xref: /openbmc/linux/virt/kvm/kvm_main.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "mmu_lock.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71 
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74 
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89 
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94 
95 /*
96  * Ordering of locks:
97  *
98  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100 
101 DEFINE_MUTEX(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104 
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108 
109 static struct kmem_cache *kvm_vcpu_cache;
110 
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113 
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 						   unsigned long start, unsigned long end)
160 {
161 }
162 
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 		return false;
173 
174 	return is_zone_device_page(pfn_to_page(pfn));
175 }
176 
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 	/*
180 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 	 * perspective they are "normal" pages, albeit with slightly different
182 	 * usage rules.
183 	 */
184 	if (pfn_valid(pfn))
185 		return PageReserved(pfn_to_page(pfn)) &&
186 		       !is_zero_pfn(pfn) &&
187 		       !kvm_is_zone_device_pfn(pfn);
188 
189 	return true;
190 }
191 
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194 	struct page *page = pfn_to_page(pfn);
195 
196 	if (!PageTransCompoundMap(page))
197 		return false;
198 
199 	return is_transparent_hugepage(compound_head(page));
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_flush(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250 	if (unlikely(!cpus))
251 		cpus = cpu_online_mask;
252 
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_flush, NULL, wait);
257 	return true;
258 }
259 
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 				 struct kvm_vcpu *except,
262 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 	int i, cpu, me;
265 	struct kvm_vcpu *vcpu;
266 	bool called;
267 
268 	me = get_cpu();
269 
270 	kvm_for_each_vcpu(i, vcpu, kvm) {
271 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 		    vcpu == except)
273 			continue;
274 
275 		kvm_make_request(req, vcpu);
276 		cpu = vcpu->cpu;
277 
278 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 			continue;
280 
281 		if (tmp != NULL && cpu != -1 && cpu != me &&
282 		    kvm_request_needs_ipi(vcpu, req))
283 			__cpumask_set_cpu(cpu, tmp);
284 	}
285 
286 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 				      struct kvm_vcpu *except)
294 {
295 	cpumask_var_t cpus;
296 	bool called;
297 
298 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 
300 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 
302 	free_cpumask_var(cpus);
303 	return called;
304 }
305 
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311 
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315 	/*
316 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 	 * kvm_make_all_cpus_request.
318 	 */
319 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320 
321 	/*
322 	 * We want to publish modifications to the page tables before reading
323 	 * mode. Pairs with a memory barrier in arch-specific code.
324 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 	 *
328 	 * There is already an smp_mb__after_atomic() before
329 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 	 * barrier here.
331 	 */
332 	if (!kvm_arch_flush_remote_tlb(kvm)
333 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 		++kvm->stat.remote_tlb_flush;
335 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339 
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344 
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347 					       gfp_t gfp_flags)
348 {
349 	gfp_flags |= mc->gfp_zero;
350 
351 	if (mc->kmem_cache)
352 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353 	else
354 		return (void *)__get_free_page(gfp_flags);
355 }
356 
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359 	void *obj;
360 
361 	if (mc->nobjs >= min)
362 		return 0;
363 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365 		if (!obj)
366 			return mc->nobjs >= min ? 0 : -ENOMEM;
367 		mc->objects[mc->nobjs++] = obj;
368 	}
369 	return 0;
370 }
371 
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374 	return mc->nobjs;
375 }
376 
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379 	while (mc->nobjs) {
380 		if (mc->kmem_cache)
381 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382 		else
383 			free_page((unsigned long)mc->objects[--mc->nobjs]);
384 	}
385 }
386 
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389 	void *p;
390 
391 	if (WARN_ON(!mc->nobjs))
392 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393 	else
394 		p = mc->objects[--mc->nobjs];
395 	BUG_ON(!p);
396 	return p;
397 }
398 #endif
399 
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402 	mutex_init(&vcpu->mutex);
403 	vcpu->cpu = -1;
404 	vcpu->kvm = kvm;
405 	vcpu->vcpu_id = id;
406 	vcpu->pid = NULL;
407 	rcuwait_init(&vcpu->wait);
408 	kvm_async_pf_vcpu_init(vcpu);
409 
410 	vcpu->pre_pcpu = -1;
411 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412 
413 	kvm_vcpu_set_in_spin_loop(vcpu, false);
414 	kvm_vcpu_set_dy_eligible(vcpu, false);
415 	vcpu->preempted = false;
416 	vcpu->ready = false;
417 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419 
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422 	kvm_dirty_ring_free(&vcpu->dirty_ring);
423 	kvm_arch_vcpu_destroy(vcpu);
424 
425 	/*
426 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427 	 * the vcpu->pid pointer, and at destruction time all file descriptors
428 	 * are already gone.
429 	 */
430 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
431 
432 	free_page((unsigned long)vcpu->run);
433 	kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436 
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440 	return container_of(mn, struct kvm, mmu_notifier);
441 }
442 
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444 					      struct mm_struct *mm,
445 					      unsigned long start, unsigned long end)
446 {
447 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 	int idx;
449 
450 	idx = srcu_read_lock(&kvm->srcu);
451 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452 	srcu_read_unlock(&kvm->srcu, idx);
453 }
454 
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456 
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458 			     unsigned long end);
459 
460 struct kvm_hva_range {
461 	unsigned long start;
462 	unsigned long end;
463 	pte_t pte;
464 	hva_handler_t handler;
465 	on_lock_fn_t on_lock;
466 	bool flush_on_ret;
467 	bool may_block;
468 };
469 
470 /*
471  * Use a dedicated stub instead of NULL to indicate that there is no callback
472  * function/handler.  The compiler technically can't guarantee that a real
473  * function will have a non-zero address, and so it will generate code to
474  * check for !NULL, whereas comparing against a stub will be elided at compile
475  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476  */
477 static void kvm_null_fn(void)
478 {
479 
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482 
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484 						  const struct kvm_hva_range *range)
485 {
486 	bool ret = false, locked = false;
487 	struct kvm_gfn_range gfn_range;
488 	struct kvm_memory_slot *slot;
489 	struct kvm_memslots *slots;
490 	int i, idx;
491 
492 	/* A null handler is allowed if and only if on_lock() is provided. */
493 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494 			 IS_KVM_NULL_FN(range->handler)))
495 		return 0;
496 
497 	idx = srcu_read_lock(&kvm->srcu);
498 
499 	/* The on_lock() path does not yet support lock elision. */
500 	if (!IS_KVM_NULL_FN(range->on_lock)) {
501 		locked = true;
502 		KVM_MMU_LOCK(kvm);
503 
504 		range->on_lock(kvm, range->start, range->end);
505 
506 		if (IS_KVM_NULL_FN(range->handler))
507 			goto out_unlock;
508 	}
509 
510 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511 		slots = __kvm_memslots(kvm, i);
512 		kvm_for_each_memslot(slot, slots) {
513 			unsigned long hva_start, hva_end;
514 
515 			hva_start = max(range->start, slot->userspace_addr);
516 			hva_end = min(range->end, slot->userspace_addr +
517 						  (slot->npages << PAGE_SHIFT));
518 			if (hva_start >= hva_end)
519 				continue;
520 
521 			/*
522 			 * To optimize for the likely case where the address
523 			 * range is covered by zero or one memslots, don't
524 			 * bother making these conditional (to avoid writes on
525 			 * the second or later invocation of the handler).
526 			 */
527 			gfn_range.pte = range->pte;
528 			gfn_range.may_block = range->may_block;
529 
530 			/*
531 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
532 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533 			 */
534 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536 			gfn_range.slot = slot;
537 
538 			if (!locked) {
539 				locked = true;
540 				KVM_MMU_LOCK(kvm);
541 			}
542 			ret |= range->handler(kvm, &gfn_range);
543 		}
544 	}
545 
546 	if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547 		kvm_flush_remote_tlbs(kvm);
548 
549 out_unlock:
550 	if (locked)
551 		KVM_MMU_UNLOCK(kvm);
552 
553 	srcu_read_unlock(&kvm->srcu, idx);
554 
555 	/* The notifiers are averse to booleans. :-( */
556 	return (int)ret;
557 }
558 
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560 						unsigned long start,
561 						unsigned long end,
562 						pte_t pte,
563 						hva_handler_t handler)
564 {
565 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
566 	const struct kvm_hva_range range = {
567 		.start		= start,
568 		.end		= end,
569 		.pte		= pte,
570 		.handler	= handler,
571 		.on_lock	= (void *)kvm_null_fn,
572 		.flush_on_ret	= true,
573 		.may_block	= false,
574 	};
575 
576 	return __kvm_handle_hva_range(kvm, &range);
577 }
578 
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580 							 unsigned long start,
581 							 unsigned long end,
582 							 hva_handler_t handler)
583 {
584 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
585 	const struct kvm_hva_range range = {
586 		.start		= start,
587 		.end		= end,
588 		.pte		= __pte(0),
589 		.handler	= handler,
590 		.on_lock	= (void *)kvm_null_fn,
591 		.flush_on_ret	= false,
592 		.may_block	= false,
593 	};
594 
595 	return __kvm_handle_hva_range(kvm, &range);
596 }
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598 					struct mm_struct *mm,
599 					unsigned long address,
600 					pte_t pte)
601 {
602 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
603 
604 	trace_kvm_set_spte_hva(address);
605 
606 	/*
607 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608 	 * and so always runs with an elevated notifier count.  This obviates
609 	 * the need to bump the sequence count.
610 	 */
611 	WARN_ON_ONCE(!kvm->mmu_notifier_count);
612 
613 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
614 }
615 
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617 				   unsigned long end)
618 {
619 	/*
620 	 * The count increase must become visible at unlock time as no
621 	 * spte can be established without taking the mmu_lock and
622 	 * count is also read inside the mmu_lock critical section.
623 	 */
624 	kvm->mmu_notifier_count++;
625 	if (likely(kvm->mmu_notifier_count == 1)) {
626 		kvm->mmu_notifier_range_start = start;
627 		kvm->mmu_notifier_range_end = end;
628 	} else {
629 		/*
630 		 * Fully tracking multiple concurrent ranges has dimishing
631 		 * returns. Keep things simple and just find the minimal range
632 		 * which includes the current and new ranges. As there won't be
633 		 * enough information to subtract a range after its invalidate
634 		 * completes, any ranges invalidated concurrently will
635 		 * accumulate and persist until all outstanding invalidates
636 		 * complete.
637 		 */
638 		kvm->mmu_notifier_range_start =
639 			min(kvm->mmu_notifier_range_start, start);
640 		kvm->mmu_notifier_range_end =
641 			max(kvm->mmu_notifier_range_end, end);
642 	}
643 }
644 
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646 					const struct mmu_notifier_range *range)
647 {
648 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
649 	const struct kvm_hva_range hva_range = {
650 		.start		= range->start,
651 		.end		= range->end,
652 		.pte		= __pte(0),
653 		.handler	= kvm_unmap_gfn_range,
654 		.on_lock	= kvm_inc_notifier_count,
655 		.flush_on_ret	= true,
656 		.may_block	= mmu_notifier_range_blockable(range),
657 	};
658 
659 	trace_kvm_unmap_hva_range(range->start, range->end);
660 
661 	__kvm_handle_hva_range(kvm, &hva_range);
662 
663 	return 0;
664 }
665 
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667 				   unsigned long end)
668 {
669 	/*
670 	 * This sequence increase will notify the kvm page fault that
671 	 * the page that is going to be mapped in the spte could have
672 	 * been freed.
673 	 */
674 	kvm->mmu_notifier_seq++;
675 	smp_wmb();
676 	/*
677 	 * The above sequence increase must be visible before the
678 	 * below count decrease, which is ensured by the smp_wmb above
679 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
680 	 */
681 	kvm->mmu_notifier_count--;
682 }
683 
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685 					const struct mmu_notifier_range *range)
686 {
687 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
688 	const struct kvm_hva_range hva_range = {
689 		.start		= range->start,
690 		.end		= range->end,
691 		.pte		= __pte(0),
692 		.handler	= (void *)kvm_null_fn,
693 		.on_lock	= kvm_dec_notifier_count,
694 		.flush_on_ret	= false,
695 		.may_block	= mmu_notifier_range_blockable(range),
696 	};
697 
698 	__kvm_handle_hva_range(kvm, &hva_range);
699 
700 	BUG_ON(kvm->mmu_notifier_count < 0);
701 }
702 
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704 					      struct mm_struct *mm,
705 					      unsigned long start,
706 					      unsigned long end)
707 {
708 	trace_kvm_age_hva(start, end);
709 
710 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
711 }
712 
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714 					struct mm_struct *mm,
715 					unsigned long start,
716 					unsigned long end)
717 {
718 	trace_kvm_age_hva(start, end);
719 
720 	/*
721 	 * Even though we do not flush TLB, this will still adversely
722 	 * affect performance on pre-Haswell Intel EPT, where there is
723 	 * no EPT Access Bit to clear so that we have to tear down EPT
724 	 * tables instead. If we find this unacceptable, we can always
725 	 * add a parameter to kvm_age_hva so that it effectively doesn't
726 	 * do anything on clear_young.
727 	 *
728 	 * Also note that currently we never issue secondary TLB flushes
729 	 * from clear_young, leaving this job up to the regular system
730 	 * cadence. If we find this inaccurate, we might come up with a
731 	 * more sophisticated heuristic later.
732 	 */
733 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
734 }
735 
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737 				       struct mm_struct *mm,
738 				       unsigned long address)
739 {
740 	trace_kvm_test_age_hva(address);
741 
742 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743 					     kvm_test_age_gfn);
744 }
745 
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747 				     struct mm_struct *mm)
748 {
749 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
750 	int idx;
751 
752 	idx = srcu_read_lock(&kvm->srcu);
753 	kvm_arch_flush_shadow_all(kvm);
754 	srcu_read_unlock(&kvm->srcu, idx);
755 }
756 
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
759 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
760 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
761 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
762 	.clear_young		= kvm_mmu_notifier_clear_young,
763 	.test_young		= kvm_mmu_notifier_test_young,
764 	.change_pte		= kvm_mmu_notifier_change_pte,
765 	.release		= kvm_mmu_notifier_release,
766 };
767 
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
769 {
770 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 }
773 
774 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775 
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
777 {
778 	return 0;
779 }
780 
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782 
783 static struct kvm_memslots *kvm_alloc_memslots(void)
784 {
785 	int i;
786 	struct kvm_memslots *slots;
787 
788 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
789 	if (!slots)
790 		return NULL;
791 
792 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
793 		slots->id_to_index[i] = -1;
794 
795 	return slots;
796 }
797 
798 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
799 {
800 	if (!memslot->dirty_bitmap)
801 		return;
802 
803 	kvfree(memslot->dirty_bitmap);
804 	memslot->dirty_bitmap = NULL;
805 }
806 
807 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
808 {
809 	kvm_destroy_dirty_bitmap(slot);
810 
811 	kvm_arch_free_memslot(kvm, slot);
812 
813 	slot->flags = 0;
814 	slot->npages = 0;
815 }
816 
817 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
818 {
819 	struct kvm_memory_slot *memslot;
820 
821 	if (!slots)
822 		return;
823 
824 	kvm_for_each_memslot(memslot, slots)
825 		kvm_free_memslot(kvm, memslot);
826 
827 	kvfree(slots);
828 }
829 
830 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
831 {
832 	int i;
833 
834 	if (!kvm->debugfs_dentry)
835 		return;
836 
837 	debugfs_remove_recursive(kvm->debugfs_dentry);
838 
839 	if (kvm->debugfs_stat_data) {
840 		for (i = 0; i < kvm_debugfs_num_entries; i++)
841 			kfree(kvm->debugfs_stat_data[i]);
842 		kfree(kvm->debugfs_stat_data);
843 	}
844 }
845 
846 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
847 {
848 	char dir_name[ITOA_MAX_LEN * 2];
849 	struct kvm_stat_data *stat_data;
850 	struct kvm_stats_debugfs_item *p;
851 
852 	if (!debugfs_initialized())
853 		return 0;
854 
855 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
856 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
857 
858 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
859 					 sizeof(*kvm->debugfs_stat_data),
860 					 GFP_KERNEL_ACCOUNT);
861 	if (!kvm->debugfs_stat_data)
862 		return -ENOMEM;
863 
864 	for (p = debugfs_entries; p->name; p++) {
865 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
866 		if (!stat_data)
867 			return -ENOMEM;
868 
869 		stat_data->kvm = kvm;
870 		stat_data->dbgfs_item = p;
871 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
872 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
873 				    kvm->debugfs_dentry, stat_data,
874 				    &stat_fops_per_vm);
875 	}
876 	return 0;
877 }
878 
879 /*
880  * Called after the VM is otherwise initialized, but just before adding it to
881  * the vm_list.
882  */
883 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
884 {
885 	return 0;
886 }
887 
888 /*
889  * Called just after removing the VM from the vm_list, but before doing any
890  * other destruction.
