
2338 
2339 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2340 {
2341 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2342 }
2343 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2344 
2345 /*
2346  * Return the hva of a @gfn and the R/W attribute if possible.
2347  *
2348  * @slot: the kvm_memory_slot which contains @gfn
2349  * @gfn: the gfn to be translated
2350  * @writable: used to return the read/write attribute of the @slot if the hva
2351  * is valid and @writable is not NULL
2352  */
2353 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2354 				      gfn_t gfn, bool *writable)
2355 {
2356 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2357 
2358 	if (!kvm_is_error_hva(hva) && writable)
2359 		*writable = !memslot_is_readonly(slot);
2360 
2361 	return hva;
2362 }
2363 
2364 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2365 {
2366 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2367 
2368 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2369 }
2370 
2371 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2372 {
2373 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2374 
2375 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2376 }
2377 
2378 static inline int check_user_page_hwpoison(unsigned long addr)
2379 {
2380 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2381 
2382 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2383 	return rc == -EHWPOISON;
2384 }
2385 
2386 /*
2387  * The fast path to get the writable pfn which will be stored in @pfn,
2388  * true indicates success, otherwise false is returned.  It's also the
2389  * only part that runs if we can in atomic context.
2390  */
2391 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2392 			    bool *writable, kvm_pfn_t *pfn)
2393 {
2394 	struct page *page[1];
2395 
2396 	/*
2397 	 * Fast pin a writable pfn only if it is a write fault request
2398 	 * or the caller allows to map a writable pfn for a read fault
2399 	 * request.
2400 	 */
2401 	if (!(write_fault || writable))
2402 		return false;
2403 
2404 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2405 		*pfn = page_to_pfn(page[0]);
2406 
2407 		if (writable)
2408 			*writable = true;
2409 		return true;
2410 	}
2411 
2412 	return false;
2413 }
2414 
2415 /*
2416  * The slow path to get the pfn of the specified host virtual address,
2417  * 1 indicates success, -errno is returned if error is detected.
2418  */
2419 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2420 			   bool *writable, kvm_pfn_t *pfn)
2421 {
2422 	unsigned int flags = FOLL_HWPOISON;
2423 	struct page *page;
2424 	int npages = 0;
2425 
2426 	might_sleep();
2427 
2428 	if (writable)
2429 		*writable = write_fault;
2430 
2431 	if (write_fault)
2432 		flags |= FOLL_WRITE;
2433 	if (async)
2434 		flags |= FOLL_NOWAIT;
2435 
2436 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2437 	if (npages != 1)
2438 		return npages;
2439 
2440 	/* map read fault as writable if possible */
2441 	if (unlikely(!write_fault) && writable) {
2442 		struct page *wpage;
2443 
2444 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2445 			*writable = true;
2446 			put_page(page);
2447 			page = wpage;
2448 		}
2449 	}
2450 	*pfn = page_to_pfn(page);
2451 	return npages;
2452 }
2453 
2454 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2455 {
2456 	if (unlikely(!(vma->vm_flags & VM_READ)))
2457 		return false;
2458 
2459 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2460 		return false;
2461 
2462 	return true;
2463 }
2464 
2465 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2466 {
2467 	if (kvm_is_reserved_pfn(pfn))
2468 		return 1;
2469 	return get_page_unless_zero(pfn_to_page(pfn));
2470 }
2471 
2472 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2473 			       unsigned long addr, bool write_fault,
2474 			       bool *writable, kvm_pfn_t *p_pfn)
2475 {
2476 	kvm_pfn_t pfn;
2477 	pte_t *ptep;
2478 	spinlock_t *ptl;
2479 	int r;
2480 
2481 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2482 	if (r) {
2483 		/*
2484 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2485 		 * not call the fault handler, so do it here.
2486 		 */
2487 		bool unlocked = false;
2488 		r = fixup_user_fault(current->mm, addr,
2489 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2490 				     &unlocked);
2491 		if (unlocked)
2492 			return -EAGAIN;
2493 		if (r)
2494 			return r;
2495 
2496 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2497 		if (r)
2498 			return r;
2499 	}
2500 
2501 	if (write_fault && !pte_write(*ptep)) {
2502 		pfn = KVM_PFN_ERR_RO_FAULT;
2503 		goto out;
2504 	}
2505 
2506 	if (writable)
2507 		*writable = pte_write(*ptep);
2508 	pfn = pte_pfn(*ptep);
2509 
2510 	/*
2511 	 * Get a reference here because callers of *hva_to_pfn* and
2512 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2513 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2514 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2515 	 * simply do nothing for reserved pfns.
2516 	 *
2517 	 * Whoever called remap_pfn_range is also going to call e.g.
2518 	 * unmap_mapping_range before the underlying pages are freed,
2519 	 * causing a call to our MMU notifier.
2520 	 *
2521 	 * Certain IO or PFNMAP mappings can be backed with valid
2522 	 * struct pages, but be allocated without refcounting e.g.,
2523 	 * tail pages of non-compound higher order allocations, which
2524 	 * would then underflow the refcount when the caller does the
2525 	 * required put_page. Don't allow those pages here.
2526 	 */
2527 	if (!kvm_try_get_pfn(pfn))
2528 		r = -EFAULT;
2529 
2530 out:
2531 	pte_unmap_unlock(ptep, ptl);
2532 	*p_pfn = pfn;
2533 
2534 	return r;
2535 }
2536 
2537 /*
2538  * Pin guest page in memory and return its pfn.
2539  * @addr: host virtual address which maps memory to the guest
2540  * @atomic: whether this function can sleep
2541  * @async: whether this function need to wait IO complete if the
2542  *         host page is not in the memory
2543  * @write_fault: whether we should get a writable host page
2544  * @writable: whether it allows to map a writable host page for !@write_fault
2545  *
2546  * The function will map a writable host page for these two cases:
2547  * 1): @write_fault = true
2548  * 2): @write_fault = false && @writable, @writable will tell the caller
2549  *     whether the mapping is writable.
2550  */
2551 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2552 		     bool write_fault, bool *writable)
2553 {
2554 	struct vm_area_struct *vma;
2555 	kvm_pfn_t pfn = 0;
2556 	int npages, r;
2557 
2558 	/* we can do it either atomically or asynchronously, not both */
2559 	BUG_ON(atomic && async);
2560 
2561 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2562 		return pfn;
2563 
2564 	if (atomic)
2565 		return KVM_PFN_ERR_FAULT;
2566 
2567 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2568 	if (npages == 1)
2569 		return pfn;
2570 
2571 	mmap_read_lock(current->mm);
2572 	if (npages == -EHWPOISON ||
2573 	      (!async && check_user_page_hwpoison(addr))) {
2574 		pfn = KVM_PFN_ERR_HWPOISON;
2575 		goto exit;
2576 	}
2577 
2578 retry:
2579 	vma = vma_lookup(current->mm, addr);
2580 
2581 	if (vma == NULL)
2582 		pfn = KVM_PFN_ERR_FAULT;
2583 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2584 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2585 		if (r == -EAGAIN)
2586 			goto retry;
2587 		if (r < 0)
2588 			pfn = KVM_PFN_ERR_FAULT;
2589 	} else {
2590 		if (async && vma_is_valid(vma, write_fault))
2591 			*async = true;
2592 		pfn = KVM_PFN_ERR_FAULT;
2593 	}
2594 exit:
2595 	mmap_read_unlock(current->mm);
2596 	return pfn;
2597 }
2598 
2599 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2600 			       bool atomic, bool *async, bool write_fault,
2601 			       bool *writable, hva_t *hva)
2602 {
2603 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2604 
2605 	if (hva)
2606 		*hva = addr;
2607 
2608 	if (addr == KVM_HVA_ERR_RO_BAD) {
2609 		if (writable)
2610 			*writable = false;
2611 		return KVM_PFN_ERR_RO_FAULT;
2612 	}
2613 
2614 	if (kvm_is_error_hva(addr)) {
2615 		if (writable)
2616 			*writable = false;
2617 		return KVM_PFN_NOSLOT;
2618 	}
2619 
2620 	/* Do not map writable pfn in the readonly memslot. */
2621 	if (writable && memslot_is_readonly(slot)) {
2622 		*writable = false;
2623 		writable = NULL;
2624 	}
2625 
2626 	return hva_to_pfn(addr, atomic, async, write_fault,
2627 			  writable);
2628 }
2629 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2630 
2631 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2632 		      bool *writable)
2633 {
2634 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2635 				    write_fault, writable, NULL);
2636 }
2637 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2638 
2639 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2640 {
2641 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2642 }
2643 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2644 
2645 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2646 {
2647 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2648 }
2649 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2650 
2651 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2652 {
2653 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2654 }
2655 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2656 
2657 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2658 {
2659 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2660 }
2661 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2662 
2663 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2664 {
2665 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2666 }
2667 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2668 
2669 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2670 			    struct page **pages, int nr_pages)
2671 {
2672 	unsigned long addr;
2673 	gfn_t entry = 0;
2674 
2675 	addr = gfn_to_hva_many(slot, gfn, &entry);
2676 	if (kvm_is_error_hva(addr))
2677 		return -1;
2678 
2679 	if (entry < nr_pages)
2680 		return 0;
2681 
2682 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2683 }
2684 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2685 
2686 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2687 {
2688 	if (is_error_noslot_pfn(pfn))
2689 		return KVM_ERR_PTR_BAD_PAGE;
2690 
2691 	if (kvm_is_reserved_pfn(pfn)) {
2692 		WARN_ON(1);
2693 		return KVM_ERR_PTR_BAD_PAGE;
2694 	}
2695 
2696 	return pfn_to_page(pfn);
2697 }
2698 
2699 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2700 {
2701 	kvm_pfn_t pfn;
2702 
2703 	pfn = gfn_to_pfn(kvm, gfn);
2704 
2705 	return kvm_pfn_to_page(pfn);
2706 }
2707 EXPORT_SYMBOL_GPL(gfn_to_page);
2708 
2709 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2710 {
2711 	if (pfn == 0)
2712 		return;
2713 
2714 	if (dirty)
2715 		kvm_release_pfn_dirty(pfn);
2716 	else
2717 		kvm_release_pfn_clean(pfn);
2718 }
2719 
2720 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2721 {
2722 	kvm_pfn_t pfn;
2723 	void *hva = NULL;
2724 	struct page *page = KVM_UNMAPPED_PAGE;
2725 
2726 	if (!map)
2727 		return -EINVAL;
2728 
2729 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2730 	if (is_error_noslot_pfn(pfn))
2731 		return -EINVAL;
2732 
2733 	if (pfn_valid(pfn)) {
2734 		page = pfn_to_page(pfn);
2735 		hva = kmap(page);
2736 #ifdef CONFIG_HAS_IOMEM
2737 	} else {
2738 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2739 #endif
2740 	}
2741 
2742 	if (!hva)
2743 		return -EFAULT;
2744 
2745 	map->page = page;
2746 	map->hva = hva;
2747 	map->pfn = pfn;
2748 	map->gfn = gfn;
2749 
2750 	return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2753 
2754 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2755 {
2756 	if (!map)
2757 		return;
2758 
2759 	if (!map->hva)
2760 		return;
2761 
2762 	if (map->page != KVM_UNMAPPED_PAGE)
2763 		kunmap(map->page);
2764 #ifdef CONFIG_HAS_IOMEM
2765 	else
2766 		memunmap(map->hva);
2767 #endif
2768 
2769 	if (dirty)
2770 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2771 
2772 	kvm_release_pfn(map->pfn, dirty);
2773 
2774 	map->hva = NULL;
2775 	map->page = NULL;
2776 }
2777 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2778 
2779 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2780 {
2781 	kvm_pfn_t pfn;
2782 
2783 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2784 
2785 	return kvm_pfn_to_page(pfn);
2786 }
2787 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2788 
2789 void kvm_release_page_clean(struct page *page)
2790 {
2791 	WARN_ON(is_error_page(page));
2792 
2793 	kvm_release_pfn_clean(page_to_pfn(page));
2794 }
2795 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2796 
2797 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2798 {
2799 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2800 		put_page(pfn_to_page(pfn));
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2803 
2804 void kvm_release_page_dirty(struct page *page)
2805 {
2806 	WARN_ON(is_error_page(page));
2807 
2808 	kvm_release_pfn_dirty(page_to_pfn(page));
2809 }
2810 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2811 
2812 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2813 {
2814 	kvm_set_pfn_dirty(pfn);
2815 	kvm_release_pfn_clean(pfn);
2816 }
2817 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2818 
2819 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2820 {
2821 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2822 		SetPageDirty(pfn_to_page(pfn));
2823 }
2824 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2825 
2826 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2827 {
2828 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2829 		mark_page_accessed(pfn_to_page(pfn));
2830 }
2831 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2832 
2833 static int next_segment(unsigned long len, int offset)
2834 {
2835 	if (len > PAGE_SIZE - offset)
2836 		return PAGE_SIZE - offset;
2837 	else
2838 		return len;
2839 }
2840 
2841 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2842 				 void *data, int offset, int len)
2843 {
2844 	int r;
2845 	unsigned long addr;
2846 
2847 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2848 	if (kvm_is_error_hva(addr))
2849 		return -EFAULT;
