1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_SPINLOCK(kvm_lock); 74 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 75 LIST_HEAD(vm_list); 76 77 static cpumask_var_t cpus_hardware_enabled; 78 static int kvm_usage_count = 0; 79 static atomic_t hardware_enable_failed; 80 81 struct kmem_cache *kvm_vcpu_cache; 82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 83 84 static __read_mostly struct preempt_ops kvm_preempt_ops; 85 86 struct dentry *kvm_debugfs_dir; 87 88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 89 unsigned long arg); 90 #ifdef CONFIG_COMPAT 91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 92 unsigned long arg); 93 #endif 94 static int hardware_enable_all(void); 95 static void hardware_disable_all(void); 96 97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 98 99 bool kvm_rebooting; 100 EXPORT_SYMBOL_GPL(kvm_rebooting); 101 102 static bool largepages_enabled = true; 103 104 bool kvm_is_mmio_pfn(pfn_t pfn) 105 { 106 if (pfn_valid(pfn)) 107 return PageReserved(pfn_to_page(pfn)); 108 109 return true; 110 } 111 112 /* 113 * Switches to specified vcpu, until a matching vcpu_put() 114 */ 115 int vcpu_load(struct kvm_vcpu *vcpu) 116 { 117 int cpu; 118 119 if (mutex_lock_killable(&vcpu->mutex)) 120 return -EINTR; 121 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 122 /* The thread running this VCPU changed. */ 123 struct pid *oldpid = vcpu->pid; 124 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 125 rcu_assign_pointer(vcpu->pid, newpid); 126 synchronize_rcu(); 127 put_pid(oldpid); 128 } 129 cpu = get_cpu(); 130 preempt_notifier_register(&vcpu->preempt_notifier); 131 kvm_arch_vcpu_load(vcpu, cpu); 132 put_cpu(); 133 return 0; 134 } 135 136 void vcpu_put(struct kvm_vcpu *vcpu) 137 { 138 preempt_disable(); 139 kvm_arch_vcpu_put(vcpu); 140 preempt_notifier_unregister(&vcpu->preempt_notifier); 141 preempt_enable(); 142 mutex_unlock(&vcpu->mutex); 143 } 144 145 static void ack_flush(void *_completed) 146 { 147 } 148 149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 150 { 151 int i, cpu, me; 152 cpumask_var_t cpus; 153 bool called = true; 154 struct kvm_vcpu *vcpu; 155 156 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 157 158 me = get_cpu(); 159 kvm_for_each_vcpu(i, vcpu, kvm) { 160 kvm_make_request(req, vcpu); 161 cpu = vcpu->cpu; 162 163 /* Set ->requests bit before we read ->mode */ 164 smp_mb(); 165 166 if (cpus != NULL && cpu != -1 && cpu != me && 167 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 168 cpumask_set_cpu(cpu, cpus); 169 } 170 if (unlikely(cpus == NULL)) 171 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 172 else if (!cpumask_empty(cpus)) 173 smp_call_function_many(cpus, ack_flush, NULL, 1); 174 else 175 called = false; 176 put_cpu(); 177 free_cpumask_var(cpus); 178 return called; 179 } 180 181 void kvm_flush_remote_tlbs(struct kvm *kvm) 182 { 183 long dirty_count = kvm->tlbs_dirty; 184 185 smp_mb(); 186 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 187 ++kvm->stat.remote_tlb_flush; 188 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 189 } 190 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 191 192 void kvm_reload_remote_mmus(struct kvm *kvm) 193 { 194 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 195 } 196 197 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 198 { 199 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 200 } 201 202 void kvm_make_scan_ioapic_request(struct kvm *kvm) 203 { 204 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 205 } 206 207 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 208 { 209 struct page *page; 210 int r; 211 212 mutex_init(&vcpu->mutex); 213 vcpu->cpu = -1; 214 vcpu->kvm = kvm; 215 vcpu->vcpu_id = id; 216 vcpu->pid = NULL; 217 init_waitqueue_head(&vcpu->wq); 218 kvm_async_pf_vcpu_init(vcpu); 219 220 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 221 if (!page) { 222 r = -ENOMEM; 223 goto fail; 224 } 225 vcpu->run = page_address(page); 226 227 kvm_vcpu_set_in_spin_loop(vcpu, false); 228 kvm_vcpu_set_dy_eligible(vcpu, false); 229 vcpu->preempted = false; 230 231 r = kvm_arch_vcpu_init(vcpu); 232 if (r < 0) 233 goto fail_free_run; 234 return 0; 235 236 fail_free_run: 237 free_page((unsigned long)vcpu->run); 238 fail: 239 return r; 240 } 241 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 242 243 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 244 { 245 put_pid(vcpu->pid); 246 kvm_arch_vcpu_uninit(vcpu); 247 free_page((unsigned long)vcpu->run); 248 } 249 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 250 251 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 252 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 253 { 254 return container_of(mn, struct kvm, mmu_notifier); 255 } 256 257 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 258 struct mm_struct *mm, 259 unsigned long address) 260 { 261 struct kvm *kvm = mmu_notifier_to_kvm(mn); 262 int need_tlb_flush, idx; 263 264 /* 265 * When ->invalidate_page runs, the linux pte has been zapped 266 * already but the page is still allocated until 267 * ->invalidate_page returns. So if we increase the sequence 268 * here the kvm page fault will notice if the spte can't be 269 * established because the page is going to be freed. If 270 * instead the kvm page fault establishes the spte before 271 * ->invalidate_page runs, kvm_unmap_hva will release it 272 * before returning. 273 * 274 * The sequence increase only need to be seen at spin_unlock 275 * time, and not at spin_lock time. 276 * 277 * Increasing the sequence after the spin_unlock would be 278 * unsafe because the kvm page fault could then establish the 279 * pte after kvm_unmap_hva returned, without noticing the page 280 * is going to be freed. 281 */ 282 idx = srcu_read_lock(&kvm->srcu); 283 spin_lock(&kvm->mmu_lock); 284 285 kvm->mmu_notifier_seq++; 286 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 287 /* we've to flush the tlb before the pages can be freed */ 288 if (need_tlb_flush) 289 kvm_flush_remote_tlbs(kvm); 290 291 spin_unlock(&kvm->mmu_lock); 292 srcu_read_unlock(&kvm->srcu, idx); 293 } 294 295 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 296 struct mm_struct *mm, 297 unsigned long address, 298 pte_t pte) 299 { 300 struct kvm *kvm = mmu_notifier_to_kvm(mn); 301 int idx; 302 303 idx = srcu_read_lock(&kvm->srcu); 304 spin_lock(&kvm->mmu_lock); 305 kvm->mmu_notifier_seq++; 306 kvm_set_spte_hva(kvm, address, pte); 307 spin_unlock(&kvm->mmu_lock); 308 srcu_read_unlock(&kvm->srcu, idx); 309 } 310 311 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 312 struct mm_struct *mm, 313 unsigned long start, 314 unsigned long end) 315 { 316 struct kvm *kvm = mmu_notifier_to_kvm(mn); 317 int need_tlb_flush = 0, idx; 318 319 idx = srcu_read_lock(&kvm->srcu); 320 spin_lock(&kvm->mmu_lock); 321 /* 322 * The count increase must become visible at unlock time as no 323 * spte can be established without taking the mmu_lock and 324 * count is also read inside the mmu_lock critical section. 325 */ 326 kvm->mmu_notifier_count++; 327 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 328 need_tlb_flush |= kvm->tlbs_dirty; 329 /* we've to flush the tlb before the pages can be freed */ 330 if (need_tlb_flush) 331 kvm_flush_remote_tlbs(kvm); 332 333 spin_unlock(&kvm->mmu_lock); 334 srcu_read_unlock(&kvm->srcu, idx); 335 } 336 337 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 338 struct mm_struct *mm, 339 unsigned long start, 340 unsigned long end) 341 { 342 struct kvm *kvm = mmu_notifier_to_kvm(mn); 343 344 spin_lock(&kvm->mmu_lock); 345 /* 346 * This sequence increase will notify the kvm page fault that 347 * the page that is going to be mapped in the spte could have 348 * been freed. 349 */ 350 kvm->mmu_notifier_seq++; 351 smp_wmb(); 352 /* 353 * The above sequence increase must be visible before the 354 * below count decrease, which is ensured by the smp_wmb above 355 * in conjunction with the smp_rmb in mmu_notifier_retry(). 356 */ 357 kvm->mmu_notifier_count--; 358 spin_unlock(&kvm->mmu_lock); 359 360 BUG_ON(kvm->mmu_notifier_count < 0); 361 } 362 363 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 364 struct mm_struct *mm, 365 unsigned long address) 366 { 367 struct kvm *kvm = mmu_notifier_to_kvm(mn); 368 int young, idx; 369 370 idx = srcu_read_lock(&kvm->srcu); 371 spin_lock(&kvm->mmu_lock); 372 373 young = kvm_age_hva(kvm, address); 374 if (young) 375 kvm_flush_remote_tlbs(kvm); 376 377 spin_unlock(&kvm->mmu_lock); 378 srcu_read_unlock(&kvm->srcu, idx); 379 380 return young; 381 } 382 383 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 384 struct mm_struct *mm, 385 unsigned long address) 386 { 387 struct kvm *kvm = mmu_notifier_to_kvm(mn); 388 int young, idx; 389 390 idx = srcu_read_lock(&kvm->srcu); 391 spin_lock(&kvm->mmu_lock); 392 young = kvm_test_age_hva(kvm, address); 393 spin_unlock(&kvm->mmu_lock); 394 srcu_read_unlock(&kvm->srcu, idx); 395 396 return young; 397 } 398 399 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 400 struct mm_struct *mm) 401 { 402 struct kvm *kvm = mmu_notifier_to_kvm(mn); 403 int idx; 404 405 idx = srcu_read_lock(&kvm->srcu); 406 kvm_arch_flush_shadow_all(kvm); 407 srcu_read_unlock(&kvm->srcu, idx); 408 } 409 410 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 411 .invalidate_page = kvm_mmu_notifier_invalidate_page, 412 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 413 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 414 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 415 .test_young = kvm_mmu_notifier_test_young, 416 .change_pte = kvm_mmu_notifier_change_pte, 417 .release = kvm_mmu_notifier_release, 418 }; 419 420 static int kvm_init_mmu_notifier(struct kvm *kvm) 421 { 422 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 423 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 424 } 425 426 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 427 428 static int kvm_init_mmu_notifier(struct kvm *kvm) 429 { 430 return 0; 431 } 432 433 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 434 435 static void kvm_init_memslots_id(struct kvm *kvm) 436 { 437 int i; 438 struct kvm_memslots *slots = kvm->memslots; 439 440 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 441 slots->id_to_index[i] = slots->memslots[i].id = i; 442 } 443 444 static struct kvm *kvm_create_vm(unsigned long type) 