xref: /openbmc/linux/virt/kvm/kvm_main.c (revision cb1aaebe)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/io.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88 
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93 
94 /*
95  * Ordering of locks:
96  *
97  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99 
100 DEFINE_SPINLOCK(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103 
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107 
108 struct kmem_cache *kvm_vcpu_cache;
109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
110 
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations *stat_fops_per_vm[];
118 
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 			   unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 				  unsigned long arg);
124 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
125 #else
126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127 				unsigned long arg) { return -EINVAL; }
128 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
129 #endif
130 static int hardware_enable_all(void);
131 static void hardware_disable_all(void);
132 
133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
134 
135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
136 
137 __visible bool kvm_rebooting;
138 EXPORT_SYMBOL_GPL(kvm_rebooting);
139 
140 static bool largepages_enabled = true;
141 
142 #define KVM_EVENT_CREATE_VM 0
143 #define KVM_EVENT_DESTROY_VM 1
144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145 static unsigned long long kvm_createvm_count;
146 static unsigned long long kvm_active_vms;
147 
148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149 		unsigned long start, unsigned long end, bool blockable)
150 {
151 	return 0;
152 }
153 
154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
155 {
156 	if (pfn_valid(pfn))
157 		return PageReserved(pfn_to_page(pfn));
158 
159 	return true;
160 }
161 
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167 	int cpu = get_cpu();
168 	preempt_notifier_register(&vcpu->preempt_notifier);
169 	kvm_arch_vcpu_load(vcpu, cpu);
170 	put_cpu();
171 }
172 EXPORT_SYMBOL_GPL(vcpu_load);
173 
174 void vcpu_put(struct kvm_vcpu *vcpu)
175 {
176 	preempt_disable();
177 	kvm_arch_vcpu_put(vcpu);
178 	preempt_notifier_unregister(&vcpu->preempt_notifier);
179 	preempt_enable();
180 }
181 EXPORT_SYMBOL_GPL(vcpu_put);
182 
183 /* TODO: merge with kvm_arch_vcpu_should_kick */
184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185 {
186 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187 
188 	/*
189 	 * We need to wait for the VCPU to reenable interrupts and get out of
190 	 * READING_SHADOW_PAGE_TABLES mode.
191 	 */
192 	if (req & KVM_REQUEST_WAIT)
193 		return mode != OUTSIDE_GUEST_MODE;
194 
195 	/*
196 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
197 	 */
198 	return mode == IN_GUEST_MODE;
199 }
200 
201 static void ack_flush(void *_completed)
202 {
203 }
204 
205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206 {
207 	if (unlikely(!cpus))
208 		cpus = cpu_online_mask;
209 
210 	if (cpumask_empty(cpus))
211 		return false;
212 
213 	smp_call_function_many(cpus, ack_flush, NULL, wait);
214 	return true;
215 }
216 
217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
219 {
220 	int i, cpu, me;
221 	struct kvm_vcpu *vcpu;
222 	bool called;
223 
224 	me = get_cpu();
225 
226 	kvm_for_each_vcpu(i, vcpu, kvm) {
227 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
228 			continue;
229 
230 		kvm_make_request(req, vcpu);
231 		cpu = vcpu->cpu;
232 
233 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234 			continue;
235 
236 		if (tmp != NULL && cpu != -1 && cpu != me &&
237 		    kvm_request_needs_ipi(vcpu, req))
238 			__cpumask_set_cpu(cpu, tmp);
239 	}
240 
241 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242 	put_cpu();
243 
244 	return called;
245 }
246 
247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248 {
249 	cpumask_var_t cpus;
250 	bool called;
251 
252 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253 
254 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
255 
256 	free_cpumask_var(cpus);
257 	return called;
258 }
259 
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263 	/*
264 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265 	 * kvm_make_all_cpus_request.
266 	 */
267 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268 
269 	/*
270 	 * We want to publish modifications to the page tables before reading
271 	 * mode. Pairs with a memory barrier in arch-specific code.
272 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
274 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275 	 *
276 	 * There is already an smp_mb__after_atomic() before
277 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278 	 * barrier here.
279 	 */
280 	if (!kvm_arch_flush_remote_tlb(kvm)
281 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
282 		++kvm->stat.remote_tlb_flush;
283 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
284 }
285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
286 #endif
287 
288 void kvm_reload_remote_mmus(struct kvm *kvm)
289 {
290 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 }
292 
293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294 {
295 	struct page *page;
296 	int r;
297 
298 	mutex_init(&vcpu->mutex);
299 	vcpu->cpu = -1;
300 	vcpu->kvm = kvm;
301 	vcpu->vcpu_id = id;
302 	vcpu->pid = NULL;
303 	init_swait_queue_head(&vcpu->wq);
304 	kvm_async_pf_vcpu_init(vcpu);
305 
306 	vcpu->pre_pcpu = -1;
307 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308 
309 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310 	if (!page) {
311 		r = -ENOMEM;
312 		goto fail;
313 	}
314 	vcpu->run = page_address(page);
315 
316 	kvm_vcpu_set_in_spin_loop(vcpu, false);
317 	kvm_vcpu_set_dy_eligible(vcpu, false);
318 	vcpu->preempted = false;
319 
320 	r = kvm_arch_vcpu_init(vcpu);
321 	if (r < 0)
322 		goto fail_free_run;
323 	return 0;
324 
325 fail_free_run:
326 	free_page((unsigned long)vcpu->run);
327 fail:
328 	return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331 
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334 	/*
335 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
336 	 * will change the vcpu->pid pointer and on uninit all file
337 	 * descriptors are already gone.
338 	 */
339 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
340 	kvm_arch_vcpu_uninit(vcpu);
341 	free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344 
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348 	return container_of(mn, struct kvm, mmu_notifier);
349 }
350 
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352 					struct mm_struct *mm,
353 					unsigned long address,
354 					pte_t pte)
355 {
356 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
357 	int idx;
358 
359 	idx = srcu_read_lock(&kvm->srcu);
360 	spin_lock(&kvm->mmu_lock);
361 	kvm->mmu_notifier_seq++;
362 
363 	if (kvm_set_spte_hva(kvm, address, pte))
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371 					const struct mmu_notifier_range *range)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int need_tlb_flush = 0, idx;
375 	int ret;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 	/*
380 	 * The count increase must become visible at unlock time as no
381 	 * spte can be established without taking the mmu_lock and
382 	 * count is also read inside the mmu_lock critical section.
383 	 */
384 	kvm->mmu_notifier_count++;
385 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386 	need_tlb_flush |= kvm->tlbs_dirty;
387 	/* we've to flush the tlb before the pages can be freed */
388 	if (need_tlb_flush)
389 		kvm_flush_remote_tlbs(kvm);
390 
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394 					range->end,
395 					mmu_notifier_range_blockable(range));
396 
397 	srcu_read_unlock(&kvm->srcu, idx);
398 
399 	return ret;
400 }
401 
402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
403 					const struct mmu_notifier_range *range)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 
407 	spin_lock(&kvm->mmu_lock);
408 	/*
409 	 * This sequence increase will notify the kvm page fault that
410 	 * the page that is going to be mapped in the spte could have
411 	 * been freed.
412 	 */
413 	kvm->mmu_notifier_seq++;
414 	smp_wmb();
415 	/*
416 	 * The above sequence increase must be visible before the
417 	 * below count decrease, which is ensured by the smp_wmb above
418 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
419 	 */
420 	kvm->mmu_notifier_count--;
421 	spin_unlock(&kvm->mmu_lock);
422 
423 	BUG_ON(kvm->mmu_notifier_count < 0);
424 }
425 
426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
427 					      struct mm_struct *mm,
428 					      unsigned long start,
429 					      unsigned long end)
430 {
431 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
432 	int young, idx;
433 
434 	idx = srcu_read_lock(&kvm->srcu);
435 	spin_lock(&kvm->mmu_lock);
436 
437 	young = kvm_age_hva(kvm, start, end);
438 	if (young)
439 		kvm_flush_remote_tlbs(kvm);
440 
441 	spin_unlock(&kvm->mmu_lock);
442 	srcu_read_unlock(&kvm->srcu, idx);
443 
444 	return young;
445 }
446 
447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
448 					struct mm_struct *mm,
449 					unsigned long start,
450 					unsigned long end)
451 {
452 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 	int young, idx;
454 
455 	idx = srcu_read_lock(&kvm->srcu);
456 	spin_lock(&kvm->mmu_lock);
457 	/*
458 	 * Even though we do not flush TLB, this will still adversely
459 	 * affect performance on pre-Haswell Intel EPT, where there is
460 	 * no EPT Access Bit to clear so that we have to tear down EPT
461 	 * tables instead. If we find this unacceptable, we can always
462 	 * add a parameter to kvm_age_hva so that it effectively doesn't
463 	 * do anything on clear_young.
464 	 *
465 	 * Also note that currently we never issue secondary TLB flushes
466 	 * from clear_young, leaving this job up to the regular system
467 	 * cadence. If we find this inaccurate, we might come up with a
468 	 * more sophisticated heuristic later.
469 	 */
470 	young = kvm_age_hva(kvm, start, end);
471 	spin_unlock(&kvm->mmu_lock);
472 	srcu_read_unlock(&kvm->srcu, idx);
473 
474 	return young;
475 }
476 
477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
478 				       struct mm_struct *mm,
479 				       unsigned long address)
480 {
481 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
482 	int young, idx;
483 
484 	idx = srcu_read_lock(&kvm->srcu);
485 	spin_lock(&kvm->mmu_lock);
486 	young = kvm_test_age_hva(kvm, address);
487 	spin_unlock(&kvm->mmu_lock);
488 	srcu_read_unlock(&kvm->srcu, idx);
489 
490 	return young;
491 }
492 
493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
494 				     struct mm_struct *mm)
495 {
496 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
497 	int idx;
498 
499 	idx = srcu_read_lock(&kvm->srcu);
500 	kvm_arch_flush_shadow_all(kvm);
501 	srcu_read_unlock(&kvm->srcu, idx);
502 }
503 
504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
505 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
506 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
507 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
508 	.clear_young		= kvm_mmu_notifier_clear_young,
509 	.test_young		= kvm_mmu_notifier_test_young,
510 	.change_pte		= kvm_mmu_notifier_change_pte,
511 	.release		= kvm_mmu_notifier_release,
512 };
513 
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
517 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
518 }
519 
520 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
521 
522 static int kvm_init_mmu_notifier(struct kvm *kvm)
523 {
524 	return 0;
525 }
526 
527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
528 
529 static struct kvm_memslots *kvm_alloc_memslots(void)
530 {
531 	int i;
532 	struct kvm_memslots *slots;
533 
534 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
535 	if (!slots)
536 		return NULL;
537 
538 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
539 		slots->id_to_index[i] = slots->memslots[i].id = i;
540 
541 	return slots;
542 }
543 
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546 	if (!memslot->dirty_bitmap)
547 		return;
548 
549 	kvfree(memslot->dirty_bitmap);
550 	memslot->dirty_bitmap = NULL;
551 }
552 
553 /*
554  * Free any memory in @free but not in @dont.
555  */
556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
557 			      struct kvm_memory_slot *dont)
558 {
559 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560 		kvm_destroy_dirty_bitmap(free);
561 
562 	kvm_arch_free_memslot(kvm, free, dont);
563 
564 	free->npages = 0;
565 }
566 
567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
568 {
569 	struct kvm_memory_slot *memslot;
570 
571 	if (!slots)
572 		return;
573 
574 	kvm_for_each_memslot(memslot, slots)
575 		kvm_free_memslot(kvm, memslot, NULL);
576 
577 	kvfree(slots);
578 }
579 
580 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
581 {
582 	int i;
583 
584 	if (!kvm->debugfs_dentry)
585 		return;
586 
587 	debugfs_remove_recursive(kvm->debugfs_dentry);
588 
589 	if (kvm->debugfs_stat_data) {
590 		for (i = 0; i < kvm_debugfs_num_entries; i++)
591 			kfree(kvm->debugfs_stat_data[i]);
592 		kfree(kvm->debugfs_stat_data);
593 	}
594 }
595 
596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
597 {
598 	char dir_name[ITOA_MAX_LEN * 2];
599 	struct kvm_stat_data *stat_data;
600 	struct kvm_stats_debugfs_item *p;
601 
602 	if (!debugfs_initialized())
603 		return 0;
604 
605 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
606 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
607 
608 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
609 					 sizeof(*kvm->debugfs_stat_data),
610 					 GFP_KERNEL_ACCOUNT);
611 	if (!kvm->debugfs_stat_data)
612 		return -ENOMEM;
613 
614 	for (p = debugfs_entries; p->name; p++) {
615 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
616 		if (!stat_data)
617 			return -ENOMEM;
618 
619 		stat_data->kvm = kvm;
620 		stat_data->offset = p->offset;
621 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
623 				    stat_data, stat_fops_per_vm[p->kind]);
624 	}
625 	return 0;
626 }
627 
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630 	int r, i;
631 	struct kvm *kvm = kvm_arch_alloc_vm();
632 
633 	if (!kvm)
634 		return ERR_PTR(-ENOMEM);
635 
636 	spin_lock_init(&kvm->mmu_lock);
637 	mmgrab(current->mm);
638 	kvm->mm = current->mm;
639 	kvm_eventfd_init(kvm);
640 	mutex_init(&kvm->lock);
641 	mutex_init(&kvm->irq_lock);
642 	mutex_init(&kvm->slots_lock);
643 	refcount_set(&kvm->users_count, 1);
644 	INIT_LIST_HEAD(&kvm->devices);
645 
646 	r = kvm_arch_init_vm(kvm, type);
647 	if (r)
648 		goto out_err_no_disable;
649 
650 	r = hardware_enable_all();
651 	if (r)
652 		goto out_err_no_disable;
653 
654 #ifdef CONFIG_HAVE_KVM_IRQFD
655 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
656 #endif
657 
658 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
659 
660 	r = -ENOMEM;
661 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
662 		struct kvm_memslots *slots = kvm_alloc_memslots();
663 		if (!slots)
664 			goto out_err_no_srcu;
665 		/* Generations must be different for each address space. */
666 		slots->generation = i;
667 		rcu_assign_pointer(kvm->memslots[i], slots);
668 	}
669 
670 	if (init_srcu_struct(&kvm->srcu))
671 		goto out_err_no_srcu;
672 	if (init_srcu_struct(&kvm->irq_srcu))
673 		goto out_err_no_irq_srcu;
674 	for (i = 0; i < KVM_NR_BUSES; i++) {
675 		rcu_assign_pointer(kvm->buses[i],
676 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
677 		if (!kvm->buses[i])
678 			goto out_err;
679 	}
680 
681 	r = kvm_init_mmu_notifier(kvm);
682 	if (r)
683 		goto out_err;
684 
685 	spin_lock(&kvm_lock);
686 	list_add(&kvm->vm_list, &vm_list);
687 	spin_unlock(&kvm_lock);
688 
689 	preempt_notifier_inc();
690 
691 	return kvm;
692 
693 out_err:
694 	cleanup_srcu_struct(&kvm->irq_srcu);
695 out_err_no_irq_srcu:
696 	cleanup_srcu_struct(&kvm->srcu);
697 out_err_no_srcu:
698 	hardware_disable_all();
699 out_err_no_disable:
700 	refcount_set(&kvm->users_count, 0);
701 	for (i = 0; i < KVM_NR_BUSES; i++)
702 		kfree(kvm_get_bus(kvm, i));
703 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
704 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
705 	kvm_arch_free_vm(kvm);
706 	mmdrop(current->mm);
707 	return ERR_PTR(r);
708 }
709 
710 static void kvm_destroy_devices(struct kvm *kvm)
711 {
712 	struct kvm_device *dev, *tmp;
713 
714 	/*
715 	 * We do not need to take the kvm->lock here, because nobody else
716 	 * has a reference to the struct kvm at this point and therefore
717 	 * cannot access the devices list anyhow.
