1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* The start value to grow halt_poll_ns from */ 85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 86 module_param(halt_poll_ns_grow_start, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 88 89 /* Default resets per-vcpu halt_poll_ns . */ 90 unsigned int halt_poll_ns_shrink; 91 module_param(halt_poll_ns_shrink, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 93 94 /* 95 * Ordering of locks: 96 * 97 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 98 */ 99 100 DEFINE_SPINLOCK(kvm_lock); 101 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 102 LIST_HEAD(vm_list); 103 104 static cpumask_var_t cpus_hardware_enabled; 105 static int kvm_usage_count; 106 static atomic_t hardware_enable_failed; 107 108 struct kmem_cache *kvm_vcpu_cache; 109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 110 111 static __read_mostly struct preempt_ops kvm_preempt_ops; 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static int kvm_debugfs_num_entries; 117 static const struct file_operations *stat_fops_per_vm[]; 118 119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 120 unsigned long arg); 121 #ifdef CONFIG_KVM_COMPAT 122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #define KVM_COMPAT(c) .compat_ioctl = (c) 125 #else 126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 127 unsigned long arg) { return -EINVAL; } 128 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 129 #endif 130 static int hardware_enable_all(void); 131 static void hardware_disable_all(void); 132 133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 134 135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 136 137 __visible bool kvm_rebooting; 138 EXPORT_SYMBOL_GPL(kvm_rebooting); 139 140 static bool largepages_enabled = true; 141 142 #define KVM_EVENT_CREATE_VM 0 143 #define KVM_EVENT_DESTROY_VM 1 144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 145 static unsigned long long kvm_createvm_count; 146 static unsigned long long kvm_active_vms; 147 148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 149 unsigned long start, unsigned long end, bool blockable) 150 { 151 return 0; 152 } 153 154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 155 { 156 if (pfn_valid(pfn)) 157 return PageReserved(pfn_to_page(pfn)); 158 159 return true; 160 } 161 162 /* 163 * Switches to specified vcpu, until a matching vcpu_put() 164 */ 165 void vcpu_load(struct kvm_vcpu *vcpu) 166 { 167 int cpu = get_cpu(); 168 preempt_notifier_register(&vcpu->preempt_notifier); 169 kvm_arch_vcpu_load(vcpu, cpu); 170 put_cpu(); 171 } 172 EXPORT_SYMBOL_GPL(vcpu_load); 173 174 void vcpu_put(struct kvm_vcpu *vcpu) 175 { 176 preempt_disable(); 177 kvm_arch_vcpu_put(vcpu); 178 preempt_notifier_unregister(&vcpu->preempt_notifier); 179 preempt_enable(); 180 } 181 EXPORT_SYMBOL_GPL(vcpu_put); 182 183 /* TODO: merge with kvm_arch_vcpu_should_kick */ 184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 185 { 186 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 187 188 /* 189 * We need to wait for the VCPU to reenable interrupts and get out of 190 * READING_SHADOW_PAGE_TABLES mode. 191 */ 192 if (req & KVM_REQUEST_WAIT) 193 return mode != OUTSIDE_GUEST_MODE; 194 195 /* 196 * Need to kick a running VCPU, but otherwise there is nothing to do. 197 */ 198 return mode == IN_GUEST_MODE; 199 } 200 201 static void ack_flush(void *_completed) 202 { 203 } 204 205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 206 { 207 if (unlikely(!cpus)) 208 cpus = cpu_online_mask; 209 210 if (cpumask_empty(cpus)) 211 return false; 212 213 smp_call_function_many(cpus, ack_flush, NULL, wait); 214 return true; 215 } 216 217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 218 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 219 { 220 int i, cpu, me; 221 struct kvm_vcpu *vcpu; 222 bool called; 223 224 me = get_cpu(); 225 226 kvm_for_each_vcpu(i, vcpu, kvm) { 227 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 228 continue; 229 230 kvm_make_request(req, vcpu); 231 cpu = vcpu->cpu; 232 233 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 234 continue; 235 236 if (tmp != NULL && cpu != -1 && cpu != me && 237 kvm_request_needs_ipi(vcpu, req)) 238 __cpumask_set_cpu(cpu, tmp); 239 } 240 241 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 242 put_cpu(); 243 244 return called; 245 } 246 247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 248 { 249 cpumask_var_t cpus; 250 bool called; 251 252 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 253 254 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 255 256 free_cpumask_var(cpus); 257 return called; 258 } 259 260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 261 void kvm_flush_remote_tlbs(struct kvm *kvm) 262 { 263 /* 264 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 265 * kvm_make_all_cpus_request. 266 */ 267 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 268 269 /* 270 * We want to publish modifications to the page tables before reading 271 * mode. Pairs with a memory barrier in arch-specific code. 272 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 273 * and smp_mb in walk_shadow_page_lockless_begin/end. 274 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 275 * 276 * There is already an smp_mb__after_atomic() before 277 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 278 * barrier here. 279 */ 280 if (!kvm_arch_flush_remote_tlb(kvm) 281 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 282 ++kvm->stat.remote_tlb_flush; 283 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 284 } 285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 286 #endif 287 288 void kvm_reload_remote_mmus(struct kvm *kvm) 289 { 290 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 291 } 292 293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 294 { 295 struct page *page; 296 int r; 297 298 mutex_init(&vcpu->mutex); 299 vcpu->cpu = -1; 300 vcpu->kvm = kvm; 301 vcpu->vcpu_id = id; 302 vcpu->pid = NULL; 303 init_swait_queue_head(&vcpu->wq); 304 kvm_async_pf_vcpu_init(vcpu); 305 306 vcpu->pre_pcpu = -1; 307 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 308 309 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 310 if (!page) { 311 r = -ENOMEM; 312 goto fail; 313 } 314 vcpu->run = page_address(page); 315 316 kvm_vcpu_set_in_spin_loop(vcpu, false); 317 kvm_vcpu_set_dy_eligible(vcpu, false); 318 vcpu->preempted = false; 319 320 r = kvm_arch_vcpu_init(vcpu); 321 if (r < 0) 322 goto fail_free_run; 323 return 0; 324 325 fail_free_run: 326 free_page((unsigned long)vcpu->run); 327 fail: 328 return r; 329 } 330 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 331 332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 333 { 334 /* 335 * no need for rcu_read_lock as VCPU_RUN is the only place that 336 * will change the vcpu->pid pointer and on uninit all file 337 * descriptors are already gone. 338 */ 339 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 340 kvm_arch_vcpu_uninit(vcpu); 341 free_page((unsigned long)vcpu->run); 342 } 343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 344 345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 347 { 348 return container_of(mn, struct kvm, mmu_notifier); 349 } 350 351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 352 struct mm_struct *mm, 353 unsigned long address, 354 pte_t pte) 355 { 356 struct kvm *kvm = mmu_notifier_to_kvm(mn); 357 int idx; 358 359 idx = srcu_read_lock(&kvm->srcu); 360 spin_lock(&kvm->mmu_lock); 361 kvm->mmu_notifier_seq++; 362 363 if (kvm_set_spte_hva(kvm, address, pte)) 364 kvm_flush_remote_tlbs(kvm); 365 366 spin_unlock(&kvm->mmu_lock); 367 srcu_read_unlock(&kvm->srcu, idx); 368 } 369 370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 371 const struct mmu_notifier_range *range) 372 { 373 struct kvm *kvm = mmu_notifier_to_kvm(mn); 374 int need_tlb_flush = 0, idx; 375 int ret; 376 377 idx = srcu_read_lock(&kvm->srcu); 378 spin_lock(&kvm->mmu_lock); 379 /* 380 * The count increase must become visible at unlock time as no 381 * spte can be established without taking the mmu_lock and 382 * count is also read inside the mmu_lock critical section. 383 */ 384 kvm->mmu_notifier_count++; 385 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 386 need_tlb_flush |= kvm->tlbs_dirty; 387 /* we've to flush the tlb before the pages can be freed */ 388 if (need_tlb_flush) 389 kvm_flush_remote_tlbs(kvm); 390 391 spin_unlock(&kvm->mmu_lock); 392 393 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 394 range->end, range->blockable); 395 396 srcu_read_unlock(&kvm->srcu, idx); 397 398 return ret; 399 } 400 401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 402 const struct mmu_notifier_range *range) 403 { 404 struct kvm *kvm = mmu_notifier_to_kvm(mn); 405 406 spin_lock(&kvm->mmu_lock); 407 /* 408 * This sequence increase will notify the kvm page fault that 409 * the page that is going to be mapped in the spte could have 410 * been freed. 411 */ 412 kvm->mmu_notifier_seq++; 413 smp_wmb(); 414 /* 415 * The above sequence increase must be visible before the 416 * below count decrease, which is ensured by the smp_wmb above 417 * in conjunction with the smp_rmb in mmu_notifier_retry(). 418 */ 419 kvm->mmu_notifier_count--; 420 spin_unlock(&kvm->mmu_lock); 421 422 BUG_ON(kvm->mmu_notifier_count < 0); 423 } 424 425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 426 struct mm_struct *mm, 427 unsigned long start, 428 unsigned long end) 429 { 430 struct kvm *kvm = mmu_notifier_to_kvm(mn); 431 int young, idx; 432 433 idx = srcu_read_lock(&kvm->srcu); 434 spin_lock(&kvm->mmu_lock); 435 436 young = kvm_age_hva(kvm, start, end); 437 if (young) 438 kvm_flush_remote_tlbs(kvm); 439 440 spin_unlock(&kvm->mmu_lock); 441 srcu_read_unlock(&kvm->srcu, idx); 442 443 return young; 444 } 445 446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 447 struct mm_struct *mm, 448 unsigned long start, 449 unsigned long end) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 /* 457 * Even though we do not flush TLB, this will still adversely 458 * affect performance on pre-Haswell Intel EPT, where there is 459 * no EPT Access Bit to clear so that we have to tear down EPT 460 * tables instead. If we find this unacceptable, we can always 461 * add a parameter to kvm_age_hva so that it effectively doesn't 462 * do anything on clear_young. 463 * 464 * Also note that currently we never issue secondary TLB flushes 465 * from clear_young, leaving this job up to the regular system 466 * cadence. If we find this inaccurate, we might come up with a 467 * more sophisticated heuristic later. 468 */ 469 young = kvm_age_hva(kvm, start, end); 470 spin_unlock(&kvm->mmu_lock); 471 srcu_read_unlock(&kvm->srcu, idx); 472 473 return young; 474 } 475 476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 477 struct mm_struct *mm, 478 unsigned long address) 479 { 480 struct kvm *kvm = mmu_notifier_to_kvm(mn); 481 int young, idx; 482 483 idx = srcu_read_lock(&kvm->srcu); 484 spin_lock(&kvm->mmu_lock); 485 young = kvm_test_age_hva(kvm, address); 486 spin_unlock(&kvm->mmu_lock); 487 srcu_read_unlock(&kvm->srcu, idx); 488 489 return young; 490 } 491 492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 493 struct mm_struct *mm) 494 { 495 struct kvm *kvm = mmu_notifier_to_kvm(mn); 496 int idx; 497 498 idx = srcu_read_lock(&kvm->srcu); 499 kvm_arch_flush_shadow_all(kvm); 500 srcu_read_unlock(&kvm->srcu, idx); 501 } 502 503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 504 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 505 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 506 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 507 .clear_young = kvm_mmu_notifier_clear_young, 508 .test_young = kvm_mmu_notifier_test_young, 509 .change_pte = kvm_mmu_notifier_change_pte, 510 .release = kvm_mmu_notifier_release, 511 }; 512 513 static int kvm_init_mmu_notifier(struct kvm *kvm) 514 { 515 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 516 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 517 } 518 519 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 520 521 static int kvm_init_mmu_notifier(struct kvm *kvm) 522 { 523 return 0; 524 } 525 526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 527 528 static struct kvm_memslots *kvm_alloc_memslots(void) 529 { 530 int i; 531 struct kvm_memslots *slots; 532 533 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 534 if (!slots) 535 return NULL; 536 537 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 538 slots->id_to_index[i] = slots->memslots[i].id = i; 539 540 return slots; 541 } 542 543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 544 { 545 if (!memslot->dirty_bitmap) 546 return; 547 548 kvfree(memslot->dirty_bitmap); 549 memslot->dirty_bitmap = NULL; 550 } 551 552 /* 553 * Free any memory in @free but not in @dont. 554 */ 555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 556 struct kvm_memory_slot *dont) 557 { 558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 559 kvm_destroy_dirty_bitmap(free); 560 561 kvm_arch_free_memslot(kvm, free, dont); 562 563 free->npages = 0; 564 } 565 566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 567 { 568 struct kvm_memory_slot *memslot; 569 570 if (!slots) 571 return; 572 573 kvm_for_each_memslot(memslot, slots) 574 kvm_free_memslot(kvm, memslot, NULL); 575 576 kvfree(slots); 577 } 578 579 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 580 { 581 int i; 582 583 if (!kvm->debugfs_dentry) 584 return; 585 586 debugfs_remove_recursive(kvm->debugfs_dentry); 587 588 if (kvm->debugfs_stat_data) { 589 for (i = 0; i < kvm_debugfs_num_entries; i++) 590 kfree(kvm->debugfs_stat_data[i]); 591 kfree(kvm->debugfs_stat_data); 592 } 593 } 594 595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 596 { 597 char dir_name[ITOA_MAX_LEN * 2]; 598 struct kvm_stat_data *stat_data; 599 struct