445 { 446 int r, i; 447 struct kvm *kvm = kvm_arch_alloc_vm(); 448 449 if (!kvm) 450 return ERR_PTR(-ENOMEM); 451 452 r = kvm_arch_init_vm(kvm, type); 453 if (r) 454 goto out_err_nodisable; 455 456 r = hardware_enable_all(); 457 if (r) 458 goto out_err_nodisable; 459 460 #ifdef CONFIG_HAVE_KVM_IRQCHIP 461 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 462 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 463 #endif 464 465 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 466 467 r = -ENOMEM; 468 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 469 if (!kvm->memslots) 470 goto out_err_nosrcu; 471 kvm_init_memslots_id(kvm); 472 if (init_srcu_struct(&kvm->srcu)) 473 goto out_err_nosrcu; 474 for (i = 0; i < KVM_NR_BUSES; i++) { 475 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 476 GFP_KERNEL); 477 if (!kvm->buses[i]) 478 goto out_err; 479 } 480 481 spin_lock_init(&kvm->mmu_lock); 482 kvm->mm = current->mm; 483 atomic_inc(&kvm->mm->mm_count); 484 kvm_eventfd_init(kvm); 485 mutex_init(&kvm->lock); 486 mutex_init(&kvm->irq_lock); 487 mutex_init(&kvm->slots_lock); 488 atomic_set(&kvm->users_count, 1); 489 INIT_LIST_HEAD(&kvm->devices); 490 491 r = kvm_init_mmu_notifier(kvm); 492 if (r) 493 goto out_err; 494 495 spin_lock(&kvm_lock); 496 list_add(&kvm->vm_list, &vm_list); 497 spin_unlock(&kvm_lock); 498 499 return kvm; 500 501 out_err: 502 cleanup_srcu_struct(&kvm->srcu); 503 out_err_nosrcu: 504 hardware_disable_all(); 505 out_err_nodisable: 506 for (i = 0; i < KVM_NR_BUSES; i++) 507 kfree(kvm->buses[i]); 508 kfree(kvm->memslots); 509 kvm_arch_free_vm(kvm); 510 return ERR_PTR(r); 511 } 512 513 /* 514 * Avoid using vmalloc for a small buffer. 515 * Should not be used when the size is statically known. 516 */ 517 void *kvm_kvzalloc(unsigned long size) 518 { 519 if (size > PAGE_SIZE) 520 return vzalloc(size); 521 else 522 return kzalloc(size, GFP_KERNEL); 523 } 524 525 void kvm_kvfree(const void *addr) 526 { 527 if (is_vmalloc_addr(addr)) 528 vfree(addr); 529 else 530 kfree(addr); 531 } 532 533 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 534 { 535 if (!memslot->dirty_bitmap) 536 return; 537 538 kvm_kvfree(memslot->dirty_bitmap); 539 memslot->dirty_bitmap = NULL; 540 } 541 542 /* 543 * Free any memory in @free but not in @dont. 544 */ 545 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, 546 struct kvm_memory_slot *dont) 547 { 548 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 549 kvm_destroy_dirty_bitmap(free); 550 551 kvm_arch_free_memslot(kvm, free, dont); 552 553 free->npages = 0; 554 } 555 556 void kvm_free_physmem(struct kvm *kvm) 557 { 558 struct kvm_memslots *slots = kvm->memslots; 559 struct kvm_memory_slot *memslot; 560 561 kvm_for_each_memslot(memslot, slots) 562 kvm_free_physmem_slot(kvm, memslot, NULL); 563 564 kfree(kvm->memslots); 565 } 566 567 static void kvm_destroy_devices(struct kvm *kvm) 568 { 569 struct list_head *node, *tmp; 570 571 list_for_each_safe(node, tmp, &kvm->devices) { 572 struct kvm_device *dev = 573 list_entry(node, struct kvm_device, vm_node); 574 575 list_del(node); 576 dev->ops->destroy(dev); 577 } 578 } 579 580 static void kvm_destroy_vm(struct kvm *kvm) 581 { 582 int i; 583 struct mm_struct *mm = kvm->mm; 584 585 kvm_arch_sync_events(kvm); 586 spin_lock(&kvm_lock); 587 list_del(&kvm->vm_list); 588 spin_unlock(&kvm_lock); 589 kvm_free_irq_routing(kvm); 590 for (i = 0; i < KVM_NR_BUSES; i++) 591 kvm_io_bus_destroy(kvm->buses[i]); 592 kvm_coalesced_mmio_free(kvm); 593 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 594 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 595 #else 596 kvm_arch_flush_shadow_all(kvm); 597 #endif 598 kvm_arch_destroy_vm(kvm); 599 kvm_destroy_devices(kvm); 600 kvm_free_physmem(kvm); 601 cleanup_srcu_struct(&kvm->srcu); 602 kvm_arch_free_vm(kvm); 603 hardware_disable_all(); 604 mmdrop(mm); 605 } 606 607 void kvm_get_kvm(struct kvm *kvm) 608 { 609 atomic_inc(&kvm->users_count); 610 } 611 EXPORT_SYMBOL_GPL(kvm_get_kvm); 612 613 void kvm_put_kvm(struct kvm *kvm) 614 { 615 if (atomic_dec_and_test(&kvm->users_count)) 616 kvm_destroy_vm(kvm); 617 } 618 EXPORT_SYMBOL_GPL(kvm_put_kvm); 619 620 621 static int kvm_vm_release(struct inode *inode, struct file *filp) 622 { 623 struct kvm *kvm = filp->private_data; 624 625 kvm_irqfd_release(kvm); 626 627 kvm_put_kvm(kvm); 628 return 0; 629 } 630 631 /* 632 * Allocation size is twice as large as the actual dirty bitmap size. 633 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 634 */ 635 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 636 { 637 #ifndef CONFIG_S390 638 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 639 640 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 641 if (!memslot->dirty_bitmap) 642 return -ENOMEM; 643 644 #endif /* !CONFIG_S390 */ 645 return 0; 646 } 647 648 static int cmp_memslot(const void *slot1, const void *slot2) 649 { 650 struct kvm_memory_slot *s1, *s2; 651 652 s1 = (struct kvm_memory_slot *)slot1; 653 s2 = (struct kvm_memory_slot *)slot2; 654 655 if (s1->npages < s2->npages) 656 return 1; 657 if (s1->npages > s2->npages) 658 return -1; 659 660 return 0; 661 } 662 663 /* 664 * Sort the memslots base on its size, so the larger slots 665 * will get better fit. 666 */ 667 static void sort_memslots(struct kvm_memslots *slots) 668 { 669 int i; 670 671 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 672 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 673 674 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 675 slots->id_to_index[slots->memslots[i].id] = i; 676 } 677 678 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, 679 u64 last_generation) 680 { 681 if (new) { 682 int id = new->id; 683 struct kvm_memory_slot *old = id_to_memslot(slots, id); 684 unsigned long npages = old->npages; 685 686 *old = *new; 687 if (new->npages != npages) 688 sort_memslots(slots); 689 } 690 691 slots->generation = last_generation + 1; 692 } 693 694 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 695 { 696 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 697 698 #ifdef KVM_CAP_READONLY_MEM 699 valid_flags |= KVM_MEM_READONLY; 700 #endif 701 702 if (mem->flags & ~valid_flags) 703 return -EINVAL; 704 705 return 0; 706 } 707 708 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 709 struct kvm_memslots *slots, struct kvm_memory_slot *new) 710 { 711 struct kvm_memslots *old_memslots = kvm->memslots; 712 713 update_memslots(slots, new, kvm->memslots->generation); 714 rcu_assign_pointer(kvm->memslots, slots); 715 synchronize_srcu_expedited(&kvm->srcu); 716 717 kvm_arch_memslots_updated(kvm); 718 719 return old_memslots; 720 } 721 722 /* 723 * Allocate some memory and give it an address in the guest physical address 724 * space. 725 * 726 * Discontiguous memory is allowed, mostly for framebuffers. 727 * 728 * Must be called holding mmap_sem for write. 729 */ 730 int __kvm_set_memory_region(struct kvm *kvm, 731 struct kvm_userspace_memory_region *mem) 732 { 733 int r; 734 gfn_t base_gfn; 735 unsigned long npages; 736 struct kvm_memory_slot *slot; 737 struct kvm_memory_slot old, new; 738 struct kvm_memslots *slots = NULL, *old_memslots; 739 enum kvm_mr_change change; 740 741 r = check_memory_region_flags(mem); 742 if (r) 743 goto out; 744 745 r = -EINVAL; 746 /* General sanity checks */ 747 if (mem->memory_size & (PAGE_SIZE - 1)) 748 goto out; 749 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 750 goto out; 751 /* We can read the guest memory with __xxx_user() later on. */ 752 if ((mem->slot < KVM_USER_MEM_SLOTS) && 753 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 754 !access_ok(VERIFY_WRITE, 755 (void __user *)(unsigned long)mem->userspace_addr, 756 mem->memory_size))) 757 goto out; 758 if (mem->slot >= KVM_MEM_SLOTS_NUM) 759 goto out; 760 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 761 goto out; 762 763 slot = id_to_memslot(kvm->memslots, mem->slot); 764 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 765 npages = mem->memory_size >> PAGE_SHIFT; 766 767 r = -EINVAL; 768 if (npages > KVM_MEM_MAX_NR_PAGES) 769 goto out; 770 771 if (!npages) 772 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 773 774 new = old = *slot; 775 776 new.id = mem->slot; 777 new.base_gfn = base_gfn; 778 new.npages = npages; 779 new.flags = mem->flags; 780 781 r = -EINVAL; 782 if (npages) { 783 if (!old.npages) 784 change = KVM_MR_CREATE; 785 else { /* Modify an existing slot. */ 786 if ((mem->userspace_addr != old.userspace_addr) || 787 (npages != old.npages) || 788 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 789 goto out; 790 791 if (base_gfn != old.base_gfn) 792 change = KVM_MR_MOVE; 793 else if (new.flags != old.flags) 794 change = KVM_MR_FLAGS_ONLY; 795 else { /* Nothing to change. */ 796 r = 0; 797 goto out; 798 } 799 } 800 } else if (old.npages) { 801 change = KVM_MR_DELETE; 802 } else /* Modify a non-existent slot: disallowed. */ 803 goto out; 804 805 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 806 /* Check for overlaps */ 807 r = -EEXIST; 808 kvm_for_each_memslot(slot, kvm->memslots) { 809 if ((slot->id >= KVM_USER_MEM_SLOTS) || 810 (slot->id == mem->slot)) 811 continue; 812 if (!((base_gfn + npages <= slot->base_gfn) || 813 (base_gfn >= slot->base_gfn + slot->npages))) 814 goto out; 815 } 816 } 817 818 /* Free page dirty bitmap if unneeded */ 819 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 820 new.dirty_bitmap = NULL; 821 822 r = -ENOMEM; 823 if (change == KVM_MR_CREATE) { 824 new.userspace_addr = mem->userspace_addr; 825 826 if (kvm_arch_create_memslot(kvm, &new, npages)) 827 goto out_free; 828 } 829 830 /* Allocate page dirty bitmap if needed */ 831 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 832 if (kvm_create_dirty_bitmap(&new) < 0) 833 goto out_free; 834 } 835 836 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 837 r = -ENOMEM; 838 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 839 GFP_KERNEL); 840 if (!slots) 841 goto out_free; 842 slot = id_to_memslot(slots, mem->slot); 843 slot->flags |= KVM_MEMSLOT_INVALID; 844 845 old_memslots = install_new_memslots(kvm, slots, NULL); 846 847 /* slot was deleted or moved, clear iommu mapping */ 848 kvm_iommu_unmap_pages(kvm, &old); 849 /* From this point no new shadow pages pointing to a deleted, 850 * or moved, memslot will be created. 