718 	 */
719 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
720 		list_del(&dev->vm_node);
721 		dev->ops->destroy(dev);
722 	}
723 }
724 
725 static void kvm_destroy_vm(struct kvm *kvm)
726 {
727 	int i;
728 	struct mm_struct *mm = kvm->mm;
729 
730 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
731 	kvm_destroy_vm_debugfs(kvm);
732 	kvm_arch_sync_events(kvm);
733 	spin_lock(&kvm_lock);
734 	list_del(&kvm->vm_list);
735 	spin_unlock(&kvm_lock);
736 	kvm_free_irq_routing(kvm);
737 	for (i = 0; i < KVM_NR_BUSES; i++) {
738 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
739 
740 		if (bus)
741 			kvm_io_bus_destroy(bus);
742 		kvm->buses[i] = NULL;
743 	}
744 	kvm_coalesced_mmio_free(kvm);
745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
746 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 #else
748 	kvm_arch_flush_shadow_all(kvm);
749 #endif
750 	kvm_arch_destroy_vm(kvm);
751 	kvm_destroy_devices(kvm);
752 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
753 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
754 	cleanup_srcu_struct(&kvm->irq_srcu);
755 	cleanup_srcu_struct(&kvm->srcu);
756 	kvm_arch_free_vm(kvm);
757 	preempt_notifier_dec();
758 	hardware_disable_all();
759 	mmdrop(mm);
760 }
761 
762 void kvm_get_kvm(struct kvm *kvm)
763 {
764 	refcount_inc(&kvm->users_count);
765 }
766 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767 
768 void kvm_put_kvm(struct kvm *kvm)
769 {
770 	if (refcount_dec_and_test(&kvm->users_count))
771 		kvm_destroy_vm(kvm);
772 }
773 EXPORT_SYMBOL_GPL(kvm_put_kvm);
774 
775 
776 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 {
778 	struct kvm *kvm = filp->private_data;
779 
780 	kvm_irqfd_release(kvm);
781 
782 	kvm_put_kvm(kvm);
783 	return 0;
784 }
785 
786 /*
787  * Allocation size is twice as large as the actual dirty bitmap size.
788  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789  */
790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 {
792 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793 
794 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
795 	if (!memslot->dirty_bitmap)
796 		return -ENOMEM;
797 
798 	return 0;
799 }
800 
801 /*
802  * Insert memslot and re-sort memslots based on their GFN,
803  * so binary search could be used to lookup GFN.
804  * Sorting algorithm takes advantage of having initially
805  * sorted array and known changed memslot position.
806  */
807 static void update_memslots(struct kvm_memslots *slots,
808 			    struct kvm_memory_slot *new,
809 			    enum kvm_mr_change change)
810 {
811 	int id = new->id;
812 	int i = slots->id_to_index[id];
813 	struct kvm_memory_slot *mslots = slots->memslots;
814 
815 	WARN_ON(mslots[i].id != id);
816 	switch (change) {
817 	case KVM_MR_CREATE:
818 		slots->used_slots++;
819 		WARN_ON(mslots[i].npages || !new->npages);
820 		break;
821 	case KVM_MR_DELETE:
822 		slots->used_slots--;
823 		WARN_ON(new->npages || !mslots[i].npages);
824 		break;
825 	default:
826 		break;
827 	}
828 
829 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
830 	       new->base_gfn <= mslots[i + 1].base_gfn) {
831 		if (!mslots[i + 1].npages)
832 			break;
833 		mslots[i] = mslots[i + 1];
834 		slots->id_to_index[mslots[i].id] = i;
835 		i++;
836 	}
837 
838 	/*
839 	 * The ">=" is needed when creating a slot with base_gfn == 0,
840 	 * so that it moves before all those with base_gfn == npages == 0.
841 	 *
842 	 * On the other hand, if new->npages is zero, the above loop has
843 	 * already left i pointing to the beginning of the empty part of
844 	 * mslots, and the ">=" would move the hole backwards in this
845 	 * case---which is wrong.  So skip the loop when deleting a slot.
846 	 */
847 	if (new->npages) {
848 		while (i > 0 &&
849 		       new->base_gfn >= mslots[i - 1].base_gfn) {
850 			mslots[i] = mslots[i - 1];
851 			slots->id_to_index[mslots[i].id] = i;
852 			i--;
853 		}
854 	} else
855 		WARN_ON_ONCE(i != slots->used_slots);
856 
857 	mslots[i] = *new;
858 	slots->id_to_index[mslots[i].id] = i;
859 }
860 
861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 {
863 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864 
865 #ifdef __KVM_HAVE_READONLY_MEM
866 	valid_flags |= KVM_MEM_READONLY;
867 #endif
868 
869 	if (mem->flags & ~valid_flags)
870 		return -EINVAL;
871 
872 	return 0;
873 }
874 
875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
876 		int as_id, struct kvm_memslots *slots)
877 {
878 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
879 	u64 gen = old_memslots->generation;
880 
881 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
882 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
883 
884 	rcu_assign_pointer(kvm->memslots[as_id], slots);
885 	synchronize_srcu_expedited(&kvm->srcu);
886 
887 	/*
888 	 * Increment the new memslot generation a second time, dropping the
889 	 * update in-progress flag and incrementing then generation based on
890 	 * the number of address spaces.  This provides a unique and easily
891 	 * identifiable generation number while the memslots are in flux.
892 	 */
893 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
894 
895 	/*
896 	 * Generations must be unique even across address spaces.  We do not need
897 	 * a global counter for that, instead the generation space is evenly split
898 	 * across address spaces.  For example, with two address spaces, address
899 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
900 	 * use generations 1, 3, 5, ...
901 	 */
902 	gen += KVM_ADDRESS_SPACE_NUM;
903 
904 	kvm_arch_memslots_updated(kvm, gen);
905 
906 	slots->generation = gen;
907 
908 	return old_memslots;
909 }
910 
911 /*
912  * Allocate some memory and give it an address in the guest physical address
913  * space.
914  *
915  * Discontiguous memory is allowed, mostly for framebuffers.
916  *
917  * Must be called holding kvm->slots_lock for write.
918  */
919 int __kvm_set_memory_region(struct kvm *kvm,
920 			    const struct kvm_userspace_memory_region *mem)
921 {
922 	int r;
923 	gfn_t base_gfn;
924 	unsigned long npages;
925 	struct kvm_memory_slot *slot;
926 	struct kvm_memory_slot old, new;
927 	struct kvm_memslots *slots = NULL, *old_memslots;
928 	int as_id, id;
929 	enum kvm_mr_change change;
930 
931 	r = check_memory_region_flags(mem);
932 	if (r)
933 		goto out;
934 
935 	r = -EINVAL;
936 	as_id = mem->slot >> 16;
937 	id = (u16)mem->slot;
938 
939 	/* General sanity checks */
940 	if (mem->memory_size & (PAGE_SIZE - 1))
941 		goto out;
942 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
943 		goto out;
944 	/* We can read the guest memory with __xxx_user() later on. */
945 	if ((id < KVM_USER_MEM_SLOTS) &&
946 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
947 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
948 			mem->memory_size)))
949 		goto out;
950 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
951 		goto out;
952 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
953 		goto out;
954 
955 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
956 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
957 	npages = mem->memory_size >> PAGE_SHIFT;
958 
959 	if (npages > KVM_MEM_MAX_NR_PAGES)
960 		goto out;
961 
962 	new = old = *slot;
963 
964 	new.id = id;
965 	new.base_gfn = base_gfn;
966 	new.npages = npages;
967 	new.flags = mem->flags;
968 
969 	if (npages) {
970 		if (!old.npages)
971 			change = KVM_MR_CREATE;
972 		else { /* Modify an existing slot. */
973 			if ((mem->userspace_addr != old.userspace_addr) ||
974 			    (npages != old.npages) ||
975 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
976 				goto out;
977 
978 			if (base_gfn != old.base_gfn)
979 				change = KVM_MR_MOVE;
980 			else if (new.flags != old.flags)
981 				change = KVM_MR_FLAGS_ONLY;
982 			else { /* Nothing to change. */
983 				r = 0;
984 				goto out;
985 			}
986 		}
987 	} else {
988 		if (!old.npages)
989 			goto out;
990 
991 		change = KVM_MR_DELETE;
992 		new.base_gfn = 0;
993 		new.flags = 0;
994 	}
995 
996 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
997 		/* Check for overlaps */
998 		r = -EEXIST;
999 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1000 			if (slot->id == id)
1001 				continue;
1002 			if (!((base_gfn + npages <= slot->base_gfn) ||
1003 			      (base_gfn >= slot->base_gfn + slot->npages)))
1004 				goto out;
1005 		}
1006 	}
1007 
1008 	/* Free page dirty bitmap if unneeded */
1009 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1010 		new.dirty_bitmap = NULL;
1011 
1012 	r = -ENOMEM;
1013 	if (change == KVM_MR_CREATE) {
1014 		new.userspace_addr = mem->userspace_addr;
1015 
1016 		if (kvm_arch_create_memslot(kvm, &new, npages))
1017 			goto out_free;
1018 	}
1019 
1020 	/* Allocate page dirty bitmap if needed */
1021 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1022 		if (kvm_create_dirty_bitmap(&new) < 0)
1023 			goto out_free;
1024 	}
1025 
1026 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1027 	if (!slots)
1028 		goto out_free;
1029 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1030 
1031 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1032 		slot = id_to_memslot(slots, id);
1033 		slot->flags |= KVM_MEMSLOT_INVALID;
1034 
1035 		old_memslots = install_new_memslots(kvm, as_id, slots);
1036 
1037 		/* From this point no new shadow pages pointing to a deleted,
1038 		 * or moved, memslot will be created.
1039 		 *
1040 		 * validation of sp->gfn happens in:
1041 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1042 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1043 		 */
1044 		kvm_arch_flush_shadow_memslot(kvm, slot);
1045 
1046 		/*
1047 		 * We can re-use the old_memslots from above, the only difference
1048 		 * from the currently installed memslots is the invalid flag.  This
1049 		 * will get overwritten by update_memslots anyway.
1050 		 */
1051 		slots = old_memslots;
1052 	}
1053 
1054 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1055 	if (r)
1056 		goto out_slots;
1057 
1058 	/* actual memory is freed via old in kvm_free_memslot below */
1059 	if (change == KVM_MR_DELETE) {
1060 		new.dirty_bitmap = NULL;
1061 		memset(&new.arch, 0, sizeof(new.arch));
1062 	}
1063 
1064 	update_memslots(slots, &new, change);
1065 	old_memslots = install_new_memslots(kvm, as_id, slots);
1066 
1067 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1068 
1069 	kvm_free_memslot(kvm, &old, &new);
1070 	kvfree(old_memslots);
1071 	return 0;
1072 
1073 out_slots:
1074 	kvfree(slots);
1075 out_free:
1076 	kvm_free_memslot(kvm, &new, &old);
1077 out:
1078 	return r;
1079 }
1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1081 
1082 int kvm_set_memory_region(struct kvm *kvm,
1083 			  const struct kvm_userspace_memory_region *mem)
1084 {
1085 	int r;
1086 
1087 	mutex_lock(&kvm->slots_lock);
1088 	r = __kvm_set_memory_region(kvm, mem);
1089 	mutex_unlock(&kvm->slots_lock);
1090 	return r;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1093 
1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1095 					  struct kvm_userspace_memory_region *mem)
1096 {
1097 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1098 		return -EINVAL;
1099 
1100 	return kvm_set_memory_region(kvm, mem);
1101 }
1102 
1103 int kvm_get_dirty_log(struct kvm *kvm,
1104 			struct kvm_dirty_log *log, int *is_dirty)
1105 {
1106 	struct kvm_memslots *slots;
1107 	struct kvm_memory_slot *memslot;
1108 	int i, as_id, id;
1109 	unsigned long n;
1110 	unsigned long any = 0;
1111 
1112 	as_id = log->slot >> 16;
1113 	id = (u16)log->slot;
1114 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1115 		return -EINVAL;
1116 
1117 	slots = __kvm_memslots(kvm, as_id);
1118 	memslot = id_to_memslot(slots, id);
1119 	if (!memslot->dirty_bitmap)
1120 		return -ENOENT;
1121 
1122 	n = kvm_dirty_bitmap_bytes(memslot);
1123 
1124 	for (i = 0; !any && i < n/sizeof(long); ++i)
1125 		any = memslot->dirty_bitmap[i];
1126 
1127 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1128 		return -EFAULT;
1129 
1130 	if (any)
1131 		*is_dirty = 1;
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1135 
1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1137 /**
1138  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1139  *	and reenable dirty page tracking for the corresponding pages.
1140  * @kvm:	pointer to kvm instance
1141  * @log:	slot id and address to which we copy the log
1142  * @flush:	true if TLB flush is needed by caller
1143  *
1144  * We need to keep it in mind that VCPU threads can write to the bitmap
1145  * concurrently. So, to avoid losing track of dirty pages we keep the
1146  * following order:
1147  *
1148  *    1. Take a snapshot of the bit and clear it if needed.
1149  *    2. Write protect the corresponding page.
1150  *    3. Copy the snapshot to the userspace.
1151  *    4. Upon return caller flushes TLB's if needed.
