xref: /openbmc/linux/virt/kvm/kvm_main.c (revision b34081f1)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn))
106 		return PageReserved(pfn_to_page(pfn));
107 
108 	return true;
109 }
110 
111 /*
112  * Switches to specified vcpu, until a matching vcpu_put()
113  */
114 int vcpu_load(struct kvm_vcpu *vcpu)
115 {
116 	int cpu;
117 
118 	if (mutex_lock_killable(&vcpu->mutex))
119 		return -EINTR;
120 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
121 		/* The thread running this VCPU changed. */
122 		struct pid *oldpid = vcpu->pid;
123 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
124 		rcu_assign_pointer(vcpu->pid, newpid);
125 		synchronize_rcu();
126 		put_pid(oldpid);
127 	}
128 	cpu = get_cpu();
129 	preempt_notifier_register(&vcpu->preempt_notifier);
130 	kvm_arch_vcpu_load(vcpu, cpu);
131 	put_cpu();
132 	return 0;
133 }
134 
135 void vcpu_put(struct kvm_vcpu *vcpu)
136 {
137 	preempt_disable();
138 	kvm_arch_vcpu_put(vcpu);
139 	preempt_notifier_unregister(&vcpu->preempt_notifier);
140 	preempt_enable();
141 	mutex_unlock(&vcpu->mutex);
142 }
143 
144 static void ack_flush(void *_completed)
145 {
146 }
147 
148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
149 {
150 	int i, cpu, me;
151 	cpumask_var_t cpus;
152 	bool called = true;
153 	struct kvm_vcpu *vcpu;
154 
155 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
156 
157 	me = get_cpu();
158 	kvm_for_each_vcpu(i, vcpu, kvm) {
159 		kvm_make_request(req, vcpu);
160 		cpu = vcpu->cpu;
161 
162 		/* Set ->requests bit before we read ->mode */
163 		smp_mb();
164 
165 		if (cpus != NULL && cpu != -1 && cpu != me &&
166 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
167 			cpumask_set_cpu(cpu, cpus);
168 	}
169 	if (unlikely(cpus == NULL))
170 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
171 	else if (!cpumask_empty(cpus))
172 		smp_call_function_many(cpus, ack_flush, NULL, 1);
173 	else
174 		called = false;
175 	put_cpu();
176 	free_cpumask_var(cpus);
177 	return called;
178 }
179 
180 void kvm_flush_remote_tlbs(struct kvm *kvm)
181 {
182 	long dirty_count = kvm->tlbs_dirty;
183 
184 	smp_mb();
185 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
186 		++kvm->stat.remote_tlb_flush;
187 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
188 }
189 
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194 
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199 
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204 
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 	struct page *page;
208 	int r;
209 
210 	mutex_init(&vcpu->mutex);
211 	vcpu->cpu = -1;
212 	vcpu->kvm = kvm;
213 	vcpu->vcpu_id = id;
214 	vcpu->pid = NULL;
215 	init_waitqueue_head(&vcpu->wq);
216 	kvm_async_pf_vcpu_init(vcpu);
217 
218 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 	if (!page) {
220 		r = -ENOMEM;
221 		goto fail;
222 	}
223 	vcpu->run = page_address(page);
224 
225 	kvm_vcpu_set_in_spin_loop(vcpu, false);
226 	kvm_vcpu_set_dy_eligible(vcpu, false);
227 	vcpu->preempted = false;
228 
229 	r = kvm_arch_vcpu_init(vcpu);
230 	if (r < 0)
231 		goto fail_free_run;
232 	return 0;
233 
234 fail_free_run:
235 	free_page((unsigned long)vcpu->run);
236 fail:
237 	return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240 
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 	put_pid(vcpu->pid);
244 	kvm_arch_vcpu_uninit(vcpu);
245 	free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248 
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 	return container_of(mn, struct kvm, mmu_notifier);
253 }
254 
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 					     struct mm_struct *mm,
257 					     unsigned long address)
258 {
259 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 	int need_tlb_flush, idx;
261 
262 	/*
263 	 * When ->invalidate_page runs, the linux pte has been zapped
264 	 * already but the page is still allocated until
265 	 * ->invalidate_page returns. So if we increase the sequence
266 	 * here the kvm page fault will notice if the spte can't be
267 	 * established because the page is going to be freed. If
268 	 * instead the kvm page fault establishes the spte before
269 	 * ->invalidate_page runs, kvm_unmap_hva will release it
270 	 * before returning.
271 	 *
272 	 * The sequence increase only need to be seen at spin_unlock
273 	 * time, and not at spin_lock time.
274 	 *
275 	 * Increasing the sequence after the spin_unlock would be
276 	 * unsafe because the kvm page fault could then establish the
277 	 * pte after kvm_unmap_hva returned, without noticing the page
278 	 * is going to be freed.
279 	 */
280 	idx = srcu_read_lock(&kvm->srcu);
281 	spin_lock(&kvm->mmu_lock);
282 
283 	kvm->mmu_notifier_seq++;
284 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 	/* we've to flush the tlb before the pages can be freed */
286 	if (need_tlb_flush)
287 		kvm_flush_remote_tlbs(kvm);
288 
289 	spin_unlock(&kvm->mmu_lock);
290 	srcu_read_unlock(&kvm->srcu, idx);
291 }
292 
293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
294 					struct mm_struct *mm,
295 					unsigned long address,
296 					pte_t pte)
297 {
298 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
299 	int idx;
300 
301 	idx = srcu_read_lock(&kvm->srcu);
302 	spin_lock(&kvm->mmu_lock);
303 	kvm->mmu_notifier_seq++;
304 	kvm_set_spte_hva(kvm, address, pte);
305 	spin_unlock(&kvm->mmu_lock);
306 	srcu_read_unlock(&kvm->srcu, idx);
307 }
308 
309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
310 						    struct mm_struct *mm,
311 						    unsigned long start,
312 						    unsigned long end)
313 {
314 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
315 	int need_tlb_flush = 0, idx;
316 
317 	idx = srcu_read_lock(&kvm->srcu);
318 	spin_lock(&kvm->mmu_lock);
319 	/*
320 	 * The count increase must become visible at unlock time as no
321 	 * spte can be established without taking the mmu_lock and
322 	 * count is also read inside the mmu_lock critical section.
323 	 */
324 	kvm->mmu_notifier_count++;
325 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
326 	need_tlb_flush |= kvm->tlbs_dirty;
327 	/* we've to flush the tlb before the pages can be freed */
328 	if (need_tlb_flush)
329 		kvm_flush_remote_tlbs(kvm);
330 
331 	spin_unlock(&kvm->mmu_lock);
332 	srcu_read_unlock(&kvm->srcu, idx);
333 }
334 
335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
336 						  struct mm_struct *mm,
337 						  unsigned long start,
338 						  unsigned long end)
339 {
340 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
341 
342 	spin_lock(&kvm->mmu_lock);
343 	/*
344 	 * This sequence increase will notify the kvm page fault that
345 	 * the page that is going to be mapped in the spte could have
346 	 * been freed.
347 	 */
348 	kvm->mmu_notifier_seq++;
349 	smp_wmb();
350 	/*
351 	 * The above sequence increase must be visible before the
352 	 * below count decrease, which is ensured by the smp_wmb above
353 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
354 	 */
355 	kvm->mmu_notifier_count--;
356 	spin_unlock(&kvm->mmu_lock);
357 
358 	BUG_ON(kvm->mmu_notifier_count < 0);
359 }
360 
361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
362 					      struct mm_struct *mm,
363 					      unsigned long address)
364 {
365 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
366 	int young, idx;
367 
368 	idx = srcu_read_lock(&kvm->srcu);
369 	spin_lock(&kvm->mmu_lock);
370 
371 	young = kvm_age_hva(kvm, address);
372 	if (young)
373 		kvm_flush_remote_tlbs(kvm);
374 
375 	spin_unlock(&kvm->mmu_lock);
376 	srcu_read_unlock(&kvm->srcu, idx);
377 
378 	return young;
379 }
380 
381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
382 				       struct mm_struct *mm,
383 				       unsigned long address)
384 {
385 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 	int young, idx;
387 
388 	idx = srcu_read_lock(&kvm->srcu);
389 	spin_lock(&kvm->mmu_lock);
390 	young = kvm_test_age_hva(kvm, address);
391 	spin_unlock(&kvm->mmu_lock);
392 	srcu_read_unlock(&kvm->srcu, idx);
393 
394 	return young;
395 }
396 
397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
398 				     struct mm_struct *mm)
399 {
400 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 	int idx;
402 
403 	idx = srcu_read_lock(&kvm->srcu);
404 	kvm_arch_flush_shadow_all(kvm);
405 	srcu_read_unlock(&kvm->srcu, idx);
406 }
407 
408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
409 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
410 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
411 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
412 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
413 	.test_young		= kvm_mmu_notifier_test_young,
414 	.change_pte		= kvm_mmu_notifier_change_pte,
415 	.release		= kvm_mmu_notifier_release,
416 };
417 
418 static int kvm_init_mmu_notifier(struct kvm *kvm)
419 {
420 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
421 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
422 }
423 
424 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
425 
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 	return 0;
429 }
430 
431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
432 
433 static void kvm_init_memslots_id(struct kvm *kvm)
434 {
435 	int i;
436 	struct kvm_memslots *slots = kvm->memslots;
437 
438 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
439 		slots->id_to_index[i] = slots->memslots[i].id = i;
440 }
441 
442 static struct kvm *kvm_create_vm(unsigned long type)
443 {
444 	int r, i;
445 	struct kvm *kvm = kvm_arch_alloc_vm();
446 
447 	if (!kvm)
448 		return ERR_PTR(-ENOMEM);
449 
450 	r = kvm_arch_init_vm(kvm, type);
451 	if (r)
452 		goto out_err_nodisable;
453 
454 	r = hardware_enable_all();
455 	if (r)
456 		goto out_err_nodisable;
457 
458 #ifdef CONFIG_HAVE_KVM_IRQCHIP
459 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
460 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
461 #endif
462 
463 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
464 
465 	r = -ENOMEM;
466 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467 	if (!kvm->memslots)
468 		goto out_err_nosrcu;
469 	kvm_init_memslots_id(kvm);
470 	if (init_srcu_struct(&kvm->srcu))
471 		goto out_err_nosrcu;
472 	for (i = 0; i < KVM_NR_BUSES; i++) {
473 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
474 					GFP_KERNEL);
475 		if (!kvm->buses[i])
476 			goto out_err;
477 	}
478 
479 	spin_lock_init(&kvm->mmu_lock);
480 	kvm->mm = current->mm;
481 	atomic_inc(&kvm->mm->mm_count);
482 	kvm_eventfd_init(kvm);
483 	mutex_init(&kvm->lock);
484 	mutex_init(&kvm->irq_lock);
485 	mutex_init(&kvm->slots_lock);
486 	atomic_set(&kvm->users_count, 1);
487 	INIT_LIST_HEAD(&kvm->devices);
488 
489 	r = kvm_init_mmu_notifier(kvm);
490 	if (r)
491 		goto out_err;
492 
493 	raw_spin_lock(&kvm_lock);
494 	list_add(&kvm->vm_list, &vm_list);
495 	raw_spin_unlock(&kvm_lock);
496 
497 	return kvm;
498 
499 out_err:
500 	cleanup_srcu_struct(&kvm->srcu);
501 out_err_nosrcu:
502 	hardware_disable_all();
503 out_err_nodisable:
504 	for (i = 0; i < KVM_NR_BUSES; i++)
505 		kfree(kvm->buses[i]);
506 	kfree(kvm->memslots);
507 	kvm_arch_free_vm(kvm);
508 	return ERR_PTR(r);
509 }
510 
511 /*
512  * Avoid using vmalloc for a small buffer.