851 * 852 * validation of sp->gfn happens in: 853 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 854 * - kvm_is_visible_gfn (mmu_check_roots) 855 */ 856 kvm_arch_flush_shadow_memslot(kvm, slot); 857 slots = old_memslots; 858 } 859 860 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 861 if (r) 862 goto out_slots; 863 864 r = -ENOMEM; 865 /* 866 * We can re-use the old_memslots from above, the only difference 867 * from the currently installed memslots is the invalid flag. This 868 * will get overwritten by update_memslots anyway. 869 */ 870 if (!slots) { 871 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 872 GFP_KERNEL); 873 if (!slots) 874 goto out_free; 875 } 876 877 /* actual memory is freed via old in kvm_free_physmem_slot below */ 878 if (change == KVM_MR_DELETE) { 879 new.dirty_bitmap = NULL; 880 memset(&new.arch, 0, sizeof(new.arch)); 881 } 882 883 old_memslots = install_new_memslots(kvm, slots, &new); 884 885 kvm_arch_commit_memory_region(kvm, mem, &old, change); 886 887 kvm_free_physmem_slot(kvm, &old, &new); 888 kfree(old_memslots); 889 890 /* 891 * IOMMU mapping: New slots need to be mapped. Old slots need to be 892 * un-mapped and re-mapped if their base changes. Since base change 893 * unmapping is handled above with slot deletion, mapping alone is 894 * needed here. Anything else the iommu might care about for existing 895 * slots (size changes, userspace addr changes and read-only flag 896 * changes) is disallowed above, so any other attribute changes getting 897 * here can be skipped. 898 */ 899 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 900 r = kvm_iommu_map_pages(kvm, &new); 901 return r; 902 } 903 904 return 0; 905 906 out_slots: 907 kfree(slots); 908 out_free: 909 kvm_free_physmem_slot(kvm, &new, &old); 910 out: 911 return r; 912 } 913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 914 915 int kvm_set_memory_region(struct kvm *kvm, 916 struct kvm_userspace_memory_region *mem) 917 { 918 int r; 919 920 mutex_lock(&kvm->slots_lock); 921 r = __kvm_set_memory_region(kvm, mem); 922 mutex_unlock(&kvm->slots_lock); 923 return r; 924 } 925 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 926 927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 928 struct kvm_userspace_memory_region *mem) 929 { 930 if (mem->slot >= KVM_USER_MEM_SLOTS) 931 return -EINVAL; 932 return kvm_set_memory_region(kvm, mem); 933 } 934 935 int kvm_get_dirty_log(struct kvm *kvm, 936 struct kvm_dirty_log *log, int *is_dirty) 937 { 938 struct kvm_memory_slot *memslot; 939 int r, i; 940 unsigned long n; 941 unsigned long any = 0; 942 943 r = -EINVAL; 944 if (log->slot >= KVM_USER_MEM_SLOTS) 945 goto out; 946 947 memslot = id_to_memslot(kvm->memslots, log->slot); 948 r = -ENOENT; 949 if (!memslot->dirty_bitmap) 950 goto out; 951 952 n = kvm_dirty_bitmap_bytes(memslot); 953 954 for (i = 0; !any && i < n/sizeof(long); ++i) 955 any = memslot->dirty_bitmap[i]; 956 957 r = -EFAULT; 958 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 959 goto out; 960 961 if (any) 962 *is_dirty = 1; 963 964 r = 0; 965 out: 966 return r; 967 } 968 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 969 970 bool kvm_largepages_enabled(void) 971 { 972 return largepages_enabled; 973 } 974 975 void kvm_disable_largepages(void) 976 { 977 largepages_enabled = false; 978 } 979 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 980 981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 982 { 983 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 984 } 985 EXPORT_SYMBOL_GPL(gfn_to_memslot); 986 987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 988 { 989 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 990 991 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 992 memslot->flags & KVM_MEMSLOT_INVALID) 993 return 0; 994 995 return 1; 996 } 997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 998 999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1000 { 1001 struct vm_area_struct *vma; 1002 unsigned long addr, size; 1003 1004 size = PAGE_SIZE; 1005 1006 addr = gfn_to_hva(kvm, gfn); 1007 if (kvm_is_error_hva(addr)) 1008 return PAGE_SIZE; 1009 1010 down_read(¤t->mm->mmap_sem); 1011 vma = find_vma(current->mm, addr); 1012 if (!vma) 1013 goto out; 1014 1015 size = vma_kernel_pagesize(vma); 1016 1017 out: 1018 up_read(¤t->mm->mmap_sem); 1019 1020 return size; 1021 } 1022 1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1024 { 1025 return slot->flags & KVM_MEM_READONLY; 1026 } 1027 1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1029 gfn_t *nr_pages, bool write) 1030 { 1031 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1032 return KVM_HVA_ERR_BAD; 1033 1034 if (memslot_is_readonly(slot) && write) 1035 return KVM_HVA_ERR_RO_BAD; 1036 1037 if (nr_pages) 1038 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1039 1040 return __gfn_to_hva_memslot(slot, gfn); 1041 } 1042 1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1044 gfn_t *nr_pages) 1045 { 1046 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1047 } 1048 1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1050 gfn_t gfn) 1051 { 1052 return gfn_to_hva_many(slot, gfn, NULL); 1053 } 1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1055 1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1057 { 1058 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1059 } 1060 EXPORT_SYMBOL_GPL(gfn_to_hva); 1061 1062 /* 1063 * If writable is set to false, the hva returned by this function is only 1064 * allowed to be read. 1065 */ 1066 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1067 { 1068 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1069 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1070 1071 if (!kvm_is_error_hva(hva) && writable) 1072 *writable = !memslot_is_readonly(slot); 1073 1074 return hva; 1075 } 1076 1077 static int kvm_read_hva(void *data, void __user *hva, int len) 1078 { 1079 return __copy_from_user(data, hva, len); 1080 } 1081 1082 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1083 { 1084 return __copy_from_user_inatomic(data, hva, len); 1085 } 1086 1087 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1088 unsigned long start, int write, struct page **page) 1089 { 1090 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1091 1092 if (write) 1093 flags |= FOLL_WRITE; 1094 1095 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1096 } 1097 1098 static inline int check_user_page_hwpoison(unsigned long addr) 1099 { 1100 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1101 1102 rc = __get_user_pages(current, current->mm, addr, 1, 1103 flags, NULL, NULL, NULL); 1104 return rc == -EHWPOISON; 1105 } 1106 1107 /* 1108 * The atomic path to get the writable pfn which will be stored in @pfn, 1109 * true indicates success, otherwise false is returned. 1110 */ 1111 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1112 bool write_fault, bool *writable, pfn_t *pfn) 1113 { 1114 struct page *page[1]; 1115 int npages; 1116 1117 if (!(async || atomic)) 1118 return false; 1119 1120 /* 1121 * Fast pin a writable pfn only if it is a write fault request 1122 * or the caller allows to map a writable pfn for a read fault 1123 * request. 1124 */ 1125 if (!(write_fault || writable)) 1126 return false; 1127 1128 npages = __get_user_pages_fast(addr, 1, 1, page); 1129 if (npages == 1) { 1130 *pfn = page_to_pfn(page[0]); 1131 1132 if (writable) 1133 *writable = true; 1134 return true; 1135 } 1136 1137 return false; 1138 } 1139 1140 /* 1141 * The slow path to get the pfn of the specified host virtual address, 1142 * 1 indicates success, -errno is returned if error is detected. 1143 */ 1144 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1145 bool *writable, pfn_t *pfn) 1146 { 1147 struct page *page[1]; 1148 int npages = 0; 1149 1150 might_sleep(); 1151 1152 if (writable) 1153 *writable = write_fault; 1154 1155 if (async) { 1156 down_read(¤t->mm->mmap_sem); 1157 npages = get_user_page_nowait(current, current->mm, 1158 addr, write_fault, page); 1159 up_read(¤t->mm->mmap_sem); 1160 } else 1161 npages = get_user_pages_fast(addr, 1, write_fault, 1162 page); 1163 if (npages != 1) 1164 return npages; 1165 1166 /* map read fault as writable if possible */ 1167 if (unlikely(!write_fault) && writable) { 1168 struct page *wpage[1]; 1169 1170 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1171 if (npages == 1) { 1172 *writable = true; 1173 put_page(page[0]); 1174 page[0] = wpage[0]; 1175 } 1176 1177 npages = 1; 1178 } 1179 *pfn = page_to_pfn(page[0]); 1180 return npages; 1181 } 1182 1183 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1184 { 1185 if (unlikely(!(vma->vm_flags & VM_READ))) 1186 return false; 1187 1188 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1189 return false; 1190 1191 return true; 1192 } 1193 1194 /* 1195 * Pin guest page in memory and return its pfn. 1196 * @addr: host virtual address which maps memory to the guest 1197 * @atomic: whether this function can sleep 1198 * @async: whether this function need to wait IO complete if the 1199 * host page is not in the memory 1200 * @write_fault: whether we should get a writable host page 1201 * @writable: whether it allows to map a writable host page for !@write_fault 1202 * 1203 * The function will map a writable host page for these two cases: 1204 * 1): @write_fault = true 1205 * 2): @write_fault = false && @writable, @writable will tell the caller 1206 * whether the mapping is writable. 