2850 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2851 	if (r)
2852 		return -EFAULT;
2853 	return 0;
2854 }
2855 
2856 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2857 			int len)
2858 {
2859 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2860 
2861 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2862 }
2863 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2864 
2865 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2866 			     int offset, int len)
2867 {
2868 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2869 
2870 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2871 }
2872 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2873 
2874 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2875 {
2876 	gfn_t gfn = gpa >> PAGE_SHIFT;
2877 	int seg;
2878 	int offset = offset_in_page(gpa);
2879 	int ret;
2880 
2881 	while ((seg = next_segment(len, offset)) != 0) {
2882 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2883 		if (ret < 0)
2884 			return ret;
2885 		offset = 0;
2886 		len -= seg;
2887 		data += seg;
2888 		++gfn;
2889 	}
2890 	return 0;
2891 }
2892 EXPORT_SYMBOL_GPL(kvm_read_guest);
2893 
2894 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2895 {
2896 	gfn_t gfn = gpa >> PAGE_SHIFT;
2897 	int seg;
2898 	int offset = offset_in_page(gpa);
2899 	int ret;
2900 
2901 	while ((seg = next_segment(len, offset)) != 0) {
2902 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2903 		if (ret < 0)
2904 			return ret;
2905 		offset = 0;
2906 		len -= seg;
2907 		data += seg;
2908 		++gfn;
2909 	}
2910 	return 0;
2911 }
2912 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2913 
2914 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2915 			           void *data, int offset, unsigned long len)
2916 {
2917 	int r;
2918 	unsigned long addr;
2919 
2920 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2921 	if (kvm_is_error_hva(addr))
2922 		return -EFAULT;
2923 	pagefault_disable();
2924 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2925 	pagefault_enable();
2926 	if (r)
2927 		return -EFAULT;
2928 	return 0;
2929 }
2930 
2931 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2932 			       void *data, unsigned long len)
2933 {
2934 	gfn_t gfn = gpa >> PAGE_SHIFT;
2935 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2936 	int offset = offset_in_page(gpa);
2937 
2938 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2939 }
2940 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2941 
2942 static int __kvm_write_guest_page(struct kvm *kvm,
2943 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2944 			          const void *data, int offset, int len)
2945 {
2946 	int r;
2947 	unsigned long addr;
2948 
2949 	addr = gfn_to_hva_memslot(memslot, gfn);
2950 	if (kvm_is_error_hva(addr))
2951 		return -EFAULT;
2952 	r = __copy_to_user((void __user *)addr + offset, data, len);
2953 	if (r)
2954 		return -EFAULT;
2955 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2956 	return 0;
2957 }
2958 
2959 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2960 			 const void *data, int offset, int len)
2961 {
2962 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2963 
2964 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2965 }
2966 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2967 
2968 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2969 			      const void *data, int offset, int len)
2970 {
2971 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2972 
2973 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2974 }
2975 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2976 
2977 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2978 		    unsigned long len)
2979 {
2980 	gfn_t gfn = gpa >> PAGE_SHIFT;
2981 	int seg;
2982 	int offset = offset_in_page(gpa);
2983 	int ret;
2984 
2985 	while ((seg = next_segment(len, offset)) != 0) {
2986 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2987 		if (ret < 0)
2988 			return ret;
2989 		offset = 0;
2990 		len -= seg;
2991 		data += seg;
2992 		++gfn;
2993 	}
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(kvm_write_guest);
2997 
2998 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2999 		         unsigned long len)
3000 {
3001 	gfn_t gfn = gpa >> PAGE_SHIFT;
3002 	int seg;
3003 	int offset = offset_in_page(gpa);
3004 	int ret;
3005 
3006 	while ((seg = next_segment(len, offset)) != 0) {
3007 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3008 		if (ret < 0)
3009 			return ret;
3010 		offset = 0;
3011 		len -= seg;
3012 		data += seg;
3013 		++gfn;
3014 	}
3015 	return 0;
3016 }
3017 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3018 
3019 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3020 				       struct gfn_to_hva_cache *ghc,
3021 				       gpa_t gpa, unsigned long len)
3022 {
3023 	int offset = offset_in_page(gpa);
3024 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3025 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3026 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3027 	gfn_t nr_pages_avail;
3028 
3029 	/* Update ghc->generation before performing any error checks. */
3030 	ghc->generation = slots->generation;
3031 
3032 	if (start_gfn > end_gfn) {
3033 		ghc->hva = KVM_HVA_ERR_BAD;
3034 		return -EINVAL;
3035 	}
3036 
3037 	/*
3038 	 * If the requested region crosses two memslots, we still
3039 	 * verify that the entire region is valid here.
3040 	 */
3041 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3042 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3043 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3044 					   &nr_pages_avail);
3045 		if (kvm_is_error_hva(ghc->hva))
3046 			return -EFAULT;
3047 	}
3048 
3049 	/* Use the slow path for cross page reads and writes. */
3050 	if (nr_pages_needed == 1)
3051 		ghc->hva += offset;
3052 	else
3053 		ghc->memslot = NULL;
3054 
3055 	ghc->gpa = gpa;
3056 	ghc->len = len;
3057 	return 0;
3058 }
3059 
3060 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3061 			      gpa_t gpa, unsigned long len)
3062 {
3063 	struct kvm_memslots *slots = kvm_memslots(kvm);
3064 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3065 }
3066 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3067 
3068 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3069 				  void *data, unsigned int offset,
3070 				  unsigned long len)
3071 {
3072 	struct kvm_memslots *slots = kvm_memslots(kvm);
3073 	int r;
3074 	gpa_t gpa = ghc->gpa + offset;
3075 
3076 	if (WARN_ON_ONCE(len + offset > ghc->len))
3077 		return -EINVAL;
3078 
3079 	if (slots->generation != ghc->generation) {
3080 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3081 			return -EFAULT;
3082 	}
3083 
3084 	if (kvm_is_error_hva(ghc->hva))
3085 		return -EFAULT;
3086 
3087 	if (unlikely(!ghc->memslot))
3088 		return kvm_write_guest(kvm, gpa, data, len);
3089 
3090 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3091 	if (r)
3092 		return -EFAULT;
3093 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3094 
3095 	return 0;
3096 }
3097 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3098 
3099 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3100 			   void *data, unsigned long len)
3101 {
3102 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3103 }
3104 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3105 
3106 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3107 				 void *data, unsigned int offset,
3108 				 unsigned long len)
3109 {
3110 	struct kvm_memslots *slots = kvm_memslots(kvm);
3111 	int r;
3112 	gpa_t gpa = ghc->gpa + offset;
3113 
3114 	if (WARN_ON_ONCE(len + offset > ghc->len))
3115 		return -EINVAL;
3116 
3117 	if (slots->generation != ghc->generation) {
3118 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3119 			return -EFAULT;
3120 	}
3121 
3122 	if (kvm_is_error_hva(ghc->hva))
3123 		return -EFAULT;
3124 
3125 	if (unlikely(!ghc->memslot))
3126 		return kvm_read_guest(kvm, gpa, data, len);
3127 
3128 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3129 	if (r)
3130 		return -EFAULT;
3131 
3132 	return 0;
3133 }
3134 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3135 
3136 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3137 			  void *data, unsigned long len)
3138 {
3139 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3140 }
3141 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3142 
3143 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3144 {
3145 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3146 	gfn_t gfn = gpa >> PAGE_SHIFT;
3147 	int seg;
3148 	int offset = offset_in_page(gpa);
3149 	int ret;
3150 
3151 	while ((seg = next_segment(len, offset)) != 0) {
3152 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3153 		if (ret < 0)
3154 			return ret;
3155 		offset = 0;
3156 		len -= seg;
3157 		++gfn;
3158 	}
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3162 
3163 void mark_page_dirty_in_slot(struct kvm *kvm,
3164 			     const struct kvm_memory_slot *memslot,
3165 		 	     gfn_t gfn)
3166 {
3167 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3168 
3169 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3170 	if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3171 		return;
3172 #endif
3173 
3174 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3175 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3176 		u32 slot = (memslot->as_id << 16) | memslot->id;
3177 
3178 		if (kvm->dirty_ring_size)
3179 			kvm_dirty_ring_push(&vcpu->dirty_ring,
3180 					    slot, rel_gfn);
3181 		else
3182 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3183 	}
3184 }
3185 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3186 
3187 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3188 {
3189 	struct kvm_memory_slot *memslot;
3190 
3191 	memslot = gfn_to_memslot(kvm, gfn);
3192 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3193 }
3194 EXPORT_SYMBOL_GPL(mark_page_dirty);
3195 
3196 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3197 {
3198 	struct kvm_memory_slot *memslot;
3199 
3200 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3201 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3204 
3205 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3206 {
3207 	if (!vcpu->sigset_active)
3208 		return;
3209 
3210 	/*
3211 	 * This does a lockless modification of ->real_blocked, which is fine
3212 	 * because, only current can change ->real_blocked and all readers of
3213 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3214 	 * of ->blocked.
3215 	 */
3216 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3217 }
3218 
3219 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3220 {
3221 	if (!vcpu->sigset_active)
3222 		return;
3223 
3224 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3225 	sigemptyset(&current->real_blocked);
3226 }
3227 
3228 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3229 {
3230 	unsigned int old, val, grow, grow_start;
3231 
3232 	old = val = vcpu->halt_poll_ns;
3233 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3234 	grow = READ_ONCE(halt_poll_ns_grow);
3235 	if (!grow)
3236 		goto out;
3237 
3238 	val *= grow;
3239 	if (val < grow_start)
3240 		val = grow_start;
3241 
3242 	if (val > vcpu->kvm->max_halt_poll_ns)
3243 		val = vcpu->kvm->max_halt_poll_ns;
3244 
3245 	vcpu->halt_poll_ns = val;
3246 out:
3247 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3248 }
3249 
3250 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3251 {
3252 	unsigned int old, val, shrink, grow_start;
3253 
3254 	old = val = vcpu->halt_poll_ns;
3255 	shrink = READ_ONCE(halt_poll_ns_shrink);
3256 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3257 	if (shrink == 0)
3258 		val = 0;
3259 	else
3260 		val /= shrink;
3261 
3262 	if (val < grow_start)
3263 		val = 0;
3264 
3265 	vcpu->halt_poll_ns = val;
3266 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3267 }
3268 
3269 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3270 {
3271 	int ret = -EINTR;
3272 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3273 
3274 	if (kvm_arch_vcpu_runnable(vcpu)) {
3275 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3276 		goto out;
3277 	}
3278 	if (kvm_cpu_has_pending_timer(vcpu))
3279 		goto out;
3280 	if (signal_pending(current))
3281 		goto out;
3282 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3283 		goto out;
3284 
3285 	ret = 0;
3286 out:
3287 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3288 	return ret;
3289 }
3290 
3291 /*
3292  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3293  * pending.  This is mostly used when halting a vCPU, but may also be used
3294  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3295  */
3296 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3297 {
3298 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3299 	bool waited = false;
3300 
3301 	vcpu->stat.generic.blocking = 1;
3302 
3303 	kvm_arch_vcpu_blocking(vcpu);
3304 
3305 	prepare_to_rcuwait(wait);
3306 	for (;;) {
3307 		set_current_state(TASK_INTERRUPTIBLE);
3308 
3309 		if (kvm_vcpu_check_block(vcpu) < 0)
3310 			break;
3311 
3312 		waited = true;
3313 		schedule();
3314 	}
3315 	finish_rcuwait(wait);
3316 
3317 	kvm_arch_vcpu_unblocking(vcpu);
3318 
3319 	vcpu->stat.generic.blocking = 0;
3320 
3321 	return waited;
3322 }
3323 
3324 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3325 					  ktime_t end, bool success)
3326 {
3327 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3328 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3329 
3330 	++vcpu->stat.generic.halt_attempted_poll;
3331 
3332 	if (success) {
3333 		++vcpu->stat.generic.halt_successful_poll;
3334 
3335 		if (!vcpu_valid_wakeup(vcpu))
3336 			++vcpu->stat.generic.halt_poll_invalid;
3337 
3338 		stats->halt_poll_success_ns += poll_ns;
3339 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3340 	} else {
3341 		stats->halt_poll_fail_ns += poll_ns;
3342 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3343 	}
3344 }
3345 
3346 /*
3347  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3348  * polling is enabled, busy wait for a short time before blocking to avoid the
3349  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3350  * is halted.
