1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/ioctl.h> 56 #include <asm/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); 75 76 /* Default doubles per-vcpu halt_poll_ns. */ 77 static unsigned int halt_poll_ns_grow = 2; 78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR); 79 80 /* Default resets per-vcpu halt_poll_ns . */ 81 static unsigned int halt_poll_ns_shrink; 82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR); 83 84 /* 85 * Ordering of locks: 86 * 87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 88 */ 89 90 DEFINE_SPINLOCK(kvm_lock); 91 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 92 LIST_HEAD(vm_list); 93 94 static cpumask_var_t cpus_hardware_enabled; 95 static int kvm_usage_count; 96 static atomic_t hardware_enable_failed; 97 98 struct kmem_cache *kvm_vcpu_cache; 99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 100 101 static __read_mostly struct preempt_ops kvm_preempt_ops; 102 103 struct dentry *kvm_debugfs_dir; 104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 105 106 static int kvm_debugfs_num_entries; 107 static const struct file_operations *stat_fops_per_vm[]; 108 109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 110 unsigned long arg); 111 #ifdef CONFIG_KVM_COMPAT 112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 113 unsigned long arg); 114 #endif 115 static int hardware_enable_all(void); 116 static void hardware_disable_all(void); 117 118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 119 120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn); 121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 122 123 __visible bool kvm_rebooting; 124 EXPORT_SYMBOL_GPL(kvm_rebooting); 125 126 static bool largepages_enabled = true; 127 128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 129 { 130 if (pfn_valid(pfn)) 131 return PageReserved(pfn_to_page(pfn)); 132 133 return true; 134 } 135 136 /* 137 * Switches to specified vcpu, until a matching vcpu_put() 138 */ 139 int vcpu_load(struct kvm_vcpu *vcpu) 140 { 141 int cpu; 142 143 if (mutex_lock_killable(&vcpu->mutex)) 144 return -EINTR; 145 cpu = get_cpu(); 146 preempt_notifier_register(&vcpu->preempt_notifier); 147 kvm_arch_vcpu_load(vcpu, cpu); 148 put_cpu(); 149 return 0; 150 } 151 EXPORT_SYMBOL_GPL(vcpu_load); 152 153 void vcpu_put(struct kvm_vcpu *vcpu) 154 { 155 preempt_disable(); 156 kvm_arch_vcpu_put(vcpu); 157 preempt_notifier_unregister(&vcpu->preempt_notifier); 158 preempt_enable(); 159 mutex_unlock(&vcpu->mutex); 160 } 161 EXPORT_SYMBOL_GPL(vcpu_put); 162 163 static void ack_flush(void *_completed) 164 { 165 } 166 167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 168 { 169 int i, cpu, me; 170 cpumask_var_t cpus; 171 bool called = true; 172 struct kvm_vcpu *vcpu; 173 174 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 175 176 me = get_cpu(); 177 kvm_for_each_vcpu(i, vcpu, kvm) { 178 kvm_make_request(req, vcpu); 179 cpu = vcpu->cpu; 180 181 /* Set ->requests bit before we read ->mode. */ 182 smp_mb__after_atomic(); 183 184 if (cpus != NULL && cpu != -1 && cpu != me && 185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 186 cpumask_set_cpu(cpu, cpus); 187 } 188 if (unlikely(cpus == NULL)) 189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 190 else if (!cpumask_empty(cpus)) 191 smp_call_function_many(cpus, ack_flush, NULL, 1); 192 else 193 called = false; 194 put_cpu(); 195 free_cpumask_var(cpus); 196 return called; 197 } 198 199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 200 void kvm_flush_remote_tlbs(struct kvm *kvm) 201 { 202 /* 203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 204 * kvm_make_all_cpus_request. 205 */ 206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 207 208 /* 209 * We want to publish modifications to the page tables before reading 210 * mode. Pairs with a memory barrier in arch-specific code. 211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 212 * and smp_mb in walk_shadow_page_lockless_begin/end. 213 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 214 * 215 * There is already an smp_mb__after_atomic() before 216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 217 * barrier here. 218 */ 219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 220 ++kvm->stat.remote_tlb_flush; 221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 222 } 223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 224 #endif 225 226 void kvm_reload_remote_mmus(struct kvm *kvm) 227 { 228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 229 } 230 231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 232 { 233 struct page *page; 234 int r; 235 236 mutex_init(&vcpu->mutex); 237 vcpu->cpu = -1; 238 vcpu->kvm = kvm; 239 vcpu->vcpu_id = id; 240 vcpu->pid = NULL; 241 init_swait_queue_head(&vcpu->wq); 242 kvm_async_pf_vcpu_init(vcpu); 243 244 vcpu->pre_pcpu = -1; 245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 246 247 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 248 if (!page) { 249 r = -ENOMEM; 250 goto fail; 251 } 252 vcpu->run = page_address(page); 253 254 kvm_vcpu_set_in_spin_loop(vcpu, false); 255 kvm_vcpu_set_dy_eligible(vcpu, false); 256 vcpu->preempted = false; 257 258 r = kvm_arch_vcpu_init(vcpu); 259 if (r < 0) 260 goto fail_free_run; 261 return 0; 262 263 fail_free_run: 264 free_page((unsigned long)vcpu->run); 265 fail: 266 return r; 267 } 268 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 269 270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 271 { 272 put_pid(vcpu->pid); 273 kvm_arch_vcpu_uninit(vcpu); 274 free_page((unsigned long)vcpu->run); 275 } 276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 277 278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 280 { 281 return container_of(mn, struct kvm, mmu_notifier); 282 } 283 284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 285 struct mm_struct *mm, 286 unsigned long address) 287 { 288 struct kvm *kvm = mmu_notifier_to_kvm(mn); 289 int need_tlb_flush, idx; 290 291 /* 292 * When ->invalidate_page runs, the linux pte has been zapped 293 * already but the page is still allocated until 294 * ->invalidate_page returns. So if we increase the sequence 295 * here the kvm page fault will notice if the spte can't be 296 * established because the page is going to be freed. If 297 * instead the kvm page fault establishes the spte before 298 * ->invalidate_page runs, kvm_unmap_hva will release it 299 * before returning. 300 * 301 * The sequence increase only need to be seen at spin_unlock 302 * time, and not at spin_lock time. 303 * 304 * Increasing the sequence after the spin_unlock would be 305 * unsafe because the kvm page fault could then establish the 306 * pte after kvm_unmap_hva returned, without noticing the page 307 * is going to be freed. 308 */ 309 idx = srcu_read_lock(&kvm->srcu); 310 spin_lock(&kvm->mmu_lock); 311 312 kvm->mmu_notifier_seq++; 313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 314 /* we've to flush the tlb before the pages can be freed */ 315 if (need_tlb_flush) 316 kvm_flush_remote_tlbs(kvm); 317 318 spin_unlock(&kvm->mmu_lock); 319 320 kvm_arch_mmu_notifier_invalidate_page(kvm, address); 321 322 srcu_read_unlock(&kvm->srcu, idx); 323 } 324 325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 326 struct mm_struct *mm, 327 unsigned long address, 328 pte_t pte) 329 { 330 struct kvm *kvm = mmu_notifier_to_kvm(mn); 331 int idx; 332 333 idx = srcu_read_lock(&kvm->srcu); 334 spin_lock(&kvm->mmu_lock); 335 kvm->mmu_notifier_seq++; 336 kvm_set_spte_hva(kvm, address, pte); 337 spin_unlock(&kvm->mmu_lock); 338 srcu_read_unlock(&kvm->srcu, idx); 339 } 340 341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 342 struct mm_struct *mm, 343 unsigned long start, 344 unsigned long end) 345 { 346 struct kvm *kvm = mmu_notifier_to_kvm(mn); 347 int need_tlb_flush = 0, idx; 348 349 idx = srcu_read_lock(&kvm->srcu); 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * The count increase must become visible at unlock time as no 353 * spte can be established without taking the mmu_lock and 354 * count is also read inside the mmu_lock critical section. 355 */ 356 kvm->mmu_notifier_count++; 357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 358 need_tlb_flush |= kvm->tlbs_dirty; 359 /* we've to flush the tlb before the pages can be freed */ 360 if (need_tlb_flush) 361 kvm_flush_remote_tlbs(kvm); 362 363 spin_unlock(&kvm->mmu_lock); 364 srcu_read_unlock(&kvm->srcu, idx); 365 } 366 367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 368 struct mm_struct *mm, 369 unsigned long start, 370 unsigned long end) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 374 spin_lock(&kvm->mmu_lock); 375 /* 376 * This sequence increase will notify the kvm page fault that 377 * the page that is going to be mapped in the spte could have 378 * been freed. 379 */ 380 kvm->mmu_notifier_seq++; 381 smp_wmb(); 382 /* 383 * The above sequence increase must be visible before the 384 * below count decrease, which is ensured by the smp_wmb above 385 * in conjunction with the smp_rmb in mmu_notifier_retry(). 386 */ 387 kvm->mmu_notifier_count--; 388 spin_unlock(&kvm->mmu_lock); 389 390 BUG_ON(kvm->mmu_notifier_count < 0); 391 } 392 393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 394 struct mm_struct *mm, 395 unsigned long start, 396 unsigned long end) 397 { 398 struct kvm *kvm = mmu_notifier_to_kvm(mn); 399 int young, idx; 400 401 idx = srcu_read_lock(&kvm->srcu); 402 spin_lock(&kvm->mmu_lock); 403 404 young = kvm_age_hva(kvm, start, end); 405 if (young) 406 kvm_flush_remote_tlbs(kvm); 407 408 spin_unlock(&kvm->mmu_lock); 409 srcu_read_unlock(&kvm->srcu, idx); 410 411 return young; 412 } 413 414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 415 struct mm_struct *mm, 416 unsigned long start, 417 unsigned long end) 418 { 419 struct kvm *kvm = mmu_notifier_to_kvm(mn); 420 int young, idx; 421 422 idx = srcu_read_lock(&kvm->srcu); 423 spin_lock(&kvm->mmu_lock); 424 /* 425 * Even though we do not flush TLB, this will still adversely 426 * affect performance on pre-Haswell Intel EPT, where there is 427 * no EPT Access Bit to clear so that we have to tear down EPT 428 * tables instead. If we find this unacceptable, we can always 429 * add a parameter to kvm_age_hva so that it effectively doesn't 430 * do anything on clear_young. 431 * 432 * Also note that currently we never issue secondary TLB flushes 433 * from clear_young, leaving this job up to the regular system 434 * cadence. If we find this inaccurate, we might come up with a 435 * more sophisticated heuristic later. 436 */ 437 young = kvm_age_hva(kvm, start, end); 438 spin_unlock(&kvm->mmu_lock); 439 srcu_read_unlock(&kvm->srcu, idx); 440 441 return young; 442 } 443 444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 445 struct mm_struct *mm, 446 unsigned long address) 447 { 448 struct kvm *kvm = mmu_notifier_to_kvm(mn); 449 int young, idx; 450 451 idx = srcu_read_lock(&kvm->srcu); 452 spin_lock(&kvm->mmu_lock); 453 young = kvm_test_age_hva(kvm, address); 454 spin_unlock(&kvm->mmu_lock); 455 srcu_read_unlock(&kvm->srcu, idx); 456 457 return young; 458 } 459 460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 461 struct mm_struct *mm) 462 { 463 struct kvm *kvm = mmu_notifier_to_kvm(mn); 464 int idx; 465 466 idx = srcu_read_lock(&kvm->srcu); 467 kvm_arch_flush_shadow_all(kvm); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 472 .invalidate_page = kvm_mmu_notifier_invalidate_page, 473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 476 .clear_young = kvm_mmu_notifier_clear_young, 477 .test_young = kvm_mmu_notifier_test_young, 478 .change_pte = kvm_mmu_notifier_change_pte, 479 .release = kvm_mmu_notifier_release, 480 }; 481 482 static int kvm_init_mmu_notifier(struct kvm *kvm) 483 { 484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 486 } 487 488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 489 490 static int kvm_init_mmu_notifier(struct kvm *kvm) 491 { 492 return 0; 493 } 494 495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 496 497 static struct kvm_memslots *kvm_alloc_memslots(void) 498 { 499 int i; 500 struct kvm_memslots *slots; 501 502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 503 if (!slots) 504 return NULL; 505 506 /* 507 * Init kvm generation close to the maximum to easily test the 508 * code of handling generation number wrap-around. 