1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 #include <linux/io.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* The start value to grow halt_poll_ns from */ 85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 86 module_param(halt_poll_ns_grow_start, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 88 89 /* Default resets per-vcpu halt_poll_ns . */ 90 unsigned int halt_poll_ns_shrink; 91 module_param(halt_poll_ns_shrink, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 93 94 /* 95 * Ordering of locks: 96 * 97 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 98 */ 99 100 DEFINE_SPINLOCK(kvm_lock); 101 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 102 LIST_HEAD(vm_list); 103 104 static cpumask_var_t cpus_hardware_enabled; 105 static int kvm_usage_count; 106 static atomic_t hardware_enable_failed; 107 108 struct kmem_cache *kvm_vcpu_cache; 109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 110 111 static __read_mostly struct preempt_ops kvm_preempt_ops; 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static int kvm_debugfs_num_entries; 117 static const struct file_operations *stat_fops_per_vm[]; 118 119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 120 unsigned long arg); 121 #ifdef CONFIG_KVM_COMPAT 122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #define KVM_COMPAT(c) .compat_ioctl = (c) 125 #else 126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 127 unsigned long arg) { return -EINVAL; } 128 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 129 #endif 130 static int hardware_enable_all(void); 131 static void hardware_disable_all(void); 132 133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 134 135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 136 137 __visible bool kvm_rebooting; 138 EXPORT_SYMBOL_GPL(kvm_rebooting); 139 140 static bool largepages_enabled = true; 141 142 #define KVM_EVENT_CREATE_VM 0 143 #define KVM_EVENT_DESTROY_VM 1 144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 145 static unsigned long long kvm_createvm_count; 146 static unsigned long long kvm_active_vms; 147 148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 149 unsigned long start, unsigned long end, bool blockable) 150 { 151 return 0; 152 } 153 154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 155 { 156 if (pfn_valid(pfn)) 157 return PageReserved(pfn_to_page(pfn)); 158 159 return true; 160 } 161 162 /* 163 * Switches to specified vcpu, until a matching vcpu_put() 164 */ 165 void vcpu_load(struct kvm_vcpu *vcpu) 166 { 167 int cpu = get_cpu(); 168 preempt_notifier_register(&vcpu->preempt_notifier); 169 kvm_arch_vcpu_load(vcpu, cpu); 170 put_cpu(); 171 } 172 EXPORT_SYMBOL_GPL(vcpu_load); 173 174 void vcpu_put(struct kvm_vcpu *vcpu) 175 { 176 preempt_disable(); 177 kvm_arch_vcpu_put(vcpu); 178 preempt_notifier_unregister(&vcpu->preempt_notifier); 179 preempt_enable(); 180 } 181 EXPORT_SYMBOL_GPL(vcpu_put); 182 183 /* TODO: merge with kvm_arch_vcpu_should_kick */ 184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 185 { 186 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 187 188 /* 189 * We need to wait for the VCPU to reenable interrupts and get out of 190 * READING_SHADOW_PAGE_TABLES mode. 191 */ 192 if (req & KVM_REQUEST_WAIT) 193 return mode != OUTSIDE_GUEST_MODE; 194 195 /* 196 * Need to kick a running VCPU, but otherwise there is nothing to do. 197 */ 198 return mode == IN_GUEST_MODE; 199 } 200 201 static void ack_flush(void *_completed) 202 { 203 } 204 205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 206 { 207 if (unlikely(!cpus)) 208 cpus = cpu_online_mask; 209 210 if (cpumask_empty(cpus)) 211 return false; 212 213 smp_call_function_many(cpus, ack_flush, NULL, wait); 214 return true; 215 } 216 217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 218 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 219 { 220 int i, cpu, me; 221 struct kvm_vcpu *vcpu; 222 bool called; 223 224 me = get_cpu(); 225 226 kvm_for_each_vcpu(i, vcpu, kvm) { 227 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 228 continue; 229 230 kvm_make_request(req, vcpu); 231 cpu = vcpu->cpu; 232 233 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 234 continue; 235 236 if (tmp != NULL && cpu != -1 && cpu != me && 237 kvm_request_needs_ipi(vcpu, req)) 238 __cpumask_set_cpu(cpu, tmp); 239 } 240 241 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 242 put_cpu(); 243 244 return called; 245 } 246 247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 248 { 249 cpumask_var_t cpus; 250 bool called; 251 252 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 253 254 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 255 256 free_cpumask_var(cpus); 257 return called; 258 } 259 260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 261 void kvm_flush_remote_tlbs(struct kvm *kvm) 262 { 263 /* 264 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 265 * kvm_make_all_cpus_request. 266 */ 267 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 268 269 /* 270 * We want to publish modifications to the page tables before reading 271 * mode. Pairs with a memory barrier in arch-specific code. 272 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 273 * and smp_mb in walk_shadow_page_lockless_begin/end. 274 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 275 * 276 * There is already an smp_mb__after_atomic() before 277 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 278 * barrier here. 279 */ 280 if (!kvm_arch_flush_remote_tlb(kvm) 281 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 282 ++kvm->stat.remote_tlb_flush; 283 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 284 } 285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 286 #endif 287 288 void kvm_reload_remote_mmus(struct kvm *kvm) 289 { 290 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 291 } 292 293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 294 { 295 struct page *page; 296 int r; 297 298 mutex_init(&vcpu->mutex); 299 vcpu->cpu = -1; 300 vcpu->kvm = kvm; 301 vcpu->vcpu_id = id; 302 vcpu->pid = NULL; 303 init_swait_queue_head(&vcpu->wq); 304 kvm_async_pf_vcpu_init(vcpu); 305 306 vcpu->pre_pcpu = -1; 307 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 308 309 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 310 if (!page) { 311 r = -ENOMEM; 312 goto fail; 313 } 314 vcpu->run = page_address(page); 315 316 kvm_vcpu_set_in_spin_loop(vcpu, false); 317 kvm_vcpu_set_dy_eligible(vcpu, false); 318 vcpu->preempted = false; 319 320 r = kvm_arch_vcpu_init(vcpu); 321 if (r < 0) 322 goto fail_free_run; 323 return 0; 324 325 fail_free_run: 326 free_page((unsigned long)vcpu->run); 327 fail: 328 return r; 329 } 330 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 331 332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 333 { 334 /* 335 * no need for rcu_read_lock as VCPU_RUN is the only place that 336 * will change the vcpu->pid pointer and on uninit all file 337 * descriptors are already gone. 338 */ 339 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 340 kvm_arch_vcpu_uninit(vcpu); 341 free_page((unsigned long)vcpu->run); 342 } 343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 344 345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 347 { 348 return container_of(mn, struct kvm, mmu_notifier); 349 } 350 351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 352 struct mm_struct *mm, 353 unsigned long address, 354 pte_t pte) 355 { 356 struct kvm *kvm = mmu_notifier_to_kvm(mn); 357 int idx; 358 359 idx = srcu_read_lock(&kvm->srcu); 360 spin_lock(&kvm->mmu_lock); 361 kvm->mmu_notifier_seq++; 362 363 if (kvm_set_spte_hva(kvm, address, pte)) 364 kvm_flush_remote_tlbs(kvm); 365 366 spin_unlock(&kvm->mmu_lock); 367 srcu_read_unlock(&kvm->srcu, idx); 368 } 369 370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 371 const struct mmu_notifier_range *range) 372 { 373 struct kvm *kvm = mmu_notifier_to_kvm(mn); 374 int need_tlb_flush = 0, idx; 375 int ret; 376 377 idx = srcu_read_lock(&kvm->srcu); 378 spin_lock(&kvm->mmu_lock); 379 /* 380 * The count increase must become visible at unlock time as no 381 * spte can be established without taking the mmu_lock and 382 * count is also read inside the mmu_lock critical section. 383 */ 384 kvm->mmu_notifier_count++; 385 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 386 need_tlb_flush |= kvm->tlbs_dirty; 387 /* we've to flush the tlb before the pages can be freed */ 388 if (need_tlb_flush) 389 kvm_flush_remote_tlbs(kvm); 390 391 spin_unlock(&kvm->mmu_lock); 392 393 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 394 range->end, 395 mmu_notifier_range_blockable(range)); 396 397 srcu_read_unlock(&kvm->srcu, idx); 398 399 return ret; 400 } 401 402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 403 const struct mmu_notifier_range *range) 404 { 405 struct kvm *kvm = mmu_notifier_to_kvm(mn); 406 407 spin_lock(&kvm->mmu_lock); 408 /* 409 * This sequence increase will notify the kvm page fault that 410 * the page that is going to be mapped in the spte could have 411 * been freed. 412 */ 413 kvm->mmu_notifier_seq++; 414 smp_wmb(); 415 /* 416 * The above sequence increase must be visible before the 417 * below count decrease, which is ensured by the smp_wmb above 418 * in conjunction with the smp_rmb in mmu_notifier_retry(). 419 */ 420 kvm->mmu_notifier_count--; 421 spin_unlock(&kvm->mmu_lock); 422 423 BUG_ON(kvm->mmu_notifier_count < 0); 424 } 425 426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 427 struct mm_struct *mm, 428 unsigned long start, 429 unsigned long end) 430 { 431 struct kvm *kvm = mmu_notifier_to_kvm(mn); 432 int young, idx; 433 434 idx = srcu_read_lock(&kvm->srcu); 435 spin_lock(&kvm->mmu_lock); 436 437 young = kvm_age_hva(kvm, start, end); 438 if (young) 439 kvm_flush_remote_tlbs(kvm); 440 441 spin_unlock(&kvm->mmu_lock); 442 srcu_read_unlock(&kvm->srcu, idx); 443 444 return young; 445 } 446 447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 448 struct mm_struct *mm, 449 unsigned long start, 450 unsigned long end) 451 { 452 struct kvm *kvm = mmu_notifier_to_kvm(mn); 453 int young, idx; 454 455 idx = srcu_read_lock(&kvm->srcu); 456 spin_lock(&kvm->mmu_lock); 457 /* 458 * Even though we do not flush TLB, this will still adversely 459 * affect performance on pre-Haswell Intel EPT, where there is 460 * no EPT Access Bit to clear so that we have to tear down EPT 461 * tables instead. If we find this unacceptable, we can always 462 * add a parameter to kvm_age_hva so that it effectively doesn't 463 * do anything on clear_young. 464 * 465 * Also note that currently we never issue secondary TLB flushes 466 * from clear_young, leaving this job up to the regular system 467 * cadence. If we find this inaccurate, we might come up with a 468 * more sophisticated heuristic later. 469 */ 470 young = kvm_age_hva(kvm, start, end); 471 spin_unlock(&kvm->mmu_lock); 472 srcu_read_unlock(&kvm->srcu, idx); 473 474 return young; 475 } 476 477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 478 struct mm_struct *mm, 479 unsigned long address) 480 { 481 struct kvm *kvm = mmu_notifier_to_kvm(mn); 482 int young, idx; 483 484 idx = srcu_read_lock(&kvm->srcu); 485 spin_lock(&kvm->mmu_lock); 486 young = kvm_test_age_hva(kvm, address); 487 spin_unlock(&kvm->mmu_lock); 488 srcu_read_unlock(&kvm->srcu, idx); 489 490 return young; 491 } 492 493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 494 struct mm_struct *mm) 495 { 496 struct kvm *kvm = mmu_notifier_to_kvm(mn); 497 int idx; 498 499 idx = srcu_read_lock(&kvm->srcu); 500 kvm_arch_flush_shadow_all(kvm); 501 srcu_read_unlock(&kvm->srcu, idx); 502 } 503 504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 505 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 506 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 507 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 508 .clear_young = kvm_mmu_notifier_clear_young, 509 .test_young = kvm_mmu_notifier_test_young, 510 .change_pte = kvm_mmu_notifier_change_pte, 511 .release = kvm_mmu_notifier_release, 512 }; 513 514 static int kvm_init_mmu_notifier(struct kvm *kvm) 515 { 516 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 517 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 518 } 519 520 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 521 522 static int kvm_init_mmu_notifier(struct kvm *kvm) 523 { 524 return 0; 525 } 526 527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 528 529 static struct kvm_memslots *kvm_alloc_memslots(void) 530 { 531 int i; 532 struct kvm_memslots *slots; 533 534 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 535 if (!slots) 536 return NULL; 537 538 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 539 slots->id_to_index[i] = slots->memslots[i].id = i; 540 541 return slots; 542 } 543 544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 545 { 546 if (!memslot->dirty_bitmap) 547 return; 548 549 kvfree(memslot->dirty_bitmap); 550 memslot->dirty_bitmap = NULL; 551 } 552 553 /* 554 * Free any memory in @free but not in @dont. 555 */ 556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 557 struct kvm_memory_slot *dont) 558 { 559 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 560 kvm_destroy_dirty_bitmap(free); 561 562 kvm_arch_free_memslot(kvm, free, dont); 563 564 free->npages = 0; 565 } 566 567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 568 { 569 struct kvm_memory_slot *memslot; 570 571 if (!slots) 572 return; 573 574 kvm_for_each_memslot(memslot, slots) 575 kvm_free_memslot(kvm, memslot, NULL); 576 577 kvfree(slots); 578 } 579 580 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 581 { 582 int i; 583 584 if (!kvm->debugfs_dentry) 585 return; 586 587 debugfs_remove_recursive(kvm->debugfs_dentry); 588 589 if (kvm->debugfs_stat_data) { 590 for (i = 0; i < kvm_debugfs_num_entries; i++) 591 kfree(kvm->debugfs_stat_data[i]); 592 kfree(kvm->debugfs_stat_data); 593 } 594 } 595 596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 597 { 598 char dir_name[ITOA_MAX_LEN * 2]; 599 struct kvm_stat_data *stat_data; 600 struct kvm_stats_debugfs_item *p; 601 602 if (!debugfs_initialized()) 603 return 0; 604 605 