1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 180 return false; 181 182 return is_zone_device_page(pfn_to_page(pfn)); 183 } 184 185 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 186 { 187 /* 188 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 189 * perspective they are "normal" pages, albeit with slightly different 190 * usage rules. 191 */ 192 if (pfn_valid(pfn)) 193 return PageReserved(pfn_to_page(pfn)) && 194 !is_zero_pfn(pfn) && 195 !kvm_is_zone_device_pfn(pfn); 196 197 return true; 198 } 199 200 /* 201 * Switches to specified vcpu, until a matching vcpu_put() 202 */ 203 void vcpu_load(struct kvm_vcpu *vcpu) 204 { 205 int cpu = get_cpu(); 206 207 __this_cpu_write(kvm_running_vcpu, vcpu); 208 preempt_notifier_register(&vcpu->preempt_notifier); 209 kvm_arch_vcpu_load(vcpu, cpu); 210 put_cpu(); 211 } 212 EXPORT_SYMBOL_GPL(vcpu_load); 213 214 void vcpu_put(struct kvm_vcpu *vcpu) 215 { 216 preempt_disable(); 217 kvm_arch_vcpu_put(vcpu); 218 preempt_notifier_unregister(&vcpu->preempt_notifier); 219 __this_cpu_write(kvm_running_vcpu, NULL); 220 preempt_enable(); 221 } 222 EXPORT_SYMBOL_GPL(vcpu_put); 223 224 /* TODO: merge with kvm_arch_vcpu_should_kick */ 225 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 226 { 227 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 228 229 /* 230 * We need to wait for the VCPU to reenable interrupts and get out of 231 * READING_SHADOW_PAGE_TABLES mode. 232 */ 233 if (req & KVM_REQUEST_WAIT) 234 return mode != OUTSIDE_GUEST_MODE; 235 236 /* 237 * Need to kick a running VCPU, but otherwise there is nothing to do. 238 */ 239 return mode == IN_GUEST_MODE; 240 } 241 242 static void ack_flush(void *_completed) 243 { 244 } 245 246 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 247 { 248 if (cpumask_empty(cpus)) 249 return false; 250 251 smp_call_function_many(cpus, ack_flush, NULL, wait); 252 return true; 253 } 254 255 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 256 struct cpumask *tmp, int current_cpu) 257 { 258 int cpu; 259 260 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 261 __kvm_make_request(req, vcpu); 262 263 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 264 return; 265 266 /* 267 * Note, the vCPU could get migrated to a different pCPU at any point 268 * after kvm_request_needs_ipi(), which could result in sending an IPI 269 * to the previous pCPU. But, that's OK because the purpose of the IPI 270 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 271 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 272 * after this point is also OK, as the requirement is only that KVM wait 273 * for vCPUs that were reading SPTEs _before_ any changes were 274 * finalized. See kvm_vcpu_kick() for more details on handling requests. 275 */ 276 if (kvm_request_needs_ipi(vcpu, req)) { 277 cpu = READ_ONCE(vcpu->cpu); 278 if (cpu != -1 && cpu != current_cpu) 279 __cpumask_set_cpu(cpu, tmp); 280 } 281 } 282 283 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 284 unsigned long *vcpu_bitmap) 285 { 286 struct kvm_vcpu *vcpu; 287 struct cpumask *cpus; 288 int i, me; 289 bool called; 290 291 me = get_cpu(); 292 293 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 294 cpumask_clear(cpus); 295 296 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 297 vcpu = kvm_get_vcpu(kvm, i); 298 if (!vcpu) 299 continue; 300 kvm_make_vcpu_request(vcpu, req, cpus, me); 301 } 302 303 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 304 put_cpu(); 305 306 return called; 307 } 308 309 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 310 struct kvm_vcpu *except) 311 { 312 struct kvm_vcpu *vcpu; 313 struct cpumask *cpus; 314 unsigned long i; 315 bool called; 316 int me; 317 318 me = get_cpu(); 319 320 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 321 cpumask_clear(cpus); 322 323 kvm_for_each_vcpu(i, vcpu, kvm) { 324 if (vcpu == except) 325 continue; 326 kvm_make_vcpu_request(vcpu, req, cpus, me); 327 } 328 329 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 330 put_cpu(); 331 332 return called; 333 } 334 335 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 336 { 337 return kvm_make_all_cpus_request_except(kvm, req, NULL); 338 } 339 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 340 341 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 342 void kvm_flush_remote_tlbs(struct kvm *kvm) 343 { 344 ++kvm->stat.generic.remote_tlb_flush_requests; 345 346 /* 347 * We want to publish modifications to the page tables before reading 348 * mode. Pairs with a memory barrier in arch-specific code. 349 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 350 * and smp_mb in walk_shadow_page_lockless_begin/end. 351 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 352 * 353 * There is already an smp_mb__after_atomic() before 354 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 355 * barrier here. 356 */ 357 if (!kvm_arch_flush_remote_tlb(kvm) 358 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 359 ++kvm->stat.generic.remote_tlb_flush; 360 } 361 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 362 #endif 363 364 static void kvm_flush_shadow_all(struct kvm *kvm) 365 { 366 kvm_arch_flush_shadow_all(kvm); 367 kvm_arch_guest_memory_reclaimed(kvm); 368 } 369 370 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 371 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 372 gfp_t gfp_flags) 373 { 374 gfp_flags |= mc->gfp_zero; 375 376 if (mc->kmem_cache) 377 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 378 else 379 return (void *)__get_free_page(gfp_flags); 380 } 381 382 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 383 { 384 void *obj; 385 386 if (mc->nobjs >= min) 387 return 0; 388 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 389 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 390 if (!obj) 391 return mc->nobjs >= min ? 