1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 MODULE_AUTHOR("Qumranet"); 67 MODULE_LICENSE("GPL"); 68 69 unsigned int halt_poll_ns = 0; 70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 71 72 /* 73 * Ordering of locks: 74 * 75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 76 */ 77 78 DEFINE_SPINLOCK(kvm_lock); 79 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 80 LIST_HEAD(vm_list); 81 82 static cpumask_var_t cpus_hardware_enabled; 83 static int kvm_usage_count = 0; 84 static atomic_t hardware_enable_failed; 85 86 struct kmem_cache *kvm_vcpu_cache; 87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 88 89 static __read_mostly struct preempt_ops kvm_preempt_ops; 90 91 struct dentry *kvm_debugfs_dir; 92 93 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 94 unsigned long arg); 95 #ifdef CONFIG_KVM_COMPAT 96 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 97 unsigned long arg); 98 #endif 99 static int hardware_enable_all(void); 100 static void hardware_disable_all(void); 101 102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 103 104 static void kvm_release_pfn_dirty(pfn_t pfn); 105 static void mark_page_dirty_in_slot(struct kvm *kvm, 106 struct kvm_memory_slot *memslot, gfn_t gfn); 107 108 __visible bool kvm_rebooting; 109 EXPORT_SYMBOL_GPL(kvm_rebooting); 110 111 static bool largepages_enabled = true; 112 113 bool kvm_is_reserved_pfn(pfn_t pfn) 114 { 115 if (pfn_valid(pfn)) 116 return PageReserved(pfn_to_page(pfn)); 117 118 return true; 119 } 120 121 /* 122 * Switches to specified vcpu, until a matching vcpu_put() 123 */ 124 int vcpu_load(struct kvm_vcpu *vcpu) 125 { 126 int cpu; 127 128 if (mutex_lock_killable(&vcpu->mutex)) 129 return -EINTR; 130 cpu = get_cpu(); 131 preempt_notifier_register(&vcpu->preempt_notifier); 132 kvm_arch_vcpu_load(vcpu, cpu); 133 put_cpu(); 134 return 0; 135 } 136 137 void vcpu_put(struct kvm_vcpu *vcpu) 138 { 139 preempt_disable(); 140 kvm_arch_vcpu_put(vcpu); 141 preempt_notifier_unregister(&vcpu->preempt_notifier); 142 preempt_enable(); 143 mutex_unlock(&vcpu->mutex); 144 } 145 146 static void ack_flush(void *_completed) 147 { 148 } 149 150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 151 { 152 int i, cpu, me; 153 cpumask_var_t cpus; 154 bool called = true; 155 struct kvm_vcpu *vcpu; 156 157 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 158 159 me = get_cpu(); 160 kvm_for_each_vcpu(i, vcpu, kvm) { 161 kvm_make_request(req, vcpu); 162 cpu = vcpu->cpu; 163 164 /* Set ->requests bit before we read ->mode */ 165 smp_mb(); 166 167 if (cpus != NULL && cpu != -1 && cpu != me && 168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 169 cpumask_set_cpu(cpu, cpus); 170 } 171 if (unlikely(cpus == NULL)) 172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 173 else if (!cpumask_empty(cpus)) 174 smp_call_function_many(cpus, ack_flush, NULL, 1); 175 else 176 called = false; 177 put_cpu(); 178 free_cpumask_var(cpus); 179 return called; 180 } 181 182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 183 void kvm_flush_remote_tlbs(struct kvm *kvm) 184 { 185 long dirty_count = kvm->tlbs_dirty; 186 187 smp_mb(); 188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 189 ++kvm->stat.remote_tlb_flush; 190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 191 } 192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 193 #endif 194 195 void kvm_reload_remote_mmus(struct kvm *kvm) 196 { 197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 198 } 199 200 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 201 { 202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 203 } 204 205 void kvm_make_scan_ioapic_request(struct kvm *kvm) 206 { 207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 208 } 209 210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 211 { 212 struct page *page; 213 int r; 214 215 mutex_init(&vcpu->mutex); 216 vcpu->cpu = -1; 217 vcpu->kvm = kvm; 218 vcpu->vcpu_id = id; 219 vcpu->pid = NULL; 220 init_waitqueue_head(&vcpu->wq); 221 kvm_async_pf_vcpu_init(vcpu); 222 223 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 224 if (!page) { 225 r = -ENOMEM; 226 goto fail; 227 } 228 vcpu->run = page_address(page); 229 230 kvm_vcpu_set_in_spin_loop(vcpu, false); 231 kvm_vcpu_set_dy_eligible(vcpu, false); 232 vcpu->preempted = false; 233 234 r = kvm_arch_vcpu_init(vcpu); 235 if (r < 0) 236 goto fail_free_run; 237 return 0; 238 239 fail_free_run: 240 free_page((unsigned long)vcpu->run); 241 fail: 242 return r; 243 } 244 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 245 246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 247 { 248 put_pid(vcpu->pid); 249 kvm_arch_vcpu_uninit(vcpu); 250 free_page((unsigned long)vcpu->run); 251 } 252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 253 254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 256 { 257 return container_of(mn, struct kvm, mmu_notifier); 258 } 259 260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 261 struct mm_struct *mm, 262 unsigned long address) 263 { 264 struct kvm *kvm = mmu_notifier_to_kvm(mn); 265 int need_tlb_flush, idx; 266 267 /* 268 * When ->invalidate_page runs, the linux pte has been zapped 269 * already but the page is still allocated until 270 * ->invalidate_page returns. So if we increase the sequence 271 * here the kvm page fault will notice if the spte can't be 272 * established because the page is going to be freed. If 273 * instead the kvm page fault establishes the spte before 274 * ->invalidate_page runs, kvm_unmap_hva will release it 275 * before returning. 276 * 277 * The sequence increase only need to be seen at spin_unlock 278 * time, and not at spin_lock time. 279 * 280 * Increasing the sequence after the spin_unlock would be 281 * unsafe because the kvm page fault could then establish the 282 * pte after kvm_unmap_hva returned, without noticing the page 283 * is going to be freed. 284 */ 285 idx = srcu_read_lock(&kvm->srcu); 286 spin_lock(&kvm->mmu_lock); 287 288 kvm->mmu_notifier_seq++; 289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 290 /* we've to flush the tlb before the pages can be freed */ 291 if (need_tlb_flush) 292 kvm_flush_remote_tlbs(kvm); 293 294 spin_unlock(&kvm->mmu_lock); 295 296 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 297 298 srcu_read_unlock(&kvm->srcu, idx); 299 } 300 301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 302 struct mm_struct *mm, 303 unsigned long address, 304 pte_t pte) 305 { 306 struct kvm *kvm = mmu_notifier_to_kvm(mn); 307 int idx; 308 309 idx = srcu_read_lock(&kvm->srcu); 310 spin_lock(&kvm->mmu_lock); 311 kvm->mmu_notifier_seq++; 312 kvm_set_spte_hva(kvm, address, pte); 313 spin_unlock(&kvm->mmu_lock); 314 srcu_read_unlock(&kvm->srcu, idx); 315 } 316 317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 318 struct mm_struct *mm, 319 unsigned long start, 320 unsigned long end) 321 { 322 struct kvm *kvm = mmu_notifier_to_kvm(mn); 323 int need_tlb_flush = 0, idx; 324 325 idx = srcu_read_lock(&kvm->srcu); 326 spin_lock(&kvm->mmu_lock); 327 /* 328 * The count increase must become visible at unlock time as no 329 * spte can be established without taking the mmu_lock and 330 * count is also read inside the mmu_lock critical section. 331 */ 332 kvm->mmu_notifier_count++; 333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 334 need_tlb_flush |= kvm->tlbs_dirty; 335 /* we've to flush the tlb before the pages can be freed */ 336 if (need_tlb_flush) 337 kvm_flush_remote_tlbs(kvm); 338 339 spin_unlock(&kvm->mmu_lock); 340 srcu_read_unlock(&kvm->srcu, idx); 341 } 342 343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 344 struct mm_struct *mm, 345 unsigned long start, 346 unsigned long end) 347 { 348 struct kvm *kvm = mmu_notifier_to_kvm(mn); 349 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * This sequence increase will notify the kvm page fault that 353 * the page that is going to be mapped in the spte could have 354 * been freed. 355 */ 356 kvm->mmu_notifier_seq++; 357 smp_wmb(); 358 /* 359 * The above sequence increase must be visible before the 360 * below count decrease, which is ensured by the smp_wmb above 361 * in conjunction with the smp_rmb in mmu_notifier_retry(). 362 */ 363 kvm->mmu_notifier_count--; 364 spin_unlock(&kvm->mmu_lock); 365 366 BUG_ON(kvm->mmu_notifier_count < 0); 367 } 368 369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 370 struct mm_struct *mm, 371 unsigned long start, 372 unsigned long end) 373 { 374 struct kvm *kvm = mmu_notifier_to_kvm(mn); 375 int young, idx; 376 377 idx = srcu_read_lock(&kvm->srcu); 378 spin_lock(&kvm->mmu_lock); 379 380 young = kvm_age_hva(kvm, start, end); 381 if (young) 382 kvm_flush_remote_tlbs(kvm); 383 384 spin_unlock(&kvm->mmu_lock); 385 srcu_read_unlock(&kvm->srcu, idx); 386 387 return young; 388 } 389 390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 391 struct mm_struct *mm, 392 unsigned long address) 393 { 394 struct kvm *kvm = mmu_notifier_to_kvm(mn); 395 int young, idx; 396 397 idx = srcu_read_lock(&kvm->srcu); 398 spin_lock(&kvm->mmu_lock); 399 young = kvm_test_age_hva(kvm, address); 400 spin_unlock(&kvm->mmu_lock); 401 srcu_read_unlock(&kvm->srcu, idx); 402 403 return young; 404 } 405 406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 407 struct mm_struct *mm) 408 { 409 struct kvm *kvm = mmu_notifier_to_kvm(mn); 410 int idx; 411 412 idx = srcu_read_lock(&kvm->srcu); 413 kvm_arch_flush_shadow_all(kvm); 414 srcu_read_unlock(&kvm->srcu, idx); 415 } 416 417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 418 .invalidate_page = kvm_mmu_notifier_invalidate_page, 419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 422 .test_young = kvm_mmu_notifier_test_young, 423 .change_pte = kvm_mmu_notifier_change_pte, 424 .release = kvm_mmu_notifier_release, 425 }; 426 427 static int kvm_init_mmu_notifier(struct kvm *kvm) 428 { 429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 431 } 432 433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 434 435 static int kvm_init_mmu_notifier(struct kvm *kvm) 436 { 437 return 0; 438 } 439 440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 441 442 static void kvm_init_memslots_id(struct kvm *kvm) 443 { 444 int i; 445 struct kvm_memslots *slots = kvm->memslots; 446 447 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 448 slots->id_to_index[i] = slots->memslots[i].id = i; 449 } 450 451 static struct kvm *kvm_create_vm(unsigned long type) 452 { 453 int r, i; 454 struct kvm *kvm = kvm_arch_alloc_vm(); 455 456 if (!kvm) 457 return ERR_PTR(-ENOMEM); 458 459 r = kvm_arch_init_vm(kvm, type); 460 if (r) 461 goto out_err_no_disable; 462 463 r = hardware_enable_all(); 464 if (r) 465 goto out_err_no_disable; 466 467 #ifdef CONFIG_HAVE_KVM_IRQFD 468 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 469 #endif 470 471 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 472 473 r = -ENOMEM; 474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 475 if (!kvm->memslots) 476 goto out_err_no_srcu; 477 478 /* 479 * Init kvm generation close to the maximum to easily test the 480 * code of handling generation number wrap-around. 