xref: /openbmc/linux/virt/kvm/kvm_main.c (revision c1d45424)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn)) {
106 		int reserved;
107 		struct page *tail = pfn_to_page(pfn);
108 		struct page *head = compound_trans_head(tail);
109 		reserved = PageReserved(head);
110 		if (head != tail) {
111 			/*
112 			 * "head" is not a dangling pointer
113 			 * (compound_trans_head takes care of that)
114 			 * but the hugepage may have been splitted
115 			 * from under us (and we may not hold a
116 			 * reference count on the head page so it can
117 			 * be reused before we run PageReferenced), so
118 			 * we've to check PageTail before returning
119 			 * what we just read.
120 			 */
121 			smp_rmb();
122 			if (PageTail(tail))
123 				return reserved;
124 		}
125 		return PageReserved(tail);
126 	}
127 
128 	return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 	int cpu;
137 
138 	if (mutex_lock_killable(&vcpu->mutex))
139 		return -EINTR;
140 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 		/* The thread running this VCPU changed. */
142 		struct pid *oldpid = vcpu->pid;
143 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 		rcu_assign_pointer(vcpu->pid, newpid);
145 		synchronize_rcu();
146 		put_pid(oldpid);
147 	}
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 	return 0;
153 }
154 
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 	preempt_disable();
158 	kvm_arch_vcpu_put(vcpu);
159 	preempt_notifier_unregister(&vcpu->preempt_notifier);
160 	preempt_enable();
161 	mutex_unlock(&vcpu->mutex);
162 }
163 
164 static void ack_flush(void *_completed)
165 {
166 }
167 
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 	int i, cpu, me;
171 	cpumask_var_t cpus;
172 	bool called = true;
173 	struct kvm_vcpu *vcpu;
174 
175 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176 
177 	me = get_cpu();
178 	kvm_for_each_vcpu(i, vcpu, kvm) {
179 		kvm_make_request(req, vcpu);
180 		cpu = vcpu->cpu;
181 
182 		/* Set ->requests bit before we read ->mode */
183 		smp_mb();
184 
185 		if (cpus != NULL && cpu != -1 && cpu != me &&
186 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 			cpumask_set_cpu(cpu, cpus);
188 	}
189 	if (unlikely(cpus == NULL))
190 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 	else if (!cpumask_empty(cpus))
192 		smp_call_function_many(cpus, ack_flush, NULL, 1);
193 	else
194 		called = false;
195 	put_cpu();
196 	free_cpumask_var(cpus);
197 	return called;
198 }
199 
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	long dirty_count = kvm->tlbs_dirty;
203 
204 	smp_mb();
205 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 		++kvm->stat.remote_tlb_flush;
207 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209 
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214 
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219 
220 void kvm_make_scan_ioapic_request(struct kvm *kvm)
221 {
222 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
223 }
224 
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
226 {
227 	struct page *page;
228 	int r;
229 
230 	mutex_init(&vcpu->mutex);
231 	vcpu->cpu = -1;
232 	vcpu->kvm = kvm;
233 	vcpu->vcpu_id = id;
234 	vcpu->pid = NULL;
235 	init_waitqueue_head(&vcpu->wq);
236 	kvm_async_pf_vcpu_init(vcpu);
237 
238 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
239 	if (!page) {
240 		r = -ENOMEM;
241 		goto fail;
242 	}
243 	vcpu->run = page_address(page);
244 
245 	kvm_vcpu_set_in_spin_loop(vcpu, false);
246 	kvm_vcpu_set_dy_eligible(vcpu, false);
247 	vcpu->preempted = false;
248 
249 	r = kvm_arch_vcpu_init(vcpu);
250 	if (r < 0)
251 		goto fail_free_run;
252 	return 0;
253 
254 fail_free_run:
255 	free_page((unsigned long)vcpu->run);
256 fail:
257 	return r;
258 }
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
260 
261 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
262 {
263 	put_pid(vcpu->pid);
264 	kvm_arch_vcpu_uninit(vcpu);
265 	free_page((unsigned long)vcpu->run);
266 }
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
268 
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
270 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
271 {
272 	return container_of(mn, struct kvm, mmu_notifier);
273 }
274 
275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
276 					     struct mm_struct *mm,
277 					     unsigned long address)
278 {
279 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
280 	int need_tlb_flush, idx;
281 
282 	/*
283 	 * When ->invalidate_page runs, the linux pte has been zapped
284 	 * already but the page is still allocated until
285 	 * ->invalidate_page returns. So if we increase the sequence
286 	 * here the kvm page fault will notice if the spte can't be
287 	 * established because the page is going to be freed. If
288 	 * instead the kvm page fault establishes the spte before
289 	 * ->invalidate_page runs, kvm_unmap_hva will release it
290 	 * before returning.
291 	 *
292 	 * The sequence increase only need to be seen at spin_unlock
293 	 * time, and not at spin_lock time.
294 	 *
295 	 * Increasing the sequence after the spin_unlock would be
296 	 * unsafe because the kvm page fault could then establish the
297 	 * pte after kvm_unmap_hva returned, without noticing the page
298 	 * is going to be freed.
299 	 */
300 	idx = srcu_read_lock(&kvm->srcu);
301 	spin_lock(&kvm->mmu_lock);
302 
303 	kvm->mmu_notifier_seq++;
304 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
305 	/* we've to flush the tlb before the pages can be freed */
306 	if (need_tlb_flush)
307 		kvm_flush_remote_tlbs(kvm);
308 
309 	spin_unlock(&kvm->mmu_lock);
310 	srcu_read_unlock(&kvm->srcu, idx);
311 }
312 
313 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
314 					struct mm_struct *mm,
315 					unsigned long address,
316 					pte_t pte)
317 {
318 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
319 	int idx;
320 
321 	idx = srcu_read_lock(&kvm->srcu);
322 	spin_lock(&kvm->mmu_lock);
323 	kvm->mmu_notifier_seq++;
324 	kvm_set_spte_hva(kvm, address, pte);
325 	spin_unlock(&kvm->mmu_lock);
326 	srcu_read_unlock(&kvm->srcu, idx);
327 }
328 
329 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
330 						    struct mm_struct *mm,
331 						    unsigned long start,
332 						    unsigned long end)
333 {
334 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 	int need_tlb_flush = 0, idx;
336 
337 	idx = srcu_read_lock(&kvm->srcu);
338 	spin_lock(&kvm->mmu_lock);
339 	/*
340 	 * The count increase must become visible at unlock time as no
341 	 * spte can be established without taking the mmu_lock and
342 	 * count is also read inside the mmu_lock critical section.
343 	 */
344 	kvm->mmu_notifier_count++;
345 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
346 	need_tlb_flush |= kvm->tlbs_dirty;
347 	/* we've to flush the tlb before the pages can be freed */
348 	if (need_tlb_flush)
349 		kvm_flush_remote_tlbs(kvm);
350 
351 	spin_unlock(&kvm->mmu_lock);
352 	srcu_read_unlock(&kvm->srcu, idx);
353 }
354 
355 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
356 						  struct mm_struct *mm,
357 						  unsigned long start,
358 						  unsigned long end)
359 {
360 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
361 
362 	spin_lock(&kvm->mmu_lock);
363 	/*
364 	 * This sequence increase will notify the kvm page fault that
365 	 * the page that is going to be mapped in the spte could have
366 	 * been freed.
367 	 */
368 	kvm->mmu_notifier_seq++;
369 	smp_wmb();
370 	/*
371 	 * The above sequence increase must be visible before the
372 	 * below count decrease, which is ensured by the smp_wmb above
373 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
374 	 */
375 	kvm->mmu_notifier_count--;
376 	spin_unlock(&kvm->mmu_lock);
377 
378 	BUG_ON(kvm->mmu_notifier_count < 0);
379 }
380 
381 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
382 					      struct mm_struct *mm,
383 					      unsigned long address)
384 {
385 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 	int young, idx;
387 
388 	idx = srcu_read_lock(&kvm->srcu);
389 	spin_lock(&kvm->mmu_lock);
390 
391 	young = kvm_age_hva(kvm, address);
392 	if (young)
393 		kvm_flush_remote_tlbs(kvm);
394 
395 	spin_unlock(&kvm->mmu_lock);
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return young;
399 }
400 
401 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
402 				       struct mm_struct *mm,
403 				       unsigned long address)
404 {
405 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 	int young, idx;
407 
408 	idx = srcu_read_lock(&kvm->srcu);
409 	spin_lock(&kvm->mmu_lock);
410 	young = kvm_test_age_hva(kvm, address);
411 	spin_unlock(&kvm->mmu_lock);
412 	srcu_read_unlock(&kvm->srcu, idx);
413 
414 	return young;
415 }
416 
417 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
418 				     struct mm_struct *mm)
419 {
420 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
421 	int idx;
422 
423 	idx = srcu_read_lock(&kvm->srcu);
424 	kvm_arch_flush_shadow_all(kvm);
425 	srcu_read_unlock(&kvm->srcu, idx);
426 }
427 
428 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
429 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
430 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
431 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
432 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
433 	.test_young		= kvm_mmu_notifier_test_young,
434 	.change_pte		= kvm_mmu_notifier_change_pte,
435 	.release		= kvm_mmu_notifier_release,
436 };
437 
438 static int kvm_init_mmu_notifier(struct kvm *kvm)
439 {
440 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
441 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
442 }
443 
444 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
445 
446 static int kvm_init_mmu_notifier(struct kvm *kvm)
447 {
448 	return 0;
449 }
450 
451 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
452 
453 static void kvm_init_memslots_id(struct kvm *kvm)
454 {
455 	int i;
456 	struct kvm_memslots *slots = kvm->memslots;
457 
458 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
459 		slots->id_to_index[i] = slots->memslots[i].id = i;
460 }
461 
462 static struct kvm *kvm_create_vm(unsigned long type)
463 {
464 	int r, i;
465 	struct kvm *kvm = kvm_arch_alloc_vm();
466 
467 	if (!kvm)
468 		return ERR_PTR(-ENOMEM);
469 
470 	r = kvm_arch_init_vm(kvm, type);
471 	if (r)
472 		goto out_err_nodisable;
473 
474 	r = hardware_enable_all();
475 	if (r)
476 		goto out_err_nodisable;
477 
478 #ifdef CONFIG_HAVE_KVM_IRQCHIP
479 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
480 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
481 #endif
482 
483 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
484 
485 	r = -ENOMEM;
486 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
487 	if (!kvm->memslots)
488 		goto out_err_nosrcu;
489 	kvm_init_memslots_id(kvm);
490 	if (init_srcu_struct(&kvm->srcu))
491 		goto out_err_nosrcu;
492 	for (i = 0; i < KVM_NR_BUSES; i++) {
493 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
494 					GFP_KERNEL);
495 		if (!kvm->buses[i])
496 			goto out_err;
497 	}
498 
499 	spin_lock_init(&kvm->mmu_lock);
500 	kvm->mm = current->mm;
501 	atomic_inc(&kvm->mm->mm_count);
502 	kvm_eventfd_init(kvm);
503 	mutex_init(&kvm->lock);
504 	mutex_init(&kvm->irq_lock);
505 	mutex_init(&kvm->slots_lock);
506 	atomic_set(&kvm->users_count, 1);
507 	INIT_LIST_HEAD(&kvm->devices);
508 
509 	r = kvm_init_mmu_notifier(kvm);
510 	if (r)
511 		goto out_err;
512 
513 	raw_spin_lock(&kvm_lock);
514 	list_add(&kvm->vm_list, &vm_list);
515 	raw_spin_unlock(&kvm_lock);
516 
517 	return kvm;
518 
519 out_err:
520 	cleanup_srcu_struct(&kvm->srcu);
521 out_err_nosrcu:
522 	hardware_disable_all();
523 out_err_nodisable:
524 	for (i = 0; i < KVM_NR_BUSES; i++)
525 		kfree(kvm->buses[i]);
526 	kfree(kvm->memslots);
527 	kvm_arch_free_vm(kvm);
528 	return ERR_PTR(r);
529 }
530 
531 /*
532  * Avoid using vmalloc for a small buffer.
