1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 bool kvm_is_mmio_pfn(pfn_t pfn) 104 { 105 if (pfn_valid(pfn)) 106 return PageReserved(pfn_to_page(pfn)); 107 108 return true; 109 } 110 111 /* 112 * Switches to specified vcpu, until a matching vcpu_put() 113 */ 114 int vcpu_load(struct kvm_vcpu *vcpu) 115 { 116 int cpu; 117 118 if (mutex_lock_killable(&vcpu->mutex)) 119 return -EINTR; 120 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 121 /* The thread running this VCPU changed. */ 122 struct pid *oldpid = vcpu->pid; 123 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 124 rcu_assign_pointer(vcpu->pid, newpid); 125 synchronize_rcu(); 126 put_pid(oldpid); 127 } 128 cpu = get_cpu(); 129 preempt_notifier_register(&vcpu->preempt_notifier); 130 kvm_arch_vcpu_load(vcpu, cpu); 131 put_cpu(); 132 return 0; 133 } 134 135 void vcpu_put(struct kvm_vcpu *vcpu) 136 { 137 preempt_disable(); 138 kvm_arch_vcpu_put(vcpu); 139 preempt_notifier_unregister(&vcpu->preempt_notifier); 140 preempt_enable(); 141 mutex_unlock(&vcpu->mutex); 142 } 143 144 static void ack_flush(void *_completed) 145 { 146 } 147 148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 149 { 150 int i, cpu, me; 151 cpumask_var_t cpus; 152 bool called = true; 153 struct kvm_vcpu *vcpu; 154 155 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 156 157 me = get_cpu(); 158 kvm_for_each_vcpu(i, vcpu, kvm) { 159 kvm_make_request(req, vcpu); 160 cpu = vcpu->cpu; 161 162 /* Set ->requests bit before we read ->mode */ 163 smp_mb(); 164 165 if (cpus != NULL && cpu != -1 && cpu != me && 166 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 167 cpumask_set_cpu(cpu, cpus); 168 } 169 if (unlikely(cpus == NULL)) 170 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 171 else if (!cpumask_empty(cpus)) 172 smp_call_function_many(cpus, ack_flush, NULL, 1); 173 else 174 called = false; 175 put_cpu(); 176 free_cpumask_var(cpus); 177 return called; 178 } 179 180 void kvm_flush_remote_tlbs(struct kvm *kvm) 181 { 182 long dirty_count = kvm->tlbs_dirty; 183 184 smp_mb(); 185 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 186 ++kvm->stat.remote_tlb_flush; 187 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 188 } 189 190 void kvm_reload_remote_mmus(struct kvm *kvm) 191 { 192 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 193 } 194 195 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 196 { 197 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 198 } 199 200 void kvm_make_scan_ioapic_request(struct kvm *kvm) 201 { 202 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 203 } 204 205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 206 { 207 struct page *page; 208 int r; 209 210 mutex_init(&vcpu->mutex); 211 vcpu->cpu = -1; 212 vcpu->kvm = kvm; 213 vcpu->vcpu_id = id; 214 vcpu->pid = NULL; 215 init_waitqueue_head(&vcpu->wq); 216 kvm_async_pf_vcpu_init(vcpu); 217 218 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 219 if (!page) { 220 r = -ENOMEM; 221 goto fail; 222 } 223 vcpu->run = page_address(page); 224 225 kvm_vcpu_set_in_spin_loop(vcpu, false); 226 kvm_vcpu_set_dy_eligible(vcpu, false); 227 vcpu->preempted = false; 228 229 r = kvm_arch_vcpu_init(vcpu); 230 if (r < 0) 231 goto fail_free_run; 232 return 0; 233 234 fail_free_run: 235 free_page((unsigned long)vcpu->run); 236 fail: 237 return r; 238 } 239 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 240 241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 242 { 243 put_pid(vcpu->pid); 244 kvm_arch_vcpu_uninit(vcpu); 245 free_page((unsigned long)vcpu->run); 246 } 247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 248 249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 251 { 252 return container_of(mn, struct kvm, mmu_notifier); 253 } 254 255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 256 struct mm_struct *mm, 257 unsigned long address) 258 { 259 struct kvm *kvm = mmu_notifier_to_kvm(mn); 260 int need_tlb_flush, idx; 261 262 /* 263 * When ->invalidate_page runs, the linux pte has been zapped 264 * already but the page is still allocated until 265 * ->invalidate_page returns. So if we increase the sequence 266 * here the kvm page fault will notice if the spte can't be 267 * established because the page is going to be freed. If 268 * instead the kvm page fault establishes the spte before 269 * ->invalidate_page runs, kvm_unmap_hva will release it 270 * before returning. 271 * 272 * The sequence increase only need to be seen at spin_unlock 273 * time, and not at spin_lock time. 274 * 275 * Increasing the sequence after the spin_unlock would be 276 * unsafe because the kvm page fault could then establish the 277 * pte after kvm_unmap_hva returned, without noticing the page 278 * is going to be freed. 279 */ 280 idx = srcu_read_lock(&kvm->srcu); 281 spin_lock(&kvm->mmu_lock); 282 283 kvm->mmu_notifier_seq++; 284 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 285 /* we've to flush the tlb before the pages can be freed */ 286 if (need_tlb_flush) 287 kvm_flush_remote_tlbs(kvm); 288 289 spin_unlock(&kvm->mmu_lock); 290 srcu_read_unlock(&kvm->srcu, idx); 291 } 292 293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 294 struct mm_struct *mm, 295 unsigned long address, 296 pte_t pte) 297 { 298 struct kvm *kvm = mmu_notifier_to_kvm(mn); 299 int idx; 300 301 idx = srcu_read_lock(&kvm->srcu); 302 spin_lock(&kvm->mmu_lock); 303 kvm->mmu_notifier_seq++; 304 kvm_set_spte_hva(kvm, address, pte); 305 spin_unlock(&kvm->mmu_lock); 306 srcu_read_unlock(&kvm->srcu, idx); 307 } 308 309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 310 struct mm_struct *mm, 311 unsigned long start, 312 unsigned long end) 313 { 314 struct kvm *kvm = mmu_notifier_to_kvm(mn); 315 int need_tlb_flush = 0, idx; 316 317 idx = srcu_read_lock(&kvm->srcu); 318 spin_lock(&kvm->mmu_lock); 319 /* 320 * The count increase must become visible at unlock time as no 321 * spte can be established without taking the mmu_lock and 322 * count is also read inside the mmu_lock critical section. 323 */ 324 kvm->mmu_notifier_count++; 325 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 326 need_tlb_flush |= kvm->tlbs_dirty; 327 /* we've to flush the tlb before the pages can be freed */ 328 if (need_tlb_flush) 329 kvm_flush_remote_tlbs(kvm); 330 331 spin_unlock(&kvm->mmu_lock); 332 srcu_read_unlock(&kvm->srcu, idx); 333 } 334 335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 336 struct mm_struct *mm, 337 unsigned long start, 338 unsigned long end) 339 { 340 struct kvm *kvm = mmu_notifier_to_kvm(mn); 341 342 spin_lock(&kvm->mmu_lock); 343 /* 344 * This sequence increase will notify the kvm page fault that 345 * the page that is going to be mapped in the spte could have 346 * been freed. 347 */ 348 kvm->mmu_notifier_seq++; 349 smp_wmb(); 350 /* 351 * The above sequence increase must be visible before the 352 * below count decrease, which is ensured by the smp_wmb above 353 * in conjunction with the smp_rmb in mmu_notifier_retry(). 354 */ 355 kvm->mmu_notifier_count--; 356 spin_unlock(&kvm->mmu_lock); 357 358 BUG_ON(kvm->mmu_notifier_count < 0); 359 } 360 361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 362 struct mm_struct *mm, 363 unsigned long address) 364 { 365 struct kvm *kvm = mmu_notifier_to_kvm(mn); 366 int young, idx; 367 368 idx = srcu_read_lock(&kvm->srcu); 369 spin_lock(&kvm->mmu_lock); 370 371 young = kvm_age_hva(kvm, address); 372 if (young) 373 kvm_flush_remote_tlbs(kvm); 374 375 spin_unlock(&kvm->mmu_lock); 376 srcu_read_unlock(&kvm->srcu, idx); 377 378 return young; 379 } 380 381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 382 struct mm_struct *mm, 383 unsigned long address) 384 { 385 struct kvm *kvm = mmu_notifier_to_kvm(mn); 386 int young, idx; 387 388 idx = srcu_read_lock(&kvm->srcu); 389 spin_lock(&kvm->mmu_lock); 390 young = kvm_test_age_hva(kvm, address); 391 spin_unlock(&kvm->mmu_lock); 392 srcu_read_unlock(&kvm->srcu, idx); 393 394 return young; 395 } 396 397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 398 struct mm_struct *mm) 399 { 400 struct kvm *kvm = mmu_notifier_to_kvm(mn); 401 int idx; 402 403 idx = srcu_read_lock(&kvm->srcu); 404 kvm_arch_flush_shadow_all(kvm); 405 srcu_read_unlock(&kvm->srcu, idx); 406 } 407 408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 409 .invalidate_page = kvm_mmu_notifier_invalidate_page, 410 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 411 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 412 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 413 .test_young = kvm_mmu_notifier_test_young, 414 .change_pte = kvm_mmu_notifier_change_pte, 415 .release = kvm_mmu_notifier_release, 416 }; 417 418 static int kvm_init_mmu_notifier(struct kvm *kvm) 419 { 420 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 421 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 422 } 423 424 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 425 426 static int kvm_init_mmu_notifier(struct kvm *kvm) 427 { 428 return 0; 429 } 430 431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 432 433 static void kvm_init_memslots_id(struct kvm *kvm) 434 { 435 int i; 436 struct kvm_memslots *slots = kvm->memslots; 437 438 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 439 slots->id_to_index[i] = slots->memslots[i].id = i; 440 } 441 442 static struct kvm *kvm_create_vm(unsigned long type) 443 { 444 int r, i; 445 struct kvm *kvm = kvm_arch_alloc_vm(); 446 447 if (!kvm) 448 return ERR_PTR(-ENOMEM); 449 450 r = kvm_arch_init_vm(kvm, type); 451 if (r) 452 goto out_err_nodisable; 453 454 r = hardware_enable_all(); 455 if (r) 456 goto out_err_nodisable; 457 458 #ifdef CONFIG_HAVE_KVM_IRQCHIP 459 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 460 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 461 #endif 462 463 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 464 465 r = -ENOMEM; 466 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 467 if (!kvm->memslots) 468 goto out_err_nosrcu; 469 kvm_init_memslots_id(kvm); 470 if (init_srcu_struct(&kvm->srcu)) 471 goto out_err_nosrcu; 472 for (i = 0; i < KVM_NR_BUSES; i++) { 473 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 474 GFP_KERNEL); 475 if (!kvm->buses[i]) 476 goto out_err; 477 } 478 479 spin_lock_init(&kvm->mmu_lock); 480 kvm->mm = current->mm; 481 atomic_inc(&kvm->mm->mm_count); 482 kvm_eventfd_init(kvm); 483 mutex_init(&kvm->lock); 484 mutex_init(&kvm->irq_lock); 485 mutex_init(&kvm->slots_lock); 486 atomic_set(&kvm->users_count, 1); 487 INIT_LIST_HEAD(&kvm->devices); 488 489 r = kvm_init_mmu_notifier(kvm); 490 if (r) 491 goto out_err; 492 493 raw_spin_lock(&kvm_lock); 494 list_add(&kvm->vm_list, &vm_list); 495 raw_spin_unlock(&kvm_lock); 496 497 return kvm; 498 499 out_err: 500 cleanup_srcu_struct(&kvm->srcu); 501 out_err_nosrcu: 502 hardware_disable_all(); 503 out_err_nodisable: 504 for (i = 0; i < KVM_NR_BUSES; i++) 505 kfree(kvm->buses[i]); 506 kfree(kvm->memslots); 507 kvm_arch_free_vm(kvm); 508 return ERR_PTR(r); 509 } 510 511 /* 512 * Avoid using vmalloc for a small buffer. 