1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_SPINLOCK(kvm_lock); 74 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 75 LIST_HEAD(vm_list); 76 77 static cpumask_var_t cpus_hardware_enabled; 78 static int kvm_usage_count = 0; 79 static atomic_t hardware_enable_failed; 80 81 struct kmem_cache *kvm_vcpu_cache; 82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 83 84 static __read_mostly struct preempt_ops kvm_preempt_ops; 85 86 struct dentry *kvm_debugfs_dir; 87 88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 89 unsigned long arg); 90 #ifdef CONFIG_COMPAT 91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 92 unsigned long arg); 93 #endif 94 static int hardware_enable_all(void); 95 static void hardware_disable_all(void); 96 97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 98 static void update_memslots(struct kvm_memslots *slots, 99 struct kvm_memory_slot *new, u64 last_generation); 100 101 static void kvm_release_pfn_dirty(pfn_t pfn); 102 static void mark_page_dirty_in_slot(struct kvm *kvm, 103 struct kvm_memory_slot *memslot, gfn_t gfn); 104 105 __visible bool kvm_rebooting; 106 EXPORT_SYMBOL_GPL(kvm_rebooting); 107 108 static bool largepages_enabled = true; 109 110 bool kvm_is_mmio_pfn(pfn_t pfn) 111 { 112 if (pfn_valid(pfn)) 113 return PageReserved(pfn_to_page(pfn)); 114 115 return true; 116 } 117 118 /* 119 * Switches to specified vcpu, until a matching vcpu_put() 120 */ 121 int vcpu_load(struct kvm_vcpu *vcpu) 122 { 123 int cpu; 124 125 if (mutex_lock_killable(&vcpu->mutex)) 126 return -EINTR; 127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 128 /* The thread running this VCPU changed. */ 129 struct pid *oldpid = vcpu->pid; 130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 131 rcu_assign_pointer(vcpu->pid, newpid); 132 synchronize_rcu(); 133 put_pid(oldpid); 134 } 135 cpu = get_cpu(); 136 preempt_notifier_register(&vcpu->preempt_notifier); 137 kvm_arch_vcpu_load(vcpu, cpu); 138 put_cpu(); 139 return 0; 140 } 141 142 void vcpu_put(struct kvm_vcpu *vcpu) 143 { 144 preempt_disable(); 145 kvm_arch_vcpu_put(vcpu); 146 preempt_notifier_unregister(&vcpu->preempt_notifier); 147 preempt_enable(); 148 mutex_unlock(&vcpu->mutex); 149 } 150 151 static void ack_flush(void *_completed) 152 { 153 } 154 155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 156 { 157 int i, cpu, me; 158 cpumask_var_t cpus; 159 bool called = true; 160 struct kvm_vcpu *vcpu; 161 162 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 163 164 me = get_cpu(); 165 kvm_for_each_vcpu(i, vcpu, kvm) { 166 kvm_make_request(req, vcpu); 167 cpu = vcpu->cpu; 168 169 /* Set ->requests bit before we read ->mode */ 170 smp_mb(); 171 172 if (cpus != NULL && cpu != -1 && cpu != me && 173 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 174 cpumask_set_cpu(cpu, cpus); 175 } 176 if (unlikely(cpus == NULL)) 177 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 178 else if (!cpumask_empty(cpus)) 179 smp_call_function_many(cpus, ack_flush, NULL, 1); 180 else 181 called = false; 182 put_cpu(); 183 free_cpumask_var(cpus); 184 return called; 185 } 186 187 void kvm_flush_remote_tlbs(struct kvm *kvm) 188 { 189 long dirty_count = kvm->tlbs_dirty; 190 191 smp_mb(); 192 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 193 ++kvm->stat.remote_tlb_flush; 194 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 195 } 196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 197 198 void kvm_reload_remote_mmus(struct kvm *kvm) 199 { 200 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 201 } 202 203 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 204 { 205 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 206 } 207 208 void kvm_make_scan_ioapic_request(struct kvm *kvm) 209 { 210 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 211 } 212 213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 214 { 215 struct page *page; 216 int r; 217 218 mutex_init(&vcpu->mutex); 219 vcpu->cpu = -1; 220 vcpu->kvm = kvm; 221 vcpu->vcpu_id = id; 222 vcpu->pid = NULL; 223 init_waitqueue_head(&vcpu->wq); 224 kvm_async_pf_vcpu_init(vcpu); 225 226 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 227 if (!page) { 228 r = -ENOMEM; 229 goto fail; 230 } 231 vcpu->run = page_address(page); 232 233 kvm_vcpu_set_in_spin_loop(vcpu, false); 234 kvm_vcpu_set_dy_eligible(vcpu, false); 235 vcpu->preempted = false; 236 237 r = kvm_arch_vcpu_init(vcpu); 238 if (r < 0) 239 goto fail_free_run; 240 return 0; 241 242 fail_free_run: 243 free_page((unsigned long)vcpu->run); 244 fail: 245 return r; 246 } 247 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 248 249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 250 { 251 put_pid(vcpu->pid); 252 kvm_arch_vcpu_uninit(vcpu); 253 free_page((unsigned long)vcpu->run); 254 } 255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 256 257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 259 { 260 return container_of(mn, struct kvm, mmu_notifier); 261 } 262 263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 264 struct mm_struct *mm, 265 unsigned long address) 266 { 267 struct kvm *kvm = mmu_notifier_to_kvm(mn); 268 int need_tlb_flush, idx; 269 270 /* 271 * When ->invalidate_page runs, the linux pte has been zapped 272 * already but the page is still allocated until 273 * ->invalidate_page returns. So if we increase the sequence 274 * here the kvm page fault will notice if the spte can't be 275 * established because the page is going to be freed. If 276 * instead the kvm page fault establishes the spte before 277 * ->invalidate_page runs, kvm_unmap_hva will release it 278 * before returning. 279 * 280 * The sequence increase only need to be seen at spin_unlock 281 * time, and not at spin_lock time. 282 * 283 * Increasing the sequence after the spin_unlock would be 284 * unsafe because the kvm page fault could then establish the 285 * pte after kvm_unmap_hva returned, without noticing the page 286 * is going to be freed. 287 */ 288 idx = srcu_read_lock(&kvm->srcu); 289 spin_lock(&kvm->mmu_lock); 290 291 kvm->mmu_notifier_seq++; 292 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 293 /* we've to flush the tlb before the pages can be freed */ 294 if (need_tlb_flush) 295 kvm_flush_remote_tlbs(kvm); 296 297 spin_unlock(&kvm->mmu_lock); 298 srcu_read_unlock(&kvm->srcu, idx); 299 } 300 301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 302 struct mm_struct *mm, 303 unsigned long address, 304 pte_t pte) 305 { 306 struct kvm *kvm = mmu_notifier_to_kvm(mn); 307 int idx; 308 309 idx = srcu_read_lock(&kvm->srcu); 310 spin_lock(&kvm->mmu_lock); 311 kvm->mmu_notifier_seq++; 312 kvm_set_spte_hva(kvm, address, pte); 313 spin_unlock(&kvm->mmu_lock); 314 srcu_read_unlock(&kvm->srcu, idx); 315 } 316 317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 318 struct mm_struct *mm, 319 unsigned long start, 320 unsigned long end) 321 { 322 struct kvm *kvm = mmu_notifier_to_kvm(mn); 323 int need_tlb_flush = 0, idx; 324 325 idx = srcu_read_lock(&kvm->srcu); 326 spin_lock(&kvm->mmu_lock); 327 /* 328 * The count increase must become visible at unlock time as no 329 * spte can be established without taking the mmu_lock and 330 * count is also read inside the mmu_lock critical section. 331 */ 332 kvm->mmu_notifier_count++; 333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 334 need_tlb_flush |= kvm->tlbs_dirty; 335 /* we've to flush the tlb before the pages can be freed */ 336 if (need_tlb_flush) 337 kvm_flush_remote_tlbs(kvm); 338 339 spin_unlock(&kvm->mmu_lock); 340 srcu_read_unlock(&kvm->srcu, idx); 341 } 342 343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 344 struct mm_struct *mm, 345 unsigned long start, 346 unsigned long end) 347 { 348 struct kvm *kvm = mmu_notifier_to_kvm(mn); 349 350 spin_lock(&kvm->mmu_lock); 351 /* 352 * This sequence increase will notify the kvm page fault that 353 * the page that is going to be mapped in the spte could have 354 * been freed. 355 */ 356 kvm->mmu_notifier_seq++; 357 smp_wmb(); 358 /* 359 * The above sequence increase must be visible before the 360 * below count decrease, which is ensured by the smp_wmb above 361 * in conjunction with the smp_rmb in mmu_notifier_retry(). 362 */ 363 kvm->mmu_notifier_count--; 364 spin_unlock(&kvm->mmu_lock); 365 366 BUG_ON(kvm->mmu_notifier_count < 0); 367 } 368 369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 370 struct mm_struct *mm, 371 unsigned long address) 372 { 373 struct kvm *kvm = mmu_notifier_to_kvm(mn); 374 int young, idx; 375 376 idx = srcu_read_lock(&kvm->srcu); 377 spin_lock(&kvm->mmu_lock); 378 379 young = kvm_age_hva(kvm, address); 380 if (young) 381 kvm_flush_remote_tlbs(kvm); 382 383 spin_unlock(&kvm->mmu_lock); 384 srcu_read_unlock(&kvm->srcu, idx); 385 386 return young; 387 } 388 389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 390 struct mm_struct *mm, 391 unsigned long address) 392 { 393 struct kvm *kvm = mmu_notifier_to_kvm(mn); 394 int young, idx; 395 396 idx = srcu_read_lock(&kvm->srcu); 397 spin_lock(&kvm->mmu_lock); 398 young = kvm_test_age_hva(kvm, address); 399 spin_unlock(&kvm->mmu_lock); 400 srcu_read_unlock(&kvm->srcu, idx); 401 402 return young; 403 } 404 405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 406 struct mm_struct *mm) 407 { 408 struct kvm *kvm = mmu_notifier_to_kvm(mn); 409 int idx; 410 411 idx = srcu_read_lock(&kvm->srcu); 412 kvm_arch_flush_shadow_all(kvm); 413 srcu_read_unlock(&kvm->srcu, idx); 414 } 415 416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 417 .invalidate_page = kvm_mmu_notifier_invalidate_page, 418 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 419 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 420 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 421 .test_young = kvm_mmu_notifier_test_young, 422 .change_pte = kvm_mmu_notifier_change_pte, 423 .release = kvm_mmu_notifier_release, 424 }; 425 426 static int kvm_init_mmu_notifier(struct kvm *kvm) 427 { 428 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 429 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 430 } 431 432 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 433 434 static int kvm_init_mmu_notifier(struct kvm *kvm) 435 { 436 return 0; 437 } 438 439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 440 441 static void kvm_init_memslots_id(struct kvm *kvm) 442 { 443 int i; 444 