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 606 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 607 608 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 609 sizeof(*kvm->debugfs_stat_data), 610 GFP_KERNEL_ACCOUNT); 611 if (!kvm->debugfs_stat_data) 612 return -ENOMEM; 613 614 for (p = debugfs_entries; p->name; p++) { 615 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 616 if (!stat_data) 617 return -ENOMEM; 618 619 stat_data->kvm = kvm; 620 stat_data->offset = p->offset; 621 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 622 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 623 stat_data, stat_fops_per_vm[p->kind]); 624 } 625 return 0; 626 } 627 628 static struct kvm *kvm_create_vm(unsigned long type) 629 { 630 int r, i; 631 struct kvm *kvm = kvm_arch_alloc_vm(); 632 633 if (!kvm) 634 return ERR_PTR(-ENOMEM); 635 636 spin_lock_init(&kvm->mmu_lock); 637 mmgrab(current->mm); 638 kvm->mm = current->mm; 639 kvm_eventfd_init(kvm); 640 mutex_init(&kvm->lock); 641 mutex_init(&kvm->irq_lock); 642 mutex_init(&kvm->slots_lock); 643 refcount_set(&kvm->users_count, 1); 644 INIT_LIST_HEAD(&kvm->devices); 645 646 r = kvm_arch_init_vm(kvm, type); 647 if (r) 648 goto out_err_no_disable; 649 650 r = hardware_enable_all(); 651 if (r) 652 goto out_err_no_disable; 653 654 #ifdef CONFIG_HAVE_KVM_IRQFD 655 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 656 #endif 657 658 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 659 660 r = -ENOMEM; 661 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 662 struct kvm_memslots *slots = kvm_alloc_memslots(); 663 if (!slots) 664 goto out_err_no_srcu; 665 /* Generations must be different for each address space. */ 666 slots->generation = i; 667 rcu_assign_pointer(kvm->memslots[i], slots); 668 } 669 670 if (init_srcu_struct(&kvm->srcu)) 671 goto out_err_no_srcu; 672 if (init_srcu_struct(&kvm->irq_srcu)) 673 goto out_err_no_irq_srcu; 674 for (i = 0; i < KVM_NR_BUSES; i++) { 675 rcu_assign_pointer(kvm->buses[i], 676 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 677 if (!kvm->buses[i]) 678 goto out_err; 679 } 680 681 r = kvm_init_mmu_notifier(kvm); 682 if (r) 683 goto out_err; 684 685 spin_lock(&kvm_lock); 686 list_add(&kvm->vm_list, &vm_list); 687 spin_unlock(&kvm_lock); 688 689 preempt_notifier_inc(); 690 691 return kvm; 692 693 out_err: 694 cleanup_srcu_struct(&kvm->irq_srcu); 695 out_err_no_irq_srcu: 696 cleanup_srcu_struct(&kvm->srcu); 697 out_err_no_srcu: 698 hardware_disable_all(); 699 out_err_no_disable: 700 refcount_set(&kvm->users_count, 0); 701 for (i = 0; i < KVM_NR_BUSES; i++) 702 kfree(kvm_get_bus(kvm, i)); 703 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 704 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 705 kvm_arch_free_vm(kvm); 706 mmdrop(current->mm); 707 return ERR_PTR(r); 708 } 709 710 static void kvm_destroy_devices(struct kvm *kvm) 711 { 712 struct kvm_device *dev, *tmp; 713 714 /* 715 * We do not need to take the kvm->lock here, because nobody else 716 * has a reference to the struct kvm at this point and therefore 717 * cannot access the devices list anyhow. 718 */ 719 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 720 list_del(&dev->vm_node); 721 dev->ops->destroy(dev); 722 } 723 } 724 725 static void kvm_destroy_vm(struct kvm *kvm) 726 { 727 int i; 728 struct mm_struct *mm = kvm->mm; 729 730 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 731 kvm_destroy_vm_debugfs(kvm); 732 kvm_arch_sync_events(kvm); 733 spin_lock(&kvm_lock); 734 list_del(&kvm->vm_list); 735 spin_unlock(&kvm_lock); 736 kvm_free_irq_routing(kvm); 737 for (i = 0; i < KVM_NR_BUSES; i++) { 738 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 739 740 if (bus) 741 kvm_io_bus_destroy(bus); 742 kvm->buses[i] = NULL; 743 } 744 kvm_coalesced_mmio_free(kvm); 745 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 746 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 747 #else 748 kvm_arch_flush_shadow_all(kvm); 749 #endif 750 kvm_arch_destroy_vm(kvm); 751 kvm_destroy_devices(kvm); 752 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 753 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 754 cleanup_srcu_struct(&kvm->irq_srcu); 755 cleanup_srcu_struct(&kvm->srcu); 756 kvm_arch_free_vm(kvm); 757 preempt_notifier_dec(); 758 hardware_disable_all(); 759 mmdrop(mm); 760 } 761 762 void kvm_get_kvm(struct kvm *kvm) 763 { 764 refcount_inc(&kvm->users_count); 765 } 766 EXPORT_SYMBOL_GPL(kvm_get_kvm); 767 768 void kvm_put_kvm(struct kvm *kvm) 769 { 770 if (refcount_dec_and_test(&kvm->users_count)) 771 kvm_destroy_vm(kvm); 772 } 773 EXPORT_SYMBOL_GPL(kvm_put_kvm); 774 775 776 static int kvm_vm_release(struct inode *inode, struct file *filp) 777 { 778 struct kvm *kvm = filp->private_data; 779 780 kvm_irqfd_release(kvm); 781 782 kvm_put_kvm(kvm); 783 return 0; 784 } 785 786 /* 787 * Allocation size is twice as large as the actual dirty bitmap size. 788 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 789 */ 790 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 791 { 792 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 793 794 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 795 if (!memslot->dirty_bitmap) 796 return -ENOMEM; 797 798 return 0; 799 } 800 801 /* 802 * Insert memslot and re-sort memslots based on their GFN, 803 * so binary search could be used to lookup GFN. 804 * Sorting algorithm takes advantage of having initially 805 * sorted array and known changed memslot position. 806 */ 807 static void update_memslots(struct kvm_memslots *slots, 808 struct kvm_memory_slot *new, 809 enum kvm_mr_change change) 810 { 811 int id = new->id; 812 int i = slots->id_to_index[id]; 813 struct kvm_memory_slot *mslots = slots->memslots; 814 815 WARN_ON(mslots[i].id != id); 816 switch (change) { 817 case KVM_MR_CREATE: 818 slots->used_slots++; 819 WARN_ON(mslots[i].npages || !new->npages); 820 break; 821 case KVM_MR_DELETE: 822 slots->used_slots--; 823 WARN_ON(new->npages || !mslots[i].npages); 824 break; 825 default: 826 break; 827 } 828 829 while (i < KVM_MEM_SLOTS_NUM - 1 && 830 new->base_gfn <= mslots[i + 1].base_gfn) { 831 if (!mslots[i + 1].npages) 832 break; 833 mslots[i] = mslots[i + 1]; 834 slots->id_to_index[mslots[i].id] = i; 835 i++; 836 } 837 838 /* 839 * The ">=" is needed when creating a slot with base_gfn == 0, 840 * so that it moves before all those with base_gfn == npages == 0. 841 * 842 * On the other hand, if new->npages is zero, the above loop has 843 * already left i pointing to the beginning of the empty part of 844 * mslots, and the ">=" would move the hole backwards in this 845 * case---which is wrong. So skip the loop when deleting a slot. 846 */ 847 if (new->npages) { 848 while (i > 0 && 849 new->base_gfn >= mslots[i - 1].base_gfn) { 850 mslots[i] = mslots[i - 1]; 851 slots->id_to_index[mslots[i].id] = i; 852 i--; 853 } 854 } else 855 WARN_ON_ONCE(i != slots->used_slots); 856 857 mslots[i] = *new; 858 slots->id_to_index[mslots[i].id] = i; 859 } 860 861 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 862 { 863 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 864 865 #ifdef __KVM_HAVE_READONLY_MEM 866 valid_flags |= KVM_MEM_READONLY; 867 #endif 868 869 if (mem->flags & ~valid_flags) 870 return -EINVAL; 871 872 return 0; 873 } 874 875 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 876 int as_id, struct kvm_memslots *slots) 877 { 878 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 879 u64 gen = old_memslots->generation; 880 881 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 882 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 883 884 rcu_assign_pointer(kvm->memslots[as_id], slots); 885 synchronize_srcu_expedited(&kvm->srcu); 886 887 /* 888 * Increment the new memslot generation a second time, dropping the 889 * update in-progress flag and incrementing then generation based on 890 * the number of address spaces. This provides a unique and easily 891 * identifiable generation number while the memslots are in flux. 892 */ 893 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 894 895 /* 896 * Generations must be unique even across address spaces. We do not need 897 * a global counter for that, instead the generation space is evenly split 898 * across address spaces. For example, with two address spaces, address 899 * space 0 will use generations 0, 2, 4, ... while address space 1 will 900 * use generations 1, 3, 5, ... 901 */ 902 gen += KVM_ADDRESS_SPACE_NUM; 903 904 kvm_arch_memslots_updated(kvm, gen); 905 906 slots->generation = gen; 907 908 return old_memslots; 909 } 910 911 /* 912 * Allocate some memory and give it an address in the guest physical address 913 * space. 914 * 915 * Discontiguous memory is allowed, mostly for framebuffers. 916 * 917 * Must be called holding kvm->slots_lock for write. 918 */ 919 int __kvm_set_memory_region(struct kvm *kvm, 920 const struct kvm_userspace_memory_region *mem) 921 { 922 int r; 923 gfn_t base_gfn; 924 unsigned long npages; 925 struct kvm_memory_slot *slot; 926 struct kvm_memory_slot old, new; 927 struct kvm_memslots *slots = NULL, *old_memslots; 928 int as_id, id; 929 enum kvm_mr_change change; 930 931 r = check_memory_region_flags(mem); 932 if (r) 933 goto out; 934 935 r = -EINVAL; 936 as_id = mem->slot >> 16; 937 id = (u16)mem->slot; 938 939 /* General sanity checks */ 940 if (mem->memory_size & (PAGE_SIZE - 1)) 941 goto out; 942 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 943 goto out; 944 /* We can read the guest memory with __xxx_user() later on. */ 945 if ((id < KVM_USER_MEM_SLOTS) && 946 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 947 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 948 mem->memory_size))) 949 goto out; 950 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 951 goto out; 952 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 953 goto out; 954 955 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 956 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 957 npages = mem->memory_size >> PAGE_SHIFT; 958 959 if (npages > KVM_MEM_MAX_NR_PAGES) 960 goto out; 961 962 new = old = *slot; 963 964 new.id = id; 965 new.base_gfn = base_gfn; 966 new.npages = npages; 967 new.flags = mem->flags; 968 969 if (npages) { 970 if (!old.npages) 971 change = KVM_MR_CREATE; 972 else { /* Modify an existing slot. */ 973 if ((mem->userspace_addr != old.userspace_addr) || 974 (npages != old.npages) || 975 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 976 goto out; 977 978 if (base_gfn != old.base_gfn) 979 change = KVM_MR_MOVE; 980 else if (new.flags != old.flags) 981 change = KVM_MR_FLAGS_ONLY; 982 else { /* Nothing to change. */ 983 r = 0; 984 goto out; 985 } 986 } 987 } else { 988 if (!old.npages) 989 goto out; 990 991 change = KVM_MR_DELETE; 992 new.base_gfn = 0; 993 new.flags = 0; 994 } 995 996 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 997 /* Check for overlaps */ 998 r = -EEXIST; 999 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1000 if (slot->id == id) 1001 continue; 1002 if (!((base_gfn + npages <= slot->base_gfn) || 1003 (base_gfn >= slot->base_gfn + slot->npages))) 1004 goto out; 1005 } 1006 } 1007 1008 /* Free page dirty bitmap if unneeded */ 1009 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1010 new.dirty_bitmap = NULL; 1011 1012 r = -ENOMEM; 1013 if (change == KVM_MR_CREATE) { 1014 new.userspace_addr = mem->userspace_addr; 1015 1016 if (kvm_arch_create_memslot(kvm, &new, npages)) 1017 goto out_free; 1018 } 1019 1020 /* Allocate page dirty bitmap if needed */ 1021 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1022 if (kvm_create_dirty_bitmap(&new) < 0) 1023 goto out_free; 1024 } 1025 1026 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1027 if (!slots) 1028 goto out_free; 1029 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1030 1031 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1032 slot = id_to_memslot(slots, id); 1033 slot->flags |= KVM_MEMSLOT_INVALID; 1034 1035 old_memslots = install_new_memslots(kvm, as_id, slots); 1036 1037 /* From this point no new shadow pages pointing to a deleted, 1038 * or moved, memslot will be created. 1039 * 1040 * validation of sp->gfn happens in: 1041 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1042 * - kvm_is_visible_gfn (mmu_check_roots) 1043 */ 1044 kvm_arch_flush_shadow_memslot(kvm, slot); 1045 1046 /* 1047 * We can re-use the old_memslots from above, the only difference 1048 * from the currently installed memslots is the invalid flag. This 1049 * will get overwritten by update_memslots anyway. 1050 */ 1051 slots = old_memslots; 1052 } 1053 1054 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1055 if (r) 1056 goto out_slots; 1057 1058 /* actual memory is freed via old in kvm_free_memslot below */ 1059 if (change == KVM_MR_DELETE) { 1060 new.dirty_bitmap = NULL; 1061 memset(&new.arch, 0, sizeof(new.arch)); 1062 } 1063 1064 update_memslots(slots, &new, change); 1065 old_memslots = install_new_memslots(kvm, as_id, slots); 1066 1067 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1068 1069 kvm_free_memslot(kvm, &old, &new); 1070 kvfree(old_memslots); 1071 return 0; 1072 1073 out_slots: 1074 kvfree(slots); 1075 out_free: 1076 kvm_free_memslot(kvm, &new, &old); 1077 out: 1078 return r; 1079 } 1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1081 1082 int kvm_set_memory_region(struct kvm *kvm, 1083 const struct kvm_userspace_memory_region *mem) 1084 { 1085 int r; 1086 1087 mutex_lock(&kvm->slots_lock); 1088 r = __kvm_set_memory_region(kvm, mem); 1089 mutex_unlock(&kvm->slots_lock); 1090 return r; 1091 } 1092 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1093 1094 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1095 struct kvm_userspace_memory_region *mem) 1096 { 1097 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1098 return -EINVAL; 1099 1100 return kvm_set_memory_region(kvm, mem); 1101 } 1102 1103 int kvm_get_dirty_log(struct kvm *kvm, 1104 struct kvm_dirty_log *log, int *is_dirty) 1105 { 1106 struct kvm_memslots *slots; 1107 struct kvm_memory_slot *memslot; 1108 int i, as_id, id; 1109 unsigned long n; 1110 unsigned long any = 0; 1111 1112 as_id = log->slot >> 16; 1113 id = (u16)log->slot; 1114 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1115 return -EINVAL; 1116 1117 slots = __kvm_memslots(kvm, as_id); 1118 memslot = id_to_memslot(slots, id); 1119 if (!memslot->dirty_bitmap) 1120 return -ENOENT; 1121 1122 n = kvm_dirty_bitmap_bytes(memslot); 1123 1124 for (i = 0; !any && i < n/sizeof(long); ++i) 1125 any = memslot->dirty_bitmap[i]; 1126 1127 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1128 return -EFAULT; 1129 1130 if (any) 1131 *is_dirty = 1; 1132 return 0; 1133 } 1134 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1135 1136 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1137 /** 1138 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1139 * and reenable dirty page tracking for the corresponding pages. 