513 * Should not be used when the size is statically known. 514 */ 515 void *kvm_kvzalloc(unsigned long size) 516 { 517 if (size > PAGE_SIZE) 518 return vzalloc(size); 519 else 520 return kzalloc(size, GFP_KERNEL); 521 } 522 523 void kvm_kvfree(const void *addr) 524 { 525 if (is_vmalloc_addr(addr)) 526 vfree(addr); 527 else 528 kfree(addr); 529 } 530 531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 532 { 533 if (!memslot->dirty_bitmap) 534 return; 535 536 kvm_kvfree(memslot->dirty_bitmap); 537 memslot->dirty_bitmap = NULL; 538 } 539 540 /* 541 * Free any memory in @free but not in @dont. 542 */ 543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 544 struct kvm_memory_slot *dont) 545 { 546 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 547 kvm_destroy_dirty_bitmap(free); 548 549 kvm_arch_free_memslot(free, dont); 550 551 free->npages = 0; 552 } 553 554 void kvm_free_physmem(struct kvm *kvm) 555 { 556 struct kvm_memslots *slots = kvm->memslots; 557 struct kvm_memory_slot *memslot; 558 559 kvm_for_each_memslot(memslot, slots) 560 kvm_free_physmem_slot(memslot, NULL); 561 562 kfree(kvm->memslots); 563 } 564 565 static void kvm_destroy_devices(struct kvm *kvm) 566 { 567 struct list_head *node, *tmp; 568 569 list_for_each_safe(node, tmp, &kvm->devices) { 570 struct kvm_device *dev = 571 list_entry(node, struct kvm_device, vm_node); 572 573 list_del(node); 574 dev->ops->destroy(dev); 575 } 576 } 577 578 static void kvm_destroy_vm(struct kvm *kvm) 579 { 580 int i; 581 struct mm_struct *mm = kvm->mm; 582 583 kvm_arch_sync_events(kvm); 584 raw_spin_lock(&kvm_lock); 585 list_del(&kvm->vm_list); 586 raw_spin_unlock(&kvm_lock); 587 kvm_free_irq_routing(kvm); 588 for (i = 0; i < KVM_NR_BUSES; i++) 589 kvm_io_bus_destroy(kvm->buses[i]); 590 kvm_coalesced_mmio_free(kvm); 591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 592 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 593 #else 594 kvm_arch_flush_shadow_all(kvm); 595 #endif 596 kvm_arch_destroy_vm(kvm); 597 kvm_destroy_devices(kvm); 598 kvm_free_physmem(kvm); 599 cleanup_srcu_struct(&kvm->srcu); 600 kvm_arch_free_vm(kvm); 601 hardware_disable_all(); 602 mmdrop(mm); 603 } 604 605 void kvm_get_kvm(struct kvm *kvm) 606 { 607 atomic_inc(&kvm->users_count); 608 } 609 EXPORT_SYMBOL_GPL(kvm_get_kvm); 610 611 void kvm_put_kvm(struct kvm *kvm) 612 { 613 if (atomic_dec_and_test(&kvm->users_count)) 614 kvm_destroy_vm(kvm); 615 } 616 EXPORT_SYMBOL_GPL(kvm_put_kvm); 617 618 619 static int kvm_vm_release(struct inode *inode, struct file *filp) 620 { 621 struct kvm *kvm = filp->private_data; 622 623 kvm_irqfd_release(kvm); 624 625 kvm_put_kvm(kvm); 626 return 0; 627 } 628 629 /* 630 * Allocation size is twice as large as the actual dirty bitmap size. 631 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 632 */ 633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 634 { 635 #ifndef CONFIG_S390 636 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 637 638 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 639 if (!memslot->dirty_bitmap) 640 return -ENOMEM; 641 642 #endif /* !CONFIG_S390 */ 643 return 0; 644 } 645 646 static int cmp_memslot(const void *slot1, const void *slot2) 647 { 648 struct kvm_memory_slot *s1, *s2; 649 650 s1 = (struct kvm_memory_slot *)slot1; 651 s2 = (struct kvm_memory_slot *)slot2; 652 653 if (s1->npages < s2->npages) 654 return 1; 655 if (s1->npages > s2->npages) 656 return -1; 657 658 return 0; 659 } 660 661 /* 662 * Sort the memslots base on its size, so the larger slots 663 * will get better fit. 664 */ 665 static void sort_memslots(struct kvm_memslots *slots) 666 { 667 int i; 668 669 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 670 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 671 672 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 673 slots->id_to_index[slots->memslots[i].id] = i; 674 } 675 676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, 677 u64 last_generation) 678 { 679 if (new) { 680 int id = new->id; 681 struct kvm_memory_slot *old = id_to_memslot(slots, id); 682 unsigned long npages = old->npages; 683 684 *old = *new; 685 if (new->npages != npages) 686 sort_memslots(slots); 687 } 688 689 slots->generation = last_generation + 1; 690 } 691 692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 693 { 694 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 695 696 #ifdef KVM_CAP_READONLY_MEM 697 valid_flags |= KVM_MEM_READONLY; 698 #endif 699 700 if (mem->flags & ~valid_flags) 701 return -EINVAL; 702 703 return 0; 704 } 705 706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 707 struct kvm_memslots *slots, struct kvm_memory_slot *new) 708 { 709 struct kvm_memslots *old_memslots = kvm->memslots; 710 711 update_memslots(slots, new, kvm->memslots->generation); 712 rcu_assign_pointer(kvm->memslots, slots); 713 synchronize_srcu_expedited(&kvm->srcu); 714 715 kvm_arch_memslots_updated(kvm); 716 717 return old_memslots; 718 } 719 720 /* 721 * Allocate some memory and give it an address in the guest physical address 722 * space. 723 * 724 * Discontiguous memory is allowed, mostly for framebuffers. 725 * 726 * Must be called holding mmap_sem for write. 727 */ 728 int __kvm_set_memory_region(struct kvm *kvm, 729 struct kvm_userspace_memory_region *mem) 730 { 731 int r; 732 gfn_t base_gfn; 733 unsigned long npages; 734 struct kvm_memory_slot *slot; 735 struct kvm_memory_slot old, new; 736 struct kvm_memslots *slots = NULL, *old_memslots; 737 enum kvm_mr_change change; 738 739 r = check_memory_region_flags(mem); 740 if (r) 741 goto out; 742 743 r = -EINVAL; 744 /* General sanity checks */ 745 if (mem->memory_size & (PAGE_SIZE - 1)) 746 goto out; 747 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 748 goto out; 749 /* We can read the guest memory with __xxx_user() later on. */ 750 if ((mem->slot < KVM_USER_MEM_SLOTS) && 751 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 752 !access_ok(VERIFY_WRITE, 753 (void __user *)(unsigned long)mem->userspace_addr, 754 mem->memory_size))) 755 goto out; 756 if (mem->slot >= KVM_MEM_SLOTS_NUM) 757 goto out; 758 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 759 goto out; 760 761 slot = id_to_memslot(kvm->memslots, mem->slot); 762 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 763 npages = mem->memory_size >> PAGE_SHIFT; 764 765 r = -EINVAL; 766 if (npages > KVM_MEM_MAX_NR_PAGES) 767 goto out; 768 769 if (!npages) 770 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 771 772 new = old = *slot; 773 774 new.id = mem->slot; 775 new.base_gfn = base_gfn; 776 new.npages = npages; 777 new.flags = mem->flags; 778 779 r = -EINVAL; 780 if (npages) { 781 if (!old.npages) 782 change = KVM_MR_CREATE; 783 else { /* Modify an existing slot. */ 784 if ((mem->userspace_addr != old.userspace_addr) || 785 (npages != old.npages) || 786 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 787 goto out; 788 789 if (base_gfn != old.base_gfn) 790 change = KVM_MR_MOVE; 791 else if (new.flags != old.flags) 792 change = KVM_MR_FLAGS_ONLY; 793 else { /* Nothing to change. */ 794 r = 0; 795 goto out; 796 } 797 } 798 } else if (old.npages) { 799 change = KVM_MR_DELETE; 800 } else /* Modify a non-existent slot: disallowed. */ 801 goto out; 802 803 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 804 /* Check for overlaps */ 805 r = -EEXIST; 806 kvm_for_each_memslot(slot, kvm->memslots) { 807 if ((slot->id >= KVM_USER_MEM_SLOTS) || 808 (slot->id == mem->slot)) 809 continue; 810 if (!((base_gfn + npages <= slot->base_gfn) || 811 (base_gfn >= slot->base_gfn + slot->npages))) 812 goto out; 813 } 814 } 815 816 /* Free page dirty bitmap if unneeded */ 817 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 818 new.dirty_bitmap = NULL; 819 820 r = -ENOMEM; 821 if (change == KVM_MR_CREATE) { 822 new.userspace_addr = mem->userspace_addr; 823 824 if (kvm_arch_create_memslot(&new, npages)) 825 goto out_free; 826 } 827 828 /* Allocate page dirty bitmap if needed */ 829 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 830 if (kvm_create_dirty_bitmap(&new) < 0) 831 goto out_free; 832 } 833 834 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 835 r = -ENOMEM; 836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 837 GFP_KERNEL); 838 if (!slots) 839 goto out_free; 840 slot = id_to_memslot(slots, mem->slot); 841 slot->flags |= KVM_MEMSLOT_INVALID; 842 843 old_memslots = install_new_memslots(kvm, slots, NULL); 844 845 /* slot was deleted or moved, clear iommu mapping */ 846 kvm_iommu_unmap_pages(kvm, &old); 847 /* From this point no new shadow pages pointing to a deleted, 848 * or moved, memslot will be created. 849 * 850 * validation of sp->gfn happens in: 851 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 852 * - kvm_is_visible_gfn (mmu_check_roots) 853 */ 854 kvm_arch_flush_shadow_memslot(kvm, slot); 855 slots = old_memslots; 856 } 857 858 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 859 if (r) 860 goto out_slots; 861 862 r = -ENOMEM; 863 /* 864 * We can re-use the old_memslots from above, the only difference 865 * from the currently installed memslots is the invalid flag. This 866 * will get overwritten by update_memslots anyway. 867 */ 868 if (!slots) { 869 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 870 GFP_KERNEL); 871 if (!slots) 872 goto out_free; 873 } 874 875 /* 876 * IOMMU mapping: New slots need to be mapped. Old slots need to be 877 * un-mapped and re-mapped if their base changes. Since base change 878 * unmapping is handled above with slot deletion, mapping alone is 879 * needed here. Anything else the iommu might care about for existing 880 * slots (size changes, userspace addr changes and read-only flag 881 * changes) is disallowed above, so any other attribute changes getting 882 * here can be skipped. 