struct kvm_memslots *slots = kvm->memslots; 445 446 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 447 slots->id_to_index[i] = slots->memslots[i].id = i; 448 } 449 450 static struct kvm *kvm_create_vm(unsigned long type) 451 { 452 int r, i; 453 struct kvm *kvm = kvm_arch_alloc_vm(); 454 455 if (!kvm) 456 return ERR_PTR(-ENOMEM); 457 458 r = kvm_arch_init_vm(kvm, type); 459 if (r) 460 goto out_err_no_disable; 461 462 r = hardware_enable_all(); 463 if (r) 464 goto out_err_no_disable; 465 466 #ifdef CONFIG_HAVE_KVM_IRQCHIP 467 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 468 #endif 469 #ifdef CONFIG_HAVE_KVM_IRQFD 470 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 471 #endif 472 473 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 474 475 r = -ENOMEM; 476 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 477 if (!kvm->memslots) 478 goto out_err_no_srcu; 479 kvm_init_memslots_id(kvm); 480 if (init_srcu_struct(&kvm->srcu)) 481 goto out_err_no_srcu; 482 if (init_srcu_struct(&kvm->irq_srcu)) 483 goto out_err_no_irq_srcu; 484 for (i = 0; i < KVM_NR_BUSES; i++) { 485 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 486 GFP_KERNEL); 487 if (!kvm->buses[i]) 488 goto out_err; 489 } 490 491 spin_lock_init(&kvm->mmu_lock); 492 kvm->mm = current->mm; 493 atomic_inc(&kvm->mm->mm_count); 494 kvm_eventfd_init(kvm); 495 mutex_init(&kvm->lock); 496 mutex_init(&kvm->irq_lock); 497 mutex_init(&kvm->slots_lock); 498 atomic_set(&kvm->users_count, 1); 499 INIT_LIST_HEAD(&kvm->devices); 500 501 r = kvm_init_mmu_notifier(kvm); 502 if (r) 503 goto out_err; 504 505 spin_lock(&kvm_lock); 506 list_add(&kvm->vm_list, &vm_list); 507 spin_unlock(&kvm_lock); 508 509 return kvm; 510 511 out_err: 512 cleanup_srcu_struct(&kvm->irq_srcu); 513 out_err_no_irq_srcu: 514 cleanup_srcu_struct(&kvm->srcu); 515 out_err_no_srcu: 516 hardware_disable_all(); 517 out_err_no_disable: 518 for (i = 0; i < KVM_NR_BUSES; i++) 519 kfree(kvm->buses[i]); 520 kfree(kvm->memslots); 521 kvm_arch_free_vm(kvm); 522 return ERR_PTR(r); 523 } 524 525 /* 526 * Avoid using vmalloc for a small buffer. 527 * Should not be used when the size is statically known. 528 */ 529 void *kvm_kvzalloc(unsigned long size) 530 { 531 if (size > PAGE_SIZE) 532 return vzalloc(size); 533 else 534 return kzalloc(size, GFP_KERNEL); 535 } 536 537 void kvm_kvfree(const void *addr) 538 { 539 if (is_vmalloc_addr(addr)) 540 vfree(addr); 541 else 542 kfree(addr); 543 } 544 545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 546 { 547 if (!memslot->dirty_bitmap) 548 return; 549 550 kvm_kvfree(memslot->dirty_bitmap); 551 memslot->dirty_bitmap = NULL; 552 } 553 554 /* 555 * Free any memory in @free but not in @dont. 556 */ 557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free, 558 struct kvm_memory_slot *dont) 559 { 560 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 561 kvm_destroy_dirty_bitmap(free); 562 563 kvm_arch_free_memslot(kvm, free, dont); 564 565 free->npages = 0; 566 } 567 568 static void kvm_free_physmem(struct kvm *kvm) 569 { 570 struct kvm_memslots *slots = kvm->memslots; 571 struct kvm_memory_slot *memslot; 572 573 kvm_for_each_memslot(memslot, slots) 574 kvm_free_physmem_slot(kvm, memslot, NULL); 575 576 kfree(kvm->memslots); 577 } 578 579 static void kvm_destroy_devices(struct kvm *kvm) 580 { 581 struct list_head *node, *tmp; 582 583 list_for_each_safe(node, tmp, &kvm->devices) { 584 struct kvm_device *dev = 585 list_entry(node, struct kvm_device, vm_node); 586 587 list_del(node); 588 dev->ops->destroy(dev); 589 } 590 } 591 592 static void kvm_destroy_vm(struct kvm *kvm) 593 { 594 int i; 595 struct mm_struct *mm = kvm->mm; 596 597 kvm_arch_sync_events(kvm); 598 spin_lock(&kvm_lock); 599 list_del(&kvm->vm_list); 600 spin_unlock(&kvm_lock); 601 kvm_free_irq_routing(kvm); 602 for (i = 0; i < KVM_NR_BUSES; i++) 603 kvm_io_bus_destroy(kvm->buses[i]); 604 kvm_coalesced_mmio_free(kvm); 605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 606 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 607 #else 608 kvm_arch_flush_shadow_all(kvm); 609 #endif 610 kvm_arch_destroy_vm(kvm); 611 kvm_destroy_devices(kvm); 612 kvm_free_physmem(kvm); 613 cleanup_srcu_struct(&kvm->irq_srcu); 614 cleanup_srcu_struct(&kvm->srcu); 615 kvm_arch_free_vm(kvm); 616 hardware_disable_all(); 617 mmdrop(mm); 618 } 619 620 void kvm_get_kvm(struct kvm *kvm) 621 { 622 atomic_inc(&kvm->users_count); 623 } 624 EXPORT_SYMBOL_GPL(kvm_get_kvm); 625 626 void kvm_put_kvm(struct kvm *kvm) 627 { 628 if (atomic_dec_and_test(&kvm->users_count)) 629 kvm_destroy_vm(kvm); 630 } 631 EXPORT_SYMBOL_GPL(kvm_put_kvm); 632 633 634 static int kvm_vm_release(struct inode *inode, struct file *filp) 635 { 636 struct kvm *kvm = filp->private_data; 637 638 kvm_irqfd_release(kvm); 639 640 kvm_put_kvm(kvm); 641 return 0; 642 } 643 644 /* 645 * Allocation size is twice as large as the actual dirty bitmap size. 646 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 647 */ 648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 649 { 650 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 651 652 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 653 if (!memslot->dirty_bitmap) 654 return -ENOMEM; 655 656 return 0; 657 } 658 659 static int cmp_memslot(const void *slot1, const void *slot2) 660 { 661 struct kvm_memory_slot *s1, *s2; 662 663 s1 = (struct kvm_memory_slot *)slot1; 664 s2 = (struct kvm_memory_slot *)slot2; 665 666 if (s1->npages < s2->npages) 667 return 1; 668 if (s1->npages > s2->npages) 669 return -1; 670 671 return 0; 672 } 673 674 /* 675 * Sort the memslots base on its size, so the larger slots 676 * will get better fit. 677 */ 678 static void sort_memslots(struct kvm_memslots *slots) 679 { 680 int i; 681 682 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 683 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 684 685 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 686 slots->id_to_index[slots->memslots[i].id] = i; 687 } 688 689 static void update_memslots(struct kvm_memslots *slots, 690 struct kvm_memory_slot *new, 691 u64 last_generation) 692 { 693 if (new) { 694 int id = new->id; 695 struct kvm_memory_slot *old = id_to_memslot(slots, id); 696 unsigned long npages = old->npages; 697 698 *old = *new; 699 if (new->npages != npages) 700 sort_memslots(slots); 701 } 702 703 slots->generation = last_generation + 1; 704 } 705 706 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 707 { 708 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 709 710 #ifdef KVM_CAP_READONLY_MEM 711 valid_flags |= KVM_MEM_READONLY; 712 #endif 713 714 if (mem->flags & ~valid_flags) 715 return -EINVAL; 716 717 return 0; 718 } 719 720 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 721 struct kvm_memslots *slots, struct kvm_memory_slot *new) 722 { 723 struct kvm_memslots *old_memslots = kvm->memslots; 724 725 update_memslots(slots, new, kvm->memslots->generation); 726 rcu_assign_pointer(kvm->memslots, slots); 727 synchronize_srcu_expedited(&kvm->srcu); 728 729 kvm_arch_memslots_updated(kvm); 730 731 return old_memslots; 732 } 733 734 /* 735 * Allocate some memory and give it an address in the guest physical address 736 * space. 737 * 738 * Discontiguous memory is allowed, mostly for framebuffers. 739 * 740 * Must be called holding mmap_sem for write. 741 */ 742 int __kvm_set_memory_region(struct kvm *kvm, 743 struct kvm_userspace_memory_region *mem) 744 { 745 int r; 746 gfn_t base_gfn; 747 unsigned long npages; 748 struct kvm_memory_slot *slot; 749 struct kvm_memory_slot old, new; 750 struct kvm_memslots *slots = NULL, *old_memslots; 751 enum kvm_mr_change change; 752 753 r = check_memory_region_flags(mem); 754 if (r) 755 goto out; 756 757 r = -EINVAL; 758 /* General sanity checks */ 759 if (mem->memory_size & (PAGE_SIZE - 1)) 760 goto out; 761 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 762 goto out; 763 /* We can read the guest memory with __xxx_user() later on. */ 764 if ((mem->slot < KVM_USER_MEM_SLOTS) && 765 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 766 !access_ok(VERIFY_WRITE, 767 (void __user *)(unsigned long)mem->userspace_addr, 768 mem->memory_size))) 769 goto out; 770 if (mem->slot >= KVM_MEM_SLOTS_NUM) 771 goto out; 772 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 773 goto out; 774 775 slot = id_to_memslot(kvm->memslots, mem->slot); 776 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 777 npages = mem->memory_size >> PAGE_SHIFT; 778 779 r = -EINVAL; 780 if (npages > KVM_MEM_MAX_NR_PAGES) 781 goto out; 782 783 if (!npages) 784 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 785 786 new = old = *slot; 787 788 new.id = mem->slot; 789 new.base_gfn = base_gfn; 790 new.npages = npages; 791 new.flags = mem->flags; 792 793 r = -EINVAL; 794 if (npages) { 795 if (!old.npages) 796 change = KVM_MR_CREATE; 797 else { /* Modify an existing slot. */ 798 if ((mem->userspace_addr != old.userspace_addr) || 799 (npages != old.npages) || 800 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 801 goto out; 802 803 if (base_gfn != old.base_gfn) 804 change = KVM_MR_MOVE; 805 else if (new.flags != old.flags) 806 change = KVM_MR_FLAGS_ONLY; 807 else { /* Nothing to change. */ 808 r = 0; 809 goto out; 810 } 811 } 812 } else if (old.npages) { 813 change = KVM_MR_DELETE; 814 } else /* Modify a non-existent slot: disallowed. */ 815 goto out; 816 817 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 818 /* Check for overlaps */ 819 r = -EEXIST; 820 kvm_for_each_memslot(slot, kvm->memslots) { 821 if ((slot->id >= KVM_USER_MEM_SLOTS) || 822 (slot->id == mem->slot)) 823 continue; 824 if (!((base_gfn + npages <= slot->base_gfn) || 825 (base_gfn >= slot->base_gfn + slot->npages))) 826 goto out; 827 } 828 } 829 830 /* Free page dirty bitmap if unneeded */ 831 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 832 new.dirty_bitmap = NULL; 833 834 r = -ENOMEM; 835 if (change == KVM_MR_CREATE) { 836 new.userspace_addr = mem->userspace_addr; 837 838 if (kvm_arch_create_memslot(kvm, &new, npages)) 839 goto out_free; 840 } 841 842 /* Allocate page dirty bitmap if needed */ 843 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 844 if (kvm_create_dirty_bitmap(&new) < 0) 845 goto out_free; 846 } 847 848 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 849 r = -ENOMEM; 850 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 851 GFP_KERNEL); 852 if (!slots) 853 goto out_free; 854 slot = id_to_memslot(slots, mem->slot); 855 slot->flags |= KVM_MEMSLOT_INVALID; 856 857 old_memslots = install_new_memslots(kvm, slots, NULL); 858 859 /* slot was deleted or moved, clear iommu mapping */ 860 kvm_iommu_unmap_pages(kvm, &old); 861 /* From this point no new shadow pages pointing to a deleted, 862 * or moved, memslot will be created. 