3351  */
3352 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3353 {
3354 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3355 	bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3356 	ktime_t start, cur, poll_end;
3357 	bool waited = false;
3358 	u64 halt_ns;
3359 
3360 	start = cur = poll_end = ktime_get();
3361 	if (do_halt_poll) {
3362 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3363 
3364 		do {
3365 			/*
3366 			 * This sets KVM_REQ_UNHALT if an interrupt
3367 			 * arrives.
3368 			 */
3369 			if (kvm_vcpu_check_block(vcpu) < 0)
3370 				goto out;
3371 			cpu_relax();
3372 			poll_end = cur = ktime_get();
3373 		} while (kvm_vcpu_can_poll(cur, stop));
3374 	}
3375 
3376 	waited = kvm_vcpu_block(vcpu);
3377 
3378 	cur = ktime_get();
3379 	if (waited) {
3380 		vcpu->stat.generic.halt_wait_ns +=
3381 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3382 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3383 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3384 	}
3385 out:
3386 	/* The total time the vCPU was "halted", including polling time. */
3387 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3388 
3389 	/*
3390 	 * Note, halt-polling is considered successful so long as the vCPU was
3391 	 * never actually scheduled out, i.e. even if the wake event arrived
3392 	 * after of the halt-polling loop itself, but before the full wait.
3393 	 */
3394 	if (do_halt_poll)
3395 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3396 
3397 	if (halt_poll_allowed) {
3398 		if (!vcpu_valid_wakeup(vcpu)) {
3399 			shrink_halt_poll_ns(vcpu);
3400 		} else if (vcpu->kvm->max_halt_poll_ns) {
3401 			if (halt_ns <= vcpu->halt_poll_ns)
3402 				;
3403 			/* we had a long block, shrink polling */
3404 			else if (vcpu->halt_poll_ns &&
3405 				 halt_ns > vcpu->kvm->max_halt_poll_ns)
3406 				shrink_halt_poll_ns(vcpu);
3407 			/* we had a short halt and our poll time is too small */
3408 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3409 				 halt_ns < vcpu->kvm->max_halt_poll_ns)
3410 				grow_halt_poll_ns(vcpu);
3411 		} else {
3412 			vcpu->halt_poll_ns = 0;
3413 		}
3414 	}
3415 
3416 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3417 }
3418 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3419 
3420 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3421 {
3422 	if (__kvm_vcpu_wake_up(vcpu)) {
3423 		WRITE_ONCE(vcpu->ready, true);
3424 		++vcpu->stat.generic.halt_wakeup;
3425 		return true;
3426 	}
3427 
3428 	return false;
3429 }
3430 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3431 
3432 #ifndef CONFIG_S390
3433 /*
3434  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3435  */
3436 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3437 {
3438 	int me, cpu;
3439 
3440 	if (kvm_vcpu_wake_up(vcpu))
3441 		return;
3442 
3443 	me = get_cpu();
3444 	/*
3445 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3446 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3447 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3448 	 * within the vCPU thread itself.
3449 	 */
3450 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3451 		if (vcpu->mode == IN_GUEST_MODE)
3452 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3453 		goto out;
3454 	}
3455 
3456 	/*
3457 	 * Note, the vCPU could get migrated to a different pCPU at any point
3458 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3459 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3460 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3461 	 * vCPU also requires it to leave IN_GUEST_MODE.
3462 	 */
3463 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3464 		cpu = READ_ONCE(vcpu->cpu);
3465 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3466 			smp_send_reschedule(cpu);
3467 	}
3468 out:
3469 	put_cpu();
3470 }
3471 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3472 #endif /* !CONFIG_S390 */
3473 
3474 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3475 {
3476 	struct pid *pid;
3477 	struct task_struct *task = NULL;
3478 	int ret = 0;
3479 
3480 	rcu_read_lock();
3481 	pid = rcu_dereference(target->pid);
3482 	if (pid)
3483 		task = get_pid_task(pid, PIDTYPE_PID);
3484 	rcu_read_unlock();
3485 	if (!task)
3486 		return ret;
3487 	ret = yield_to(task, 1);
3488 	put_task_struct(task);
3489 
3490 	return ret;
3491 }
3492 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3493 
3494 /*
3495  * Helper that checks whether a VCPU is eligible for directed yield.
3496  * Most eligible candidate to yield is decided by following heuristics:
3497  *
3498  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3499  *  (preempted lock holder), indicated by @in_spin_loop.
3500  *  Set at the beginning and cleared at the end of interception/PLE handler.
3501  *
3502  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3503  *  chance last time (mostly it has become eligible now since we have probably
3504  *  yielded to lockholder in last iteration. This is done by toggling
3505  *  @dy_eligible each time a VCPU checked for eligibility.)
3506  *
3507  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3508  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3509  *  burning. Giving priority for a potential lock-holder increases lock
3510  *  progress.
3511  *
3512  *  Since algorithm is based on heuristics, accessing another VCPU data without
3513  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3514  *  and continue with next VCPU and so on.
3515  */
3516 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3517 {
3518 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3519 	bool eligible;
3520 
3521 	eligible = !vcpu->spin_loop.in_spin_loop ||
3522 		    vcpu->spin_loop.dy_eligible;
3523 
3524 	if (vcpu->spin_loop.in_spin_loop)
3525 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3526 
3527 	return eligible;
3528 #else
3529 	return true;
3530 #endif
3531 }
3532 
3533 /*
3534  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3535  * a vcpu_load/vcpu_put pair.  However, for most architectures
3536  * kvm_arch_vcpu_runnable does not require vcpu_load.
3537  */
3538 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3539 {
3540 	return kvm_arch_vcpu_runnable(vcpu);
3541 }
3542 
3543 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3544 {
3545 	if (kvm_arch_dy_runnable(vcpu))
3546 		return true;
3547 
3548 #ifdef CONFIG_KVM_ASYNC_PF
3549 	if (!list_empty_careful(&vcpu->async_pf.done))
3550 		return true;
3551 #endif
3552 
3553 	return false;
3554 }
3555 
3556 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3557 {
3558 	return false;
3559 }
3560 
3561 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3562 {
3563 	struct kvm *kvm = me->kvm;
3564 	struct kvm_vcpu *vcpu;
3565 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3566 	unsigned long i;
3567 	int yielded = 0;
3568 	int try = 3;
3569 	int pass;
3570 
3571 	kvm_vcpu_set_in_spin_loop(me, true);
3572 	/*
3573 	 * We boost the priority of a VCPU that is runnable but not
3574 	 * currently running, because it got preempted by something
3575 	 * else and called schedule in __vcpu_run.  Hopefully that
3576 	 * VCPU is holding the lock that we need and will release it.
3577 	 * We approximate round-robin by starting at the last boosted VCPU.
3578 	 */
3579 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3580 		kvm_for_each_vcpu(i, vcpu, kvm) {
3581 			if (!pass && i <= last_boosted_vcpu) {
3582 				i = last_boosted_vcpu;
3583 				continue;
3584 			} else if (pass && i > last_boosted_vcpu)
3585 				break;
3586 			if (!READ_ONCE(vcpu->ready))
3587 				continue;
3588 			if (vcpu == me)
3589 				continue;
3590 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3591 				continue;
3592 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3593 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3594 			    !kvm_arch_vcpu_in_kernel(vcpu))
3595 				continue;
3596 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3597 				continue;
3598 
3599 			yielded = kvm_vcpu_yield_to(vcpu);
3600 			if (yielded > 0) {
3601 				kvm->last_boosted_vcpu = i;
3602 				break;
3603 			} else if (yielded < 0) {
3604 				try--;
3605 				if (!try)
3606 					break;
3607 			}
3608 		}
3609 	}
3610 	kvm_vcpu_set_in_spin_loop(me, false);
3611 
3612 	/* Ensure vcpu is not eligible during next spinloop */
3613 	kvm_vcpu_set_dy_eligible(me, false);
3614 }
3615 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3616 
3617 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3618 {
3619 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3620 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3621 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3622 	     kvm->dirty_ring_size / PAGE_SIZE);
3623 #else
3624 	return false;
3625 #endif
3626 }
3627 
3628 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3629 {
3630 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3631 	struct page *page;
3632 
3633 	if (vmf->pgoff == 0)
3634 		page = virt_to_page(vcpu->run);
3635 #ifdef CONFIG_X86
3636 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3637 		page = virt_to_page(vcpu->arch.pio_data);
3638 #endif
3639 #ifdef CONFIG_KVM_MMIO
3640 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3641 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3642 #endif
3643 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3644 		page = kvm_dirty_ring_get_page(
3645 		    &vcpu->dirty_ring,
3646 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3647 	else
3648 		return kvm_arch_vcpu_fault(vcpu, vmf);
3649 	get_page(page);
3650 	vmf->page = page;
3651 	return 0;
3652 }
3653 
3654 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3655 	.fault = kvm_vcpu_fault,
3656 };
3657 
3658 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3659 {
3660 	struct kvm_vcpu *vcpu = file->private_data;
3661 	unsigned long pages = vma_pages(vma);
3662 
3663 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3664 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3665 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3666 		return -EINVAL;
3667 
3668 	vma->vm_ops = &kvm_vcpu_vm_ops;
3669 	return 0;
3670 }
3671 
3672 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3673 {
3674 	struct kvm_vcpu *vcpu = filp->private_data;
3675 
3676 	kvm_put_kvm(vcpu->kvm);
3677 	return 0;
3678 }
3679 
3680 static const struct file_operations kvm_vcpu_fops = {
3681 	.release        = kvm_vcpu_release,
3682 	.unlocked_ioctl = kvm_vcpu_ioctl,
3683 	.mmap           = kvm_vcpu_mmap,
3684 	.llseek		= noop_llseek,
3685 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3686 };
3687 
3688 /*
3689  * Allocates an inode for the vcpu.
3690  */
3691 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3692 {
3693 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3694 
3695 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3696 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3697 }
3698 
3699 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3700 {
3701 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3702 	struct dentry *debugfs_dentry;
3703 	char dir_name[ITOA_MAX_LEN * 2];
3704 
3705 	if (!debugfs_initialized())
3706 		return;
3707 
3708 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3709 	debugfs_dentry = debugfs_create_dir(dir_name,
3710 					    vcpu->kvm->debugfs_dentry);
3711 
3712 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3713 #endif
3714 }
3715 
3716 /*
3717  * Creates some virtual cpus.  Good luck creating more than one.
3718  */
3719 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3720 {
3721 	int r;
3722 	struct kvm_vcpu *vcpu;
3723 	struct page *page;
3724 
3725 	if (id >= KVM_MAX_VCPU_IDS)
3726 		return -EINVAL;
3727 
3728 	mutex_lock(&kvm->lock);
3729 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3730 		mutex_unlock(&kvm->lock);
3731 		return -EINVAL;
3732 	}
3733 
3734 	kvm->created_vcpus++;
3735 	mutex_unlock(&kvm->lock);
3736 
3737 	r = kvm_arch_vcpu_precreate(kvm, id);
3738 	if (r)
3739 		goto vcpu_decrement;
3740 
3741 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3742 	if (!vcpu) {
3743 		r = -ENOMEM;
3744 		goto vcpu_decrement;
3745 	}
3746 
3747 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3748 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3749 	if (!page) {
3750 		r = -ENOMEM;
3751 		goto vcpu_free;
3752 	}
3753 	vcpu->run = page_address(page);
3754 
3755 	kvm_vcpu_init(vcpu, kvm, id);
3756 
3757 	r = kvm_arch_vcpu_create(vcpu);
3758 	if (r)
3759 		goto vcpu_free_run_page;
3760 
3761 	if (kvm->dirty_ring_size) {
3762 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3763 					 id, kvm->dirty_ring_size);
3764 		if (r)
3765 			goto arch_vcpu_destroy;
3766 	}
3767 
3768 	mutex_lock(&kvm->lock);
3769 	if (kvm_get_vcpu_by_id(kvm, id)) {
3770 		r = -EEXIST;
3771 		goto unlock_vcpu_destroy;
3772 	}
3773 
3774 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3775 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3776 	BUG_ON(r == -EBUSY);
3777 	if (r)
3778 		goto unlock_vcpu_destroy;
3779 
3780 	/* Fill the stats id string for the vcpu */
3781 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3782 		 task_pid_nr(current), id);
3783 
3784 	/* Now it's all set up, let userspace reach it */
3785 	kvm_get_kvm(kvm);
3786 	r = create_vcpu_fd(vcpu);
3787 	if (r < 0) {
3788 		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3789 		kvm_put_kvm_no_destroy(kvm);
3790 		goto unlock_vcpu_destroy;
3791 	}
3792 
3793 	/*
3794 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3795 	 * pointer before kvm->online_vcpu's incremented value.