1207 */ 1208 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1209 bool write_fault, bool *writable) 1210 { 1211 struct vm_area_struct *vma; 1212 pfn_t pfn = 0; 1213 int npages; 1214 1215 /* we can do it either atomically or asynchronously, not both */ 1216 BUG_ON(atomic && async); 1217 1218 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1219 return pfn; 1220 1221 if (atomic) 1222 return KVM_PFN_ERR_FAULT; 1223 1224 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1225 if (npages == 1) 1226 return pfn; 1227 1228 down_read(¤t->mm->mmap_sem); 1229 if (npages == -EHWPOISON || 1230 (!async && check_user_page_hwpoison(addr))) { 1231 pfn = KVM_PFN_ERR_HWPOISON; 1232 goto exit; 1233 } 1234 1235 vma = find_vma_intersection(current->mm, addr, addr + 1); 1236 1237 if (vma == NULL) 1238 pfn = KVM_PFN_ERR_FAULT; 1239 else if ((vma->vm_flags & VM_PFNMAP)) { 1240 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1241 vma->vm_pgoff; 1242 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1243 } else { 1244 if (async && vma_is_valid(vma, write_fault)) 1245 *async = true; 1246 pfn = KVM_PFN_ERR_FAULT; 1247 } 1248 exit: 1249 up_read(¤t->mm->mmap_sem); 1250 return pfn; 1251 } 1252 1253 static pfn_t 1254 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1255 bool *async, bool write_fault, bool *writable) 1256 { 1257 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1258 1259 if (addr == KVM_HVA_ERR_RO_BAD) 1260 return KVM_PFN_ERR_RO_FAULT; 1261 1262 if (kvm_is_error_hva(addr)) 1263 return KVM_PFN_NOSLOT; 1264 1265 /* Do not map writable pfn in the readonly memslot. */ 1266 if (writable && memslot_is_readonly(slot)) { 1267 *writable = false; 1268 writable = NULL; 1269 } 1270 1271 return hva_to_pfn(addr, atomic, async, write_fault, 1272 writable); 1273 } 1274 1275 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1276 bool write_fault, bool *writable) 1277 { 1278 struct kvm_memory_slot *slot; 1279 1280 if (async) 1281 *async = false; 1282 1283 slot = gfn_to_memslot(kvm, gfn); 1284 1285 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1286 writable); 1287 } 1288 1289 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1290 { 1291 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1292 } 1293 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1294 1295 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1296 bool write_fault, bool *writable) 1297 { 1298 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1299 } 1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1301 1302 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1303 { 1304 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1305 } 1306 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1307 1308 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1309 bool *writable) 1310 { 1311 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1312 } 1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1314 1315 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1316 { 1317 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1318 } 1319 1320 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1321 { 1322 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1323 } 1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1325 1326 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1327 int nr_pages) 1328 { 1329 unsigned long addr; 1330 gfn_t entry; 1331 1332 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1333 if (kvm_is_error_hva(addr)) 1334 return -1; 1335 1336 if (entry < nr_pages) 1337 return 0; 1338 1339 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1340 } 1341 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1342 1343 static struct page *kvm_pfn_to_page(pfn_t pfn) 1344 { 1345 if (is_error_noslot_pfn(pfn)) 1346 return KVM_ERR_PTR_BAD_PAGE; 1347 1348 if (kvm_is_mmio_pfn(pfn)) { 1349 WARN_ON(1); 1350 return KVM_ERR_PTR_BAD_PAGE; 1351 } 1352 1353 return pfn_to_page(pfn); 1354 } 1355 1356 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1357 { 1358 pfn_t pfn; 1359 1360 pfn = gfn_to_pfn(kvm, gfn); 1361 1362 return kvm_pfn_to_page(pfn); 1363 } 1364 1365 EXPORT_SYMBOL_GPL(gfn_to_page); 1366 1367 void kvm_release_page_clean(struct page *page) 1368 { 1369 WARN_ON(is_error_page(page)); 1370 1371 kvm_release_pfn_clean(page_to_pfn(page)); 1372 } 1373 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1374 1375 void kvm_release_pfn_clean(pfn_t pfn) 1376 { 1377 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1378 put_page(pfn_to_page(pfn)); 1379 } 1380 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1381 1382 void kvm_release_page_dirty(struct page *page) 1383 { 1384 WARN_ON(is_error_page(page)); 1385 1386 kvm_release_pfn_dirty(page_to_pfn(page)); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1389 1390 void kvm_release_pfn_dirty(pfn_t pfn) 1391 { 1392 kvm_set_pfn_dirty(pfn); 1393 kvm_release_pfn_clean(pfn); 1394 } 1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1396 1397 void kvm_set_page_dirty(struct page *page) 1398 { 1399 kvm_set_pfn_dirty(page_to_pfn(page)); 1400 } 1401 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1402 1403 void kvm_set_pfn_dirty(pfn_t pfn) 1404 { 1405 if (!kvm_is_mmio_pfn(pfn)) { 1406 struct page *page = pfn_to_page(pfn); 1407 if (!PageReserved(page)) 1408 SetPageDirty(page); 1409 } 1410 } 1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1412 1413 void kvm_set_pfn_accessed(pfn_t pfn) 1414 { 1415 if (!kvm_is_mmio_pfn(pfn)) 1416 mark_page_accessed(pfn_to_page(pfn)); 1417 } 1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1419 1420 void kvm_get_pfn(pfn_t pfn) 1421 { 1422 if (!kvm_is_mmio_pfn(pfn)) 1423 get_page(pfn_to_page(pfn)); 1424 } 1425 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1426 1427 static int next_segment(unsigned long len, int offset) 1428 { 1429 if (len > PAGE_SIZE - offset) 1430 return PAGE_SIZE - offset; 1431 else 1432 return len; 1433 } 1434 1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1436 int len) 1437 { 1438 int r; 1439 unsigned long addr; 1440 1441 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1442 if (kvm_is_error_hva(addr)) 1443 return -EFAULT; 1444 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1445 if (r) 1446 return -EFAULT; 1447 return 0; 1448 } 1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1450 1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1452 { 1453 gfn_t gfn = gpa >> PAGE_SHIFT; 1454 int seg; 1455 int offset = offset_in_page(gpa); 1456 int ret; 1457 1458 while ((seg = next_segment(len, offset)) != 0) { 1459 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1460 if (ret < 0) 1461 return ret; 1462 offset = 0; 1463 len -= seg; 1464 data += seg; 1465 ++gfn; 1466 } 1467 return 0; 1468 } 1469 EXPORT_SYMBOL_GPL(kvm_read_guest); 1470 1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1472 unsigned long len) 1473 { 1474 int r; 1475 unsigned long addr; 1476 gfn_t gfn = gpa >> PAGE_SHIFT; 1477 int offset = offset_in_page(gpa); 1478 1479 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1480 if (kvm_is_error_hva(addr)) 1481 return -EFAULT; 1482 pagefault_disable(); 1483 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1484 pagefault_enable(); 1485 if (r) 1486 return -EFAULT; 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(kvm_read_guest_atomic); 1490 1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1492 int offset, int len) 1493 { 1494 int r; 1495 unsigned long addr; 1496 1497 addr = gfn_to_hva(kvm, gfn); 1498 if (kvm_is_error_hva(addr)) 1499 return -EFAULT; 1500 r = __copy_to_user((void __user *)addr + offset, data, len); 1501 if (r) 1502 return -EFAULT; 1503 mark_page_dirty(kvm, gfn); 1504 return 0; 1505 } 1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1507 1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1509 unsigned long len) 1510 { 1511 gfn_t gfn = gpa >> PAGE_SHIFT; 1512 int seg; 1513 int offset = offset_in_page(gpa); 1514 int ret; 1515 1516 while ((seg = next_segment(len, offset)) != 0) { 1517 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1518 if (ret < 0) 1519 return ret; 1520 offset = 0; 1521 len -= seg; 1522 data += seg; 1523 ++gfn; 1524 } 1525 return 0; 1526 } 1527 1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1529 gpa_t gpa, unsigned long len) 1530 { 1531 struct kvm_memslots *slots = kvm_memslots(kvm); 1532 int offset = offset_in_page(gpa); 1533 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1534 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1535 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1536 gfn_t nr_pages_avail; 1537 1538 ghc->gpa = gpa; 1539 ghc->generation = slots->generation; 1540 ghc->len = len; 1541 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1542 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1543 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1544 ghc->hva += offset; 1545 } else { 1546 /* 1547 * If the requested region crosses two memslots, we still 1548 * verify that the entire region is valid here. 1549 */ 1550 while (start_gfn <= end_gfn) { 1551 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1552 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1553 &nr_pages_avail); 1554 if (kvm_is_error_hva(ghc->hva)) 1555 return -EFAULT; 1556 start_gfn += nr_pages_avail; 1557 } 1558 /* Use the slow path for cross page reads and writes. */ 1559 ghc->memslot = NULL; 1560 } 1561 return 0; 1562 } 1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1564 1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1566 void *data, unsigned long len) 1567 { 1568 struct kvm_memslots *slots = kvm_memslots(kvm); 1569 int r; 1570 1571 BUG_ON(len > ghc->len); 1572 1573 if (slots->generation != ghc->generation) 1574 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1575 1576 if (unlikely(!ghc->memslot)) 1577 return kvm_write_guest(kvm, ghc->gpa, data, len); 1578 1579 if (kvm_is_error_hva(ghc->hva)) 1580 return -EFAULT; 1581 1582 r = __copy_to_user((void __user *)ghc->hva, data, len); 1583 if (r) 1584 return -EFAULT; 1585 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1586 1587 return 0; 1588 } 1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1590 1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1592 void *data, unsigned long len) 1593 { 1594 struct kvm_memslots *slots = kvm_memslots(kvm); 1595 int r; 1596 1597 BUG_ON(len > ghc->len); 1598 1599 if (slots->generation != ghc->generation) 1600 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1601 1602 if (unlikely(!ghc->memslot)) 1603 return kvm_read_guest(kvm, ghc->gpa, data, len); 1604 1605 if (kvm_is_error_hva(ghc->hva)) 1606 return -EFAULT; 1607 1608 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1609 if (r) 1610 return -EFAULT; 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1615 1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1617 { 1618 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1619 1620 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1621 } 1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1623 1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1625 { 1626 gfn_t gfn = gpa >> PAGE_SHIFT; 1627 int seg; 1628 int offset = offset_in_page(gpa); 1629 int ret; 1630 1631 while ((seg = next_segment(len, offset)) != 0) { 1632 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1633 if (ret < 0) 1634 return ret; 1635 offset = 0; 1636 len -= seg; 1637 ++gfn; 