891  */
892 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
893 {
894 }
895 
896 static struct kvm *kvm_create_vm(unsigned long type)
897 {
898 	struct kvm *kvm = kvm_arch_alloc_vm();
899 	int r = -ENOMEM;
900 	int i;
901 
902 	if (!kvm)
903 		return ERR_PTR(-ENOMEM);
904 
905 	KVM_MMU_LOCK_INIT(kvm);
906 	mmgrab(current->mm);
907 	kvm->mm = current->mm;
908 	kvm_eventfd_init(kvm);
909 	mutex_init(&kvm->lock);
910 	mutex_init(&kvm->irq_lock);
911 	mutex_init(&kvm->slots_lock);
912 	INIT_LIST_HEAD(&kvm->devices);
913 
914 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
915 
916 	if (init_srcu_struct(&kvm->srcu))
917 		goto out_err_no_srcu;
918 	if (init_srcu_struct(&kvm->irq_srcu))
919 		goto out_err_no_irq_srcu;
920 
921 	refcount_set(&kvm->users_count, 1);
922 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
923 		struct kvm_memslots *slots = kvm_alloc_memslots();
924 
925 		if (!slots)
926 			goto out_err_no_arch_destroy_vm;
927 		/* Generations must be different for each address space. */
928 		slots->generation = i;
929 		rcu_assign_pointer(kvm->memslots[i], slots);
930 	}
931 
932 	for (i = 0; i < KVM_NR_BUSES; i++) {
933 		rcu_assign_pointer(kvm->buses[i],
934 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
935 		if (!kvm->buses[i])
936 			goto out_err_no_arch_destroy_vm;
937 	}
938 
939 	kvm->max_halt_poll_ns = halt_poll_ns;
940 
941 	r = kvm_arch_init_vm(kvm, type);
942 	if (r)
943 		goto out_err_no_arch_destroy_vm;
944 
945 	r = hardware_enable_all();
946 	if (r)
947 		goto out_err_no_disable;
948 
949 #ifdef CONFIG_HAVE_KVM_IRQFD
950 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
951 #endif
952 
953 	r = kvm_init_mmu_notifier(kvm);
954 	if (r)
955 		goto out_err_no_mmu_notifier;
956 
957 	r = kvm_arch_post_init_vm(kvm);
958 	if (r)
959 		goto out_err;
960 
961 	mutex_lock(&kvm_lock);
962 	list_add(&kvm->vm_list, &vm_list);
963 	mutex_unlock(&kvm_lock);
964 
965 	preempt_notifier_inc();
966 
967 	return kvm;
968 
969 out_err:
970 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
971 	if (kvm->mmu_notifier.ops)
972 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
973 #endif
974 out_err_no_mmu_notifier:
975 	hardware_disable_all();
976 out_err_no_disable:
977 	kvm_arch_destroy_vm(kvm);
978 out_err_no_arch_destroy_vm:
979 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
980 	for (i = 0; i < KVM_NR_BUSES; i++)
981 		kfree(kvm_get_bus(kvm, i));
982 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
983 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
984 	cleanup_srcu_struct(&kvm->irq_srcu);
985 out_err_no_irq_srcu:
986 	cleanup_srcu_struct(&kvm->srcu);
987 out_err_no_srcu:
988 	kvm_arch_free_vm(kvm);
989 	mmdrop(current->mm);
990 	return ERR_PTR(r);
991 }
992 
993 static void kvm_destroy_devices(struct kvm *kvm)
994 {
995 	struct kvm_device *dev, *tmp;
996 
997 	/*
998 	 * We do not need to take the kvm->lock here, because nobody else
999 	 * has a reference to the struct kvm at this point and therefore
1000 	 * cannot access the devices list anyhow.
1001 	 */
1002 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1003 		list_del(&dev->vm_node);
1004 		dev->ops->destroy(dev);
1005 	}
1006 }
1007 
1008 static void kvm_destroy_vm(struct kvm *kvm)
1009 {
1010 	int i;
1011 	struct mm_struct *mm = kvm->mm;
1012 
1013 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1014 	kvm_destroy_vm_debugfs(kvm);
1015 	kvm_arch_sync_events(kvm);
1016 	mutex_lock(&kvm_lock);
1017 	list_del(&kvm->vm_list);
1018 	mutex_unlock(&kvm_lock);
1019 	kvm_arch_pre_destroy_vm(kvm);
1020 
1021 	kvm_free_irq_routing(kvm);
1022 	for (i = 0; i < KVM_NR_BUSES; i++) {
1023 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1024 
1025 		if (bus)
1026 			kvm_io_bus_destroy(bus);
1027 		kvm->buses[i] = NULL;
1028 	}
1029 	kvm_coalesced_mmio_free(kvm);
1030 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1031 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1032 #else
1033 	kvm_arch_flush_shadow_all(kvm);
1034 #endif
1035 	kvm_arch_destroy_vm(kvm);
1036 	kvm_destroy_devices(kvm);
1037 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1038 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1039 	cleanup_srcu_struct(&kvm->irq_srcu);
1040 	cleanup_srcu_struct(&kvm->srcu);
1041 	kvm_arch_free_vm(kvm);
1042 	preempt_notifier_dec();
1043 	hardware_disable_all();
1044 	mmdrop(mm);
1045 }
1046 
1047 void kvm_get_kvm(struct kvm *kvm)
1048 {
1049 	refcount_inc(&kvm->users_count);
1050 }
1051 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1052 
1053 void kvm_put_kvm(struct kvm *kvm)
1054 {
1055 	if (refcount_dec_and_test(&kvm->users_count))
1056 		kvm_destroy_vm(kvm);
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1059 
1060 /*
1061  * Used to put a reference that was taken on behalf of an object associated
1062  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1063  * of the new file descriptor fails and the reference cannot be transferred to
1064  * its final owner.  In such cases, the caller is still actively using @kvm and
1065  * will fail miserably if the refcount unexpectedly hits zero.
1066  */
1067 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1068 {
1069 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1072 
1073 static int kvm_vm_release(struct inode *inode, struct file *filp)
1074 {
1075 	struct kvm *kvm = filp->private_data;
1076 
1077 	kvm_irqfd_release(kvm);
1078 
1079 	kvm_put_kvm(kvm);
1080 	return 0;
1081 }
1082 
1083 /*
1084  * Allocation size is twice as large as the actual dirty bitmap size.
1085  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1086  */
1087 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1088 {
1089 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1090 
1091 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1092 	if (!memslot->dirty_bitmap)
1093 		return -ENOMEM;
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Delete a memslot by decrementing the number of used slots and shifting all
1100  * other entries in the array forward one spot.
1101  */
1102 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1103 				      struct kvm_memory_slot *memslot)
1104 {
1105 	struct kvm_memory_slot *mslots = slots->memslots;
1106 	int i;
1107 
1108 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1109 		return;
1110 
1111 	slots->used_slots--;
1112 
1113 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1114 		atomic_set(&slots->lru_slot, 0);
1115 
1116 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1117 		mslots[i] = mslots[i + 1];
1118 		slots->id_to_index[mslots[i].id] = i;
1119 	}
1120 	mslots[i] = *memslot;
1121 	slots->id_to_index[memslot->id] = -1;
1122 }
1123 
1124 /*
1125  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1126  * the new slot's initial index into the memslots array.
1127  */
1128 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1129 {
1130 	return slots->used_slots++;
1131 }
1132 
1133 /*
1134  * Move a changed memslot backwards in the array by shifting existing slots
1135  * with a higher GFN toward the front of the array.  Note, the changed memslot
1136  * itself is not preserved in the array, i.e. not swapped at this time, only
1137  * its new index into the array is tracked.  Returns the changed memslot's
1138  * current index into the memslots array.
1139  */
1140 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1141 					    struct kvm_memory_slot *memslot)
1142 {
1143 	struct kvm_memory_slot *mslots = slots->memslots;
1144 	int i;
1145 
1146 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1147 	    WARN_ON_ONCE(!slots->used_slots))
1148 		return -1;
1149 
1150 	/*
1151 	 * Move the target memslot backward in the array by shifting existing
1152 	 * memslots with a higher GFN (than the target memslot) towards the
1153 	 * front of the array.
1154 	 */
1155 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1156 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1157 			break;
1158 
1159 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1160 
1161 		/* Shift the next memslot forward one and update its index. */
1162 		mslots[i] = mslots[i + 1];
1163 		slots->id_to_index[mslots[i].id] = i;
1164 	}
1165 	return i;
1166 }
1167 
1168 /*
1169  * Move a changed memslot forwards in the array by shifting existing slots with
1170  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1171  * is not preserved in the array, i.e. not swapped at this time, only its new
1172  * index into the array is tracked.  Returns the changed memslot's final index
1173  * into the memslots array.
1174  */
1175 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1176 					   struct kvm_memory_slot *memslot,
1177 					   int start)
1178 {
1179 	struct kvm_memory_slot *mslots = slots->memslots;
1180 	int i;
1181 
1182 	for (i = start; i > 0; i--) {
1183 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1184 			break;
1185 
1186 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1187 
1188 		/* Shift the next memslot back one and update its index. */
1189 		mslots[i] = mslots[i - 1];
1190 		slots->id_to_index[mslots[i].id] = i;
1191 	}
1192 	return i;
1193 }
1194 
1195 /*
1196  * Re-sort memslots based on their GFN to account for an added, deleted, or
1197  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1198  * memslot lookup.
1199  *
1200  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1201  * at memslots[0] has the highest GFN.
1202  *
1203  * The sorting algorithm takes advantage of having initially sorted memslots
1204  * and knowing the position of the changed memslot.  Sorting is also optimized
1205  * by not swapping the updated memslot and instead only shifting other memslots
1206  * and tracking the new index for the update memslot.  Only once its final
1207  * index is known is the updated memslot copied into its position in the array.
1208  *
1209  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1210  *    the end of the array.
1211  *
1212  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1213  *    end of the array and then it forward to its correct location.
1214  *
1215  *  - When moving a memslot, the algorithm first moves the updated memslot
1216  *    backward to handle the scenario where the memslot's GFN was changed to a
1217  *    lower value.  update_memslots() then falls through and runs the same flow
1218  *    as creating a memslot to move the memslot forward to handle the scenario
1219  *    where its GFN was changed to a higher value.
1220  *
1221  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1222  * historical reasons.  Originally, invalid memslots where denoted by having
1223  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1224  * to the end of the array.  The current algorithm uses dedicated logic to
1225  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1226  *
1227  * The other historical motiviation for highest->lowest was to improve the
1228  * performance of memslot lookup.  KVM originally used a linear search starting
1229  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1230  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1231  * single memslot above the 4gb boundary.  As the largest memslot is also the
1232  * most likely to be referenced, sorting it to the front of the array was
1233  * advantageous.  The current binary search starts from the middle of the array
1234  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1235  */
1236 static void update_memslots(struct kvm_memslots *slots,
1237 			    struct kvm_memory_slot *memslot,
1238 			    enum kvm_mr_change change)
1239 {
1240 	int i;
1241 
1242 	if (change == KVM_MR_DELETE) {
1243 		kvm_memslot_delete(slots, memslot);
1244 	} else {
1245 		if (change == KVM_MR_CREATE)
1246 			i = kvm_memslot_insert_back(slots);
1247 		else
1248 			i = kvm_memslot_move_backward(slots, memslot);
1249 		i = kvm_memslot_move_forward(slots, memslot, i);
1250 
1251 		/*
1252 		 * Copy the memslot to its new position in memslots and update
1253 		 * its index accordingly.
1254 		 */
1255 		slots->memslots[i] = *memslot;
1256 		slots->id_to_index[memslot->id] = i;
1257 	}
1258 }
1259 
1260 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1261 {
1262 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1263 
1264 #ifdef __KVM_HAVE_READONLY_MEM
1265 	valid_flags |= KVM_MEM_READONLY;
1266 #endif
1267 
1268 	if (mem->flags & ~valid_flags)
1269 		return -EINVAL;
1270 
1271 	return 0;
1272 }
1273 
1274 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1275 		int as_id, struct kvm_memslots *slots)
1276 {
1277 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1278 	u64 gen = old_memslots->generation;
1279 
1280 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1281 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1282 
1283 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1284 	synchronize_srcu_expedited(&kvm->srcu);
1285 
1286 	/*
1287 	 * Increment the new memslot generation a second time, dropping the
1288 	 * update in-progress flag and incrementing the generation based on
1289 	 * the number of address spaces.  This provides a unique and easily
1290 	 * identifiable generation number while the memslots are in flux.
1291 	 */
1292 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1293 
1294 	/*
1295 	 * Generations must be unique even across address spaces.  We do not need
1296 	 * a global counter for that, instead the generation space is evenly split
1297 	 * across address spaces.  For example, with two address spaces, address
1298 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1299 	 * use generations 1, 3, 5, ...
1300 	 */
1301 	gen += KVM_ADDRESS_SPACE_NUM;
1302 
1303 	kvm_arch_memslots_updated(kvm, gen);
1304 
1305 	slots->generation = gen;
1306 
1307 	return old_memslots;
1308 }
1309 
1310 /*
1311  * Note, at a minimum, the current number of used slots must be allocated, even
1312  * when deleting a memslot, as we need a complete duplicate of the memslots for
1313  * use when invalidating a memslot prior to deleting/moving the memslot.
1314  */
1315 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1316 					     enum kvm_mr_change change)
1317 {
1318 	struct kvm_memslots *slots;
1319 	size_t old_size, new_size;
1320 
1321 	old_size = sizeof(struct kvm_memslots) +
1322 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1323 
1324 	if (change == KVM_MR_CREATE)
1325 		new_size = old_size + sizeof(struct kvm_memory_slot);
1326 	else
1327 		new_size = old_size;
1328 
1329 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1330 	if (likely(slots))
1331 		memcpy(slots, old, old_size);
1332 
1333 	return slots;
1334 }
1335 
1336 static int kvm_set_memslot(struct kvm *kvm,
1337 			   const struct kvm_userspace_memory_region *mem,
1338 			   struct kvm_memory_slot *old,
1339 			   struct kvm_memory_slot *new, int as_id,
1340 			   enum kvm_mr_change change)
1341 {
1342 	struct kvm_memory_slot *slot;
1343 	struct kvm_memslots *slots;
1344 	int r;
1345 
1346 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1347 	if (!slots)
1348 		return -ENOMEM;
1349 
1350 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1351 		/*
1352 		 * Note, the INVALID flag needs to be in the appropriate entry
1353 		 * in the freshly allocated memslots, not in @old or @new.
1354 		 */
1355 		slot = id_to_memslot(slots, old->id);
1356 		slot->flags |= KVM_MEMSLOT_INVALID;
1357 
1358 		/*
1359 		 * We can re-use the old memslots, the only difference from the
1360 		 * newly installed memslots is the invalid flag, which will get
1361 		 * dropped by update_memslots anyway.  We'll also revert to the
1362 		 * old memslots if preparing the new memory region fails.
1363 		 */
1364 		slots = install_new_memslots(kvm, as_id, slots);
1365 
1366 		/* From this point no new shadow pages pointing to a deleted,
1367 		 * or moved, memslot will be created.
1368 		 *
1369 		 * validation of sp->gfn happens in:
1370 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1371 		 *	- kvm_is_visible_gfn (mmu_check_root)
1372 		 */
1373 		kvm_arch_flush_shadow_memslot(kvm, slot);
1374 	}
1375 
1376 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1377 	if (r)
1378 		goto out_slots;
1379 
1380 	update_memslots(slots, new, change);
1381 	slots = install_new_memslots(kvm, as_id, slots);
1382 
1383 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1384 
1385 	kvfree(slots);
1386 	return 0;
1387 
1388 out_slots:
1389 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1390 		slots = install_new_memslots(kvm, as_id, slots);
1391 	kvfree(slots);
1392 	return r;
1393 }
1394 
1395 static int kvm_delete_memslot(struct kvm *kvm,
1396 			      const struct kvm_userspace_memory_region *mem,
1397 			      struct kvm_memory_slot *old, int as_id)
1398 {
1399 	struct kvm_memory_slot new;
1400 	int r;
1401 
1402 	if (!old->npages)
1403 		return -EINVAL;
1404 
1405 	memset(&new, 0, sizeof(new));
1406 	new.id = old->id;
1407 	/*
1408 	 * This is only for debugging purpose; it should never be referenced
1409 	 * for a removed memslot.
1410 	 */
1411 	new.as_id = as_id;
1412 
1413 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1414 	if (r)
1415 		return r;
1416 
1417 	kvm_free_memslot(kvm, old);
1418 	return 0;
1419 }
1420 
1421 /*
1422  * Allocate some memory and give it an address in the guest physical address
1423  * space.
1424  *
1425  * Discontiguous memory is allowed, mostly for framebuffers.
1426  *
1427  * Must be called holding kvm->slots_lock for write.
1428  */
1429 int __kvm_set_memory_region(struct kvm *kvm,
1430 			    const struct kvm_userspace_memory_region *mem)
1431 {
1432 	struct kvm_memory_slot old, new;
1433 	struct kvm_memory_slot *tmp;
1434 	enum kvm_mr_change change;
1435 	int as_id, id;
1436 	int r;
1437 
1438 	r = check_memory_region_flags(mem);
1439 	if (r)
1440 		return r;
1441 
1442 	as_id = mem->slot >> 16;
1443 	id = (u16)mem->slot;
1444 
1445 	/* General sanity checks */
1446 	if (mem->memory_size & (PAGE_SIZE - 1))
1447 		return -EINVAL;
1448 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1449 		return -EINVAL;
1450 	/* We can read the guest memory with __xxx_user() later on. */
1451 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1452 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1453 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1454 			mem->memory_size))
1455 		return -EINVAL;
1456 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1457 		return -EINVAL;
1458 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1459 		return -EINVAL;
1460 
1461 	/*
1462 	 * Make a full copy of the old memslot, the pointer will become stale
1463 	 * when the memslots are re-sorted by update_memslots(), and the old
1464 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1465 	 * to free its resources and for arch specific behavior.
