xref: /openbmc/linux/virt/kvm/kvm_main.c (revision bc000245)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76 
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80 
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 
86 struct dentry *kvm_debugfs_dir;
87 
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 			   unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 				  unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96 
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101 
102 static bool largepages_enabled = true;
103 
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106 	if (pfn_valid(pfn))
107 		return PageReserved(pfn_to_page(pfn));
108 
109 	return true;
110 }
111 
112 /*
113  * Switches to specified vcpu, until a matching vcpu_put()
114  */
115 int vcpu_load(struct kvm_vcpu *vcpu)
116 {
117 	int cpu;
118 
119 	if (mutex_lock_killable(&vcpu->mutex))
120 		return -EINTR;
121 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122 		/* The thread running this VCPU changed. */
123 		struct pid *oldpid = vcpu->pid;
124 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125 		rcu_assign_pointer(vcpu->pid, newpid);
126 		synchronize_rcu();
127 		put_pid(oldpid);
128 	}
129 	cpu = get_cpu();
130 	preempt_notifier_register(&vcpu->preempt_notifier);
131 	kvm_arch_vcpu_load(vcpu, cpu);
132 	put_cpu();
133 	return 0;
134 }
135 
136 void vcpu_put(struct kvm_vcpu *vcpu)
137 {
138 	preempt_disable();
139 	kvm_arch_vcpu_put(vcpu);
140 	preempt_notifier_unregister(&vcpu->preempt_notifier);
141 	preempt_enable();
142 	mutex_unlock(&vcpu->mutex);
143 }
144 
145 static void ack_flush(void *_completed)
146 {
147 }
148 
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
150 {
151 	int i, cpu, me;
152 	cpumask_var_t cpus;
153 	bool called = true;
154 	struct kvm_vcpu *vcpu;
155 
156 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
157 
158 	me = get_cpu();
159 	kvm_for_each_vcpu(i, vcpu, kvm) {
160 		kvm_make_request(req, vcpu);
161 		cpu = vcpu->cpu;
162 
163 		/* Set ->requests bit before we read ->mode */
164 		smp_mb();
165 
166 		if (cpus != NULL && cpu != -1 && cpu != me &&
167 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168 			cpumask_set_cpu(cpu, cpus);
169 	}
170 	if (unlikely(cpus == NULL))
171 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172 	else if (!cpumask_empty(cpus))
173 		smp_call_function_many(cpus, ack_flush, NULL, 1);
174 	else
175 		called = false;
176 	put_cpu();
177 	free_cpumask_var(cpus);
178 	return called;
179 }
180 
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
182 {
183 	long dirty_count = kvm->tlbs_dirty;
184 
185 	smp_mb();
186 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187 		++kvm->stat.remote_tlb_flush;
188 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
189 }
190 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
191 
192 void kvm_reload_remote_mmus(struct kvm *kvm)
193 {
194 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
195 }
196 
197 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
198 {
199 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
200 }
201 
202 void kvm_make_scan_ioapic_request(struct kvm *kvm)
203 {
204 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
205 }
206 
207 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
208 {
209 	struct page *page;
210 	int r;
211 
212 	mutex_init(&vcpu->mutex);
213 	vcpu->cpu = -1;
214 	vcpu->kvm = kvm;
215 	vcpu->vcpu_id = id;
216 	vcpu->pid = NULL;
217 	init_waitqueue_head(&vcpu->wq);
218 	kvm_async_pf_vcpu_init(vcpu);
219 
220 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
221 	if (!page) {
222 		r = -ENOMEM;
223 		goto fail;
224 	}
225 	vcpu->run = page_address(page);
226 
227 	kvm_vcpu_set_in_spin_loop(vcpu, false);
228 	kvm_vcpu_set_dy_eligible(vcpu, false);
229 	vcpu->preempted = false;
230 
231 	r = kvm_arch_vcpu_init(vcpu);
232 	if (r < 0)
233 		goto fail_free_run;
234 	return 0;
235 
236 fail_free_run:
237 	free_page((unsigned long)vcpu->run);
238 fail:
239 	return r;
240 }
241 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
242 
243 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
244 {
245 	put_pid(vcpu->pid);
246 	kvm_arch_vcpu_uninit(vcpu);
247 	free_page((unsigned long)vcpu->run);
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
250 
251 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
252 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
253 {
254 	return container_of(mn, struct kvm, mmu_notifier);
255 }
256 
257 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
258 					     struct mm_struct *mm,
259 					     unsigned long address)
260 {
261 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
262 	int need_tlb_flush, idx;
263 
264 	/*
265 	 * When ->invalidate_page runs, the linux pte has been zapped
266 	 * already but the page is still allocated until
267 	 * ->invalidate_page returns. So if we increase the sequence
268 	 * here the kvm page fault will notice if the spte can't be
269 	 * established because the page is going to be freed. If
270 	 * instead the kvm page fault establishes the spte before
271 	 * ->invalidate_page runs, kvm_unmap_hva will release it
272 	 * before returning.
273 	 *
274 	 * The sequence increase only need to be seen at spin_unlock
275 	 * time, and not at spin_lock time.
276 	 *
277 	 * Increasing the sequence after the spin_unlock would be
278 	 * unsafe because the kvm page fault could then establish the
279 	 * pte after kvm_unmap_hva returned, without noticing the page
280 	 * is going to be freed.
281 	 */
282 	idx = srcu_read_lock(&kvm->srcu);
283 	spin_lock(&kvm->mmu_lock);
284 
285 	kvm->mmu_notifier_seq++;
286 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
287 	/* we've to flush the tlb before the pages can be freed */
288 	if (need_tlb_flush)
289 		kvm_flush_remote_tlbs(kvm);
290 
291 	spin_unlock(&kvm->mmu_lock);
292 	srcu_read_unlock(&kvm->srcu, idx);
293 }
294 
295 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
296 					struct mm_struct *mm,
297 					unsigned long address,
298 					pte_t pte)
299 {
300 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
301 	int idx;
302 
303 	idx = srcu_read_lock(&kvm->srcu);
304 	spin_lock(&kvm->mmu_lock);
305 	kvm->mmu_notifier_seq++;
306 	kvm_set_spte_hva(kvm, address, pte);
307 	spin_unlock(&kvm->mmu_lock);
308 	srcu_read_unlock(&kvm->srcu, idx);
309 }
310 
311 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
312 						    struct mm_struct *mm,
313 						    unsigned long start,
314 						    unsigned long end)
315 {
316 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 	int need_tlb_flush = 0, idx;
318 
319 	idx = srcu_read_lock(&kvm->srcu);
320 	spin_lock(&kvm->mmu_lock);
321 	/*
322 	 * The count increase must become visible at unlock time as no
323 	 * spte can be established without taking the mmu_lock and
324 	 * count is also read inside the mmu_lock critical section.
325 	 */
326 	kvm->mmu_notifier_count++;
327 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
328 	need_tlb_flush |= kvm->tlbs_dirty;
329 	/* we've to flush the tlb before the pages can be freed */
330 	if (need_tlb_flush)
331 		kvm_flush_remote_tlbs(kvm);
332 
333 	spin_unlock(&kvm->mmu_lock);
334 	srcu_read_unlock(&kvm->srcu, idx);
335 }
336 
337 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
338 						  struct mm_struct *mm,
339 						  unsigned long start,
340 						  unsigned long end)
341 {
342 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
343 
344 	spin_lock(&kvm->mmu_lock);
345 	/*
346 	 * This sequence increase will notify the kvm page fault that
347 	 * the page that is going to be mapped in the spte could have
348 	 * been freed.
349 	 */
350 	kvm->mmu_notifier_seq++;
351 	smp_wmb();
352 	/*
353 	 * The above sequence increase must be visible before the
354 	 * below count decrease, which is ensured by the smp_wmb above
355 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
356 	 */
357 	kvm->mmu_notifier_count--;
358 	spin_unlock(&kvm->mmu_lock);
359 
360 	BUG_ON(kvm->mmu_notifier_count < 0);
361 }
362 
363 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
364 					      struct mm_struct *mm,
365 					      unsigned long address)
366 {
367 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
368 	int young, idx;
369 
370 	idx = srcu_read_lock(&kvm->srcu);
371 	spin_lock(&kvm->mmu_lock);
372 
373 	young = kvm_age_hva(kvm, address);
374 	if (young)
375 		kvm_flush_remote_tlbs(kvm);
376 
377 	spin_unlock(&kvm->mmu_lock);
378 	srcu_read_unlock(&kvm->srcu, idx);
379 
380 	return young;
381 }
382 
383 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
384 				       struct mm_struct *mm,
385 				       unsigned long address)
386 {
387 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 	int young, idx;
389 
390 	idx = srcu_read_lock(&kvm->srcu);
391 	spin_lock(&kvm->mmu_lock);
392 	young = kvm_test_age_hva(kvm, address);
393 	spin_unlock(&kvm->mmu_lock);
394 	srcu_read_unlock(&kvm->srcu, idx);
395 
396 	return young;
397 }
398 
399 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
400 				     struct mm_struct *mm)
401 {
402 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 	int idx;
404 
405 	idx = srcu_read_lock(&kvm->srcu);
406 	kvm_arch_flush_shadow_all(kvm);
407 	srcu_read_unlock(&kvm->srcu, idx);
408 }
409 
410 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
411 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
412 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
413 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
414 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
415 	.test_young		= kvm_mmu_notifier_test_young,
416 	.change_pte		= kvm_mmu_notifier_change_pte,
417 	.release		= kvm_mmu_notifier_release,
418 };
419 
420 static int kvm_init_mmu_notifier(struct kvm *kvm)
421 {
422 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
423 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
424 }
425 
426 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
427 
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 	return 0;
431 }
432 
433 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
434 
435 static void kvm_init_memslots_id(struct kvm *kvm)
436 {
437 	int i;
438 	struct kvm_memslots *slots = kvm->memslots;
439 
440 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
441 		slots->id_to_index[i] = slots->memslots[i].id = i;
442 }
443 
444 static struct kvm *kvm_create_vm(unsigned long type)
445 {
446 	int r, i;
447 	struct kvm *kvm = kvm_arch_alloc_vm();
448 
449 	if (!kvm)
450 		return ERR_PTR(-ENOMEM);
451 
452 	r = kvm_arch_init_vm(kvm, type);
453 	if (r)
454 		goto out_err_nodisable;
455 
456 	r = hardware_enable_all();
457 	if (r)
458 		goto out_err_nodisable;
459 
460 #ifdef CONFIG_HAVE_KVM_IRQCHIP
461 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
462 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
463 #endif
464 
465 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
466 
467 	r = -ENOMEM;
468 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
469 	if (!kvm->memslots)
470 		goto out_err_nosrcu;
471 	kvm_init_memslots_id(kvm);
472 	if (init_srcu_struct(&kvm->srcu))
473 		goto out_err_nosrcu;
474 	for (i = 0; i < KVM_NR_BUSES; i++) {
475 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
476 					GFP_KERNEL);
477 		if (!kvm->buses[i])
478 			goto out_err;
479 	}
480 
481 	spin_lock_init(&kvm->mmu_lock);
482 	kvm->mm = current->mm;
483 	atomic_inc(&kvm->mm->mm_count);
484 	kvm_eventfd_init(kvm);
485 	mutex_init(&kvm->lock);
486 	mutex_init(&kvm->irq_lock);
487 	mutex_init(&kvm->slots_lock);
488 	atomic_set(&kvm->users_count, 1);
489 	INIT_LIST_HEAD(&kvm->devices);
490 
491 	r = kvm_init_mmu_notifier(kvm);
492 	if (r)
493 		goto out_err;
494 
495 	spin_lock(&kvm_lock);
496 	list_add(&kvm->vm_list, &vm_list);
497 	spin_unlock(&kvm_lock);
498 
499 	return kvm;
500 
501 out_err:
502 	cleanup_srcu_struct(&kvm->srcu);
503 out_err_nosrcu:
504 	hardware_disable_all();
505 out_err_nodisable:
506 	for (i = 0; i < KVM_NR_BUSES; i++)
507 		kfree(kvm->buses[i]);
508 	kfree(kvm->memslots);
509 	kvm_arch_free_vm(kvm);
510 	return ERR_PTR(r);
511 }
512 
513 /*
514  * Avoid using vmalloc for a small buffer.
