xref: /openbmc/linux/virt/kvm/kvm_main.c (revision bc5aa3a0)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79 
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83 
84 /*
85  * Ordering of locks:
86  *
87  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88  */
89 
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93 
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97 
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100 
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102 
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105 
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108 
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 			   unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 				  unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117 
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119 
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122 
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125 
126 static bool largepages_enabled = true;
127 
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 	if (pfn_valid(pfn))
131 		return PageReserved(pfn_to_page(pfn));
132 
133 	return true;
134 }
135 
136 /*
137  * Switches to specified vcpu, until a matching vcpu_put()
138  */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 	int cpu;
142 
143 	if (mutex_lock_killable(&vcpu->mutex))
144 		return -EINTR;
145 	cpu = get_cpu();
146 	preempt_notifier_register(&vcpu->preempt_notifier);
147 	kvm_arch_vcpu_load(vcpu, cpu);
148 	put_cpu();
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152 
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 	preempt_disable();
156 	kvm_arch_vcpu_put(vcpu);
157 	preempt_notifier_unregister(&vcpu->preempt_notifier);
158 	preempt_enable();
159 	mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162 
163 static void ack_flush(void *_completed)
164 {
165 }
166 
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 	int i, cpu, me;
170 	cpumask_var_t cpus;
171 	bool called = true;
172 	struct kvm_vcpu *vcpu;
173 
174 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175 
176 	me = get_cpu();
177 	kvm_for_each_vcpu(i, vcpu, kvm) {
178 		kvm_make_request(req, vcpu);
179 		cpu = vcpu->cpu;
180 
181 		/* Set ->requests bit before we read ->mode. */
182 		smp_mb__after_atomic();
183 
184 		if (cpus != NULL && cpu != -1 && cpu != me &&
185 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 			cpumask_set_cpu(cpu, cpus);
187 	}
188 	if (unlikely(cpus == NULL))
189 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 	else if (!cpumask_empty(cpus))
191 		smp_call_function_many(cpus, ack_flush, NULL, 1);
192 	else
193 		called = false;
194 	put_cpu();
195 	free_cpumask_var(cpus);
196 	return called;
197 }
198 
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	/*
203 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 	 * kvm_make_all_cpus_request.
205 	 */
206 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207 
208 	/*
209 	 * We want to publish modifications to the page tables before reading
210 	 * mode. Pairs with a memory barrier in arch-specific code.
211 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 	 *
215 	 * There is already an smp_mb__after_atomic() before
216 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 	 * barrier here.
218 	 */
219 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 		++kvm->stat.remote_tlb_flush;
221 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225 
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230 
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 	struct page *page;
234 	int r;
235 
236 	mutex_init(&vcpu->mutex);
237 	vcpu->cpu = -1;
238 	vcpu->kvm = kvm;
239 	vcpu->vcpu_id = id;
240 	vcpu->pid = NULL;
241 	init_swait_queue_head(&vcpu->wq);
242 	kvm_async_pf_vcpu_init(vcpu);
243 
244 	vcpu->pre_pcpu = -1;
245 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246 
247 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 	if (!page) {
249 		r = -ENOMEM;
250 		goto fail;
251 	}
252 	vcpu->run = page_address(page);
253 
254 	kvm_vcpu_set_in_spin_loop(vcpu, false);
255 	kvm_vcpu_set_dy_eligible(vcpu, false);
256 	vcpu->preempted = false;
257 
258 	r = kvm_arch_vcpu_init(vcpu);
259 	if (r < 0)
260 		goto fail_free_run;
261 	return 0;
262 
263 fail_free_run:
264 	free_page((unsigned long)vcpu->run);
265 fail:
266 	return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269 
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 	put_pid(vcpu->pid);
273 	kvm_arch_vcpu_uninit(vcpu);
274 	free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277 
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 	return container_of(mn, struct kvm, mmu_notifier);
282 }
283 
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 					     struct mm_struct *mm,
286 					     unsigned long address)
287 {
288 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 	int need_tlb_flush, idx;
290 
291 	/*
292 	 * When ->invalidate_page runs, the linux pte has been zapped
293 	 * already but the page is still allocated until
294 	 * ->invalidate_page returns. So if we increase the sequence
295 	 * here the kvm page fault will notice if the spte can't be
296 	 * established because the page is going to be freed. If
297 	 * instead the kvm page fault establishes the spte before
298 	 * ->invalidate_page runs, kvm_unmap_hva will release it
299 	 * before returning.
300 	 *
301 	 * The sequence increase only need to be seen at spin_unlock
302 	 * time, and not at spin_lock time.
303 	 *
304 	 * Increasing the sequence after the spin_unlock would be
305 	 * unsafe because the kvm page fault could then establish the
306 	 * pte after kvm_unmap_hva returned, without noticing the page
307 	 * is going to be freed.
308 	 */
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 
312 	kvm->mmu_notifier_seq++;
313 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 	/* we've to flush the tlb before the pages can be freed */
315 	if (need_tlb_flush)
316 		kvm_flush_remote_tlbs(kvm);
317 
318 	spin_unlock(&kvm->mmu_lock);
319 
320 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321 
322 	srcu_read_unlock(&kvm->srcu, idx);
323 }
324 
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 					struct mm_struct *mm,
327 					unsigned long address,
328 					pte_t pte)
329 {
330 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 	int idx;
332 
333 	idx = srcu_read_lock(&kvm->srcu);
334 	spin_lock(&kvm->mmu_lock);
335 	kvm->mmu_notifier_seq++;
336 	kvm_set_spte_hva(kvm, address, pte);
337 	spin_unlock(&kvm->mmu_lock);
338 	srcu_read_unlock(&kvm->srcu, idx);
339 }
340 
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 						    struct mm_struct *mm,
343 						    unsigned long start,
344 						    unsigned long end)
345 {
346 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 	int need_tlb_flush = 0, idx;
348 
349 	idx = srcu_read_lock(&kvm->srcu);
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * The count increase must become visible at unlock time as no
353 	 * spte can be established without taking the mmu_lock and
354 	 * count is also read inside the mmu_lock critical section.
355 	 */
356 	kvm->mmu_notifier_count++;
357 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 	need_tlb_flush |= kvm->tlbs_dirty;
359 	/* we've to flush the tlb before the pages can be freed */
360 	if (need_tlb_flush)
361 		kvm_flush_remote_tlbs(kvm);
362 
363 	spin_unlock(&kvm->mmu_lock);
364 	srcu_read_unlock(&kvm->srcu, idx);
365 }
366 
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 						  struct mm_struct *mm,
369 						  unsigned long start,
370 						  unsigned long end)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 
374 	spin_lock(&kvm->mmu_lock);
375 	/*
376 	 * This sequence increase will notify the kvm page fault that
377 	 * the page that is going to be mapped in the spte could have
378 	 * been freed.
379 	 */
380 	kvm->mmu_notifier_seq++;
381 	smp_wmb();
382 	/*
383 	 * The above sequence increase must be visible before the
384 	 * below count decrease, which is ensured by the smp_wmb above
385 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 	 */
387 	kvm->mmu_notifier_count--;
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392 
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 					      struct mm_struct *mm,
395 					      unsigned long start,
396 					      unsigned long end)
397 {
398 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 	int young, idx;
400 
401 	idx = srcu_read_lock(&kvm->srcu);
402 	spin_lock(&kvm->mmu_lock);
403 
404 	young = kvm_age_hva(kvm, start, end);
405 	if (young)
406 		kvm_flush_remote_tlbs(kvm);
407 
408 	spin_unlock(&kvm->mmu_lock);
409 	srcu_read_unlock(&kvm->srcu, idx);
410 
411 	return young;
412 }
413 
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 					struct mm_struct *mm,
416 					unsigned long start,
417 					unsigned long end)
418 {
419 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 	int young, idx;
421 
422 	idx = srcu_read_lock(&kvm->srcu);
423 	spin_lock(&kvm->mmu_lock);
424 	/*
425 	 * Even though we do not flush TLB, this will still adversely
426 	 * affect performance on pre-Haswell Intel EPT, where there is
427 	 * no EPT Access Bit to clear so that we have to tear down EPT
428 	 * tables instead. If we find this unacceptable, we can always
429 	 * add a parameter to kvm_age_hva so that it effectively doesn't
430 	 * do anything on clear_young.
431 	 *
432 	 * Also note that currently we never issue secondary TLB flushes
433 	 * from clear_young, leaving this job up to the regular system
434 	 * cadence. If we find this inaccurate, we might come up with a
435 	 * more sophisticated heuristic later.
436 	 */
437 	young = kvm_age_hva(kvm, start, end);
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 				       struct mm_struct *mm,
446 				       unsigned long address)
447 {
448 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 	int young, idx;
450 
451 	idx = srcu_read_lock(&kvm->srcu);
452 	spin_lock(&kvm->mmu_lock);
453 	young = kvm_test_age_hva(kvm, address);
454 	spin_unlock(&kvm->mmu_lock);
455 	srcu_read_unlock(&kvm->srcu, idx);
456 
457 	return young;
458 }
459 
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 				     struct mm_struct *mm)
462 {
463 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 	int idx;
465 
466 	idx = srcu_read_lock(&kvm->srcu);
467 	kvm_arch_flush_shadow_all(kvm);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
473 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
474 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
475 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
476 	.clear_young		= kvm_mmu_notifier_clear_young,
477 	.test_young		= kvm_mmu_notifier_test_young,
478 	.change_pte		= kvm_mmu_notifier_change_pte,
479 	.release		= kvm_mmu_notifier_release,
480 };
481 
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487 
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489 
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 	return 0;
493 }
494 
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496 
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 	int i;
500 	struct kvm_memslots *slots;
501 
502 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 	if (!slots)
504 		return NULL;
505 
506 	/*
507 	 * Init kvm generation close to the maximum to easily test the
508 	 * code of handling generation number wrap-around.
509 	 */
510 	slots->generation = -150;
511 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 		slots->id_to_index[i] = slots->memslots[i].id = i;
513 
514 	return slots;
515 }
516 
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 	if (!memslot->dirty_bitmap)
520 		return;
521 
522 	kvfree(memslot->dirty_bitmap);
523 	memslot->dirty_bitmap = NULL;
524 }
525 
526 /*
527  * Free any memory in @free but not in @dont.
528  */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 			      struct kvm_memory_slot *dont)
531 {
532 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 		kvm_destroy_dirty_bitmap(free);
534 
535 	kvm_arch_free_memslot(kvm, free, dont);
536 
537 	free->npages = 0;
538 }
539 
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 	struct kvm_memory_slot *memslot;
543 
544 	if (!slots)
545 		return;
546 
547 	kvm_for_each_memslot(memslot, slots)
548 		kvm_free_memslot(kvm, memslot, NULL);
549 
550 	kvfree(slots);
551 }
552 
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 	int i;
556 
557 	if (!kvm->debugfs_dentry)
558 		return;
559 
560 	debugfs_remove_recursive(kvm->debugfs_dentry);
561 
562 	for (i = 0; i < kvm_debugfs_num_entries; i++)
563 		kfree(kvm->debugfs_stat_data[i]);
564 	kfree(kvm->debugfs_stat_data);
565 }
566 
567 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
568 {
569 	char dir_name[ITOA_MAX_LEN * 2];
570 	struct kvm_stat_data *stat_data;
571 	struct kvm_stats_debugfs_item *p;
572 
573 	if (!debugfs_initialized())
574 		return 0;
575 
576 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
577 	kvm->debugfs_dentry = debugfs_create_dir(dir_name,
578 						 kvm_debugfs_dir);
579 	if (!kvm->debugfs_dentry)
580 		return -ENOMEM;
581 
582 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
583 					 sizeof(*kvm->debugfs_stat_data),
584 					 GFP_KERNEL);
585 	if (!kvm->debugfs_stat_data)
586 		return -ENOMEM;
587 
588 	for (p = debugfs_entries; p->name; p++) {
589 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
590 		if (!stat_data)
591 			return -ENOMEM;
592 
593 		stat_data->kvm = kvm;
594 		stat_data->offset = p->offset;
595 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
596 		if (!debugfs_create_file(p->name, 0444,
597 					 kvm->debugfs_dentry,
598 					 stat_data,
599 					 stat_fops_per_vm[p->kind]))
600 			return -ENOMEM;
601 	}
602 	return 0;
603 }
604 
605 static struct kvm *kvm_create_vm(unsigned long type)
606 {
607 	int r, i;
608 	struct kvm *kvm = kvm_arch_alloc_vm();
609 
610 	if (!kvm)
611 		return ERR_PTR(-ENOMEM);
612 
613 	spin_lock_init(&kvm->mmu_lock);
614 	atomic_inc(&current->mm->mm_count);
615 	kvm->mm = current->mm;
616 	kvm_eventfd_init(kvm);
617 	mutex_init(&kvm->lock);
618 	mutex_init(&kvm->irq_lock);
619 	mutex_init(&kvm->slots_lock);
620 	atomic_set(&kvm->users_count, 1);
621 	INIT_LIST_HEAD(&kvm->devices);
622 
623 	r = kvm_arch_init_vm(kvm, type);
624 	if (r)
625 		goto out_err_no_disable;
626 
627 	r = hardware_enable_all();
628 	if (r)
629 		goto out_err_no_disable;
630 
631 #ifdef CONFIG_HAVE_KVM_IRQFD
632 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
633 #endif
634 
635 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
636 
637 	r = -ENOMEM;
638 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
639 		kvm->memslots[i] = kvm_alloc_memslots();
640 		if (!kvm->memslots[i])
641 			goto out_err_no_srcu;
642 	}
643 
644 	if (init_srcu_struct(&kvm->srcu))
645 		goto out_err_no_srcu;
646 	if (init_srcu_struct(&kvm->irq_srcu))
647 		goto out_err_no_irq_srcu;
648 	for (i = 0; i < KVM_NR_BUSES; i++) {
649 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
650 					GFP_KERNEL);
651 		if (!kvm->buses[i])
652 			goto out_err;
653 	}
654 
655 	r = kvm_init_mmu_notifier(kvm);
656 	if (r)
657 		goto out_err;
658 
659 	spin_lock(&kvm_lock);
660 	list_add(&kvm->vm_list, &vm_list);
661 	spin_unlock(&kvm_lock);
662 
663 	preempt_notifier_inc();
664 
665 	return kvm;
666 
667 out_err:
668 	cleanup_srcu_struct(&kvm->irq_srcu);
669 out_err_no_irq_srcu:
670 	cleanup_srcu_struct(&kvm->srcu);
671 out_err_no_srcu:
672 	hardware_disable_all();
673 out_err_no_disable:
674 	for (i = 0; i < KVM_NR_BUSES; i++)
675 		kfree(kvm->buses[i]);
676 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
677 		kvm_free_memslots(kvm, kvm->memslots[i]);
678 	kvm_arch_free_vm(kvm);
679 	mmdrop(current->mm);
680 	return ERR_PTR(r);
681 }
682 
683 /*
684  * Avoid using vmalloc for a small buffer.