1466 	 */
1467 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1468 	if (tmp) {
1469 		old = *tmp;
1470 		tmp = NULL;
1471 	} else {
1472 		memset(&old, 0, sizeof(old));
1473 		old.id = id;
1474 	}
1475 
1476 	if (!mem->memory_size)
1477 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1478 
1479 	new.as_id = as_id;
1480 	new.id = id;
1481 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1482 	new.npages = mem->memory_size >> PAGE_SHIFT;
1483 	new.flags = mem->flags;
1484 	new.userspace_addr = mem->userspace_addr;
1485 
1486 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1487 		return -EINVAL;
1488 
1489 	if (!old.npages) {
1490 		change = KVM_MR_CREATE;
1491 		new.dirty_bitmap = NULL;
1492 		memset(&new.arch, 0, sizeof(new.arch));
1493 	} else { /* Modify an existing slot. */
1494 		if ((new.userspace_addr != old.userspace_addr) ||
1495 		    (new.npages != old.npages) ||
1496 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1497 			return -EINVAL;
1498 
1499 		if (new.base_gfn != old.base_gfn)
1500 			change = KVM_MR_MOVE;
1501 		else if (new.flags != old.flags)
1502 			change = KVM_MR_FLAGS_ONLY;
1503 		else /* Nothing to change. */
1504 			return 0;
1505 
1506 		/* Copy dirty_bitmap and arch from the current memslot. */
1507 		new.dirty_bitmap = old.dirty_bitmap;
1508 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1509 	}
1510 
1511 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1512 		/* Check for overlaps */
1513 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1514 			if (tmp->id == id)
1515 				continue;
1516 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1517 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1518 				return -EEXIST;
1519 		}
1520 	}
1521 
1522 	/* Allocate/free page dirty bitmap as needed */
1523 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1524 		new.dirty_bitmap = NULL;
1525 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1526 		r = kvm_alloc_dirty_bitmap(&new);
1527 		if (r)
1528 			return r;
1529 
1530 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1531 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1532 	}
1533 
1534 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1535 	if (r)
1536 		goto out_bitmap;
1537 
1538 	if (old.dirty_bitmap && !new.dirty_bitmap)
1539 		kvm_destroy_dirty_bitmap(&old);
1540 	return 0;
1541 
1542 out_bitmap:
1543 	if (new.dirty_bitmap && !old.dirty_bitmap)
1544 		kvm_destroy_dirty_bitmap(&new);
1545 	return r;
1546 }
1547 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1548 
1549 int kvm_set_memory_region(struct kvm *kvm,
1550 			  const struct kvm_userspace_memory_region *mem)
1551 {
1552 	int r;
1553 
1554 	mutex_lock(&kvm->slots_lock);
1555 	r = __kvm_set_memory_region(kvm, mem);
1556 	mutex_unlock(&kvm->slots_lock);
1557 	return r;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1560 
1561 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1562 					  struct kvm_userspace_memory_region *mem)
1563 {
1564 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1565 		return -EINVAL;
1566 
1567 	return kvm_set_memory_region(kvm, mem);
1568 }
1569 
1570 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1571 /**
1572  * kvm_get_dirty_log - get a snapshot of dirty pages
1573  * @kvm:	pointer to kvm instance
1574  * @log:	slot id and address to which we copy the log
1575  * @is_dirty:	set to '1' if any dirty pages were found
1576  * @memslot:	set to the associated memslot, always valid on success
1577  */
1578 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1579 		      int *is_dirty, struct kvm_memory_slot **memslot)
1580 {
1581 	struct kvm_memslots *slots;
1582 	int i, as_id, id;
1583 	unsigned long n;
1584 	unsigned long any = 0;
1585 
1586 	/* Dirty ring tracking is exclusive to dirty log tracking */
1587 	if (kvm->dirty_ring_size)
1588 		return -ENXIO;
1589 
1590 	*memslot = NULL;
1591 	*is_dirty = 0;
1592 
1593 	as_id = log->slot >> 16;
1594 	id = (u16)log->slot;
1595 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1596 		return -EINVAL;
1597 
1598 	slots = __kvm_memslots(kvm, as_id);
1599 	*memslot = id_to_memslot(slots, id);
1600 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1601 		return -ENOENT;
1602 
1603 	kvm_arch_sync_dirty_log(kvm, *memslot);
1604 
1605 	n = kvm_dirty_bitmap_bytes(*memslot);
1606 
1607 	for (i = 0; !any && i < n/sizeof(long); ++i)
1608 		any = (*memslot)->dirty_bitmap[i];
1609 
1610 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1611 		return -EFAULT;
1612 
1613 	if (any)
1614 		*is_dirty = 1;
1615 	return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1618 
1619 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1620 /**
1621  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1622  *	and reenable dirty page tracking for the corresponding pages.
1623  * @kvm:	pointer to kvm instance
1624  * @log:	slot id and address to which we copy the log
1625  *
1626  * We need to keep it in mind that VCPU threads can write to the bitmap
1627  * concurrently. So, to avoid losing track of dirty pages we keep the
1628  * following order:
1629  *
1630  *    1. Take a snapshot of the bit and clear it if needed.
1631  *    2. Write protect the corresponding page.
1632  *    3. Copy the snapshot to the userspace.
1633  *    4. Upon return caller flushes TLB's if needed.
1634  *
1635  * Between 2 and 4, the guest may write to the page using the remaining TLB
1636  * entry.  This is not a problem because the page is reported dirty using
1637  * the snapshot taken before and step 4 ensures that writes done after
1638  * exiting to userspace will be logged for the next call.
1639  *
1640  */
1641 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1642 {
1643 	struct kvm_memslots *slots;
1644 	struct kvm_memory_slot *memslot;
1645 	int i, as_id, id;
1646 	unsigned long n;
1647 	unsigned long *dirty_bitmap;
1648 	unsigned long *dirty_bitmap_buffer;
1649 	bool flush;
1650 
1651 	/* Dirty ring tracking is exclusive to dirty log tracking */
1652 	if (kvm->dirty_ring_size)
1653 		return -ENXIO;
1654 
1655 	as_id = log->slot >> 16;
1656 	id = (u16)log->slot;
1657 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1658 		return -EINVAL;
1659 
1660 	slots = __kvm_memslots(kvm, as_id);
1661 	memslot = id_to_memslot(slots, id);
1662 	if (!memslot || !memslot->dirty_bitmap)
1663 		return -ENOENT;
1664 
1665 	dirty_bitmap = memslot->dirty_bitmap;
1666 
1667 	kvm_arch_sync_dirty_log(kvm, memslot);
1668 
1669 	n = kvm_dirty_bitmap_bytes(memslot);
1670 	flush = false;
1671 	if (kvm->manual_dirty_log_protect) {
1672 		/*
1673 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1674 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1675 		 * is some code duplication between this function and
1676 		 * kvm_get_dirty_log, but hopefully all architecture
1677 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1678 		 * can be eliminated.
1679 		 */
1680 		dirty_bitmap_buffer = dirty_bitmap;
1681 	} else {
1682 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1683 		memset(dirty_bitmap_buffer, 0, n);
1684 
1685 		KVM_MMU_LOCK(kvm);
1686 		for (i = 0; i < n / sizeof(long); i++) {
1687 			unsigned long mask;
1688 			gfn_t offset;
1689 
1690 			if (!dirty_bitmap[i])
1691 				continue;
1692 
1693 			flush = true;
1694 			mask = xchg(&dirty_bitmap[i], 0);
1695 			dirty_bitmap_buffer[i] = mask;
1696 
1697 			offset = i * BITS_PER_LONG;
1698 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1699 								offset, mask);
1700 		}
1701 		KVM_MMU_UNLOCK(kvm);
1702 	}
1703 
1704 	if (flush)
1705 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1706 
1707 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1708 		return -EFAULT;
1709 	return 0;
1710 }
1711 
1712 
1713 /**
1714  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1715  * @kvm: kvm instance
1716  * @log: slot id and address to which we copy the log
1717  *
1718  * Steps 1-4 below provide general overview of dirty page logging. See
1719  * kvm_get_dirty_log_protect() function description for additional details.
1720  *
1721  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1722  * always flush the TLB (step 4) even if previous step failed  and the dirty
1723  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1724  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1725  * writes will be marked dirty for next log read.
1726  *
1727  *   1. Take a snapshot of the bit and clear it if needed.
1728  *   2. Write protect the corresponding page.
1729  *   3. Copy the snapshot to the userspace.
1730  *   4. Flush TLB's if needed.
1731  */
1732 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1733 				      struct kvm_dirty_log *log)
1734 {
1735 	int r;
1736 
1737 	mutex_lock(&kvm->slots_lock);
1738 
1739 	r = kvm_get_dirty_log_protect(kvm, log);
1740 
1741 	mutex_unlock(&kvm->slots_lock);
1742 	return r;
1743 }
1744 
1745 /**
1746  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1747  *	and reenable dirty page tracking for the corresponding pages.
1748  * @kvm:	pointer to kvm instance
1749  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1750  */
1751 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1752 				       struct kvm_clear_dirty_log *log)
1753 {
1754 	struct kvm_memslots *slots;
1755 	struct kvm_memory_slot *memslot;
1756 	int as_id, id;
1757 	gfn_t offset;
1758 	unsigned long i, n;
1759 	unsigned long *dirty_bitmap;
1760 	unsigned long *dirty_bitmap_buffer;
1761 	bool flush;
1762 
1763 	/* Dirty ring tracking is exclusive to dirty log tracking */
1764 	if (kvm->dirty_ring_size)
1765 		return -ENXIO;
1766 
1767 	as_id = log->slot >> 16;
1768 	id = (u16)log->slot;
1769 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1770 		return -EINVAL;
1771 
1772 	if (log->first_page & 63)
1773 		return -EINVAL;
1774 
1775 	slots = __kvm_memslots(kvm, as_id);
1776 	memslot = id_to_memslot(slots, id);
1777 	if (!memslot || !memslot->dirty_bitmap)
1778 		return -ENOENT;
1779 
1780 	dirty_bitmap = memslot->dirty_bitmap;
1781 
1782 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1783 
1784 	if (log->first_page > memslot->npages ||
1785 	    log->num_pages > memslot->npages - log->first_page ||
1786 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1787 	    return -EINVAL;
1788 
1789 	kvm_arch_sync_dirty_log(kvm, memslot);
1790 
1791 	flush = false;
1792 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1793 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1794 		return -EFAULT;
1795 
1796 	KVM_MMU_LOCK(kvm);
1797 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1798 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1799 	     i++, offset += BITS_PER_LONG) {
1800 		unsigned long mask = *dirty_bitmap_buffer++;
1801 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1802 		if (!mask)
1803 			continue;
1804 
1805 		mask &= atomic_long_fetch_andnot(mask, p);
1806 
1807 		/*
1808 		 * mask contains the bits that really have been cleared.  This
1809 		 * never includes any bits beyond the length of the memslot (if
1810 		 * the length is not aligned to 64 pages), therefore it is not
1811 		 * a problem if userspace sets them in log->dirty_bitmap.
1812 		*/
1813 		if (mask) {
1814 			flush = true;
1815 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1816 								offset, mask);
1817 		}
1818 	}
1819 	KVM_MMU_UNLOCK(kvm);
1820 
1821 	if (flush)
1822 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1823 
1824 	return 0;
1825 }
1826 
1827 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1828 					struct kvm_clear_dirty_log *log)
1829 {
1830 	int r;
1831 
1832 	mutex_lock(&kvm->slots_lock);
1833 
1834 	r = kvm_clear_dirty_log_protect(kvm, log);
1835 
1836 	mutex_unlock(&kvm->slots_lock);
1837 	return r;
1838 }
1839 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1840 
1841 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1842 {
1843 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1844 }
1845 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1846 
1847 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1848 {
1849 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1852 
1853 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1854 {
1855 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1856 
1857 	return kvm_is_visible_memslot(memslot);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1860 
1861 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1862 {
1863 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1864 
1865 	return kvm_is_visible_memslot(memslot);
1866 }
1867 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1868 
1869 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1870 {
1871 	struct vm_area_struct *vma;
1872 	unsigned long addr, size;
1873 
1874 	size = PAGE_SIZE;
1875 
1876 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1877 	if (kvm_is_error_hva(addr))
1878 		return PAGE_SIZE;
1879 
1880 	mmap_read_lock(current->mm);
1881 	vma = find_vma(current->mm, addr);
1882 	if (!vma)
1883 		goto out;
1884 
1885 	size = vma_kernel_pagesize(vma);
1886 
1887 out:
1888 	mmap_read_unlock(current->mm);
1889 
1890 	return size;
1891 }
1892 
1893 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1894 {
1895 	return slot->flags & KVM_MEM_READONLY;
1896 }
1897 
1898 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1899 				       gfn_t *nr_pages, bool write)
1900 {
1901 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1902 		return KVM_HVA_ERR_BAD;
1903 
1904 	if (memslot_is_readonly(slot) && write)
1905 		return KVM_HVA_ERR_RO_BAD;
1906 
1907 	if (nr_pages)
1908 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1909 
1910 	return __gfn_to_hva_memslot(slot, gfn);
1911 }
1912 
1913 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1914 				     gfn_t *nr_pages)
1915 {
1916 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1917 }
1918 
1919 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1920 					gfn_t gfn)
1921 {
1922 	return gfn_to_hva_many(slot, gfn, NULL);
1923 }
1924 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1925 
1926 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1927 {
1928 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1929 }
1930 EXPORT_SYMBOL_GPL(gfn_to_hva);
1931 
1932 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1933 {
1934 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1937 
1938 /*
1939  * Return the hva of a @gfn and the R/W attribute if possible.
1940  *
1941  * @slot: the kvm_memory_slot which contains @gfn
1942  * @gfn: the gfn to be translated
1943  * @writable: used to return the read/write attribute of the @slot if the hva
1944  * is valid and @writable is not NULL
1945  */
1946 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1947 				      gfn_t gfn, bool *writable)
1948 {
1949 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1950 
1951 	if (!kvm_is_error_hva(hva) && writable)
1952 		*writable = !memslot_is_readonly(slot);
1953 
1954 	return hva;
1955 }
1956 
1957 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1958 {
1959 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1960 
1961 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1962 }
1963 
1964 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1965 {
1966 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1967 
1968 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1969 }
1970 
1971 static inline int check_user_page_hwpoison(unsigned long addr)
1972 {
1973 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1974 
1975 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1976 	return rc == -EHWPOISON;
1977 }
1978 
1979 /*
1980  * The fast path to get the writable pfn which will be stored in @pfn,
1981  * true indicates success, otherwise false is returned.  It's also the
1982  * only part that runs if we can in atomic context.
1983  */
1984 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1985 			    bool *writable, kvm_pfn_t *pfn)
1986 {
1987 	struct page *page[1];
1988 
1989 	/*
1990 	 * Fast pin a writable pfn only if it is a write fault request
1991 	 * or the caller allows to map a writable pfn for a read fault
1992 	 * request.
1993 	 */
1994 	if (!(write_fault || writable))
1995 		return false;
1996 
1997 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1998 		*pfn = page_to_pfn(page[0]);
1999 
2000 		if (writable)
2001 			*writable = true;
2002 		return true;
2003 	}
2004 
2005 	return false;
2006 }
2007 
2008 /*
2009  * The slow path to get the pfn of the specified host virtual address,
2010  * 1 indicates success, -errno is returned if error is detected.
2011  */
2012 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2013 			   bool *writable, kvm_pfn_t *pfn)
2014 {
2015 	unsigned int flags = FOLL_HWPOISON;
2016 	struct page *page;
2017 	int npages = 0;
2018 
2019 	might_sleep();
2020 
2021 	if (writable)
2022 		*writable = write_fault;
2023 
2024 	if (write_fault)
2025 		flags |= FOLL_WRITE;
2026 	if (async)
2027 		flags |= FOLL_NOWAIT;
2028 
2029 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2030 	if (npages != 1)
2031 		return npages;
2032 
2033 	/* map read fault as writable if possible */
2034 	if (unlikely(!write_fault) && writable) {
2035 		struct page *wpage;
2036 
2037 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2038 			*writable = true;
2039 			put_page(page);
2040 			page = wpage;
2041 		}
2042 	}
2043 	*pfn = page_to_pfn(page);
2044 	return npages;
2045 }
2046 
2047 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2048 {
2049 	if (unlikely(!(vma->vm_flags & VM_READ)))
2050 		return false;
2051 
2052 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2053 		return false;
2054 
2055 	return true;
2056 }
2057 
2058 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2059 			       unsigned long addr, bool *async,
2060 			       bool write_fault, bool *writable,
2061 			       kvm_pfn_t *p_pfn)
2062 {
2063 	kvm_pfn_t pfn;
2064 	pte_t *ptep;
2065 	spinlock_t *ptl;
2066 	int r;
2067 
2068 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2069 	if (r) {
2070 		/*
2071 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2072 		 * not call the fault handler, so do it here.
2073 		 */
2074 		bool unlocked = false;
2075 		r = fixup_user_fault(current->mm, addr,
2076 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2077 				     &unlocked);
2078 		if (unlocked)
2079 			return -EAGAIN;
2080 		if (r)
2081 			return r;
2082 
2083 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2084 		if (r)
2085 			return r;
2086 	}
2087 
2088 	if (write_fault && !pte_write(*ptep)) {
2089 		pfn = KVM_PFN_ERR_RO_FAULT;
2090 		goto out;
2091 	}
2092 
2093 	if (writable)
2094 		*writable = pte_write(*ptep);
2095 	pfn = pte_pfn(*ptep);
2096 
2097 	/*
2098 	 * Get a reference here because callers of *hva_to_pfn* and
2099 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2100 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2101 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2102 	 * simply do nothing for reserved pfns.
2103 	 *
2104 	 * Whoever called remap_pfn_range is also going to call e.g.
2105 	 * unmap_mapping_range before the underlying pages are freed,
2106 	 * causing a call to our MMU notifier.
2107 	 */
2108 	kvm_get_pfn(pfn);
2109 
2110 out:
2111 	pte_unmap_unlock(ptep, ptl);
2112 	*p_pfn = pfn;
2113 	return 0;
2114 }
2115 
2116 /*
2117  * Pin guest page in memory and return its pfn.