1140 * @kvm: pointer to kvm instance 1141 * @log: slot id and address to which we copy the log 1142 * @flush: true if TLB flush is needed by caller 1143 * 1144 * We need to keep it in mind that VCPU threads can write to the bitmap 1145 * concurrently. So, to avoid losing track of dirty pages we keep the 1146 * following order: 1147 * 1148 * 1. Take a snapshot of the bit and clear it if needed. 1149 * 2. Write protect the corresponding page. 1150 * 3. Copy the snapshot to the userspace. 1151 * 4. Upon return caller flushes TLB's if needed. 1152 * 1153 * Between 2 and 4, the guest may write to the page using the remaining TLB 1154 * entry. This is not a problem because the page is reported dirty using 1155 * the snapshot taken before and step 4 ensures that writes done after 1156 * exiting to userspace will be logged for the next call. 1157 * 1158 */ 1159 int kvm_get_dirty_log_protect(struct kvm *kvm, 1160 struct kvm_dirty_log *log, bool *flush) 1161 { 1162 struct kvm_memslots *slots; 1163 struct kvm_memory_slot *memslot; 1164 int i, as_id, id; 1165 unsigned long n; 1166 unsigned long *dirty_bitmap; 1167 unsigned long *dirty_bitmap_buffer; 1168 1169 as_id = log->slot >> 16; 1170 id = (u16)log->slot; 1171 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1172 return -EINVAL; 1173 1174 slots = __kvm_memslots(kvm, as_id); 1175 memslot = id_to_memslot(slots, id); 1176 1177 dirty_bitmap = memslot->dirty_bitmap; 1178 if (!dirty_bitmap) 1179 return -ENOENT; 1180 1181 n = kvm_dirty_bitmap_bytes(memslot); 1182 *flush = false; 1183 if (kvm->manual_dirty_log_protect) { 1184 /* 1185 * Unlike kvm_get_dirty_log, we always return false in *flush, 1186 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1187 * is some code duplication between this function and 1188 * kvm_get_dirty_log, but hopefully all architecture 1189 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1190 * can be eliminated. 1191 */ 1192 dirty_bitmap_buffer = dirty_bitmap; 1193 } else { 1194 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1195 memset(dirty_bitmap_buffer, 0, n); 1196 1197 spin_lock(&kvm->mmu_lock); 1198 for (i = 0; i < n / sizeof(long); i++) { 1199 unsigned long mask; 1200 gfn_t offset; 1201 1202 if (!dirty_bitmap[i]) 1203 continue; 1204 1205 *flush = true; 1206 mask = xchg(&dirty_bitmap[i], 0); 1207 dirty_bitmap_buffer[i] = mask; 1208 1209 offset = i * BITS_PER_LONG; 1210 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1211 offset, mask); 1212 } 1213 spin_unlock(&kvm->mmu_lock); 1214 } 1215 1216 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1217 return -EFAULT; 1218 return 0; 1219 } 1220 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1221 1222 /** 1223 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1224 * and reenable dirty page tracking for the corresponding pages. 1225 * @kvm: pointer to kvm instance 1226 * @log: slot id and address from which to fetch the bitmap of dirty pages 1227 * @flush: true if TLB flush is needed by caller 1228 */ 1229 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1230 struct kvm_clear_dirty_log *log, bool *flush) 1231 { 1232 struct kvm_memslots *slots; 1233 struct kvm_memory_slot *memslot; 1234 int as_id, id; 1235 gfn_t offset; 1236 unsigned long i, n; 1237 unsigned long *dirty_bitmap; 1238 unsigned long *dirty_bitmap_buffer; 1239 1240 as_id = log->slot >> 16; 1241 id = (u16)log->slot; 1242 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1243 return -EINVAL; 1244 1245 if (log->first_page & 63) 1246 return -EINVAL; 1247 1248 slots = __kvm_memslots(kvm, as_id); 1249 memslot = id_to_memslot(slots, id); 1250 1251 dirty_bitmap = memslot->dirty_bitmap; 1252 if (!dirty_bitmap) 1253 return -ENOENT; 1254 1255 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1256 1257 if (log->first_page > memslot->npages || 1258 log->num_pages > memslot->npages - log->first_page || 1259 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1260 return -EINVAL; 1261 1262 *flush = false; 1263 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1264 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1265 return -EFAULT; 1266 1267 spin_lock(&kvm->mmu_lock); 1268 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1269 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1270 i++, offset += BITS_PER_LONG) { 1271 unsigned long mask = *dirty_bitmap_buffer++; 1272 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1273 if (!mask) 1274 continue; 1275 1276 mask &= atomic_long_fetch_andnot(mask, p); 1277 1278 /* 1279 * mask contains the bits that really have been cleared. This 1280 * never includes any bits beyond the length of the memslot (if 1281 * the length is not aligned to 64 pages), therefore it is not 1282 * a problem if userspace sets them in log->dirty_bitmap. 1283 */ 1284 if (mask) { 1285 *flush = true; 1286 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1287 offset, mask); 1288 } 1289 } 1290 spin_unlock(&kvm->mmu_lock); 1291 1292 return 0; 1293 } 1294 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1295 #endif 1296 1297 bool kvm_largepages_enabled(void) 1298 { 1299 return largepages_enabled; 1300 } 1301 1302 void kvm_disable_largepages(void) 1303 { 1304 largepages_enabled = false; 1305 } 1306 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1307 1308 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1309 { 1310 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1311 } 1312 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1313 1314 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1315 { 1316 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1317 } 1318 1319 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1320 { 1321 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1322 1323 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1324 memslot->flags & KVM_MEMSLOT_INVALID) 1325 return false; 1326 1327 return true; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1330 1331 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1332 { 1333 struct vm_area_struct *vma; 1334 unsigned long addr, size; 1335 1336 size = PAGE_SIZE; 1337 1338 addr = gfn_to_hva(kvm, gfn); 1339 if (kvm_is_error_hva(addr)) 1340 return PAGE_SIZE; 1341 1342 down_read(¤t->mm->mmap_sem); 1343 vma = find_vma(current->mm, addr); 1344 if (!vma) 1345 goto out; 1346 1347 size = vma_kernel_pagesize(vma); 1348 1349 out: 1350 up_read(¤t->mm->mmap_sem); 1351 1352 return size; 1353 } 1354 1355 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1356 { 1357 return slot->flags & KVM_MEM_READONLY; 1358 } 1359 1360 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1361 gfn_t *nr_pages, bool write) 1362 { 1363 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1364 return KVM_HVA_ERR_BAD; 1365 1366 if (memslot_is_readonly(slot) && write) 1367 return KVM_HVA_ERR_RO_BAD; 1368 1369 if (nr_pages) 1370 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1371 1372 return __gfn_to_hva_memslot(slot, gfn); 1373 } 1374 1375 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1376 gfn_t *nr_pages) 1377 { 1378 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1379 } 1380 1381 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1382 gfn_t gfn) 1383 { 1384 return gfn_to_hva_many(slot, gfn, NULL); 1385 } 1386 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1387 1388 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1389 { 1390 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1391 } 1392 EXPORT_SYMBOL_GPL(gfn_to_hva); 1393 1394 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1395 { 1396 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1397 } 1398 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1399 1400 /* 1401 * Return the hva of a @gfn and the R/W attribute if possible. 1402 * 1403 * @slot: the kvm_memory_slot which contains @gfn 1404 * @gfn: the gfn to be translated 1405 * @writable: used to return the read/write attribute of the @slot if the hva 1406 * is valid and @writable is not NULL 1407 */ 1408 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1409 gfn_t gfn, bool *writable) 1410 { 1411 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1412 1413 if (!kvm_is_error_hva(hva) && writable) 1414 *writable = !memslot_is_readonly(slot); 1415 1416 return hva; 1417 } 1418 1419 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1420 { 1421 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1422 1423 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1424 } 1425 1426 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1427 { 1428 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1429 1430 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1431 } 1432 1433 static inline int check_user_page_hwpoison(unsigned long addr) 1434 { 1435 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1436 1437 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1438 return rc == -EHWPOISON; 1439 } 1440 1441 /* 1442 * The fast path to get the writable pfn which will be stored in @pfn, 1443 * true indicates success, otherwise false is returned. It's also the 1444 * only part that runs if we can are in atomic context. 1445 */ 1446 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1447 bool *writable, kvm_pfn_t *pfn) 1448 { 1449 struct page *page[1]; 1450 int npages; 1451 1452 /* 1453 * Fast pin a writable pfn only if it is a write fault request 1454 * or the caller allows to map a writable pfn for a read fault 1455 * request. 1456 */ 1457 if (!(write_fault || writable)) 1458 return false; 1459 1460 npages = __get_user_pages_fast(addr, 1, 1, page); 1461 if (npages == 1) { 1462 *pfn = page_to_pfn(page[0]); 1463 1464 if (writable) 1465 *writable = true; 1466 return true; 1467 } 1468 1469 return false; 1470 } 1471 1472 /* 1473 * The slow path to get the pfn of the specified host virtual address, 1474 * 1 indicates success, -errno is returned if error is detected. 1475 */ 1476 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1477 bool *writable, kvm_pfn_t *pfn) 1478 { 1479 unsigned int flags = FOLL_HWPOISON; 1480 struct page *page; 1481 int npages = 0; 1482 1483 might_sleep(); 1484 1485 if (writable) 1486 *writable = write_fault; 1487 1488 if (write_fault) 1489 flags |= FOLL_WRITE; 1490 if (async) 1491 flags |= FOLL_NOWAIT; 1492 1493 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1494 if (npages != 1) 1495 return npages; 1496 1497 /* map read fault as writable if possible */ 1498 if (unlikely(!write_fault) && writable) { 1499 struct page *wpage; 1500 1501 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1502 *writable = true; 1503 put_page(page); 1504 page = wpage; 1505 } 1506 } 1507 *pfn = page_to_pfn(page); 1508 return npages; 1509 } 1510 1511 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1512 { 1513 if (unlikely(!(vma->vm_flags & VM_READ))) 1514 return false; 1515 1516 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1517 return false; 1518 1519 return true; 1520 } 1521 1522 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1523 unsigned long addr, bool *async, 1524 bool write_fault, bool *writable, 1525 kvm_pfn_t *p_pfn) 1526 { 1527 unsigned long pfn; 1528 int r; 1529 1530 r = follow_pfn(vma, addr, &pfn); 1531 if (r) { 1532 /* 1533 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1534 * not call the fault handler, so do it here. 1535 */ 1536 bool unlocked = false; 1537 r = fixup_user_fault(current, current->mm, addr, 1538 (write_fault ? FAULT_FLAG_WRITE : 0), 1539 &unlocked); 1540 if (unlocked) 1541 return -EAGAIN; 1542 if (r) 1543 return r; 1544 1545 r = follow_pfn(vma, addr, &pfn); 1546 if (r) 1547 return r; 1548 1549 } 1550 1551 if (writable) 1552 *writable = true; 1553 1554 /* 1555 * Get a reference here because callers of *hva_to_pfn* and 1556 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1557 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1558 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1559 * simply do nothing for reserved pfns. 1560 * 1561 * Whoever called remap_pfn_range is also going to call e.g. 1562 * unmap_mapping_range before the underlying pages are freed, 1563 * causing a call to our MMU notifier. 1564 */ 1565 kvm_get_pfn(pfn); 1566 1567 *p_pfn = pfn; 1568 return 0; 1569 } 1570 1571 /* 1572 * Pin guest page in memory and return its pfn. 1573 * @addr: host virtual address which maps memory to the guest 1574 * @atomic: whether this function can sleep 1575 * @async: whether this function need to wait IO complete if the 1576 * host page is not in the memory 1577 * @write_fault: whether we should get a writable host page 1578 * @writable: whether it allows to map a writable host page for !@write_fault 1579 * 1580 * The function will map a writable host page for these two cases: 1581 * 1): @write_fault = true 1582 * 2): @write_fault = false && @writable, @writable will tell the caller 1583 * whether the mapping is writable. 