685  * Should not be used when the size is statically known.
686  */
687 void *kvm_kvzalloc(unsigned long size)
688 {
689 	if (size > PAGE_SIZE)
690 		return vzalloc(size);
691 	else
692 		return kzalloc(size, GFP_KERNEL);
693 }
694 
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697 	struct kvm_device *dev, *tmp;
698 
699 	/*
700 	 * We do not need to take the kvm->lock here, because nobody else
701 	 * has a reference to the struct kvm at this point and therefore
702 	 * cannot access the devices list anyhow.
703 	 */
704 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705 		list_del(&dev->vm_node);
706 		dev->ops->destroy(dev);
707 	}
708 }
709 
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712 	int i;
713 	struct mm_struct *mm = kvm->mm;
714 
715 	kvm_destroy_vm_debugfs(kvm);
716 	kvm_arch_sync_events(kvm);
717 	spin_lock(&kvm_lock);
718 	list_del(&kvm->vm_list);
719 	spin_unlock(&kvm_lock);
720 	kvm_free_irq_routing(kvm);
721 	for (i = 0; i < KVM_NR_BUSES; i++)
722 		kvm_io_bus_destroy(kvm->buses[i]);
723 	kvm_coalesced_mmio_free(kvm);
724 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
725 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
726 #else
727 	kvm_arch_flush_shadow_all(kvm);
728 #endif
729 	kvm_arch_destroy_vm(kvm);
730 	kvm_destroy_devices(kvm);
731 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
732 		kvm_free_memslots(kvm, kvm->memslots[i]);
733 	cleanup_srcu_struct(&kvm->irq_srcu);
734 	cleanup_srcu_struct(&kvm->srcu);
735 	kvm_arch_free_vm(kvm);
736 	preempt_notifier_dec();
737 	hardware_disable_all();
738 	mmdrop(mm);
739 }
740 
741 void kvm_get_kvm(struct kvm *kvm)
742 {
743 	atomic_inc(&kvm->users_count);
744 }
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
746 
747 void kvm_put_kvm(struct kvm *kvm)
748 {
749 	if (atomic_dec_and_test(&kvm->users_count))
750 		kvm_destroy_vm(kvm);
751 }
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
753 
754 
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
756 {
757 	struct kvm *kvm = filp->private_data;
758 
759 	kvm_irqfd_release(kvm);
760 
761 	kvm_put_kvm(kvm);
762 	return 0;
763 }
764 
765 /*
766  * Allocation size is twice as large as the actual dirty bitmap size.
767  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
768  */
769 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
770 {
771 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
772 
773 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
774 	if (!memslot->dirty_bitmap)
775 		return -ENOMEM;
776 
777 	return 0;
778 }
779 
780 /*
781  * Insert memslot and re-sort memslots based on their GFN,
782  * so binary search could be used to lookup GFN.
783  * Sorting algorithm takes advantage of having initially
784  * sorted array and known changed memslot position.
785  */
786 static void update_memslots(struct kvm_memslots *slots,
787 			    struct kvm_memory_slot *new)
788 {
789 	int id = new->id;
790 	int i = slots->id_to_index[id];
791 	struct kvm_memory_slot *mslots = slots->memslots;
792 
793 	WARN_ON(mslots[i].id != id);
794 	if (!new->npages) {
795 		WARN_ON(!mslots[i].npages);
796 		if (mslots[i].npages)
797 			slots->used_slots--;
798 	} else {
799 		if (!mslots[i].npages)
800 			slots->used_slots++;
801 	}
802 
803 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
804 	       new->base_gfn <= mslots[i + 1].base_gfn) {
805 		if (!mslots[i + 1].npages)
806 			break;
807 		mslots[i] = mslots[i + 1];
808 		slots->id_to_index[mslots[i].id] = i;
809 		i++;
810 	}
811 
812 	/*
813 	 * The ">=" is needed when creating a slot with base_gfn == 0,
814 	 * so that it moves before all those with base_gfn == npages == 0.
815 	 *
816 	 * On the other hand, if new->npages is zero, the above loop has
817 	 * already left i pointing to the beginning of the empty part of
818 	 * mslots, and the ">=" would move the hole backwards in this
819 	 * case---which is wrong.  So skip the loop when deleting a slot.
820 	 */
821 	if (new->npages) {
822 		while (i > 0 &&
823 		       new->base_gfn >= mslots[i - 1].base_gfn) {
824 			mslots[i] = mslots[i - 1];
825 			slots->id_to_index[mslots[i].id] = i;
826 			i--;
827 		}
828 	} else
829 		WARN_ON_ONCE(i != slots->used_slots);
830 
831 	mslots[i] = *new;
832 	slots->id_to_index[mslots[i].id] = i;
833 }
834 
835 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
836 {
837 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
838 
839 #ifdef __KVM_HAVE_READONLY_MEM
840 	valid_flags |= KVM_MEM_READONLY;
841 #endif
842 
843 	if (mem->flags & ~valid_flags)
844 		return -EINVAL;
845 
846 	return 0;
847 }
848 
849 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
850 		int as_id, struct kvm_memslots *slots)
851 {
852 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
853 
854 	/*
855 	 * Set the low bit in the generation, which disables SPTE caching
856 	 * until the end of synchronize_srcu_expedited.
857 	 */
858 	WARN_ON(old_memslots->generation & 1);
859 	slots->generation = old_memslots->generation + 1;
860 
861 	rcu_assign_pointer(kvm->memslots[as_id], slots);
862 	synchronize_srcu_expedited(&kvm->srcu);
863 
864 	/*
865 	 * Increment the new memslot generation a second time. This prevents
866 	 * vm exits that race with memslot updates from caching a memslot
867 	 * generation that will (potentially) be valid forever.
868 	 */
869 	slots->generation++;
870 
871 	kvm_arch_memslots_updated(kvm, slots);
872 
873 	return old_memslots;
874 }
875 
876 /*
877  * Allocate some memory and give it an address in the guest physical address
878  * space.
879  *
880  * Discontiguous memory is allowed, mostly for framebuffers.
881  *
882  * Must be called holding kvm->slots_lock for write.
883  */
884 int __kvm_set_memory_region(struct kvm *kvm,
885 			    const struct kvm_userspace_memory_region *mem)
886 {
887 	int r;
888 	gfn_t base_gfn;
889 	unsigned long npages;
890 	struct kvm_memory_slot *slot;
891 	struct kvm_memory_slot old, new;
892 	struct kvm_memslots *slots = NULL, *old_memslots;
893 	int as_id, id;
894 	enum kvm_mr_change change;
895 
896 	r = check_memory_region_flags(mem);
897 	if (r)
898 		goto out;
899 
900 	r = -EINVAL;
901 	as_id = mem->slot >> 16;
902 	id = (u16)mem->slot;
903 
904 	/* General sanity checks */
905 	if (mem->memory_size & (PAGE_SIZE - 1))
906 		goto out;
907 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
908 		goto out;
909 	/* We can read the guest memory with __xxx_user() later on. */
910 	if ((id < KVM_USER_MEM_SLOTS) &&
911 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
912 	     !access_ok(VERIFY_WRITE,
913 			(void __user *)(unsigned long)mem->userspace_addr,
914 			mem->memory_size)))
915 		goto out;
916 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
917 		goto out;
918 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
919 		goto out;
920 
921 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
922 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
923 	npages = mem->memory_size >> PAGE_SHIFT;
924 
925 	if (npages > KVM_MEM_MAX_NR_PAGES)
926 		goto out;
927 
928 	new = old = *slot;
929 
930 	new.id = id;
931 	new.base_gfn = base_gfn;
932 	new.npages = npages;
933 	new.flags = mem->flags;
934 
935 	if (npages) {
936 		if (!old.npages)
937 			change = KVM_MR_CREATE;
938 		else { /* Modify an existing slot. */
939 			if ((mem->userspace_addr != old.userspace_addr) ||
940 			    (npages != old.npages) ||
941 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
942 				goto out;
943 
944 			if (base_gfn != old.base_gfn)
945 				change = KVM_MR_MOVE;
946 			else if (new.flags != old.flags)
947 				change = KVM_MR_FLAGS_ONLY;
948 			else { /* Nothing to change. */
949 				r = 0;
950 				goto out;
951 			}
952 		}
953 	} else {
954 		if (!old.npages)
955 			goto out;
956 
957 		change = KVM_MR_DELETE;
958 		new.base_gfn = 0;
959 		new.flags = 0;
960 	}
961 
962 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
963 		/* Check for overlaps */
964 		r = -EEXIST;
965 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
966 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
967 			    (slot->id == id))
968 				continue;
969 			if (!((base_gfn + npages <= slot->base_gfn) ||
970 			      (base_gfn >= slot->base_gfn + slot->npages)))
971 				goto out;
972 		}
973 	}
974 
975 	/* Free page dirty bitmap if unneeded */
976 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
977 		new.dirty_bitmap = NULL;
978 
979 	r = -ENOMEM;
980 	if (change == KVM_MR_CREATE) {
981 		new.userspace_addr = mem->userspace_addr;
982 
983 		if (kvm_arch_create_memslot(kvm, &new, npages))
984 			goto out_free;
985 	}
986 
987 	/* Allocate page dirty bitmap if needed */
988 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
989 		if (kvm_create_dirty_bitmap(&new) < 0)
990 			goto out_free;
991 	}
992 
993 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
994 	if (!slots)
995 		goto out_free;
996 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
997 
998 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
999 		slot = id_to_memslot(slots, id);
1000 		slot->flags |= KVM_MEMSLOT_INVALID;
1001 
1002 		old_memslots = install_new_memslots(kvm, as_id, slots);
1003 
1004 		/* slot was deleted or moved, clear iommu mapping */
1005 		kvm_iommu_unmap_pages(kvm, &old);
1006 		/* From this point no new shadow pages pointing to a deleted,
1007 		 * or moved, memslot will be created.
1008 		 *
1009 		 * validation of sp->gfn happens in:
1010 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1011 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1012 		 */
1013 		kvm_arch_flush_shadow_memslot(kvm, slot);
1014 
1015 		/*
1016 		 * We can re-use the old_memslots from above, the only difference
1017 		 * from the currently installed memslots is the invalid flag.  This
1018 		 * will get overwritten by update_memslots anyway.
1019 		 */
1020 		slots = old_memslots;
1021 	}
1022 
1023 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1024 	if (r)
1025 		goto out_slots;
1026 
1027 	/* actual memory is freed via old in kvm_free_memslot below */
1028 	if (change == KVM_MR_DELETE) {
1029 		new.dirty_bitmap = NULL;
1030 		memset(&new.arch, 0, sizeof(new.arch));
1031 	}
1032 
1033 	update_memslots(slots, &new);
1034 	old_memslots = install_new_memslots(kvm, as_id, slots);
1035 
1036 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1037 
1038 	kvm_free_memslot(kvm, &old, &new);
1039 	kvfree(old_memslots);
1040 
1041 	/*
1042 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
1043 	 * un-mapped and re-mapped if their base changes.  Since base change
1044 	 * unmapping is handled above with slot deletion, mapping alone is
1045 	 * needed here.  Anything else the iommu might care about for existing
1046 	 * slots (size changes, userspace addr changes and read-only flag
1047 	 * changes) is disallowed above, so any other attribute changes getting
1048 	 * here can be skipped.