509 */ 510 slots->generation = -150; 511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 512 slots->id_to_index[i] = slots->memslots[i].id = i; 513 514 return slots; 515 } 516 517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 518 { 519 if (!memslot->dirty_bitmap) 520 return; 521 522 kvfree(memslot->dirty_bitmap); 523 memslot->dirty_bitmap = NULL; 524 } 525 526 /* 527 * Free any memory in @free but not in @dont. 528 */ 529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 530 struct kvm_memory_slot *dont) 531 { 532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 533 kvm_destroy_dirty_bitmap(free); 534 535 kvm_arch_free_memslot(kvm, free, dont); 536 537 free->npages = 0; 538 } 539 540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 541 { 542 struct kvm_memory_slot *memslot; 543 544 if (!slots) 545 return; 546 547 kvm_for_each_memslot(memslot, slots) 548 kvm_free_memslot(kvm, memslot, NULL); 549 550 kvfree(slots); 551 } 552 553 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 554 { 555 int i; 556 557 if (!kvm->debugfs_dentry) 558 return; 559 560 debugfs_remove_recursive(kvm->debugfs_dentry); 561 562 for (i = 0; i < kvm_debugfs_num_entries; i++) 563 kfree(kvm->debugfs_stat_data[i]); 564 kfree(kvm->debugfs_stat_data); 565 } 566 567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 568 { 569 char dir_name[ITOA_MAX_LEN * 2]; 570 struct kvm_stat_data *stat_data; 571 struct kvm_stats_debugfs_item *p; 572 573 if (!debugfs_initialized()) 574 return 0; 575 576 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 577 kvm->debugfs_dentry = debugfs_create_dir(dir_name, 578 kvm_debugfs_dir); 579 if (!kvm->debugfs_dentry) 580 return -ENOMEM; 581 582 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 583 sizeof(*kvm->debugfs_stat_data), 584 GFP_KERNEL); 585 if (!kvm->debugfs_stat_data) 586 return -ENOMEM; 587 588 for (p = debugfs_entries; p->name; p++) { 589 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 590 if (!stat_data) 591 return -ENOMEM; 592 593 stat_data->kvm = kvm; 594 stat_data->offset = p->offset; 595 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 596 if (!debugfs_create_file(p->name, 0444, 597 kvm->debugfs_dentry, 598 stat_data, 599 stat_fops_per_vm[p->kind])) 600 return -ENOMEM; 601 } 602 return 0; 603 } 604 605 static struct kvm *kvm_create_vm(unsigned long type) 606 { 607 int r, i; 608 struct kvm *kvm = kvm_arch_alloc_vm(); 609 610 if (!kvm) 611 return ERR_PTR(-ENOMEM); 612 613 spin_lock_init(&kvm->mmu_lock); 614 atomic_inc(¤t->mm->mm_count); 615 kvm->mm = current->mm; 616 kvm_eventfd_init(kvm); 617 mutex_init(&kvm->lock); 618 mutex_init(&kvm->irq_lock); 619 mutex_init(&kvm->slots_lock); 620 atomic_set(&kvm->users_count, 1); 621 INIT_LIST_HEAD(&kvm->devices); 622 623 r = kvm_arch_init_vm(kvm, type); 624 if (r) 625 goto out_err_no_disable; 626 627 r = hardware_enable_all(); 628 if (r) 629 goto out_err_no_disable; 630 631 #ifdef CONFIG_HAVE_KVM_IRQFD 632 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 633 #endif 634 635 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 636 637 r = -ENOMEM; 638 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 639 kvm->memslots[i] = kvm_alloc_memslots(); 640 if (!kvm->memslots[i]) 641 goto out_err_no_srcu; 642 } 643 644 if (init_srcu_struct(&kvm->srcu)) 645 goto out_err_no_srcu; 646 if (init_srcu_struct(&kvm->irq_srcu)) 647 goto out_err_no_irq_srcu; 648 for (i = 0; i < KVM_NR_BUSES; i++) { 649 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 650 GFP_KERNEL); 651 if (!kvm->buses[i]) 652 goto out_err; 653 } 654 655 r = kvm_init_mmu_notifier(kvm); 656 if (r) 657 goto out_err; 658 659 spin_lock(&kvm_lock); 660 list_add(&kvm->vm_list, &vm_list); 661 spin_unlock(&kvm_lock); 662 663 preempt_notifier_inc(); 664 665 return kvm; 666 667 out_err: 668 cleanup_srcu_struct(&kvm->irq_srcu); 669 out_err_no_irq_srcu: 670 cleanup_srcu_struct(&kvm->srcu); 671 out_err_no_srcu: 672 hardware_disable_all(); 673 out_err_no_disable: 674 for (i = 0; i < KVM_NR_BUSES; i++) 675 kfree(kvm->buses[i]); 676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 677 kvm_free_memslots(kvm, kvm->memslots[i]); 678 kvm_arch_free_vm(kvm); 679 mmdrop(current->mm); 680 return ERR_PTR(r); 681 } 682 683 /* 684 * Avoid using vmalloc for a small buffer. 685 * Should not be used when the size is statically known. 686 */ 687 void *kvm_kvzalloc(unsigned long size) 688 { 689 if (size > PAGE_SIZE) 690 return vzalloc(size); 691 else 692 return kzalloc(size, GFP_KERNEL); 693 } 694 695 static void kvm_destroy_devices(struct kvm *kvm) 696 { 697 struct kvm_device *dev, *tmp; 698 699 /* 700 * We do not need to take the kvm->lock here, because nobody else 701 * has a reference to the struct kvm at this point and therefore 702 * cannot access the devices list anyhow. 703 */ 704 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 705 list_del(&dev->vm_node); 706 dev->ops->destroy(dev); 707 } 708 } 709 710 static void kvm_destroy_vm(struct kvm *kvm) 711 { 712 int i; 713 struct mm_struct *mm = kvm->mm; 714 715 kvm_destroy_vm_debugfs(kvm); 716 kvm_arch_sync_events(kvm); 717 spin_lock(&kvm_lock); 718 list_del(&kvm->vm_list); 719 spin_unlock(&kvm_lock); 720 kvm_free_irq_routing(kvm); 721 for (i = 0; i < KVM_NR_BUSES; i++) 722 kvm_io_bus_destroy(kvm->buses[i]); 723 kvm_coalesced_mmio_free(kvm); 724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 725 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 726 #else 727 kvm_arch_flush_shadow_all(kvm); 728 #endif 729 kvm_arch_destroy_vm(kvm); 730 kvm_destroy_devices(kvm); 731 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 732 kvm_free_memslots(kvm, kvm->memslots[i]); 733 cleanup_srcu_struct(&kvm->irq_srcu); 734 cleanup_srcu_struct(&kvm->srcu); 735 kvm_arch_free_vm(kvm); 736 preempt_notifier_dec(); 737 hardware_disable_all(); 738 mmdrop(mm); 739 } 740 741 void kvm_get_kvm(struct kvm *kvm) 742 { 743 atomic_inc(&kvm->users_count); 744 } 745 EXPORT_SYMBOL_GPL(kvm_get_kvm); 746 747 void kvm_put_kvm(struct kvm *kvm) 748 { 749 if (atomic_dec_and_test(&kvm->users_count)) 750 kvm_destroy_vm(kvm); 751 } 752 EXPORT_SYMBOL_GPL(kvm_put_kvm); 753 754 755 static int kvm_vm_release(struct inode *inode, struct file *filp) 756 { 757 struct kvm *kvm = filp->private_data; 758 759 kvm_irqfd_release(kvm); 760 761 kvm_put_kvm(kvm); 762 return 0; 763 } 764 765 /* 766 * Allocation size is twice as large as the actual dirty bitmap size. 767 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 768 */ 769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 770 { 771 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 772 773 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 774 if (!memslot->dirty_bitmap) 775 return -ENOMEM; 776 777 return 0; 778 } 779 780 /* 781 * Insert memslot and re-sort memslots based on their GFN, 782 * so binary search could be used to lookup GFN. 783 * Sorting algorithm takes advantage of having initially 784 * sorted array and known changed memslot position. 785 */ 786 static void update_memslots(struct kvm_memslots *slots, 787 struct kvm_memory_slot *new) 788 { 789 int id = new->id; 790 int i = slots->id_to_index[id]; 791 struct kvm_memory_slot *mslots = slots->memslots; 792 793 WARN_ON(mslots[i].id != id); 794 if (!new->npages) { 795 WARN_ON(!mslots[i].npages); 796 if (mslots[i].npages) 797 slots->used_slots--; 798 } else { 799 if (!mslots[i].npages) 800 slots->used_slots++; 801 } 802 803 while (i < KVM_MEM_SLOTS_NUM - 1 && 804 new->base_gfn <= mslots[i + 1].base_gfn) { 805 if (!mslots[i + 1].npages) 806 break; 807 mslots[i] = mslots[i + 1]; 808 slots->id_to_index[mslots[i].id] = i; 809 i++; 810 } 811 812 /* 813 * The ">=" is needed when creating a slot with base_gfn == 0, 814 * so that it moves before all those with base_gfn == npages == 0. 815 * 816 * On the other hand, if new->npages is zero, the above loop has 817 * already left i pointing to the beginning of the empty part of 818 * mslots, and the ">=" would move the hole backwards in this 819 * case---which is wrong. So skip the loop when deleting a slot. 820 */ 821 if (new->npages) { 822 while (i > 0 && 823 new->base_gfn >= mslots[i - 1].base_gfn) { 824 mslots[i] = mslots[i - 1]; 825 slots->id_to_index[mslots[i].id] = i; 826 i--; 827 } 828 } else 829 WARN_ON_ONCE(i != slots->used_slots); 830 831 mslots[i] = *new; 832 slots->id_to_index[mslots[i].id] = i; 833 } 834 835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 836 { 837 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 838 839 #ifdef __KVM_HAVE_READONLY_MEM 840 valid_flags |= KVM_MEM_READONLY; 841 #endif 842 843 if (mem->flags & ~valid_flags) 844 return -EINVAL; 845 846 return 0; 847 } 848 849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 850 int as_id, struct kvm_memslots *slots) 851 { 852 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 853 854 /* 855 * Set the low bit in the generation, which disables SPTE caching 856 * until the end of synchronize_srcu_expedited. 857 */ 858 WARN_ON(old_memslots->generation & 1); 859 slots->generation = old_memslots->generation + 1; 860 861 rcu_assign_pointer(kvm->memslots[as_id], slots); 862 synchronize_srcu_expedited(&kvm->srcu); 863 864 /* 865 * Increment the new memslot generation a second time. This prevents 866 * vm exits that race with memslot updates from caching a memslot 867 * generation that will (potentially) be valid forever. 868 */ 869 slots->generation++; 870 871 kvm_arch_memslots_updated(kvm, slots); 872 873 return old_memslots; 874 } 875 876 /* 877 * Allocate some memory and give it an address in the guest physical address 878 * space. 879 * 880 * Discontiguous memory is allowed, mostly for framebuffers. 881 * 882 * Must be called holding kvm->slots_lock for write. 883 */ 884 int __kvm_set_memory_region(struct kvm *kvm, 885 const struct kvm_userspace_memory_region *mem) 886 { 887 int r; 888 gfn_t base_gfn; 889 unsigned long npages; 890 struct kvm_memory_slot *slot; 891 struct kvm_memory_slot old, new; 892 struct kvm_memslots *slots = NULL, *old_memslots; 893 int as_id, id; 894 enum kvm_mr_change change; 895 896 r = check_memory_region_flags(mem); 897 if (r) 898 goto out; 899 900 r = -EINVAL; 901 as_id = mem->slot >> 16; 902 id = (u16)mem->slot; 903 904 /* General sanity checks */ 905 if (mem->memory_size & (PAGE_SIZE - 1)) 906 goto out; 907 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 908 goto out; 909 /* We can read the guest memory with __xxx_user() later on. */ 910 if ((id < KVM_USER_MEM_SLOTS) && 911 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 912 !access_ok(VERIFY_WRITE, 913 (void __user *)(unsigned long)mem->userspace_addr, 914 mem->memory_size))) 915 goto out; 916 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 917 goto out; 918 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 919 goto out; 920 921 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 922 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 923 npages = mem->memory_size >> PAGE_SHIFT; 924 925 if (npages > KVM_MEM_MAX_NR_PAGES) 926 goto out; 927 928 new = old = *slot; 929 930 new.id = id; 931 new.base_gfn = base_gfn; 932 new.npages = npages; 933 new.flags = mem->flags; 934 935 if (npages) { 936 if (!old.npages) 937 change = KVM_MR_CREATE; 938 else { /* Modify an existing slot. */ 939 if ((mem->userspace_addr != old.userspace_addr) || 940 (npages != old.npages) || 941 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 942 goto out; 943 944 if (base_gfn != old.base_gfn) 945 change = KVM_MR_MOVE; 946 else if (new.flags != old.flags) 947 change = KVM_MR_FLAGS_ONLY; 948 else { /* Nothing to change. */ 949 r = 0; 950 goto out; 951 } 952 } 953 } else { 954 if (!old.npages) 955 goto out; 956 957 change = KVM_MR_DELETE; 958 new.base_gfn = 0; 959 new.flags = 0; 960 } 961 962 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 963 /* Check for overlaps */ 964 r = -EEXIST; 965 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 966 if ((slot->id >= KVM_USER_MEM_SLOTS) || 967 (slot->id == id)) 968 continue; 969 if (!((base_gfn + npages <= slot->base_gfn) || 970 (base_gfn >= slot->base_gfn + slot->npages))) 971 goto out; 972 } 973 } 974 975 /* Free page dirty bitmap if unneeded */ 976 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 977 new.dirty_bitmap = NULL; 978 979 r = -ENOMEM; 980 if (change == KVM_MR_CREATE) { 981 new.userspace_addr = mem->userspace_addr; 982 983 if (kvm_arch_create_memslot(kvm, &new, npages)) 984 goto out_free; 985 } 986 987 /* Allocate page dirty bitmap if needed */ 988 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 989 if (kvm_create_dirty_bitmap(&new) < 0) 990 goto out_free; 991 } 992 993 slots = kvm_kvzalloc(sizeof(struct kvm_memslots)); 994 if (!slots) 995 goto out_free; 996 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 997 998 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 999 slot = id_to_memslot(slots, id); 1000 slot->flags |= KVM_MEMSLOT_INVALID; 1001 1002 old_memslots = install_new_memslots(kvm, as_id, slots); 1003 1004 /* slot was deleted or moved, clear iommu mapping */ 1005 kvm_iommu_unmap_pages(kvm, &old); 1006 /* From this point no new shadow pages pointing to a deleted, 1007 * or moved, memslot will be created. 