533  * Should not be used when the size is statically known.
534  */
535 void *kvm_kvzalloc(unsigned long size)
536 {
537 	if (size > PAGE_SIZE)
538 		return vzalloc(size);
539 	else
540 		return kzalloc(size, GFP_KERNEL);
541 }
542 
543 void kvm_kvfree(const void *addr)
544 {
545 	if (is_vmalloc_addr(addr))
546 		vfree(addr);
547 	else
548 		kfree(addr);
549 }
550 
551 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
552 {
553 	if (!memslot->dirty_bitmap)
554 		return;
555 
556 	kvm_kvfree(memslot->dirty_bitmap);
557 	memslot->dirty_bitmap = NULL;
558 }
559 
560 /*
561  * Free any memory in @free but not in @dont.
562  */
563 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
564 				  struct kvm_memory_slot *dont)
565 {
566 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
567 		kvm_destroy_dirty_bitmap(free);
568 
569 	kvm_arch_free_memslot(free, dont);
570 
571 	free->npages = 0;
572 }
573 
574 void kvm_free_physmem(struct kvm *kvm)
575 {
576 	struct kvm_memslots *slots = kvm->memslots;
577 	struct kvm_memory_slot *memslot;
578 
579 	kvm_for_each_memslot(memslot, slots)
580 		kvm_free_physmem_slot(memslot, NULL);
581 
582 	kfree(kvm->memslots);
583 }
584 
585 static void kvm_destroy_devices(struct kvm *kvm)
586 {
587 	struct list_head *node, *tmp;
588 
589 	list_for_each_safe(node, tmp, &kvm->devices) {
590 		struct kvm_device *dev =
591 			list_entry(node, struct kvm_device, vm_node);
592 
593 		list_del(node);
594 		dev->ops->destroy(dev);
595 	}
596 }
597 
598 static void kvm_destroy_vm(struct kvm *kvm)
599 {
600 	int i;
601 	struct mm_struct *mm = kvm->mm;
602 
603 	kvm_arch_sync_events(kvm);
604 	raw_spin_lock(&kvm_lock);
605 	list_del(&kvm->vm_list);
606 	raw_spin_unlock(&kvm_lock);
607 	kvm_free_irq_routing(kvm);
608 	for (i = 0; i < KVM_NR_BUSES; i++)
609 		kvm_io_bus_destroy(kvm->buses[i]);
610 	kvm_coalesced_mmio_free(kvm);
611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
613 #else
614 	kvm_arch_flush_shadow_all(kvm);
615 #endif
616 	kvm_arch_destroy_vm(kvm);
617 	kvm_destroy_devices(kvm);
618 	kvm_free_physmem(kvm);
619 	cleanup_srcu_struct(&kvm->srcu);
620 	kvm_arch_free_vm(kvm);
621 	hardware_disable_all();
622 	mmdrop(mm);
623 }
624 
625 void kvm_get_kvm(struct kvm *kvm)
626 {
627 	atomic_inc(&kvm->users_count);
628 }
629 EXPORT_SYMBOL_GPL(kvm_get_kvm);
630 
631 void kvm_put_kvm(struct kvm *kvm)
632 {
633 	if (atomic_dec_and_test(&kvm->users_count))
634 		kvm_destroy_vm(kvm);
635 }
636 EXPORT_SYMBOL_GPL(kvm_put_kvm);
637 
638 
639 static int kvm_vm_release(struct inode *inode, struct file *filp)
640 {
641 	struct kvm *kvm = filp->private_data;
642 
643 	kvm_irqfd_release(kvm);
644 
645 	kvm_put_kvm(kvm);
646 	return 0;
647 }
648 
649 /*
650  * Allocation size is twice as large as the actual dirty bitmap size.
651  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
652  */
653 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
654 {
655 #ifndef CONFIG_S390
656 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
657 
658 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
659 	if (!memslot->dirty_bitmap)
660 		return -ENOMEM;
661 
662 #endif /* !CONFIG_S390 */
663 	return 0;
664 }
665 
666 static int cmp_memslot(const void *slot1, const void *slot2)
667 {
668 	struct kvm_memory_slot *s1, *s2;
669 
670 	s1 = (struct kvm_memory_slot *)slot1;
671 	s2 = (struct kvm_memory_slot *)slot2;
672 
673 	if (s1->npages < s2->npages)
674 		return 1;
675 	if (s1->npages > s2->npages)
676 		return -1;
677 
678 	return 0;
679 }
680 
681 /*
682  * Sort the memslots base on its size, so the larger slots
683  * will get better fit.
684  */
685 static void sort_memslots(struct kvm_memslots *slots)
686 {
687 	int i;
688 
689 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
690 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
691 
692 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
693 		slots->id_to_index[slots->memslots[i].id] = i;
694 }
695 
696 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
697 		     u64 last_generation)
698 {
699 	if (new) {
700 		int id = new->id;
701 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
702 		unsigned long npages = old->npages;
703 
704 		*old = *new;
705 		if (new->npages != npages)
706 			sort_memslots(slots);
707 	}
708 
709 	slots->generation = last_generation + 1;
710 }
711 
712 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
713 {
714 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
715 
716 #ifdef KVM_CAP_READONLY_MEM
717 	valid_flags |= KVM_MEM_READONLY;
718 #endif
719 
720 	if (mem->flags & ~valid_flags)
721 		return -EINVAL;
722 
723 	return 0;
724 }
725 
726 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
727 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
728 {
729 	struct kvm_memslots *old_memslots = kvm->memslots;
730 
731 	update_memslots(slots, new, kvm->memslots->generation);
732 	rcu_assign_pointer(kvm->memslots, slots);
733 	synchronize_srcu_expedited(&kvm->srcu);
734 	return old_memslots;
735 }
736 
737 /*
738  * Allocate some memory and give it an address in the guest physical address
739  * space.
740  *
741  * Discontiguous memory is allowed, mostly for framebuffers.
742  *
743  * Must be called holding mmap_sem for write.
744  */
745 int __kvm_set_memory_region(struct kvm *kvm,
746 			    struct kvm_userspace_memory_region *mem)
747 {
748 	int r;
749 	gfn_t base_gfn;
750 	unsigned long npages;
751 	struct kvm_memory_slot *slot;
752 	struct kvm_memory_slot old, new;
753 	struct kvm_memslots *slots = NULL, *old_memslots;
754 	enum kvm_mr_change change;
755 
756 	r = check_memory_region_flags(mem);
757 	if (r)
758 		goto out;
759 
760 	r = -EINVAL;
761 	/* General sanity checks */
762 	if (mem->memory_size & (PAGE_SIZE - 1))
763 		goto out;
764 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
765 		goto out;
766 	/* We can read the guest memory with __xxx_user() later on. */
767 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
768 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
769 	     !access_ok(VERIFY_WRITE,
770 			(void __user *)(unsigned long)mem->userspace_addr,
771 			mem->memory_size)))
772 		goto out;
773 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
774 		goto out;
775 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
776 		goto out;
777 
778 	slot = id_to_memslot(kvm->memslots, mem->slot);
779 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
780 	npages = mem->memory_size >> PAGE_SHIFT;
781 
782 	r = -EINVAL;
783 	if (npages > KVM_MEM_MAX_NR_PAGES)
784 		goto out;
785 
786 	if (!npages)
787 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
788 
789 	new = old = *slot;
790 
791 	new.id = mem->slot;
792 	new.base_gfn = base_gfn;
793 	new.npages = npages;
794 	new.flags = mem->flags;
795 
796 	r = -EINVAL;
797 	if (npages) {
798 		if (!old.npages)
799 			change = KVM_MR_CREATE;
800 		else { /* Modify an existing slot. */
801 			if ((mem->userspace_addr != old.userspace_addr) ||
802 			    (npages != old.npages) ||
803 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
804 				goto out;
805 
806 			if (base_gfn != old.base_gfn)
807 				change = KVM_MR_MOVE;
808 			else if (new.flags != old.flags)
809 				change = KVM_MR_FLAGS_ONLY;
810 			else { /* Nothing to change. */
811 				r = 0;
812 				goto out;
813 			}
814 		}
815 	} else if (old.npages) {
816 		change = KVM_MR_DELETE;
817 	} else /* Modify a non-existent slot: disallowed. */
818 		goto out;
819 
820 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
821 		/* Check for overlaps */
822 		r = -EEXIST;
823 		kvm_for_each_memslot(slot, kvm->memslots) {
824 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
825 			    (slot->id == mem->slot))
826 				continue;
827 			if (!((base_gfn + npages <= slot->base_gfn) ||
828 			      (base_gfn >= slot->base_gfn + slot->npages)))
829 				goto out;
830 		}
831 	}
832 
833 	/* Free page dirty bitmap if unneeded */
834 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
835 		new.dirty_bitmap = NULL;
836 
837 	r = -ENOMEM;
838 	if (change == KVM_MR_CREATE) {
839 		new.userspace_addr = mem->userspace_addr;
840 
841 		if (kvm_arch_create_memslot(&new, npages))
842 			goto out_free;
843 	}
844 
845 	/* Allocate page dirty bitmap if needed */
846 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
847 		if (kvm_create_dirty_bitmap(&new) < 0)
848 			goto out_free;
849 	}
850 
851 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
852 		r = -ENOMEM;
853 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
854 				GFP_KERNEL);
855 		if (!slots)
856 			goto out_free;
857 		slot = id_to_memslot(slots, mem->slot);
858 		slot->flags |= KVM_MEMSLOT_INVALID;
859 
860 		old_memslots = install_new_memslots(kvm, slots, NULL);
861 
862 		/* slot was deleted or moved, clear iommu mapping */
863 		kvm_iommu_unmap_pages(kvm, &old);
864 		/* From this point no new shadow pages pointing to a deleted,
865 		 * or moved, memslot will be created.
866 		 *
867 		 * validation of sp->gfn happens in:
868 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
869 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
870 		 */
871 		kvm_arch_flush_shadow_memslot(kvm, slot);
872 		slots = old_memslots;
873 	}
874 
875 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
876 	if (r)
877 		goto out_slots;
878 
879 	r = -ENOMEM;
880 	/*
881 	 * We can re-use the old_memslots from above, the only difference
882 	 * from the currently installed memslots is the invalid flag.  This
883 	 * will get overwritten by update_memslots anyway.