kvm_stats_debugfs_item *p; 600 601 if (!debugfs_initialized()) 602 return 0; 603 604 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 605 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 606 607 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 608 sizeof(*kvm->debugfs_stat_data), 609 GFP_KERNEL_ACCOUNT); 610 if (!kvm->debugfs_stat_data) 611 return -ENOMEM; 612 613 for (p = debugfs_entries; p->name; p++) { 614 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 615 if (!stat_data) 616 return -ENOMEM; 617 618 stat_data->kvm = kvm; 619 stat_data->offset = p->offset; 620 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 621 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 622 stat_data, stat_fops_per_vm[p->kind]); 623 } 624 return 0; 625 } 626 627 static struct kvm *kvm_create_vm(unsigned long type) 628 { 629 int r, i; 630 struct kvm *kvm = kvm_arch_alloc_vm(); 631 632 if (!kvm) 633 return ERR_PTR(-ENOMEM); 634 635 spin_lock_init(&kvm->mmu_lock); 636 mmgrab(current->mm); 637 kvm->mm = current->mm; 638 kvm_eventfd_init(kvm); 639 mutex_init(&kvm->lock); 640 mutex_init(&kvm->irq_lock); 641 mutex_init(&kvm->slots_lock); 642 refcount_set(&kvm->users_count, 1); 643 INIT_LIST_HEAD(&kvm->devices); 644 645 r = kvm_arch_init_vm(kvm, type); 646 if (r) 647 goto out_err_no_disable; 648 649 r = hardware_enable_all(); 650 if (r) 651 goto out_err_no_disable; 652 653 #ifdef CONFIG_HAVE_KVM_IRQFD 654 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 655 #endif 656 657 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 658 659 r = -ENOMEM; 660 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 661 struct kvm_memslots *slots = kvm_alloc_memslots(); 662 if (!slots) 663 goto out_err_no_srcu; 664 /* Generations must be different for each address space. */ 665 slots->generation = i; 666 rcu_assign_pointer(kvm->memslots[i], slots); 667 } 668 669 if (init_srcu_struct(&kvm->srcu)) 670 goto out_err_no_srcu; 671 if (init_srcu_struct(&kvm->irq_srcu)) 672 goto out_err_no_irq_srcu; 673 for (i = 0; i < KVM_NR_BUSES; i++) { 674 rcu_assign_pointer(kvm->buses[i], 675 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 676 if (!kvm->buses[i]) 677 goto out_err; 678 } 679 680 r = kvm_init_mmu_notifier(kvm); 681 if (r) 682 goto out_err; 683 684 spin_lock(&kvm_lock); 685 list_add(&kvm->vm_list, &vm_list); 686 spin_unlock(&kvm_lock); 687 688 preempt_notifier_inc(); 689 690 return kvm; 691 692 out_err: 693 cleanup_srcu_struct(&kvm->irq_srcu); 694 out_err_no_irq_srcu: 695 cleanup_srcu_struct(&kvm->srcu); 696 out_err_no_srcu: 697 hardware_disable_all(); 698 out_err_no_disable: 699 refcount_set(&kvm->users_count, 0); 700 for (i = 0; i < KVM_NR_BUSES; i++) 701 kfree(kvm_get_bus(kvm, i)); 702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 703 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 704 kvm_arch_free_vm(kvm); 705 mmdrop(current->mm); 706 return ERR_PTR(r); 707 } 708 709 static void kvm_destroy_devices(struct kvm *kvm) 710 { 711 struct kvm_device *dev, *tmp; 712 713 /* 714 * We do not need to take the kvm->lock here, because nobody else 715 * has a reference to the struct kvm at this point and therefore 716 * cannot access the devices list anyhow. 717 */ 718 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 719 list_del(&dev->vm_node); 720 dev->ops->destroy(dev); 721 } 722 } 723 724 static void kvm_destroy_vm(struct kvm *kvm) 725 { 726 int i; 727 struct mm_struct *mm = kvm->mm; 728 729 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 730 kvm_destroy_vm_debugfs(kvm); 731 kvm_arch_sync_events(kvm); 732 spin_lock(&kvm_lock); 733 list_del(&kvm->vm_list); 734 spin_unlock(&kvm_lock); 735 kvm_free_irq_routing(kvm); 736 for (i = 0; i < KVM_NR_BUSES; i++) { 737 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 738 739 if (bus) 740 kvm_io_bus_destroy(bus); 741 kvm->buses[i] = NULL; 742 } 743 kvm_coalesced_mmio_free(kvm); 744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 745 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 746 #else 747 kvm_arch_flush_shadow_all(kvm); 748 #endif 749 kvm_arch_destroy_vm(kvm); 750 kvm_destroy_devices(kvm); 751 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 752 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 753 cleanup_srcu_struct(&kvm->irq_srcu); 754 cleanup_srcu_struct(&kvm->srcu); 755 kvm_arch_free_vm(kvm); 756 preempt_notifier_dec(); 757 hardware_disable_all(); 758 mmdrop(mm); 759 } 760 761 void kvm_get_kvm(struct kvm *kvm) 762 { 763 refcount_inc(&kvm->users_count); 764 } 765 EXPORT_SYMBOL_GPL(kvm_get_kvm); 766 767 void kvm_put_kvm(struct kvm *kvm) 768 { 769 if (refcount_dec_and_test(&kvm->users_count)) 770 kvm_destroy_vm(kvm); 771 } 772 EXPORT_SYMBOL_GPL(kvm_put_kvm); 773 774 775 static int kvm_vm_release(struct inode *inode, struct file *filp) 776 { 777 struct kvm *kvm = filp->private_data; 778 779 kvm_irqfd_release(kvm); 780 781 kvm_put_kvm(kvm); 782 return 0; 783 } 784 785 /* 786 * Allocation size is twice as large as the actual dirty bitmap size. 787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 788 */ 789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 790 { 791 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 792 793 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 794 if (!memslot->dirty_bitmap) 795 return -ENOMEM; 796 797 return 0; 798 } 799 800 /* 801 * Insert memslot and re-sort memslots based on their GFN, 802 * so binary search could be used to lookup GFN. 803 * Sorting algorithm takes advantage of having initially 804 * sorted array and known changed memslot position. 805 */ 806 static void update_memslots(struct kvm_memslots *slots, 807 struct kvm_memory_slot *new, 808 enum kvm_mr_change change) 809 { 810 int id = new->id; 811 int i = slots->id_to_index[id]; 812 struct kvm_memory_slot *mslots = slots->memslots; 813 814 WARN_ON(mslots[i].id != id); 815 switch (change) { 816 case KVM_MR_CREATE: 817 slots->used_slots++; 818 WARN_ON(mslots[i].npages || !new->npages); 819 break; 820 case KVM_MR_DELETE: 821 slots->used_slots--; 822 WARN_ON(new->npages || !mslots[i].npages); 823 break; 824 default: 825 break; 826 } 827 828 while (i < KVM_MEM_SLOTS_NUM - 1 && 829 new->base_gfn <= mslots[i + 1].base_gfn) { 830 if (!mslots[i + 1].npages) 831 break; 832 mslots[i] = mslots[i + 1]; 833 slots->id_to_index[mslots[i].id] = i; 834 i++; 835 } 836 837 /* 838 * The ">=" is needed when creating a slot with base_gfn == 0, 839 * so that it moves before all those with base_gfn == npages == 0. 840 * 841 * On the other hand, if new->npages is zero, the above loop has 842 * already left i pointing to the beginning of the empty part of 843 * mslots, and the ">=" would move the hole backwards in this 844 * case---which is wrong. So skip the loop when deleting a slot. 845 */ 846 if (new->npages) { 847 while (i > 0 && 848 new->base_gfn >= mslots[i - 1].base_gfn) { 849 mslots[i] = mslots[i - 1]; 850 slots->id_to_index[mslots[i].id] = i; 851 i--; 852 } 853 } else 854 WARN_ON_ONCE(i != slots->used_slots); 855 856 mslots[i] = *new; 857 slots->id_to_index[mslots[i].id] = i; 858 } 859 860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 861 { 862 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 863 864 #ifdef __KVM_HAVE_READONLY_MEM 865 valid_flags |= KVM_MEM_READONLY; 866 #endif 867 868 if (mem->flags & ~valid_flags) 869 return -EINVAL; 870 871 return 0; 872 } 873 874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 875 int as_id, struct kvm_memslots *slots) 876 { 877 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 878 u64 gen = old_memslots->generation; 879 880 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 881 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 882 883 rcu_assign_pointer(kvm->memslots[as_id], slots); 884 synchronize_srcu_expedited(&kvm->srcu); 885 886 /* 887 * Increment the new memslot generation a second time, dropping the 888 * update in-progress flag and incrementing then generation based on 889 * the number of address spaces. This provides a unique and easily 890 * identifiable generation number while the memslots are in flux. 891 */ 892 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 893 894 /* 895 * Generations must be unique even across address spaces. We do not need 896 * a global counter for that, instead the generation space is evenly split 897 * across address spaces. For example, with two address spaces, address 898 * space 0 will use generations 0, 2, 4, ... while address space 1 will 899 * use generations 1, 3, 5, ... 900 */ 901 gen += KVM_ADDRESS_SPACE_NUM; 902 903 kvm_arch_memslots_updated(kvm, gen); 904 905 slots->generation = gen; 906 907 return old_memslots; 908 } 909 910 /* 911 * Allocate some memory and give it an address in the guest physical address 912 * space. 913 * 914 * Discontiguous memory is allowed, mostly for framebuffers. 915 * 916 * Must be called holding kvm->slots_lock for write. 917 */ 918 int __kvm_set_memory_region(struct kvm *kvm, 919 const struct kvm_userspace_memory_region *mem) 920 { 921 int r; 922 gfn_t base_gfn; 923 unsigned long npages; 924 struct kvm_memory_slot *slot; 925 struct kvm_memory_slot old, new; 926 struct kvm_memslots *slots = NULL, *old_memslots; 927 int as_id, id; 928 enum kvm_mr_change change; 929 930 r = check_memory_region_flags(mem); 931 if (r) 932 goto out; 933 934 r = -EINVAL; 935 as_id = mem->slot >> 16; 936 id = (u16)mem->slot; 937 938 /* General sanity checks */ 939 if (mem->memory_size & (PAGE_SIZE - 1)) 940 goto out; 941 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 942 goto out; 943 /* We can read the guest memory with __xxx_user() later on. */ 944 if ((id < KVM_USER_MEM_SLOTS) && 945 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 946 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 947 mem->memory_size))) 948 goto out; 949 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 950 goto out; 951 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 952 goto out; 953 954 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 955 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 956 npages = mem->memory_size >> PAGE_SHIFT; 957 958 if (npages > KVM_MEM_MAX_NR_PAGES) 959 goto out; 960 961 new = old = *slot; 962 963 new.id = id; 964 new.base_gfn = base_gfn; 965 new.npages = npages; 966 new.flags = mem->flags; 967 968 if (npages) { 969 if (!old.npages) 970 change = KVM_MR_CREATE; 971 else { /* Modify an existing slot. */ 972 if ((mem->userspace_addr != old.userspace_addr) || 973 (npages != old.npages) || 974 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 975 goto out; 976 977 if (base_gfn != old.base_gfn) 978 change = KVM_MR_MOVE; 979 else if (new.flags != old.flags) 980 change = KVM_MR_FLAGS_ONLY; 981 else { /* Nothing to change. */ 982 r = 0; 983 goto out; 984 } 985 } 986 } else { 987 if (!old.npages) 988 goto out; 989 990 change = KVM_MR_DELETE; 991 new.base_gfn = 0; 992 new.flags = 0; 993 } 994 995 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 996 /* Check for overlaps */ 997 r = -EEXIST; 998 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 999 if (slot->id == id) 1000 continue; 1001 if (!((base_gfn + npages <= slot->base_gfn) || 1002 (base_gfn >= slot->base_gfn + slot->npages))) 1003 goto out; 1004 } 1005 } 1006 1007 /* Free page dirty bitmap if unneeded */ 1008 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1009 new.dirty_bitmap = NULL; 1010 1011 r = -ENOMEM; 1012 if (change == KVM_MR_CREATE) { 1013 new.userspace_addr = mem->userspace_addr; 1014 1015 if (kvm_arch_create_memslot(kvm, &new, npages)) 1016 goto out_free; 1017 } 1018 1019 /* Allocate page dirty bitmap if needed */ 1020 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1021 if (kvm_create_dirty_bitmap(&new) < 0) 1022 goto out_free; 1023 } 1024 1025 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1026 if (!slots) 1027 goto out_free; 1028 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1029 1030 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1031 slot = id_to_memslot(slots, id); 1032 slot->flags |= KVM_MEMSLOT_INVALID; 1033 1034 old_memslots = install_new_memslots(kvm, as_id, slots); 1035 1036 /* From this point no new shadow pages pointing to a deleted, 1037 * or moved, memslot will be created. 1038 * 1039 * validation of sp->gfn happens in: 1040 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1041 * - kvm_is_visible_gfn (mmu_check_roots) 1042 */ 1043 kvm_arch_flush_shadow_memslot(kvm, slot); 1044 1045 /* 1046 * We can re-use the old_memslots from above, the only difference 1047 * from the currently installed memslots is the invalid flag. This 1048 * will get overwritten by update_memslots anyway. 1049 */ 1050 slots = old_memslots; 1051 } 1052 1053 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1054 if (r) 1055 goto out_slots; 1056 1057 /* actual memory is freed via old in kvm_free_memslot below */ 1058 if (change == KVM_MR_DELETE) { 1059 new.dirty_bitmap = NULL; 1060 memset(&new.arch, 0, sizeof(new.arch)); 1061 } 1062 1063 update_memslots(slots, &new, change); 1064 old_memslots = install_new_memslots(kvm, as_id, slots); 1065 1066 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1067 1068 kvm_free_memslot(kvm, &old, &new); 1069 kvfree(old_memslots); 1070 return 0; 1071 1072 out_slots: 1073 kvfree(slots); 1074 out_free: 1075 kvm_free_memslot(kvm, &new, &old); 1076 out: 1077 return r; 1078 } 1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1080 1081 int kvm_set_memory_region(struct kvm *kvm, 1082 const struct kvm_userspace_memory_region *mem) 1083 { 1084 int r; 1085 1086 mutex_lock(&kvm->slots_lock); 1087 r = __kvm_set_memory_region(kvm, mem); 1088 mutex_unlock(&kvm->slots_lock); 1089 return r; 1090 } 1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1092 1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1094 struct kvm_userspace_memory_region *mem) 1095 { 1096 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1097 return -EINVAL; 1098 1099 return kvm_set_memory_region(kvm, mem); 1100 } 1101 1102 int kvm_get_dirty_log(struct kvm *kvm, 1103 struct kvm_dirty_log *log, int *is_dirty) 1104 { 1105 struct kvm_memslots *slots; 1106 struct kvm_memory_slot *memslot; 1107 int i, as_id, id; 1108 unsigned long n; 1109 unsigned long any = 0; 1110 1111 as_id = log->slot >> 16; 1112 id = (u16)log->slot; 1113 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1114 return -EINVAL; 1115 1116 slots = __kvm_memslots(kvm, as_id); 1117 memslot = id_to_memslot(slots, id); 1118 if (!memslot->dirty_bitmap) 1119 return -ENOENT; 1120 1121 n = kvm_dirty_bitmap_bytes(memslot); 1122 1123 for (i = 0; !any && i < n/sizeof(long); ++i) 1124 any = memslot->dirty_bitmap[i]; 1125 1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1127 return -EFAULT; 1128 1129 if (any) 1130 *is_dirty = 1; 1131 return 0; 1132 } 1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1134 1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1136 /** 1137 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1138 * and reenable dirty page tracking for the corresponding pages. 