515  * Should not be used when the size is statically known.
516  */
517 void *kvm_kvzalloc(unsigned long size)
518 {
519 	if (size > PAGE_SIZE)
520 		return vzalloc(size);
521 	else
522 		return kzalloc(size, GFP_KERNEL);
523 }
524 
525 void kvm_kvfree(const void *addr)
526 {
527 	if (is_vmalloc_addr(addr))
528 		vfree(addr);
529 	else
530 		kfree(addr);
531 }
532 
533 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
534 {
535 	if (!memslot->dirty_bitmap)
536 		return;
537 
538 	kvm_kvfree(memslot->dirty_bitmap);
539 	memslot->dirty_bitmap = NULL;
540 }
541 
542 /*
543  * Free any memory in @free but not in @dont.
544  */
545 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
546 				  struct kvm_memory_slot *dont)
547 {
548 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
549 		kvm_destroy_dirty_bitmap(free);
550 
551 	kvm_arch_free_memslot(kvm, free, dont);
552 
553 	free->npages = 0;
554 }
555 
556 void kvm_free_physmem(struct kvm *kvm)
557 {
558 	struct kvm_memslots *slots = kvm->memslots;
559 	struct kvm_memory_slot *memslot;
560 
561 	kvm_for_each_memslot(memslot, slots)
562 		kvm_free_physmem_slot(kvm, memslot, NULL);
563 
564 	kfree(kvm->memslots);
565 }
566 
567 static void kvm_destroy_devices(struct kvm *kvm)
568 {
569 	struct list_head *node, *tmp;
570 
571 	list_for_each_safe(node, tmp, &kvm->devices) {
572 		struct kvm_device *dev =
573 			list_entry(node, struct kvm_device, vm_node);
574 
575 		list_del(node);
576 		dev->ops->destroy(dev);
577 	}
578 }
579 
580 static void kvm_destroy_vm(struct kvm *kvm)
581 {
582 	int i;
583 	struct mm_struct *mm = kvm->mm;
584 
585 	kvm_arch_sync_events(kvm);
586 	spin_lock(&kvm_lock);
587 	list_del(&kvm->vm_list);
588 	spin_unlock(&kvm_lock);
589 	kvm_free_irq_routing(kvm);
590 	for (i = 0; i < KVM_NR_BUSES; i++)
591 		kvm_io_bus_destroy(kvm->buses[i]);
592 	kvm_coalesced_mmio_free(kvm);
593 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
594 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
595 #else
596 	kvm_arch_flush_shadow_all(kvm);
597 #endif
598 	kvm_arch_destroy_vm(kvm);
599 	kvm_destroy_devices(kvm);
600 	kvm_free_physmem(kvm);
601 	cleanup_srcu_struct(&kvm->srcu);
602 	kvm_arch_free_vm(kvm);
603 	hardware_disable_all();
604 	mmdrop(mm);
605 }
606 
607 void kvm_get_kvm(struct kvm *kvm)
608 {
609 	atomic_inc(&kvm->users_count);
610 }
611 EXPORT_SYMBOL_GPL(kvm_get_kvm);
612 
613 void kvm_put_kvm(struct kvm *kvm)
614 {
615 	if (atomic_dec_and_test(&kvm->users_count))
616 		kvm_destroy_vm(kvm);
617 }
618 EXPORT_SYMBOL_GPL(kvm_put_kvm);
619 
620 
621 static int kvm_vm_release(struct inode *inode, struct file *filp)
622 {
623 	struct kvm *kvm = filp->private_data;
624 
625 	kvm_irqfd_release(kvm);
626 
627 	kvm_put_kvm(kvm);
628 	return 0;
629 }
630 
631 /*
632  * Allocation size is twice as large as the actual dirty bitmap size.
633  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
634  */
635 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 #ifndef CONFIG_S390
638 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
639 
640 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
641 	if (!memslot->dirty_bitmap)
642 		return -ENOMEM;
643 
644 #endif /* !CONFIG_S390 */
645 	return 0;
646 }
647 
648 static int cmp_memslot(const void *slot1, const void *slot2)
649 {
650 	struct kvm_memory_slot *s1, *s2;
651 
652 	s1 = (struct kvm_memory_slot *)slot1;
653 	s2 = (struct kvm_memory_slot *)slot2;
654 
655 	if (s1->npages < s2->npages)
656 		return 1;
657 	if (s1->npages > s2->npages)
658 		return -1;
659 
660 	return 0;
661 }
662 
663 /*
664  * Sort the memslots base on its size, so the larger slots
665  * will get better fit.
666  */
667 static void sort_memslots(struct kvm_memslots *slots)
668 {
669 	int i;
670 
671 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
672 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
673 
674 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
675 		slots->id_to_index[slots->memslots[i].id] = i;
676 }
677 
678 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
679 		     u64 last_generation)
680 {
681 	if (new) {
682 		int id = new->id;
683 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
684 		unsigned long npages = old->npages;
685 
686 		*old = *new;
687 		if (new->npages != npages)
688 			sort_memslots(slots);
689 	}
690 
691 	slots->generation = last_generation + 1;
692 }
693 
694 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
695 {
696 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
697 
698 #ifdef KVM_CAP_READONLY_MEM
699 	valid_flags |= KVM_MEM_READONLY;
700 #endif
701 
702 	if (mem->flags & ~valid_flags)
703 		return -EINVAL;
704 
705 	return 0;
706 }
707 
708 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
709 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
710 {
711 	struct kvm_memslots *old_memslots = kvm->memslots;
712 
713 	update_memslots(slots, new, kvm->memslots->generation);
714 	rcu_assign_pointer(kvm->memslots, slots);
715 	synchronize_srcu_expedited(&kvm->srcu);
716 
717 	kvm_arch_memslots_updated(kvm);
718 
719 	return old_memslots;
720 }
721 
722 /*
723  * Allocate some memory and give it an address in the guest physical address
724  * space.
725  *
726  * Discontiguous memory is allowed, mostly for framebuffers.
727  *
728  * Must be called holding mmap_sem for write.
729  */
730 int __kvm_set_memory_region(struct kvm *kvm,
731 			    struct kvm_userspace_memory_region *mem)
732 {
733 	int r;
734 	gfn_t base_gfn;
735 	unsigned long npages;
736 	struct kvm_memory_slot *slot;
737 	struct kvm_memory_slot old, new;
738 	struct kvm_memslots *slots = NULL, *old_memslots;
739 	enum kvm_mr_change change;
740 
741 	r = check_memory_region_flags(mem);
742 	if (r)
743 		goto out;
744 
745 	r = -EINVAL;
746 	/* General sanity checks */
747 	if (mem->memory_size & (PAGE_SIZE - 1))
748 		goto out;
749 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
750 		goto out;
751 	/* We can read the guest memory with __xxx_user() later on. */
752 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
753 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
754 	     !access_ok(VERIFY_WRITE,
755 			(void __user *)(unsigned long)mem->userspace_addr,
756 			mem->memory_size)))
757 		goto out;
758 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
759 		goto out;
760 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
761 		goto out;
762 
763 	slot = id_to_memslot(kvm->memslots, mem->slot);
764 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
765 	npages = mem->memory_size >> PAGE_SHIFT;
766 
767 	r = -EINVAL;
768 	if (npages > KVM_MEM_MAX_NR_PAGES)
769 		goto out;
770 
771 	if (!npages)
772 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
773 
774 	new = old = *slot;
775 
776 	new.id = mem->slot;
777 	new.base_gfn = base_gfn;
778 	new.npages = npages;
779 	new.flags = mem->flags;
780 
781 	r = -EINVAL;
782 	if (npages) {
783 		if (!old.npages)
784 			change = KVM_MR_CREATE;
785 		else { /* Modify an existing slot. */
786 			if ((mem->userspace_addr != old.userspace_addr) ||
787 			    (npages != old.npages) ||
788 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
789 				goto out;
790 
791 			if (base_gfn != old.base_gfn)
792 				change = KVM_MR_MOVE;
793 			else if (new.flags != old.flags)
794 				change = KVM_MR_FLAGS_ONLY;
795 			else { /* Nothing to change. */
796 				r = 0;
797 				goto out;
798 			}
799 		}
800 	} else if (old.npages) {
801 		change = KVM_MR_DELETE;
802 	} else /* Modify a non-existent slot: disallowed. */
803 		goto out;
804 
805 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
806 		/* Check for overlaps */
807 		r = -EEXIST;
808 		kvm_for_each_memslot(slot, kvm->memslots) {
809 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
810 			    (slot->id == mem->slot))
811 				continue;
812 			if (!((base_gfn + npages <= slot->base_gfn) ||
813 			      (base_gfn >= slot->base_gfn + slot->npages)))
814 				goto out;
815 		}
816 	}
817 
818 	/* Free page dirty bitmap if unneeded */
819 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
820 		new.dirty_bitmap = NULL;
821 
822 	r = -ENOMEM;
823 	if (change == KVM_MR_CREATE) {
824 		new.userspace_addr = mem->userspace_addr;
825 
826 		if (kvm_arch_create_memslot(kvm, &new, npages))
827 			goto out_free;
828 	}
829 
830 	/* Allocate page dirty bitmap if needed */
831 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
832 		if (kvm_create_dirty_bitmap(&new) < 0)
833 			goto out_free;
834 	}
835 
836 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
837 		r = -ENOMEM;
838 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 				GFP_KERNEL);
840 		if (!slots)
841 			goto out_free;
842 		slot = id_to_memslot(slots, mem->slot);
843 		slot->flags |= KVM_MEMSLOT_INVALID;
844 
845 		old_memslots = install_new_memslots(kvm, slots, NULL);
846 
847 		/* slot was deleted or moved, clear iommu mapping */
848 		kvm_iommu_unmap_pages(kvm, &old);
849 		/* From this point no new shadow pages pointing to a deleted,
850 		 * or moved, memslot will be created.
851 		 *
852 		 * validation of sp->gfn happens in:
853 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
854 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
855 		 */
856 		kvm_arch_flush_shadow_memslot(kvm, slot);
857 		slots = old_memslots;
858 	}
859 
860 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
861 	if (r)
862 		goto out_slots;
863 
864 	r = -ENOMEM;
865 	/*
866 	 * We can re-use the old_memslots from above, the only difference
867 	 * from the currently installed memslots is the invalid flag.  This
868 	 * will get overwritten by update_memslots anyway.