884 	 */
885 	if (!slots) {
886 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
887 				GFP_KERNEL);
888 		if (!slots)
889 			goto out_free;
890 	}
891 
892 	/*
893 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
894 	 * un-mapped and re-mapped if their base changes.  Since base change
895 	 * unmapping is handled above with slot deletion, mapping alone is
896 	 * needed here.  Anything else the iommu might care about for existing
897 	 * slots (size changes, userspace addr changes and read-only flag
898 	 * changes) is disallowed above, so any other attribute changes getting
899 	 * here can be skipped.
900 	 */
901 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
902 		r = kvm_iommu_map_pages(kvm, &new);
903 		if (r)
904 			goto out_slots;
905 	}
906 
907 	/* actual memory is freed via old in kvm_free_physmem_slot below */
908 	if (change == KVM_MR_DELETE) {
909 		new.dirty_bitmap = NULL;
910 		memset(&new.arch, 0, sizeof(new.arch));
911 	}
912 
913 	old_memslots = install_new_memslots(kvm, slots, &new);
914 
915 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
916 
917 	kvm_free_physmem_slot(&old, &new);
918 	kfree(old_memslots);
919 
920 	return 0;
921 
922 out_slots:
923 	kfree(slots);
924 out_free:
925 	kvm_free_physmem_slot(&new, &old);
926 out:
927 	return r;
928 }
929 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
930 
931 int kvm_set_memory_region(struct kvm *kvm,
932 			  struct kvm_userspace_memory_region *mem)
933 {
934 	int r;
935 
936 	mutex_lock(&kvm->slots_lock);
937 	r = __kvm_set_memory_region(kvm, mem);
938 	mutex_unlock(&kvm->slots_lock);
939 	return r;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
942 
943 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
944 				   struct kvm_userspace_memory_region *mem)
945 {
946 	if (mem->slot >= KVM_USER_MEM_SLOTS)
947 		return -EINVAL;
948 	return kvm_set_memory_region(kvm, mem);
949 }
950 
951 int kvm_get_dirty_log(struct kvm *kvm,
952 			struct kvm_dirty_log *log, int *is_dirty)
953 {
954 	struct kvm_memory_slot *memslot;
955 	int r, i;
956 	unsigned long n;
957 	unsigned long any = 0;
958 
959 	r = -EINVAL;
960 	if (log->slot >= KVM_USER_MEM_SLOTS)
961 		goto out;
962 
963 	memslot = id_to_memslot(kvm->memslots, log->slot);
964 	r = -ENOENT;
965 	if (!memslot->dirty_bitmap)
966 		goto out;
967 
968 	n = kvm_dirty_bitmap_bytes(memslot);
969 
970 	for (i = 0; !any && i < n/sizeof(long); ++i)
971 		any = memslot->dirty_bitmap[i];
972 
973 	r = -EFAULT;
974 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
975 		goto out;
976 
977 	if (any)
978 		*is_dirty = 1;
979 
980 	r = 0;
981 out:
982 	return r;
983 }
984 
985 bool kvm_largepages_enabled(void)
986 {
987 	return largepages_enabled;
988 }
989 
990 void kvm_disable_largepages(void)
991 {
992 	largepages_enabled = false;
993 }
994 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
995 
996 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
997 {
998 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
999 }
1000 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1001 
1002 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1003 {
1004 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1005 
1006 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1007 	      memslot->flags & KVM_MEMSLOT_INVALID)
1008 		return 0;
1009 
1010 	return 1;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1013 
1014 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1015 {
1016 	struct vm_area_struct *vma;
1017 	unsigned long addr, size;
1018 
1019 	size = PAGE_SIZE;
1020 
1021 	addr = gfn_to_hva(kvm, gfn);
1022 	if (kvm_is_error_hva(addr))
1023 		return PAGE_SIZE;
1024 
1025 	down_read(&current->mm->mmap_sem);
1026 	vma = find_vma(current->mm, addr);
1027 	if (!vma)
1028 		goto out;
1029 
1030 	size = vma_kernel_pagesize(vma);
1031 
1032 out:
1033 	up_read(&current->mm->mmap_sem);
1034 
1035 	return size;
1036 }
1037 
1038 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1039 {
1040 	return slot->flags & KVM_MEM_READONLY;
1041 }
1042 
1043 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 				       gfn_t *nr_pages, bool write)
1045 {
1046 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1047 		return KVM_HVA_ERR_BAD;
1048 
1049 	if (memslot_is_readonly(slot) && write)
1050 		return KVM_HVA_ERR_RO_BAD;
1051 
1052 	if (nr_pages)
1053 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1054 
1055 	return __gfn_to_hva_memslot(slot, gfn);
1056 }
1057 
1058 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1059 				     gfn_t *nr_pages)
1060 {
1061 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1062 }
1063 
1064 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1065 				 gfn_t gfn)
1066 {
1067 	return gfn_to_hva_many(slot, gfn, NULL);
1068 }
1069 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1070 
1071 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1072 {
1073 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1074 }
1075 EXPORT_SYMBOL_GPL(gfn_to_hva);
1076 
1077 /*
1078  * The hva returned by this function is only allowed to be read.
1079  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1080  */
1081 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1082 {
1083 	return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1084 }
1085 
1086 static int kvm_read_hva(void *data, void __user *hva, int len)
1087 {
1088 	return __copy_from_user(data, hva, len);
1089 }
1090 
1091 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1092 {
1093 	return __copy_from_user_inatomic(data, hva, len);
1094 }
1095 
1096 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1097 	unsigned long start, int write, struct page **page)
1098 {
1099 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1100 
1101 	if (write)
1102 		flags |= FOLL_WRITE;
1103 
1104 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1105 }
1106 
1107 static inline int check_user_page_hwpoison(unsigned long addr)
1108 {
1109 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1110 
1111 	rc = __get_user_pages(current, current->mm, addr, 1,
1112 			      flags, NULL, NULL, NULL);
1113 	return rc == -EHWPOISON;
1114 }
1115 
1116 /*
1117  * The atomic path to get the writable pfn which will be stored in @pfn,
1118  * true indicates success, otherwise false is returned.
1119  */
1120 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1121 			    bool write_fault, bool *writable, pfn_t *pfn)
1122 {
1123 	struct page *page[1];
1124 	int npages;
1125 
1126 	if (!(async || atomic))
1127 		return false;
1128 
1129 	/*
1130 	 * Fast pin a writable pfn only if it is a write fault request
1131 	 * or the caller allows to map a writable pfn for a read fault
1132 	 * request.
1133 	 */
1134 	if (!(write_fault || writable))
1135 		return false;
1136 
1137 	npages = __get_user_pages_fast(addr, 1, 1, page);
1138 	if (npages == 1) {
1139 		*pfn = page_to_pfn(page[0]);
1140 
1141 		if (writable)
1142 			*writable = true;
1143 		return true;
1144 	}
1145 
1146 	return false;
1147 }
1148 
1149 /*
1150  * The slow path to get the pfn of the specified host virtual address,
1151  * 1 indicates success, -errno is returned if error is detected.
1152  */
1153 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1154 			   bool *writable, pfn_t *pfn)
1155 {
1156 	struct page *page[1];
1157 	int npages = 0;
1158 
1159 	might_sleep();
1160 
1161 	if (writable)
1162 		*writable = write_fault;
1163 
1164 	if (async) {
1165 		down_read(&current->mm->mmap_sem);
1166 		npages = get_user_page_nowait(current, current->mm,
1167 					      addr, write_fault, page);
1168 		up_read(&current->mm->mmap_sem);
1169 	} else
1170 		npages = get_user_pages_fast(addr, 1, write_fault,
1171 					     page);
1172 	if (npages != 1)
1173 		return npages;
1174 
1175 	/* map read fault as writable if possible */
1176 	if (unlikely(!write_fault) && writable) {
1177 		struct page *wpage[1];
1178 
1179 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1180 		if (npages == 1) {
1181 			*writable = true;
1182 			put_page(page[0]);
1183 			page[0] = wpage[0];
1184 		}
1185 
1186 		npages = 1;
1187 	}
1188 	*pfn = page_to_pfn(page[0]);
1189 	return npages;
1190 }
1191 
1192 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1193 {
1194 	if (unlikely(!(vma->vm_flags & VM_READ)))
1195 		return false;
1196 
1197 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1198 		return false;
1199 
1200 	return true;
1201 }
1202 
1203 /*
1204  * Pin guest page in memory and return its pfn.
1205  * @addr: host virtual address which maps memory to the guest
1206  * @atomic: whether this function can sleep
1207  * @async: whether this function need to wait IO complete if the
1208  *         host page is not in the memory
1209  * @write_fault: whether we should get a writable host page
1210  * @writable: whether it allows to map a writable host page for !@write_fault
1211  *
1212  * The function will map a writable host page for these two cases:
1213  * 1): @write_fault = true
1214  * 2): @write_fault = false && @writable, @writable will tell the caller
1215  *     whether the mapping is writable.