863 * 864 * validation of sp->gfn happens in: 865 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 866 * - kvm_is_visible_gfn (mmu_check_roots) 867 */ 868 kvm_arch_flush_shadow_memslot(kvm, slot); 869 slots = old_memslots; 870 } 871 872 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 873 if (r) 874 goto out_slots; 875 876 r = -ENOMEM; 877 /* 878 * We can re-use the old_memslots from above, the only difference 879 * from the currently installed memslots is the invalid flag. This 880 * will get overwritten by update_memslots anyway. 881 */ 882 if (!slots) { 883 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 884 GFP_KERNEL); 885 if (!slots) 886 goto out_free; 887 } 888 889 /* actual memory is freed via old in kvm_free_physmem_slot below */ 890 if (change == KVM_MR_DELETE) { 891 new.dirty_bitmap = NULL; 892 memset(&new.arch, 0, sizeof(new.arch)); 893 } 894 895 old_memslots = install_new_memslots(kvm, slots, &new); 896 897 kvm_arch_commit_memory_region(kvm, mem, &old, change); 898 899 kvm_free_physmem_slot(kvm, &old, &new); 900 kfree(old_memslots); 901 902 /* 903 * IOMMU mapping: New slots need to be mapped. Old slots need to be 904 * un-mapped and re-mapped if their base changes. Since base change 905 * unmapping is handled above with slot deletion, mapping alone is 906 * needed here. Anything else the iommu might care about for existing 907 * slots (size changes, userspace addr changes and read-only flag 908 * changes) is disallowed above, so any other attribute changes getting 909 * here can be skipped. 910 */ 911 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 912 r = kvm_iommu_map_pages(kvm, &new); 913 return r; 914 } 915 916 return 0; 917 918 out_slots: 919 kfree(slots); 920 out_free: 921 kvm_free_physmem_slot(kvm, &new, &old); 922 out: 923 return r; 924 } 925 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 926 927 int kvm_set_memory_region(struct kvm *kvm, 928 struct kvm_userspace_memory_region *mem) 929 { 930 int r; 931 932 mutex_lock(&kvm->slots_lock); 933 r = __kvm_set_memory_region(kvm, mem); 934 mutex_unlock(&kvm->slots_lock); 935 return r; 936 } 937 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 938 939 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 940 struct kvm_userspace_memory_region *mem) 941 { 942 if (mem->slot >= KVM_USER_MEM_SLOTS) 943 return -EINVAL; 944 return kvm_set_memory_region(kvm, mem); 945 } 946 947 int kvm_get_dirty_log(struct kvm *kvm, 948 struct kvm_dirty_log *log, int *is_dirty) 949 { 950 struct kvm_memory_slot *memslot; 951 int r, i; 952 unsigned long n; 953 unsigned long any = 0; 954 955 r = -EINVAL; 956 if (log->slot >= KVM_USER_MEM_SLOTS) 957 goto out; 958 959 memslot = id_to_memslot(kvm->memslots, log->slot); 960 r = -ENOENT; 961 if (!memslot->dirty_bitmap) 962 goto out; 963 964 n = kvm_dirty_bitmap_bytes(memslot); 965 966 for (i = 0; !any && i < n/sizeof(long); ++i) 967 any = memslot->dirty_bitmap[i]; 968 969 r = -EFAULT; 970 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 971 goto out; 972 973 if (any) 974 *is_dirty = 1; 975 976 r = 0; 977 out: 978 return r; 979 } 980 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 981 982 bool kvm_largepages_enabled(void) 983 { 984 return largepages_enabled; 985 } 986 987 void kvm_disable_largepages(void) 988 { 989 largepages_enabled = false; 990 } 991 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 992 993 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 994 { 995 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 996 } 997 EXPORT_SYMBOL_GPL(gfn_to_memslot); 998 999 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1000 { 1001 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1002 1003 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1004 memslot->flags & KVM_MEMSLOT_INVALID) 1005 return 0; 1006 1007 return 1; 1008 } 1009 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1010 1011 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1012 { 1013 struct vm_area_struct *vma; 1014 unsigned long addr, size; 1015 1016 size = PAGE_SIZE; 1017 1018 addr = gfn_to_hva(kvm, gfn); 1019 if (kvm_is_error_hva(addr)) 1020 return PAGE_SIZE; 1021 1022 down_read(¤t->mm->mmap_sem); 1023 vma = find_vma(current->mm, addr); 1024 if (!vma) 1025 goto out; 1026 1027 size = vma_kernel_pagesize(vma); 1028 1029 out: 1030 up_read(¤t->mm->mmap_sem); 1031 1032 return size; 1033 } 1034 1035 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1036 { 1037 return slot->flags & KVM_MEM_READONLY; 1038 } 1039 1040 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1041 gfn_t *nr_pages, bool write) 1042 { 1043 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1044 return KVM_HVA_ERR_BAD; 1045 1046 if (memslot_is_readonly(slot) && write) 1047 return KVM_HVA_ERR_RO_BAD; 1048 1049 if (nr_pages) 1050 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1051 1052 return __gfn_to_hva_memslot(slot, gfn); 1053 } 1054 1055 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1056 gfn_t *nr_pages) 1057 { 1058 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1059 } 1060 1061 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1062 gfn_t gfn) 1063 { 1064 return gfn_to_hva_many(slot, gfn, NULL); 1065 } 1066 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1067 1068 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1069 { 1070 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1071 } 1072 EXPORT_SYMBOL_GPL(gfn_to_hva); 1073 1074 /* 1075 * If writable is set to false, the hva returned by this function is only 1076 * allowed to be read. 1077 */ 1078 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1079 { 1080 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1081 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1082 1083 if (!kvm_is_error_hva(hva) && writable) 1084 *writable = !memslot_is_readonly(slot); 1085 1086 return hva; 1087 } 1088 1089 static int kvm_read_hva(void *data, void __user *hva, int len) 1090 { 1091 return __copy_from_user(data, hva, len); 1092 } 1093 1094 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1095 { 1096 return __copy_from_user_inatomic(data, hva, len); 1097 } 1098 1099 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1100 unsigned long start, int write, struct page **page) 1101 { 1102 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1103 1104 if (write) 1105 flags |= FOLL_WRITE; 1106 1107 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1108 } 1109 1110 static inline int check_user_page_hwpoison(unsigned long addr) 1111 { 1112 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1113 1114 rc = __get_user_pages(current, current->mm, addr, 1, 1115 flags, NULL, NULL, NULL); 1116 return rc == -EHWPOISON; 1117 } 1118 1119 /* 1120 * The atomic path to get the writable pfn which will be stored in @pfn, 1121 * true indicates success, otherwise false is returned. 1122 */ 1123 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1124 bool write_fault, bool *writable, pfn_t *pfn) 1125 { 1126 struct page *page[1]; 1127 int npages; 1128 1129 if (!(async || atomic)) 1130 return false; 1131 1132 /* 1133 * Fast pin a writable pfn only if it is a write fault request 1134 * or the caller allows to map a writable pfn for a read fault 1135 * request. 1136 */ 1137 if (!(write_fault || writable)) 1138 return false; 1139 1140 npages = __get_user_pages_fast(addr, 1, 1, page); 1141 if (npages == 1) { 1142 *pfn = page_to_pfn(page[0]); 1143 1144 if (writable) 1145 *writable = true; 1146 return true; 1147 } 1148 1149 return false; 1150 } 1151 1152 /* 1153 * The slow path to get the pfn of the specified host virtual address, 1154 * 1 indicates success, -errno is returned if error is detected. 1155 */ 1156 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1157 bool *writable, pfn_t *pfn) 1158 { 1159 struct page *page[1]; 1160 int npages = 0; 1161 1162 might_sleep(); 1163 1164 if (writable) 1165 *writable = write_fault; 1166 1167 if (async) { 1168 down_read(¤t->mm->mmap_sem); 1169 npages = get_user_page_nowait(current, current->mm, 1170 addr, write_fault, page); 1171 up_read(¤t->mm->mmap_sem); 1172 } else 1173 npages = get_user_pages_fast(addr, 1, write_fault, 1174 page); 1175 if (npages != 1) 1176 return npages; 1177 1178 /* map read fault as writable if possible */ 1179 if (unlikely(!write_fault) && writable) { 1180 struct page *wpage[1]; 1181 1182 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1183 if (npages == 1) { 1184 *writable = true; 1185 put_page(page[0]); 1186 page[0] = wpage[0]; 1187 } 1188 1189 npages = 1; 1190 } 1191 *pfn = page_to_pfn(page[0]); 1192 return npages; 1193 } 1194 1195 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1196 { 1197 if (unlikely(!(vma->vm_flags & VM_READ))) 1198 return false; 1199 1200 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1201 return false; 1202 1203 return true; 1204 } 1205 1206 /* 1207 * Pin guest page in memory and return its pfn. 1208 * @addr: host virtual address which maps memory to the guest 1209 * @atomic: whether this function can sleep 1210 * @async: whether this function need to wait IO complete if the 1211 * host page is not in the memory 1212 * @write_fault: whether we should get a writable host page 1213 * @writable: whether it allows to map a writable host page for !@write_fault 1214 * 1215 * The function will map a writable host page for these two cases: 1216 * 1): @write_fault = true 1217 * 2): @write_fault = false && @writable, @writable will tell the caller 1218 * whether the mapping is writable. 