1049 	 */
1050 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1051 		r = kvm_iommu_map_pages(kvm, &new);
1052 		return r;
1053 	}
1054 
1055 	return 0;
1056 
1057 out_slots:
1058 	kvfree(slots);
1059 out_free:
1060 	kvm_free_memslot(kvm, &new, &old);
1061 out:
1062 	return r;
1063 }
1064 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1065 
1066 int kvm_set_memory_region(struct kvm *kvm,
1067 			  const struct kvm_userspace_memory_region *mem)
1068 {
1069 	int r;
1070 
1071 	mutex_lock(&kvm->slots_lock);
1072 	r = __kvm_set_memory_region(kvm, mem);
1073 	mutex_unlock(&kvm->slots_lock);
1074 	return r;
1075 }
1076 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1077 
1078 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1079 					  struct kvm_userspace_memory_region *mem)
1080 {
1081 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1082 		return -EINVAL;
1083 
1084 	return kvm_set_memory_region(kvm, mem);
1085 }
1086 
1087 int kvm_get_dirty_log(struct kvm *kvm,
1088 			struct kvm_dirty_log *log, int *is_dirty)
1089 {
1090 	struct kvm_memslots *slots;
1091 	struct kvm_memory_slot *memslot;
1092 	int r, i, as_id, id;
1093 	unsigned long n;
1094 	unsigned long any = 0;
1095 
1096 	r = -EINVAL;
1097 	as_id = log->slot >> 16;
1098 	id = (u16)log->slot;
1099 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1100 		goto out;
1101 
1102 	slots = __kvm_memslots(kvm, as_id);
1103 	memslot = id_to_memslot(slots, id);
1104 	r = -ENOENT;
1105 	if (!memslot->dirty_bitmap)
1106 		goto out;
1107 
1108 	n = kvm_dirty_bitmap_bytes(memslot);
1109 
1110 	for (i = 0; !any && i < n/sizeof(long); ++i)
1111 		any = memslot->dirty_bitmap[i];
1112 
1113 	r = -EFAULT;
1114 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1115 		goto out;
1116 
1117 	if (any)
1118 		*is_dirty = 1;
1119 
1120 	r = 0;
1121 out:
1122 	return r;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1125 
1126 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1127 /**
1128  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1129  *	are dirty write protect them for next write.
1130  * @kvm:	pointer to kvm instance
1131  * @log:	slot id and address to which we copy the log
1132  * @is_dirty:	flag set if any page is dirty
1133  *
1134  * We need to keep it in mind that VCPU threads can write to the bitmap
1135  * concurrently. So, to avoid losing track of dirty pages we keep the
1136  * following order:
1137  *
1138  *    1. Take a snapshot of the bit and clear it if needed.
1139  *    2. Write protect the corresponding page.
1140  *    3. Copy the snapshot to the userspace.
1141  *    4. Upon return caller flushes TLB's if needed.
1142  *
1143  * Between 2 and 4, the guest may write to the page using the remaining TLB
1144  * entry.  This is not a problem because the page is reported dirty using
1145  * the snapshot taken before and step 4 ensures that writes done after
1146  * exiting to userspace will be logged for the next call.
1147  *
1148  */
1149 int kvm_get_dirty_log_protect(struct kvm *kvm,
1150 			struct kvm_dirty_log *log, bool *is_dirty)
1151 {
1152 	struct kvm_memslots *slots;
1153 	struct kvm_memory_slot *memslot;
1154 	int r, i, as_id, id;
1155 	unsigned long n;
1156 	unsigned long *dirty_bitmap;
1157 	unsigned long *dirty_bitmap_buffer;
1158 
1159 	r = -EINVAL;
1160 	as_id = log->slot >> 16;
1161 	id = (u16)log->slot;
1162 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1163 		goto out;
1164 
1165 	slots = __kvm_memslots(kvm, as_id);
1166 	memslot = id_to_memslot(slots, id);
1167 
1168 	dirty_bitmap = memslot->dirty_bitmap;
1169 	r = -ENOENT;
1170 	if (!dirty_bitmap)
1171 		goto out;
1172 
1173 	n = kvm_dirty_bitmap_bytes(memslot);
1174 
1175 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1176 	memset(dirty_bitmap_buffer, 0, n);
1177 
1178 	spin_lock(&kvm->mmu_lock);
1179 	*is_dirty = false;
1180 	for (i = 0; i < n / sizeof(long); i++) {
1181 		unsigned long mask;
1182 		gfn_t offset;
1183 
1184 		if (!dirty_bitmap[i])
1185 			continue;
1186 
1187 		*is_dirty = true;
1188 
1189 		mask = xchg(&dirty_bitmap[i], 0);
1190 		dirty_bitmap_buffer[i] = mask;
1191 
1192 		if (mask) {
1193 			offset = i * BITS_PER_LONG;
1194 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1195 								offset, mask);
1196 		}
1197 	}
1198 
1199 	spin_unlock(&kvm->mmu_lock);
1200 
1201 	r = -EFAULT;
1202 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1203 		goto out;
1204 
1205 	r = 0;
1206 out:
1207 	return r;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1210 #endif
1211 
1212 bool kvm_largepages_enabled(void)
1213 {
1214 	return largepages_enabled;
1215 }
1216 
1217 void kvm_disable_largepages(void)
1218 {
1219 	largepages_enabled = false;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1222 
1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1224 {
1225 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1228 
1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1232 }
1233 
1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1235 {
1236 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1237 
1238 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239 	      memslot->flags & KVM_MEMSLOT_INVALID)
1240 		return false;
1241 
1242 	return true;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1245 
1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1247 {
1248 	struct vm_area_struct *vma;
1249 	unsigned long addr, size;
1250 
1251 	size = PAGE_SIZE;
1252 
1253 	addr = gfn_to_hva(kvm, gfn);
1254 	if (kvm_is_error_hva(addr))
1255 		return PAGE_SIZE;
1256 
1257 	down_read(&current->mm->mmap_sem);
1258 	vma = find_vma(current->mm, addr);
1259 	if (!vma)
1260 		goto out;
1261 
1262 	size = vma_kernel_pagesize(vma);
1263 
1264 out:
1265 	up_read(&current->mm->mmap_sem);
1266 
1267 	return size;
1268 }
1269 
1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1271 {
1272 	return slot->flags & KVM_MEM_READONLY;
1273 }
1274 
1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276 				       gfn_t *nr_pages, bool write)
1277 {
1278 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279 		return KVM_HVA_ERR_BAD;
1280 
1281 	if (memslot_is_readonly(slot) && write)
1282 		return KVM_HVA_ERR_RO_BAD;
1283 
1284 	if (nr_pages)
1285 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1286 
1287 	return __gfn_to_hva_memslot(slot, gfn);
1288 }
1289 
1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291 				     gfn_t *nr_pages)
1292 {
1293 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1294 }
1295 
1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1297 					gfn_t gfn)
1298 {
1299 	return gfn_to_hva_many(slot, gfn, NULL);
1300 }
1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1302 
1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1304 {
1305 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_hva);
1308 
1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1314 
1315 /*
1316  * If writable is set to false, the hva returned by this function is only
1317  * allowed to be read.
1318  */
1319 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1320 				      gfn_t gfn, bool *writable)
1321 {
1322 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1323 
1324 	if (!kvm_is_error_hva(hva) && writable)
1325 		*writable = !memslot_is_readonly(slot);
1326 
1327 	return hva;
1328 }
1329 
1330 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1331 {
1332 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1333 
1334 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1335 }
1336 
1337 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1338 {
1339 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1340 
1341 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1342 }
1343 
1344 static int get_user_page_nowait(unsigned long start, int write,
1345 		struct page **page)
1346 {
1347 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1348 
1349 	if (write)
1350 		flags |= FOLL_WRITE;
1351 
1352 	return __get_user_pages(current, current->mm, start, 1, flags, page,
1353 			NULL, NULL);
1354 }
1355 
1356 static inline int check_user_page_hwpoison(unsigned long addr)
1357 {
1358 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1359 
1360 	rc = __get_user_pages(current, current->mm, addr, 1,
1361 			      flags, NULL, NULL, NULL);
1362 	return rc == -EHWPOISON;
1363 }
1364 
1365 /*
1366  * The atomic path to get the writable pfn which will be stored in @pfn,
1367  * true indicates success, otherwise false is returned.
1368  */
1369 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1370 			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1371 {
1372 	struct page *page[1];
1373 	int npages;
1374 
1375 	if (!(async || atomic))
1376 		return false;
1377 
1378 	/*
1379 	 * Fast pin a writable pfn only if it is a write fault request
1380 	 * or the caller allows to map a writable pfn for a read fault
1381 	 * request.
1382 	 */
1383 	if (!(write_fault || writable))
1384 		return false;
1385 
1386 	npages = __get_user_pages_fast(addr, 1, 1, page);
1387 	if (npages == 1) {
1388 		*pfn = page_to_pfn(page[0]);
1389 
1390 		if (writable)
1391 			*writable = true;
1392 		return true;
1393 	}
1394 
1395 	return false;
1396 }
1397 
1398 /*
1399  * The slow path to get the pfn of the specified host virtual address,
1400  * 1 indicates success, -errno is returned if error is detected.
1401  */
1402 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1403 			   bool *writable, kvm_pfn_t *pfn)
1404 {
1405 	struct page *page[1];
1406 	int npages = 0;
1407 
1408 	might_sleep();
1409 
1410 	if (writable)
1411 		*writable = write_fault;
1412 
1413 	if (async) {
1414 		down_read(&current->mm->mmap_sem);
1415 		npages = get_user_page_nowait(addr, write_fault, page);
1416 		up_read(&current->mm->mmap_sem);
1417 	} else
1418 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1419 						   write_fault, 0, page,
1420 						   FOLL_TOUCH|FOLL_HWPOISON);
1421 	if (npages != 1)
1422 		return npages;
1423 
1424 	/* map read fault as writable if possible */
1425 	if (unlikely(!write_fault) && writable) {
1426 		struct page *wpage[1];
1427 
1428 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1429 		if (npages == 1) {
1430 			*writable = true;
1431 			put_page(page[0]);
1432 			page[0] = wpage[0];
1433 		}
1434 
1435 		npages = 1;
1436 	}
1437 	*pfn = page_to_pfn(page[0]);
1438 	return npages;
1439 }
1440 
1441 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1442 {
1443 	if (unlikely(!(vma->vm_flags & VM_READ)))
1444 		return false;
1445 
1446 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1447 		return false;
1448 
1449 	return true;
1450 }
1451 
1452 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1453 			       unsigned long addr, bool *async,
1454 			       bool write_fault, kvm_pfn_t *p_pfn)
1455 {
1456 	unsigned long pfn;
1457 	int r;
1458 
1459 	r = follow_pfn(vma, addr, &pfn);
1460 	if (r) {
1461 		/*
1462 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1463 		 * not call the fault handler, so do it here.
1464 		 */
1465 		bool unlocked = false;
1466 		r = fixup_user_fault(current, current->mm, addr,
1467 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1468 				     &unlocked);
1469 		if (unlocked)
1470 			return -EAGAIN;
1471 		if (r)
1472 			return r;
1473 
1474 		r = follow_pfn(vma, addr, &pfn);
1475 		if (r)
1476 			return r;
1477 
1478 	}
1479 
1480 
1481 	/*
1482 	 * Get a reference here because callers of *hva_to_pfn* and
1483 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1484 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1485 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1486 	 * simply do nothing for reserved pfns.
1487 	 *
1488 	 * Whoever called remap_pfn_range is also going to call e.g.
1489 	 * unmap_mapping_range before the underlying pages are freed,
1490 	 * causing a call to our MMU notifier.
1491 	 */
1492 	kvm_get_pfn(pfn);
1493 
1494 	*p_pfn = pfn;
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Pin guest page in memory and return its pfn.
1500  * @addr: host virtual address which maps memory to the guest
1501  * @atomic: whether this function can sleep
1502  * @async: whether this function need to wait IO complete if the
1503  *         host page is not in the memory
1504  * @write_fault: whether we should get a writable host page
1505  * @writable: whether it allows to map a writable host page for !@write_fault
1506  *
1507  * The function will map a writable host page for these two cases:
1508  * 1): @write_fault = true
1509  * 2): @write_fault = false && @writable, @writable will tell the caller
1510  *     whether the mapping is writable.