1216  */
1217 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1218 			bool write_fault, bool *writable)
1219 {
1220 	struct vm_area_struct *vma;
1221 	pfn_t pfn = 0;
1222 	int npages;
1223 
1224 	/* we can do it either atomically or asynchronously, not both */
1225 	BUG_ON(atomic && async);
1226 
1227 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1228 		return pfn;
1229 
1230 	if (atomic)
1231 		return KVM_PFN_ERR_FAULT;
1232 
1233 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1234 	if (npages == 1)
1235 		return pfn;
1236 
1237 	down_read(&current->mm->mmap_sem);
1238 	if (npages == -EHWPOISON ||
1239 	      (!async && check_user_page_hwpoison(addr))) {
1240 		pfn = KVM_PFN_ERR_HWPOISON;
1241 		goto exit;
1242 	}
1243 
1244 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1245 
1246 	if (vma == NULL)
1247 		pfn = KVM_PFN_ERR_FAULT;
1248 	else if ((vma->vm_flags & VM_PFNMAP)) {
1249 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1250 			vma->vm_pgoff;
1251 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1252 	} else {
1253 		if (async && vma_is_valid(vma, write_fault))
1254 			*async = true;
1255 		pfn = KVM_PFN_ERR_FAULT;
1256 	}
1257 exit:
1258 	up_read(&current->mm->mmap_sem);
1259 	return pfn;
1260 }
1261 
1262 static pfn_t
1263 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1264 		     bool *async, bool write_fault, bool *writable)
1265 {
1266 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1267 
1268 	if (addr == KVM_HVA_ERR_RO_BAD)
1269 		return KVM_PFN_ERR_RO_FAULT;
1270 
1271 	if (kvm_is_error_hva(addr))
1272 		return KVM_PFN_NOSLOT;
1273 
1274 	/* Do not map writable pfn in the readonly memslot. */
1275 	if (writable && memslot_is_readonly(slot)) {
1276 		*writable = false;
1277 		writable = NULL;
1278 	}
1279 
1280 	return hva_to_pfn(addr, atomic, async, write_fault,
1281 			  writable);
1282 }
1283 
1284 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1285 			  bool write_fault, bool *writable)
1286 {
1287 	struct kvm_memory_slot *slot;
1288 
1289 	if (async)
1290 		*async = false;
1291 
1292 	slot = gfn_to_memslot(kvm, gfn);
1293 
1294 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1295 				    writable);
1296 }
1297 
1298 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1299 {
1300 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1303 
1304 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1305 		       bool write_fault, bool *writable)
1306 {
1307 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1310 
1311 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1312 {
1313 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1316 
1317 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1318 		      bool *writable)
1319 {
1320 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1321 }
1322 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1323 
1324 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1325 {
1326 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1327 }
1328 
1329 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1330 {
1331 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1332 }
1333 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1334 
1335 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1336 								  int nr_pages)
1337 {
1338 	unsigned long addr;
1339 	gfn_t entry;
1340 
1341 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1342 	if (kvm_is_error_hva(addr))
1343 		return -1;
1344 
1345 	if (entry < nr_pages)
1346 		return 0;
1347 
1348 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1349 }
1350 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1351 
1352 static struct page *kvm_pfn_to_page(pfn_t pfn)
1353 {
1354 	if (is_error_noslot_pfn(pfn))
1355 		return KVM_ERR_PTR_BAD_PAGE;
1356 
1357 	if (kvm_is_mmio_pfn(pfn)) {
1358 		WARN_ON(1);
1359 		return KVM_ERR_PTR_BAD_PAGE;
1360 	}
1361 
1362 	return pfn_to_page(pfn);
1363 }
1364 
1365 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1366 {
1367 	pfn_t pfn;
1368 
1369 	pfn = gfn_to_pfn(kvm, gfn);
1370 
1371 	return kvm_pfn_to_page(pfn);
1372 }
1373 
1374 EXPORT_SYMBOL_GPL(gfn_to_page);
1375 
1376 void kvm_release_page_clean(struct page *page)
1377 {
1378 	WARN_ON(is_error_page(page));
1379 
1380 	kvm_release_pfn_clean(page_to_pfn(page));
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1383 
1384 void kvm_release_pfn_clean(pfn_t pfn)
1385 {
1386 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1387 		put_page(pfn_to_page(pfn));
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1390 
1391 void kvm_release_page_dirty(struct page *page)
1392 {
1393 	WARN_ON(is_error_page(page));
1394 
1395 	kvm_release_pfn_dirty(page_to_pfn(page));
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1398 
1399 void kvm_release_pfn_dirty(pfn_t pfn)
1400 {
1401 	kvm_set_pfn_dirty(pfn);
1402 	kvm_release_pfn_clean(pfn);
1403 }
1404 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1405 
1406 void kvm_set_page_dirty(struct page *page)
1407 {
1408 	kvm_set_pfn_dirty(page_to_pfn(page));
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1411 
1412 void kvm_set_pfn_dirty(pfn_t pfn)
1413 {
1414 	if (!kvm_is_mmio_pfn(pfn)) {
1415 		struct page *page = pfn_to_page(pfn);
1416 		if (!PageReserved(page))
1417 			SetPageDirty(page);
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1421 
1422 void kvm_set_pfn_accessed(pfn_t pfn)
1423 {
1424 	if (!kvm_is_mmio_pfn(pfn))
1425 		mark_page_accessed(pfn_to_page(pfn));
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1428 
1429 void kvm_get_pfn(pfn_t pfn)
1430 {
1431 	if (!kvm_is_mmio_pfn(pfn))
1432 		get_page(pfn_to_page(pfn));
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1435 
1436 static int next_segment(unsigned long len, int offset)
1437 {
1438 	if (len > PAGE_SIZE - offset)
1439 		return PAGE_SIZE - offset;
1440 	else
1441 		return len;
1442 }
1443 
1444 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1445 			int len)
1446 {
1447 	int r;
1448 	unsigned long addr;
1449 
1450 	addr = gfn_to_hva_read(kvm, gfn);
1451 	if (kvm_is_error_hva(addr))
1452 		return -EFAULT;
1453 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1454 	if (r)
1455 		return -EFAULT;
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1459 
1460 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1461 {
1462 	gfn_t gfn = gpa >> PAGE_SHIFT;
1463 	int seg;
1464 	int offset = offset_in_page(gpa);
1465 	int ret;
1466 
1467 	while ((seg = next_segment(len, offset)) != 0) {
1468 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1469 		if (ret < 0)
1470 			return ret;
1471 		offset = 0;
1472 		len -= seg;
1473 		data += seg;
1474 		++gfn;
1475 	}
1476 	return 0;
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_read_guest);
1479 
1480 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1481 			  unsigned long len)
1482 {
1483 	int r;
1484 	unsigned long addr;
1485 	gfn_t gfn = gpa >> PAGE_SHIFT;
1486 	int offset = offset_in_page(gpa);
1487 
1488 	addr = gfn_to_hva_read(kvm, gfn);
1489 	if (kvm_is_error_hva(addr))
1490 		return -EFAULT;
1491 	pagefault_disable();
1492 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1493 	pagefault_enable();
1494 	if (r)
1495 		return -EFAULT;
1496 	return 0;
1497 }
1498 EXPORT_SYMBOL(kvm_read_guest_atomic);
1499 
1500 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1501 			 int offset, int len)
1502 {
1503 	int r;
1504 	unsigned long addr;
1505 
1506 	addr = gfn_to_hva(kvm, gfn);
1507 	if (kvm_is_error_hva(addr))
1508 		return -EFAULT;
1509 	r = __copy_to_user((void __user *)addr + offset, data, len);
1510 	if (r)
1511 		return -EFAULT;
1512 	mark_page_dirty(kvm, gfn);
1513 	return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1516 
1517 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1518 		    unsigned long len)
1519 {
1520 	gfn_t gfn = gpa >> PAGE_SHIFT;
1521 	int seg;
1522 	int offset = offset_in_page(gpa);
1523 	int ret;
1524 
1525 	while ((seg = next_segment(len, offset)) != 0) {
1526 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1527 		if (ret < 0)
1528 			return ret;
1529 		offset = 0;
1530 		len -= seg;
1531 		data += seg;
1532 		++gfn;
1533 	}
1534 	return 0;
1535 }
1536 
1537 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1538 			      gpa_t gpa, unsigned long len)
1539 {
1540 	struct kvm_memslots *slots = kvm_memslots(kvm);
1541 	int offset = offset_in_page(gpa);
1542 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1543 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1544 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1545 	gfn_t nr_pages_avail;
1546 
1547 	ghc->gpa = gpa;
1548 	ghc->generation = slots->generation;
1549 	ghc->len = len;
1550 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1551 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1552 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1553 		ghc->hva += offset;
1554 	} else {
1555 		/*
1556 		 * If the requested region crosses two memslots, we still
1557 		 * verify that the entire region is valid here.
1558 		 */
1559 		while (start_gfn <= end_gfn) {
1560 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1561 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1562 						   &nr_pages_avail);
1563 			if (kvm_is_error_hva(ghc->hva))
1564 				return -EFAULT;
1565 			start_gfn += nr_pages_avail;
1566 		}
1567 		/* Use the slow path for cross page reads and writes. */
1568 		ghc->memslot = NULL;
1569 	}
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1573 
1574 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1575 			   void *data, unsigned long len)
1576 {
1577 	struct kvm_memslots *slots = kvm_memslots(kvm);
1578 	int r;
1579 
1580 	BUG_ON(len > ghc->len);
1581 
1582 	if (slots->generation != ghc->generation)
1583 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1584 
1585 	if (unlikely(!ghc->memslot))
1586 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1587 
1588 	if (kvm_is_error_hva(ghc->hva))
1589 		return -EFAULT;
1590 
1591 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1592 	if (r)
1593 		return -EFAULT;
1594 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1595 
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1599 
1600 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1601 			   void *data, unsigned long len)
1602 {
1603 	struct kvm_memslots *slots = kvm_memslots(kvm);
1604 	int r;
1605 
1606 	BUG_ON(len > ghc->len);
1607 
1608 	if (slots->generation != ghc->generation)
1609 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1610 
1611 	if (unlikely(!ghc->memslot))
1612 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1613 
1614 	if (kvm_is_error_hva(ghc->hva))
1615 		return -EFAULT;
1616 
1617 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1618 	if (r)
1619 		return -EFAULT;
1620 
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1624 
1625 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1626 {
1627 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1628 				    offset, len);
1629 }
1630 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1631 
1632 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1633 {
1634 	gfn_t gfn = gpa >> PAGE_SHIFT;
1635 	int seg;
1636 	int offset = offset_in_page(gpa);
1637 	int ret;
1638 
1639         while ((seg = next_segment(len, offset)) != 0) {
1640 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1641 		if (ret < 0)
1642 			return ret;
1643 		offset = 0;
1644 		len -= seg;
1645 		++gfn;
1646 	}
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1650 
1651 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1652 			     gfn_t gfn)
1653 {
1654 	if (memslot && memslot->dirty_bitmap) {
1655 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1656 
1657 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1658 	}
1659 }
1660 
1661 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1662 {
1663 	struct kvm_memory_slot *memslot;
1664 
1665 	memslot = gfn_to_memslot(kvm, gfn);
1666 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1667 }
1668 
1669 /*
1670  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1671  */
1672 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1673 {
1674 	DEFINE_WAIT(wait);
1675 
1676 	for (;;) {
1677 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1678 
1679 		if (kvm_arch_vcpu_runnable(vcpu)) {
1680 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1681 			break;
1682 		}
1683 		if (kvm_cpu_has_pending_timer(vcpu))
1684 			break;
1685 		if (signal_pending(current))
1686 			break;
1687 
1688 		schedule();
1689 	}
1690 
1691 	finish_wait(&vcpu->wq, &wait);
1692 }
1693 
1694 #ifndef CONFIG_S390
1695 /*
1696  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1697  */
1698 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1699 {
1700 	int me;
1701 	int cpu = vcpu->cpu;
1702 	wait_queue_head_t *wqp;
1703 
1704 	wqp = kvm_arch_vcpu_wq(vcpu);
1705 	if (waitqueue_active(wqp)) {
1706 		wake_up_interruptible(wqp);
1707 		++vcpu->stat.halt_wakeup;
1708 	}
1709 
1710 	me = get_cpu();
1711 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1712 		if (kvm_arch_vcpu_should_kick(vcpu))
1713 			smp_send_reschedule(cpu);
1714 	put_cpu();
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1717 #endif /* !CONFIG_S390 */
1718 
1719 void kvm_resched(struct kvm_vcpu *vcpu)
1720 {
1721 	if (!need_resched())
1722 		return;
1723 	cond_resched();
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_resched);
1726 
1727 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1728 {
1729 	struct pid *pid;
1730 	struct task_struct *task = NULL;
1731 	bool ret = false;
1732 
1733 	rcu_read_lock();
1734 	pid = rcu_dereference(target->pid);
1735 	if (pid)
1736 		task = get_pid_task(target->pid, PIDTYPE_PID);
1737 	rcu_read_unlock();
1738 	if (!task)
1739 		return ret;
1740 	if (task->flags & PF_VCPU) {
1741 		put_task_struct(task);
1742 		return ret;
1743 	}
1744 	ret = yield_to(task, 1);
1745 	put_task_struct(task);
1746 
1747 	return ret;
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1750 
1751 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1752 /*
1753  * Helper that checks whether a VCPU is eligible for directed yield.