1008 * 1009 * validation of sp->gfn happens in: 1010 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1011 * - kvm_is_visible_gfn (mmu_check_roots) 1012 */ 1013 kvm_arch_flush_shadow_memslot(kvm, slot); 1014 1015 /* 1016 * We can re-use the old_memslots from above, the only difference 1017 * from the currently installed memslots is the invalid flag. This 1018 * will get overwritten by update_memslots anyway. 1019 */ 1020 slots = old_memslots; 1021 } 1022 1023 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1024 if (r) 1025 goto out_slots; 1026 1027 /* actual memory is freed via old in kvm_free_memslot below */ 1028 if (change == KVM_MR_DELETE) { 1029 new.dirty_bitmap = NULL; 1030 memset(&new.arch, 0, sizeof(new.arch)); 1031 } 1032 1033 update_memslots(slots, &new); 1034 old_memslots = install_new_memslots(kvm, as_id, slots); 1035 1036 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1037 1038 kvm_free_memslot(kvm, &old, &new); 1039 kvfree(old_memslots); 1040 1041 /* 1042 * IOMMU mapping: New slots need to be mapped. Old slots need to be 1043 * un-mapped and re-mapped if their base changes. Since base change 1044 * unmapping is handled above with slot deletion, mapping alone is 1045 * needed here. Anything else the iommu might care about for existing 1046 * slots (size changes, userspace addr changes and read-only flag 1047 * changes) is disallowed above, so any other attribute changes getting 1048 * here can be skipped. 1049 */ 1050 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1051 r = kvm_iommu_map_pages(kvm, &new); 1052 return r; 1053 } 1054 1055 return 0; 1056 1057 out_slots: 1058 kvfree(slots); 1059 out_free: 1060 kvm_free_memslot(kvm, &new, &old); 1061 out: 1062 return r; 1063 } 1064 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1065 1066 int kvm_set_memory_region(struct kvm *kvm, 1067 const struct kvm_userspace_memory_region *mem) 1068 { 1069 int r; 1070 1071 mutex_lock(&kvm->slots_lock); 1072 r = __kvm_set_memory_region(kvm, mem); 1073 mutex_unlock(&kvm->slots_lock); 1074 return r; 1075 } 1076 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1077 1078 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1079 struct kvm_userspace_memory_region *mem) 1080 { 1081 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1082 return -EINVAL; 1083 1084 return kvm_set_memory_region(kvm, mem); 1085 } 1086 1087 int kvm_get_dirty_log(struct kvm *kvm, 1088 struct kvm_dirty_log *log, int *is_dirty) 1089 { 1090 struct kvm_memslots *slots; 1091 struct kvm_memory_slot *memslot; 1092 int r, i, as_id, id; 1093 unsigned long n; 1094 unsigned long any = 0; 1095 1096 r = -EINVAL; 1097 as_id = log->slot >> 16; 1098 id = (u16)log->slot; 1099 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1100 goto out; 1101 1102 slots = __kvm_memslots(kvm, as_id); 1103 memslot = id_to_memslot(slots, id); 1104 r = -ENOENT; 1105 if (!memslot->dirty_bitmap) 1106 goto out; 1107 1108 n = kvm_dirty_bitmap_bytes(memslot); 1109 1110 for (i = 0; !any && i < n/sizeof(long); ++i) 1111 any = memslot->dirty_bitmap[i]; 1112 1113 r = -EFAULT; 1114 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1115 goto out; 1116 1117 if (any) 1118 *is_dirty = 1; 1119 1120 r = 0; 1121 out: 1122 return r; 1123 } 1124 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1125 1126 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1127 /** 1128 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1129 * are dirty write protect them for next write. 1130 * @kvm: pointer to kvm instance 1131 * @log: slot id and address to which we copy the log 1132 * @is_dirty: flag set if any page is dirty 1133 * 1134 * We need to keep it in mind that VCPU threads can write to the bitmap 1135 * concurrently. So, to avoid losing track of dirty pages we keep the 1136 * following order: 1137 * 1138 * 1. Take a snapshot of the bit and clear it if needed. 1139 * 2. Write protect the corresponding page. 1140 * 3. Copy the snapshot to the userspace. 1141 * 4. Upon return caller flushes TLB's if needed. 1142 * 1143 * Between 2 and 4, the guest may write to the page using the remaining TLB 1144 * entry. This is not a problem because the page is reported dirty using 1145 * the snapshot taken before and step 4 ensures that writes done after 1146 * exiting to userspace will be logged for the next call. 1147 * 1148 */ 1149 int kvm_get_dirty_log_protect(struct kvm *kvm, 1150 struct kvm_dirty_log *log, bool *is_dirty) 1151 { 1152 struct kvm_memslots *slots; 1153 struct kvm_memory_slot *memslot; 1154 int r, i, as_id, id; 1155 unsigned long n; 1156 unsigned long *dirty_bitmap; 1157 unsigned long *dirty_bitmap_buffer; 1158 1159 r = -EINVAL; 1160 as_id = log->slot >> 16; 1161 id = (u16)log->slot; 1162 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1163 goto out; 1164 1165 slots = __kvm_memslots(kvm, as_id); 1166 memslot = id_to_memslot(slots, id); 1167 1168 dirty_bitmap = memslot->dirty_bitmap; 1169 r = -ENOENT; 1170 if (!dirty_bitmap) 1171 goto out; 1172 1173 n = kvm_dirty_bitmap_bytes(memslot); 1174 1175 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1176 memset(dirty_bitmap_buffer, 0, n); 1177 1178 spin_lock(&kvm->mmu_lock); 1179 *is_dirty = false; 1180 for (i = 0; i < n / sizeof(long); i++) { 1181 unsigned long mask; 1182 gfn_t offset; 1183 1184 if (!dirty_bitmap[i]) 1185 continue; 1186 1187 *is_dirty = true; 1188 1189 mask = xchg(&dirty_bitmap[i], 0); 1190 dirty_bitmap_buffer[i] = mask; 1191 1192 if (mask) { 1193 offset = i * BITS_PER_LONG; 1194 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1195 offset, mask); 1196 } 1197 } 1198 1199 spin_unlock(&kvm->mmu_lock); 1200 1201 r = -EFAULT; 1202 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1203 goto out; 1204 1205 r = 0; 1206 out: 1207 return r; 1208 } 1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1210 #endif 1211 1212 bool kvm_largepages_enabled(void) 1213 { 1214 return largepages_enabled; 1215 } 1216 1217 void kvm_disable_largepages(void) 1218 { 1219 largepages_enabled = false; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1222 1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1224 { 1225 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1226 } 1227 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1228 1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1230 { 1231 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1232 } 1233 1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1235 { 1236 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1237 1238 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1239 memslot->flags & KVM_MEMSLOT_INVALID) 1240 return false; 1241 1242 return true; 1243 } 1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1245 1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1247 { 1248 struct vm_area_struct *vma; 1249 unsigned long addr, size; 1250 1251 size = PAGE_SIZE; 1252 1253 addr = gfn_to_hva(kvm, gfn); 1254 if (kvm_is_error_hva(addr)) 1255 return PAGE_SIZE; 1256 1257 down_read(¤t->mm->mmap_sem); 1258 vma = find_vma(current->mm, addr); 1259 if (!vma) 1260 goto out; 1261 1262 size = vma_kernel_pagesize(vma); 1263 1264 out: 1265 up_read(¤t->mm->mmap_sem); 1266 1267 return size; 1268 } 1269 1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1271 { 1272 return slot->flags & KVM_MEM_READONLY; 1273 } 1274 1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1276 gfn_t *nr_pages, bool write) 1277 { 1278 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1279 return KVM_HVA_ERR_BAD; 1280 1281 if (memslot_is_readonly(slot) && write) 1282 return KVM_HVA_ERR_RO_BAD; 1283 1284 if (nr_pages) 1285 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1286 1287 return __gfn_to_hva_memslot(slot, gfn); 1288 } 1289 1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1291 gfn_t *nr_pages) 1292 { 1293 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1294 } 1295 1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1297 gfn_t gfn) 1298 { 1299 return gfn_to_hva_many(slot, gfn, NULL); 1300 } 1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1302 1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1304 { 1305 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1306 } 1307 EXPORT_SYMBOL_GPL(gfn_to_hva); 1308 1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1310 { 1311 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1312 } 1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1314 1315 /* 1316 * If writable is set to false, the hva returned by this function is only 1317 * allowed to be read. 1318 */ 1319 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1320 gfn_t gfn, bool *writable) 1321 { 1322 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1323 1324 if (!kvm_is_error_hva(hva) && writable) 1325 *writable = !memslot_is_readonly(slot); 1326 1327 return hva; 1328 } 1329 1330 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1331 { 1332 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1333 1334 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1335 } 1336 1337 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1338 { 1339 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1340 1341 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1342 } 1343 1344 static int get_user_page_nowait(unsigned long start, int write, 1345 struct page **page) 1346 { 1347 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1348 1349 if (write) 1350 flags |= FOLL_WRITE; 1351 1352 return __get_user_pages(current, current->mm, start, 1, flags, page, 1353 NULL, NULL); 1354 } 1355 1356 static inline int check_user_page_hwpoison(unsigned long addr) 1357 { 1358 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1359 1360 rc = __get_user_pages(current, current->mm, addr, 1, 1361 flags, NULL, NULL, NULL); 1362 return rc == -EHWPOISON; 1363 } 1364 1365 /* 1366 * The atomic path to get the writable pfn which will be stored in @pfn, 1367 * true indicates success, otherwise false is returned. 1368 */ 1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1370 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1371 { 1372 struct page *page[1]; 1373 int npages; 1374 1375 if (!(async || atomic)) 1376 return false; 1377 1378 /* 1379 * Fast pin a writable pfn only if it is a write fault request 1380 * or the caller allows to map a writable pfn for a read fault 1381 * request. 1382 */ 1383 if (!(write_fault || writable)) 1384 return false; 1385 1386 npages = __get_user_pages_fast(addr, 1, 1, page); 1387 if (npages == 1) { 1388 *pfn = page_to_pfn(page[0]); 1389 1390 if (writable) 1391 *writable = true; 1392 return true; 1393 } 1394 1395 return false; 1396 } 1397 1398 /* 1399 * The slow path to get the pfn of the specified host virtual address, 1400 * 1 indicates success, -errno is returned if error is detected. 1401 */ 1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1403 bool *writable, kvm_pfn_t *pfn) 1404 { 1405 struct page *page[1]; 1406 int npages = 0; 1407 1408 might_sleep(); 1409 1410 if (writable) 1411 *writable = write_fault; 1412 1413 if (async) { 1414 down_read(¤t->mm->mmap_sem); 1415 npages = get_user_page_nowait(addr, write_fault, page); 1416 up_read(¤t->mm->mmap_sem); 1417 } else 1418 npages = __get_user_pages_unlocked(current, current->mm, addr, 1, 1419 write_fault, 0, page, 1420 FOLL_TOUCH|FOLL_HWPOISON); 1421 if (npages != 1) 1422 return npages; 1423 1424 /* map read fault as writable if possible */ 1425 if (unlikely(!write_fault) && writable) { 1426 struct page *wpage[1]; 1427 1428 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1429 if (npages == 1) { 1430 *writable = true; 1431 put_page(page[0]); 1432 page[0] = wpage[0]; 1433 } 1434 1435 npages = 1; 1436 } 1437 *pfn = page_to_pfn(page[0]); 1438 return npages; 1439 } 1440 1441 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1442 { 1443 if (unlikely(!(vma->vm_flags & VM_READ))) 1444 return false; 1445 1446 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1453 unsigned long addr, bool *async, 1454 bool write_fault, kvm_pfn_t *p_pfn) 1455 { 1456 unsigned long pfn; 1457 int r; 1458 1459 r = follow_pfn(vma, addr, &pfn); 1460 if (r) { 1461 /* 1462 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1463 * not call the fault handler, so do it here. 1464 */ 1465 bool unlocked = false; 1466 r = fixup_user_fault(current, current->mm, addr, 1467 (write_fault ? FAULT_FLAG_WRITE : 0), 1468 &unlocked); 1469 if (unlocked) 1470 return -EAGAIN; 1471 if (r) 1472 return r; 1473 1474 r = follow_pfn(vma, addr, &pfn); 1475 if (r) 1476 return r; 1477 1478 } 1479 1480 1481 /* 1482 * Get a reference here because callers of *hva_to_pfn* and 1483 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1484 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1485 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1486 * simply do nothing for reserved pfns. 1487 * 1488 * Whoever called remap_pfn_range is also going to call e.g. 1489 * unmap_mapping_range before the underlying pages are freed, 1490 * causing a call to our MMU notifier. 