883 */ 884 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 885 r = kvm_iommu_map_pages(kvm, &new); 886 if (r) 887 goto out_slots; 888 } 889 890 /* actual memory is freed via old in kvm_free_physmem_slot below */ 891 if (change == KVM_MR_DELETE) { 892 new.dirty_bitmap = NULL; 893 memset(&new.arch, 0, sizeof(new.arch)); 894 } 895 896 old_memslots = install_new_memslots(kvm, slots, &new); 897 898 kvm_arch_commit_memory_region(kvm, mem, &old, change); 899 900 kvm_free_physmem_slot(&old, &new); 901 kfree(old_memslots); 902 903 return 0; 904 905 out_slots: 906 kfree(slots); 907 out_free: 908 kvm_free_physmem_slot(&new, &old); 909 out: 910 return r; 911 } 912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 913 914 int kvm_set_memory_region(struct kvm *kvm, 915 struct kvm_userspace_memory_region *mem) 916 { 917 int r; 918 919 mutex_lock(&kvm->slots_lock); 920 r = __kvm_set_memory_region(kvm, mem); 921 mutex_unlock(&kvm->slots_lock); 922 return r; 923 } 924 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 925 926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 927 struct kvm_userspace_memory_region *mem) 928 { 929 if (mem->slot >= KVM_USER_MEM_SLOTS) 930 return -EINVAL; 931 return kvm_set_memory_region(kvm, mem); 932 } 933 934 int kvm_get_dirty_log(struct kvm *kvm, 935 struct kvm_dirty_log *log, int *is_dirty) 936 { 937 struct kvm_memory_slot *memslot; 938 int r, i; 939 unsigned long n; 940 unsigned long any = 0; 941 942 r = -EINVAL; 943 if (log->slot >= KVM_USER_MEM_SLOTS) 944 goto out; 945 946 memslot = id_to_memslot(kvm->memslots, log->slot); 947 r = -ENOENT; 948 if (!memslot->dirty_bitmap) 949 goto out; 950 951 n = kvm_dirty_bitmap_bytes(memslot); 952 953 for (i = 0; !any && i < n/sizeof(long); ++i) 954 any = memslot->dirty_bitmap[i]; 955 956 r = -EFAULT; 957 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 958 goto out; 959 960 if (any) 961 *is_dirty = 1; 962 963 r = 0; 964 out: 965 return r; 966 } 967 968 bool kvm_largepages_enabled(void) 969 { 970 return largepages_enabled; 971 } 972 973 void kvm_disable_largepages(void) 974 { 975 largepages_enabled = false; 976 } 977 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 978 979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 980 { 981 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 982 } 983 EXPORT_SYMBOL_GPL(gfn_to_memslot); 984 985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 986 { 987 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 988 989 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 990 memslot->flags & KVM_MEMSLOT_INVALID) 991 return 0; 992 993 return 1; 994 } 995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 996 997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 998 { 999 struct vm_area_struct *vma; 1000 unsigned long addr, size; 1001 1002 size = PAGE_SIZE; 1003 1004 addr = gfn_to_hva(kvm, gfn); 1005 if (kvm_is_error_hva(addr)) 1006 return PAGE_SIZE; 1007 1008 down_read(¤t->mm->mmap_sem); 1009 vma = find_vma(current->mm, addr); 1010 if (!vma) 1011 goto out; 1012 1013 size = vma_kernel_pagesize(vma); 1014 1015 out: 1016 up_read(¤t->mm->mmap_sem); 1017 1018 return size; 1019 } 1020 1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1022 { 1023 return slot->flags & KVM_MEM_READONLY; 1024 } 1025 1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1027 gfn_t *nr_pages, bool write) 1028 { 1029 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1030 return KVM_HVA_ERR_BAD; 1031 1032 if (memslot_is_readonly(slot) && write) 1033 return KVM_HVA_ERR_RO_BAD; 1034 1035 if (nr_pages) 1036 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1037 1038 return __gfn_to_hva_memslot(slot, gfn); 1039 } 1040 1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1042 gfn_t *nr_pages) 1043 { 1044 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1045 } 1046 1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1048 gfn_t gfn) 1049 { 1050 return gfn_to_hva_many(slot, gfn, NULL); 1051 } 1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1053 1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1055 { 1056 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1057 } 1058 EXPORT_SYMBOL_GPL(gfn_to_hva); 1059 1060 /* 1061 * The hva returned by this function is only allowed to be read. 1062 * It should pair with kvm_read_hva() or kvm_read_hva_atomic(). 1063 */ 1064 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn) 1065 { 1066 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); 1067 } 1068 1069 static int kvm_read_hva(void *data, void __user *hva, int len) 1070 { 1071 return __copy_from_user(data, hva, len); 1072 } 1073 1074 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1075 { 1076 return __copy_from_user_inatomic(data, hva, len); 1077 } 1078 1079 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1080 unsigned long start, int write, struct page **page) 1081 { 1082 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1083 1084 if (write) 1085 flags |= FOLL_WRITE; 1086 1087 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1088 } 1089 1090 static inline int check_user_page_hwpoison(unsigned long addr) 1091 { 1092 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1093 1094 rc = __get_user_pages(current, current->mm, addr, 1, 1095 flags, NULL, NULL, NULL); 1096 return rc == -EHWPOISON; 1097 } 1098 1099 /* 1100 * The atomic path to get the writable pfn which will be stored in @pfn, 1101 * true indicates success, otherwise false is returned. 1102 */ 1103 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1104 bool write_fault, bool *writable, pfn_t *pfn) 1105 { 1106 struct page *page[1]; 1107 int npages; 1108 1109 if (!(async || atomic)) 1110 return false; 1111 1112 /* 1113 * Fast pin a writable pfn only if it is a write fault request 1114 * or the caller allows to map a writable pfn for a read fault 1115 * request. 1116 */ 1117 if (!(write_fault || writable)) 1118 return false; 1119 1120 npages = __get_user_pages_fast(addr, 1, 1, page); 1121 if (npages == 1) { 1122 *pfn = page_to_pfn(page[0]); 1123 1124 if (writable) 1125 *writable = true; 1126 return true; 1127 } 1128 1129 return false; 1130 } 1131 1132 /* 1133 * The slow path to get the pfn of the specified host virtual address, 1134 * 1 indicates success, -errno is returned if error is detected. 1135 */ 1136 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1137 bool *writable, pfn_t *pfn) 1138 { 1139 struct page *page[1]; 1140 int npages = 0; 1141 1142 might_sleep(); 1143 1144 if (writable) 1145 *writable = write_fault; 1146 1147 if (async) { 1148 down_read(¤t->mm->mmap_sem); 1149 npages = get_user_page_nowait(current, current->mm, 1150 addr, write_fault, page); 1151 up_read(¤t->mm->mmap_sem); 1152 } else 1153 npages = get_user_pages_fast(addr, 1, write_fault, 1154 page); 1155 if (npages != 1) 1156 return npages; 1157 1158 /* map read fault as writable if possible */ 1159 if (unlikely(!write_fault) && writable) { 1160 struct page *wpage[1]; 1161 1162 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1163 if (npages == 1) { 1164 *writable = true; 1165 put_page(page[0]); 1166 page[0] = wpage[0]; 1167 } 1168 1169 npages = 1; 1170 } 1171 *pfn = page_to_pfn(page[0]); 1172 return npages; 1173 } 1174 1175 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1176 { 1177 if (unlikely(!(vma->vm_flags & VM_READ))) 1178 return false; 1179 1180 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1181 return false; 1182 1183 return true; 1184 } 1185 1186 /* 1187 * Pin guest page in memory and return its pfn. 1188 * @addr: host virtual address which maps memory to the guest 1189 * @atomic: whether this function can sleep 1190 * @async: whether this function need to wait IO complete if the 1191 * host page is not in the memory 1192 * @write_fault: whether we should get a writable host page 1193 * @writable: whether it allows to map a writable host page for !@write_fault 1194 * 1195 * The function will map a writable host page for these two cases: 1196 * 1): @write_fault = true 1197 * 2): @write_fault = false && @writable, @writable will tell the caller 1198 * whether the mapping is writable. 1199 */ 1200 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1201 bool write_fault, bool *writable) 1202 { 1203 struct vm_area_struct *vma; 1204 pfn_t pfn = 0; 1205 int npages; 1206 1207 /* we can do it either atomically or asynchronously, not both */ 1208 BUG_ON(atomic && async); 1209 1210 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1211 return pfn; 1212 1213 if (atomic) 1214 return KVM_PFN_ERR_FAULT; 1215 1216 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1217 if (npages == 1) 1218 return pfn; 1219 1220 down_read(¤t->mm->mmap_sem); 1221 if (npages == -EHWPOISON || 1222 (!async && check_user_page_hwpoison(addr))) { 1223 pfn = KVM_PFN_ERR_HWPOISON; 1224 goto exit; 1225 } 1226 1227 vma = find_vma_intersection(current->mm, addr, addr + 1); 1228 1229 if (vma == NULL) 1230 pfn = KVM_PFN_ERR_FAULT; 1231 else if ((vma->vm_flags & VM_PFNMAP)) { 1232 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1233 vma->vm_pgoff; 1234 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1235 } else { 1236 if (async && vma_is_valid(vma, write_fault)) 1237 *async = true; 1238 pfn = KVM_PFN_ERR_FAULT; 1239 } 1240 exit: 1241 up_read(¤t->mm->mmap_sem); 1242 return pfn; 1243 } 1244 1245 static pfn_t 1246 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1247 bool *async, bool write_fault, bool *writable) 1248 { 1249 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1250 1251 if (addr == KVM_HVA_ERR_RO_BAD) 1252 return KVM_PFN_ERR_RO_FAULT; 1253 1254 if (kvm_is_error_hva(addr)) 1255 return KVM_PFN_NOSLOT; 1256 1257 /* Do not map writable pfn in the readonly memslot. */ 1258 if (writable && memslot_is_readonly(slot)) { 1259 *writable = false; 1260 writable = NULL; 1261 } 1262 1263 return hva_to_pfn(addr, atomic, async, write_fault, 1264 writable); 1265 } 1266 1267 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1268 bool write_fault, bool *writable) 1269 { 1270 struct kvm_memory_slot *slot; 1271 1272 