1139 * @kvm: pointer to kvm instance 1140 * @log: slot id and address to which we copy the log 1141 * @is_dirty: flag set if any page is dirty 1142 * 1143 * We need to keep it in mind that VCPU threads can write to the bitmap 1144 * concurrently. So, to avoid losing track of dirty pages we keep the 1145 * following order: 1146 * 1147 * 1. Take a snapshot of the bit and clear it if needed. 1148 * 2. Write protect the corresponding page. 1149 * 3. Copy the snapshot to the userspace. 1150 * 4. Upon return caller flushes TLB's if needed. 1151 * 1152 * Between 2 and 4, the guest may write to the page using the remaining TLB 1153 * entry. This is not a problem because the page is reported dirty using 1154 * the snapshot taken before and step 4 ensures that writes done after 1155 * exiting to userspace will be logged for the next call. 1156 * 1157 */ 1158 int kvm_get_dirty_log_protect(struct kvm *kvm, 1159 struct kvm_dirty_log *log, bool *flush) 1160 { 1161 struct kvm_memslots *slots; 1162 struct kvm_memory_slot *memslot; 1163 int i, as_id, id; 1164 unsigned long n; 1165 unsigned long *dirty_bitmap; 1166 unsigned long *dirty_bitmap_buffer; 1167 1168 as_id = log->slot >> 16; 1169 id = (u16)log->slot; 1170 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1171 return -EINVAL; 1172 1173 slots = __kvm_memslots(kvm, as_id); 1174 memslot = id_to_memslot(slots, id); 1175 1176 dirty_bitmap = memslot->dirty_bitmap; 1177 if (!dirty_bitmap) 1178 return -ENOENT; 1179 1180 n = kvm_dirty_bitmap_bytes(memslot); 1181 *flush = false; 1182 if (kvm->manual_dirty_log_protect) { 1183 /* 1184 * Unlike kvm_get_dirty_log, we always return false in *flush, 1185 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1186 * is some code duplication between this function and 1187 * kvm_get_dirty_log, but hopefully all architecture 1188 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1189 * can be eliminated. 1190 */ 1191 dirty_bitmap_buffer = dirty_bitmap; 1192 } else { 1193 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1194 memset(dirty_bitmap_buffer, 0, n); 1195 1196 spin_lock(&kvm->mmu_lock); 1197 for (i = 0; i < n / sizeof(long); i++) { 1198 unsigned long mask; 1199 gfn_t offset; 1200 1201 if (!dirty_bitmap[i]) 1202 continue; 1203 1204 *flush = true; 1205 mask = xchg(&dirty_bitmap[i], 0); 1206 dirty_bitmap_buffer[i] = mask; 1207 1208 offset = i * BITS_PER_LONG; 1209 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1210 offset, mask); 1211 } 1212 spin_unlock(&kvm->mmu_lock); 1213 } 1214 1215 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1216 return -EFAULT; 1217 return 0; 1218 } 1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1220 1221 /** 1222 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1223 * and reenable dirty page tracking for the corresponding pages. 1224 * @kvm: pointer to kvm instance 1225 * @log: slot id and address from which to fetch the bitmap of dirty pages 1226 */ 1227 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1228 struct kvm_clear_dirty_log *log, bool *flush) 1229 { 1230 struct kvm_memslots *slots; 1231 struct kvm_memory_slot *memslot; 1232 int as_id, id; 1233 gfn_t offset; 1234 unsigned long i, n; 1235 unsigned long *dirty_bitmap; 1236 unsigned long *dirty_bitmap_buffer; 1237 1238 as_id = log->slot >> 16; 1239 id = (u16)log->slot; 1240 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1241 return -EINVAL; 1242 1243 if ((log->first_page & 63) || (log->num_pages & 63)) 1244 return -EINVAL; 1245 1246 slots = __kvm_memslots(kvm, as_id); 1247 memslot = id_to_memslot(slots, id); 1248 1249 dirty_bitmap = memslot->dirty_bitmap; 1250 if (!dirty_bitmap) 1251 return -ENOENT; 1252 1253 n = kvm_dirty_bitmap_bytes(memslot); 1254 1255 if (log->first_page > memslot->npages || 1256 log->num_pages > memslot->npages - log->first_page) 1257 return -EINVAL; 1258 1259 *flush = false; 1260 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1261 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1262 return -EFAULT; 1263 1264 spin_lock(&kvm->mmu_lock); 1265 for (offset = log->first_page, 1266 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--; 1267 i++, offset += BITS_PER_LONG) { 1268 unsigned long mask = *dirty_bitmap_buffer++; 1269 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1270 if (!mask) 1271 continue; 1272 1273 mask &= atomic_long_fetch_andnot(mask, p); 1274 1275 /* 1276 * mask contains the bits that really have been cleared. This 1277 * never includes any bits beyond the length of the memslot (if 1278 * the length is not aligned to 64 pages), therefore it is not 1279 * a problem if userspace sets them in log->dirty_bitmap. 1280 */ 1281 if (mask) { 1282 *flush = true; 1283 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1284 offset, mask); 1285 } 1286 } 1287 spin_unlock(&kvm->mmu_lock); 1288 1289 return 0; 1290 } 1291 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1292 #endif 1293 1294 bool kvm_largepages_enabled(void) 1295 { 1296 return largepages_enabled; 1297 } 1298 1299 void kvm_disable_largepages(void) 1300 { 1301 largepages_enabled = false; 1302 } 1303 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1304 1305 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1306 { 1307 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1308 } 1309 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1310 1311 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1312 { 1313 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1314 } 1315 1316 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1317 { 1318 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1319 1320 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1321 memslot->flags & KVM_MEMSLOT_INVALID) 1322 return false; 1323 1324 return true; 1325 } 1326 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1327 1328 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1329 { 1330 struct vm_area_struct *vma; 1331 unsigned long addr, size; 1332 1333 size = PAGE_SIZE; 1334 1335 addr = gfn_to_hva(kvm, gfn); 1336 if (kvm_is_error_hva(addr)) 1337 return PAGE_SIZE; 1338 1339 down_read(¤t->mm->mmap_sem); 1340 vma = find_vma(current->mm, addr); 1341 if (!vma) 1342 goto out; 1343 1344 size = vma_kernel_pagesize(vma); 1345 1346 out: 1347 up_read(¤t->mm->mmap_sem); 1348 1349 return size; 1350 } 1351 1352 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1353 { 1354 return slot->flags & KVM_MEM_READONLY; 1355 } 1356 1357 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1358 gfn_t *nr_pages, bool write) 1359 { 1360 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1361 return KVM_HVA_ERR_BAD; 1362 1363 if (memslot_is_readonly(slot) && write) 1364 return KVM_HVA_ERR_RO_BAD; 1365 1366 if (nr_pages) 1367 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1368 1369 return __gfn_to_hva_memslot(slot, gfn); 1370 } 1371 1372 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1373 gfn_t *nr_pages) 1374 { 1375 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1376 } 1377 1378 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1379 gfn_t gfn) 1380 { 1381 return gfn_to_hva_many(slot, gfn, NULL); 1382 } 1383 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1384 1385 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1386 { 1387 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1388 } 1389 EXPORT_SYMBOL_GPL(gfn_to_hva); 1390 1391 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1392 { 1393 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1394 } 1395 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1396 1397 /* 1398 * Return the hva of a @gfn and the R/W attribute if possible. 1399 * 1400 * @slot: the kvm_memory_slot which contains @gfn 1401 * @gfn: the gfn to be translated 1402 * @writable: used to return the read/write attribute of the @slot if the hva 1403 * is valid and @writable is not NULL 1404 */ 1405 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1406 gfn_t gfn, bool *writable) 1407 { 1408 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1409 1410 if (!kvm_is_error_hva(hva) && writable) 1411 *writable = !memslot_is_readonly(slot); 1412 1413 return hva; 1414 } 1415 1416 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1417 { 1418 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1419 1420 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1421 } 1422 1423 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1424 { 1425 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1426 1427 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1428 } 1429 1430 static inline int check_user_page_hwpoison(unsigned long addr) 1431 { 1432 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1433 1434 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1435 return rc == -EHWPOISON; 1436 } 1437 1438 /* 1439 * The fast path to get the writable pfn which will be stored in @pfn, 1440 * true indicates success, otherwise false is returned. It's also the 1441 * only part that runs if we can are in atomic context. 1442 */ 1443 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1444 bool *writable, kvm_pfn_t *pfn) 1445 { 1446 struct page *page[1]; 1447 int npages; 1448 1449 /* 1450 * Fast pin a writable pfn only if it is a write fault request 1451 * or the caller allows to map a writable pfn for a read fault 1452 * request. 1453 */ 1454 if (!(write_fault || writable)) 1455 return false; 1456 1457 npages = __get_user_pages_fast(addr, 1, 1, page); 1458 if (npages == 1) { 1459 *pfn = page_to_pfn(page[0]); 1460 1461 if (writable) 1462 *writable = true; 1463 return true; 1464 } 1465 1466 return false; 1467 } 1468 1469 /* 1470 * The slow path to get the pfn of the specified host virtual address, 1471 * 1 indicates success, -errno is returned if error is detected. 1472 */ 1473 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1474 bool *writable, kvm_pfn_t *pfn) 1475 { 1476 unsigned int flags = FOLL_HWPOISON; 1477 struct page *page; 1478 int npages = 0; 1479 1480 might_sleep(); 1481 1482 if (writable) 1483 *writable = write_fault; 1484 1485 if (write_fault) 1486 flags |= FOLL_WRITE; 1487 if (async) 1488 flags |= FOLL_NOWAIT; 1489 1490 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1491 if (npages != 1) 1492 return npages; 1493 1494 /* map read fault as writable if possible */ 1495 if (unlikely(!write_fault) && writable) { 1496 struct page *wpage; 1497 1498 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1499 *writable = true; 1500 put_page(page); 1501 page = wpage; 1502 } 1503 } 1504 *pfn = page_to_pfn(page); 1505 return npages; 1506 } 1507 1508 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1509 { 1510 if (unlikely(!(vma->vm_flags & VM_READ))) 1511 return false; 1512 1513 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1514 return false; 1515 1516 return true; 1517 } 1518 1519 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1520 unsigned long addr, bool *async, 1521 bool write_fault, bool *writable, 1522 kvm_pfn_t *p_pfn) 1523 { 1524 unsigned long pfn; 1525 int r; 1526 1527 r = follow_pfn(vma, addr, &pfn); 1528 if (r) { 1529 /* 1530 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1531 * not call the fault handler, so do it here. 1532 */ 1533 bool unlocked = false; 1534 r = fixup_user_fault(current, current->mm, addr, 1535 (write_fault ? FAULT_FLAG_WRITE : 0), 1536 &unlocked); 1537 if (unlocked) 1538 return -EAGAIN; 1539 if (r) 1540 return r; 1541 1542 r = follow_pfn(vma, addr, &pfn); 1543 if (r) 1544 return r; 1545 1546 } 1547 1548 if (writable) 1549 *writable = true; 1550 1551 /* 1552 * Get a reference here because callers of *hva_to_pfn* and 1553 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1554 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1555 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1556 * simply do nothing for reserved pfns. 1557 * 1558 * Whoever called remap_pfn_range is also going to call e.g. 1559 * unmap_mapping_range before the underlying pages are freed, 1560 * causing a call to our MMU notifier. 1561 */ 1562 kvm_get_pfn(pfn); 1563 1564 *p_pfn = pfn; 1565 return 0; 1566 } 1567 1568 /* 1569 * Pin guest page in memory and return its pfn. 1570 * @addr: host virtual address which maps memory to the guest 1571 * @atomic: whether this function can sleep 1572 * @async: whether this function need to wait IO complete if the 1573 * host page is not in the memory 1574 * @write_fault: whether we should get a writable host page 1575 * @writable: whether it allows to map a writable host page for !@write_fault 1576 * 1577 * The function will map a writable host page for these two cases: 1578 * 1): @write_fault = true 1579 * 2): @write_fault = false && @writable, @writable will tell the caller 1580 * whether the mapping is writable. 