3796 	 */
3797 	smp_wmb();
3798 	atomic_inc(&kvm->online_vcpus);
3799 
3800 	mutex_unlock(&kvm->lock);
3801 	kvm_arch_vcpu_postcreate(vcpu);
3802 	kvm_create_vcpu_debugfs(vcpu);
3803 	return r;
3804 
3805 unlock_vcpu_destroy:
3806 	mutex_unlock(&kvm->lock);
3807 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3808 arch_vcpu_destroy:
3809 	kvm_arch_vcpu_destroy(vcpu);
3810 vcpu_free_run_page:
3811 	free_page((unsigned long)vcpu->run);
3812 vcpu_free:
3813 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3814 vcpu_decrement:
3815 	mutex_lock(&kvm->lock);
3816 	kvm->created_vcpus--;
3817 	mutex_unlock(&kvm->lock);
3818 	return r;
3819 }
3820 
3821 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3822 {
3823 	if (sigset) {
3824 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3825 		vcpu->sigset_active = 1;
3826 		vcpu->sigset = *sigset;
3827 	} else
3828 		vcpu->sigset_active = 0;
3829 	return 0;
3830 }
3831 
3832 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3833 			      size_t size, loff_t *offset)
3834 {
3835 	struct kvm_vcpu *vcpu = file->private_data;
3836 
3837 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3838 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3839 			sizeof(vcpu->stat), user_buffer, size, offset);
3840 }
3841 
3842 static const struct file_operations kvm_vcpu_stats_fops = {
3843 	.read = kvm_vcpu_stats_read,
3844 	.llseek = noop_llseek,
3845 };
3846 
3847 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3848 {
3849 	int fd;
3850 	struct file *file;
3851 	char name[15 + ITOA_MAX_LEN + 1];
3852 
3853 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3854 
3855 	fd = get_unused_fd_flags(O_CLOEXEC);
3856 	if (fd < 0)
3857 		return fd;
3858 
3859 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3860 	if (IS_ERR(file)) {
3861 		put_unused_fd(fd);
3862 		return PTR_ERR(file);
3863 	}
3864 	file->f_mode |= FMODE_PREAD;
3865 	fd_install(fd, file);
3866 
3867 	return fd;
3868 }
3869 
3870 static long kvm_vcpu_ioctl(struct file *filp,
3871 			   unsigned int ioctl, unsigned long arg)
3872 {
3873 	struct kvm_vcpu *vcpu = filp->private_data;
3874 	void __user *argp = (void __user *)arg;
3875 	int r;
3876 	struct kvm_fpu *fpu = NULL;
3877 	struct kvm_sregs *kvm_sregs = NULL;
3878 
3879 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
3880 		return -EIO;
3881 
3882 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3883 		return -EINVAL;
3884 
3885 	/*
3886 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3887 	 * execution; mutex_lock() would break them.
3888 	 */
3889 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3890 	if (r != -ENOIOCTLCMD)
3891 		return r;
3892 
3893 	if (mutex_lock_killable(&vcpu->mutex))
3894 		return -EINTR;
3895 	switch (ioctl) {
3896 	case KVM_RUN: {
3897 		struct pid *oldpid;
3898 		r = -EINVAL;
3899 		if (arg)
3900 			goto out;
3901 		oldpid = rcu_access_pointer(vcpu->pid);
3902 		if (unlikely(oldpid != task_pid(current))) {
3903 			/* The thread running this VCPU changed. */
3904 			struct pid *newpid;
3905 
3906 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3907 			if (r)
3908 				break;
3909 
3910 			newpid = get_task_pid(current, PIDTYPE_PID);
3911 			rcu_assign_pointer(vcpu->pid, newpid);
3912 			if (oldpid)
3913 				synchronize_rcu();
3914 			put_pid(oldpid);
3915 		}
3916 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3917 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3918 		break;
3919 	}
3920 	case KVM_GET_REGS: {
3921 		struct kvm_regs *kvm_regs;
3922 
3923 		r = -ENOMEM;
3924 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3925 		if (!kvm_regs)
3926 			goto out;
3927 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3928 		if (r)
3929 			goto out_free1;
3930 		r = -EFAULT;
3931 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3932 			goto out_free1;
3933 		r = 0;
3934 out_free1:
3935 		kfree(kvm_regs);
3936 		break;
3937 	}
3938 	case KVM_SET_REGS: {
3939 		struct kvm_regs *kvm_regs;
3940 
3941 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3942 		if (IS_ERR(kvm_regs)) {
3943 			r = PTR_ERR(kvm_regs);
3944 			goto out;
3945 		}
3946 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3947 		kfree(kvm_regs);
3948 		break;
3949 	}
3950 	case KVM_GET_SREGS: {
3951 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3952 				    GFP_KERNEL_ACCOUNT);
3953 		r = -ENOMEM;
3954 		if (!kvm_sregs)
3955 			goto out;
3956 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3957 		if (r)
3958 			goto out;
3959 		r = -EFAULT;
3960 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3961 			goto out;
3962 		r = 0;
3963 		break;
3964 	}
3965 	case KVM_SET_SREGS: {
3966 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3967 		if (IS_ERR(kvm_sregs)) {
3968 			r = PTR_ERR(kvm_sregs);
3969 			kvm_sregs = NULL;
3970 			goto out;
3971 		}
3972 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3973 		break;
3974 	}
3975 	case KVM_GET_MP_STATE: {
3976 		struct kvm_mp_state mp_state;
3977 
3978 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3979 		if (r)
3980 			goto out;
3981 		r = -EFAULT;
3982 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3983 			goto out;
3984 		r = 0;
3985 		break;
3986 	}
3987 	case KVM_SET_MP_STATE: {
3988 		struct kvm_mp_state mp_state;
3989 
3990 		r = -EFAULT;
3991 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3992 			goto out;
3993 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3994 		break;
3995 	}
3996 	case KVM_TRANSLATE: {
3997 		struct kvm_translation tr;
3998 
3999 		r = -EFAULT;
4000 		if (copy_from_user(&tr, argp, sizeof(tr)))
4001 			goto out;
4002 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4003 		if (r)
4004 			goto out;
4005 		r = -EFAULT;
4006 		if (copy_to_user(argp, &tr, sizeof(tr)))
4007 			goto out;
4008 		r = 0;
4009 		break;
4010 	}
4011 	case KVM_SET_GUEST_DEBUG: {
4012 		struct kvm_guest_debug dbg;
4013 
4014 		r = -EFAULT;
4015 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4016 			goto out;
4017 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4018 		break;
4019 	}
4020 	case KVM_SET_SIGNAL_MASK: {
4021 		struct kvm_signal_mask __user *sigmask_arg = argp;
4022 		struct kvm_signal_mask kvm_sigmask;
4023 		sigset_t sigset, *p;
4024 
4025 		p = NULL;
4026 		if (argp) {
4027 			r = -EFAULT;
4028 			if (copy_from_user(&kvm_sigmask, argp,
4029 					   sizeof(kvm_sigmask)))
4030 				goto out;
4031 			r = -EINVAL;
4032 			if (kvm_sigmask.len != sizeof(sigset))
4033 				goto out;
4034 			r = -EFAULT;
4035 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4036 					   sizeof(sigset)))
4037 				goto out;
4038 			p = &sigset;
4039 		}
4040 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4041 		break;
4042 	}
4043 	case KVM_GET_FPU: {
4044 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4045 		r = -ENOMEM;
4046 		if (!fpu)
4047 			goto out;
4048 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4049 		if (r)
4050 			goto out;
4051 		r = -EFAULT;
4052 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4053 			goto out;
4054 		r = 0;
4055 		break;
4056 	}
4057 	case KVM_SET_FPU: {
4058 		fpu = memdup_user(argp, sizeof(*fpu));
4059 		if (IS_ERR(fpu)) {
4060 			r = PTR_ERR(fpu);
4061 			fpu = NULL;
4062 			goto out;
4063 		}
4064 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4065 		break;
4066 	}
4067 	case KVM_GET_STATS_FD: {
4068 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4069 		break;
4070 	}
4071 	default:
4072 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4073 	}
4074 out:
4075 	mutex_unlock(&vcpu->mutex);
4076 	kfree(fpu);
4077 	kfree(kvm_sregs);
4078 	return r;
4079 }
4080 
4081 #ifdef CONFIG_KVM_COMPAT
4082 static long kvm_vcpu_compat_ioctl(struct file *filp,
4083 				  unsigned int ioctl, unsigned long arg)
4084 {
4085 	struct kvm_vcpu *vcpu = filp->private_data;
4086 	void __user *argp = compat_ptr(arg);
4087 	int r;
4088 
4089 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4090 		return -EIO;
4091 
4092 	switch (ioctl) {
4093 	case KVM_SET_SIGNAL_MASK: {
4094 		struct kvm_signal_mask __user *sigmask_arg = argp;
4095 		struct kvm_signal_mask kvm_sigmask;
4096 		sigset_t sigset;
4097 
4098 		if (argp) {
4099 			r = -EFAULT;
4100 			if (copy_from_user(&kvm_sigmask, argp,
4101 					   sizeof(kvm_sigmask)))
4102 				goto out;
4103 			r = -EINVAL;
4104 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4105 				goto out;
4106 			r = -EFAULT;
4107 			if (get_compat_sigset(&sigset,
4108 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4109 				goto out;
4110 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4111 		} else
4112 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4113 		break;
4114 	}
4115 	default:
4116 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4117 	}
4118 
4119 out:
4120 	return r;
4121 }
4122 #endif
4123 
4124 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4125 {
4126 	struct kvm_device *dev = filp->private_data;
4127 
4128 	if (dev->ops->mmap)
4129 		return dev->ops->mmap(dev, vma);
4130 
4131 	return -ENODEV;
4132 }
4133 
4134 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4135 				 int (*accessor)(struct kvm_device *dev,
4136 						 struct kvm_device_attr *attr),
4137 				 unsigned long arg)
4138 {
4139 	struct kvm_device_attr attr;
4140 
4141 	if (!accessor)
4142 		return -EPERM;
4143 
4144 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4145 		return -EFAULT;
4146 
4147 	return accessor(dev, &attr);
4148 }
4149 
4150 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4151 			     unsigned long arg)
4152 {
4153 	struct kvm_device *dev = filp->private_data;
4154 
4155 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4156 		return -EIO;
4157 
4158 	switch (ioctl) {
4159 	case KVM_SET_DEVICE_ATTR:
4160 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4161 	case KVM_GET_DEVICE_ATTR:
4162 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4163 	case KVM_HAS_DEVICE_ATTR:
4164 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4165 	default:
4166 		if (dev->ops->ioctl)
4167 			return dev->ops->ioctl(dev, ioctl, arg);
4168 
4169 		return -ENOTTY;
4170 	}
4171 }
4172 
4173 static int kvm_device_release(struct inode *inode, struct file *filp)
4174 {
4175 	struct kvm_device *dev = filp->private_data;
4176 	struct kvm *kvm = dev->kvm;
4177 
4178 	if (dev->ops->release) {
4179 		mutex_lock(&kvm->lock);
4180 		list_del(&dev->vm_node);
4181 		dev->ops->release(dev);
4182 		mutex_unlock(&kvm->lock);
4183 	}
4184 
4185 	kvm_put_kvm(kvm);
4186 	return 0;
4187 }
4188 
4189 static const struct file_operations kvm_device_fops = {
4190 	.unlocked_ioctl = kvm_device_ioctl,
4191 	.release = kvm_device_release,
4192 	KVM_COMPAT(kvm_device_ioctl),
4193 	.mmap = kvm_device_mmap,
4194 };
4195 
4196 struct kvm_device *kvm_device_from_filp(struct file *filp)
4197 {
4198 	if (filp->f_op != &kvm_device_fops)
4199 		return NULL;
4200 
4201 	return filp->private_data;
4202 }
4203 
4204 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4205 #ifdef CONFIG_KVM_MPIC
4206 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4207 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4208 #endif
4209 };
4210 
4211 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4212 {
4213 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4214 		return -ENOSPC;
4215 
4216 	if (kvm_device_ops_table[type] != NULL)
4217 		return -EEXIST;
4218 
4219 	kvm_device_ops_table[type] = ops;
4220 	return 0;
4221 }
4222 