1638 } 1639 return 0; 1640 } 1641 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1642 1643 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1644 gfn_t gfn) 1645 { 1646 if (memslot && memslot->dirty_bitmap) { 1647 unsigned long rel_gfn = gfn - memslot->base_gfn; 1648 1649 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1650 } 1651 } 1652 1653 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1654 { 1655 struct kvm_memory_slot *memslot; 1656 1657 memslot = gfn_to_memslot(kvm, gfn); 1658 mark_page_dirty_in_slot(kvm, memslot, gfn); 1659 } 1660 EXPORT_SYMBOL_GPL(mark_page_dirty); 1661 1662 /* 1663 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1664 */ 1665 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1666 { 1667 DEFINE_WAIT(wait); 1668 1669 for (;;) { 1670 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1671 1672 if (kvm_arch_vcpu_runnable(vcpu)) { 1673 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1674 break; 1675 } 1676 if (kvm_cpu_has_pending_timer(vcpu)) 1677 break; 1678 if (signal_pending(current)) 1679 break; 1680 1681 schedule(); 1682 } 1683 1684 finish_wait(&vcpu->wq, &wait); 1685 } 1686 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 1687 1688 #ifndef CONFIG_S390 1689 /* 1690 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1691 */ 1692 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1693 { 1694 int me; 1695 int cpu = vcpu->cpu; 1696 wait_queue_head_t *wqp; 1697 1698 wqp = kvm_arch_vcpu_wq(vcpu); 1699 if (waitqueue_active(wqp)) { 1700 wake_up_interruptible(wqp); 1701 ++vcpu->stat.halt_wakeup; 1702 } 1703 1704 me = get_cpu(); 1705 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1706 if (kvm_arch_vcpu_should_kick(vcpu)) 1707 smp_send_reschedule(cpu); 1708 put_cpu(); 1709 } 1710 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1711 #endif /* !CONFIG_S390 */ 1712 1713 void kvm_resched(struct kvm_vcpu *vcpu) 1714 { 1715 if (!need_resched()) 1716 return; 1717 cond_resched(); 1718 } 1719 EXPORT_SYMBOL_GPL(kvm_resched); 1720 1721 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1722 { 1723 struct pid *pid; 1724 struct task_struct *task = NULL; 1725 bool ret = false; 1726 1727 rcu_read_lock(); 1728 pid = rcu_dereference(target->pid); 1729 if (pid) 1730 task = get_pid_task(target->pid, PIDTYPE_PID); 1731 rcu_read_unlock(); 1732 if (!task) 1733 return ret; 1734 if (task->flags & PF_VCPU) { 1735 put_task_struct(task); 1736 return ret; 1737 } 1738 ret = yield_to(task, 1); 1739 put_task_struct(task); 1740 1741 return ret; 1742 } 1743 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1744 1745 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1746 /* 1747 * Helper that checks whether a VCPU is eligible for directed yield. 1748 * Most eligible candidate to yield is decided by following heuristics: 1749 * 1750 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1751 * (preempted lock holder), indicated by @in_spin_loop. 1752 * Set at the beiginning and cleared at the end of interception/PLE handler. 1753 * 1754 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1755 * chance last time (mostly it has become eligible now since we have probably 1756 * yielded to lockholder in last iteration. This is done by toggling 1757 * @dy_eligible each time a VCPU checked for eligibility.) 1758 * 1759 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1760 * to preempted lock-holder could result in wrong VCPU selection and CPU 1761 * burning. Giving priority for a potential lock-holder increases lock 1762 * progress. 1763 * 1764 * Since algorithm is based on heuristics, accessing another VCPU data without 1765 * locking does not harm. It may result in trying to yield to same VCPU, fail 1766 * and continue with next VCPU and so on. 1767 */ 1768 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1769 { 1770 bool eligible; 1771 1772 eligible = !vcpu->spin_loop.in_spin_loop || 1773 (vcpu->spin_loop.in_spin_loop && 1774 vcpu->spin_loop.dy_eligible); 1775 1776 if (vcpu->spin_loop.in_spin_loop) 1777 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1778 1779 return eligible; 1780 } 1781 #endif 1782 1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1784 { 1785 struct kvm *kvm = me->kvm; 1786 struct kvm_vcpu *vcpu; 1787 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1788 int yielded = 0; 1789 int try = 3; 1790 int pass; 1791 int i; 1792 1793 kvm_vcpu_set_in_spin_loop(me, true); 1794 /* 1795 * We boost the priority of a VCPU that is runnable but not 1796 * currently running, because it got preempted by something 1797 * else and called schedule in __vcpu_run. Hopefully that 1798 * VCPU is holding the lock that we need and will release it. 1799 * We approximate round-robin by starting at the last boosted VCPU. 1800 */ 1801 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1802 kvm_for_each_vcpu(i, vcpu, kvm) { 1803 if (!pass && i <= last_boosted_vcpu) { 1804 i = last_boosted_vcpu; 1805 continue; 1806 } else if (pass && i > last_boosted_vcpu) 1807 break; 1808 if (!ACCESS_ONCE(vcpu->preempted)) 1809 continue; 1810 if (vcpu == me) 1811 continue; 1812 if (waitqueue_active(&vcpu->wq)) 1813 continue; 1814 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1815 continue; 1816 1817 yielded = kvm_vcpu_yield_to(vcpu); 1818 if (yielded > 0) { 1819 kvm->last_boosted_vcpu = i; 1820 break; 1821 } else if (yielded < 0) { 1822 try--; 1823 if (!try) 1824 break; 1825 } 1826 } 1827 } 1828 kvm_vcpu_set_in_spin_loop(me, false); 1829 1830 /* Ensure vcpu is not eligible during next spinloop */ 1831 kvm_vcpu_set_dy_eligible(me, false); 1832 } 1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1834 1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1836 { 1837 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1838 struct page *page; 1839 1840 if (vmf->pgoff == 0) 1841 page = virt_to_page(vcpu->run); 1842 #ifdef CONFIG_X86 1843 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1844 page = virt_to_page(vcpu->arch.pio_data); 1845 #endif 1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1847 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1848 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1849 #endif 1850 else 1851 return kvm_arch_vcpu_fault(vcpu, vmf); 1852 get_page(page); 1853 vmf->page = page; 1854 return 0; 1855 } 1856 1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1858 .fault = kvm_vcpu_fault, 1859 }; 1860 1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1862 { 1863 vma->vm_ops = &kvm_vcpu_vm_ops; 1864 return 0; 1865 } 1866 1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1868 { 1869 struct kvm_vcpu *vcpu = filp->private_data; 1870 1871 kvm_put_kvm(vcpu->kvm); 1872 return 0; 1873 } 1874 1875 static struct file_operations kvm_vcpu_fops = { 1876 .release = kvm_vcpu_release, 1877 .unlocked_ioctl = kvm_vcpu_ioctl, 1878 #ifdef CONFIG_COMPAT 1879 .compat_ioctl = kvm_vcpu_compat_ioctl, 1880 #endif 1881 .mmap = kvm_vcpu_mmap, 1882 .llseek = noop_llseek, 1883 }; 1884 1885 /* 1886 * Allocates an inode for the vcpu. 1887 */ 1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1889 { 1890 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 1891 } 1892 1893 /* 1894 * Creates some virtual cpus. Good luck creating more than one. 1895 */ 1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1897 { 1898 int r; 1899 struct kvm_vcpu *vcpu, *v; 1900 1901 if (id >= KVM_MAX_VCPUS) 1902 return -EINVAL; 1903 1904 vcpu = kvm_arch_vcpu_create(kvm, id); 1905 if (IS_ERR(vcpu)) 1906 return PTR_ERR(vcpu); 1907 1908 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1909 1910 r = kvm_arch_vcpu_setup(vcpu); 1911 if (r) 1912 goto vcpu_destroy; 1913 1914 mutex_lock(&kvm->lock); 1915 if (!kvm_vcpu_compatible(vcpu)) { 1916 r = -EINVAL; 1917 goto unlock_vcpu_destroy; 1918 } 1919 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1920 r = -EINVAL; 1921 goto unlock_vcpu_destroy; 1922 } 1923 1924 kvm_for_each_vcpu(r, v, kvm) 1925 if (v->vcpu_id == id) { 1926 r = -EEXIST; 1927 goto unlock_vcpu_destroy; 1928 } 1929 1930 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1931 1932 /* Now it's all set up, let userspace reach it */ 1933 kvm_get_kvm(kvm); 1934 r = create_vcpu_fd(vcpu); 1935 if (r < 0) { 1936 kvm_put_kvm(kvm); 1937 goto unlock_vcpu_destroy; 1938 } 1939 1940 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1941 smp_wmb(); 1942 atomic_inc(&kvm->online_vcpus); 1943 1944 mutex_unlock(&kvm->lock); 1945 kvm_arch_vcpu_postcreate(vcpu); 1946 return r; 1947 1948 unlock_vcpu_destroy: 1949 mutex_unlock(&kvm->lock); 1950 vcpu_destroy: 1951 kvm_arch_vcpu_destroy(vcpu); 1952 return r; 1953 } 1954 1955 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1956 { 1957 if (sigset) { 1958 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1959 vcpu->sigset_active = 1; 1960 vcpu->sigset = *sigset; 1961 } else 1962 vcpu->sigset_active = 0; 1963 return 0; 1964 } 1965 1966 static long kvm_vcpu_ioctl(struct file *filp, 1967 unsigned int ioctl, unsigned long arg) 1968 { 1969 struct kvm_vcpu *vcpu = filp->private_data; 1970 void __user *argp = (void __user *)arg; 1971 int r; 1972 struct kvm_fpu *fpu = NULL; 1973 struct kvm_sregs *kvm_sregs = NULL; 1974 1975 if (vcpu->kvm->mm != current->mm) 1976 return -EIO; 1977 1978 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1979 /* 1980 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1981 * so vcpu_load() would break it. 1982 */ 1983 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1984 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1985 #endif 1986 1987 1988 r = vcpu_load(vcpu); 1989 if (r) 1990 return r; 1991 switch (ioctl) { 1992 case KVM_RUN: 1993 r = -EINVAL; 1994 if (arg) 1995 goto out; 1996 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1997 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1998 break; 1999 case KVM_GET_REGS: { 2000 struct kvm_regs *kvm_regs; 2001 2002 r = -ENOMEM; 2003 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2004 if (!kvm_regs) 2005 goto out; 2006 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2007 if (r) 2008 goto out_free1; 2009 r = -EFAULT; 2010 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2011 goto out_free1; 2012 r = 0; 2013 out_free1: 2014 kfree(kvm_regs); 2015 break; 2016 } 2017 case KVM_SET_REGS: { 2018 struct kvm_regs *kvm_regs; 2019 2020 r = -ENOMEM; 2021 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2022 if (IS_ERR(kvm_regs)) { 