0 : -ENOMEM; 392 mc->objects[mc->nobjs++] = obj; 393 } 394 return 0; 395 } 396 397 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 398 { 399 return mc->nobjs; 400 } 401 402 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 403 { 404 while (mc->nobjs) { 405 if (mc->kmem_cache) 406 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 407 else 408 free_page((unsigned long)mc->objects[--mc->nobjs]); 409 } 410 } 411 412 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 413 { 414 void *p; 415 416 if (WARN_ON(!mc->nobjs)) 417 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 418 else 419 p = mc->objects[--mc->nobjs]; 420 BUG_ON(!p); 421 return p; 422 } 423 #endif 424 425 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 426 { 427 mutex_init(&vcpu->mutex); 428 vcpu->cpu = -1; 429 vcpu->kvm = kvm; 430 vcpu->vcpu_id = id; 431 vcpu->pid = NULL; 432 #ifndef __KVM_HAVE_ARCH_WQP 433 rcuwait_init(&vcpu->wait); 434 #endif 435 kvm_async_pf_vcpu_init(vcpu); 436 437 kvm_vcpu_set_in_spin_loop(vcpu, false); 438 kvm_vcpu_set_dy_eligible(vcpu, false); 439 vcpu->preempted = false; 440 vcpu->ready = false; 441 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 442 vcpu->last_used_slot = NULL; 443 } 444 445 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 446 { 447 kvm_arch_vcpu_destroy(vcpu); 448 kvm_dirty_ring_free(&vcpu->dirty_ring); 449 450 /* 451 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 452 * the vcpu->pid pointer, and at destruction time all file descriptors 453 * are already gone. 454 */ 455 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 456 457 free_page((unsigned long)vcpu->run); 458 kmem_cache_free(kvm_vcpu_cache, vcpu); 459 } 460 461 void kvm_destroy_vcpus(struct kvm *kvm) 462 { 463 unsigned long i; 464 struct kvm_vcpu *vcpu; 465 466 kvm_for_each_vcpu(i, vcpu, kvm) { 467 kvm_vcpu_destroy(vcpu); 468 xa_erase(&kvm->vcpu_array, i); 469 } 470 471 atomic_set(&kvm->online_vcpus, 0); 472 } 473 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 474 475 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 476 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 477 { 478 return container_of(mn, struct kvm, mmu_notifier); 479 } 480 481 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 482 struct mm_struct *mm, 483 unsigned long start, unsigned long end) 484 { 485 struct kvm *kvm = mmu_notifier_to_kvm(mn); 486 int idx; 487 488 idx = srcu_read_lock(&kvm->srcu); 489 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 490 srcu_read_unlock(&kvm->srcu, idx); 491 } 492 493 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 494 495 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 496 unsigned long end); 497 498 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 499 500 struct kvm_hva_range { 501 unsigned long start; 502 unsigned long end; 503 pte_t pte; 504 hva_handler_t handler; 505 on_lock_fn_t on_lock; 506 on_unlock_fn_t on_unlock; 507 bool flush_on_ret; 508 bool may_block; 509 }; 510 511 /* 512 * Use a dedicated stub instead of NULL to indicate that there is no callback 513 * function/handler. The compiler technically can't guarantee that a real 514 * function will have a non-zero address, and so it will generate code to 515 * check for !NULL, whereas comparing against a stub will be elided at compile 516 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 517 */ 518 static void kvm_null_fn(void) 519 { 520 521 } 522 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 523 524 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 525 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 526 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 527 node; \ 528 node = interval_tree_iter_next(node, start, last)) \ 529 530 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 531 const struct kvm_hva_range *range) 532 { 533 bool ret = false, locked = false; 534 struct kvm_gfn_range gfn_range; 535 struct kvm_memory_slot *slot; 536 struct kvm_memslots *slots; 537 int i, idx; 538 539 if (WARN_ON_ONCE(range->end <= range->start)) 540 return 0; 541 542 /* A null handler is allowed if and only if on_lock() is provided. */ 543 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 544 IS_KVM_NULL_FN(range->handler))) 545 return 0; 546 547 idx = srcu_read_lock(&kvm->srcu); 548 549 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 550 struct interval_tree_node *node; 551 552 slots = __kvm_memslots(kvm, i); 553 kvm_for_each_memslot_in_hva_range(node, slots, 554 range->start, range->end - 1) { 555 unsigned long hva_start, hva_end; 556 557 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 558 hva_start = max(range->start, slot->userspace_addr); 559 hva_end = min(range->end, slot->userspace_addr + 560 (slot->npages << PAGE_SHIFT)); 561 562 /* 563 * To optimize for the likely case where the address 564 * range is covered by zero or one memslots, don't 565 * bother making these conditional (to avoid writes on 566 * the second or later invocation of the handler). 567 */ 568 gfn_range.pte = range->pte; 569 gfn_range.may_block = range->may_block; 570 571 /* 572 * {gfn(page) | page intersects with [hva_start, hva_end)} = 573 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 574 */ 575 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 576 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 577 gfn_range.slot = slot; 578 579 if (!locked) { 580 locked = true; 581 KVM_MMU_LOCK(kvm); 582 if (!IS_KVM_NULL_FN(range->on_lock)) 583 range->on_lock(kvm, range->start, range->end); 584 if (IS_KVM_NULL_FN(range->handler)) 585 break; 586 } 587 ret |= range->handler(kvm, &gfn_range); 588 } 589 } 590 591 if (range->flush_on_ret && ret) 592 kvm_flush_remote_tlbs(kvm); 593 594 if (locked) { 595 KVM_MMU_UNLOCK(kvm); 596 if (!IS_KVM_NULL_FN(range->on_unlock)) 597 range->on_unlock(kvm); 598 } 599 600 srcu_read_unlock(&kvm->srcu, idx); 601 602 /* The notifiers are averse to booleans. :-( */ 603 return (int)ret; 604 } 605 606 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 607 unsigned long start, 608 unsigned long end, 609 pte_t pte, 610 hva_handler_t handler) 611 { 612 struct kvm *kvm = mmu_notifier_to_kvm(mn); 613 const struct kvm_hva_range range = { 614 .start = start, 615 .end = end, 616 .pte = pte, 617 .handler = handler, 618 .on_lock = (void *)kvm_null_fn, 619 .on_unlock = (void *)kvm_null_fn, 620 .flush_on_ret = true, 621 .may_block = false, 622 }; 623 624 return __kvm_handle_hva_range(kvm, &range); 625 } 626 627 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 628 unsigned long start, 629 unsigned long end, 630 hva_handler_t handler) 631 { 632 struct kvm *kvm = mmu_notifier_to_kvm(mn); 633 const struct kvm_hva_range range = { 634 .start = start, 635 .end = end, 636 .pte = __pte(0), 637 .handler = handler, 638 .on_lock = (void *)kvm_null_fn, 639 .on_unlock = (void *)kvm_null_fn, 640 .flush_on_ret = false, 641 .may_block = false, 642 }; 643 644 return __kvm_handle_hva_range(kvm, &range); 645 } 646 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 647 struct mm_struct *mm, 648 unsigned long address, 649 pte_t pte) 650 { 651 struct kvm *kvm = mmu_notifier_to_kvm(mn); 652 653 trace_kvm_set_spte_hva(address); 654 655 /* 656 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 657 * If mmu_notifier_count is zero, then no in-progress invalidations, 658 * including this one, found a relevant memslot at start(); rechecking 659 * memslots here is unnecessary. Note, a false positive (count elevated 660 * by a different invalidation) is sub-optimal but functionally ok. 661 */ 662 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 663 if (!READ_ONCE(kvm->mmu_notifier_count)) 664 return; 665 666 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 667 } 668 669 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 670 unsigned long end) 671 { 672 /* 673 * The count increase must become visible at unlock time as no 674 * spte can be established without taking the mmu_lock and 675 * count is also read inside the mmu_lock critical section. 676 */ 677 kvm->mmu_notifier_count++; 678 if (likely(kvm->mmu_notifier_count == 1)) { 679 kvm->mmu_notifier_range_start = start; 680 kvm->mmu_notifier_range_end = end; 681 } else { 682 /* 683 * Fully tracking multiple concurrent ranges has diminishing 684 * returns. Keep things simple and just find the minimal range 685 * which includes the current and new ranges. As there won't be 686 * enough information to subtract a range after its invalidate 687 * completes, any ranges invalidated concurrently will 688 * accumulate and persist until all outstanding invalidates 689 * complete. 690 */ 691 kvm->mmu_notifier_range_start = 692 min(kvm->mmu_notifier_range_start, start); 693 kvm->mmu_notifier_range_end = 694 max(kvm->mmu_notifier_range_end, end); 695 } 696 } 697 698 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 699 const struct mmu_notifier_range *range) 700 { 701 struct kvm *kvm = mmu_notifier_to_kvm(mn); 702 const struct kvm_hva_range hva_range = { 703 .start = range->start, 704 .end = range->end, 705 .pte = __pte(0), 706 .handler = kvm_unmap_gfn_range, 707 .on_lock = kvm_inc_notifier_count, 708 .on_unlock = kvm_arch_guest_memory_reclaimed, 709 .flush_on_ret = true, 710 .may_block = mmu_notifier_range_blockable(range), 711 }; 712 713 trace_kvm_unmap_hva_range(range->start, range->end); 714 715 /* 716 * Prevent memslot modification between range_start() and range_end() 717 * so that conditionally locking provides the same result in both 718 * functions. Without that guarantee, the mmu_notifier_count 719 * adjustments will be imbalanced. 720 * 721 * Pairs with the decrement in range_end(). 722 */ 723 spin_lock(&kvm->mn_invalidate_lock); 724 kvm->mn_active_invalidate_count++; 725 spin_unlock(&kvm->mn_invalidate_lock); 726 727 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 728 hva_range.may_block); 729 730 __kvm_handle_hva_range(kvm, &hva_range); 731 732 return 0; 733 } 734 735 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 736 unsigned long end) 737 { 738 /* 739 * This sequence increase will notify the kvm page fault that 740 * the page that is going to be mapped in the spte could have 741 * been freed. 742 */ 743 kvm->mmu_notifier_seq++; 744 smp_wmb(); 745 /* 746 * The above sequence increase must be visible before the 747 * below count decrease, which is ensured by the smp_wmb above 748 * in conjunction with the smp_rmb in mmu_notifier_retry(). 749 */ 750 kvm->mmu_notifier_count--; 751 } 752 753 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 754 const struct mmu_notifier_range *range) 755 { 756 struct kvm *kvm = mmu_notifier_to_kvm(mn); 757 const struct kvm_hva_range hva_range = { 758 .start = range->start, 759 .end = range->end, 760 .pte = __pte(0), 761 .handler = (void *)kvm_null_fn, 762 .on_lock = kvm_dec_notifier_count, 763 .on_unlock = (void *)kvm_null_fn, 764 .flush_on_ret = false, 765 .may_block = mmu_notifier_range_blockable(range), 766 }; 767 bool wake; 768 769 __kvm_handle_hva_range(kvm, &hva_range); 770 771 /* Pairs with the increment in range_start(). */ 772 spin_lock(&kvm->mn_invalidate_lock); 773 wake = (--kvm->mn_active_invalidate_count == 0); 774 spin_unlock(&kvm->mn_invalidate_lock); 775 776 /* 777 * There can only be one waiter, since the wait happens under 778 * slots_lock. 779 */ 780 if (wake) 781 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 782 783 BUG_ON(kvm->mmu_notifier_count < 0); 784 } 785 786 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 787 struct mm_struct *mm, 788 unsigned long start, 789 unsigned long end) 790 { 791 trace_kvm_age_hva(start, end); 792 793 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 794 } 795 796 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 797 struct mm_struct *mm, 798 unsigned long start, 799 unsigned long end) 800 { 801 trace_kvm_age_hva(start, end); 802 803 /* 804 * Even though we do not flush TLB, this will still adversely 805 * affect performance on pre-Haswell Intel EPT, where there is 806 * no EPT Access Bit to clear so that we have to tear down EPT 807 * tables instead. If we find this unacceptable, we can always 808 * add a parameter to kvm_age_hva so that it effectively doesn't 809 * do anything on clear_young. 810 * 811 * Also note that currently we never issue secondary TLB flushes 812 * from clear_young, leaving this job up to the regular system 813 * cadence. If we find this inaccurate, we might come up with a 814 * more sophisticated heuristic later. 