1581 */ 1582 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1583 bool write_fault, bool *writable) 1584 { 1585 struct vm_area_struct *vma; 1586 kvm_pfn_t pfn = 0; 1587 int npages, r; 1588 1589 /* we can do it either atomically or asynchronously, not both */ 1590 BUG_ON(atomic && async); 1591 1592 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1593 return pfn; 1594 1595 if (atomic) 1596 return KVM_PFN_ERR_FAULT; 1597 1598 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1599 if (npages == 1) 1600 return pfn; 1601 1602 down_read(¤t->mm->mmap_sem); 1603 if (npages == -EHWPOISON || 1604 (!async && check_user_page_hwpoison(addr))) { 1605 pfn = KVM_PFN_ERR_HWPOISON; 1606 goto exit; 1607 } 1608 1609 retry: 1610 vma = find_vma_intersection(current->mm, addr, addr + 1); 1611 1612 if (vma == NULL) 1613 pfn = KVM_PFN_ERR_FAULT; 1614 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1615 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1616 if (r == -EAGAIN) 1617 goto retry; 1618 if (r < 0) 1619 pfn = KVM_PFN_ERR_FAULT; 1620 } else { 1621 if (async && vma_is_valid(vma, write_fault)) 1622 *async = true; 1623 pfn = KVM_PFN_ERR_FAULT; 1624 } 1625 exit: 1626 up_read(¤t->mm->mmap_sem); 1627 return pfn; 1628 } 1629 1630 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1631 bool atomic, bool *async, bool write_fault, 1632 bool *writable) 1633 { 1634 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1635 1636 if (addr == KVM_HVA_ERR_RO_BAD) { 1637 if (writable) 1638 *writable = false; 1639 return KVM_PFN_ERR_RO_FAULT; 1640 } 1641 1642 if (kvm_is_error_hva(addr)) { 1643 if (writable) 1644 *writable = false; 1645 return KVM_PFN_NOSLOT; 1646 } 1647 1648 /* Do not map writable pfn in the readonly memslot. */ 1649 if (writable && memslot_is_readonly(slot)) { 1650 *writable = false; 1651 writable = NULL; 1652 } 1653 1654 return hva_to_pfn(addr, atomic, async, write_fault, 1655 writable); 1656 } 1657 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1658 1659 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1660 bool *writable) 1661 { 1662 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1663 write_fault, writable); 1664 } 1665 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1666 1667 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1668 { 1669 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1670 } 1671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1672 1673 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1674 { 1675 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1676 } 1677 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1678 1679 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1680 { 1681 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1682 } 1683 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1684 1685 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1686 { 1687 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1688 } 1689 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1690 1691 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1692 { 1693 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1694 } 1695 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1696 1697 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1698 { 1699 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1702 1703 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1704 struct page **pages, int nr_pages) 1705 { 1706 unsigned long addr; 1707 gfn_t entry = 0; 1708 1709 addr = gfn_to_hva_many(slot, gfn, &entry); 1710 if (kvm_is_error_hva(addr)) 1711 return -1; 1712 1713 if (entry < nr_pages) 1714 return 0; 1715 1716 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1717 } 1718 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1719 1720 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1721 { 1722 if (is_error_noslot_pfn(pfn)) 1723 return KVM_ERR_PTR_BAD_PAGE; 1724 1725 if (kvm_is_reserved_pfn(pfn)) { 1726 WARN_ON(1); 1727 return KVM_ERR_PTR_BAD_PAGE; 1728 } 1729 1730 return pfn_to_page(pfn); 1731 } 1732 1733 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1734 { 1735 kvm_pfn_t pfn; 1736 1737 pfn = gfn_to_pfn(kvm, gfn); 1738 1739 return kvm_pfn_to_page(pfn); 1740 } 1741 EXPORT_SYMBOL_GPL(gfn_to_page); 1742 1743 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1744 { 1745 kvm_pfn_t pfn; 1746 1747 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1748 1749 return kvm_pfn_to_page(pfn); 1750 } 1751 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1752 1753 void kvm_release_page_clean(struct page *page) 1754 { 1755 WARN_ON(is_error_page(page)); 1756 1757 kvm_release_pfn_clean(page_to_pfn(page)); 1758 } 1759 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1760 1761 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1762 { 1763 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1764 put_page(pfn_to_page(pfn)); 1765 } 1766 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1767 1768 void kvm_release_page_dirty(struct page *page) 1769 { 1770 WARN_ON(is_error_page(page)); 1771 1772 kvm_release_pfn_dirty(page_to_pfn(page)); 1773 } 1774 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1775 1776 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1777 { 1778 kvm_set_pfn_dirty(pfn); 1779 kvm_release_pfn_clean(pfn); 1780 } 1781 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1782 1783 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1784 { 1785 if (!kvm_is_reserved_pfn(pfn)) { 1786 struct page *page = pfn_to_page(pfn); 1787 1788 if (!PageReserved(page)) 1789 SetPageDirty(page); 1790 } 1791 } 1792 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1793 1794 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1795 { 1796 if (!kvm_is_reserved_pfn(pfn)) 1797 mark_page_accessed(pfn_to_page(pfn)); 1798 } 1799 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1800 1801 void kvm_get_pfn(kvm_pfn_t pfn) 1802 { 1803 if (!kvm_is_reserved_pfn(pfn)) 1804 get_page(pfn_to_page(pfn)); 1805 } 1806 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1807 1808 static int next_segment(unsigned long len, int offset) 1809 { 1810 if (len > PAGE_SIZE - offset) 1811 return PAGE_SIZE - offset; 1812 else 1813 return len; 1814 } 1815 1816 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1817 void *data, int offset, int len) 1818 { 1819 int r; 1820 unsigned long addr; 1821 1822 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1823 if (kvm_is_error_hva(addr)) 1824 return -EFAULT; 1825 r = __copy_from_user(data, (void __user *)addr + offset, len); 1826 if (r) 1827 return -EFAULT; 1828 return 0; 1829 } 1830 1831 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1832 int len) 1833 { 1834 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1835 1836 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1837 } 1838 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1839 1840 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1841 int offset, int len) 1842 { 1843 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1844 1845 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1846 } 1847 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1848 1849 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1850 { 1851 gfn_t gfn = gpa >> PAGE_SHIFT; 1852 int seg; 1853 int offset = offset_in_page(gpa); 1854 int ret; 1855 1856 while ((seg = next_segment(len, offset)) != 0) { 1857 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1858 if (ret < 0) 1859 return ret; 1860 offset = 0; 1861 len -= seg; 1862 data += seg; 1863 ++gfn; 1864 } 1865 return 0; 1866 } 1867 EXPORT_SYMBOL_GPL(kvm_read_guest); 1868 1869 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1870 { 1871 gfn_t gfn = gpa >> PAGE_SHIFT; 1872 int seg; 1873 int offset = offset_in_page(gpa); 1874 int ret; 1875 1876 while ((seg = next_segment(len, offset)) != 0) { 1877 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1878 if (ret < 0) 1879 return ret; 1880 offset = 0; 1881 len -= seg; 1882 data += seg; 1883 ++gfn; 1884 } 1885 return 0; 1886 } 1887 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1888 1889 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1890 void *data, int offset, unsigned long len) 1891 { 1892 int r; 1893 unsigned long addr; 1894 1895 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1896 if (kvm_is_error_hva(addr)) 1897 return -EFAULT; 1898 pagefault_disable(); 1899 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1900 pagefault_enable(); 1901 if (r) 1902 return -EFAULT; 1903 return 0; 1904 } 1905 1906 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1907 unsigned long len) 1908 { 1909 gfn_t gfn = gpa >> PAGE_SHIFT; 1910 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1911 int offset = offset_in_page(gpa); 1912 1913 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1914 } 1915 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1916 1917 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1918 void *data, unsigned long len) 1919 { 1920 gfn_t gfn = gpa >> PAGE_SHIFT; 1921 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1922 int offset = offset_in_page(gpa); 1923 1924 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1925 } 1926 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1927 1928 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1929 const void *data, int offset, int len) 1930 { 1931 int r; 1932 unsigned long addr; 1933 1934 addr = gfn_to_hva_memslot(memslot, gfn); 1935 if (kvm_is_error_hva(addr)) 1936 return -EFAULT; 1937 r = __copy_to_user((void __user *)addr + offset, data, len); 1938 if (r) 1939 return -EFAULT; 1940 mark_page_dirty_in_slot(memslot, gfn); 1941 return 0; 1942 } 1943 1944 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1945 const void *data, int offset, int len) 1946 { 1947 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1948 1949 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1950 } 1951 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1952 1953 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1954 const void *data, int offset, int len) 1955 { 1956 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1957 1958 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1959 } 1960 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1961 1962 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1963 unsigned long len) 1964 { 1965 gfn_t gfn = gpa >> PAGE_SHIFT; 1966 int seg; 1967 int offset = offset_in_page(gpa); 1968 int ret; 1969 1970 while ((seg = next_segment(len, offset)) != 0) { 1971 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1972 if (ret < 0) 1973 return ret; 1974 offset = 0; 1975 len -= seg; 1976 data += seg; 1977 ++gfn; 1978 } 1979 return 0; 1980 } 1981 EXPORT_SYMBOL_GPL(kvm_write_guest); 1982 1983 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1984 unsigned long len) 1985 { 1986 gfn_t gfn = gpa >> PAGE_SHIFT; 1987 int seg; 1988 int offset = offset_in_page(gpa); 1989 int ret; 1990 1991 while ((seg = next_segment(len, offset)) != 0) { 1992 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1993 if (ret < 0) 1994 return ret; 1995 offset = 0; 1996 len -= seg; 1997 data += seg; 1998 ++gfn; 1999 } 2000 return 0; 2001 } 2002 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2003 2004 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2005 struct gfn_to_hva_cache *ghc, 2006 gpa_t gpa, unsigned long len) 2007 { 2008 int offset = offset_in_page(gpa); 2009 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2010 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2011 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2012 gfn_t nr_pages_avail; 2013 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2014 2015 ghc->gpa = gpa; 2016 ghc->generation = slots->generation; 2017 ghc->len = len; 2018 ghc->hva = KVM_HVA_ERR_BAD; 2019 2020 /* 2021 * If the requested region crosses two memslots, we still 2022 * verify that the entire region is valid here. 2023 */ 2024 while (!r && start_gfn <= end_gfn) { 2025 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2026 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2027 &nr_pages_avail); 2028 if (kvm_is_error_hva(ghc->hva)) 2029 r = -EFAULT; 2030 start_gfn += nr_pages_avail; 2031 } 2032 2033 /* Use the slow path for cross page reads and writes. */ 2034 if (!r && nr_pages_needed == 1) 2035 ghc->hva += offset; 2036 else 2037 ghc->memslot = NULL; 2038 2039 return r; 2040 } 2041 2042 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2043 gpa_t gpa, unsigned long len) 2044 { 2045 struct kvm_memslots *slots = kvm_memslots(kvm); 2046 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2047 } 2048 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2049 2050 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2051 void *data, unsigned int offset, 2052 unsigned long len) 2053 { 2054 struct kvm_memslots *slots = kvm_memslots(kvm); 2055 int r; 2056 gpa_t gpa = ghc->gpa + offset; 2057 2058 BUG_ON(len + offset > ghc->len); 2059 2060 if (slots->generation != ghc->generation) 2061 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2062 2063 if (unlikely(!ghc->memslot)) 2064 return kvm_write_guest(kvm, gpa, data, len); 2065 2066 if (kvm_is_error_hva(ghc->hva)) 2067 return -EFAULT; 2068 2069 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2070 if (r) 2071 return -EFAULT; 2072 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2073 2074 return 0; 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2077 2078 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2079 void *data, unsigned long len) 2080 { 2081 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2082 } 2083 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2084 2085 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2086 void *data, unsigned long len) 2087 { 2088 struct kvm_memslots *slots = kvm_memslots(kvm); 2089 int r; 2090 2091 BUG_ON(len > ghc->len); 2092 2093 if (slots->generation != ghc->generation) 2094 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2095 2096 if (unlikely(!ghc->memslot)) 2097 return kvm_read_guest(kvm, ghc->gpa, data, len); 