2118  * @addr: host virtual address which maps memory to the guest
2119  * @atomic: whether this function can sleep
2120  * @async: whether this function need to wait IO complete if the
2121  *         host page is not in the memory
2122  * @write_fault: whether we should get a writable host page
2123  * @writable: whether it allows to map a writable host page for !@write_fault
2124  *
2125  * The function will map a writable host page for these two cases:
2126  * 1): @write_fault = true
2127  * 2): @write_fault = false && @writable, @writable will tell the caller
2128  *     whether the mapping is writable.
2129  */
2130 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2131 			bool write_fault, bool *writable)
2132 {
2133 	struct vm_area_struct *vma;
2134 	kvm_pfn_t pfn = 0;
2135 	int npages, r;
2136 
2137 	/* we can do it either atomically or asynchronously, not both */
2138 	BUG_ON(atomic && async);
2139 
2140 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2141 		return pfn;
2142 
2143 	if (atomic)
2144 		return KVM_PFN_ERR_FAULT;
2145 
2146 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2147 	if (npages == 1)
2148 		return pfn;
2149 
2150 	mmap_read_lock(current->mm);
2151 	if (npages == -EHWPOISON ||
2152 	      (!async && check_user_page_hwpoison(addr))) {
2153 		pfn = KVM_PFN_ERR_HWPOISON;
2154 		goto exit;
2155 	}
2156 
2157 retry:
2158 	vma = find_vma_intersection(current->mm, addr, addr + 1);
2159 
2160 	if (vma == NULL)
2161 		pfn = KVM_PFN_ERR_FAULT;
2162 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2163 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2164 		if (r == -EAGAIN)
2165 			goto retry;
2166 		if (r < 0)
2167 			pfn = KVM_PFN_ERR_FAULT;
2168 	} else {
2169 		if (async && vma_is_valid(vma, write_fault))
2170 			*async = true;
2171 		pfn = KVM_PFN_ERR_FAULT;
2172 	}
2173 exit:
2174 	mmap_read_unlock(current->mm);
2175 	return pfn;
2176 }
2177 
2178 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2179 			       bool atomic, bool *async, bool write_fault,
2180 			       bool *writable, hva_t *hva)
2181 {
2182 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2183 
2184 	if (hva)
2185 		*hva = addr;
2186 
2187 	if (addr == KVM_HVA_ERR_RO_BAD) {
2188 		if (writable)
2189 			*writable = false;
2190 		return KVM_PFN_ERR_RO_FAULT;
2191 	}
2192 
2193 	if (kvm_is_error_hva(addr)) {
2194 		if (writable)
2195 			*writable = false;
2196 		return KVM_PFN_NOSLOT;
2197 	}
2198 
2199 	/* Do not map writable pfn in the readonly memslot. */
2200 	if (writable && memslot_is_readonly(slot)) {
2201 		*writable = false;
2202 		writable = NULL;
2203 	}
2204 
2205 	return hva_to_pfn(addr, atomic, async, write_fault,
2206 			  writable);
2207 }
2208 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2209 
2210 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2211 		      bool *writable)
2212 {
2213 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2214 				    write_fault, writable, NULL);
2215 }
2216 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2217 
2218 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2219 {
2220 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2221 }
2222 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2223 
2224 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2225 {
2226 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2227 }
2228 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2229 
2230 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2231 {
2232 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2233 }
2234 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2235 
2236 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2237 {
2238 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2239 }
2240 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2241 
2242 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2243 {
2244 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2245 }
2246 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2247 
2248 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2249 			    struct page **pages, int nr_pages)
2250 {
2251 	unsigned long addr;
2252 	gfn_t entry = 0;
2253 
2254 	addr = gfn_to_hva_many(slot, gfn, &entry);
2255 	if (kvm_is_error_hva(addr))
2256 		return -1;
2257 
2258 	if (entry < nr_pages)
2259 		return 0;
2260 
2261 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2262 }
2263 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2264 
2265 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2266 {
2267 	if (is_error_noslot_pfn(pfn))
2268 		return KVM_ERR_PTR_BAD_PAGE;
2269 
2270 	if (kvm_is_reserved_pfn(pfn)) {
2271 		WARN_ON(1);
2272 		return KVM_ERR_PTR_BAD_PAGE;
2273 	}
2274 
2275 	return pfn_to_page(pfn);
2276 }
2277 
2278 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2279 {
2280 	kvm_pfn_t pfn;
2281 
2282 	pfn = gfn_to_pfn(kvm, gfn);
2283 
2284 	return kvm_pfn_to_page(pfn);
2285 }
2286 EXPORT_SYMBOL_GPL(gfn_to_page);
2287 
2288 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2289 {
2290 	if (pfn == 0)
2291 		return;
2292 
2293 	if (cache)
2294 		cache->pfn = cache->gfn = 0;
2295 
2296 	if (dirty)
2297 		kvm_release_pfn_dirty(pfn);
2298 	else
2299 		kvm_release_pfn_clean(pfn);
2300 }
2301 
2302 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2303 				 struct gfn_to_pfn_cache *cache, u64 gen)
2304 {
2305 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2306 
2307 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2308 	cache->gfn = gfn;
2309 	cache->dirty = false;
2310 	cache->generation = gen;
2311 }
2312 
2313 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2314 			 struct kvm_host_map *map,
2315 			 struct gfn_to_pfn_cache *cache,
2316 			 bool atomic)
2317 {
2318 	kvm_pfn_t pfn;
2319 	void *hva = NULL;
2320 	struct page *page = KVM_UNMAPPED_PAGE;
2321 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2322 	u64 gen = slots->generation;
2323 
2324 	if (!map)
2325 		return -EINVAL;
2326 
2327 	if (cache) {
2328 		if (!cache->pfn || cache->gfn != gfn ||
2329 			cache->generation != gen) {
2330 			if (atomic)
2331 				return -EAGAIN;
2332 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2333 		}
2334 		pfn = cache->pfn;
2335 	} else {
2336 		if (atomic)
2337 			return -EAGAIN;
2338 		pfn = gfn_to_pfn_memslot(slot, gfn);
2339 	}
2340 	if (is_error_noslot_pfn(pfn))
2341 		return -EINVAL;
2342 
2343 	if (pfn_valid(pfn)) {
2344 		page = pfn_to_page(pfn);
2345 		if (atomic)
2346 			hva = kmap_atomic(page);
2347 		else
2348 			hva = kmap(page);
2349 #ifdef CONFIG_HAS_IOMEM
2350 	} else if (!atomic) {
2351 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2352 	} else {
2353 		return -EINVAL;
2354 #endif
2355 	}
2356 
2357 	if (!hva)
2358 		return -EFAULT;
2359 
2360 	map->page = page;
2361 	map->hva = hva;
2362 	map->pfn = pfn;
2363 	map->gfn = gfn;
2364 
2365 	return 0;
2366 }
2367 
2368 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2369 		struct gfn_to_pfn_cache *cache, bool atomic)
2370 {
2371 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2372 			cache, atomic);
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2375 
2376 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2377 {
2378 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2379 		NULL, false);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2382 
2383 static void __kvm_unmap_gfn(struct kvm *kvm,
2384 			struct kvm_memory_slot *memslot,
2385 			struct kvm_host_map *map,
2386 			struct gfn_to_pfn_cache *cache,
2387 			bool dirty, bool atomic)
2388 {
2389 	if (!map)
2390 		return;
2391 
2392 	if (!map->hva)
2393 		return;
2394 
2395 	if (map->page != KVM_UNMAPPED_PAGE) {
2396 		if (atomic)
2397 			kunmap_atomic(map->hva);
2398 		else
2399 			kunmap(map->page);
2400 	}
2401 #ifdef CONFIG_HAS_IOMEM
2402 	else if (!atomic)
2403 		memunmap(map->hva);
2404 	else
2405 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2406 #endif
2407 
2408 	if (dirty)
2409 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2410 
2411 	if (cache)
2412 		cache->dirty |= dirty;
2413 	else
2414 		kvm_release_pfn(map->pfn, dirty, NULL);
2415 
2416 	map->hva = NULL;
2417 	map->page = NULL;
2418 }
2419 
2420 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2421 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2422 {
2423 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2424 			cache, dirty, atomic);
2425 	return 0;
2426 }
2427 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2428 
2429 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2430 {
2431 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2432 			map, NULL, dirty, false);
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2435 
2436 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2437 {
2438 	kvm_pfn_t pfn;
2439 
2440 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2441 
2442 	return kvm_pfn_to_page(pfn);
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2445 
2446 void kvm_release_page_clean(struct page *page)
2447 {
2448 	WARN_ON(is_error_page(page));
2449 
2450 	kvm_release_pfn_clean(page_to_pfn(page));
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2453 
2454 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2455 {
2456 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2457 		put_page(pfn_to_page(pfn));
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2460 
2461 void kvm_release_page_dirty(struct page *page)
2462 {
2463 	WARN_ON(is_error_page(page));
2464 
2465 	kvm_release_pfn_dirty(page_to_pfn(page));
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2468 
2469 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2470 {
2471 	kvm_set_pfn_dirty(pfn);
2472 	kvm_release_pfn_clean(pfn);
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2475 
2476 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2477 {
2478 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2479 		SetPageDirty(pfn_to_page(pfn));
2480 }
2481 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2482 
2483 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2484 {
2485 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2486 		mark_page_accessed(pfn_to_page(pfn));
2487 }
2488 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2489 
2490 void kvm_get_pfn(kvm_pfn_t pfn)
2491 {
2492 	if (!kvm_is_reserved_pfn(pfn))
2493 		get_page(pfn_to_page(pfn));
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2496 
2497 static int next_segment(unsigned long len, int offset)
2498 {
2499 	if (len > PAGE_SIZE - offset)
2500 		return PAGE_SIZE - offset;
2501 	else
2502 		return len;
2503 }
2504 
2505 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2506 				 void *data, int offset, int len)
2507 {
2508 	int r;
2509 	unsigned long addr;
2510 
2511 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2512 	if (kvm_is_error_hva(addr))
2513 		return -EFAULT;
2514 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2515 	if (r)
2516 		return -EFAULT;
2517 	return 0;
2518 }
2519 
2520 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2521 			int len)
2522 {
2523 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2524 
2525 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2526 }
2527 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2528 
2529 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2530 			     int offset, int len)
2531 {
2532 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2533 
2534 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2535 }
2536 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2537 
2538 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2539 {
2540 	gfn_t gfn = gpa >> PAGE_SHIFT;
2541 	int seg;
2542 	int offset = offset_in_page(gpa);
2543 	int ret;
2544 
2545 	while ((seg = next_segment(len, offset)) != 0) {
2546 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2547 		if (ret < 0)
2548 			return ret;
2549 		offset = 0;
2550 		len -= seg;
2551 		data += seg;
2552 		++gfn;
2553 	}
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_read_guest);
2557 
2558 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2559 {
2560 	gfn_t gfn = gpa >> PAGE_SHIFT;
2561 	int seg;
2562 	int offset = offset_in_page(gpa);
2563 	int ret;
2564 
2565 	while ((seg = next_segment(len, offset)) != 0) {
2566 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2567 		if (ret < 0)
2568 			return ret;
2569 		offset = 0;
2570 		len -= seg;
2571 		data += seg;
2572 		++gfn;
2573 	}
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2577 
2578 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2579 			           void *data, int offset, unsigned long len)
2580 {
2581 	int r;
2582 	unsigned long addr;
2583 
2584 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2585 	if (kvm_is_error_hva(addr))
2586 		return -EFAULT;
2587 	pagefault_disable();
2588 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2589 	pagefault_enable();
2590 	if (r)
2591 		return -EFAULT;
2592 	return 0;
2593 }
2594 
2595 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2596 			       void *data, unsigned long len)
2597 {
2598 	gfn_t gfn = gpa >> PAGE_SHIFT;
2599 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2600 	int offset = offset_in_page(gpa);
2601 
2602 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2603 }
2604 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2605 
2606 static int __kvm_write_guest_page(struct kvm *kvm,
2607 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2608 			          const void *data, int offset, int len)
2609 {
2610 	int r;
2611 	unsigned long addr;
2612 
2613 	addr = gfn_to_hva_memslot(memslot, gfn);
2614 	if (kvm_is_error_hva(addr))
2615 		return -EFAULT;
2616 	r = __copy_to_user((void __user *)addr + offset, data, len);
2617 	if (r)
2618 		return -EFAULT;
2619 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2620 	return 0;
2621 }
2622 
2623 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2624 			 const void *data, int offset, int len)
2625 {
2626 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2627 
2628 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2631 
2632 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2633 			      const void *data, int offset, int len)
2634 {
2635 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2636 
2637 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2638 }
2639 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2640 
2641 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2642 		    unsigned long len)
2643 {
2644 	gfn_t gfn = gpa >> PAGE_SHIFT;
2645 	int seg;
2646 	int offset = offset_in_page(gpa);
2647 	int ret;
2648 
2649 	while ((seg = next_segment(len, offset)) != 0) {
2650 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2651 		if (ret < 0)
2652 			return ret;
2653 		offset = 0;
2654 		len -= seg;
2655 		data += seg;
2656 		++gfn;
2657 	}
2658 	return 0;
2659 }
2660 EXPORT_SYMBOL_GPL(kvm_write_guest);
2661 
2662 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2663 		         unsigned long len)
2664 {
2665 	gfn_t gfn = gpa >> PAGE_SHIFT;
2666 	int seg;
2667 	int offset = offset_in_page(gpa);
2668 	int ret;
2669 
2670 	while ((seg = next_segment(len, offset)) != 0) {
2671 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2672 		if (ret < 0)
2673 			return ret;
2674 		offset = 0;
2675 		len -= seg;
2676 		data += seg;
2677 		++gfn;
2678 	}
2679 	return 0;
2680 }
2681 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2682 
2683 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2684 				       struct gfn_to_hva_cache *ghc,
2685 				       gpa_t gpa, unsigned long len)
2686 {
2687 	int offset = offset_in_page(gpa);
2688 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2689 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2690 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2691 	gfn_t nr_pages_avail;
2692 
2693 	/* Update ghc->generation before performing any error checks. */
2694 	ghc->generation = slots->generation;
2695 
2696 	if (start_gfn > end_gfn) {
2697 		ghc->hva = KVM_HVA_ERR_BAD;
2698 		return -EINVAL;
2699 	}
2700 
2701 	/*
2702 	 * If the requested region crosses two memslots, we still
2703 	 * verify that the entire region is valid here.
2704 	 */
2705 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2706 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2707 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2708 					   &nr_pages_avail);
2709 		if (kvm_is_error_hva(ghc->hva))
2710 			return -EFAULT;
2711 	}
2712 
2713 	/* Use the slow path for cross page reads and writes. */
2714 	if (nr_pages_needed == 1)
2715 		ghc->hva += offset;
2716 	else
2717 		ghc->memslot = NULL;
2718 
2719 	ghc->gpa = gpa;
2720 	ghc->len = len;
2721 	return 0;
2722 }
2723 
2724 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2725 			      gpa_t gpa, unsigned long len)
2726 {
2727 	struct kvm_memslots *slots = kvm_memslots(kvm);
2728 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2729 }
2730 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2731 
2732 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2733 				  void *data, unsigned int offset,
2734 				  unsigned long len)
2735 {
2736 	struct kvm_memslots *slots = kvm_memslots(kvm);
2737 	int r;
2738 	gpa_t gpa = ghc->gpa + offset;
2739 
2740 	BUG_ON(len + offset > ghc->len);
2741 
2742 	if (slots->generation != ghc->generation) {
2743 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2744 			return -EFAULT;
2745 	}
2746 
2747 	if (kvm_is_error_hva(ghc->hva))
2748 		return -EFAULT;
2749 
2750 	if (unlikely(!ghc->memslot))
2751 		return kvm_write_guest(kvm, gpa, data, len);
2752 
2753 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2754 	if (r)
2755 		return -EFAULT;
2756 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2757 
2758 	return 0;
2759 }
2760 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2761 
2762 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2763 			   void *data, unsigned long len)
2764 {
2765 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2766 }
2767 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2768 
2769 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2770 				 void *data, unsigned int offset,
2771 				 unsigned long len)
2772 {
2773 	struct kvm_memslots *slots = kvm_memslots(kvm);
2774 	int r;
2775 	gpa_t gpa = ghc->gpa + offset;
2776 
2777 	BUG_ON(len + offset > ghc->len);
2778 
2779 	if (slots->generation != ghc->generation) {
2780 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2781 			return -EFAULT;
2782 	}
2783 
2784 	if (kvm_is_error_hva(ghc->hva))
2785 		return -EFAULT;
2786 
2787 	if (unlikely(!ghc->memslot))
2788 		return kvm_read_guest(kvm, gpa, data, len);
2789 
2790 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2791 	if (r)
2792 		return -EFAULT;
2793 
2794 	return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2797 
2798 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2799 			  void *data, unsigned long len)
2800 {
2801 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2802 }
2803 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2804 
2805 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2806 {
2807 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2808 	gfn_t gfn = gpa >> PAGE_SHIFT;
2809 	int seg;
2810 	int offset = offset_in_page(gpa);
2811 	int ret;
2812 
2813 	while ((seg = next_segment(len, offset)) != 0) {
2814 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2815 		if (ret < 0)
2816 			return ret;
2817 		offset = 0;
2818 		len -= seg;
2819 		++gfn;
2820 	}
2821 	return 0;
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2824 
2825 void mark_page_dirty_in_slot(struct kvm *kvm,
2826 			     struct kvm_memory_slot *memslot,
2827 		 	     gfn_t gfn)
2828 {
2829 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2830 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2831 		u32 slot = (memslot->as_id << 16) | memslot->id;
2832 
2833 		if (kvm->dirty_ring_size)
2834 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2835 					    slot, rel_gfn);
2836 		else
2837 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
2838 	}
2839 }
2840 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2841 
2842 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2843 {
2844 	struct kvm_memory_slot *memslot;
2845 
2846 	memslot = gfn_to_memslot(kvm, gfn);
2847 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2848 }
2849 EXPORT_SYMBOL_GPL(mark_page_dirty);
2850 
2851 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2852 {
2853 	struct kvm_memory_slot *memslot;
2854 
2855 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2856 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2857 }
2858 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2859 
2860 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2861 {
2862 	if (!vcpu->sigset_active)
2863 		return;
2864 
2865 	/*
2866 	 * This does a lockless modification of ->real_blocked, which is fine
2867 	 * because, only current can change ->real_blocked and all readers of
2868 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2869 	 * of ->blocked.