815 */ 816 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 817 } 818 819 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 820 struct mm_struct *mm, 821 unsigned long address) 822 { 823 trace_kvm_test_age_hva(address); 824 825 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 826 kvm_test_age_gfn); 827 } 828 829 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 830 struct mm_struct *mm) 831 { 832 struct kvm *kvm = mmu_notifier_to_kvm(mn); 833 int idx; 834 835 idx = srcu_read_lock(&kvm->srcu); 836 kvm_flush_shadow_all(kvm); 837 srcu_read_unlock(&kvm->srcu, idx); 838 } 839 840 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 841 .invalidate_range = kvm_mmu_notifier_invalidate_range, 842 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 843 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 844 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 845 .clear_young = kvm_mmu_notifier_clear_young, 846 .test_young = kvm_mmu_notifier_test_young, 847 .change_pte = kvm_mmu_notifier_change_pte, 848 .release = kvm_mmu_notifier_release, 849 }; 850 851 static int kvm_init_mmu_notifier(struct kvm *kvm) 852 { 853 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 854 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 855 } 856 857 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 858 859 static int kvm_init_mmu_notifier(struct kvm *kvm) 860 { 861 return 0; 862 } 863 864 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 865 866 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 867 static int kvm_pm_notifier_call(struct notifier_block *bl, 868 unsigned long state, 869 void *unused) 870 { 871 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 872 873 return kvm_arch_pm_notifier(kvm, state); 874 } 875 876 static void kvm_init_pm_notifier(struct kvm *kvm) 877 { 878 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 879 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 880 kvm->pm_notifier.priority = INT_MAX; 881 register_pm_notifier(&kvm->pm_notifier); 882 } 883 884 static void kvm_destroy_pm_notifier(struct kvm *kvm) 885 { 886 unregister_pm_notifier(&kvm->pm_notifier); 887 } 888 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 889 static void kvm_init_pm_notifier(struct kvm *kvm) 890 { 891 } 892 893 static void kvm_destroy_pm_notifier(struct kvm *kvm) 894 { 895 } 896 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 897 898 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 899 { 900 if (!memslot->dirty_bitmap) 901 return; 902 903 kvfree(memslot->dirty_bitmap); 904 memslot->dirty_bitmap = NULL; 905 } 906 907 /* This does not remove the slot from struct kvm_memslots data structures */ 908 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 909 { 910 kvm_destroy_dirty_bitmap(slot); 911 912 kvm_arch_free_memslot(kvm, slot); 913 914 kfree(slot); 915 } 916 917 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 918 { 919 struct hlist_node *idnode; 920 struct kvm_memory_slot *memslot; 921 int bkt; 922 923 /* 924 * The same memslot objects live in both active and inactive sets, 925 * arbitrarily free using index '1' so the second invocation of this 926 * function isn't operating over a structure with dangling pointers 927 * (even though this function isn't actually touching them). 928 */ 929 if (!slots->node_idx) 930 return; 931 932 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 933 kvm_free_memslot(kvm, memslot); 934 } 935 936 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 937 { 938 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 939 case KVM_STATS_TYPE_INSTANT: 940 return 0444; 941 case KVM_STATS_TYPE_CUMULATIVE: 942 case KVM_STATS_TYPE_PEAK: 943 default: 944 return 0644; 945 } 946 } 947 948 949 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 950 { 951 int i; 952 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 953 kvm_vcpu_stats_header.num_desc; 954 955 if (IS_ERR(kvm->debugfs_dentry)) 956 return; 957 958 debugfs_remove_recursive(kvm->debugfs_dentry); 959 960 if (kvm->debugfs_stat_data) { 961 for (i = 0; i < kvm_debugfs_num_entries; i++) 962 kfree(kvm->debugfs_stat_data[i]); 963 kfree(kvm->debugfs_stat_data); 964 } 965 } 966 967 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 968 { 969 static DEFINE_MUTEX(kvm_debugfs_lock); 970 struct dentry *dent; 971 char dir_name[ITOA_MAX_LEN * 2]; 972 struct kvm_stat_data *stat_data; 973 const struct _kvm_stats_desc *pdesc; 974 int i, ret; 975 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 976 kvm_vcpu_stats_header.num_desc; 977 978 if (!debugfs_initialized()) 979 return 0; 980 981 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 982 mutex_lock(&kvm_debugfs_lock); 983 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 984 if (dent) { 985 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 986 dput(dent); 987 mutex_unlock(&kvm_debugfs_lock); 988 return 0; 989 } 990 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 991 mutex_unlock(&kvm_debugfs_lock); 992 if (IS_ERR(dent)) 993 return 0; 994 995 kvm->debugfs_dentry = dent; 996 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 997 sizeof(*kvm->debugfs_stat_data), 998 GFP_KERNEL_ACCOUNT); 999 if (!kvm->debugfs_stat_data) 1000 return -ENOMEM; 1001 1002 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1003 pdesc = &kvm_vm_stats_desc[i]; 1004 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1005 if (!stat_data) 1006 return -ENOMEM; 1007 1008 stat_data->kvm = kvm; 1009 stat_data->desc = pdesc; 1010 stat_data->kind = KVM_STAT_VM; 1011 kvm->debugfs_stat_data[i] = stat_data; 1012 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1013 kvm->debugfs_dentry, stat_data, 1014 &stat_fops_per_vm); 1015 } 1016 1017 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1018 pdesc = &kvm_vcpu_stats_desc[i]; 1019 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1020 if (!stat_data) 1021 return -ENOMEM; 1022 1023 stat_data->kvm = kvm; 1024 stat_data->desc = pdesc; 1025 stat_data->kind = KVM_STAT_VCPU; 1026 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1027 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1028 kvm->debugfs_dentry, stat_data, 1029 &stat_fops_per_vm); 1030 } 1031 1032 ret = kvm_arch_create_vm_debugfs(kvm); 1033 if (ret) { 1034 kvm_destroy_vm_debugfs(kvm); 1035 return i; 1036 } 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * Called after the VM is otherwise initialized, but just before adding it to 1043 * the vm_list. 1044 */ 1045 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1046 { 1047 return 0; 1048 } 1049 1050 /* 1051 * Called just after removing the VM from the vm_list, but before doing any 1052 * other destruction. 