481 */ 482 kvm->memslots->generation = -150; 483 484 kvm_init_memslots_id(kvm); 485 if (init_srcu_struct(&kvm->srcu)) 486 goto out_err_no_srcu; 487 if (init_srcu_struct(&kvm->irq_srcu)) 488 goto out_err_no_irq_srcu; 489 for (i = 0; i < KVM_NR_BUSES; i++) { 490 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 491 GFP_KERNEL); 492 if (!kvm->buses[i]) 493 goto out_err; 494 } 495 496 spin_lock_init(&kvm->mmu_lock); 497 kvm->mm = current->mm; 498 atomic_inc(&kvm->mm->mm_count); 499 kvm_eventfd_init(kvm); 500 mutex_init(&kvm->lock); 501 mutex_init(&kvm->irq_lock); 502 mutex_init(&kvm->slots_lock); 503 atomic_set(&kvm->users_count, 1); 504 INIT_LIST_HEAD(&kvm->devices); 505 506 r = kvm_init_mmu_notifier(kvm); 507 if (r) 508 goto out_err; 509 510 spin_lock(&kvm_lock); 511 list_add(&kvm->vm_list, &vm_list); 512 spin_unlock(&kvm_lock); 513 514 return kvm; 515 516 out_err: 517 cleanup_srcu_struct(&kvm->irq_srcu); 518 out_err_no_irq_srcu: 519 cleanup_srcu_struct(&kvm->srcu); 520 out_err_no_srcu: 521 hardware_disable_all(); 522 out_err_no_disable: 523 for (i = 0; i < KVM_NR_BUSES; i++) 524 kfree(kvm->buses[i]); 525 kfree(kvm->memslots); 526 kvm_arch_free_vm(kvm); 527 return ERR_PTR(r); 528 } 529 530 /* 531 * Avoid using vmalloc for a small buffer. 532 * Should not be used when the size is statically known. 533 */ 534 void *kvm_kvzalloc(unsigned long size) 535 { 536 if (size > PAGE_SIZE) 537 return vzalloc(size); 538 else 539 return kzalloc(size, GFP_KERNEL); 540 } 541 542 void kvm_kvfree(const void *addr) 543 { 544 if (is_vmalloc_addr(addr)) 545 vfree(addr); 546 else 547 kfree(addr); 548 } 549 550 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 551 { 552 if (!memslot->dirty_bitmap) 553 return; 554 555 kvm_kvfree(memslot->dirty_bitmap); 556 memslot->dirty_bitmap = NULL; 557 } 558 559 /* 560 * Free any memory in @free but not in @dont. 561 */ 562 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, 563 struct kvm_memory_slot *dont) 564 { 565 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 566 kvm_destroy_dirty_bitmap(free); 567 568 kvm_arch_free_memslot(kvm, free, dont); 569 570 free->npages = 0; 571 } 572 573 static void kvm_free_physmem(struct kvm *kvm) 574 { 575 struct kvm_memslots *slots = kvm->memslots; 576 struct kvm_memory_slot *memslot; 577 578 kvm_for_each_memslot(memslot, slots) 579 kvm_free_physmem_slot(kvm, memslot, NULL); 580 581 kfree(kvm->memslots); 582 } 583 584 static void kvm_destroy_devices(struct kvm *kvm) 585 { 586 struct list_head *node, *tmp; 587 588 list_for_each_safe(node, tmp, &kvm->devices) { 589 struct kvm_device *dev = 590 list_entry(node, struct kvm_device, vm_node); 591 592 list_del(node); 593 dev->ops->destroy(dev); 594 } 595 } 596 597 static void kvm_destroy_vm(struct kvm *kvm) 598 { 599 int i; 600 struct mm_struct *mm = kvm->mm; 601 602 kvm_arch_sync_events(kvm); 603 spin_lock(&kvm_lock); 604 list_del(&kvm->vm_list); 605 spin_unlock(&kvm_lock); 606 kvm_free_irq_routing(kvm); 607 for (i = 0; i < KVM_NR_BUSES; i++) 608 kvm_io_bus_destroy(kvm->buses[i]); 609 kvm_coalesced_mmio_free(kvm); 610 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 611 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 612 #else 613 kvm_arch_flush_shadow_all(kvm); 614 #endif 615 kvm_arch_destroy_vm(kvm); 616 kvm_destroy_devices(kvm); 617 kvm_free_physmem(kvm); 618 cleanup_srcu_struct(&kvm->irq_srcu); 619 cleanup_srcu_struct(&kvm->srcu); 620 kvm_arch_free_vm(kvm); 621 hardware_disable_all(); 622 mmdrop(mm); 623 } 624 625 void kvm_get_kvm(struct kvm *kvm) 626 { 627 atomic_inc(&kvm->users_count); 628 } 629 EXPORT_SYMBOL_GPL(kvm_get_kvm); 630 631 void kvm_put_kvm(struct kvm *kvm) 632 { 633 if (atomic_dec_and_test(&kvm->users_count)) 634 kvm_destroy_vm(kvm); 635 } 636 EXPORT_SYMBOL_GPL(kvm_put_kvm); 637 638 639 static int kvm_vm_release(struct inode *inode, struct file *filp) 640 { 641 struct kvm *kvm = filp->private_data; 642 643 kvm_irqfd_release(kvm); 644 645 kvm_put_kvm(kvm); 646 return 0; 647 } 648 649 /* 650 * Allocation size is twice as large as the actual dirty bitmap size. 651 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 652 */ 653 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 654 { 655 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 656 657 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 658 if (!memslot->dirty_bitmap) 659 return -ENOMEM; 660 661 return 0; 662 } 663 664 /* 665 * Insert memslot and re-sort memslots based on their GFN, 666 * so binary search could be used to lookup GFN. 667 * Sorting algorithm takes advantage of having initially 668 * sorted array and known changed memslot position. 669 */ 670 static void update_memslots(struct kvm_memslots *slots, 671 struct kvm_memory_slot *new) 672 { 673 int id = new->id; 674 int i = slots->id_to_index[id]; 675 struct kvm_memory_slot *mslots = slots->memslots; 676 677 WARN_ON(mslots[i].id != id); 678 if (!new->npages) { 679 WARN_ON(!mslots[i].npages); 680 new->base_gfn = 0; 681 new->flags = 0; 682 if (mslots[i].npages) 683 slots->used_slots--; 684 } else { 685 if (!mslots[i].npages) 686 slots->used_slots++; 687 } 688 689 while (i < KVM_MEM_SLOTS_NUM - 1 && 690 new->base_gfn <= mslots[i + 1].base_gfn) { 691 if (!mslots[i + 1].npages) 692 break; 693 mslots[i] = mslots[i + 1]; 694 slots->id_to_index[mslots[i].id] = i; 695 i++; 696 } 697 698 /* 699 * The ">=" is needed when creating a slot with base_gfn == 0, 700 * so that it moves before all those with base_gfn == npages == 0. 701 * 702 * On the other hand, if new->npages is zero, the above loop has 703 * already left i pointing to the beginning of the empty part of 704 * mslots, and the ">=" would move the hole backwards in this 705 * case---which is wrong. So skip the loop when deleting a slot. 706 */ 707 if (new->npages) { 708 while (i > 0 && 709 new->base_gfn >= mslots[i - 1].base_gfn) { 710 mslots[i] = mslots[i - 1]; 711 slots->id_to_index[mslots[i].id] = i; 712 i--; 713 } 714 } else 715 WARN_ON_ONCE(i != slots->used_slots); 716 717 mslots[i] = *new; 718 slots->id_to_index[mslots[i].id] = i; 719 } 720 721 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 722 { 723 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 724 725 #ifdef __KVM_HAVE_READONLY_MEM 726 valid_flags |= KVM_MEM_READONLY; 727 #endif 728 729 if (mem->flags & ~valid_flags) 730 return -EINVAL; 731 732 return 0; 733 } 734 735 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 736 struct kvm_memslots *slots) 737 { 738 struct kvm_memslots *old_memslots = kvm->memslots; 739 740 /* 741 * Set the low bit in the generation, which disables SPTE caching 742 * until the end of synchronize_srcu_expedited. 743 */ 744 WARN_ON(old_memslots->generation & 1); 745 slots->generation = old_memslots->generation + 1; 746 747 rcu_assign_pointer(kvm->memslots, slots); 748 synchronize_srcu_expedited(&kvm->srcu); 749 750 /* 751 * Increment the new memslot generation a second time. This prevents 752 * vm exits that race with memslot updates from caching a memslot 753 * generation that will (potentially) be valid forever. 754 */ 755 slots->generation++; 756 757 kvm_arch_memslots_updated(kvm); 758 759 return old_memslots; 760 } 761 762 /* 763 * Allocate some memory and give it an address in the guest physical address 764 * space. 765 * 766 * Discontiguous memory is allowed, mostly for framebuffers. 767 * 768 * Must be called holding kvm->slots_lock for write. 769 */ 770 int __kvm_set_memory_region(struct kvm *kvm, 771 struct kvm_userspace_memory_region *mem) 772 { 773 int r; 774 gfn_t base_gfn; 775 unsigned long npages; 776 struct kvm_memory_slot *slot; 777 struct kvm_memory_slot old, new; 778 struct kvm_memslots *slots = NULL, *old_memslots; 779 enum kvm_mr_change change; 780 781 r = check_memory_region_flags(mem); 782 if (r) 783 goto out; 784 785 r = -EINVAL; 786 /* General sanity checks */ 787 if (mem->memory_size & (PAGE_SIZE - 1)) 788 goto out; 789 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 790 goto out; 791 /* We can read the guest memory with __xxx_user() later on. */ 792 if ((mem->slot < KVM_USER_MEM_SLOTS) && 793 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 794 !access_ok(VERIFY_WRITE, 795 (void __user *)(unsigned long)mem->userspace_addr, 796 mem->memory_size))) 797 goto out; 798 if (mem->slot >= KVM_MEM_SLOTS_NUM) 799 goto out; 800 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 801 goto out; 802 803 slot = id_to_memslot(kvm->memslots, mem->slot); 804 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 805 npages = mem->memory_size >> PAGE_SHIFT; 806 807 if (npages > KVM_MEM_MAX_NR_PAGES) 808 goto out; 809 810 if (!npages) 811 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 812 813 new = old = *slot; 814 815 new.id = mem->slot; 816 new.base_gfn = base_gfn; 817 new.npages = npages; 818 new.flags = mem->flags; 819 820 if (npages) { 821 if (!old.npages) 822 change = KVM_MR_CREATE; 823 else { /* Modify an existing slot. */ 824 if ((mem->userspace_addr != old.userspace_addr) || 825 (npages != old.npages) || 826 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 827 goto out; 828 829 if (base_gfn != old.base_gfn) 830 change = KVM_MR_MOVE; 831 else if (new.flags != old.flags) 832 change = KVM_MR_FLAGS_ONLY; 833 else { /* Nothing to change. */ 834 r = 0; 835 goto out; 836 } 837 } 838 } else if (old.npages) { 839 change = KVM_MR_DELETE; 840 } else /* Modify a non-existent slot: disallowed. */ 841 goto out; 842 843 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 844 /* Check for overlaps */ 845 r = -EEXIST; 846 kvm_for_each_memslot(slot, kvm->memslots) { 847 if ((slot->id >= KVM_USER_MEM_SLOTS) || 848 (slot->id == mem->slot)) 849 continue; 850 if (!((base_gfn + npages <= slot->base_gfn) || 851 (base_gfn >= slot->base_gfn + slot->npages))) 852 goto out; 853 } 854 } 855 856 /* Free page dirty bitmap if unneeded */ 857 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 858 new.dirty_bitmap = NULL; 859 860 r = -ENOMEM; 861 if (change == KVM_MR_CREATE) { 862 new.userspace_addr = mem->userspace_addr; 863 864 if (kvm_arch_create_memslot(kvm, &new, npages)) 865 goto out_free; 866 } 867 868 /* Allocate page dirty bitmap if needed */ 869 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 870 if (kvm_create_dirty_bitmap(&new) < 0) 871 goto out_free; 872 } 873 874 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 875 GFP_KERNEL); 876 if (!slots) 877 goto out_free; 878 879 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 880 slot = id_to_memslot(slots, mem->slot); 881 slot->flags |= KVM_MEMSLOT_INVALID; 882 883 old_memslots = install_new_memslots(kvm, slots); 884 885 /* slot was deleted or moved, clear iommu mapping */ 886 kvm_iommu_unmap_pages(kvm, &old); 887 /* From this point no new shadow pages pointing to a deleted, 888 * or moved, memslot will be created. 