513  * Should not be used when the size is statically known.
514  */
515 void *kvm_kvzalloc(unsigned long size)
516 {
517 	if (size > PAGE_SIZE)
518 		return vzalloc(size);
519 	else
520 		return kzalloc(size, GFP_KERNEL);
521 }
522 
523 void kvm_kvfree(const void *addr)
524 {
525 	if (is_vmalloc_addr(addr))
526 		vfree(addr);
527 	else
528 		kfree(addr);
529 }
530 
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533 	if (!memslot->dirty_bitmap)
534 		return;
535 
536 	kvm_kvfree(memslot->dirty_bitmap);
537 	memslot->dirty_bitmap = NULL;
538 }
539 
540 /*
541  * Free any memory in @free but not in @dont.
542  */
543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
544 				  struct kvm_memory_slot *dont)
545 {
546 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547 		kvm_destroy_dirty_bitmap(free);
548 
549 	kvm_arch_free_memslot(free, dont);
550 
551 	free->npages = 0;
552 }
553 
554 void kvm_free_physmem(struct kvm *kvm)
555 {
556 	struct kvm_memslots *slots = kvm->memslots;
557 	struct kvm_memory_slot *memslot;
558 
559 	kvm_for_each_memslot(memslot, slots)
560 		kvm_free_physmem_slot(memslot, NULL);
561 
562 	kfree(kvm->memslots);
563 }
564 
565 static void kvm_destroy_devices(struct kvm *kvm)
566 {
567 	struct list_head *node, *tmp;
568 
569 	list_for_each_safe(node, tmp, &kvm->devices) {
570 		struct kvm_device *dev =
571 			list_entry(node, struct kvm_device, vm_node);
572 
573 		list_del(node);
574 		dev->ops->destroy(dev);
575 	}
576 }
577 
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580 	int i;
581 	struct mm_struct *mm = kvm->mm;
582 
583 	kvm_arch_sync_events(kvm);
584 	raw_spin_lock(&kvm_lock);
585 	list_del(&kvm->vm_list);
586 	raw_spin_unlock(&kvm_lock);
587 	kvm_free_irq_routing(kvm);
588 	for (i = 0; i < KVM_NR_BUSES; i++)
589 		kvm_io_bus_destroy(kvm->buses[i]);
590 	kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594 	kvm_arch_flush_shadow_all(kvm);
595 #endif
596 	kvm_arch_destroy_vm(kvm);
597 	kvm_destroy_devices(kvm);
598 	kvm_free_physmem(kvm);
599 	cleanup_srcu_struct(&kvm->srcu);
600 	kvm_arch_free_vm(kvm);
601 	hardware_disable_all();
602 	mmdrop(mm);
603 }
604 
605 void kvm_get_kvm(struct kvm *kvm)
606 {
607 	atomic_inc(&kvm->users_count);
608 }
609 EXPORT_SYMBOL_GPL(kvm_get_kvm);
610 
611 void kvm_put_kvm(struct kvm *kvm)
612 {
613 	if (atomic_dec_and_test(&kvm->users_count))
614 		kvm_destroy_vm(kvm);
615 }
616 EXPORT_SYMBOL_GPL(kvm_put_kvm);
617 
618 
619 static int kvm_vm_release(struct inode *inode, struct file *filp)
620 {
621 	struct kvm *kvm = filp->private_data;
622 
623 	kvm_irqfd_release(kvm);
624 
625 	kvm_put_kvm(kvm);
626 	return 0;
627 }
628 
629 /*
630  * Allocation size is twice as large as the actual dirty bitmap size.
631  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
632  */
633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 #ifndef CONFIG_S390
636 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
637 
638 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
639 	if (!memslot->dirty_bitmap)
640 		return -ENOMEM;
641 
642 #endif /* !CONFIG_S390 */
643 	return 0;
644 }
645 
646 static int cmp_memslot(const void *slot1, const void *slot2)
647 {
648 	struct kvm_memory_slot *s1, *s2;
649 
650 	s1 = (struct kvm_memory_slot *)slot1;
651 	s2 = (struct kvm_memory_slot *)slot2;
652 
653 	if (s1->npages < s2->npages)
654 		return 1;
655 	if (s1->npages > s2->npages)
656 		return -1;
657 
658 	return 0;
659 }
660 
661 /*
662  * Sort the memslots base on its size, so the larger slots
663  * will get better fit.
664  */
665 static void sort_memslots(struct kvm_memslots *slots)
666 {
667 	int i;
668 
669 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
670 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
671 
672 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
673 		slots->id_to_index[slots->memslots[i].id] = i;
674 }
675 
676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
677 		     u64 last_generation)
678 {
679 	if (new) {
680 		int id = new->id;
681 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
682 		unsigned long npages = old->npages;
683 
684 		*old = *new;
685 		if (new->npages != npages)
686 			sort_memslots(slots);
687 	}
688 
689 	slots->generation = last_generation + 1;
690 }
691 
692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
693 {
694 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
695 
696 #ifdef KVM_CAP_READONLY_MEM
697 	valid_flags |= KVM_MEM_READONLY;
698 #endif
699 
700 	if (mem->flags & ~valid_flags)
701 		return -EINVAL;
702 
703 	return 0;
704 }
705 
706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
707 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
708 {
709 	struct kvm_memslots *old_memslots = kvm->memslots;
710 
711 	update_memslots(slots, new, kvm->memslots->generation);
712 	rcu_assign_pointer(kvm->memslots, slots);
713 	synchronize_srcu_expedited(&kvm->srcu);
714 
715 	kvm_arch_memslots_updated(kvm);
716 
717 	return old_memslots;
718 }
719 
720 /*
721  * Allocate some memory and give it an address in the guest physical address
722  * space.
723  *
724  * Discontiguous memory is allowed, mostly for framebuffers.
725  *
726  * Must be called holding mmap_sem for write.
727  */
728 int __kvm_set_memory_region(struct kvm *kvm,
729 			    struct kvm_userspace_memory_region *mem)
730 {
731 	int r;
732 	gfn_t base_gfn;
733 	unsigned long npages;
734 	struct kvm_memory_slot *slot;
735 	struct kvm_memory_slot old, new;
736 	struct kvm_memslots *slots = NULL, *old_memslots;
737 	enum kvm_mr_change change;
738 
739 	r = check_memory_region_flags(mem);
740 	if (r)
741 		goto out;
742 
743 	r = -EINVAL;
744 	/* General sanity checks */
745 	if (mem->memory_size & (PAGE_SIZE - 1))
746 		goto out;
747 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
748 		goto out;
749 	/* We can read the guest memory with __xxx_user() later on. */
750 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
751 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
752 	     !access_ok(VERIFY_WRITE,
753 			(void __user *)(unsigned long)mem->userspace_addr,
754 			mem->memory_size)))
755 		goto out;
756 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
757 		goto out;
758 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
759 		goto out;
760 
761 	slot = id_to_memslot(kvm->memslots, mem->slot);
762 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
763 	npages = mem->memory_size >> PAGE_SHIFT;
764 
765 	r = -EINVAL;
766 	if (npages > KVM_MEM_MAX_NR_PAGES)
767 		goto out;
768 
769 	if (!npages)
770 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
771 
772 	new = old = *slot;
773 
774 	new.id = mem->slot;
775 	new.base_gfn = base_gfn;
776 	new.npages = npages;
777 	new.flags = mem->flags;
778 
779 	r = -EINVAL;
780 	if (npages) {
781 		if (!old.npages)
782 			change = KVM_MR_CREATE;
783 		else { /* Modify an existing slot. */
784 			if ((mem->userspace_addr != old.userspace_addr) ||
785 			    (npages != old.npages) ||
786 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
787 				goto out;
788 
789 			if (base_gfn != old.base_gfn)
790 				change = KVM_MR_MOVE;
791 			else if (new.flags != old.flags)
792 				change = KVM_MR_FLAGS_ONLY;
793 			else { /* Nothing to change. */
794 				r = 0;
795 				goto out;
796 			}
797 		}
798 	} else if (old.npages) {
799 		change = KVM_MR_DELETE;
800 	} else /* Modify a non-existent slot: disallowed. */
801 		goto out;
802 
803 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
804 		/* Check for overlaps */
805 		r = -EEXIST;
806 		kvm_for_each_memslot(slot, kvm->memslots) {
807 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
808 			    (slot->id == mem->slot))
809 				continue;
810 			if (!((base_gfn + npages <= slot->base_gfn) ||
811 			      (base_gfn >= slot->base_gfn + slot->npages)))
812 				goto out;
813 		}
814 	}
815 
816 	/* Free page dirty bitmap if unneeded */
817 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
818 		new.dirty_bitmap = NULL;
819 
820 	r = -ENOMEM;
821 	if (change == KVM_MR_CREATE) {
822 		new.userspace_addr = mem->userspace_addr;
823 
824 		if (kvm_arch_create_memslot(&new, npages))
825 			goto out_free;
826 	}
827 
828 	/* Allocate page dirty bitmap if needed */
829 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
830 		if (kvm_create_dirty_bitmap(&new) < 0)
831 			goto out_free;
832 	}
833 
834 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
835 		r = -ENOMEM;
836 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 				GFP_KERNEL);
838 		if (!slots)
839 			goto out_free;
840 		slot = id_to_memslot(slots, mem->slot);
841 		slot->flags |= KVM_MEMSLOT_INVALID;
842 
843 		old_memslots = install_new_memslots(kvm, slots, NULL);
844 
845 		/* slot was deleted or moved, clear iommu mapping */
846 		kvm_iommu_unmap_pages(kvm, &old);
847 		/* From this point no new shadow pages pointing to a deleted,
848 		 * or moved, memslot will be created.
849 		 *
850 		 * validation of sp->gfn happens in:
851 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
852 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
853 		 */
854 		kvm_arch_flush_shadow_memslot(kvm, slot);
855 		slots = old_memslots;
856 	}
857 
858 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
859 	if (r)
860 		goto out_slots;
861 
862 	r = -ENOMEM;
863 	/*
864 	 * We can re-use the old_memslots from above, the only difference
865 	 * from the currently installed memslots is the invalid flag.  This
866 	 * will get overwritten by update_memslots anyway.
867 	 */
868 	if (!slots) {
869 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
870 				GFP_KERNEL);
871 		if (!slots)
872 			goto out_free;
873 	}
874 
875 	/*
876 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
877 	 * un-mapped and re-mapped if their base changes.  Since base change
878 	 * unmapping is handled above with slot deletion, mapping alone is
879 	 * needed here.  Anything else the iommu might care about for existing
880 	 * slots (size changes, userspace addr changes and read-only flag
881 	 * changes) is disallowed above, so any other attribute changes getting
882 	 * here can be skipped.