1491 */ 1492 kvm_get_pfn(pfn); 1493 1494 *p_pfn = pfn; 1495 return 0; 1496 } 1497 1498 /* 1499 * Pin guest page in memory and return its pfn. 1500 * @addr: host virtual address which maps memory to the guest 1501 * @atomic: whether this function can sleep 1502 * @async: whether this function need to wait IO complete if the 1503 * host page is not in the memory 1504 * @write_fault: whether we should get a writable host page 1505 * @writable: whether it allows to map a writable host page for !@write_fault 1506 * 1507 * The function will map a writable host page for these two cases: 1508 * 1): @write_fault = true 1509 * 2): @write_fault = false && @writable, @writable will tell the caller 1510 * whether the mapping is writable. 1511 */ 1512 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1513 bool write_fault, bool *writable) 1514 { 1515 struct vm_area_struct *vma; 1516 kvm_pfn_t pfn = 0; 1517 int npages, r; 1518 1519 /* we can do it either atomically or asynchronously, not both */ 1520 BUG_ON(atomic && async); 1521 1522 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1523 return pfn; 1524 1525 if (atomic) 1526 return KVM_PFN_ERR_FAULT; 1527 1528 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1529 if (npages == 1) 1530 return pfn; 1531 1532 down_read(¤t->mm->mmap_sem); 1533 if (npages == -EHWPOISON || 1534 (!async && check_user_page_hwpoison(addr))) { 1535 pfn = KVM_PFN_ERR_HWPOISON; 1536 goto exit; 1537 } 1538 1539 retry: 1540 vma = find_vma_intersection(current->mm, addr, addr + 1); 1541 1542 if (vma == NULL) 1543 pfn = KVM_PFN_ERR_FAULT; 1544 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1545 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn); 1546 if (r == -EAGAIN) 1547 goto retry; 1548 if (r < 0) 1549 pfn = KVM_PFN_ERR_FAULT; 1550 } else { 1551 if (async && vma_is_valid(vma, write_fault)) 1552 *async = true; 1553 pfn = KVM_PFN_ERR_FAULT; 1554 } 1555 exit: 1556 up_read(¤t->mm->mmap_sem); 1557 return pfn; 1558 } 1559 1560 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1561 bool atomic, bool *async, bool write_fault, 1562 bool *writable) 1563 { 1564 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1565 1566 if (addr == KVM_HVA_ERR_RO_BAD) { 1567 if (writable) 1568 *writable = false; 1569 return KVM_PFN_ERR_RO_FAULT; 1570 } 1571 1572 if (kvm_is_error_hva(addr)) { 1573 if (writable) 1574 *writable = false; 1575 return KVM_PFN_NOSLOT; 1576 } 1577 1578 /* Do not map writable pfn in the readonly memslot. */ 1579 if (writable && memslot_is_readonly(slot)) { 1580 *writable = false; 1581 writable = NULL; 1582 } 1583 1584 return hva_to_pfn(addr, atomic, async, write_fault, 1585 writable); 1586 } 1587 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1588 1589 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1590 bool *writable) 1591 { 1592 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1593 write_fault, writable); 1594 } 1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1596 1597 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1598 { 1599 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1600 } 1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1602 1603 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1604 { 1605 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1606 } 1607 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1608 1609 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1610 { 1611 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1612 } 1613 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1614 1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1616 { 1617 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1618 } 1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1620 1621 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1622 { 1623 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1624 } 1625 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1626 1627 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1628 { 1629 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1630 } 1631 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1632 1633 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1634 struct page **pages, int nr_pages) 1635 { 1636 unsigned long addr; 1637 gfn_t entry; 1638 1639 addr = gfn_to_hva_many(slot, gfn, &entry); 1640 if (kvm_is_error_hva(addr)) 1641 return -1; 1642 1643 if (entry < nr_pages) 1644 return 0; 1645 1646 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1647 } 1648 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1649 1650 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1651 { 1652 if (is_error_noslot_pfn(pfn)) 1653 return KVM_ERR_PTR_BAD_PAGE; 1654 1655 if (kvm_is_reserved_pfn(pfn)) { 1656 WARN_ON(1); 1657 return KVM_ERR_PTR_BAD_PAGE; 1658 } 1659 1660 return pfn_to_page(pfn); 1661 } 1662 1663 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1664 { 1665 kvm_pfn_t pfn; 1666 1667 pfn = gfn_to_pfn(kvm, gfn); 1668 1669 return kvm_pfn_to_page(pfn); 1670 } 1671 EXPORT_SYMBOL_GPL(gfn_to_page); 1672 1673 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1674 { 1675 kvm_pfn_t pfn; 1676 1677 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1678 1679 return kvm_pfn_to_page(pfn); 1680 } 1681 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1682 1683 void kvm_release_page_clean(struct page *page) 1684 { 1685 WARN_ON(is_error_page(page)); 1686 1687 kvm_release_pfn_clean(page_to_pfn(page)); 1688 } 1689 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1690 1691 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1692 { 1693 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1694 put_page(pfn_to_page(pfn)); 1695 } 1696 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1697 1698 void kvm_release_page_dirty(struct page *page) 1699 { 1700 WARN_ON(is_error_page(page)); 1701 1702 kvm_release_pfn_dirty(page_to_pfn(page)); 1703 } 1704 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1705 1706 static void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1707 { 1708 kvm_set_pfn_dirty(pfn); 1709 kvm_release_pfn_clean(pfn); 1710 } 1711 1712 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1713 { 1714 if (!kvm_is_reserved_pfn(pfn)) { 1715 struct page *page = pfn_to_page(pfn); 1716 1717 if (!PageReserved(page)) 1718 SetPageDirty(page); 1719 } 1720 } 1721 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1722 1723 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1724 { 1725 if (!kvm_is_reserved_pfn(pfn)) 1726 mark_page_accessed(pfn_to_page(pfn)); 1727 } 1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1729 1730 void kvm_get_pfn(kvm_pfn_t pfn) 1731 { 1732 if (!kvm_is_reserved_pfn(pfn)) 1733 get_page(pfn_to_page(pfn)); 1734 } 1735 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1736 1737 static int next_segment(unsigned long len, int offset) 1738 { 1739 if (len > PAGE_SIZE - offset) 1740 return PAGE_SIZE - offset; 1741 else 1742 return len; 1743 } 1744 1745 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1746 void *data, int offset, int len) 1747 { 1748 int r; 1749 unsigned long addr; 1750 1751 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1752 if (kvm_is_error_hva(addr)) 1753 return -EFAULT; 1754 r = __copy_from_user(data, (void __user *)addr + offset, len); 1755 if (r) 1756 return -EFAULT; 1757 return 0; 1758 } 1759 1760 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1761 int len) 1762 { 1763 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1764 1765 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1766 } 1767 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1768 1769 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1770 int offset, int len) 1771 { 1772 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1773 1774 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1775 } 1776 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1777 1778 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1779 { 1780 gfn_t gfn = gpa >> PAGE_SHIFT; 1781 int seg; 1782 int offset = offset_in_page(gpa); 1783 int ret; 1784 1785 while ((seg = next_segment(len, offset)) != 0) { 1786 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1787 if (ret < 0) 1788 return ret; 1789 offset = 0; 1790 len -= seg; 1791 data += seg; 1792 ++gfn; 1793 } 1794 return 0; 1795 } 1796 EXPORT_SYMBOL_GPL(kvm_read_guest); 1797 1798 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1799 { 1800 gfn_t gfn = gpa >> PAGE_SHIFT; 1801 int seg; 1802 int offset = offset_in_page(gpa); 1803 int ret; 1804 1805 while ((seg = next_segment(len, offset)) != 0) { 1806 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1807 if (ret < 0) 1808 return ret; 1809 offset = 0; 1810 len -= seg; 1811 data += seg; 1812 ++gfn; 1813 } 1814 return 0; 1815 } 1816 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1817 1818 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1819 void *data, int offset, unsigned long len) 1820 { 1821 int r; 1822 unsigned long addr; 1823 1824 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1825 if (kvm_is_error_hva(addr)) 1826 return -EFAULT; 1827 pagefault_disable(); 1828 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1829 pagefault_enable(); 1830 if (r) 1831 return -EFAULT; 1832 return 0; 1833 } 1834 1835 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1836 unsigned long len) 1837 { 1838 gfn_t gfn = gpa >> PAGE_SHIFT; 1839 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1840 int offset = offset_in_page(gpa); 1841 1842 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1843 } 1844 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1845 1846 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1847 void *data, unsigned long len) 1848 { 1849 gfn_t gfn = gpa >> PAGE_SHIFT; 1850 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1851 int offset = offset_in_page(gpa); 1852 1853 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1854 } 1855 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1856 1857 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1858 const void *data, int offset, int len) 1859 { 1860 int r; 1861 unsigned long addr; 1862 1863 addr = gfn_to_hva_memslot(memslot, gfn); 1864 if (kvm_is_error_hva(addr)) 1865 return -EFAULT; 1866 r = __copy_to_user((void __user *)addr + offset, data, len); 1867 if (r) 1868 return -EFAULT; 1869 mark_page_dirty_in_slot(memslot, gfn); 1870 return 0; 1871 } 1872 1873 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1874 const void *data, int offset, int len) 1875 { 1876 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1877 1878 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1879 } 1880 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1881 1882 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1883 const void *data, int offset, int len) 1884 { 1885 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1886 1887 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1888 } 1889 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1890 1891 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1892 unsigned long len) 1893 { 1894 gfn_t gfn = gpa >> PAGE_SHIFT; 1895 int seg; 1896 int offset = offset_in_page(gpa); 1897 int ret; 1898 1899 while ((seg = next_segment(len, offset)) != 0) { 1900 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1901 if (ret < 0) 1902 return ret; 1903 offset = 0; 1904 len -= seg; 1905 data += seg; 1906 ++gfn; 1907 } 1908 return 0; 1909 } 1910 EXPORT_SYMBOL_GPL(kvm_write_guest); 1911 1912 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1913 unsigned long len) 1914 { 1915 gfn_t gfn = gpa >> PAGE_SHIFT; 1916 int seg; 1917 int offset = offset_in_page(gpa); 1918 int ret; 1919 1920 while ((seg = next_segment(len, offset)) != 0) { 1921 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1922 if (ret < 0) 1923 return ret; 1924 offset = 0; 1925 len -= seg; 1926 data += seg; 1927 ++gfn; 1928 } 1929 return 0; 1930 } 1931 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1932 1933 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1934 gpa_t gpa, unsigned long len) 1935 { 1936 struct kvm_memslots *slots = kvm_memslots(kvm); 1937 int offset = offset_in_page(gpa); 1938 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1939 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1940 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1941 gfn_t nr_pages_avail; 1942 1943 ghc->gpa = gpa; 1944 ghc->generation = slots->generation; 1945 ghc->len = len; 1946 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1947 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1948 