if (async) 1273 *async = false; 1274 1275 slot = gfn_to_memslot(kvm, gfn); 1276 1277 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1278 writable); 1279 } 1280 1281 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1282 { 1283 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1284 } 1285 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1286 1287 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1288 bool write_fault, bool *writable) 1289 { 1290 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1291 } 1292 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1293 1294 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1295 { 1296 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1297 } 1298 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1299 1300 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1301 bool *writable) 1302 { 1303 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1304 } 1305 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1306 1307 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1308 { 1309 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1310 } 1311 1312 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1313 { 1314 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1315 } 1316 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1317 1318 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1319 int nr_pages) 1320 { 1321 unsigned long addr; 1322 gfn_t entry; 1323 1324 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1325 if (kvm_is_error_hva(addr)) 1326 return -1; 1327 1328 if (entry < nr_pages) 1329 return 0; 1330 1331 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1332 } 1333 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1334 1335 static struct page *kvm_pfn_to_page(pfn_t pfn) 1336 { 1337 if (is_error_noslot_pfn(pfn)) 1338 return KVM_ERR_PTR_BAD_PAGE; 1339 1340 if (kvm_is_mmio_pfn(pfn)) { 1341 WARN_ON(1); 1342 return KVM_ERR_PTR_BAD_PAGE; 1343 } 1344 1345 return pfn_to_page(pfn); 1346 } 1347 1348 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1349 { 1350 pfn_t pfn; 1351 1352 pfn = gfn_to_pfn(kvm, gfn); 1353 1354 return kvm_pfn_to_page(pfn); 1355 } 1356 1357 EXPORT_SYMBOL_GPL(gfn_to_page); 1358 1359 void kvm_release_page_clean(struct page *page) 1360 { 1361 WARN_ON(is_error_page(page)); 1362 1363 kvm_release_pfn_clean(page_to_pfn(page)); 1364 } 1365 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1366 1367 void kvm_release_pfn_clean(pfn_t pfn) 1368 { 1369 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1370 put_page(pfn_to_page(pfn)); 1371 } 1372 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1373 1374 void kvm_release_page_dirty(struct page *page) 1375 { 1376 WARN_ON(is_error_page(page)); 1377 1378 kvm_release_pfn_dirty(page_to_pfn(page)); 1379 } 1380 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1381 1382 void kvm_release_pfn_dirty(pfn_t pfn) 1383 { 1384 kvm_set_pfn_dirty(pfn); 1385 kvm_release_pfn_clean(pfn); 1386 } 1387 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1388 1389 void kvm_set_page_dirty(struct page *page) 1390 { 1391 kvm_set_pfn_dirty(page_to_pfn(page)); 1392 } 1393 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1394 1395 void kvm_set_pfn_dirty(pfn_t pfn) 1396 { 1397 if (!kvm_is_mmio_pfn(pfn)) { 1398 struct page *page = pfn_to_page(pfn); 1399 if (!PageReserved(page)) 1400 SetPageDirty(page); 1401 } 1402 } 1403 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1404 1405 void kvm_set_pfn_accessed(pfn_t pfn) 1406 { 1407 if (!kvm_is_mmio_pfn(pfn)) 1408 mark_page_accessed(pfn_to_page(pfn)); 1409 } 1410 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1411 1412 void kvm_get_pfn(pfn_t pfn) 1413 { 1414 if (!kvm_is_mmio_pfn(pfn)) 1415 get_page(pfn_to_page(pfn)); 1416 } 1417 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1418 1419 static int next_segment(unsigned long len, int offset) 1420 { 1421 if (len > PAGE_SIZE - offset) 1422 return PAGE_SIZE - offset; 1423 else 1424 return len; 1425 } 1426 1427 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1428 int len) 1429 { 1430 int r; 1431 unsigned long addr; 1432 1433 addr = gfn_to_hva_read(kvm, gfn); 1434 if (kvm_is_error_hva(addr)) 1435 return -EFAULT; 1436 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1437 if (r) 1438 return -EFAULT; 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1442 1443 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1444 { 1445 gfn_t gfn = gpa >> PAGE_SHIFT; 1446 int seg; 1447 int offset = offset_in_page(gpa); 1448 int ret; 1449 1450 while ((seg = next_segment(len, offset)) != 0) { 1451 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1452 if (ret < 0) 1453 return ret; 1454 offset = 0; 1455 len -= seg; 1456 data += seg; 1457 ++gfn; 1458 } 1459 return 0; 1460 } 1461 EXPORT_SYMBOL_GPL(kvm_read_guest); 1462 1463 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1464 unsigned long len) 1465 { 1466 int r; 1467 unsigned long addr; 1468 gfn_t gfn = gpa >> PAGE_SHIFT; 1469 int offset = offset_in_page(gpa); 1470 1471 addr = gfn_to_hva_read(kvm, gfn); 1472 if (kvm_is_error_hva(addr)) 1473 return -EFAULT; 1474 pagefault_disable(); 1475 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1476 pagefault_enable(); 1477 if (r) 1478 return -EFAULT; 1479 return 0; 1480 } 1481 EXPORT_SYMBOL(kvm_read_guest_atomic); 1482 1483 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1484 int offset, int len) 1485 { 1486 int r; 1487 unsigned long addr; 1488 1489 addr = gfn_to_hva(kvm, gfn); 1490 if (kvm_is_error_hva(addr)) 1491 return -EFAULT; 1492 r = __copy_to_user((void __user *)addr + offset, data, len); 1493 if (r) 1494 return -EFAULT; 1495 mark_page_dirty(kvm, gfn); 1496 return 0; 1497 } 1498 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1499 1500 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1501 unsigned long len) 1502 { 1503 gfn_t gfn = gpa >> PAGE_SHIFT; 1504 int seg; 1505 int offset = offset_in_page(gpa); 1506 int ret; 1507 1508 while ((seg = next_segment(len, offset)) != 0) { 1509 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1510 if (ret < 0) 1511 return ret; 1512 offset = 0; 1513 len -= seg; 1514 data += seg; 1515 ++gfn; 1516 } 1517 return 0; 1518 } 1519 1520 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1521 gpa_t gpa, unsigned long len) 1522 { 1523 struct kvm_memslots *slots = kvm_memslots(kvm); 1524 int offset = offset_in_page(gpa); 1525 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1526 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1527 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1528 gfn_t nr_pages_avail; 1529 1530 ghc->gpa = gpa; 1531 ghc->generation = slots->generation; 1532 ghc->len = len; 1533 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1534 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1535 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1536 ghc->hva += offset; 1537 } else { 1538 /* 1539 * If the requested region crosses two memslots, we still 1540 * verify that the entire region is valid here. 1541 */ 1542 while (start_gfn <= end_gfn) { 1543 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1544 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1545 &nr_pages_avail); 1546 if (kvm_is_error_hva(ghc->hva)) 1547 return -EFAULT; 1548 start_gfn += nr_pages_avail; 1549 } 1550 /* Use the slow path for cross page reads and writes. */ 1551 ghc->memslot = NULL; 1552 } 1553 return 0; 1554 } 1555 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1556 1557 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1558 void *data, unsigned long len) 1559 { 1560 struct kvm_memslots *slots = kvm_memslots(kvm); 1561 int r; 1562 1563 BUG_ON(len > ghc->len); 1564 1565 if (slots->generation != ghc->generation) 1566 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1567 1568 if (unlikely(!ghc->memslot)) 1569 return kvm_write_guest(kvm, ghc->gpa, data, len); 1570 1571 if (kvm_is_error_hva(ghc->hva)) 1572 return -EFAULT; 1573 1574 r = __copy_to_user((void __user *)ghc->hva, data, len); 1575 if (r) 1576 return -EFAULT; 1577 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1578 1579 return 0; 1580 } 1581 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1582 1583 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1584 void *data, unsigned long len) 1585 { 1586 struct kvm_memslots *slots = kvm_memslots(kvm); 1587 int r; 1588 1589 BUG_ON(len > ghc->len); 1590 1591 if (slots->generation != ghc->generation) 1592 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1593 1594 if (unlikely(!ghc->memslot)) 1595 return kvm_read_guest(kvm, ghc->gpa, data, len); 1596 1597 if (kvm_is_error_hva(ghc->hva)) 1598 return -EFAULT; 1599 1600 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1601 if (r) 1602 return -EFAULT; 1603 1604 return 0; 1605 } 1606 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1607 1608 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1609 { 1610 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1611 offset, len); 1612 } 1613 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1614 1615 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1616 { 1617 gfn_t gfn = gpa >> PAGE_SHIFT; 1618 int seg; 1619 int offset = offset_in_page(gpa); 1620 int ret; 1621 1622 while ((seg = next_segment(len, offset)) != 0) { 1623 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1624 if (ret < 0) 1625 return ret; 1626 offset = 0; 1627 len -= seg; 1628 ++gfn; 1629 } 1630 return 0; 1631 } 1632 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1633 1634 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1635 gfn_t gfn) 1636 { 1637 if (memslot && memslot->dirty_bitmap) { 1638 unsigned long rel_gfn = gfn - memslot->base_gfn; 1639 1640 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1641 } 1642 } 1643 1644 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1645 { 1646 struct kvm_memory_slot *memslot; 1647 1648 memslot = gfn_to_memslot(kvm, gfn); 1649 mark_page_dirty_in_slot(kvm, memslot, gfn); 1650 } 1651 1652 /* 1653 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1654 */ 1655 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1656 { 1657 DEFINE_WAIT(wait); 1658 1659 for (;;) { 1660 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1661 1662 if (kvm_arch_vcpu_runnable(vcpu)) { 1663 