889 * 890 * validation of sp->gfn happens in: 891 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 892 * - kvm_is_visible_gfn (mmu_check_roots) 893 */ 894 kvm_arch_flush_shadow_memslot(kvm, slot); 895 896 /* 897 * We can re-use the old_memslots from above, the only difference 898 * from the currently installed memslots is the invalid flag. This 899 * will get overwritten by update_memslots anyway. 900 */ 901 slots = old_memslots; 902 } 903 904 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 905 if (r) 906 goto out_slots; 907 908 /* actual memory is freed via old in kvm_free_physmem_slot below */ 909 if (change == KVM_MR_DELETE) { 910 new.dirty_bitmap = NULL; 911 memset(&new.arch, 0, sizeof(new.arch)); 912 } 913 914 update_memslots(slots, &new); 915 old_memslots = install_new_memslots(kvm, slots); 916 917 kvm_arch_commit_memory_region(kvm, mem, &old, change); 918 919 kvm_free_physmem_slot(kvm, &old, &new); 920 kfree(old_memslots); 921 922 /* 923 * IOMMU mapping: New slots need to be mapped. Old slots need to be 924 * un-mapped and re-mapped if their base changes. Since base change 925 * unmapping is handled above with slot deletion, mapping alone is 926 * needed here. Anything else the iommu might care about for existing 927 * slots (size changes, userspace addr changes and read-only flag 928 * changes) is disallowed above, so any other attribute changes getting 929 * here can be skipped. 930 */ 931 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 932 r = kvm_iommu_map_pages(kvm, &new); 933 return r; 934 } 935 936 return 0; 937 938 out_slots: 939 kfree(slots); 940 out_free: 941 kvm_free_physmem_slot(kvm, &new, &old); 942 out: 943 return r; 944 } 945 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 946 947 int kvm_set_memory_region(struct kvm *kvm, 948 struct kvm_userspace_memory_region *mem) 949 { 950 int r; 951 952 mutex_lock(&kvm->slots_lock); 953 r = __kvm_set_memory_region(kvm, mem); 954 mutex_unlock(&kvm->slots_lock); 955 return r; 956 } 957 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 958 959 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 960 struct kvm_userspace_memory_region *mem) 961 { 962 if (mem->slot >= KVM_USER_MEM_SLOTS) 963 return -EINVAL; 964 return kvm_set_memory_region(kvm, mem); 965 } 966 967 int kvm_get_dirty_log(struct kvm *kvm, 968 struct kvm_dirty_log *log, int *is_dirty) 969 { 970 struct kvm_memory_slot *memslot; 971 int r, i; 972 unsigned long n; 973 unsigned long any = 0; 974 975 r = -EINVAL; 976 if (log->slot >= KVM_USER_MEM_SLOTS) 977 goto out; 978 979 memslot = id_to_memslot(kvm->memslots, log->slot); 980 r = -ENOENT; 981 if (!memslot->dirty_bitmap) 982 goto out; 983 984 n = kvm_dirty_bitmap_bytes(memslot); 985 986 for (i = 0; !any && i < n/sizeof(long); ++i) 987 any = memslot->dirty_bitmap[i]; 988 989 r = -EFAULT; 990 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 991 goto out; 992 993 if (any) 994 *is_dirty = 1; 995 996 r = 0; 997 out: 998 return r; 999 } 1000 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1001 1002 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1003 /** 1004 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1005 * are dirty write protect them for next write. 1006 * @kvm: pointer to kvm instance 1007 * @log: slot id and address to which we copy the log 1008 * @is_dirty: flag set if any page is dirty 1009 * 1010 * We need to keep it in mind that VCPU threads can write to the bitmap 1011 * concurrently. So, to avoid losing track of dirty pages we keep the 1012 * following order: 1013 * 1014 * 1. Take a snapshot of the bit and clear it if needed. 1015 * 2. Write protect the corresponding page. 1016 * 3. Copy the snapshot to the userspace. 1017 * 4. Upon return caller flushes TLB's if needed. 1018 * 1019 * Between 2 and 4, the guest may write to the page using the remaining TLB 1020 * entry. This is not a problem because the page is reported dirty using 1021 * the snapshot taken before and step 4 ensures that writes done after 1022 * exiting to userspace will be logged for the next call. 1023 * 1024 */ 1025 int kvm_get_dirty_log_protect(struct kvm *kvm, 1026 struct kvm_dirty_log *log, bool *is_dirty) 1027 { 1028 struct kvm_memory_slot *memslot; 1029 int r, i; 1030 unsigned long n; 1031 unsigned long *dirty_bitmap; 1032 unsigned long *dirty_bitmap_buffer; 1033 1034 r = -EINVAL; 1035 if (log->slot >= KVM_USER_MEM_SLOTS) 1036 goto out; 1037 1038 memslot = id_to_memslot(kvm->memslots, log->slot); 1039 1040 dirty_bitmap = memslot->dirty_bitmap; 1041 r = -ENOENT; 1042 if (!dirty_bitmap) 1043 goto out; 1044 1045 n = kvm_dirty_bitmap_bytes(memslot); 1046 1047 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1048 memset(dirty_bitmap_buffer, 0, n); 1049 1050 spin_lock(&kvm->mmu_lock); 1051 *is_dirty = false; 1052 for (i = 0; i < n / sizeof(long); i++) { 1053 unsigned long mask; 1054 gfn_t offset; 1055 1056 if (!dirty_bitmap[i]) 1057 continue; 1058 1059 *is_dirty = true; 1060 1061 mask = xchg(&dirty_bitmap[i], 0); 1062 dirty_bitmap_buffer[i] = mask; 1063 1064 offset = i * BITS_PER_LONG; 1065 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, offset, 1066 mask); 1067 } 1068 1069 spin_unlock(&kvm->mmu_lock); 1070 1071 r = -EFAULT; 1072 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1073 goto out; 1074 1075 r = 0; 1076 out: 1077 return r; 1078 } 1079 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1080 #endif 1081 1082 bool kvm_largepages_enabled(void) 1083 { 1084 return largepages_enabled; 1085 } 1086 1087 void kvm_disable_largepages(void) 1088 { 1089 largepages_enabled = false; 1090 } 1091 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1092 1093 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1094 { 1095 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1096 } 1097 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1098 1099 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1100 { 1101 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1102 1103 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1104 memslot->flags & KVM_MEMSLOT_INVALID) 1105 return 0; 1106 1107 return 1; 1108 } 1109 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1110 1111 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1112 { 1113 struct vm_area_struct *vma; 1114 unsigned long addr, size; 1115 1116 size = PAGE_SIZE; 1117 1118 addr = gfn_to_hva(kvm, gfn); 1119 if (kvm_is_error_hva(addr)) 1120 return PAGE_SIZE; 1121 1122 down_read(¤t->mm->mmap_sem); 1123 vma = find_vma(current->mm, addr); 1124 if (!vma) 1125 goto out; 1126 1127 size = vma_kernel_pagesize(vma); 1128 1129 out: 1130 up_read(¤t->mm->mmap_sem); 1131 1132 return size; 1133 } 1134 1135 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1136 { 1137 return slot->flags & KVM_MEM_READONLY; 1138 } 1139 1140 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1141 gfn_t *nr_pages, bool write) 1142 { 1143 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1144 return KVM_HVA_ERR_BAD; 1145 1146 if (memslot_is_readonly(slot) && write) 1147 return KVM_HVA_ERR_RO_BAD; 1148 1149 if (nr_pages) 1150 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1151 1152 return __gfn_to_hva_memslot(slot, gfn); 1153 } 1154 1155 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1156 gfn_t *nr_pages) 1157 { 1158 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1159 } 1160 1161 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1162 gfn_t gfn) 1163 { 1164 return gfn_to_hva_many(slot, gfn, NULL); 1165 } 1166 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1167 1168 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1169 { 1170 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1171 } 1172 EXPORT_SYMBOL_GPL(gfn_to_hva); 1173 1174 /* 1175 * If writable is set to false, the hva returned by this function is only 1176 * allowed to be read. 1177 */ 1178 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1179 gfn_t gfn, bool *writable) 1180 { 1181 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1182 1183 if (!kvm_is_error_hva(hva) && writable) 1184 *writable = !memslot_is_readonly(slot); 1185 1186 return hva; 1187 } 1188 1189 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1190 { 1191 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1192 1193 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1194 } 1195 1196 static int kvm_read_hva(void *data, void __user *hva, int len) 1197 { 1198 return __copy_from_user(data, hva, len); 1199 } 1200 1201 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1202 { 1203 return __copy_from_user_inatomic(data, hva, len); 1204 } 1205 1206 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1207 unsigned long start, int write, struct page **page) 1208 { 1209 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1210 1211 if (write) 1212 flags |= FOLL_WRITE; 1213 1214 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1215 } 1216 1217 static inline int check_user_page_hwpoison(unsigned long addr) 1218 { 1219 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1220 1221 rc = __get_user_pages(current, current->mm, addr, 1, 1222 flags, NULL, NULL, NULL); 1223 return rc == -EHWPOISON; 1224 } 1225 1226 /* 1227 * The atomic path to get the writable pfn which will be stored in @pfn, 1228 * true indicates success, otherwise false is returned. 1229 */ 1230 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1231 bool write_fault, bool *writable, pfn_t *pfn) 1232 { 1233 struct page *page[1]; 1234 int npages; 1235 1236 if (!(async || atomic)) 1237 return false; 1238 1239 /* 1240 * Fast pin a writable pfn only if it is a write fault request 1241 * or the caller allows to map a writable pfn for a read fault 1242 * request. 1243 */ 1244 if (!(write_fault || writable)) 1245 return false; 1246 1247 npages = __get_user_pages_fast(addr, 1, 1, page); 1248 if (npages == 1) { 1249 *pfn = page_to_pfn(page[0]); 1250 1251 if (writable) 1252 *writable = true; 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 /* 1260 * The slow path to get the pfn of the specified host virtual address, 1261 * 1 indicates success, -errno is returned if error is detected. 1262 */ 1263 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1264 bool *writable, pfn_t *pfn) 1265 { 1266 struct page *page[1]; 1267 int npages = 0; 1268 1269 might_sleep(); 1270 1271 if (writable) 1272 *writable = write_fault; 1273 1274 if (async) { 1275 down_read(¤t->mm->mmap_sem); 1276 npages = get_user_page_nowait(current, current->mm, 1277 addr, write_fault, page); 1278 up_read(¤t->mm->mmap_sem); 1279 } else 1280 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1281 write_fault, 0, page, 1282 FOLL_TOUCH|FOLL_HWPOISON); 1283 if (npages != 1) 1284 return npages; 1285 1286 /* map read fault as writable if possible */ 1287 if (unlikely(!write_fault) && writable) { 1288 struct page *wpage[1]; 1289 1290 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1291 if (npages == 1) { 1292 *writable = true; 1293 put_page(page[0]); 1294 page[0] = wpage[0]; 1295 } 1296 1297 npages = 1; 1298 } 1299 *pfn = page_to_pfn(page[0]); 1300 return npages; 1301 } 1302 1303 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1304 { 1305 if (unlikely(!