2098 2099 if (kvm_is_error_hva(ghc->hva)) 2100 return -EFAULT; 2101 2102 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2103 if (r) 2104 return -EFAULT; 2105 2106 return 0; 2107 } 2108 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2109 2110 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2111 { 2112 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2113 2114 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2115 } 2116 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2117 2118 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2119 { 2120 gfn_t gfn = gpa >> PAGE_SHIFT; 2121 int seg; 2122 int offset = offset_in_page(gpa); 2123 int ret; 2124 2125 while ((seg = next_segment(len, offset)) != 0) { 2126 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2127 if (ret < 0) 2128 return ret; 2129 offset = 0; 2130 len -= seg; 2131 ++gfn; 2132 } 2133 return 0; 2134 } 2135 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2136 2137 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2138 gfn_t gfn) 2139 { 2140 if (memslot && memslot->dirty_bitmap) { 2141 unsigned long rel_gfn = gfn - memslot->base_gfn; 2142 2143 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2144 } 2145 } 2146 2147 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2148 { 2149 struct kvm_memory_slot *memslot; 2150 2151 memslot = gfn_to_memslot(kvm, gfn); 2152 mark_page_dirty_in_slot(memslot, gfn); 2153 } 2154 EXPORT_SYMBOL_GPL(mark_page_dirty); 2155 2156 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2157 { 2158 struct kvm_memory_slot *memslot; 2159 2160 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2161 mark_page_dirty_in_slot(memslot, gfn); 2162 } 2163 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2164 2165 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2166 { 2167 if (!vcpu->sigset_active) 2168 return; 2169 2170 /* 2171 * This does a lockless modification of ->real_blocked, which is fine 2172 * because, only current can change ->real_blocked and all readers of 2173 * ->real_blocked don't care as long ->real_blocked is always a subset 2174 * of ->blocked. 2175 */ 2176 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2177 } 2178 2179 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2180 { 2181 if (!vcpu->sigset_active) 2182 return; 2183 2184 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2185 sigemptyset(¤t->real_blocked); 2186 } 2187 2188 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2189 { 2190 unsigned int old, val, grow, grow_start; 2191 2192 old = val = vcpu->halt_poll_ns; 2193 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2194 grow = READ_ONCE(halt_poll_ns_grow); 2195 if (!grow) 2196 goto out; 2197 2198 val *= grow; 2199 if (val < grow_start) 2200 val = grow_start; 2201 2202 if (val > halt_poll_ns) 2203 val = halt_poll_ns; 2204 2205 vcpu->halt_poll_ns = val; 2206 out: 2207 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2208 } 2209 2210 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2211 { 2212 unsigned int old, val, shrink; 2213 2214 old = val = vcpu->halt_poll_ns; 2215 shrink = READ_ONCE(halt_poll_ns_shrink); 2216 if (shrink == 0) 2217 val = 0; 2218 else 2219 val /= shrink; 2220 2221 vcpu->halt_poll_ns = val; 2222 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2223 } 2224 2225 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2226 { 2227 int ret = -EINTR; 2228 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2229 2230 if (kvm_arch_vcpu_runnable(vcpu)) { 2231 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2232 goto out; 2233 } 2234 if (kvm_cpu_has_pending_timer(vcpu)) 2235 goto out; 2236 if (signal_pending(current)) 2237 goto out; 2238 2239 ret = 0; 2240 out: 2241 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2242 return ret; 2243 } 2244 2245 /* 2246 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2247 */ 2248 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2249 { 2250 ktime_t start, cur; 2251 DECLARE_SWAITQUEUE(wait); 2252 bool waited = false; 2253 u64 block_ns; 2254 2255 start = cur = ktime_get(); 2256 if (vcpu->halt_poll_ns) { 2257 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2258 2259 ++vcpu->stat.halt_attempted_poll; 2260 do { 2261 /* 2262 * This sets KVM_REQ_UNHALT if an interrupt 2263 * arrives. 2264 */ 2265 if (kvm_vcpu_check_block(vcpu) < 0) { 2266 ++vcpu->stat.halt_successful_poll; 2267 if (!vcpu_valid_wakeup(vcpu)) 2268 ++vcpu->stat.halt_poll_invalid; 2269 goto out; 2270 } 2271 cur = ktime_get(); 2272 } while (single_task_running() && ktime_before(cur, stop)); 2273 } 2274 2275 kvm_arch_vcpu_blocking(vcpu); 2276 2277 for (;;) { 2278 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2279 2280 if (kvm_vcpu_check_block(vcpu) < 0) 2281 break; 2282 2283 waited = true; 2284 schedule(); 2285 } 2286 2287 finish_swait(&vcpu->wq, &wait); 2288 cur = ktime_get(); 2289 2290 kvm_arch_vcpu_unblocking(vcpu); 2291 out: 2292 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2293 2294 if (!vcpu_valid_wakeup(vcpu)) 2295 shrink_halt_poll_ns(vcpu); 2296 else if (halt_poll_ns) { 2297 if (block_ns <= vcpu->halt_poll_ns) 2298 ; 2299 /* we had a long block, shrink polling */ 2300 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2301 shrink_halt_poll_ns(vcpu); 2302 /* we had a short halt and our poll time is too small */ 2303 else if (vcpu->halt_poll_ns < halt_poll_ns && 2304 block_ns < halt_poll_ns) 2305 grow_halt_poll_ns(vcpu); 2306 } else 2307 vcpu->halt_poll_ns = 0; 2308 2309 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2310 kvm_arch_vcpu_block_finish(vcpu); 2311 } 2312 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2313 2314 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2315 { 2316 struct swait_queue_head *wqp; 2317 2318 wqp = kvm_arch_vcpu_wq(vcpu); 2319 if (swq_has_sleeper(wqp)) { 2320 swake_up_one(wqp); 2321 ++vcpu->stat.halt_wakeup; 2322 return true; 2323 } 2324 2325 return false; 2326 } 2327 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2328 2329 #ifndef CONFIG_S390 2330 /* 2331 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2332 */ 2333 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2334 { 2335 int me; 2336 int cpu = vcpu->cpu; 2337 2338 if (kvm_vcpu_wake_up(vcpu)) 2339 return; 2340 2341 me = get_cpu(); 2342 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2343 if (kvm_arch_vcpu_should_kick(vcpu)) 2344 smp_send_reschedule(cpu); 2345 put_cpu(); 2346 } 2347 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2348 #endif /* !CONFIG_S390 */ 2349 2350 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2351 { 2352 struct pid *pid; 2353 struct task_struct *task = NULL; 2354 int ret = 0; 2355 2356 rcu_read_lock(); 2357 pid = rcu_dereference(target->pid); 2358 if (pid) 2359 task = get_pid_task(pid, PIDTYPE_PID); 2360 rcu_read_unlock(); 2361 if (!task) 2362 return ret; 2363 ret = yield_to(task, 1); 2364 put_task_struct(task); 2365 2366 return ret; 2367 } 2368 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2369 2370 /* 2371 * Helper that checks whether a VCPU is eligible for directed yield. 2372 * Most eligible candidate to yield is decided by following heuristics: 2373 * 2374 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2375 * (preempted lock holder), indicated by @in_spin_loop. 2376 * Set at the beiginning and cleared at the end of interception/PLE handler. 2377 * 2378 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2379 * chance last time (mostly it has become eligible now since we have probably 2380 * yielded to lockholder in last iteration. This is done by toggling 2381 * @dy_eligible each time a VCPU checked for eligibility.) 2382 * 2383 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2384 * to preempted lock-holder could result in wrong VCPU selection and CPU 2385 * burning. Giving priority for a potential lock-holder increases lock 2386 * progress. 2387 * 2388 * Since algorithm is based on heuristics, accessing another VCPU data without 2389 * locking does not harm. It may result in trying to yield to same VCPU, fail 2390 * and continue with next VCPU and so on. 2391 */ 2392 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2393 { 2394 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2395 bool eligible; 2396 2397 eligible = !vcpu->spin_loop.in_spin_loop || 2398 vcpu->spin_loop.dy_eligible; 2399 2400 if (vcpu->spin_loop.in_spin_loop) 2401 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2402 2403 return eligible; 2404 #else 2405 return true; 2406 #endif 2407 } 2408 2409 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2410 { 2411 struct kvm *kvm = me->kvm; 2412 struct kvm_vcpu *vcpu; 2413 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2414 int yielded = 0; 2415 int try = 3; 2416 int pass; 2417 int i; 2418 2419 kvm_vcpu_set_in_spin_loop(me, true); 2420 /* 2421 * We boost the priority of a VCPU that is runnable but not 2422 * currently running, because it got preempted by something 2423 * else and called schedule in __vcpu_run. Hopefully that 2424 * VCPU is holding the lock that we need and will release it. 2425 * We approximate round-robin by starting at the last boosted VCPU. 2426 */ 2427 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2428 kvm_for_each_vcpu(i, vcpu, kvm) { 2429 if (!pass && i <= last_boosted_vcpu) { 2430 i = last_boosted_vcpu; 2431 continue; 2432 } else if (pass && i > last_boosted_vcpu) 2433 break; 2434 if (!READ_ONCE(vcpu->preempted)) 2435 continue; 2436 if (vcpu == me) 2437 continue; 2438 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2439 continue; 2440 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2441 continue; 2442 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2443 continue; 2444 2445 yielded = kvm_vcpu_yield_to(vcpu); 2446 if (yielded > 0) { 2447 kvm->last_boosted_vcpu = i; 2448 break; 2449 } else if (yielded < 0) { 2450 try--; 2451 if (!try) 2452 break; 2453 } 2454 } 2455 } 2456 kvm_vcpu_set_in_spin_loop(me, false); 2457 2458 /* Ensure vcpu is not eligible during next spinloop */ 2459 kvm_vcpu_set_dy_eligible(me, false); 2460 } 2461 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2462 2463 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2464 { 2465 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2466 struct page *page; 2467 2468 if (vmf->pgoff == 0) 2469 page = virt_to_page(vcpu->run); 2470 #ifdef CONFIG_X86 2471 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2472 page = virt_to_page(vcpu->arch.pio_data); 2473 #endif 2474 #ifdef CONFIG_KVM_MMIO 2475 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2476 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2477 #endif 2478 else 2479 return kvm_arch_vcpu_fault(vcpu, vmf); 2480 get_page(page); 2481 vmf->page = page; 2482 return 0; 2483 } 2484 2485 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2486 .fault = kvm_vcpu_fault, 2487 }; 2488 2489 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2490 { 2491 vma->vm_ops = &kvm_vcpu_vm_ops; 2492 return 0; 2493 } 2494 2495 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2496 { 2497 struct kvm_vcpu *vcpu = filp->private_data; 2498 2499 debugfs_remove_recursive(vcpu->debugfs_dentry); 2500 kvm_put_kvm(vcpu->kvm); 2501 return 0; 2502 } 2503 2504 static struct file_operations kvm_vcpu_fops = { 2505 .release = kvm_vcpu_release, 2506 .unlocked_ioctl = kvm_vcpu_ioctl, 2507 .mmap = kvm_vcpu_mmap, 2508 .llseek = noop_llseek, 2509 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2510 }; 2511 2512 /* 2513 * Allocates an inode for the vcpu. 2514 */ 2515 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2516 { 2517 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2518 2519 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2520 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2521 } 2522 2523 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2524 { 2525 char dir_name[ITOA_MAX_LEN * 2]; 2526 int ret; 2527 2528 if (!kvm_arch_has_vcpu_debugfs()) 2529 return 0; 2530 2531 if (!debugfs_initialized()) 2532 return 0; 2533 2534 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2535 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2536 vcpu->kvm->debugfs_dentry); 2537 if (!vcpu->debugfs_dentry) 2538 return -ENOMEM; 2539 2540 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2541 if (ret < 0) { 2542 debugfs_remove_recursive(vcpu->debugfs_dentry); 2543 return ret; 2544 } 2545 2546 return 0; 2547 } 2548 2549 /* 2550 * Creates some virtual cpus. Good luck creating more than one. 2551 */ 2552 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2553 { 2554 int r; 2555 struct kvm_vcpu *vcpu; 2556 2557 if (id >= KVM_MAX_VCPU_ID) 2558 return -EINVAL; 2559 2560 mutex_lock(&kvm->lock); 2561 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2562 mutex_unlock(&kvm->lock); 2563 return -EINVAL; 2564 } 2565 2566 kvm->created_vcpus++; 2567 mutex_unlock(&kvm->lock); 2568 2569 vcpu = kvm_arch_vcpu_create(kvm, id); 2570 if (IS_ERR(vcpu)) { 2571 r = PTR_ERR(vcpu); 2572 goto vcpu_decrement; 2573 } 2574 2575 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2576 2577 r = kvm_arch_vcpu_setup(vcpu); 2578 if (r) 2579 goto vcpu_destroy; 2580 2581 r = kvm_create_vcpu_debugfs(vcpu); 2582 if (r) 2583 goto vcpu_destroy; 2584 2585 mutex_lock(&kvm->lock); 2586 if (kvm_get_vcpu_by_id(kvm, id)) { 2587 r = -EEXIST; 2588 goto unlock_vcpu_destroy; 2589 } 2590 2591 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2592 2593 /* Now it's all set up, let userspace reach it */ 2594 kvm_get_kvm(kvm); 2595 r = create_vcpu_fd(vcpu); 2596 if (r < 0) { 2597 kvm_put_kvm(kvm); 2598 goto unlock_vcpu_destroy; 2599 } 2600 2601 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2602 2603 /* 2604 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2605 * before kvm->online_vcpu's incremented value. 