1584 */ 1585 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1586 bool write_fault, bool *writable) 1587 { 1588 struct vm_area_struct *vma; 1589 kvm_pfn_t pfn = 0; 1590 int npages, r; 1591 1592 /* we can do it either atomically or asynchronously, not both */ 1593 BUG_ON(atomic && async); 1594 1595 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1596 return pfn; 1597 1598 if (atomic) 1599 return KVM_PFN_ERR_FAULT; 1600 1601 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1602 if (npages == 1) 1603 return pfn; 1604 1605 down_read(¤t->mm->mmap_sem); 1606 if (npages == -EHWPOISON || 1607 (!async && check_user_page_hwpoison(addr))) { 1608 pfn = KVM_PFN_ERR_HWPOISON; 1609 goto exit; 1610 } 1611 1612 retry: 1613 vma = find_vma_intersection(current->mm, addr, addr + 1); 1614 1615 if (vma == NULL) 1616 pfn = KVM_PFN_ERR_FAULT; 1617 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1618 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1619 if (r == -EAGAIN) 1620 goto retry; 1621 if (r < 0) 1622 pfn = KVM_PFN_ERR_FAULT; 1623 } else { 1624 if (async && vma_is_valid(vma, write_fault)) 1625 *async = true; 1626 pfn = KVM_PFN_ERR_FAULT; 1627 } 1628 exit: 1629 up_read(¤t->mm->mmap_sem); 1630 return pfn; 1631 } 1632 1633 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1634 bool atomic, bool *async, bool write_fault, 1635 bool *writable) 1636 { 1637 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1638 1639 if (addr == KVM_HVA_ERR_RO_BAD) { 1640 if (writable) 1641 *writable = false; 1642 return KVM_PFN_ERR_RO_FAULT; 1643 } 1644 1645 if (kvm_is_error_hva(addr)) { 1646 if (writable) 1647 *writable = false; 1648 return KVM_PFN_NOSLOT; 1649 } 1650 1651 /* Do not map writable pfn in the readonly memslot. */ 1652 if (writable && memslot_is_readonly(slot)) { 1653 *writable = false; 1654 writable = NULL; 1655 } 1656 1657 return hva_to_pfn(addr, atomic, async, write_fault, 1658 writable); 1659 } 1660 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1661 1662 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1663 bool *writable) 1664 { 1665 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1666 write_fault, writable); 1667 } 1668 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1669 1670 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1671 { 1672 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1673 } 1674 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1675 1676 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1677 { 1678 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1679 } 1680 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1681 1682 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1683 { 1684 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1685 } 1686 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1687 1688 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1689 { 1690 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1691 } 1692 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1693 1694 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1695 { 1696 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1697 } 1698 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1699 1700 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1701 { 1702 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1703 } 1704 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1705 1706 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1707 struct page **pages, int nr_pages) 1708 { 1709 unsigned long addr; 1710 gfn_t entry = 0; 1711 1712 addr = gfn_to_hva_many(slot, gfn, &entry); 1713 if (kvm_is_error_hva(addr)) 1714 return -1; 1715 1716 if (entry < nr_pages) 1717 return 0; 1718 1719 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1720 } 1721 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1722 1723 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1724 { 1725 if (is_error_noslot_pfn(pfn)) 1726 return KVM_ERR_PTR_BAD_PAGE; 1727 1728 if (kvm_is_reserved_pfn(pfn)) { 1729 WARN_ON(1); 1730 return KVM_ERR_PTR_BAD_PAGE; 1731 } 1732 1733 return pfn_to_page(pfn); 1734 } 1735 1736 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1737 { 1738 kvm_pfn_t pfn; 1739 1740 pfn = gfn_to_pfn(kvm, gfn); 1741 1742 return kvm_pfn_to_page(pfn); 1743 } 1744 EXPORT_SYMBOL_GPL(gfn_to_page); 1745 1746 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1747 struct kvm_host_map *map) 1748 { 1749 kvm_pfn_t pfn; 1750 void *hva = NULL; 1751 struct page *page = KVM_UNMAPPED_PAGE; 1752 1753 if (!map) 1754 return -EINVAL; 1755 1756 pfn = gfn_to_pfn_memslot(slot, gfn); 1757 if (is_error_noslot_pfn(pfn)) 1758 return -EINVAL; 1759 1760 if (pfn_valid(pfn)) { 1761 page = pfn_to_page(pfn); 1762 hva = kmap(page); 1763 } else { 1764 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1765 } 1766 1767 if (!hva) 1768 return -EFAULT; 1769 1770 map->page = page; 1771 map->hva = hva; 1772 map->pfn = pfn; 1773 map->gfn = gfn; 1774 1775 return 0; 1776 } 1777 1778 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1779 { 1780 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1781 } 1782 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1783 1784 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1785 bool dirty) 1786 { 1787 if (!map) 1788 return; 1789 1790 if (!map->hva) 1791 return; 1792 1793 if (map->page) 1794 kunmap(map->page); 1795 else 1796 memunmap(map->hva); 1797 1798 if (dirty) { 1799 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1800 kvm_release_pfn_dirty(map->pfn); 1801 } else { 1802 kvm_release_pfn_clean(map->pfn); 1803 } 1804 1805 map->hva = NULL; 1806 map->page = NULL; 1807 } 1808 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1809 1810 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1811 { 1812 kvm_pfn_t pfn; 1813 1814 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1815 1816 return kvm_pfn_to_page(pfn); 1817 } 1818 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1819 1820 void kvm_release_page_clean(struct page *page) 1821 { 1822 WARN_ON(is_error_page(page)); 1823 1824 kvm_release_pfn_clean(page_to_pfn(page)); 1825 } 1826 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1827 1828 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1829 { 1830 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1831 put_page(pfn_to_page(pfn)); 1832 } 1833 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1834 1835 void kvm_release_page_dirty(struct page *page) 1836 { 1837 WARN_ON(is_error_page(page)); 1838 1839 kvm_release_pfn_dirty(page_to_pfn(page)); 1840 } 1841 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1842 1843 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1844 { 1845 kvm_set_pfn_dirty(pfn); 1846 kvm_release_pfn_clean(pfn); 1847 } 1848 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1849 1850 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1851 { 1852 if (!kvm_is_reserved_pfn(pfn)) { 1853 struct page *page = pfn_to_page(pfn); 1854 1855 if (!PageReserved(page)) 1856 SetPageDirty(page); 1857 } 1858 } 1859 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1860 1861 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1862 { 1863 if (!kvm_is_reserved_pfn(pfn)) 1864 mark_page_accessed(pfn_to_page(pfn)); 1865 } 1866 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1867 1868 void kvm_get_pfn(kvm_pfn_t pfn) 1869 { 1870 if (!kvm_is_reserved_pfn(pfn)) 1871 get_page(pfn_to_page(pfn)); 1872 } 1873 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1874 1875 static int next_segment(unsigned long len, int offset) 1876 { 1877 if (len > PAGE_SIZE - offset) 1878 return PAGE_SIZE - offset; 1879 else 1880 return len; 1881 } 1882 1883 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1884 void *data, int offset, int len) 1885 { 1886 int r; 1887 unsigned long addr; 1888 1889 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1890 if (kvm_is_error_hva(addr)) 1891 return -EFAULT; 1892 r = __copy_from_user(data, (void __user *)addr + offset, len); 1893 if (r) 1894 return -EFAULT; 1895 return 0; 1896 } 1897 1898 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1899 int len) 1900 { 1901 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1902 1903 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1904 } 1905 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1906 1907 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1908 int offset, int len) 1909 { 1910 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1911 1912 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1913 } 1914 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1915 1916 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1917 { 1918 gfn_t gfn = gpa >> PAGE_SHIFT; 1919 int seg; 1920 int offset = offset_in_page(gpa); 1921 int ret; 1922 1923 while ((seg = next_segment(len, offset)) != 0) { 1924 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1925 if (ret < 0) 1926 return ret; 1927 offset = 0; 1928 len -= seg; 1929 data += seg; 1930 ++gfn; 1931 } 1932 return 0; 1933 } 1934 EXPORT_SYMBOL_GPL(kvm_read_guest); 1935 1936 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1937 { 1938 gfn_t gfn = gpa >> PAGE_SHIFT; 1939 int seg; 1940 int offset = offset_in_page(gpa); 1941 int ret; 1942 1943 while ((seg = next_segment(len, offset)) != 0) { 1944 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1945 if (ret < 0) 1946 return ret; 1947 offset = 0; 1948 len -= seg; 1949 data += seg; 1950 ++gfn; 1951 } 1952 return 0; 1953 } 1954 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1955 1956 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1957 void *data, int offset, unsigned long len) 1958 { 1959 int r; 1960 unsigned long addr; 1961 1962 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1963 if (kvm_is_error_hva(addr)) 1964 return -EFAULT; 1965 pagefault_disable(); 1966 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1967 pagefault_enable(); 1968 if (r) 1969 return -EFAULT; 1970 return 0; 1971 } 1972 1973 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1974 unsigned long len) 1975 { 1976 gfn_t gfn = gpa >> PAGE_SHIFT; 1977 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1978 int offset = offset_in_page(gpa); 1979 1980 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1983 1984 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1985 void *data, unsigned long len) 1986 { 1987 gfn_t gfn = gpa >> PAGE_SHIFT; 1988 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1989 int offset = offset_in_page(gpa); 1990 1991 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1992 } 1993 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1994 1995 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1996 const void *data, int offset, int len) 1997 { 1998 int r; 1999 unsigned long addr; 2000 2001 addr = gfn_to_hva_memslot(memslot, gfn); 2002 if (kvm_is_error_hva(addr)) 2003 return -EFAULT; 2004 r = __copy_to_user((void __user *)addr + offset, data, len); 2005 if (r) 2006 return -EFAULT; 2007 mark_page_dirty_in_slot(memslot, gfn); 2008 return 0; 2009 } 2010 2011 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2012 const void *data, int offset, int len) 2013 { 2014 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2015 2016 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2017 } 2018 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2019 2020 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2021 const void *data, int offset, int len) 2022 { 2023 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2024 2025 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2026 } 2027 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2028 2029 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2030 unsigned long len) 2031 { 2032 gfn_t gfn = gpa >> PAGE_SHIFT; 2033 int seg; 2034 int offset = offset_in_page(gpa); 2035 int ret; 2036 2037 while ((seg = next_segment(len, offset)) != 0) { 2038 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2039 if (ret < 0) 2040 return ret; 2041 offset = 0; 2042 len -= seg; 2043 data += seg; 2044 ++gfn; 2045 } 2046 return 0; 2047 } 2048 EXPORT_SYMBOL_GPL(kvm_write_guest); 2049 2050 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2051 unsigned long len) 2052 { 2053 gfn_t gfn = gpa >> PAGE_SHIFT; 2054 int seg; 2055 int offset = offset_in_page(gpa); 2056 int ret; 2057 2058 while ((seg = next_segment(len, offset)) != 0) { 2059 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2060 if (ret < 0) 2061 return ret; 2062 offset = 0; 2063 len -= seg; 2064 data += seg; 2065 ++gfn; 2066 } 2067 return 0; 2068 } 2069 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2070 2071 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2072 struct gfn_to_hva_cache *ghc, 2073 gpa_t gpa, unsigned long len) 2074 { 2075 int offset = offset_in_page(gpa); 2076 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2077 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2078 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2079 gfn_t nr_pages_avail; 2080 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2081 2082 ghc->gpa = gpa; 2083 ghc->generation = slots->generation; 2084 ghc->len = len; 2085 ghc->hva = KVM_HVA_ERR_BAD; 2086 2087 /* 2088 * If the requested region crosses two memslots, we still 2089 * verify that the entire region is valid here. 2090 */ 2091 while (!r && start_gfn <= end_gfn) { 2092 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2093 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2094 &nr_pages_avail); 2095 if (kvm_is_error_hva(ghc->hva)) 2096 r = -EFAULT; 2097 start_gfn += nr_pages_avail; 2098 } 2099 2100 /* Use the slow path for cross page reads and writes. */ 2101 if (!r && nr_pages_needed == 1) 2102 ghc->hva += offset; 2103 else 2104 ghc->memslot = NULL; 2105 2106 return r; 2107 } 2108 2109 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2110 gpa_t gpa, unsigned long len) 2111 { 2112 struct kvm_memslots *slots = kvm_memslots(kvm); 2113 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2114 } 2115 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2116 2117 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2118 void *data, unsigned int offset, 2119 unsigned long len) 2120 { 2121 struct kvm_memslots *slots = kvm_memslots(kvm); 2122 int r; 2123 gpa_t gpa = ghc->gpa + offset; 2124 2125 BUG_ON(len + offset > ghc->len); 2126 2127 if (slots->generation != ghc->generation) 2128 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2129 2130 if (unlikely(!ghc->memslot)) 2131 return kvm_write_guest(kvm, gpa, data, len); 2132 2133 if (kvm_is_error_hva(ghc->hva)) 2134 return -EFAULT; 2135 2136 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2137 if (r) 2138 return -EFAULT; 2139 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2140 2141 return 0; 2142 } 2143 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2144 2145 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2146 void *data, unsigned long len) 2147 { 2148 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2149 } 2150 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2151 2152 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2153 void *data, unsigned long len) 2154 { 2155 struct kvm_memslots *slots = kvm_memslots(kvm); 2156 int r; 2157 2158 BUG_ON(len > ghc->len); 2159 2160 if (slots->generation != ghc->generation) 2161 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2162 2163 if (unlikely(!ghc->memslot)) 2164 return kvm_read_guest(kvm, ghc->gpa, data, len); 2165 2166 if (kvm_is_error_hva(ghc->hva)) 2167 return -EFAULT; 2168 2169 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2170 if (r) 2171 return -EFAULT; 2172 2173 return 0; 2174 } 2175 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2176 2177 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2178 { 2179 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2180 2181 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2182 } 2183 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2184 2185 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2186 { 2187 gfn_t gfn = gpa >> PAGE_SHIFT; 2188 int seg; 2189 int offset = offset_in_page(gpa); 2190 int ret; 2191 2192 while ((seg = next_segment(len, offset)) != 0) { 2193 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2194 if (ret < 0) 2195 return ret; 2196 offset = 0; 2197 len -= seg; 2198 ++gfn; 2199 } 2200 return 0; 2201 } 2202 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2203 2204 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2205 gfn_t gfn) 2206 { 2207 if (memslot && memslot->dirty_bitmap) { 2208 unsigned long rel_gfn = gfn - memslot->base_gfn; 2209 2210 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2211 } 2212 } 2213 2214 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2215 { 2216 struct kvm_memory_slot *memslot; 2217 2218 memslot = gfn_to_memslot(kvm, gfn); 2219 mark_page_dirty_in_slot(memslot, gfn); 2220 } 2221 EXPORT_SYMBOL_GPL(mark_page_dirty); 2222 2223 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2224 { 2225 struct kvm_memory_slot *memslot; 2226 2227 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2228 mark_page_dirty_in_slot(memslot, gfn); 2229 } 2230 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2231 2232 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2233 { 2234 if (!vcpu->sigset_active) 2235 return; 2236 2237 /* 2238 * This does a lockless modification of ->real_blocked, which is fine 2239 * because, only current can change ->real_blocked and all readers of 2240 * ->real_blocked don't care as long ->real_blocked is always a subset 2241 * of ->blocked. 2242 */ 2243 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2244 } 2245 2246 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2247 { 2248 if (!vcpu->sigset_active) 2249 return; 2250 2251 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2252 sigemptyset(¤t->real_blocked); 2253 } 2254 2255 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2256 { 2257 unsigned int old, val, grow, grow_start; 2258 2259 old = val = vcpu->halt_poll_ns; 2260 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2261 grow = READ_ONCE(halt_poll_ns_grow); 2262 if (!grow) 2263 goto out; 2264 2265 val *= grow; 2266 if (val < grow_start) 2267 val = grow_start; 2268 2269 if (val > halt_poll_ns) 2270 val = halt_poll_ns; 2271 2272 vcpu->halt_poll_ns = val; 2273 out: 2274 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2275 } 2276 2277 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2278 { 2279 unsigned int old, val, shrink; 2280 2281 old = val = vcpu->halt_poll_ns; 2282 shrink = READ_ONCE(halt_poll_ns_shrink); 2283 if (shrink == 0) 2284 val = 0; 2285 else 2286 val /= shrink; 2287 2288 vcpu->halt_poll_ns = val; 2289 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2290 } 2291 2292 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2293 { 2294 int ret = -EINTR; 2295 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2296 2297 if (kvm_arch_vcpu_runnable(vcpu)) { 2298 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2299 goto out; 2300 } 2301 if (kvm_cpu_has_pending_timer(vcpu)) 2302 goto out; 2303 if (signal_pending(current)) 2304 goto out; 2305 2306 ret = 0; 2307 out: 2308 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2309 return ret; 2310 } 2311 2312 /* 2313 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2314 */ 2315 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2316 { 2317 ktime_t start, cur; 2318 DECLARE_SWAITQUEUE(wait); 2319 bool waited = false; 2320 u64 block_ns; 2321 2322 start = cur = ktime_get(); 2323 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2324 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2325 2326 ++vcpu->stat.halt_attempted_poll; 2327 do { 2328 /* 2329 * This sets KVM_REQ_UNHALT if an interrupt 2330 * arrives. 2331 */ 2332 if (kvm_vcpu_check_block(vcpu) < 0) { 2333 ++vcpu->stat.halt_successful_poll; 2334 if (!vcpu_valid_wakeup(vcpu)) 2335 ++vcpu->stat.halt_poll_invalid; 2336 goto out; 2337 } 2338 cur = ktime_get(); 2339 } while (single_task_running() && ktime_before(cur, stop)); 2340 } 2341 2342 kvm_arch_vcpu_blocking(vcpu); 2343 2344 for (;;) { 2345 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2346 2347 if (kvm_vcpu_check_block(vcpu) < 0) 2348 break; 2349 2350 waited = true; 2351 schedule(); 2352 } 2353 2354 finish_swait(&vcpu->wq, &wait); 2355 cur = ktime_get(); 2356 2357 kvm_arch_vcpu_unblocking(vcpu); 2358 out: 2359 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2360 2361 if (!vcpu_valid_wakeup(vcpu)) 2362 shrink_halt_poll_ns(vcpu); 2363 else if (halt_poll_ns) { 2364 if (block_ns <= vcpu->halt_poll_ns) 2365 ; 2366 /* we had a long block, shrink polling */ 2367 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2368 shrink_halt_poll_ns(vcpu); 2369 /* we had a short halt and our poll time is too small */ 2370 else if (vcpu->halt_poll_ns < halt_poll_ns && 2371 block_ns < halt_poll_ns) 2372 grow_halt_poll_ns(vcpu); 2373 } else 2374 vcpu->halt_poll_ns = 0; 2375 2376 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2377 kvm_arch_vcpu_block_finish(vcpu); 2378 } 2379 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2380 2381 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2382 { 2383 struct swait_queue_head *wqp; 2384 2385 wqp = kvm_arch_vcpu_wq(vcpu); 2386 if (swq_has_sleeper(wqp)) { 2387 swake_up_one(wqp); 2388 ++vcpu->stat.halt_wakeup; 2389 return true; 2390 } 2391 2392 return false; 2393 } 2394 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2395 2396 #ifndef CONFIG_S390 2397 /* 2398 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2399 */ 2400 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2401 { 2402 int me; 2403 int cpu = vcpu->cpu; 2404 2405 if (kvm_vcpu_wake_up(vcpu)) 2406 return; 2407 2408 me = get_cpu(); 2409 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2410 if (kvm_arch_vcpu_should_kick(vcpu)) 2411 smp_send_reschedule(cpu); 2412 put_cpu(); 2413 } 2414 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2415 #endif /* !CONFIG_S390 */ 2416 2417 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2418 { 2419 struct pid *pid; 2420 struct task_struct *task = NULL; 2421 int ret = 0; 2422 2423 rcu_read_lock(); 2424 pid = rcu_dereference(target->pid); 2425 if (pid) 2426 task = get_pid_task(pid, PIDTYPE_PID); 2427 rcu_read_unlock(); 2428 if (!task) 2429 return ret; 2430 ret = yield_to(task, 1); 2431 put_task_struct(task); 2432 2433 return ret; 2434 } 2435 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2436 2437 /* 2438 * Helper that checks whether a VCPU is eligible for directed yield. 2439 * Most eligible candidate to yield is decided by following heuristics: 2440 * 2441 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2442 * (preempted lock holder), indicated by @in_spin_loop. 2443 * Set at the beiginning and cleared at the end of interception/PLE handler. 2444 * 2445 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2446 * chance last time (mostly it has become eligible now since we have probably 2447 * yielded to lockholder in last iteration. This is done by toggling 2448 * @dy_eligible each time a VCPU checked for eligibility.) 2449 * 2450 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2451 * to preempted lock-holder could result in wrong VCPU selection and CPU 2452 * burning. Giving priority for a potential lock-holder increases lock 2453 * progress. 2454 * 2455 * Since algorithm is based on heuristics, accessing another VCPU data without 2456 * locking does not harm. It may result in trying to yield to same VCPU, fail 2457 * and continue with next VCPU and so on. 2458 */ 2459 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2460 { 2461 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2462 bool eligible; 2463 2464 eligible = !vcpu->spin_loop.in_spin_loop || 2465 vcpu->spin_loop.dy_eligible; 2466 2467 if (vcpu->spin_loop.in_spin_loop) 2468 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2469 2470 return eligible; 2471 #else 2472 return true; 2473 #endif 2474 } 2475 2476 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2477 { 2478 struct kvm *kvm = me->kvm; 2479 struct kvm_vcpu *vcpu; 2480 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2481 int yielded = 0; 2482 int try = 3; 2483 int pass; 2484 int i; 2485 2486 kvm_vcpu_set_in_spin_loop(me, true); 2487 /* 2488 * We boost the priority of a VCPU that is runnable but not 2489 * currently running, because it got preempted by something 2490 * else and called schedule in __vcpu_run. Hopefully that 2491 * VCPU is holding the lock that we need and will release it. 2492 * We approximate round-robin by starting at the last boosted VCPU. 2493 */ 2494 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2495 kvm_for_each_vcpu(i, vcpu, kvm) { 2496 if (!pass && i <= last_boosted_vcpu) { 2497 i = last_boosted_vcpu; 2498 continue; 2499 } else if (pass && i > last_boosted_vcpu) 2500 break; 2501 if (!READ_ONCE(vcpu->preempted)) 2502 continue; 2503 if (vcpu == me) 2504 continue; 2505 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2506 continue; 2507 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2508 continue; 2509 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2510 continue; 2511 2512 yielded = kvm_vcpu_yield_to(vcpu); 2513 if (yielded > 0) { 2514 kvm->last_boosted_vcpu = i; 2515 break; 2516 } else if (yielded < 0) { 2517 try--; 2518 if (!try) 2519 break; 2520 } 2521 } 2522 } 2523 kvm_vcpu_set_in_spin_loop(me, false); 2524 2525 /* Ensure vcpu is not eligible during next spinloop */ 2526 kvm_vcpu_set_dy_eligible(me, false); 2527 } 2528 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2529 2530 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2531 { 2532 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2533 struct page *page; 2534 2535 if (vmf->pgoff == 0) 2536 page = virt_to_page(vcpu->run); 2537 #ifdef CONFIG_X86 2538 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2539 page = virt_to_page(vcpu->arch.pio_data); 2540 #endif 2541 #ifdef CONFIG_KVM_MMIO 2542 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2543 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2544 #endif 2545 else 2546 return kvm_arch_vcpu_fault(vcpu, vmf); 2547 get_page(page); 2548 vmf->page = page; 2549 return 0; 2550 } 2551 2552 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2553 .fault = kvm_vcpu_fault, 2554 }; 2555 2556 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2557 { 2558 vma->vm_ops = &kvm_vcpu_vm_ops; 2559 return 0; 2560 } 2561 2562 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2563 { 2564 struct kvm_vcpu *vcpu = filp->private_data; 2565 2566 debugfs_remove_recursive(vcpu->debugfs_dentry); 2567 kvm_put_kvm(vcpu->kvm); 2568 return 0; 2569 } 2570 2571 static struct file_operations kvm_vcpu_fops = { 2572 .release = kvm_vcpu_release, 2573 .unlocked_ioctl = kvm_vcpu_ioctl, 2574 .mmap = kvm_vcpu_mmap, 2575 .llseek = noop_llseek, 2576 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2577 }; 2578 2579 /* 2580 * Allocates an inode for the vcpu. 2581 */ 2582 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2583 { 2584 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2585 2586 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2587 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2588 } 2589 2590 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2591 { 2592 char dir_name[ITOA_MAX_LEN * 2]; 2593 int ret; 2594 2595 if (!kvm_arch_has_vcpu_debugfs()) 2596 return 0; 2597 2598 if (!debugfs_initialized()) 2599 return 0; 2600 2601 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2602 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2603 vcpu->kvm->debugfs_dentry); 2604 if (!vcpu->debugfs_dentry) 2605 return -ENOMEM; 2606 2607 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2608 if (ret < 0) { 2609 debugfs_remove_recursive(vcpu->debugfs_dentry); 2610 return ret; 2611 } 2612 2613 return 0; 2614 } 2615 2616 /* 2617 * Creates some virtual cpus. Good luck creating more than one. 2618 */ 2619 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2620 { 2621 int r; 2622 struct kvm_vcpu *vcpu; 2623 2624 if (id >= KVM_MAX_VCPU_ID) 2625 return -EINVAL; 2626 2627 mutex_lock(&kvm->lock); 2628 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2629 mutex_unlock(&kvm->lock); 2630 return -EINVAL; 2631 } 2632 2633 kvm->created_vcpus++; 2634 mutex_unlock(&kvm->lock); 2635 2636 vcpu = kvm_arch_vcpu_create(kvm, id); 2637 if (IS_ERR(vcpu)) { 2638 r = PTR_ERR(vcpu); 2639 goto vcpu_decrement; 2640 } 2641 2642 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2643 2644 r = kvm_arch_vcpu_setup(vcpu); 2645 if (r) 2646 goto vcpu_destroy; 2647 2648 r = kvm_create_vcpu_debugfs(vcpu); 2649 if (r) 2650 goto vcpu_destroy; 2651 2652 mutex_lock(&kvm->lock); 2653 if (kvm_get_vcpu_by_id(kvm, id)) { 2654 r = -EEXIST; 2655 goto unlock_vcpu_destroy; 2656 } 2657 2658 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2659 2660 /* Now it's all set up, let userspace reach it */ 2661 kvm_get_kvm(kvm); 2662 r = create_vcpu_fd(vcpu); 2663 if (r < 0) { 2664 kvm_put_kvm(kvm); 2665 goto unlock_vcpu_destroy; 2666 } 2667 2668 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2669 2670 /* 2671 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2672 * before kvm->online_vcpu's incremented value. 