1219 */ 1220 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1221 bool write_fault, bool *writable) 1222 { 1223 struct vm_area_struct *vma; 1224 pfn_t pfn = 0; 1225 int npages; 1226 1227 /* we can do it either atomically or asynchronously, not both */ 1228 BUG_ON(atomic && async); 1229 1230 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1231 return pfn; 1232 1233 if (atomic) 1234 return KVM_PFN_ERR_FAULT; 1235 1236 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1237 if (npages == 1) 1238 return pfn; 1239 1240 down_read(¤t->mm->mmap_sem); 1241 if (npages == -EHWPOISON || 1242 (!async && check_user_page_hwpoison(addr))) { 1243 pfn = KVM_PFN_ERR_HWPOISON; 1244 goto exit; 1245 } 1246 1247 vma = find_vma_intersection(current->mm, addr, addr + 1); 1248 1249 if (vma == NULL) 1250 pfn = KVM_PFN_ERR_FAULT; 1251 else if ((vma->vm_flags & VM_PFNMAP)) { 1252 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1253 vma->vm_pgoff; 1254 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1255 } else { 1256 if (async && vma_is_valid(vma, write_fault)) 1257 *async = true; 1258 pfn = KVM_PFN_ERR_FAULT; 1259 } 1260 exit: 1261 up_read(¤t->mm->mmap_sem); 1262 return pfn; 1263 } 1264 1265 static pfn_t 1266 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1267 bool *async, bool write_fault, bool *writable) 1268 { 1269 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1270 1271 if (addr == KVM_HVA_ERR_RO_BAD) 1272 return KVM_PFN_ERR_RO_FAULT; 1273 1274 if (kvm_is_error_hva(addr)) 1275 return KVM_PFN_NOSLOT; 1276 1277 /* Do not map writable pfn in the readonly memslot. */ 1278 if (writable && memslot_is_readonly(slot)) { 1279 *writable = false; 1280 writable = NULL; 1281 } 1282 1283 return hva_to_pfn(addr, atomic, async, write_fault, 1284 writable); 1285 } 1286 1287 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1288 bool write_fault, bool *writable) 1289 { 1290 struct kvm_memory_slot *slot; 1291 1292 if (async) 1293 *async = false; 1294 1295 slot = gfn_to_memslot(kvm, gfn); 1296 1297 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1298 writable); 1299 } 1300 1301 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1302 { 1303 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1304 } 1305 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1306 1307 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1308 bool write_fault, bool *writable) 1309 { 1310 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1311 } 1312 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1313 1314 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1315 { 1316 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1317 } 1318 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1319 1320 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1321 bool *writable) 1322 { 1323 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1324 } 1325 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1326 1327 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1328 { 1329 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1330 } 1331 1332 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1333 { 1334 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1335 } 1336 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1337 1338 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1339 int nr_pages) 1340 { 1341 unsigned long addr; 1342 gfn_t entry; 1343 1344 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1345 if (kvm_is_error_hva(addr)) 1346 return -1; 1347 1348 if (entry < nr_pages) 1349 return 0; 1350 1351 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1352 } 1353 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1354 1355 static struct page *kvm_pfn_to_page(pfn_t pfn) 1356 { 1357 if (is_error_noslot_pfn(pfn)) 1358 return KVM_ERR_PTR_BAD_PAGE; 1359 1360 if (kvm_is_mmio_pfn(pfn)) { 1361 WARN_ON(1); 1362 return KVM_ERR_PTR_BAD_PAGE; 1363 } 1364 1365 return pfn_to_page(pfn); 1366 } 1367 1368 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1369 { 1370 pfn_t pfn; 1371 1372 pfn = gfn_to_pfn(kvm, gfn); 1373 1374 return kvm_pfn_to_page(pfn); 1375 } 1376 1377 EXPORT_SYMBOL_GPL(gfn_to_page); 1378 1379 void kvm_release_page_clean(struct page *page) 1380 { 1381 WARN_ON(is_error_page(page)); 1382 1383 kvm_release_pfn_clean(page_to_pfn(page)); 1384 } 1385 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1386 1387 void kvm_release_pfn_clean(pfn_t pfn) 1388 { 1389 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1390 put_page(pfn_to_page(pfn)); 1391 } 1392 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1393 1394 void kvm_release_page_dirty(struct page *page) 1395 { 1396 WARN_ON(is_error_page(page)); 1397 1398 kvm_release_pfn_dirty(page_to_pfn(page)); 1399 } 1400 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1401 1402 static void kvm_release_pfn_dirty(pfn_t pfn) 1403 { 1404 kvm_set_pfn_dirty(pfn); 1405 kvm_release_pfn_clean(pfn); 1406 } 1407 1408 void kvm_set_pfn_dirty(pfn_t pfn) 1409 { 1410 if (!kvm_is_mmio_pfn(pfn)) { 1411 struct page *page = pfn_to_page(pfn); 1412 if (!PageReserved(page)) 1413 SetPageDirty(page); 1414 } 1415 } 1416 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1417 1418 void kvm_set_pfn_accessed(pfn_t pfn) 1419 { 1420 if (!kvm_is_mmio_pfn(pfn)) 1421 mark_page_accessed(pfn_to_page(pfn)); 1422 } 1423 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1424 1425 void kvm_get_pfn(pfn_t pfn) 1426 { 1427 if (!kvm_is_mmio_pfn(pfn)) 1428 get_page(pfn_to_page(pfn)); 1429 } 1430 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1431 1432 static int next_segment(unsigned long len, int offset) 1433 { 1434 if (len > PAGE_SIZE - offset) 1435 return PAGE_SIZE - offset; 1436 else 1437 return len; 1438 } 1439 1440 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1441 int len) 1442 { 1443 int r; 1444 unsigned long addr; 1445 1446 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1447 if (kvm_is_error_hva(addr)) 1448 return -EFAULT; 1449 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1450 if (r) 1451 return -EFAULT; 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1455 1456 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1457 { 1458 gfn_t gfn = gpa >> PAGE_SHIFT; 1459 int seg; 1460 int offset = offset_in_page(gpa); 1461 int ret; 1462 1463 while ((seg = next_segment(len, offset)) != 0) { 1464 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1465 if (ret < 0) 1466 return ret; 1467 offset = 0; 1468 len -= seg; 1469 data += seg; 1470 ++gfn; 1471 } 1472 return 0; 1473 } 1474 EXPORT_SYMBOL_GPL(kvm_read_guest); 1475 1476 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1477 unsigned long len) 1478 { 1479 int r; 1480 unsigned long addr; 1481 gfn_t gfn = gpa >> PAGE_SHIFT; 1482 int offset = offset_in_page(gpa); 1483 1484 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1485 if (kvm_is_error_hva(addr)) 1486 return -EFAULT; 1487 pagefault_disable(); 1488 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1489 pagefault_enable(); 1490 if (r) 1491 return -EFAULT; 1492 return 0; 1493 } 1494 EXPORT_SYMBOL(kvm_read_guest_atomic); 1495 1496 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1497 int offset, int len) 1498 { 1499 int r; 1500 unsigned long addr; 1501 1502 addr = gfn_to_hva(kvm, gfn); 1503 if (kvm_is_error_hva(addr)) 1504 return -EFAULT; 1505 r = __copy_to_user((void __user *)addr + offset, data, len); 1506 if (r) 1507 return -EFAULT; 1508 mark_page_dirty(kvm, gfn); 1509 return 0; 1510 } 1511 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1512 1513 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1514 unsigned long len) 1515 { 1516 gfn_t gfn = gpa >> PAGE_SHIFT; 1517 int seg; 1518 int offset = offset_in_page(gpa); 1519 int ret; 1520 1521 while ((seg = next_segment(len, offset)) != 0) { 1522 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1523 if (ret < 0) 1524 return ret; 1525 offset = 0; 1526 len -= seg; 1527 data += seg; 1528 ++gfn; 1529 } 1530 return 0; 1531 } 1532 1533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1534 gpa_t gpa, unsigned long len) 1535 { 1536 struct kvm_memslots *slots = kvm_memslots(kvm); 1537 int offset = offset_in_page(gpa); 1538 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1539 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1540 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1541 gfn_t nr_pages_avail; 1542 1543 ghc->gpa = gpa; 1544 ghc->generation = slots->generation; 1545 ghc->len = len; 1546 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1547 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1548 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1549 ghc->hva += offset; 1550 } else { 1551 /* 1552 * If the requested region crosses two memslots, we still 1553 * verify that the entire region is valid here. 1554 */ 1555 while (start_gfn <= end_gfn) { 1556 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1557 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1558 &nr_pages_avail); 1559 if (kvm_is_error_hva(ghc->hva)) 1560 return -EFAULT; 1561 start_gfn += nr_pages_avail; 1562 } 1563 /* Use the slow path for cross page reads and writes. */ 1564 ghc->memslot = NULL; 1565 } 1566 return 0; 1567 } 1568 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1569 1570 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1571 void *data, unsigned long len) 1572 { 1573 struct kvm_memslots *slots = kvm_memslots(kvm); 1574 int r; 1575 1576 BUG_ON(len > ghc->len); 1577 1578 if (slots->generation != ghc->generation) 1579 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1580 1581 if (unlikely(!ghc->memslot)) 1582 return kvm_write_guest(kvm, ghc->gpa, data, len); 1583 1584 if (kvm_is_error_hva(ghc->hva)) 1585 return -EFAULT; 1586 1587 r = __copy_to_user((void __user *)ghc->hva, data, len); 1588 if (r) 1589 return -EFAULT; 1590 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1591 1592 return 0; 1593 } 1594 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1595 1596 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1597 void *data, unsigned long len) 1598 { 1599 struct kvm_memslots *slots = kvm_memslots(kvm); 1600 int r; 1601 1602 BUG_ON(len > ghc->len); 1603 1604 if (slots->generation != ghc->generation) 1605 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1606 1607 if (unlikely(!ghc->memslot)) 1608 return kvm_read_guest(kvm, ghc->gpa, data, len); 1609 1610 if (kvm_is_error_hva(ghc->hva)) 1611 return -EFAULT; 1612 1613 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1614 if (r) 1615 return -EFAULT; 1616 1617 return 0; 1618 } 1619 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1620 1621 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1622 { 1623 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 1624 1625 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 1626 } 1627 