2870 	 */
2871 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2872 }
2873 
2874 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2875 {
2876 	if (!vcpu->sigset_active)
2877 		return;
2878 
2879 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2880 	sigemptyset(&current->real_blocked);
2881 }
2882 
2883 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2884 {
2885 	unsigned int old, val, grow, grow_start;
2886 
2887 	old = val = vcpu->halt_poll_ns;
2888 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2889 	grow = READ_ONCE(halt_poll_ns_grow);
2890 	if (!grow)
2891 		goto out;
2892 
2893 	val *= grow;
2894 	if (val < grow_start)
2895 		val = grow_start;
2896 
2897 	if (val > vcpu->kvm->max_halt_poll_ns)
2898 		val = vcpu->kvm->max_halt_poll_ns;
2899 
2900 	vcpu->halt_poll_ns = val;
2901 out:
2902 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2903 }
2904 
2905 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2906 {
2907 	unsigned int old, val, shrink;
2908 
2909 	old = val = vcpu->halt_poll_ns;
2910 	shrink = READ_ONCE(halt_poll_ns_shrink);
2911 	if (shrink == 0)
2912 		val = 0;
2913 	else
2914 		val /= shrink;
2915 
2916 	vcpu->halt_poll_ns = val;
2917 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2918 }
2919 
2920 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2921 {
2922 	int ret = -EINTR;
2923 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2924 
2925 	if (kvm_arch_vcpu_runnable(vcpu)) {
2926 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2927 		goto out;
2928 	}
2929 	if (kvm_cpu_has_pending_timer(vcpu))
2930 		goto out;
2931 	if (signal_pending(current))
2932 		goto out;
2933 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
2934 		goto out;
2935 
2936 	ret = 0;
2937 out:
2938 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2939 	return ret;
2940 }
2941 
2942 static inline void
2943 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2944 {
2945 	if (waited)
2946 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2947 	else
2948 		vcpu->stat.halt_poll_success_ns += poll_ns;
2949 }
2950 
2951 /*
2952  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2953  */
2954 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2955 {
2956 	ktime_t start, cur, poll_end;
2957 	bool waited = false;
2958 	u64 block_ns;
2959 
2960 	kvm_arch_vcpu_blocking(vcpu);
2961 
2962 	start = cur = poll_end = ktime_get();
2963 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2964 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2965 
2966 		++vcpu->stat.halt_attempted_poll;
2967 		do {
2968 			/*
2969 			 * This sets KVM_REQ_UNHALT if an interrupt
2970 			 * arrives.
2971 			 */
2972 			if (kvm_vcpu_check_block(vcpu) < 0) {
2973 				++vcpu->stat.halt_successful_poll;
2974 				if (!vcpu_valid_wakeup(vcpu))
2975 					++vcpu->stat.halt_poll_invalid;
2976 				goto out;
2977 			}
2978 			poll_end = cur = ktime_get();
2979 		} while (kvm_vcpu_can_poll(cur, stop));
2980 	}
2981 
2982 	prepare_to_rcuwait(&vcpu->wait);
2983 	for (;;) {
2984 		set_current_state(TASK_INTERRUPTIBLE);
2985 
2986 		if (kvm_vcpu_check_block(vcpu) < 0)
2987 			break;
2988 
2989 		waited = true;
2990 		schedule();
2991 	}
2992 	finish_rcuwait(&vcpu->wait);
2993 	cur = ktime_get();
2994 out:
2995 	kvm_arch_vcpu_unblocking(vcpu);
2996 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2997 
2998 	update_halt_poll_stats(
2999 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3000 
3001 	if (!kvm_arch_no_poll(vcpu)) {
3002 		if (!vcpu_valid_wakeup(vcpu)) {
3003 			shrink_halt_poll_ns(vcpu);
3004 		} else if (vcpu->kvm->max_halt_poll_ns) {
3005 			if (block_ns <= vcpu->halt_poll_ns)
3006 				;
3007 			/* we had a long block, shrink polling */
3008 			else if (vcpu->halt_poll_ns &&
3009 					block_ns > vcpu->kvm->max_halt_poll_ns)
3010 				shrink_halt_poll_ns(vcpu);
3011 			/* we had a short halt and our poll time is too small */
3012 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3013 					block_ns < vcpu->kvm->max_halt_poll_ns)
3014 				grow_halt_poll_ns(vcpu);
3015 		} else {
3016 			vcpu->halt_poll_ns = 0;
3017 		}
3018 	}
3019 
3020 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3021 	kvm_arch_vcpu_block_finish(vcpu);
3022 }
3023 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3024 
3025 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3026 {
3027 	struct rcuwait *waitp;
3028 
3029 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3030 	if (rcuwait_wake_up(waitp)) {
3031 		WRITE_ONCE(vcpu->ready, true);
3032 		++vcpu->stat.halt_wakeup;
3033 		return true;
3034 	}
3035 
3036 	return false;
3037 }
3038 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3039 
3040 #ifndef CONFIG_S390
3041 /*
3042  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3043  */
3044 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3045 {
3046 	int me;
3047 	int cpu = vcpu->cpu;
3048 
3049 	if (kvm_vcpu_wake_up(vcpu))
3050 		return;
3051 
3052 	me = get_cpu();
3053 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3054 		if (kvm_arch_vcpu_should_kick(vcpu))
3055 			smp_send_reschedule(cpu);
3056 	put_cpu();
3057 }
3058 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3059 #endif /* !CONFIG_S390 */
3060 
3061 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3062 {
3063 	struct pid *pid;
3064 	struct task_struct *task = NULL;
3065 	int ret = 0;
3066 
3067 	rcu_read_lock();
3068 	pid = rcu_dereference(target->pid);
3069 	if (pid)
3070 		task = get_pid_task(pid, PIDTYPE_PID);
3071 	rcu_read_unlock();
3072 	if (!task)
3073 		return ret;
3074 	ret = yield_to(task, 1);
3075 	put_task_struct(task);
3076 
3077 	return ret;
3078 }
3079 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3080 
3081 /*
3082  * Helper that checks whether a VCPU is eligible for directed yield.
3083  * Most eligible candidate to yield is decided by following heuristics:
3084  *
3085  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3086  *  (preempted lock holder), indicated by @in_spin_loop.
3087  *  Set at the beginning and cleared at the end of interception/PLE handler.
3088  *
3089  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3090  *  chance last time (mostly it has become eligible now since we have probably
3091  *  yielded to lockholder in last iteration. This is done by toggling
3092  *  @dy_eligible each time a VCPU checked for eligibility.)
3093  *
3094  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3095  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3096  *  burning. Giving priority for a potential lock-holder increases lock
3097  *  progress.
3098  *
3099  *  Since algorithm is based on heuristics, accessing another VCPU data without
3100  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3101  *  and continue with next VCPU and so on.
3102  */
3103 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3104 {
3105 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3106 	bool eligible;
3107 
3108 	eligible = !vcpu->spin_loop.in_spin_loop ||
3109 		    vcpu->spin_loop.dy_eligible;
3110 
3111 	if (vcpu->spin_loop.in_spin_loop)
3112 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3113 
3114 	return eligible;
3115 #else
3116 	return true;
3117 #endif
3118 }
3119 
3120 /*
3121  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3122  * a vcpu_load/vcpu_put pair.  However, for most architectures
3123  * kvm_arch_vcpu_runnable does not require vcpu_load.
3124  */
3125 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3126 {
3127 	return kvm_arch_vcpu_runnable(vcpu);
3128 }
3129 
3130 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3131 {
3132 	if (kvm_arch_dy_runnable(vcpu))
3133 		return true;
3134 
3135 #ifdef CONFIG_KVM_ASYNC_PF
3136 	if (!list_empty_careful(&vcpu->async_pf.done))
3137 		return true;
3138 #endif
3139 
3140 	return false;
3141 }
3142 
3143 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3144 {
3145 	return false;
3146 }
3147 
3148 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3149 {
3150 	struct kvm *kvm = me->kvm;
3151 	struct kvm_vcpu *vcpu;
3152 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3153 	int yielded = 0;
3154 	int try = 3;
3155 	int pass;
3156 	int i;
3157 
3158 	kvm_vcpu_set_in_spin_loop(me, true);
3159 	/*
3160 	 * We boost the priority of a VCPU that is runnable but not
3161 	 * currently running, because it got preempted by something
3162 	 * else and called schedule in __vcpu_run.  Hopefully that
3163 	 * VCPU is holding the lock that we need and will release it.
3164 	 * We approximate round-robin by starting at the last boosted VCPU.
3165 	 */
3166 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3167 		kvm_for_each_vcpu(i, vcpu, kvm) {
3168 			if (!pass && i <= last_boosted_vcpu) {
3169 				i = last_boosted_vcpu;
3170 				continue;
3171 			} else if (pass && i > last_boosted_vcpu)
3172 				break;
3173 			if (!READ_ONCE(vcpu->ready))
3174 				continue;
3175 			if (vcpu == me)
3176 				continue;
3177 			if (rcuwait_active(&vcpu->wait) &&
3178 			    !vcpu_dy_runnable(vcpu))
3179 				continue;
3180 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3181 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3182 			    !kvm_arch_vcpu_in_kernel(vcpu))
3183 				continue;
3184 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3185 				continue;
3186 
3187 			yielded = kvm_vcpu_yield_to(vcpu);
3188 			if (yielded > 0) {
3189 				kvm->last_boosted_vcpu = i;
3190 				break;
3191 			} else if (yielded < 0) {
3192 				try--;
3193 				if (!try)
3194 					break;
3195 			}
3196 		}
3197 	}
3198 	kvm_vcpu_set_in_spin_loop(me, false);
3199 
3200 	/* Ensure vcpu is not eligible during next spinloop */
3201 	kvm_vcpu_set_dy_eligible(me, false);
3202 }
3203 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3204 
3205 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3206 {
3207 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3208 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3209 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3210 	     kvm->dirty_ring_size / PAGE_SIZE);
3211 #else
3212 	return false;
3213 #endif
3214 }
3215 
3216 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3217 {
3218 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3219 	struct page *page;
3220 
3221 	if (vmf->pgoff == 0)
3222 		page = virt_to_page(vcpu->run);
3223 #ifdef CONFIG_X86
3224 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3225 		page = virt_to_page(vcpu->arch.pio_data);
3226 #endif
3227 #ifdef CONFIG_KVM_MMIO
3228 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3229 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3230 #endif
3231 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3232 		page = kvm_dirty_ring_get_page(
3233 		    &vcpu->dirty_ring,
3234 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3235 	else
3236 		return kvm_arch_vcpu_fault(vcpu, vmf);
3237 	get_page(page);
3238 	vmf->page = page;
3239 	return 0;
3240 }
3241 
3242 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3243 	.fault = kvm_vcpu_fault,
3244 };
3245 
3246 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3247 {
3248 	struct kvm_vcpu *vcpu = file->private_data;
3249 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3250 
3251 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3252 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3253 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3254 		return -EINVAL;
3255 
3256 	vma->vm_ops = &kvm_vcpu_vm_ops;
3257 	return 0;
3258 }
3259 
3260 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3261 {
3262 	struct kvm_vcpu *vcpu = filp->private_data;
3263 
3264 	kvm_put_kvm(vcpu->kvm);
3265 	return 0;
3266 }
3267 
3268 static struct file_operations kvm_vcpu_fops = {
3269 	.release        = kvm_vcpu_release,
3270 	.unlocked_ioctl = kvm_vcpu_ioctl,
3271 	.mmap           = kvm_vcpu_mmap,
3272 	.llseek		= noop_llseek,
3273 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3274 };
3275 
3276 /*
3277  * Allocates an inode for the vcpu.
3278  */
3279 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3280 {
3281 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3282 
3283 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3284 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3285 }
3286 
3287 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3288 {
3289 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3290 	struct dentry *debugfs_dentry;
3291 	char dir_name[ITOA_MAX_LEN * 2];
3292 
3293 	if (!debugfs_initialized())
3294 		return;
3295 
3296 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3297 	debugfs_dentry = debugfs_create_dir(dir_name,
3298 					    vcpu->kvm->debugfs_dentry);
3299 
3300 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3301 #endif
3302 }
3303 
3304 /*
3305  * Creates some virtual cpus.  Good luck creating more than one.
3306  */
3307 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3308 {
3309 	int r;
3310 	struct kvm_vcpu *vcpu;
3311 	struct page *page;
3312 
3313 	if (id >= KVM_MAX_VCPU_ID)
3314 		return -EINVAL;
3315 
3316 	mutex_lock(&kvm->lock);
3317 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3318 		mutex_unlock(&kvm->lock);
3319 		return -EINVAL;
3320 	}
3321 
3322 	kvm->created_vcpus++;
3323 	mutex_unlock(&kvm->lock);
3324 
3325 	r = kvm_arch_vcpu_precreate(kvm, id);
3326 	if (r)
3327 		goto vcpu_decrement;
3328 
3329 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3330 	if (!vcpu) {
3331 		r = -ENOMEM;
3332 		goto vcpu_decrement;
3333 	}
3334 
3335 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3336 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3337 	if (!page) {
3338 		r = -ENOMEM;
3339 		goto vcpu_free;
3340 	}
3341 	vcpu->run = page_address(page);
3342 
3343 	kvm_vcpu_init(vcpu, kvm, id);
3344 
3345 	r = kvm_arch_vcpu_create(vcpu);
3346 	if (r)
3347 		goto vcpu_free_run_page;
3348 
3349 	if (kvm->dirty_ring_size) {
3350 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3351 					 id, kvm->dirty_ring_size);
3352 		if (r)
3353 			goto arch_vcpu_destroy;
3354 	}
3355 
3356 	mutex_lock(&kvm->lock);
3357 	if (kvm_get_vcpu_by_id(kvm, id)) {
3358 		r = -EEXIST;
3359 		goto unlock_vcpu_destroy;
3360 	}
3361 
3362 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3363 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3364 
3365 	/* Now it's all set up, let userspace reach it */
3366 	kvm_get_kvm(kvm);
3367 	r = create_vcpu_fd(vcpu);
3368 	if (r < 0) {
3369 		kvm_put_kvm_no_destroy(kvm);
3370 		goto unlock_vcpu_destroy;
3371 	}
3372 
3373 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3374 
3375 	/*
3376 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3377 	 * before kvm->online_vcpu's incremented value.
3378 	 */
3379 	smp_wmb();
3380 	atomic_inc(&kvm->online_vcpus);
3381 
3382 	mutex_unlock(&kvm->lock);
3383 	kvm_arch_vcpu_postcreate(vcpu);
3384 	kvm_create_vcpu_debugfs(vcpu);
3385 	return r;
3386 
3387 unlock_vcpu_destroy:
3388 	mutex_unlock(&kvm->lock);
3389 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3390 arch_vcpu_destroy:
3391 	kvm_arch_vcpu_destroy(vcpu);
3392 vcpu_free_run_page:
3393 	free_page((unsigned long)vcpu->run);
3394 vcpu_free:
3395 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3396 vcpu_decrement:
3397 	mutex_lock(&kvm->lock);
3398 	kvm->created_vcpus--;
3399 	mutex_unlock(&kvm->lock);
3400 	return r;
3401 }
3402 
3403 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3404 {
3405 	if (sigset) {
3406 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3407 		vcpu->sigset_active = 1;
3408 		vcpu->sigset = *sigset;
3409 	} else
3410 		vcpu->sigset_active = 0;
3411 	return 0;
3412 }
3413 
3414 static long kvm_vcpu_ioctl(struct file *filp,
3415 			   unsigned int ioctl, unsigned long arg)
3416 {
3417 	struct kvm_vcpu *vcpu = filp->private_data;
3418 	void __user *argp = (void __user *)arg;
3419 	int r;
3420 	struct kvm_fpu *fpu = NULL;
3421 	struct kvm_sregs *kvm_sregs = NULL;
3422 
3423 	if (vcpu->kvm->mm != current->mm)
3424 		return -EIO;
3425 
3426 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3427 		return -EINVAL;
3428 
3429 	/*
3430 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3431 	 * execution; mutex_lock() would break them.