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1664 break; 1665 } 1666 if (kvm_cpu_has_pending_timer(vcpu)) 1667 break; 1668 if (signal_pending(current)) 1669 break; 1670 1671 schedule(); 1672 } 1673 1674 finish_wait(&vcpu->wq, &wait); 1675 } 1676 1677 #ifndef CONFIG_S390 1678 /* 1679 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1680 */ 1681 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1682 { 1683 int me; 1684 int cpu = vcpu->cpu; 1685 wait_queue_head_t *wqp; 1686 1687 wqp = kvm_arch_vcpu_wq(vcpu); 1688 if (waitqueue_active(wqp)) { 1689 wake_up_interruptible(wqp); 1690 ++vcpu->stat.halt_wakeup; 1691 } 1692 1693 me = get_cpu(); 1694 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1695 if (kvm_arch_vcpu_should_kick(vcpu)) 1696 smp_send_reschedule(cpu); 1697 put_cpu(); 1698 } 1699 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1700 #endif /* !CONFIG_S390 */ 1701 1702 void kvm_resched(struct kvm_vcpu *vcpu) 1703 { 1704 if (!need_resched()) 1705 return; 1706 cond_resched(); 1707 } 1708 EXPORT_SYMBOL_GPL(kvm_resched); 1709 1710 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1711 { 1712 struct pid *pid; 1713 struct task_struct *task = NULL; 1714 bool ret = false; 1715 1716 rcu_read_lock(); 1717 pid = rcu_dereference(target->pid); 1718 if (pid) 1719 task = get_pid_task(target->pid, PIDTYPE_PID); 1720 rcu_read_unlock(); 1721 if (!task) 1722 return ret; 1723 if (task->flags & PF_VCPU) { 1724 put_task_struct(task); 1725 return ret; 1726 } 1727 ret = yield_to(task, 1); 1728 put_task_struct(task); 1729 1730 return ret; 1731 } 1732 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1733 1734 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1735 /* 1736 * Helper that checks whether a VCPU is eligible for directed yield. 1737 * Most eligible candidate to yield is decided by following heuristics: 1738 * 1739 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1740 * (preempted lock holder), indicated by @in_spin_loop. 1741 * Set at the beiginning and cleared at the end of interception/PLE handler. 1742 * 1743 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1744 * chance last time (mostly it has become eligible now since we have probably 1745 * yielded to lockholder in last iteration. This is done by toggling 1746 * @dy_eligible each time a VCPU checked for eligibility.) 1747 * 1748 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1749 * to preempted lock-holder could result in wrong VCPU selection and CPU 1750 * burning. Giving priority for a potential lock-holder increases lock 1751 * progress. 1752 * 1753 * Since algorithm is based on heuristics, accessing another VCPU data without 1754 * locking does not harm. It may result in trying to yield to same VCPU, fail 1755 * and continue with next VCPU and so on. 1756 */ 1757 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1758 { 1759 bool eligible; 1760 1761 eligible = !vcpu->spin_loop.in_spin_loop || 1762 (vcpu->spin_loop.in_spin_loop && 1763 vcpu->spin_loop.dy_eligible); 1764 1765 if (vcpu->spin_loop.in_spin_loop) 1766 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1767 1768 return eligible; 1769 } 1770 #endif 1771 1772 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1773 { 1774 struct kvm *kvm = me->kvm; 1775 struct kvm_vcpu *vcpu; 1776 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1777 int yielded = 0; 1778 int try = 3; 1779 int pass; 1780 int i; 1781 1782 kvm_vcpu_set_in_spin_loop(me, true); 1783 /* 1784 * We boost the priority of a VCPU that is runnable but not 1785 * currently running, because it got preempted by something 1786 * else and called schedule in __vcpu_run. Hopefully that 1787 * VCPU is holding the lock that we need and will release it. 1788 * We approximate round-robin by starting at the last boosted VCPU. 1789 */ 1790 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1791 kvm_for_each_vcpu(i, vcpu, kvm) { 1792 if (!pass && i <= last_boosted_vcpu) { 1793 i = last_boosted_vcpu; 1794 continue; 1795 } else if (pass && i > last_boosted_vcpu) 1796 break; 1797 if (!ACCESS_ONCE(vcpu->preempted)) 1798 continue; 1799 if (vcpu == me) 1800 continue; 1801 if (waitqueue_active(&vcpu->wq)) 1802 continue; 1803 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1804 continue; 1805 1806 yielded = kvm_vcpu_yield_to(vcpu); 1807 if (yielded > 0) { 1808 kvm->last_boosted_vcpu = i; 1809 break; 1810 } else if (yielded < 0) { 1811 try--; 1812 if (!try) 1813 break; 1814 } 1815 } 1816 } 1817 kvm_vcpu_set_in_spin_loop(me, false); 1818 1819 /* Ensure vcpu is not eligible during next spinloop */ 1820 kvm_vcpu_set_dy_eligible(me, false); 1821 } 1822 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1823 1824 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1825 { 1826 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1827 struct page *page; 1828 1829 if (vmf->pgoff == 0) 1830 page = virt_to_page(vcpu->run); 1831 #ifdef CONFIG_X86 1832 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1833 page = virt_to_page(vcpu->arch.pio_data); 1834 #endif 1835 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1836 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1837 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1838 #endif 1839 else 1840 return kvm_arch_vcpu_fault(vcpu, vmf); 1841 get_page(page); 1842 vmf->page = page; 1843 return 0; 1844 } 1845 1846 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1847 .fault = kvm_vcpu_fault, 1848 }; 1849 1850 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1851 { 1852 vma->vm_ops = &kvm_vcpu_vm_ops; 1853 return 0; 1854 } 1855 1856 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1857 { 1858 struct kvm_vcpu *vcpu = filp->private_data; 1859 1860 kvm_put_kvm(vcpu->kvm); 1861 return 0; 1862 } 1863 1864 static struct file_operations kvm_vcpu_fops = { 1865 .release = kvm_vcpu_release, 1866 .unlocked_ioctl = kvm_vcpu_ioctl, 1867 #ifdef CONFIG_COMPAT 1868 .compat_ioctl = kvm_vcpu_compat_ioctl, 1869 #endif 1870 .mmap = kvm_vcpu_mmap, 1871 .llseek = noop_llseek, 1872 }; 1873 1874 /* 1875 * Allocates an inode for the vcpu. 1876 */ 1877 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1878 { 1879 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 1880 } 1881 1882 /* 1883 * Creates some virtual cpus. Good luck creating more than one. 1884 */ 1885 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1886 { 1887 int r; 1888 struct kvm_vcpu *vcpu, *v; 1889 1890 vcpu = kvm_arch_vcpu_create(kvm, id); 1891 if (IS_ERR(vcpu)) 1892 return PTR_ERR(vcpu); 1893 1894 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1895 1896 r = kvm_arch_vcpu_setup(vcpu); 1897 if (r) 1898 goto vcpu_destroy; 1899 1900 mutex_lock(&kvm->lock); 1901 if (!kvm_vcpu_compatible(vcpu)) { 1902 r = -EINVAL; 1903 goto unlock_vcpu_destroy; 1904 } 1905 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1906 r = -EINVAL; 1907 goto unlock_vcpu_destroy; 1908 } 1909 1910 kvm_for_each_vcpu(r, v, kvm) 1911 if (v->vcpu_id == id) { 1912 r = -EEXIST; 1913 goto unlock_vcpu_destroy; 1914 } 1915 1916 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1917 1918 /* Now it's all set up, let userspace reach it */ 1919 kvm_get_kvm(kvm); 1920 r = create_vcpu_fd(vcpu); 1921 if (r < 0) { 1922 kvm_put_kvm(kvm); 1923 goto unlock_vcpu_destroy; 1924 } 1925 1926 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1927 smp_wmb(); 1928 atomic_inc(&kvm->online_vcpus); 1929 1930 mutex_unlock(&kvm->lock); 1931 kvm_arch_vcpu_postcreate(vcpu); 1932 return r; 1933 1934 unlock_vcpu_destroy: 1935 mutex_unlock(&kvm->lock); 1936 vcpu_destroy: 1937 kvm_arch_vcpu_destroy(vcpu); 1938 return r; 1939 } 1940 1941 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1942 { 1943 if (sigset) { 1944 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1945 vcpu->sigset_active = 1; 1946 vcpu->sigset = *sigset; 1947 } else 1948 vcpu->sigset_active = 0; 1949 return 0; 1950 } 1951 1952 static long kvm_vcpu_ioctl(struct file *filp, 1953 unsigned int ioctl, unsigned long arg) 1954 { 1955 struct kvm_vcpu *vcpu = filp->private_data; 1956 void __user *argp = (void __user *)arg; 1957 int r; 1958 struct kvm_fpu *fpu = NULL; 1959 struct kvm_sregs *kvm_sregs = NULL; 1960 1961 if (vcpu->kvm->mm != current->mm) 1962 return -EIO; 1963 1964 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1965 /* 1966 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1967 * so vcpu_load() would break it. 1968 */ 1969 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1970 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1971 #endif 1972 1973 1974 r = vcpu_load(vcpu); 1975 if (r) 1976 return r; 1977 switch (ioctl) { 1978 case KVM_RUN: 1979 r = -EINVAL; 1980 if (arg) 1981 goto out; 1982 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1983 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1984 break; 1985 case KVM_GET_REGS: { 1986 struct kvm_regs *kvm_regs; 1987 1988 r = -ENOMEM; 1989 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1990 if (!kvm_regs) 1991 goto out; 1992 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1993 if (r) 1994 goto out_free1; 1995 r = -EFAULT; 1996 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 1997 goto out_free1; 1998 r = 0; 1999 out_free1: 2000 kfree(kvm_regs); 2001 break; 2002 } 2003 case KVM_SET_REGS: { 2004 struct kvm_regs *kvm_regs; 2005 2006 r = -ENOMEM; 2007 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2008 if (IS_ERR(kvm_regs)) { 2009 r = PTR_ERR(kvm_regs); 2010 goto out; 2011 } 2012 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2013 kfree(kvm_regs); 2014 break; 2015 } 2016 case KVM_GET_SREGS: { 2017 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2018 r = -ENOMEM; 2019 if (!kvm_sregs) 2020 goto out; 2021 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2022 if (r) 2023 goto out; 2024 r = -EFAULT; 2025 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2026 goto out; 2027 r = 0; 2028 break; 2029 } 2030 case KVM_SET_SREGS: { 2031 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2032 if (IS_ERR(kvm_sregs)) { 2033 r = PTR_ERR(kvm_sregs); 2034 kvm_sregs = NULL; 2035 goto out; 2036 } 2037 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2038 break; 2039 } 2040 case KVM_GET_MP_STATE: { 2041 struct kvm_mp_state mp_state; 2042 2043 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2044 