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1949 ghc->hva += offset; 1950 } else { 1951 /* 1952 * If the requested region crosses two memslots, we still 1953 * verify that the entire region is valid here. 1954 */ 1955 while (start_gfn <= end_gfn) { 1956 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1957 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1958 &nr_pages_avail); 1959 if (kvm_is_error_hva(ghc->hva)) 1960 return -EFAULT; 1961 start_gfn += nr_pages_avail; 1962 } 1963 /* Use the slow path for cross page reads and writes. */ 1964 ghc->memslot = NULL; 1965 } 1966 return 0; 1967 } 1968 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1969 1970 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1971 void *data, unsigned long len) 1972 { 1973 struct kvm_memslots *slots = kvm_memslots(kvm); 1974 int r; 1975 1976 BUG_ON(len > ghc->len); 1977 1978 if (slots->generation != ghc->generation) 1979 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1980 1981 if (unlikely(!ghc->memslot)) 1982 return kvm_write_guest(kvm, ghc->gpa, data, len); 1983 1984 if (kvm_is_error_hva(ghc->hva)) 1985 return -EFAULT; 1986 1987 r = __copy_to_user((void __user *)ghc->hva, data, len); 1988 if (r) 1989 return -EFAULT; 1990 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1991 1992 return 0; 1993 } 1994 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1995 1996 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1997 void *data, unsigned long len) 1998 { 1999 struct kvm_memslots *slots = kvm_memslots(kvm); 2000 int r; 2001 2002 BUG_ON(len > ghc->len); 2003 2004 if (slots->generation != ghc->generation) 2005 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 2006 2007 if (unlikely(!ghc->memslot)) 2008 return kvm_read_guest(kvm, ghc->gpa, data, len); 2009 2010 if (kvm_is_error_hva(ghc->hva)) 2011 return -EFAULT; 2012 2013 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2014 if (r) 2015 return -EFAULT; 2016 2017 return 0; 2018 } 2019 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2020 2021 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2022 { 2023 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2024 2025 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2026 } 2027 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2028 2029 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2030 { 2031 gfn_t gfn = gpa >> PAGE_SHIFT; 2032 int seg; 2033 int offset = offset_in_page(gpa); 2034 int ret; 2035 2036 while ((seg = next_segment(len, offset)) != 0) { 2037 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2038 if (ret < 0) 2039 return ret; 2040 offset = 0; 2041 len -= seg; 2042 ++gfn; 2043 } 2044 return 0; 2045 } 2046 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2047 2048 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2049 gfn_t gfn) 2050 { 2051 if (memslot && memslot->dirty_bitmap) { 2052 unsigned long rel_gfn = gfn - memslot->base_gfn; 2053 2054 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2055 } 2056 } 2057 2058 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2059 { 2060 struct kvm_memory_slot *memslot; 2061 2062 memslot = gfn_to_memslot(kvm, gfn); 2063 mark_page_dirty_in_slot(memslot, gfn); 2064 } 2065 EXPORT_SYMBOL_GPL(mark_page_dirty); 2066 2067 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2068 { 2069 struct kvm_memory_slot *memslot; 2070 2071 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2072 mark_page_dirty_in_slot(memslot, gfn); 2073 } 2074 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2075 2076 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2077 { 2078 unsigned int old, val, grow; 2079 2080 old = val = vcpu->halt_poll_ns; 2081 grow = READ_ONCE(halt_poll_ns_grow); 2082 /* 10us base */ 2083 if (val == 0 && grow) 2084 val = 10000; 2085 else 2086 val *= grow; 2087 2088 if (val > halt_poll_ns) 2089 val = halt_poll_ns; 2090 2091 vcpu->halt_poll_ns = val; 2092 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2093 } 2094 2095 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2096 { 2097 unsigned int old, val, shrink; 2098 2099 old = val = vcpu->halt_poll_ns; 2100 shrink = READ_ONCE(halt_poll_ns_shrink); 2101 if (shrink == 0) 2102 val = 0; 2103 else 2104 val /= shrink; 2105 2106 vcpu->halt_poll_ns = val; 2107 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2108 } 2109 2110 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2111 { 2112 if (kvm_arch_vcpu_runnable(vcpu)) { 2113 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2114 return -EINTR; 2115 } 2116 if (kvm_cpu_has_pending_timer(vcpu)) 2117 return -EINTR; 2118 if (signal_pending(current)) 2119 return -EINTR; 2120 2121 return 0; 2122 } 2123 2124 /* 2125 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2126 */ 2127 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2128 { 2129 ktime_t start, cur; 2130 DECLARE_SWAITQUEUE(wait); 2131 bool waited = false; 2132 u64 block_ns; 2133 2134 start = cur = ktime_get(); 2135 if (vcpu->halt_poll_ns) { 2136 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2137 2138 ++vcpu->stat.halt_attempted_poll; 2139 do { 2140 /* 2141 * This sets KVM_REQ_UNHALT if an interrupt 2142 * arrives. 2143 */ 2144 if (kvm_vcpu_check_block(vcpu) < 0) { 2145 ++vcpu->stat.halt_successful_poll; 2146 if (!vcpu_valid_wakeup(vcpu)) 2147 ++vcpu->stat.halt_poll_invalid; 2148 goto out; 2149 } 2150 cur = ktime_get(); 2151 } while (single_task_running() && ktime_before(cur, stop)); 2152 } 2153 2154 kvm_arch_vcpu_blocking(vcpu); 2155 2156 for (;;) { 2157 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2158 2159 if (kvm_vcpu_check_block(vcpu) < 0) 2160 break; 2161 2162 waited = true; 2163 schedule(); 2164 } 2165 2166 finish_swait(&vcpu->wq, &wait); 2167 cur = ktime_get(); 2168 2169 kvm_arch_vcpu_unblocking(vcpu); 2170 out: 2171 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2172 2173 if (!vcpu_valid_wakeup(vcpu)) 2174 shrink_halt_poll_ns(vcpu); 2175 else if (halt_poll_ns) { 2176 if (block_ns <= vcpu->halt_poll_ns) 2177 ; 2178 /* we had a long block, shrink polling */ 2179 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2180 shrink_halt_poll_ns(vcpu); 2181 /* we had a short halt and our poll time is too small */ 2182 else if (vcpu->halt_poll_ns < halt_poll_ns && 2183 block_ns < halt_poll_ns) 2184 grow_halt_poll_ns(vcpu); 2185 } else 2186 vcpu->halt_poll_ns = 0; 2187 2188 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2189 kvm_arch_vcpu_block_finish(vcpu); 2190 } 2191 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2192 2193 #ifndef CONFIG_S390 2194 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2195 { 2196 struct swait_queue_head *wqp; 2197 2198 wqp = kvm_arch_vcpu_wq(vcpu); 2199 if (swait_active(wqp)) { 2200 swake_up(wqp); 2201 ++vcpu->stat.halt_wakeup; 2202 } 2203 2204 } 2205 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2206 2207 /* 2208 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2209 */ 2210 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2211 { 2212 int me; 2213 int cpu = vcpu->cpu; 2214 2215 kvm_vcpu_wake_up(vcpu); 2216 me = get_cpu(); 2217 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2218 if (kvm_arch_vcpu_should_kick(vcpu)) 2219 smp_send_reschedule(cpu); 2220 put_cpu(); 2221 } 2222 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2223 #endif /* !CONFIG_S390 */ 2224 2225 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2226 { 2227 struct pid *pid; 2228 struct task_struct *task = NULL; 2229 int ret = 0; 2230 2231 rcu_read_lock(); 2232 pid = rcu_dereference(target->pid); 2233 if (pid) 2234 task = get_pid_task(pid, PIDTYPE_PID); 2235 rcu_read_unlock(); 2236 if (!task) 2237 return ret; 2238 ret = yield_to(task, 1); 2239 put_task_struct(task); 2240 2241 return ret; 2242 } 2243 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2244 2245 /* 2246 * Helper that checks whether a VCPU is eligible for directed yield. 2247 * Most eligible candidate to yield is decided by following heuristics: 2248 * 2249 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2250 * (preempted lock holder), indicated by @in_spin_loop. 2251 * Set at the beiginning and cleared at the end of interception/PLE handler. 2252 * 2253 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2254 * chance last time (mostly it has become eligible now since we have probably 2255 * yielded to lockholder in last iteration. This is done by toggling 2256 * @dy_eligible each time a VCPU checked for eligibility.) 2257 * 2258 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2259 * to preempted lock-holder could result in wrong VCPU selection and CPU 2260 * burning. Giving priority for a potential lock-holder increases lock 2261 * progress. 2262 * 2263 * Since algorithm is based on heuristics, accessing another VCPU data without 2264 * locking does not harm. It may result in trying to yield to same VCPU, fail 2265 * and continue with next VCPU and so on. 2266 */ 2267 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2268 { 2269 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2270 bool eligible; 2271 2272 eligible = !vcpu->spin_loop.in_spin_loop || 2273 vcpu->spin_loop.dy_eligible; 2274 2275 if (vcpu->spin_loop.in_spin_loop) 2276 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2277 2278 return eligible; 2279 #else 2280 return true; 2281 #endif 2282 } 2283 2284 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 2285 { 2286 struct kvm *kvm = me->kvm; 2287 struct kvm_vcpu *vcpu; 2288 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2289 int yielded = 0; 2290 int try = 3; 2291 int pass; 2292 int i; 2293 2294 kvm_vcpu_set_in_spin_loop(me, true); 2295 /* 2296 * We boost the priority of a VCPU that is runnable but not 2297 * currently running, because it got preempted by something 2298 * else and called schedule in __vcpu_run. Hopefully that 2299 * VCPU is holding the lock that we need and will release it. 2300 * We approximate round-robin by starting at the last boosted VCPU. 2301 */ 2302 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2303 kvm_for_each_vcpu(i, vcpu, kvm) { 2304 if (!pass && i <= last_boosted_vcpu) { 2305 i = last_boosted_vcpu; 2306 continue; 2307 } else if (pass && i > last_boosted_vcpu) 2308 break; 2309 if (!ACCESS_ONCE(vcpu->preempted)) 2310 continue; 2311 if (vcpu == me) 2312 continue; 2313 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2314 continue; 2315 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2316 continue; 2317 2318 yielded = kvm_vcpu_yield_to(vcpu); 2319 if (yielded > 0) { 2320 kvm->last_boosted_vcpu = i; 2321 break; 2322 } else if (yielded < 0) { 2323 try--; 2324 if (!try) 2325 break; 2326 } 2327 } 2328 } 2329 kvm_vcpu_set_in_spin_loop(me, false); 2330 2331 /* Ensure vcpu is not eligible during next spinloop */ 2332 kvm_vcpu_set_dy_eligible(me, false); 2333 } 2334 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2335 2336 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2337 { 2338 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 2339 struct page *page; 2340 2341 if (vmf->pgoff == 0) 2342 page = virt_to_page(vcpu->run); 2343 #ifdef CONFIG_X86 2344 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2345 page = virt_to_page(vcpu->arch.pio_data); 2346 #endif 2347 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2348 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2349 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2350 #endif 2351 else 2352 return kvm_arch_vcpu_fault(vcpu, vmf); 2353 get_page(page); 2354 vmf->page = page; 2355 return 0; 2356 } 2357 2358 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2359 .fault = kvm_vcpu_fault, 2360 }; 2361 2362 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2363 { 2364 vma->vm_ops = &kvm_vcpu_vm_ops; 2365 return 0; 2366 } 2367 2368 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2369 { 2370 struct kvm_vcpu *vcpu = filp->private_data; 2371 2372 kvm_put_kvm(vcpu->kvm); 2373 return 0; 2374 } 2375 2376 static struct file_operations kvm_vcpu_fops = { 2377 .release = kvm_vcpu_release, 2378 .unlocked_ioctl = kvm_vcpu_ioctl, 2379 #ifdef CONFIG_KVM_COMPAT 2380 .compat_ioctl = kvm_vcpu_compat_ioctl, 2381 #endif 2382 .mmap = kvm_vcpu_mmap, 2383 .llseek = noop_llseek, 2384 }; 2385 2386 /* 2387 * Allocates an inode for the vcpu. 2388 */ 2389 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2390 { 2391 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2392 } 2393 2394 /* 2395 * Creates some virtual cpus. Good luck creating more than one. 2396 */ 2397 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2398 { 2399 int r; 2400 struct kvm_vcpu *vcpu; 2401 2402 if (id >= KVM_MAX_VCPU_ID) 2403 return -EINVAL; 2404 2405 mutex_lock(&kvm->lock); 2406 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2407 mutex_unlock(&kvm->lock); 2408 return -EINVAL; 2409 } 2410 2411 kvm->created_vcpus++; 2412 mutex_unlock(&kvm->lock); 2413 2414 vcpu = kvm_arch_vcpu_create(kvm, id); 2415 if (IS_ERR(vcpu)) { 2416 r = PTR_ERR(vcpu); 2417 goto vcpu_decrement; 2418 } 2419 2420 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2421 2422 r = kvm_arch_vcpu_setup(vcpu); 2423 if (r) 2424 goto vcpu_destroy; 2425 2426 mutex_lock(&kvm->lock); 2427 if (kvm_get_vcpu_by_id(kvm, id)) { 2428 r = -EEXIST; 2429 goto unlock_vcpu_destroy; 2430 } 2431 2432 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2433 2434 /* Now it's all set up, let userspace reach it */ 2435 kvm_get_kvm(kvm); 2436 r = create_vcpu_fd(vcpu); 2437 if (r < 0) { 2438 kvm_put_kvm(kvm); 2439 goto unlock_vcpu_destroy; 2440 } 2441 2442 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2443 2444 /* 2445 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2446 * before kvm->online_vcpu's incremented value. 