1511  */
1512 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1513 			bool write_fault, bool *writable)
1514 {
1515 	struct vm_area_struct *vma;
1516 	kvm_pfn_t pfn = 0;
1517 	int npages, r;
1518 
1519 	/* we can do it either atomically or asynchronously, not both */
1520 	BUG_ON(atomic && async);
1521 
1522 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1523 		return pfn;
1524 
1525 	if (atomic)
1526 		return KVM_PFN_ERR_FAULT;
1527 
1528 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1529 	if (npages == 1)
1530 		return pfn;
1531 
1532 	down_read(&current->mm->mmap_sem);
1533 	if (npages == -EHWPOISON ||
1534 	      (!async && check_user_page_hwpoison(addr))) {
1535 		pfn = KVM_PFN_ERR_HWPOISON;
1536 		goto exit;
1537 	}
1538 
1539 retry:
1540 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1541 
1542 	if (vma == NULL)
1543 		pfn = KVM_PFN_ERR_FAULT;
1544 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1545 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1546 		if (r == -EAGAIN)
1547 			goto retry;
1548 		if (r < 0)
1549 			pfn = KVM_PFN_ERR_FAULT;
1550 	} else {
1551 		if (async && vma_is_valid(vma, write_fault))
1552 			*async = true;
1553 		pfn = KVM_PFN_ERR_FAULT;
1554 	}
1555 exit:
1556 	up_read(&current->mm->mmap_sem);
1557 	return pfn;
1558 }
1559 
1560 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1561 			       bool atomic, bool *async, bool write_fault,
1562 			       bool *writable)
1563 {
1564 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1565 
1566 	if (addr == KVM_HVA_ERR_RO_BAD) {
1567 		if (writable)
1568 			*writable = false;
1569 		return KVM_PFN_ERR_RO_FAULT;
1570 	}
1571 
1572 	if (kvm_is_error_hva(addr)) {
1573 		if (writable)
1574 			*writable = false;
1575 		return KVM_PFN_NOSLOT;
1576 	}
1577 
1578 	/* Do not map writable pfn in the readonly memslot. */
1579 	if (writable && memslot_is_readonly(slot)) {
1580 		*writable = false;
1581 		writable = NULL;
1582 	}
1583 
1584 	return hva_to_pfn(addr, atomic, async, write_fault,
1585 			  writable);
1586 }
1587 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1588 
1589 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1590 		      bool *writable)
1591 {
1592 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1593 				    write_fault, writable);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1596 
1597 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1598 {
1599 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1602 
1603 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1604 {
1605 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1606 }
1607 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1608 
1609 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1610 {
1611 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1614 
1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1620 
1621 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1622 {
1623 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1624 }
1625 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1626 
1627 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1628 {
1629 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1630 }
1631 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1632 
1633 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1634 			    struct page **pages, int nr_pages)
1635 {
1636 	unsigned long addr;
1637 	gfn_t entry;
1638 
1639 	addr = gfn_to_hva_many(slot, gfn, &entry);
1640 	if (kvm_is_error_hva(addr))
1641 		return -1;
1642 
1643 	if (entry < nr_pages)
1644 		return 0;
1645 
1646 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1647 }
1648 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1649 
1650 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1651 {
1652 	if (is_error_noslot_pfn(pfn))
1653 		return KVM_ERR_PTR_BAD_PAGE;
1654 
1655 	if (kvm_is_reserved_pfn(pfn)) {
1656 		WARN_ON(1);
1657 		return KVM_ERR_PTR_BAD_PAGE;
1658 	}
1659 
1660 	return pfn_to_page(pfn);
1661 }
1662 
1663 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1664 {
1665 	kvm_pfn_t pfn;
1666 
1667 	pfn = gfn_to_pfn(kvm, gfn);
1668 
1669 	return kvm_pfn_to_page(pfn);
1670 }
1671 EXPORT_SYMBOL_GPL(gfn_to_page);
1672 
1673 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1674 {
1675 	kvm_pfn_t pfn;
1676 
1677 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1678 
1679 	return kvm_pfn_to_page(pfn);
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1682 
1683 void kvm_release_page_clean(struct page *page)
1684 {
1685 	WARN_ON(is_error_page(page));
1686 
1687 	kvm_release_pfn_clean(page_to_pfn(page));
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1690 
1691 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1692 {
1693 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1694 		put_page(pfn_to_page(pfn));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1697 
1698 void kvm_release_page_dirty(struct page *page)
1699 {
1700 	WARN_ON(is_error_page(page));
1701 
1702 	kvm_release_pfn_dirty(page_to_pfn(page));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1705 
1706 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1707 {
1708 	kvm_set_pfn_dirty(pfn);
1709 	kvm_release_pfn_clean(pfn);
1710 }
1711 
1712 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1713 {
1714 	if (!kvm_is_reserved_pfn(pfn)) {
1715 		struct page *page = pfn_to_page(pfn);
1716 
1717 		if (!PageReserved(page))
1718 			SetPageDirty(page);
1719 	}
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1722 
1723 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1724 {
1725 	if (!kvm_is_reserved_pfn(pfn))
1726 		mark_page_accessed(pfn_to_page(pfn));
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1729 
1730 void kvm_get_pfn(kvm_pfn_t pfn)
1731 {
1732 	if (!kvm_is_reserved_pfn(pfn))
1733 		get_page(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1736 
1737 static int next_segment(unsigned long len, int offset)
1738 {
1739 	if (len > PAGE_SIZE - offset)
1740 		return PAGE_SIZE - offset;
1741 	else
1742 		return len;
1743 }
1744 
1745 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1746 				 void *data, int offset, int len)
1747 {
1748 	int r;
1749 	unsigned long addr;
1750 
1751 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1752 	if (kvm_is_error_hva(addr))
1753 		return -EFAULT;
1754 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1755 	if (r)
1756 		return -EFAULT;
1757 	return 0;
1758 }
1759 
1760 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1761 			int len)
1762 {
1763 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1764 
1765 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1768 
1769 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1770 			     int offset, int len)
1771 {
1772 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1773 
1774 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1777 
1778 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1779 {
1780 	gfn_t gfn = gpa >> PAGE_SHIFT;
1781 	int seg;
1782 	int offset = offset_in_page(gpa);
1783 	int ret;
1784 
1785 	while ((seg = next_segment(len, offset)) != 0) {
1786 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1787 		if (ret < 0)
1788 			return ret;
1789 		offset = 0;
1790 		len -= seg;
1791 		data += seg;
1792 		++gfn;
1793 	}
1794 	return 0;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_read_guest);
1797 
1798 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1799 {
1800 	gfn_t gfn = gpa >> PAGE_SHIFT;
1801 	int seg;
1802 	int offset = offset_in_page(gpa);
1803 	int ret;
1804 
1805 	while ((seg = next_segment(len, offset)) != 0) {
1806 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1807 		if (ret < 0)
1808 			return ret;
1809 		offset = 0;
1810 		len -= seg;
1811 		data += seg;
1812 		++gfn;
1813 	}
1814 	return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1817 
1818 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1819 			           void *data, int offset, unsigned long len)
1820 {
1821 	int r;
1822 	unsigned long addr;
1823 
1824 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1825 	if (kvm_is_error_hva(addr))
1826 		return -EFAULT;
1827 	pagefault_disable();
1828 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1829 	pagefault_enable();
1830 	if (r)
1831 		return -EFAULT;
1832 	return 0;
1833 }
1834 
1835 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1836 			  unsigned long len)
1837 {
1838 	gfn_t gfn = gpa >> PAGE_SHIFT;
1839 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1840 	int offset = offset_in_page(gpa);
1841 
1842 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1845 
1846 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1847 			       void *data, unsigned long len)
1848 {
1849 	gfn_t gfn = gpa >> PAGE_SHIFT;
1850 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1851 	int offset = offset_in_page(gpa);
1852 
1853 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1856 
1857 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1858 			          const void *data, int offset, int len)
1859 {
1860 	int r;
1861 	unsigned long addr;
1862 
1863 	addr = gfn_to_hva_memslot(memslot, gfn);
1864 	if (kvm_is_error_hva(addr))
1865 		return -EFAULT;
1866 	r = __copy_to_user((void __user *)addr + offset, data, len);
1867 	if (r)
1868 		return -EFAULT;
1869 	mark_page_dirty_in_slot(memslot, gfn);
1870 	return 0;
1871 }
1872 
1873 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1874 			 const void *data, int offset, int len)
1875 {
1876 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1877 
1878 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1881 
1882 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1883 			      const void *data, int offset, int len)
1884 {
1885 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1886 
1887 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1890 
1891 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1892 		    unsigned long len)
1893 {
1894 	gfn_t gfn = gpa >> PAGE_SHIFT;
1895 	int seg;
1896 	int offset = offset_in_page(gpa);
1897 	int ret;
1898 
1899 	while ((seg = next_segment(len, offset)) != 0) {
1900 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1901 		if (ret < 0)
1902 			return ret;
1903 		offset = 0;
1904 		len -= seg;
1905 		data += seg;
1906 		++gfn;
1907 	}
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_write_guest);
1911 
1912 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1913 		         unsigned long len)
1914 {
1915 	gfn_t gfn = gpa >> PAGE_SHIFT;
1916 	int seg;
1917 	int offset = offset_in_page(gpa);
1918 	int ret;
1919 
1920 	while ((seg = next_segment(len, offset)) != 0) {
1921 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1922 		if (ret < 0)
1923 			return ret;
1924 		offset = 0;
1925 		len -= seg;
1926 		data += seg;
1927 		++gfn;
1928 	}
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1932 
1933 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1934 			      gpa_t gpa, unsigned long len)
1935 {
1936 	struct kvm_memslots *slots = kvm_memslots(kvm);
1937 	int offset = offset_in_page(gpa);
1938 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1939 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1940 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1941 	gfn_t nr_pages_avail;
1942 
1943 	ghc->gpa = gpa;
1944 	ghc->generation = slots->generation;
1945 	ghc->len = len;
1946 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1947 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1948 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1949 		ghc->hva += offset;
1950 	} else {
1951 		/*
1952 		 * If the requested region crosses two memslots, we still
1953 		 * verify that the entire region is valid here.
1954 		 */
1955 		while (start_gfn <= end_gfn) {
1956 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1957 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1958 						   &nr_pages_avail);
1959 			if (kvm_is_error_hva(ghc->hva))
1960 				return -EFAULT;
1961 			start_gfn += nr_pages_avail;
1962 		}
1963 		/* Use the slow path for cross page reads and writes. */
1964 		ghc->memslot = NULL;
1965 	}
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1969 
1970 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1971 			   void *data, unsigned long len)
1972 {
1973 	struct kvm_memslots *slots = kvm_memslots(kvm);
1974 	int r;
1975 
1976 	BUG_ON(len > ghc->len);
1977 
1978 	if (slots->generation != ghc->generation)
1979 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1980 
1981 	if (unlikely(!ghc->memslot))
1982 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1983 
1984 	if (kvm_is_error_hva(ghc->hva))
1985 		return -EFAULT;
1986 
1987 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1988 	if (r)
1989 		return -EFAULT;
1990 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1991 
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1995 
1996 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1997 			   void *data, unsigned long len)
1998 {
1999 	struct kvm_memslots *slots = kvm_memslots(kvm);
2000 	int r;
2001 
2002 	BUG_ON(len > ghc->len);
2003 
2004 	if (slots->generation != ghc->generation)
2005 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2006 
2007 	if (unlikely(!ghc->memslot))
2008 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2009 
2010 	if (kvm_is_error_hva(ghc->hva))
2011 		return -EFAULT;
2012 
2013 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2014 	if (r)
2015 		return -EFAULT;
2016 
2017 	return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2020 
2021 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2022 {
2023 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2024 
2025 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2028 
2029 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2030 {
2031 	gfn_t gfn = gpa >> PAGE_SHIFT;
2032 	int seg;
2033 	int offset = offset_in_page(gpa);
2034 	int ret;
2035 
2036 	while ((seg = next_segment(len, offset)) != 0) {
2037 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2038 		if (ret < 0)
2039 			return ret;
2040 		offset = 0;
2041 		len -= seg;
2042 		++gfn;
2043 	}
2044 	return 0;
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2047 
2048 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2049 				    gfn_t gfn)
2050 {
2051 	if (memslot && memslot->dirty_bitmap) {
2052 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2053 
2054 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2055 	}
2056 }
2057 
2058 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2059 {
2060 	struct kvm_memory_slot *memslot;
2061 
2062 	memslot = gfn_to_memslot(kvm, gfn);
2063 	mark_page_dirty_in_slot(memslot, gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(mark_page_dirty);
2066 
2067 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2068 {
2069 	struct kvm_memory_slot *memslot;
2070 
2071 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2072 	mark_page_dirty_in_slot(memslot, gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2075 
2076 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2077 {
2078 	unsigned int old, val, grow;
2079 
2080 	old = val = vcpu->halt_poll_ns;
2081 	grow = READ_ONCE(halt_poll_ns_grow);
2082 	/* 10us base */
2083 	if (val == 0 && grow)
2084 		val = 10000;
2085 	else
2086 		val *= grow;
2087 
2088 	if (val > halt_poll_ns)
2089 		val = halt_poll_ns;
2090 
2091 	vcpu->halt_poll_ns = val;
2092 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2093 }
2094 
2095 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2096 {
2097 	unsigned int old, val, shrink;
2098 
2099 	old = val = vcpu->halt_poll_ns;
2100 	shrink = READ_ONCE(halt_poll_ns_shrink);
2101 	if (shrink == 0)
2102 		val = 0;
2103 	else
2104 		val /= shrink;
2105 
2106 	vcpu->halt_poll_ns = val;
2107 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2108 }
2109 
2110 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2111 {
2112 	if (kvm_arch_vcpu_runnable(vcpu)) {
2113 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2114 		return -EINTR;
2115 	}
2116 	if (kvm_cpu_has_pending_timer(vcpu))
2117 		return -EINTR;
2118 	if (signal_pending(current))
2119 		return -EINTR;
2120 
2121 	return 0;
2122 }
2123 
2124 /*
2125  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2126  */
2127 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2128 {
2129 	ktime_t start, cur;
2130 	DECLARE_SWAITQUEUE(wait);
2131 	bool waited = false;
2132 	u64 block_ns;
2133 
2134 	start = cur = ktime_get();
2135 	if (vcpu->halt_poll_ns) {
2136 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2137 
2138 		++vcpu->stat.halt_attempted_poll;
2139 		do {
2140 			/*
2141 			 * This sets KVM_REQ_UNHALT if an interrupt
2142 			 * arrives.