869 	 */
870 	if (!slots) {
871 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872 				GFP_KERNEL);
873 		if (!slots)
874 			goto out_free;
875 	}
876 
877 	/* actual memory is freed via old in kvm_free_physmem_slot below */
878 	if (change == KVM_MR_DELETE) {
879 		new.dirty_bitmap = NULL;
880 		memset(&new.arch, 0, sizeof(new.arch));
881 	}
882 
883 	old_memslots = install_new_memslots(kvm, slots, &new);
884 
885 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
886 
887 	kvm_free_physmem_slot(kvm, &old, &new);
888 	kfree(old_memslots);
889 
890 	/*
891 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
892 	 * un-mapped and re-mapped if their base changes.  Since base change
893 	 * unmapping is handled above with slot deletion, mapping alone is
894 	 * needed here.  Anything else the iommu might care about for existing
895 	 * slots (size changes, userspace addr changes and read-only flag
896 	 * changes) is disallowed above, so any other attribute changes getting
897 	 * here can be skipped.
898 	 */
899 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
900 		r = kvm_iommu_map_pages(kvm, &new);
901 		return r;
902 	}
903 
904 	return 0;
905 
906 out_slots:
907 	kfree(slots);
908 out_free:
909 	kvm_free_physmem_slot(kvm, &new, &old);
910 out:
911 	return r;
912 }
913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
914 
915 int kvm_set_memory_region(struct kvm *kvm,
916 			  struct kvm_userspace_memory_region *mem)
917 {
918 	int r;
919 
920 	mutex_lock(&kvm->slots_lock);
921 	r = __kvm_set_memory_region(kvm, mem);
922 	mutex_unlock(&kvm->slots_lock);
923 	return r;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
926 
927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
928 				   struct kvm_userspace_memory_region *mem)
929 {
930 	if (mem->slot >= KVM_USER_MEM_SLOTS)
931 		return -EINVAL;
932 	return kvm_set_memory_region(kvm, mem);
933 }
934 
935 int kvm_get_dirty_log(struct kvm *kvm,
936 			struct kvm_dirty_log *log, int *is_dirty)
937 {
938 	struct kvm_memory_slot *memslot;
939 	int r, i;
940 	unsigned long n;
941 	unsigned long any = 0;
942 
943 	r = -EINVAL;
944 	if (log->slot >= KVM_USER_MEM_SLOTS)
945 		goto out;
946 
947 	memslot = id_to_memslot(kvm->memslots, log->slot);
948 	r = -ENOENT;
949 	if (!memslot->dirty_bitmap)
950 		goto out;
951 
952 	n = kvm_dirty_bitmap_bytes(memslot);
953 
954 	for (i = 0; !any && i < n/sizeof(long); ++i)
955 		any = memslot->dirty_bitmap[i];
956 
957 	r = -EFAULT;
958 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
959 		goto out;
960 
961 	if (any)
962 		*is_dirty = 1;
963 
964 	r = 0;
965 out:
966 	return r;
967 }
968 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
969 
970 bool kvm_largepages_enabled(void)
971 {
972 	return largepages_enabled;
973 }
974 
975 void kvm_disable_largepages(void)
976 {
977 	largepages_enabled = false;
978 }
979 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
980 
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986 
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
990 
991 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
992 	      memslot->flags & KVM_MEMSLOT_INVALID)
993 		return 0;
994 
995 	return 1;
996 }
997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
998 
999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1000 {
1001 	struct vm_area_struct *vma;
1002 	unsigned long addr, size;
1003 
1004 	size = PAGE_SIZE;
1005 
1006 	addr = gfn_to_hva(kvm, gfn);
1007 	if (kvm_is_error_hva(addr))
1008 		return PAGE_SIZE;
1009 
1010 	down_read(&current->mm->mmap_sem);
1011 	vma = find_vma(current->mm, addr);
1012 	if (!vma)
1013 		goto out;
1014 
1015 	size = vma_kernel_pagesize(vma);
1016 
1017 out:
1018 	up_read(&current->mm->mmap_sem);
1019 
1020 	return size;
1021 }
1022 
1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1024 {
1025 	return slot->flags & KVM_MEM_READONLY;
1026 }
1027 
1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029 				       gfn_t *nr_pages, bool write)
1030 {
1031 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032 		return KVM_HVA_ERR_BAD;
1033 
1034 	if (memslot_is_readonly(slot) && write)
1035 		return KVM_HVA_ERR_RO_BAD;
1036 
1037 	if (nr_pages)
1038 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1039 
1040 	return __gfn_to_hva_memslot(slot, gfn);
1041 }
1042 
1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044 				     gfn_t *nr_pages)
1045 {
1046 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1047 }
1048 
1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1050 				 gfn_t gfn)
1051 {
1052 	return gfn_to_hva_many(slot, gfn, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1055 
1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1057 {
1058 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1059 }
1060 EXPORT_SYMBOL_GPL(gfn_to_hva);
1061 
1062 /*
1063  * If writable is set to false, the hva returned by this function is only
1064  * allowed to be read.
1065  */
1066 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1067 {
1068 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1069 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1070 
1071 	if (!kvm_is_error_hva(hva) && writable)
1072 		*writable = !memslot_is_readonly(slot);
1073 
1074 	return hva;
1075 }
1076 
1077 static int kvm_read_hva(void *data, void __user *hva, int len)
1078 {
1079 	return __copy_from_user(data, hva, len);
1080 }
1081 
1082 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1083 {
1084 	return __copy_from_user_inatomic(data, hva, len);
1085 }
1086 
1087 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1088 	unsigned long start, int write, struct page **page)
1089 {
1090 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1091 
1092 	if (write)
1093 		flags |= FOLL_WRITE;
1094 
1095 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1096 }
1097 
1098 static inline int check_user_page_hwpoison(unsigned long addr)
1099 {
1100 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1101 
1102 	rc = __get_user_pages(current, current->mm, addr, 1,
1103 			      flags, NULL, NULL, NULL);
1104 	return rc == -EHWPOISON;
1105 }
1106 
1107 /*
1108  * The atomic path to get the writable pfn which will be stored in @pfn,
1109  * true indicates success, otherwise false is returned.
1110  */
1111 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1112 			    bool write_fault, bool *writable, pfn_t *pfn)
1113 {
1114 	struct page *page[1];
1115 	int npages;
1116 
1117 	if (!(async || atomic))
1118 		return false;
1119 
1120 	/*
1121 	 * Fast pin a writable pfn only if it is a write fault request
1122 	 * or the caller allows to map a writable pfn for a read fault
1123 	 * request.
1124 	 */
1125 	if (!(write_fault || writable))
1126 		return false;
1127 
1128 	npages = __get_user_pages_fast(addr, 1, 1, page);
1129 	if (npages == 1) {
1130 		*pfn = page_to_pfn(page[0]);
1131 
1132 		if (writable)
1133 			*writable = true;
1134 		return true;
1135 	}
1136 
1137 	return false;
1138 }
1139 
1140 /*
1141  * The slow path to get the pfn of the specified host virtual address,
1142  * 1 indicates success, -errno is returned if error is detected.
1143  */
1144 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1145 			   bool *writable, pfn_t *pfn)
1146 {
1147 	struct page *page[1];
1148 	int npages = 0;
1149 
1150 	might_sleep();
1151 
1152 	if (writable)
1153 		*writable = write_fault;
1154 
1155 	if (async) {
1156 		down_read(&current->mm->mmap_sem);
1157 		npages = get_user_page_nowait(current, current->mm,
1158 					      addr, write_fault, page);
1159 		up_read(&current->mm->mmap_sem);
1160 	} else
1161 		npages = get_user_pages_fast(addr, 1, write_fault,
1162 					     page);
1163 	if (npages != 1)
1164 		return npages;
1165 
1166 	/* map read fault as writable if possible */
1167 	if (unlikely(!write_fault) && writable) {
1168 		struct page *wpage[1];
1169 
1170 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1171 		if (npages == 1) {
1172 			*writable = true;
1173 			put_page(page[0]);
1174 			page[0] = wpage[0];
1175 		}
1176 
1177 		npages = 1;
1178 	}
1179 	*pfn = page_to_pfn(page[0]);
1180 	return npages;
1181 }
1182 
1183 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1184 {
1185 	if (unlikely(!(vma->vm_flags & VM_READ)))
1186 		return false;
1187 
1188 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1189 		return false;
1190 
1191 	return true;
1192 }
1193 
1194 /*
1195  * Pin guest page in memory and return its pfn.
1196  * @addr: host virtual address which maps memory to the guest
1197  * @atomic: whether this function can sleep
1198  * @async: whether this function need to wait IO complete if the
1199  *         host page is not in the memory
1200  * @write_fault: whether we should get a writable host page
1201  * @writable: whether it allows to map a writable host page for !@write_fault
1202  *
1203  * The function will map a writable host page for these two cases:
1204  * 1): @write_fault = true
1205  * 2): @write_fault = false && @writable, @writable will tell the caller
1206  *     whether the mapping is writable.