1053 */ 1054 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1055 { 1056 } 1057 1058 /* 1059 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1060 * be setup already, so we can create arch-specific debugfs entries under it. 1061 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1062 * a per-arch destroy interface is not needed. 1063 */ 1064 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1065 { 1066 return 0; 1067 } 1068 1069 static struct kvm *kvm_create_vm(unsigned long type) 1070 { 1071 struct kvm *kvm = kvm_arch_alloc_vm(); 1072 struct kvm_memslots *slots; 1073 int r = -ENOMEM; 1074 int i, j; 1075 1076 if (!kvm) 1077 return ERR_PTR(-ENOMEM); 1078 1079 KVM_MMU_LOCK_INIT(kvm); 1080 mmgrab(current->mm); 1081 kvm->mm = current->mm; 1082 kvm_eventfd_init(kvm); 1083 mutex_init(&kvm->lock); 1084 mutex_init(&kvm->irq_lock); 1085 mutex_init(&kvm->slots_lock); 1086 mutex_init(&kvm->slots_arch_lock); 1087 spin_lock_init(&kvm->mn_invalidate_lock); 1088 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1089 xa_init(&kvm->vcpu_array); 1090 1091 INIT_LIST_HEAD(&kvm->gpc_list); 1092 spin_lock_init(&kvm->gpc_lock); 1093 1094 INIT_LIST_HEAD(&kvm->devices); 1095 kvm->max_vcpus = KVM_MAX_VCPUS; 1096 1097 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1098 1099 /* 1100 * Force subsequent debugfs file creations to fail if the VM directory 1101 * is not created (by kvm_create_vm_debugfs()). 1102 */ 1103 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1104 1105 if (init_srcu_struct(&kvm->srcu)) 1106 goto out_err_no_srcu; 1107 if (init_srcu_struct(&kvm->irq_srcu)) 1108 goto out_err_no_irq_srcu; 1109 1110 refcount_set(&kvm->users_count, 1); 1111 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1112 for (j = 0; j < 2; j++) { 1113 slots = &kvm->__memslots[i][j]; 1114 1115 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1116 slots->hva_tree = RB_ROOT_CACHED; 1117 slots->gfn_tree = RB_ROOT; 1118 hash_init(slots->id_hash); 1119 slots->node_idx = j; 1120 1121 /* Generations must be different for each address space. */ 1122 slots->generation = i; 1123 } 1124 1125 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1126 } 1127 1128 for (i = 0; i < KVM_NR_BUSES; i++) { 1129 rcu_assign_pointer(kvm->buses[i], 1130 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1131 if (!kvm->buses[i]) 1132 goto out_err_no_arch_destroy_vm; 1133 } 1134 1135 kvm->max_halt_poll_ns = halt_poll_ns; 1136 1137 r = kvm_arch_init_vm(kvm, type); 1138 if (r) 1139 goto out_err_no_arch_destroy_vm; 1140 1141 r = hardware_enable_all(); 1142 if (r) 1143 goto out_err_no_disable; 1144 1145 #ifdef CONFIG_HAVE_KVM_IRQFD 1146 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1147 #endif 1148 1149 r = kvm_init_mmu_notifier(kvm); 1150 if (r) 1151 goto out_err_no_mmu_notifier; 1152 1153 r = kvm_arch_post_init_vm(kvm); 1154 if (r) 1155 goto out_err; 1156 1157 mutex_lock(&kvm_lock); 1158 list_add(&kvm->vm_list, &vm_list); 1159 mutex_unlock(&kvm_lock); 1160 1161 preempt_notifier_inc(); 1162 kvm_init_pm_notifier(kvm); 1163 1164 /* 1165 * When the fd passed to this ioctl() is opened it pins the module, 1166 * but try_module_get() also prevents getting a reference if the module 1167 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait"). 1168 */ 1169 if (!try_module_get(kvm_chardev_ops.owner)) { 1170 r = -ENODEV; 1171 goto out_err; 1172 } 1173 1174 return kvm; 1175 1176 out_err: 1177 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1178 if (kvm->mmu_notifier.ops) 1179 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1180 #endif 1181 out_err_no_mmu_notifier: 1182 hardware_disable_all(); 1183 out_err_no_disable: 1184 kvm_arch_destroy_vm(kvm); 1185 out_err_no_arch_destroy_vm: 1186 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1187 for (i = 0; i < KVM_NR_BUSES; i++) 1188 kfree(kvm_get_bus(kvm, i)); 1189 cleanup_srcu_struct(&kvm->irq_srcu); 1190 out_err_no_irq_srcu: 1191 cleanup_srcu_struct(&kvm->srcu); 1192 out_err_no_srcu: 1193 kvm_arch_free_vm(kvm); 1194 mmdrop(current->mm); 1195 return ERR_PTR(r); 1196 } 1197 1198 static void kvm_destroy_devices(struct kvm *kvm) 1199 { 1200 struct kvm_device *dev, *tmp; 1201 1202 /* 1203 * We do not need to take the kvm->lock here, because nobody else 1204 * has a reference to the struct kvm at this point and therefore 1205 * cannot access the devices list anyhow. 1206 */ 1207 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1208 list_del(&dev->vm_node); 1209 dev->ops->destroy(dev); 1210 } 1211 } 1212 1213 static void kvm_destroy_vm(struct kvm *kvm) 1214 { 1215 int i; 1216 struct mm_struct *mm = kvm->mm; 1217 1218 kvm_destroy_pm_notifier(kvm); 1219 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1220 kvm_destroy_vm_debugfs(kvm); 1221 kvm_arch_sync_events(kvm); 1222 mutex_lock(&kvm_lock); 1223 list_del(&kvm->vm_list); 1224 mutex_unlock(&kvm_lock); 1225 kvm_arch_pre_destroy_vm(kvm); 1226 1227 kvm_free_irq_routing(kvm); 1228 for (i = 0; i < KVM_NR_BUSES; i++) { 1229 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1230 1231 if (bus) 1232 kvm_io_bus_destroy(bus); 1233 kvm->buses[i] = NULL; 1234 } 1235 kvm_coalesced_mmio_free(kvm); 1236 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1237 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1238 /* 1239 * At this point, pending calls to invalidate_range_start() 1240 * have completed but no more MMU notifiers will run, so 1241 * mn_active_invalidate_count may remain unbalanced. 1242 * No threads can be waiting in install_new_memslots as the 1243 * last reference on KVM has been dropped, but freeing 1244 * memslots would deadlock without this manual intervention. 