2673 */ 2674 smp_wmb(); 2675 atomic_inc(&kvm->online_vcpus); 2676 2677 mutex_unlock(&kvm->lock); 2678 kvm_arch_vcpu_postcreate(vcpu); 2679 return r; 2680 2681 unlock_vcpu_destroy: 2682 mutex_unlock(&kvm->lock); 2683 debugfs_remove_recursive(vcpu->debugfs_dentry); 2684 vcpu_destroy: 2685 kvm_arch_vcpu_destroy(vcpu); 2686 vcpu_decrement: 2687 mutex_lock(&kvm->lock); 2688 kvm->created_vcpus--; 2689 mutex_unlock(&kvm->lock); 2690 return r; 2691 } 2692 2693 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2694 { 2695 if (sigset) { 2696 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2697 vcpu->sigset_active = 1; 2698 vcpu->sigset = *sigset; 2699 } else 2700 vcpu->sigset_active = 0; 2701 return 0; 2702 } 2703 2704 static long kvm_vcpu_ioctl(struct file *filp, 2705 unsigned int ioctl, unsigned long arg) 2706 { 2707 struct kvm_vcpu *vcpu = filp->private_data; 2708 void __user *argp = (void __user *)arg; 2709 int r; 2710 struct kvm_fpu *fpu = NULL; 2711 struct kvm_sregs *kvm_sregs = NULL; 2712 2713 if (vcpu->kvm->mm != current->mm) 2714 return -EIO; 2715 2716 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2717 return -EINVAL; 2718 2719 /* 2720 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2721 * execution; mutex_lock() would break them. 2722 */ 2723 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2724 if (r != -ENOIOCTLCMD) 2725 return r; 2726 2727 if (mutex_lock_killable(&vcpu->mutex)) 2728 return -EINTR; 2729 switch (ioctl) { 2730 case KVM_RUN: { 2731 struct pid *oldpid; 2732 r = -EINVAL; 2733 if (arg) 2734 goto out; 2735 oldpid = rcu_access_pointer(vcpu->pid); 2736 if (unlikely(oldpid != task_pid(current))) { 2737 /* The thread running this VCPU changed. */ 2738 struct pid *newpid; 2739 2740 r = kvm_arch_vcpu_run_pid_change(vcpu); 2741 if (r) 2742 break; 2743 2744 newpid = get_task_pid(current, PIDTYPE_PID); 2745 rcu_assign_pointer(vcpu->pid, newpid); 2746 if (oldpid) 2747 synchronize_rcu(); 2748 put_pid(oldpid); 2749 } 2750 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2751 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2752 break; 2753 } 2754 case KVM_GET_REGS: { 2755 struct kvm_regs *kvm_regs; 2756 2757 r = -ENOMEM; 2758 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2759 if (!kvm_regs) 2760 goto out; 2761 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2762 if (r) 2763 goto out_free1; 2764 r = -EFAULT; 2765 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2766 goto out_free1; 2767 r = 0; 2768 out_free1: 2769 kfree(kvm_regs); 2770 break; 2771 } 2772 case KVM_SET_REGS: { 2773 struct kvm_regs *kvm_regs; 2774 2775 r = -ENOMEM; 2776 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2777 if (IS_ERR(kvm_regs)) { 2778 r = PTR_ERR(kvm_regs); 2779 goto out; 2780 } 2781 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2782 kfree(kvm_regs); 2783 break; 2784 } 2785 case KVM_GET_SREGS: { 2786 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2787 GFP_KERNEL_ACCOUNT); 2788 r = -ENOMEM; 2789 if (!kvm_sregs) 2790 goto out; 2791 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2792 if (r) 2793 goto out; 2794 r = -EFAULT; 2795 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2796 goto out; 2797 r = 0; 2798 break; 2799 } 2800 case KVM_SET_SREGS: { 2801 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2802 if (IS_ERR(kvm_sregs)) { 2803 r = PTR_ERR(kvm_sregs); 2804 kvm_sregs = NULL; 2805 goto out; 2806 } 2807 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2808 break; 2809 } 2810 case KVM_GET_MP_STATE: { 2811 struct kvm_mp_state mp_state; 2812 2813 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2814 if (r) 2815 goto out; 2816 r = -EFAULT; 2817 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2818 goto out; 2819 r = 0; 2820 break; 2821 } 2822 case KVM_SET_MP_STATE: { 2823 struct kvm_mp_state mp_state; 2824 2825 r = -EFAULT; 2826 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2827 goto out; 2828 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2829 break; 2830 } 2831 case KVM_TRANSLATE: { 2832 struct kvm_translation tr; 2833 2834 r = -EFAULT; 2835 if (copy_from_user(&tr, argp, sizeof(tr))) 2836 goto out; 2837 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2838 if (r) 2839 goto out; 2840 r = -EFAULT; 2841 if (copy_to_user(argp, &tr, sizeof(tr))) 2842 goto out; 2843 r = 0; 2844 break; 2845 } 2846 case KVM_SET_GUEST_DEBUG: { 2847 struct kvm_guest_debug dbg; 2848 2849 r = -EFAULT; 2850 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2851 goto out; 2852 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2853 break; 2854 } 2855 case KVM_SET_SIGNAL_MASK: { 2856 struct kvm_signal_mask __user *sigmask_arg = argp; 2857 struct kvm_signal_mask kvm_sigmask; 2858 sigset_t sigset, *p; 2859 2860 p = NULL; 2861 if (argp) { 2862 r = -EFAULT; 2863 if (copy_from_user(&kvm_sigmask, argp, 2864 sizeof(kvm_sigmask))) 2865 goto out; 2866 r = -EINVAL; 2867 if (kvm_sigmask.len != sizeof(sigset)) 2868 goto out; 2869 r = -EFAULT; 2870 if (copy_from_user(&sigset, sigmask_arg->sigset, 2871 sizeof(sigset))) 2872 goto out; 2873 p = &sigset; 2874 } 2875 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2876 break; 2877 } 2878 case KVM_GET_FPU: { 2879 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2880 r = -ENOMEM; 2881 if (!fpu) 2882 goto out; 2883 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2884 if (r) 2885 goto out; 2886 r = -EFAULT; 2887 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2888 goto out; 2889 r = 0; 2890 break; 2891 } 2892 case KVM_SET_FPU: { 2893 fpu = memdup_user(argp, sizeof(*fpu)); 2894 if (IS_ERR(fpu)) { 2895 r = PTR_ERR(fpu); 2896 fpu = NULL; 2897 goto out; 2898 } 2899 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2900 break; 2901 } 2902 default: 2903 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2904 } 2905 out: 2906 mutex_unlock(&vcpu->mutex); 2907 kfree(fpu); 2908 kfree(kvm_sregs); 2909 return r; 2910 } 2911 2912 #ifdef CONFIG_KVM_COMPAT 2913 static long kvm_vcpu_compat_ioctl(struct file *filp, 2914 unsigned int ioctl, unsigned long arg) 2915 { 2916 struct kvm_vcpu *vcpu = filp->private_data; 2917 void __user *argp = compat_ptr(arg); 2918 int r; 2919 2920 if (vcpu->kvm->mm != current->mm) 2921 return -EIO; 2922 2923 switch (ioctl) { 2924 case KVM_SET_SIGNAL_MASK: { 2925 struct kvm_signal_mask __user *sigmask_arg = argp; 2926 struct kvm_signal_mask kvm_sigmask; 2927 sigset_t sigset; 2928 2929 if (argp) { 2930 r = -EFAULT; 2931 if (copy_from_user(&kvm_sigmask, argp, 2932 sizeof(kvm_sigmask))) 2933 goto out; 2934 r = -EINVAL; 2935 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2936 goto out; 2937 r = -EFAULT; 2938 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2939 goto out; 2940 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2941 } else 2942 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2943 break; 2944 } 2945 default: 2946 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2947 } 2948 2949 out: 2950 return r; 2951 } 2952 #endif 2953 2954 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 2955 { 2956 struct kvm_device *dev = filp->private_data; 2957 2958 if (dev->ops->mmap) 2959 return dev->ops->mmap(dev, vma); 2960 2961 return -ENODEV; 2962 } 2963 2964 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2965 int (*accessor)(struct kvm_device *dev, 2966 struct kvm_device_attr *attr), 2967 unsigned long arg) 2968 { 2969 struct kvm_device_attr attr; 2970 2971 if (!accessor) 2972 return -EPERM; 2973 2974 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2975 return -EFAULT; 2976 2977 return accessor(dev, &attr); 2978 } 2979 2980 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2981 unsigned long arg) 2982 { 2983 struct kvm_device *dev = filp->private_data; 2984 2985 if (dev->kvm->mm != current->mm) 2986 return -EIO; 2987 2988 switch (ioctl) { 2989 case KVM_SET_DEVICE_ATTR: 2990 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2991 case KVM_GET_DEVICE_ATTR: 2992 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2993 case KVM_HAS_DEVICE_ATTR: 2994 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2995 default: 2996 if (dev->ops->ioctl) 2997 return dev->ops->ioctl(dev, ioctl, arg); 2998 2999 return -ENOTTY; 3000 } 3001 } 3002 3003 static int kvm_device_release(struct inode *inode, struct file *filp) 3004 { 3005 struct kvm_device *dev = filp->private_data; 3006 struct kvm *kvm = dev->kvm; 3007 3008 if (dev->ops->release) { 3009 mutex_lock(&kvm->lock); 3010 list_del(&dev->vm_node); 3011 dev->ops->release(dev); 3012 mutex_unlock(&kvm->lock); 3013 } 3014 3015 kvm_put_kvm(kvm); 3016 return 0; 3017 } 3018 3019 static const struct file_operations kvm_device_fops = { 3020 .unlocked_ioctl = kvm_device_ioctl, 3021 .release = kvm_device_release, 3022 KVM_COMPAT(kvm_device_ioctl), 3023 .mmap = kvm_device_mmap, 3024 }; 3025 3026 struct kvm_device *kvm_device_from_filp(struct file *filp) 3027 { 3028 if (filp->f_op != &kvm_device_fops) 3029 return NULL; 3030 3031 return filp->private_data; 3032 } 3033 3034 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3035 #ifdef CONFIG_KVM_MPIC 3036 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3037 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3038 #endif 3039 }; 3040 3041 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 3042 { 3043 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3044 return -ENOSPC; 3045 3046 if (kvm_device_ops_table[type] != NULL) 3047 return -EEXIST; 3048 3049 kvm_device_ops_table[type] = ops; 3050 return 0; 3051 } 3052 3053 void kvm_unregister_device_ops(u32 type) 3054 { 3055 if (kvm_device_ops_table[type] != NULL) 3056 kvm_device_ops_table[type] = NULL; 3057 } 3058 3059 static int kvm_ioctl_create_device(struct kvm *kvm, 3060 struct kvm_create_device *cd) 3061 { 3062 struct kvm_device_ops *ops = NULL; 3063 struct kvm_device *dev; 3064 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3065 int type; 3066 int ret; 3067 3068 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3069 return -ENODEV; 3070 3071 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3072 ops = kvm_device_ops_table[type]; 3073 if (ops == NULL) 3074 return -ENODEV; 3075 3076 if (test) 3077 return 0; 3078 3079 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3080 if (!dev) 3081 return -ENOMEM; 3082 3083 dev->ops = ops; 3084 dev->kvm = kvm; 3085 3086 mutex_lock(&kvm->lock); 3087 ret = ops->create(dev, type); 3088 if (ret < 0) { 3089 mutex_unlock(&kvm->lock); 3090 kfree(dev); 3091 return ret; 3092 } 3093 list_add(&dev->vm_node, &kvm->devices); 3094 mutex_unlock(&kvm->lock); 3095 3096 if (ops->init) 3097 ops->init(dev); 3098 3099 kvm_get_kvm(kvm); 3100 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3101 if (ret < 0) { 3102 kvm_put_kvm(kvm); 3103 mutex_lock(&kvm->lock); 3104 list_del(&dev->vm_node); 3105 mutex_unlock(&kvm->lock); 3106 ops->destroy(dev); 3107 return ret; 3108 } 3109 3110 cd->fd = ret; 3111 return 0; 3112 } 3113 3114 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3115 { 3116 switch (arg) { 3117 case KVM_CAP_USER_MEMORY: 3118 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3119 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3120 case KVM_CAP_INTERNAL_ERROR_DATA: 3121 #ifdef CONFIG_HAVE_KVM_MSI 3122 case KVM_CAP_SIGNAL_MSI: 3123 #endif 3124 #ifdef CONFIG_HAVE_KVM_IRQFD 3125 case KVM_CAP_IRQFD: 3126 case KVM_CAP_IRQFD_RESAMPLE: 3127 #endif 3128 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3129 case KVM_CAP_CHECK_EXTENSION_VM: 3130 case KVM_CAP_ENABLE_CAP_VM: 3131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3132 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3133 #endif 3134 return 1; 3135 #ifdef CONFIG_KVM_MMIO 3136 case KVM_CAP_COALESCED_MMIO: 3137 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3138 case KVM_CAP_COALESCED_PIO: 3139 return 1; 3140 #endif 3141 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3142 case KVM_CAP_IRQ_ROUTING: 3143 return KVM_MAX_IRQ_ROUTES; 3144 #endif 3145 #if KVM_ADDRESS_SPACE_NUM > 1 3146 case KVM_CAP_MULTI_ADDRESS_SPACE: 3147 return KVM_ADDRESS_SPACE_NUM; 3148 #endif 3149 case KVM_CAP_MAX_VCPU_ID: 3150 return KVM_MAX_VCPU_ID; 3151 case KVM_CAP_NR_MEMSLOTS: 3152 return KVM_USER_MEM_SLOTS; 3153 default: 3154 break; 3155 } 3156 return kvm_vm_ioctl_check_extension(kvm, arg); 3157 } 3158 3159 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3160 struct kvm_enable_cap *cap) 3161 { 3162 return -EINVAL; 3163 } 3164 3165 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3166 struct kvm_enable_cap *cap) 3167 { 3168 switch (cap->cap) { 3169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3170 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3171 if (cap->flags || (cap->args[0] & ~1)) 3172 return -EINVAL; 3173 kvm->manual_dirty_log_protect = cap->args[0]; 3174 return 0; 3175 #endif 3176 default: 3177 return kvm_vm_ioctl_enable_cap(kvm, cap); 3178 } 3179 } 3180 3181 static long kvm_vm_ioctl(struct file *filp, 3182 unsigned int ioctl, unsigned long arg) 3183 { 3184 struct kvm *kvm = filp->private_data; 3185 void __user *argp = (void __user *)arg; 3186 int r; 3187 3188 if (kvm->mm != current->mm) 3189 return -EIO; 3190 switch (ioctl) { 3191 case KVM_CREATE_VCPU: 3192 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3193 break; 3194 case KVM_ENABLE_CAP: { 3195 struct kvm_enable_cap cap; 3196 3197 r = -EFAULT; 3198 if (copy_from_user(&cap, argp, sizeof(cap))) 3199 goto out; 3200 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3201 break; 3202 } 3203 case KVM_SET_USER_MEMORY_REGION: { 3204 struct kvm_userspace_memory_region kvm_userspace_mem; 3205 3206 r = -EFAULT; 3207 if (copy_from_user(&kvm_userspace_mem, argp, 3208 sizeof(kvm_userspace_mem))) 3209 goto out; 3210 3211 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3212 break; 3213 } 3214 case KVM_GET_DIRTY_LOG: { 3215 struct kvm_dirty_log log; 3216 3217 r = -EFAULT; 3218 if (copy_from_user(&log, argp, sizeof(log))) 3219 goto out; 3220 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3221 break; 3222 } 3223 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3224 case