1207  */
1208 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1209 			bool write_fault, bool *writable)
1210 {
1211 	struct vm_area_struct *vma;
1212 	pfn_t pfn = 0;
1213 	int npages;
1214 
1215 	/* we can do it either atomically or asynchronously, not both */
1216 	BUG_ON(atomic && async);
1217 
1218 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1219 		return pfn;
1220 
1221 	if (atomic)
1222 		return KVM_PFN_ERR_FAULT;
1223 
1224 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1225 	if (npages == 1)
1226 		return pfn;
1227 
1228 	down_read(&current->mm->mmap_sem);
1229 	if (npages == -EHWPOISON ||
1230 	      (!async && check_user_page_hwpoison(addr))) {
1231 		pfn = KVM_PFN_ERR_HWPOISON;
1232 		goto exit;
1233 	}
1234 
1235 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1236 
1237 	if (vma == NULL)
1238 		pfn = KVM_PFN_ERR_FAULT;
1239 	else if ((vma->vm_flags & VM_PFNMAP)) {
1240 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1241 			vma->vm_pgoff;
1242 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1243 	} else {
1244 		if (async && vma_is_valid(vma, write_fault))
1245 			*async = true;
1246 		pfn = KVM_PFN_ERR_FAULT;
1247 	}
1248 exit:
1249 	up_read(&current->mm->mmap_sem);
1250 	return pfn;
1251 }
1252 
1253 static pfn_t
1254 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1255 		     bool *async, bool write_fault, bool *writable)
1256 {
1257 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1258 
1259 	if (addr == KVM_HVA_ERR_RO_BAD)
1260 		return KVM_PFN_ERR_RO_FAULT;
1261 
1262 	if (kvm_is_error_hva(addr))
1263 		return KVM_PFN_NOSLOT;
1264 
1265 	/* Do not map writable pfn in the readonly memslot. */
1266 	if (writable && memslot_is_readonly(slot)) {
1267 		*writable = false;
1268 		writable = NULL;
1269 	}
1270 
1271 	return hva_to_pfn(addr, atomic, async, write_fault,
1272 			  writable);
1273 }
1274 
1275 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1276 			  bool write_fault, bool *writable)
1277 {
1278 	struct kvm_memory_slot *slot;
1279 
1280 	if (async)
1281 		*async = false;
1282 
1283 	slot = gfn_to_memslot(kvm, gfn);
1284 
1285 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1286 				    writable);
1287 }
1288 
1289 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1290 {
1291 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1292 }
1293 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1294 
1295 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1296 		       bool write_fault, bool *writable)
1297 {
1298 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1301 
1302 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1303 {
1304 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1307 
1308 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1309 		      bool *writable)
1310 {
1311 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1314 
1315 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1316 {
1317 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1318 }
1319 
1320 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1321 {
1322 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1323 }
1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1325 
1326 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1327 								  int nr_pages)
1328 {
1329 	unsigned long addr;
1330 	gfn_t entry;
1331 
1332 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1333 	if (kvm_is_error_hva(addr))
1334 		return -1;
1335 
1336 	if (entry < nr_pages)
1337 		return 0;
1338 
1339 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1340 }
1341 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1342 
1343 static struct page *kvm_pfn_to_page(pfn_t pfn)
1344 {
1345 	if (is_error_noslot_pfn(pfn))
1346 		return KVM_ERR_PTR_BAD_PAGE;
1347 
1348 	if (kvm_is_mmio_pfn(pfn)) {
1349 		WARN_ON(1);
1350 		return KVM_ERR_PTR_BAD_PAGE;
1351 	}
1352 
1353 	return pfn_to_page(pfn);
1354 }
1355 
1356 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1357 {
1358 	pfn_t pfn;
1359 
1360 	pfn = gfn_to_pfn(kvm, gfn);
1361 
1362 	return kvm_pfn_to_page(pfn);
1363 }
1364 
1365 EXPORT_SYMBOL_GPL(gfn_to_page);
1366 
1367 void kvm_release_page_clean(struct page *page)
1368 {
1369 	WARN_ON(is_error_page(page));
1370 
1371 	kvm_release_pfn_clean(page_to_pfn(page));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1374 
1375 void kvm_release_pfn_clean(pfn_t pfn)
1376 {
1377 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1378 		put_page(pfn_to_page(pfn));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1381 
1382 void kvm_release_page_dirty(struct page *page)
1383 {
1384 	WARN_ON(is_error_page(page));
1385 
1386 	kvm_release_pfn_dirty(page_to_pfn(page));
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1389 
1390 void kvm_release_pfn_dirty(pfn_t pfn)
1391 {
1392 	kvm_set_pfn_dirty(pfn);
1393 	kvm_release_pfn_clean(pfn);
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1396 
1397 void kvm_set_page_dirty(struct page *page)
1398 {
1399 	kvm_set_pfn_dirty(page_to_pfn(page));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1402 
1403 void kvm_set_pfn_dirty(pfn_t pfn)
1404 {
1405 	if (!kvm_is_mmio_pfn(pfn)) {
1406 		struct page *page = pfn_to_page(pfn);
1407 		if (!PageReserved(page))
1408 			SetPageDirty(page);
1409 	}
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1412 
1413 void kvm_set_pfn_accessed(pfn_t pfn)
1414 {
1415 	if (!kvm_is_mmio_pfn(pfn))
1416 		mark_page_accessed(pfn_to_page(pfn));
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1419 
1420 void kvm_get_pfn(pfn_t pfn)
1421 {
1422 	if (!kvm_is_mmio_pfn(pfn))
1423 		get_page(pfn_to_page(pfn));
1424 }
1425 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1426 
1427 static int next_segment(unsigned long len, int offset)
1428 {
1429 	if (len > PAGE_SIZE - offset)
1430 		return PAGE_SIZE - offset;
1431 	else
1432 		return len;
1433 }
1434 
1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1436 			int len)
1437 {
1438 	int r;
1439 	unsigned long addr;
1440 
1441 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1442 	if (kvm_is_error_hva(addr))
1443 		return -EFAULT;
1444 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1445 	if (r)
1446 		return -EFAULT;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1450 
1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1452 {
1453 	gfn_t gfn = gpa >> PAGE_SHIFT;
1454 	int seg;
1455 	int offset = offset_in_page(gpa);
1456 	int ret;
1457 
1458 	while ((seg = next_segment(len, offset)) != 0) {
1459 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1460 		if (ret < 0)
1461 			return ret;
1462 		offset = 0;
1463 		len -= seg;
1464 		data += seg;
1465 		++gfn;
1466 	}
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_read_guest);
1470 
1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1472 			  unsigned long len)
1473 {
1474 	int r;
1475 	unsigned long addr;
1476 	gfn_t gfn = gpa >> PAGE_SHIFT;
1477 	int offset = offset_in_page(gpa);
1478 
1479 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1480 	if (kvm_is_error_hva(addr))
1481 		return -EFAULT;
1482 	pagefault_disable();
1483 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1484 	pagefault_enable();
1485 	if (r)
1486 		return -EFAULT;
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(kvm_read_guest_atomic);
1490 
1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1492 			 int offset, int len)
1493 {
1494 	int r;
1495 	unsigned long addr;
1496 
1497 	addr = gfn_to_hva(kvm, gfn);
1498 	if (kvm_is_error_hva(addr))
1499 		return -EFAULT;
1500 	r = __copy_to_user((void __user *)addr + offset, data, len);
1501 	if (r)
1502 		return -EFAULT;
1503 	mark_page_dirty(kvm, gfn);
1504 	return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1507 
1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1509 		    unsigned long len)
1510 {
1511 	gfn_t gfn = gpa >> PAGE_SHIFT;
1512 	int seg;
1513 	int offset = offset_in_page(gpa);
1514 	int ret;
1515 
1516 	while ((seg = next_segment(len, offset)) != 0) {
1517 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1518 		if (ret < 0)
1519 			return ret;
1520 		offset = 0;
1521 		len -= seg;
1522 		data += seg;
1523 		++gfn;
1524 	}
1525 	return 0;
1526 }
1527 
1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1529 			      gpa_t gpa, unsigned long len)
1530 {
1531 	struct kvm_memslots *slots = kvm_memslots(kvm);
1532 	int offset = offset_in_page(gpa);
1533 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1534 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1535 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1536 	gfn_t nr_pages_avail;
1537 
1538 	ghc->gpa = gpa;
1539 	ghc->generation = slots->generation;
1540 	ghc->len = len;
1541 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1542 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1543 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1544 		ghc->hva += offset;
1545 	} else {
1546 		/*
1547 		 * If the requested region crosses two memslots, we still
1548 		 * verify that the entire region is valid here.
1549 		 */
1550 		while (start_gfn <= end_gfn) {
1551 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1553 						   &nr_pages_avail);
1554 			if (kvm_is_error_hva(ghc->hva))
1555 				return -EFAULT;
1556 			start_gfn += nr_pages_avail;
1557 		}
1558 		/* Use the slow path for cross page reads and writes. */
1559 		ghc->memslot = NULL;
1560 	}
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1564 
1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1566 			   void *data, unsigned long len)
1567 {
1568 	struct kvm_memslots *slots = kvm_memslots(kvm);
1569 	int r;
1570 
1571 	BUG_ON(len > ghc->len);
1572 
1573 	if (slots->generation != ghc->generation)
1574 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1575 
1576 	if (unlikely(!ghc->memslot))
1577 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1578 
1579 	if (kvm_is_error_hva(ghc->hva))
1580 		return -EFAULT;
1581 
1582 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1583 	if (r)
1584 		return -EFAULT;
1585 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1586 
1587 	return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1590 
1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592 			   void *data, unsigned long len)
1593 {
1594 	struct kvm_memslots *slots = kvm_memslots(kvm);
1595 	int r;
1596 
1597 	BUG_ON(len > ghc->len);
1598 
1599 	if (slots->generation != ghc->generation)
1600 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1601 
1602 	if (unlikely(!ghc->memslot))
1603 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1604 
1605 	if (kvm_is_error_hva(ghc->hva))
1606 		return -EFAULT;
1607 
1608 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1609 	if (r)
1610 		return -EFAULT;
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1615 
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1617 {
1618 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1619 
1620 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1623 
1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1625 {
1626 	gfn_t gfn = gpa >> PAGE_SHIFT;
1627 	int seg;
1628 	int offset = offset_in_page(gpa);
1629 	int ret;
1630 
1631         while ((seg = next_segment(len, offset)) != 0) {
1632 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1633 		if (ret < 0)
1634 			return ret;
1635 		offset = 0;
1636 		len -= seg;
1637 		++gfn;
1638 	}
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1642 
1643 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1644 			     gfn_t gfn)
1645 {
1646 	if (memslot && memslot->dirty_bitmap) {
1647 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1648 
1649 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1650 	}
1651 }
1652 
1653 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1654 {
1655 	struct kvm_memory_slot *memslot;
1656 
1657 	memslot = gfn_to_memslot(kvm, gfn);
1658 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1659 }
1660 EXPORT_SYMBOL_GPL(mark_page_dirty);
1661 
1662 /*
1663  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1664  */
1665 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1666 {
1667 	DEFINE_WAIT(wait);
1668 
1669 	for (;;) {
1670 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1671 
1672 		if (kvm_arch_vcpu_runnable(vcpu)) {
1673 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1674 			break;
1675 		}
1676 		if (kvm_cpu_has_pending_timer(vcpu))
1677 			break;
1678 		if (signal_pending(current))
1679 			break;
1680 
1681 		schedule();
1682 	}
1683 
1684 	finish_wait(&vcpu->wq, &wait);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1687 
1688 #ifndef CONFIG_S390
1689 /*
1690  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1691  */
1692 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1693 {
1694 	int me;
1695 	int cpu = vcpu->cpu;
1696 	wait_queue_head_t *wqp;
1697 
1698 	wqp = kvm_arch_vcpu_wq(vcpu);
1699 	if (waitqueue_active(wqp)) {
1700 		wake_up_interruptible(wqp);
1701 		++vcpu->stat.halt_wakeup;
1702 	}
1703 
1704 	me = get_cpu();
1705 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1706 		if (kvm_arch_vcpu_should_kick(vcpu))
1707 			smp_send_reschedule(cpu);
1708 	put_cpu();
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1711 #endif /* !CONFIG_S390 */
1712 
1713 void kvm_resched(struct kvm_vcpu *vcpu)
1714 {
1715 	if (!need_resched())
1716 		return;
1717 	cond_resched();
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_resched);
1720 
1721 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1722 {
1723 	struct pid *pid;
1724 	struct task_struct *task = NULL;
1725 	bool ret = false;
1726 
1727 	rcu_read_lock();
1728 	pid = rcu_dereference(target->pid);
1729 	if (pid)
1730 		task = get_pid_task(target->pid, PIDTYPE_PID);
1731 	rcu_read_unlock();
1732 	if (!task)
1733 		return ret;
1734 	if (task->flags & PF_VCPU) {
1735 		put_task_struct(task);
1736 		return ret;
1737 	}
1738 	ret = yield_to(task, 1);
1739 	put_task_struct(task);
1740 
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1744 
1745 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1746 /*
1747  * Helper that checks whether a VCPU is eligible for directed yield.