if (r) 2045 goto out; 2046 r = -EFAULT; 2047 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2048 goto out; 2049 r = 0; 2050 break; 2051 } 2052 case KVM_SET_MP_STATE: { 2053 struct kvm_mp_state mp_state; 2054 2055 r = -EFAULT; 2056 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2057 goto out; 2058 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2059 break; 2060 } 2061 case KVM_TRANSLATE: { 2062 struct kvm_translation tr; 2063 2064 r = -EFAULT; 2065 if (copy_from_user(&tr, argp, sizeof tr)) 2066 goto out; 2067 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2068 if (r) 2069 goto out; 2070 r = -EFAULT; 2071 if (copy_to_user(argp, &tr, sizeof tr)) 2072 goto out; 2073 r = 0; 2074 break; 2075 } 2076 case KVM_SET_GUEST_DEBUG: { 2077 struct kvm_guest_debug dbg; 2078 2079 r = -EFAULT; 2080 if (copy_from_user(&dbg, argp, sizeof dbg)) 2081 goto out; 2082 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2083 break; 2084 } 2085 case KVM_SET_SIGNAL_MASK: { 2086 struct kvm_signal_mask __user *sigmask_arg = argp; 2087 struct kvm_signal_mask kvm_sigmask; 2088 sigset_t sigset, *p; 2089 2090 p = NULL; 2091 if (argp) { 2092 r = -EFAULT; 2093 if (copy_from_user(&kvm_sigmask, argp, 2094 sizeof kvm_sigmask)) 2095 goto out; 2096 r = -EINVAL; 2097 if (kvm_sigmask.len != sizeof sigset) 2098 goto out; 2099 r = -EFAULT; 2100 if (copy_from_user(&sigset, sigmask_arg->sigset, 2101 sizeof sigset)) 2102 goto out; 2103 p = &sigset; 2104 } 2105 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2106 break; 2107 } 2108 case KVM_GET_FPU: { 2109 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2110 r = -ENOMEM; 2111 if (!fpu) 2112 goto out; 2113 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2114 if (r) 2115 goto out; 2116 r = -EFAULT; 2117 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2118 goto out; 2119 r = 0; 2120 break; 2121 } 2122 case KVM_SET_FPU: { 2123 fpu = memdup_user(argp, sizeof(*fpu)); 2124 if (IS_ERR(fpu)) { 2125 r = PTR_ERR(fpu); 2126 fpu = NULL; 2127 goto out; 2128 } 2129 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2130 break; 2131 } 2132 default: 2133 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2134 } 2135 out: 2136 vcpu_put(vcpu); 2137 kfree(fpu); 2138 kfree(kvm_sregs); 2139 return r; 2140 } 2141 2142 #ifdef CONFIG_COMPAT 2143 static long kvm_vcpu_compat_ioctl(struct file *filp, 2144 unsigned int ioctl, unsigned long arg) 2145 { 2146 struct kvm_vcpu *vcpu = filp->private_data; 2147 void __user *argp = compat_ptr(arg); 2148 int r; 2149 2150 if (vcpu->kvm->mm != current->mm) 2151 return -EIO; 2152 2153 switch (ioctl) { 2154 case KVM_SET_SIGNAL_MASK: { 2155 struct kvm_signal_mask __user *sigmask_arg = argp; 2156 struct kvm_signal_mask kvm_sigmask; 2157 compat_sigset_t csigset; 2158 sigset_t sigset; 2159 2160 if (argp) { 2161 r = -EFAULT; 2162 if (copy_from_user(&kvm_sigmask, argp, 2163 sizeof kvm_sigmask)) 2164 goto out; 2165 r = -EINVAL; 2166 if (kvm_sigmask.len != sizeof csigset) 2167 goto out; 2168 r = -EFAULT; 2169 if (copy_from_user(&csigset, sigmask_arg->sigset, 2170 sizeof csigset)) 2171 goto out; 2172 sigset_from_compat(&sigset, &csigset); 2173 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2174 } else 2175 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2176 break; 2177 } 2178 default: 2179 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2180 } 2181 2182 out: 2183 return r; 2184 } 2185 #endif 2186 2187 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2188 int (*accessor)(struct kvm_device *dev, 2189 struct kvm_device_attr *attr), 2190 unsigned long arg) 2191 { 2192 struct kvm_device_attr attr; 2193 2194 if (!accessor) 2195 return -EPERM; 2196 2197 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2198 return -EFAULT; 2199 2200 return accessor(dev, &attr); 2201 } 2202 2203 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2204 unsigned long arg) 2205 { 2206 struct kvm_device *dev = filp->private_data; 2207 2208 switch (ioctl) { 2209 case KVM_SET_DEVICE_ATTR: 2210 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2211 case KVM_GET_DEVICE_ATTR: 2212 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2213 case KVM_HAS_DEVICE_ATTR: 2214 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2215 default: 2216 if (dev->ops->ioctl) 2217 return dev->ops->ioctl(dev, ioctl, arg); 2218 2219 return -ENOTTY; 2220 } 2221 } 2222 2223 static int kvm_device_release(struct inode *inode, struct file *filp) 2224 { 2225 struct kvm_device *dev = filp->private_data; 2226 struct kvm *kvm = dev->kvm; 2227 2228 kvm_put_kvm(kvm); 2229 return 0; 2230 } 2231 2232 static const struct file_operations kvm_device_fops = { 2233 .unlocked_ioctl = kvm_device_ioctl, 2234 #ifdef CONFIG_COMPAT 2235 .compat_ioctl = kvm_device_ioctl, 2236 #endif 2237 .release = kvm_device_release, 2238 }; 2239 2240 struct kvm_device *kvm_device_from_filp(struct file *filp) 2241 { 2242 if (filp->f_op != &kvm_device_fops) 2243 return NULL; 2244 2245 return filp->private_data; 2246 } 2247 2248 static int kvm_ioctl_create_device(struct kvm *kvm, 2249 struct kvm_create_device *cd) 2250 { 2251 struct kvm_device_ops *ops = NULL; 2252 struct kvm_device *dev; 2253 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2254 int ret; 2255 2256 switch (cd->type) { 2257 #ifdef CONFIG_KVM_MPIC 2258 case KVM_DEV_TYPE_FSL_MPIC_20: 2259 case KVM_DEV_TYPE_FSL_MPIC_42: 2260 ops = &kvm_mpic_ops; 2261 break; 2262 #endif 2263 #ifdef CONFIG_KVM_XICS 2264 case KVM_DEV_TYPE_XICS: 2265 ops = &kvm_xics_ops; 2266 break; 2267 #endif 2268 default: 2269 return -ENODEV; 2270 } 2271 2272 if (test) 2273 return 0; 2274 2275 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2276 if (!dev) 2277 return -ENOMEM; 2278 2279 dev->ops = ops; 2280 dev->kvm = kvm; 2281 2282 ret = ops->create(dev, cd->type); 2283 if (ret < 0) { 2284 kfree(dev); 2285 return ret; 2286 } 2287 2288 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2289 if (ret < 0) { 2290 ops->destroy(dev); 2291 return ret; 2292 } 2293 2294 list_add(&dev->vm_node, &kvm->devices); 2295 kvm_get_kvm(kvm); 2296 cd->fd = ret; 2297 return 0; 2298 } 2299 2300 static long kvm_vm_ioctl(struct file *filp, 2301 unsigned int ioctl, unsigned long arg) 2302 { 2303 struct kvm *kvm = filp->private_data; 2304 void __user *argp = (void __user *)arg; 2305 int r; 2306 2307 if (kvm->mm != current->mm) 2308 return -EIO; 2309 switch (ioctl) { 2310 case KVM_CREATE_VCPU: 2311 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2312 break; 2313 case KVM_SET_USER_MEMORY_REGION: { 2314 struct kvm_userspace_memory_region kvm_userspace_mem; 2315 2316 r = -EFAULT; 2317 if (copy_from_user(&kvm_userspace_mem, argp, 2318 sizeof kvm_userspace_mem)) 2319 goto out; 2320 2321 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2322 break; 2323 } 2324 case KVM_GET_DIRTY_LOG: { 2325 struct kvm_dirty_log log; 2326 2327 r = -EFAULT; 2328 if (copy_from_user(&log, argp, sizeof log)) 2329 goto out; 2330 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2331 break; 2332 } 2333 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2334 case KVM_REGISTER_COALESCED_MMIO: { 2335 struct kvm_coalesced_mmio_zone zone; 2336 r = -EFAULT; 2337 if (copy_from_user(&zone, argp, sizeof zone)) 2338 goto out; 2339 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2340 break; 2341 } 2342 case KVM_UNREGISTER_COALESCED_MMIO: { 2343 struct kvm_coalesced_mmio_zone zone; 2344 r = -EFAULT; 2345 if (copy_from_user(&zone, argp, sizeof zone)) 2346 goto out; 2347 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2348 break; 2349 } 2350 #endif 2351 case KVM_IRQFD: { 2352 struct kvm_irqfd data; 2353 2354 r = -EFAULT; 2355 if (copy_from_user(&data, argp, sizeof data)) 2356 goto out; 2357 r = kvm_irqfd(kvm, &data); 2358 break; 2359 } 2360 case KVM_IOEVENTFD: { 2361 struct kvm_ioeventfd data; 2362 2363 r = -EFAULT; 2364 if (copy_from_user(&data, argp, sizeof data)) 2365 goto out; 2366 r = kvm_ioeventfd(kvm, &data); 2367 break; 2368 } 2369 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2370 case KVM_SET_BOOT_CPU_ID: 2371 r = 0; 2372 mutex_lock(&kvm->lock); 2373 if (atomic_read(&kvm->online_vcpus) != 0) 2374 r = -EBUSY; 2375 else 2376 kvm->bsp_vcpu_id = arg; 2377 mutex_unlock(&kvm->lock); 2378 break; 2379 #endif 2380 #ifdef CONFIG_HAVE_KVM_MSI 2381 case KVM_SIGNAL_MSI: { 2382 struct kvm_msi msi; 2383 2384 r = -EFAULT; 2385 if (copy_from_user(&msi, argp, sizeof msi)) 2386 goto out; 2387 r = kvm_send_userspace_msi(kvm, &msi); 2388 break; 2389 } 2390 #endif 2391 #ifdef __KVM_HAVE_IRQ_LINE 2392 case KVM_IRQ_LINE_STATUS: 2393 case KVM_IRQ_LINE: { 2394 struct kvm_irq_level irq_event; 2395 2396 r = -EFAULT; 2397 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2398 goto out; 2399 2400 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2401 ioctl == KVM_IRQ_LINE_STATUS); 2402 if (r) 2403 goto out; 2404 2405 r = -EFAULT; 2406 if (ioctl == KVM_IRQ_LINE_STATUS) { 2407 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2408 goto out; 2409 } 2410 2411 r = 0; 2412 break; 2413 } 2414 #endif 2415 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2416 case KVM_SET_GSI_ROUTING: { 2417 struct kvm_irq_routing routing; 2418 struct kvm_irq_routing __user *urouting; 2419 struct kvm_irq_routing_entry *entries; 2420 2421 r = -EFAULT; 2422 if (copy_from_user(&routing, argp, sizeof(routing))) 2423 goto out; 2424 r = -EINVAL; 2425 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2426 goto out; 2427 if (routing.flags) 2428 goto out; 2429 r = -ENOMEM; 2430 entries = vmalloc(routing.nr * sizeof(*entries)); 2431 if (!entries) 2432 goto out; 2433 r = -EFAULT; 2434 urouting = argp; 2435 if (copy_from_user(entries, urouting->entries, 2436 routing.nr * sizeof(*entries))) 2437 goto out_free_irq_routing; 2438 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2439 routing.flags); 2440 out_free_irq_routing: 2441 vfree(entries); 2442 break; 2443 } 2444 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2445 case KVM_CREATE_DEVICE: { 2446 struct kvm_create_device cd; 2447 2448 r = -EFAULT; 2449 if (copy_from_user(&cd, argp, sizeof(cd))) 2450 goto out; 2451 2452 r = kvm_ioctl_create_device(kvm, &cd); 2453 if (r) 2454 goto out; 2455 2456 r = -EFAULT; 2457 if (copy_to_user(argp, &cd, sizeof(cd))) 2458 goto out; 2459 2460 r = 0; 2461 break; 2462 } 2463 