2023 r = PTR_ERR(kvm_regs); 2024 goto out; 2025 } 2026 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2027 kfree(kvm_regs); 2028 break; 2029 } 2030 case KVM_GET_SREGS: { 2031 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2032 r = -ENOMEM; 2033 if (!kvm_sregs) 2034 goto out; 2035 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2036 if (r) 2037 goto out; 2038 r = -EFAULT; 2039 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2040 goto out; 2041 r = 0; 2042 break; 2043 } 2044 case KVM_SET_SREGS: { 2045 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2046 if (IS_ERR(kvm_sregs)) { 2047 r = PTR_ERR(kvm_sregs); 2048 kvm_sregs = NULL; 2049 goto out; 2050 } 2051 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2052 break; 2053 } 2054 case KVM_GET_MP_STATE: { 2055 struct kvm_mp_state mp_state; 2056 2057 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2058 if (r) 2059 goto out; 2060 r = -EFAULT; 2061 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2062 goto out; 2063 r = 0; 2064 break; 2065 } 2066 case KVM_SET_MP_STATE: { 2067 struct kvm_mp_state mp_state; 2068 2069 r = -EFAULT; 2070 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2071 goto out; 2072 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2073 break; 2074 } 2075 case KVM_TRANSLATE: { 2076 struct kvm_translation tr; 2077 2078 r = -EFAULT; 2079 if (copy_from_user(&tr, argp, sizeof tr)) 2080 goto out; 2081 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2082 if (r) 2083 goto out; 2084 r = -EFAULT; 2085 if (copy_to_user(argp, &tr, sizeof tr)) 2086 goto out; 2087 r = 0; 2088 break; 2089 } 2090 case KVM_SET_GUEST_DEBUG: { 2091 struct kvm_guest_debug dbg; 2092 2093 r = -EFAULT; 2094 if (copy_from_user(&dbg, argp, sizeof dbg)) 2095 goto out; 2096 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2097 break; 2098 } 2099 case KVM_SET_SIGNAL_MASK: { 2100 struct kvm_signal_mask __user *sigmask_arg = argp; 2101 struct kvm_signal_mask kvm_sigmask; 2102 sigset_t sigset, *p; 2103 2104 p = NULL; 2105 if (argp) { 2106 r = -EFAULT; 2107 if (copy_from_user(&kvm_sigmask, argp, 2108 sizeof kvm_sigmask)) 2109 goto out; 2110 r = -EINVAL; 2111 if (kvm_sigmask.len != sizeof sigset) 2112 goto out; 2113 r = -EFAULT; 2114 if (copy_from_user(&sigset, sigmask_arg->sigset, 2115 sizeof sigset)) 2116 goto out; 2117 p = &sigset; 2118 } 2119 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2120 break; 2121 } 2122 case KVM_GET_FPU: { 2123 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2124 r = -ENOMEM; 2125 if (!fpu) 2126 goto out; 2127 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2128 if (r) 2129 goto out; 2130 r = -EFAULT; 2131 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2132 goto out; 2133 r = 0; 2134 break; 2135 } 2136 case KVM_SET_FPU: { 2137 fpu = memdup_user(argp, sizeof(*fpu)); 2138 if (IS_ERR(fpu)) { 2139 r = PTR_ERR(fpu); 2140 fpu = NULL; 2141 goto out; 2142 } 2143 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2144 break; 2145 } 2146 default: 2147 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2148 } 2149 out: 2150 vcpu_put(vcpu); 2151 kfree(fpu); 2152 kfree(kvm_sregs); 2153 return r; 2154 } 2155 2156 #ifdef CONFIG_COMPAT 2157 static long kvm_vcpu_compat_ioctl(struct file *filp, 2158 unsigned int ioctl, unsigned long arg) 2159 { 2160 struct kvm_vcpu *vcpu = filp->private_data; 2161 void __user *argp = compat_ptr(arg); 2162 int r; 2163 2164 if (vcpu->kvm->mm != current->mm) 2165 return -EIO; 2166 2167 switch (ioctl) { 2168 case KVM_SET_SIGNAL_MASK: { 2169 struct kvm_signal_mask __user *sigmask_arg = argp; 2170 struct kvm_signal_mask kvm_sigmask; 2171 compat_sigset_t csigset; 2172 sigset_t sigset; 2173 2174 if (argp) { 2175 r = -EFAULT; 2176 if (copy_from_user(&kvm_sigmask, argp, 2177 sizeof kvm_sigmask)) 2178 goto out; 2179 r = -EINVAL; 2180 if (kvm_sigmask.len != sizeof csigset) 2181 goto out; 2182 r = -EFAULT; 2183 if (copy_from_user(&csigset, sigmask_arg->sigset, 2184 sizeof csigset)) 2185 goto out; 2186 sigset_from_compat(&sigset, &csigset); 2187 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2188 } else 2189 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2190 break; 2191 } 2192 default: 2193 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2194 } 2195 2196 out: 2197 return r; 2198 } 2199 #endif 2200 2201 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2202 int (*accessor)(struct kvm_device *dev, 2203 struct kvm_device_attr *attr), 2204 unsigned long arg) 2205 { 2206 struct kvm_device_attr attr; 2207 2208 if (!accessor) 2209 return -EPERM; 2210 2211 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2212 return -EFAULT; 2213 2214 return accessor(dev, &attr); 2215 } 2216 2217 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2218 unsigned long arg) 2219 { 2220 struct kvm_device *dev = filp->private_data; 2221 2222 switch (ioctl) { 2223 case KVM_SET_DEVICE_ATTR: 2224 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2225 case KVM_GET_DEVICE_ATTR: 2226 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2227 case KVM_HAS_DEVICE_ATTR: 2228 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2229 default: 2230 if (dev->ops->ioctl) 2231 return dev->ops->ioctl(dev, ioctl, arg); 2232 2233 return -ENOTTY; 2234 } 2235 } 2236 2237 static int kvm_device_release(struct inode *inode, struct file *filp) 2238 { 2239 struct kvm_device *dev = filp->private_data; 2240 struct kvm *kvm = dev->kvm; 2241 2242 kvm_put_kvm(kvm); 2243 return 0; 2244 } 2245 2246 static const struct file_operations kvm_device_fops = { 2247 .unlocked_ioctl = kvm_device_ioctl, 2248 #ifdef CONFIG_COMPAT 2249 .compat_ioctl = kvm_device_ioctl, 2250 #endif 2251 .release = kvm_device_release, 2252 }; 2253 2254 struct kvm_device *kvm_device_from_filp(struct file *filp) 2255 { 2256 if (filp->f_op != &kvm_device_fops) 2257 return NULL; 2258 2259 return filp->private_data; 2260 } 2261 2262 static int kvm_ioctl_create_device(struct kvm *kvm, 2263 struct kvm_create_device *cd) 2264 { 2265 struct kvm_device_ops *ops = NULL; 2266 struct kvm_device *dev; 2267 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2268 int ret; 2269 2270 switch (cd->type) { 2271 #ifdef CONFIG_KVM_MPIC 2272 case KVM_DEV_TYPE_FSL_MPIC_20: 2273 case KVM_DEV_TYPE_FSL_MPIC_42: 2274 ops = &kvm_mpic_ops; 2275 break; 2276 #endif 2277 #ifdef CONFIG_KVM_XICS 2278 case KVM_DEV_TYPE_XICS: 2279 ops = &kvm_xics_ops; 2280 break; 2281 #endif 2282 #ifdef CONFIG_KVM_VFIO 2283 case KVM_DEV_TYPE_VFIO: 2284 ops = &kvm_vfio_ops; 2285 break; 2286 #endif 2287 default: 2288 return -ENODEV; 2289 } 2290 2291 if (test) 2292 return 0; 2293 2294 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2295 if (!dev) 2296 return -ENOMEM; 2297 2298 dev->ops = ops; 2299 dev->kvm = kvm; 2300 2301 ret = ops->create(dev, cd->type); 2302 if (ret < 0) { 2303 kfree(dev); 2304 return ret; 2305 } 2306 2307 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2308 if (ret < 0) { 2309 ops->destroy(dev); 2310 return ret; 2311 } 2312 2313 list_add(&dev->vm_node, &kvm->devices); 2314 kvm_get_kvm(kvm); 2315 cd->fd = ret; 2316 return 0; 2317 } 2318 2319 static long kvm_vm_ioctl(struct file *filp, 2320 unsigned int ioctl, unsigned long arg) 2321 { 2322 struct kvm *kvm = filp->private_data; 2323 void __user *argp = (void __user *)arg; 2324 int r; 2325 2326 if (kvm->mm != current->mm) 2327 return -EIO; 2328 switch (ioctl) { 2329 case KVM_CREATE_VCPU: 2330 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2331 break; 2332 case KVM_SET_USER_MEMORY_REGION: { 2333 struct kvm_userspace_memory_region kvm_userspace_mem; 2334 2335 r = -EFAULT; 2336 if (copy_from_user(&kvm_userspace_mem, argp, 2337 sizeof kvm_userspace_mem)) 2338 goto out; 2339 2340 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2341 break; 2342 } 2343 case KVM_GET_DIRTY_LOG: { 2344 struct kvm_dirty_log log; 2345 2346 r = -EFAULT; 2347 if (copy_from_user(&log, argp, sizeof log)) 2348 goto out; 2349 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2350 break; 2351 } 2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2353 case KVM_REGISTER_COALESCED_MMIO: { 2354 struct kvm_coalesced_mmio_zone zone; 2355 r = -EFAULT; 2356 if (copy_from_user(&zone, argp, sizeof zone)) 2357 goto out; 2358 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2359 break; 2360 } 2361 case KVM_UNREGISTER_COALESCED_MMIO: { 2362 struct kvm_coalesced_mmio_zone zone; 2363 r = -EFAULT; 2364 if (copy_from_user(&zone, argp, sizeof zone)) 2365 goto out; 2366 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2367 break; 2368 } 2369 #endif 2370 case KVM_IRQFD: { 2371 struct kvm_irqfd data; 2372 2373 r = -EFAULT; 2374 if (copy_from_user(&data, argp, sizeof data)) 2375 goto out; 2376 r = kvm_irqfd(kvm, &data); 2377 break; 2378 } 2379 case KVM_IOEVENTFD: { 2380 struct kvm_ioeventfd data; 2381 2382 r = -EFAULT; 2383 if (copy_from_user(&data, argp, sizeof data)) 2384 goto out; 2385 r = kvm_ioeventfd(kvm, &data); 2386 break; 2387 } 2388 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2389 case KVM_SET_BOOT_CPU_ID: 2390 r = 0; 2391 mutex_lock(&kvm->lock); 2392 if (atomic_read(&kvm->online_vcpus) != 0) 2393 r = -EBUSY; 2394 else 2395 kvm->bsp_vcpu_id = arg; 2396 mutex_unlock(&kvm->lock); 2397 break; 2398 #endif 2399 #ifdef CONFIG_HAVE_KVM_MSI 2400 case KVM_SIGNAL_MSI: { 2401 struct kvm_msi msi; 2402 2403 r = -EFAULT; 2404 if (copy_from_user(&msi, argp, sizeof msi)) 2405 goto out; 2406 r = kvm_send_userspace_msi(kvm, &msi); 2407 break; 2408 } 2409 #endif 2410 #ifdef __KVM_HAVE_IRQ_LINE 2411 case KVM_IRQ_LINE_STATUS: 2412 case KVM_IRQ_LINE: { 2413 struct kvm_irq_level irq_event; 2414 2415 r = -EFAULT; 2416 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2417 goto out; 2418 2419 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2420 ioctl == KVM_IRQ_LINE_STATUS); 2421 if (r) 2422 goto out; 2423 2424 r = -EFAULT; 2425 if (ioctl == KVM_IRQ_LINE_STATUS) { 2426 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2427 goto out; 2428 } 2429 2430 r = 0; 2431 break; 2432 } 2433 #endif 2434 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2435 case KVM_SET_GSI_ROUTING: { 2436 struct kvm_irq_routing routing; 2437 struct kvm_irq_routing __user *urouting; 2438 struct kvm_irq_routing_entry *entries; 2439 2440 r = -EFAULT; 2441 if (copy_from_user(&routing, argp, sizeof(routing))) 2442 goto out; 2443 r = -EINVAL; 2444 