1748  * Most eligible candidate to yield is decided by following heuristics:
1749  *
1750  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1751  *  (preempted lock holder), indicated by @in_spin_loop.
1752  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1753  *
1754  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1755  *  chance last time (mostly it has become eligible now since we have probably
1756  *  yielded to lockholder in last iteration. This is done by toggling
1757  *  @dy_eligible each time a VCPU checked for eligibility.)
1758  *
1759  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1760  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1761  *  burning. Giving priority for a potential lock-holder increases lock
1762  *  progress.
1763  *
1764  *  Since algorithm is based on heuristics, accessing another VCPU data without
1765  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1766  *  and continue with next VCPU and so on.
1767  */
1768 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1769 {
1770 	bool eligible;
1771 
1772 	eligible = !vcpu->spin_loop.in_spin_loop ||
1773 			(vcpu->spin_loop.in_spin_loop &&
1774 			 vcpu->spin_loop.dy_eligible);
1775 
1776 	if (vcpu->spin_loop.in_spin_loop)
1777 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1778 
1779 	return eligible;
1780 }
1781 #endif
1782 
1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1784 {
1785 	struct kvm *kvm = me->kvm;
1786 	struct kvm_vcpu *vcpu;
1787 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1788 	int yielded = 0;
1789 	int try = 3;
1790 	int pass;
1791 	int i;
1792 
1793 	kvm_vcpu_set_in_spin_loop(me, true);
1794 	/*
1795 	 * We boost the priority of a VCPU that is runnable but not
1796 	 * currently running, because it got preempted by something
1797 	 * else and called schedule in __vcpu_run.  Hopefully that
1798 	 * VCPU is holding the lock that we need and will release it.
1799 	 * We approximate round-robin by starting at the last boosted VCPU.
1800 	 */
1801 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1802 		kvm_for_each_vcpu(i, vcpu, kvm) {
1803 			if (!pass && i <= last_boosted_vcpu) {
1804 				i = last_boosted_vcpu;
1805 				continue;
1806 			} else if (pass && i > last_boosted_vcpu)
1807 				break;
1808 			if (!ACCESS_ONCE(vcpu->preempted))
1809 				continue;
1810 			if (vcpu == me)
1811 				continue;
1812 			if (waitqueue_active(&vcpu->wq))
1813 				continue;
1814 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1815 				continue;
1816 
1817 			yielded = kvm_vcpu_yield_to(vcpu);
1818 			if (yielded > 0) {
1819 				kvm->last_boosted_vcpu = i;
1820 				break;
1821 			} else if (yielded < 0) {
1822 				try--;
1823 				if (!try)
1824 					break;
1825 			}
1826 		}
1827 	}
1828 	kvm_vcpu_set_in_spin_loop(me, false);
1829 
1830 	/* Ensure vcpu is not eligible during next spinloop */
1831 	kvm_vcpu_set_dy_eligible(me, false);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1834 
1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1836 {
1837 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1838 	struct page *page;
1839 
1840 	if (vmf->pgoff == 0)
1841 		page = virt_to_page(vcpu->run);
1842 #ifdef CONFIG_X86
1843 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1844 		page = virt_to_page(vcpu->arch.pio_data);
1845 #endif
1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1847 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1848 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1849 #endif
1850 	else
1851 		return kvm_arch_vcpu_fault(vcpu, vmf);
1852 	get_page(page);
1853 	vmf->page = page;
1854 	return 0;
1855 }
1856 
1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1858 	.fault = kvm_vcpu_fault,
1859 };
1860 
1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1862 {
1863 	vma->vm_ops = &kvm_vcpu_vm_ops;
1864 	return 0;
1865 }
1866 
1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1868 {
1869 	struct kvm_vcpu *vcpu = filp->private_data;
1870 
1871 	kvm_put_kvm(vcpu->kvm);
1872 	return 0;
1873 }
1874 
1875 static struct file_operations kvm_vcpu_fops = {
1876 	.release        = kvm_vcpu_release,
1877 	.unlocked_ioctl = kvm_vcpu_ioctl,
1878 #ifdef CONFIG_COMPAT
1879 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1880 #endif
1881 	.mmap           = kvm_vcpu_mmap,
1882 	.llseek		= noop_llseek,
1883 };
1884 
1885 /*
1886  * Allocates an inode for the vcpu.
1887  */
1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1889 {
1890 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1891 }
1892 
1893 /*
1894  * Creates some virtual cpus.  Good luck creating more than one.
1895  */
1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1897 {
1898 	int r;
1899 	struct kvm_vcpu *vcpu, *v;
1900 
1901 	if (id >= KVM_MAX_VCPUS)
1902 		return -EINVAL;
1903 
1904 	vcpu = kvm_arch_vcpu_create(kvm, id);
1905 	if (IS_ERR(vcpu))
1906 		return PTR_ERR(vcpu);
1907 
1908 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1909 
1910 	r = kvm_arch_vcpu_setup(vcpu);
1911 	if (r)
1912 		goto vcpu_destroy;
1913 
1914 	mutex_lock(&kvm->lock);
1915 	if (!kvm_vcpu_compatible(vcpu)) {
1916 		r = -EINVAL;
1917 		goto unlock_vcpu_destroy;
1918 	}
1919 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1920 		r = -EINVAL;
1921 		goto unlock_vcpu_destroy;
1922 	}
1923 
1924 	kvm_for_each_vcpu(r, v, kvm)
1925 		if (v->vcpu_id == id) {
1926 			r = -EEXIST;
1927 			goto unlock_vcpu_destroy;
1928 		}
1929 
1930 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1931 
1932 	/* Now it's all set up, let userspace reach it */
1933 	kvm_get_kvm(kvm);
1934 	r = create_vcpu_fd(vcpu);
1935 	if (r < 0) {
1936 		kvm_put_kvm(kvm);
1937 		goto unlock_vcpu_destroy;
1938 	}
1939 
1940 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1941 	smp_wmb();
1942 	atomic_inc(&kvm->online_vcpus);
1943 
1944 	mutex_unlock(&kvm->lock);
1945 	kvm_arch_vcpu_postcreate(vcpu);
1946 	return r;
1947 
1948 unlock_vcpu_destroy:
1949 	mutex_unlock(&kvm->lock);
1950 vcpu_destroy:
1951 	kvm_arch_vcpu_destroy(vcpu);
1952 	return r;
1953 }
1954 
1955 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1956 {
1957 	if (sigset) {
1958 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1959 		vcpu->sigset_active = 1;
1960 		vcpu->sigset = *sigset;
1961 	} else
1962 		vcpu->sigset_active = 0;
1963 	return 0;
1964 }
1965 
1966 static long kvm_vcpu_ioctl(struct file *filp,
1967 			   unsigned int ioctl, unsigned long arg)
1968 {
1969 	struct kvm_vcpu *vcpu = filp->private_data;
1970 	void __user *argp = (void __user *)arg;
1971 	int r;
1972 	struct kvm_fpu *fpu = NULL;
1973 	struct kvm_sregs *kvm_sregs = NULL;
1974 
1975 	if (vcpu->kvm->mm != current->mm)
1976 		return -EIO;
1977 
1978 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1979 	/*
1980 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1981 	 * so vcpu_load() would break it.
1982 	 */
1983 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1984 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1985 #endif
1986 
1987 
1988 	r = vcpu_load(vcpu);
1989 	if (r)
1990 		return r;
1991 	switch (ioctl) {
1992 	case KVM_RUN:
1993 		r = -EINVAL;
1994 		if (arg)
1995 			goto out;
1996 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1997 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1998 		break;
1999 	case KVM_GET_REGS: {
2000 		struct kvm_regs *kvm_regs;
2001 
2002 		r = -ENOMEM;
2003 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2004 		if (!kvm_regs)
2005 			goto out;
2006 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2007 		if (r)
2008 			goto out_free1;
2009 		r = -EFAULT;
2010 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2011 			goto out_free1;
2012 		r = 0;
2013 out_free1:
2014 		kfree(kvm_regs);
2015 		break;
2016 	}
2017 	case KVM_SET_REGS: {
2018 		struct kvm_regs *kvm_regs;
2019 
2020 		r = -ENOMEM;
2021 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2022 		if (IS_ERR(kvm_regs)) {
2023 			r = PTR_ERR(kvm_regs);
2024 			goto out;
2025 		}
2026 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2027 		kfree(kvm_regs);
2028 		break;
2029 	}
2030 	case KVM_GET_SREGS: {
2031 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2032 		r = -ENOMEM;
2033 		if (!kvm_sregs)
2034 			goto out;
2035 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2036 		if (r)
2037 			goto out;
2038 		r = -EFAULT;
2039 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2040 			goto out;
2041 		r = 0;
2042 		break;
2043 	}
2044 	case KVM_SET_SREGS: {
2045 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2046 		if (IS_ERR(kvm_sregs)) {
2047 			r = PTR_ERR(kvm_sregs);
2048 			kvm_sregs = NULL;
2049 			goto out;
2050 		}
2051 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2052 		break;
2053 	}
2054 	case KVM_GET_MP_STATE: {
2055 		struct kvm_mp_state mp_state;
2056 
2057 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2058 		if (r)
2059 			goto out;
2060 		r = -EFAULT;
2061 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2062 			goto out;
2063 		r = 0;
2064 		break;
2065 	}
2066 	case KVM_SET_MP_STATE: {
2067 		struct kvm_mp_state mp_state;
2068 
2069 		r = -EFAULT;
2070 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2071 			goto out;
2072 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2073 		break;
2074 	}
2075 	case KVM_TRANSLATE: {
2076 		struct kvm_translation tr;
2077 
2078 		r = -EFAULT;
2079 		if (copy_from_user(&tr, argp, sizeof tr))
2080 			goto out;
2081 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2082 		if (r)
2083 			goto out;
2084 		r = -EFAULT;
2085 		if (copy_to_user(argp, &tr, sizeof tr))
2086 			goto out;
2087 		r = 0;
2088 		break;
2089 	}
2090 	case KVM_SET_GUEST_DEBUG: {
2091 		struct kvm_guest_debug dbg;
2092 
2093 		r = -EFAULT;
2094 		if (copy_from_user(&dbg, argp, sizeof dbg))
2095 			goto out;
2096 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2097 		break;
2098 	}
2099 	case KVM_SET_SIGNAL_MASK: {
2100 		struct kvm_signal_mask __user *sigmask_arg = argp;
2101 		struct kvm_signal_mask kvm_sigmask;
2102 		sigset_t sigset, *p;
2103 
2104 		p = NULL;
2105 		if (argp) {
2106 			r = -EFAULT;
2107 			if (copy_from_user(&kvm_sigmask, argp,
2108 					   sizeof kvm_sigmask))
2109 				goto out;
2110 			r = -EINVAL;