default: 2464 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2465 if (r == -ENOTTY) 2466 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2467 } 2468 out: 2469 return r; 2470 } 2471 2472 #ifdef CONFIG_COMPAT 2473 struct compat_kvm_dirty_log { 2474 __u32 slot; 2475 __u32 padding1; 2476 union { 2477 compat_uptr_t dirty_bitmap; /* one bit per page */ 2478 __u64 padding2; 2479 }; 2480 }; 2481 2482 static long kvm_vm_compat_ioctl(struct file *filp, 2483 unsigned int ioctl, unsigned long arg) 2484 { 2485 struct kvm *kvm = filp->private_data; 2486 int r; 2487 2488 if (kvm->mm != current->mm) 2489 return -EIO; 2490 switch (ioctl) { 2491 case KVM_GET_DIRTY_LOG: { 2492 struct compat_kvm_dirty_log compat_log; 2493 struct kvm_dirty_log log; 2494 2495 r = -EFAULT; 2496 if (copy_from_user(&compat_log, (void __user *)arg, 2497 sizeof(compat_log))) 2498 goto out; 2499 log.slot = compat_log.slot; 2500 log.padding1 = compat_log.padding1; 2501 log.padding2 = compat_log.padding2; 2502 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2503 2504 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2505 break; 2506 } 2507 default: 2508 r = kvm_vm_ioctl(filp, ioctl, arg); 2509 } 2510 2511 out: 2512 return r; 2513 } 2514 #endif 2515 2516 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2517 { 2518 struct page *page[1]; 2519 unsigned long addr; 2520 int npages; 2521 gfn_t gfn = vmf->pgoff; 2522 struct kvm *kvm = vma->vm_file->private_data; 2523 2524 addr = gfn_to_hva(kvm, gfn); 2525 if (kvm_is_error_hva(addr)) 2526 return VM_FAULT_SIGBUS; 2527 2528 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2529 NULL); 2530 if (unlikely(npages != 1)) 2531 return VM_FAULT_SIGBUS; 2532 2533 vmf->page = page[0]; 2534 return 0; 2535 } 2536 2537 static const struct vm_operations_struct kvm_vm_vm_ops = { 2538 .fault = kvm_vm_fault, 2539 }; 2540 2541 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2542 { 2543 vma->vm_ops = &kvm_vm_vm_ops; 2544 return 0; 2545 } 2546 2547 static struct file_operations kvm_vm_fops = { 2548 .release = kvm_vm_release, 2549 .unlocked_ioctl = kvm_vm_ioctl, 2550 #ifdef CONFIG_COMPAT 2551 .compat_ioctl = kvm_vm_compat_ioctl, 2552 #endif 2553 .mmap = kvm_vm_mmap, 2554 .llseek = noop_llseek, 2555 }; 2556 2557 static int kvm_dev_ioctl_create_vm(unsigned long type) 2558 { 2559 int r; 2560 struct kvm *kvm; 2561 2562 kvm = kvm_create_vm(type); 2563 if (IS_ERR(kvm)) 2564 return PTR_ERR(kvm); 2565 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2566 r = kvm_coalesced_mmio_init(kvm); 2567 if (r < 0) { 2568 kvm_put_kvm(kvm); 2569 return r; 2570 } 2571 #endif 2572 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2573 if (r < 0) 2574 kvm_put_kvm(kvm); 2575 2576 return r; 2577 } 2578 2579 static long kvm_dev_ioctl_check_extension_generic(long arg) 2580 { 2581 switch (arg) { 2582 case KVM_CAP_USER_MEMORY: 2583 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2584 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2585 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2586 case KVM_CAP_SET_BOOT_CPU_ID: 2587 #endif 2588 case KVM_CAP_INTERNAL_ERROR_DATA: 2589 #ifdef CONFIG_HAVE_KVM_MSI 2590 case KVM_CAP_SIGNAL_MSI: 2591 #endif 2592 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2593 case KVM_CAP_IRQFD_RESAMPLE: 2594 #endif 2595 return 1; 2596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2597 case KVM_CAP_IRQ_ROUTING: 2598 return KVM_MAX_IRQ_ROUTES; 2599 #endif 2600 default: 2601 break; 2602 } 2603 return kvm_dev_ioctl_check_extension(arg); 2604 } 2605 2606 static long kvm_dev_ioctl(struct file *filp, 2607 unsigned int ioctl, unsigned long arg) 2608 { 2609 long r = -EINVAL; 2610 2611 switch (ioctl) { 2612 case KVM_GET_API_VERSION: 2613 r = -EINVAL; 2614 if (arg) 2615 goto out; 2616 r = KVM_API_VERSION; 2617 break; 2618 case KVM_CREATE_VM: 2619 r = kvm_dev_ioctl_create_vm(arg); 2620 break; 2621 case KVM_CHECK_EXTENSION: 2622 r = kvm_dev_ioctl_check_extension_generic(arg); 2623 break; 2624 case KVM_GET_VCPU_MMAP_SIZE: 2625 r = -EINVAL; 2626 if (arg) 2627 goto out; 2628 r = PAGE_SIZE; /* struct kvm_run */ 2629 #ifdef CONFIG_X86 2630 r += PAGE_SIZE; /* pio data page */ 2631 #endif 2632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2633 r += PAGE_SIZE; /* coalesced mmio ring page */ 2634 #endif 2635 break; 2636 case KVM_TRACE_ENABLE: 2637 case KVM_TRACE_PAUSE: 2638 case KVM_TRACE_DISABLE: 2639 r = -EOPNOTSUPP; 2640 break; 2641 default: 2642 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2643 } 2644 out: 2645 return r; 2646 } 2647 2648 static struct file_operations kvm_chardev_ops = { 2649 .unlocked_ioctl = kvm_dev_ioctl, 2650 .compat_ioctl = kvm_dev_ioctl, 2651 .llseek = noop_llseek, 2652 }; 2653 2654 static struct miscdevice kvm_dev = { 2655 KVM_MINOR, 2656 "kvm", 2657 &kvm_chardev_ops, 2658 }; 2659 2660 static void hardware_enable_nolock(void *junk) 2661 { 2662 int cpu = raw_smp_processor_id(); 2663 int r; 2664 2665 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2666 return; 2667 2668 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2669 2670 r = kvm_arch_hardware_enable(NULL); 2671 2672 if (r) { 2673 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2674 atomic_inc(&hardware_enable_failed); 2675 printk(KERN_INFO "kvm: enabling virtualization on " 2676 "CPU%d failed\n", cpu); 2677 } 2678 } 2679 2680 static void hardware_enable(void *junk) 2681 { 2682 raw_spin_lock(&kvm_lock); 2683 hardware_enable_nolock(junk); 2684 raw_spin_unlock(&kvm_lock); 2685 } 2686 2687 static void hardware_disable_nolock(void *junk) 2688 { 2689 int cpu = raw_smp_processor_id(); 2690 2691 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2692 return; 2693 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2694 kvm_arch_hardware_disable(NULL); 2695 } 2696 2697 static void hardware_disable(void *junk) 2698 { 2699 raw_spin_lock(&kvm_lock); 2700 hardware_disable_nolock(junk); 2701 raw_spin_unlock(&kvm_lock); 2702 } 2703 2704 static void hardware_disable_all_nolock(void) 2705 { 2706 BUG_ON(!kvm_usage_count); 2707 2708 kvm_usage_count--; 2709 if (!kvm_usage_count) 2710 on_each_cpu(hardware_disable_nolock, NULL, 1); 2711 } 2712 2713 static void hardware_disable_all(void) 2714 { 2715 raw_spin_lock(&kvm_lock); 2716 hardware_disable_all_nolock(); 2717 raw_spin_unlock(&kvm_lock); 2718 } 2719 2720 static int hardware_enable_all(void) 2721 { 2722 int r = 0; 2723 2724 raw_spin_lock(&kvm_lock); 2725 2726 kvm_usage_count++; 2727 if (kvm_usage_count == 1) { 2728 atomic_set(&hardware_enable_failed, 0); 2729 on_each_cpu(hardware_enable_nolock, NULL, 1); 2730 2731 if (atomic_read(&hardware_enable_failed)) { 2732 hardware_disable_all_nolock(); 2733 r = -EBUSY; 2734 } 2735 } 2736 2737 raw_spin_unlock(&kvm_lock); 2738 2739 return r; 2740 } 2741 2742 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2743 void *v) 2744 { 2745 int cpu = (long)v; 2746 2747 if (!kvm_usage_count) 2748 return NOTIFY_OK; 2749 2750 val &= ~CPU_TASKS_FROZEN; 2751 switch (val) { 2752 case CPU_DYING: 2753 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2754 cpu); 2755 hardware_disable(NULL); 2756 break; 2757 case CPU_STARTING: 2758 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2759 cpu); 2760 hardware_enable(NULL); 2761 break; 2762 } 2763 return NOTIFY_OK; 2764 } 2765 2766 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2767 void *v) 2768 { 2769 /* 2770 * Some (well, at least mine) BIOSes hang on reboot if 2771 * in vmx root mode. 2772 * 2773 * And Intel TXT required VMX off for all cpu when system shutdown. 2774 */ 2775 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2776 kvm_rebooting = true; 2777 on_each_cpu(hardware_disable_nolock, NULL, 1); 2778 return NOTIFY_OK; 2779 } 2780 2781 static struct notifier_block kvm_reboot_notifier = { 2782 .notifier_call = kvm_reboot, 2783 .priority = 0, 2784 }; 2785 2786 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2787 { 2788 int i; 2789 2790 for (i = 0; i < bus->dev_count; i++) { 2791 struct kvm_io_device *pos = bus->range[i].dev; 2792 2793 kvm_iodevice_destructor(pos); 2794 } 2795 kfree(bus); 2796 } 2797 2798 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2799 const struct kvm_io_range *r2) 2800 { 2801 if (r1->addr < r2->addr) 2802 return -1; 2803 if (r1->addr + r1->len > r2->addr + r2->len) 2804 return 1; 2805 return 0; 2806 } 2807 2808 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2809 { 2810 return kvm_io_bus_cmp(p1, p2); 2811 } 2812 2813 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2814 gpa_t addr, int len) 2815 { 2816 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2817 .addr = addr, 2818 .len = len, 2819 .dev = dev, 2820 }; 2821 2822 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2823 kvm_io_bus_sort_cmp, NULL); 2824 2825 return 0; 2826 } 2827 2828 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2829 gpa_t addr, int len) 2830 { 2831 struct kvm_io_range *range, key; 2832 int off; 2833 2834 key = (struct kvm_io_range) { 2835 .addr = addr, 2836 .len = len, 2837 }; 2838 2839 range = bsearch(&key, bus->range, bus->dev_count, 2840 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2841 if (range == NULL) 2842 return -ENOENT; 2843 2844 off = range - bus->range; 2845 2846 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2847 off--; 2848 2849 return off; 2850 } 2851 2852 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 2853 struct kvm_io_range *range, const void *val) 2854 { 2855 int idx; 2856 2857 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2858 if (idx < 0) 2859 return -EOPNOTSUPP; 2860 2861 while (idx < bus->dev_count && 2862 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2863 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 2864 range->len, val)) 2865 return idx; 2866 idx++; 2867 } 2868 2869 return -EOPNOTSUPP; 2870 } 2871 2872 /* kvm_io_bus_write - called under kvm->slots_lock */ 2873 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2874 int len, const void *val) 2875 { 2876 struct kvm_io_bus *bus; 2877 struct kvm_io_range range; 2878 int r; 2879 2880 range = (struct kvm_io_range) { 2881 .addr = addr, 2882 .len = len, 2883 }; 2884 2885 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2886 r = __kvm_io_bus_write(bus, &range, val); 2887 return r < 0 ? r : 0; 2888 } 2889 2890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 2891 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2892 int len, const void *val, long cookie) 2893 { 2894 struct kvm_io_bus *bus; 2895 struct kvm_io_range range; 2896 2897 range = (struct kvm_io_range) { 2898 .addr = addr, 2899 .len = len, 2900 }; 2901 2902 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2903 2904 /* First try the device referenced by cookie. */ 2905 if ((cookie >= 0) && (cookie < bus->dev_count) && 2906 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2907 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 2908 val)) 2909 return cookie; 2910 2911 /* 2912 * cookie contained garbage; fall back to search and return the 2913 * correct cookie value. 