1152  *
1153  * Between 2 and 4, the guest may write to the page using the remaining TLB
1154  * entry.  This is not a problem because the page is reported dirty using
1155  * the snapshot taken before and step 4 ensures that writes done after
1156  * exiting to userspace will be logged for the next call.
1157  *
1158  */
1159 int kvm_get_dirty_log_protect(struct kvm *kvm,
1160 			struct kvm_dirty_log *log, bool *flush)
1161 {
1162 	struct kvm_memslots *slots;
1163 	struct kvm_memory_slot *memslot;
1164 	int i, as_id, id;
1165 	unsigned long n;
1166 	unsigned long *dirty_bitmap;
1167 	unsigned long *dirty_bitmap_buffer;
1168 
1169 	as_id = log->slot >> 16;
1170 	id = (u16)log->slot;
1171 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1172 		return -EINVAL;
1173 
1174 	slots = __kvm_memslots(kvm, as_id);
1175 	memslot = id_to_memslot(slots, id);
1176 
1177 	dirty_bitmap = memslot->dirty_bitmap;
1178 	if (!dirty_bitmap)
1179 		return -ENOENT;
1180 
1181 	n = kvm_dirty_bitmap_bytes(memslot);
1182 	*flush = false;
1183 	if (kvm->manual_dirty_log_protect) {
1184 		/*
1185 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1186 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1187 		 * is some code duplication between this function and
1188 		 * kvm_get_dirty_log, but hopefully all architecture
1189 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1190 		 * can be eliminated.
1191 		 */
1192 		dirty_bitmap_buffer = dirty_bitmap;
1193 	} else {
1194 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1195 		memset(dirty_bitmap_buffer, 0, n);
1196 
1197 		spin_lock(&kvm->mmu_lock);
1198 		for (i = 0; i < n / sizeof(long); i++) {
1199 			unsigned long mask;
1200 			gfn_t offset;
1201 
1202 			if (!dirty_bitmap[i])
1203 				continue;
1204 
1205 			*flush = true;
1206 			mask = xchg(&dirty_bitmap[i], 0);
1207 			dirty_bitmap_buffer[i] = mask;
1208 
1209 			offset = i * BITS_PER_LONG;
1210 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1211 								offset, mask);
1212 		}
1213 		spin_unlock(&kvm->mmu_lock);
1214 	}
1215 
1216 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1217 		return -EFAULT;
1218 	return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1221 
1222 /**
1223  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1224  *	and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:	pointer to kvm instance
1226  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1227  * @flush:	true if TLB flush is needed by caller
1228  */
1229 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1230 				struct kvm_clear_dirty_log *log, bool *flush)
1231 {
1232 	struct kvm_memslots *slots;
1233 	struct kvm_memory_slot *memslot;
1234 	int as_id, id;
1235 	gfn_t offset;
1236 	unsigned long i, n;
1237 	unsigned long *dirty_bitmap;
1238 	unsigned long *dirty_bitmap_buffer;
1239 
1240 	as_id = log->slot >> 16;
1241 	id = (u16)log->slot;
1242 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1243 		return -EINVAL;
1244 
1245 	if (log->first_page & 63)
1246 		return -EINVAL;
1247 
1248 	slots = __kvm_memslots(kvm, as_id);
1249 	memslot = id_to_memslot(slots, id);
1250 
1251 	dirty_bitmap = memslot->dirty_bitmap;
1252 	if (!dirty_bitmap)
1253 		return -ENOENT;
1254 
1255 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1256 
1257 	if (log->first_page > memslot->npages ||
1258 	    log->num_pages > memslot->npages - log->first_page ||
1259 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1260 	    return -EINVAL;
1261 
1262 	*flush = false;
1263 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1264 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1265 		return -EFAULT;
1266 
1267 	spin_lock(&kvm->mmu_lock);
1268 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1269 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1270 	     i++, offset += BITS_PER_LONG) {
1271 		unsigned long mask = *dirty_bitmap_buffer++;
1272 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1273 		if (!mask)
1274 			continue;
1275 
1276 		mask &= atomic_long_fetch_andnot(mask, p);
1277 
1278 		/*
1279 		 * mask contains the bits that really have been cleared.  This
1280 		 * never includes any bits beyond the length of the memslot (if
1281 		 * the length is not aligned to 64 pages), therefore it is not
1282 		 * a problem if userspace sets them in log->dirty_bitmap.
1283 		*/
1284 		if (mask) {
1285 			*flush = true;
1286 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1287 								offset, mask);
1288 		}
1289 	}
1290 	spin_unlock(&kvm->mmu_lock);
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1295 #endif
1296 
1297 bool kvm_largepages_enabled(void)
1298 {
1299 	return largepages_enabled;
1300 }
1301 
1302 void kvm_disable_largepages(void)
1303 {
1304 	largepages_enabled = false;
1305 }
1306 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1307 
1308 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1309 {
1310 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1313 
1314 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1317 }
1318 
1319 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1320 {
1321 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1322 
1323 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1324 	      memslot->flags & KVM_MEMSLOT_INVALID)
1325 		return false;
1326 
1327 	return true;
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1330 
1331 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1332 {
1333 	struct vm_area_struct *vma;
1334 	unsigned long addr, size;
1335 
1336 	size = PAGE_SIZE;
1337 
1338 	addr = gfn_to_hva(kvm, gfn);
1339 	if (kvm_is_error_hva(addr))
1340 		return PAGE_SIZE;
1341 
1342 	down_read(&current->mm->mmap_sem);
1343 	vma = find_vma(current->mm, addr);
1344 	if (!vma)
1345 		goto out;
1346 
1347 	size = vma_kernel_pagesize(vma);
1348 
1349 out:
1350 	up_read(&current->mm->mmap_sem);
1351 
1352 	return size;
1353 }
1354 
1355 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1356 {
1357 	return slot->flags & KVM_MEM_READONLY;
1358 }
1359 
1360 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1361 				       gfn_t *nr_pages, bool write)
1362 {
1363 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1364 		return KVM_HVA_ERR_BAD;
1365 
1366 	if (memslot_is_readonly(slot) && write)
1367 		return KVM_HVA_ERR_RO_BAD;
1368 
1369 	if (nr_pages)
1370 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1371 
1372 	return __gfn_to_hva_memslot(slot, gfn);
1373 }
1374 
1375 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1376 				     gfn_t *nr_pages)
1377 {
1378 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1379 }
1380 
1381 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1382 					gfn_t gfn)
1383 {
1384 	return gfn_to_hva_many(slot, gfn, NULL);
1385 }
1386 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1387 
1388 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1389 {
1390 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1391 }
1392 EXPORT_SYMBOL_GPL(gfn_to_hva);
1393 
1394 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1395 {
1396 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1399 
1400 /*
1401  * Return the hva of a @gfn and the R/W attribute if possible.
1402  *
1403  * @slot: the kvm_memory_slot which contains @gfn
1404  * @gfn: the gfn to be translated
1405  * @writable: used to return the read/write attribute of the @slot if the hva
1406  * is valid and @writable is not NULL
1407  */
1408 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1409 				      gfn_t gfn, bool *writable)
1410 {
1411 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1412 
1413 	if (!kvm_is_error_hva(hva) && writable)
1414 		*writable = !memslot_is_readonly(slot);
1415 
1416 	return hva;
1417 }
1418 
1419 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1420 {
1421 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1422 
1423 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1424 }
1425 
1426 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1427 {
1428 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1429 
1430 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1431 }
1432 
1433 static inline int check_user_page_hwpoison(unsigned long addr)
1434 {
1435 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1436 
1437 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1438 	return rc == -EHWPOISON;
1439 }
1440 
1441 /*
1442  * The fast path to get the writable pfn which will be stored in @pfn,
1443  * true indicates success, otherwise false is returned.  It's also the
1444  * only part that runs if we can are in atomic context.
1445  */
1446 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1447 			    bool *writable, kvm_pfn_t *pfn)
1448 {
1449 	struct page *page[1];
1450 	int npages;
1451 
1452 	/*
1453 	 * Fast pin a writable pfn only if it is a write fault request
1454 	 * or the caller allows to map a writable pfn for a read fault
1455 	 * request.
1456 	 */
1457 	if (!(write_fault || writable))
1458 		return false;
1459 
1460 	npages = __get_user_pages_fast(addr, 1, 1, page);
1461 	if (npages == 1) {
1462 		*pfn = page_to_pfn(page[0]);
1463 
1464 		if (writable)
1465 			*writable = true;
1466 		return true;
1467 	}
1468 
1469 	return false;
1470 }
1471 
1472 /*
1473  * The slow path to get the pfn of the specified host virtual address,
1474  * 1 indicates success, -errno is returned if error is detected.
1475  */
1476 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1477 			   bool *writable, kvm_pfn_t *pfn)
1478 {
1479 	unsigned int flags = FOLL_HWPOISON;
1480 	struct page *page;
1481 	int npages = 0;
1482 
1483 	might_sleep();
1484 
1485 	if (writable)
1486 		*writable = write_fault;
1487 
1488 	if (write_fault)
1489 		flags |= FOLL_WRITE;
1490 	if (async)
1491 		flags |= FOLL_NOWAIT;
1492 
1493 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1494 	if (npages != 1)
1495 		return npages;
1496 
1497 	/* map read fault as writable if possible */
1498 	if (unlikely(!write_fault) && writable) {
1499 		struct page *wpage;
1500 
1501 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1502 			*writable = true;
1503 			put_page(page);
1504 			page = wpage;
1505 		}
1506 	}
1507 	*pfn = page_to_pfn(page);
1508 	return npages;
1509 }
1510 
1511 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1512 {
1513 	if (unlikely(!(vma->vm_flags & VM_READ)))
1514 		return false;
1515 
1516 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1517 		return false;
1518 
1519 	return true;
1520 }
1521 
1522 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1523 			       unsigned long addr, bool *async,
1524 			       bool write_fault, bool *writable,
1525 			       kvm_pfn_t *p_pfn)
1526 {
1527 	unsigned long pfn;
1528 	int r;
1529 
1530 	r = follow_pfn(vma, addr, &pfn);
1531 	if (r) {
1532 		/*
1533 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1534 		 * not call the fault handler, so do it here.
1535 		 */
1536 		bool unlocked = false;
1537 		r = fixup_user_fault(current, current->mm, addr,
1538 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1539 				     &unlocked);
1540 		if (unlocked)
1541 			return -EAGAIN;
1542 		if (r)
1543 			return r;
1544 
1545 		r = follow_pfn(vma, addr, &pfn);
1546 		if (r)
1547 			return r;
1548 
1549 	}
1550 
1551 	if (writable)
1552 		*writable = true;
1553 
1554 	/*
1555 	 * Get a reference here because callers of *hva_to_pfn* and
1556 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1557 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1558 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1559 	 * simply do nothing for reserved pfns.
1560 	 *
1561 	 * Whoever called remap_pfn_range is also going to call e.g.
1562 	 * unmap_mapping_range before the underlying pages are freed,
1563 	 * causing a call to our MMU notifier.
1564 	 */
1565 	kvm_get_pfn(pfn);
1566 
1567 	*p_pfn = pfn;
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Pin guest page in memory and return its pfn.
1573  * @addr: host virtual address which maps memory to the guest
1574  * @atomic: whether this function can sleep
1575  * @async: whether this function need to wait IO complete if the
1576  *         host page is not in the memory
1577  * @write_fault: whether we should get a writable host page
1578  * @writable: whether it allows to map a writable host page for !@write_fault
1579  *
1580  * The function will map a writable host page for these two cases:
1581  * 1): @write_fault = true
1582  * 2): @write_fault = false && @writable, @writable will tell the caller
1583  *     whether the mapping is writable.