1754  * Most eligible candidate to yield is decided by following heuristics:
1755  *
1756  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1757  *  (preempted lock holder), indicated by @in_spin_loop.
1758  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1759  *
1760  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1761  *  chance last time (mostly it has become eligible now since we have probably
1762  *  yielded to lockholder in last iteration. This is done by toggling
1763  *  @dy_eligible each time a VCPU checked for eligibility.)
1764  *
1765  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1766  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1767  *  burning. Giving priority for a potential lock-holder increases lock
1768  *  progress.
1769  *
1770  *  Since algorithm is based on heuristics, accessing another VCPU data without
1771  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1772  *  and continue with next VCPU and so on.
1773  */
1774 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1775 {
1776 	bool eligible;
1777 
1778 	eligible = !vcpu->spin_loop.in_spin_loop ||
1779 			(vcpu->spin_loop.in_spin_loop &&
1780 			 vcpu->spin_loop.dy_eligible);
1781 
1782 	if (vcpu->spin_loop.in_spin_loop)
1783 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1784 
1785 	return eligible;
1786 }
1787 #endif
1788 
1789 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1790 {
1791 	struct kvm *kvm = me->kvm;
1792 	struct kvm_vcpu *vcpu;
1793 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1794 	int yielded = 0;
1795 	int try = 3;
1796 	int pass;
1797 	int i;
1798 
1799 	kvm_vcpu_set_in_spin_loop(me, true);
1800 	/*
1801 	 * We boost the priority of a VCPU that is runnable but not
1802 	 * currently running, because it got preempted by something
1803 	 * else and called schedule in __vcpu_run.  Hopefully that
1804 	 * VCPU is holding the lock that we need and will release it.
1805 	 * We approximate round-robin by starting at the last boosted VCPU.
1806 	 */
1807 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1808 		kvm_for_each_vcpu(i, vcpu, kvm) {
1809 			if (!pass && i <= last_boosted_vcpu) {
1810 				i = last_boosted_vcpu;
1811 				continue;
1812 			} else if (pass && i > last_boosted_vcpu)
1813 				break;
1814 			if (!ACCESS_ONCE(vcpu->preempted))
1815 				continue;
1816 			if (vcpu == me)
1817 				continue;
1818 			if (waitqueue_active(&vcpu->wq))
1819 				continue;
1820 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1821 				continue;
1822 
1823 			yielded = kvm_vcpu_yield_to(vcpu);
1824 			if (yielded > 0) {
1825 				kvm->last_boosted_vcpu = i;
1826 				break;
1827 			} else if (yielded < 0) {
1828 				try--;
1829 				if (!try)
1830 					break;
1831 			}
1832 		}
1833 	}
1834 	kvm_vcpu_set_in_spin_loop(me, false);
1835 
1836 	/* Ensure vcpu is not eligible during next spinloop */
1837 	kvm_vcpu_set_dy_eligible(me, false);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1840 
1841 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1842 {
1843 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1844 	struct page *page;
1845 
1846 	if (vmf->pgoff == 0)
1847 		page = virt_to_page(vcpu->run);
1848 #ifdef CONFIG_X86
1849 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1850 		page = virt_to_page(vcpu->arch.pio_data);
1851 #endif
1852 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1853 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1854 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1855 #endif
1856 	else
1857 		return kvm_arch_vcpu_fault(vcpu, vmf);
1858 	get_page(page);
1859 	vmf->page = page;
1860 	return 0;
1861 }
1862 
1863 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1864 	.fault = kvm_vcpu_fault,
1865 };
1866 
1867 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1868 {
1869 	vma->vm_ops = &kvm_vcpu_vm_ops;
1870 	return 0;
1871 }
1872 
1873 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1874 {
1875 	struct kvm_vcpu *vcpu = filp->private_data;
1876 
1877 	kvm_put_kvm(vcpu->kvm);
1878 	return 0;
1879 }
1880 
1881 static struct file_operations kvm_vcpu_fops = {
1882 	.release        = kvm_vcpu_release,
1883 	.unlocked_ioctl = kvm_vcpu_ioctl,
1884 #ifdef CONFIG_COMPAT
1885 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1886 #endif
1887 	.mmap           = kvm_vcpu_mmap,
1888 	.llseek		= noop_llseek,
1889 };
1890 
1891 /*
1892  * Allocates an inode for the vcpu.
1893  */
1894 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1895 {
1896 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1897 }
1898 
1899 /*
1900  * Creates some virtual cpus.  Good luck creating more than one.
1901  */
1902 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1903 {
1904 	int r;
1905 	struct kvm_vcpu *vcpu, *v;
1906 
1907 	vcpu = kvm_arch_vcpu_create(kvm, id);
1908 	if (IS_ERR(vcpu))
1909 		return PTR_ERR(vcpu);
1910 
1911 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1912 
1913 	r = kvm_arch_vcpu_setup(vcpu);
1914 	if (r)
1915 		goto vcpu_destroy;
1916 
1917 	mutex_lock(&kvm->lock);
1918 	if (!kvm_vcpu_compatible(vcpu)) {
1919 		r = -EINVAL;
1920 		goto unlock_vcpu_destroy;
1921 	}
1922 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1923 		r = -EINVAL;
1924 		goto unlock_vcpu_destroy;
1925 	}
1926 
1927 	kvm_for_each_vcpu(r, v, kvm)
1928 		if (v->vcpu_id == id) {
1929 			r = -EEXIST;
1930 			goto unlock_vcpu_destroy;
1931 		}
1932 
1933 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1934 
1935 	/* Now it's all set up, let userspace reach it */
1936 	kvm_get_kvm(kvm);
1937 	r = create_vcpu_fd(vcpu);
1938 	if (r < 0) {
1939 		kvm_put_kvm(kvm);
1940 		goto unlock_vcpu_destroy;
1941 	}
1942 
1943 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1944 	smp_wmb();
1945 	atomic_inc(&kvm->online_vcpus);
1946 
1947 	mutex_unlock(&kvm->lock);
1948 	kvm_arch_vcpu_postcreate(vcpu);
1949 	return r;
1950 
1951 unlock_vcpu_destroy:
1952 	mutex_unlock(&kvm->lock);
1953 vcpu_destroy:
1954 	kvm_arch_vcpu_destroy(vcpu);
1955 	return r;
1956 }
1957 
1958 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1959 {
1960 	if (sigset) {
1961 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1962 		vcpu->sigset_active = 1;
1963 		vcpu->sigset = *sigset;
1964 	} else
1965 		vcpu->sigset_active = 0;
1966 	return 0;
1967 }
1968 
1969 static long kvm_vcpu_ioctl(struct file *filp,
1970 			   unsigned int ioctl, unsigned long arg)
1971 {
1972 	struct kvm_vcpu *vcpu = filp->private_data;
1973 	void __user *argp = (void __user *)arg;
1974 	int r;
1975 	struct kvm_fpu *fpu = NULL;
1976 	struct kvm_sregs *kvm_sregs = NULL;
1977 
1978 	if (vcpu->kvm->mm != current->mm)
1979 		return -EIO;
1980 
1981 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1982 	/*
1983 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1984 	 * so vcpu_load() would break it.
1985 	 */
1986 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1987 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1988 #endif
1989 
1990 
1991 	r = vcpu_load(vcpu);
1992 	if (r)
1993 		return r;
1994 	switch (ioctl) {
1995 	case KVM_RUN:
1996 		r = -EINVAL;
1997 		if (arg)
1998 			goto out;
1999 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2000 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2001 		break;
2002 	case KVM_GET_REGS: {
2003 		struct kvm_regs *kvm_regs;
2004 
2005 		r = -ENOMEM;
2006 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2007 		if (!kvm_regs)
2008 			goto out;
2009 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2010 		if (r)
2011 			goto out_free1;
2012 		r = -EFAULT;
2013 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2014 			goto out_free1;
2015 		r = 0;
2016 out_free1:
2017 		kfree(kvm_regs);
2018 		break;
2019 	}
2020 	case KVM_SET_REGS: {
2021 		struct kvm_regs *kvm_regs;
2022 
2023 		r = -ENOMEM;
2024 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2025 		if (IS_ERR(kvm_regs)) {
2026 			r = PTR_ERR(kvm_regs);
2027 			goto out;
2028 		}
2029 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2030 		kfree(kvm_regs);
2031 		break;
2032 	}
2033 	case KVM_GET_SREGS: {
2034 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2035 		r = -ENOMEM;
2036 		if (!kvm_sregs)
2037 			goto out;
2038 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2039 		if (r)
2040 			goto out;
2041 		r = -EFAULT;
2042 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2043 			goto out;
2044 		r = 0;
2045 		break;
2046 	}
2047 	case KVM_SET_SREGS: {
2048 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2049 		if (IS_ERR(kvm_sregs)) {
2050 			r = PTR_ERR(kvm_sregs);
2051 			kvm_sregs = NULL;
2052 			goto out;
2053 		}
2054 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2055 		break;
2056 	}
2057 	case KVM_GET_MP_STATE: {
2058 		struct kvm_mp_state mp_state;
2059 
2060 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2061 		if (r)
2062 			goto out;
2063 		r = -EFAULT;
2064 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2065 			goto out;
2066 		r = 0;
2067 		break;
2068 	}
2069 	case KVM_SET_MP_STATE: {
2070 		struct kvm_mp_state mp_state;
2071 
2072 		r = -EFAULT;
2073 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2074 			goto out;