KVM_CLEAR_DIRTY_LOG: { 3225 struct kvm_clear_dirty_log log; 3226 3227 r = -EFAULT; 3228 if (copy_from_user(&log, argp, sizeof(log))) 3229 goto out; 3230 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3231 break; 3232 } 3233 #endif 3234 #ifdef CONFIG_KVM_MMIO 3235 case KVM_REGISTER_COALESCED_MMIO: { 3236 struct kvm_coalesced_mmio_zone zone; 3237 3238 r = -EFAULT; 3239 if (copy_from_user(&zone, argp, sizeof(zone))) 3240 goto out; 3241 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3242 break; 3243 } 3244 case KVM_UNREGISTER_COALESCED_MMIO: { 3245 struct kvm_coalesced_mmio_zone zone; 3246 3247 r = -EFAULT; 3248 if (copy_from_user(&zone, argp, sizeof(zone))) 3249 goto out; 3250 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3251 break; 3252 } 3253 #endif 3254 case KVM_IRQFD: { 3255 struct kvm_irqfd data; 3256 3257 r = -EFAULT; 3258 if (copy_from_user(&data, argp, sizeof(data))) 3259 goto out; 3260 r = kvm_irqfd(kvm, &data); 3261 break; 3262 } 3263 case KVM_IOEVENTFD: { 3264 struct kvm_ioeventfd data; 3265 3266 r = -EFAULT; 3267 if (copy_from_user(&data, argp, sizeof(data))) 3268 goto out; 3269 r = kvm_ioeventfd(kvm, &data); 3270 break; 3271 } 3272 #ifdef CONFIG_HAVE_KVM_MSI 3273 case KVM_SIGNAL_MSI: { 3274 struct kvm_msi msi; 3275 3276 r = -EFAULT; 3277 if (copy_from_user(&msi, argp, sizeof(msi))) 3278 goto out; 3279 r = kvm_send_userspace_msi(kvm, &msi); 3280 break; 3281 } 3282 #endif 3283 #ifdef __KVM_HAVE_IRQ_LINE 3284 case KVM_IRQ_LINE_STATUS: 3285 case KVM_IRQ_LINE: { 3286 struct kvm_irq_level irq_event; 3287 3288 r = -EFAULT; 3289 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3290 goto out; 3291 3292 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3293 ioctl == KVM_IRQ_LINE_STATUS); 3294 if (r) 3295 goto out; 3296 3297 r = -EFAULT; 3298 if (ioctl == KVM_IRQ_LINE_STATUS) { 3299 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3300 goto out; 3301 } 3302 3303 r = 0; 3304 break; 3305 } 3306 #endif 3307 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3308 case KVM_SET_GSI_ROUTING: { 3309 struct kvm_irq_routing routing; 3310 struct kvm_irq_routing __user *urouting; 3311 struct kvm_irq_routing_entry *entries = NULL; 3312 3313 r = -EFAULT; 3314 if (copy_from_user(&routing, argp, sizeof(routing))) 3315 goto out; 3316 r = -EINVAL; 3317 if (!kvm_arch_can_set_irq_routing(kvm)) 3318 goto out; 3319 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3320 goto out; 3321 if (routing.flags) 3322 goto out; 3323 if (routing.nr) { 3324 r = -ENOMEM; 3325 entries = vmalloc(array_size(sizeof(*entries), 3326 routing.nr)); 3327 if (!entries) 3328 goto out; 3329 r = -EFAULT; 3330 urouting = argp; 3331 if (copy_from_user(entries, urouting->entries, 3332 routing.nr * sizeof(*entries))) 3333 goto out_free_irq_routing; 3334 } 3335 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3336 routing.flags); 3337 out_free_irq_routing: 3338 vfree(entries); 3339 break; 3340 } 3341 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3342 case KVM_CREATE_DEVICE: { 3343 struct kvm_create_device cd; 3344 3345 r = -EFAULT; 3346 if (copy_from_user(&cd, argp, sizeof(cd))) 3347 goto out; 3348 3349 r = kvm_ioctl_create_device(kvm, &cd); 3350 if (r) 3351 goto out; 3352 3353 r = -EFAULT; 3354 if (copy_to_user(argp, &cd, sizeof(cd))) 3355 goto out; 3356 3357 r = 0; 3358 break; 3359 } 3360 case KVM_CHECK_EXTENSION: 3361 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3362 break; 3363 default: 3364 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3365 } 3366 out: 3367 return r; 3368 } 3369 3370 #ifdef CONFIG_KVM_COMPAT 3371 struct compat_kvm_dirty_log { 3372 __u32 slot; 3373 __u32 padding1; 3374 union { 3375 compat_uptr_t dirty_bitmap; /* one bit per page */ 3376 __u64 padding2; 3377 }; 3378 }; 3379 3380 static long kvm_vm_compat_ioctl(struct file *filp, 3381 unsigned int ioctl, unsigned long arg) 3382 { 3383 struct kvm *kvm = filp->private_data; 3384 int r; 3385 3386 if (kvm->mm != current->mm) 3387 return -EIO; 3388 switch (ioctl) { 3389 case KVM_GET_DIRTY_LOG: { 3390 struct compat_kvm_dirty_log compat_log; 3391 struct kvm_dirty_log log; 3392 3393 if (copy_from_user(&compat_log, (void __user *)arg, 3394 sizeof(compat_log))) 3395 return -EFAULT; 3396 log.slot = compat_log.slot; 3397 log.padding1 = compat_log.padding1; 3398 log.padding2 = compat_log.padding2; 3399 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3400 3401 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3402 break; 3403 } 3404 default: 3405 r = kvm_vm_ioctl(filp, ioctl, arg); 3406 } 3407 return r; 3408 } 3409 #endif 3410 3411 static struct file_operations kvm_vm_fops = { 3412 .release = kvm_vm_release, 3413 .unlocked_ioctl = kvm_vm_ioctl, 3414 .llseek = noop_llseek, 3415 KVM_COMPAT(kvm_vm_compat_ioctl), 3416 }; 3417 3418 static int kvm_dev_ioctl_create_vm(unsigned long type) 3419 { 3420 int r; 3421 struct kvm *kvm; 3422 struct file *file; 3423 3424 kvm = kvm_create_vm(type); 3425 if (IS_ERR(kvm)) 3426 return PTR_ERR(kvm); 3427 #ifdef CONFIG_KVM_MMIO 3428 r = kvm_coalesced_mmio_init(kvm); 3429 if (r < 0) 3430 goto put_kvm; 3431 #endif 3432 r = get_unused_fd_flags(O_CLOEXEC); 3433 if (r < 0) 3434 goto put_kvm; 3435 3436 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3437 if (IS_ERR(file)) { 3438 put_unused_fd(r); 3439 r = PTR_ERR(file); 3440 goto put_kvm; 3441 } 3442 3443 /* 3444 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3445 * already set, with ->release() being kvm_vm_release(). In error 3446 * cases it will be called by the final fput(file) and will take 3447 * care of doing kvm_put_kvm(kvm). 3448 */ 3449 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3450 put_unused_fd(r); 3451 fput(file); 3452 return -ENOMEM; 3453 } 3454 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3455 3456 fd_install(r, file); 3457 return r; 3458 3459 put_kvm: 3460 kvm_put_kvm(kvm); 3461 return r; 3462 } 3463 3464 static long kvm_dev_ioctl(struct file *filp, 3465 unsigned int ioctl, unsigned long arg) 3466 { 3467 long r = -EINVAL; 3468 3469 switch (ioctl) { 3470 case KVM_GET_API_VERSION: 3471 if (arg) 3472 goto out; 3473 r = KVM_API_VERSION; 3474 break; 3475 case KVM_CREATE_VM: 3476 r = kvm_dev_ioctl_create_vm(arg); 3477 break; 3478 case KVM_CHECK_EXTENSION: 3479 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3480 break; 3481 case KVM_GET_VCPU_MMAP_SIZE: 3482 if (arg) 3483 goto out; 3484 r = PAGE_SIZE; /* struct kvm_run */ 3485 #ifdef CONFIG_X86 3486 r += PAGE_SIZE; /* pio data page */ 3487 #endif 3488 #ifdef CONFIG_KVM_MMIO 3489 r += PAGE_SIZE; /* coalesced mmio ring page */ 3490 #endif 3491 break; 3492 case KVM_TRACE_ENABLE: 3493 case KVM_TRACE_PAUSE: 3494 case KVM_TRACE_DISABLE: 3495 r = -EOPNOTSUPP; 3496 break; 3497 default: 3498 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3499 } 3500 out: 3501 return r; 3502 } 3503 3504 static struct file_operations kvm_chardev_ops = { 3505 .unlocked_ioctl = kvm_dev_ioctl, 3506 .llseek = noop_llseek, 3507 KVM_COMPAT(kvm_dev_ioctl), 3508 }; 3509 3510 static struct miscdevice kvm_dev = { 3511 KVM_MINOR, 3512 "kvm", 3513 &kvm_chardev_ops, 3514 }; 3515 3516 static void hardware_enable_nolock(void *junk) 3517 { 3518 int cpu = raw_smp_processor_id(); 3519 int r; 3520 3521 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3522 return; 3523 3524 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3525 3526 r = kvm_arch_hardware_enable(); 3527 3528 if (r) { 3529 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3530 atomic_inc(&hardware_enable_failed); 3531 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3532 } 3533 } 3534 3535 static int kvm_starting_cpu(unsigned int cpu) 3536 { 3537 raw_spin_lock(&kvm_count_lock); 3538 if (kvm_usage_count) 3539 hardware_enable_nolock(NULL); 3540 raw_spin_unlock(&kvm_count_lock); 3541 return 0; 3542 } 3543 3544 static void hardware_disable_nolock(void *junk) 3545 { 3546 int cpu = raw_smp_processor_id(); 3547 3548 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3549 return; 3550 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3551 kvm_arch_hardware_disable(); 3552 } 3553 3554 static int kvm_dying_cpu(unsigned int cpu) 3555 { 3556 raw_spin_lock(&kvm_count_lock); 3557 if (kvm_usage_count) 3558 hardware_disable_nolock(NULL); 3559 raw_spin_unlock(&kvm_count_lock); 3560 return 0; 3561 } 3562 3563 static void hardware_disable_all_nolock(void) 3564 { 3565 BUG_ON(!kvm_usage_count); 3566 3567 kvm_usage_count--; 3568 if (!kvm_usage_count) 3569 on_each_cpu(hardware_disable_nolock, NULL, 1); 3570 } 3571 3572 static void hardware_disable_all(void) 3573 { 3574 raw_spin_lock(&kvm_count_lock); 3575 hardware_disable_all_nolock(); 3576 raw_spin_unlock(&kvm_count_lock); 3577 } 3578 3579 static int hardware_enable_all(void) 3580 { 3581 int r = 0; 3582 3583 raw_spin_lock(&kvm_count_lock); 3584 3585 kvm_usage_count++; 3586 if (kvm_usage_count == 1) { 3587 atomic_set(&hardware_enable_failed, 0); 3588 on_each_cpu(hardware_enable_nolock, NULL, 1); 3589 3590 if (atomic_read(&hardware_enable_failed)) { 3591 hardware_disable_all_nolock(); 3592 r = -EBUSY; 3593 } 3594 } 3595 3596 raw_spin_unlock(&kvm_count_lock); 3597 3598 return r; 3599 } 3600 3601 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3602 void *v) 3603 { 3604 /* 3605 * Some (well, at least mine) BIOSes hang on reboot if 3606 * in vmx root mode. 3607 * 3608 * And Intel TXT required VMX off for all cpu when system shutdown. 3609 */ 3610 pr_info("kvm: exiting hardware virtualization\n"); 3611 kvm_rebooting = true; 3612 on_each_cpu(hardware_disable_nolock, NULL, 1); 3613 return NOTIFY_OK; 3614 } 3615 3616 static struct notifier_block kvm_reboot_notifier = { 3617 .notifier_call = kvm_reboot, 3618 .priority = 0, 3619 }; 3620 3621 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3622 { 3623 int i; 3624 3625 for (i = 0; i < bus->dev_count; i++) { 3626 struct kvm_io_device *pos = bus->range[i].dev; 3627 3628 kvm_iodevice_destructor(pos); 3629 } 3630 kfree(bus); 3631 } 3632 3633 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3634 const struct kvm_io_range *r2) 3635 { 3636 gpa_t addr1 = r1->addr; 3637 gpa_t addr2 = r2->addr; 3638 3639 if (addr1 < addr2) 3640 return -1; 3641 3642 /* If r2->len == 0, match the exact address. If r2->len != 0, 3643 * accept any overlapping write. Any order is acceptable for 3644 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3645 * we process all of them. 3646 */ 3647 if (r2->len) { 3648 addr1 += r1->len; 3649 addr2 += r2->len; 3650 } 3651 3652 if (addr1 > addr2) 3653 return 1; 3654 3655 return 0; 3656 } 3657 3658 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3659 { 3660 return kvm_io_bus_cmp(p1, p2); 3661 } 3662 3663 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3664 gpa_t addr, int len) 3665 { 3666 struct kvm_io_range *range, key; 3667 int off; 3668 3669 key = (struct kvm_io_range) { 3670 .addr = addr, 3671 .len = len, 3672 }; 3673 3674 range = bsearch(&key, bus->range, bus->dev_count, 3675 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3676 if (range == NULL) 3677 return -ENOENT; 3678 3679 off = range - bus->range; 3680 3681 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3682 off--; 3683 3684 return off; 3685 } 3686 3687 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3688 struct kvm_io_range *range, const void *val) 3689 { 3690 int idx; 3691 3692 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3693 if (idx < 0) 3694 return -EOPNOTSUPP; 3695 3696 while (idx < bus->dev_count && 3697 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3698 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3699 range->len, val)) 3700 return idx; 3701 idx++; 3702 } 3703 3704 return -EOPNOTSUPP; 3705 } 3706 3707 /* kvm_io_bus_write - called under kvm->slots_lock */ 3708 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3709 int len, const void *val) 3710 { 3711 struct kvm_io_bus *bus; 3712 struct kvm_io_range range; 3713 int r; 3714 3715 range = (struct kvm_io_range) { 3716 .addr = addr, 3717 .len = len, 3718 }; 3719 3720 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3721 if (!bus) 3722 return -ENOMEM; 3723 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3724 return r < 0 ? r : 0; 3725 } 3726 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3727 3728 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3729 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3730 gpa_t addr, int len, const void *val, long cookie) 3731 { 3732 struct kvm_io_bus *bus; 3733 struct kvm_io_range range; 3734 3735 range = (struct kvm_io_range) { 3736 .addr = addr, 3737 .len = len, 3738 }; 3739 3740 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3741 if (!bus) 3742 return -ENOMEM; 3743 3744 /* First try the device referenced by cookie. */ 3745 if ((cookie >= 0) && (cookie < bus->dev_count) && 3746 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3747 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3748 val)) 3749 return cookie; 3750 3751 /* 3752 * cookie contained garbage; fall back to search and return the 3753 * correct cookie value. 