883 	 */
884 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885 		r = kvm_iommu_map_pages(kvm, &new);
886 		if (r)
887 			goto out_slots;
888 	}
889 
890 	/* actual memory is freed via old in kvm_free_physmem_slot below */
891 	if (change == KVM_MR_DELETE) {
892 		new.dirty_bitmap = NULL;
893 		memset(&new.arch, 0, sizeof(new.arch));
894 	}
895 
896 	old_memslots = install_new_memslots(kvm, slots, &new);
897 
898 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
899 
900 	kvm_free_physmem_slot(&old, &new);
901 	kfree(old_memslots);
902 
903 	return 0;
904 
905 out_slots:
906 	kfree(slots);
907 out_free:
908 	kvm_free_physmem_slot(&new, &old);
909 out:
910 	return r;
911 }
912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913 
914 int kvm_set_memory_region(struct kvm *kvm,
915 			  struct kvm_userspace_memory_region *mem)
916 {
917 	int r;
918 
919 	mutex_lock(&kvm->slots_lock);
920 	r = __kvm_set_memory_region(kvm, mem);
921 	mutex_unlock(&kvm->slots_lock);
922 	return r;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925 
926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927 				   struct kvm_userspace_memory_region *mem)
928 {
929 	if (mem->slot >= KVM_USER_MEM_SLOTS)
930 		return -EINVAL;
931 	return kvm_set_memory_region(kvm, mem);
932 }
933 
934 int kvm_get_dirty_log(struct kvm *kvm,
935 			struct kvm_dirty_log *log, int *is_dirty)
936 {
937 	struct kvm_memory_slot *memslot;
938 	int r, i;
939 	unsigned long n;
940 	unsigned long any = 0;
941 
942 	r = -EINVAL;
943 	if (log->slot >= KVM_USER_MEM_SLOTS)
944 		goto out;
945 
946 	memslot = id_to_memslot(kvm->memslots, log->slot);
947 	r = -ENOENT;
948 	if (!memslot->dirty_bitmap)
949 		goto out;
950 
951 	n = kvm_dirty_bitmap_bytes(memslot);
952 
953 	for (i = 0; !any && i < n/sizeof(long); ++i)
954 		any = memslot->dirty_bitmap[i];
955 
956 	r = -EFAULT;
957 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958 		goto out;
959 
960 	if (any)
961 		*is_dirty = 1;
962 
963 	r = 0;
964 out:
965 	return r;
966 }
967 
968 bool kvm_largepages_enabled(void)
969 {
970 	return largepages_enabled;
971 }
972 
973 void kvm_disable_largepages(void)
974 {
975 	largepages_enabled = false;
976 }
977 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978 
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984 
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988 
989 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990 	      memslot->flags & KVM_MEMSLOT_INVALID)
991 		return 0;
992 
993 	return 1;
994 }
995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996 
997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998 {
999 	struct vm_area_struct *vma;
1000 	unsigned long addr, size;
1001 
1002 	size = PAGE_SIZE;
1003 
1004 	addr = gfn_to_hva(kvm, gfn);
1005 	if (kvm_is_error_hva(addr))
1006 		return PAGE_SIZE;
1007 
1008 	down_read(&current->mm->mmap_sem);
1009 	vma = find_vma(current->mm, addr);
1010 	if (!vma)
1011 		goto out;
1012 
1013 	size = vma_kernel_pagesize(vma);
1014 
1015 out:
1016 	up_read(&current->mm->mmap_sem);
1017 
1018 	return size;
1019 }
1020 
1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022 {
1023 	return slot->flags & KVM_MEM_READONLY;
1024 }
1025 
1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027 				       gfn_t *nr_pages, bool write)
1028 {
1029 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030 		return KVM_HVA_ERR_BAD;
1031 
1032 	if (memslot_is_readonly(slot) && write)
1033 		return KVM_HVA_ERR_RO_BAD;
1034 
1035 	if (nr_pages)
1036 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1037 
1038 	return __gfn_to_hva_memslot(slot, gfn);
1039 }
1040 
1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042 				     gfn_t *nr_pages)
1043 {
1044 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045 }
1046 
1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048 				 gfn_t gfn)
1049 {
1050 	return gfn_to_hva_many(slot, gfn, NULL);
1051 }
1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053 
1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055 {
1056 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva);
1059 
1060 /*
1061  * The hva returned by this function is only allowed to be read.
1062  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1063  */
1064 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1065 {
1066 	return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1067 }
1068 
1069 static int kvm_read_hva(void *data, void __user *hva, int len)
1070 {
1071 	return __copy_from_user(data, hva, len);
1072 }
1073 
1074 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1075 {
1076 	return __copy_from_user_inatomic(data, hva, len);
1077 }
1078 
1079 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1080 	unsigned long start, int write, struct page **page)
1081 {
1082 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1083 
1084 	if (write)
1085 		flags |= FOLL_WRITE;
1086 
1087 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1088 }
1089 
1090 static inline int check_user_page_hwpoison(unsigned long addr)
1091 {
1092 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1093 
1094 	rc = __get_user_pages(current, current->mm, addr, 1,
1095 			      flags, NULL, NULL, NULL);
1096 	return rc == -EHWPOISON;
1097 }
1098 
1099 /*
1100  * The atomic path to get the writable pfn which will be stored in @pfn,
1101  * true indicates success, otherwise false is returned.
1102  */
1103 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1104 			    bool write_fault, bool *writable, pfn_t *pfn)
1105 {
1106 	struct page *page[1];
1107 	int npages;
1108 
1109 	if (!(async || atomic))
1110 		return false;
1111 
1112 	/*
1113 	 * Fast pin a writable pfn only if it is a write fault request
1114 	 * or the caller allows to map a writable pfn for a read fault
1115 	 * request.
1116 	 */
1117 	if (!(write_fault || writable))
1118 		return false;
1119 
1120 	npages = __get_user_pages_fast(addr, 1, 1, page);
1121 	if (npages == 1) {
1122 		*pfn = page_to_pfn(page[0]);
1123 
1124 		if (writable)
1125 			*writable = true;
1126 		return true;
1127 	}
1128 
1129 	return false;
1130 }
1131 
1132 /*
1133  * The slow path to get the pfn of the specified host virtual address,
1134  * 1 indicates success, -errno is returned if error is detected.
1135  */
1136 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1137 			   bool *writable, pfn_t *pfn)
1138 {
1139 	struct page *page[1];
1140 	int npages = 0;
1141 
1142 	might_sleep();
1143 
1144 	if (writable)
1145 		*writable = write_fault;
1146 
1147 	if (async) {
1148 		down_read(&current->mm->mmap_sem);
1149 		npages = get_user_page_nowait(current, current->mm,
1150 					      addr, write_fault, page);
1151 		up_read(&current->mm->mmap_sem);
1152 	} else
1153 		npages = get_user_pages_fast(addr, 1, write_fault,
1154 					     page);
1155 	if (npages != 1)
1156 		return npages;
1157 
1158 	/* map read fault as writable if possible */
1159 	if (unlikely(!write_fault) && writable) {
1160 		struct page *wpage[1];
1161 
1162 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1163 		if (npages == 1) {
1164 			*writable = true;
1165 			put_page(page[0]);
1166 			page[0] = wpage[0];
1167 		}
1168 
1169 		npages = 1;
1170 	}
1171 	*pfn = page_to_pfn(page[0]);
1172 	return npages;
1173 }
1174 
1175 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1176 {
1177 	if (unlikely(!(vma->vm_flags & VM_READ)))
1178 		return false;
1179 
1180 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1181 		return false;
1182 
1183 	return true;
1184 }
1185 
1186 /*
1187  * Pin guest page in memory and return its pfn.
1188  * @addr: host virtual address which maps memory to the guest
1189  * @atomic: whether this function can sleep
1190  * @async: whether this function need to wait IO complete if the
1191  *         host page is not in the memory
1192  * @write_fault: whether we should get a writable host page
1193  * @writable: whether it allows to map a writable host page for !@write_fault
1194  *
1195  * The function will map a writable host page for these two cases:
1196  * 1): @write_fault = true
1197  * 2): @write_fault = false && @writable, @writable will tell the caller
1198  *     whether the mapping is writable.