(vma->vm_flags & VM_READ))) 1306 return false; 1307 1308 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1309 return false; 1310 1311 return true; 1312 } 1313 1314 /* 1315 * Pin guest page in memory and return its pfn. 1316 * @addr: host virtual address which maps memory to the guest 1317 * @atomic: whether this function can sleep 1318 * @async: whether this function need to wait IO complete if the 1319 * host page is not in the memory 1320 * @write_fault: whether we should get a writable host page 1321 * @writable: whether it allows to map a writable host page for !@write_fault 1322 * 1323 * The function will map a writable host page for these two cases: 1324 * 1): @write_fault = true 1325 * 2): @write_fault = false && @writable, @writable will tell the caller 1326 * whether the mapping is writable. 1327 */ 1328 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1329 bool write_fault, bool *writable) 1330 { 1331 struct vm_area_struct *vma; 1332 pfn_t pfn = 0; 1333 int npages; 1334 1335 /* we can do it either atomically or asynchronously, not both */ 1336 BUG_ON(atomic && async); 1337 1338 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1339 return pfn; 1340 1341 if (atomic) 1342 return KVM_PFN_ERR_FAULT; 1343 1344 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1345 if (npages == 1) 1346 return pfn; 1347 1348 down_read(¤t->mm->mmap_sem); 1349 if (npages == -EHWPOISON || 1350 (!async && check_user_page_hwpoison(addr))) { 1351 pfn = KVM_PFN_ERR_HWPOISON; 1352 goto exit; 1353 } 1354 1355 vma = find_vma_intersection(current->mm, addr, addr + 1); 1356 1357 if (vma == NULL) 1358 pfn = KVM_PFN_ERR_FAULT; 1359 else if ((vma->vm_flags & VM_PFNMAP)) { 1360 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1361 vma->vm_pgoff; 1362 BUG_ON(!kvm_is_reserved_pfn(pfn)); 1363 } else { 1364 if (async && vma_is_valid(vma, write_fault)) 1365 *async = true; 1366 pfn = KVM_PFN_ERR_FAULT; 1367 } 1368 exit: 1369 up_read(¤t->mm->mmap_sem); 1370 return pfn; 1371 } 1372 1373 static pfn_t 1374 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1375 bool *async, bool write_fault, bool *writable) 1376 { 1377 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1378 1379 if (addr == KVM_HVA_ERR_RO_BAD) 1380 return KVM_PFN_ERR_RO_FAULT; 1381 1382 if (kvm_is_error_hva(addr)) 1383 return KVM_PFN_NOSLOT; 1384 1385 /* Do not map writable pfn in the readonly memslot. */ 1386 if (writable && memslot_is_readonly(slot)) { 1387 *writable = false; 1388 writable = NULL; 1389 } 1390 1391 return hva_to_pfn(addr, atomic, async, write_fault, 1392 writable); 1393 } 1394 1395 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1396 bool write_fault, bool *writable) 1397 { 1398 struct kvm_memory_slot *slot; 1399 1400 if (async) 1401 *async = false; 1402 1403 slot = gfn_to_memslot(kvm, gfn); 1404 1405 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1406 writable); 1407 } 1408 1409 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1410 { 1411 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1412 } 1413 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1414 1415 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1416 bool write_fault, bool *writable) 1417 { 1418 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1419 } 1420 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1421 1422 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1423 { 1424 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1425 } 1426 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1427 1428 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1429 bool *writable) 1430 { 1431 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1432 } 1433 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1434 1435 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1436 { 1437 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1438 } 1439 1440 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1441 { 1442 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1443 } 1444 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1445 1446 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1447 int nr_pages) 1448 { 1449 unsigned long addr; 1450 gfn_t entry; 1451 1452 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1453 if (kvm_is_error_hva(addr)) 1454 return -1; 1455 1456 if (entry < nr_pages) 1457 return 0; 1458 1459 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1460 } 1461 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1462 1463 static struct page *kvm_pfn_to_page(pfn_t pfn) 1464 { 1465 if (is_error_noslot_pfn(pfn)) 1466 return KVM_ERR_PTR_BAD_PAGE; 1467 1468 if (kvm_is_reserved_pfn(pfn)) { 1469 WARN_ON(1); 1470 return KVM_ERR_PTR_BAD_PAGE; 1471 } 1472 1473 return pfn_to_page(pfn); 1474 } 1475 1476 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1477 { 1478 pfn_t pfn; 1479 1480 pfn = gfn_to_pfn(kvm, gfn); 1481 1482 return kvm_pfn_to_page(pfn); 1483 } 1484 1485 EXPORT_SYMBOL_GPL(gfn_to_page); 1486 1487 void kvm_release_page_clean(struct page *page) 1488 { 1489 WARN_ON(is_error_page(page)); 1490 1491 kvm_release_pfn_clean(page_to_pfn(page)); 1492 } 1493 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1494 1495 void kvm_release_pfn_clean(pfn_t pfn) 1496 { 1497 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1498 put_page(pfn_to_page(pfn)); 1499 } 1500 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1501 1502 void kvm_release_page_dirty(struct page *page) 1503 { 1504 WARN_ON(is_error_page(page)); 1505 1506 kvm_release_pfn_dirty(page_to_pfn(page)); 1507 } 1508 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1509 1510 static void kvm_release_pfn_dirty(pfn_t pfn) 1511 { 1512 kvm_set_pfn_dirty(pfn); 1513 kvm_release_pfn_clean(pfn); 1514 } 1515 1516 void kvm_set_pfn_dirty(pfn_t pfn) 1517 { 1518 if (!kvm_is_reserved_pfn(pfn)) { 1519 struct page *page = pfn_to_page(pfn); 1520 if (!PageReserved(page)) 1521 SetPageDirty(page); 1522 } 1523 } 1524 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1525 1526 void kvm_set_pfn_accessed(pfn_t pfn) 1527 { 1528 if (!kvm_is_reserved_pfn(pfn)) 1529 mark_page_accessed(pfn_to_page(pfn)); 1530 } 1531 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1532 1533 void kvm_get_pfn(pfn_t pfn) 1534 { 1535 if (!kvm_is_reserved_pfn(pfn)) 1536 get_page(pfn_to_page(pfn)); 1537 } 1538 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1539 1540 static int next_segment(unsigned long len, int offset) 1541 { 1542 if (len > PAGE_SIZE - offset) 1543 return PAGE_SIZE - offset; 1544 else 1545 return len; 1546 } 1547 1548 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1549 int len) 1550 { 1551 int r; 1552 unsigned long addr; 1553 1554 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1555 if (kvm_is_error_hva(addr)) 1556 return -EFAULT; 1557 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1558 if (r) 1559 return -EFAULT; 1560 return 0; 1561 } 1562 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1563 1564 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1565 { 1566 gfn_t gfn = gpa >> PAGE_SHIFT; 1567 int seg; 1568 int offset = offset_in_page(gpa); 1569 int ret; 1570 1571 while ((seg = next_segment(len, offset)) != 0) { 1572 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1573 if (ret < 0) 1574 return ret; 1575 offset = 0; 1576 len -= seg; 1577 data += seg; 1578 ++gfn; 1579 } 1580 return 0; 1581 } 1582 EXPORT_SYMBOL_GPL(kvm_read_guest); 1583 1584 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1585 unsigned long len) 1586 { 1587 int r; 1588 unsigned long addr; 1589 gfn_t gfn = gpa >> PAGE_SHIFT; 1590 int offset = offset_in_page(gpa); 1591 1592 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1593 if (kvm_is_error_hva(addr)) 1594 return -EFAULT; 1595 pagefault_disable(); 1596 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1597 pagefault_enable(); 1598 if (r) 1599 return -EFAULT; 1600 return 0; 1601 } 1602 EXPORT_SYMBOL(kvm_read_guest_atomic); 1603 1604 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1605 int offset, int len) 1606 { 1607 int r; 1608 unsigned long addr; 1609 1610 addr = gfn_to_hva(kvm, gfn); 1611 if (kvm_is_error_hva(addr)) 1612 return -EFAULT; 1613 r = __copy_to_user((void __user *)addr + offset, data, len); 1614 if (r) 1615 return -EFAULT; 1616 mark_page_dirty(kvm, gfn); 1617 return 0; 1618 } 1619 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1620 1621 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1622 unsigned long len) 1623 { 1624 gfn_t gfn = gpa >> PAGE_SHIFT; 1625 int seg; 1626 int offset = offset_in_page(gpa); 1627 int ret; 1628 1629 while ((seg = next_segment(len, offset)) != 0) { 1630 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1631 if (ret < 0) 1632 return ret; 1633 offset = 0; 1634 len -= seg; 1635 data += seg; 1636 ++gfn; 1637 } 1638 return 0; 1639 } 1640 EXPORT_SYMBOL_GPL(kvm_write_guest); 1641 1642 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1643 gpa_t gpa, unsigned long len) 1644 { 1645 struct kvm_memslots *slots = kvm_memslots(kvm); 1646 int offset = offset_in_page(gpa); 1647 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1648 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1649 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1650 gfn_t nr_pages_avail; 1651 1652 ghc->gpa = gpa; 1653 ghc->generation = slots->generation; 1654 ghc->len = len; 1655 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1656 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1657 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1658 ghc->hva += offset; 1659 } else { 1660 /* 1661 * If the requested region crosses two memslots, we still 1662 * verify that the entire region is valid here. 1663 */ 1664 while (start_gfn <= end_gfn) { 1665 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1666 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1667 &nr_pages_avail); 1668 if (kvm_is_error_hva(ghc->hva)) 1669 return -EFAULT; 1670 start_gfn += nr_pages_avail; 1671 } 1672 /* Use the slow path for cross page reads and writes. */ 1673 ghc->memslot = NULL; 1674 } 1675 return 0; 1676 } 1677 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1678 1679 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1680 void *data, unsigned long len) 1681 { 1682 struct kvm_memslots *slots = kvm_memslots(kvm); 1683 int r; 1684 1685 BUG_ON(len > ghc->len); 1686 1687 if (slots->generation != ghc->generation) 1688 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1689 1690 if (unlikely(!ghc->memslot)) 1691 return kvm_write_guest(kvm, ghc->gpa, data, len); 1692 1693 if (kvm_is_error_hva(ghc->hva)) 1694 return -EFAULT; 1695 1696 r = __copy_to_user((void __user *)ghc->hva, data, len); 1697 if (r) 1698 return -EFAULT; 1699 