4223 void kvm_unregister_device_ops(u32 type)
4224 {
4225 	if (kvm_device_ops_table[type] != NULL)
4226 		kvm_device_ops_table[type] = NULL;
4227 }
4228 
4229 static int kvm_ioctl_create_device(struct kvm *kvm,
4230 				   struct kvm_create_device *cd)
4231 {
4232 	const struct kvm_device_ops *ops = NULL;
4233 	struct kvm_device *dev;
4234 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4235 	int type;
4236 	int ret;
4237 
4238 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4239 		return -ENODEV;
4240 
4241 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4242 	ops = kvm_device_ops_table[type];
4243 	if (ops == NULL)
4244 		return -ENODEV;
4245 
4246 	if (test)
4247 		return 0;
4248 
4249 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4250 	if (!dev)
4251 		return -ENOMEM;
4252 
4253 	dev->ops = ops;
4254 	dev->kvm = kvm;
4255 
4256 	mutex_lock(&kvm->lock);
4257 	ret = ops->create(dev, type);
4258 	if (ret < 0) {
4259 		mutex_unlock(&kvm->lock);
4260 		kfree(dev);
4261 		return ret;
4262 	}
4263 	list_add(&dev->vm_node, &kvm->devices);
4264 	mutex_unlock(&kvm->lock);
4265 
4266 	if (ops->init)
4267 		ops->init(dev);
4268 
4269 	kvm_get_kvm(kvm);
4270 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4271 	if (ret < 0) {
4272 		kvm_put_kvm_no_destroy(kvm);
4273 		mutex_lock(&kvm->lock);
4274 		list_del(&dev->vm_node);
4275 		mutex_unlock(&kvm->lock);
4276 		ops->destroy(dev);
4277 		return ret;
4278 	}
4279 
4280 	cd->fd = ret;
4281 	return 0;
4282 }
4283 
4284 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4285 {
4286 	switch (arg) {
4287 	case KVM_CAP_USER_MEMORY:
4288 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4289 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4290 	case KVM_CAP_INTERNAL_ERROR_DATA:
4291 #ifdef CONFIG_HAVE_KVM_MSI
4292 	case KVM_CAP_SIGNAL_MSI:
4293 #endif
4294 #ifdef CONFIG_HAVE_KVM_IRQFD
4295 	case KVM_CAP_IRQFD:
4296 	case KVM_CAP_IRQFD_RESAMPLE:
4297 #endif
4298 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4299 	case KVM_CAP_CHECK_EXTENSION_VM:
4300 	case KVM_CAP_ENABLE_CAP_VM:
4301 	case KVM_CAP_HALT_POLL:
4302 		return 1;
4303 #ifdef CONFIG_KVM_MMIO
4304 	case KVM_CAP_COALESCED_MMIO:
4305 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4306 	case KVM_CAP_COALESCED_PIO:
4307 		return 1;
4308 #endif
4309 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4310 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4311 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4312 #endif
4313 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4314 	case KVM_CAP_IRQ_ROUTING:
4315 		return KVM_MAX_IRQ_ROUTES;
4316 #endif
4317 #if KVM_ADDRESS_SPACE_NUM > 1
4318 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4319 		return KVM_ADDRESS_SPACE_NUM;
4320 #endif
4321 	case KVM_CAP_NR_MEMSLOTS:
4322 		return KVM_USER_MEM_SLOTS;
4323 	case KVM_CAP_DIRTY_LOG_RING:
4324 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4325 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4326 #else
4327 		return 0;
4328 #endif
4329 	case KVM_CAP_BINARY_STATS_FD:
4330 		return 1;
4331 	default:
4332 		break;
4333 	}
4334 	return kvm_vm_ioctl_check_extension(kvm, arg);
4335 }
4336 
4337 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4338 {
4339 	int r;
4340 
4341 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4342 		return -EINVAL;
4343 
4344 	/* the size should be power of 2 */
4345 	if (!size || (size & (size - 1)))
4346 		return -EINVAL;
4347 
4348 	/* Should be bigger to keep the reserved entries, or a page */
4349 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4350 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4351 		return -EINVAL;
4352 
4353 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4354 	    sizeof(struct kvm_dirty_gfn))
4355 		return -E2BIG;
4356 
4357 	/* We only allow it to set once */
4358 	if (kvm->dirty_ring_size)
4359 		return -EINVAL;
4360 
4361 	mutex_lock(&kvm->lock);
4362 
4363 	if (kvm->created_vcpus) {
4364 		/* We don't allow to change this value after vcpu created */
4365 		r = -EINVAL;
4366 	} else {
4367 		kvm->dirty_ring_size = size;
4368 		r = 0;
4369 	}
4370 
4371 	mutex_unlock(&kvm->lock);
4372 	return r;
4373 }
4374 
4375 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4376 {
4377 	unsigned long i;
4378 	struct kvm_vcpu *vcpu;
4379 	int cleared = 0;
4380 
4381 	if (!kvm->dirty_ring_size)
4382 		return -EINVAL;
4383 
4384 	mutex_lock(&kvm->slots_lock);
4385 
4386 	kvm_for_each_vcpu(i, vcpu, kvm)
4387 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4388 
4389 	mutex_unlock(&kvm->slots_lock);
4390 
4391 	if (cleared)
4392 		kvm_flush_remote_tlbs(kvm);
4393 
4394 	return cleared;
4395 }
4396 
4397 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4398 						  struct kvm_enable_cap *cap)
4399 {
4400 	return -EINVAL;
4401 }
4402 
4403 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4404 					   struct kvm_enable_cap *cap)
4405 {
4406 	switch (cap->cap) {
4407 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4408 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4409 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4410 
4411 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4412 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4413 
4414 		if (cap->flags || (cap->args[0] & ~allowed_options))
4415 			return -EINVAL;
4416 		kvm->manual_dirty_log_protect = cap->args[0];
4417 		return 0;
4418 	}
4419 #endif
4420 	case KVM_CAP_HALT_POLL: {
4421 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4422 			return -EINVAL;
4423 
4424 		kvm->max_halt_poll_ns = cap->args[0];
4425 		return 0;
4426 	}
4427 	case KVM_CAP_DIRTY_LOG_RING:
4428 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4429 	default:
4430 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4431 	}
4432 }
4433 
4434 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4435 			      size_t size, loff_t *offset)
4436 {
4437 	struct kvm *kvm = file->private_data;
4438 
4439 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4440 				&kvm_vm_stats_desc[0], &kvm->stat,
4441 				sizeof(kvm->stat), user_buffer, size, offset);
4442 }
4443 
4444 static const struct file_operations kvm_vm_stats_fops = {
4445 	.read = kvm_vm_stats_read,
4446 	.llseek = noop_llseek,
4447 };
4448 
4449 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4450 {
4451 	int fd;
4452 	struct file *file;
4453 
4454 	fd = get_unused_fd_flags(O_CLOEXEC);
4455 	if (fd < 0)
4456 		return fd;
4457 
4458 	file = anon_inode_getfile("kvm-vm-stats",
4459 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4460 	if (IS_ERR(file)) {
4461 		put_unused_fd(fd);
4462 		return PTR_ERR(file);
4463 	}
4464 	file->f_mode |= FMODE_PREAD;
4465 	fd_install(fd, file);
4466 
4467 	return fd;
4468 }
4469 
4470 static long kvm_vm_ioctl(struct file *filp,
4471 			   unsigned int ioctl, unsigned long arg)
4472 {
4473 	struct kvm *kvm = filp->private_data;
4474 	void __user *argp = (void __user *)arg;
4475 	int r;
4476 
4477 	if (kvm->mm != current->mm || kvm->vm_dead)
4478 		return -EIO;
4479 	switch (ioctl) {
4480 	case KVM_CREATE_VCPU:
4481 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4482 		break;
4483 	case KVM_ENABLE_CAP: {
4484 		struct kvm_enable_cap cap;
4485 
4486 		r = -EFAULT;
4487 		if (copy_from_user(&cap, argp, sizeof(cap)))
4488 			goto out;
4489 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4490 		break;
4491 	}
4492 	case KVM_SET_USER_MEMORY_REGION: {
4493 		struct kvm_userspace_memory_region kvm_userspace_mem;
4494 
4495 		r = -EFAULT;
4496 		if (copy_from_user(&kvm_userspace_mem, argp,
4497 						sizeof(kvm_userspace_mem)))
4498 			goto out;
4499 
4500 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4501 		break;
4502 	}
4503 	case KVM_GET_DIRTY_LOG: {
4504 		struct kvm_dirty_log log;
4505 
4506 		r = -EFAULT;
4507 		if (copy_from_user(&log, argp, sizeof(log)))
4508 			goto out;
4509 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4510 		break;
4511 	}
4512 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4513 	case KVM_CLEAR_DIRTY_LOG: {
4514 		struct kvm_clear_dirty_log log;
4515 
4516 		r = -EFAULT;
4517 		if (copy_from_user(&log, argp, sizeof(log)))
4518 			goto out;
4519 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4520 		break;
4521 	}
4522 #endif
4523 #ifdef CONFIG_KVM_MMIO
4524 	case KVM_REGISTER_COALESCED_MMIO: {
4525 		struct kvm_coalesced_mmio_zone zone;
4526 
4527 		r = -EFAULT;
4528 		if (copy_from_user(&zone, argp, sizeof(zone)))
4529 			goto out;
4530 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4531 		break;
4532 	}
4533 	case KVM_UNREGISTER_COALESCED_MMIO: {
4534 		struct kvm_coalesced_mmio_zone zone;
4535 
4536 		r = -EFAULT;
4537 		if (copy_from_user(&zone, argp, sizeof(zone)))
4538 			goto out;
4539 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4540 		break;
4541 	}
4542 #endif
4543 	case KVM_IRQFD: {
4544 		struct kvm_irqfd data;
4545 
4546 		r = -EFAULT;
4547 		if (copy_from_user(&data, argp, sizeof(data)))
4548 			goto out;
4549 		r = kvm_irqfd(kvm, &data);
4550 		break;
4551 	}
4552 	case KVM_IOEVENTFD: {
4553 		struct kvm_ioeventfd data;
4554 
4555 		r = -EFAULT;
4556 		if (copy_from_user(&data, argp, sizeof(data)))
4557 			goto out;
4558 		r = kvm_ioeventfd(kvm, &data);
4559 		break;
4560 	}
4561 #ifdef CONFIG_HAVE_KVM_MSI
4562 	case KVM_SIGNAL_MSI: {
4563 		struct kvm_msi msi;
4564 
4565 		r = -EFAULT;
4566 		if (copy_from_user(&msi, argp, sizeof(msi)))
4567 			goto out;
4568 		r = kvm_send_userspace_msi(kvm, &msi);
4569 		break;
4570 	}
4571 #endif
4572 #ifdef __KVM_HAVE_IRQ_LINE
4573 	case KVM_IRQ_LINE_STATUS:
4574 	case KVM_IRQ_LINE: {
4575 		struct kvm_irq_level irq_event;
4576 
4577 		r = -EFAULT;
4578 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4579 			goto out;
4580 
4581 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4582 					ioctl == KVM_IRQ_LINE_STATUS);
4583 		if (r)
4584 			goto out;
4585 
4586 		r = -EFAULT;
4587 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4588 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4589 				goto out;
4590 		}
4591 
4592 		r = 0;
4593 		break;
4594 	}
4595 #endif
4596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4597 	case KVM_SET_GSI_ROUTING: {
4598 		struct kvm_irq_routing routing;
4599 		struct kvm_irq_routing __user *urouting;
4600 		struct kvm_irq_routing_entry *entries = NULL;
4601 
4602 		r = -EFAULT;
4603 		if (copy_from_user(&routing, argp, sizeof(routing)))
4604 			goto out;
4605 		r = -EINVAL;
4606 		if (!kvm_arch_can_set_irq_routing(kvm))
4607 			goto out;
4608 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4609 			goto out;
4610 		if (routing.flags)
4611 			goto out;
4612 		if (routing.nr) {
4613 			urouting = argp;
4614 			entries = vmemdup_user(urouting->entries,
4615 					       array_size(sizeof(*entries),
4616 							  routing.nr));
4617 			if (IS_ERR(entries)) {
4618 				r = PTR_ERR(entries);
4619 				goto out;
4620 			}
4621 		}
4622 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4623 					routing.flags);
4624 		kvfree(entries);
4625 		break;
4626 	}
4627 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4628 	case KVM_CREATE_DEVICE: {
4629 		struct kvm_create_device cd;
4630 
4631 		r = -EFAULT;
4632 		if (copy_from_user(&cd, argp, sizeof(cd)))
4633 			goto out;
4634 
4635 		r = kvm_ioctl_create_device(kvm, &cd);
4636 		if (r)
4637 			goto out;
4638 
4639 		r = -EFAULT;
4640 		if (copy_to_user(argp, &cd, sizeof(cd)))
4641 			goto out;
4642 
4643 		r = 0;
4644 		break;