2075 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2076 		break;
2077 	}
2078 	case KVM_TRANSLATE: {
2079 		struct kvm_translation tr;
2080 
2081 		r = -EFAULT;
2082 		if (copy_from_user(&tr, argp, sizeof tr))
2083 			goto out;
2084 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2085 		if (r)
2086 			goto out;
2087 		r = -EFAULT;
2088 		if (copy_to_user(argp, &tr, sizeof tr))
2089 			goto out;
2090 		r = 0;
2091 		break;
2092 	}
2093 	case KVM_SET_GUEST_DEBUG: {
2094 		struct kvm_guest_debug dbg;
2095 
2096 		r = -EFAULT;
2097 		if (copy_from_user(&dbg, argp, sizeof dbg))
2098 			goto out;
2099 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2100 		break;
2101 	}
2102 	case KVM_SET_SIGNAL_MASK: {
2103 		struct kvm_signal_mask __user *sigmask_arg = argp;
2104 		struct kvm_signal_mask kvm_sigmask;
2105 		sigset_t sigset, *p;
2106 
2107 		p = NULL;
2108 		if (argp) {
2109 			r = -EFAULT;
2110 			if (copy_from_user(&kvm_sigmask, argp,
2111 					   sizeof kvm_sigmask))
2112 				goto out;
2113 			r = -EINVAL;
2114 			if (kvm_sigmask.len != sizeof sigset)
2115 				goto out;
2116 			r = -EFAULT;
2117 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2118 					   sizeof sigset))
2119 				goto out;
2120 			p = &sigset;
2121 		}
2122 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2123 		break;
2124 	}
2125 	case KVM_GET_FPU: {
2126 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2127 		r = -ENOMEM;
2128 		if (!fpu)
2129 			goto out;
2130 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2131 		if (r)
2132 			goto out;
2133 		r = -EFAULT;
2134 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2135 			goto out;
2136 		r = 0;
2137 		break;
2138 	}
2139 	case KVM_SET_FPU: {
2140 		fpu = memdup_user(argp, sizeof(*fpu));
2141 		if (IS_ERR(fpu)) {
2142 			r = PTR_ERR(fpu);
2143 			fpu = NULL;
2144 			goto out;
2145 		}
2146 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2147 		break;
2148 	}
2149 	default:
2150 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2151 	}
2152 out:
2153 	vcpu_put(vcpu);
2154 	kfree(fpu);
2155 	kfree(kvm_sregs);
2156 	return r;
2157 }
2158 
2159 #ifdef CONFIG_COMPAT
2160 static long kvm_vcpu_compat_ioctl(struct file *filp,
2161 				  unsigned int ioctl, unsigned long arg)
2162 {
2163 	struct kvm_vcpu *vcpu = filp->private_data;
2164 	void __user *argp = compat_ptr(arg);
2165 	int r;
2166 
2167 	if (vcpu->kvm->mm != current->mm)
2168 		return -EIO;
2169 
2170 	switch (ioctl) {
2171 	case KVM_SET_SIGNAL_MASK: {
2172 		struct kvm_signal_mask __user *sigmask_arg = argp;
2173 		struct kvm_signal_mask kvm_sigmask;
2174 		compat_sigset_t csigset;
2175 		sigset_t sigset;
2176 
2177 		if (argp) {
2178 			r = -EFAULT;
2179 			if (copy_from_user(&kvm_sigmask, argp,
2180 					   sizeof kvm_sigmask))
2181 				goto out;
2182 			r = -EINVAL;
2183 			if (kvm_sigmask.len != sizeof csigset)
2184 				goto out;
2185 			r = -EFAULT;
2186 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2187 					   sizeof csigset))
2188 				goto out;
2189 			sigset_from_compat(&sigset, &csigset);
2190 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2191 		} else
2192 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2193 		break;
2194 	}
2195 	default:
2196 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2197 	}
2198 
2199 out:
2200 	return r;
2201 }
2202 #endif
2203 
2204 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2205 				 int (*accessor)(struct kvm_device *dev,
2206 						 struct kvm_device_attr *attr),
2207 				 unsigned long arg)
2208 {
2209 	struct kvm_device_attr attr;
2210 
2211 	if (!accessor)
2212 		return -EPERM;
2213 
2214 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2215 		return -EFAULT;
2216 
2217 	return accessor(dev, &attr);
2218 }
2219 
2220 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2221 			     unsigned long arg)
2222 {
2223 	struct kvm_device *dev = filp->private_data;
2224 
2225 	switch (ioctl) {
2226 	case KVM_SET_DEVICE_ATTR:
2227 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2228 	case KVM_GET_DEVICE_ATTR:
2229 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2230 	case KVM_HAS_DEVICE_ATTR:
2231 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2232 	default:
2233 		if (dev->ops->ioctl)
2234 			return dev->ops->ioctl(dev, ioctl, arg);
2235 
2236 		return -ENOTTY;
2237 	}
2238 }
2239 
2240 static int kvm_device_release(struct inode *inode, struct file *filp)
2241 {
2242 	struct kvm_device *dev = filp->private_data;
2243 	struct kvm *kvm = dev->kvm;
2244 
2245 	kvm_put_kvm(kvm);
2246 	return 0;
2247 }
2248 
2249 static const struct file_operations kvm_device_fops = {
2250 	.unlocked_ioctl = kvm_device_ioctl,
2251 #ifdef CONFIG_COMPAT
2252 	.compat_ioctl = kvm_device_ioctl,
2253 #endif
2254 	.release = kvm_device_release,
2255 };
2256 
2257 struct kvm_device *kvm_device_from_filp(struct file *filp)
2258 {
2259 	if (filp->f_op != &kvm_device_fops)
2260 		return NULL;
2261 
2262 	return filp->private_data;
2263 }
2264 
2265 static int kvm_ioctl_create_device(struct kvm *kvm,
2266 				   struct kvm_create_device *cd)
2267 {
2268 	struct kvm_device_ops *ops = NULL;
2269 	struct kvm_device *dev;
2270 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2271 	int ret;
2272 
2273 	switch (cd->type) {
2274 #ifdef CONFIG_KVM_MPIC
2275 	case KVM_DEV_TYPE_FSL_MPIC_20:
2276 	case KVM_DEV_TYPE_FSL_MPIC_42:
2277 		ops = &kvm_mpic_ops;
2278 		break;
2279 #endif
2280 #ifdef CONFIG_KVM_XICS
2281 	case KVM_DEV_TYPE_XICS:
2282 		ops = &kvm_xics_ops;
2283 		break;
2284 #endif
2285 	default:
2286 		return -ENODEV;
2287 	}
2288 
2289 	if (test)
2290 		return 0;
2291 
2292 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2293 	if (!dev)
2294 		return -ENOMEM;
2295 
2296 	dev->ops = ops;
2297 	dev->kvm = kvm;
2298 
2299 	ret = ops->create(dev, cd->type);
2300 	if (ret < 0) {
2301 		kfree(dev);
2302 		return ret;
2303 	}
2304 
2305 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR);
2306 	if (ret < 0) {
2307 		ops->destroy(dev);
2308 		return ret;
2309 	}
2310 
2311 	list_add(&dev->vm_node, &kvm->devices);
2312 	kvm_get_kvm(kvm);
2313 	cd->fd = ret;
2314 	return 0;
2315 }
2316 
2317 static long kvm_vm_ioctl(struct file *filp,
2318 			   unsigned int ioctl, unsigned long arg)
2319 {
2320 	struct kvm *kvm = filp->private_data;
2321 	void __user *argp = (void __user *)arg;
2322 	int r;
2323 
2324 	if (kvm->mm != current->mm)
2325 		return -EIO;
2326 	switch (ioctl) {
2327 	case KVM_CREATE_VCPU:
2328 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2329 		break;
2330 	case KVM_SET_USER_MEMORY_REGION: {
2331 		struct kvm_userspace_memory_region kvm_userspace_mem;
2332 
2333 		r = -EFAULT;
2334 		if (copy_from_user(&kvm_userspace_mem, argp,
2335 						sizeof kvm_userspace_mem))
2336 			goto out;
2337 
2338 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2339 		break;
2340 	}
2341 	case KVM_GET_DIRTY_LOG: {
2342 		struct kvm_dirty_log log;
2343 
2344 		r = -EFAULT;
2345 		if (copy_from_user(&log, argp, sizeof log))
2346 			goto out;
2347 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2348 		break;
2349 	}
2350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2351 	case KVM_REGISTER_COALESCED_MMIO: {
2352 		struct kvm_coalesced_mmio_zone zone;
2353 		r = -EFAULT;
2354 		if (copy_from_user(&zone, argp, sizeof zone))
2355 			goto out;
2356 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2357 		break;
2358 	}
2359 	case KVM_UNREGISTER_COALESCED_MMIO: {
2360 		struct kvm_coalesced_mmio_zone zone;
2361 		r = -EFAULT;
2362 		if (copy_from_user(&zone, argp, sizeof zone))
2363 			goto out;
2364 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2365 		break;
2366 	}
2367 #endif
2368 	case KVM_IRQFD: {
2369 		struct kvm_irqfd data;
2370 
2371 		r = -EFAULT;
2372 		if (copy_from_user(&data, argp, sizeof data))
2373 			goto out;
2374 		r = kvm_irqfd(kvm, &data);
2375 		break;
2376 	}
2377 	case KVM_IOEVENTFD: {
2378 		struct kvm_ioeventfd data;
2379 
2380 		r = -EFAULT;
2381 		if (copy_from_user(&data, argp, sizeof data))
2382 			goto out;
2383 		r = kvm_ioeventfd(kvm, &data);
2384 		break;
2385 	}
2386 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2387 	case KVM_SET_BOOT_CPU_ID:
2388 		r = 0;
2389 		mutex_lock(&kvm->lock);
2390 		if (atomic_read(&kvm->online_vcpus) != 0)
2391 			r = -EBUSY;
2392 		else
2393 			kvm->bsp_vcpu_id = arg;
2394 		mutex_unlock(&kvm->lock);
2395 		break;
2396 #endif
2397 #ifdef CONFIG_HAVE_KVM_MSI
2398 	case KVM_SIGNAL_MSI: {
2399 		struct kvm_msi msi;
2400 
2401 		r = -EFAULT;
2402 		if (copy_from_user(&msi, argp, sizeof msi))
2403 			goto out;
2404 		r = kvm_send_userspace_msi(kvm, &msi);
2405 		break;
2406 	}
2407 #endif
2408 #ifdef __KVM_HAVE_IRQ_LINE
2409 	case KVM_IRQ_LINE_STATUS:
2410 	case KVM_IRQ_LINE: {
2411 		struct kvm_irq_level irq_event;
2412 
2413 		r = -EFAULT;
2414 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2415 			goto out;
2416 
2417 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2418 					ioctl == KVM_IRQ_LINE_STATUS);
2419 		if (r)
2420 			goto out;
2421 
2422 		r = -EFAULT;
2423 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2424 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2425 				goto out;
2426 		}
2427 
2428 		r = 0;