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1628 1629 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1630 { 1631 gfn_t gfn = gpa >> PAGE_SHIFT; 1632 int seg; 1633 int offset = offset_in_page(gpa); 1634 int ret; 1635 1636 while ((seg = next_segment(len, offset)) != 0) { 1637 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1638 if (ret < 0) 1639 return ret; 1640 offset = 0; 1641 len -= seg; 1642 ++gfn; 1643 } 1644 return 0; 1645 } 1646 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1647 1648 static void mark_page_dirty_in_slot(struct kvm *kvm, 1649 struct kvm_memory_slot *memslot, 1650 gfn_t gfn) 1651 { 1652 if (memslot && memslot->dirty_bitmap) { 1653 unsigned long rel_gfn = gfn - memslot->base_gfn; 1654 1655 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1656 } 1657 } 1658 1659 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1660 { 1661 struct kvm_memory_slot *memslot; 1662 1663 memslot = gfn_to_memslot(kvm, gfn); 1664 mark_page_dirty_in_slot(kvm, memslot, gfn); 1665 } 1666 EXPORT_SYMBOL_GPL(mark_page_dirty); 1667 1668 /* 1669 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1670 */ 1671 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1672 { 1673 DEFINE_WAIT(wait); 1674 1675 for (;;) { 1676 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1677 1678 if (kvm_arch_vcpu_runnable(vcpu)) { 1679 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1680 break; 1681 } 1682 if (kvm_cpu_has_pending_timer(vcpu)) 1683 break; 1684 if (signal_pending(current)) 1685 break; 1686 1687 schedule(); 1688 } 1689 1690 finish_wait(&vcpu->wq, &wait); 1691 } 1692 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 1693 1694 #ifndef CONFIG_S390 1695 /* 1696 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1697 */ 1698 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1699 { 1700 int me; 1701 int cpu = vcpu->cpu; 1702 wait_queue_head_t *wqp; 1703 1704 wqp = kvm_arch_vcpu_wq(vcpu); 1705 if (waitqueue_active(wqp)) { 1706 wake_up_interruptible(wqp); 1707 ++vcpu->stat.halt_wakeup; 1708 } 1709 1710 me = get_cpu(); 1711 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1712 if (kvm_arch_vcpu_should_kick(vcpu)) 1713 smp_send_reschedule(cpu); 1714 put_cpu(); 1715 } 1716 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1717 #endif /* !CONFIG_S390 */ 1718 1719 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 1720 { 1721 struct pid *pid; 1722 struct task_struct *task = NULL; 1723 int ret = 0; 1724 1725 rcu_read_lock(); 1726 pid = rcu_dereference(target->pid); 1727 if (pid) 1728 task = get_pid_task(target->pid, PIDTYPE_PID); 1729 rcu_read_unlock(); 1730 if (!task) 1731 return ret; 1732 if (task->flags & PF_VCPU) { 1733 put_task_struct(task); 1734 return ret; 1735 } 1736 ret = yield_to(task, 1); 1737 put_task_struct(task); 1738 1739 return ret; 1740 } 1741 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1742 1743 /* 1744 * Helper that checks whether a VCPU is eligible for directed yield. 1745 * Most eligible candidate to yield is decided by following heuristics: 1746 * 1747 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1748 * (preempted lock holder), indicated by @in_spin_loop. 1749 * Set at the beiginning and cleared at the end of interception/PLE handler. 1750 * 1751 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1752 * chance last time (mostly it has become eligible now since we have probably 1753 * yielded to lockholder in last iteration. This is done by toggling 1754 * @dy_eligible each time a VCPU checked for eligibility.) 1755 * 1756 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1757 * to preempted lock-holder could result in wrong VCPU selection and CPU 1758 * burning. Giving priority for a potential lock-holder increases lock 1759 * progress. 1760 * 1761 * Since algorithm is based on heuristics, accessing another VCPU data without 1762 * locking does not harm. It may result in trying to yield to same VCPU, fail 1763 * and continue with next VCPU and so on. 1764 */ 1765 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1766 { 1767 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1768 bool eligible; 1769 1770 eligible = !vcpu->spin_loop.in_spin_loop || 1771 (vcpu->spin_loop.in_spin_loop && 1772 vcpu->spin_loop.dy_eligible); 1773 1774 if (vcpu->spin_loop.in_spin_loop) 1775 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1776 1777 return eligible; 1778 #else 1779 return true; 1780 #endif 1781 } 1782 1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1784 { 1785 struct kvm *kvm = me->kvm; 1786 struct kvm_vcpu *vcpu; 1787 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1788 int yielded = 0; 1789 int try = 3; 1790 int pass; 1791 int i; 1792 1793 kvm_vcpu_set_in_spin_loop(me, true); 1794 /* 1795 * We boost the priority of a VCPU that is runnable but not 1796 * currently running, because it got preempted by something 1797 * else and called schedule in __vcpu_run. Hopefully that 1798 * VCPU is holding the lock that we need and will release it. 1799 * We approximate round-robin by starting at the last boosted VCPU. 1800 */ 1801 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1802 kvm_for_each_vcpu(i, vcpu, kvm) { 1803 if (!pass && i <= last_boosted_vcpu) { 1804 i = last_boosted_vcpu; 1805 continue; 1806 } else if (pass && i > last_boosted_vcpu) 1807 break; 1808 if (!ACCESS_ONCE(vcpu->preempted)) 1809 continue; 1810 if (vcpu == me) 1811 continue; 1812 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 1813 continue; 1814 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1815 continue; 1816 1817 yielded = kvm_vcpu_yield_to(vcpu); 1818 if (yielded > 0) { 1819 kvm->last_boosted_vcpu = i; 1820 break; 1821 } else if (yielded < 0) { 1822 try--; 1823 if (!try) 1824 break; 1825 } 1826 } 1827 } 1828 kvm_vcpu_set_in_spin_loop(me, false); 1829 1830 /* Ensure vcpu is not eligible during next spinloop */ 1831 kvm_vcpu_set_dy_eligible(me, false); 1832 } 1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1834 1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1836 { 1837 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1838 struct page *page; 1839 1840 if (vmf->pgoff == 0) 1841 page = virt_to_page(vcpu->run); 1842 #ifdef CONFIG_X86 1843 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1844 page = virt_to_page(vcpu->arch.pio_data); 1845 #endif 1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1847 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1848 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1849 #endif 1850 else 1851 return kvm_arch_vcpu_fault(vcpu, vmf); 1852 get_page(page); 1853 vmf->page = page; 1854 return 0; 1855 } 1856 1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1858 .fault = kvm_vcpu_fault, 1859 }; 1860 1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1862 { 1863 vma->vm_ops = &kvm_vcpu_vm_ops; 1864 return 0; 1865 } 1866 1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1868 { 1869 struct kvm_vcpu *vcpu = filp->private_data; 1870 1871 kvm_put_kvm(vcpu->kvm); 1872 return 0; 1873 } 1874 1875 static struct file_operations kvm_vcpu_fops = { 1876 .release = kvm_vcpu_release, 1877 .unlocked_ioctl = kvm_vcpu_ioctl, 1878 #ifdef CONFIG_COMPAT 1879 .compat_ioctl = kvm_vcpu_compat_ioctl, 1880 #endif 1881 .mmap = kvm_vcpu_mmap, 1882 .llseek = noop_llseek, 1883 }; 1884 1885 /* 1886 * Allocates an inode for the vcpu. 1887 */ 1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1889 { 1890 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 1891 } 1892 1893 /* 1894 * Creates some virtual cpus. Good luck creating more than one. 1895 */ 1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1897 { 1898 int r; 1899 struct kvm_vcpu *vcpu, *v; 1900 1901 if (id >= KVM_MAX_VCPUS) 1902 return -EINVAL; 1903 1904 vcpu = kvm_arch_vcpu_create(kvm, id); 1905 if (IS_ERR(vcpu)) 1906 return PTR_ERR(vcpu); 1907 1908 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1909 1910 r = kvm_arch_vcpu_setup(vcpu); 1911 if (r) 1912 goto vcpu_destroy; 1913 1914 mutex_lock(&kvm->lock); 1915 if (!kvm_vcpu_compatible(vcpu)) { 1916 r = -EINVAL; 1917 goto unlock_vcpu_destroy; 1918 } 1919 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1920 r = -EINVAL; 1921 goto unlock_vcpu_destroy; 1922 } 1923 1924 kvm_for_each_vcpu(r, v, kvm) 1925 if (v->vcpu_id == id) { 1926 r = -EEXIST; 1927 goto unlock_vcpu_destroy; 1928 } 1929 1930 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1931 1932 /* Now it's all set up, let userspace reach it */ 1933 kvm_get_kvm(kvm); 1934 r = create_vcpu_fd(vcpu); 1935 if (r < 0) { 1936 kvm_put_kvm(kvm); 1937 goto unlock_vcpu_destroy; 1938 } 1939 1940 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1941 smp_wmb(); 1942 atomic_inc(&kvm->online_vcpus); 1943 1944 mutex_unlock(&kvm->lock); 1945 kvm_arch_vcpu_postcreate(vcpu); 1946 return r; 1947 1948 unlock_vcpu_destroy: 1949 mutex_unlock(&kvm->lock); 1950 vcpu_destroy: 1951 kvm_arch_vcpu_destroy(vcpu); 1952 return r; 1953 } 1954 1955 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1956 { 1957 if (sigset) { 1958 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1959 vcpu->sigset_active = 1; 1960 vcpu->sigset = *sigset; 1961 } else 1962 vcpu->sigset_active = 0; 1963 return 0; 1964 } 1965 1966 static long kvm_vcpu_ioctl(struct file *filp, 1967 unsigned int ioctl, unsigned long arg) 1968 { 1969 struct kvm_vcpu *vcpu = filp->private_data; 1970 void __user *argp = (void __user *)arg; 1971 int r; 1972 struct kvm_fpu *fpu = NULL; 1973 struct kvm_sregs *kvm_sregs = NULL; 1974 1975 if (vcpu->kvm->mm != current->mm) 1976 return -EIO; 1977 1978 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1979 /* 1980 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1981 * so vcpu_load() would break it. 1982 */ 1983 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1984 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1985 #endif 1986 1987 1988 r = vcpu_load(vcpu); 1989 if (r) 1990 return r; 1991 switch (ioctl) { 1992 case KVM_RUN: 1993 r = -EINVAL; 1994 if (arg) 1995 goto out; 1996 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1997 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1998 break; 1999 case KVM_GET_REGS: { 2000 struct kvm_regs *kvm_regs; 2001 2002 r = -ENOMEM; 2003 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2004 if (!kvm_regs) 2005 goto out; 2006 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2007 if (r) 2008 goto out_free1; 2009 r = -EFAULT; 2010 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2011 goto out_free1; 2012 r = 0; 2013 out_free1: 2014 kfree(kvm_regs); 2015 break; 2016 } 2017 case KVM_SET_REGS: { 2018 struct kvm_regs *kvm_regs; 2019 2020 r = -ENOMEM; 2021 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2022 if (IS_ERR(kvm_regs)) { 2023 r = PTR_ERR(kvm_regs); 2024 goto out; 2025 } 2026 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2027 kfree(kvm_regs); 2028 break; 2029 } 2030 case KVM_GET_SREGS: { 2031 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2032 r = -ENOMEM; 2033 if (!kvm_sregs) 2034 goto out; 2035 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2036 if (r) 2037 goto out; 2038 r = -EFAULT; 2039 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2040 goto out; 2041 r = 0; 2042 break; 2043 } 2044 case KVM_SET_SREGS: { 2045 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2046 if (IS_ERR(kvm_sregs)) { 2047 r = PTR_ERR(kvm_sregs); 2048 kvm_sregs = NULL; 2049 goto out; 2050 } 2051 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2052 break; 2053 } 2054 case KVM_GET_MP_STATE: { 2055 struct kvm_mp_state mp_state; 2056 2057 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2058 if (r) 2059 goto out; 2060 r = -EFAULT; 2061 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2062 goto out; 2063 r = 0; 2064 break; 2065 } 2066 case KVM_SET_MP_STATE: { 2067 struct kvm_mp_state mp_state; 2068 2069 r = -EFAULT; 2070 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2071 goto out; 2072 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2073 break; 2074 } 2075 case KVM_TRANSLATE: { 2076 struct kvm_translation tr; 2077 2078 r = -EFAULT; 2079 if (copy_from_user(&tr, argp, sizeof tr)) 2080 goto out; 2081 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2082 if (r) 2083 goto out; 2084 r = -EFAULT; 2085 if (copy_to_user(argp, &tr, sizeof tr)) 2086 goto out; 2087 r = 0; 2088 break; 2089 } 2090 case KVM_SET_GUEST_DEBUG: { 2091 struct kvm_guest_debug dbg; 2092 2093 r = -EFAULT; 2094 if (copy_from_user(&dbg, argp, sizeof dbg)) 2095 goto out; 2096 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2097 break; 2098 } 2099 case KVM_SET_SIGNAL_MASK: { 2100 struct kvm_signal_mask __user *sigmask_arg = argp; 2101 struct kvm_signal_mask kvm_sigmask; 2102 sigset_t sigset, *p; 2103 2104 p = NULL; 2105 if (argp) { 2106 r = -EFAULT; 2107 if (copy_from_user(&kvm_sigmask, argp, 2108 sizeof kvm_sigmask)) 2109 goto out; 2110 r = -EINVAL; 2111 if (kvm_sigmask.len != sizeof sigset) 2112 goto out; 2113 r = -EFAULT; 2114 if (copy_from_user(&sigset, sigmask_arg->sigset, 2115 sizeof sigset)) 2116 goto out; 2117 p = &sigset; 2118 } 2119 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2120 break; 2121 } 2122 case KVM_GET_FPU: { 2123 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2124 r = -ENOMEM; 2125 if (!fpu) 2126 goto out; 2127 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2128 if (r) 2129 goto out; 2130 r = -EFAULT; 2131 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2132 goto out; 2133 r = 0; 2134 break; 2135 } 2136 case KVM_SET_FPU: { 2137 fpu = memdup_user(argp, sizeof(*fpu)); 2138 if (IS_ERR(fpu)) { 2139 r = PTR_ERR(fpu); 2140 fpu = NULL; 2141 goto out; 2142 } 2143 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2144 break; 2145 } 2146 default: 2147 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2148 } 2149 out: 2150 vcpu_put(vcpu); 2151 kfree(fpu); 2152 kfree(kvm_sregs); 2153 return r; 2154 } 2155 2156 #ifdef CONFIG_COMPAT 2157 static long kvm_vcpu_compat_ioctl(struct file *filp, 2158 unsigned int ioctl, unsigned long arg) 2159 { 2160 struct kvm_vcpu *vcpu = filp->private_data; 2161 void __user *argp = compat_ptr(arg); 2162 int r; 2163 2164 if (vcpu->kvm->mm != current->mm) 2165 return -EIO; 2166 2167 switch (ioctl) { 2168 case KVM_SET_SIGNAL_MASK: { 2169 struct kvm_signal_mask __user *sigmask_arg = argp; 2170 struct kvm_signal_mask kvm_sigmask; 2171 compat_sigset_t csigset; 2172 sigset_t sigset; 2173 2174 if (argp) { 2175 r = -EFAULT; 2176 if (copy_from_user(&kvm_sigmask, argp, 2177 sizeof kvm_sigmask)) 2178 goto out; 2179 r = -EINVAL; 2180 if (kvm_sigmask.len != sizeof csigset) 2181 goto out; 2182 r = -EFAULT; 2183 if (copy_from_user(&csigset, sigmask_arg->sigset, 2184 sizeof csigset)) 2185 goto out; 2186 sigset_from_compat(&sigset, &csigset); 2187 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2188 } else 2189 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2190 break; 2191 } 2192 default: 2193 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2194 } 2195 2196 out: 2197 return r; 2198 } 2199 #endif 2200 2201 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2202 int (*accessor)(struct kvm_device *dev, 2203 struct kvm_device_attr *attr), 2204 unsigned long arg) 2205 { 2206 struct kvm_device_attr attr; 2207 2208 if (!accessor) 2209 return -EPERM; 2210 2211 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2212 return -EFAULT; 2213 2214 return accessor(dev, &attr); 2215 } 2216 2217 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2218 unsigned long arg) 2219 { 2220 struct kvm_device *dev = filp->private_data; 2221 2222 switch (ioctl) { 2223 case KVM_SET_DEVICE_ATTR: 2224 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2225 case KVM_GET_DEVICE_ATTR: 2226 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2227 case KVM_HAS_DEVICE_ATTR: 2228 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2229 default: 2230 if (dev->ops->ioctl) 2231 return dev->ops->ioctl(dev, ioctl, arg); 2232 2233 return -ENOTTY; 2234 } 2235 } 2236 2237 static int kvm_device_release(struct inode *inode, struct file *filp) 2238 { 2239 struct kvm_device *dev = filp->private_data; 2240 struct kvm *kvm = dev->kvm; 2241 2242 kvm_put_kvm(kvm); 2243 return 0; 2244 } 2245 2246 static const struct file_operations kvm_device_fops = { 2247 .unlocked_ioctl = kvm_device_ioctl, 2248 #ifdef CONFIG_COMPAT 2249 .compat_ioctl = kvm_device_ioctl, 2250 #endif 2251 .release = kvm_device_release, 2252 }; 2253 2254 struct kvm_device *kvm_device_from_filp(struct file *filp) 2255 { 2256 if (filp->f_op != &kvm_device_fops) 2257 return NULL; 2258 2259 return filp->private_data; 2260 } 2261 2262 static int kvm_ioctl_create_device(struct kvm *kvm, 2263 struct kvm_create_device *cd) 2264 { 2265 struct kvm_device_ops *ops = NULL; 2266 struct kvm_device *dev; 2267 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2268 int ret; 2269 2270 switch (cd->type) { 2271 #ifdef CONFIG_KVM_MPIC 2272 case KVM_DEV_TYPE_FSL_MPIC_20: 2273 case KVM_DEV_TYPE_FSL_MPIC_42: 2274 ops = &kvm_mpic_ops; 2275 break; 2276 #endif 2277 #ifdef CONFIG_KVM_XICS 2278 case KVM_DEV_TYPE_XICS: 2279 ops = &kvm_xics_ops; 2280 break; 2281 #endif 2282 #ifdef CONFIG_KVM_VFIO 2283 case KVM_DEV_TYPE_VFIO: 2284 ops = &kvm_vfio_ops; 2285 break; 2286 #endif 2287 #ifdef CONFIG_KVM_ARM_VGIC 2288 case KVM_DEV_TYPE_ARM_VGIC_V2: 2289 ops = &kvm_arm_vgic_v2_ops; 2290 break; 2291 #endif 2292 #ifdef CONFIG_S390 2293 case KVM_DEV_TYPE_FLIC: 2294 ops = &kvm_flic_ops; 2295 break; 2296 #endif 2297 default: 2298 return -ENODEV; 2299 } 2300 2301 if (test) 2302 return 0; 2303 2304 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2305 if (!dev) 2306 return -ENOMEM; 2307 2308 dev->ops = ops; 2309 dev->kvm = kvm; 2310 2311 ret = ops->create(dev, cd->type); 2312 if (ret < 0) { 2313 kfree(dev); 2314 return ret; 2315 } 2316 2317 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2318 if (ret < 0) { 2319 ops->destroy(dev); 2320 return ret; 2321 } 2322 2323 list_add(&dev->vm_node, &kvm->devices); 2324 kvm_get_kvm(kvm); 2325 cd->fd = ret; 2326 return 0; 2327 } 2328 2329 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2330 { 2331 switch (arg) { 2332 case KVM_CAP_USER_MEMORY: 2333 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2334 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2335 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2336 case KVM_CAP_SET_BOOT_CPU_ID: 2337 #endif 2338 case KVM_CAP_INTERNAL_ERROR_DATA: 2339 #ifdef CONFIG_HAVE_KVM_MSI 2340 case KVM_CAP_SIGNAL_MSI: 2341 #endif 2342 #ifdef CONFIG_HAVE_KVM_IRQFD 2343 case KVM_CAP_IRQFD_RESAMPLE: 2344 #endif 2345 case KVM_CAP_CHECK_EXTENSION_VM: 2346 return 1; 2347 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2348 case KVM_CAP_IRQ_ROUTING: 2349 return KVM_MAX_IRQ_ROUTES; 2350 #endif 2351 default: 2352 break; 2353 } 2354 return kvm_vm_ioctl_check_extension(kvm, arg); 2355 } 2356 2357 static long kvm_vm_ioctl(struct file *filp, 2358 unsigned int ioctl, unsigned long arg) 2359 { 2360 struct kvm *kvm = filp->private_data; 2361 void __user *argp = (void __user *)arg; 2362 int r; 2363 2364 if (kvm->mm != current->mm) 2365 return -EIO; 2366 switch (ioctl) { 2367 case KVM_CREATE_VCPU: 2368 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2369 break; 2370 case KVM_SET_USER_MEMORY_REGION: { 2371 struct kvm_userspace_memory_region kvm_userspace_mem; 2372 2373 r = -EFAULT; 2374 if (copy_from_user(&kvm_userspace_mem, argp, 2375 sizeof kvm_userspace_mem)) 2376 goto out; 2377 2378 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2379 break; 2380 } 2381 case KVM_GET_DIRTY_LOG: { 2382 struct kvm_dirty_log log; 2383 2384 r = -EFAULT; 2385 if (copy_from_user(&log, argp, sizeof log)) 2386 goto out; 2387 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2388 break; 2389 } 2390 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2391 case KVM_REGISTER_COALESCED_MMIO: { 2392 struct kvm_coalesced_mmio_zone zone; 2393 r = -EFAULT; 2394 if (copy_from_user(&zone, argp, sizeof zone)) 2395 goto out; 2396 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2397 break; 2398 } 2399 case KVM_UNREGISTER_COALESCED_MMIO: { 2400 struct kvm_coalesced_mmio_zone zone; 2401 r = -EFAULT; 2402 if (copy_from_user(&zone, argp, sizeof zone)) 2403 goto out; 2404 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2405 break; 2406 } 2407 #endif 2408 case KVM_IRQFD: { 2409 struct kvm_irqfd data; 2410 2411 r = -EFAULT; 2412 if (copy_from_user(&data, argp, sizeof data)) 2413 goto out; 2414 r = kvm_irqfd(kvm, &data); 2415 break; 2416 } 2417 case KVM_IOEVENTFD: { 2418 struct kvm_ioeventfd data; 2419 2420 r = -EFAULT; 2421 if (copy_from_user(&data, argp, sizeof data)) 2422 goto out; 2423 r = kvm_ioeventfd(kvm, &data); 2424 break; 2425 } 2426 