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1700 1701 return 0; 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1704 1705 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1706 void *data, unsigned long len) 1707 { 1708 struct kvm_memslots *slots = kvm_memslots(kvm); 1709 int r; 1710 1711 BUG_ON(len > ghc->len); 1712 1713 if (slots->generation != ghc->generation) 1714 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1715 1716 if (unlikely(!ghc->memslot)) 1717 return kvm_read_guest(kvm, ghc->gpa, data, len); 1718 1719 if (kvm_is_error_hva(ghc->hva)) 1720 return -EFAULT; 1721 1722 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1723 if (r) 1724 return -EFAULT; 1725 1726 return 0; 1727 } 1728 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1729 1730 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1731 { 1732 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1733 1734 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1735 } 1736 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1737 1738 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1739 { 1740 gfn_t gfn = gpa >> PAGE_SHIFT; 1741 int seg; 1742 int offset = offset_in_page(gpa); 1743 int ret; 1744 1745 while ((seg = next_segment(len, offset)) != 0) { 1746 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1747 if (ret < 0) 1748 return ret; 1749 offset = 0; 1750 len -= seg; 1751 ++gfn; 1752 } 1753 return 0; 1754 } 1755 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1756 1757 static void mark_page_dirty_in_slot(struct kvm *kvm, 1758 struct kvm_memory_slot *memslot, 1759 gfn_t gfn) 1760 { 1761 if (memslot && memslot->dirty_bitmap) { 1762 unsigned long rel_gfn = gfn - memslot->base_gfn; 1763 1764 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1765 } 1766 } 1767 1768 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1769 { 1770 struct kvm_memory_slot *memslot; 1771 1772 memslot = gfn_to_memslot(kvm, gfn); 1773 mark_page_dirty_in_slot(kvm, memslot, gfn); 1774 } 1775 EXPORT_SYMBOL_GPL(mark_page_dirty); 1776 1777 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 1778 { 1779 if (kvm_arch_vcpu_runnable(vcpu)) { 1780 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1781 return -EINTR; 1782 } 1783 if (kvm_cpu_has_pending_timer(vcpu)) 1784 return -EINTR; 1785 if (signal_pending(current)) 1786 return -EINTR; 1787 1788 return 0; 1789 } 1790 1791 /* 1792 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1793 */ 1794 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1795 { 1796 ktime_t start, cur; 1797 DEFINE_WAIT(wait); 1798 bool waited = false; 1799 1800 start = cur = ktime_get(); 1801 if (halt_poll_ns) { 1802 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns); 1803 do { 1804 /* 1805 * This sets KVM_REQ_UNHALT if an interrupt 1806 * arrives. 1807 */ 1808 if (kvm_vcpu_check_block(vcpu) < 0) { 1809 ++vcpu->stat.halt_successful_poll; 1810 goto out; 1811 } 1812 cur = ktime_get(); 1813 } while (single_task_running() && ktime_before(cur, stop)); 1814 } 1815 1816 for (;;) { 1817 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1818 1819 if (kvm_vcpu_check_block(vcpu) < 0) 1820 break; 1821 1822 waited = true; 1823 schedule(); 1824 } 1825 1826 finish_wait(&vcpu->wq, &wait); 1827 cur = ktime_get(); 1828 1829 out: 1830 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited); 1831 } 1832 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 1833 1834 #ifndef CONFIG_S390 1835 /* 1836 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1837 */ 1838 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1839 { 1840 int me; 1841 int cpu = vcpu->cpu; 1842 wait_queue_head_t *wqp; 1843 1844 wqp = kvm_arch_vcpu_wq(vcpu); 1845 if (waitqueue_active(wqp)) { 1846 wake_up_interruptible(wqp); 1847 ++vcpu->stat.halt_wakeup; 1848 } 1849 1850 me = get_cpu(); 1851 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1852 if (kvm_arch_vcpu_should_kick(vcpu)) 1853 smp_send_reschedule(cpu); 1854 put_cpu(); 1855 } 1856 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1857 #endif /* !CONFIG_S390 */ 1858 1859 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 1860 { 1861 struct pid *pid; 1862 struct task_struct *task = NULL; 1863 int ret = 0; 1864 1865 rcu_read_lock(); 1866 pid = rcu_dereference(target->pid); 1867 if (pid) 1868 task = get_pid_task(pid, PIDTYPE_PID); 1869 rcu_read_unlock(); 1870 if (!task) 1871 return ret; 1872 ret = yield_to(task, 1); 1873 put_task_struct(task); 1874 1875 return ret; 1876 } 1877 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1878 1879 /* 1880 * Helper that checks whether a VCPU is eligible for directed yield. 1881 * Most eligible candidate to yield is decided by following heuristics: 1882 * 1883 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1884 * (preempted lock holder), indicated by @in_spin_loop. 1885 * Set at the beiginning and cleared at the end of interception/PLE handler. 1886 * 1887 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1888 * chance last time (mostly it has become eligible now since we have probably 1889 * yielded to lockholder in last iteration. This is done by toggling 1890 * @dy_eligible each time a VCPU checked for eligibility.) 1891 * 1892 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1893 * to preempted lock-holder could result in wrong VCPU selection and CPU 1894 * burning. Giving priority for a potential lock-holder increases lock 1895 * progress. 1896 * 1897 * Since algorithm is based on heuristics, accessing another VCPU data without 1898 * locking does not harm. It may result in trying to yield to same VCPU, fail 1899 * and continue with next VCPU and so on. 1900 */ 1901 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1902 { 1903 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1904 bool eligible; 1905 1906 eligible = !vcpu->spin_loop.in_spin_loop || 1907 vcpu->spin_loop.dy_eligible; 1908 1909 if (vcpu->spin_loop.in_spin_loop) 1910 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1911 1912 return eligible; 1913 #else 1914 return true; 1915 #endif 1916 } 1917 1918 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1919 { 1920 struct kvm *kvm = me->kvm; 1921 struct kvm_vcpu *vcpu; 1922 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1923 int yielded = 0; 1924 int try = 3; 1925 int pass; 1926 int i; 1927 1928 kvm_vcpu_set_in_spin_loop(me, true); 1929 /* 1930 * We boost the priority of a VCPU that is runnable but not 1931 * currently running, because it got preempted by something 1932 * else and called schedule in __vcpu_run. Hopefully that 1933 * VCPU is holding the lock that we need and will release it. 1934 * We approximate round-robin by starting at the last boosted VCPU. 1935 */ 1936 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1937 kvm_for_each_vcpu(i, vcpu, kvm) { 1938 if (!pass && i <= last_boosted_vcpu) { 1939 i = last_boosted_vcpu; 1940 continue; 1941 } else if (pass && i > last_boosted_vcpu) 1942 break; 1943 if (!ACCESS_ONCE(vcpu->preempted)) 1944 continue; 1945 if (vcpu == me) 1946 continue; 1947 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 1948 continue; 1949 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1950 continue; 1951 1952 yielded = kvm_vcpu_yield_to(vcpu); 1953 if (yielded > 0) { 1954 kvm->last_boosted_vcpu = i; 1955 break; 1956 } else if (yielded < 0) { 1957 try--; 1958 if (!try) 1959 break; 1960 } 1961 } 1962 } 1963 kvm_vcpu_set_in_spin_loop(me, false); 1964 1965 /* Ensure vcpu is not eligible during next spinloop */ 1966 kvm_vcpu_set_dy_eligible(me, false); 1967 } 1968 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1969 1970 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1971 { 1972 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1973 struct page *page; 1974 1975 if (vmf->pgoff == 0) 1976 page = virt_to_page(vcpu->run); 1977 #ifdef CONFIG_X86 1978 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1979 page = virt_to_page(vcpu->arch.pio_data); 1980 #endif 1981 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1982 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1983 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1984 #endif 1985 else 1986 return kvm_arch_vcpu_fault(vcpu, vmf); 1987 get_page(page); 1988 vmf->page = page; 1989 return 0; 1990 } 1991 1992 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1993 .fault = kvm_vcpu_fault, 1994 }; 1995 1996 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1997 { 1998 vma->vm_ops = &kvm_vcpu_vm_ops; 1999 return 0; 2000 } 2001 2002 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2003 { 2004 struct kvm_vcpu *vcpu = filp->private_data; 2005 2006 kvm_put_kvm(vcpu->kvm); 2007 return 0; 2008 } 2009 2010 static struct file_operations kvm_vcpu_fops = { 2011 .release = kvm_vcpu_release, 2012 .unlocked_ioctl = kvm_vcpu_ioctl, 2013 #ifdef CONFIG_KVM_COMPAT 2014 .compat_ioctl = kvm_vcpu_compat_ioctl, 2015 #endif 2016 .mmap = kvm_vcpu_mmap, 2017 .llseek = noop_llseek, 2018 }; 2019 2020 /* 2021 * Allocates an inode for the vcpu. 2022 */ 2023 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2024 { 2025 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2026 } 2027 2028 /* 2029 * Creates some virtual cpus. Good luck creating more than one. 2030 */ 2031 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2032 { 2033 int r; 2034 struct kvm_vcpu *vcpu, *v; 2035 2036 if (id >= KVM_MAX_VCPUS) 2037 return -EINVAL; 2038 2039 vcpu = kvm_arch_vcpu_create(kvm, id); 2040 if (IS_ERR(vcpu)) 2041 return PTR_ERR(vcpu); 2042 2043 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2044 2045 r = kvm_arch_vcpu_setup(vcpu); 2046 if (r) 2047 goto vcpu_destroy; 2048 2049 mutex_lock(&kvm->lock); 2050 if (!kvm_vcpu_compatible(vcpu)) { 2051 r = -EINVAL; 2052 goto unlock_vcpu_destroy; 2053 } 2054 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 2055 r = -EINVAL; 2056 goto unlock_vcpu_destroy; 2057 } 2058 2059 kvm_for_each_vcpu(r, v, kvm) 2060 if (v->vcpu_id == id) { 2061 r = -EEXIST; 2062 goto unlock_vcpu_destroy; 2063 } 2064 2065 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2066 2067 /* Now it's all set up, let userspace reach it */ 2068 kvm_get_kvm(kvm); 2069 r = create_vcpu_fd(vcpu); 2070 if (r < 0) { 2071 kvm_put_kvm(kvm); 2072 goto unlock_vcpu_destroy; 2073 } 2074 2075 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2076 smp_wmb(); 2077 atomic_inc(&kvm->online_vcpus); 2078 2079 mutex_unlock(&kvm->lock); 2080 kvm_arch_vcpu_postcreate(vcpu); 2081 return r; 2082 2083 unlock_vcpu_destroy: 2084 mutex_unlock(&kvm->lock); 2085 vcpu_destroy: 2086 kvm_arch_vcpu_destroy(vcpu); 2087 return r; 2088 } 2089 2090 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2091 { 2092 if (sigset) { 2093 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2094 vcpu->sigset_active = 1; 2095 vcpu->sigset = *sigset; 2096 } else 2097 vcpu->sigset_active = 0; 2098 return 0; 2099 } 2100 2101 static long kvm_vcpu_ioctl(struct file *filp, 2102 unsigned int ioctl, unsigned long arg) 2103 { 