2447 */ 2448 smp_wmb(); 2449 atomic_inc(&kvm->online_vcpus); 2450 2451 mutex_unlock(&kvm->lock); 2452 kvm_arch_vcpu_postcreate(vcpu); 2453 return r; 2454 2455 unlock_vcpu_destroy: 2456 mutex_unlock(&kvm->lock); 2457 vcpu_destroy: 2458 kvm_arch_vcpu_destroy(vcpu); 2459 vcpu_decrement: 2460 mutex_lock(&kvm->lock); 2461 kvm->created_vcpus--; 2462 mutex_unlock(&kvm->lock); 2463 return r; 2464 } 2465 2466 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2467 { 2468 if (sigset) { 2469 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2470 vcpu->sigset_active = 1; 2471 vcpu->sigset = *sigset; 2472 } else 2473 vcpu->sigset_active = 0; 2474 return 0; 2475 } 2476 2477 static long kvm_vcpu_ioctl(struct file *filp, 2478 unsigned int ioctl, unsigned long arg) 2479 { 2480 struct kvm_vcpu *vcpu = filp->private_data; 2481 void __user *argp = (void __user *)arg; 2482 int r; 2483 struct kvm_fpu *fpu = NULL; 2484 struct kvm_sregs *kvm_sregs = NULL; 2485 2486 if (vcpu->kvm->mm != current->mm) 2487 return -EIO; 2488 2489 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2490 return -EINVAL; 2491 2492 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 2493 /* 2494 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 2495 * so vcpu_load() would break it. 2496 */ 2497 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT) 2498 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2499 #endif 2500 2501 2502 r = vcpu_load(vcpu); 2503 if (r) 2504 return r; 2505 switch (ioctl) { 2506 case KVM_RUN: 2507 r = -EINVAL; 2508 if (arg) 2509 goto out; 2510 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 2511 /* The thread running this VCPU changed. */ 2512 struct pid *oldpid = vcpu->pid; 2513 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 2514 2515 rcu_assign_pointer(vcpu->pid, newpid); 2516 if (oldpid) 2517 synchronize_rcu(); 2518 put_pid(oldpid); 2519 } 2520 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2521 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2522 break; 2523 case KVM_GET_REGS: { 2524 struct kvm_regs *kvm_regs; 2525 2526 r = -ENOMEM; 2527 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2528 if (!kvm_regs) 2529 goto out; 2530 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2531 if (r) 2532 goto out_free1; 2533 r = -EFAULT; 2534 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2535 goto out_free1; 2536 r = 0; 2537 out_free1: 2538 kfree(kvm_regs); 2539 break; 2540 } 2541 case KVM_SET_REGS: { 2542 struct kvm_regs *kvm_regs; 2543 2544 r = -ENOMEM; 2545 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2546 if (IS_ERR(kvm_regs)) { 2547 r = PTR_ERR(kvm_regs); 2548 goto out; 2549 } 2550 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2551 kfree(kvm_regs); 2552 break; 2553 } 2554 case KVM_GET_SREGS: { 2555 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2556 r = -ENOMEM; 2557 if (!kvm_sregs) 2558 goto out; 2559 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2560 if (r) 2561 goto out; 2562 r = -EFAULT; 2563 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2564 goto out; 2565 r = 0; 2566 break; 2567 } 2568 case KVM_SET_SREGS: { 2569 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2570 if (IS_ERR(kvm_sregs)) { 2571 r = PTR_ERR(kvm_sregs); 2572 kvm_sregs = NULL; 2573 goto out; 2574 } 2575 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2576 break; 2577 } 2578 case KVM_GET_MP_STATE: { 2579 struct kvm_mp_state mp_state; 2580 2581 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2582 if (r) 2583 goto out; 2584 r = -EFAULT; 2585 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2586 goto out; 2587 r = 0; 2588 break; 2589 } 2590 case KVM_SET_MP_STATE: { 2591 struct kvm_mp_state mp_state; 2592 2593 r = -EFAULT; 2594 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2595 goto out; 2596 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2597 break; 2598 } 2599 case KVM_TRANSLATE: { 2600 struct kvm_translation tr; 2601 2602 r = -EFAULT; 2603 if (copy_from_user(&tr, argp, sizeof(tr))) 2604 goto out; 2605 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2606 if (r) 2607 goto out; 2608 r = -EFAULT; 2609 if (copy_to_user(argp, &tr, sizeof(tr))) 2610 goto out; 2611 r = 0; 2612 break; 2613 } 2614 case KVM_SET_GUEST_DEBUG: { 2615 struct kvm_guest_debug dbg; 2616 2617 r = -EFAULT; 2618 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2619 goto out; 2620 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2621 break; 2622 } 2623 case KVM_SET_SIGNAL_MASK: { 2624 struct kvm_signal_mask __user *sigmask_arg = argp; 2625 struct kvm_signal_mask kvm_sigmask; 2626 sigset_t sigset, *p; 2627 2628 p = NULL; 2629 if (argp) { 2630 r = -EFAULT; 2631 if (copy_from_user(&kvm_sigmask, argp, 2632 sizeof(kvm_sigmask))) 2633 goto out; 2634 r = -EINVAL; 2635 if (kvm_sigmask.len != sizeof(sigset)) 2636 goto out; 2637 r = -EFAULT; 2638 if (copy_from_user(&sigset, sigmask_arg->sigset, 2639 sizeof(sigset))) 2640 goto out; 2641 p = &sigset; 2642 } 2643 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2644 break; 2645 } 2646 case KVM_GET_FPU: { 2647 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2648 r = -ENOMEM; 2649 if (!fpu) 2650 goto out; 2651 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2652 if (r) 2653 goto out; 2654 r = -EFAULT; 2655 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2656 goto out; 2657 r = 0; 2658 break; 2659 } 2660 case KVM_SET_FPU: { 2661 fpu = memdup_user(argp, sizeof(*fpu)); 2662 if (IS_ERR(fpu)) { 2663 r = PTR_ERR(fpu); 2664 fpu = NULL; 2665 goto out; 2666 } 2667 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2668 break; 2669 } 2670 default: 2671 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2672 } 2673 out: 2674 vcpu_put(vcpu); 2675 kfree(fpu); 2676 kfree(kvm_sregs); 2677 return r; 2678 } 2679 2680 #ifdef CONFIG_KVM_COMPAT 2681 static long kvm_vcpu_compat_ioctl(struct file *filp, 2682 unsigned int ioctl, unsigned long arg) 2683 { 2684 struct kvm_vcpu *vcpu = filp->private_data; 2685 void __user *argp = compat_ptr(arg); 2686 int r; 2687 2688 if (vcpu->kvm->mm != current->mm) 2689 return -EIO; 2690 2691 switch (ioctl) { 2692 case KVM_SET_SIGNAL_MASK: { 2693 struct kvm_signal_mask __user *sigmask_arg = argp; 2694 struct kvm_signal_mask kvm_sigmask; 2695 compat_sigset_t csigset; 2696 sigset_t sigset; 2697 2698 if (argp) { 2699 r = -EFAULT; 2700 if (copy_from_user(&kvm_sigmask, argp, 2701 sizeof(kvm_sigmask))) 2702 goto out; 2703 r = -EINVAL; 2704 if (kvm_sigmask.len != sizeof(csigset)) 2705 goto out; 2706 r = -EFAULT; 2707 if (copy_from_user(&csigset, sigmask_arg->sigset, 2708 sizeof(csigset))) 2709 goto out; 2710 sigset_from_compat(&sigset, &csigset); 2711 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2712 } else 2713 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2714 break; 2715 } 2716 default: 2717 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2718 } 2719 2720 out: 2721 return r; 2722 } 2723 #endif 2724 2725 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2726 int (*accessor)(struct kvm_device *dev, 2727 struct kvm_device_attr *attr), 2728 unsigned long arg) 2729 { 2730 struct kvm_device_attr attr; 2731 2732 if (!accessor) 2733 return -EPERM; 2734 2735 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2736 return -EFAULT; 2737 2738 return accessor(dev, &attr); 2739 } 2740 2741 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2742 unsigned long arg) 2743 { 2744 struct kvm_device *dev = filp->private_data; 2745 2746 switch (ioctl) { 2747 case KVM_SET_DEVICE_ATTR: 2748 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2749 case KVM_GET_DEVICE_ATTR: 2750 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2751 case KVM_HAS_DEVICE_ATTR: 2752 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2753 default: 2754 if (dev->ops->ioctl) 2755 return dev->ops->ioctl(dev, ioctl, arg); 2756 2757 return -ENOTTY; 2758 } 2759 } 2760 2761 static int kvm_device_release(struct inode *inode, struct file *filp) 2762 { 2763 struct kvm_device *dev = filp->private_data; 2764 struct kvm *kvm = dev->kvm; 2765 2766 kvm_put_kvm(kvm); 2767 return 0; 2768 } 2769 2770 static const struct file_operations kvm_device_fops = { 2771 .unlocked_ioctl = kvm_device_ioctl, 2772 #ifdef CONFIG_KVM_COMPAT 2773 .compat_ioctl = kvm_device_ioctl, 2774 #endif 2775 .release = kvm_device_release, 2776 }; 2777 2778 struct kvm_device *kvm_device_from_filp(struct file *filp) 2779 { 2780 if (filp->f_op != &kvm_device_fops) 2781 return NULL; 2782 2783 return filp->private_data; 2784 } 2785 2786 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2787 #ifdef CONFIG_KVM_MPIC 2788 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2789 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2790 #endif 2791 2792 #ifdef CONFIG_KVM_XICS 2793 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops, 2794 #endif 2795 }; 2796 2797 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2798 { 2799 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2800 return -ENOSPC; 2801 2802 if (kvm_device_ops_table[type] != NULL) 2803 return -EEXIST; 2804 2805 kvm_device_ops_table[type] = ops; 2806 return 0; 2807 } 2808 2809 void kvm_unregister_device_ops(u32 type) 2810 { 2811 if (kvm_device_ops_table[type] != NULL) 2812 kvm_device_ops_table[type] = NULL; 2813 } 2814 2815 static int kvm_ioctl_create_device(struct kvm *kvm, 2816 struct kvm_create_device *cd) 2817 { 2818 struct kvm_device_ops *ops = NULL; 2819 struct kvm_device *dev; 2820 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2821 int ret; 2822 2823 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2824 return -ENODEV; 2825 2826 ops = kvm_device_ops_table[cd->type]; 2827 if (ops == NULL) 2828 return -ENODEV; 2829 2830 if (test) 2831 return 0; 2832 2833 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2834 if (!dev) 2835 return -ENOMEM; 2836 2837 dev->ops = ops; 2838 dev->kvm = kvm; 2839 2840 mutex_lock(&kvm->lock); 2841 ret = ops->create(dev, cd->type); 2842 if (ret < 0) { 2843 mutex_unlock(&kvm->lock); 2844 kfree(dev); 2845 return ret; 2846 } 2847 list_add(&dev->vm_node, &kvm->devices); 2848 mutex_unlock(&kvm->lock); 2849 2850 if (ops->init) 2851 ops->init(dev); 2852 2853 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2854 if (ret < 0) { 2855 ops->destroy(dev); 2856 mutex_lock(&kvm->lock); 2857 list_del(&dev->vm_node); 2858 mutex_unlock(&kvm->lock); 2859 return ret; 2860 } 2861 2862 kvm_get_kvm(kvm); 2863 cd->fd = ret; 2864 return 0; 2865 } 2866 2867 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2868 { 2869 switch (arg) { 2870 case KVM_CAP_USER_MEMORY: 2871 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2872 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2873 case KVM_CAP_INTERNAL_ERROR_DATA: 2874 #ifdef CONFIG_HAVE_KVM_MSI 2875 case KVM_CAP_SIGNAL_MSI: 2876 #endif 2877 #ifdef CONFIG_HAVE_KVM_IRQFD 2878 case KVM_CAP_IRQFD: 2879 case KVM_CAP_IRQFD_RESAMPLE: 2880 #endif 2881 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2882 case KVM_CAP_CHECK_EXTENSION_VM: 2883 return 1; 2884 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2885 case KVM_CAP_IRQ_ROUTING: 2886 return KVM_MAX_IRQ_ROUTES; 2887 #endif 2888 #if KVM_ADDRESS_SPACE_NUM > 1 2889 case KVM_CAP_MULTI_ADDRESS_SPACE: 2890 return KVM_ADDRESS_SPACE_NUM; 2891 #endif 2892 case KVM_CAP_MAX_VCPU_ID: 2893 return KVM_MAX_VCPU_ID; 2894 default: 2895 break; 2896 } 2897 return kvm_vm_ioctl_check_extension(kvm, arg); 2898 } 2899 2900 static long kvm_vm_ioctl(struct file *filp, 2901 unsigned int ioctl, unsigned long arg) 2902 { 2903 struct kvm *kvm = filp->private_data; 2904 void __user *argp = (void __user *)arg; 2905 int r; 2906 2907 if (kvm->mm != current->mm) 2908 return -EIO; 2909 switch (ioctl) { 2910 case KVM_CREATE_VCPU: 2911 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2912 break; 2913 case KVM_SET_USER_MEMORY_REGION: { 