2606 */ 2607 smp_wmb(); 2608 atomic_inc(&kvm->online_vcpus); 2609 2610 mutex_unlock(&kvm->lock); 2611 kvm_arch_vcpu_postcreate(vcpu); 2612 return r; 2613 2614 unlock_vcpu_destroy: 2615 mutex_unlock(&kvm->lock); 2616 debugfs_remove_recursive(vcpu->debugfs_dentry); 2617 vcpu_destroy: 2618 kvm_arch_vcpu_destroy(vcpu); 2619 vcpu_decrement: 2620 mutex_lock(&kvm->lock); 2621 kvm->created_vcpus--; 2622 mutex_unlock(&kvm->lock); 2623 return r; 2624 } 2625 2626 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2627 { 2628 if (sigset) { 2629 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2630 vcpu->sigset_active = 1; 2631 vcpu->sigset = *sigset; 2632 } else 2633 vcpu->sigset_active = 0; 2634 return 0; 2635 } 2636 2637 static long kvm_vcpu_ioctl(struct file *filp, 2638 unsigned int ioctl, unsigned long arg) 2639 { 2640 struct kvm_vcpu *vcpu = filp->private_data; 2641 void __user *argp = (void __user *)arg; 2642 int r; 2643 struct kvm_fpu *fpu = NULL; 2644 struct kvm_sregs *kvm_sregs = NULL; 2645 2646 if (vcpu->kvm->mm != current->mm) 2647 return -EIO; 2648 2649 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2650 return -EINVAL; 2651 2652 /* 2653 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2654 * execution; mutex_lock() would break them. 2655 */ 2656 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2657 if (r != -ENOIOCTLCMD) 2658 return r; 2659 2660 if (mutex_lock_killable(&vcpu->mutex)) 2661 return -EINTR; 2662 switch (ioctl) { 2663 case KVM_RUN: { 2664 struct pid *oldpid; 2665 r = -EINVAL; 2666 if (arg) 2667 goto out; 2668 oldpid = rcu_access_pointer(vcpu->pid); 2669 if (unlikely(oldpid != task_pid(current))) { 2670 /* The thread running this VCPU changed. */ 2671 struct pid *newpid; 2672 2673 r = kvm_arch_vcpu_run_pid_change(vcpu); 2674 if (r) 2675 break; 2676 2677 newpid = get_task_pid(current, PIDTYPE_PID); 2678 rcu_assign_pointer(vcpu->pid, newpid); 2679 if (oldpid) 2680 synchronize_rcu(); 2681 put_pid(oldpid); 2682 } 2683 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2684 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2685 break; 2686 } 2687 case KVM_GET_REGS: { 2688 struct kvm_regs *kvm_regs; 2689 2690 r = -ENOMEM; 2691 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2692 if (!kvm_regs) 2693 goto out; 2694 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2695 if (r) 2696 goto out_free1; 2697 r = -EFAULT; 2698 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2699 goto out_free1; 2700 r = 0; 2701 out_free1: 2702 kfree(kvm_regs); 2703 break; 2704 } 2705 case KVM_SET_REGS: { 2706 struct kvm_regs *kvm_regs; 2707 2708 r = -ENOMEM; 2709 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2710 if (IS_ERR(kvm_regs)) { 2711 r = PTR_ERR(kvm_regs); 2712 goto out; 2713 } 2714 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2715 kfree(kvm_regs); 2716 break; 2717 } 2718 case KVM_GET_SREGS: { 2719 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2720 GFP_KERNEL_ACCOUNT); 2721 r = -ENOMEM; 2722 if (!kvm_sregs) 2723 goto out; 2724 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2725 if (r) 2726 goto out; 2727 r = -EFAULT; 2728 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2729 goto out; 2730 r = 0; 2731 break; 2732 } 2733 case KVM_SET_SREGS: { 2734 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2735 if (IS_ERR(kvm_sregs)) { 2736 r = PTR_ERR(kvm_sregs); 2737 kvm_sregs = NULL; 2738 goto out; 2739 } 2740 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2741 break; 2742 } 2743 case KVM_GET_MP_STATE: { 2744 struct kvm_mp_state mp_state; 2745 2746 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2747 if (r) 2748 goto out; 2749 r = -EFAULT; 2750 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2751 goto out; 2752 r = 0; 2753 break; 2754 } 2755 case KVM_SET_MP_STATE: { 2756 struct kvm_mp_state mp_state; 2757 2758 r = -EFAULT; 2759 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2760 goto out; 2761 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2762 break; 2763 } 2764 case KVM_TRANSLATE: { 2765 struct kvm_translation tr; 2766 2767 r = -EFAULT; 2768 if (copy_from_user(&tr, argp, sizeof(tr))) 2769 goto out; 2770 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2771 if (r) 2772 goto out; 2773 r = -EFAULT; 2774 if (copy_to_user(argp, &tr, sizeof(tr))) 2775 goto out; 2776 r = 0; 2777 break; 2778 } 2779 case KVM_SET_GUEST_DEBUG: { 2780 struct kvm_guest_debug dbg; 2781 2782 r = -EFAULT; 2783 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2784 goto out; 2785 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2786 break; 2787 } 2788 case KVM_SET_SIGNAL_MASK: { 2789 struct kvm_signal_mask __user *sigmask_arg = argp; 2790 struct kvm_signal_mask kvm_sigmask; 2791 sigset_t sigset, *p; 2792 2793 p = NULL; 2794 if (argp) { 2795 r = -EFAULT; 2796 if (copy_from_user(&kvm_sigmask, argp, 2797 sizeof(kvm_sigmask))) 2798 goto out; 2799 r = -EINVAL; 2800 if (kvm_sigmask.len != sizeof(sigset)) 2801 goto out; 2802 r = -EFAULT; 2803 if (copy_from_user(&sigset, sigmask_arg->sigset, 2804 sizeof(sigset))) 2805 goto out; 2806 p = &sigset; 2807 } 2808 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2809 break; 2810 } 2811 case KVM_GET_FPU: { 2812 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2813 r = -ENOMEM; 2814 if (!fpu) 2815 goto out; 2816 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2817 if (r) 2818 goto out; 2819 r = -EFAULT; 2820 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2821 goto out; 2822 r = 0; 2823 break; 2824 } 2825 case KVM_SET_FPU: { 2826 fpu = memdup_user(argp, sizeof(*fpu)); 2827 if (IS_ERR(fpu)) { 2828 r = PTR_ERR(fpu); 2829 fpu = NULL; 2830 goto out; 2831 } 2832 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2833 break; 2834 } 2835 default: 2836 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2837 } 2838 out: 2839 mutex_unlock(&vcpu->mutex); 2840 kfree(fpu); 2841 kfree(kvm_sregs); 2842 return r; 2843 } 2844 2845 #ifdef CONFIG_KVM_COMPAT 2846 static long kvm_vcpu_compat_ioctl(struct file *filp, 2847 unsigned int ioctl, unsigned long arg) 2848 { 2849 struct kvm_vcpu *vcpu = filp->private_data; 2850 void __user *argp = compat_ptr(arg); 2851 int r; 2852 2853 if (vcpu->kvm->mm != current->mm) 2854 return -EIO; 2855 2856 switch (ioctl) { 2857 case KVM_SET_SIGNAL_MASK: { 2858 struct kvm_signal_mask __user *sigmask_arg = argp; 2859 struct kvm_signal_mask kvm_sigmask; 2860 sigset_t sigset; 2861 2862 if (argp) { 2863 r = -EFAULT; 2864 if (copy_from_user(&kvm_sigmask, argp, 2865 sizeof(kvm_sigmask))) 2866 goto out; 2867 r = -EINVAL; 2868 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2869 goto out; 2870 r = -EFAULT; 2871 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2872 goto out; 2873 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2874 } else 2875 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2876 break; 2877 } 2878 default: 2879 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2880 } 2881 2882 out: 2883 return r; 2884 } 2885 #endif 2886 2887 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2888 int (*accessor)(struct kvm_device *dev, 2889 struct kvm_device_attr *attr), 2890 unsigned long arg) 2891 { 2892 struct kvm_device_attr attr; 2893 2894 if (!accessor) 2895 return -EPERM; 2896 2897 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2898 return -EFAULT; 2899 2900 return accessor(dev, &attr); 2901 } 2902 2903 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2904 unsigned long arg) 2905 { 2906 struct kvm_device *dev = filp->private_data; 2907 2908 switch (ioctl) { 2909 case KVM_SET_DEVICE_ATTR: 2910 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2911 case KVM_GET_DEVICE_ATTR: 2912 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2913 case KVM_HAS_DEVICE_ATTR: 2914 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2915 default: 2916 if (dev->ops->ioctl) 2917 return dev->ops->ioctl(dev, ioctl, arg); 2918 2919 return -ENOTTY; 2920 } 2921 } 2922 2923 static int kvm_device_release(struct inode *inode, struct file *filp) 2924 { 2925 struct kvm_device *dev = filp->private_data; 2926 struct kvm *kvm = dev->kvm; 2927 2928 kvm_put_kvm(kvm); 2929 return 0; 2930 } 2931 2932 static const struct file_operations kvm_device_fops = { 2933 .unlocked_ioctl = kvm_device_ioctl, 2934 .release = kvm_device_release, 2935 KVM_COMPAT(kvm_device_ioctl), 2936 }; 2937 2938 struct kvm_device *kvm_device_from_filp(struct file *filp) 2939 { 2940 if (filp->f_op != &kvm_device_fops) 2941 return NULL; 2942 2943 return filp->private_data; 2944 } 2945 2946 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2947 #ifdef CONFIG_KVM_MPIC 2948 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2949 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2950 #endif 2951 }; 2952 2953 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2954 { 2955 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2956 return -ENOSPC; 2957 2958 if (kvm_device_ops_table[type] != NULL) 2959 return -EEXIST; 2960 2961 kvm_device_ops_table[type] = ops; 2962 return 0; 2963 } 2964 2965 void kvm_unregister_device_ops(u32 type) 2966 { 2967 if (kvm_device_ops_table[type] != NULL) 2968 kvm_device_ops_table[type] = NULL; 2969 } 2970 2971 static int kvm_ioctl_create_device(struct kvm *kvm, 2972 struct kvm_create_device *cd) 2973 { 2974 struct kvm_device_ops *ops = NULL; 2975 struct kvm_device *dev; 2976 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2977 int ret; 2978 2979 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2980 return -ENODEV; 2981 2982 ops = kvm_device_ops_table[cd->type]; 2983 if (ops == NULL) 2984 return -ENODEV; 2985 2986 if (test) 2987 return 0; 2988 2989 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 2990 if (!dev) 2991 return -ENOMEM; 2992 2993 dev->ops = ops; 2994 dev->kvm = kvm; 2995 2996 mutex_lock(&kvm->lock); 2997 ret = ops->create(dev, cd->type); 2998 if (ret < 0) { 2999 mutex_unlock(&kvm->lock); 3000 kfree(dev); 3001 return ret; 3002 } 3003 list_add(&dev->vm_node, &kvm->devices); 3004 mutex_unlock(&kvm->lock); 3005 3006 if (ops->init) 3007 ops->init(dev); 3008 3009 kvm_get_kvm(kvm); 3010 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3011 if (ret < 0) { 3012 kvm_put_kvm(kvm); 3013 mutex_lock(&kvm->lock); 3014 list_del(&dev->vm_node); 3015 mutex_unlock(&kvm->lock); 3016 ops->destroy(dev); 3017 return ret; 3018 } 3019 3020 cd->fd = ret; 3021 return 0; 3022 } 3023 3024 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3025 { 3026 switch (arg) { 3027 case KVM_CAP_USER_MEMORY: 3028 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3029 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3030 case KVM_CAP_INTERNAL_ERROR_DATA: 3031 #ifdef CONFIG_HAVE_KVM_MSI 3032 case KVM_CAP_SIGNAL_MSI: 3033 #endif 3034 #ifdef CONFIG_HAVE_KVM_IRQFD 3035 case KVM_CAP_IRQFD: 3036 case KVM_CAP_IRQFD_RESAMPLE: 3037 #endif 3038 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3039 case KVM_CAP_CHECK_EXTENSION_VM: 3040 case KVM_CAP_ENABLE_CAP_VM: 3041 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3042 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3043 #endif 3044 return 1; 3045 #ifdef CONFIG_KVM_MMIO 3046 case KVM_CAP_COALESCED_MMIO: 3047 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3048 case KVM_CAP_COALESCED_PIO: 3049 return 1; 3050 #endif 3051 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3052 case KVM_CAP_IRQ_ROUTING: 3053 return KVM_MAX_IRQ_ROUTES; 3054 #endif 3055 #if KVM_ADDRESS_SPACE_NUM > 1 3056 case KVM_CAP_MULTI_ADDRESS_SPACE: 3057 return KVM_ADDRESS_SPACE_NUM; 3058 #endif 3059 case KVM_CAP_MAX_VCPU_ID: 3060 return KVM_MAX_VCPU_ID; 3061 default: 3062 break; 3063 } 3064 return kvm_vm_ioctl_check_extension(kvm, arg); 3065 } 3066 3067 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3068 struct kvm_enable_cap *cap) 3069 { 3070 return -EINVAL; 3071 } 3072 3073 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3074 struct kvm_enable_cap *cap) 3075 { 3076 switch (cap->cap) { 3077 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3078 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3079 if (cap->flags || (cap->args[0] & ~1)) 3080 return -EINVAL; 3081 kvm->manual_dirty_log_protect = cap->args[0]; 3082 return 0; 3083 #endif 3084 default: 3085 return kvm_vm_ioctl_enable_cap(kvm, cap); 3086 } 3087 } 3088 3089 static long kvm_vm_ioctl(struct file *filp, 3090 unsigned int ioctl, unsigned long arg) 3091 { 3092 struct kvm *kvm = filp->private_data; 3093 void __user *argp = (void __user *)arg; 3094 int r; 3095 3096 if (kvm->mm != current->mm) 3097 return -EIO; 3098 switch (ioctl) { 3099 case KVM_CREATE_VCPU: 3100 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3101 break; 3102 case KVM_ENABLE_CAP: { 3103 struct kvm_enable_cap cap; 3104 3105 r = -EFAULT; 3106 if (copy_from_user(&cap, argp, sizeof(cap))) 3107 goto out; 3108 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3109 break; 3110 } 3111 case KVM_SET_USER_MEMORY_REGION: { 3112 struct kvm_userspace_memory_region kvm_userspace_mem; 3113 3114 r = -EFAULT; 3115 if (copy_from_user(&kvm_userspace_mem, argp, 3116 sizeof(kvm_userspace_mem))) 3117 goto out; 3118 3119 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3120 break; 3121 } 3122 case KVM_GET_DIRTY_LOG: { 3123 struct kvm_dirty_log log; 3124 3125 r = -EFAULT; 3126 if (copy_from_user(&log, argp, sizeof(log))) 3127 goto out; 3128 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3129 break; 3130 } 3131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3132 case KVM_CLEAR_DIRTY_LOG: { 3133 struct kvm_clear_dirty_log log; 3134 3135 r = -EFAULT; 3136 if (copy_from_user(&log, argp, sizeof(log))) 3137 goto out; 3138 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3139 break; 3140 } 3141 #endif 3142 #ifdef CONFIG_KVM_MMIO 3143 case KVM_REGISTER_COALESCED_MMIO: { 3144 struct kvm_coalesced_mmio_zone zone; 3145 3146 r = -EFAULT; 3147 if (copy_from_user(&zone, argp, sizeof(zone))) 3148 goto out; 3149 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3150 break; 3151 } 3152 case KVM_UNREGISTER_COALESCED_MMIO: { 3153 struct kvm_coalesced_mmio_zone