4645 	}
4646 	case KVM_CHECK_EXTENSION:
4647 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4648 		break;
4649 	case KVM_RESET_DIRTY_RINGS:
4650 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4651 		break;
4652 	case KVM_GET_STATS_FD:
4653 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4654 		break;
4655 	default:
4656 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4657 	}
4658 out:
4659 	return r;
4660 }
4661 
4662 #ifdef CONFIG_KVM_COMPAT
4663 struct compat_kvm_dirty_log {
4664 	__u32 slot;
4665 	__u32 padding1;
4666 	union {
4667 		compat_uptr_t dirty_bitmap; /* one bit per page */
4668 		__u64 padding2;
4669 	};
4670 };
4671 
4672 struct compat_kvm_clear_dirty_log {
4673 	__u32 slot;
4674 	__u32 num_pages;
4675 	__u64 first_page;
4676 	union {
4677 		compat_uptr_t dirty_bitmap; /* one bit per page */
4678 		__u64 padding2;
4679 	};
4680 };
4681 
4682 static long kvm_vm_compat_ioctl(struct file *filp,
4683 			   unsigned int ioctl, unsigned long arg)
4684 {
4685 	struct kvm *kvm = filp->private_data;
4686 	int r;
4687 
4688 	if (kvm->mm != current->mm || kvm->vm_dead)
4689 		return -EIO;
4690 	switch (ioctl) {
4691 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4692 	case KVM_CLEAR_DIRTY_LOG: {
4693 		struct compat_kvm_clear_dirty_log compat_log;
4694 		struct kvm_clear_dirty_log log;
4695 
4696 		if (copy_from_user(&compat_log, (void __user *)arg,
4697 				   sizeof(compat_log)))
4698 			return -EFAULT;
4699 		log.slot	 = compat_log.slot;
4700 		log.num_pages	 = compat_log.num_pages;
4701 		log.first_page	 = compat_log.first_page;
4702 		log.padding2	 = compat_log.padding2;
4703 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4704 
4705 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4706 		break;
4707 	}
4708 #endif
4709 	case KVM_GET_DIRTY_LOG: {
4710 		struct compat_kvm_dirty_log compat_log;
4711 		struct kvm_dirty_log log;
4712 
4713 		if (copy_from_user(&compat_log, (void __user *)arg,
4714 				   sizeof(compat_log)))
4715 			return -EFAULT;
4716 		log.slot	 = compat_log.slot;
4717 		log.padding1	 = compat_log.padding1;
4718 		log.padding2	 = compat_log.padding2;
4719 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4720 
4721 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4722 		break;
4723 	}
4724 	default:
4725 		r = kvm_vm_ioctl(filp, ioctl, arg);
4726 	}
4727 	return r;
4728 }
4729 #endif
4730 
4731 static const struct file_operations kvm_vm_fops = {
4732 	.release        = kvm_vm_release,
4733 	.unlocked_ioctl = kvm_vm_ioctl,
4734 	.llseek		= noop_llseek,
4735 	KVM_COMPAT(kvm_vm_compat_ioctl),
4736 };
4737 
4738 bool file_is_kvm(struct file *file)
4739 {
4740 	return file && file->f_op == &kvm_vm_fops;
4741 }
4742 EXPORT_SYMBOL_GPL(file_is_kvm);
4743 
4744 static int kvm_dev_ioctl_create_vm(unsigned long type)
4745 {
4746 	int r;
4747 	struct kvm *kvm;
4748 	struct file *file;
4749 
4750 	kvm = kvm_create_vm(type);
4751 	if (IS_ERR(kvm))
4752 		return PTR_ERR(kvm);
4753 #ifdef CONFIG_KVM_MMIO
4754 	r = kvm_coalesced_mmio_init(kvm);
4755 	if (r < 0)
4756 		goto put_kvm;
4757 #endif
4758 	r = get_unused_fd_flags(O_CLOEXEC);
4759 	if (r < 0)
4760 		goto put_kvm;
4761 
4762 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4763 			"kvm-%d", task_pid_nr(current));
4764 
4765 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4766 	if (IS_ERR(file)) {
4767 		put_unused_fd(r);
4768 		r = PTR_ERR(file);
4769 		goto put_kvm;
4770 	}
4771 
4772 	/*
4773 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4774 	 * already set, with ->release() being kvm_vm_release().  In error
4775 	 * cases it will be called by the final fput(file) and will take
4776 	 * care of doing kvm_put_kvm(kvm).
4777 	 */
4778 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4779 		put_unused_fd(r);
4780 		fput(file);
4781 		return -ENOMEM;
4782 	}
4783 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4784 
4785 	fd_install(r, file);
4786 	return r;
4787 
4788 put_kvm:
4789 	kvm_put_kvm(kvm);
4790 	return r;
4791 }
4792 
4793 static long kvm_dev_ioctl(struct file *filp,
4794 			  unsigned int ioctl, unsigned long arg)
4795 {
4796 	long r = -EINVAL;
4797 
4798 	switch (ioctl) {
4799 	case KVM_GET_API_VERSION:
4800 		if (arg)
4801 			goto out;
4802 		r = KVM_API_VERSION;
4803 		break;
4804 	case KVM_CREATE_VM:
4805 		r = kvm_dev_ioctl_create_vm(arg);
4806 		break;
4807 	case KVM_CHECK_EXTENSION:
4808 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4809 		break;
4810 	case KVM_GET_VCPU_MMAP_SIZE:
4811 		if (arg)
4812 			goto out;
4813 		r = PAGE_SIZE;     /* struct kvm_run */
4814 #ifdef CONFIG_X86
4815 		r += PAGE_SIZE;    /* pio data page */
4816 #endif
4817 #ifdef CONFIG_KVM_MMIO
4818 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4819 #endif
4820 		break;
4821 	case KVM_TRACE_ENABLE:
4822 	case KVM_TRACE_PAUSE:
4823 	case KVM_TRACE_DISABLE:
4824 		r = -EOPNOTSUPP;
4825 		break;
4826 	default:
4827 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4828 	}
4829 out:
4830 	return r;
4831 }
4832 
4833 static struct file_operations kvm_chardev_ops = {
4834 	.unlocked_ioctl = kvm_dev_ioctl,
4835 	.llseek		= noop_llseek,
4836 	KVM_COMPAT(kvm_dev_ioctl),
4837 };
4838 
4839 static struct miscdevice kvm_dev = {
4840 	KVM_MINOR,
4841 	"kvm",
4842 	&kvm_chardev_ops,
4843 };
4844 
4845 static void hardware_enable_nolock(void *junk)
4846 {
4847 	int cpu = raw_smp_processor_id();
4848 	int r;
4849 
4850 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4851 		return;
4852 
4853 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4854 
4855 	r = kvm_arch_hardware_enable();
4856 
4857 	if (r) {
4858 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4859 		atomic_inc(&hardware_enable_failed);
4860 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4861 	}
4862 }
4863 
4864 static int kvm_starting_cpu(unsigned int cpu)
4865 {
4866 	raw_spin_lock(&kvm_count_lock);
4867 	if (kvm_usage_count)
4868 		hardware_enable_nolock(NULL);
4869 	raw_spin_unlock(&kvm_count_lock);
4870 	return 0;
4871 }
4872 
4873 static void hardware_disable_nolock(void *junk)
4874 {
4875 	int cpu = raw_smp_processor_id();
4876 
4877 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4878 		return;
4879 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4880 	kvm_arch_hardware_disable();
4881 }
4882 
4883 static int kvm_dying_cpu(unsigned int cpu)
4884 {
4885 	raw_spin_lock(&kvm_count_lock);
4886 	if (kvm_usage_count)
4887 		hardware_disable_nolock(NULL);
4888 	raw_spin_unlock(&kvm_count_lock);
4889 	return 0;
4890 }
4891 
4892 static void hardware_disable_all_nolock(void)
4893 {
4894 	BUG_ON(!kvm_usage_count);
4895 
4896 	kvm_usage_count--;
4897 	if (!kvm_usage_count)
4898 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4899 }
4900 
4901 static void hardware_disable_all(void)
4902 {
4903 	raw_spin_lock(&kvm_count_lock);
4904 	hardware_disable_all_nolock();
4905 	raw_spin_unlock(&kvm_count_lock);
4906 }
4907 
4908 static int hardware_enable_all(void)
4909 {
4910 	int r = 0;
4911 
4912 	raw_spin_lock(&kvm_count_lock);
4913 
4914 	kvm_usage_count++;
4915 	if (kvm_usage_count == 1) {
4916 		atomic_set(&hardware_enable_failed, 0);
4917 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4918 
4919 		if (atomic_read(&hardware_enable_failed)) {
4920 			hardware_disable_all_nolock();
4921 			r = -EBUSY;
4922 		}
4923 	}
4924 
4925 	raw_spin_unlock(&kvm_count_lock);
4926 
4927 	return r;
4928 }
4929 
4930 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4931 		      void *v)
4932 {
4933 	/*
4934 	 * Some (well, at least mine) BIOSes hang on reboot if
4935 	 * in vmx root mode.
4936 	 *
4937 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4938 	 */
4939 	pr_info("kvm: exiting hardware virtualization\n");
4940 	kvm_rebooting = true;
4941 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4942 	return NOTIFY_OK;
4943 }
4944 
4945 static struct notifier_block kvm_reboot_notifier = {
4946 	.notifier_call = kvm_reboot,
4947 	.priority = 0,
4948 };
4949 
4950 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4951 {
4952 	int i;
4953 
4954 	for (i = 0; i < bus->dev_count; i++) {
4955 		struct kvm_io_device *pos = bus->range[i].dev;
4956 
4957 		kvm_iodevice_destructor(pos);
4958 	}
4959 	kfree(bus);
4960 }
4961 
4962 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4963 				 const struct kvm_io_range *r2)
4964 {
4965 	gpa_t addr1 = r1->addr;
4966 	gpa_t addr2 = r2->addr;
4967 
4968 	if (addr1 < addr2)
4969 		return -1;
4970 
4971 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4972 	 * accept any overlapping write.  Any order is acceptable for
4973 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4974 	 * we process all of them.
4975 	 */
4976 	if (r2->len) {
4977 		addr1 += r1->len;
4978 		addr2 += r2->len;
4979 	}
4980 
4981 	if (addr1 > addr2)
4982 		return 1;
4983 
4984 	return 0;
4985 }
4986 
4987 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4988 {
4989 	return kvm_io_bus_cmp(p1, p2);
4990 }
4991 
4992 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4993 			     gpa_t addr, int len)
4994 {
4995 	struct kvm_io_range *range, key;
4996 	int off;
4997 
4998 	key = (struct kvm_io_range) {
4999 		.addr = addr,
5000 		.len = len,
5001 	};
5002 
5003 	range = bsearch(&key, bus->range, bus->dev_count,
5004 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5005 	if (range == NULL)
5006 		return -ENOENT;
5007 
5008 	off = range - bus->range;
5009 
5010 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5011 		off--;
5012 
5013 	return off;
5014 }
5015 
5016 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5017 			      struct kvm_io_range *range, const void *val)
5018 {
5019 	int idx;
5020 
5021 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5022 	if (idx < 0)
5023 		return -EOPNOTSUPP;
5024 
5025 	while (idx < bus->dev_count &&
5026 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5027 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5028 					range->len, val))
5029 			return idx;
5030 		idx++;
5031 	}
5032 
5033 	return -EOPNOTSUPP;
5034 }
5035 
5036 /* kvm_io_bus_write - called under kvm->slots_lock */
5037 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5038 		     int len, const void *val)
5039 {
5040 	struct kvm_io_bus *bus;
5041 	struct kvm_io_range range;
5042 	int r;
5043 
5044 	range = (struct kvm_io_range) {
5045 		.addr = addr,
5046 		.len = len,
5047 	};
5048 
5049 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5050 	if (!bus)
5051 		return -ENOMEM;
5052 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5053 	return r < 0 ? r : 0;
5054 }
5055 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5056 
5057 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5058 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5059 			    gpa_t addr, int len, const void *val, long cookie)
5060 {
5061 	struct kvm_io_bus *bus;
5062 	struct kvm_io_range range;
5063 
5064 	range = (struct kvm_io_range) {
5065 		.addr = addr,
5066 		.len = len,
5067 	};
5068 
5069 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5070 	if (!bus)
5071 		return -ENOMEM;
5072 
5073 	/* First try the device referenced by cookie. */
5074 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5075 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5076 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5077 					val))
5078 			return cookie;
5079 
5080 	/*
5081 	 * cookie contained garbage; fall back to search and return the
5082 	 * correct cookie value.