2914 struct kvm_userspace_memory_region kvm_userspace_mem; 2915 2916 r = -EFAULT; 2917 if (copy_from_user(&kvm_userspace_mem, argp, 2918 sizeof(kvm_userspace_mem))) 2919 goto out; 2920 2921 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2922 break; 2923 } 2924 case KVM_GET_DIRTY_LOG: { 2925 struct kvm_dirty_log log; 2926 2927 r = -EFAULT; 2928 if (copy_from_user(&log, argp, sizeof(log))) 2929 goto out; 2930 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2931 break; 2932 } 2933 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2934 case KVM_REGISTER_COALESCED_MMIO: { 2935 struct kvm_coalesced_mmio_zone zone; 2936 2937 r = -EFAULT; 2938 if (copy_from_user(&zone, argp, sizeof(zone))) 2939 goto out; 2940 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2941 break; 2942 } 2943 case KVM_UNREGISTER_COALESCED_MMIO: { 2944 struct kvm_coalesced_mmio_zone zone; 2945 2946 r = -EFAULT; 2947 if (copy_from_user(&zone, argp, sizeof(zone))) 2948 goto out; 2949 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2950 break; 2951 } 2952 #endif 2953 case KVM_IRQFD: { 2954 struct kvm_irqfd data; 2955 2956 r = -EFAULT; 2957 if (copy_from_user(&data, argp, sizeof(data))) 2958 goto out; 2959 r = kvm_irqfd(kvm, &data); 2960 break; 2961 } 2962 case KVM_IOEVENTFD: { 2963 struct kvm_ioeventfd data; 2964 2965 r = -EFAULT; 2966 if (copy_from_user(&data, argp, sizeof(data))) 2967 goto out; 2968 r = kvm_ioeventfd(kvm, &data); 2969 break; 2970 } 2971 #ifdef CONFIG_HAVE_KVM_MSI 2972 case KVM_SIGNAL_MSI: { 2973 struct kvm_msi msi; 2974 2975 r = -EFAULT; 2976 if (copy_from_user(&msi, argp, sizeof(msi))) 2977 goto out; 2978 r = kvm_send_userspace_msi(kvm, &msi); 2979 break; 2980 } 2981 #endif 2982 #ifdef __KVM_HAVE_IRQ_LINE 2983 case KVM_IRQ_LINE_STATUS: 2984 case KVM_IRQ_LINE: { 2985 struct kvm_irq_level irq_event; 2986 2987 r = -EFAULT; 2988 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 2989 goto out; 2990 2991 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2992 ioctl == KVM_IRQ_LINE_STATUS); 2993 if (r) 2994 goto out; 2995 2996 r = -EFAULT; 2997 if (ioctl == KVM_IRQ_LINE_STATUS) { 2998 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 2999 goto out; 3000 } 3001 3002 r = 0; 3003 break; 3004 } 3005 #endif 3006 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3007 case KVM_SET_GSI_ROUTING: { 3008 struct kvm_irq_routing routing; 3009 struct kvm_irq_routing __user *urouting; 3010 struct kvm_irq_routing_entry *entries = NULL; 3011 3012 r = -EFAULT; 3013 if (copy_from_user(&routing, argp, sizeof(routing))) 3014 goto out; 3015 r = -EINVAL; 3016 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3017 goto out; 3018 if (routing.flags) 3019 goto out; 3020 if (routing.nr) { 3021 r = -ENOMEM; 3022 entries = vmalloc(routing.nr * sizeof(*entries)); 3023 if (!entries) 3024 goto out; 3025 r = -EFAULT; 3026 urouting = argp; 3027 if (copy_from_user(entries, urouting->entries, 3028 routing.nr * sizeof(*entries))) 3029 goto out_free_irq_routing; 3030 } 3031 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3032 routing.flags); 3033 out_free_irq_routing: 3034 vfree(entries); 3035 break; 3036 } 3037 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3038 case KVM_CREATE_DEVICE: { 3039 struct kvm_create_device cd; 3040 3041 r = -EFAULT; 3042 if (copy_from_user(&cd, argp, sizeof(cd))) 3043 goto out; 3044 3045 r = kvm_ioctl_create_device(kvm, &cd); 3046 if (r) 3047 goto out; 3048 3049 r = -EFAULT; 3050 if (copy_to_user(argp, &cd, sizeof(cd))) 3051 goto out; 3052 3053 r = 0; 3054 break; 3055 } 3056 case KVM_CHECK_EXTENSION: 3057 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3058 break; 3059 default: 3060 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3061 } 3062 out: 3063 return r; 3064 } 3065 3066 #ifdef CONFIG_KVM_COMPAT 3067 struct compat_kvm_dirty_log { 3068 __u32 slot; 3069 __u32 padding1; 3070 union { 3071 compat_uptr_t dirty_bitmap; /* one bit per page */ 3072 __u64 padding2; 3073 }; 3074 }; 3075 3076 static long kvm_vm_compat_ioctl(struct file *filp, 3077 unsigned int ioctl, unsigned long arg) 3078 { 3079 struct kvm *kvm = filp->private_data; 3080 int r; 3081 3082 if (kvm->mm != current->mm) 3083 return -EIO; 3084 switch (ioctl) { 3085 case KVM_GET_DIRTY_LOG: { 3086 struct compat_kvm_dirty_log compat_log; 3087 struct kvm_dirty_log log; 3088 3089 r = -EFAULT; 3090 if (copy_from_user(&compat_log, (void __user *)arg, 3091 sizeof(compat_log))) 3092 goto out; 3093 log.slot = compat_log.slot; 3094 log.padding1 = compat_log.padding1; 3095 log.padding2 = compat_log.padding2; 3096 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3097 3098 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3099 break; 3100 } 3101 default: 3102 r = kvm_vm_ioctl(filp, ioctl, arg); 3103 } 3104 3105 out: 3106 return r; 3107 } 3108 #endif 3109 3110 static struct file_operations kvm_vm_fops = { 3111 .release = kvm_vm_release, 3112 .unlocked_ioctl = kvm_vm_ioctl, 3113 #ifdef CONFIG_KVM_COMPAT 3114 .compat_ioctl = kvm_vm_compat_ioctl, 3115 #endif 3116 .llseek = noop_llseek, 3117 }; 3118 3119 static int kvm_dev_ioctl_create_vm(unsigned long type) 3120 { 3121 int r; 3122 struct kvm *kvm; 3123 struct file *file; 3124 3125 kvm = kvm_create_vm(type); 3126 if (IS_ERR(kvm)) 3127 return PTR_ERR(kvm); 3128 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3129 r = kvm_coalesced_mmio_init(kvm); 3130 if (r < 0) { 3131 kvm_put_kvm(kvm); 3132 return r; 3133 } 3134 #endif 3135 r = get_unused_fd_flags(O_CLOEXEC); 3136 if (r < 0) { 3137 kvm_put_kvm(kvm); 3138 return r; 3139 } 3140 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3141 if (IS_ERR(file)) { 3142 put_unused_fd(r); 3143 kvm_put_kvm(kvm); 3144 return PTR_ERR(file); 3145 } 3146 3147 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3148 put_unused_fd(r); 3149 fput(file); 3150 return -ENOMEM; 3151 } 3152 3153 fd_install(r, file); 3154 return r; 3155 } 3156 3157 static long kvm_dev_ioctl(struct file *filp, 3158 unsigned int ioctl, unsigned long arg) 3159 { 3160 long r = -EINVAL; 3161 3162 switch (ioctl) { 3163 case KVM_GET_API_VERSION: 3164 if (arg) 3165 goto out; 3166 r = KVM_API_VERSION; 3167 break; 3168 case KVM_CREATE_VM: 3169 r = kvm_dev_ioctl_create_vm(arg); 3170 break; 3171 case KVM_CHECK_EXTENSION: 3172 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3173 break; 3174 case KVM_GET_VCPU_MMAP_SIZE: 3175 if (arg) 3176 goto out; 3177 r = PAGE_SIZE; /* struct kvm_run */ 3178 #ifdef CONFIG_X86 3179 r += PAGE_SIZE; /* pio data page */ 3180 #endif 3181 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 3182 r += PAGE_SIZE; /* coalesced mmio ring page */ 3183 #endif 3184 break; 3185 case KVM_TRACE_ENABLE: 3186 case KVM_TRACE_PAUSE: 3187 case KVM_TRACE_DISABLE: 3188 r = -EOPNOTSUPP; 3189 break; 3190 default: 3191 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3192 } 3193 out: 3194 return r; 3195 } 3196 3197 static struct file_operations kvm_chardev_ops = { 3198 .unlocked_ioctl = kvm_dev_ioctl, 3199 .compat_ioctl = kvm_dev_ioctl, 3200 .llseek = noop_llseek, 3201 }; 3202 3203 static struct miscdevice kvm_dev = { 3204 KVM_MINOR, 3205 "kvm", 3206 &kvm_chardev_ops, 3207 }; 3208 3209 static void hardware_enable_nolock(void *junk) 3210 { 3211 int cpu = raw_smp_processor_id(); 3212 int r; 3213 3214 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3215 return; 3216 3217 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3218 3219 r = kvm_arch_hardware_enable(); 3220 3221 if (r) { 3222 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3223 atomic_inc(&hardware_enable_failed); 3224 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3225 } 3226 } 3227 3228 static int kvm_starting_cpu(unsigned int cpu) 3229 { 3230 raw_spin_lock(&kvm_count_lock); 3231 if (kvm_usage_count) 3232 hardware_enable_nolock(NULL); 3233 raw_spin_unlock(&kvm_count_lock); 3234 return 0; 3235 } 3236 3237 static void hardware_disable_nolock(void *junk) 3238 { 3239 int cpu = raw_smp_processor_id(); 3240 3241 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3242 return; 3243 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3244 kvm_arch_hardware_disable(); 3245 } 3246 3247 static int kvm_dying_cpu(unsigned int cpu) 3248 { 3249 raw_spin_lock(&kvm_count_lock); 3250 if (kvm_usage_count) 3251 hardware_disable_nolock(NULL); 3252 raw_spin_unlock(&kvm_count_lock); 3253 return 0; 3254 } 3255 3256 static void hardware_disable_all_nolock(void) 3257 { 3258 BUG_ON(!kvm_usage_count); 3259 3260 kvm_usage_count--; 3261 if (!kvm_usage_count) 3262 on_each_cpu(hardware_disable_nolock, NULL, 1); 3263 } 3264 3265 static void hardware_disable_all(void) 3266 { 3267 raw_spin_lock(&kvm_count_lock); 3268 hardware_disable_all_nolock(); 3269 raw_spin_unlock(&kvm_count_lock); 3270 } 3271 3272 static int hardware_enable_all(void) 3273 { 3274 int r = 0; 3275 3276 raw_spin_lock(&kvm_count_lock); 3277 3278 kvm_usage_count++; 3279 if (kvm_usage_count == 1) { 3280 atomic_set(&hardware_enable_failed, 0); 3281 on_each_cpu(hardware_enable_nolock, NULL, 1); 3282 3283 if (atomic_read(&hardware_enable_failed)) { 3284 hardware_disable_all_nolock(); 3285 r = -EBUSY; 3286 } 3287 } 3288 3289 raw_spin_unlock(&kvm_count_lock); 3290 3291 return r; 3292 } 3293 3294 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3295 void *v) 3296 { 3297 /* 3298 * Some (well, at least mine) BIOSes hang on reboot if 3299 * in vmx root mode. 3300 * 3301 * And Intel TXT required VMX off for all cpu when system shutdown. 3302 */ 3303 pr_info("kvm: exiting hardware virtualization\n"); 3304 kvm_rebooting = true; 3305 on_each_cpu(hardware_disable_nolock, NULL, 1); 3306 return NOTIFY_OK; 3307 } 3308 3309 static struct notifier_block kvm_reboot_notifier = { 3310 .notifier_call = kvm_reboot, 3311 .priority = 0, 3312 }; 3313 3314 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3315 { 3316 int i; 3317 3318 for (i = 0; i < bus->dev_count; i++) { 3319 struct kvm_io_device *pos = bus->range[i].dev; 3320 3321 kvm_iodevice_destructor(pos); 3322 } 3323 kfree(bus); 3324 } 3325 3326 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3327 const struct kvm_io_range *r2) 3328 { 3329 gpa_t addr1 = r1->addr; 3330 gpa_t addr2 = r2->addr; 3331 3332 if (addr1 < addr2) 3333 return -1; 3334 3335 /* If r2->len == 0, match the exact address. If r2->len != 0, 3336 * accept any overlapping write. Any order is acceptable for 3337 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3338 * we process all of them. 3339 */ 3340 if (r2->len) { 3341 addr1 += r1->len; 3342 addr2 += r2->len; 3343 } 3344 3345 if (addr1 > addr2) 3346 return 1; 3347 3348 return 0; 3349 } 3350 3351 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3352 { 3353 return kvm_io_bus_cmp(p1, p2); 3354 } 3355 3356 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 3357 gpa_t addr, int len) 3358 { 3359 bus->range[bus->dev_count++] = (struct kvm_io_range) { 3360 .addr = addr, 3361 .len = len, 3362 .dev = dev, 3363 }; 3364 3365 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 3366 kvm_io_bus_sort_cmp, NULL); 3367 3368 return 0; 3369 } 3370 3371 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3372 gpa_t addr, int len) 3373 { 3374 struct kvm_io_range *range, key; 3375 int off; 3376 3377 key = (struct kvm_io_range) { 3378 .addr = addr, 3379 .len = len, 3380 }; 3381 3382 range = bsearch(&key, bus->range, bus->dev_count, 3383 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3384 if (range == NULL) 3385 return -ENOENT; 3386 3387 off = range - bus->range; 3388 3389 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3390 off--; 3391 3392 return off; 3393 } 3394 3395 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3396 struct kvm_io_range *range, const void *val) 3397 { 3398 int idx; 3399 3400 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3401 if (idx < 0) 3402 return -EOPNOTSUPP; 3403 3404 while (idx < bus->dev_count && 3405 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3406 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3407 range->len, val)) 3408 return idx; 3409 idx++; 3410 } 3411 3412 return -EOPNOTSUPP; 3413 } 3414 3415 /* kvm_io_bus_write - called under kvm->slots_lock */ 3416 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3417 int len, const void *val) 3418 { 3419 struct kvm_io_bus *bus; 3420 struct kvm_io_range range; 3421 int r; 3422 3423 range = (struct kvm_io_range) { 3424 .addr = addr, 3425 .len = len, 3426 }; 3427 3428 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3429 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3430 return r < 0 ? r : 0; 3431 } 3432 3433 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3434 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3435 gpa_t addr, int len, const void *val, long cookie) 3436 { 3437 struct kvm_io_bus *bus; 3438 struct kvm_io_range range; 3439 3440 range = (struct kvm_io_range) { 3441 .addr = addr, 3442 .len = len, 3443 }; 3444 3445 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3446 3447 /* First try the device referenced by cookie. */ 3448 if ((cookie >= 0) && (cookie < bus->dev_count) && 3449 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3450 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3451 val)) 3452 return cookie; 3453 3454 /* 3455 * cookie contained garbage; fall back to search and return the 3456 * correct cookie value. 