zone; 3154 3155 r = -EFAULT; 3156 if (copy_from_user(&zone, argp, sizeof(zone))) 3157 goto out; 3158 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3159 break; 3160 } 3161 #endif 3162 case KVM_IRQFD: { 3163 struct kvm_irqfd data; 3164 3165 r = -EFAULT; 3166 if (copy_from_user(&data, argp, sizeof(data))) 3167 goto out; 3168 r = kvm_irqfd(kvm, &data); 3169 break; 3170 } 3171 case KVM_IOEVENTFD: { 3172 struct kvm_ioeventfd data; 3173 3174 r = -EFAULT; 3175 if (copy_from_user(&data, argp, sizeof(data))) 3176 goto out; 3177 r = kvm_ioeventfd(kvm, &data); 3178 break; 3179 } 3180 #ifdef CONFIG_HAVE_KVM_MSI 3181 case KVM_SIGNAL_MSI: { 3182 struct kvm_msi msi; 3183 3184 r = -EFAULT; 3185 if (copy_from_user(&msi, argp, sizeof(msi))) 3186 goto out; 3187 r = kvm_send_userspace_msi(kvm, &msi); 3188 break; 3189 } 3190 #endif 3191 #ifdef __KVM_HAVE_IRQ_LINE 3192 case KVM_IRQ_LINE_STATUS: 3193 case KVM_IRQ_LINE: { 3194 struct kvm_irq_level irq_event; 3195 3196 r = -EFAULT; 3197 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3198 goto out; 3199 3200 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3201 ioctl == KVM_IRQ_LINE_STATUS); 3202 if (r) 3203 goto out; 3204 3205 r = -EFAULT; 3206 if (ioctl == KVM_IRQ_LINE_STATUS) { 3207 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3208 goto out; 3209 } 3210 3211 r = 0; 3212 break; 3213 } 3214 #endif 3215 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3216 case KVM_SET_GSI_ROUTING: { 3217 struct kvm_irq_routing routing; 3218 struct kvm_irq_routing __user *urouting; 3219 struct kvm_irq_routing_entry *entries = NULL; 3220 3221 r = -EFAULT; 3222 if (copy_from_user(&routing, argp, sizeof(routing))) 3223 goto out; 3224 r = -EINVAL; 3225 if (!kvm_arch_can_set_irq_routing(kvm)) 3226 goto out; 3227 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3228 goto out; 3229 if (routing.flags) 3230 goto out; 3231 if (routing.nr) { 3232 r = -ENOMEM; 3233 entries = vmalloc(array_size(sizeof(*entries), 3234 routing.nr)); 3235 if (!entries) 3236 goto out; 3237 r = -EFAULT; 3238 urouting = argp; 3239 if (copy_from_user(entries, urouting->entries, 3240 routing.nr * sizeof(*entries))) 3241 goto out_free_irq_routing; 3242 } 3243 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3244 routing.flags); 3245 out_free_irq_routing: 3246 vfree(entries); 3247 break; 3248 } 3249 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3250 case KVM_CREATE_DEVICE: { 3251 struct kvm_create_device cd; 3252 3253 r = -EFAULT; 3254 if (copy_from_user(&cd, argp, sizeof(cd))) 3255 goto out; 3256 3257 r = kvm_ioctl_create_device(kvm, &cd); 3258 if (r) 3259 goto out; 3260 3261 r = -EFAULT; 3262 if (copy_to_user(argp, &cd, sizeof(cd))) 3263 goto out; 3264 3265 r = 0; 3266 break; 3267 } 3268 case KVM_CHECK_EXTENSION: 3269 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3270 break; 3271 default: 3272 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3273 } 3274 out: 3275 return r; 3276 } 3277 3278 #ifdef CONFIG_KVM_COMPAT 3279 struct compat_kvm_dirty_log { 3280 __u32 slot; 3281 __u32 padding1; 3282 union { 3283 compat_uptr_t dirty_bitmap; /* one bit per page */ 3284 __u64 padding2; 3285 }; 3286 }; 3287 3288 static long kvm_vm_compat_ioctl(struct file *filp, 3289 unsigned int ioctl, unsigned long arg) 3290 { 3291 struct kvm *kvm = filp->private_data; 3292 int r; 3293 3294 if (kvm->mm != current->mm) 3295 return -EIO; 3296 switch (ioctl) { 3297 case KVM_GET_DIRTY_LOG: { 3298 struct compat_kvm_dirty_log compat_log; 3299 struct kvm_dirty_log log; 3300 3301 if (copy_from_user(&compat_log, (void __user *)arg, 3302 sizeof(compat_log))) 3303 return -EFAULT; 3304 log.slot = compat_log.slot; 3305 log.padding1 = compat_log.padding1; 3306 log.padding2 = compat_log.padding2; 3307 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3308 3309 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3310 break; 3311 } 3312 default: 3313 r = kvm_vm_ioctl(filp, ioctl, arg); 3314 } 3315 return r; 3316 } 3317 #endif 3318 3319 static struct file_operations kvm_vm_fops = { 3320 .release = kvm_vm_release, 3321 .unlocked_ioctl = kvm_vm_ioctl, 3322 .llseek = noop_llseek, 3323 KVM_COMPAT(kvm_vm_compat_ioctl), 3324 }; 3325 3326 static int kvm_dev_ioctl_create_vm(unsigned long type) 3327 { 3328 int r; 3329 struct kvm *kvm; 3330 struct file *file; 3331 3332 kvm = kvm_create_vm(type); 3333 if (IS_ERR(kvm)) 3334 return PTR_ERR(kvm); 3335 #ifdef CONFIG_KVM_MMIO 3336 r = kvm_coalesced_mmio_init(kvm); 3337 if (r < 0) 3338 goto put_kvm; 3339 #endif 3340 r = get_unused_fd_flags(O_CLOEXEC); 3341 if (r < 0) 3342 goto put_kvm; 3343 3344 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3345 if (IS_ERR(file)) { 3346 put_unused_fd(r); 3347 r = PTR_ERR(file); 3348 goto put_kvm; 3349 } 3350 3351 /* 3352 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3353 * already set, with ->release() being kvm_vm_release(). In error 3354 * cases it will be called by the final fput(file) and will take 3355 * care of doing kvm_put_kvm(kvm). 3356 */ 3357 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3358 put_unused_fd(r); 3359 fput(file); 3360 return -ENOMEM; 3361 } 3362 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3363 3364 fd_install(r, file); 3365 return r; 3366 3367 put_kvm: 3368 kvm_put_kvm(kvm); 3369 return r; 3370 } 3371 3372 static long kvm_dev_ioctl(struct file *filp, 3373 unsigned int ioctl, unsigned long arg) 3374 { 3375 long r = -EINVAL; 3376 3377 switch (ioctl) { 3378 case KVM_GET_API_VERSION: 3379 if (arg) 3380 goto out; 3381 r = KVM_API_VERSION; 3382 break; 3383 case KVM_CREATE_VM: 3384 r = kvm_dev_ioctl_create_vm(arg); 3385 break; 3386 case KVM_CHECK_EXTENSION: 3387 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3388 break; 3389 case KVM_GET_VCPU_MMAP_SIZE: 3390 if (arg) 3391 goto out; 3392 r = PAGE_SIZE; /* struct kvm_run */ 3393 #ifdef CONFIG_X86 3394 r += PAGE_SIZE; /* pio data page */ 3395 #endif 3396 #ifdef CONFIG_KVM_MMIO 3397 r += PAGE_SIZE; /* coalesced mmio ring page */ 3398 #endif 3399 break; 3400 case KVM_TRACE_ENABLE: 3401 case KVM_TRACE_PAUSE: 3402 case KVM_TRACE_DISABLE: 3403 r = -EOPNOTSUPP; 3404 break; 3405 default: 3406 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3407 } 3408 out: 3409 return r; 3410 } 3411 3412 static struct file_operations kvm_chardev_ops = { 3413 .unlocked_ioctl = kvm_dev_ioctl, 3414 .llseek = noop_llseek, 3415 KVM_COMPAT(kvm_dev_ioctl), 3416 }; 3417 3418 static struct miscdevice kvm_dev = { 3419 KVM_MINOR, 3420 "kvm", 3421 &kvm_chardev_ops, 3422 }; 3423 3424 static void hardware_enable_nolock(void *junk) 3425 { 3426 int cpu = raw_smp_processor_id(); 3427 int r; 3428 3429 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3430 return; 3431 3432 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3433 3434 r = kvm_arch_hardware_enable(); 3435 3436 if (r) { 3437 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3438 atomic_inc(&hardware_enable_failed); 3439 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3440 } 3441 } 3442 3443 static int kvm_starting_cpu(unsigned int cpu) 3444 { 3445 raw_spin_lock(&kvm_count_lock); 3446 if (kvm_usage_count) 3447 hardware_enable_nolock(NULL); 3448 raw_spin_unlock(&kvm_count_lock); 3449 return 0; 3450 } 3451 3452 static void hardware_disable_nolock(void *junk) 3453 { 3454 int cpu = raw_smp_processor_id(); 3455 3456 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3457 return; 3458 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3459 kvm_arch_hardware_disable(); 3460 } 3461 3462 static int kvm_dying_cpu(unsigned int cpu) 3463 { 3464 raw_spin_lock(&kvm_count_lock); 3465 if (kvm_usage_count) 3466 hardware_disable_nolock(NULL); 3467 raw_spin_unlock(&kvm_count_lock); 3468 return 0; 3469 } 3470 3471 static void hardware_disable_all_nolock(void) 3472 { 3473 BUG_ON(!kvm_usage_count); 3474 3475 kvm_usage_count--; 3476 if (!kvm_usage_count) 3477 on_each_cpu(hardware_disable_nolock, NULL, 1); 3478 } 3479 3480 static void hardware_disable_all(void) 3481 { 3482 raw_spin_lock(&kvm_count_lock); 3483 hardware_disable_all_nolock(); 3484 raw_spin_unlock(&kvm_count_lock); 3485 } 3486 3487 static int hardware_enable_all(void) 3488 { 3489 int r = 0; 3490 3491 raw_spin_lock(&kvm_count_lock); 3492 3493 kvm_usage_count++; 3494 if (kvm_usage_count == 1) { 3495 atomic_set(&hardware_enable_failed, 0); 3496 on_each_cpu(hardware_enable_nolock, NULL, 1); 3497 3498 if (atomic_read(&hardware_enable_failed)) { 3499 hardware_disable_all_nolock(); 3500 r = -EBUSY; 3501 } 3502 } 3503 3504 raw_spin_unlock(&kvm_count_lock); 3505 3506 return r; 3507 } 3508 3509 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3510 void *v) 3511 { 3512 /* 3513 * Some (well, at least mine) BIOSes hang on reboot if 3514 * in vmx root mode. 3515 * 3516 * And Intel TXT required VMX off for all cpu when system shutdown. 3517 */ 3518 pr_info("kvm: exiting hardware virtualization\n"); 3519 kvm_rebooting = true; 3520 on_each_cpu(hardware_disable_nolock, NULL, 1); 3521 return NOTIFY_OK; 3522 } 3523 3524 static struct notifier_block kvm_reboot_notifier = { 3525 .notifier_call = kvm_reboot, 3526 .priority = 0, 3527 }; 3528 3529 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3530 { 3531 int i; 3532 3533 for (i = 0; i < bus->dev_count; i++) { 3534 struct kvm_io_device *pos = bus->range[i].dev; 3535 3536 kvm_iodevice_destructor(pos); 3537 } 3538 kfree(bus); 3539 } 3540 3541 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3542 const struct kvm_io_range *r2) 3543 { 3544 gpa_t addr1 = r1->addr; 3545 gpa_t addr2 = r2->addr; 3546 3547 if (addr1 < addr2) 3548 return -1; 3549 3550 /* If r2->len == 0, match the exact address. If r2->len != 0, 3551 * accept any overlapping write. Any order is acceptable for 3552 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3553 * we process all of them. 3554 */ 3555 if (r2->len) { 3556 addr1 += r1->len; 3557 addr2 += r2->len; 3558 } 3559 3560 if (addr1 > addr2) 3561 return 1; 3562 3563 return 0; 3564 } 3565 3566 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3567 { 3568 return kvm_io_bus_cmp(p1, p2); 3569 } 3570 3571 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3572 gpa_t addr, int len) 3573 { 3574 struct kvm_io_range *range, key; 3575 int off; 3576 3577 key = (struct kvm_io_range) { 3578 .addr = addr, 3579 .len = len, 3580 }; 3581 3582 range = bsearch(&key, bus->range, bus->dev_count, 3583 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3584 if (range == NULL) 3585 return -ENOENT; 3586 3587 off = range - bus->range; 3588 3589 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3590 off--; 3591 3592 return off; 3593 } 3594 3595 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3596 struct kvm_io_range *range, const void *val) 3597 { 3598 int idx; 3599 3600 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3601 if (idx < 0) 3602 return -EOPNOTSUPP; 3603 3604 while (idx < bus->dev_count && 3605 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3606 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3607 range->len, val)) 3608 return idx; 3609 idx++; 3610 } 3611 3612 return -EOPNOTSUPP; 3613 } 3614 3615 /* kvm_io_bus_write - called under kvm->slots_lock */ 3616 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3617 int len, const void *val) 3618 { 3619 struct kvm_io_bus *bus; 3620 struct kvm_io_range range; 3621 int r; 3622 3623 range = (struct kvm_io_range) { 3624 .addr = addr, 3625 .len = len, 3626 }; 3627 3628 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3629 if (!bus) 3630 return -ENOMEM; 3631 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3632 return r < 0 ? r : 0; 3633 } 3634 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3635 3636 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3637 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3638 gpa_t addr, int len, const void *val, long cookie) 3639 { 3640 struct kvm_io_bus *bus; 3641 struct kvm_io_range range; 3642 3643 range = (struct kvm_io_range) { 3644 .addr = addr, 3645 .len = len, 3646 }; 3647 3648 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3649 if (!bus) 3650 return -ENOMEM; 3651 3652 /* First try the device referenced by cookie. */ 3653 if ((cookie >= 0) && (cookie < bus->dev_count) && 3654 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3655 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3656 val)) 3657 return cookie; 3658 3659 /* 3660 * cookie contained garbage; fall back to search and return the 3661 * correct cookie value. 