2104 struct kvm_vcpu *vcpu = filp->private_data; 2105 void __user *argp = (void __user *)arg; 2106 int r; 2107 struct kvm_fpu *fpu = NULL; 2108 struct kvm_sregs *kvm_sregs = NULL; 2109 2110 if (vcpu->kvm->mm != current->mm) 2111 return -EIO; 2112 2113 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2114 return -EINVAL; 2115 2116 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2117 /* 2118 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2119 * so vcpu_load() would break it. 2120 */ 2121 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 2122 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2123 #endif 2124 2125 2126 r = vcpu_load(vcpu); 2127 if (r) 2128 return r; 2129 switch (ioctl) { 2130 case KVM_RUN: 2131 r = -EINVAL; 2132 if (arg) 2133 goto out; 2134 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2135 /* The thread running this VCPU changed. */ 2136 struct pid *oldpid = vcpu->pid; 2137 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2138 rcu_assign_pointer(vcpu->pid, newpid); 2139 if (oldpid) 2140 synchronize_rcu(); 2141 put_pid(oldpid); 2142 } 2143 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2144 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2145 break; 2146 case KVM_GET_REGS: { 2147 struct kvm_regs *kvm_regs; 2148 2149 r = -ENOMEM; 2150 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2151 if (!kvm_regs) 2152 goto out; 2153 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2154 if (r) 2155 goto out_free1; 2156 r = -EFAULT; 2157 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2158 goto out_free1; 2159 r = 0; 2160 out_free1: 2161 kfree(kvm_regs); 2162 break; 2163 } 2164 case KVM_SET_REGS: { 2165 struct kvm_regs *kvm_regs; 2166 2167 r = -ENOMEM; 2168 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2169 if (IS_ERR(kvm_regs)) { 2170 r = PTR_ERR(kvm_regs); 2171 goto out; 2172 } 2173 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2174 kfree(kvm_regs); 2175 break; 2176 } 2177 case KVM_GET_SREGS: { 2178 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2179 r = -ENOMEM; 2180 if (!kvm_sregs) 2181 goto out; 2182 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2183 if (r) 2184 goto out; 2185 r = -EFAULT; 2186 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2187 goto out; 2188 r = 0; 2189 break; 2190 } 2191 case KVM_SET_SREGS: { 2192 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2193 if (IS_ERR(kvm_sregs)) { 2194 r = PTR_ERR(kvm_sregs); 2195 kvm_sregs = NULL; 2196 goto out; 2197 } 2198 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2199 break; 2200 } 2201 case KVM_GET_MP_STATE: { 2202 struct kvm_mp_state mp_state; 2203 2204 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2205 if (r) 2206 goto out; 2207 r = -EFAULT; 2208 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2209 goto out; 2210 r = 0; 2211 break; 2212 } 2213 case KVM_SET_MP_STATE: { 2214 struct kvm_mp_state mp_state; 2215 2216 r = -EFAULT; 2217 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2218 goto out; 2219 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2220 break; 2221 } 2222 case KVM_TRANSLATE: { 2223 struct kvm_translation tr; 2224 2225 r = -EFAULT; 2226 if (copy_from_user(&tr, argp, sizeof tr)) 2227 goto out; 2228 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2229 if (r) 2230 goto out; 2231 r = -EFAULT; 2232 if (copy_to_user(argp, &tr, sizeof tr)) 2233 goto out; 2234 r = 0; 2235 break; 2236 } 2237 case KVM_SET_GUEST_DEBUG: { 2238 struct kvm_guest_debug dbg; 2239 2240 r = -EFAULT; 2241 if (copy_from_user(&dbg, argp, sizeof dbg)) 2242 goto out; 2243 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2244 break; 2245 } 2246 case KVM_SET_SIGNAL_MASK: { 2247 struct kvm_signal_mask __user *sigmask_arg = argp; 2248 struct kvm_signal_mask kvm_sigmask; 2249 sigset_t sigset, *p; 2250 2251 p = NULL; 2252 if (argp) { 2253 r = -EFAULT; 2254 if (copy_from_user(&kvm_sigmask, argp, 2255 sizeof kvm_sigmask)) 2256 goto out; 2257 r = -EINVAL; 2258 if (kvm_sigmask.len != sizeof sigset) 2259 goto out; 2260 r = -EFAULT; 2261 if (copy_from_user(&sigset, sigmask_arg->sigset, 2262 sizeof sigset)) 2263 goto out; 2264 p = &sigset; 2265 } 2266 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2267 break; 2268 } 2269 case KVM_GET_FPU: { 2270 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2271 r = -ENOMEM; 2272 if (!fpu) 2273 goto out; 2274 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2275 if (r) 2276 goto out; 2277 r = -EFAULT; 2278 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2279 goto out; 2280 r = 0; 2281 break; 2282 } 2283 case KVM_SET_FPU: { 2284 fpu = memdup_user(argp, sizeof(*fpu)); 2285 if (IS_ERR(fpu)) { 2286 r = PTR_ERR(fpu); 2287 fpu = NULL; 2288 goto out; 2289 } 2290 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2291 break; 2292 } 2293 default: 2294 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2295 } 2296 out: 2297 vcpu_put(vcpu); 2298 kfree(fpu); 2299 kfree(kvm_sregs); 2300 return r; 2301 } 2302 2303 #ifdef CONFIG_KVM_COMPAT 2304 static long kvm_vcpu_compat_ioctl(struct file *filp, 2305 unsigned int ioctl, unsigned long arg) 2306 { 2307 struct kvm_vcpu *vcpu = filp->private_data; 2308 void __user *argp = compat_ptr(arg); 2309 int r; 2310 2311 if (vcpu->kvm->mm != current->mm) 2312 return -EIO; 2313 2314 switch (ioctl) { 2315 case KVM_SET_SIGNAL_MASK: { 2316 struct kvm_signal_mask __user *sigmask_arg = argp; 2317 struct kvm_signal_mask kvm_sigmask; 2318 compat_sigset_t csigset; 2319 sigset_t sigset; 2320 2321 if (argp) { 2322 r = -EFAULT; 2323 if (copy_from_user(&kvm_sigmask, argp, 2324 sizeof kvm_sigmask)) 2325 goto out; 2326 r = -EINVAL; 2327 if (kvm_sigmask.len != sizeof csigset) 2328 goto out; 2329 r = -EFAULT; 2330 if (copy_from_user(&csigset, sigmask_arg->sigset, 2331 sizeof csigset)) 2332 goto out; 2333 sigset_from_compat(&sigset, &csigset); 2334 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2335 } else 2336 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2337 break; 2338 } 2339 default: 2340 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2341 } 2342 2343 out: 2344 return r; 2345 } 2346 #endif 2347 2348 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2349 int (*accessor)(struct kvm_device *dev, 2350 struct kvm_device_attr *attr), 2351 unsigned long arg) 2352 { 2353 struct kvm_device_attr attr; 2354 2355 if (!accessor) 2356 return -EPERM; 2357 2358 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2359 return -EFAULT; 2360 2361 return accessor(dev, &attr); 2362 } 2363 2364 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2365 unsigned long arg) 2366 { 2367 struct kvm_device *dev = filp->private_data; 2368 2369 switch (ioctl) { 2370 case KVM_SET_DEVICE_ATTR: 2371 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2372 case KVM_GET_DEVICE_ATTR: 2373 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2374 case KVM_HAS_DEVICE_ATTR: 2375 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2376 default: 2377 if (dev->ops->ioctl) 2378 return dev->ops->ioctl(dev, ioctl, arg); 2379 2380 return -ENOTTY; 2381 } 2382 } 2383 2384 static int kvm_device_release(struct inode *inode, struct file *filp) 2385 { 2386 struct kvm_device *dev = filp->private_data; 2387 struct kvm *kvm = dev->kvm; 2388 2389 kvm_put_kvm(kvm); 2390 return 0; 2391 } 2392 2393 static const struct file_operations kvm_device_fops = { 2394 .unlocked_ioctl = kvm_device_ioctl, 2395 #ifdef CONFIG_KVM_COMPAT 2396 .compat_ioctl = kvm_device_ioctl, 2397 #endif 2398 .release = kvm_device_release, 2399 }; 2400 2401 struct kvm_device *kvm_device_from_filp(struct file *filp) 2402 { 2403 if (filp->f_op != &kvm_device_fops) 2404 return NULL; 2405 2406 return filp->private_data; 2407 } 2408 2409 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2410 #ifdef CONFIG_KVM_MPIC 2411 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2412 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2413 #endif 2414 2415 #ifdef CONFIG_KVM_XICS 2416 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2417 #endif 2418 }; 2419 2420 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2421 { 2422 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2423 return -ENOSPC; 2424 2425 if (kvm_device_ops_table[type] != NULL) 2426 return -EEXIST; 2427 2428 kvm_device_ops_table[type] = ops; 2429 return 0; 2430 } 2431 2432 void kvm_unregister_device_ops(u32 type) 2433 { 2434 if (kvm_device_ops_table[type] != NULL) 2435 kvm_device_ops_table[type] = NULL; 2436 } 2437 2438 static int kvm_ioctl_create_device(struct kvm *kvm, 2439 struct kvm_create_device *cd) 2440 { 2441 struct kvm_device_ops *ops = NULL; 2442 struct kvm_device *dev; 2443 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2444 int ret; 2445 2446 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2447 return -ENODEV; 2448 2449 ops = kvm_device_ops_table[cd->type]; 2450 if (ops == NULL) 2451 return -ENODEV; 2452 2453 if (test) 2454 return 0; 2455 2456 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2457 if (!dev) 2458 return -ENOMEM; 2459 2460 dev->ops = ops; 2461 dev->kvm = kvm; 2462 2463 ret = ops->create(dev, cd->type); 2464 if (ret < 0) { 2465 kfree(dev); 2466 return ret; 2467 } 2468 2469 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2470 if (ret < 0) { 2471 ops->destroy(dev); 2472 return ret; 2473 } 2474 2475 list_add(&dev->vm_node, &kvm->devices); 2476 kvm_get_kvm(kvm); 2477 cd->fd = ret; 2478 return 0; 2479 } 2480 2481 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2482 { 2483 switch (arg) { 2484 case KVM_CAP_USER_MEMORY: 2485 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2486 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2487 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2488 case KVM_CAP_SET_BOOT_CPU_ID: 2489 #endif 2490 case KVM_CAP_INTERNAL_ERROR_DATA: 2491 #ifdef CONFIG_HAVE_KVM_MSI 2492 case KVM_CAP_SIGNAL_MSI: 2493 #endif 2494 #ifdef CONFIG_HAVE_KVM_IRQFD 2495 case KVM_CAP_IRQFD: 2496 case KVM_CAP_IRQFD_RESAMPLE: 2497 #endif 2498 case KVM_CAP_CHECK_EXTENSION_VM: 2499 return 1; 2500 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2501 case KVM_CAP_IRQ_ROUTING: 2502 return KVM_MAX_IRQ_ROUTES; 2503 #endif 2504 default: 2505 break; 2506 } 2507 return kvm_vm_ioctl_check_extension(kvm, arg); 2508 } 2509 2510 static long kvm_vm_ioctl(struct file *filp, 2511 unsigned int ioctl, unsigned long arg) 2512 { 2513 struct kvm *kvm = filp->private_data; 2514 void __user *argp = (void __user *)arg; 2515 int r; 2516 2517 if (kvm->mm != current->mm) 2518 return -EIO; 2519 switch (ioctl) { 2520 case KVM_CREATE_VCPU: 2521 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2522 break; 2523 case KVM_SET_USER_MEMORY_REGION: { 2524 struct kvm_userspace_memory_region kvm_userspace_mem; 2525 2526 r = -EFAULT; 2527 if (copy_from_user(&kvm_userspace_mem, argp, 2528 sizeof kvm_userspace_mem)) 2529 goto out; 2530 2531 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2532 break; 2533 } 2534 case