1245 */ 1246 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1247 kvm->mn_active_invalidate_count = 0; 1248 #else 1249 kvm_flush_shadow_all(kvm); 1250 #endif 1251 kvm_arch_destroy_vm(kvm); 1252 kvm_destroy_devices(kvm); 1253 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1254 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1255 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1256 } 1257 cleanup_srcu_struct(&kvm->irq_srcu); 1258 cleanup_srcu_struct(&kvm->srcu); 1259 kvm_arch_free_vm(kvm); 1260 preempt_notifier_dec(); 1261 hardware_disable_all(); 1262 mmdrop(mm); 1263 module_put(kvm_chardev_ops.owner); 1264 } 1265 1266 void kvm_get_kvm(struct kvm *kvm) 1267 { 1268 refcount_inc(&kvm->users_count); 1269 } 1270 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1271 1272 /* 1273 * Make sure the vm is not during destruction, which is a safe version of 1274 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1275 */ 1276 bool kvm_get_kvm_safe(struct kvm *kvm) 1277 { 1278 return refcount_inc_not_zero(&kvm->users_count); 1279 } 1280 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1281 1282 void kvm_put_kvm(struct kvm *kvm) 1283 { 1284 if (refcount_dec_and_test(&kvm->users_count)) 1285 kvm_destroy_vm(kvm); 1286 } 1287 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1288 1289 /* 1290 * Used to put a reference that was taken on behalf of an object associated 1291 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1292 * of the new file descriptor fails and the reference cannot be transferred to 1293 * its final owner. In such cases, the caller is still actively using @kvm and 1294 * will fail miserably if the refcount unexpectedly hits zero. 1295 */ 1296 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1297 { 1298 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1299 } 1300 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1301 1302 static int kvm_vm_release(struct inode *inode, struct file *filp) 1303 { 1304 struct kvm *kvm = filp->private_data; 1305 1306 kvm_irqfd_release(kvm); 1307 1308 kvm_put_kvm(kvm); 1309 return 0; 1310 } 1311 1312 /* 1313 * Allocation size is twice as large as the actual dirty bitmap size. 1314 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1315 */ 1316 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1317 { 1318 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1319 1320 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1321 if (!memslot->dirty_bitmap) 1322 return -ENOMEM; 1323 1324 return 0; 1325 } 1326 1327 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1328 { 1329 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1330 int node_idx_inactive = active->node_idx ^ 1; 1331 1332 return &kvm->__memslots[as_id][node_idx_inactive]; 1333 } 1334 1335 /* 1336 * Helper to get the address space ID when one of memslot pointers may be NULL. 1337 * This also serves as a sanity that at least one of the pointers is non-NULL, 1338 * and that their address space IDs don't diverge. 1339 */ 1340 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1341 struct kvm_memory_slot *b) 1342 { 1343 if (WARN_ON_ONCE(!a && !b)) 1344 return 0; 1345 1346 if (!a) 1347 return b->as_id; 1348 if (!b) 1349 return a->as_id; 1350 1351 WARN_ON_ONCE(a->as_id != b->as_id); 1352 return a->as_id; 1353 } 1354 1355 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1356 struct kvm_memory_slot *slot) 1357 { 1358 struct rb_root *gfn_tree = &slots->gfn_tree; 1359 struct rb_node **node, *parent; 1360 int idx = slots->node_idx; 1361 1362 parent = NULL; 1363 for (node = &gfn_tree->rb_node; *node; ) { 1364 struct kvm_memory_slot *tmp; 1365 1366 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1367 parent = *node; 1368 if (slot->base_gfn < tmp->base_gfn) 1369 node = &(*node)->rb_left; 1370 else if (slot->base_gfn > tmp->base_gfn) 1371 node = &(*node)->rb_right; 1372 else 1373 BUG(); 1374 } 1375 1376 rb_link_node(&slot->gfn_node[idx], parent, node); 1377 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1378 } 1379 1380 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1381 struct kvm_memory_slot *slot) 1382 { 1383 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1384 } 1385 1386 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1387 struct kvm_memory_slot *old, 1388 struct kvm_memory_slot *new) 1389 { 1390 int idx = slots->node_idx; 1391 1392 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1393 1394 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1395 &slots->gfn_tree); 1396 } 1397 1398 /* 1399 * Replace @old with @new in the inactive memslots. 1400 * 1401 * With NULL @old this simply adds @new. 1402 * With NULL @new this simply removes @old. 1403 * 1404 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1405 * appropriately. 1406 */ 1407 static void kvm_replace_memslot(struct kvm *kvm, 1408 struct kvm_memory_slot *old, 1409 struct kvm_memory_slot *new) 1410 { 1411 int as_id = kvm_memslots_get_as_id(old, new); 1412 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1413 int idx = slots->node_idx; 1414 1415 if (old) { 1416 hash_del(&old->id_node[idx]); 1417 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1418 1419 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1420 atomic_long_set(&slots->last_used_slot, (long)new); 1421 1422 if (!new) { 1423 kvm_erase_gfn_node(slots, old); 1424 return; 1425 } 1426 } 1427 1428 /* 1429 * Initialize @new's hva range. Do this even when replacing an @old 1430 * slot, kvm_copy_memslot() deliberately does not touch node data. 1431 */ 1432 new->hva_node[idx].start = new->userspace_addr; 1433 new->hva_node[idx].last = new->userspace_addr + 1434 (new->npages << PAGE_SHIFT) - 1; 1435 1436 /* 1437 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1438 * hva_node needs to be swapped with remove+insert even though hva can't 1439 * change when replacing an existing slot. 1440 */ 1441 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1442 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1443 1444 /* 1445 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1446 * switch the node in the gfn tree instead of removing the old and 1447 * inserting the new as two separate operations. Replacement is a 1448 * single O(1) operation versus two O(log(n)) operations for 1449 * remove+insert. 1450 */ 1451 if (old && old->base_gfn == new->base_gfn) { 1452 kvm_replace_gfn_node(slots, old, new); 1453 } else { 1454 if (old) 1455 kvm_erase_gfn_node(slots, old); 1456 kvm_insert_gfn_node(slots, new); 1457 } 1458 } 1459 1460 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1461 { 1462 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1463 1464 #ifdef __KVM_HAVE_READONLY_MEM 1465 valid_flags |= KVM_MEM_READONLY; 1466 #endif 1467 1468 if (mem->flags & ~valid_flags) 1469 return -EINVAL; 1470 1471 return 0; 1472 } 1473 1474 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1475 { 1476 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1477 1478 /* Grab the generation from the activate memslots. */ 1479 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1480 1481 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1482 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1483 1484 /* 1485 * Do not store the new memslots while there are invalidations in 1486 * progress, otherwise the locking in invalidate_range_start and 1487 * invalidate_range_end will be unbalanced. 