1584  */
1585 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1586 			bool write_fault, bool *writable)
1587 {
1588 	struct vm_area_struct *vma;
1589 	kvm_pfn_t pfn = 0;
1590 	int npages, r;
1591 
1592 	/* we can do it either atomically or asynchronously, not both */
1593 	BUG_ON(atomic && async);
1594 
1595 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1596 		return pfn;
1597 
1598 	if (atomic)
1599 		return KVM_PFN_ERR_FAULT;
1600 
1601 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1602 	if (npages == 1)
1603 		return pfn;
1604 
1605 	down_read(&current->mm->mmap_sem);
1606 	if (npages == -EHWPOISON ||
1607 	      (!async && check_user_page_hwpoison(addr))) {
1608 		pfn = KVM_PFN_ERR_HWPOISON;
1609 		goto exit;
1610 	}
1611 
1612 retry:
1613 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1614 
1615 	if (vma == NULL)
1616 		pfn = KVM_PFN_ERR_FAULT;
1617 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1618 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1619 		if (r == -EAGAIN)
1620 			goto retry;
1621 		if (r < 0)
1622 			pfn = KVM_PFN_ERR_FAULT;
1623 	} else {
1624 		if (async && vma_is_valid(vma, write_fault))
1625 			*async = true;
1626 		pfn = KVM_PFN_ERR_FAULT;
1627 	}
1628 exit:
1629 	up_read(&current->mm->mmap_sem);
1630 	return pfn;
1631 }
1632 
1633 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1634 			       bool atomic, bool *async, bool write_fault,
1635 			       bool *writable)
1636 {
1637 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1638 
1639 	if (addr == KVM_HVA_ERR_RO_BAD) {
1640 		if (writable)
1641 			*writable = false;
1642 		return KVM_PFN_ERR_RO_FAULT;
1643 	}
1644 
1645 	if (kvm_is_error_hva(addr)) {
1646 		if (writable)
1647 			*writable = false;
1648 		return KVM_PFN_NOSLOT;
1649 	}
1650 
1651 	/* Do not map writable pfn in the readonly memslot. */
1652 	if (writable && memslot_is_readonly(slot)) {
1653 		*writable = false;
1654 		writable = NULL;
1655 	}
1656 
1657 	return hva_to_pfn(addr, atomic, async, write_fault,
1658 			  writable);
1659 }
1660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1661 
1662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1663 		      bool *writable)
1664 {
1665 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1666 				    write_fault, writable);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1669 
1670 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1671 {
1672 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1673 }
1674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1675 
1676 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1677 {
1678 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1679 }
1680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1681 
1682 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1683 {
1684 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1685 }
1686 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1687 
1688 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1689 {
1690 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1693 
1694 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1695 {
1696 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1697 }
1698 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1699 
1700 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1701 {
1702 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1705 
1706 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1707 			    struct page **pages, int nr_pages)
1708 {
1709 	unsigned long addr;
1710 	gfn_t entry = 0;
1711 
1712 	addr = gfn_to_hva_many(slot, gfn, &entry);
1713 	if (kvm_is_error_hva(addr))
1714 		return -1;
1715 
1716 	if (entry < nr_pages)
1717 		return 0;
1718 
1719 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1720 }
1721 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1722 
1723 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1724 {
1725 	if (is_error_noslot_pfn(pfn))
1726 		return KVM_ERR_PTR_BAD_PAGE;
1727 
1728 	if (kvm_is_reserved_pfn(pfn)) {
1729 		WARN_ON(1);
1730 		return KVM_ERR_PTR_BAD_PAGE;
1731 	}
1732 
1733 	return pfn_to_page(pfn);
1734 }
1735 
1736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1737 {
1738 	kvm_pfn_t pfn;
1739 
1740 	pfn = gfn_to_pfn(kvm, gfn);
1741 
1742 	return kvm_pfn_to_page(pfn);
1743 }
1744 EXPORT_SYMBOL_GPL(gfn_to_page);
1745 
1746 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1747 			 struct kvm_host_map *map)
1748 {
1749 	kvm_pfn_t pfn;
1750 	void *hva = NULL;
1751 	struct page *page = KVM_UNMAPPED_PAGE;
1752 
1753 	if (!map)
1754 		return -EINVAL;
1755 
1756 	pfn = gfn_to_pfn_memslot(slot, gfn);
1757 	if (is_error_noslot_pfn(pfn))
1758 		return -EINVAL;
1759 
1760 	if (pfn_valid(pfn)) {
1761 		page = pfn_to_page(pfn);
1762 		hva = kmap(page);
1763 	} else {
1764 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1765 	}
1766 
1767 	if (!hva)
1768 		return -EFAULT;
1769 
1770 	map->page = page;
1771 	map->hva = hva;
1772 	map->pfn = pfn;
1773 	map->gfn = gfn;
1774 
1775 	return 0;
1776 }
1777 
1778 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1779 {
1780 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1783 
1784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1785 		    bool dirty)
1786 {
1787 	if (!map)
1788 		return;
1789 
1790 	if (!map->hva)
1791 		return;
1792 
1793 	if (map->page)
1794 		kunmap(map->page);
1795 	else
1796 		memunmap(map->hva);
1797 
1798 	if (dirty) {
1799 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1800 		kvm_release_pfn_dirty(map->pfn);
1801 	} else {
1802 		kvm_release_pfn_clean(map->pfn);
1803 	}
1804 
1805 	map->hva = NULL;
1806 	map->page = NULL;
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1809 
1810 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1811 {
1812 	kvm_pfn_t pfn;
1813 
1814 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1815 
1816 	return kvm_pfn_to_page(pfn);
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1819 
1820 void kvm_release_page_clean(struct page *page)
1821 {
1822 	WARN_ON(is_error_page(page));
1823 
1824 	kvm_release_pfn_clean(page_to_pfn(page));
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1827 
1828 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1829 {
1830 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1831 		put_page(pfn_to_page(pfn));
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1834 
1835 void kvm_release_page_dirty(struct page *page)
1836 {
1837 	WARN_ON(is_error_page(page));
1838 
1839 	kvm_release_pfn_dirty(page_to_pfn(page));
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1842 
1843 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1844 {
1845 	kvm_set_pfn_dirty(pfn);
1846 	kvm_release_pfn_clean(pfn);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1849 
1850 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1851 {
1852 	if (!kvm_is_reserved_pfn(pfn)) {
1853 		struct page *page = pfn_to_page(pfn);
1854 
1855 		if (!PageReserved(page))
1856 			SetPageDirty(page);
1857 	}
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1860 
1861 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1862 {
1863 	if (!kvm_is_reserved_pfn(pfn))
1864 		mark_page_accessed(pfn_to_page(pfn));
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1867 
1868 void kvm_get_pfn(kvm_pfn_t pfn)
1869 {
1870 	if (!kvm_is_reserved_pfn(pfn))
1871 		get_page(pfn_to_page(pfn));
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1874 
1875 static int next_segment(unsigned long len, int offset)
1876 {
1877 	if (len > PAGE_SIZE - offset)
1878 		return PAGE_SIZE - offset;
1879 	else
1880 		return len;
1881 }
1882 
1883 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1884 				 void *data, int offset, int len)
1885 {
1886 	int r;
1887 	unsigned long addr;
1888 
1889 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1890 	if (kvm_is_error_hva(addr))
1891 		return -EFAULT;
1892 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1893 	if (r)
1894 		return -EFAULT;
1895 	return 0;
1896 }
1897 
1898 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1899 			int len)
1900 {
1901 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1902 
1903 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1906 
1907 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1908 			     int offset, int len)
1909 {
1910 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1911 
1912 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1915 
1916 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1917 {
1918 	gfn_t gfn = gpa >> PAGE_SHIFT;
1919 	int seg;
1920 	int offset = offset_in_page(gpa);
1921 	int ret;
1922 
1923 	while ((seg = next_segment(len, offset)) != 0) {
1924 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1925 		if (ret < 0)
1926 			return ret;
1927 		offset = 0;
1928 		len -= seg;
1929 		data += seg;
1930 		++gfn;
1931 	}
1932 	return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_read_guest);
1935 
1936 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1937 {
1938 	gfn_t gfn = gpa >> PAGE_SHIFT;
1939 	int seg;
1940 	int offset = offset_in_page(gpa);
1941 	int ret;
1942 
1943 	while ((seg = next_segment(len, offset)) != 0) {
1944 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1945 		if (ret < 0)
1946 			return ret;
1947 		offset = 0;
1948 		len -= seg;
1949 		data += seg;
1950 		++gfn;
1951 	}
1952 	return 0;
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1955 
1956 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1957 			           void *data, int offset, unsigned long len)
1958 {
1959 	int r;
1960 	unsigned long addr;
1961 
1962 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1963 	if (kvm_is_error_hva(addr))
1964 		return -EFAULT;
1965 	pagefault_disable();
1966 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1967 	pagefault_enable();
1968 	if (r)
1969 		return -EFAULT;
1970 	return 0;
1971 }
1972 
1973 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1974 			  unsigned long len)
1975 {
1976 	gfn_t gfn = gpa >> PAGE_SHIFT;
1977 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1978 	int offset = offset_in_page(gpa);
1979 
1980 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1983 
1984 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1985 			       void *data, unsigned long len)
1986 {
1987 	gfn_t gfn = gpa >> PAGE_SHIFT;
1988 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1989 	int offset = offset_in_page(gpa);
1990 
1991 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1994 
1995 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1996 			          const void *data, int offset, int len)
1997 {
1998 	int r;
1999 	unsigned long addr;
2000 
2001 	addr = gfn_to_hva_memslot(memslot, gfn);
2002 	if (kvm_is_error_hva(addr))
2003 		return -EFAULT;
2004 	r = __copy_to_user((void __user *)addr + offset, data, len);
2005 	if (r)
2006 		return -EFAULT;
2007 	mark_page_dirty_in_slot(memslot, gfn);
2008 	return 0;
2009 }
2010 
2011 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2012 			 const void *data, int offset, int len)
2013 {
2014 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2015 
2016 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2019 
2020 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2021 			      const void *data, int offset, int len)
2022 {
2023 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2024 
2025 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2028 
2029 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2030 		    unsigned long len)
2031 {
2032 	gfn_t gfn = gpa >> PAGE_SHIFT;
2033 	int seg;
2034 	int offset = offset_in_page(gpa);
2035 	int ret;
2036 
2037 	while ((seg = next_segment(len, offset)) != 0) {
2038 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2039 		if (ret < 0)
2040 			return ret;
2041 		offset = 0;
2042 		len -= seg;
2043 		data += seg;
2044 		++gfn;
2045 	}
2046 	return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_write_guest);
2049 
2050 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2051 		         unsigned long len)
2052 {
2053 	gfn_t gfn = gpa >> PAGE_SHIFT;
2054 	int seg;
2055 	int offset = offset_in_page(gpa);
2056 	int ret;
2057 
2058 	while ((seg = next_segment(len, offset)) != 0) {
2059 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2060 		if (ret < 0)
2061 			return ret;
2062 		offset = 0;
2063 		len -= seg;
2064 		data += seg;
2065 		++gfn;
2066 	}
2067 	return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2070 
2071 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2072 				       struct gfn_to_hva_cache *ghc,
2073 				       gpa_t gpa, unsigned long len)
2074 {
2075 	int offset = offset_in_page(gpa);
2076 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2077 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2078 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2079 	gfn_t nr_pages_avail;
2080 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2081 
2082 	ghc->gpa = gpa;
2083 	ghc->generation = slots->generation;
2084 	ghc->len = len;
2085 	ghc->hva = KVM_HVA_ERR_BAD;
2086 
2087 	/*
2088 	 * If the requested region crosses two memslots, we still
2089 	 * verify that the entire region is valid here.
2090 	 */
2091 	while (!r && start_gfn <= end_gfn) {
2092 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2093 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2094 					   &nr_pages_avail);
2095 		if (kvm_is_error_hva(ghc->hva))
2096 			r = -EFAULT;
2097 		start_gfn += nr_pages_avail;
2098 	}
2099 
2100 	/* Use the slow path for cross page reads and writes. */
2101 	if (!r && nr_pages_needed == 1)
2102 		ghc->hva += offset;
2103 	else
2104 		ghc->memslot = NULL;
2105 
2106 	return r;
2107 }
2108 
2109 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2110 			      gpa_t gpa, unsigned long len)
2111 {
2112 	struct kvm_memslots *slots = kvm_memslots(kvm);
2113 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2116 
2117 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2118 				  void *data, unsigned int offset,
2119 				  unsigned long len)
2120 {
2121 	struct kvm_memslots *slots = kvm_memslots(kvm);
2122 	int r;
2123 	gpa_t gpa = ghc->gpa + offset;
2124 
2125 	BUG_ON(len + offset > ghc->len);
2126 
2127 	if (slots->generation != ghc->generation)
2128 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2129 
2130 	if (unlikely(!ghc->memslot))
2131 		return kvm_write_guest(kvm, gpa, data, len);
2132 
2133 	if (kvm_is_error_hva(ghc->hva))
2134 		return -EFAULT;
2135 
2136 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2137 	if (r)
2138 		return -EFAULT;
2139 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2140 
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2144 
2145 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2146 			   void *data, unsigned long len)
2147 {
2148 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2151 
2152 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2153 			   void *data, unsigned long len)
2154 {
2155 	struct kvm_memslots *slots = kvm_memslots(kvm);
2156 	int r;
2157 
2158 	BUG_ON(len > ghc->len);
2159 
2160 	if (slots->generation != ghc->generation)
2161 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2162 
2163 	if (unlikely(!ghc->memslot))
2164 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2165 
2166 	if (kvm_is_error_hva(ghc->hva))
2167 		return -EFAULT;
2168 
2169 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2170 	if (r)
2171 		return -EFAULT;
2172 
2173 	return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2176 
2177 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2178 {
2179 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2180 
2181 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2184 
2185 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2186 {
2187 	gfn_t gfn = gpa >> PAGE_SHIFT;
2188 	int seg;
2189 	int offset = offset_in_page(gpa);
2190 	int ret;
2191 
2192 	while ((seg = next_segment(len, offset)) != 0) {
2193 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2194 		if (ret < 0)
2195 			return ret;
2196 		offset = 0;
2197 		len -= seg;
2198 		++gfn;
2199 	}
2200 	return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2203 
2204 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2205 				    gfn_t gfn)
2206 {
2207 	if (memslot && memslot->dirty_bitmap) {
2208 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2209 
2210 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2211 	}
2212 }
2213 
2214 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2215 {
2216 	struct kvm_memory_slot *memslot;
2217 
2218 	memslot = gfn_to_memslot(kvm, gfn);
2219 	mark_page_dirty_in_slot(memslot, gfn);
2220 }
2221 EXPORT_SYMBOL_GPL(mark_page_dirty);
2222 
2223 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2224 {
2225 	struct kvm_memory_slot *memslot;
2226 
2227 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2228 	mark_page_dirty_in_slot(memslot, gfn);
2229 }
2230 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2231 
2232 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2233 {
2234 	if (!vcpu->sigset_active)
2235 		return;
2236 
2237 	/*
2238 	 * This does a lockless modification of ->real_blocked, which is fine
2239 	 * because, only current can change ->real_blocked and all readers of
2240 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2241 	 * of ->blocked.
2242 	 */
2243 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2244 }
2245 
2246 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2247 {
2248 	if (!vcpu->sigset_active)
2249 		return;
2250 
2251 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2252 	sigemptyset(&current->real_blocked);
2253 }
2254 
2255 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2256 {
2257 	unsigned int old, val, grow, grow_start;
2258 
2259 	old = val = vcpu->halt_poll_ns;
2260 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2261 	grow = READ_ONCE(halt_poll_ns_grow);
2262 	if (!grow)
2263 		goto out;
2264 
2265 	val *= grow;
2266 	if (val < grow_start)
2267 		val = grow_start;
2268 
2269 	if (val > halt_poll_ns)
2270 		val = halt_poll_ns;
2271 
2272 	vcpu->halt_poll_ns = val;
2273 out:
2274 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2275 }
2276 
2277 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2278 {
2279 	unsigned int old, val, shrink;
2280 
2281 	old = val = vcpu->halt_poll_ns;
2282 	shrink = READ_ONCE(halt_poll_ns_shrink);
2283 	if (shrink == 0)
2284 		val = 0;
2285 	else
2286 		val /= shrink;
2287 
2288 	vcpu->halt_poll_ns = val;
2289 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2290 }
2291 
2292 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2293 {
2294 	int ret = -EINTR;
2295 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2296 
2297 	if (kvm_arch_vcpu_runnable(vcpu)) {
2298 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2299 		goto out;
2300 	}
2301 	if (kvm_cpu_has_pending_timer(vcpu))
2302 		goto out;
2303 	if (signal_pending(current))
2304 		goto out;
2305 
2306 	ret = 0;
2307 out:
2308 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2309 	return ret;
2310 }
2311 
2312 /*
2313  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2314  */
2315 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2316 {
2317 	ktime_t start, cur;
2318 	DECLARE_SWAITQUEUE(wait);
2319 	bool waited = false;
2320 	u64 block_ns;
2321 
2322 	start = cur = ktime_get();
2323 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2324 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2325 
2326 		++vcpu->stat.halt_attempted_poll;
2327 		do {
2328 			/*
2329 			 * This sets KVM_REQ_UNHALT if an interrupt
2330 			 * arrives.