1199  */
1200 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1201 			bool write_fault, bool *writable)
1202 {
1203 	struct vm_area_struct *vma;
1204 	pfn_t pfn = 0;
1205 	int npages;
1206 
1207 	/* we can do it either atomically or asynchronously, not both */
1208 	BUG_ON(atomic && async);
1209 
1210 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1211 		return pfn;
1212 
1213 	if (atomic)
1214 		return KVM_PFN_ERR_FAULT;
1215 
1216 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1217 	if (npages == 1)
1218 		return pfn;
1219 
1220 	down_read(&current->mm->mmap_sem);
1221 	if (npages == -EHWPOISON ||
1222 	      (!async && check_user_page_hwpoison(addr))) {
1223 		pfn = KVM_PFN_ERR_HWPOISON;
1224 		goto exit;
1225 	}
1226 
1227 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1228 
1229 	if (vma == NULL)
1230 		pfn = KVM_PFN_ERR_FAULT;
1231 	else if ((vma->vm_flags & VM_PFNMAP)) {
1232 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1233 			vma->vm_pgoff;
1234 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1235 	} else {
1236 		if (async && vma_is_valid(vma, write_fault))
1237 			*async = true;
1238 		pfn = KVM_PFN_ERR_FAULT;
1239 	}
1240 exit:
1241 	up_read(&current->mm->mmap_sem);
1242 	return pfn;
1243 }
1244 
1245 static pfn_t
1246 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1247 		     bool *async, bool write_fault, bool *writable)
1248 {
1249 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1250 
1251 	if (addr == KVM_HVA_ERR_RO_BAD)
1252 		return KVM_PFN_ERR_RO_FAULT;
1253 
1254 	if (kvm_is_error_hva(addr))
1255 		return KVM_PFN_NOSLOT;
1256 
1257 	/* Do not map writable pfn in the readonly memslot. */
1258 	if (writable && memslot_is_readonly(slot)) {
1259 		*writable = false;
1260 		writable = NULL;
1261 	}
1262 
1263 	return hva_to_pfn(addr, atomic, async, write_fault,
1264 			  writable);
1265 }
1266 
1267 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1268 			  bool write_fault, bool *writable)
1269 {
1270 	struct kvm_memory_slot *slot;
1271 
1272 	if (async)
1273 		*async = false;
1274 
1275 	slot = gfn_to_memslot(kvm, gfn);
1276 
1277 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1278 				    writable);
1279 }
1280 
1281 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1282 {
1283 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1284 }
1285 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1286 
1287 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1288 		       bool write_fault, bool *writable)
1289 {
1290 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1291 }
1292 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1293 
1294 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1295 {
1296 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1297 }
1298 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1299 
1300 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1301 		      bool *writable)
1302 {
1303 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1304 }
1305 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1306 
1307 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1308 {
1309 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1310 }
1311 
1312 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1313 {
1314 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1317 
1318 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1319 								  int nr_pages)
1320 {
1321 	unsigned long addr;
1322 	gfn_t entry;
1323 
1324 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1325 	if (kvm_is_error_hva(addr))
1326 		return -1;
1327 
1328 	if (entry < nr_pages)
1329 		return 0;
1330 
1331 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1332 }
1333 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1334 
1335 static struct page *kvm_pfn_to_page(pfn_t pfn)
1336 {
1337 	if (is_error_noslot_pfn(pfn))
1338 		return KVM_ERR_PTR_BAD_PAGE;
1339 
1340 	if (kvm_is_mmio_pfn(pfn)) {
1341 		WARN_ON(1);
1342 		return KVM_ERR_PTR_BAD_PAGE;
1343 	}
1344 
1345 	return pfn_to_page(pfn);
1346 }
1347 
1348 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1349 {
1350 	pfn_t pfn;
1351 
1352 	pfn = gfn_to_pfn(kvm, gfn);
1353 
1354 	return kvm_pfn_to_page(pfn);
1355 }
1356 
1357 EXPORT_SYMBOL_GPL(gfn_to_page);
1358 
1359 void kvm_release_page_clean(struct page *page)
1360 {
1361 	WARN_ON(is_error_page(page));
1362 
1363 	kvm_release_pfn_clean(page_to_pfn(page));
1364 }
1365 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1366 
1367 void kvm_release_pfn_clean(pfn_t pfn)
1368 {
1369 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1370 		put_page(pfn_to_page(pfn));
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1373 
1374 void kvm_release_page_dirty(struct page *page)
1375 {
1376 	WARN_ON(is_error_page(page));
1377 
1378 	kvm_release_pfn_dirty(page_to_pfn(page));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1381 
1382 void kvm_release_pfn_dirty(pfn_t pfn)
1383 {
1384 	kvm_set_pfn_dirty(pfn);
1385 	kvm_release_pfn_clean(pfn);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1388 
1389 void kvm_set_page_dirty(struct page *page)
1390 {
1391 	kvm_set_pfn_dirty(page_to_pfn(page));
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1394 
1395 void kvm_set_pfn_dirty(pfn_t pfn)
1396 {
1397 	if (!kvm_is_mmio_pfn(pfn)) {
1398 		struct page *page = pfn_to_page(pfn);
1399 		if (!PageReserved(page))
1400 			SetPageDirty(page);
1401 	}
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1404 
1405 void kvm_set_pfn_accessed(pfn_t pfn)
1406 {
1407 	if (!kvm_is_mmio_pfn(pfn))
1408 		mark_page_accessed(pfn_to_page(pfn));
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1411 
1412 void kvm_get_pfn(pfn_t pfn)
1413 {
1414 	if (!kvm_is_mmio_pfn(pfn))
1415 		get_page(pfn_to_page(pfn));
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1418 
1419 static int next_segment(unsigned long len, int offset)
1420 {
1421 	if (len > PAGE_SIZE - offset)
1422 		return PAGE_SIZE - offset;
1423 	else
1424 		return len;
1425 }
1426 
1427 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1428 			int len)
1429 {
1430 	int r;
1431 	unsigned long addr;
1432 
1433 	addr = gfn_to_hva_read(kvm, gfn);
1434 	if (kvm_is_error_hva(addr))
1435 		return -EFAULT;
1436 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1437 	if (r)
1438 		return -EFAULT;
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1442 
1443 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1444 {
1445 	gfn_t gfn = gpa >> PAGE_SHIFT;
1446 	int seg;
1447 	int offset = offset_in_page(gpa);
1448 	int ret;
1449 
1450 	while ((seg = next_segment(len, offset)) != 0) {
1451 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1452 		if (ret < 0)
1453 			return ret;
1454 		offset = 0;
1455 		len -= seg;
1456 		data += seg;
1457 		++gfn;
1458 	}
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_read_guest);
1462 
1463 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1464 			  unsigned long len)
1465 {
1466 	int r;
1467 	unsigned long addr;
1468 	gfn_t gfn = gpa >> PAGE_SHIFT;
1469 	int offset = offset_in_page(gpa);
1470 
1471 	addr = gfn_to_hva_read(kvm, gfn);
1472 	if (kvm_is_error_hva(addr))
1473 		return -EFAULT;
1474 	pagefault_disable();
1475 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1476 	pagefault_enable();
1477 	if (r)
1478 		return -EFAULT;
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(kvm_read_guest_atomic);
1482 
1483 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1484 			 int offset, int len)
1485 {
1486 	int r;
1487 	unsigned long addr;
1488 
1489 	addr = gfn_to_hva(kvm, gfn);
1490 	if (kvm_is_error_hva(addr))
1491 		return -EFAULT;
1492 	r = __copy_to_user((void __user *)addr + offset, data, len);
1493 	if (r)
1494 		return -EFAULT;
1495 	mark_page_dirty(kvm, gfn);
1496 	return 0;
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1499 
1500 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1501 		    unsigned long len)
1502 {
1503 	gfn_t gfn = gpa >> PAGE_SHIFT;
1504 	int seg;
1505 	int offset = offset_in_page(gpa);
1506 	int ret;
1507 
1508 	while ((seg = next_segment(len, offset)) != 0) {
1509 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1510 		if (ret < 0)
1511 			return ret;
1512 		offset = 0;
1513 		len -= seg;
1514 		data += seg;
1515 		++gfn;
1516 	}
1517 	return 0;
1518 }
1519 
1520 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1521 			      gpa_t gpa, unsigned long len)
1522 {
1523 	struct kvm_memslots *slots = kvm_memslots(kvm);
1524 	int offset = offset_in_page(gpa);
1525 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1526 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1527 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1528 	gfn_t nr_pages_avail;
1529 
1530 	ghc->gpa = gpa;
1531 	ghc->generation = slots->generation;
1532 	ghc->len = len;
1533 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1534 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1535 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1536 		ghc->hva += offset;
1537 	} else {
1538 		/*
1539 		 * If the requested region crosses two memslots, we still
1540 		 * verify that the entire region is valid here.
1541 		 */
1542 		while (start_gfn <= end_gfn) {
1543 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1544 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1545 						   &nr_pages_avail);
1546 			if (kvm_is_error_hva(ghc->hva))
1547 				return -EFAULT;
1548 			start_gfn += nr_pages_avail;
1549 		}
1550 		/* Use the slow path for cross page reads and writes. */
1551 		ghc->memslot = NULL;
1552 	}
1553 	return 0;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1556 
1557 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1558 			   void *data, unsigned long len)
1559 {
1560 	struct kvm_memslots *slots = kvm_memslots(kvm);
1561 	int r;
1562 
1563 	BUG_ON(len > ghc->len);
1564 
1565 	if (slots->generation != ghc->generation)
1566 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1567 
1568 	if (unlikely(!ghc->memslot))
1569 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1570 
1571 	if (kvm_is_error_hva(ghc->hva))
1572 		return -EFAULT;
1573 
1574 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1575 	if (r)
1576 		return -EFAULT;
1577 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1578 
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1582 
1583 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1584 			   void *data, unsigned long len)
1585 {
1586 	struct kvm_memslots *slots = kvm_memslots(kvm);
1587 	int r;
1588 
1589 	BUG_ON(len > ghc->len);
1590 
1591 	if (slots->generation != ghc->generation)
1592 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1593 
1594 	if (unlikely(!ghc->memslot))
1595 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1596 
1597 	if (kvm_is_error_hva(ghc->hva))
1598 		return -EFAULT;
1599 
1600 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1601 	if (r)
1602 		return -EFAULT;
1603 
1604 	return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1607 
1608 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1609 {
1610 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1611 				    offset, len);
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1614 
1615 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1616 {
1617 	gfn_t gfn = gpa >> PAGE_SHIFT;
1618 	int seg;
1619 	int offset = offset_in_page(gpa);
1620 	int ret;
1621 
1622         while ((seg = next_segment(len, offset)) != 0) {
1623 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1624 		if (ret < 0)
1625 			return ret;
1626 		offset = 0;
1627 		len -= seg;
1628 		++gfn;
1629 	}
1630 	return 0;
1631 }
1632 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1633 
1634 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1635 			     gfn_t gfn)
1636 {
1637 	if (memslot && memslot->dirty_bitmap) {
1638 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1639 
1640 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1641 	}
1642 }
1643 
1644 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1645 {
1646 	struct kvm_memory_slot *memslot;
1647 
1648 	memslot = gfn_to_memslot(kvm, gfn);
1649 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1650 }
1651 
1652 /*
1653  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1654  */
1655 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1656 {
1657 	DEFINE_WAIT(wait);
1658 
1659 	for (;;) {
1660 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1661 
1662 		if (kvm_arch_vcpu_runnable(vcpu)) {
1663 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1664 			break;
1665 		}
1666 		if (kvm_cpu_has_pending_timer(vcpu))
1667 			break;
1668 		if (signal_pending(current))
1669 			break;
1670 
1671 		schedule();
1672 	}
1673 
1674 	finish_wait(&vcpu->wq, &wait);
1675 }
1676 
1677 #ifndef CONFIG_S390
1678 /*
1679  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1680  */
1681 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1682 {
1683 	int me;
1684 	int cpu = vcpu->cpu;
1685 	wait_queue_head_t *wqp;
1686 
1687 	wqp = kvm_arch_vcpu_wq(vcpu);
1688 	if (waitqueue_active(wqp)) {
1689 		wake_up_interruptible(wqp);
1690 		++vcpu->stat.halt_wakeup;
1691 	}
1692 
1693 	me = get_cpu();
1694 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1695 		if (kvm_arch_vcpu_should_kick(vcpu))
1696 			smp_send_reschedule(cpu);
1697 	put_cpu();
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1700 #endif /* !CONFIG_S390 */
1701 
1702 void kvm_resched(struct kvm_vcpu *vcpu)
1703 {
1704 	if (!need_resched())
1705 		return;
1706 	cond_resched();
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_resched);
1709 
1710 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1711 {
1712 	struct pid *pid;
1713 	struct task_struct *task = NULL;
1714 	bool ret = false;
1715 
1716 	rcu_read_lock();
1717 	pid = rcu_dereference(target->pid);
1718 	if (pid)
1719 		task = get_pid_task(target->pid, PIDTYPE_PID);
1720 	rcu_read_unlock();
1721 	if (!task)
1722 		return ret;
1723 	if (task->flags & PF_VCPU) {
1724 		put_task_struct(task);
1725 		return ret;
1726 	}
1727 	ret = yield_to(task, 1);
1728 	put_task_struct(task);
1729 
1730 	return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1733 
1734 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1735 /*
1736  * Helper that checks whether a VCPU is eligible for directed yield.
1737  * Most eligible candidate to yield is decided by following heuristics:
1738  *
1739  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1740  *  (preempted lock holder), indicated by @in_spin_loop.
1741  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1742  *
1743  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1744  *  chance last time (mostly it has become eligible now since we have probably
1745  *  yielded to lockholder in last iteration. This is done by toggling
1746  *  @dy_eligible each time a VCPU checked for eligibility.)
1747  *
1748  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1749  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1750  *  burning. Giving priority for a potential lock-holder increases lock
1751  *  progress.
1752  *
1753  *  Since algorithm is based on heuristics, accessing another VCPU data without
1754  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1755  *  and continue with next VCPU and so on.