3432 	 */
3433 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3434 	if (r != -ENOIOCTLCMD)
3435 		return r;
3436 
3437 	if (mutex_lock_killable(&vcpu->mutex))
3438 		return -EINTR;
3439 	switch (ioctl) {
3440 	case KVM_RUN: {
3441 		struct pid *oldpid;
3442 		r = -EINVAL;
3443 		if (arg)
3444 			goto out;
3445 		oldpid = rcu_access_pointer(vcpu->pid);
3446 		if (unlikely(oldpid != task_pid(current))) {
3447 			/* The thread running this VCPU changed. */
3448 			struct pid *newpid;
3449 
3450 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3451 			if (r)
3452 				break;
3453 
3454 			newpid = get_task_pid(current, PIDTYPE_PID);
3455 			rcu_assign_pointer(vcpu->pid, newpid);
3456 			if (oldpid)
3457 				synchronize_rcu();
3458 			put_pid(oldpid);
3459 		}
3460 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3461 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3462 		break;
3463 	}
3464 	case KVM_GET_REGS: {
3465 		struct kvm_regs *kvm_regs;
3466 
3467 		r = -ENOMEM;
3468 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3469 		if (!kvm_regs)
3470 			goto out;
3471 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3472 		if (r)
3473 			goto out_free1;
3474 		r = -EFAULT;
3475 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3476 			goto out_free1;
3477 		r = 0;
3478 out_free1:
3479 		kfree(kvm_regs);
3480 		break;
3481 	}
3482 	case KVM_SET_REGS: {
3483 		struct kvm_regs *kvm_regs;
3484 
3485 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3486 		if (IS_ERR(kvm_regs)) {
3487 			r = PTR_ERR(kvm_regs);
3488 			goto out;
3489 		}
3490 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3491 		kfree(kvm_regs);
3492 		break;
3493 	}
3494 	case KVM_GET_SREGS: {
3495 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3496 				    GFP_KERNEL_ACCOUNT);
3497 		r = -ENOMEM;
3498 		if (!kvm_sregs)
3499 			goto out;
3500 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3501 		if (r)
3502 			goto out;
3503 		r = -EFAULT;
3504 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3505 			goto out;
3506 		r = 0;
3507 		break;
3508 	}
3509 	case KVM_SET_SREGS: {
3510 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3511 		if (IS_ERR(kvm_sregs)) {
3512 			r = PTR_ERR(kvm_sregs);
3513 			kvm_sregs = NULL;
3514 			goto out;
3515 		}
3516 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3517 		break;
3518 	}
3519 	case KVM_GET_MP_STATE: {
3520 		struct kvm_mp_state mp_state;
3521 
3522 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3523 		if (r)
3524 			goto out;
3525 		r = -EFAULT;
3526 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3527 			goto out;
3528 		r = 0;
3529 		break;
3530 	}
3531 	case KVM_SET_MP_STATE: {
3532 		struct kvm_mp_state mp_state;
3533 
3534 		r = -EFAULT;
3535 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3536 			goto out;
3537 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3538 		break;
3539 	}
3540 	case KVM_TRANSLATE: {
3541 		struct kvm_translation tr;
3542 
3543 		r = -EFAULT;
3544 		if (copy_from_user(&tr, argp, sizeof(tr)))
3545 			goto out;
3546 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3547 		if (r)
3548 			goto out;
3549 		r = -EFAULT;
3550 		if (copy_to_user(argp, &tr, sizeof(tr)))
3551 			goto out;
3552 		r = 0;
3553 		break;
3554 	}
3555 	case KVM_SET_GUEST_DEBUG: {
3556 		struct kvm_guest_debug dbg;
3557 
3558 		r = -EFAULT;
3559 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3560 			goto out;
3561 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3562 		break;
3563 	}
3564 	case KVM_SET_SIGNAL_MASK: {
3565 		struct kvm_signal_mask __user *sigmask_arg = argp;
3566 		struct kvm_signal_mask kvm_sigmask;
3567 		sigset_t sigset, *p;
3568 
3569 		p = NULL;
3570 		if (argp) {
3571 			r = -EFAULT;
3572 			if (copy_from_user(&kvm_sigmask, argp,
3573 					   sizeof(kvm_sigmask)))
3574 				goto out;
3575 			r = -EINVAL;
3576 			if (kvm_sigmask.len != sizeof(sigset))
3577 				goto out;
3578 			r = -EFAULT;
3579 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3580 					   sizeof(sigset)))
3581 				goto out;
3582 			p = &sigset;
3583 		}
3584 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3585 		break;
3586 	}
3587 	case KVM_GET_FPU: {
3588 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3589 		r = -ENOMEM;
3590 		if (!fpu)
3591 			goto out;
3592 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3593 		if (r)
3594 			goto out;
3595 		r = -EFAULT;
3596 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3597 			goto out;
3598 		r = 0;
3599 		break;
3600 	}
3601 	case KVM_SET_FPU: {
3602 		fpu = memdup_user(argp, sizeof(*fpu));
3603 		if (IS_ERR(fpu)) {
3604 			r = PTR_ERR(fpu);
3605 			fpu = NULL;
3606 			goto out;
3607 		}
3608 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3609 		break;
3610 	}
3611 	default:
3612 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3613 	}
3614 out:
3615 	mutex_unlock(&vcpu->mutex);
3616 	kfree(fpu);
3617 	kfree(kvm_sregs);
3618 	return r;
3619 }
3620 
3621 #ifdef CONFIG_KVM_COMPAT
3622 static long kvm_vcpu_compat_ioctl(struct file *filp,
3623 				  unsigned int ioctl, unsigned long arg)
3624 {
3625 	struct kvm_vcpu *vcpu = filp->private_data;
3626 	void __user *argp = compat_ptr(arg);
3627 	int r;
3628 
3629 	if (vcpu->kvm->mm != current->mm)
3630 		return -EIO;
3631 
3632 	switch (ioctl) {
3633 	case KVM_SET_SIGNAL_MASK: {
3634 		struct kvm_signal_mask __user *sigmask_arg = argp;
3635 		struct kvm_signal_mask kvm_sigmask;
3636 		sigset_t sigset;
3637 
3638 		if (argp) {
3639 			r = -EFAULT;
3640 			if (copy_from_user(&kvm_sigmask, argp,
3641 					   sizeof(kvm_sigmask)))
3642 				goto out;
3643 			r = -EINVAL;
3644 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3645 				goto out;
3646 			r = -EFAULT;
3647 			if (get_compat_sigset(&sigset,
3648 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3649 				goto out;
3650 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3651 		} else
3652 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3653 		break;
3654 	}
3655 	default:
3656 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3657 	}
3658 
3659 out:
3660 	return r;
3661 }
3662 #endif
3663 
3664 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3665 {
3666 	struct kvm_device *dev = filp->private_data;
3667 
3668 	if (dev->ops->mmap)
3669 		return dev->ops->mmap(dev, vma);
3670 
3671 	return -ENODEV;
3672 }
3673 
3674 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3675 				 int (*accessor)(struct kvm_device *dev,
3676 						 struct kvm_device_attr *attr),
3677 				 unsigned long arg)
3678 {
3679 	struct kvm_device_attr attr;
3680 
3681 	if (!accessor)
3682 		return -EPERM;
3683 
3684 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3685 		return -EFAULT;
3686 
3687 	return accessor(dev, &attr);
3688 }
3689 
3690 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3691 			     unsigned long arg)
3692 {
3693 	struct kvm_device *dev = filp->private_data;
3694 
3695 	if (dev->kvm->mm != current->mm)
3696 		return -EIO;
3697 
3698 	switch (ioctl) {
3699 	case KVM_SET_DEVICE_ATTR:
3700 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3701 	case KVM_GET_DEVICE_ATTR:
3702 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3703 	case KVM_HAS_DEVICE_ATTR:
3704 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3705 	default:
3706 		if (dev->ops->ioctl)
3707 			return dev->ops->ioctl(dev, ioctl, arg);
3708 
3709 		return -ENOTTY;
3710 	}
3711 }
3712 
3713 static int kvm_device_release(struct inode *inode, struct file *filp)
3714 {
3715 	struct kvm_device *dev = filp->private_data;
3716 	struct kvm *kvm = dev->kvm;
3717 
3718 	if (dev->ops->release) {
3719 		mutex_lock(&kvm->lock);
3720 		list_del(&dev->vm_node);
3721 		dev->ops->release(dev);
3722 		mutex_unlock(&kvm->lock);
3723 	}
3724 
3725 	kvm_put_kvm(kvm);
3726 	return 0;
3727 }
3728 
3729 static const struct file_operations kvm_device_fops = {
3730 	.unlocked_ioctl = kvm_device_ioctl,
3731 	.release = kvm_device_release,
3732 	KVM_COMPAT(kvm_device_ioctl),
3733 	.mmap = kvm_device_mmap,
3734 };
3735 
3736 struct kvm_device *kvm_device_from_filp(struct file *filp)
3737 {
3738 	if (filp->f_op != &kvm_device_fops)
3739 		return NULL;
3740 
3741 	return filp->private_data;
3742 }
3743 
3744 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3745 #ifdef CONFIG_KVM_MPIC
3746 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3747 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3748 #endif
3749 };
3750 
3751 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3752 {
3753 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3754 		return -ENOSPC;
3755 
3756 	if (kvm_device_ops_table[type] != NULL)
3757 		return -EEXIST;
3758 
3759 	kvm_device_ops_table[type] = ops;
3760 	return 0;
3761 }
3762 
3763 void kvm_unregister_device_ops(u32 type)
3764 {
3765 	if (kvm_device_ops_table[type] != NULL)
3766 		kvm_device_ops_table[type] = NULL;
3767 }
3768 
3769 static int kvm_ioctl_create_device(struct kvm *kvm,
3770 				   struct kvm_create_device *cd)
3771 {
3772 	const struct kvm_device_ops *ops = NULL;
3773 	struct kvm_device *dev;
3774 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3775 	int type;
3776 	int ret;
3777 
3778 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3779 		return -ENODEV;
3780 
3781 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3782 	ops = kvm_device_ops_table[type];
3783 	if (ops == NULL)
3784 		return -ENODEV;
3785 
3786 	if (test)
3787 		return 0;
3788 
3789 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3790 	if (!dev)
3791 		return -ENOMEM;
3792 
3793 	dev->ops = ops;
3794 	dev->kvm = kvm;
3795 
3796 	mutex_lock(&kvm->lock);
3797 	ret = ops->create(dev, type);
3798 	if (ret < 0) {
3799 		mutex_unlock(&kvm->lock);
3800 		kfree(dev);
3801 		return ret;
3802 	}
3803 	list_add(&dev->vm_node, &kvm->devices);
3804 	mutex_unlock(&kvm->lock);
3805 
3806 	if (ops->init)
3807 		ops->init(dev);
3808 
3809 	kvm_get_kvm(kvm);
3810 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3811 	if (ret < 0) {
3812 		kvm_put_kvm_no_destroy(kvm);
3813 		mutex_lock(&kvm->lock);
3814 		list_del(&dev->vm_node);
3815 		mutex_unlock(&kvm->lock);
3816 		ops->destroy(dev);
3817 		return ret;
3818 	}
3819 
3820 	cd->fd = ret;
3821 	return 0;
3822 }
3823 
3824 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3825 {
3826 	switch (arg) {
3827 	case KVM_CAP_USER_MEMORY:
3828 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3829 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3830 	case KVM_CAP_INTERNAL_ERROR_DATA:
3831 #ifdef CONFIG_HAVE_KVM_MSI
3832 	case KVM_CAP_SIGNAL_MSI:
3833 #endif
3834 #ifdef CONFIG_HAVE_KVM_IRQFD
3835 	case KVM_CAP_IRQFD:
3836 	case KVM_CAP_IRQFD_RESAMPLE:
3837 #endif
3838 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3839 	case KVM_CAP_CHECK_EXTENSION_VM:
3840 	case KVM_CAP_ENABLE_CAP_VM:
3841 	case KVM_CAP_HALT_POLL:
3842 		return 1;
3843 #ifdef CONFIG_KVM_MMIO
3844 	case KVM_CAP_COALESCED_MMIO:
3845 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3846 	case KVM_CAP_COALESCED_PIO:
3847 		return 1;
3848 #endif
3849 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3850 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3851 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3852 #endif
3853 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3854 	case KVM_CAP_IRQ_ROUTING:
3855 		return KVM_MAX_IRQ_ROUTES;
3856 #endif
3857 #if KVM_ADDRESS_SPACE_NUM > 1
3858 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3859 		return KVM_ADDRESS_SPACE_NUM;
3860 #endif
3861 	case KVM_CAP_NR_MEMSLOTS:
3862 		return KVM_USER_MEM_SLOTS;
3863 	case KVM_CAP_DIRTY_LOG_RING:
3864 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3865 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3866 #else
3867 		return 0;
3868 #endif
3869 	default:
3870 		break;
3871 	}
3872 	return kvm_vm_ioctl_check_extension(kvm, arg);
3873 }
3874 
3875 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3876 {
3877 	int r;
3878 
3879 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3880 		return -EINVAL;
3881 
3882 	/* the size should be power of 2 */
3883 	if (!size || (size & (size - 1)))
3884 		return -EINVAL;
3885 
3886 	/* Should be bigger to keep the reserved entries, or a page */
3887 	if (size < kvm_dirty_ring_get_rsvd_entries() *
3888 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3889 		return -EINVAL;
3890 
3891 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3892 	    sizeof(struct kvm_dirty_gfn))
3893 		return -E2BIG;
3894 
3895 	/* We only allow it to set once */
3896 	if (kvm->dirty_ring_size)
3897 		return -EINVAL;
3898 
3899 	mutex_lock(&kvm->lock);
3900 
3901 	if (kvm->created_vcpus) {
3902 		/* We don't allow to change this value after vcpu created */
3903 		r = -EINVAL;
3904 	} else {
3905 		kvm->dirty_ring_size = size;
3906 		r = 0;
3907 	}
3908 
3909 	mutex_unlock(&kvm->lock);
3910 	return r;
3911 }
3912 
3913 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3914 {
3915 	int i;
3916 	struct kvm_vcpu *vcpu;
3917 	int cleared = 0;
3918 
3919 	if (!kvm->dirty_ring_size)
3920 		return -EINVAL;
3921 
3922 	mutex_lock(&kvm->slots_lock);
3923 
3924 	kvm_for_each_vcpu(i, vcpu, kvm)
3925 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3926 
3927 	mutex_unlock(&kvm->slots_lock);
3928 
3929 	if (cleared)
3930 		kvm_flush_remote_tlbs(kvm);
3931 
3932 	return cleared;
3933 }
3934 
3935 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3936 						  struct kvm_enable_cap *cap)
3937 {
3938 	return -EINVAL;
3939 }
3940 
3941 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3942 					   struct kvm_enable_cap *cap)
3943 {
3944 	switch (cap->cap) {
3945 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3946 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3947 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3948 
3949 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3950 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3951 
3952 		if (cap->flags || (cap->args[0] & ~allowed_options))
3953 			return -EINVAL;
3954 		kvm->manual_dirty_log_protect = cap->args[0];
3955 		return 0;
3956 	}
3957 #endif
3958 	case KVM_CAP_HALT_POLL: {
3959 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3960 			return -EINVAL;
3961 
3962 		kvm->max_halt_poll_ns = cap->args[0];
3963 		return 0;
3964 	}
3965 	case KVM_CAP_DIRTY_LOG_RING:
3966 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3967 	default:
3968 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3969 	}
3970 }
3971 
3972 static long kvm_vm_ioctl(struct file *filp,
3973 			   unsigned int ioctl, unsigned long arg)
3974 {
3975 	struct kvm *kvm = filp->private_data;
3976 	void __user *argp = (void __user *)arg;
3977 	int r;
3978 
3979 	if (kvm->mm != current->mm)
3980 		return -EIO;
3981 	switch (ioctl) {
3982 	case KVM_CREATE_VCPU:
3983 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3984 		break;
3985 	case KVM_ENABLE_CAP: {
3986 		struct kvm_enable_cap cap;
3987 
3988 		r = -EFAULT;
3989 		if (copy_from_user(&cap, argp, sizeof(cap)))
3990 			goto out;
3991 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3992 		break;
3993 	}
3994 	case KVM_SET_USER_MEMORY_REGION: {
3995 		struct kvm_userspace_memory_region kvm_userspace_mem;
3996 
3997 		r = -EFAULT;
3998 		if (copy_from_user(&kvm_userspace_mem, argp,
3999 						sizeof(kvm_userspace_mem)))
4000 			goto out;
4001 
4002 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4003 		break;
4004 	}
4005 	case KVM_GET_DIRTY_LOG: {
4006 		struct kvm_dirty_log log;
4007 
4008 		r = -EFAULT;
4009 		if (copy_from_user(&log, argp, sizeof(log)))
4010 			goto out;
4011 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4012 		break;
4013 	}
4014 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4015 	case KVM_CLEAR_DIRTY_LOG: {
4016 		struct kvm_clear_dirty_log log;
4017 
4018 		r = -EFAULT;
4019 		if (copy_from_user(&log, argp, sizeof(log)))
4020 			goto out;
4021 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4022 		break;
4023 	}
4024 #endif
4025 #ifdef CONFIG_KVM_MMIO
4026 	case KVM_REGISTER_COALESCED_MMIO: {
4027 		struct kvm_coalesced_mmio_zone zone;
4028 
4029 		r = -EFAULT;
4030 		if (copy_from_user(&zone, argp, sizeof(zone)))
4031 			goto out;
4032 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4033 		break;
4034 	}
4035 	case KVM_UNREGISTER_COALESCED_MMIO: {
4036 		struct kvm_coalesced_mmio_zone zone;
4037 
4038 		r = -EFAULT;
4039 		if (copy_from_user(&zone, argp, sizeof(zone)))
4040 			goto out;
4041 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4042 		break;
4043 	}
4044 #endif
4045 	case KVM_IRQFD: {
4046 		struct kvm_irqfd data;
4047 
4048 		r = -EFAULT;
4049 		if (copy_from_user(&data, argp, sizeof(data)))
4050 			goto out;
4051 		r = kvm_irqfd(kvm, &data);
4052 		break;
4053 	}
4054 	case KVM_IOEVENTFD: {
4055 		struct kvm_ioeventfd data;
4056 
4057 		r = -EFAULT;
4058 		if (copy_from_user(&data, argp, sizeof(data)))
4059 			goto out;
4060 		r = kvm_ioeventfd(kvm, &data);
4061 		break;
4062 	}
4063 #ifdef CONFIG_HAVE_KVM_MSI
4064 	case KVM_SIGNAL_MSI: {
4065 		struct kvm_msi msi;
4066 
4067 		r = -EFAULT;
4068 		if (copy_from_user(&msi, argp, sizeof(msi)))