2111 			if (kvm_sigmask.len != sizeof sigset)
2112 				goto out;
2113 			r = -EFAULT;
2114 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2115 					   sizeof sigset))
2116 				goto out;
2117 			p = &sigset;
2118 		}
2119 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2120 		break;
2121 	}
2122 	case KVM_GET_FPU: {
2123 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2124 		r = -ENOMEM;
2125 		if (!fpu)
2126 			goto out;
2127 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2128 		if (r)
2129 			goto out;
2130 		r = -EFAULT;
2131 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2132 			goto out;
2133 		r = 0;
2134 		break;
2135 	}
2136 	case KVM_SET_FPU: {
2137 		fpu = memdup_user(argp, sizeof(*fpu));
2138 		if (IS_ERR(fpu)) {
2139 			r = PTR_ERR(fpu);
2140 			fpu = NULL;
2141 			goto out;
2142 		}
2143 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2144 		break;
2145 	}
2146 	default:
2147 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2148 	}
2149 out:
2150 	vcpu_put(vcpu);
2151 	kfree(fpu);
2152 	kfree(kvm_sregs);
2153 	return r;
2154 }
2155 
2156 #ifdef CONFIG_COMPAT
2157 static long kvm_vcpu_compat_ioctl(struct file *filp,
2158 				  unsigned int ioctl, unsigned long arg)
2159 {
2160 	struct kvm_vcpu *vcpu = filp->private_data;
2161 	void __user *argp = compat_ptr(arg);
2162 	int r;
2163 
2164 	if (vcpu->kvm->mm != current->mm)
2165 		return -EIO;
2166 
2167 	switch (ioctl) {
2168 	case KVM_SET_SIGNAL_MASK: {
2169 		struct kvm_signal_mask __user *sigmask_arg = argp;
2170 		struct kvm_signal_mask kvm_sigmask;
2171 		compat_sigset_t csigset;
2172 		sigset_t sigset;
2173 
2174 		if (argp) {
2175 			r = -EFAULT;
2176 			if (copy_from_user(&kvm_sigmask, argp,
2177 					   sizeof kvm_sigmask))
2178 				goto out;
2179 			r = -EINVAL;
2180 			if (kvm_sigmask.len != sizeof csigset)
2181 				goto out;
2182 			r = -EFAULT;
2183 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2184 					   sizeof csigset))
2185 				goto out;
2186 			sigset_from_compat(&sigset, &csigset);
2187 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2188 		} else
2189 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2190 		break;
2191 	}
2192 	default:
2193 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2194 	}
2195 
2196 out:
2197 	return r;
2198 }
2199 #endif
2200 
2201 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2202 				 int (*accessor)(struct kvm_device *dev,
2203 						 struct kvm_device_attr *attr),
2204 				 unsigned long arg)
2205 {
2206 	struct kvm_device_attr attr;
2207 
2208 	if (!accessor)
2209 		return -EPERM;
2210 
2211 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2212 		return -EFAULT;
2213 
2214 	return accessor(dev, &attr);
2215 }
2216 
2217 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2218 			     unsigned long arg)
2219 {
2220 	struct kvm_device *dev = filp->private_data;
2221 
2222 	switch (ioctl) {
2223 	case KVM_SET_DEVICE_ATTR:
2224 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2225 	case KVM_GET_DEVICE_ATTR:
2226 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2227 	case KVM_HAS_DEVICE_ATTR:
2228 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2229 	default:
2230 		if (dev->ops->ioctl)
2231 			return dev->ops->ioctl(dev, ioctl, arg);
2232 
2233 		return -ENOTTY;
2234 	}
2235 }
2236 
2237 static int kvm_device_release(struct inode *inode, struct file *filp)
2238 {
2239 	struct kvm_device *dev = filp->private_data;
2240 	struct kvm *kvm = dev->kvm;
2241 
2242 	kvm_put_kvm(kvm);
2243 	return 0;
2244 }
2245 
2246 static const struct file_operations kvm_device_fops = {
2247 	.unlocked_ioctl = kvm_device_ioctl,
2248 #ifdef CONFIG_COMPAT
2249 	.compat_ioctl = kvm_device_ioctl,
2250 #endif
2251 	.release = kvm_device_release,
2252 };
2253 
2254 struct kvm_device *kvm_device_from_filp(struct file *filp)
2255 {
2256 	if (filp->f_op != &kvm_device_fops)
2257 		return NULL;
2258 
2259 	return filp->private_data;
2260 }
2261 
2262 static int kvm_ioctl_create_device(struct kvm *kvm,
2263 				   struct kvm_create_device *cd)
2264 {
2265 	struct kvm_device_ops *ops = NULL;
2266 	struct kvm_device *dev;
2267 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2268 	int ret;
2269 
2270 	switch (cd->type) {
2271 #ifdef CONFIG_KVM_MPIC
2272 	case KVM_DEV_TYPE_FSL_MPIC_20:
2273 	case KVM_DEV_TYPE_FSL_MPIC_42:
2274 		ops = &kvm_mpic_ops;
2275 		break;
2276 #endif
2277 #ifdef CONFIG_KVM_XICS
2278 	case KVM_DEV_TYPE_XICS:
2279 		ops = &kvm_xics_ops;
2280 		break;
2281 #endif
2282 #ifdef CONFIG_KVM_VFIO
2283 	case KVM_DEV_TYPE_VFIO:
2284 		ops = &kvm_vfio_ops;
2285 		break;
2286 #endif
2287 	default:
2288 		return -ENODEV;
2289 	}
2290 
2291 	if (test)
2292 		return 0;
2293 
2294 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2295 	if (!dev)
2296 		return -ENOMEM;
2297 
2298 	dev->ops = ops;
2299 	dev->kvm = kvm;
2300 
2301 	ret = ops->create(dev, cd->type);
2302 	if (ret < 0) {
2303 		kfree(dev);
2304 		return ret;
2305 	}
2306 
2307 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2308 	if (ret < 0) {
2309 		ops->destroy(dev);
2310 		return ret;
2311 	}
2312 
2313 	list_add(&dev->vm_node, &kvm->devices);
2314 	kvm_get_kvm(kvm);
2315 	cd->fd = ret;
2316 	return 0;
2317 }
2318 
2319 static long kvm_vm_ioctl(struct file *filp,
2320 			   unsigned int ioctl, unsigned long arg)
2321 {
2322 	struct kvm *kvm = filp->private_data;
2323 	void __user *argp = (void __user *)arg;
2324 	int r;
2325 
2326 	if (kvm->mm != current->mm)
2327 		return -EIO;
2328 	switch (ioctl) {
2329 	case KVM_CREATE_VCPU:
2330 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2331 		break;
2332 	case KVM_SET_USER_MEMORY_REGION: {
2333 		struct kvm_userspace_memory_region kvm_userspace_mem;
2334 
2335 		r = -EFAULT;
2336 		if (copy_from_user(&kvm_userspace_mem, argp,
2337 						sizeof kvm_userspace_mem))
2338 			goto out;
2339 
2340 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2341 		break;
2342 	}
2343 	case KVM_GET_DIRTY_LOG: {
2344 		struct kvm_dirty_log log;
2345 
2346 		r = -EFAULT;
2347 		if (copy_from_user(&log, argp, sizeof log))
2348 			goto out;
2349 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2350 		break;
2351 	}
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353 	case KVM_REGISTER_COALESCED_MMIO: {
2354 		struct kvm_coalesced_mmio_zone zone;
2355 		r = -EFAULT;
2356 		if (copy_from_user(&zone, argp, sizeof zone))
2357 			goto out;
2358 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2359 		break;
2360 	}
2361 	case KVM_UNREGISTER_COALESCED_MMIO: {
2362 		struct kvm_coalesced_mmio_zone zone;
2363 		r = -EFAULT;
2364 		if (copy_from_user(&zone, argp, sizeof zone))
2365 			goto out;
2366 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2367 		break;
2368 	}
2369 #endif
2370 	case KVM_IRQFD: {
2371 		struct kvm_irqfd data;
2372 
2373 		r = -EFAULT;
2374 		if (copy_from_user(&data, argp, sizeof data))
2375 			goto out;
2376 		r = kvm_irqfd(kvm, &data);
2377 		break;
2378 	}
2379 	case KVM_IOEVENTFD: {
2380 		struct kvm_ioeventfd data;
2381 
2382 		r = -EFAULT;
2383 		if (copy_from_user(&data, argp, sizeof data))
2384 			goto out;
2385 		r = kvm_ioeventfd(kvm, &data);
2386 		break;
2387 	}
2388 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2389 	case KVM_SET_BOOT_CPU_ID:
2390 		r = 0;
2391 		mutex_lock(&kvm->lock);
2392 		if (atomic_read(&kvm->online_vcpus) != 0)
2393 			r = -EBUSY;
2394 		else
2395 			kvm->bsp_vcpu_id = arg;
2396 		mutex_unlock(&kvm->lock);
2397 		break;
2398 #endif
2399 #ifdef CONFIG_HAVE_KVM_MSI
2400 	case KVM_SIGNAL_MSI: {
2401 		struct kvm_msi msi;
2402 
2403 		r = -EFAULT;
2404 		if (copy_from_user(&msi, argp, sizeof msi))
2405 			goto out;
2406 		r = kvm_send_userspace_msi(kvm, &msi);
2407 		break;
2408 	}
2409 #endif
2410 #ifdef __KVM_HAVE_IRQ_LINE
2411 	case KVM_IRQ_LINE_STATUS:
2412 	case KVM_IRQ_LINE: {
2413 		struct kvm_irq_level irq_event;
2414 
2415 		r = -EFAULT;
2416 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2417 			goto out;
2418 
2419 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2420 					ioctl == KVM_IRQ_LINE_STATUS);
2421 		if (r)
2422 			goto out;
2423 
2424 		r = -EFAULT;
2425 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2426 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2427 				goto out;
2428 		}
2429 
2430 		r = 0;
2431 		break;
2432 	}
2433 #endif
2434 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2435 	case KVM_SET_GSI_ROUTING: {
2436 		struct kvm_irq_routing routing;
2437 		struct kvm_irq_routing __user *urouting;
2438 		struct kvm_irq_routing_entry *entries;
2439 
2440 		r = -EFAULT;
2441 		if (copy_from_user(&routing, argp, sizeof(routing)))
2442 			goto out;
2443 		r = -EINVAL;
2444 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2445 			goto out;
2446 		if (routing.flags)
2447 			goto out;
2448 		r = -ENOMEM;
2449 		entries = vmalloc(routing.nr * sizeof(*entries));
2450 		if (!entries)
2451 			goto out;
2452 		r = -EFAULT;
2453 		urouting = argp;
2454 		if (copy_from_user(entries, urouting->entries,
2455 				   routing.nr * sizeof(*entries)))
2456 			goto out_free_irq_routing;
2457 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2458 					routing.flags);
2459 	out_free_irq_routing:
2460 		vfree(entries);
2461 		break;
2462 	}
2463 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2464 	case KVM_CREATE_DEVICE: {
2465 		struct kvm_create_device cd;
2466 
2467 		r = -EFAULT;
2468 		if (copy_from_user(&cd, argp, sizeof(cd)))
2469 			goto out;
2470 
2471 		r = kvm_ioctl_create_device(kvm, &cd);
2472 		if (r)
2473 			goto out;
2474 
2475 		r = -EFAULT;
2476 		if (copy_to_user(argp, &cd, sizeof(cd)))
2477 			goto out;
2478 
2479 		r = 0;
2480 		break;
2481 	}
2482 	default:
2483 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2484 		if (r == -ENOTTY)
2485 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2486 	}
2487 out:
2488 	return r;
2489 }
2490 
2491 #ifdef CONFIG_COMPAT
2492 struct compat_kvm_dirty_log {
2493 	__u32 slot;
2494 	__u32 padding1;
2495 	union {
2496 		compat_uptr_t dirty_bitmap; /* one bit per page */
2497 		__u64 padding2;
2498 	};
2499 };
2500 
2501 static long kvm_vm_compat_ioctl(struct file *filp,
2502 			   unsigned int ioctl, unsigned long arg)
2503 {