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2445 goto out; 2446 if (routing.flags) 2447 goto out; 2448 r = -ENOMEM; 2449 entries = vmalloc(routing.nr * sizeof(*entries)); 2450 if (!entries) 2451 goto out; 2452 r = -EFAULT; 2453 urouting = argp; 2454 if (copy_from_user(entries, urouting->entries, 2455 routing.nr * sizeof(*entries))) 2456 goto out_free_irq_routing; 2457 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2458 routing.flags); 2459 out_free_irq_routing: 2460 vfree(entries); 2461 break; 2462 } 2463 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2464 case KVM_CREATE_DEVICE: { 2465 struct kvm_create_device cd; 2466 2467 r = -EFAULT; 2468 if (copy_from_user(&cd, argp, sizeof(cd))) 2469 goto out; 2470 2471 r = kvm_ioctl_create_device(kvm, &cd); 2472 if (r) 2473 goto out; 2474 2475 r = -EFAULT; 2476 if (copy_to_user(argp, &cd, sizeof(cd))) 2477 goto out; 2478 2479 r = 0; 2480 break; 2481 } 2482 default: 2483 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2484 if (r == -ENOTTY) 2485 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2486 } 2487 out: 2488 return r; 2489 } 2490 2491 #ifdef CONFIG_COMPAT 2492 struct compat_kvm_dirty_log { 2493 __u32 slot; 2494 __u32 padding1; 2495 union { 2496 compat_uptr_t dirty_bitmap; /* one bit per page */ 2497 __u64 padding2; 2498 }; 2499 }; 2500 2501 static long kvm_vm_compat_ioctl(struct file *filp, 2502 unsigned int ioctl, unsigned long arg) 2503 { 2504 struct kvm *kvm = filp->private_data; 2505 int r; 2506 2507 if (kvm->mm != current->mm) 2508 return -EIO; 2509 switch (ioctl) { 2510 case KVM_GET_DIRTY_LOG: { 2511 struct compat_kvm_dirty_log compat_log; 2512 struct kvm_dirty_log log; 2513 2514 r = -EFAULT; 2515 if (copy_from_user(&compat_log, (void __user *)arg, 2516 sizeof(compat_log))) 2517 goto out; 2518 log.slot = compat_log.slot; 2519 log.padding1 = compat_log.padding1; 2520 log.padding2 = compat_log.padding2; 2521 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2522 2523 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2524 break; 2525 } 2526 default: 2527 r = kvm_vm_ioctl(filp, ioctl, arg); 2528 } 2529 2530 out: 2531 return r; 2532 } 2533 #endif 2534 2535 static struct file_operations kvm_vm_fops = { 2536 .release = kvm_vm_release, 2537 .unlocked_ioctl = kvm_vm_ioctl, 2538 #ifdef CONFIG_COMPAT 2539 .compat_ioctl = kvm_vm_compat_ioctl, 2540 #endif 2541 .llseek = noop_llseek, 2542 }; 2543 2544 static int kvm_dev_ioctl_create_vm(unsigned long type) 2545 { 2546 int r; 2547 struct kvm *kvm; 2548 2549 kvm = kvm_create_vm(type); 2550 if (IS_ERR(kvm)) 2551 return PTR_ERR(kvm); 2552 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2553 r = kvm_coalesced_mmio_init(kvm); 2554 if (r < 0) { 2555 kvm_put_kvm(kvm); 2556 return r; 2557 } 2558 #endif 2559 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2560 if (r < 0) 2561 kvm_put_kvm(kvm); 2562 2563 return r; 2564 } 2565 2566 static long kvm_dev_ioctl_check_extension_generic(long arg) 2567 { 2568 switch (arg) { 2569 case KVM_CAP_USER_MEMORY: 2570 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2571 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2572 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2573 case KVM_CAP_SET_BOOT_CPU_ID: 2574 #endif 2575 case KVM_CAP_INTERNAL_ERROR_DATA: 2576 #ifdef CONFIG_HAVE_KVM_MSI 2577 case KVM_CAP_SIGNAL_MSI: 2578 #endif 2579 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2580 case KVM_CAP_IRQFD_RESAMPLE: 2581 #endif 2582 return 1; 2583 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2584 case KVM_CAP_IRQ_ROUTING: 2585 return KVM_MAX_IRQ_ROUTES; 2586 #endif 2587 default: 2588 break; 2589 } 2590 return kvm_dev_ioctl_check_extension(arg); 2591 } 2592 2593 static long kvm_dev_ioctl(struct file *filp, 2594 unsigned int ioctl, unsigned long arg) 2595 { 2596 long r = -EINVAL; 2597 2598 switch (ioctl) { 2599 case KVM_GET_API_VERSION: 2600 r = -EINVAL; 2601 if (arg) 2602 goto out; 2603 r = KVM_API_VERSION; 2604 break; 2605 case KVM_CREATE_VM: 2606 r = kvm_dev_ioctl_create_vm(arg); 2607 break; 2608 case KVM_CHECK_EXTENSION: 2609 r = kvm_dev_ioctl_check_extension_generic(arg); 2610 break; 2611 case KVM_GET_VCPU_MMAP_SIZE: 2612 r = -EINVAL; 2613 if (arg) 2614 goto out; 2615 r = PAGE_SIZE; /* struct kvm_run */ 2616 #ifdef CONFIG_X86 2617 r += PAGE_SIZE; /* pio data page */ 2618 #endif 2619 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2620 r += PAGE_SIZE; /* coalesced mmio ring page */ 2621 #endif 2622 break; 2623 case KVM_TRACE_ENABLE: 2624 case KVM_TRACE_PAUSE: 2625 case KVM_TRACE_DISABLE: 2626 r = -EOPNOTSUPP; 2627 break; 2628 default: 2629 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2630 } 2631 out: 2632 return r; 2633 } 2634 2635 static struct file_operations kvm_chardev_ops = { 2636 .unlocked_ioctl = kvm_dev_ioctl, 2637 .compat_ioctl = kvm_dev_ioctl, 2638 .llseek = noop_llseek, 2639 }; 2640 2641 static struct miscdevice kvm_dev = { 2642 KVM_MINOR, 2643 "kvm", 2644 &kvm_chardev_ops, 2645 }; 2646 2647 static void hardware_enable_nolock(void *junk) 2648 { 2649 int cpu = raw_smp_processor_id(); 2650 int r; 2651 2652 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2653 return; 2654 2655 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2656 2657 r = kvm_arch_hardware_enable(NULL); 2658 2659 if (r) { 2660 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2661 atomic_inc(&hardware_enable_failed); 2662 printk(KERN_INFO "kvm: enabling virtualization on " 2663 "CPU%d failed\n", cpu); 2664 } 2665 } 2666 2667 static void hardware_enable(void) 2668 { 2669 raw_spin_lock(&kvm_count_lock); 2670 if (kvm_usage_count) 2671 hardware_enable_nolock(NULL); 2672 raw_spin_unlock(&kvm_count_lock); 2673 } 2674 2675 static void hardware_disable_nolock(void *junk) 2676 { 2677 int cpu = raw_smp_processor_id(); 2678 2679 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2680 return; 2681 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2682 kvm_arch_hardware_disable(NULL); 2683 } 2684 2685 static void hardware_disable(void) 2686 { 2687 raw_spin_lock(&kvm_count_lock); 2688 if (kvm_usage_count) 2689 hardware_disable_nolock(NULL); 2690 raw_spin_unlock(&kvm_count_lock); 2691 } 2692 2693 static void hardware_disable_all_nolock(void) 2694 { 2695 BUG_ON(!kvm_usage_count); 2696 2697 kvm_usage_count--; 2698 if (!kvm_usage_count) 2699 on_each_cpu(hardware_disable_nolock, NULL, 1); 2700 } 2701 2702 static void hardware_disable_all(void) 2703 { 2704 raw_spin_lock(&kvm_count_lock); 2705 hardware_disable_all_nolock(); 2706 raw_spin_unlock(&kvm_count_lock); 2707 } 2708 2709 static int hardware_enable_all(void) 2710 { 2711 int r = 0; 2712 2713 raw_spin_lock(&kvm_count_lock); 2714 2715 kvm_usage_count++; 2716 if (kvm_usage_count == 1) { 2717 atomic_set(&hardware_enable_failed, 0); 2718 on_each_cpu(hardware_enable_nolock, NULL, 1); 2719 2720 if (atomic_read(&hardware_enable_failed)) { 2721 hardware_disable_all_nolock(); 2722 r = -EBUSY; 2723 } 2724 } 2725 2726 raw_spin_unlock(&kvm_count_lock); 2727 2728 return r; 2729 } 2730 2731 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2732 void *v) 2733 { 2734 int cpu = (long)v; 2735 2736 val &= ~CPU_TASKS_FROZEN; 2737 switch (val) { 2738 case CPU_DYING: 2739 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2740 cpu); 2741 hardware_disable(); 2742 break; 2743 case CPU_STARTING: 2744 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2745 cpu); 2746 hardware_enable(); 2747 break; 2748 } 2749 return NOTIFY_OK; 2750 } 2751 2752 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2753 void *v) 2754 { 2755 /* 2756 * Some (well, at least mine) BIOSes hang on reboot if 2757 * in vmx root mode. 2758 * 2759 * And Intel TXT required VMX off for all cpu when system shutdown. 2760 */ 2761 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2762 kvm_rebooting = true; 2763 on_each_cpu(hardware_disable_nolock, NULL, 1); 2764 return NOTIFY_OK; 2765 } 2766 2767 static struct notifier_block kvm_reboot_notifier = { 2768 .notifier_call = kvm_reboot, 2769 .priority = 0, 2770 }; 2771 2772 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2773 { 2774 int i; 2775 2776 for (i = 0; i < bus->dev_count; i++) { 2777 struct kvm_io_device *pos = bus->range[i].dev; 2778 2779 kvm_iodevice_destructor(pos); 2780 } 2781 kfree(bus); 2782 } 2783 2784 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2785 const struct kvm_io_range *r2) 2786 { 2787 if (r1->addr < r2->addr) 2788 return -1; 2789 if (r1->addr + r1->len > r2->addr + r2->len) 2790 return 1; 2791 return 0; 2792 } 2793 2794 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2795 { 2796 return kvm_io_bus_cmp(p1, p2); 2797 } 2798 2799 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2800 gpa_t addr, int len) 2801 { 2802 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2803 .addr = addr, 2804 .len = len, 2805 .dev = dev, 2806 }; 2807 2808 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2809 kvm_io_bus_sort_cmp, NULL); 2810 2811 return 0; 2812 } 2813 2814 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2815 gpa_t addr, int len) 2816 { 2817 struct kvm_io_range *range, key; 2818 int off; 2819 2820 key = (struct kvm_io_range) { 2821 .addr = addr, 2822 .len = len, 2823 }; 2824 2825 range = bsearch(&key, bus->range, bus->dev_count, 2826 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2827 if (range == NULL) 2828 return -ENOENT; 2829 2830 off = range - bus->range; 2831 2832 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2833 off--; 2834 2835 return off; 2836 } 2837 2838 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 2839 struct kvm_io_range *range, const void *val) 2840 { 2841 int idx; 2842 2843 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2844 if (idx < 0) 2845 return -EOPNOTSUPP; 2846 2847 while (idx < bus->dev_count && 2848 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2849 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 2850 range->len, val)) 2851 return idx; 2852 idx++; 2853 } 2854 2855 return -EOPNOTSUPP; 2856 } 2857 2858 /* kvm_io_bus_write - called under kvm->slots_lock */ 2859 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2860 int len, const void *val) 2861 { 2862 struct kvm_io_bus *bus; 2863 struct kvm_io_range range; 2864 int r; 2865 2866 range = (struct kvm_io_range) { 2867 .addr = addr, 2868 .len = len, 2869 }; 2870 2871 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2872 r = __kvm_io_bus_write(bus, &range, val); 2873 return r < 0 ? r : 0; 2874 } 2875 2876 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 2877 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2878 int len, const void *val, long cookie) 2879 { 2880 struct kvm_io_bus *bus; 2881 struct kvm_io_range range; 2882 2883 range = (struct kvm_io_range) { 2884 .addr = addr, 2885 .len = len, 2886 }; 2887 2888 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2889 2890 /* First try the device referenced by cookie. */ 2891 if ((cookie >= 0) && (cookie < bus->dev_count) && 2892 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2893 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 2894 val)) 2895 return cookie; 2896 2897 /* 2898 * cookie contained garbage; fall back to search and return the 2899 * correct cookie value. 