4069 			goto out;
4070 		r = kvm_send_userspace_msi(kvm, &msi);
4071 		break;
4072 	}
4073 #endif
4074 #ifdef __KVM_HAVE_IRQ_LINE
4075 	case KVM_IRQ_LINE_STATUS:
4076 	case KVM_IRQ_LINE: {
4077 		struct kvm_irq_level irq_event;
4078 
4079 		r = -EFAULT;
4080 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4081 			goto out;
4082 
4083 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4084 					ioctl == KVM_IRQ_LINE_STATUS);
4085 		if (r)
4086 			goto out;
4087 
4088 		r = -EFAULT;
4089 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4090 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4091 				goto out;
4092 		}
4093 
4094 		r = 0;
4095 		break;
4096 	}
4097 #endif
4098 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4099 	case KVM_SET_GSI_ROUTING: {
4100 		struct kvm_irq_routing routing;
4101 		struct kvm_irq_routing __user *urouting;
4102 		struct kvm_irq_routing_entry *entries = NULL;
4103 
4104 		r = -EFAULT;
4105 		if (copy_from_user(&routing, argp, sizeof(routing)))
4106 			goto out;
4107 		r = -EINVAL;
4108 		if (!kvm_arch_can_set_irq_routing(kvm))
4109 			goto out;
4110 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4111 			goto out;
4112 		if (routing.flags)
4113 			goto out;
4114 		if (routing.nr) {
4115 			urouting = argp;
4116 			entries = vmemdup_user(urouting->entries,
4117 					       array_size(sizeof(*entries),
4118 							  routing.nr));
4119 			if (IS_ERR(entries)) {
4120 				r = PTR_ERR(entries);
4121 				goto out;
4122 			}
4123 		}
4124 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4125 					routing.flags);
4126 		kvfree(entries);
4127 		break;
4128 	}
4129 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4130 	case KVM_CREATE_DEVICE: {
4131 		struct kvm_create_device cd;
4132 
4133 		r = -EFAULT;
4134 		if (copy_from_user(&cd, argp, sizeof(cd)))
4135 			goto out;
4136 
4137 		r = kvm_ioctl_create_device(kvm, &cd);
4138 		if (r)
4139 			goto out;
4140 
4141 		r = -EFAULT;
4142 		if (copy_to_user(argp, &cd, sizeof(cd)))
4143 			goto out;
4144 
4145 		r = 0;
4146 		break;
4147 	}
4148 	case KVM_CHECK_EXTENSION:
4149 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4150 		break;
4151 	case KVM_RESET_DIRTY_RINGS:
4152 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4153 		break;
4154 	default:
4155 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4156 	}
4157 out:
4158 	return r;
4159 }
4160 
4161 #ifdef CONFIG_KVM_COMPAT
4162 struct compat_kvm_dirty_log {
4163 	__u32 slot;
4164 	__u32 padding1;
4165 	union {
4166 		compat_uptr_t dirty_bitmap; /* one bit per page */
4167 		__u64 padding2;
4168 	};
4169 };
4170 
4171 static long kvm_vm_compat_ioctl(struct file *filp,
4172 			   unsigned int ioctl, unsigned long arg)
4173 {
4174 	struct kvm *kvm = filp->private_data;
4175 	int r;
4176 
4177 	if (kvm->mm != current->mm)
4178 		return -EIO;
4179 	switch (ioctl) {
4180 	case KVM_GET_DIRTY_LOG: {
4181 		struct compat_kvm_dirty_log compat_log;
4182 		struct kvm_dirty_log log;
4183 
4184 		if (copy_from_user(&compat_log, (void __user *)arg,
4185 				   sizeof(compat_log)))
4186 			return -EFAULT;
4187 		log.slot	 = compat_log.slot;
4188 		log.padding1	 = compat_log.padding1;
4189 		log.padding2	 = compat_log.padding2;
4190 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4191 
4192 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4193 		break;
4194 	}
4195 	default:
4196 		r = kvm_vm_ioctl(filp, ioctl, arg);
4197 	}
4198 	return r;
4199 }
4200 #endif
4201 
4202 static struct file_operations kvm_vm_fops = {
4203 	.release        = kvm_vm_release,
4204 	.unlocked_ioctl = kvm_vm_ioctl,
4205 	.llseek		= noop_llseek,
4206 	KVM_COMPAT(kvm_vm_compat_ioctl),
4207 };
4208 
4209 bool file_is_kvm(struct file *file)
4210 {
4211 	return file && file->f_op == &kvm_vm_fops;
4212 }
4213 EXPORT_SYMBOL_GPL(file_is_kvm);
4214 
4215 static int kvm_dev_ioctl_create_vm(unsigned long type)
4216 {
4217 	int r;
4218 	struct kvm *kvm;
4219 	struct file *file;
4220 
4221 	kvm = kvm_create_vm(type);
4222 	if (IS_ERR(kvm))
4223 		return PTR_ERR(kvm);
4224 #ifdef CONFIG_KVM_MMIO
4225 	r = kvm_coalesced_mmio_init(kvm);
4226 	if (r < 0)
4227 		goto put_kvm;
4228 #endif
4229 	r = get_unused_fd_flags(O_CLOEXEC);
4230 	if (r < 0)
4231 		goto put_kvm;
4232 
4233 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4234 	if (IS_ERR(file)) {
4235 		put_unused_fd(r);
4236 		r = PTR_ERR(file);
4237 		goto put_kvm;
4238 	}
4239 
4240 	/*
4241 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4242 	 * already set, with ->release() being kvm_vm_release().  In error
4243 	 * cases it will be called by the final fput(file) and will take
4244 	 * care of doing kvm_put_kvm(kvm).
4245 	 */
4246 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4247 		put_unused_fd(r);
4248 		fput(file);
4249 		return -ENOMEM;
4250 	}
4251 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4252 
4253 	fd_install(r, file);
4254 	return r;
4255 
4256 put_kvm:
4257 	kvm_put_kvm(kvm);
4258 	return r;
4259 }
4260 
4261 static long kvm_dev_ioctl(struct file *filp,
4262 			  unsigned int ioctl, unsigned long arg)
4263 {
4264 	long r = -EINVAL;
4265 
4266 	switch (ioctl) {
4267 	case KVM_GET_API_VERSION:
4268 		if (arg)
4269 			goto out;
4270 		r = KVM_API_VERSION;
4271 		break;
4272 	case KVM_CREATE_VM:
4273 		r = kvm_dev_ioctl_create_vm(arg);
4274 		break;
4275 	case KVM_CHECK_EXTENSION:
4276 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4277 		break;
4278 	case KVM_GET_VCPU_MMAP_SIZE:
4279 		if (arg)
4280 			goto out;
4281 		r = PAGE_SIZE;     /* struct kvm_run */
4282 #ifdef CONFIG_X86
4283 		r += PAGE_SIZE;    /* pio data page */
4284 #endif
4285 #ifdef CONFIG_KVM_MMIO
4286 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4287 #endif
4288 		break;
4289 	case KVM_TRACE_ENABLE:
4290 	case KVM_TRACE_PAUSE:
4291 	case KVM_TRACE_DISABLE:
4292 		r = -EOPNOTSUPP;
4293 		break;
4294 	default:
4295 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4296 	}
4297 out:
4298 	return r;
4299 }
4300 
4301 static struct file_operations kvm_chardev_ops = {
4302 	.unlocked_ioctl = kvm_dev_ioctl,
4303 	.llseek		= noop_llseek,
4304 	KVM_COMPAT(kvm_dev_ioctl),
4305 };
4306 
4307 static struct miscdevice kvm_dev = {
4308 	KVM_MINOR,
4309 	"kvm",
4310 	&kvm_chardev_ops,
4311 };
4312 
4313 static void hardware_enable_nolock(void *junk)
4314 {
4315 	int cpu = raw_smp_processor_id();
4316 	int r;
4317 
4318 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4319 		return;
4320 
4321 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4322 
4323 	r = kvm_arch_hardware_enable();
4324 
4325 	if (r) {
4326 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4327 		atomic_inc(&hardware_enable_failed);
4328 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4329 	}
4330 }
4331 
4332 static int kvm_starting_cpu(unsigned int cpu)
4333 {
4334 	raw_spin_lock(&kvm_count_lock);
4335 	if (kvm_usage_count)
4336 		hardware_enable_nolock(NULL);
4337 	raw_spin_unlock(&kvm_count_lock);
4338 	return 0;
4339 }
4340 
4341 static void hardware_disable_nolock(void *junk)
4342 {
4343 	int cpu = raw_smp_processor_id();
4344 
4345 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4346 		return;
4347 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4348 	kvm_arch_hardware_disable();
4349 }
4350 
4351 static int kvm_dying_cpu(unsigned int cpu)
4352 {
4353 	raw_spin_lock(&kvm_count_lock);
4354 	if (kvm_usage_count)
4355 		hardware_disable_nolock(NULL);
4356 	raw_spin_unlock(&kvm_count_lock);
4357 	return 0;
4358 }
4359 
4360 static void hardware_disable_all_nolock(void)
4361 {
4362 	BUG_ON(!kvm_usage_count);
4363 
4364 	kvm_usage_count--;
4365 	if (!kvm_usage_count)
4366 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4367 }
4368 
4369 static void hardware_disable_all(void)
4370 {
4371 	raw_spin_lock(&kvm_count_lock);
4372 	hardware_disable_all_nolock();
4373 	raw_spin_unlock(&kvm_count_lock);
4374 }
4375 
4376 static int hardware_enable_all(void)
4377 {
4378 	int r = 0;
4379 
4380 	raw_spin_lock(&kvm_count_lock);
4381 
4382 	kvm_usage_count++;
4383 	if (kvm_usage_count == 1) {
4384 		atomic_set(&hardware_enable_failed, 0);
4385 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4386 
4387 		if (atomic_read(&hardware_enable_failed)) {
4388 			hardware_disable_all_nolock();
4389 			r = -EBUSY;
4390 		}
4391 	}
4392 
4393 	raw_spin_unlock(&kvm_count_lock);
4394 
4395 	return r;
4396 }
4397 
4398 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4399 		      void *v)
4400 {
4401 	/*
4402 	 * Some (well, at least mine) BIOSes hang on reboot if
4403 	 * in vmx root mode.
4404 	 *
4405 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4406 	 */
4407 	pr_info("kvm: exiting hardware virtualization\n");
4408 	kvm_rebooting = true;
4409 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4410 	return NOTIFY_OK;
4411 }
4412 
4413 static struct notifier_block kvm_reboot_notifier = {
4414 	.notifier_call = kvm_reboot,
4415 	.priority = 0,
4416 };
4417 
4418 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4419 {
4420 	int i;
4421 
4422 	for (i = 0; i < bus->dev_count; i++) {
4423 		struct kvm_io_device *pos = bus->range[i].dev;
4424 
4425 		kvm_iodevice_destructor(pos);
4426 	}
4427 	kfree(bus);
4428 }
4429 
4430 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4431 				 const struct kvm_io_range *r2)
4432 {
4433 	gpa_t addr1 = r1->addr;
4434 	gpa_t addr2 = r2->addr;
4435 
4436 	if (addr1 < addr2)
4437 		return -1;
4438 
4439 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4440 	 * accept any overlapping write.  Any order is acceptable for
4441 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4442 	 * we process all of them.
4443 	 */
4444 	if (r2->len) {
4445 		addr1 += r1->len;
4446 		addr2 += r2->len;
4447 	}
4448 
4449 	if (addr1 > addr2)
4450 		return 1;
4451 
4452 	return 0;
4453 }
4454 
4455 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4456 {
4457 	return kvm_io_bus_cmp(p1, p2);
4458 }
4459 
4460 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4461 			     gpa_t addr, int len)
4462 {
4463 	struct kvm_io_range *range, key;
4464 	int off;
4465 
4466 	key = (struct kvm_io_range) {
4467 		.addr = addr,
4468 		.len = len,
4469 	};
4470 
4471 	range = bsearch(&key, bus->range, bus->dev_count,
4472 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4473 	if (range == NULL)
4474 		return -ENOENT;
4475 
4476 	off = range - bus->range;
4477 
4478 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4479 		off--;
4480 
4481 	return off;
4482 }
4483 
4484 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4485 			      struct kvm_io_range *range, const void *val)
4486 {
4487 	int idx;
4488 
4489 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4490 	if (idx < 0)
4491 		return -EOPNOTSUPP;
4492 
4493 	while (idx < bus->dev_count &&
4494 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4495 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4496 					range->len, val))
4497 			return idx;
4498 		idx++;
4499 	}
4500 
4501 	return -EOPNOTSUPP;
4502 }
4503 
4504 /* kvm_io_bus_write - called under kvm->slots_lock */
4505 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4506 		     int len, const void *val)
4507 {
4508 	struct kvm_io_bus *bus;
4509 	struct kvm_io_range range;
4510 	int r;
4511 
4512 	range = (struct kvm_io_range) {
4513 		.addr = addr,
4514 		.len = len,
4515 	};
4516 
4517 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4518 	if (!bus)
4519 		return -ENOMEM;
4520 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4521 	return r < 0 ? r : 0;
4522 }
4523 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4524 
4525 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4526 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4527 			    gpa_t addr, int len, const void *val, long cookie)
4528 {
4529 	struct kvm_io_bus *bus;
4530 	struct kvm_io_range range;
4531 
4532 	range = (struct kvm_io_range) {
4533 		.addr = addr,
4534 		.len = len,
4535 	};
4536 
4537 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4538 	if (!bus)
4539 		return -ENOMEM;
4540 
4541 	/* First try the device referenced by cookie. */
4542 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4543 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4544 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4545 					val))
4546 			return cookie;
4547 
4548 	/*
4549 	 * cookie contained garbage; fall back to search and return the
4550 	 * correct cookie value.
4551 	 */
4552 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4553 }
4554 
4555 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4556 			     struct kvm_io_range *range, void *val)
4557 {
4558 	int idx;
4559 
4560 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4561 	if (idx < 0)
4562 		return -EOPNOTSUPP;
4563 
4564 	while (idx < bus->dev_count &&
4565 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4566 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4567 				       range->len, val))
4568 			return idx;
4569 		idx++;
4570 	}
4571 
4572 	return -EOPNOTSUPP;
4573 }
4574 
4575 /* kvm_io_bus_read - called under kvm->slots_lock */
4576 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4577 		    int len, void *val)
4578 {
4579 	struct kvm_io_bus *bus;
4580 	struct kvm_io_range range;
4581 	int r;
4582 
4583 	range = (struct kvm_io_range) {
4584 		.addr = addr,
4585 		.len = len,
4586 	};
4587 
4588 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4589 	if (!bus)
4590 		return -ENOMEM;
4591 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4592 	return r < 0 ? r : 0;
4593 }
4594 
4595 /* Caller must hold slots_lock. */
4596 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4597 			    int len, struct kvm_io_device *dev)
4598 {
4599 	int i;
4600 	struct kvm_io_bus *new_bus, *bus;
4601 	struct kvm_io_range range;
4602 
4603 	bus = kvm_get_bus(kvm, bus_idx);
4604 	if (!bus)
4605 		return -ENOMEM;
4606 
4607 	/* exclude ioeventfd which is limited by maximum fd */
4608 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4609 		return -ENOSPC;
4610 
4611 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4612 			  GFP_KERNEL_ACCOUNT);
4613 	if (!new_bus)
4614 		return -ENOMEM;
4615 
4616 	range = (struct kvm_io_range) {
4617 		.addr = addr,
4618 		.len = len,
4619 		.dev = dev,
4620 	};
4621 
4622 	for (i = 0; i < bus->dev_count; i++)
4623 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4624 			break;
4625 
4626 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4627 	new_bus->dev_count++;
4628 	new_bus->range[i] = range;
4629 	memcpy(new_bus->range + i + 1, bus->range + i,
4630 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4631 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4632 	synchronize_srcu_expedited(&kvm->srcu);
4633 	kfree(bus);
4634 
4635 	return 0;
4636 }
4637 
4638 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4639 			      struct kvm_io_device *dev)
4640 {
4641 	int i, j;
4642 	struct kvm_io_bus *new_bus, *bus;
4643 
4644 	lockdep_assert_held(&kvm->slots_lock);
4645 
4646 	bus = kvm_get_bus(kvm, bus_idx);
4647 	if (!bus)
4648 		return 0;
4649 
4650 	for (i = 0; i < bus->dev_count; i++) {
4651 		if (bus->range[i].dev == dev) {
4652 			break;
4653 		}
4654 	}
4655 
4656 	if (i == bus->dev_count)
4657 		return 0;
4658 
4659 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4660 			  GFP_KERNEL_ACCOUNT);
4661 	if (new_bus) {
4662 		memcpy(new_bus, bus, struct_size(bus, range, i));
4663 		new_bus->dev_count--;
4664 		memcpy(new_bus->range + i, bus->range + i + 1,
4665 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4666 	}
4667 
4668 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4669 	synchronize_srcu_expedited(&kvm->srcu);
4670 
4671 	/* Destroy the old bus _after_ installing the (null) bus. */
4672 	if (!new_bus) {
4673 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4674 		for (j = 0; j < bus->dev_count; j++) {
4675 			if (j == i)
4676 				continue;
4677 			kvm_iodevice_destructor(bus->range[j].dev);
4678 		}
4679 	}
4680 
4681 	kfree(bus);
4682 	return new_bus ? 0 : -ENOMEM;
4683 }
4684 
4685 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4686 					 gpa_t addr)
4687 {
4688 	struct kvm_io_bus *bus;
4689 	int dev_idx, srcu_idx;
4690 	struct kvm_io_device *iodev = NULL;
4691 
4692 	srcu_idx = srcu_read_lock(&kvm->srcu);
4693 
4694 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4695 	if (!bus)
4696 		goto out_unlock;
4697 
4698 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4699 	if (dev_idx < 0)
4700 		goto out_unlock;
4701 
4702 	iodev = bus->range[dev_idx].dev;
4703 
4704 out_unlock:
4705 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4706 
4707 	return iodev;
4708 }
4709 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4710 
4711 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4712 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4713 			   const char *fmt)
4714 {
4715 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4716 					  inode->i_private;
4717 
4718 	/* The debugfs files are a reference to the kvm struct which
4719 	 * is still valid when kvm_destroy_vm is called.