2504 	struct kvm *kvm = filp->private_data;
2505 	int r;
2506 
2507 	if (kvm->mm != current->mm)
2508 		return -EIO;
2509 	switch (ioctl) {
2510 	case KVM_GET_DIRTY_LOG: {
2511 		struct compat_kvm_dirty_log compat_log;
2512 		struct kvm_dirty_log log;
2513 
2514 		r = -EFAULT;
2515 		if (copy_from_user(&compat_log, (void __user *)arg,
2516 				   sizeof(compat_log)))
2517 			goto out;
2518 		log.slot	 = compat_log.slot;
2519 		log.padding1	 = compat_log.padding1;
2520 		log.padding2	 = compat_log.padding2;
2521 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2522 
2523 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2524 		break;
2525 	}
2526 	default:
2527 		r = kvm_vm_ioctl(filp, ioctl, arg);
2528 	}
2529 
2530 out:
2531 	return r;
2532 }
2533 #endif
2534 
2535 static struct file_operations kvm_vm_fops = {
2536 	.release        = kvm_vm_release,
2537 	.unlocked_ioctl = kvm_vm_ioctl,
2538 #ifdef CONFIG_COMPAT
2539 	.compat_ioctl   = kvm_vm_compat_ioctl,
2540 #endif
2541 	.llseek		= noop_llseek,
2542 };
2543 
2544 static int kvm_dev_ioctl_create_vm(unsigned long type)
2545 {
2546 	int r;
2547 	struct kvm *kvm;
2548 
2549 	kvm = kvm_create_vm(type);
2550 	if (IS_ERR(kvm))
2551 		return PTR_ERR(kvm);
2552 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2553 	r = kvm_coalesced_mmio_init(kvm);
2554 	if (r < 0) {
2555 		kvm_put_kvm(kvm);
2556 		return r;
2557 	}
2558 #endif
2559 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2560 	if (r < 0)
2561 		kvm_put_kvm(kvm);
2562 
2563 	return r;
2564 }
2565 
2566 static long kvm_dev_ioctl_check_extension_generic(long arg)
2567 {
2568 	switch (arg) {
2569 	case KVM_CAP_USER_MEMORY:
2570 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2571 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2572 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2573 	case KVM_CAP_SET_BOOT_CPU_ID:
2574 #endif
2575 	case KVM_CAP_INTERNAL_ERROR_DATA:
2576 #ifdef CONFIG_HAVE_KVM_MSI
2577 	case KVM_CAP_SIGNAL_MSI:
2578 #endif
2579 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2580 	case KVM_CAP_IRQFD_RESAMPLE:
2581 #endif
2582 		return 1;
2583 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2584 	case KVM_CAP_IRQ_ROUTING:
2585 		return KVM_MAX_IRQ_ROUTES;
2586 #endif
2587 	default:
2588 		break;
2589 	}
2590 	return kvm_dev_ioctl_check_extension(arg);
2591 }
2592 
2593 static long kvm_dev_ioctl(struct file *filp,
2594 			  unsigned int ioctl, unsigned long arg)
2595 {
2596 	long r = -EINVAL;
2597 
2598 	switch (ioctl) {
2599 	case KVM_GET_API_VERSION:
2600 		r = -EINVAL;
2601 		if (arg)
2602 			goto out;
2603 		r = KVM_API_VERSION;
2604 		break;
2605 	case KVM_CREATE_VM:
2606 		r = kvm_dev_ioctl_create_vm(arg);
2607 		break;
2608 	case KVM_CHECK_EXTENSION:
2609 		r = kvm_dev_ioctl_check_extension_generic(arg);
2610 		break;
2611 	case KVM_GET_VCPU_MMAP_SIZE:
2612 		r = -EINVAL;
2613 		if (arg)
2614 			goto out;
2615 		r = PAGE_SIZE;     /* struct kvm_run */
2616 #ifdef CONFIG_X86
2617 		r += PAGE_SIZE;    /* pio data page */
2618 #endif
2619 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2620 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2621 #endif
2622 		break;
2623 	case KVM_TRACE_ENABLE:
2624 	case KVM_TRACE_PAUSE:
2625 	case KVM_TRACE_DISABLE:
2626 		r = -EOPNOTSUPP;
2627 		break;
2628 	default:
2629 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2630 	}
2631 out:
2632 	return r;
2633 }
2634 
2635 static struct file_operations kvm_chardev_ops = {
2636 	.unlocked_ioctl = kvm_dev_ioctl,
2637 	.compat_ioctl   = kvm_dev_ioctl,
2638 	.llseek		= noop_llseek,
2639 };
2640 
2641 static struct miscdevice kvm_dev = {
2642 	KVM_MINOR,
2643 	"kvm",
2644 	&kvm_chardev_ops,
2645 };
2646 
2647 static void hardware_enable_nolock(void *junk)
2648 {
2649 	int cpu = raw_smp_processor_id();
2650 	int r;
2651 
2652 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2653 		return;
2654 
2655 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2656 
2657 	r = kvm_arch_hardware_enable(NULL);
2658 
2659 	if (r) {
2660 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2661 		atomic_inc(&hardware_enable_failed);
2662 		printk(KERN_INFO "kvm: enabling virtualization on "
2663 				 "CPU%d failed\n", cpu);
2664 	}
2665 }
2666 
2667 static void hardware_enable(void)
2668 {
2669 	raw_spin_lock(&kvm_count_lock);
2670 	if (kvm_usage_count)
2671 		hardware_enable_nolock(NULL);
2672 	raw_spin_unlock(&kvm_count_lock);
2673 }
2674 
2675 static void hardware_disable_nolock(void *junk)
2676 {
2677 	int cpu = raw_smp_processor_id();
2678 
2679 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2680 		return;
2681 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2682 	kvm_arch_hardware_disable(NULL);
2683 }
2684 
2685 static void hardware_disable(void)
2686 {
2687 	raw_spin_lock(&kvm_count_lock);
2688 	if (kvm_usage_count)
2689 		hardware_disable_nolock(NULL);
2690 	raw_spin_unlock(&kvm_count_lock);
2691 }
2692 
2693 static void hardware_disable_all_nolock(void)
2694 {
2695 	BUG_ON(!kvm_usage_count);
2696 
2697 	kvm_usage_count--;
2698 	if (!kvm_usage_count)
2699 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2700 }
2701 
2702 static void hardware_disable_all(void)
2703 {
2704 	raw_spin_lock(&kvm_count_lock);
2705 	hardware_disable_all_nolock();
2706 	raw_spin_unlock(&kvm_count_lock);
2707 }
2708 
2709 static int hardware_enable_all(void)
2710 {
2711 	int r = 0;
2712 
2713 	raw_spin_lock(&kvm_count_lock);
2714 
2715 	kvm_usage_count++;
2716 	if (kvm_usage_count == 1) {
2717 		atomic_set(&hardware_enable_failed, 0);
2718 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2719 
2720 		if (atomic_read(&hardware_enable_failed)) {
2721 			hardware_disable_all_nolock();
2722 			r = -EBUSY;
2723 		}
2724 	}
2725 
2726 	raw_spin_unlock(&kvm_count_lock);
2727 
2728 	return r;
2729 }
2730 
2731 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2732 			   void *v)
2733 {
2734 	int cpu = (long)v;
2735 
2736 	val &= ~CPU_TASKS_FROZEN;
2737 	switch (val) {
2738 	case CPU_DYING:
2739 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2740 		       cpu);
2741 		hardware_disable();
2742 		break;
2743 	case CPU_STARTING:
2744 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2745 		       cpu);
2746 		hardware_enable();
2747 		break;
2748 	}
2749 	return NOTIFY_OK;
2750 }
2751 
2752 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2753 		      void *v)
2754 {
2755 	/*
2756 	 * Some (well, at least mine) BIOSes hang on reboot if
2757 	 * in vmx root mode.
2758 	 *
2759 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2760 	 */
2761 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2762 	kvm_rebooting = true;
2763 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2764 	return NOTIFY_OK;
2765 }
2766 
2767 static struct notifier_block kvm_reboot_notifier = {
2768 	.notifier_call = kvm_reboot,
2769 	.priority = 0,
2770 };
2771 
2772 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2773 {
2774 	int i;
2775 
2776 	for (i = 0; i < bus->dev_count; i++) {
2777 		struct kvm_io_device *pos = bus->range[i].dev;
2778 
2779 		kvm_iodevice_destructor(pos);
2780 	}
2781 	kfree(bus);
2782 }
2783 
2784 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2785                                  const struct kvm_io_range *r2)
2786 {
2787 	if (r1->addr < r2->addr)
2788 		return -1;
2789 	if (r1->addr + r1->len > r2->addr + r2->len)
2790 		return 1;
2791 	return 0;
2792 }
2793 
2794 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2795 {
2796 	return kvm_io_bus_cmp(p1, p2);
2797 }
2798 
2799 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2800 			  gpa_t addr, int len)
2801 {
2802 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2803 		.addr = addr,
2804 		.len = len,
2805 		.dev = dev,
2806 	};
2807 
2808 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2809 		kvm_io_bus_sort_cmp, NULL);
2810 
2811 	return 0;
2812 }
2813 
2814 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2815 			     gpa_t addr, int len)
2816 {
2817 	struct kvm_io_range *range, key;
2818 	int off;
2819 
2820 	key = (struct kvm_io_range) {
2821 		.addr = addr,
2822 		.len = len,
2823 	};
2824 
2825 	range = bsearch(&key, bus->range, bus->dev_count,
2826 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2827 	if (range == NULL)
2828 		return -ENOENT;
2829 
2830 	off = range - bus->range;
2831 
2832 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2833 		off--;
2834 
2835 	return off;
2836 }
2837 
2838 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2839 			      struct kvm_io_range *range, const void *val)
2840 {
2841 	int idx;
2842 
2843 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2844 	if (idx < 0)
2845 		return -EOPNOTSUPP;
2846 
2847 	while (idx < bus->dev_count &&
2848 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2849 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2850 					range->len, val))
2851 			return idx;
2852 		idx++;
2853 	}
2854 
2855 	return -EOPNOTSUPP;
2856 }
2857 
2858 /* kvm_io_bus_write - called under kvm->slots_lock */
2859 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2860 		     int len, const void *val)
2861 {
2862 	struct kvm_io_bus *bus;
2863 	struct kvm_io_range range;
2864 	int r;
2865 
2866 	range = (struct kvm_io_range) {
2867 		.addr = addr,
2868 		.len = len,
2869 	};
2870 
2871 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2872 	r = __kvm_io_bus_write(bus, &range, val);
2873 	return r < 0 ? r : 0;
2874 }
2875 
2876 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2877 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878 			    int len, const void *val, long cookie)
2879 {
2880 	struct kvm_io_bus *bus;
2881 	struct kvm_io_range range;
2882 
2883 	range = (struct kvm_io_range) {
2884 		.addr = addr,
2885 		.len = len,
2886 	};
2887 
2888 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2889 
2890 	/* First try the device referenced by cookie. */
2891 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2892 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2893 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2894 					val))
2895 			return cookie;
2896 
2897 	/*
2898 	 * cookie contained garbage; fall back to search and return the
2899 	 * correct cookie value.