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2427 case KVM_SET_BOOT_CPU_ID: 2428 r = 0; 2429 mutex_lock(&kvm->lock); 2430 if (atomic_read(&kvm->online_vcpus) != 0) 2431 r = -EBUSY; 2432 else 2433 kvm->bsp_vcpu_id = arg; 2434 mutex_unlock(&kvm->lock); 2435 break; 2436 #endif 2437 #ifdef CONFIG_HAVE_KVM_MSI 2438 case KVM_SIGNAL_MSI: { 2439 struct kvm_msi msi; 2440 2441 r = -EFAULT; 2442 if (copy_from_user(&msi, argp, sizeof msi)) 2443 goto out; 2444 r = kvm_send_userspace_msi(kvm, &msi); 2445 break; 2446 } 2447 #endif 2448 #ifdef __KVM_HAVE_IRQ_LINE 2449 case KVM_IRQ_LINE_STATUS: 2450 case KVM_IRQ_LINE: { 2451 struct kvm_irq_level irq_event; 2452 2453 r = -EFAULT; 2454 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2455 goto out; 2456 2457 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2458 ioctl == KVM_IRQ_LINE_STATUS); 2459 if (r) 2460 goto out; 2461 2462 r = -EFAULT; 2463 if (ioctl == KVM_IRQ_LINE_STATUS) { 2464 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2465 goto out; 2466 } 2467 2468 r = 0; 2469 break; 2470 } 2471 #endif 2472 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2473 case KVM_SET_GSI_ROUTING: { 2474 struct kvm_irq_routing routing; 2475 struct kvm_irq_routing __user *urouting; 2476 struct kvm_irq_routing_entry *entries; 2477 2478 r = -EFAULT; 2479 if (copy_from_user(&routing, argp, sizeof(routing))) 2480 goto out; 2481 r = -EINVAL; 2482 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2483 goto out; 2484 if (routing.flags) 2485 goto out; 2486 r = -ENOMEM; 2487 entries = vmalloc(routing.nr * sizeof(*entries)); 2488 if (!entries) 2489 goto out; 2490 r = -EFAULT; 2491 urouting = argp; 2492 if (copy_from_user(entries, urouting->entries, 2493 routing.nr * sizeof(*entries))) 2494 goto out_free_irq_routing; 2495 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2496 routing.flags); 2497 out_free_irq_routing: 2498 vfree(entries); 2499 break; 2500 } 2501 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2502 case KVM_CREATE_DEVICE: { 2503 struct kvm_create_device cd; 2504 2505 r = -EFAULT; 2506 if (copy_from_user(&cd, argp, sizeof(cd))) 2507 goto out; 2508 2509 r = kvm_ioctl_create_device(kvm, &cd); 2510 if (r) 2511 goto out; 2512 2513 r = -EFAULT; 2514 if (copy_to_user(argp, &cd, sizeof(cd))) 2515 goto out; 2516 2517 r = 0; 2518 break; 2519 } 2520 case KVM_CHECK_EXTENSION: 2521 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 2522 break; 2523 default: 2524 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2525 if (r == -ENOTTY) 2526 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2527 } 2528 out: 2529 return r; 2530 } 2531 2532 #ifdef CONFIG_COMPAT 2533 struct compat_kvm_dirty_log { 2534 __u32 slot; 2535 __u32 padding1; 2536 union { 2537 compat_uptr_t dirty_bitmap; /* one bit per page */ 2538 __u64 padding2; 2539 }; 2540 }; 2541 2542 static long kvm_vm_compat_ioctl(struct file *filp, 2543 unsigned int ioctl, unsigned long arg) 2544 { 2545 struct kvm *kvm = filp->private_data; 2546 int r; 2547 2548 if (kvm->mm != current->mm) 2549 return -EIO; 2550 switch (ioctl) { 2551 case KVM_GET_DIRTY_LOG: { 2552 struct compat_kvm_dirty_log compat_log; 2553 struct kvm_dirty_log log; 2554 2555 r = -EFAULT; 2556 if (copy_from_user(&compat_log, (void __user *)arg, 2557 sizeof(compat_log))) 2558 goto out; 2559 log.slot = compat_log.slot; 2560 log.padding1 = compat_log.padding1; 2561 log.padding2 = compat_log.padding2; 2562 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2563 2564 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2565 break; 2566 } 2567 default: 2568 r = kvm_vm_ioctl(filp, ioctl, arg); 2569 } 2570 2571 out: 2572 return r; 2573 } 2574 #endif 2575 2576 static struct file_operations kvm_vm_fops = { 2577 .release = kvm_vm_release, 2578 .unlocked_ioctl = kvm_vm_ioctl, 2579 #ifdef CONFIG_COMPAT 2580 .compat_ioctl = kvm_vm_compat_ioctl, 2581 #endif 2582 .llseek = noop_llseek, 2583 }; 2584 2585 static int kvm_dev_ioctl_create_vm(unsigned long type) 2586 { 2587 int r; 2588 struct kvm *kvm; 2589 2590 kvm = kvm_create_vm(type); 2591 if (IS_ERR(kvm)) 2592 return PTR_ERR(kvm); 2593 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2594 r = kvm_coalesced_mmio_init(kvm); 2595 if (r < 0) { 2596 kvm_put_kvm(kvm); 2597 return r; 2598 } 2599 #endif 2600 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2601 if (r < 0) 2602 kvm_put_kvm(kvm); 2603 2604 return r; 2605 } 2606 2607 static long kvm_dev_ioctl(struct file *filp, 2608 unsigned int ioctl, unsigned long arg) 2609 { 2610 long r = -EINVAL; 2611 2612 switch (ioctl) { 2613 case KVM_GET_API_VERSION: 2614 r = -EINVAL; 2615 if (arg) 2616 goto out; 2617 r = KVM_API_VERSION; 2618 break; 2619 case KVM_CREATE_VM: 2620 r = kvm_dev_ioctl_create_vm(arg); 2621 break; 2622 case KVM_CHECK_EXTENSION: 2623 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 2624 break; 2625 case KVM_GET_VCPU_MMAP_SIZE: 2626 r = -EINVAL; 2627 if (arg) 2628 goto out; 2629 r = PAGE_SIZE; /* struct kvm_run */ 2630 #ifdef CONFIG_X86 2631 r += PAGE_SIZE; /* pio data page */ 2632 #endif 2633 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2634 r += PAGE_SIZE; /* coalesced mmio ring page */ 2635 #endif 2636 break; 2637 case KVM_TRACE_ENABLE: 2638 case KVM_TRACE_PAUSE: 2639 case KVM_TRACE_DISABLE: 2640 r = -EOPNOTSUPP; 2641 break; 2642 default: 2643 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2644 } 2645 out: 2646 return r; 2647 } 2648 2649 static struct file_operations kvm_chardev_ops = { 2650 .unlocked_ioctl = kvm_dev_ioctl, 2651 .compat_ioctl = kvm_dev_ioctl, 2652 .llseek = noop_llseek, 2653 }; 2654 2655 static struct miscdevice kvm_dev = { 2656 KVM_MINOR, 2657 "kvm", 2658 &kvm_chardev_ops, 2659 }; 2660 2661 static void hardware_enable_nolock(void *junk) 2662 { 2663 int cpu = raw_smp_processor_id(); 2664 int r; 2665 2666 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2667 return; 2668 2669 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2670 2671 r = kvm_arch_hardware_enable(NULL); 2672 2673 if (r) { 2674 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2675 atomic_inc(&hardware_enable_failed); 2676 printk(KERN_INFO "kvm: enabling virtualization on " 2677 "CPU%d failed\n", cpu); 2678 } 2679 } 2680 2681 static void hardware_enable(void) 2682 { 2683 raw_spin_lock(&kvm_count_lock); 2684 if (kvm_usage_count) 2685 hardware_enable_nolock(NULL); 2686 raw_spin_unlock(&kvm_count_lock); 2687 } 2688 2689 static void hardware_disable_nolock(void *junk) 2690 { 2691 int cpu = raw_smp_processor_id(); 2692 2693 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2694 return; 2695 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2696 kvm_arch_hardware_disable(NULL); 2697 } 2698 2699 static void hardware_disable(void) 2700 { 2701 raw_spin_lock(&kvm_count_lock); 2702 if (kvm_usage_count) 2703 hardware_disable_nolock(NULL); 2704 raw_spin_unlock(&kvm_count_lock); 2705 } 2706 2707 static void hardware_disable_all_nolock(void) 2708 { 2709 BUG_ON(!kvm_usage_count); 2710 2711 kvm_usage_count--; 2712 if (!kvm_usage_count) 2713 on_each_cpu(hardware_disable_nolock, NULL, 1); 2714 } 2715 2716 static void hardware_disable_all(void) 2717 { 2718 raw_spin_lock(&kvm_count_lock); 2719 hardware_disable_all_nolock(); 2720 raw_spin_unlock(&kvm_count_lock); 2721 } 2722 2723 static int hardware_enable_all(void) 2724 { 2725 int r = 0; 2726 2727 raw_spin_lock(&kvm_count_lock); 2728 2729 kvm_usage_count++; 2730 if (kvm_usage_count == 1) { 2731 atomic_set(&hardware_enable_failed, 0); 2732 on_each_cpu(hardware_enable_nolock, NULL, 1); 2733 2734 if (atomic_read(&hardware_enable_failed)) { 2735 hardware_disable_all_nolock(); 2736 r = -EBUSY; 2737 } 2738 } 2739 2740 raw_spin_unlock(&kvm_count_lock); 2741 2742 return r; 2743 } 2744 2745 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2746 void *v) 2747 { 2748 int cpu = (long)v; 2749 2750 val &= ~CPU_TASKS_FROZEN; 2751 switch (val) { 2752 case CPU_DYING: 2753 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2754 cpu); 2755 hardware_disable(); 2756 break; 2757 case CPU_STARTING: 2758 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2759 cpu); 2760 hardware_enable(); 2761 break; 2762 } 2763 return NOTIFY_OK; 2764 } 2765 2766 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2767 void *v) 2768 { 2769 /* 2770 * Some (well, at least mine) BIOSes hang on reboot if 2771 * in vmx root mode. 2772 * 2773 * And Intel TXT required VMX off for all cpu when system shutdown. 2774 */ 2775 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2776 kvm_rebooting = true; 2777 on_each_cpu(hardware_disable_nolock, NULL, 1); 2778 return NOTIFY_OK; 2779 } 2780 2781 static struct notifier_block kvm_reboot_notifier = { 2782 .notifier_call = kvm_reboot, 2783 .priority = 0, 2784 }; 2785 2786 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2787 { 2788 int i; 2789 2790 for (i = 0; i < bus->dev_count; i++) { 2791 struct kvm_io_device *pos = bus->range[i].dev; 2792 2793 kvm_iodevice_destructor(pos); 2794 } 2795 kfree(bus); 2796 } 2797 2798 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2799 const struct kvm_io_range *r2) 2800 { 2801 if (r1->addr < r2->addr) 2802 return -1; 2803 if (r1->addr + r1->len > r2->addr + r2->len) 2804 return 1; 2805 return 0; 2806 } 2807 2808 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2809 { 2810 return kvm_io_bus_cmp(p1, p2); 2811 } 2812 2813 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2814 gpa_t addr, int len) 2815 { 2816 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2817 .addr = addr, 2818 .len = len, 2819 .dev = dev, 2820 }; 2821 2822 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2823 kvm_io_bus_sort_cmp, NULL); 2824 2825 return 0; 2826 } 2827 2828 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2829 gpa_t addr, int len) 2830 { 2831 struct kvm_io_range *range, key; 2832 int off; 2833 2834 key = (struct kvm_io_range) { 2835 .addr = addr, 2836 .len = len, 2837 }; 2838 2839 range = bsearch(&key, bus->range, bus->dev_count, 2840 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2841 if (range == NULL) 2842 return -ENOENT; 2843 2844 off = range - bus->range; 2845 2846 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2847 off--; 2848 2849 return off; 2850 } 2851 2852 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 2853 struct kvm_io_range *range, const void *val) 2854 { 2855 int idx; 2856 2857 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2858 if (idx < 0) 2859 return -EOPNOTSUPP; 2860 2861 while (idx < bus->dev_count && 2862 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2863 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 2864 range->len, val)) 2865 return idx; 2866 idx++; 2867 } 2868 2869 return -EOPNOTSUPP; 2870 } 2871 2872 /* kvm_io_bus_write - called under kvm->slots_lock */ 2873 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2874 int len, const void *val) 2875 { 2876 struct kvm_io_bus *bus; 2877 struct kvm_io_range range; 2878 int r; 2879 2880 range = (struct kvm_io_range) { 2881 .addr = addr, 2882 .len = len, 2883 }; 2884 2885 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2886 r = __kvm_io_bus_write(bus, &range, val); 2887 return r < 0 ? r : 0; 2888 } 2889 2890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 2891 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2892 int len, const void *val, long cookie) 2893 { 2894 struct kvm_io_bus *bus; 2895 struct kvm_io_range range; 2896 2897 range = (struct kvm_io_range) { 2898 .addr = addr, 2899 .len = len, 2900 }; 2901 2902 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2903 2904 /* First try the device referenced by cookie. */ 2905 if ((cookie >= 0) && (cookie < bus->dev_count) && 2906 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2907 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 2908 val)) 2909 return cookie; 2910 2911 /* 2912 * cookie contained garbage; fall back to search and return the 2913 * correct cookie value. 