4720 	 * To avoid the race between open and the removal of the debugfs
4721 	 * directory we test against the users count.
4722 	 */
4723 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4724 		return -ENOENT;
4725 
4726 	if (simple_attr_open(inode, file, get,
4727 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4728 		    ? set : NULL,
4729 		    fmt)) {
4730 		kvm_put_kvm(stat_data->kvm);
4731 		return -ENOMEM;
4732 	}
4733 
4734 	return 0;
4735 }
4736 
4737 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4738 {
4739 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4740 					  inode->i_private;
4741 
4742 	simple_attr_release(inode, file);
4743 	kvm_put_kvm(stat_data->kvm);
4744 
4745 	return 0;
4746 }
4747 
4748 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4749 {
4750 	*val = *(ulong *)((void *)kvm + offset);
4751 
4752 	return 0;
4753 }
4754 
4755 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4756 {
4757 	*(ulong *)((void *)kvm + offset) = 0;
4758 
4759 	return 0;
4760 }
4761 
4762 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4763 {
4764 	int i;
4765 	struct kvm_vcpu *vcpu;
4766 
4767 	*val = 0;
4768 
4769 	kvm_for_each_vcpu(i, vcpu, kvm)
4770 		*val += *(u64 *)((void *)vcpu + offset);
4771 
4772 	return 0;
4773 }
4774 
4775 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4776 {
4777 	int i;
4778 	struct kvm_vcpu *vcpu;
4779 
4780 	kvm_for_each_vcpu(i, vcpu, kvm)
4781 		*(u64 *)((void *)vcpu + offset) = 0;
4782 
4783 	return 0;
4784 }
4785 
4786 static int kvm_stat_data_get(void *data, u64 *val)
4787 {
4788 	int r = -EFAULT;
4789 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4790 
4791 	switch (stat_data->dbgfs_item->kind) {
4792 	case KVM_STAT_VM:
4793 		r = kvm_get_stat_per_vm(stat_data->kvm,
4794 					stat_data->dbgfs_item->offset, val);
4795 		break;
4796 	case KVM_STAT_VCPU:
4797 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4798 					  stat_data->dbgfs_item->offset, val);
4799 		break;
4800 	}
4801 
4802 	return r;
4803 }
4804 
4805 static int kvm_stat_data_clear(void *data, u64 val)
4806 {
4807 	int r = -EFAULT;
4808 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4809 
4810 	if (val)
4811 		return -EINVAL;
4812 
4813 	switch (stat_data->dbgfs_item->kind) {
4814 	case KVM_STAT_VM:
4815 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4816 					  stat_data->dbgfs_item->offset);
4817 		break;
4818 	case KVM_STAT_VCPU:
4819 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4820 					    stat_data->dbgfs_item->offset);
4821 		break;
4822 	}
4823 
4824 	return r;
4825 }
4826 
4827 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4828 {
4829 	__simple_attr_check_format("%llu\n", 0ull);
4830 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4831 				kvm_stat_data_clear, "%llu\n");
4832 }
4833 
4834 static const struct file_operations stat_fops_per_vm = {
4835 	.owner = THIS_MODULE,
4836 	.open = kvm_stat_data_open,
4837 	.release = kvm_debugfs_release,
4838 	.read = simple_attr_read,
4839 	.write = simple_attr_write,
4840 	.llseek = no_llseek,
4841 };
4842 
4843 static int vm_stat_get(void *_offset, u64 *val)
4844 {
4845 	unsigned offset = (long)_offset;
4846 	struct kvm *kvm;
4847 	u64 tmp_val;
4848 
4849 	*val = 0;
4850 	mutex_lock(&kvm_lock);
4851 	list_for_each_entry(kvm, &vm_list, vm_list) {
4852 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4853 		*val += tmp_val;
4854 	}
4855 	mutex_unlock(&kvm_lock);
4856 	return 0;
4857 }
4858 
4859 static int vm_stat_clear(void *_offset, u64 val)
4860 {
4861 	unsigned offset = (long)_offset;
4862 	struct kvm *kvm;
4863 
4864 	if (val)
4865 		return -EINVAL;
4866 
4867 	mutex_lock(&kvm_lock);
4868 	list_for_each_entry(kvm, &vm_list, vm_list) {
4869 		kvm_clear_stat_per_vm(kvm, offset);
4870 	}
4871 	mutex_unlock(&kvm_lock);
4872 
4873 	return 0;
4874 }
4875 
4876 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4877 
4878 static int vcpu_stat_get(void *_offset, u64 *val)
4879 {
4880 	unsigned offset = (long)_offset;
4881 	struct kvm *kvm;
4882 	u64 tmp_val;
4883 
4884 	*val = 0;
4885 	mutex_lock(&kvm_lock);
4886 	list_for_each_entry(kvm, &vm_list, vm_list) {
4887 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4888 		*val += tmp_val;
4889 	}
4890 	mutex_unlock(&kvm_lock);
4891 	return 0;
4892 }
4893 
4894 static int vcpu_stat_clear(void *_offset, u64 val)
4895 {
4896 	unsigned offset = (long)_offset;
4897 	struct kvm *kvm;
4898 
4899 	if (val)
4900 		return -EINVAL;
4901 
4902 	mutex_lock(&kvm_lock);
4903 	list_for_each_entry(kvm, &vm_list, vm_list) {
4904 		kvm_clear_stat_per_vcpu(kvm, offset);
4905 	}
4906 	mutex_unlock(&kvm_lock);
4907 
4908 	return 0;
4909 }
4910 
4911 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4912 			"%llu\n");
4913 
4914 static const struct file_operations *stat_fops[] = {
4915 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4916 	[KVM_STAT_VM]   = &vm_stat_fops,
4917 };
4918 
4919 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4920 {
4921 	struct kobj_uevent_env *env;
4922 	unsigned long long created, active;
4923 
4924 	if (!kvm_dev.this_device || !kvm)
4925 		return;
4926 
4927 	mutex_lock(&kvm_lock);
4928 	if (type == KVM_EVENT_CREATE_VM) {
4929 		kvm_createvm_count++;
4930 		kvm_active_vms++;
4931 	} else if (type == KVM_EVENT_DESTROY_VM) {
4932 		kvm_active_vms--;
4933 	}
4934 	created = kvm_createvm_count;
4935 	active = kvm_active_vms;
4936 	mutex_unlock(&kvm_lock);
4937 
4938 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4939 	if (!env)
4940 		return;
4941 
4942 	add_uevent_var(env, "CREATED=%llu", created);
4943 	add_uevent_var(env, "COUNT=%llu", active);
4944 
4945 	if (type == KVM_EVENT_CREATE_VM) {
4946 		add_uevent_var(env, "EVENT=create");
4947 		kvm->userspace_pid = task_pid_nr(current);
4948 	} else if (type == KVM_EVENT_DESTROY_VM) {
4949 		add_uevent_var(env, "EVENT=destroy");
4950 	}
4951 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4952 
4953 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4954 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4955 
4956 		if (p) {
4957 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4958 			if (!IS_ERR(tmp))
4959 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4960 			kfree(p);
4961 		}
4962 	}
4963 	/* no need for checks, since we are adding at most only 5 keys */
4964 	env->envp[env->envp_idx++] = NULL;
4965 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4966 	kfree(env);
4967 }
4968 
4969 static void kvm_init_debug(void)
4970 {
4971 	struct kvm_stats_debugfs_item *p;
4972 
4973 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4974 
4975 	kvm_debugfs_num_entries = 0;
4976 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4977 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4978 				    kvm_debugfs_dir, (void *)(long)p->offset,
4979 				    stat_fops[p->kind]);
4980 	}
4981 }
4982 
4983 static int kvm_suspend(void)
4984 {
4985 	if (kvm_usage_count)
4986 		hardware_disable_nolock(NULL);
4987 	return 0;
4988 }
4989 
4990 static void kvm_resume(void)
4991 {
4992 	if (kvm_usage_count) {
4993 #ifdef CONFIG_LOCKDEP
4994 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4995 #endif
4996 		hardware_enable_nolock(NULL);
4997 	}
4998 }
4999 
5000 static struct syscore_ops kvm_syscore_ops = {
5001 	.suspend = kvm_suspend,
5002 	.resume = kvm_resume,
5003 };
5004 
5005 static inline
5006 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5007 {
5008 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5009 }
5010 
5011 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5012 {
5013 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5014 
5015 	WRITE_ONCE(vcpu->preempted, false);
5016 	WRITE_ONCE(vcpu->ready, false);
5017 
5018 	__this_cpu_write(kvm_running_vcpu, vcpu);
5019 	kvm_arch_sched_in(vcpu, cpu);
5020 	kvm_arch_vcpu_load(vcpu, cpu);
5021 }
5022 
5023 static void kvm_sched_out(struct preempt_notifier *pn,
5024 			  struct task_struct *next)
5025 {
5026 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5027 
5028 	if (current->state == TASK_RUNNING) {
5029 		WRITE_ONCE(vcpu->preempted, true);
5030 		WRITE_ONCE(vcpu->ready, true);
5031 	}
5032 	kvm_arch_vcpu_put(vcpu);
5033 	__this_cpu_write(kvm_running_vcpu, NULL);
5034 }
5035 
5036 /**
5037  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5038  *
5039  * We can disable preemption locally around accessing the per-CPU variable,
5040  * and use the resolved vcpu pointer after enabling preemption again,
5041  * because even if the current thread is migrated to another CPU, reading
5042  * the per-CPU value later will give us the same value as we update the
5043  * per-CPU variable in the preempt notifier handlers.
5044  */
5045 struct kvm_vcpu *kvm_get_running_vcpu(void)
5046 {
5047 	struct kvm_vcpu *vcpu;
5048 
5049 	preempt_disable();
5050 	vcpu = __this_cpu_read(kvm_running_vcpu);
5051 	preempt_enable();
5052 
5053 	return vcpu;
5054 }
5055 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5056 
5057 /**
5058  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5059  */
5060 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5061 {
5062         return &kvm_running_vcpu;
5063 }
5064 
5065 struct kvm_cpu_compat_check {
5066 	void *opaque;
5067 	int *ret;
5068 };
5069 
5070 static void check_processor_compat(void *data)
5071 {
5072 	struct kvm_cpu_compat_check *c = data;
5073 
5074 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5075 }
5076 
5077 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5078 		  struct module *module)
5079 {
5080 	struct kvm_cpu_compat_check c;
5081 	int r;
5082 	int cpu;
5083 
5084 	r = kvm_arch_init(opaque);
5085 	if (r)
5086 		goto out_fail;
5087 
5088 	/*
5089 	 * kvm_arch_init makes sure there's at most one caller
5090 	 * for architectures that support multiple implementations,
5091 	 * like intel and amd on x86.
5092 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5093 	 * conflicts in case kvm is already setup for another implementation.
5094 	 */
5095 	r = kvm_irqfd_init();
5096 	if (r)
5097 		goto out_irqfd;
5098 
5099 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5100 		r = -ENOMEM;
5101 		goto out_free_0;
5102 	}
5103 
5104 	r = kvm_arch_hardware_setup(opaque);
5105 	if (r < 0)
5106 		goto out_free_1;
5107 
5108 	c.ret = &r;
5109 	c.opaque = opaque;
5110 	for_each_online_cpu(cpu) {
5111 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5112 		if (r < 0)
5113 			goto out_free_2;
5114 	}
5115 
5116 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5117 				      kvm_starting_cpu, kvm_dying_cpu);
5118 	if (r)
5119 		goto out_free_2;
5120 	register_reboot_notifier(&kvm_reboot_notifier);
5121 
5122 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5123 	if (!vcpu_align)
5124 		vcpu_align = __alignof__(struct kvm_vcpu);
5125 	kvm_vcpu_cache =
5126 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5127 					   SLAB_ACCOUNT,
5128 					   offsetof(struct kvm_vcpu, arch),
5129 					   sizeof_field(struct kvm_vcpu, arch),
5130 					   NULL);
5131 	if (!kvm_vcpu_cache) {
5132 		r = -ENOMEM;
5133 		goto out_free_3;
5134 	}
5135 
5136 	r = kvm_async_pf_init();
5137 	if (r)
5138 		goto out_free;
5139 
5140 	kvm_chardev_ops.owner = module;
5141 	kvm_vm_fops.owner = module;
5142 	kvm_vcpu_fops.owner = module;
5143 
5144 	r = misc_register(&kvm_dev);
5145 	if (r) {
5146 		pr_err("kvm: misc device register failed\n");
5147 		goto out_unreg;
5148 	}
5149 
5150 	register_syscore_ops(&kvm_syscore_ops);
5151 
5152 	kvm_preempt_ops.sched_in = kvm_sched_in;
5153 	kvm_preempt_ops.sched_out = kvm_sched_out;
5154 
5155 	kvm_init_debug();
5156 
5157 	r = kvm_vfio_ops_init();
5158 	WARN_ON(r);
5159 
5160 	return 0;
5161 
5162 out_unreg:
5163 	kvm_async_pf_deinit();
5164 out_free:
5165 	kmem_cache_destroy(kvm_vcpu_cache);
5166 out_free_3:
5167 	unregister_reboot_notifier(&kvm_reboot_notifier);
5168 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5169 out_free_2:
5170 	kvm_arch_hardware_unsetup();
5171 out_free_1:
5172 	free_cpumask_var(cpus_hardware_enabled);
5173 out_free_0:
5174 	kvm_irqfd_exit();
5175 out_irqfd:
5176 	kvm_arch_exit();
5177 out_fail:
5178 	return r;
5179 }
5180 EXPORT_SYMBOL_GPL(kvm_init);
5181 
5182 void kvm_exit(void)
5183 {
5184 	debugfs_remove_recursive(kvm_debugfs_dir);
5185 	misc_deregister(&kvm_dev);
5186 	kmem_cache_destroy(kvm_vcpu_cache);
5187 	kvm_async_pf_deinit();
5188 	unregister_syscore_ops(&kvm_syscore_ops);
5189 	unregister_reboot_notifier(&kvm_reboot_notifier);
5190 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5191 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5192 	kvm_arch_hardware_unsetup();
5193 	kvm_arch_exit();
5194 	kvm_irqfd_exit();
5195 	free_cpumask_var(cpus_hardware_enabled);
5196 	kvm_vfio_ops_exit();
5197 }
5198 EXPORT_SYMBOL_GPL(kvm_exit);
5199 
5200 struct kvm_vm_worker_thread_context {
5201 	struct kvm *kvm;
5202 	struct task_struct *parent;
5203 	struct completion init_done;
5204 	kvm_vm_thread_fn_t thread_fn;
5205 	uintptr_t data;
5206 	int err;
5207 };
5208 
5209 static int kvm_vm_worker_thread(void *context)
5210 {
5211 	/*
5212 	 * The init_context is allocated on the stack of the parent thread, so
5213 	 * we have to locally copy anything that is needed beyond initialization
5214 	 */
5215 	struct kvm_vm_worker_thread_context *init_context = context;
5216 	struct kvm *kvm = init_context->kvm;
5217 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5218 	uintptr_t data = init_context->data;
5219 	int err;
5220 
5221 	err = kthread_park(current);
5222 	/* kthread_park(current) is never supposed to return an error */
5223 	WARN_ON(err != 0);
5224 	if (err)
5225 		goto init_complete;
5226 
5227 	err = cgroup_attach_task_all(init_context->parent, current);
5228 	if (err) {
5229 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5230 			__func__, err);
5231 		goto init_complete;
5232 	}
5233 
5234 	set_user_nice(current, task_nice(init_context->parent));
5235 
5236 init_complete:
5237 	init_context->err = err;
5238 	complete(&init_context->init_done);
5239 	init_context = NULL;
5240 
5241 	if (err)
5242 		return err;
5243 
5244 	/* Wait to be woken up by the spawner before proceeding. */
5245 	kthread_parkme();
5246 
5247 	if (!kthread_should_stop())
5248 		err = thread_fn(kvm, data);
5249 
5250 	return err;
5251 }
5252 
5253 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5254 				uintptr_t data, const char *name,
5255 				struct task_struct **thread_ptr)
5256 {
5257 	struct kvm_vm_worker_thread_context init_context = {};
5258 	struct task_struct *thread;
5259 
5260 	*thread_ptr = NULL;
5261 	init_context.kvm = kvm;
5262 	init_context.parent = current;
5263 	init_context.thread_fn = thread_fn;
5264 	init_context.data = data;
5265 	init_completion(&init_context.init_done);
5266 
5267 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5268 			     "%s-%d", name, task_pid_nr(current));
5269 	if (IS_ERR(thread))
5270 		return PTR_ERR(thread);
5271 
5272 	/* kthread_run is never supposed to return NULL */
5273 	WARN_ON(thread == NULL);
5274 
5275 	wait_for_completion(&init_context.init_done);
5276 
5277 	if (!init_context.err)
5278 		*thread_ptr = thread;
5279 
5280 	return init_context.err;
5281 }
5282