1488 */ 1489 spin_lock(&kvm->mn_invalidate_lock); 1490 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1491 while (kvm->mn_active_invalidate_count) { 1492 set_current_state(TASK_UNINTERRUPTIBLE); 1493 spin_unlock(&kvm->mn_invalidate_lock); 1494 schedule(); 1495 spin_lock(&kvm->mn_invalidate_lock); 1496 } 1497 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1498 rcu_assign_pointer(kvm->memslots[as_id], slots); 1499 spin_unlock(&kvm->mn_invalidate_lock); 1500 1501 /* 1502 * Acquired in kvm_set_memslot. Must be released before synchronize 1503 * SRCU below in order to avoid deadlock with another thread 1504 * acquiring the slots_arch_lock in an srcu critical section. 1505 */ 1506 mutex_unlock(&kvm->slots_arch_lock); 1507 1508 synchronize_srcu_expedited(&kvm->srcu); 1509 1510 /* 1511 * Increment the new memslot generation a second time, dropping the 1512 * update in-progress flag and incrementing the generation based on 1513 * the number of address spaces. This provides a unique and easily 1514 * identifiable generation number while the memslots are in flux. 1515 */ 1516 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1517 1518 /* 1519 * Generations must be unique even across address spaces. We do not need 1520 * a global counter for that, instead the generation space is evenly split 1521 * across address spaces. For example, with two address spaces, address 1522 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1523 * use generations 1, 3, 5, ... 1524 */ 1525 gen += KVM_ADDRESS_SPACE_NUM; 1526 1527 kvm_arch_memslots_updated(kvm, gen); 1528 1529 slots->generation = gen; 1530 } 1531 1532 static int kvm_prepare_memory_region(struct kvm *kvm, 1533 const struct kvm_memory_slot *old, 1534 struct kvm_memory_slot *new, 1535 enum kvm_mr_change change) 1536 { 1537 int r; 1538 1539 /* 1540 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1541 * will be freed on "commit". If logging is enabled in both old and 1542 * new, reuse the existing bitmap. If logging is enabled only in the 1543 * new and KVM isn't using a ring buffer, allocate and initialize a 1544 * new bitmap. 1545 */ 1546 if (change != KVM_MR_DELETE) { 1547 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1548 new->dirty_bitmap = NULL; 1549 else if (old && old->dirty_bitmap) 1550 new->dirty_bitmap = old->dirty_bitmap; 1551 else if (!kvm->dirty_ring_size) { 1552 r = kvm_alloc_dirty_bitmap(new); 1553 if (r) 1554 return r; 1555 1556 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1557 bitmap_set(new->dirty_bitmap, 0, new->npages); 1558 } 1559 } 1560 1561 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1562 1563 /* Free the bitmap on failure if it was allocated above. */ 1564 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1565 kvm_destroy_dirty_bitmap(new); 1566 1567 return r; 1568 } 1569 1570 static void kvm_commit_memory_region(struct kvm *kvm, 1571 struct kvm_memory_slot *old, 1572 const struct kvm_memory_slot *new, 1573 enum kvm_mr_change change) 1574 { 1575 /* 1576 * Update the total number of memslot pages before calling the arch 1577 * hook so that architectures can consume the result directly. 1578 */ 1579 if (change == KVM_MR_DELETE) 1580 kvm->nr_memslot_pages -= old->npages; 1581 else if (change == KVM_MR_CREATE) 1582 kvm->nr_memslot_pages += new->npages; 1583 1584 kvm_arch_commit_memory_region(kvm, old, new, change); 1585 1586 switch (change) { 1587 case KVM_MR_CREATE: 1588 /* Nothing more to do. */ 1589 break; 1590 case KVM_MR_DELETE: 1591 /* Free the old memslot and all its metadata. */ 1592 kvm_free_memslot(kvm, old); 1593 break; 1594 case KVM_MR_MOVE: 1595 case KVM_MR_FLAGS_ONLY: 1596 /* 1597 * Free the dirty bitmap as needed; the below check encompasses 1598 * both the flags and whether a ring buffer is being used) 1599 */ 1600 if (old->dirty_bitmap && !new->dirty_bitmap) 1601 kvm_destroy_dirty_bitmap(old); 1602 1603 /* 1604 * The final quirk. Free the detached, old slot, but only its 1605 * memory, not any metadata. Metadata, including arch specific 1606 * data, may be reused by @new. 1607 */ 1608 kfree(old); 1609 break; 1610 default: 1611 BUG(); 1612 } 1613 } 1614 1615 /* 1616 * Activate @new, which must be installed in the inactive slots by the caller, 1617 * by swapping the active slots and then propagating @new to @old once @old is 1618 * unreachable and can be safely modified. 1619 * 1620 * With NULL @old this simply adds @new to @active (while swapping the sets). 1621 * With NULL @new this simply removes @old from @active and frees it 1622 * (while also swapping the sets). 1623 */ 1624 static void kvm_activate_memslot(struct kvm *kvm, 1625 struct kvm_memory_slot *old, 1626 struct kvm_memory_slot *new) 1627 { 1628 int as_id = kvm_memslots_get_as_id(old, new); 1629 1630 kvm_swap_active_memslots(kvm, as_id); 1631 1632 /* Propagate the new memslot to the now inactive memslots. */ 1633 kvm_replace_memslot(kvm, old, new); 1634 } 1635 1636 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1637 const struct kvm_memory_slot *src) 1638 { 1639 dest->base_gfn = src->base_gfn; 1640 dest->npages = src->npages; 1641 dest->dirty_bitmap = src->dirty_bitmap; 1642 dest->arch = src->arch; 1643 dest->userspace_addr = src->userspace_addr; 1644 dest->flags = src->flags; 1645 dest->id = src->id; 1646 dest->as_id = src->as_id; 1647 } 1648 1649 static void kvm_invalidate_memslot(struct kvm *kvm, 1650 struct kvm_memory_slot *old, 1651 struct kvm_memory_slot *invalid_slot) 1652 { 1653 /* 1654 * Mark the current slot INVALID. As with all memslot modifications, 1655 * this must be done on an unreachable slot to avoid modifying the 1656 * current slot in the active tree. 1657 */ 1658 kvm_copy_memslot(invalid_slot, old); 1659 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1660 kvm_replace_memslot(kvm, old, invalid_slot); 1661 1662 /* 1663 * Activate the slot that is now marked INVALID, but don't propagate 1664 * the slot to the now