2331 			 */
2332 			if (kvm_vcpu_check_block(vcpu) < 0) {
2333 				++vcpu->stat.halt_successful_poll;
2334 				if (!vcpu_valid_wakeup(vcpu))
2335 					++vcpu->stat.halt_poll_invalid;
2336 				goto out;
2337 			}
2338 			cur = ktime_get();
2339 		} while (single_task_running() && ktime_before(cur, stop));
2340 	}
2341 
2342 	kvm_arch_vcpu_blocking(vcpu);
2343 
2344 	for (;;) {
2345 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2346 
2347 		if (kvm_vcpu_check_block(vcpu) < 0)
2348 			break;
2349 
2350 		waited = true;
2351 		schedule();
2352 	}
2353 
2354 	finish_swait(&vcpu->wq, &wait);
2355 	cur = ktime_get();
2356 
2357 	kvm_arch_vcpu_unblocking(vcpu);
2358 out:
2359 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2360 
2361 	if (!vcpu_valid_wakeup(vcpu))
2362 		shrink_halt_poll_ns(vcpu);
2363 	else if (halt_poll_ns) {
2364 		if (block_ns <= vcpu->halt_poll_ns)
2365 			;
2366 		/* we had a long block, shrink polling */
2367 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2368 			shrink_halt_poll_ns(vcpu);
2369 		/* we had a short halt and our poll time is too small */
2370 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2371 			block_ns < halt_poll_ns)
2372 			grow_halt_poll_ns(vcpu);
2373 	} else
2374 		vcpu->halt_poll_ns = 0;
2375 
2376 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2377 	kvm_arch_vcpu_block_finish(vcpu);
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2380 
2381 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2382 {
2383 	struct swait_queue_head *wqp;
2384 
2385 	wqp = kvm_arch_vcpu_wq(vcpu);
2386 	if (swq_has_sleeper(wqp)) {
2387 		swake_up_one(wqp);
2388 		++vcpu->stat.halt_wakeup;
2389 		return true;
2390 	}
2391 
2392 	return false;
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2395 
2396 #ifndef CONFIG_S390
2397 /*
2398  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2399  */
2400 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2401 {
2402 	int me;
2403 	int cpu = vcpu->cpu;
2404 
2405 	if (kvm_vcpu_wake_up(vcpu))
2406 		return;
2407 
2408 	me = get_cpu();
2409 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2410 		if (kvm_arch_vcpu_should_kick(vcpu))
2411 			smp_send_reschedule(cpu);
2412 	put_cpu();
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2415 #endif /* !CONFIG_S390 */
2416 
2417 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2418 {
2419 	struct pid *pid;
2420 	struct task_struct *task = NULL;
2421 	int ret = 0;
2422 
2423 	rcu_read_lock();
2424 	pid = rcu_dereference(target->pid);
2425 	if (pid)
2426 		task = get_pid_task(pid, PIDTYPE_PID);
2427 	rcu_read_unlock();
2428 	if (!task)
2429 		return ret;
2430 	ret = yield_to(task, 1);
2431 	put_task_struct(task);
2432 
2433 	return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2436 
2437 /*
2438  * Helper that checks whether a VCPU is eligible for directed yield.
2439  * Most eligible candidate to yield is decided by following heuristics:
2440  *
2441  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2442  *  (preempted lock holder), indicated by @in_spin_loop.
2443  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2444  *
2445  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2446  *  chance last time (mostly it has become eligible now since we have probably
2447  *  yielded to lockholder in last iteration. This is done by toggling
2448  *  @dy_eligible each time a VCPU checked for eligibility.)
2449  *
2450  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2451  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2452  *  burning. Giving priority for a potential lock-holder increases lock
2453  *  progress.
2454  *
2455  *  Since algorithm is based on heuristics, accessing another VCPU data without
2456  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2457  *  and continue with next VCPU and so on.
2458  */
2459 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2460 {
2461 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2462 	bool eligible;
2463 
2464 	eligible = !vcpu->spin_loop.in_spin_loop ||
2465 		    vcpu->spin_loop.dy_eligible;
2466 
2467 	if (vcpu->spin_loop.in_spin_loop)
2468 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2469 
2470 	return eligible;
2471 #else
2472 	return true;
2473 #endif
2474 }
2475 
2476 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2477 {
2478 	struct kvm *kvm = me->kvm;
2479 	struct kvm_vcpu *vcpu;
2480 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2481 	int yielded = 0;
2482 	int try = 3;
2483 	int pass;
2484 	int i;
2485 
2486 	kvm_vcpu_set_in_spin_loop(me, true);
2487 	/*
2488 	 * We boost the priority of a VCPU that is runnable but not
2489 	 * currently running, because it got preempted by something
2490 	 * else and called schedule in __vcpu_run.  Hopefully that
2491 	 * VCPU is holding the lock that we need and will release it.
2492 	 * We approximate round-robin by starting at the last boosted VCPU.
2493 	 */
2494 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2495 		kvm_for_each_vcpu(i, vcpu, kvm) {
2496 			if (!pass && i <= last_boosted_vcpu) {
2497 				i = last_boosted_vcpu;
2498 				continue;
2499 			} else if (pass && i > last_boosted_vcpu)
2500 				break;
2501 			if (!READ_ONCE(vcpu->preempted))
2502 				continue;
2503 			if (vcpu == me)
2504 				continue;
2505 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2506 				continue;
2507 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2508 				continue;
2509 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2510 				continue;
2511 
2512 			yielded = kvm_vcpu_yield_to(vcpu);
2513 			if (yielded > 0) {
2514 				kvm->last_boosted_vcpu = i;
2515 				break;
2516 			} else if (yielded < 0) {
2517 				try--;
2518 				if (!try)
2519 					break;
2520 			}
2521 		}
2522 	}
2523 	kvm_vcpu_set_in_spin_loop(me, false);
2524 
2525 	/* Ensure vcpu is not eligible during next spinloop */
2526 	kvm_vcpu_set_dy_eligible(me, false);
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2529 
2530 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2531 {
2532 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2533 	struct page *page;
2534 
2535 	if (vmf->pgoff == 0)
2536 		page = virt_to_page(vcpu->run);
2537 #ifdef CONFIG_X86
2538 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2539 		page = virt_to_page(vcpu->arch.pio_data);
2540 #endif
2541 #ifdef CONFIG_KVM_MMIO
2542 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2543 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2544 #endif
2545 	else
2546 		return kvm_arch_vcpu_fault(vcpu, vmf);
2547 	get_page(page);
2548 	vmf->page = page;
2549 	return 0;
2550 }
2551 
2552 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2553 	.fault = kvm_vcpu_fault,
2554 };
2555 
2556 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2557 {
2558 	vma->vm_ops = &kvm_vcpu_vm_ops;
2559 	return 0;
2560 }
2561 
2562 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2563 {
2564 	struct kvm_vcpu *vcpu = filp->private_data;
2565 
2566 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2567 	kvm_put_kvm(vcpu->kvm);
2568 	return 0;
2569 }
2570 
2571 static struct file_operations kvm_vcpu_fops = {
2572 	.release        = kvm_vcpu_release,
2573 	.unlocked_ioctl = kvm_vcpu_ioctl,
2574 	.mmap           = kvm_vcpu_mmap,
2575 	.llseek		= noop_llseek,
2576 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2577 };
2578 
2579 /*
2580  * Allocates an inode for the vcpu.
2581  */
2582 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2583 {
2584 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2585 
2586 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2587 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2588 }
2589 
2590 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2591 {
2592 	char dir_name[ITOA_MAX_LEN * 2];
2593 	int ret;
2594 
2595 	if (!kvm_arch_has_vcpu_debugfs())
2596 		return 0;
2597 
2598 	if (!debugfs_initialized())
2599 		return 0;
2600 
2601 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2602 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2603 								vcpu->kvm->debugfs_dentry);
2604 	if (!vcpu->debugfs_dentry)
2605 		return -ENOMEM;
2606 
2607 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2608 	if (ret < 0) {
2609 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2610 		return ret;
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 /*
2617  * Creates some virtual cpus.  Good luck creating more than one.
2618  */
2619 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2620 {
2621 	int r;
2622 	struct kvm_vcpu *vcpu;
2623 
2624 	if (id >= KVM_MAX_VCPU_ID)
2625 		return -EINVAL;
2626 
2627 	mutex_lock(&kvm->lock);
2628 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2629 		mutex_unlock(&kvm->lock);
2630 		return -EINVAL;
2631 	}
2632 
2633 	kvm->created_vcpus++;
2634 	mutex_unlock(&kvm->lock);
2635 
2636 	vcpu = kvm_arch_vcpu_create(kvm, id);
2637 	if (IS_ERR(vcpu)) {
2638 		r = PTR_ERR(vcpu);
2639 		goto vcpu_decrement;
2640 	}
2641 
2642 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2643 
2644 	r = kvm_arch_vcpu_setup(vcpu);
2645 	if (r)
2646 		goto vcpu_destroy;
2647 
2648 	r = kvm_create_vcpu_debugfs(vcpu);
2649 	if (r)
2650 		goto vcpu_destroy;
2651 
2652 	mutex_lock(&kvm->lock);
2653 	if (kvm_get_vcpu_by_id(kvm, id)) {
2654 		r = -EEXIST;
2655 		goto unlock_vcpu_destroy;
2656 	}
2657 
2658 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2659 
2660 	/* Now it's all set up, let userspace reach it */
2661 	kvm_get_kvm(kvm);
2662 	r = create_vcpu_fd(vcpu);
2663 	if (r < 0) {
2664 		kvm_put_kvm(kvm);
2665 		goto unlock_vcpu_destroy;
2666 	}
2667 
2668 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2669 
2670 	/*
2671 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2672 	 * before kvm->online_vcpu's incremented value.
2673 	 */
2674 	smp_wmb();
2675 	atomic_inc(&kvm->online_vcpus);
2676 
2677 	mutex_unlock(&kvm->lock);
2678 	kvm_arch_vcpu_postcreate(vcpu);
2679 	return r;
2680 
2681 unlock_vcpu_destroy:
2682 	mutex_unlock(&kvm->lock);
2683 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2684 vcpu_destroy:
2685 	kvm_arch_vcpu_destroy(vcpu);
2686 vcpu_decrement:
2687 	mutex_lock(&kvm->lock);
2688 	kvm->created_vcpus--;
2689 	mutex_unlock(&kvm->lock);
2690 	return r;
2691 }
2692 
2693 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2694 {
2695 	if (sigset) {
2696 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2697 		vcpu->sigset_active = 1;
2698 		vcpu->sigset = *sigset;
2699 	} else
2700 		vcpu->sigset_active = 0;
2701 	return 0;
2702 }
2703 
2704 static long kvm_vcpu_ioctl(struct file *filp,
2705 			   unsigned int ioctl, unsigned long arg)
2706 {
2707 	struct kvm_vcpu *vcpu = filp->private_data;
2708 	void __user *argp = (void __user *)arg;
2709 	int r;
2710 	struct kvm_fpu *fpu = NULL;
2711 	struct kvm_sregs *kvm_sregs = NULL;
2712 
2713 	if (vcpu->kvm->mm != current->mm)
2714 		return -EIO;
2715 
2716 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2717 		return -EINVAL;
2718 
2719 	/*
2720 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2721 	 * execution; mutex_lock() would break them.