2429 		break;
2430 	}
2431 #endif
2432 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2433 	case KVM_SET_GSI_ROUTING: {
2434 		struct kvm_irq_routing routing;
2435 		struct kvm_irq_routing __user *urouting;
2436 		struct kvm_irq_routing_entry *entries;
2437 
2438 		r = -EFAULT;
2439 		if (copy_from_user(&routing, argp, sizeof(routing)))
2440 			goto out;
2441 		r = -EINVAL;
2442 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2443 			goto out;
2444 		if (routing.flags)
2445 			goto out;
2446 		r = -ENOMEM;
2447 		entries = vmalloc(routing.nr * sizeof(*entries));
2448 		if (!entries)
2449 			goto out;
2450 		r = -EFAULT;
2451 		urouting = argp;
2452 		if (copy_from_user(entries, urouting->entries,
2453 				   routing.nr * sizeof(*entries)))
2454 			goto out_free_irq_routing;
2455 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2456 					routing.flags);
2457 	out_free_irq_routing:
2458 		vfree(entries);
2459 		break;
2460 	}
2461 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2462 	case KVM_CREATE_DEVICE: {
2463 		struct kvm_create_device cd;
2464 
2465 		r = -EFAULT;
2466 		if (copy_from_user(&cd, argp, sizeof(cd)))
2467 			goto out;
2468 
2469 		r = kvm_ioctl_create_device(kvm, &cd);
2470 		if (r)
2471 			goto out;
2472 
2473 		r = -EFAULT;
2474 		if (copy_to_user(argp, &cd, sizeof(cd)))
2475 			goto out;
2476 
2477 		r = 0;
2478 		break;
2479 	}
2480 	default:
2481 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2482 		if (r == -ENOTTY)
2483 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2484 	}
2485 out:
2486 	return r;
2487 }
2488 
2489 #ifdef CONFIG_COMPAT
2490 struct compat_kvm_dirty_log {
2491 	__u32 slot;
2492 	__u32 padding1;
2493 	union {
2494 		compat_uptr_t dirty_bitmap; /* one bit per page */
2495 		__u64 padding2;
2496 	};
2497 };
2498 
2499 static long kvm_vm_compat_ioctl(struct file *filp,
2500 			   unsigned int ioctl, unsigned long arg)
2501 {
2502 	struct kvm *kvm = filp->private_data;
2503 	int r;
2504 
2505 	if (kvm->mm != current->mm)
2506 		return -EIO;
2507 	switch (ioctl) {
2508 	case KVM_GET_DIRTY_LOG: {
2509 		struct compat_kvm_dirty_log compat_log;
2510 		struct kvm_dirty_log log;
2511 
2512 		r = -EFAULT;
2513 		if (copy_from_user(&compat_log, (void __user *)arg,
2514 				   sizeof(compat_log)))
2515 			goto out;
2516 		log.slot	 = compat_log.slot;
2517 		log.padding1	 = compat_log.padding1;
2518 		log.padding2	 = compat_log.padding2;
2519 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2520 
2521 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2522 		break;
2523 	}
2524 	default:
2525 		r = kvm_vm_ioctl(filp, ioctl, arg);
2526 	}
2527 
2528 out:
2529 	return r;
2530 }
2531 #endif
2532 
2533 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2534 {
2535 	struct page *page[1];
2536 	unsigned long addr;
2537 	int npages;
2538 	gfn_t gfn = vmf->pgoff;
2539 	struct kvm *kvm = vma->vm_file->private_data;
2540 
2541 	addr = gfn_to_hva(kvm, gfn);
2542 	if (kvm_is_error_hva(addr))
2543 		return VM_FAULT_SIGBUS;
2544 
2545 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2546 				NULL);
2547 	if (unlikely(npages != 1))
2548 		return VM_FAULT_SIGBUS;
2549 
2550 	vmf->page = page[0];
2551 	return 0;
2552 }
2553 
2554 static const struct vm_operations_struct kvm_vm_vm_ops = {
2555 	.fault = kvm_vm_fault,
2556 };
2557 
2558 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2559 {
2560 	vma->vm_ops = &kvm_vm_vm_ops;
2561 	return 0;
2562 }
2563 
2564 static struct file_operations kvm_vm_fops = {
2565 	.release        = kvm_vm_release,
2566 	.unlocked_ioctl = kvm_vm_ioctl,
2567 #ifdef CONFIG_COMPAT
2568 	.compat_ioctl   = kvm_vm_compat_ioctl,
2569 #endif
2570 	.mmap           = kvm_vm_mmap,
2571 	.llseek		= noop_llseek,
2572 };
2573 
2574 static int kvm_dev_ioctl_create_vm(unsigned long type)
2575 {
2576 	int r;
2577 	struct kvm *kvm;
2578 
2579 	kvm = kvm_create_vm(type);
2580 	if (IS_ERR(kvm))
2581 		return PTR_ERR(kvm);
2582 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2583 	r = kvm_coalesced_mmio_init(kvm);
2584 	if (r < 0) {
2585 		kvm_put_kvm(kvm);
2586 		return r;
2587 	}
2588 #endif
2589 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2590 	if (r < 0)
2591 		kvm_put_kvm(kvm);
2592 
2593 	return r;
2594 }
2595 
2596 static long kvm_dev_ioctl_check_extension_generic(long arg)
2597 {
2598 	switch (arg) {
2599 	case KVM_CAP_USER_MEMORY:
2600 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2601 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2602 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2603 	case KVM_CAP_SET_BOOT_CPU_ID:
2604 #endif
2605 	case KVM_CAP_INTERNAL_ERROR_DATA:
2606 #ifdef CONFIG_HAVE_KVM_MSI
2607 	case KVM_CAP_SIGNAL_MSI:
2608 #endif
2609 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2610 	case KVM_CAP_IRQFD_RESAMPLE:
2611 #endif
2612 		return 1;
2613 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2614 	case KVM_CAP_IRQ_ROUTING:
2615 		return KVM_MAX_IRQ_ROUTES;
2616 #endif
2617 	default:
2618 		break;
2619 	}
2620 	return kvm_dev_ioctl_check_extension(arg);
2621 }
2622 
2623 static long kvm_dev_ioctl(struct file *filp,
2624 			  unsigned int ioctl, unsigned long arg)
2625 {
2626 	long r = -EINVAL;
2627 
2628 	switch (ioctl) {
2629 	case KVM_GET_API_VERSION:
2630 		r = -EINVAL;
2631 		if (arg)
2632 			goto out;
2633 		r = KVM_API_VERSION;
2634 		break;
2635 	case KVM_CREATE_VM:
2636 		r = kvm_dev_ioctl_create_vm(arg);
2637 		break;
2638 	case KVM_CHECK_EXTENSION:
2639 		r = kvm_dev_ioctl_check_extension_generic(arg);
2640 		break;
2641 	case KVM_GET_VCPU_MMAP_SIZE:
2642 		r = -EINVAL;
2643 		if (arg)
2644 			goto out;
2645 		r = PAGE_SIZE;     /* struct kvm_run */
2646 #ifdef CONFIG_X86
2647 		r += PAGE_SIZE;    /* pio data page */
2648 #endif
2649 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2650 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2651 #endif
2652 		break;
2653 	case KVM_TRACE_ENABLE:
2654 	case KVM_TRACE_PAUSE:
2655 	case KVM_TRACE_DISABLE:
2656 		r = -EOPNOTSUPP;
2657 		break;
2658 	default:
2659 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2660 	}
2661 out:
2662 	return r;
2663 }
2664 
2665 static struct file_operations kvm_chardev_ops = {
2666 	.unlocked_ioctl = kvm_dev_ioctl,
2667 	.compat_ioctl   = kvm_dev_ioctl,
2668 	.llseek		= noop_llseek,
2669 };
2670 
2671 static struct miscdevice kvm_dev = {
2672 	KVM_MINOR,
2673 	"kvm",
2674 	&kvm_chardev_ops,
2675 };
2676 
2677 static void hardware_enable_nolock(void *junk)
2678 {
2679 	int cpu = raw_smp_processor_id();
2680 	int r;
2681 
2682 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2683 		return;
2684 
2685 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2686 
2687 	r = kvm_arch_hardware_enable(NULL);
2688 
2689 	if (r) {
2690 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2691 		atomic_inc(&hardware_enable_failed);
2692 		printk(KERN_INFO "kvm: enabling virtualization on "
2693 				 "CPU%d failed\n", cpu);
2694 	}
2695 }
2696 
2697 static void hardware_enable(void *junk)
2698 {
2699 	raw_spin_lock(&kvm_lock);
2700 	hardware_enable_nolock(junk);
2701 	raw_spin_unlock(&kvm_lock);
2702 }
2703 
2704 static void hardware_disable_nolock(void *junk)
2705 {
2706 	int cpu = raw_smp_processor_id();
2707 
2708 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2709 		return;
2710 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2711 	kvm_arch_hardware_disable(NULL);
2712 }
2713 
2714 static void hardware_disable(void *junk)
2715 {
2716 	raw_spin_lock(&kvm_lock);
2717 	hardware_disable_nolock(junk);
2718 	raw_spin_unlock(&kvm_lock);
2719 }
2720 
2721 static void hardware_disable_all_nolock(void)
2722 {
2723 	BUG_ON(!kvm_usage_count);
2724 
2725 	kvm_usage_count--;
2726 	if (!kvm_usage_count)
2727 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2728 }
2729 
2730 static void hardware_disable_all(void)
2731 {
2732 	raw_spin_lock(&kvm_lock);
2733 	hardware_disable_all_nolock();
2734 	raw_spin_unlock(&kvm_lock);
2735 }
2736 
2737 static int hardware_enable_all(void)
2738 {
2739 	int r = 0;
2740 
2741 	raw_spin_lock(&kvm_lock);
2742 
2743 	kvm_usage_count++;
2744 	if (kvm_usage_count == 1) {
2745 		atomic_set(&hardware_enable_failed, 0);
2746 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2747 
2748 		if (atomic_read(&hardware_enable_failed)) {
2749 			hardware_disable_all_nolock();
2750 			r = -EBUSY;
2751 		}
2752 	}
2753 
2754 	raw_spin_unlock(&kvm_lock);
2755 
2756 	return r;
2757 }
2758 
2759 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2760 			   void *v)
2761 {
2762 	int cpu = (long)v;
2763 
2764 	if (!kvm_usage_count)
2765 		return NOTIFY_OK;
2766 
2767 	val &= ~CPU_TASKS_FROZEN;
2768 	switch (val) {
2769 	case CPU_DYING:
2770 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2771 		       cpu);
2772 		hardware_disable(NULL);
2773 		break;
2774 	case CPU_STARTING:
2775 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2776 		       cpu);
2777 		hardware_enable(NULL);
2778 		break;
2779 	}
2780 	return NOTIFY_OK;
2781 }
2782 
2783 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2784 		      void *v)
2785 {
2786 	/*
2787 	 * Some (well, at least mine) BIOSes hang on reboot if
2788 	 * in vmx root mode.