5083 	 */
5084 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5085 }
5086 
5087 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5088 			     struct kvm_io_range *range, void *val)
5089 {
5090 	int idx;
5091 
5092 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5093 	if (idx < 0)
5094 		return -EOPNOTSUPP;
5095 
5096 	while (idx < bus->dev_count &&
5097 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5098 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5099 				       range->len, val))
5100 			return idx;
5101 		idx++;
5102 	}
5103 
5104 	return -EOPNOTSUPP;
5105 }
5106 
5107 /* kvm_io_bus_read - called under kvm->slots_lock */
5108 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5109 		    int len, void *val)
5110 {
5111 	struct kvm_io_bus *bus;
5112 	struct kvm_io_range range;
5113 	int r;
5114 
5115 	range = (struct kvm_io_range) {
5116 		.addr = addr,
5117 		.len = len,
5118 	};
5119 
5120 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5121 	if (!bus)
5122 		return -ENOMEM;
5123 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5124 	return r < 0 ? r : 0;
5125 }
5126 
5127 /* Caller must hold slots_lock. */
5128 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5129 			    int len, struct kvm_io_device *dev)
5130 {
5131 	int i;
5132 	struct kvm_io_bus *new_bus, *bus;
5133 	struct kvm_io_range range;
5134 
5135 	bus = kvm_get_bus(kvm, bus_idx);
5136 	if (!bus)
5137 		return -ENOMEM;
5138 
5139 	/* exclude ioeventfd which is limited by maximum fd */
5140 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5141 		return -ENOSPC;
5142 
5143 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5144 			  GFP_KERNEL_ACCOUNT);
5145 	if (!new_bus)
5146 		return -ENOMEM;
5147 
5148 	range = (struct kvm_io_range) {
5149 		.addr = addr,
5150 		.len = len,
5151 		.dev = dev,
5152 	};
5153 
5154 	for (i = 0; i < bus->dev_count; i++)
5155 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5156 			break;
5157 
5158 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5159 	new_bus->dev_count++;
5160 	new_bus->range[i] = range;
5161 	memcpy(new_bus->range + i + 1, bus->range + i,
5162 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5163 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5164 	synchronize_srcu_expedited(&kvm->srcu);
5165 	kfree(bus);
5166 
5167 	return 0;
5168 }
5169 
5170 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5171 			      struct kvm_io_device *dev)
5172 {
5173 	int i, j;
5174 	struct kvm_io_bus *new_bus, *bus;
5175 
5176 	lockdep_assert_held(&kvm->slots_lock);
5177 
5178 	bus = kvm_get_bus(kvm, bus_idx);
5179 	if (!bus)
5180 		return 0;
5181 
5182 	for (i = 0; i < bus->dev_count; i++) {
5183 		if (bus->range[i].dev == dev) {
5184 			break;
5185 		}
5186 	}
5187 
5188 	if (i == bus->dev_count)
5189 		return 0;
5190 
5191 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5192 			  GFP_KERNEL_ACCOUNT);
5193 	if (new_bus) {
5194 		memcpy(new_bus, bus, struct_size(bus, range, i));
5195 		new_bus->dev_count--;
5196 		memcpy(new_bus->range + i, bus->range + i + 1,
5197 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5198 	}
5199 
5200 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5201 	synchronize_srcu_expedited(&kvm->srcu);
5202 
5203 	/* Destroy the old bus _after_ installing the (null) bus. */
5204 	if (!new_bus) {
5205 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5206 		for (j = 0; j < bus->dev_count; j++) {
5207 			if (j == i)
5208 				continue;
5209 			kvm_iodevice_destructor(bus->range[j].dev);
5210 		}
5211 	}
5212 
5213 	kfree(bus);
5214 	return new_bus ? 0 : -ENOMEM;
5215 }
5216 
5217 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5218 					 gpa_t addr)
5219 {
5220 	struct kvm_io_bus *bus;
5221 	int dev_idx, srcu_idx;
5222 	struct kvm_io_device *iodev = NULL;
5223 
5224 	srcu_idx = srcu_read_lock(&kvm->srcu);
5225 
5226 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5227 	if (!bus)
5228 		goto out_unlock;
5229 
5230 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5231 	if (dev_idx < 0)
5232 		goto out_unlock;
5233 
5234 	iodev = bus->range[dev_idx].dev;
5235 
5236 out_unlock:
5237 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5238 
5239 	return iodev;
5240 }
5241 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5242 
5243 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5244 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5245 			   const char *fmt)
5246 {
5247 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5248 					  inode->i_private;
5249 
5250 	/*
5251 	 * The debugfs files are a reference to the kvm struct which
5252         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5253         * avoids the race between open and the removal of the debugfs directory.
5254 	 */
5255 	if (!kvm_get_kvm_safe(stat_data->kvm))
5256 		return -ENOENT;
5257 
5258 	if (simple_attr_open(inode, file, get,
5259 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5260 		    ? set : NULL,
5261 		    fmt)) {
5262 		kvm_put_kvm(stat_data->kvm);
5263 		return -ENOMEM;
5264 	}
5265 
5266 	return 0;
5267 }
5268 
5269 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5270 {
5271 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5272 					  inode->i_private;
5273 
5274 	simple_attr_release(inode, file);
5275 	kvm_put_kvm(stat_data->kvm);
5276 
5277 	return 0;
5278 }
5279 
5280 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5281 {
5282 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5283 
5284 	return 0;
5285 }
5286 
5287 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5288 {
5289 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5290 
5291 	return 0;
5292 }
5293 
5294 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5295 {
5296 	unsigned long i;
5297 	struct kvm_vcpu *vcpu;
5298 
5299 	*val = 0;
5300 
5301 	kvm_for_each_vcpu(i, vcpu, kvm)
5302 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5303 
5304 	return 0;
5305 }
5306 
5307 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5308 {
5309 	unsigned long i;
5310 	struct kvm_vcpu *vcpu;
5311 
5312 	kvm_for_each_vcpu(i, vcpu, kvm)
5313 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5314 
5315 	return 0;
5316 }
5317 
5318 static int kvm_stat_data_get(void *data, u64 *val)
5319 {
5320 	int r = -EFAULT;
5321 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5322 
5323 	switch (stat_data->kind) {
5324 	case KVM_STAT_VM:
5325 		r = kvm_get_stat_per_vm(stat_data->kvm,
5326 					stat_data->desc->desc.offset, val);
5327 		break;
5328 	case KVM_STAT_VCPU:
5329 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5330 					  stat_data->desc->desc.offset, val);
5331 		break;
5332 	}
5333 
5334 	return r;
5335 }
5336 
5337 static int kvm_stat_data_clear(void *data, u64 val)
5338 {
5339 	int r = -EFAULT;
5340 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5341 
5342 	if (val)
5343 		return -EINVAL;
5344 
5345 	switch (stat_data->kind) {
5346 	case KVM_STAT_VM:
5347 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5348 					  stat_data->desc->desc.offset);
5349 		break;
5350 	case KVM_STAT_VCPU:
5351 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5352 					    stat_data->desc->desc.offset);
5353 		break;
5354 	}
5355 
5356 	return r;
5357 }
5358 
5359 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5360 {
5361 	__simple_attr_check_format("%llu\n", 0ull);
5362 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5363 				kvm_stat_data_clear, "%llu\n");
5364 }
5365 
5366 static const struct file_operations stat_fops_per_vm = {
5367 	.owner = THIS_MODULE,
5368 	.open = kvm_stat_data_open,
5369 	.release = kvm_debugfs_release,
5370 	.read = simple_attr_read,
5371 	.write = simple_attr_write,
5372 	.llseek = no_llseek,
5373 };
5374 
5375 static int vm_stat_get(void *_offset, u64 *val)
5376 {
5377 	unsigned offset = (long)_offset;
5378 	struct kvm *kvm;
5379 	u64 tmp_val;
5380 
5381 	*val = 0;
5382 	mutex_lock(&kvm_lock);
5383 	list_for_each_entry(kvm, &vm_list, vm_list) {
5384 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5385 		*val += tmp_val;
5386 	}
5387 	mutex_unlock(&kvm_lock);
5388 	return 0;
5389 }
5390 
5391 static int vm_stat_clear(void *_offset, u64 val)
5392 {
5393 	unsigned offset = (long)_offset;
5394 	struct kvm *kvm;
5395 
5396 	if (val)
5397 		return -EINVAL;
5398 
5399 	mutex_lock(&kvm_lock);
5400 	list_for_each_entry(kvm, &vm_list, vm_list) {
5401 		kvm_clear_stat_per_vm(kvm, offset);
5402 	}
5403 	mutex_unlock(&kvm_lock);
5404 
5405 	return 0;
5406 }
5407 
5408 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5409 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5410 
5411 static int vcpu_stat_get(void *_offset, u64 *val)
5412 {
5413 	unsigned offset = (long)_offset;
5414 	struct kvm *kvm;
5415 	u64 tmp_val;
5416 
5417 	*val = 0;
5418 	mutex_lock(&kvm_lock);
5419 	list_for_each_entry(kvm, &vm_list, vm_list) {
5420 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5421 		*val += tmp_val;
5422 	}
5423 	mutex_unlock(&kvm_lock);
5424 	return 0;
5425 }
5426 
5427 static int vcpu_stat_clear(void *_offset, u64 val)
5428 {
5429 	unsigned offset = (long)_offset;
5430 	struct kvm *kvm;
5431 
5432 	if (val)
5433 		return -EINVAL;
5434 
5435 	mutex_lock(&kvm_lock);
5436 	list_for_each_entry(kvm, &vm_list, vm_list) {
5437 		kvm_clear_stat_per_vcpu(kvm, offset);
5438 	}
5439 	mutex_unlock(&kvm_lock);
5440 
5441 	return 0;
5442 }
5443 
5444 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5445 			"%llu\n");
5446 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5447 
5448 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5449 {
5450 	struct kobj_uevent_env *env;
5451 	unsigned long long created, active;
5452 
5453 	if (!kvm_dev.this_device || !kvm)
5454 		return;
5455 
5456 	mutex_lock(&kvm_lock);
5457 	if (type == KVM_EVENT_CREATE_VM) {
5458 		kvm_createvm_count++;
5459 		kvm_active_vms++;
5460 	} else if (type == KVM_EVENT_DESTROY_VM) {
5461 		kvm_active_vms--;
5462 	}
5463 	created = kvm_createvm_count;
5464 	active = kvm_active_vms;
5465 	mutex_unlock(&kvm_lock);
5466 
5467 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5468 	if (!env)
5469 		return;
5470 
5471 	add_uevent_var(env, "CREATED=%llu", created);
5472 	add_uevent_var(env, "COUNT=%llu", active);
5473 
5474 	if (type == KVM_EVENT_CREATE_VM) {
5475 		add_uevent_var(env, "EVENT=create");
5476 		kvm->userspace_pid = task_pid_nr(current);
5477 	} else if (type == KVM_EVENT_DESTROY_VM) {
5478 		add_uevent_var(env, "EVENT=destroy");
5479 	}
5480 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5481 
5482 	if (kvm->debugfs_dentry) {
5483 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5484 
5485 		if (p) {
5486 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5487 			if (!IS_ERR(tmp))
5488 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5489 			kfree(p);
5490 		}
5491 	}
5492 	/* no need for checks, since we are adding at most only 5 keys */
5493 	env->envp[env->envp_idx++] = NULL;
5494 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5495 	kfree(env);
5496 }
5497 
5498 static void kvm_init_debug(void)
5499 {
5500 	const struct file_operations *fops;
5501 	const struct _kvm_stats_desc *pdesc;
5502 	int i;
5503 
5504 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5505 
5506 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5507 		pdesc = &kvm_vm_stats_desc[i];
5508 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5509 			fops = &vm_stat_fops;
5510 		else
5511 			fops = &vm_stat_readonly_fops;
5512 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5513 				kvm_debugfs_dir,
5514 				(void *)(long)pdesc->desc.offset, fops);
5515 	}
5516 
5517 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5518 		pdesc = &kvm_vcpu_stats_desc[i];
5519 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5520 			fops = &vcpu_stat_fops;
5521 		else
5522 			fops = &vcpu_stat_readonly_fops;
5523 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5524 				kvm_debugfs_dir,
5525 				(void *)(long)pdesc->desc.offset, fops);
5526 	}
5527 }
5528 
5529 static int kvm_suspend(void)
5530 {
5531 	if (kvm_usage_count)
5532 		hardware_disable_nolock(NULL);
5533 	return 0;
5534 }
5535 
5536 static void kvm_resume(void)
5537 {
5538 	if (kvm_usage_count) {
5539 		lockdep_assert_not_held(&kvm_count_lock);
5540 		hardware_enable_nolock(NULL);
5541 	}
5542 }
5543 
5544 static struct syscore_ops kvm_syscore_ops = {
5545 	.suspend = kvm_suspend,
5546 	.resume = kvm_resume,
5547 };
5548 
5549 static inline
5550 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5551 {
5552 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5553 }
5554 
5555 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5556 {
5557 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5558 
5559 	WRITE_ONCE(vcpu->preempted, false);
5560 	WRITE_ONCE(vcpu->ready, false);
5561 
5562 	__this_cpu_write(kvm_running_vcpu, vcpu);
5563 	kvm_arch_sched_in(vcpu, cpu);
5564 	kvm_arch_vcpu_load(vcpu, cpu);
5565 }
5566 
5567 static void kvm_sched_out(struct preempt_notifier *pn,
5568 			  struct task_struct *next)
5569 {
5570 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5571 
5572 	if (current->on_rq) {
5573 		WRITE_ONCE(vcpu->preempted, true);
5574 		WRITE_ONCE(vcpu->ready, true);
5575 	}
5576 	kvm_arch_vcpu_put(vcpu);
5577 	__this_cpu_write(kvm_running_vcpu, NULL);
5578 }
5579 
5580 /**
5581  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5582  *
5583  * We can disable preemption locally around accessing the per-CPU variable,
5584  * and use the resolved vcpu pointer after enabling preemption again,
5585  * because even if the current thread is migrated to another CPU, reading
5586  * the per-CPU value later will give us the same value as we update the
5587  * per-CPU variable in the preempt notifier handlers.