2722 	 */
2723 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2724 	if (r != -ENOIOCTLCMD)
2725 		return r;
2726 
2727 	if (mutex_lock_killable(&vcpu->mutex))
2728 		return -EINTR;
2729 	switch (ioctl) {
2730 	case KVM_RUN: {
2731 		struct pid *oldpid;
2732 		r = -EINVAL;
2733 		if (arg)
2734 			goto out;
2735 		oldpid = rcu_access_pointer(vcpu->pid);
2736 		if (unlikely(oldpid != task_pid(current))) {
2737 			/* The thread running this VCPU changed. */
2738 			struct pid *newpid;
2739 
2740 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2741 			if (r)
2742 				break;
2743 
2744 			newpid = get_task_pid(current, PIDTYPE_PID);
2745 			rcu_assign_pointer(vcpu->pid, newpid);
2746 			if (oldpid)
2747 				synchronize_rcu();
2748 			put_pid(oldpid);
2749 		}
2750 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2751 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2752 		break;
2753 	}
2754 	case KVM_GET_REGS: {
2755 		struct kvm_regs *kvm_regs;
2756 
2757 		r = -ENOMEM;
2758 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2759 		if (!kvm_regs)
2760 			goto out;
2761 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2762 		if (r)
2763 			goto out_free1;
2764 		r = -EFAULT;
2765 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2766 			goto out_free1;
2767 		r = 0;
2768 out_free1:
2769 		kfree(kvm_regs);
2770 		break;
2771 	}
2772 	case KVM_SET_REGS: {
2773 		struct kvm_regs *kvm_regs;
2774 
2775 		r = -ENOMEM;
2776 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2777 		if (IS_ERR(kvm_regs)) {
2778 			r = PTR_ERR(kvm_regs);
2779 			goto out;
2780 		}
2781 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2782 		kfree(kvm_regs);
2783 		break;
2784 	}
2785 	case KVM_GET_SREGS: {
2786 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2787 				    GFP_KERNEL_ACCOUNT);
2788 		r = -ENOMEM;
2789 		if (!kvm_sregs)
2790 			goto out;
2791 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2792 		if (r)
2793 			goto out;
2794 		r = -EFAULT;
2795 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2796 			goto out;
2797 		r = 0;
2798 		break;
2799 	}
2800 	case KVM_SET_SREGS: {
2801 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2802 		if (IS_ERR(kvm_sregs)) {
2803 			r = PTR_ERR(kvm_sregs);
2804 			kvm_sregs = NULL;
2805 			goto out;
2806 		}
2807 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2808 		break;
2809 	}
2810 	case KVM_GET_MP_STATE: {
2811 		struct kvm_mp_state mp_state;
2812 
2813 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2814 		if (r)
2815 			goto out;
2816 		r = -EFAULT;
2817 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2818 			goto out;
2819 		r = 0;
2820 		break;
2821 	}
2822 	case KVM_SET_MP_STATE: {
2823 		struct kvm_mp_state mp_state;
2824 
2825 		r = -EFAULT;
2826 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2827 			goto out;
2828 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2829 		break;
2830 	}
2831 	case KVM_TRANSLATE: {
2832 		struct kvm_translation tr;
2833 
2834 		r = -EFAULT;
2835 		if (copy_from_user(&tr, argp, sizeof(tr)))
2836 			goto out;
2837 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2838 		if (r)
2839 			goto out;
2840 		r = -EFAULT;
2841 		if (copy_to_user(argp, &tr, sizeof(tr)))
2842 			goto out;
2843 		r = 0;
2844 		break;
2845 	}
2846 	case KVM_SET_GUEST_DEBUG: {
2847 		struct kvm_guest_debug dbg;
2848 
2849 		r = -EFAULT;
2850 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2851 			goto out;
2852 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2853 		break;
2854 	}
2855 	case KVM_SET_SIGNAL_MASK: {
2856 		struct kvm_signal_mask __user *sigmask_arg = argp;
2857 		struct kvm_signal_mask kvm_sigmask;
2858 		sigset_t sigset, *p;
2859 
2860 		p = NULL;
2861 		if (argp) {
2862 			r = -EFAULT;
2863 			if (copy_from_user(&kvm_sigmask, argp,
2864 					   sizeof(kvm_sigmask)))
2865 				goto out;
2866 			r = -EINVAL;
2867 			if (kvm_sigmask.len != sizeof(sigset))
2868 				goto out;
2869 			r = -EFAULT;
2870 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2871 					   sizeof(sigset)))
2872 				goto out;
2873 			p = &sigset;
2874 		}
2875 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2876 		break;
2877 	}
2878 	case KVM_GET_FPU: {
2879 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2880 		r = -ENOMEM;
2881 		if (!fpu)
2882 			goto out;
2883 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2884 		if (r)
2885 			goto out;
2886 		r = -EFAULT;
2887 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2888 			goto out;
2889 		r = 0;
2890 		break;
2891 	}
2892 	case KVM_SET_FPU: {
2893 		fpu = memdup_user(argp, sizeof(*fpu));
2894 		if (IS_ERR(fpu)) {
2895 			r = PTR_ERR(fpu);
2896 			fpu = NULL;
2897 			goto out;
2898 		}
2899 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2900 		break;
2901 	}
2902 	default:
2903 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2904 	}
2905 out:
2906 	mutex_unlock(&vcpu->mutex);
2907 	kfree(fpu);
2908 	kfree(kvm_sregs);
2909 	return r;
2910 }
2911 
2912 #ifdef CONFIG_KVM_COMPAT
2913 static long kvm_vcpu_compat_ioctl(struct file *filp,
2914 				  unsigned int ioctl, unsigned long arg)
2915 {
2916 	struct kvm_vcpu *vcpu = filp->private_data;
2917 	void __user *argp = compat_ptr(arg);
2918 	int r;
2919 
2920 	if (vcpu->kvm->mm != current->mm)
2921 		return -EIO;
2922 
2923 	switch (ioctl) {
2924 	case KVM_SET_SIGNAL_MASK: {
2925 		struct kvm_signal_mask __user *sigmask_arg = argp;
2926 		struct kvm_signal_mask kvm_sigmask;
2927 		sigset_t sigset;
2928 
2929 		if (argp) {
2930 			r = -EFAULT;
2931 			if (copy_from_user(&kvm_sigmask, argp,
2932 					   sizeof(kvm_sigmask)))
2933 				goto out;
2934 			r = -EINVAL;
2935 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2936 				goto out;
2937 			r = -EFAULT;
2938 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2939 				goto out;
2940 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2941 		} else
2942 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2943 		break;
2944 	}
2945 	default:
2946 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2947 	}
2948 
2949 out:
2950 	return r;
2951 }
2952 #endif
2953 
2954 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2955 {
2956 	struct kvm_device *dev = filp->private_data;
2957 
2958 	if (dev->ops->mmap)
2959 		return dev->ops->mmap(dev, vma);
2960 
2961 	return -ENODEV;
2962 }
2963 
2964 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2965 				 int (*accessor)(struct kvm_device *dev,
2966 						 struct kvm_device_attr *attr),
2967 				 unsigned long arg)
2968 {
2969 	struct kvm_device_attr attr;
2970 
2971 	if (!accessor)
2972 		return -EPERM;
2973 
2974 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2975 		return -EFAULT;
2976 
2977 	return accessor(dev, &attr);
2978 }
2979 
2980 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2981 			     unsigned long arg)
2982 {
2983 	struct kvm_device *dev = filp->private_data;
2984 
2985 	if (dev->kvm->mm != current->mm)
2986 		return -EIO;
2987 
2988 	switch (ioctl) {
2989 	case KVM_SET_DEVICE_ATTR:
2990 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2991 	case KVM_GET_DEVICE_ATTR:
2992 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2993 	case KVM_HAS_DEVICE_ATTR:
2994 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2995 	default:
2996 		if (dev->ops->ioctl)
2997 			return dev->ops->ioctl(dev, ioctl, arg);
2998 
2999 		return -ENOTTY;
3000 	}
3001 }
3002 
3003 static int kvm_device_release(struct inode *inode, struct file *filp)
3004 {
3005 	struct kvm_device *dev = filp->private_data;
3006 	struct kvm *kvm = dev->kvm;
3007 
3008 	if (dev->ops->release) {
3009 		mutex_lock(&kvm->lock);
3010 		list_del(&dev->vm_node);
3011 		dev->ops->release(dev);
3012 		mutex_unlock(&kvm->lock);
3013 	}
3014 
3015 	kvm_put_kvm(kvm);
3016 	return 0;
3017 }
3018 
3019 static const struct file_operations kvm_device_fops = {
3020 	.unlocked_ioctl = kvm_device_ioctl,
3021 	.release = kvm_device_release,
3022 	KVM_COMPAT(kvm_device_ioctl),
3023 	.mmap = kvm_device_mmap,
3024 };
3025 
3026 struct kvm_device *kvm_device_from_filp(struct file *filp)
3027 {
3028 	if (filp->f_op != &kvm_device_fops)
3029 		return NULL;
3030 
3031 	return filp->private_data;
3032 }
3033 
3034 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3035 #ifdef CONFIG_KVM_MPIC
3036 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3037 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3038 #endif
3039 };
3040 
3041 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3042 {
3043 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3044 		return -ENOSPC;
3045 
3046 	if (kvm_device_ops_table[type] != NULL)
3047 		return -EEXIST;
3048 
3049 	kvm_device_ops_table[type] = ops;
3050 	return 0;
3051 }
3052 
3053 void kvm_unregister_device_ops(u32 type)
3054 {
3055 	if (kvm_device_ops_table[type] != NULL)
3056 		kvm_device_ops_table[type] = NULL;
3057 }
3058 
3059 static int kvm_ioctl_create_device(struct kvm *kvm,
3060 				   struct kvm_create_device *cd)
3061 {
3062 	struct kvm_device_ops *ops = NULL;
3063 	struct kvm_device *dev;
3064 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3065 	int type;
3066 	int ret;
3067 
3068 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3069 		return -ENODEV;
3070 
3071 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3072 	ops = kvm_device_ops_table[type];
3073 	if (ops == NULL)
3074 		return -ENODEV;
3075 
3076 	if (test)
3077 		return 0;
3078 
3079 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3080 	if (!dev)
3081 		return -ENOMEM;
3082 
3083 	dev->ops = ops;
3084 	dev->kvm = kvm;
3085 
3086 	mutex_lock(&kvm->lock);
3087 	ret = ops->create(dev, type);
3088 	if (ret < 0) {
3089 		mutex_unlock(&kvm->lock);
3090 		kfree(dev);
3091 		return ret;
3092 	}
3093 	list_add(&dev->vm_node, &kvm->devices);
3094 	mutex_unlock(&kvm->lock);
3095 
3096 	if (ops->init)
3097 		ops->init(dev);
3098 
3099 	kvm_get_kvm(kvm);
3100 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3101 	if (ret < 0) {
3102 		kvm_put_kvm(kvm);
3103 		mutex_lock(&kvm->lock);
3104 		list_del(&dev->vm_node);
3105 		mutex_unlock(&kvm->lock);
3106 		ops->destroy(dev);
3107 		return ret;
3108 	}
3109 
3110 	cd->fd = ret;
3111 	return 0;
3112 }
3113 
3114 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3115 {
3116 	switch (arg) {
3117 	case KVM_CAP_USER_MEMORY:
3118 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3119 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3120 	case KVM_CAP_INTERNAL_ERROR_DATA:
3121 #ifdef CONFIG_HAVE_KVM_MSI
3122 	case KVM_CAP_SIGNAL_MSI:
3123 #endif
3124 #ifdef CONFIG_HAVE_KVM_IRQFD
3125 	case KVM_CAP_IRQFD:
3126 	case KVM_CAP_IRQFD_RESAMPLE:
3127 #endif
3128 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3129 	case KVM_CAP_CHECK_EXTENSION_VM:
3130 	case KVM_CAP_ENABLE_CAP_VM:
3131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3132 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3133 #endif
3134 		return 1;
3135 #ifdef CONFIG_KVM_MMIO
3136 	case KVM_CAP_COALESCED_MMIO:
3137 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3138 	case KVM_CAP_COALESCED_PIO:
3139 		return 1;
3140 #endif
3141 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3142 	case KVM_CAP_IRQ_ROUTING:
3143 		return KVM_MAX_IRQ_ROUTES;
3144 #endif
3145 #if KVM_ADDRESS_SPACE_NUM > 1
3146 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3147 		return KVM_ADDRESS_SPACE_NUM;
3148 #endif
3149 	case KVM_CAP_MAX_VCPU_ID:
3150 		return KVM_MAX_VCPU_ID;
3151 	case KVM_CAP_NR_MEMSLOTS:
3152 		return KVM_USER_MEM_SLOTS;
3153 	default:
3154 		break;
3155 	}
3156 	return kvm_vm_ioctl_check_extension(kvm, arg);
3157 }
3158 
3159 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3160 						  struct kvm_enable_cap *cap)
3161 {
3162 	return -EINVAL;
3163 }
3164 
3165 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3166 					   struct kvm_enable_cap *cap)
3167 {
3168 	switch (cap->cap) {
3169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3170 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3171 		if (cap->flags || (cap->args[0] & ~1))
3172 			return -EINVAL;
3173 		kvm->manual_dirty_log_protect = cap->args[0];
3174 		return 0;
3175 #endif
3176 	default:
3177 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3178 	}
3179 }
3180 
3181 static long kvm_vm_ioctl(struct file *filp,
3182 			   unsigned int ioctl, unsigned long arg)
3183 {
3184 	struct kvm *kvm = filp->private_data;
3185 	void __user *argp = (void __user *)arg;
3186 	int r;
3187 
3188 	if (kvm->mm != current->mm)
3189 		return -EIO;
3190 	switch (ioctl) {
3191 	case KVM_CREATE_VCPU:
3192 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3193 		break;
3194 	case KVM_ENABLE_CAP: {
3195 		struct kvm_enable_cap cap;
3196 
3197 		r = -EFAULT;
3198 		if (copy_from_user(&cap, argp, sizeof(cap)))
3199 			goto out;
3200 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3201 		break;
3202 	}
3203 	case KVM_SET_USER_MEMORY_REGION: {
3204 		struct kvm_userspace_memory_region kvm_userspace_mem;
3205 
3206 		r = -EFAULT;
3207 		if (copy_from_user(&kvm_userspace_mem, argp,
3208 						sizeof(kvm_userspace_mem)))
3209 			goto out;
3210 
3211 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3212 		break;
3213 	}
3214 	case KVM_GET_DIRTY_LOG: {
3215 		struct kvm_dirty_log log;
3216 
3217 		r = -EFAULT;
3218 		if (copy_from_user(&log, argp, sizeof(log)))
3219 			goto out;
3220 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3221 		break;
3222 	}
3223 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3224 	case KVM_CLEAR_DIRTY_LOG: {
3225 		struct kvm_clear_dirty_log log;
3226 
3227 		r = -EFAULT;
3228 		if (copy_from_user(&log, argp, sizeof(log)))
3229 			goto out;
3230 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3231 		break;
3232 	}
3233 #endif
3234 #ifdef CONFIG_KVM_MMIO
3235 	case KVM_REGISTER_COALESCED_MMIO: {
3236 		struct kvm_coalesced_mmio_zone zone;
3237 
3238 		r = -EFAULT;
3239 		if (copy_from_user(&zone, argp, sizeof(zone)))
3240 			goto out;
3241 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3242 		break;
3243 	}
3244 	case KVM_UNREGISTER_COALESCED_MMIO: {
3245 		struct kvm_coalesced_mmio_zone zone;
3246 
3247 		r = -EFAULT;
3248 		if (copy_from_user(&zone, argp, sizeof(zone)))
3249 			goto out;
3250 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3251 		break;
3252 	}
3253 #endif
3254 	case KVM_IRQFD: {
3255 		struct kvm_irqfd data;
3256 
3257 		r = -EFAULT;
3258 		if (copy_from_user(&data, argp, sizeof(data)))
3259 			goto out;
3260 		r = kvm_irqfd(kvm, &data);
3261 		break;
3262 	}
3263 	case KVM_IOEVENTFD: {
3264 		struct kvm_ioeventfd data;
3265 
3266 		r = -EFAULT;
3267 		if (copy_from_user(&data, argp, sizeof(data)))
3268 			goto out;
3269 		r = kvm_ioeventfd(kvm, &data);
3270 		break;
3271 	}
3272 #ifdef CONFIG_HAVE_KVM_MSI
3273 	case KVM_SIGNAL_MSI: {
3274 		struct kvm_msi msi;
3275 
3276 		r = -EFAULT;
3277 		if (copy_from_user(&msi, argp, sizeof(msi)))
3278 			goto out;
3279 		r = kvm_send_userspace_msi(kvm, &msi);
3280 		break;
3281 	}
3282 #endif
3283 #ifdef __KVM_HAVE_IRQ_LINE
3284 	case KVM_IRQ_LINE_STATUS:
3285 	case KVM_IRQ_LINE: {
3286 		struct kvm_irq_level irq_event;
3287 
3288 		r = -EFAULT;
3289 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3290 			goto out;
3291 
3292 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3293 					ioctl == KVM_IRQ_LINE_STATUS);
3294 		if (r)
3295 			goto out;
3296 
3297 		r = -EFAULT;
3298 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3299 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3300 				goto out;
3301 		}
3302 
3303 		r = 0;
3304 		break;
3305 	}
3306 #endif
3307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3308 	case KVM_SET_GSI_ROUTING: {
3309 		struct kvm_irq_routing routing;
3310 		struct kvm_irq_routing __user *urouting;
3311 		struct kvm_irq_routing_entry *entries = NULL;
3312 
3313 		r = -EFAULT;
3314 		if (copy_from_user(&routing, argp, sizeof(routing)))
3315 			goto out;
3316 		r = -EINVAL;
3317 		if (!kvm_arch_can_set_irq_routing(kvm))
3318 			goto out;
3319 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3320 			goto out;
3321 		if (routing.flags)
3322 			goto out;
3323 		if (routing.nr) {
3324 			r = -ENOMEM;
3325 			entries = vmalloc(array_size(sizeof(*entries),
3326 						     routing.nr));
3327 			if (!entries)
3328 				goto out;
3329 			r = -EFAULT;
3330 			urouting = argp;
3331 			if (copy_from_user(entries, urouting->entries,
3332 					   routing.nr * sizeof(*entries)))
3333 				goto out_free_irq_routing;
3334 		}
3335 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3336 					routing.flags);
3337 out_free_irq_routing:
3338 		vfree(entries);
3339 		break;
3340 	}
3341 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3342 	case KVM_CREATE_DEVICE: {
3343 		struct kvm_create_device cd;
3344 
3345 		r = -EFAULT;
3346 		if (copy_from_user(&cd, argp, sizeof(cd)))
3347 			goto out;
3348 
3349 		r = kvm_ioctl_create_device(kvm, &cd);
3350 		if (r)
3351 			goto out;
3352 
3353 		r = -EFAULT;
3354 		if (copy_to_user(argp, &cd, sizeof(cd)))
3355 			goto out;
3356 
3357 		r = 0;
3358 		break;
3359 	}
3360 	case KVM_CHECK_EXTENSION:
3361 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3362 		break;
3363 	default:
3364 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3365 	}
3366 out:
3367 	return r;
3368 }
3369 
3370 #ifdef CONFIG_KVM_COMPAT
3371 struct compat_kvm_dirty_log {
3372 	__u32 slot;
3373 	__u32 padding1;
3374 	union {
3375 		compat_uptr_t dirty_bitmap; /* one bit per page */
3376 		__u64 padding2;
3377 	};
3378 };
3379 
3380 static long kvm_vm_compat_ioctl(struct file *filp,
3381 			   unsigned int ioctl, unsigned long arg)
3382 {
3383 	struct kvm *kvm = filp->private_data;
3384 	int r;
3385 
3386 	if (kvm->mm != current->mm)
3387 		return -EIO;
3388 	switch (ioctl) {
3389 	case KVM_GET_DIRTY_LOG: {
3390 		struct compat_kvm_dirty_log compat_log;
3391 		struct kvm_dirty_log log;
3392 
3393 		if (copy_from_user(&compat_log, (void __user *)arg,
3394 				   sizeof(compat_log)))
3395 			return -EFAULT;
3396 		log.slot	 = compat_log.slot;
3397 		log.padding1	 = compat_log.padding1;
3398 		log.padding2	 = compat_log.padding2;
3399 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3400 
3401 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3402 		break;
3403 	}
3404 	default:
3405 		r = kvm_vm_ioctl(filp, ioctl, arg);
3406 	}
3407 	return r;
3408 }
3409 #endif
3410 
3411 static struct file_operations kvm_vm_fops = {
3412 	.release        = kvm_vm_release,
3413 	.unlocked_ioctl = kvm_vm_ioctl,
3414 	.llseek		= noop_llseek,
3415 	KVM_COMPAT(kvm_vm_compat_ioctl),
3416 };
3417 
3418 static int kvm_dev_ioctl_create_vm(unsigned long type)
3419 {
3420 	int r;
3421 	struct kvm *kvm;
3422 	struct file *file;
3423 
3424 	kvm = kvm_create_vm(type);
3425 	if (IS_ERR(kvm))
3426 		return PTR_ERR(kvm);
3427 #ifdef CONFIG_KVM_MMIO
3428 	r = kvm_coalesced_mmio_init(kvm);
3429 	if (r < 0)
3430 		goto put_kvm;
3431 #endif
3432 	r = get_unused_fd_flags(O_CLOEXEC);
3433 	if (r < 0)
3434 		goto put_kvm;
3435 
3436 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3437 	if (IS_ERR(file)) {
3438 		put_unused_fd(r);
3439 		r = PTR_ERR(file);
3440 		goto put_kvm;
3441 	}
3442 
3443 	/*
3444 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3445 	 * already set, with ->release() being kvm_vm_release().  In error
3446 	 * cases it will be called by the final fput(file) and will take
3447 	 * care of doing kvm_put_kvm(kvm).