3754 */ 3755 return __kvm_io_bus_write(vcpu, bus, &range, val); 3756 } 3757 3758 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3759 struct kvm_io_range *range, void *val) 3760 { 3761 int idx; 3762 3763 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3764 if (idx < 0) 3765 return -EOPNOTSUPP; 3766 3767 while (idx < bus->dev_count && 3768 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3769 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3770 range->len, val)) 3771 return idx; 3772 idx++; 3773 } 3774 3775 return -EOPNOTSUPP; 3776 } 3777 3778 /* kvm_io_bus_read - called under kvm->slots_lock */ 3779 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3780 int len, void *val) 3781 { 3782 struct kvm_io_bus *bus; 3783 struct kvm_io_range range; 3784 int r; 3785 3786 range = (struct kvm_io_range) { 3787 .addr = addr, 3788 .len = len, 3789 }; 3790 3791 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3792 if (!bus) 3793 return -ENOMEM; 3794 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3795 return r < 0 ? r : 0; 3796 } 3797 3798 /* Caller must hold slots_lock. */ 3799 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3800 int len, struct kvm_io_device *dev) 3801 { 3802 int i; 3803 struct kvm_io_bus *new_bus, *bus; 3804 struct kvm_io_range range; 3805 3806 bus = kvm_get_bus(kvm, bus_idx); 3807 if (!bus) 3808 return -ENOMEM; 3809 3810 /* exclude ioeventfd which is limited by maximum fd */ 3811 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3812 return -ENOSPC; 3813 3814 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3815 GFP_KERNEL_ACCOUNT); 3816 if (!new_bus) 3817 return -ENOMEM; 3818 3819 range = (struct kvm_io_range) { 3820 .addr = addr, 3821 .len = len, 3822 .dev = dev, 3823 }; 3824 3825 for (i = 0; i < bus->dev_count; i++) 3826 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3827 break; 3828 3829 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3830 new_bus->dev_count++; 3831 new_bus->range[i] = range; 3832 memcpy(new_bus->range + i + 1, bus->range + i, 3833 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3834 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3835 synchronize_srcu_expedited(&kvm->srcu); 3836 kfree(bus); 3837 3838 return 0; 3839 } 3840 3841 /* Caller must hold slots_lock. */ 3842 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3843 struct kvm_io_device *dev) 3844 { 3845 int i; 3846 struct kvm_io_bus *new_bus, *bus; 3847 3848 bus = kvm_get_bus(kvm, bus_idx); 3849 if (!bus) 3850 return; 3851 3852 for (i = 0; i < bus->dev_count; i++) 3853 if (bus->range[i].dev == dev) { 3854 break; 3855 } 3856 3857 if (i == bus->dev_count) 3858 return; 3859 3860 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3861 GFP_KERNEL_ACCOUNT); 3862 if (!new_bus) { 3863 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3864 goto broken; 3865 } 3866 3867 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3868 new_bus->dev_count--; 3869 memcpy(new_bus->range + i, bus->range + i + 1, 3870 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3871 3872 broken: 3873 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3874 synchronize_srcu_expedited(&kvm->srcu); 3875 kfree(bus); 3876 return; 3877 } 3878 3879 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3880 gpa_t addr) 3881 { 3882 struct kvm_io_bus *bus; 3883 int dev_idx, srcu_idx; 3884 struct kvm_io_device *iodev = NULL; 3885 3886 srcu_idx = srcu_read_lock(&kvm->srcu); 3887 3888 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3889 if (!bus) 3890 goto out_unlock; 3891 3892 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3893 if (dev_idx < 0) 3894 goto out_unlock; 3895 3896 iodev = bus->range[dev_idx].dev; 3897 3898 out_unlock: 3899 srcu_read_unlock(&kvm->srcu, srcu_idx); 3900 3901 return iodev; 3902 } 3903 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3904 3905 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3906 int (*get)(void *, u64 *), int (*set)(void *, u64), 3907 const char *fmt) 3908 { 3909 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3910 inode->i_private; 3911 3912 /* The debugfs files are a reference to the kvm struct which 3913 * is still valid when kvm_destroy_vm is called. 3914 * To avoid the race between open and the removal of the debugfs 3915 * directory we test against the users count. 3916 */ 3917 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3918 return -ENOENT; 3919 3920 if (simple_attr_open(inode, file, get, set, fmt)) { 3921 kvm_put_kvm(stat_data->kvm); 3922 return -ENOMEM; 3923 } 3924 3925 return 0; 3926 } 3927 3928 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3929 { 3930 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3931 inode->i_private; 3932 3933 simple_attr_release(inode, file); 3934 kvm_put_kvm(stat_data->kvm); 3935 3936 return 0; 3937 } 3938 3939 static int vm_stat_get_per_vm(void *data, u64 *val) 3940 { 3941 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3942 3943 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3944 3945 return 0; 3946 } 3947 3948 static int vm_stat_clear_per_vm(void *data, u64 val) 3949 { 3950 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3951 3952 if (val) 3953 return -EINVAL; 3954 3955 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3956 3957 return 0; 3958 } 3959 3960 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3961 { 3962 __simple_attr_check_format("%llu\n", 0ull); 3963 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3964 vm_stat_clear_per_vm, "%llu\n"); 3965 } 3966 3967 static const struct file_operations vm_stat_get_per_vm_fops = { 3968 .owner = THIS_MODULE, 3969 .open = vm_stat_get_per_vm_open, 3970 .release = kvm_debugfs_release, 3971 .read = simple_attr_read, 3972 .write = simple_attr_write, 3973 .llseek = no_llseek, 3974 }; 3975 3976 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3977 { 3978 int i; 3979 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3980 struct kvm_vcpu *vcpu; 3981 3982 *val = 0; 3983 3984 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3985 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3986 3987 return 0; 3988 } 3989 3990 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3991 { 3992 int i; 3993 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3994 struct kvm_vcpu *vcpu; 3995 3996 if (val) 3997 return -EINVAL; 3998 3999 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4000 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4001 4002 return 0; 4003 } 4004 4005 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4006 { 4007 __simple_attr_check_format("%llu\n", 0ull); 4008 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4009 vcpu_stat_clear_per_vm, "%llu\n"); 4010 } 4011 4012 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4013 .owner = THIS_MODULE, 4014 .open = vcpu_stat_get_per_vm_open, 4015 .release = kvm_debugfs_release, 4016 .read = simple_attr_read, 4017 .write = simple_attr_write, 4018 .llseek = no_llseek, 4019 }; 4020 4021 static const struct file_operations *stat_fops_per_vm[] = { 4022 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4023 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4024 }; 4025 4026 static int vm_stat_get(void *_offset, u64 *val) 4027 { 4028 unsigned offset = (long)_offset; 4029 struct kvm *kvm; 4030 struct kvm_stat_data stat_tmp = {.offset = offset}; 4031 u64 tmp_val; 4032 4033 *val = 0; 4034 spin_lock(&kvm_lock); 4035 list_for_each_entry(kvm, &vm_list, vm_list) { 4036 stat_tmp.kvm = kvm; 4037 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4038 *val += tmp_val; 4039 } 4040 spin_unlock(&kvm_lock); 4041 return 0; 4042 } 4043 4044 static int vm_stat_clear(void *_offset, u64 val) 4045 { 4046 unsigned offset = (long)_offset; 4047 struct kvm *kvm; 4048 struct kvm_stat_data stat_tmp = {.offset = offset}; 4049 4050 if (val) 4051 return -EINVAL; 4052 4053 spin_lock(&kvm_lock); 4054 list_for_each_entry(kvm, &vm_list, vm_list) { 4055 stat_tmp.kvm = kvm; 4056 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4057 } 4058 spin_unlock(&kvm_lock); 4059 4060 return 0; 4061 } 4062 4063 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4064 4065 static int vcpu_stat_get(void *_offset, u64 *val) 4066 { 4067 unsigned offset = (long)_offset; 4068 struct kvm *kvm; 4069 struct kvm_stat_data stat_tmp = {.offset = offset}; 4070 u64 tmp_val; 4071 4072 *val = 0; 4073 spin_lock(&kvm_lock); 4074 list_for_each_entry(kvm, &vm_list, vm_list) { 4075 stat_tmp.kvm = kvm; 4076 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4077 *val += tmp_val; 4078 } 4079 spin_unlock(&kvm_lock); 4080 return 0; 4081 } 4082 4083 static int vcpu_stat_clear(void *_offset, u64 val) 4084 { 4085 unsigned offset = (long)_offset; 4086 struct kvm *kvm; 4087 struct kvm_stat_data stat_tmp = {.offset = offset}; 4088 4089 if (val) 4090 return -EINVAL; 4091 4092 spin_lock(&kvm_lock); 4093 list_for_each_entry(kvm, &vm_list, vm_list) { 4094 stat_tmp.kvm = kvm; 4095 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4096 } 4097 spin_unlock(&kvm_lock); 4098 4099 return 0; 4100 } 4101 4102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4103 "%llu\n"); 4104 4105 static const struct file_operations *stat_fops[] = { 4106 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4107 [KVM_STAT_VM] = &vm_stat_fops, 4108 }; 4109 4110 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4111 { 4112 struct kobj_uevent_env *env; 4113 unsigned long long created, active; 4114 4115 if (!kvm_dev.this_device || !kvm) 4116 return; 4117 4118 spin_lock(&kvm_lock); 4119 if (type == KVM_EVENT_CREATE_VM) { 4120 kvm_createvm_count++; 4121 kvm_active_vms++; 4122 } else if (type == KVM_EVENT_DESTROY_VM) { 4123 kvm_active_vms--; 4124 } 4125 created = kvm_createvm_count; 4126 active = kvm_active_vms; 4127 spin_unlock(&kvm_lock); 4128 4129 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4130 if (!env) 4131 return; 4132 4133 add_uevent_var(env, "CREATED=%llu", created); 4134 add_uevent_var(env, "COUNT=%llu", active); 4135 4136 if (type == KVM_EVENT_CREATE_VM) { 4137 add_uevent_var(env, "EVENT=create"); 4138 kvm->userspace_pid = task_pid_nr(current); 4139 } else if (type == KVM_EVENT_DESTROY_VM) { 4140 add_uevent_var(env, "EVENT=destroy"); 4141 } 4142 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4143 4144 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4145 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4146 4147 if (p) { 4148 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4149 if (!IS_ERR(tmp)) 4150 add_uevent_var(env, "STATS_PATH=%s", tmp); 4151 kfree(p); 4152 } 4153 } 4154 /* no need for checks, since we are adding at most only 5 keys */ 4155 env->envp[env->envp_idx++] = NULL; 4156 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4157 kfree(env); 4158 } 4159 4160 static void kvm_init_debug(void) 4161 { 4162 struct kvm_stats_debugfs_item *p; 4163 4164 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4165 4166 kvm_debugfs_num_entries = 0; 4167 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4168 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4169 (void *)(long)p->offset, 4170 stat_fops[p->kind]); 4171 } 4172 } 4173 4174 static int kvm_suspend(void) 4175 { 4176 if (kvm_usage_count) 4177 hardware_disable_nolock(NULL); 4178 return 0; 4179 } 4180 4181 static void kvm_resume(void) 4182 { 4183 if (kvm_usage_count) { 4184 lockdep_assert_held(&kvm_count_lock); 4185 hardware_enable_nolock(NULL); 4186 } 4187 } 4188 4189 static struct syscore_ops kvm_syscore_ops = { 4190 .suspend = kvm_suspend, 4191 .resume = kvm_resume, 4192 }; 4193 4194 static inline 4195 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4196 { 4197 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4198 } 4199 4200 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4201 { 4202 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4203 4204 if (vcpu->preempted) 4205 vcpu->preempted = false; 4206 4207 kvm_arch_sched_in(vcpu, cpu); 4208 4209 kvm_arch_vcpu_load(vcpu, cpu); 4210 } 4211 4212 static void kvm_sched_out(struct preempt_notifier *pn, 4213 struct task_struct *next) 4214 { 4215 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4216 4217 if (current->state == TASK_RUNNING) 4218 vcpu->preempted = true; 4219 kvm_arch_vcpu_put(vcpu); 4220 } 4221 4222 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4223 struct module *module) 4224 { 4225 int r; 4226 int cpu; 4227 4228 r = kvm_arch_init(opaque); 4229 if (r) 4230 goto out_fail; 4231 4232 /* 4233 * kvm_arch_init makes sure there's at most one caller 4234 * for architectures that support multiple implementations, 4235 * like intel and amd on x86. 4236 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4237 * conflicts in case kvm is already setup for another implementation. 4238 */ 4239 r = kvm_irqfd_init(); 4240 if (r) 4241 goto out_irqfd; 4242 4243 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4244 r = -ENOMEM; 4245 goto out_free_0; 4246 } 4247 4248 r = kvm_arch_hardware_setup(); 4249 if (r < 0) 4250 goto out_free_0a; 4251 4252 for_each_online_cpu(cpu) { 4253 smp_call_function_single(cpu, 4254 kvm_arch_check_processor_compat, 4255 &r, 1); 4256 if (r < 0) 4257 goto out_free_1; 4258 } 4259 4260 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4261 kvm_starting_cpu, kvm_dying_cpu); 4262 if (r) 4263 goto out_free_2; 4264 register_reboot_notifier(&kvm_reboot_notifier); 4265 4266 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4267 if (!vcpu_align) 4268 vcpu_align = __alignof__(struct kvm_vcpu); 4269 kvm_vcpu_cache = 4270 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4271 SLAB_ACCOUNT, 4272 offsetof(struct kvm_vcpu, arch), 4273 sizeof_field(struct kvm_vcpu, arch), 4274 NULL); 4275 if (!kvm_vcpu_cache) { 4276 r = -ENOMEM; 4277 goto out_free_3; 4278 } 4279 4280 r = kvm_async_pf_init(); 4281 if (r) 4282 goto out_free; 4283 4284 kvm_chardev_ops.owner = module; 4285 kvm_vm_fops.owner = module; 4286 kvm_vcpu_fops.owner = module; 4287 4288 r = misc_register(&kvm_dev); 4289 if (r) { 4290 pr_err("kvm: misc device register failed\n"); 4291 goto out_unreg; 4292 } 4293 4294 register_syscore_ops(&kvm_syscore_ops); 4295 4296 kvm_preempt_ops.sched_in = kvm_sched_in; 4297 kvm_preempt_ops.sched_out = kvm_sched_out; 4298 4299 kvm_init_debug(); 4300 4301 r = kvm_vfio_ops_init(); 4302 WARN_ON(r); 4303 4304 return 0; 4305 4306 out_unreg: 4307 kvm_async_pf_deinit(); 4308 out_free: 4309 kmem_cache_destroy(kvm_vcpu_cache); 4310 out_free_3: 4311 unregister_reboot_notifier(&kvm_reboot_notifier); 4312 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4313 out_free_2: 4314 out_free_1: 4315 kvm_arch_hardware_unsetup(); 4316 out_free_0a: 4317 free_cpumask_var(cpus_hardware_enabled); 4318 out_free_0: 4319 kvm_irqfd_exit(); 4320 out_irqfd: 4321 kvm_arch_exit(); 4322 out_fail: 4323 return r; 4324 } 4325 EXPORT_SYMBOL_GPL(kvm_init); 4326 4327 void kvm_exit(void) 4328 { 4329 debugfs_remove_recursive(kvm_debugfs_dir); 4330 misc_deregister(&kvm_dev); 4331 kmem_cache_destroy(kvm_vcpu_cache); 4332 kvm_async_pf_deinit(); 4333 unregister_syscore_ops(&kvm_syscore_ops); 4334 unregister_reboot_notifier(&kvm_reboot_notifier); 4335 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4336 on_each_cpu(hardware_disable_nolock, NULL, 1); 4337 kvm_arch_hardware_unsetup(); 4338 kvm_arch_exit(); 4339 kvm_irqfd_exit(); 4340 free_cpumask_var(cpus_hardware_enabled); 4341 kvm_vfio_ops_exit(); 4342 } 4343 EXPORT_SYMBOL_GPL(kvm_exit); 4344