1756  */
1757 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1758 {
1759 	bool eligible;
1760 
1761 	eligible = !vcpu->spin_loop.in_spin_loop ||
1762 			(vcpu->spin_loop.in_spin_loop &&
1763 			 vcpu->spin_loop.dy_eligible);
1764 
1765 	if (vcpu->spin_loop.in_spin_loop)
1766 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1767 
1768 	return eligible;
1769 }
1770 #endif
1771 
1772 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1773 {
1774 	struct kvm *kvm = me->kvm;
1775 	struct kvm_vcpu *vcpu;
1776 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1777 	int yielded = 0;
1778 	int try = 3;
1779 	int pass;
1780 	int i;
1781 
1782 	kvm_vcpu_set_in_spin_loop(me, true);
1783 	/*
1784 	 * We boost the priority of a VCPU that is runnable but not
1785 	 * currently running, because it got preempted by something
1786 	 * else and called schedule in __vcpu_run.  Hopefully that
1787 	 * VCPU is holding the lock that we need and will release it.
1788 	 * We approximate round-robin by starting at the last boosted VCPU.
1789 	 */
1790 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1791 		kvm_for_each_vcpu(i, vcpu, kvm) {
1792 			if (!pass && i <= last_boosted_vcpu) {
1793 				i = last_boosted_vcpu;
1794 				continue;
1795 			} else if (pass && i > last_boosted_vcpu)
1796 				break;
1797 			if (!ACCESS_ONCE(vcpu->preempted))
1798 				continue;
1799 			if (vcpu == me)
1800 				continue;
1801 			if (waitqueue_active(&vcpu->wq))
1802 				continue;
1803 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1804 				continue;
1805 
1806 			yielded = kvm_vcpu_yield_to(vcpu);
1807 			if (yielded > 0) {
1808 				kvm->last_boosted_vcpu = i;
1809 				break;
1810 			} else if (yielded < 0) {
1811 				try--;
1812 				if (!try)
1813 					break;
1814 			}
1815 		}
1816 	}
1817 	kvm_vcpu_set_in_spin_loop(me, false);
1818 
1819 	/* Ensure vcpu is not eligible during next spinloop */
1820 	kvm_vcpu_set_dy_eligible(me, false);
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1823 
1824 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1825 {
1826 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1827 	struct page *page;
1828 
1829 	if (vmf->pgoff == 0)
1830 		page = virt_to_page(vcpu->run);
1831 #ifdef CONFIG_X86
1832 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1833 		page = virt_to_page(vcpu->arch.pio_data);
1834 #endif
1835 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1836 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1837 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1838 #endif
1839 	else
1840 		return kvm_arch_vcpu_fault(vcpu, vmf);
1841 	get_page(page);
1842 	vmf->page = page;
1843 	return 0;
1844 }
1845 
1846 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1847 	.fault = kvm_vcpu_fault,
1848 };
1849 
1850 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1851 {
1852 	vma->vm_ops = &kvm_vcpu_vm_ops;
1853 	return 0;
1854 }
1855 
1856 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1857 {
1858 	struct kvm_vcpu *vcpu = filp->private_data;
1859 
1860 	kvm_put_kvm(vcpu->kvm);
1861 	return 0;
1862 }
1863 
1864 static struct file_operations kvm_vcpu_fops = {
1865 	.release        = kvm_vcpu_release,
1866 	.unlocked_ioctl = kvm_vcpu_ioctl,
1867 #ifdef CONFIG_COMPAT
1868 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1869 #endif
1870 	.mmap           = kvm_vcpu_mmap,
1871 	.llseek		= noop_llseek,
1872 };
1873 
1874 /*
1875  * Allocates an inode for the vcpu.
1876  */
1877 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1878 {
1879 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1880 }
1881 
1882 /*
1883  * Creates some virtual cpus.  Good luck creating more than one.
1884  */
1885 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1886 {
1887 	int r;
1888 	struct kvm_vcpu *vcpu, *v;
1889 
1890 	vcpu = kvm_arch_vcpu_create(kvm, id);
1891 	if (IS_ERR(vcpu))
1892 		return PTR_ERR(vcpu);
1893 
1894 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1895 
1896 	r = kvm_arch_vcpu_setup(vcpu);
1897 	if (r)
1898 		goto vcpu_destroy;
1899 
1900 	mutex_lock(&kvm->lock);
1901 	if (!kvm_vcpu_compatible(vcpu)) {
1902 		r = -EINVAL;
1903 		goto unlock_vcpu_destroy;
1904 	}
1905 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1906 		r = -EINVAL;
1907 		goto unlock_vcpu_destroy;
1908 	}
1909 
1910 	kvm_for_each_vcpu(r, v, kvm)
1911 		if (v->vcpu_id == id) {
1912 			r = -EEXIST;
1913 			goto unlock_vcpu_destroy;
1914 		}
1915 
1916 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1917 
1918 	/* Now it's all set up, let userspace reach it */
1919 	kvm_get_kvm(kvm);
1920 	r = create_vcpu_fd(vcpu);
1921 	if (r < 0) {
1922 		kvm_put_kvm(kvm);
1923 		goto unlock_vcpu_destroy;
1924 	}
1925 
1926 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1927 	smp_wmb();
1928 	atomic_inc(&kvm->online_vcpus);
1929 
1930 	mutex_unlock(&kvm->lock);
1931 	kvm_arch_vcpu_postcreate(vcpu);
1932 	return r;
1933 
1934 unlock_vcpu_destroy:
1935 	mutex_unlock(&kvm->lock);
1936 vcpu_destroy:
1937 	kvm_arch_vcpu_destroy(vcpu);
1938 	return r;
1939 }
1940 
1941 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1942 {
1943 	if (sigset) {
1944 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1945 		vcpu->sigset_active = 1;
1946 		vcpu->sigset = *sigset;
1947 	} else
1948 		vcpu->sigset_active = 0;
1949 	return 0;
1950 }
1951 
1952 static long kvm_vcpu_ioctl(struct file *filp,
1953 			   unsigned int ioctl, unsigned long arg)
1954 {
1955 	struct kvm_vcpu *vcpu = filp->private_data;
1956 	void __user *argp = (void __user *)arg;
1957 	int r;
1958 	struct kvm_fpu *fpu = NULL;
1959 	struct kvm_sregs *kvm_sregs = NULL;
1960 
1961 	if (vcpu->kvm->mm != current->mm)
1962 		return -EIO;
1963 
1964 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1965 	/*
1966 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1967 	 * so vcpu_load() would break it.
1968 	 */
1969 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1970 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1971 #endif
1972 
1973 
1974 	r = vcpu_load(vcpu);
1975 	if (r)
1976 		return r;
1977 	switch (ioctl) {
1978 	case KVM_RUN:
1979 		r = -EINVAL;
1980 		if (arg)
1981 			goto out;
1982 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1983 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1984 		break;
1985 	case KVM_GET_REGS: {
1986 		struct kvm_regs *kvm_regs;
1987 
1988 		r = -ENOMEM;
1989 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1990 		if (!kvm_regs)
1991 			goto out;
1992 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1993 		if (r)
1994 			goto out_free1;
1995 		r = -EFAULT;
1996 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1997 			goto out_free1;
1998 		r = 0;
1999 out_free1:
2000 		kfree(kvm_regs);
2001 		break;
2002 	}
2003 	case KVM_SET_REGS: {
2004 		struct kvm_regs *kvm_regs;
2005 
2006 		r = -ENOMEM;
2007 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2008 		if (IS_ERR(kvm_regs)) {
2009 			r = PTR_ERR(kvm_regs);
2010 			goto out;
2011 		}
2012 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2013 		kfree(kvm_regs);
2014 		break;
2015 	}
2016 	case KVM_GET_SREGS: {
2017 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2018 		r = -ENOMEM;
2019 		if (!kvm_sregs)
2020 			goto out;
2021 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2022 		if (r)
2023 			goto out;
2024 		r = -EFAULT;
2025 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2026 			goto out;
2027 		r = 0;
2028 		break;
2029 	}
2030 	case KVM_SET_SREGS: {
2031 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2032 		if (IS_ERR(kvm_sregs)) {
2033 			r = PTR_ERR(kvm_sregs);
2034 			kvm_sregs = NULL;
2035 			goto out;
2036 		}
2037 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2038 		break;
2039 	}
2040 	case KVM_GET_MP_STATE: {
2041 		struct kvm_mp_state mp_state;
2042 
2043 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2044 		if (r)
2045 			goto out;
2046 		r = -EFAULT;
2047 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2048 			goto out;
2049 		r = 0;
2050 		break;
2051 	}
2052 	case KVM_SET_MP_STATE: {
2053 		struct kvm_mp_state mp_state;
2054 
2055 		r = -EFAULT;
2056 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2057 			goto out;
2058 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2059 		break;
2060 	}
2061 	case KVM_TRANSLATE: {
2062 		struct kvm_translation tr;
2063 
2064 		r = -EFAULT;
2065 		if (copy_from_user(&tr, argp, sizeof tr))
2066 			goto out;
2067 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2068 		if (r)
2069 			goto out;
2070 		r = -EFAULT;
2071 		if (copy_to_user(argp, &tr, sizeof tr))
2072 			goto out;
2073 		r = 0;
2074 		break;
2075 	}
2076 	case KVM_SET_GUEST_DEBUG: {
2077 		struct kvm_guest_debug dbg;
2078 
2079 		r = -EFAULT;
2080 		if (copy_from_user(&dbg, argp, sizeof dbg))
2081 			goto out;
2082 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2083 		break;
2084 	}
2085 	case KVM_SET_SIGNAL_MASK: {
2086 		struct kvm_signal_mask __user *sigmask_arg = argp;
2087 		struct kvm_signal_mask kvm_sigmask;
2088 		sigset_t sigset, *p;
2089 
2090 		p = NULL;
2091 		if (argp) {
2092 			r = -EFAULT;
2093 			if (copy_from_user(&kvm_sigmask, argp,
2094 					   sizeof kvm_sigmask))
2095 				goto out;
2096 			r = -EINVAL;
2097 			if (kvm_sigmask.len != sizeof sigset)
2098 				goto out;
2099 			r = -EFAULT;
2100 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2101 					   sizeof sigset))
2102 				goto out;
2103 			p = &sigset;
2104 		}
2105 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2106 		break;
2107 	}
2108 	case KVM_GET_FPU: {
2109 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2110 		r = -ENOMEM;
2111 		if (!fpu)
2112 			goto out;
2113 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2114 		if (r)
2115 			goto out;
2116 		r = -EFAULT;
2117 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2118 			goto out;
2119 		r = 0;
2120 		break;
2121 	}
2122 	case KVM_SET_FPU: {
2123 		fpu = memdup_user(argp, sizeof(*fpu));
2124 		if (IS_ERR(fpu)) {
2125 			r = PTR_ERR(fpu);
2126 			fpu = NULL;
2127 			goto out;
2128 		}
2129 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2130 		break;