2900 	 */
2901 	return __kvm_io_bus_write(bus, &range, val);
2902 }
2903 
2904 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2905 			     void *val)
2906 {
2907 	int idx;
2908 
2909 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2910 	if (idx < 0)
2911 		return -EOPNOTSUPP;
2912 
2913 	while (idx < bus->dev_count &&
2914 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2915 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2916 				       range->len, val))
2917 			return idx;
2918 		idx++;
2919 	}
2920 
2921 	return -EOPNOTSUPP;
2922 }
2923 
2924 /* kvm_io_bus_read - called under kvm->slots_lock */
2925 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2926 		    int len, void *val)
2927 {
2928 	struct kvm_io_bus *bus;
2929 	struct kvm_io_range range;
2930 	int r;
2931 
2932 	range = (struct kvm_io_range) {
2933 		.addr = addr,
2934 		.len = len,
2935 	};
2936 
2937 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2938 	r = __kvm_io_bus_read(bus, &range, val);
2939 	return r < 0 ? r : 0;
2940 }
2941 
2942 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2943 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2944 			   int len, void *val, long cookie)
2945 {
2946 	struct kvm_io_bus *bus;
2947 	struct kvm_io_range range;
2948 
2949 	range = (struct kvm_io_range) {
2950 		.addr = addr,
2951 		.len = len,
2952 	};
2953 
2954 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2955 
2956 	/* First try the device referenced by cookie. */
2957 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2958 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2959 		if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2960 				       val))
2961 			return cookie;
2962 
2963 	/*
2964 	 * cookie contained garbage; fall back to search and return the
2965 	 * correct cookie value.
2966 	 */
2967 	return __kvm_io_bus_read(bus, &range, val);
2968 }
2969 
2970 /* Caller must hold slots_lock. */
2971 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2972 			    int len, struct kvm_io_device *dev)
2973 {
2974 	struct kvm_io_bus *new_bus, *bus;
2975 
2976 	bus = kvm->buses[bus_idx];
2977 	/* exclude ioeventfd which is limited by maximum fd */
2978 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2979 		return -ENOSPC;
2980 
2981 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2982 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2983 	if (!new_bus)
2984 		return -ENOMEM;
2985 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2986 	       sizeof(struct kvm_io_range)));
2987 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2988 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2989 	synchronize_srcu_expedited(&kvm->srcu);
2990 	kfree(bus);
2991 
2992 	return 0;
2993 }
2994 
2995 /* Caller must hold slots_lock. */
2996 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2997 			      struct kvm_io_device *dev)
2998 {
2999 	int i, r;
3000 	struct kvm_io_bus *new_bus, *bus;
3001 
3002 	bus = kvm->buses[bus_idx];
3003 	r = -ENOENT;
3004 	for (i = 0; i < bus->dev_count; i++)
3005 		if (bus->range[i].dev == dev) {
3006 			r = 0;
3007 			break;
3008 		}
3009 
3010 	if (r)
3011 		return r;
3012 
3013 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3014 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3015 	if (!new_bus)
3016 		return -ENOMEM;
3017 
3018 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3019 	new_bus->dev_count--;
3020 	memcpy(new_bus->range + i, bus->range + i + 1,
3021 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3022 
3023 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3024 	synchronize_srcu_expedited(&kvm->srcu);
3025 	kfree(bus);
3026 	return r;
3027 }
3028 
3029 static struct notifier_block kvm_cpu_notifier = {
3030 	.notifier_call = kvm_cpu_hotplug,
3031 };
3032 
3033 static int vm_stat_get(void *_offset, u64 *val)
3034 {
3035 	unsigned offset = (long)_offset;
3036 	struct kvm *kvm;
3037 
3038 	*val = 0;
3039 	spin_lock(&kvm_lock);
3040 	list_for_each_entry(kvm, &vm_list, vm_list)
3041 		*val += *(u32 *)((void *)kvm + offset);
3042 	spin_unlock(&kvm_lock);
3043 	return 0;
3044 }
3045 
3046 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3047 
3048 static int vcpu_stat_get(void *_offset, u64 *val)
3049 {
3050 	unsigned offset = (long)_offset;
3051 	struct kvm *kvm;
3052 	struct kvm_vcpu *vcpu;
3053 	int i;
3054 
3055 	*val = 0;
3056 	spin_lock(&kvm_lock);
3057 	list_for_each_entry(kvm, &vm_list, vm_list)
3058 		kvm_for_each_vcpu(i, vcpu, kvm)
3059 			*val += *(u32 *)((void *)vcpu + offset);
3060 
3061 	spin_unlock(&kvm_lock);
3062 	return 0;
3063 }
3064 
3065 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3066 
3067 static const struct file_operations *stat_fops[] = {
3068 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3069 	[KVM_STAT_VM]   = &vm_stat_fops,
3070 };
3071 
3072 static int kvm_init_debug(void)
3073 {
3074 	int r = -EEXIST;
3075 	struct kvm_stats_debugfs_item *p;
3076 
3077 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3078 	if (kvm_debugfs_dir == NULL)
3079 		goto out;
3080 
3081 	for (p = debugfs_entries; p->name; ++p) {
3082 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3083 						(void *)(long)p->offset,
3084 						stat_fops[p->kind]);
3085 		if (p->dentry == NULL)
3086 			goto out_dir;
3087 	}
3088 
3089 	return 0;
3090 
3091 out_dir:
3092 	debugfs_remove_recursive(kvm_debugfs_dir);
3093 out:
3094 	return r;
3095 }
3096 
3097 static void kvm_exit_debug(void)
3098 {
3099 	struct kvm_stats_debugfs_item *p;
3100 
3101 	for (p = debugfs_entries; p->name; ++p)
3102 		debugfs_remove(p->dentry);
3103 	debugfs_remove(kvm_debugfs_dir);
3104 }
3105 
3106 static int kvm_suspend(void)
3107 {
3108 	if (kvm_usage_count)
3109 		hardware_disable_nolock(NULL);
3110 	return 0;
3111 }
3112 
3113 static void kvm_resume(void)
3114 {
3115 	if (kvm_usage_count) {
3116 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3117 		hardware_enable_nolock(NULL);
3118 	}
3119 }
3120 
3121 static struct syscore_ops kvm_syscore_ops = {
3122 	.suspend = kvm_suspend,
3123 	.resume = kvm_resume,
3124 };
3125 
3126 static inline
3127 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3128 {
3129 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3130 }
3131 
3132 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3133 {
3134 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3135 	if (vcpu->preempted)
3136 		vcpu->preempted = false;
3137 
3138 	kvm_arch_vcpu_load(vcpu, cpu);
3139 }
3140 
3141 static void kvm_sched_out(struct preempt_notifier *pn,
3142 			  struct task_struct *next)
3143 {
3144 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3145 
3146 	if (current->state == TASK_RUNNING)
3147 		vcpu->preempted = true;
3148 	kvm_arch_vcpu_put(vcpu);
3149 }
3150 
3151 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3152 		  struct module *module)
3153 {
3154 	int r;
3155 	int cpu;
3156 
3157 	r = kvm_arch_init(opaque);
3158 	if (r)
3159 		goto out_fail;
3160 
3161 	/*
3162 	 * kvm_arch_init makes sure there's at most one caller
3163 	 * for architectures that support multiple implementations,
3164 	 * like intel and amd on x86.
3165 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3166 	 * conflicts in case kvm is already setup for another implementation.
3167 	 */
3168 	r = kvm_irqfd_init();
3169 	if (r)
3170 		goto out_irqfd;
3171 
3172 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3173 		r = -ENOMEM;
3174 		goto out_free_0;
3175 	}
3176 
3177 	r = kvm_arch_hardware_setup();
3178 	if (r < 0)
3179 		goto out_free_0a;
3180 
3181 	for_each_online_cpu(cpu) {
3182 		smp_call_function_single(cpu,
3183 				kvm_arch_check_processor_compat,
3184 				&r, 1);
3185 		if (r < 0)
3186 			goto out_free_1;
3187 	}
3188 
3189 	r = register_cpu_notifier(&kvm_cpu_notifier);
3190 	if (r)
3191 		goto out_free_2;
3192 	register_reboot_notifier(&kvm_reboot_notifier);
3193 
3194 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3195 	if (!vcpu_align)
3196 		vcpu_align = __alignof__(struct kvm_vcpu);
3197 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3198 					   0, NULL);
3199 	if (!kvm_vcpu_cache) {
3200 		r = -ENOMEM;
3201 		goto out_free_3;
3202 	}
3203 
3204 	r = kvm_async_pf_init();
3205 	if (r)
3206 		goto out_free;
3207 
3208 	kvm_chardev_ops.owner = module;
3209 	kvm_vm_fops.owner = module;
3210 	kvm_vcpu_fops.owner = module;
3211 
3212 	r = misc_register(&kvm_dev);
3213 	if (r) {
3214 		printk(KERN_ERR "kvm: misc device register failed\n");
3215 		goto out_unreg;
3216 	}
3217 
3218 	register_syscore_ops(&kvm_syscore_ops);
3219 
3220 	kvm_preempt_ops.sched_in = kvm_sched_in;
3221 	kvm_preempt_ops.sched_out = kvm_sched_out;
3222 
3223 	r = kvm_init_debug();
3224 	if (r) {
3225 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3226 		goto out_undebugfs;
3227 	}
3228 
3229 	return 0;
3230 
3231 out_undebugfs:
3232 	unregister_syscore_ops(&kvm_syscore_ops);
3233 	misc_deregister(&kvm_dev);
3234 out_unreg:
3235 	kvm_async_pf_deinit();
3236 out_free:
3237 	kmem_cache_destroy(kvm_vcpu_cache);
3238 out_free_3:
3239 	unregister_reboot_notifier(&kvm_reboot_notifier);
3240 	unregister_cpu_notifier(&kvm_cpu_notifier);
3241 out_free_2:
3242 out_free_1:
3243 	kvm_arch_hardware_unsetup();
3244 out_free_0a:
3245 	free_cpumask_var(cpus_hardware_enabled);
3246 out_free_0:
3247 	kvm_irqfd_exit();
3248 out_irqfd:
3249 	kvm_arch_exit();
3250 out_fail:
3251 	return r;
3252 }
3253 EXPORT_SYMBOL_GPL(kvm_init);
3254 
3255 void kvm_exit(void)
3256 {
3257 	kvm_exit_debug();
3258 	misc_deregister(&kvm_dev);
3259 	kmem_cache_destroy(kvm_vcpu_cache);
3260 	kvm_async_pf_deinit();
3261 	unregister_syscore_ops(&kvm_syscore_ops);
3262 	unregister_reboot_notifier(&kvm_reboot_notifier);
3263 	unregister_cpu_notifier(&kvm_cpu_notifier);
3264 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3265 	kvm_arch_hardware_unsetup();
3266 	kvm_arch_exit();
3267 	kvm_irqfd_exit();
3268 	free_cpumask_var(cpus_hardware_enabled);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_exit);
3271