2914 */ 2915 return __kvm_io_bus_write(bus, &range, val); 2916 } 2917 2918 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 2919 void *val) 2920 { 2921 int idx; 2922 2923 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2924 if (idx < 0) 2925 return -EOPNOTSUPP; 2926 2927 while (idx < bus->dev_count && 2928 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2929 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 2930 range->len, val)) 2931 return idx; 2932 idx++; 2933 } 2934 2935 return -EOPNOTSUPP; 2936 } 2937 2938 /* kvm_io_bus_read - called under kvm->slots_lock */ 2939 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2940 int len, void *val) 2941 { 2942 struct kvm_io_bus *bus; 2943 struct kvm_io_range range; 2944 int r; 2945 2946 range = (struct kvm_io_range) { 2947 .addr = addr, 2948 .len = len, 2949 }; 2950 2951 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2952 r = __kvm_io_bus_read(bus, &range, val); 2953 return r < 0 ? r : 0; 2954 } 2955 2956 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */ 2957 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2958 int len, void *val, long cookie) 2959 { 2960 struct kvm_io_bus *bus; 2961 struct kvm_io_range range; 2962 2963 range = (struct kvm_io_range) { 2964 .addr = addr, 2965 .len = len, 2966 }; 2967 2968 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2969 2970 /* First try the device referenced by cookie. */ 2971 if ((cookie >= 0) && (cookie < bus->dev_count) && 2972 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2973 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len, 2974 val)) 2975 return cookie; 2976 2977 /* 2978 * cookie contained garbage; fall back to search and return the 2979 * correct cookie value. 2980 */ 2981 return __kvm_io_bus_read(bus, &range, val); 2982 } 2983 2984 /* Caller must hold slots_lock. */ 2985 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2986 int len, struct kvm_io_device *dev) 2987 { 2988 struct kvm_io_bus *new_bus, *bus; 2989 2990 bus = kvm->buses[bus_idx]; 2991 /* exclude ioeventfd which is limited by maximum fd */ 2992 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 2993 return -ENOSPC; 2994 2995 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2996 sizeof(struct kvm_io_range)), GFP_KERNEL); 2997 if (!new_bus) 2998 return -ENOMEM; 2999 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3000 sizeof(struct kvm_io_range))); 3001 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3002 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3003 synchronize_srcu_expedited(&kvm->srcu); 3004 kfree(bus); 3005 3006 return 0; 3007 } 3008 3009 /* Caller must hold slots_lock. */ 3010 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3011 struct kvm_io_device *dev) 3012 { 3013 int i, r; 3014 struct kvm_io_bus *new_bus, *bus; 3015 3016 bus = kvm->buses[bus_idx]; 3017 r = -ENOENT; 3018 for (i = 0; i < bus->dev_count; i++) 3019 if (bus->range[i].dev == dev) { 3020 r = 0; 3021 break; 3022 } 3023 3024 if (r) 3025 return r; 3026 3027 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3028 sizeof(struct kvm_io_range)), GFP_KERNEL); 3029 if (!new_bus) 3030 return -ENOMEM; 3031 3032 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3033 new_bus->dev_count--; 3034 memcpy(new_bus->range + i, bus->range + i + 1, 3035 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3036 3037 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3038 synchronize_srcu_expedited(&kvm->srcu); 3039 kfree(bus); 3040 return r; 3041 } 3042 3043 static struct notifier_block kvm_cpu_notifier = { 3044 .notifier_call = kvm_cpu_hotplug, 3045 }; 3046 3047 static int vm_stat_get(void *_offset, u64 *val) 3048 { 3049 unsigned offset = (long)_offset; 3050 struct kvm *kvm; 3051 3052 *val = 0; 3053 raw_spin_lock(&kvm_lock); 3054 list_for_each_entry(kvm, &vm_list, vm_list) 3055 *val += *(u32 *)((void *)kvm + offset); 3056 raw_spin_unlock(&kvm_lock); 3057 return 0; 3058 } 3059 3060 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3061 3062 static int vcpu_stat_get(void *_offset, u64 *val) 3063 { 3064 unsigned offset = (long)_offset; 3065 struct kvm *kvm; 3066 struct kvm_vcpu *vcpu; 3067 int i; 3068 3069 *val = 0; 3070 raw_spin_lock(&kvm_lock); 3071 list_for_each_entry(kvm, &vm_list, vm_list) 3072 kvm_for_each_vcpu(i, vcpu, kvm) 3073 *val += *(u32 *)((void *)vcpu + offset); 3074 3075 raw_spin_unlock(&kvm_lock); 3076 return 0; 3077 } 3078 3079 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3080 3081 static const struct file_operations *stat_fops[] = { 3082 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3083 [KVM_STAT_VM] = &vm_stat_fops, 3084 }; 3085 3086 static int kvm_init_debug(void) 3087 { 3088 int r = -EFAULT; 3089 struct kvm_stats_debugfs_item *p; 3090 3091 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3092 if (kvm_debugfs_dir == NULL) 3093 goto out; 3094 3095 for (p = debugfs_entries; p->name; ++p) { 3096 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3097 (void *)(long)p->offset, 3098 stat_fops[p->kind]); 3099 if (p->dentry == NULL) 3100 goto out_dir; 3101 } 3102 3103 return 0; 3104 3105 out_dir: 3106 debugfs_remove_recursive(kvm_debugfs_dir); 3107 out: 3108 return r; 3109 } 3110 3111 static void kvm_exit_debug(void) 3112 { 3113 struct kvm_stats_debugfs_item *p; 3114 3115 for (p = debugfs_entries; p->name; ++p) 3116 debugfs_remove(p->dentry); 3117 debugfs_remove(kvm_debugfs_dir); 3118 } 3119 3120 static int kvm_suspend(void) 3121 { 3122 if (kvm_usage_count) 3123 hardware_disable_nolock(NULL); 3124 return 0; 3125 } 3126 3127 static void kvm_resume(void) 3128 { 3129 if (kvm_usage_count) { 3130 WARN_ON(raw_spin_is_locked(&kvm_lock)); 3131 hardware_enable_nolock(NULL); 3132 } 3133 } 3134 3135 static struct syscore_ops kvm_syscore_ops = { 3136 .suspend = kvm_suspend, 3137 .resume = kvm_resume, 3138 }; 3139 3140 static inline 3141 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3142 { 3143 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3144 } 3145 3146 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3147 { 3148 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3149 if (vcpu->preempted) 3150 vcpu->preempted = false; 3151 3152 kvm_arch_vcpu_load(vcpu, cpu); 3153 } 3154 3155 static void kvm_sched_out(struct preempt_notifier *pn, 3156 struct task_struct *next) 3157 { 3158 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3159 3160 if (current->state == TASK_RUNNING) 3161 vcpu->preempted = true; 3162 kvm_arch_vcpu_put(vcpu); 3163 } 3164 3165 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3166 struct module *module) 3167 { 3168 int r; 3169 int cpu; 3170 3171 r = kvm_arch_init(opaque); 3172 if (r) 3173 goto out_fail; 3174 3175 /* 3176 * kvm_arch_init makes sure there's at most one caller 3177 * for architectures that support multiple implementations, 3178 * like intel and amd on x86. 3179 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3180 * conflicts in case kvm is already setup for another implementation. 3181 */ 3182 r = kvm_irqfd_init(); 3183 if (r) 3184 goto out_irqfd; 3185 3186 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3187 r = -ENOMEM; 3188 goto out_free_0; 3189 } 3190 3191 r = kvm_arch_hardware_setup(); 3192 if (r < 0) 3193 goto out_free_0a; 3194 3195 for_each_online_cpu(cpu) { 3196 smp_call_function_single(cpu, 3197 kvm_arch_check_processor_compat, 3198 &r, 1); 3199 if (r < 0) 3200 goto out_free_1; 3201 } 3202 3203 r = register_cpu_notifier(&kvm_cpu_notifier); 3204 if (r) 3205 goto out_free_2; 3206 register_reboot_notifier(&kvm_reboot_notifier); 3207 3208 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3209 if (!vcpu_align) 3210 vcpu_align = __alignof__(struct kvm_vcpu); 3211 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3212 0, NULL); 3213 if (!kvm_vcpu_cache) { 3214 r = -ENOMEM; 3215 goto out_free_3; 3216 } 3217 3218 r = kvm_async_pf_init(); 3219 if (r) 3220 goto out_free; 3221 3222 kvm_chardev_ops.owner = module; 3223 kvm_vm_fops.owner = module; 3224 kvm_vcpu_fops.owner = module; 3225 3226 r = misc_register(&kvm_dev); 3227 if (r) { 3228 printk(KERN_ERR "kvm: misc device register failed\n"); 3229 goto out_unreg; 3230 } 3231 3232 register_syscore_ops(&kvm_syscore_ops); 3233 3234 kvm_preempt_ops.sched_in = kvm_sched_in; 3235 kvm_preempt_ops.sched_out = kvm_sched_out; 3236 3237 r = kvm_init_debug(); 3238 if (r) { 3239 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3240 goto out_undebugfs; 3241 } 3242 3243 return 0; 3244 3245 out_undebugfs: 3246 unregister_syscore_ops(&kvm_syscore_ops); 3247 misc_deregister(&kvm_dev); 3248 out_unreg: 3249 kvm_async_pf_deinit(); 3250 out_free: 3251 kmem_cache_destroy(kvm_vcpu_cache); 3252 out_free_3: 3253 unregister_reboot_notifier(&kvm_reboot_notifier); 3254 unregister_cpu_notifier(&kvm_cpu_notifier); 3255 out_free_2: 3256 out_free_1: 3257 kvm_arch_hardware_unsetup(); 3258 out_free_0a: 3259 free_cpumask_var(cpus_hardware_enabled); 3260 out_free_0: 3261 kvm_irqfd_exit(); 3262 out_irqfd: 3263 kvm_arch_exit(); 3264 out_fail: 3265 return r; 3266 } 3267 EXPORT_SYMBOL_GPL(kvm_init); 3268 3269 void kvm_exit(void) 3270 { 3271 kvm_exit_debug(); 3272 misc_deregister(&kvm_dev); 3273 kmem_cache_destroy(kvm_vcpu_cache); 3274 kvm_async_pf_deinit(); 3275 unregister_syscore_ops(&kvm_syscore_ops); 3276 unregister_reboot_notifier(&kvm_reboot_notifier); 3277 unregister_cpu_notifier(&kvm_cpu_notifier); 3278 on_each_cpu(hardware_disable_nolock, NULL, 1); 3279 kvm_arch_hardware_unsetup(); 3280 kvm_arch_exit(); 3281 kvm_irqfd_exit(); 3282 free_cpumask_var(cpus_hardware_enabled); 3283 } 3284 EXPORT_SYMBOL_GPL(kvm_exit); 3285