2900 */ 2901 return __kvm_io_bus_write(bus, &range, val); 2902 } 2903 2904 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 2905 void *val) 2906 { 2907 int idx; 2908 2909 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2910 if (idx < 0) 2911 return -EOPNOTSUPP; 2912 2913 while (idx < bus->dev_count && 2914 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2915 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 2916 range->len, val)) 2917 return idx; 2918 idx++; 2919 } 2920 2921 return -EOPNOTSUPP; 2922 } 2923 2924 /* kvm_io_bus_read - called under kvm->slots_lock */ 2925 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2926 int len, void *val) 2927 { 2928 struct kvm_io_bus *bus; 2929 struct kvm_io_range range; 2930 int r; 2931 2932 range = (struct kvm_io_range) { 2933 .addr = addr, 2934 .len = len, 2935 }; 2936 2937 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2938 r = __kvm_io_bus_read(bus, &range, val); 2939 return r < 0 ? r : 0; 2940 } 2941 2942 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */ 2943 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2944 int len, void *val, long cookie) 2945 { 2946 struct kvm_io_bus *bus; 2947 struct kvm_io_range range; 2948 2949 range = (struct kvm_io_range) { 2950 .addr = addr, 2951 .len = len, 2952 }; 2953 2954 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2955 2956 /* First try the device referenced by cookie. */ 2957 if ((cookie >= 0) && (cookie < bus->dev_count) && 2958 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2959 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len, 2960 val)) 2961 return cookie; 2962 2963 /* 2964 * cookie contained garbage; fall back to search and return the 2965 * correct cookie value. 2966 */ 2967 return __kvm_io_bus_read(bus, &range, val); 2968 } 2969 2970 /* Caller must hold slots_lock. */ 2971 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2972 int len, struct kvm_io_device *dev) 2973 { 2974 struct kvm_io_bus *new_bus, *bus; 2975 2976 bus = kvm->buses[bus_idx]; 2977 /* exclude ioeventfd which is limited by maximum fd */ 2978 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 2979 return -ENOSPC; 2980 2981 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2982 sizeof(struct kvm_io_range)), GFP_KERNEL); 2983 if (!new_bus) 2984 return -ENOMEM; 2985 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2986 sizeof(struct kvm_io_range))); 2987 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2988 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2989 synchronize_srcu_expedited(&kvm->srcu); 2990 kfree(bus); 2991 2992 return 0; 2993 } 2994 2995 /* Caller must hold slots_lock. */ 2996 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2997 struct kvm_io_device *dev) 2998 { 2999 int i, r; 3000 struct kvm_io_bus *new_bus, *bus; 3001 3002 bus = kvm->buses[bus_idx]; 3003 r = -ENOENT; 3004 for (i = 0; i < bus->dev_count; i++) 3005 if (bus->range[i].dev == dev) { 3006 r = 0; 3007 break; 3008 } 3009 3010 if (r) 3011 return r; 3012 3013 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3014 sizeof(struct kvm_io_range)), GFP_KERNEL); 3015 if (!new_bus) 3016 return -ENOMEM; 3017 3018 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3019 new_bus->dev_count--; 3020 memcpy(new_bus->range + i, bus->range + i + 1, 3021 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3022 3023 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3024 synchronize_srcu_expedited(&kvm->srcu); 3025 kfree(bus); 3026 return r; 3027 } 3028 3029 static struct notifier_block kvm_cpu_notifier = { 3030 .notifier_call = kvm_cpu_hotplug, 3031 }; 3032 3033 static int vm_stat_get(void *_offset, u64 *val) 3034 { 3035 unsigned offset = (long)_offset; 3036 struct kvm *kvm; 3037 3038 *val = 0; 3039 spin_lock(&kvm_lock); 3040 list_for_each_entry(kvm, &vm_list, vm_list) 3041 *val += *(u32 *)((void *)kvm + offset); 3042 spin_unlock(&kvm_lock); 3043 return 0; 3044 } 3045 3046 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3047 3048 static int vcpu_stat_get(void *_offset, u64 *val) 3049 { 3050 unsigned offset = (long)_offset; 3051 struct kvm *kvm; 3052 struct kvm_vcpu *vcpu; 3053 int i; 3054 3055 *val = 0; 3056 spin_lock(&kvm_lock); 3057 list_for_each_entry(kvm, &vm_list, vm_list) 3058 kvm_for_each_vcpu(i, vcpu, kvm) 3059 *val += *(u32 *)((void *)vcpu + offset); 3060 3061 spin_unlock(&kvm_lock); 3062 return 0; 3063 } 3064 3065 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3066 3067 static const struct file_operations *stat_fops[] = { 3068 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3069 [KVM_STAT_VM] = &vm_stat_fops, 3070 }; 3071 3072 static int kvm_init_debug(void) 3073 { 3074 int r = -EEXIST; 3075 struct kvm_stats_debugfs_item *p; 3076 3077 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3078 if (kvm_debugfs_dir == NULL) 3079 goto out; 3080 3081 for (p = debugfs_entries; p->name; ++p) { 3082 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3083 (void *)(long)p->offset, 3084 stat_fops[p->kind]); 3085 if (p->dentry == NULL) 3086 goto out_dir; 3087 } 3088 3089 return 0; 3090 3091 out_dir: 3092 debugfs_remove_recursive(kvm_debugfs_dir); 3093 out: 3094 return r; 3095 } 3096 3097 static void kvm_exit_debug(void) 3098 { 3099 struct kvm_stats_debugfs_item *p; 3100 3101 for (p = debugfs_entries; p->name; ++p) 3102 debugfs_remove(p->dentry); 3103 debugfs_remove(kvm_debugfs_dir); 3104 } 3105 3106 static int kvm_suspend(void) 3107 { 3108 if (kvm_usage_count) 3109 hardware_disable_nolock(NULL); 3110 return 0; 3111 } 3112 3113 static void kvm_resume(void) 3114 { 3115 if (kvm_usage_count) { 3116 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3117 hardware_enable_nolock(NULL); 3118 } 3119 } 3120 3121 static struct syscore_ops kvm_syscore_ops = { 3122 .suspend = kvm_suspend, 3123 .resume = kvm_resume, 3124 }; 3125 3126 static inline 3127 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3128 { 3129 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3130 } 3131 3132 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3133 { 3134 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3135 if (vcpu->preempted) 3136 vcpu->preempted = false; 3137 3138 kvm_arch_vcpu_load(vcpu, cpu); 3139 } 3140 3141 static void kvm_sched_out(struct preempt_notifier *pn, 3142 struct task_struct *next) 3143 { 3144 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3145 3146 if (current->state == TASK_RUNNING) 3147 vcpu->preempted = true; 3148 kvm_arch_vcpu_put(vcpu); 3149 } 3150 3151 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3152 struct module *module) 3153 { 3154 int r; 3155 int cpu; 3156 3157 r = kvm_arch_init(opaque); 3158 if (r) 3159 goto out_fail; 3160 3161 /* 3162 * kvm_arch_init makes sure there's at most one caller 3163 * for architectures that support multiple implementations, 3164 * like intel and amd on x86. 3165 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3166 * conflicts in case kvm is already setup for another implementation. 3167 */ 3168 r = kvm_irqfd_init(); 3169 if (r) 3170 goto out_irqfd; 3171 3172 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3173 r = -ENOMEM; 3174 goto out_free_0; 3175 } 3176 3177 r = kvm_arch_hardware_setup(); 3178 if (r < 0) 3179 goto out_free_0a; 3180 3181 for_each_online_cpu(cpu) { 3182 smp_call_function_single(cpu, 3183 kvm_arch_check_processor_compat, 3184 &r, 1); 3185 if (r < 0) 3186 goto out_free_1; 3187 } 3188 3189 r = register_cpu_notifier(&kvm_cpu_notifier); 3190 if (r) 3191 goto out_free_2; 3192 register_reboot_notifier(&kvm_reboot_notifier); 3193 3194 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3195 if (!vcpu_align) 3196 vcpu_align = __alignof__(struct kvm_vcpu); 3197 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3198 0, NULL); 3199 if (!kvm_vcpu_cache) { 3200 r = -ENOMEM; 3201 goto out_free_3; 3202 } 3203 3204 r = kvm_async_pf_init(); 3205 if (r) 3206 goto out_free; 3207 3208 kvm_chardev_ops.owner = module; 3209 kvm_vm_fops.owner = module; 3210 kvm_vcpu_fops.owner = module; 3211 3212 r = misc_register(&kvm_dev); 3213 if (r) { 3214 printk(KERN_ERR "kvm: misc device register failed\n"); 3215 goto out_unreg; 3216 } 3217 3218 register_syscore_ops(&kvm_syscore_ops); 3219 3220 kvm_preempt_ops.sched_in = kvm_sched_in; 3221 kvm_preempt_ops.sched_out = kvm_sched_out; 3222 3223 r = kvm_init_debug(); 3224 if (r) { 3225 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3226 goto out_undebugfs; 3227 } 3228 3229 return 0; 3230 3231 out_undebugfs: 3232 unregister_syscore_ops(&kvm_syscore_ops); 3233 misc_deregister(&kvm_dev); 3234 out_unreg: 3235 kvm_async_pf_deinit(); 3236 out_free: 3237 kmem_cache_destroy(kvm_vcpu_cache); 3238 out_free_3: 3239 unregister_reboot_notifier(&kvm_reboot_notifier); 3240 unregister_cpu_notifier(&kvm_cpu_notifier); 3241 out_free_2: 3242 out_free_1: 3243 kvm_arch_hardware_unsetup(); 3244 out_free_0a: 3245 free_cpumask_var(cpus_hardware_enabled); 3246 out_free_0: 3247 kvm_irqfd_exit(); 3248 out_irqfd: 3249 kvm_arch_exit(); 3250 out_fail: 3251 return r; 3252 } 3253 EXPORT_SYMBOL_GPL(kvm_init); 3254 3255 void kvm_exit(void) 3256 { 3257 kvm_exit_debug(); 3258 misc_deregister(&kvm_dev); 3259 kmem_cache_destroy(kvm_vcpu_cache); 3260 kvm_async_pf_deinit(); 3261 unregister_syscore_ops(&kvm_syscore_ops); 3262 unregister_reboot_notifier(&kvm_reboot_notifier); 3263 unregister_cpu_notifier(&kvm_cpu_notifier); 3264 on_each_cpu(hardware_disable_nolock, NULL, 1); 3265 kvm_arch_hardware_unsetup(); 3266 kvm_arch_exit(); 3267 kvm_irqfd_exit(); 3268 free_cpumask_var(cpus_hardware_enabled); 3269 } 3270 EXPORT_SYMBOL_GPL(kvm_exit); 3271