KVM_GET_DIRTY_LOG: { 2535 struct kvm_dirty_log log; 2536 2537 r = -EFAULT; 2538 if (copy_from_user(&log, argp, sizeof log)) 2539 goto out; 2540 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2541 break; 2542 } 2543 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2544 case KVM_REGISTER_COALESCED_MMIO: { 2545 struct kvm_coalesced_mmio_zone zone; 2546 r = -EFAULT; 2547 if (copy_from_user(&zone, argp, sizeof zone)) 2548 goto out; 2549 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2550 break; 2551 } 2552 case KVM_UNREGISTER_COALESCED_MMIO: { 2553 struct kvm_coalesced_mmio_zone zone; 2554 r = -EFAULT; 2555 if (copy_from_user(&zone, argp, sizeof zone)) 2556 goto out; 2557 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2558 break; 2559 } 2560 #endif 2561 case KVM_IRQFD: { 2562 struct kvm_irqfd data; 2563 2564 r = -EFAULT; 2565 if (copy_from_user(&data, argp, sizeof data)) 2566 goto out; 2567 r = kvm_irqfd(kvm, &data); 2568 break; 2569 } 2570 case KVM_IOEVENTFD: { 2571 struct kvm_ioeventfd data; 2572 2573 r = -EFAULT; 2574 if (copy_from_user(&data, argp, sizeof data)) 2575 goto out; 2576 r = kvm_ioeventfd(kvm, &data); 2577 break; 2578 } 2579 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2580 case KVM_SET_BOOT_CPU_ID: 2581 r = 0; 2582 mutex_lock(&kvm->lock); 2583 if (atomic_read(&kvm->online_vcpus) != 0) 2584 r = -EBUSY; 2585 else 2586 kvm->bsp_vcpu_id = arg; 2587 mutex_unlock(&kvm->lock); 2588 break; 2589 #endif 2590 #ifdef CONFIG_HAVE_KVM_MSI 2591 case KVM_SIGNAL_MSI: { 2592 struct kvm_msi msi; 2593 2594 r = -EFAULT; 2595 if (copy_from_user(&msi, argp, sizeof msi)) 2596 goto out; 2597 r = kvm_send_userspace_msi(kvm, &msi); 2598 break; 2599 } 2600 #endif 2601 #ifdef __KVM_HAVE_IRQ_LINE 2602 case KVM_IRQ_LINE_STATUS: 2603 case KVM_IRQ_LINE: { 2604 struct kvm_irq_level irq_event; 2605 2606 r = -EFAULT; 2607 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2608 goto out; 2609 2610 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2611 ioctl == KVM_IRQ_LINE_STATUS); 2612 if (r) 2613 goto out; 2614 2615 r = -EFAULT; 2616 if (ioctl == KVM_IRQ_LINE_STATUS) { 2617 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2618 goto out; 2619 } 2620 2621 r = 0; 2622 break; 2623 } 2624 #endif 2625 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2626 case KVM_SET_GSI_ROUTING: { 2627 struct kvm_irq_routing routing; 2628 struct kvm_irq_routing __user *urouting; 2629 struct kvm_irq_routing_entry *entries; 2630 2631 r = -EFAULT; 2632 if (copy_from_user(&routing, argp, sizeof(routing))) 2633 goto out; 2634 r = -EINVAL; 2635 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2636 goto out; 2637 if (routing.flags) 2638 goto out; 2639 r = -ENOMEM; 2640 entries = vmalloc(routing.nr * sizeof(*entries)); 2641 if (!entries) 2642 goto out; 2643 r = -EFAULT; 2644 urouting = argp; 2645 if (copy_from_user(entries, urouting->entries, 2646 routing.nr * sizeof(*entries))) 2647 goto out_free_irq_routing; 2648 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2649 routing.flags); 2650 out_free_irq_routing: 2651 vfree(entries); 2652 break; 2653 } 2654 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2655 case KVM_CREATE_DEVICE: { 2656 struct kvm_create_device cd; 2657 2658 r = -EFAULT; 2659 if (copy_from_user(&cd, argp, sizeof(cd))) 2660 goto out; 2661 2662 r = kvm_ioctl_create_device(kvm, &cd); 2663 if (r) 2664 goto out; 2665 2666 r = -EFAULT; 2667 if (copy_to_user(argp, &cd, sizeof(cd))) 2668 goto out; 2669 2670 r = 0; 2671 break; 2672 } 2673 case KVM_CHECK_EXTENSION: 2674 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 2675 break; 2676 default: 2677 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2678 } 2679 out: 2680 return r; 2681 } 2682 2683 #ifdef CONFIG_KVM_COMPAT 2684 struct compat_kvm_dirty_log { 2685 __u32 slot; 2686 __u32 padding1; 2687 union { 2688 compat_uptr_t dirty_bitmap; /* one bit per page */ 2689 __u64 padding2; 2690 }; 2691 }; 2692 2693 static long kvm_vm_compat_ioctl(struct file *filp, 2694 unsigned int ioctl, unsigned long arg) 2695 { 2696 struct kvm *kvm = filp->private_data; 2697 int r; 2698 2699 if (kvm->mm != current->mm) 2700 return -EIO; 2701 switch (ioctl) { 2702 case KVM_GET_DIRTY_LOG: { 2703 struct compat_kvm_dirty_log compat_log; 2704 struct kvm_dirty_log log; 2705 2706 r = -EFAULT; 2707 if (copy_from_user(&compat_log, (void __user *)arg, 2708 sizeof(compat_log))) 2709 goto out; 2710 log.slot = compat_log.slot; 2711 log.padding1 = compat_log.padding1; 2712 log.padding2 = compat_log.padding2; 2713 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2714 2715 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2716 break; 2717 } 2718 default: 2719 r = kvm_vm_ioctl(filp, ioctl, arg); 2720 } 2721 2722 out: 2723 return r; 2724 } 2725 #endif 2726 2727 static struct file_operations kvm_vm_fops = { 2728 .release = kvm_vm_release, 2729 .unlocked_ioctl = kvm_vm_ioctl, 2730 #ifdef CONFIG_KVM_COMPAT 2731 .compat_ioctl = kvm_vm_compat_ioctl, 2732 #endif 2733 .llseek = noop_llseek, 2734 }; 2735 2736 static int kvm_dev_ioctl_create_vm(unsigned long type) 2737 { 2738 int r; 2739 struct kvm *kvm; 2740 2741 kvm = kvm_create_vm(type); 2742 if (IS_ERR(kvm)) 2743 return PTR_ERR(kvm); 2744 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2745 r = kvm_coalesced_mmio_init(kvm); 2746 if (r < 0) { 2747 kvm_put_kvm(kvm); 2748 return r; 2749 } 2750 #endif 2751 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2752 if (r < 0) 2753 kvm_put_kvm(kvm); 2754 2755 return r; 2756 } 2757 2758 static long kvm_dev_ioctl(struct file *filp, 2759 unsigned int ioctl, unsigned long arg) 2760 { 2761 long r = -EINVAL; 2762 2763 switch (ioctl) { 2764 case KVM_GET_API_VERSION: 2765 if (arg) 2766 goto out; 2767 r = KVM_API_VERSION; 2768 break; 2769 case KVM_CREATE_VM: 2770 r = kvm_dev_ioctl_create_vm(arg); 2771 break; 2772 case KVM_CHECK_EXTENSION: 2773 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 2774 break; 2775 case KVM_GET_VCPU_MMAP_SIZE: 2776 if (arg) 2777 goto out; 2778 r = PAGE_SIZE; /* struct kvm_run */ 2779 #ifdef CONFIG_X86 2780 r += PAGE_SIZE; /* pio data page */ 2781 #endif 2782 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2783 r += PAGE_SIZE; /* coalesced mmio ring page */ 2784 #endif 2785 break; 2786 case KVM_TRACE_ENABLE: 2787 case KVM_TRACE_PAUSE: 2788 case KVM_TRACE_DISABLE: 2789 r = -EOPNOTSUPP; 2790 break; 2791 default: 2792 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2793 } 2794 out: 2795 return r; 2796 } 2797 2798 static struct file_operations kvm_chardev_ops = { 2799 .unlocked_ioctl = kvm_dev_ioctl, 2800 .compat_ioctl = kvm_dev_ioctl, 2801 .llseek = noop_llseek, 2802 }; 2803 2804 static struct miscdevice kvm_dev = { 2805 KVM_MINOR, 2806 "kvm", 2807 &kvm_chardev_ops, 2808 }; 2809 2810 static void hardware_enable_nolock(void *junk) 2811 { 2812 int cpu = raw_smp_processor_id(); 2813 int r; 2814 2815 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2816 return; 2817 2818 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2819 2820 r = kvm_arch_hardware_enable(); 2821 2822 if (r) { 2823 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2824 atomic_inc(&hardware_enable_failed); 2825 printk(KERN_INFO "kvm: enabling virtualization on " 2826 "CPU%d failed\n", cpu); 2827 } 2828 } 2829 2830 static void hardware_enable(void) 2831 { 2832 raw_spin_lock(&kvm_count_lock); 2833 if (kvm_usage_count) 2834 hardware_enable_nolock(NULL); 2835 raw_spin_unlock(&kvm_count_lock); 2836 } 2837 2838 static void hardware_disable_nolock(void *junk) 2839 { 2840 int cpu = raw_smp_processor_id(); 2841 2842 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2843 return; 2844 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2845 kvm_arch_hardware_disable(); 2846 } 2847 2848 static void hardware_disable(void) 2849 { 2850 raw_spin_lock(&kvm_count_lock); 2851 if (kvm_usage_count) 2852 hardware_disable_nolock(NULL); 2853 raw_spin_unlock(&kvm_count_lock); 2854 } 2855 2856 static void hardware_disable_all_nolock(void) 2857 { 2858 BUG_ON(!kvm_usage_count); 2859 2860 kvm_usage_count--; 2861 if (!kvm_usage_count) 2862 on_each_cpu(hardware_disable_nolock, NULL, 1); 2863 } 2864 2865 static void hardware_disable_all(void) 2866 { 2867 raw_spin_lock(&kvm_count_lock); 2868 hardware_disable_all_nolock(); 2869 raw_spin_unlock(&kvm_count_lock); 2870 } 2871 2872 static int hardware_enable_all(void) 2873 { 2874 int r = 0; 2875 2876 raw_spin_lock(&kvm_count_lock); 2877 2878 kvm_usage_count++; 2879 if (kvm_usage_count == 1) { 2880 atomic_set(&hardware_enable_failed, 0); 2881 on_each_cpu(hardware_enable_nolock, NULL, 1); 2882 2883 if (atomic_read(&hardware_enable_failed)) { 2884 hardware_disable_all_nolock(); 2885 r = -EBUSY; 2886 } 2887 } 2888 2889 raw_spin_unlock(&kvm_count_lock); 2890 2891 return r; 2892 } 2893 2894 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2895 void *v) 2896 { 2897 int cpu = (long)v; 2898 2899 val &= ~CPU_TASKS_FROZEN; 2900 switch (val) { 2901 case CPU_DYING: 2902 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2903 cpu); 2904 hardware_disable(); 2905 break; 2906 case CPU_STARTING: 2907 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2908 cpu); 2909 hardware_enable(); 2910 break; 2911 } 2912 return NOTIFY_OK; 2913 } 2914 2915 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2916 void *v) 2917 { 2918 /* 2919 * Some (well, at least mine) BIOSes hang on reboot if 2920 * in vmx root mode. 2921 * 2922 * And Intel TXT required VMX off for all cpu when system shutdown. 