3457 */ 3458 return __kvm_io_bus_write(vcpu, bus, &range, val); 3459 } 3460 3461 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3462 struct kvm_io_range *range, void *val) 3463 { 3464 int idx; 3465 3466 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3467 if (idx < 0) 3468 return -EOPNOTSUPP; 3469 3470 while (idx < bus->dev_count && 3471 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3472 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3473 range->len, val)) 3474 return idx; 3475 idx++; 3476 } 3477 3478 return -EOPNOTSUPP; 3479 } 3480 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3481 3482 /* kvm_io_bus_read - called under kvm->slots_lock */ 3483 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3484 int len, void *val) 3485 { 3486 struct kvm_io_bus *bus; 3487 struct kvm_io_range range; 3488 int r; 3489 3490 range = (struct kvm_io_range) { 3491 .addr = addr, 3492 .len = len, 3493 }; 3494 3495 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3496 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3497 return r < 0 ? r : 0; 3498 } 3499 3500 3501 /* Caller must hold slots_lock. */ 3502 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3503 int len, struct kvm_io_device *dev) 3504 { 3505 struct kvm_io_bus *new_bus, *bus; 3506 3507 bus = kvm->buses[bus_idx]; 3508 /* exclude ioeventfd which is limited by maximum fd */ 3509 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3510 return -ENOSPC; 3511 3512 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3513 sizeof(struct kvm_io_range)), GFP_KERNEL); 3514 if (!new_bus) 3515 return -ENOMEM; 3516 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3517 sizeof(struct kvm_io_range))); 3518 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3519 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3520 synchronize_srcu_expedited(&kvm->srcu); 3521 kfree(bus); 3522 3523 return 0; 3524 } 3525 3526 /* Caller must hold slots_lock. */ 3527 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3528 struct kvm_io_device *dev) 3529 { 3530 int i, r; 3531 struct kvm_io_bus *new_bus, *bus; 3532 3533 bus = kvm->buses[bus_idx]; 3534 r = -ENOENT; 3535 for (i = 0; i < bus->dev_count; i++) 3536 if (bus->range[i].dev == dev) { 3537 r = 0; 3538 break; 3539 } 3540 3541 if (r) 3542 return r; 3543 3544 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3545 sizeof(struct kvm_io_range)), GFP_KERNEL); 3546 if (!new_bus) 3547 return -ENOMEM; 3548 3549 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3550 new_bus->dev_count--; 3551 memcpy(new_bus->range + i, bus->range + i + 1, 3552 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3553 3554 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3555 synchronize_srcu_expedited(&kvm->srcu); 3556 kfree(bus); 3557 return r; 3558 } 3559 3560 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3561 gpa_t addr) 3562 { 3563 struct kvm_io_bus *bus; 3564 int dev_idx, srcu_idx; 3565 struct kvm_io_device *iodev = NULL; 3566 3567 srcu_idx = srcu_read_lock(&kvm->srcu); 3568 3569 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3570 3571 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3572 if (dev_idx < 0) 3573 goto out_unlock; 3574 3575 iodev = bus->range[dev_idx].dev; 3576 3577 out_unlock: 3578 srcu_read_unlock(&kvm->srcu, srcu_idx); 3579 3580 return iodev; 3581 } 3582 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3583 3584 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3585 int (*get)(void *, u64 *), int (*set)(void *, u64), 3586 const char *fmt) 3587 { 3588 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3589 inode->i_private; 3590 3591 /* The debugfs files are a reference to the kvm struct which 3592 * is still valid when kvm_destroy_vm is called. 3593 * To avoid the race between open and the removal of the debugfs 3594 * directory we test against the users count. 3595 */ 3596 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0)) 3597 return -ENOENT; 3598 3599 if (simple_attr_open(inode, file, get, set, fmt)) { 3600 kvm_put_kvm(stat_data->kvm); 3601 return -ENOMEM; 3602 } 3603 3604 return 0; 3605 } 3606 3607 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3608 { 3609 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3610 inode->i_private; 3611 3612 simple_attr_release(inode, file); 3613 kvm_put_kvm(stat_data->kvm); 3614 3615 return 0; 3616 } 3617 3618 static int vm_stat_get_per_vm(void *data, u64 *val) 3619 { 3620 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3621 3622 *val = *(u32 *)((void *)stat_data->kvm + stat_data->offset); 3623 3624 return 0; 3625 } 3626 3627 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3628 { 3629 __simple_attr_check_format("%llu\n", 0ull); 3630 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3631 NULL, "%llu\n"); 3632 } 3633 3634 static const struct file_operations vm_stat_get_per_vm_fops = { 3635 .owner = THIS_MODULE, 3636 .open = vm_stat_get_per_vm_open, 3637 .release = kvm_debugfs_release, 3638 .read = simple_attr_read, 3639 .write = simple_attr_write, 3640 .llseek = generic_file_llseek, 3641 }; 3642 3643 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3644 { 3645 int i; 3646 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3647 struct kvm_vcpu *vcpu; 3648 3649 *val = 0; 3650 3651 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3652 *val += *(u32 *)((void *)vcpu + stat_data->offset); 3653 3654 return 0; 3655 } 3656 3657 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3658 { 3659 __simple_attr_check_format("%llu\n", 0ull); 3660 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3661 NULL, "%llu\n"); 3662 } 3663 3664 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3665 .owner = THIS_MODULE, 3666 .open = vcpu_stat_get_per_vm_open, 3667 .release = kvm_debugfs_release, 3668 .read = simple_attr_read, 3669 .write = simple_attr_write, 3670 .llseek = generic_file_llseek, 3671 }; 3672 3673 static const struct file_operations *stat_fops_per_vm[] = { 3674 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3675 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3676 }; 3677 3678 static int vm_stat_get(void *_offset, u64 *val) 3679 { 3680 unsigned offset = (long)_offset; 3681 struct kvm *kvm; 3682 struct kvm_stat_data stat_tmp = {.offset = offset}; 3683 u64 tmp_val; 3684 3685 *val = 0; 3686 spin_lock(&kvm_lock); 3687 list_for_each_entry(kvm, &vm_list, vm_list) { 3688 stat_tmp.kvm = kvm; 3689 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3690 *val += tmp_val; 3691 } 3692 spin_unlock(&kvm_lock); 3693 return 0; 3694 } 3695 3696 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3697 3698 static int vcpu_stat_get(void *_offset, u64 *val) 3699 { 3700 unsigned offset = (long)_offset; 3701 struct kvm *kvm; 3702 struct kvm_stat_data stat_tmp = {.offset = offset}; 3703 u64 tmp_val; 3704 3705 *val = 0; 3706 spin_lock(&kvm_lock); 3707 list_for_each_entry(kvm, &vm_list, vm_list) { 3708 stat_tmp.kvm = kvm; 3709 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3710 *val += tmp_val; 3711 } 3712 spin_unlock(&kvm_lock); 3713 return 0; 3714 } 3715 3716 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3717 3718 static const struct file_operations *stat_fops[] = { 3719 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3720 [KVM_STAT_VM] = &vm_stat_fops, 3721 }; 3722 3723 static int kvm_init_debug(void) 3724 { 3725 int r = -EEXIST; 3726 struct kvm_stats_debugfs_item *p; 3727 3728 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3729 if (kvm_debugfs_dir == NULL) 3730 goto out; 3731 3732 kvm_debugfs_num_entries = 0; 3733 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3734 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3735 (void *)(long)p->offset, 3736 stat_fops[p->kind])) 3737 goto out_dir; 3738 } 3739 3740 return 0; 3741 3742 out_dir: 3743 debugfs_remove_recursive(kvm_debugfs_dir); 3744 out: 3745 return r; 3746 } 3747 3748 static int kvm_suspend(void) 3749 { 3750 if (kvm_usage_count) 3751 hardware_disable_nolock(NULL); 3752 return 0; 3753 } 3754 3755 static void kvm_resume(void) 3756 { 3757 if (kvm_usage_count) { 3758 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3759 hardware_enable_nolock(NULL); 3760 } 3761 } 3762 3763 static struct syscore_ops kvm_syscore_ops = { 3764 .suspend = kvm_suspend, 3765 .resume = kvm_resume, 3766 }; 3767 3768 static inline 3769 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3770 { 3771 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3772 } 3773 3774 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3775 { 3776 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3777 3778 if (vcpu->preempted) 3779 vcpu->preempted = false; 3780 3781 kvm_arch_sched_in(vcpu, cpu); 3782 3783 kvm_arch_vcpu_load(vcpu, cpu); 3784 } 3785 3786 static void kvm_sched_out(struct preempt_notifier *pn, 3787 struct task_struct *next) 3788 { 3789 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3790 3791 if (current->state == TASK_RUNNING) 3792 vcpu->preempted = true; 3793 kvm_arch_vcpu_put(vcpu); 3794 } 3795 3796 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3797 struct module *module) 3798 { 3799 int r; 3800 int cpu; 3801 3802 r = kvm_arch_init(opaque); 3803 if (r) 3804 goto out_fail; 3805 3806 /* 3807 * kvm_arch_init makes sure there's at most one caller 3808 * for architectures that support multiple implementations, 3809 * like intel and amd on x86. 3810 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3811 * conflicts in case kvm is already setup for another implementation. 3812 */ 3813 r = kvm_irqfd_init(); 3814 if (r) 3815 goto out_irqfd; 3816 3817 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3818 r = -ENOMEM; 3819 goto out_free_0; 3820 } 3821 3822 r = kvm_arch_hardware_setup(); 3823 if (r < 0) 3824 goto out_free_0a; 3825 3826 for_each_online_cpu(cpu) { 3827 smp_call_function_single(cpu, 3828 kvm_arch_check_processor_compat, 3829 &r, 1); 3830 if (r < 0) 3831 goto out_free_1; 3832 } 3833 3834 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING", 3835 kvm_starting_cpu, kvm_dying_cpu); 3836 if (r) 3837 goto out_free_2; 3838 register_reboot_notifier(&kvm_reboot_notifier); 3839 3840 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3841 if (!vcpu_align) 3842 vcpu_align = __alignof__(struct kvm_vcpu); 3843 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3844 0, NULL); 3845 if (!kvm_vcpu_cache) { 3846 r = -ENOMEM; 3847 goto out_free_3; 3848 } 3849 3850 r = kvm_async_pf_init(); 3851 if (r) 3852 goto out_free; 3853 3854 kvm_chardev_ops.owner = module; 3855 kvm_vm_fops.owner = module; 3856 kvm_vcpu_fops.owner = module; 3857 3858 r = misc_register(&kvm_dev); 3859 if (r) { 3860 pr_err("kvm: misc device register failed\n"); 3861 goto out_unreg; 3862 } 3863 3864 register_syscore_ops(&kvm_syscore_ops); 3865 3866 kvm_preempt_ops.sched_in = kvm_sched_in; 3867 kvm_preempt_ops.sched_out = kvm_sched_out; 3868 3869 r = kvm_init_debug(); 3870 if (r) { 3871 pr_err("kvm: create debugfs files failed\n"); 3872 goto out_undebugfs; 3873 } 3874 3875 r = kvm_vfio_ops_init(); 3876 WARN_ON(r); 3877 3878 return 0; 3879 3880 out_undebugfs: 3881 unregister_syscore_ops(&kvm_syscore_ops); 3882 misc_deregister(&kvm_dev); 3883 out_unreg: 3884 kvm_async_pf_deinit(); 3885 out_free: 3886 kmem_cache_destroy(kvm_vcpu_cache); 3887 out_free_3: 3888 unregister_reboot_notifier(&kvm_reboot_notifier); 3889 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3890 out_free_2: 3891 out_free_1: 3892 kvm_arch_hardware_unsetup(); 3893 out_free_0a: 3894 free_cpumask_var(cpus_hardware_enabled); 3895 out_free_0: 3896 kvm_irqfd_exit(); 3897 out_irqfd: 3898 kvm_arch_exit(); 3899 out_fail: 3900 return r; 3901 } 3902 EXPORT_SYMBOL_GPL(kvm_init); 3903 3904 void kvm_exit(void) 3905 { 3906 debugfs_remove_recursive(kvm_debugfs_dir); 3907 misc_deregister(&kvm_dev); 3908 kmem_cache_destroy(kvm_vcpu_cache); 3909 kvm_async_pf_deinit(); 3910 unregister_syscore_ops(&kvm_syscore_ops); 3911 unregister_reboot_notifier(&kvm_reboot_notifier); 3912 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 3913 on_each_cpu(hardware_disable_nolock, NULL, 1); 3914 kvm_arch_hardware_unsetup(); 3915 kvm_arch_exit(); 3916 kvm_irqfd_exit(); 3917 free_cpumask_var(cpus_hardware_enabled); 3918 kvm_vfio_ops_exit(); 3919 } 3920 EXPORT_SYMBOL_GPL(kvm_exit); 3921