5588  */
5589 struct kvm_vcpu *kvm_get_running_vcpu(void)
5590 {
5591 	struct kvm_vcpu *vcpu;
5592 
5593 	preempt_disable();
5594 	vcpu = __this_cpu_read(kvm_running_vcpu);
5595 	preempt_enable();
5596 
5597 	return vcpu;
5598 }
5599 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5600 
5601 /**
5602  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5603  */
5604 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5605 {
5606         return &kvm_running_vcpu;
5607 }
5608 
5609 #ifdef CONFIG_GUEST_PERF_EVENTS
5610 static unsigned int kvm_guest_state(void)
5611 {
5612 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5613 	unsigned int state;
5614 
5615 	if (!kvm_arch_pmi_in_guest(vcpu))
5616 		return 0;
5617 
5618 	state = PERF_GUEST_ACTIVE;
5619 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5620 		state |= PERF_GUEST_USER;
5621 
5622 	return state;
5623 }
5624 
5625 static unsigned long kvm_guest_get_ip(void)
5626 {
5627 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5628 
5629 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5630 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5631 		return 0;
5632 
5633 	return kvm_arch_vcpu_get_ip(vcpu);
5634 }
5635 
5636 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5637 	.state			= kvm_guest_state,
5638 	.get_ip			= kvm_guest_get_ip,
5639 	.handle_intel_pt_intr	= NULL,
5640 };
5641 
5642 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5643 {
5644 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5645 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5646 }
5647 void kvm_unregister_perf_callbacks(void)
5648 {
5649 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5650 }
5651 #endif
5652 
5653 struct kvm_cpu_compat_check {
5654 	void *opaque;
5655 	int *ret;
5656 };
5657 
5658 static void check_processor_compat(void *data)
5659 {
5660 	struct kvm_cpu_compat_check *c = data;
5661 
5662 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5663 }
5664 
5665 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5666 		  struct module *module)
5667 {
5668 	struct kvm_cpu_compat_check c;
5669 	int r;
5670 	int cpu;
5671 
5672 	r = kvm_arch_init(opaque);
5673 	if (r)
5674 		goto out_fail;
5675 
5676 	/*
5677 	 * kvm_arch_init makes sure there's at most one caller
5678 	 * for architectures that support multiple implementations,
5679 	 * like intel and amd on x86.
5680 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5681 	 * conflicts in case kvm is already setup for another implementation.
5682 	 */
5683 	r = kvm_irqfd_init();
5684 	if (r)
5685 		goto out_irqfd;
5686 
5687 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5688 		r = -ENOMEM;
5689 		goto out_free_0;
5690 	}
5691 
5692 	r = kvm_arch_hardware_setup(opaque);
5693 	if (r < 0)
5694 		goto out_free_1;
5695 
5696 	c.ret = &r;
5697 	c.opaque = opaque;
5698 	for_each_online_cpu(cpu) {
5699 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5700 		if (r < 0)
5701 			goto out_free_2;
5702 	}
5703 
5704 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5705 				      kvm_starting_cpu, kvm_dying_cpu);
5706 	if (r)
5707 		goto out_free_2;
5708 	register_reboot_notifier(&kvm_reboot_notifier);
5709 
5710 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5711 	if (!vcpu_align)
5712 		vcpu_align = __alignof__(struct kvm_vcpu);
5713 	kvm_vcpu_cache =
5714 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5715 					   SLAB_ACCOUNT,
5716 					   offsetof(struct kvm_vcpu, arch),
5717 					   offsetofend(struct kvm_vcpu, stats_id)
5718 					   - offsetof(struct kvm_vcpu, arch),
5719 					   NULL);
5720 	if (!kvm_vcpu_cache) {
5721 		r = -ENOMEM;
5722 		goto out_free_3;
5723 	}
5724 
5725 	for_each_possible_cpu(cpu) {
5726 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5727 					    GFP_KERNEL, cpu_to_node(cpu))) {
5728 			r = -ENOMEM;
5729 			goto out_free_4;
5730 		}
5731 	}
5732 
5733 	r = kvm_async_pf_init();
5734 	if (r)
5735 		goto out_free_5;
5736 
5737 	kvm_chardev_ops.owner = module;
5738 
5739 	r = misc_register(&kvm_dev);
5740 	if (r) {
5741 		pr_err("kvm: misc device register failed\n");
5742 		goto out_unreg;
5743 	}
5744 
5745 	register_syscore_ops(&kvm_syscore_ops);
5746 
5747 	kvm_preempt_ops.sched_in = kvm_sched_in;
5748 	kvm_preempt_ops.sched_out = kvm_sched_out;
5749 
5750 	kvm_init_debug();
5751 
5752 	r = kvm_vfio_ops_init();
5753 	WARN_ON(r);
5754 
5755 	return 0;
5756 
5757 out_unreg:
5758 	kvm_async_pf_deinit();
5759 out_free_5:
5760 	for_each_possible_cpu(cpu)
5761 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5762 out_free_4:
5763 	kmem_cache_destroy(kvm_vcpu_cache);
5764 out_free_3:
5765 	unregister_reboot_notifier(&kvm_reboot_notifier);
5766 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5767 out_free_2:
5768 	kvm_arch_hardware_unsetup();
5769 out_free_1:
5770 	free_cpumask_var(cpus_hardware_enabled);
5771 out_free_0:
5772 	kvm_irqfd_exit();
5773 out_irqfd:
5774 	kvm_arch_exit();
5775 out_fail:
5776 	return r;
5777 }
5778 EXPORT_SYMBOL_GPL(kvm_init);
5779 
5780 void kvm_exit(void)
5781 {
5782 	int cpu;
5783 
5784 	debugfs_remove_recursive(kvm_debugfs_dir);
5785 	misc_deregister(&kvm_dev);
5786 	for_each_possible_cpu(cpu)
5787 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5788 	kmem_cache_destroy(kvm_vcpu_cache);
5789 	kvm_async_pf_deinit();
5790 	unregister_syscore_ops(&kvm_syscore_ops);
5791 	unregister_reboot_notifier(&kvm_reboot_notifier);
5792 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5793 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5794 	kvm_arch_hardware_unsetup();
5795 	kvm_arch_exit();
5796 	kvm_irqfd_exit();
5797 	free_cpumask_var(cpus_hardware_enabled);
5798 	kvm_vfio_ops_exit();
5799 }
5800 EXPORT_SYMBOL_GPL(kvm_exit);
5801 
5802 struct kvm_vm_worker_thread_context {
5803 	struct kvm *kvm;
5804 	struct task_struct *parent;
5805 	struct completion init_done;
5806 	kvm_vm_thread_fn_t thread_fn;
5807 	uintptr_t data;
5808 	int err;
5809 };
5810 
5811 static int kvm_vm_worker_thread(void *context)
5812 {
5813 	/*
5814 	 * The init_context is allocated on the stack of the parent thread, so
5815 	 * we have to locally copy anything that is needed beyond initialization
5816 	 */
5817 	struct kvm_vm_worker_thread_context *init_context = context;
5818 	struct task_struct *parent;
5819 	struct kvm *kvm = init_context->kvm;
5820 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5821 	uintptr_t data = init_context->data;
5822 	int err;
5823 
5824 	err = kthread_park(current);
5825 	/* kthread_park(current) is never supposed to return an error */
5826 	WARN_ON(err != 0);
5827 	if (err)
5828 		goto init_complete;
5829 
5830 	err = cgroup_attach_task_all(init_context->parent, current);
5831 	if (err) {
5832 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5833 			__func__, err);
5834 		goto init_complete;
5835 	}
5836 
5837 	set_user_nice(current, task_nice(init_context->parent));
5838 
5839 init_complete:
5840 	init_context->err = err;
5841 	complete(&init_context->init_done);
5842 	init_context = NULL;
5843 
5844 	if (err)
5845 		goto out;
5846 
5847 	/* Wait to be woken up by the spawner before proceeding. */
5848 	kthread_parkme();
5849 
5850 	if (!kthread_should_stop())
5851 		err = thread_fn(kvm, data);
5852 
5853 out:
5854 	/*
5855 	 * Move kthread back to its original cgroup to prevent it lingering in
5856 	 * the cgroup of the VM process, after the latter finishes its
5857 	 * execution.
5858 	 *
5859 	 * kthread_stop() waits on the 'exited' completion condition which is
5860 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
5861 	 * kthread is removed from the cgroup in the cgroup_exit() which is
5862 	 * called after the exit_mm(). This causes the kthread_stop() to return
5863 	 * before the kthread actually quits the cgroup.
5864 	 */
5865 	rcu_read_lock();
5866 	parent = rcu_dereference(current->real_parent);
5867 	get_task_struct(parent);
5868 	rcu_read_unlock();
5869 	cgroup_attach_task_all(parent, current);
5870 	put_task_struct(parent);
5871 
5872 	return err;
5873 }
5874 
5875 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5876 				uintptr_t data, const char *name,
5877 				struct task_struct **thread_ptr)
5878 {
5879 	struct kvm_vm_worker_thread_context init_context = {};
5880 	struct task_struct *thread;
5881 
5882 	*thread_ptr = NULL;
5883 	init_context.kvm = kvm;
5884 	init_context.parent = current;
5885 	init_context.thread_fn = thread_fn;
5886 	init_context.data = data;
5887 	init_completion(&init_context.init_done);
5888 
5889 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5890 			     "%s-%d", name, task_pid_nr(current));
5891 	if (IS_ERR(thread))
5892 		return PTR_ERR(thread);
5893 
5894 	/* kthread_run is never supposed to return NULL */
5895 	WARN_ON(thread == NULL);
5896 
5897 	wait_for_completion(&init_context.init_done);
5898 
5899 	if (!init_context.err)
5900 		*thread_ptr = thread;
5901 
5902 	return init_context.err;
5903 }
5904