2131 	}
2132 	default:
2133 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2134 	}
2135 out:
2136 	vcpu_put(vcpu);
2137 	kfree(fpu);
2138 	kfree(kvm_sregs);
2139 	return r;
2140 }
2141 
2142 #ifdef CONFIG_COMPAT
2143 static long kvm_vcpu_compat_ioctl(struct file *filp,
2144 				  unsigned int ioctl, unsigned long arg)
2145 {
2146 	struct kvm_vcpu *vcpu = filp->private_data;
2147 	void __user *argp = compat_ptr(arg);
2148 	int r;
2149 
2150 	if (vcpu->kvm->mm != current->mm)
2151 		return -EIO;
2152 
2153 	switch (ioctl) {
2154 	case KVM_SET_SIGNAL_MASK: {
2155 		struct kvm_signal_mask __user *sigmask_arg = argp;
2156 		struct kvm_signal_mask kvm_sigmask;
2157 		compat_sigset_t csigset;
2158 		sigset_t sigset;
2159 
2160 		if (argp) {
2161 			r = -EFAULT;
2162 			if (copy_from_user(&kvm_sigmask, argp,
2163 					   sizeof kvm_sigmask))
2164 				goto out;
2165 			r = -EINVAL;
2166 			if (kvm_sigmask.len != sizeof csigset)
2167 				goto out;
2168 			r = -EFAULT;
2169 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2170 					   sizeof csigset))
2171 				goto out;
2172 			sigset_from_compat(&sigset, &csigset);
2173 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2174 		} else
2175 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2176 		break;
2177 	}
2178 	default:
2179 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2180 	}
2181 
2182 out:
2183 	return r;
2184 }
2185 #endif
2186 
2187 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2188 				 int (*accessor)(struct kvm_device *dev,
2189 						 struct kvm_device_attr *attr),
2190 				 unsigned long arg)
2191 {
2192 	struct kvm_device_attr attr;
2193 
2194 	if (!accessor)
2195 		return -EPERM;
2196 
2197 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2198 		return -EFAULT;
2199 
2200 	return accessor(dev, &attr);
2201 }
2202 
2203 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2204 			     unsigned long arg)
2205 {
2206 	struct kvm_device *dev = filp->private_data;
2207 
2208 	switch (ioctl) {
2209 	case KVM_SET_DEVICE_ATTR:
2210 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2211 	case KVM_GET_DEVICE_ATTR:
2212 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2213 	case KVM_HAS_DEVICE_ATTR:
2214 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2215 	default:
2216 		if (dev->ops->ioctl)
2217 			return dev->ops->ioctl(dev, ioctl, arg);
2218 
2219 		return -ENOTTY;
2220 	}
2221 }
2222 
2223 static int kvm_device_release(struct inode *inode, struct file *filp)
2224 {
2225 	struct kvm_device *dev = filp->private_data;
2226 	struct kvm *kvm = dev->kvm;
2227 
2228 	kvm_put_kvm(kvm);
2229 	return 0;
2230 }
2231 
2232 static const struct file_operations kvm_device_fops = {
2233 	.unlocked_ioctl = kvm_device_ioctl,
2234 #ifdef CONFIG_COMPAT
2235 	.compat_ioctl = kvm_device_ioctl,
2236 #endif
2237 	.release = kvm_device_release,
2238 };
2239 
2240 struct kvm_device *kvm_device_from_filp(struct file *filp)
2241 {
2242 	if (filp->f_op != &kvm_device_fops)
2243 		return NULL;
2244 
2245 	return filp->private_data;
2246 }
2247 
2248 static int kvm_ioctl_create_device(struct kvm *kvm,
2249 				   struct kvm_create_device *cd)
2250 {
2251 	struct kvm_device_ops *ops = NULL;
2252 	struct kvm_device *dev;
2253 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2254 	int ret;
2255 
2256 	switch (cd->type) {
2257 #ifdef CONFIG_KVM_MPIC
2258 	case KVM_DEV_TYPE_FSL_MPIC_20:
2259 	case KVM_DEV_TYPE_FSL_MPIC_42:
2260 		ops = &kvm_mpic_ops;
2261 		break;
2262 #endif
2263 #ifdef CONFIG_KVM_XICS
2264 	case KVM_DEV_TYPE_XICS:
2265 		ops = &kvm_xics_ops;
2266 		break;
2267 #endif
2268 	default:
2269 		return -ENODEV;
2270 	}
2271 
2272 	if (test)
2273 		return 0;
2274 
2275 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2276 	if (!dev)
2277 		return -ENOMEM;
2278 
2279 	dev->ops = ops;
2280 	dev->kvm = kvm;
2281 
2282 	ret = ops->create(dev, cd->type);
2283 	if (ret < 0) {
2284 		kfree(dev);
2285 		return ret;
2286 	}
2287 
2288 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2289 	if (ret < 0) {
2290 		ops->destroy(dev);
2291 		return ret;
2292 	}
2293 
2294 	list_add(&dev->vm_node, &kvm->devices);
2295 	kvm_get_kvm(kvm);
2296 	cd->fd = ret;
2297 	return 0;
2298 }
2299 
2300 static long kvm_vm_ioctl(struct file *filp,
2301 			   unsigned int ioctl, unsigned long arg)
2302 {
2303 	struct kvm *kvm = filp->private_data;
2304 	void __user *argp = (void __user *)arg;
2305 	int r;
2306 
2307 	if (kvm->mm != current->mm)
2308 		return -EIO;
2309 	switch (ioctl) {
2310 	case KVM_CREATE_VCPU:
2311 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2312 		break;
2313 	case KVM_SET_USER_MEMORY_REGION: {
2314 		struct kvm_userspace_memory_region kvm_userspace_mem;
2315 
2316 		r = -EFAULT;
2317 		if (copy_from_user(&kvm_userspace_mem, argp,
2318 						sizeof kvm_userspace_mem))
2319 			goto out;
2320 
2321 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2322 		break;
2323 	}
2324 	case KVM_GET_DIRTY_LOG: {
2325 		struct kvm_dirty_log log;
2326 
2327 		r = -EFAULT;
2328 		if (copy_from_user(&log, argp, sizeof log))
2329 			goto out;
2330 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2331 		break;
2332 	}
2333 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2334 	case KVM_REGISTER_COALESCED_MMIO: {
2335 		struct kvm_coalesced_mmio_zone zone;
2336 		r = -EFAULT;
2337 		if (copy_from_user(&zone, argp, sizeof zone))
2338 			goto out;
2339 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2340 		break;
2341 	}
2342 	case KVM_UNREGISTER_COALESCED_MMIO: {
2343 		struct kvm_coalesced_mmio_zone zone;
2344 		r = -EFAULT;
2345 		if (copy_from_user(&zone, argp, sizeof zone))
2346 			goto out;
2347 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2348 		break;
2349 	}
2350 #endif
2351 	case KVM_IRQFD: {
2352 		struct kvm_irqfd data;
2353 
2354 		r = -EFAULT;
2355 		if (copy_from_user(&data, argp, sizeof data))
2356 			goto out;
2357 		r = kvm_irqfd(kvm, &data);
2358 		break;
2359 	}
2360 	case KVM_IOEVENTFD: {
2361 		struct kvm_ioeventfd data;
2362 
2363 		r = -EFAULT;
2364 		if (copy_from_user(&data, argp, sizeof data))
2365 			goto out;
2366 		r = kvm_ioeventfd(kvm, &data);
2367 		break;
2368 	}
2369 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2370 	case KVM_SET_BOOT_CPU_ID:
2371 		r = 0;
2372 		mutex_lock(&kvm->lock);
2373 		if (atomic_read(&kvm->online_vcpus) != 0)
2374 			r = -EBUSY;
2375 		else
2376 			kvm->bsp_vcpu_id = arg;
2377 		mutex_unlock(&kvm->lock);
2378 		break;
2379 #endif
2380 #ifdef CONFIG_HAVE_KVM_MSI
2381 	case KVM_SIGNAL_MSI: {
2382 		struct kvm_msi msi;
2383 
2384 		r = -EFAULT;
2385 		if (copy_from_user(&msi, argp, sizeof msi))
2386 			goto out;
2387 		r = kvm_send_userspace_msi(kvm, &msi);
2388 		break;
2389 	}
2390 #endif
2391 #ifdef __KVM_HAVE_IRQ_LINE
2392 	case KVM_IRQ_LINE_STATUS:
2393 	case KVM_IRQ_LINE: {
2394 		struct kvm_irq_level irq_event;
2395 
2396 		r = -EFAULT;
2397 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2398 			goto out;
2399 
2400 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2401 					ioctl == KVM_IRQ_LINE_STATUS);
2402 		if (r)
2403 			goto out;
2404 
2405 		r = -EFAULT;
2406 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2407 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2408 				goto out;
2409 		}
2410 
2411 		r = 0;
2412 		break;
2413 	}
2414 #endif
2415 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2416 	case KVM_SET_GSI_ROUTING: {
2417 		struct kvm_irq_routing routing;
2418 		struct kvm_irq_routing __user *urouting;
2419 		struct kvm_irq_routing_entry *entries;
2420 
2421 		r = -EFAULT;
2422 		if (copy_from_user(&routing, argp, sizeof(routing)))
2423 			goto out;
2424 		r = -EINVAL;
2425 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2426 			goto out;
2427 		if (routing.flags)
2428 			goto out;
2429 		r = -ENOMEM;
2430 		entries = vmalloc(routing.nr * sizeof(*entries));
2431 		if (!entries)
2432 			goto out;
2433 		r = -EFAULT;
2434 		urouting = argp;
2435 		if (copy_from_user(entries, urouting->entries,
2436 				   routing.nr * sizeof(*entries)))
2437 			goto out_free_irq_routing;
2438 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2439 					routing.flags);
2440 	out_free_irq_routing:
2441 		vfree(entries);
2442 		break;
2443 	}
2444 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2445 	case KVM_CREATE_DEVICE: {
2446 		struct kvm_create_device cd;
2447 
2448 		r = -EFAULT;
2449 		if (copy_from_user(&cd, argp, sizeof(cd)))
2450 			goto out;
2451 
2452 		r = kvm_ioctl_create_device(kvm, &cd);
2453 		if (r)
2454 			goto out;
2455 
2456 		r = -EFAULT;
2457 		if (copy_to_user(argp, &cd, sizeof(cd)))
2458 			goto out;
2459 
2460 		r = 0;
2461 		break;
2462 	}
2463 	default:
2464 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2465 		if (r == -ENOTTY)
2466 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2467 	}
2468 out:
2469 	return r;
2470 }
2471 
2472 #ifdef CONFIG_COMPAT
2473 struct compat_kvm_dirty_log {
2474 	__u32 slot;
2475 	__u32 padding1;
2476 	union {
2477 		compat_uptr_t dirty_bitmap; /* one bit per page */
2478 		__u64 padding2;
2479 	};
2480 };
2481 
2482 static long kvm_vm_compat_ioctl(struct file *filp,
2483 			   unsigned int ioctl, unsigned long arg)
2484 {
2485 	struct kvm *kvm = filp->private_data;
2486 	int r;
2487 
2488 	if (kvm->mm != current->mm)
2489 		return -EIO;
2490 	switch (ioctl) {
2491 	case KVM_GET_DIRTY_LOG: {
2492 		struct compat_kvm_dirty_log compat_log;
2493 		struct kvm_dirty_log log;
2494 
2495 		r = -EFAULT;
2496 		if (copy_from_user(&compat_log, (void __user *)arg,
2497 				   sizeof(compat_log)))
2498 			goto out;
2499 		log.slot	 = compat_log.slot;
2500 		log.padding1	 = compat_log.padding1;
2501 		log.padding2	 = compat_log.padding2;
2502 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2503 
2504 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2505 		break;
2506 	}
2507 	default:
2508 		r = kvm_vm_ioctl(filp, ioctl, arg);
2509 	}
2510 
2511 out:
2512 	return r;
2513 }
2514 #endif
2515 
2516 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2517 {
2518 	struct page *page[1];
2519 	unsigned long addr;