3448 	 */
3449 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3450 		put_unused_fd(r);
3451 		fput(file);
3452 		return -ENOMEM;
3453 	}
3454 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3455 
3456 	fd_install(r, file);
3457 	return r;
3458 
3459 put_kvm:
3460 	kvm_put_kvm(kvm);
3461 	return r;
3462 }
3463 
3464 static long kvm_dev_ioctl(struct file *filp,
3465 			  unsigned int ioctl, unsigned long arg)
3466 {
3467 	long r = -EINVAL;
3468 
3469 	switch (ioctl) {
3470 	case KVM_GET_API_VERSION:
3471 		if (arg)
3472 			goto out;
3473 		r = KVM_API_VERSION;
3474 		break;
3475 	case KVM_CREATE_VM:
3476 		r = kvm_dev_ioctl_create_vm(arg);
3477 		break;
3478 	case KVM_CHECK_EXTENSION:
3479 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3480 		break;
3481 	case KVM_GET_VCPU_MMAP_SIZE:
3482 		if (arg)
3483 			goto out;
3484 		r = PAGE_SIZE;     /* struct kvm_run */
3485 #ifdef CONFIG_X86
3486 		r += PAGE_SIZE;    /* pio data page */
3487 #endif
3488 #ifdef CONFIG_KVM_MMIO
3489 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3490 #endif
3491 		break;
3492 	case KVM_TRACE_ENABLE:
3493 	case KVM_TRACE_PAUSE:
3494 	case KVM_TRACE_DISABLE:
3495 		r = -EOPNOTSUPP;
3496 		break;
3497 	default:
3498 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3499 	}
3500 out:
3501 	return r;
3502 }
3503 
3504 static struct file_operations kvm_chardev_ops = {
3505 	.unlocked_ioctl = kvm_dev_ioctl,
3506 	.llseek		= noop_llseek,
3507 	KVM_COMPAT(kvm_dev_ioctl),
3508 };
3509 
3510 static struct miscdevice kvm_dev = {
3511 	KVM_MINOR,
3512 	"kvm",
3513 	&kvm_chardev_ops,
3514 };
3515 
3516 static void hardware_enable_nolock(void *junk)
3517 {
3518 	int cpu = raw_smp_processor_id();
3519 	int r;
3520 
3521 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3522 		return;
3523 
3524 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3525 
3526 	r = kvm_arch_hardware_enable();
3527 
3528 	if (r) {
3529 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3530 		atomic_inc(&hardware_enable_failed);
3531 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3532 	}
3533 }
3534 
3535 static int kvm_starting_cpu(unsigned int cpu)
3536 {
3537 	raw_spin_lock(&kvm_count_lock);
3538 	if (kvm_usage_count)
3539 		hardware_enable_nolock(NULL);
3540 	raw_spin_unlock(&kvm_count_lock);
3541 	return 0;
3542 }
3543 
3544 static void hardware_disable_nolock(void *junk)
3545 {
3546 	int cpu = raw_smp_processor_id();
3547 
3548 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3549 		return;
3550 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3551 	kvm_arch_hardware_disable();
3552 }
3553 
3554 static int kvm_dying_cpu(unsigned int cpu)
3555 {
3556 	raw_spin_lock(&kvm_count_lock);
3557 	if (kvm_usage_count)
3558 		hardware_disable_nolock(NULL);
3559 	raw_spin_unlock(&kvm_count_lock);
3560 	return 0;
3561 }
3562 
3563 static void hardware_disable_all_nolock(void)
3564 {
3565 	BUG_ON(!kvm_usage_count);
3566 
3567 	kvm_usage_count--;
3568 	if (!kvm_usage_count)
3569 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3570 }
3571 
3572 static void hardware_disable_all(void)
3573 {
3574 	raw_spin_lock(&kvm_count_lock);
3575 	hardware_disable_all_nolock();
3576 	raw_spin_unlock(&kvm_count_lock);
3577 }
3578 
3579 static int hardware_enable_all(void)
3580 {
3581 	int r = 0;
3582 
3583 	raw_spin_lock(&kvm_count_lock);
3584 
3585 	kvm_usage_count++;
3586 	if (kvm_usage_count == 1) {
3587 		atomic_set(&hardware_enable_failed, 0);
3588 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3589 
3590 		if (atomic_read(&hardware_enable_failed)) {
3591 			hardware_disable_all_nolock();
3592 			r = -EBUSY;
3593 		}
3594 	}
3595 
3596 	raw_spin_unlock(&kvm_count_lock);
3597 
3598 	return r;
3599 }
3600 
3601 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3602 		      void *v)
3603 {
3604 	/*
3605 	 * Some (well, at least mine) BIOSes hang on reboot if
3606 	 * in vmx root mode.
3607 	 *
3608 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3609 	 */
3610 	pr_info("kvm: exiting hardware virtualization\n");
3611 	kvm_rebooting = true;
3612 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3613 	return NOTIFY_OK;
3614 }
3615 
3616 static struct notifier_block kvm_reboot_notifier = {
3617 	.notifier_call = kvm_reboot,
3618 	.priority = 0,
3619 };
3620 
3621 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3622 {
3623 	int i;
3624 
3625 	for (i = 0; i < bus->dev_count; i++) {
3626 		struct kvm_io_device *pos = bus->range[i].dev;
3627 
3628 		kvm_iodevice_destructor(pos);
3629 	}
3630 	kfree(bus);
3631 }
3632 
3633 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3634 				 const struct kvm_io_range *r2)
3635 {
3636 	gpa_t addr1 = r1->addr;
3637 	gpa_t addr2 = r2->addr;
3638 
3639 	if (addr1 < addr2)
3640 		return -1;
3641 
3642 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3643 	 * accept any overlapping write.  Any order is acceptable for
3644 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3645 	 * we process all of them.
3646 	 */
3647 	if (r2->len) {
3648 		addr1 += r1->len;
3649 		addr2 += r2->len;
3650 	}
3651 
3652 	if (addr1 > addr2)
3653 		return 1;
3654 
3655 	return 0;
3656 }
3657 
3658 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3659 {
3660 	return kvm_io_bus_cmp(p1, p2);
3661 }
3662 
3663 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3664 			     gpa_t addr, int len)
3665 {
3666 	struct kvm_io_range *range, key;
3667 	int off;
3668 
3669 	key = (struct kvm_io_range) {
3670 		.addr = addr,
3671 		.len = len,
3672 	};
3673 
3674 	range = bsearch(&key, bus->range, bus->dev_count,
3675 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3676 	if (range == NULL)
3677 		return -ENOENT;
3678 
3679 	off = range - bus->range;
3680 
3681 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3682 		off--;
3683 
3684 	return off;
3685 }
3686 
3687 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3688 			      struct kvm_io_range *range, const void *val)
3689 {
3690 	int idx;
3691 
3692 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3693 	if (idx < 0)
3694 		return -EOPNOTSUPP;
3695 
3696 	while (idx < bus->dev_count &&
3697 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3698 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3699 					range->len, val))
3700 			return idx;
3701 		idx++;
3702 	}
3703 
3704 	return -EOPNOTSUPP;
3705 }
3706 
3707 /* kvm_io_bus_write - called under kvm->slots_lock */
3708 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3709 		     int len, const void *val)
3710 {
3711 	struct kvm_io_bus *bus;
3712 	struct kvm_io_range range;
3713 	int r;
3714 
3715 	range = (struct kvm_io_range) {
3716 		.addr = addr,
3717 		.len = len,
3718 	};
3719 
3720 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3721 	if (!bus)
3722 		return -ENOMEM;
3723 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3724 	return r < 0 ? r : 0;
3725 }
3726 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3727 
3728 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3729 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3730 			    gpa_t addr, int len, const void *val, long cookie)
3731 {
3732 	struct kvm_io_bus *bus;
3733 	struct kvm_io_range range;
3734 
3735 	range = (struct kvm_io_range) {
3736 		.addr = addr,
3737 		.len = len,
3738 	};
3739 
3740 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3741 	if (!bus)
3742 		return -ENOMEM;
3743 
3744 	/* First try the device referenced by cookie. */
3745 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3746 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3747 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3748 					val))
3749 			return cookie;
3750 
3751 	/*
3752 	 * cookie contained garbage; fall back to search and return the
3753 	 * correct cookie value.
3754 	 */
3755 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3756 }
3757 
3758 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3759 			     struct kvm_io_range *range, void *val)
3760 {
3761 	int idx;
3762 
3763 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3764 	if (idx < 0)
3765 		return -EOPNOTSUPP;
3766 
3767 	while (idx < bus->dev_count &&
3768 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3769 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3770 				       range->len, val))
3771 			return idx;
3772 		idx++;
3773 	}
3774 
3775 	return -EOPNOTSUPP;
3776 }
3777 
3778 /* kvm_io_bus_read - called under kvm->slots_lock */
3779 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3780 		    int len, void *val)
3781 {
3782 	struct kvm_io_bus *bus;
3783 	struct kvm_io_range range;
3784 	int r;
3785 
3786 	range = (struct kvm_io_range) {
3787 		.addr = addr,
3788 		.len = len,
3789 	};
3790 
3791 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3792 	if (!bus)
3793 		return -ENOMEM;
3794 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3795 	return r < 0 ? r : 0;
3796 }
3797 
3798 /* Caller must hold slots_lock. */
3799 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3800 			    int len, struct kvm_io_device *dev)
3801 {
3802 	int i;
3803 	struct kvm_io_bus *new_bus, *bus;
3804 	struct kvm_io_range range;
3805 
3806 	bus = kvm_get_bus(kvm, bus_idx);
3807 	if (!bus)
3808 		return -ENOMEM;
3809 
3810 	/* exclude ioeventfd which is limited by maximum fd */
3811 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3812 		return -ENOSPC;
3813 
3814 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3815 			  GFP_KERNEL_ACCOUNT);
3816 	if (!new_bus)
3817 		return -ENOMEM;
3818 
3819 	range = (struct kvm_io_range) {
3820 		.addr = addr,
3821 		.len = len,
3822 		.dev = dev,
3823 	};
3824 
3825 	for (i = 0; i < bus->dev_count; i++)
3826 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3827 			break;
3828 
3829 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3830 	new_bus->dev_count++;
3831 	new_bus->range[i] = range;
3832 	memcpy(new_bus->range + i + 1, bus->range + i,
3833 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3834 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3835 	synchronize_srcu_expedited(&kvm->srcu);
3836 	kfree(bus);
3837 
3838 	return 0;
3839 }
3840 
3841 /* Caller must hold slots_lock. */
3842 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3843 			       struct kvm_io_device *dev)
3844 {
3845 	int i;
3846 	struct kvm_io_bus *new_bus, *bus;
3847 
3848 	bus = kvm_get_bus(kvm, bus_idx);
3849 	if (!bus)
3850 		return;
3851 
3852 	for (i = 0; i < bus->dev_count; i++)
3853 		if (bus->range[i].dev == dev) {
3854 			break;
3855 		}
3856 
3857 	if (i == bus->dev_count)
3858 		return;
3859 
3860 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3861 			  GFP_KERNEL_ACCOUNT);
3862 	if (!new_bus)  {
3863 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3864 		goto broken;
3865 	}
3866 
3867 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3868 	new_bus->dev_count--;
3869 	memcpy(new_bus->range + i, bus->range + i + 1,
3870 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3871 
3872 broken:
3873 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3874 	synchronize_srcu_expedited(&kvm->srcu);
3875 	kfree(bus);
3876 	return;
3877 }
3878 
3879 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3880 					 gpa_t addr)
3881 {
3882 	struct kvm_io_bus *bus;
3883 	int dev_idx, srcu_idx;
3884 	struct kvm_io_device *iodev = NULL;
3885 
3886 	srcu_idx = srcu_read_lock(&kvm->srcu);
3887 
3888 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3889 	if (!bus)
3890 		goto out_unlock;
3891 
3892 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3893 	if (dev_idx < 0)
3894 		goto out_unlock;
3895 
3896 	iodev = bus->range[dev_idx].dev;
3897 
3898 out_unlock:
3899 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3900 
3901 	return iodev;
3902 }
3903 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3904 
3905 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3906 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3907 			   const char *fmt)
3908 {
3909 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3910 					  inode->i_private;
3911 
3912 	/* The debugfs files are a reference to the kvm struct which
3913 	 * is still valid when kvm_destroy_vm is called.