2914 */ 2915 return __kvm_io_bus_write(bus, &range, val); 2916 } 2917 2918 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 2919 void *val) 2920 { 2921 int idx; 2922 2923 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2924 if (idx < 0) 2925 return -EOPNOTSUPP; 2926 2927 while (idx < bus->dev_count && 2928 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2929 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 2930 range->len, val)) 2931 return idx; 2932 idx++; 2933 } 2934 2935 return -EOPNOTSUPP; 2936 } 2937 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 2938 2939 /* kvm_io_bus_read - called under kvm->slots_lock */ 2940 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2941 int len, void *val) 2942 { 2943 struct kvm_io_bus *bus; 2944 struct kvm_io_range range; 2945 int r; 2946 2947 range = (struct kvm_io_range) { 2948 .addr = addr, 2949 .len = len, 2950 }; 2951 2952 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2953 r = __kvm_io_bus_read(bus, &range, val); 2954 return r < 0 ? r : 0; 2955 } 2956 2957 2958 /* Caller must hold slots_lock. */ 2959 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2960 int len, struct kvm_io_device *dev) 2961 { 2962 struct kvm_io_bus *new_bus, *bus; 2963 2964 bus = kvm->buses[bus_idx]; 2965 /* exclude ioeventfd which is limited by maximum fd */ 2966 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 2967 return -ENOSPC; 2968 2969 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2970 sizeof(struct kvm_io_range)), GFP_KERNEL); 2971 if (!new_bus) 2972 return -ENOMEM; 2973 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2974 sizeof(struct kvm_io_range))); 2975 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2976 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2977 synchronize_srcu_expedited(&kvm->srcu); 2978 kfree(bus); 2979 2980 return 0; 2981 } 2982 2983 /* Caller must hold slots_lock. */ 2984 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2985 struct kvm_io_device *dev) 2986 { 2987 int i, r; 2988 struct kvm_io_bus *new_bus, *bus; 2989 2990 bus = kvm->buses[bus_idx]; 2991 r = -ENOENT; 2992 for (i = 0; i < bus->dev_count; i++) 2993 if (bus->range[i].dev == dev) { 2994 r = 0; 2995 break; 2996 } 2997 2998 if (r) 2999 return r; 3000 3001 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3002 sizeof(struct kvm_io_range)), GFP_KERNEL); 3003 if (!new_bus) 3004 return -ENOMEM; 3005 3006 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3007 new_bus->dev_count--; 3008 memcpy(new_bus->range + i, bus->range + i + 1, 3009 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3010 3011 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3012 synchronize_srcu_expedited(&kvm->srcu); 3013 kfree(bus); 3014 return r; 3015 } 3016 3017 static struct notifier_block kvm_cpu_notifier = { 3018 .notifier_call = kvm_cpu_hotplug, 3019 }; 3020 3021 static int vm_stat_get(void *_offset, u64 *val) 3022 { 3023 unsigned offset = (long)_offset; 3024 struct kvm *kvm; 3025 3026 *val = 0; 3027 spin_lock(&kvm_lock); 3028 list_for_each_entry(kvm, &vm_list, vm_list) 3029 *val += *(u32 *)((void *)kvm + offset); 3030 spin_unlock(&kvm_lock); 3031 return 0; 3032 } 3033 3034 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3035 3036 static int vcpu_stat_get(void *_offset, u64 *val) 3037 { 3038 unsigned offset = (long)_offset; 3039 struct kvm *kvm; 3040 struct kvm_vcpu *vcpu; 3041 int i; 3042 3043 *val = 0; 3044 spin_lock(&kvm_lock); 3045 list_for_each_entry(kvm, &vm_list, vm_list) 3046 kvm_for_each_vcpu(i, vcpu, kvm) 3047 *val += *(u32 *)((void *)vcpu + offset); 3048 3049 spin_unlock(&kvm_lock); 3050 return 0; 3051 } 3052 3053 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3054 3055 static const struct file_operations *stat_fops[] = { 3056 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3057 [KVM_STAT_VM] = &vm_stat_fops, 3058 }; 3059 3060 static int kvm_init_debug(void) 3061 { 3062 int r = -EEXIST; 3063 struct kvm_stats_debugfs_item *p; 3064 3065 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3066 if (kvm_debugfs_dir == NULL) 3067 goto out; 3068 3069 for (p = debugfs_entries; p->name; ++p) { 3070 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3071 (void *)(long)p->offset, 3072 stat_fops[p->kind]); 3073 if (p->dentry == NULL) 3074 goto out_dir; 3075 } 3076 3077 return 0; 3078 3079 out_dir: 3080 debugfs_remove_recursive(kvm_debugfs_dir); 3081 out: 3082 return r; 3083 } 3084 3085 static void kvm_exit_debug(void) 3086 { 3087 struct kvm_stats_debugfs_item *p; 3088 3089 for (p = debugfs_entries; p->name; ++p) 3090 debugfs_remove(p->dentry); 3091 debugfs_remove(kvm_debugfs_dir); 3092 } 3093 3094 static int kvm_suspend(void) 3095 { 3096 if (kvm_usage_count) 3097 hardware_disable_nolock(NULL); 3098 return 0; 3099 } 3100 3101 static void kvm_resume(void) 3102 { 3103 if (kvm_usage_count) { 3104 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3105 hardware_enable_nolock(NULL); 3106 } 3107 } 3108 3109 static struct syscore_ops kvm_syscore_ops = { 3110 .suspend = kvm_suspend, 3111 .resume = kvm_resume, 3112 }; 3113 3114 static inline 3115 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3116 { 3117 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3118 } 3119 3120 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3121 { 3122 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3123 if (vcpu->preempted) 3124 vcpu->preempted = false; 3125 3126 kvm_arch_vcpu_load(vcpu, cpu); 3127 } 3128 3129 static void kvm_sched_out(struct preempt_notifier *pn, 3130 struct task_struct *next) 3131 { 3132 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3133 3134 if (current->state == TASK_RUNNING) 3135 vcpu->preempted = true; 3136 kvm_arch_vcpu_put(vcpu); 3137 } 3138 3139 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3140 struct module *module) 3141 { 3142 int r; 3143 int cpu; 3144 3145 r = kvm_arch_init(opaque); 3146 if (r) 3147 goto out_fail; 3148 3149 /* 3150 * kvm_arch_init makes sure there's at most one caller 3151 * for architectures that support multiple implementations, 3152 * like intel and amd on x86. 3153 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3154 * conflicts in case kvm is already setup for another implementation. 3155 */ 3156 r = kvm_irqfd_init(); 3157 if (r) 3158 goto out_irqfd; 3159 3160 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3161 r = -ENOMEM; 3162 goto out_free_0; 3163 } 3164 3165 r = kvm_arch_hardware_setup(); 3166 if (r < 0) 3167 goto out_free_0a; 3168 3169 for_each_online_cpu(cpu) { 3170 smp_call_function_single(cpu, 3171 kvm_arch_check_processor_compat, 3172 &r, 1); 3173 if (r < 0) 3174 goto out_free_1; 3175 } 3176 3177 r = register_cpu_notifier(&kvm_cpu_notifier); 3178 if (r) 3179 goto out_free_2; 3180 register_reboot_notifier(&kvm_reboot_notifier); 3181 3182 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3183 if (!vcpu_align) 3184 vcpu_align = __alignof__(struct kvm_vcpu); 3185 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3186 0, NULL); 3187 if (!kvm_vcpu_cache) { 3188 r = -ENOMEM; 3189 goto out_free_3; 3190 } 3191 3192 r = kvm_async_pf_init(); 3193 if (r) 3194 goto out_free; 3195 3196 kvm_chardev_ops.owner = module; 3197 kvm_vm_fops.owner = module; 3198 kvm_vcpu_fops.owner = module; 3199 3200 r = misc_register(&kvm_dev); 3201 if (r) { 3202 printk(KERN_ERR "kvm: misc device register failed\n"); 3203 goto out_unreg; 3204 } 3205 3206 register_syscore_ops(&kvm_syscore_ops); 3207 3208 kvm_preempt_ops.sched_in = kvm_sched_in; 3209 kvm_preempt_ops.sched_out = kvm_sched_out; 3210 3211 r = kvm_init_debug(); 3212 if (r) { 3213 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3214 goto out_undebugfs; 3215 } 3216 3217 return 0; 3218 3219 out_undebugfs: 3220 unregister_syscore_ops(&kvm_syscore_ops); 3221 misc_deregister(&kvm_dev); 3222 out_unreg: 3223 kvm_async_pf_deinit(); 3224 out_free: 3225 kmem_cache_destroy(kvm_vcpu_cache); 3226 out_free_3: 3227 unregister_reboot_notifier(&kvm_reboot_notifier); 3228 unregister_cpu_notifier(&kvm_cpu_notifier); 3229 out_free_2: 3230 out_free_1: 3231 kvm_arch_hardware_unsetup(); 3232 out_free_0a: 3233 free_cpumask_var(cpus_hardware_enabled); 3234 out_free_0: 3235 kvm_irqfd_exit(); 3236 out_irqfd: 3237 kvm_arch_exit(); 3238 out_fail: 3239 return r; 3240 } 3241 EXPORT_SYMBOL_GPL(kvm_init); 3242 3243 void kvm_exit(void) 3244 { 3245 kvm_exit_debug(); 3246 misc_deregister(&kvm_dev); 3247 kmem_cache_destroy(kvm_vcpu_cache); 3248 kvm_async_pf_deinit(); 3249 unregister_syscore_ops(&kvm_syscore_ops); 3250 unregister_reboot_notifier(&kvm_reboot_notifier); 3251 unregister_cpu_notifier(&kvm_cpu_notifier); 3252 on_each_cpu(hardware_disable_nolock, NULL, 1); 3253 kvm_arch_hardware_unsetup(); 3254 kvm_arch_exit(); 3255 kvm_irqfd_exit(); 3256 free_cpumask_var(cpus_hardware_enabled); 3257 } 3258 EXPORT_SYMBOL_GPL(kvm_exit); 3259