2520 	int npages;
2521 	gfn_t gfn = vmf->pgoff;
2522 	struct kvm *kvm = vma->vm_file->private_data;
2523 
2524 	addr = gfn_to_hva(kvm, gfn);
2525 	if (kvm_is_error_hva(addr))
2526 		return VM_FAULT_SIGBUS;
2527 
2528 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2529 				NULL);
2530 	if (unlikely(npages != 1))
2531 		return VM_FAULT_SIGBUS;
2532 
2533 	vmf->page = page[0];
2534 	return 0;
2535 }
2536 
2537 static const struct vm_operations_struct kvm_vm_vm_ops = {
2538 	.fault = kvm_vm_fault,
2539 };
2540 
2541 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2542 {
2543 	vma->vm_ops = &kvm_vm_vm_ops;
2544 	return 0;
2545 }
2546 
2547 static struct file_operations kvm_vm_fops = {
2548 	.release        = kvm_vm_release,
2549 	.unlocked_ioctl = kvm_vm_ioctl,
2550 #ifdef CONFIG_COMPAT
2551 	.compat_ioctl   = kvm_vm_compat_ioctl,
2552 #endif
2553 	.mmap           = kvm_vm_mmap,
2554 	.llseek		= noop_llseek,
2555 };
2556 
2557 static int kvm_dev_ioctl_create_vm(unsigned long type)
2558 {
2559 	int r;
2560 	struct kvm *kvm;
2561 
2562 	kvm = kvm_create_vm(type);
2563 	if (IS_ERR(kvm))
2564 		return PTR_ERR(kvm);
2565 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2566 	r = kvm_coalesced_mmio_init(kvm);
2567 	if (r < 0) {
2568 		kvm_put_kvm(kvm);
2569 		return r;
2570 	}
2571 #endif
2572 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2573 	if (r < 0)
2574 		kvm_put_kvm(kvm);
2575 
2576 	return r;
2577 }
2578 
2579 static long kvm_dev_ioctl_check_extension_generic(long arg)
2580 {
2581 	switch (arg) {
2582 	case KVM_CAP_USER_MEMORY:
2583 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2584 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2585 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2586 	case KVM_CAP_SET_BOOT_CPU_ID:
2587 #endif
2588 	case KVM_CAP_INTERNAL_ERROR_DATA:
2589 #ifdef CONFIG_HAVE_KVM_MSI
2590 	case KVM_CAP_SIGNAL_MSI:
2591 #endif
2592 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2593 	case KVM_CAP_IRQFD_RESAMPLE:
2594 #endif
2595 		return 1;
2596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2597 	case KVM_CAP_IRQ_ROUTING:
2598 		return KVM_MAX_IRQ_ROUTES;
2599 #endif
2600 	default:
2601 		break;
2602 	}
2603 	return kvm_dev_ioctl_check_extension(arg);
2604 }
2605 
2606 static long kvm_dev_ioctl(struct file *filp,
2607 			  unsigned int ioctl, unsigned long arg)
2608 {
2609 	long r = -EINVAL;
2610 
2611 	switch (ioctl) {
2612 	case KVM_GET_API_VERSION:
2613 		r = -EINVAL;
2614 		if (arg)
2615 			goto out;
2616 		r = KVM_API_VERSION;
2617 		break;
2618 	case KVM_CREATE_VM:
2619 		r = kvm_dev_ioctl_create_vm(arg);
2620 		break;
2621 	case KVM_CHECK_EXTENSION:
2622 		r = kvm_dev_ioctl_check_extension_generic(arg);
2623 		break;
2624 	case KVM_GET_VCPU_MMAP_SIZE:
2625 		r = -EINVAL;
2626 		if (arg)
2627 			goto out;
2628 		r = PAGE_SIZE;     /* struct kvm_run */
2629 #ifdef CONFIG_X86
2630 		r += PAGE_SIZE;    /* pio data page */
2631 #endif
2632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2633 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2634 #endif
2635 		break;
2636 	case KVM_TRACE_ENABLE:
2637 	case KVM_TRACE_PAUSE:
2638 	case KVM_TRACE_DISABLE:
2639 		r = -EOPNOTSUPP;
2640 		break;
2641 	default:
2642 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2643 	}
2644 out:
2645 	return r;
2646 }
2647 
2648 static struct file_operations kvm_chardev_ops = {
2649 	.unlocked_ioctl = kvm_dev_ioctl,
2650 	.compat_ioctl   = kvm_dev_ioctl,
2651 	.llseek		= noop_llseek,
2652 };
2653 
2654 static struct miscdevice kvm_dev = {
2655 	KVM_MINOR,
2656 	"kvm",
2657 	&kvm_chardev_ops,
2658 };
2659 
2660 static void hardware_enable_nolock(void *junk)
2661 {
2662 	int cpu = raw_smp_processor_id();
2663 	int r;
2664 
2665 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2666 		return;
2667 
2668 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2669 
2670 	r = kvm_arch_hardware_enable(NULL);
2671 
2672 	if (r) {
2673 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2674 		atomic_inc(&hardware_enable_failed);
2675 		printk(KERN_INFO "kvm: enabling virtualization on "
2676 				 "CPU%d failed\n", cpu);
2677 	}
2678 }
2679 
2680 static void hardware_enable(void *junk)
2681 {
2682 	raw_spin_lock(&kvm_lock);
2683 	hardware_enable_nolock(junk);
2684 	raw_spin_unlock(&kvm_lock);
2685 }
2686 
2687 static void hardware_disable_nolock(void *junk)
2688 {
2689 	int cpu = raw_smp_processor_id();
2690 
2691 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2692 		return;
2693 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2694 	kvm_arch_hardware_disable(NULL);
2695 }
2696 
2697 static void hardware_disable(void *junk)
2698 {
2699 	raw_spin_lock(&kvm_lock);
2700 	hardware_disable_nolock(junk);
2701 	raw_spin_unlock(&kvm_lock);
2702 }
2703 
2704 static void hardware_disable_all_nolock(void)
2705 {
2706 	BUG_ON(!kvm_usage_count);
2707 
2708 	kvm_usage_count--;
2709 	if (!kvm_usage_count)
2710 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2711 }
2712 
2713 static void hardware_disable_all(void)
2714 {
2715 	raw_spin_lock(&kvm_lock);
2716 	hardware_disable_all_nolock();
2717 	raw_spin_unlock(&kvm_lock);
2718 }
2719 
2720 static int hardware_enable_all(void)
2721 {
2722 	int r = 0;
2723 
2724 	raw_spin_lock(&kvm_lock);
2725 
2726 	kvm_usage_count++;
2727 	if (kvm_usage_count == 1) {
2728 		atomic_set(&hardware_enable_failed, 0);
2729 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2730 
2731 		if (atomic_read(&hardware_enable_failed)) {
2732 			hardware_disable_all_nolock();
2733 			r = -EBUSY;
2734 		}
2735 	}
2736 
2737 	raw_spin_unlock(&kvm_lock);
2738 
2739 	return r;
2740 }
2741 
2742 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2743 			   void *v)
2744 {
2745 	int cpu = (long)v;
2746 
2747 	if (!kvm_usage_count)
2748 		return NOTIFY_OK;
2749 
2750 	val &= ~CPU_TASKS_FROZEN;
2751 	switch (val) {
2752 	case CPU_DYING:
2753 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2754 		       cpu);
2755 		hardware_disable(NULL);
2756 		break;
2757 	case CPU_STARTING:
2758 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2759 		       cpu);
2760 		hardware_enable(NULL);
2761 		break;
2762 	}
2763 	return NOTIFY_OK;
2764 }
2765 
2766 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2767 		      void *v)
2768 {
2769 	/*
2770 	 * Some (well, at least mine) BIOSes hang on reboot if
2771 	 * in vmx root mode.
2772 	 *
2773 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2774 	 */
2775 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2776 	kvm_rebooting = true;
2777 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2778 	return NOTIFY_OK;
2779 }
2780 
2781 static struct notifier_block kvm_reboot_notifier = {
2782 	.notifier_call = kvm_reboot,
2783 	.priority = 0,
2784 };
2785 
2786 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2787 {
2788 	int i;
2789 
2790 	for (i = 0; i < bus->dev_count; i++) {
2791 		struct kvm_io_device *pos = bus->range[i].dev;
2792 
2793 		kvm_iodevice_destructor(pos);
2794 	}
2795 	kfree(bus);
2796 }
2797 
2798 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2799                                  const struct kvm_io_range *r2)
2800 {
2801 	if (r1->addr < r2->addr)
2802 		return -1;
2803 	if (r1->addr + r1->len > r2->addr + r2->len)
2804 		return 1;
2805 	return 0;
2806 }
2807 
2808 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2809 {
2810 	return kvm_io_bus_cmp(p1, p2);
2811 }
2812 
2813 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2814 			  gpa_t addr, int len)
2815 {
2816 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2817 		.addr = addr,
2818 		.len = len,
2819 		.dev = dev,
2820 	};
2821 
2822 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2823 		kvm_io_bus_sort_cmp, NULL);
2824 
2825 	return 0;
2826 }
2827 
2828 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2829 			     gpa_t addr, int len)
2830 {
2831 	struct kvm_io_range *range, key;
2832 	int off;
2833 
2834 	key = (struct kvm_io_range) {
2835 		.addr = addr,
2836 		.len = len,
2837 	};
2838 
2839 	range = bsearch(&key, bus->range, bus->dev_count,
2840 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2841 	if (range == NULL)
2842 		return -ENOENT;
2843 
2844 	off = range - bus->range;
2845 
2846 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2847 		off--;
2848 
2849 	return off;
2850 }
2851 
2852 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2853 			      struct kvm_io_range *range, const void *val)
2854 {
2855 	int idx;
2856 
2857 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2858 	if (idx < 0)
2859 		return -EOPNOTSUPP;
2860 
2861 	while (idx < bus->dev_count &&
2862 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2863 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2864 					range->len, val))
2865 			return idx;
2866 		idx++;
2867 	}
2868 
2869 	return -EOPNOTSUPP;
2870 }
2871 
2872 /* kvm_io_bus_write - called under kvm->slots_lock */
2873 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2874 		     int len, const void *val)
2875 {
2876 	struct kvm_io_bus *bus;
2877 	struct kvm_io_range range;
2878 	int r;
2879 
2880 	range = (struct kvm_io_range) {
2881 		.addr = addr,
2882 		.len = len,
2883 	};
2884 
2885 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2886 	r = __kvm_io_bus_write(bus, &range, val);
2887 	return r < 0 ? r : 0;
2888 }
2889 
2890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2891 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2892 			    int len, const void *val, long cookie)
2893 {
2894 	struct kvm_io_bus *bus;
2895 	struct kvm_io_range range;
2896 
2897 	range = (struct kvm_io_range) {
2898 		.addr = addr,
2899 		.len = len,
2900 	};
2901 
2902 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2903 
2904 	/* First try the device referenced by cookie. */
2905 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2906 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2907 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2908 					val))
2909 			return cookie;
2910 
2911 	/*
2912 	 * cookie contained garbage; fall back to search and return the
2913 	 * correct cookie value.