2143 			 */
2144 			if (kvm_vcpu_check_block(vcpu) < 0) {
2145 				++vcpu->stat.halt_successful_poll;
2146 				if (!vcpu_valid_wakeup(vcpu))
2147 					++vcpu->stat.halt_poll_invalid;
2148 				goto out;
2149 			}
2150 			cur = ktime_get();
2151 		} while (single_task_running() && ktime_before(cur, stop));
2152 	}
2153 
2154 	kvm_arch_vcpu_blocking(vcpu);
2155 
2156 	for (;;) {
2157 		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2158 
2159 		if (kvm_vcpu_check_block(vcpu) < 0)
2160 			break;
2161 
2162 		waited = true;
2163 		schedule();
2164 	}
2165 
2166 	finish_swait(&vcpu->wq, &wait);
2167 	cur = ktime_get();
2168 
2169 	kvm_arch_vcpu_unblocking(vcpu);
2170 out:
2171 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2172 
2173 	if (!vcpu_valid_wakeup(vcpu))
2174 		shrink_halt_poll_ns(vcpu);
2175 	else if (halt_poll_ns) {
2176 		if (block_ns <= vcpu->halt_poll_ns)
2177 			;
2178 		/* we had a long block, shrink polling */
2179 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2180 			shrink_halt_poll_ns(vcpu);
2181 		/* we had a short halt and our poll time is too small */
2182 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2183 			block_ns < halt_poll_ns)
2184 			grow_halt_poll_ns(vcpu);
2185 	} else
2186 		vcpu->halt_poll_ns = 0;
2187 
2188 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2189 	kvm_arch_vcpu_block_finish(vcpu);
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2192 
2193 #ifndef CONFIG_S390
2194 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2195 {
2196 	struct swait_queue_head *wqp;
2197 
2198 	wqp = kvm_arch_vcpu_wq(vcpu);
2199 	if (swait_active(wqp)) {
2200 		swake_up(wqp);
2201 		++vcpu->stat.halt_wakeup;
2202 	}
2203 
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2206 
2207 /*
2208  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2209  */
2210 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2211 {
2212 	int me;
2213 	int cpu = vcpu->cpu;
2214 
2215 	kvm_vcpu_wake_up(vcpu);
2216 	me = get_cpu();
2217 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2218 		if (kvm_arch_vcpu_should_kick(vcpu))
2219 			smp_send_reschedule(cpu);
2220 	put_cpu();
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2223 #endif /* !CONFIG_S390 */
2224 
2225 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2226 {
2227 	struct pid *pid;
2228 	struct task_struct *task = NULL;
2229 	int ret = 0;
2230 
2231 	rcu_read_lock();
2232 	pid = rcu_dereference(target->pid);
2233 	if (pid)
2234 		task = get_pid_task(pid, PIDTYPE_PID);
2235 	rcu_read_unlock();
2236 	if (!task)
2237 		return ret;
2238 	ret = yield_to(task, 1);
2239 	put_task_struct(task);
2240 
2241 	return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2244 
2245 /*
2246  * Helper that checks whether a VCPU is eligible for directed yield.
2247  * Most eligible candidate to yield is decided by following heuristics:
2248  *
2249  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2250  *  (preempted lock holder), indicated by @in_spin_loop.
2251  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2252  *
2253  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2254  *  chance last time (mostly it has become eligible now since we have probably
2255  *  yielded to lockholder in last iteration. This is done by toggling
2256  *  @dy_eligible each time a VCPU checked for eligibility.)
2257  *
2258  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2259  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2260  *  burning. Giving priority for a potential lock-holder increases lock
2261  *  progress.
2262  *
2263  *  Since algorithm is based on heuristics, accessing another VCPU data without
2264  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2265  *  and continue with next VCPU and so on.
2266  */
2267 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2268 {
2269 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2270 	bool eligible;
2271 
2272 	eligible = !vcpu->spin_loop.in_spin_loop ||
2273 		    vcpu->spin_loop.dy_eligible;
2274 
2275 	if (vcpu->spin_loop.in_spin_loop)
2276 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2277 
2278 	return eligible;
2279 #else
2280 	return true;
2281 #endif
2282 }
2283 
2284 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2285 {
2286 	struct kvm *kvm = me->kvm;
2287 	struct kvm_vcpu *vcpu;
2288 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2289 	int yielded = 0;
2290 	int try = 3;
2291 	int pass;
2292 	int i;
2293 
2294 	kvm_vcpu_set_in_spin_loop(me, true);
2295 	/*
2296 	 * We boost the priority of a VCPU that is runnable but not
2297 	 * currently running, because it got preempted by something
2298 	 * else and called schedule in __vcpu_run.  Hopefully that
2299 	 * VCPU is holding the lock that we need and will release it.
2300 	 * We approximate round-robin by starting at the last boosted VCPU.
2301 	 */
2302 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2303 		kvm_for_each_vcpu(i, vcpu, kvm) {
2304 			if (!pass && i <= last_boosted_vcpu) {
2305 				i = last_boosted_vcpu;
2306 				continue;
2307 			} else if (pass && i > last_boosted_vcpu)
2308 				break;
2309 			if (!ACCESS_ONCE(vcpu->preempted))
2310 				continue;
2311 			if (vcpu == me)
2312 				continue;
2313 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2314 				continue;
2315 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2316 				continue;
2317 
2318 			yielded = kvm_vcpu_yield_to(vcpu);
2319 			if (yielded > 0) {
2320 				kvm->last_boosted_vcpu = i;
2321 				break;
2322 			} else if (yielded < 0) {
2323 				try--;
2324 				if (!try)
2325 					break;
2326 			}
2327 		}
2328 	}
2329 	kvm_vcpu_set_in_spin_loop(me, false);
2330 
2331 	/* Ensure vcpu is not eligible during next spinloop */
2332 	kvm_vcpu_set_dy_eligible(me, false);
2333 }
2334 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2335 
2336 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2337 {
2338 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2339 	struct page *page;
2340 
2341 	if (vmf->pgoff == 0)
2342 		page = virt_to_page(vcpu->run);
2343 #ifdef CONFIG_X86
2344 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2345 		page = virt_to_page(vcpu->arch.pio_data);
2346 #endif
2347 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2348 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2349 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2350 #endif
2351 	else
2352 		return kvm_arch_vcpu_fault(vcpu, vmf);
2353 	get_page(page);
2354 	vmf->page = page;
2355 	return 0;
2356 }
2357 
2358 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2359 	.fault = kvm_vcpu_fault,
2360 };
2361 
2362 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2363 {
2364 	vma->vm_ops = &kvm_vcpu_vm_ops;
2365 	return 0;
2366 }
2367 
2368 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2369 {
2370 	struct kvm_vcpu *vcpu = filp->private_data;
2371 
2372 	kvm_put_kvm(vcpu->kvm);
2373 	return 0;
2374 }
2375 
2376 static struct file_operations kvm_vcpu_fops = {
2377 	.release        = kvm_vcpu_release,
2378 	.unlocked_ioctl = kvm_vcpu_ioctl,
2379 #ifdef CONFIG_KVM_COMPAT
2380 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2381 #endif
2382 	.mmap           = kvm_vcpu_mmap,
2383 	.llseek		= noop_llseek,
2384 };
2385 
2386 /*
2387  * Allocates an inode for the vcpu.
2388  */
2389 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2390 {
2391 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2392 }
2393 
2394 /*
2395  * Creates some virtual cpus.  Good luck creating more than one.
2396  */
2397 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2398 {
2399 	int r;
2400 	struct kvm_vcpu *vcpu;
2401 
2402 	if (id >= KVM_MAX_VCPU_ID)
2403 		return -EINVAL;
2404 
2405 	mutex_lock(&kvm->lock);
2406 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2407 		mutex_unlock(&kvm->lock);
2408 		return -EINVAL;
2409 	}
2410 
2411 	kvm->created_vcpus++;
2412 	mutex_unlock(&kvm->lock);
2413 
2414 	vcpu = kvm_arch_vcpu_create(kvm, id);
2415 	if (IS_ERR(vcpu)) {
2416 		r = PTR_ERR(vcpu);
2417 		goto vcpu_decrement;
2418 	}
2419 
2420 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2421 
2422 	r = kvm_arch_vcpu_setup(vcpu);
2423 	if (r)
2424 		goto vcpu_destroy;
2425 
2426 	mutex_lock(&kvm->lock);
2427 	if (kvm_get_vcpu_by_id(kvm, id)) {
2428 		r = -EEXIST;
2429 		goto unlock_vcpu_destroy;
2430 	}
2431 
2432 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2433 
2434 	/* Now it's all set up, let userspace reach it */
2435 	kvm_get_kvm(kvm);
2436 	r = create_vcpu_fd(vcpu);
2437 	if (r < 0) {
2438 		kvm_put_kvm(kvm);
2439 		goto unlock_vcpu_destroy;
2440 	}
2441 
2442 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2443 
2444 	/*
2445 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2446 	 * before kvm->online_vcpu's incremented value.
2447 	 */
2448 	smp_wmb();
2449 	atomic_inc(&kvm->online_vcpus);
2450 
2451 	mutex_unlock(&kvm->lock);
2452 	kvm_arch_vcpu_postcreate(vcpu);
2453 	return r;
2454 
2455 unlock_vcpu_destroy:
2456 	mutex_unlock(&kvm->lock);
2457 vcpu_destroy:
2458 	kvm_arch_vcpu_destroy(vcpu);
2459 vcpu_decrement:
2460 	mutex_lock(&kvm->lock);
2461 	kvm->created_vcpus--;
2462 	mutex_unlock(&kvm->lock);
2463 	return r;
2464 }
2465 
2466 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2467 {
2468 	if (sigset) {
2469 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2470 		vcpu->sigset_active = 1;
2471 		vcpu->sigset = *sigset;
2472 	} else
2473 		vcpu->sigset_active = 0;
2474 	return 0;
2475 }
2476 
2477 static long kvm_vcpu_ioctl(struct file *filp,
2478 			   unsigned int ioctl, unsigned long arg)
2479 {
2480 	struct kvm_vcpu *vcpu = filp->private_data;
2481 	void __user *argp = (void __user *)arg;
2482 	int r;
2483 	struct kvm_fpu *fpu = NULL;
2484 	struct kvm_sregs *kvm_sregs = NULL;
2485 
2486 	if (vcpu->kvm->mm != current->mm)
2487 		return -EIO;
2488 
2489 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2490 		return -EINVAL;
2491 
2492 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2493 	/*
2494 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2495 	 * so vcpu_load() would break it.