2923 */ 2924 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2925 kvm_rebooting = true; 2926 on_each_cpu(hardware_disable_nolock, NULL, 1); 2927 return NOTIFY_OK; 2928 } 2929 2930 static struct notifier_block kvm_reboot_notifier = { 2931 .notifier_call = kvm_reboot, 2932 .priority = 0, 2933 }; 2934 2935 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2936 { 2937 int i; 2938 2939 for (i = 0; i < bus->dev_count; i++) { 2940 struct kvm_io_device *pos = bus->range[i].dev; 2941 2942 kvm_iodevice_destructor(pos); 2943 } 2944 kfree(bus); 2945 } 2946 2947 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2948 const struct kvm_io_range *r2) 2949 { 2950 if (r1->addr < r2->addr) 2951 return -1; 2952 if (r1->addr + r1->len > r2->addr + r2->len) 2953 return 1; 2954 return 0; 2955 } 2956 2957 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2958 { 2959 return kvm_io_bus_cmp(p1, p2); 2960 } 2961 2962 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2963 gpa_t addr, int len) 2964 { 2965 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2966 .addr = addr, 2967 .len = len, 2968 .dev = dev, 2969 }; 2970 2971 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2972 kvm_io_bus_sort_cmp, NULL); 2973 2974 return 0; 2975 } 2976 2977 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2978 gpa_t addr, int len) 2979 { 2980 struct kvm_io_range *range, key; 2981 int off; 2982 2983 key = (struct kvm_io_range) { 2984 .addr = addr, 2985 .len = len, 2986 }; 2987 2988 range = bsearch(&key, bus->range, bus->dev_count, 2989 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2990 if (range == NULL) 2991 return -ENOENT; 2992 2993 off = range - bus->range; 2994 2995 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2996 off--; 2997 2998 return off; 2999 } 3000 3001 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 3002 struct kvm_io_range *range, const void *val) 3003 { 3004 int idx; 3005 3006 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3007 if (idx < 0) 3008 return -EOPNOTSUPP; 3009 3010 while (idx < bus->dev_count && 3011 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3012 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 3013 range->len, val)) 3014 return idx; 3015 idx++; 3016 } 3017 3018 return -EOPNOTSUPP; 3019 } 3020 3021 /* kvm_io_bus_write - called under kvm->slots_lock */ 3022 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3023 int len, const void *val) 3024 { 3025 struct kvm_io_bus *bus; 3026 struct kvm_io_range range; 3027 int r; 3028 3029 range = (struct kvm_io_range) { 3030 .addr = addr, 3031 .len = len, 3032 }; 3033 3034 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3035 r = __kvm_io_bus_write(bus, &range, val); 3036 return r < 0 ? r : 0; 3037 } 3038 3039 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3040 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3041 int len, const void *val, long cookie) 3042 { 3043 struct kvm_io_bus *bus; 3044 struct kvm_io_range range; 3045 3046 range = (struct kvm_io_range) { 3047 .addr = addr, 3048 .len = len, 3049 }; 3050 3051 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3052 3053 /* First try the device referenced by cookie. */ 3054 if ((cookie >= 0) && (cookie < bus->dev_count) && 3055 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3056 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 3057 val)) 3058 return cookie; 3059 3060 /* 3061 * cookie contained garbage; fall back to search and return the 3062 * correct cookie value. 3063 */ 3064 return __kvm_io_bus_write(bus, &range, val); 3065 } 3066 3067 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 3068 void *val) 3069 { 3070 int idx; 3071 3072 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3073 if (idx < 0) 3074 return -EOPNOTSUPP; 3075 3076 while (idx < bus->dev_count && 3077 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3078 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 3079 range->len, val)) 3080 return idx; 3081 idx++; 3082 } 3083 3084 return -EOPNOTSUPP; 3085 } 3086 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3087 3088 /* kvm_io_bus_read - called under kvm->slots_lock */ 3089 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3090 int len, void *val) 3091 { 3092 struct kvm_io_bus *bus; 3093 struct kvm_io_range range; 3094 int r; 3095 3096 range = (struct kvm_io_range) { 3097 .addr = addr, 3098 .len = len, 3099 }; 3100 3101 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3102 r = __kvm_io_bus_read(bus, &range, val); 3103 return r < 0 ? r : 0; 3104 } 3105 3106 3107 /* Caller must hold slots_lock. */ 3108 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3109 int len, struct kvm_io_device *dev) 3110 { 3111 struct kvm_io_bus *new_bus, *bus; 3112 3113 bus = kvm->buses[bus_idx]; 3114 /* exclude ioeventfd which is limited by maximum fd */ 3115 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3116 return -ENOSPC; 3117 3118 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3119 sizeof(struct kvm_io_range)), GFP_KERNEL); 3120 if (!new_bus) 3121 return -ENOMEM; 3122 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3123 sizeof(struct kvm_io_range))); 3124 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3125 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3126 synchronize_srcu_expedited(&kvm->srcu); 3127 kfree(bus); 3128 3129 return 0; 3130 } 3131 3132 /* Caller must hold slots_lock. */ 3133 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3134 struct kvm_io_device *dev) 3135 { 3136 int i, r; 3137 struct kvm_io_bus *new_bus, *bus; 3138 3139 bus = kvm->buses[bus_idx]; 3140 r = -ENOENT; 3141 for (i = 0; i < bus->dev_count; i++) 3142 if (bus->range[i].dev == dev) { 3143 r = 0; 3144 break; 3145 } 3146 3147 if (r) 3148 return r; 3149 3150 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3151 sizeof(struct kvm_io_range)), GFP_KERNEL); 3152 if (!new_bus) 3153 return -ENOMEM; 3154 3155 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3156 new_bus->dev_count--; 3157 memcpy(new_bus->range + i, bus->range + i + 1, 3158 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3159 3160 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3161 synchronize_srcu_expedited(&kvm->srcu); 3162 kfree(bus); 3163 return r; 3164 } 3165 3166 static struct notifier_block kvm_cpu_notifier = { 3167 .notifier_call = kvm_cpu_hotplug, 3168 }; 3169 3170 static int vm_stat_get(void *_offset, u64 *val) 3171 { 3172 unsigned offset = (long)_offset; 3173 struct kvm *kvm; 3174 3175 *val = 0; 3176 spin_lock(&kvm_lock); 3177 list_for_each_entry(kvm, &vm_list, vm_list) 3178 *val += *(u32 *)((void *)kvm + offset); 3179 spin_unlock(&kvm_lock); 3180 return 0; 3181 } 3182 3183 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3184 3185 static int vcpu_stat_get(void *_offset, u64 *val) 3186 { 3187 unsigned offset = (long)_offset; 3188 struct kvm *kvm; 3189 struct kvm_vcpu *vcpu; 3190 int i; 3191 3192 *val = 0; 3193 spin_lock(&kvm_lock); 3194 list_for_each_entry(kvm, &vm_list, vm_list) 3195 kvm_for_each_vcpu(i, vcpu, kvm) 3196 *val += *(u32 *)((void *)vcpu + offset); 3197 3198 spin_unlock(&kvm_lock); 3199 return 0; 3200 } 3201 3202 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3203 3204 static const struct file_operations *stat_fops[] = { 3205 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3206 [KVM_STAT_VM] = &vm_stat_fops, 3207 }; 3208 3209 static int kvm_init_debug(void) 3210 { 3211 int r = -EEXIST; 3212 struct kvm_stats_debugfs_item *p; 3213 3214 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3215 if (kvm_debugfs_dir == NULL) 3216 goto out; 3217 3218 for (p = debugfs_entries; p->name; ++p) { 3219 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3220 (void *)(long)p->offset, 3221 stat_fops[p->kind]); 3222 if (p->dentry == NULL) 3223 goto out_dir; 3224 } 3225 3226 return 0; 3227 3228 out_dir: 3229 debugfs_remove_recursive(kvm_debugfs_dir); 3230 out: 3231 return r; 3232 } 3233 3234 static void kvm_exit_debug(void) 3235 { 3236 struct kvm_stats_debugfs_item *p; 3237 3238 for (p = debugfs_entries; p->name; ++p) 3239 debugfs_remove(p->dentry); 3240 debugfs_remove(kvm_debugfs_dir); 3241 } 3242 3243 static int kvm_suspend(void) 3244 { 3245 if (kvm_usage_count) 3246 hardware_disable_nolock(NULL); 3247 return 0; 3248 } 3249 3250 static void kvm_resume(void) 3251 { 3252 if (kvm_usage_count) { 3253 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3254 hardware_enable_nolock(NULL); 3255 } 3256 } 3257 3258 static struct syscore_ops kvm_syscore_ops = { 3259 .suspend = kvm_suspend, 3260 .resume = kvm_resume, 3261 }; 3262 3263 static inline 3264 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3265 { 3266 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3267 } 3268 3269 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3270 { 3271 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3272 if (vcpu->preempted) 3273 vcpu->preempted = false; 3274 3275 kvm_arch_sched_in(vcpu, cpu); 3276 3277 kvm_arch_vcpu_load(vcpu, cpu); 3278 } 3279 3280 static void kvm_sched_out(struct preempt_notifier *pn, 3281 struct task_struct *next) 3282 { 3283 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3284 3285 if (current->state == TASK_RUNNING) 3286 vcpu->preempted = true; 3287 kvm_arch_vcpu_put(vcpu); 3288 } 3289 3290 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3291 struct module *module) 3292 { 3293 int r; 3294 int cpu; 3295 3296 r = kvm_arch_init(opaque); 3297 if (r) 3298 goto out_fail; 3299 3300 /* 3301 * kvm_arch_init makes sure there's at most one caller 3302 * for architectures that support multiple implementations, 3303 * like intel and amd on x86. 3304 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3305 * conflicts in case kvm is already setup for another implementation. 3306 */ 3307 r = kvm_irqfd_init(); 3308 if (r) 3309 goto out_irqfd; 3310 3311 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3312 r = -ENOMEM; 3313 goto out_free_0; 3314 } 3315 3316 r = kvm_arch_hardware_setup(); 3317 if (r < 0) 3318 goto out_free_0a; 3319 3320 for_each_online_cpu(cpu) { 3321 smp_call_function_single(cpu, 3322 kvm_arch_check_processor_compat, 3323 &r, 1); 3324 if (r < 0) 3325 goto out_free_1; 3326 } 3327 3328 r = register_cpu_notifier(&kvm_cpu_notifier); 3329 if (r) 3330 goto out_free_2; 3331 register_reboot_notifier(&kvm_reboot_notifier); 3332 3333 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3334 if (!vcpu_align) 3335 vcpu_align = __alignof__(struct kvm_vcpu); 3336 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3337 0, NULL); 3338 if (!kvm_vcpu_cache) { 3339 r = -ENOMEM; 3340 goto out_free_3; 3341 } 3342 3343 r = kvm_async_pf_init(); 3344 if (r) 3345 goto out_free; 3346 3347 kvm_chardev_ops.owner = module; 3348 kvm_vm_fops.owner = module; 3349 kvm_vcpu_fops.owner = module; 3350 3351 r = misc_register(&kvm_dev); 3352 if (r) { 3353 printk(KERN_ERR "kvm: misc device register failed\n"); 3354 goto out_unreg; 3355 } 3356 3357 register_syscore_ops(&kvm_syscore_ops); 3358 3359 kvm_preempt_ops.sched_in = kvm_sched_in; 3360 kvm_preempt_ops.sched_out = kvm_sched_out; 3361 3362 r = kvm_init_debug(); 3363 if (r) { 3364 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3365 goto out_undebugfs; 3366 } 3367 3368 r = kvm_vfio_ops_init(); 3369 WARN_ON(r); 3370 3371 return 0; 3372 3373 out_undebugfs: 3374 unregister_syscore_ops(&kvm_syscore_ops); 3375 misc_deregister(&kvm_dev); 3376 out_unreg: 3377 kvm_async_pf_deinit(); 3378 out_free: 3379 kmem_cache_destroy(kvm_vcpu_cache); 3380 out_free_3: 3381 unregister_reboot_notifier(&kvm_reboot_notifier); 3382 unregister_cpu_notifier(&kvm_cpu_notifier); 3383 out_free_2: 3384 out_free_1: 3385 kvm_arch_hardware_unsetup(); 3386 out_free_0a: 3387 free_cpumask_var(cpus_hardware_enabled); 3388 out_free_0: 3389 kvm_irqfd_exit(); 3390 out_irqfd: 3391 kvm_arch_exit(); 3392 out_fail: 3393 return r; 3394 } 3395 EXPORT_SYMBOL_GPL(kvm_init); 3396 3397 void kvm_exit(void) 3398 { 3399 kvm_exit_debug(); 3400 misc_deregister(&kvm_dev); 3401 kmem_cache_destroy(kvm_vcpu_cache); 3402 kvm_async_pf_deinit(); 3403 unregister_syscore_ops(&kvm_syscore_ops); 3404 unregister_reboot_notifier(&kvm_reboot_notifier); 3405 unregister_cpu_notifier(&kvm_cpu_notifier); 3406 on_each_cpu(hardware_disable_nolock, NULL, 1); 3407 kvm_arch_hardware_unsetup(); 3408 kvm_arch_exit(); 3409 kvm_irqfd_exit(); 3410 free_cpumask_var(cpus_hardware_enabled); 3411 kvm_vfio_ops_exit(); 3412 } 3413 EXPORT_SYMBOL_GPL(kvm_exit); 3414