3914 	 * To avoid the race between open and the removal of the debugfs
3915 	 * directory we test against the users count.
3916 	 */
3917 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3918 		return -ENOENT;
3919 
3920 	if (simple_attr_open(inode, file, get, set, fmt)) {
3921 		kvm_put_kvm(stat_data->kvm);
3922 		return -ENOMEM;
3923 	}
3924 
3925 	return 0;
3926 }
3927 
3928 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3929 {
3930 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3931 					  inode->i_private;
3932 
3933 	simple_attr_release(inode, file);
3934 	kvm_put_kvm(stat_data->kvm);
3935 
3936 	return 0;
3937 }
3938 
3939 static int vm_stat_get_per_vm(void *data, u64 *val)
3940 {
3941 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3942 
3943 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3944 
3945 	return 0;
3946 }
3947 
3948 static int vm_stat_clear_per_vm(void *data, u64 val)
3949 {
3950 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3951 
3952 	if (val)
3953 		return -EINVAL;
3954 
3955 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3956 
3957 	return 0;
3958 }
3959 
3960 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3961 {
3962 	__simple_attr_check_format("%llu\n", 0ull);
3963 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3964 				vm_stat_clear_per_vm, "%llu\n");
3965 }
3966 
3967 static const struct file_operations vm_stat_get_per_vm_fops = {
3968 	.owner   = THIS_MODULE,
3969 	.open    = vm_stat_get_per_vm_open,
3970 	.release = kvm_debugfs_release,
3971 	.read    = simple_attr_read,
3972 	.write   = simple_attr_write,
3973 	.llseek  = no_llseek,
3974 };
3975 
3976 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3977 {
3978 	int i;
3979 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3980 	struct kvm_vcpu *vcpu;
3981 
3982 	*val = 0;
3983 
3984 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3985 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3986 
3987 	return 0;
3988 }
3989 
3990 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3991 {
3992 	int i;
3993 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3994 	struct kvm_vcpu *vcpu;
3995 
3996 	if (val)
3997 		return -EINVAL;
3998 
3999 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4000 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4001 
4002 	return 0;
4003 }
4004 
4005 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4006 {
4007 	__simple_attr_check_format("%llu\n", 0ull);
4008 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4009 				 vcpu_stat_clear_per_vm, "%llu\n");
4010 }
4011 
4012 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4013 	.owner   = THIS_MODULE,
4014 	.open    = vcpu_stat_get_per_vm_open,
4015 	.release = kvm_debugfs_release,
4016 	.read    = simple_attr_read,
4017 	.write   = simple_attr_write,
4018 	.llseek  = no_llseek,
4019 };
4020 
4021 static const struct file_operations *stat_fops_per_vm[] = {
4022 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4023 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4024 };
4025 
4026 static int vm_stat_get(void *_offset, u64 *val)
4027 {
4028 	unsigned offset = (long)_offset;
4029 	struct kvm *kvm;
4030 	struct kvm_stat_data stat_tmp = {.offset = offset};
4031 	u64 tmp_val;
4032 
4033 	*val = 0;
4034 	spin_lock(&kvm_lock);
4035 	list_for_each_entry(kvm, &vm_list, vm_list) {
4036 		stat_tmp.kvm = kvm;
4037 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4038 		*val += tmp_val;
4039 	}
4040 	spin_unlock(&kvm_lock);
4041 	return 0;
4042 }
4043 
4044 static int vm_stat_clear(void *_offset, u64 val)
4045 {
4046 	unsigned offset = (long)_offset;
4047 	struct kvm *kvm;
4048 	struct kvm_stat_data stat_tmp = {.offset = offset};
4049 
4050 	if (val)
4051 		return -EINVAL;
4052 
4053 	spin_lock(&kvm_lock);
4054 	list_for_each_entry(kvm, &vm_list, vm_list) {
4055 		stat_tmp.kvm = kvm;
4056 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4057 	}
4058 	spin_unlock(&kvm_lock);
4059 
4060 	return 0;
4061 }
4062 
4063 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4064 
4065 static int vcpu_stat_get(void *_offset, u64 *val)
4066 {
4067 	unsigned offset = (long)_offset;
4068 	struct kvm *kvm;
4069 	struct kvm_stat_data stat_tmp = {.offset = offset};
4070 	u64 tmp_val;
4071 
4072 	*val = 0;
4073 	spin_lock(&kvm_lock);
4074 	list_for_each_entry(kvm, &vm_list, vm_list) {
4075 		stat_tmp.kvm = kvm;
4076 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4077 		*val += tmp_val;
4078 	}
4079 	spin_unlock(&kvm_lock);
4080 	return 0;
4081 }
4082 
4083 static int vcpu_stat_clear(void *_offset, u64 val)
4084 {
4085 	unsigned offset = (long)_offset;
4086 	struct kvm *kvm;
4087 	struct kvm_stat_data stat_tmp = {.offset = offset};
4088 
4089 	if (val)
4090 		return -EINVAL;
4091 
4092 	spin_lock(&kvm_lock);
4093 	list_for_each_entry(kvm, &vm_list, vm_list) {
4094 		stat_tmp.kvm = kvm;
4095 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4096 	}
4097 	spin_unlock(&kvm_lock);
4098 
4099 	return 0;
4100 }
4101 
4102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4103 			"%llu\n");
4104 
4105 static const struct file_operations *stat_fops[] = {
4106 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4107 	[KVM_STAT_VM]   = &vm_stat_fops,
4108 };
4109 
4110 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4111 {
4112 	struct kobj_uevent_env *env;
4113 	unsigned long long created, active;
4114 
4115 	if (!kvm_dev.this_device || !kvm)
4116 		return;
4117 
4118 	spin_lock(&kvm_lock);
4119 	if (type == KVM_EVENT_CREATE_VM) {
4120 		kvm_createvm_count++;
4121 		kvm_active_vms++;
4122 	} else if (type == KVM_EVENT_DESTROY_VM) {
4123 		kvm_active_vms--;
4124 	}
4125 	created = kvm_createvm_count;
4126 	active = kvm_active_vms;
4127 	spin_unlock(&kvm_lock);
4128 
4129 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4130 	if (!env)
4131 		return;
4132 
4133 	add_uevent_var(env, "CREATED=%llu", created);
4134 	add_uevent_var(env, "COUNT=%llu", active);
4135 
4136 	if (type == KVM_EVENT_CREATE_VM) {
4137 		add_uevent_var(env, "EVENT=create");
4138 		kvm->userspace_pid = task_pid_nr(current);
4139 	} else if (type == KVM_EVENT_DESTROY_VM) {
4140 		add_uevent_var(env, "EVENT=destroy");
4141 	}
4142 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4143 
4144 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4145 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4146 
4147 		if (p) {
4148 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4149 			if (!IS_ERR(tmp))
4150 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4151 			kfree(p);
4152 		}
4153 	}
4154 	/* no need for checks, since we are adding at most only 5 keys */
4155 	env->envp[env->envp_idx++] = NULL;
4156 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4157 	kfree(env);
4158 }
4159 
4160 static void kvm_init_debug(void)
4161 {
4162 	struct kvm_stats_debugfs_item *p;
4163 
4164 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4165 
4166 	kvm_debugfs_num_entries = 0;
4167 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4168 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4169 				    (void *)(long)p->offset,
4170 				    stat_fops[p->kind]);
4171 	}
4172 }
4173 
4174 static int kvm_suspend(void)
4175 {
4176 	if (kvm_usage_count)
4177 		hardware_disable_nolock(NULL);
4178 	return 0;
4179 }
4180 
4181 static void kvm_resume(void)
4182 {
4183 	if (kvm_usage_count) {
4184 		lockdep_assert_held(&kvm_count_lock);
4185 		hardware_enable_nolock(NULL);
4186 	}
4187 }
4188 
4189 static struct syscore_ops kvm_syscore_ops = {
4190 	.suspend = kvm_suspend,
4191 	.resume = kvm_resume,
4192 };
4193 
4194 static inline
4195 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4196 {
4197 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4198 }
4199 
4200 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4201 {
4202 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4203 
4204 	if (vcpu->preempted)
4205 		vcpu->preempted = false;
4206 
4207 	kvm_arch_sched_in(vcpu, cpu);
4208 
4209 	kvm_arch_vcpu_load(vcpu, cpu);
4210 }
4211 
4212 static void kvm_sched_out(struct preempt_notifier *pn,
4213 			  struct task_struct *next)
4214 {
4215 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4216 
4217 	if (current->state == TASK_RUNNING)
4218 		vcpu->preempted = true;
4219 	kvm_arch_vcpu_put(vcpu);
4220 }
4221 
4222 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4223 		  struct module *module)
4224 {
4225 	int r;
4226 	int cpu;
4227 
4228 	r = kvm_arch_init(opaque);
4229 	if (r)
4230 		goto out_fail;
4231 
4232 	/*
4233 	 * kvm_arch_init makes sure there's at most one caller
4234 	 * for architectures that support multiple implementations,
4235 	 * like intel and amd on x86.
4236 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4237 	 * conflicts in case kvm is already setup for another implementation.
4238 	 */
4239 	r = kvm_irqfd_init();
4240 	if (r)
4241 		goto out_irqfd;
4242 
4243 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4244 		r = -ENOMEM;
4245 		goto out_free_0;
4246 	}
4247 
4248 	r = kvm_arch_hardware_setup();
4249 	if (r < 0)
4250 		goto out_free_0a;
4251 
4252 	for_each_online_cpu(cpu) {
4253 		smp_call_function_single(cpu,
4254 				kvm_arch_check_processor_compat,
4255 				&r, 1);
4256 		if (r < 0)
4257 			goto out_free_1;
4258 	}
4259 
4260 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4261 				      kvm_starting_cpu, kvm_dying_cpu);
4262 	if (r)
4263 		goto out_free_2;
4264 	register_reboot_notifier(&kvm_reboot_notifier);
4265 
4266 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4267 	if (!vcpu_align)
4268 		vcpu_align = __alignof__(struct kvm_vcpu);
4269 	kvm_vcpu_cache =
4270 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4271 					   SLAB_ACCOUNT,
4272 					   offsetof(struct kvm_vcpu, arch),
4273 					   sizeof_field(struct kvm_vcpu, arch),
4274 					   NULL);
4275 	if (!kvm_vcpu_cache) {
4276 		r = -ENOMEM;
4277 		goto out_free_3;
4278 	}
4279 
4280 	r = kvm_async_pf_init();
4281 	if (r)
4282 		goto out_free;
4283 
4284 	kvm_chardev_ops.owner = module;
4285 	kvm_vm_fops.owner = module;
4286 	kvm_vcpu_fops.owner = module;
4287 
4288 	r = misc_register(&kvm_dev);
4289 	if (r) {
4290 		pr_err("kvm: misc device register failed\n");
4291 		goto out_unreg;
4292 	}
4293 
4294 	register_syscore_ops(&kvm_syscore_ops);
4295 
4296 	kvm_preempt_ops.sched_in = kvm_sched_in;
4297 	kvm_preempt_ops.sched_out = kvm_sched_out;
4298 
4299 	kvm_init_debug();
4300 
4301 	r = kvm_vfio_ops_init();
4302 	WARN_ON(r);
4303 
4304 	return 0;
4305 
4306 out_unreg:
4307 	kvm_async_pf_deinit();
4308 out_free:
4309 	kmem_cache_destroy(kvm_vcpu_cache);
4310 out_free_3:
4311 	unregister_reboot_notifier(&kvm_reboot_notifier);
4312 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4313 out_free_2:
4314 out_free_1:
4315 	kvm_arch_hardware_unsetup();
4316 out_free_0a:
4317 	free_cpumask_var(cpus_hardware_enabled);
4318 out_free_0:
4319 	kvm_irqfd_exit();
4320 out_irqfd:
4321 	kvm_arch_exit();
4322 out_fail:
4323 	return r;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_init);
4326 
4327 void kvm_exit(void)
4328 {
4329 	debugfs_remove_recursive(kvm_debugfs_dir);
4330 	misc_deregister(&kvm_dev);
4331 	kmem_cache_destroy(kvm_vcpu_cache);
4332 	kvm_async_pf_deinit();
4333 	unregister_syscore_ops(&kvm_syscore_ops);
4334 	unregister_reboot_notifier(&kvm_reboot_notifier);
4335 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4336 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4337 	kvm_arch_hardware_unsetup();
4338 	kvm_arch_exit();
4339 	kvm_irqfd_exit();
4340 	free_cpumask_var(cpus_hardware_enabled);
4341 	kvm_vfio_ops_exit();
4342 }
4343 EXPORT_SYMBOL_GPL(kvm_exit);
4344