2496 	 */
2497 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2498 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2499 #endif
2500 
2501 
2502 	r = vcpu_load(vcpu);
2503 	if (r)
2504 		return r;
2505 	switch (ioctl) {
2506 	case KVM_RUN:
2507 		r = -EINVAL;
2508 		if (arg)
2509 			goto out;
2510 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2511 			/* The thread running this VCPU changed. */
2512 			struct pid *oldpid = vcpu->pid;
2513 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2514 
2515 			rcu_assign_pointer(vcpu->pid, newpid);
2516 			if (oldpid)
2517 				synchronize_rcu();
2518 			put_pid(oldpid);
2519 		}
2520 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2521 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2522 		break;
2523 	case KVM_GET_REGS: {
2524 		struct kvm_regs *kvm_regs;
2525 
2526 		r = -ENOMEM;
2527 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2528 		if (!kvm_regs)
2529 			goto out;
2530 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2531 		if (r)
2532 			goto out_free1;
2533 		r = -EFAULT;
2534 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2535 			goto out_free1;
2536 		r = 0;
2537 out_free1:
2538 		kfree(kvm_regs);
2539 		break;
2540 	}
2541 	case KVM_SET_REGS: {
2542 		struct kvm_regs *kvm_regs;
2543 
2544 		r = -ENOMEM;
2545 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2546 		if (IS_ERR(kvm_regs)) {
2547 			r = PTR_ERR(kvm_regs);
2548 			goto out;
2549 		}
2550 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2551 		kfree(kvm_regs);
2552 		break;
2553 	}
2554 	case KVM_GET_SREGS: {
2555 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2556 		r = -ENOMEM;
2557 		if (!kvm_sregs)
2558 			goto out;
2559 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2560 		if (r)
2561 			goto out;
2562 		r = -EFAULT;
2563 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2564 			goto out;
2565 		r = 0;
2566 		break;
2567 	}
2568 	case KVM_SET_SREGS: {
2569 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2570 		if (IS_ERR(kvm_sregs)) {
2571 			r = PTR_ERR(kvm_sregs);
2572 			kvm_sregs = NULL;
2573 			goto out;
2574 		}
2575 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2576 		break;
2577 	}
2578 	case KVM_GET_MP_STATE: {
2579 		struct kvm_mp_state mp_state;
2580 
2581 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2582 		if (r)
2583 			goto out;
2584 		r = -EFAULT;
2585 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2586 			goto out;
2587 		r = 0;
2588 		break;
2589 	}
2590 	case KVM_SET_MP_STATE: {
2591 		struct kvm_mp_state mp_state;
2592 
2593 		r = -EFAULT;
2594 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2595 			goto out;
2596 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2597 		break;
2598 	}
2599 	case KVM_TRANSLATE: {
2600 		struct kvm_translation tr;
2601 
2602 		r = -EFAULT;
2603 		if (copy_from_user(&tr, argp, sizeof(tr)))
2604 			goto out;
2605 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2606 		if (r)
2607 			goto out;
2608 		r = -EFAULT;
2609 		if (copy_to_user(argp, &tr, sizeof(tr)))
2610 			goto out;
2611 		r = 0;
2612 		break;
2613 	}
2614 	case KVM_SET_GUEST_DEBUG: {
2615 		struct kvm_guest_debug dbg;
2616 
2617 		r = -EFAULT;
2618 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2619 			goto out;
2620 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2621 		break;
2622 	}
2623 	case KVM_SET_SIGNAL_MASK: {
2624 		struct kvm_signal_mask __user *sigmask_arg = argp;
2625 		struct kvm_signal_mask kvm_sigmask;
2626 		sigset_t sigset, *p;
2627 
2628 		p = NULL;
2629 		if (argp) {
2630 			r = -EFAULT;
2631 			if (copy_from_user(&kvm_sigmask, argp,
2632 					   sizeof(kvm_sigmask)))
2633 				goto out;
2634 			r = -EINVAL;
2635 			if (kvm_sigmask.len != sizeof(sigset))
2636 				goto out;
2637 			r = -EFAULT;
2638 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2639 					   sizeof(sigset)))
2640 				goto out;
2641 			p = &sigset;
2642 		}
2643 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2644 		break;
2645 	}
2646 	case KVM_GET_FPU: {
2647 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2648 		r = -ENOMEM;
2649 		if (!fpu)
2650 			goto out;
2651 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2652 		if (r)
2653 			goto out;
2654 		r = -EFAULT;
2655 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2656 			goto out;
2657 		r = 0;
2658 		break;
2659 	}
2660 	case KVM_SET_FPU: {
2661 		fpu = memdup_user(argp, sizeof(*fpu));
2662 		if (IS_ERR(fpu)) {
2663 			r = PTR_ERR(fpu);
2664 			fpu = NULL;
2665 			goto out;
2666 		}
2667 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2668 		break;
2669 	}
2670 	default:
2671 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2672 	}
2673 out:
2674 	vcpu_put(vcpu);
2675 	kfree(fpu);
2676 	kfree(kvm_sregs);
2677 	return r;
2678 }
2679 
2680 #ifdef CONFIG_KVM_COMPAT
2681 static long kvm_vcpu_compat_ioctl(struct file *filp,
2682 				  unsigned int ioctl, unsigned long arg)
2683 {
2684 	struct kvm_vcpu *vcpu = filp->private_data;
2685 	void __user *argp = compat_ptr(arg);
2686 	int r;
2687 
2688 	if (vcpu->kvm->mm != current->mm)
2689 		return -EIO;
2690 
2691 	switch (ioctl) {
2692 	case KVM_SET_SIGNAL_MASK: {
2693 		struct kvm_signal_mask __user *sigmask_arg = argp;
2694 		struct kvm_signal_mask kvm_sigmask;
2695 		compat_sigset_t csigset;
2696 		sigset_t sigset;
2697 
2698 		if (argp) {
2699 			r = -EFAULT;
2700 			if (copy_from_user(&kvm_sigmask, argp,
2701 					   sizeof(kvm_sigmask)))
2702 				goto out;
2703 			r = -EINVAL;
2704 			if (kvm_sigmask.len != sizeof(csigset))
2705 				goto out;
2706 			r = -EFAULT;
2707 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2708 					   sizeof(csigset)))
2709 				goto out;
2710 			sigset_from_compat(&sigset, &csigset);
2711 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2712 		} else
2713 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2714 		break;
2715 	}
2716 	default:
2717 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2718 	}
2719 
2720 out:
2721 	return r;
2722 }
2723 #endif
2724 
2725 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2726 				 int (*accessor)(struct kvm_device *dev,
2727 						 struct kvm_device_attr *attr),
2728 				 unsigned long arg)
2729 {
2730 	struct kvm_device_attr attr;
2731 
2732 	if (!accessor)
2733 		return -EPERM;
2734 
2735 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2736 		return -EFAULT;
2737 
2738 	return accessor(dev, &attr);
2739 }
2740 
2741 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2742 			     unsigned long arg)
2743 {
2744 	struct kvm_device *dev = filp->private_data;
2745 
2746 	switch (ioctl) {
2747 	case KVM_SET_DEVICE_ATTR:
2748 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2749 	case KVM_GET_DEVICE_ATTR:
2750 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2751 	case KVM_HAS_DEVICE_ATTR:
2752 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2753 	default:
2754 		if (dev->ops->ioctl)
2755 			return dev->ops->ioctl(dev, ioctl, arg);
2756 
2757 		return -ENOTTY;
2758 	}
2759 }
2760 
2761 static int kvm_device_release(struct inode *inode, struct file *filp)
2762 {
2763 	struct kvm_device *dev = filp->private_data;
2764 	struct kvm *kvm = dev->kvm;
2765 
2766 	kvm_put_kvm(kvm);
2767 	return 0;
2768 }
2769 
2770 static const struct file_operations kvm_device_fops = {
2771 	.unlocked_ioctl = kvm_device_ioctl,
2772 #ifdef CONFIG_KVM_COMPAT
2773 	.compat_ioctl = kvm_device_ioctl,
2774 #endif
2775 	.release = kvm_device_release,
2776 };
2777 
2778 struct kvm_device *kvm_device_from_filp(struct file *filp)
2779 {
2780 	if (filp->f_op != &kvm_device_fops)
2781 		return NULL;
2782 
2783 	return filp->private_data;
2784 }
2785 
2786 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2787 #ifdef CONFIG_KVM_MPIC
2788 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2789 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2790 #endif
2791 
2792 #ifdef CONFIG_KVM_XICS
2793 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2794 #endif
2795 };
2796 
2797 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2798 {
2799 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2800 		return -ENOSPC;
2801 
2802 	if (kvm_device_ops_table[type] != NULL)
2803 		return -EEXIST;
2804 
2805 	kvm_device_ops_table[type] = ops;
2806 	return 0;
2807 }
2808 
2809 void kvm_unregister_device_ops(u32 type)
2810 {
2811 	if (kvm_device_ops_table[type] != NULL)
2812 		kvm_device_ops_table[type] = NULL;
2813 }
2814 
2815 static int kvm_ioctl_create_device(struct kvm *kvm,
2816 				   struct kvm_create_device *cd)
2817 {
2818 	struct kvm_device_ops *ops = NULL;
2819 	struct kvm_device *dev;
2820 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2821 	int ret;
2822 
2823 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2824 		return -ENODEV;
2825 
2826 	ops = kvm_device_ops_table[cd->type];
2827 	if (ops == NULL)
2828 		return -ENODEV;
2829 
2830 	if (test)
2831 		return 0;
2832 
2833 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2834 	if (!dev)
2835 		return -ENOMEM;
2836 
2837 	dev->ops = ops;
2838 	dev->kvm = kvm;
2839 
2840 	mutex_lock(&kvm->lock);
2841 	ret = ops->create(dev, cd->type);
2842 	if (ret < 0) {
2843 		mutex_unlock(&kvm->lock);
2844 		kfree(dev);
2845 		return ret;
2846 	}
2847 	list_add(&dev->vm_node, &kvm->devices);
2848 	mutex_unlock(&kvm->lock);
2849 
2850 	if (ops->init)
2851 		ops->init(dev);
2852 
2853 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2854 	if (ret < 0) {
2855 		ops->destroy(dev);
2856 		mutex_lock(&kvm->lock);
2857 		list_del(&dev->vm_node);
2858 		mutex_unlock(&kvm->lock);
2859 		return ret;
2860 	}
2861 
2862 	kvm_get_kvm(kvm);
2863 	cd->fd = ret;
2864 	return 0;
2865 }
2866 
2867 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2868 {
2869 	switch (arg) {
2870 	case KVM_CAP_USER_MEMORY:
2871 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2872 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2873 	case KVM_CAP_INTERNAL_ERROR_DATA:
2874 #ifdef CONFIG_HAVE_KVM_MSI
2875 	case KVM_CAP_SIGNAL_MSI:
2876 #endif
2877 #ifdef CONFIG_HAVE_KVM_IRQFD
2878 	case KVM_CAP_IRQFD:
2879 	case KVM_CAP_IRQFD_RESAMPLE:
2880 #endif
2881 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2882 	case KVM_CAP_CHECK_EXTENSION_VM:
2883 		return 1;
2884 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2885 	case KVM_CAP_IRQ_ROUTING:
2886 		return KVM_MAX_IRQ_ROUTES;
2887 #endif
2888 #if KVM_ADDRESS_SPACE_NUM > 1
2889 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2890 		return KVM_ADDRESS_SPACE_NUM;
2891 #endif
2892 	case KVM_CAP_MAX_VCPU_ID:
2893 		return KVM_MAX_VCPU_ID;
2894 	default:
2895 		break;
2896 	}
2897 	return kvm_vm_ioctl_check_extension(kvm, arg);
2898 }
2899 
2900 static long kvm_vm_ioctl(struct file *filp,
2901 			   unsigned int ioctl, unsigned long arg)
2902 {
2903 	struct kvm *kvm = filp->private_data;
2904 	void __user *argp = (void __user *)arg;
2905 	int r;
2906 
2907 	if (kvm->mm != current->mm)
2908 		return -EIO;
2909 	switch (ioctl) {
2910 	case KVM_CREATE_VCPU:
2911 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2912 		break;
2913 	case KVM_SET_USER_MEMORY_REGION: {
2914 		struct kvm_userspace_memory_region kvm_userspace_mem;
2915 
2916 		r = -EFAULT;
2917 		if (copy_from_user(&kvm_userspace_mem, argp,
2918 						sizeof(kvm_userspace_mem)))
2919 			goto out;
2920 
2921 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2922 		break;
2923 	}
2924 	case KVM_GET_DIRTY_LOG: {
2925 		struct kvm_dirty_log log;
2926 
2927 		r = -EFAULT;
2928 		if (copy_from_user(&log, argp, sizeof(log)))
2929 			goto out;
2930 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2931 		break;
2932 	}
2933 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2934 	case KVM_REGISTER_COALESCED_MMIO: {
2935 		struct kvm_coalesced_mmio_zone zone;
2936 
2937 		r = -EFAULT;
2938 		if (copy_from_user(&zone, argp, sizeof(zone)))
2939 			goto out;
2940 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2941 		break;
2942 	}
2943 	case KVM_UNREGISTER_COALESCED_MMIO: {
2944 		struct kvm_coalesced_mmio_zone zone;
2945 
2946 		r = -EFAULT;
2947 		if (copy_from_user(&zone, argp, sizeof(zone)))
2948 			goto out;
2949 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2950 		break;
2951 	}
2952 #endif
2953 	case KVM_IRQFD: {
2954 		struct kvm_irqfd data;
2955 
2956 		r = -EFAULT;
2957 		if (copy_from_user(&data, argp, sizeof(data)))
2958 			goto out;
2959 		r = kvm_irqfd(kvm, &data);
2960 		break;
2961 	}
2962 	case KVM_IOEVENTFD: {
2963 		struct kvm_ioeventfd data;
2964 
2965 		r = -EFAULT;