3662 */ 3663 return __kvm_io_bus_write(vcpu, bus, &range, val); 3664 } 3665 3666 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3667 struct kvm_io_range *range, void *val) 3668 { 3669 int idx; 3670 3671 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3672 if (idx < 0) 3673 return -EOPNOTSUPP; 3674 3675 while (idx < bus->dev_count && 3676 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3677 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3678 range->len, val)) 3679 return idx; 3680 idx++; 3681 } 3682 3683 return -EOPNOTSUPP; 3684 } 3685 3686 /* kvm_io_bus_read - called under kvm->slots_lock */ 3687 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3688 int len, void *val) 3689 { 3690 struct kvm_io_bus *bus; 3691 struct kvm_io_range range; 3692 int r; 3693 3694 range = (struct kvm_io_range) { 3695 .addr = addr, 3696 .len = len, 3697 }; 3698 3699 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3700 if (!bus) 3701 return -ENOMEM; 3702 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3703 return r < 0 ? r : 0; 3704 } 3705 3706 /* Caller must hold slots_lock. */ 3707 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3708 int len, struct kvm_io_device *dev) 3709 { 3710 int i; 3711 struct kvm_io_bus *new_bus, *bus; 3712 struct kvm_io_range range; 3713 3714 bus = kvm_get_bus(kvm, bus_idx); 3715 if (!bus) 3716 return -ENOMEM; 3717 3718 /* exclude ioeventfd which is limited by maximum fd */ 3719 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3720 return -ENOSPC; 3721 3722 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3723 GFP_KERNEL_ACCOUNT); 3724 if (!new_bus) 3725 return -ENOMEM; 3726 3727 range = (struct kvm_io_range) { 3728 .addr = addr, 3729 .len = len, 3730 .dev = dev, 3731 }; 3732 3733 for (i = 0; i < bus->dev_count; i++) 3734 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3735 break; 3736 3737 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3738 new_bus->dev_count++; 3739 new_bus->range[i] = range; 3740 memcpy(new_bus->range + i + 1, bus->range + i, 3741 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3742 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3743 synchronize_srcu_expedited(&kvm->srcu); 3744 kfree(bus); 3745 3746 return 0; 3747 } 3748 3749 /* Caller must hold slots_lock. */ 3750 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3751 struct kvm_io_device *dev) 3752 { 3753 int i; 3754 struct kvm_io_bus *new_bus, *bus; 3755 3756 bus = kvm_get_bus(kvm, bus_idx); 3757 if (!bus) 3758 return; 3759 3760 for (i = 0; i < bus->dev_count; i++) 3761 if (bus->range[i].dev == dev) { 3762 break; 3763 } 3764 3765 if (i == bus->dev_count) 3766 return; 3767 3768 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3769 GFP_KERNEL_ACCOUNT); 3770 if (!new_bus) { 3771 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3772 goto broken; 3773 } 3774 3775 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3776 new_bus->dev_count--; 3777 memcpy(new_bus->range + i, bus->range + i + 1, 3778 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3779 3780 broken: 3781 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3782 synchronize_srcu_expedited(&kvm->srcu); 3783 kfree(bus); 3784 return; 3785 } 3786 3787 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3788 gpa_t addr) 3789 { 3790 struct kvm_io_bus *bus; 3791 int dev_idx, srcu_idx; 3792 struct kvm_io_device *iodev = NULL; 3793 3794 srcu_idx = srcu_read_lock(&kvm->srcu); 3795 3796 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3797 if (!bus) 3798 goto out_unlock; 3799 3800 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3801 if (dev_idx < 0) 3802 goto out_unlock; 3803 3804 iodev = bus->range[dev_idx].dev; 3805 3806 out_unlock: 3807 srcu_read_unlock(&kvm->srcu, srcu_idx); 3808 3809 return iodev; 3810 } 3811 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3812 3813 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3814 int (*get)(void *, u64 *), int (*set)(void *, u64), 3815 const char *fmt) 3816 { 3817 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3818 inode->i_private; 3819 3820 /* The debugfs files are a reference to the kvm struct which 3821 * is still valid when kvm_destroy_vm is called. 3822 * To avoid the race between open and the removal of the debugfs 3823 * directory we test against the users count. 3824 */ 3825 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3826 return -ENOENT; 3827 3828 if (simple_attr_open(inode, file, get, set, fmt)) { 3829 kvm_put_kvm(stat_data->kvm); 3830 return -ENOMEM; 3831 } 3832 3833 return 0; 3834 } 3835 3836 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3837 { 3838 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3839 inode->i_private; 3840 3841 simple_attr_release(inode, file); 3842 kvm_put_kvm(stat_data->kvm); 3843 3844 return 0; 3845 } 3846 3847 static int vm_stat_get_per_vm(void *data, u64 *val) 3848 { 3849 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3850 3851 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3852 3853 return 0; 3854 } 3855 3856 static int vm_stat_clear_per_vm(void *data, u64 val) 3857 { 3858 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3859 3860 if (val) 3861 return -EINVAL; 3862 3863 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3864 3865 return 0; 3866 } 3867 3868 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3869 { 3870 __simple_attr_check_format("%llu\n", 0ull); 3871 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3872 vm_stat_clear_per_vm, "%llu\n"); 3873 } 3874 3875 static const struct file_operations vm_stat_get_per_vm_fops = { 3876 .owner = THIS_MODULE, 3877 .open = vm_stat_get_per_vm_open, 3878 .release = kvm_debugfs_release, 3879 .read = simple_attr_read, 3880 .write = simple_attr_write, 3881 .llseek = no_llseek, 3882 }; 3883 3884 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3885 { 3886 int i; 3887 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3888 struct kvm_vcpu *vcpu; 3889 3890 *val = 0; 3891 3892 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3893 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3894 3895 return 0; 3896 } 3897 3898 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3899 { 3900 int i; 3901 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3902 struct kvm_vcpu *vcpu; 3903 3904 if (val) 3905 return -EINVAL; 3906 3907 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3908 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3909 3910 return 0; 3911 } 3912 3913 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3914 { 3915 __simple_attr_check_format("%llu\n", 0ull); 3916 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3917 vcpu_stat_clear_per_vm, "%llu\n"); 3918 } 3919 3920 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3921 .owner = THIS_MODULE, 3922 .open = vcpu_stat_get_per_vm_open, 3923 .release = kvm_debugfs_release, 3924 .read = simple_attr_read, 3925 .write = simple_attr_write, 3926 .llseek = no_llseek, 3927 }; 3928 3929 static const struct file_operations *stat_fops_per_vm[] = { 3930 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3931 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3932 }; 3933 3934 static int vm_stat_get(void *_offset, u64 *val) 3935 { 3936 unsigned offset = (long)_offset; 3937 struct kvm *kvm; 3938 struct kvm_stat_data stat_tmp = {.offset = offset}; 3939 u64 tmp_val; 3940 3941 *val = 0; 3942 spin_lock(&kvm_lock); 3943 list_for_each_entry(kvm, &vm_list, vm_list) { 3944 stat_tmp.kvm = kvm; 3945 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3946 *val += tmp_val; 3947 } 3948 spin_unlock(&kvm_lock); 3949 return 0; 3950 } 3951 3952 static int vm_stat_clear(void *_offset, u64 val) 3953 { 3954 unsigned offset = (long)_offset; 3955 struct kvm *kvm; 3956 struct kvm_stat_data stat_tmp = {.offset = offset}; 3957 3958 if (val) 3959 return -EINVAL; 3960 3961 spin_lock(&kvm_lock); 3962 list_for_each_entry(kvm, &vm_list, vm_list) { 3963 stat_tmp.kvm = kvm; 3964 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3965 } 3966 spin_unlock(&kvm_lock); 3967 3968 return 0; 3969 } 3970 3971 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3972 3973 static int vcpu_stat_get(void *_offset, u64 *val) 3974 { 3975 unsigned offset = (long)_offset; 3976 struct kvm *kvm; 3977 struct kvm_stat_data stat_tmp = {.offset = offset}; 3978 u64 tmp_val; 3979 3980 *val = 0; 3981 spin_lock(&kvm_lock); 3982 list_for_each_entry(kvm, &vm_list, vm_list) { 3983 stat_tmp.kvm = kvm; 3984 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3985 *val += tmp_val; 3986 } 3987 spin_unlock(&kvm_lock); 3988 return 0; 3989 } 3990 3991 static int vcpu_stat_clear(void *_offset, u64 val) 3992 { 3993 unsigned offset = (long)_offset; 3994 struct kvm *kvm; 3995 struct kvm_stat_data stat_tmp = {.offset = offset}; 3996 3997 if (val) 3998 return -EINVAL; 3999 4000 spin_lock(&kvm_lock); 4001 list_for_each_entry(kvm, &vm_list, vm_list) { 4002 stat_tmp.kvm = kvm; 4003 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4004 } 4005 spin_unlock(&kvm_lock); 4006 4007 return 0; 4008 } 4009 4010 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4011 "%llu\n"); 4012 4013 static const struct file_operations *stat_fops[] = { 4014 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4015 [KVM_STAT_VM] = &vm_stat_fops, 4016 }; 4017 4018 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4019 { 4020 struct kobj_uevent_env *env; 4021 unsigned long long created, active; 4022 4023 if (!kvm_dev.this_device || !kvm) 4024 return; 4025 4026 spin_lock(&kvm_lock); 4027 if (type == KVM_EVENT_CREATE_VM) { 4028 kvm_createvm_count++; 4029 kvm_active_vms++; 4030 } else if (type == KVM_EVENT_DESTROY_VM) { 4031 kvm_active_vms--; 4032 } 4033 created = kvm_createvm_count; 4034 active = kvm_active_vms; 4035 spin_unlock(&kvm_lock); 4036 4037 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4038 if (!env) 4039 return; 4040 4041 add_uevent_var(env, "CREATED=%llu", created); 4042 add_uevent_var(env, "COUNT=%llu", active); 4043 4044 if (type == KVM_EVENT_CREATE_VM) { 4045 add_uevent_var(env, "EVENT=create"); 4046 kvm->userspace_pid = task_pid_nr(current); 4047 } else if (type == KVM_EVENT_DESTROY_VM) { 4048 add_uevent_var(env, "EVENT=destroy"); 4049 } 4050 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4051 4052 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4053 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4054 4055 if (p) { 4056 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4057 if (!IS_ERR(tmp)) 4058 add_uevent_var(env, "STATS_PATH=%s", tmp); 4059 kfree(p); 4060 } 4061 } 4062 /* no need for checks, since we are adding at most only 5 keys */ 4063 env->envp[env->envp_idx++] = NULL; 4064 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4065 kfree(env); 4066 } 4067 4068 static void kvm_init_debug(void) 4069 { 4070 struct kvm_stats_debugfs_item *p; 4071 4072 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4073 4074 kvm_debugfs_num_entries = 0; 4075 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4076 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4077 (void *)(long)p->offset, 4078 stat_fops[p->kind]); 4079 } 4080 } 4081 4082 static int kvm_suspend(void) 4083 { 4084 if (kvm_usage_count) 4085 hardware_disable_nolock(NULL); 4086 return 0; 4087 } 4088 4089 static void kvm_resume(void) 4090 { 4091 if (kvm_usage_count) { 4092 lockdep_assert_held(&kvm_count_lock); 4093 hardware_enable_nolock(NULL); 4094 } 4095 } 4096 4097 static struct syscore_ops kvm_syscore_ops = { 4098 .suspend = kvm_suspend, 4099 .resume = kvm_resume, 4100 }; 4101 4102 static inline 4103 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4104 { 4105 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4106 } 4107 4108 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4109 { 4110 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4111 4112 if (vcpu->preempted) 4113 vcpu->preempted = false; 4114 4115 kvm_arch_sched_in(vcpu, cpu); 4116 4117 kvm_arch_vcpu_load(vcpu, cpu); 4118 } 4119 4120 static void kvm_sched_out(struct preempt_notifier *pn, 4121 struct task_struct *next) 4122 { 4123 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4124 4125 if (current->state == TASK_RUNNING) 4126 vcpu->preempted = true; 4127 kvm_arch_vcpu_put(vcpu); 4128 } 4129 4130 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4131 struct module *module) 4132 { 4133 int r; 4134 int cpu; 4135 4136 r = kvm_arch_init(opaque); 4137 if (r) 4138 goto out_fail; 4139 4140 /* 4141 * kvm_arch_init makes sure there's at most one caller 4142 * for architectures that support multiple implementations, 4143 * like intel and amd on x86. 4144 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4145 * conflicts in case kvm is already setup for another implementation. 4146 */ 4147 r = kvm_irqfd_init(); 4148 if (r) 4149 goto out_irqfd; 4150 4151 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4152 r = -ENOMEM; 4153 goto out_free_0; 4154 } 4155 4156 r = kvm_arch_hardware_setup(); 4157 if (r < 0) 4158 goto out_free_0a; 4159 4160 for_each_online_cpu(cpu) { 4161 smp_call_function_single(cpu, 4162 kvm_arch_check_processor_compat, 4163 &r, 1); 4164 if (r < 0) 4165 goto out_free_1; 4166 } 4167 4168 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4169 kvm_starting_cpu, kvm_dying_cpu); 4170 if (r) 4171 goto out_free_2; 4172 register_reboot_notifier(&kvm_reboot_notifier); 4173 4174 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4175 if (!vcpu_align) 4176 vcpu_align = __alignof__(struct kvm_vcpu); 4177 kvm_vcpu_cache = 4178 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4179 SLAB_ACCOUNT, 4180 offsetof(struct kvm_vcpu, arch), 4181 sizeof_field(struct kvm_vcpu, arch), 4182 NULL); 4183 if (!kvm_vcpu_cache) { 4184 r = -ENOMEM; 4185 goto out_free_3; 4186 } 4187 4188 r = kvm_async_pf_init(); 4189 if (r) 4190 goto out_free; 4191 4192 kvm_chardev_ops.owner = module; 4193 kvm_vm_fops.owner = module; 4194 kvm_vcpu_fops.owner = module; 4195 4196 r = misc_register(&kvm_dev); 4197 if (r) { 4198 pr_err("kvm: misc device register failed\n"); 4199 goto out_unreg; 4200 } 4201 4202 register_syscore_ops(&kvm_syscore_ops); 4203 4204 kvm_preempt_ops.sched_in = kvm_sched_in; 4205 kvm_preempt_ops.sched_out = kvm_sched_out; 4206 4207 kvm_init_debug(); 4208 4209 r = kvm_vfio_ops_init(); 4210 WARN_ON(r); 4211 4212 return 0; 4213 4214 out_unreg: 4215 kvm_async_pf_deinit(); 4216 out_free: 4217 kmem_cache_destroy(kvm_vcpu_cache); 4218 out_free_3: 4219 unregister_reboot_notifier(&kvm_reboot_notifier); 4220 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4221 out_free_2: 4222 out_free_1: 4223 kvm_arch_hardware_unsetup(); 4224 out_free_0a: 4225 free_cpumask_var(cpus_hardware_enabled); 4226 out_free_0: 4227 kvm_irqfd_exit(); 4228 out_irqfd: 4229 kvm_arch_exit(); 4230 out_fail: 4231 return r; 4232 } 4233 EXPORT_SYMBOL_GPL(kvm_init); 4234 4235 void kvm_exit(void) 4236 { 4237 debugfs_remove_recursive(kvm_debugfs_dir); 4238 misc_deregister(&kvm_dev); 4239 kmem_cache_destroy(kvm_vcpu_cache); 4240 kvm_async_pf_deinit(); 4241 unregister_syscore_ops(&kvm_syscore_ops); 4242 unregister_reboot_notifier(&kvm_reboot_notifier); 4243 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4244 on_each_cpu(hardware_disable_nolock, NULL, 1); 4245 kvm_arch_hardware_unsetup(); 4246 kvm_arch_exit(); 4247 kvm_irqfd_exit(); 4248 free_cpumask_var(cpus_hardware_enabled); 4249 kvm_vfio_ops_exit(); 4250 } 4251 EXPORT_SYMBOL_GPL(kvm_exit); 4252