2789 	 *
2790 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2791 	 */
2792 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2793 	kvm_rebooting = true;
2794 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2795 	return NOTIFY_OK;
2796 }
2797 
2798 static struct notifier_block kvm_reboot_notifier = {
2799 	.notifier_call = kvm_reboot,
2800 	.priority = 0,
2801 };
2802 
2803 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2804 {
2805 	int i;
2806 
2807 	for (i = 0; i < bus->dev_count; i++) {
2808 		struct kvm_io_device *pos = bus->range[i].dev;
2809 
2810 		kvm_iodevice_destructor(pos);
2811 	}
2812 	kfree(bus);
2813 }
2814 
2815 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2816 {
2817 	const struct kvm_io_range *r1 = p1;
2818 	const struct kvm_io_range *r2 = p2;
2819 
2820 	if (r1->addr < r2->addr)
2821 		return -1;
2822 	if (r1->addr + r1->len > r2->addr + r2->len)
2823 		return 1;
2824 	return 0;
2825 }
2826 
2827 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2828 			  gpa_t addr, int len)
2829 {
2830 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2831 		.addr = addr,
2832 		.len = len,
2833 		.dev = dev,
2834 	};
2835 
2836 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2837 		kvm_io_bus_sort_cmp, NULL);
2838 
2839 	return 0;
2840 }
2841 
2842 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2843 			     gpa_t addr, int len)
2844 {
2845 	struct kvm_io_range *range, key;
2846 	int off;
2847 
2848 	key = (struct kvm_io_range) {
2849 		.addr = addr,
2850 		.len = len,
2851 	};
2852 
2853 	range = bsearch(&key, bus->range, bus->dev_count,
2854 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2855 	if (range == NULL)
2856 		return -ENOENT;
2857 
2858 	off = range - bus->range;
2859 
2860 	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2861 		off--;
2862 
2863 	return off;
2864 }
2865 
2866 /* kvm_io_bus_write - called under kvm->slots_lock */
2867 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2868 		     int len, const void *val)
2869 {
2870 	int idx;
2871 	struct kvm_io_bus *bus;
2872 	struct kvm_io_range range;
2873 
2874 	range = (struct kvm_io_range) {
2875 		.addr = addr,
2876 		.len = len,
2877 	};
2878 
2879 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2880 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2881 	if (idx < 0)
2882 		return -EOPNOTSUPP;
2883 
2884 	while (idx < bus->dev_count &&
2885 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2886 		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2887 			return 0;
2888 		idx++;
2889 	}
2890 
2891 	return -EOPNOTSUPP;
2892 }
2893 
2894 /* kvm_io_bus_read - called under kvm->slots_lock */
2895 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2896 		    int len, void *val)
2897 {
2898 	int idx;
2899 	struct kvm_io_bus *bus;
2900 	struct kvm_io_range range;
2901 
2902 	range = (struct kvm_io_range) {
2903 		.addr = addr,
2904 		.len = len,
2905 	};
2906 
2907 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2908 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2909 	if (idx < 0)
2910 		return -EOPNOTSUPP;
2911 
2912 	while (idx < bus->dev_count &&
2913 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2914 		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2915 			return 0;
2916 		idx++;
2917 	}
2918 
2919 	return -EOPNOTSUPP;
2920 }
2921 
2922 /* Caller must hold slots_lock. */
2923 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2924 			    int len, struct kvm_io_device *dev)
2925 {
2926 	struct kvm_io_bus *new_bus, *bus;
2927 
2928 	bus = kvm->buses[bus_idx];
2929 	/* exclude ioeventfd which is limited by maximum fd */
2930 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2931 		return -ENOSPC;
2932 
2933 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2934 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2935 	if (!new_bus)
2936 		return -ENOMEM;
2937 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2938 	       sizeof(struct kvm_io_range)));
2939 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2940 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2941 	synchronize_srcu_expedited(&kvm->srcu);
2942 	kfree(bus);
2943 
2944 	return 0;
2945 }
2946 
2947 /* Caller must hold slots_lock. */
2948 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2949 			      struct kvm_io_device *dev)
2950 {
2951 	int i, r;
2952 	struct kvm_io_bus *new_bus, *bus;
2953 
2954 	bus = kvm->buses[bus_idx];
2955 	r = -ENOENT;
2956 	for (i = 0; i < bus->dev_count; i++)
2957 		if (bus->range[i].dev == dev) {
2958 			r = 0;
2959 			break;
2960 		}
2961 
2962 	if (r)
2963 		return r;
2964 
2965 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2966 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2967 	if (!new_bus)
2968 		return -ENOMEM;
2969 
2970 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2971 	new_bus->dev_count--;
2972 	memcpy(new_bus->range + i, bus->range + i + 1,
2973 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2974 
2975 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2976 	synchronize_srcu_expedited(&kvm->srcu);
2977 	kfree(bus);
2978 	return r;
2979 }
2980 
2981 static struct notifier_block kvm_cpu_notifier = {
2982 	.notifier_call = kvm_cpu_hotplug,
2983 };
2984 
2985 static int vm_stat_get(void *_offset, u64 *val)
2986 {
2987 	unsigned offset = (long)_offset;
2988 	struct kvm *kvm;
2989 
2990 	*val = 0;
2991 	raw_spin_lock(&kvm_lock);
2992 	list_for_each_entry(kvm, &vm_list, vm_list)
2993 		*val += *(u32 *)((void *)kvm + offset);
2994 	raw_spin_unlock(&kvm_lock);
2995 	return 0;
2996 }
2997 
2998 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2999 
3000 static int vcpu_stat_get(void *_offset, u64 *val)
3001 {
3002 	unsigned offset = (long)_offset;
3003 	struct kvm *kvm;
3004 	struct kvm_vcpu *vcpu;
3005 	int i;
3006 
3007 	*val = 0;
3008 	raw_spin_lock(&kvm_lock);
3009 	list_for_each_entry(kvm, &vm_list, vm_list)
3010 		kvm_for_each_vcpu(i, vcpu, kvm)
3011 			*val += *(u32 *)((void *)vcpu + offset);
3012 
3013 	raw_spin_unlock(&kvm_lock);
3014 	return 0;
3015 }
3016 
3017 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3018 
3019 static const struct file_operations *stat_fops[] = {
3020 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3021 	[KVM_STAT_VM]   = &vm_stat_fops,
3022 };
3023 
3024 static int kvm_init_debug(void)
3025 {
3026 	int r = -EFAULT;
3027 	struct kvm_stats_debugfs_item *p;
3028 
3029 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3030 	if (kvm_debugfs_dir == NULL)
3031 		goto out;
3032 
3033 	for (p = debugfs_entries; p->name; ++p) {
3034 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3035 						(void *)(long)p->offset,
3036 						stat_fops[p->kind]);
3037 		if (p->dentry == NULL)
3038 			goto out_dir;
3039 	}
3040 
3041 	return 0;
3042 
3043 out_dir:
3044 	debugfs_remove_recursive(kvm_debugfs_dir);
3045 out:
3046 	return r;
3047 }
3048 
3049 static void kvm_exit_debug(void)
3050 {
3051 	struct kvm_stats_debugfs_item *p;
3052 
3053 	for (p = debugfs_entries; p->name; ++p)
3054 		debugfs_remove(p->dentry);
3055 	debugfs_remove(kvm_debugfs_dir);
3056 }
3057 
3058 static int kvm_suspend(void)
3059 {
3060 	if (kvm_usage_count)
3061 		hardware_disable_nolock(NULL);
3062 	return 0;
3063 }
3064 
3065 static void kvm_resume(void)
3066 {
3067 	if (kvm_usage_count) {
3068 		WARN_ON(raw_spin_is_locked(&kvm_lock));
3069 		hardware_enable_nolock(NULL);
3070 	}
3071 }
3072 
3073 static struct syscore_ops kvm_syscore_ops = {
3074 	.suspend = kvm_suspend,
3075 	.resume = kvm_resume,
3076 };
3077 
3078 static inline
3079 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3080 {
3081 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3082 }
3083 
3084 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3085 {
3086 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3087 	if (vcpu->preempted)
3088 		vcpu->preempted = false;
3089 
3090 	kvm_arch_vcpu_load(vcpu, cpu);
3091 }
3092 
3093 static void kvm_sched_out(struct preempt_notifier *pn,
3094 			  struct task_struct *next)
3095 {
3096 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3097 
3098 	if (current->state == TASK_RUNNING)
3099 		vcpu->preempted = true;
3100 	kvm_arch_vcpu_put(vcpu);
3101 }
3102 
3103 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3104 		  struct module *module)
3105 {
3106 	int r;
3107 	int cpu;
3108 
3109 	r = kvm_arch_init(opaque);
3110 	if (r)
3111 		goto out_fail;
3112 
3113 	/*
3114 	 * kvm_arch_init makes sure there's at most one caller
3115 	 * for architectures that support multiple implementations,
3116 	 * like intel and amd on x86.
3117 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3118 	 * conflicts in case kvm is already setup for another implementation.
3119 	 */
3120 	r = kvm_irqfd_init();
3121 	if (r)
3122 		goto out_irqfd;
3123 
3124 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3125 		r = -ENOMEM;
3126 		goto out_free_0;
3127 	}
3128 
3129 	r = kvm_arch_hardware_setup();
3130 	if (r < 0)
3131 		goto out_free_0a;
3132 
3133 	for_each_online_cpu(cpu) {
3134 		smp_call_function_single(cpu,
3135 				kvm_arch_check_processor_compat,
3136 				&r, 1);
3137 		if (r < 0)
3138 			goto out_free_1;
3139 	}
3140 
3141 	r = register_cpu_notifier(&kvm_cpu_notifier);
3142 	if (r)
3143 		goto out_free_2;
3144 	register_reboot_notifier(&kvm_reboot_notifier);
3145 
3146 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3147 	if (!vcpu_align)
3148 		vcpu_align = __alignof__(struct kvm_vcpu);
3149 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3150 					   0, NULL);
3151 	if (!kvm_vcpu_cache) {
3152 		r = -ENOMEM;
3153 		goto out_free_3;
3154 	}
3155 
3156 	r = kvm_async_pf_init();
3157 	if (r)
3158 		goto out_free;
3159 
3160 	kvm_chardev_ops.owner = module;
3161 	kvm_vm_fops.owner = module;
3162 	kvm_vcpu_fops.owner = module;
3163 
3164 	r = misc_register(&kvm_dev);
3165 	if (r) {
3166 		printk(KERN_ERR "kvm: misc device register failed\n");
3167 		goto out_unreg;
3168 	}
3169 
3170 	register_syscore_ops(&kvm_syscore_ops);
3171 
3172 	kvm_preempt_ops.sched_in = kvm_sched_in;
3173 	kvm_preempt_ops.sched_out = kvm_sched_out;
3174 
3175 	r = kvm_init_debug();
3176 	if (r) {
3177 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3178 		goto out_undebugfs;
3179 	}
3180 
3181 	return 0;
3182 
3183 out_undebugfs:
3184 	unregister_syscore_ops(&kvm_syscore_ops);
3185 	misc_deregister(&kvm_dev);
3186 out_unreg:
3187 	kvm_async_pf_deinit();
3188 out_free:
3189 	kmem_cache_destroy(kvm_vcpu_cache);
3190 out_free_3:
3191 	unregister_reboot_notifier(&kvm_reboot_notifier);
3192 	unregister_cpu_notifier(&kvm_cpu_notifier);
3193 out_free_2:
3194 out_free_1:
3195 	kvm_arch_hardware_unsetup();
3196 out_free_0a:
3197 	free_cpumask_var(cpus_hardware_enabled);
3198 out_free_0:
3199 	kvm_irqfd_exit();
3200 out_irqfd:
3201 	kvm_arch_exit();
3202 out_fail:
3203 	return r;
3204 }
3205 EXPORT_SYMBOL_GPL(kvm_init);
3206 
3207 void kvm_exit(void)
3208 {
3209 	kvm_exit_debug();
3210 	misc_deregister(&kvm_dev);
3211 	kmem_cache_destroy(kvm_vcpu_cache);
3212 	kvm_async_pf_deinit();
3213 	unregister_syscore_ops(&kvm_syscore_ops);
3214 	unregister_reboot_notifier(&kvm_reboot_notifier);
3215 	unregister_cpu_notifier(&kvm_cpu_notifier);
3216 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3217 	kvm_arch_hardware_unsetup();
3218 	kvm_arch_exit();
3219 	kvm_irqfd_exit();
3220 	free_cpumask_var(cpus_hardware_enabled);
3221 }
3222 EXPORT_SYMBOL_GPL(kvm_exit);
3223