2966 		if (copy_from_user(&data, argp, sizeof(data)))
2967 			goto out;
2968 		r = kvm_ioeventfd(kvm, &data);
2969 		break;
2970 	}
2971 #ifdef CONFIG_HAVE_KVM_MSI
2972 	case KVM_SIGNAL_MSI: {
2973 		struct kvm_msi msi;
2974 
2975 		r = -EFAULT;
2976 		if (copy_from_user(&msi, argp, sizeof(msi)))
2977 			goto out;
2978 		r = kvm_send_userspace_msi(kvm, &msi);
2979 		break;
2980 	}
2981 #endif
2982 #ifdef __KVM_HAVE_IRQ_LINE
2983 	case KVM_IRQ_LINE_STATUS:
2984 	case KVM_IRQ_LINE: {
2985 		struct kvm_irq_level irq_event;
2986 
2987 		r = -EFAULT;
2988 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2989 			goto out;
2990 
2991 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2992 					ioctl == KVM_IRQ_LINE_STATUS);
2993 		if (r)
2994 			goto out;
2995 
2996 		r = -EFAULT;
2997 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2998 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2999 				goto out;
3000 		}
3001 
3002 		r = 0;
3003 		break;
3004 	}
3005 #endif
3006 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3007 	case KVM_SET_GSI_ROUTING: {
3008 		struct kvm_irq_routing routing;
3009 		struct kvm_irq_routing __user *urouting;
3010 		struct kvm_irq_routing_entry *entries = NULL;
3011 
3012 		r = -EFAULT;
3013 		if (copy_from_user(&routing, argp, sizeof(routing)))
3014 			goto out;
3015 		r = -EINVAL;
3016 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3017 			goto out;
3018 		if (routing.flags)
3019 			goto out;
3020 		if (routing.nr) {
3021 			r = -ENOMEM;
3022 			entries = vmalloc(routing.nr * sizeof(*entries));
3023 			if (!entries)
3024 				goto out;
3025 			r = -EFAULT;
3026 			urouting = argp;
3027 			if (copy_from_user(entries, urouting->entries,
3028 					   routing.nr * sizeof(*entries)))
3029 				goto out_free_irq_routing;
3030 		}
3031 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3032 					routing.flags);
3033 out_free_irq_routing:
3034 		vfree(entries);
3035 		break;
3036 	}
3037 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3038 	case KVM_CREATE_DEVICE: {
3039 		struct kvm_create_device cd;
3040 
3041 		r = -EFAULT;
3042 		if (copy_from_user(&cd, argp, sizeof(cd)))
3043 			goto out;
3044 
3045 		r = kvm_ioctl_create_device(kvm, &cd);
3046 		if (r)
3047 			goto out;
3048 
3049 		r = -EFAULT;
3050 		if (copy_to_user(argp, &cd, sizeof(cd)))
3051 			goto out;
3052 
3053 		r = 0;
3054 		break;
3055 	}
3056 	case KVM_CHECK_EXTENSION:
3057 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3058 		break;
3059 	default:
3060 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3061 	}
3062 out:
3063 	return r;
3064 }
3065 
3066 #ifdef CONFIG_KVM_COMPAT
3067 struct compat_kvm_dirty_log {
3068 	__u32 slot;
3069 	__u32 padding1;
3070 	union {
3071 		compat_uptr_t dirty_bitmap; /* one bit per page */
3072 		__u64 padding2;
3073 	};
3074 };
3075 
3076 static long kvm_vm_compat_ioctl(struct file *filp,
3077 			   unsigned int ioctl, unsigned long arg)
3078 {
3079 	struct kvm *kvm = filp->private_data;
3080 	int r;
3081 
3082 	if (kvm->mm != current->mm)
3083 		return -EIO;
3084 	switch (ioctl) {
3085 	case KVM_GET_DIRTY_LOG: {
3086 		struct compat_kvm_dirty_log compat_log;
3087 		struct kvm_dirty_log log;
3088 
3089 		r = -EFAULT;
3090 		if (copy_from_user(&compat_log, (void __user *)arg,
3091 				   sizeof(compat_log)))
3092 			goto out;
3093 		log.slot	 = compat_log.slot;
3094 		log.padding1	 = compat_log.padding1;
3095 		log.padding2	 = compat_log.padding2;
3096 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3097 
3098 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3099 		break;
3100 	}
3101 	default:
3102 		r = kvm_vm_ioctl(filp, ioctl, arg);
3103 	}
3104 
3105 out:
3106 	return r;
3107 }
3108 #endif
3109 
3110 static struct file_operations kvm_vm_fops = {
3111 	.release        = kvm_vm_release,
3112 	.unlocked_ioctl = kvm_vm_ioctl,
3113 #ifdef CONFIG_KVM_COMPAT
3114 	.compat_ioctl   = kvm_vm_compat_ioctl,
3115 #endif
3116 	.llseek		= noop_llseek,
3117 };
3118 
3119 static int kvm_dev_ioctl_create_vm(unsigned long type)
3120 {
3121 	int r;
3122 	struct kvm *kvm;
3123 	struct file *file;
3124 
3125 	kvm = kvm_create_vm(type);
3126 	if (IS_ERR(kvm))
3127 		return PTR_ERR(kvm);
3128 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3129 	r = kvm_coalesced_mmio_init(kvm);
3130 	if (r < 0) {
3131 		kvm_put_kvm(kvm);
3132 		return r;
3133 	}
3134 #endif
3135 	r = get_unused_fd_flags(O_CLOEXEC);
3136 	if (r < 0) {
3137 		kvm_put_kvm(kvm);
3138 		return r;
3139 	}
3140 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3141 	if (IS_ERR(file)) {
3142 		put_unused_fd(r);
3143 		kvm_put_kvm(kvm);
3144 		return PTR_ERR(file);
3145 	}
3146 
3147 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3148 		put_unused_fd(r);
3149 		fput(file);
3150 		return -ENOMEM;
3151 	}
3152 
3153 	fd_install(r, file);
3154 	return r;
3155 }
3156 
3157 static long kvm_dev_ioctl(struct file *filp,
3158 			  unsigned int ioctl, unsigned long arg)
3159 {
3160 	long r = -EINVAL;
3161 
3162 	switch (ioctl) {
3163 	case KVM_GET_API_VERSION:
3164 		if (arg)
3165 			goto out;
3166 		r = KVM_API_VERSION;
3167 		break;
3168 	case KVM_CREATE_VM:
3169 		r = kvm_dev_ioctl_create_vm(arg);
3170 		break;
3171 	case KVM_CHECK_EXTENSION:
3172 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3173 		break;
3174 	case KVM_GET_VCPU_MMAP_SIZE:
3175 		if (arg)
3176 			goto out;
3177 		r = PAGE_SIZE;     /* struct kvm_run */
3178 #ifdef CONFIG_X86
3179 		r += PAGE_SIZE;    /* pio data page */
3180 #endif
3181 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3182 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3183 #endif
3184 		break;
3185 	case KVM_TRACE_ENABLE:
3186 	case KVM_TRACE_PAUSE:
3187 	case KVM_TRACE_DISABLE:
3188 		r = -EOPNOTSUPP;
3189 		break;
3190 	default:
3191 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3192 	}
3193 out:
3194 	return r;
3195 }
3196 
3197 static struct file_operations kvm_chardev_ops = {
3198 	.unlocked_ioctl = kvm_dev_ioctl,
3199 	.compat_ioctl   = kvm_dev_ioctl,
3200 	.llseek		= noop_llseek,
3201 };
3202 
3203 static struct miscdevice kvm_dev = {
3204 	KVM_MINOR,
3205 	"kvm",
3206 	&kvm_chardev_ops,
3207 };
3208 
3209 static void hardware_enable_nolock(void *junk)
3210 {
3211 	int cpu = raw_smp_processor_id();
3212 	int r;
3213 
3214 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3215 		return;
3216 
3217 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3218 
3219 	r = kvm_arch_hardware_enable();
3220 
3221 	if (r) {
3222 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3223 		atomic_inc(&hardware_enable_failed);
3224 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3225 	}
3226 }
3227 
3228 static int kvm_starting_cpu(unsigned int cpu)
3229 {
3230 	raw_spin_lock(&kvm_count_lock);
3231 	if (kvm_usage_count)
3232 		hardware_enable_nolock(NULL);
3233 	raw_spin_unlock(&kvm_count_lock);
3234 	return 0;
3235 }
3236 
3237 static void hardware_disable_nolock(void *junk)
3238 {
3239 	int cpu = raw_smp_processor_id();
3240 
3241 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3242 		return;
3243 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3244 	kvm_arch_hardware_disable();
3245 }
3246 
3247 static int kvm_dying_cpu(unsigned int cpu)
3248 {
3249 	raw_spin_lock(&kvm_count_lock);
3250 	if (kvm_usage_count)
3251 		hardware_disable_nolock(NULL);
3252 	raw_spin_unlock(&kvm_count_lock);
3253 	return 0;
3254 }
3255 
3256 static void hardware_disable_all_nolock(void)
3257 {
3258 	BUG_ON(!kvm_usage_count);
3259 
3260 	kvm_usage_count--;
3261 	if (!kvm_usage_count)
3262 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3263 }
3264 
3265 static void hardware_disable_all(void)
3266 {
3267 	raw_spin_lock(&kvm_count_lock);
3268 	hardware_disable_all_nolock();
3269 	raw_spin_unlock(&kvm_count_lock);
3270 }
3271 
3272 static int hardware_enable_all(void)
3273 {
3274 	int r = 0;
3275 
3276 	raw_spin_lock(&kvm_count_lock);
3277 
3278 	kvm_usage_count++;
3279 	if (kvm_usage_count == 1) {
3280 		atomic_set(&hardware_enable_failed, 0);
3281 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3282 
3283 		if (atomic_read(&hardware_enable_failed)) {
3284 			hardware_disable_all_nolock();
3285 			r = -EBUSY;
3286 		}
3287 	}
3288 
3289 	raw_spin_unlock(&kvm_count_lock);
3290 
3291 	return r;
3292 }
3293 
3294 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3295 		      void *v)
3296 {
3297 	/*
3298 	 * Some (well, at least mine) BIOSes hang on reboot if
3299 	 * in vmx root mode.
3300 	 *
3301 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3302 	 */
3303 	pr_info("kvm: exiting hardware virtualization\n");
3304 	kvm_rebooting = true;
3305 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3306 	return NOTIFY_OK;
3307 }
3308 
3309 static struct notifier_block kvm_reboot_notifier = {
3310 	.notifier_call = kvm_reboot,
3311 	.priority = 0,
3312 };
3313 
3314 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3315 {
3316 	int i;
3317 
3318 	for (i = 0; i < bus->dev_count; i++) {
3319 		struct kvm_io_device *pos = bus->range[i].dev;
3320 
3321 		kvm_iodevice_destructor(pos);
3322 	}
3323 	kfree(bus);
3324 }
3325 
3326 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3327 				 const struct kvm_io_range *r2)
3328 {
3329 	gpa_t addr1 = r1->addr;
3330 	gpa_t addr2 = r2->addr;
3331 
3332 	if (addr1 < addr2)
3333 		return -1;
3334 
3335 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3336 	 * accept any overlapping write.  Any order is acceptable for
3337 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3338 	 * we process all of them.
3339 	 */
3340 	if (r2->len) {
3341 		addr1 += r1->len;
3342 		addr2 += r2->len;
3343 	}
3344 
3345 	if (addr1 > addr2)
3346 		return 1;
3347 
3348 	return 0;
3349 }
3350 
3351 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3352 {
3353 	return kvm_io_bus_cmp(p1, p2);
3354 }
3355 
3356 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3357 			  gpa_t addr, int len)
3358 {
3359 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3360 		.addr = addr,
3361 		.len = len,
3362 		.dev = dev,
3363 	};
3364 
3365 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3366 		kvm_io_bus_sort_cmp, NULL);
3367 
3368 	return 0;
3369 }
3370 
3371 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3372 			     gpa_t addr, int len)
3373 {
3374 	struct kvm_io_range *range, key;
3375 	int off;
3376 
3377 	key = (struct kvm_io_range) {
3378 		.addr = addr,
3379 		.len = len,
3380 	};
3381 
3382 	range = bsearch(&key, bus->range, bus->dev_count,
3383 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3384 	if (range == NULL)
3385 		return -ENOENT;
3386 
3387 	off = range - bus->range;
3388 
3389 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3390 		off--;
3391 
3392 	return off;
3393 }
3394 
3395 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3396 			      struct kvm_io_range *range, const void *val)
3397 {
3398 	int idx;
3399 
3400 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3401 	if (idx < 0)
3402 		return -EOPNOTSUPP;
3403 
3404 	while (idx < bus->dev_count &&
3405 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3406 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3407 					range->len, val))
3408 			return idx;
3409 		idx++;
3410 	}
3411 
3412 	return -EOPNOTSUPP;
3413 }
3414 
3415 /* kvm_io_bus_write - called under kvm->slots_lock */
3416 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3417 		     int len, const void *val)
3418 {
3419 	struct kvm_io_bus *bus;
3420 	struct kvm_io_range range;
3421 	int r;
3422 
3423 	range = (struct kvm_io_range) {
3424 		.addr = addr,
3425 		.len = len,
3426 	};
3427 
3428 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3429 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3430 	return r < 0 ? r : 0;
3431 }
3432 
3433 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3434 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3435 			    gpa_t addr, int len, const void *val, long cookie)
3436 {
3437 	struct kvm_io_bus *bus;
3438 	struct kvm_io_range range;
3439 
3440 	range = (struct kvm_io_range) {
3441 		.addr = addr,
3442 		.len = len,
3443 	};
3444 
3445 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3446 
3447 	/* First try the device referenced by cookie. */
3448 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3449 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3450 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3451 					val))
3452 			return cookie;
3453 
3454 	/*
3455 	 * cookie contained garbage; fall back to search and return the
3456 	 * correct cookie value.