2914 	 */
2915 	return __kvm_io_bus_write(bus, &range, val);
2916 }
2917 
2918 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2919 			     void *val)
2920 {
2921 	int idx;
2922 
2923 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2924 	if (idx < 0)
2925 		return -EOPNOTSUPP;
2926 
2927 	while (idx < bus->dev_count &&
2928 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2929 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2930 				       range->len, val))
2931 			return idx;
2932 		idx++;
2933 	}
2934 
2935 	return -EOPNOTSUPP;
2936 }
2937 
2938 /* kvm_io_bus_read - called under kvm->slots_lock */
2939 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2940 		    int len, void *val)
2941 {
2942 	struct kvm_io_bus *bus;
2943 	struct kvm_io_range range;
2944 	int r;
2945 
2946 	range = (struct kvm_io_range) {
2947 		.addr = addr,
2948 		.len = len,
2949 	};
2950 
2951 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2952 	r = __kvm_io_bus_read(bus, &range, val);
2953 	return r < 0 ? r : 0;
2954 }
2955 
2956 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2957 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2958 			   int len, void *val, long cookie)
2959 {
2960 	struct kvm_io_bus *bus;
2961 	struct kvm_io_range range;
2962 
2963 	range = (struct kvm_io_range) {
2964 		.addr = addr,
2965 		.len = len,
2966 	};
2967 
2968 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2969 
2970 	/* First try the device referenced by cookie. */
2971 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2972 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2973 		if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2974 				       val))
2975 			return cookie;
2976 
2977 	/*
2978 	 * cookie contained garbage; fall back to search and return the
2979 	 * correct cookie value.
2980 	 */
2981 	return __kvm_io_bus_read(bus, &range, val);
2982 }
2983 
2984 /* Caller must hold slots_lock. */
2985 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2986 			    int len, struct kvm_io_device *dev)
2987 {
2988 	struct kvm_io_bus *new_bus, *bus;
2989 
2990 	bus = kvm->buses[bus_idx];
2991 	/* exclude ioeventfd which is limited by maximum fd */
2992 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2993 		return -ENOSPC;
2994 
2995 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2996 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2997 	if (!new_bus)
2998 		return -ENOMEM;
2999 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3000 	       sizeof(struct kvm_io_range)));
3001 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3002 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3003 	synchronize_srcu_expedited(&kvm->srcu);
3004 	kfree(bus);
3005 
3006 	return 0;
3007 }
3008 
3009 /* Caller must hold slots_lock. */
3010 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3011 			      struct kvm_io_device *dev)
3012 {
3013 	int i, r;
3014 	struct kvm_io_bus *new_bus, *bus;
3015 
3016 	bus = kvm->buses[bus_idx];
3017 	r = -ENOENT;
3018 	for (i = 0; i < bus->dev_count; i++)
3019 		if (bus->range[i].dev == dev) {
3020 			r = 0;
3021 			break;
3022 		}
3023 
3024 	if (r)
3025 		return r;
3026 
3027 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3028 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3029 	if (!new_bus)
3030 		return -ENOMEM;
3031 
3032 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3033 	new_bus->dev_count--;
3034 	memcpy(new_bus->range + i, bus->range + i + 1,
3035 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3036 
3037 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3038 	synchronize_srcu_expedited(&kvm->srcu);
3039 	kfree(bus);
3040 	return r;
3041 }
3042 
3043 static struct notifier_block kvm_cpu_notifier = {
3044 	.notifier_call = kvm_cpu_hotplug,
3045 };
3046 
3047 static int vm_stat_get(void *_offset, u64 *val)
3048 {
3049 	unsigned offset = (long)_offset;
3050 	struct kvm *kvm;
3051 
3052 	*val = 0;
3053 	raw_spin_lock(&kvm_lock);
3054 	list_for_each_entry(kvm, &vm_list, vm_list)
3055 		*val += *(u32 *)((void *)kvm + offset);
3056 	raw_spin_unlock(&kvm_lock);
3057 	return 0;
3058 }
3059 
3060 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3061 
3062 static int vcpu_stat_get(void *_offset, u64 *val)
3063 {
3064 	unsigned offset = (long)_offset;
3065 	struct kvm *kvm;
3066 	struct kvm_vcpu *vcpu;
3067 	int i;
3068 
3069 	*val = 0;
3070 	raw_spin_lock(&kvm_lock);
3071 	list_for_each_entry(kvm, &vm_list, vm_list)
3072 		kvm_for_each_vcpu(i, vcpu, kvm)
3073 			*val += *(u32 *)((void *)vcpu + offset);
3074 
3075 	raw_spin_unlock(&kvm_lock);
3076 	return 0;
3077 }
3078 
3079 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3080 
3081 static const struct file_operations *stat_fops[] = {
3082 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3083 	[KVM_STAT_VM]   = &vm_stat_fops,
3084 };
3085 
3086 static int kvm_init_debug(void)
3087 {
3088 	int r = -EFAULT;
3089 	struct kvm_stats_debugfs_item *p;
3090 
3091 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3092 	if (kvm_debugfs_dir == NULL)
3093 		goto out;
3094 
3095 	for (p = debugfs_entries; p->name; ++p) {
3096 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3097 						(void *)(long)p->offset,
3098 						stat_fops[p->kind]);
3099 		if (p->dentry == NULL)
3100 			goto out_dir;
3101 	}
3102 
3103 	return 0;
3104 
3105 out_dir:
3106 	debugfs_remove_recursive(kvm_debugfs_dir);
3107 out:
3108 	return r;
3109 }
3110 
3111 static void kvm_exit_debug(void)
3112 {
3113 	struct kvm_stats_debugfs_item *p;
3114 
3115 	for (p = debugfs_entries; p->name; ++p)
3116 		debugfs_remove(p->dentry);
3117 	debugfs_remove(kvm_debugfs_dir);
3118 }
3119 
3120 static int kvm_suspend(void)
3121 {
3122 	if (kvm_usage_count)
3123 		hardware_disable_nolock(NULL);
3124 	return 0;
3125 }
3126 
3127 static void kvm_resume(void)
3128 {
3129 	if (kvm_usage_count) {
3130 		WARN_ON(raw_spin_is_locked(&kvm_lock));
3131 		hardware_enable_nolock(NULL);
3132 	}
3133 }
3134 
3135 static struct syscore_ops kvm_syscore_ops = {
3136 	.suspend = kvm_suspend,
3137 	.resume = kvm_resume,
3138 };
3139 
3140 static inline
3141 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3142 {
3143 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3144 }
3145 
3146 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3147 {
3148 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3149 	if (vcpu->preempted)
3150 		vcpu->preempted = false;
3151 
3152 	kvm_arch_vcpu_load(vcpu, cpu);
3153 }
3154 
3155 static void kvm_sched_out(struct preempt_notifier *pn,
3156 			  struct task_struct *next)
3157 {
3158 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3159 
3160 	if (current->state == TASK_RUNNING)
3161 		vcpu->preempted = true;
3162 	kvm_arch_vcpu_put(vcpu);
3163 }
3164 
3165 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3166 		  struct module *module)
3167 {
3168 	int r;
3169 	int cpu;
3170 
3171 	r = kvm_arch_init(opaque);
3172 	if (r)
3173 		goto out_fail;
3174 
3175 	/*
3176 	 * kvm_arch_init makes sure there's at most one caller
3177 	 * for architectures that support multiple implementations,
3178 	 * like intel and amd on x86.
3179 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3180 	 * conflicts in case kvm is already setup for another implementation.
3181 	 */
3182 	r = kvm_irqfd_init();
3183 	if (r)
3184 		goto out_irqfd;
3185 
3186 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3187 		r = -ENOMEM;
3188 		goto out_free_0;
3189 	}
3190 
3191 	r = kvm_arch_hardware_setup();
3192 	if (r < 0)
3193 		goto out_free_0a;
3194 
3195 	for_each_online_cpu(cpu) {
3196 		smp_call_function_single(cpu,
3197 				kvm_arch_check_processor_compat,
3198 				&r, 1);
3199 		if (r < 0)
3200 			goto out_free_1;
3201 	}
3202 
3203 	r = register_cpu_notifier(&kvm_cpu_notifier);
3204 	if (r)
3205 		goto out_free_2;
3206 	register_reboot_notifier(&kvm_reboot_notifier);
3207 
3208 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3209 	if (!vcpu_align)
3210 		vcpu_align = __alignof__(struct kvm_vcpu);
3211 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3212 					   0, NULL);
3213 	if (!kvm_vcpu_cache) {
3214 		r = -ENOMEM;
3215 		goto out_free_3;
3216 	}
3217 
3218 	r = kvm_async_pf_init();
3219 	if (r)
3220 		goto out_free;
3221 
3222 	kvm_chardev_ops.owner = module;
3223 	kvm_vm_fops.owner = module;
3224 	kvm_vcpu_fops.owner = module;
3225 
3226 	r = misc_register(&kvm_dev);
3227 	if (r) {
3228 		printk(KERN_ERR "kvm: misc device register failed\n");
3229 		goto out_unreg;
3230 	}
3231 
3232 	register_syscore_ops(&kvm_syscore_ops);
3233 
3234 	kvm_preempt_ops.sched_in = kvm_sched_in;
3235 	kvm_preempt_ops.sched_out = kvm_sched_out;
3236 
3237 	r = kvm_init_debug();
3238 	if (r) {
3239 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3240 		goto out_undebugfs;
3241 	}
3242 
3243 	return 0;
3244 
3245 out_undebugfs:
3246 	unregister_syscore_ops(&kvm_syscore_ops);
3247 	misc_deregister(&kvm_dev);
3248 out_unreg:
3249 	kvm_async_pf_deinit();
3250 out_free:
3251 	kmem_cache_destroy(kvm_vcpu_cache);
3252 out_free_3:
3253 	unregister_reboot_notifier(&kvm_reboot_notifier);
3254 	unregister_cpu_notifier(&kvm_cpu_notifier);
3255 out_free_2:
3256 out_free_1:
3257 	kvm_arch_hardware_unsetup();
3258 out_free_0a:
3259 	free_cpumask_var(cpus_hardware_enabled);
3260 out_free_0:
3261 	kvm_irqfd_exit();
3262 out_irqfd:
3263 	kvm_arch_exit();
3264 out_fail:
3265 	return r;
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_init);
3268 
3269 void kvm_exit(void)
3270 {
3271 	kvm_exit_debug();
3272 	misc_deregister(&kvm_dev);
3273 	kmem_cache_destroy(kvm_vcpu_cache);
3274 	kvm_async_pf_deinit();
3275 	unregister_syscore_ops(&kvm_syscore_ops);
3276 	unregister_reboot_notifier(&kvm_reboot_notifier);
3277 	unregister_cpu_notifier(&kvm_cpu_notifier);
3278 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3279 	kvm_arch_hardware_unsetup();
3280 	kvm_arch_exit();
3281 	kvm_irqfd_exit();
3282 	free_cpumask_var(cpus_hardware_enabled);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_exit);
3285