3457 	 */
3458 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3459 }
3460 
3461 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3462 			     struct kvm_io_range *range, void *val)
3463 {
3464 	int idx;
3465 
3466 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3467 	if (idx < 0)
3468 		return -EOPNOTSUPP;
3469 
3470 	while (idx < bus->dev_count &&
3471 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3472 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3473 				       range->len, val))
3474 			return idx;
3475 		idx++;
3476 	}
3477 
3478 	return -EOPNOTSUPP;
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3481 
3482 /* kvm_io_bus_read - called under kvm->slots_lock */
3483 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3484 		    int len, void *val)
3485 {
3486 	struct kvm_io_bus *bus;
3487 	struct kvm_io_range range;
3488 	int r;
3489 
3490 	range = (struct kvm_io_range) {
3491 		.addr = addr,
3492 		.len = len,
3493 	};
3494 
3495 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3497 	return r < 0 ? r : 0;
3498 }
3499 
3500 
3501 /* Caller must hold slots_lock. */
3502 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3503 			    int len, struct kvm_io_device *dev)
3504 {
3505 	struct kvm_io_bus *new_bus, *bus;
3506 
3507 	bus = kvm->buses[bus_idx];
3508 	/* exclude ioeventfd which is limited by maximum fd */
3509 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3510 		return -ENOSPC;
3511 
3512 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3513 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3514 	if (!new_bus)
3515 		return -ENOMEM;
3516 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3517 	       sizeof(struct kvm_io_range)));
3518 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3519 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3520 	synchronize_srcu_expedited(&kvm->srcu);
3521 	kfree(bus);
3522 
3523 	return 0;
3524 }
3525 
3526 /* Caller must hold slots_lock. */
3527 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3528 			      struct kvm_io_device *dev)
3529 {
3530 	int i, r;
3531 	struct kvm_io_bus *new_bus, *bus;
3532 
3533 	bus = kvm->buses[bus_idx];
3534 	r = -ENOENT;
3535 	for (i = 0; i < bus->dev_count; i++)
3536 		if (bus->range[i].dev == dev) {
3537 			r = 0;
3538 			break;
3539 		}
3540 
3541 	if (r)
3542 		return r;
3543 
3544 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3545 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3546 	if (!new_bus)
3547 		return -ENOMEM;
3548 
3549 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3550 	new_bus->dev_count--;
3551 	memcpy(new_bus->range + i, bus->range + i + 1,
3552 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3553 
3554 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3555 	synchronize_srcu_expedited(&kvm->srcu);
3556 	kfree(bus);
3557 	return r;
3558 }
3559 
3560 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3561 					 gpa_t addr)
3562 {
3563 	struct kvm_io_bus *bus;
3564 	int dev_idx, srcu_idx;
3565 	struct kvm_io_device *iodev = NULL;
3566 
3567 	srcu_idx = srcu_read_lock(&kvm->srcu);
3568 
3569 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3570 
3571 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3572 	if (dev_idx < 0)
3573 		goto out_unlock;
3574 
3575 	iodev = bus->range[dev_idx].dev;
3576 
3577 out_unlock:
3578 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3579 
3580 	return iodev;
3581 }
3582 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3583 
3584 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3585 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3586 			   const char *fmt)
3587 {
3588 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3589 					  inode->i_private;
3590 
3591 	/* The debugfs files are a reference to the kvm struct which
3592 	 * is still valid when kvm_destroy_vm is called.
3593 	 * To avoid the race between open and the removal of the debugfs
3594 	 * directory we test against the users count.
3595 	 */
3596 	if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3597 		return -ENOENT;
3598 
3599 	if (simple_attr_open(inode, file, get, set, fmt)) {
3600 		kvm_put_kvm(stat_data->kvm);
3601 		return -ENOMEM;
3602 	}
3603 
3604 	return 0;
3605 }
3606 
3607 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3608 {
3609 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3610 					  inode->i_private;
3611 
3612 	simple_attr_release(inode, file);
3613 	kvm_put_kvm(stat_data->kvm);
3614 
3615 	return 0;
3616 }
3617 
3618 static int vm_stat_get_per_vm(void *data, u64 *val)
3619 {
3620 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3621 
3622 	*val = *(u32 *)((void *)stat_data->kvm + stat_data->offset);
3623 
3624 	return 0;
3625 }
3626 
3627 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3628 {
3629 	__simple_attr_check_format("%llu\n", 0ull);
3630 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3631 				NULL, "%llu\n");
3632 }
3633 
3634 static const struct file_operations vm_stat_get_per_vm_fops = {
3635 	.owner   = THIS_MODULE,
3636 	.open    = vm_stat_get_per_vm_open,
3637 	.release = kvm_debugfs_release,
3638 	.read    = simple_attr_read,
3639 	.write   = simple_attr_write,
3640 	.llseek  = generic_file_llseek,
3641 };
3642 
3643 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3644 {
3645 	int i;
3646 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3647 	struct kvm_vcpu *vcpu;
3648 
3649 	*val = 0;
3650 
3651 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3652 		*val += *(u32 *)((void *)vcpu + stat_data->offset);
3653 
3654 	return 0;
3655 }
3656 
3657 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3658 {
3659 	__simple_attr_check_format("%llu\n", 0ull);
3660 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3661 				 NULL, "%llu\n");
3662 }
3663 
3664 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3665 	.owner   = THIS_MODULE,
3666 	.open    = vcpu_stat_get_per_vm_open,
3667 	.release = kvm_debugfs_release,
3668 	.read    = simple_attr_read,
3669 	.write   = simple_attr_write,
3670 	.llseek  = generic_file_llseek,
3671 };
3672 
3673 static const struct file_operations *stat_fops_per_vm[] = {
3674 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3675 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3676 };
3677 
3678 static int vm_stat_get(void *_offset, u64 *val)
3679 {
3680 	unsigned offset = (long)_offset;
3681 	struct kvm *kvm;
3682 	struct kvm_stat_data stat_tmp = {.offset = offset};
3683 	u64 tmp_val;
3684 
3685 	*val = 0;
3686 	spin_lock(&kvm_lock);
3687 	list_for_each_entry(kvm, &vm_list, vm_list) {
3688 		stat_tmp.kvm = kvm;
3689 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3690 		*val += tmp_val;
3691 	}
3692 	spin_unlock(&kvm_lock);
3693 	return 0;
3694 }
3695 
3696 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3697 
3698 static int vcpu_stat_get(void *_offset, u64 *val)
3699 {
3700 	unsigned offset = (long)_offset;
3701 	struct kvm *kvm;
3702 	struct kvm_stat_data stat_tmp = {.offset = offset};
3703 	u64 tmp_val;
3704 
3705 	*val = 0;
3706 	spin_lock(&kvm_lock);
3707 	list_for_each_entry(kvm, &vm_list, vm_list) {
3708 		stat_tmp.kvm = kvm;
3709 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3710 		*val += tmp_val;
3711 	}
3712 	spin_unlock(&kvm_lock);
3713 	return 0;
3714 }
3715 
3716 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3717 
3718 static const struct file_operations *stat_fops[] = {
3719 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3720 	[KVM_STAT_VM]   = &vm_stat_fops,
3721 };
3722 
3723 static int kvm_init_debug(void)
3724 {
3725 	int r = -EEXIST;
3726 	struct kvm_stats_debugfs_item *p;
3727 
3728 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3729 	if (kvm_debugfs_dir == NULL)
3730 		goto out;
3731 
3732 	kvm_debugfs_num_entries = 0;
3733 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3734 		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3735 					 (void *)(long)p->offset,
3736 					 stat_fops[p->kind]))
3737 			goto out_dir;
3738 	}
3739 
3740 	return 0;
3741 
3742 out_dir:
3743 	debugfs_remove_recursive(kvm_debugfs_dir);
3744 out:
3745 	return r;
3746 }
3747 
3748 static int kvm_suspend(void)
3749 {
3750 	if (kvm_usage_count)
3751 		hardware_disable_nolock(NULL);
3752 	return 0;
3753 }
3754 
3755 static void kvm_resume(void)
3756 {
3757 	if (kvm_usage_count) {
3758 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3759 		hardware_enable_nolock(NULL);
3760 	}
3761 }
3762 
3763 static struct syscore_ops kvm_syscore_ops = {
3764 	.suspend = kvm_suspend,
3765 	.resume = kvm_resume,
3766 };
3767 
3768 static inline
3769 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3770 {
3771 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3772 }
3773 
3774 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3775 {
3776 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3777 
3778 	if (vcpu->preempted)
3779 		vcpu->preempted = false;
3780 
3781 	kvm_arch_sched_in(vcpu, cpu);
3782 
3783 	kvm_arch_vcpu_load(vcpu, cpu);
3784 }
3785 
3786 static void kvm_sched_out(struct preempt_notifier *pn,
3787 			  struct task_struct *next)
3788 {
3789 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3790 
3791 	if (current->state == TASK_RUNNING)
3792 		vcpu->preempted = true;
3793 	kvm_arch_vcpu_put(vcpu);
3794 }
3795 
3796 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3797 		  struct module *module)
3798 {
3799 	int r;
3800 	int cpu;
3801 
3802 	r = kvm_arch_init(opaque);
3803 	if (r)
3804 		goto out_fail;
3805 
3806 	/*
3807 	 * kvm_arch_init makes sure there's at most one caller
3808 	 * for architectures that support multiple implementations,
3809 	 * like intel and amd on x86.
3810 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3811 	 * conflicts in case kvm is already setup for another implementation.
3812 	 */
3813 	r = kvm_irqfd_init();
3814 	if (r)
3815 		goto out_irqfd;
3816 
3817 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3818 		r = -ENOMEM;
3819 		goto out_free_0;
3820 	}
3821 
3822 	r = kvm_arch_hardware_setup();
3823 	if (r < 0)
3824 		goto out_free_0a;
3825 
3826 	for_each_online_cpu(cpu) {
3827 		smp_call_function_single(cpu,
3828 				kvm_arch_check_processor_compat,
3829 				&r, 1);
3830 		if (r < 0)
3831 			goto out_free_1;
3832 	}
3833 
3834 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3835 				      kvm_starting_cpu, kvm_dying_cpu);
3836 	if (r)
3837 		goto out_free_2;
3838 	register_reboot_notifier(&kvm_reboot_notifier);
3839 
3840 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3841 	if (!vcpu_align)
3842 		vcpu_align = __alignof__(struct kvm_vcpu);
3843 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3844 					   0, NULL);
3845 	if (!kvm_vcpu_cache) {
3846 		r = -ENOMEM;
3847 		goto out_free_3;
3848 	}
3849 
3850 	r = kvm_async_pf_init();
3851 	if (r)
3852 		goto out_free;
3853 
3854 	kvm_chardev_ops.owner = module;
3855 	kvm_vm_fops.owner = module;
3856 	kvm_vcpu_fops.owner = module;
3857 
3858 	r = misc_register(&kvm_dev);
3859 	if (r) {
3860 		pr_err("kvm: misc device register failed\n");
3861 		goto out_unreg;
3862 	}
3863 
3864 	register_syscore_ops(&kvm_syscore_ops);
3865 
3866 	kvm_preempt_ops.sched_in = kvm_sched_in;
3867 	kvm_preempt_ops.sched_out = kvm_sched_out;
3868 
3869 	r = kvm_init_debug();
3870 	if (r) {
3871 		pr_err("kvm: create debugfs files failed\n");
3872 		goto out_undebugfs;
3873 	}
3874 
3875 	r = kvm_vfio_ops_init();
3876 	WARN_ON(r);
3877 
3878 	return 0;
3879 
3880 out_undebugfs:
3881 	unregister_syscore_ops(&kvm_syscore_ops);
3882 	misc_deregister(&kvm_dev);
3883 out_unreg:
3884 	kvm_async_pf_deinit();
3885 out_free:
3886 	kmem_cache_destroy(kvm_vcpu_cache);
3887 out_free_3:
3888 	unregister_reboot_notifier(&kvm_reboot_notifier);
3889 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3890 out_free_2:
3891 out_free_1:
3892 	kvm_arch_hardware_unsetup();
3893 out_free_0a:
3894 	free_cpumask_var(cpus_hardware_enabled);
3895 out_free_0:
3896 	kvm_irqfd_exit();
3897 out_irqfd:
3898 	kvm_arch_exit();
3899 out_fail:
3900 	return r;
3901 }
3902 EXPORT_SYMBOL_GPL(kvm_init);
3903 
3904 void kvm_exit(void)
3905 {
3906 	debugfs_remove_recursive(kvm_debugfs_dir);
3907 	misc_deregister(&kvm_dev);
3908 	kmem_cache_destroy(kvm_vcpu_cache);
3909 	kvm_async_pf_deinit();
3910 	unregister_syscore_ops(&kvm_syscore_ops);
3911 	unregister_reboot_notifier(&kvm_reboot_notifier);
3912 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3913 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3914 	kvm_arch_hardware_unsetup();
3915 	kvm_arch_exit();
3916 	kvm_irqfd_exit();
3917 	free_cpumask_var(cpus_hardware_enabled);
3918 	kvm_vfio_ops_exit();
3919 }
3920 EXPORT_SYMBOL_GPL(kvm_exit);
3921