inactive slots. The slot is either going to be 1665 * deleted or recreated as a new slot. 1666 */ 1667 kvm_swap_active_memslots(kvm, old->as_id); 1668 1669 /* 1670 * From this point no new shadow pages pointing to a deleted, or moved, 1671 * memslot will be created. Validation of sp->gfn happens in: 1672 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1673 * - kvm_is_visible_gfn (mmu_check_root) 1674 */ 1675 kvm_arch_flush_shadow_memslot(kvm, old); 1676 kvm_arch_guest_memory_reclaimed(kvm); 1677 1678 /* Was released by kvm_swap_active_memslots, reacquire. */ 1679 mutex_lock(&kvm->slots_arch_lock); 1680 1681 /* 1682 * Copy the arch-specific field of the newly-installed slot back to the 1683 * old slot as the arch data could have changed between releasing 1684 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1685 * above. Writers are required to retrieve memslots *after* acquiring 1686 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1687 */ 1688 old->arch = invalid_slot->arch; 1689 } 1690 1691 static void kvm_create_memslot(struct kvm *kvm, 1692 struct kvm_memory_slot *new) 1693 { 1694 /* Add the new memslot to the inactive set and activate. */ 1695 kvm_replace_memslot(kvm, NULL, new); 1696 kvm_activate_memslot(kvm, NULL, new); 1697 } 1698 1699 static void kvm_delete_memslot(struct kvm *kvm, 1700 struct kvm_memory_slot *old, 1701 struct kvm_memory_slot *invalid_slot) 1702 { 1703 /* 1704 * Remove the old memslot (in the inactive memslots) by passing NULL as 1705 * the "new" slot, and for the invalid version in the active slots. 1706 */ 1707 kvm_replace_memslot(kvm, old, NULL); 1708 kvm_activate_memslot(kvm, invalid_slot, NULL); 1709 } 1710 1711 static void kvm_move_memslot(struct kvm *kvm, 1712 struct kvm_memory_slot *old, 1713 struct kvm_memory_slot *new, 1714 struct kvm_memory_slot *invalid_slot) 1715 { 1716 /* 1717 * Replace the old memslot in the inactive slots, and then swap slots 1718 * and replace the current INVALID with the new as well. 1719 */ 1720 kvm_replace_memslot(kvm, old, new); 1721 kvm_activate_memslot(kvm, invalid_slot, new); 1722 } 1723 1724 static void kvm_update_flags_memslot(struct kvm *kvm, 1725 struct kvm_memory_slot *old, 1726 struct kvm_memory_slot *new) 1727 { 1728 /* 1729 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1730 * an intermediate step. Instead, the old memslot is simply replaced 1731 * with a new, updated copy in both memslot sets. 1732 */ 1733 kvm_replace_memslot(kvm, old, new); 1734 kvm_activate_memslot(kvm, old, new); 1735 } 1736 1737 static int kvm_set_memslot(struct kvm *kvm, 1738 struct kvm_memory_slot *old, 1739 struct kvm_memory_slot *new, 1740 enum kvm_mr_change change) 1741 { 1742 struct kvm_memory_slot *invalid_slot; 1743 int r; 1744 1745 /* 1746 * Released in kvm_swap_active_memslots. 1747 * 1748 * Must be held from before the current memslots are copied until 1749 * after the new memslots are installed with rcu_assign_pointer, 1750 * then released before the synchronize srcu in kvm_swap_active_memslots. 1751 * 1752 * When modifying memslots outside of the slots_lock, must be held 1753 * before reading the pointer to the current memslots until after all 1754 * changes to those memslots are complete. 1755 * 1756 * These rules ensure that installing new memslots does not lose 1757 * changes made to the previous memslots. 1758 */ 1759 mutex_lock(&kvm->slots_arch_lock); 1760 1761 /* 1762 * Invalidate the old slot if it's being deleted or moved. This is 1763 * done prior to actually deleting/moving the memslot to allow vCPUs to 1764 * continue running by ensuring there are no mappings or shadow pages 1765 * for the memslot when it is deleted/moved. Without pre-invalidation 1766 * (and without a lock), a window would exist between effecting the 1767 * delete/move and committing the changes in arch code where KVM or a 1768 * guest could access a non-existent memslot. 1769 * 1770 * Modifications are done on a temporary, unreachable slot. The old 1771 * slot needs to be preserved in case a later step fails and the 1772 * invalidation needs to be reverted. 1773 */ 1774 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1775 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1776 if (!invalid_slot) { 1777 mutex_unlock(&kvm->slots_arch_lock); 1778 return -ENOMEM; 1779 } 1780 kvm_invalidate_memslot(kvm, old, invalid_slot); 1781 } 1782 1783 r = kvm_prepare_memory_region(kvm, old, new, change); 1784 if (r) { 1785 /* 1786 * For DELETE/MOVE, revert the above INVALID change. No 1787 * modifications required since the original slot was preserved 1788 * in the inactive slots. Changing the active memslots also 1789 * release slots_arch_lock. 1790 */ 1791 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1792 kvm_activate_memslot(kvm, invalid_slot, old); 1793 kfree(invalid_slot); 1794 } else { 1795 mutex_unlock(&kvm->slots_arch_lock); 1796 } 1797 return r; 1798 } 1799 1800 /* 1801 * For DELETE and MOVE, the working slot is now active as the INVALID 1802 * version of the old slot. MOVE is particularly special as it reuses 1803 * the old slot and returns a copy of the old slot (in working_slot). 1804 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1805 * old slot is detached but otherwise preserved. 1806 */ 1807 if (change == KVM_MR_CREATE) 1808 kvm_create_memslot(kvm, new); 1809 else if (change == KVM_MR_DELETE) 1810 kvm_delete_memslot(kvm, old, invalid_slot); 1811 else if (change == KVM_MR_MOVE) 1812 kvm_move_memslot(kvm, old, new, invalid_slot); 1813 else if (change == KVM_MR_FLAGS_ONLY) 1814 kvm_update_flags_memslot(kvm, old, new); 1815 else 1816 BUG(); 1817 1818 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1819 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1820 kfree(invalid_slot); 1821 1822 /* 1823 * No need to refresh new->arch, changes after dropping slots_arch_lock 1824 * will directly hit the final, active memslot. Architectures are 1825 * responsible for knowing that new->arch may be stale. 1826 */ 1827 kvm_commit_memory_region(kvm, old, new, change); 1828 1829 return 0; 1830 } 1831 1832 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1833 gfn_t start, gfn_t end) 1834 { 1835 struct kvm_memslot_iter iter; 1836 1837 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1838 if (iter.slot->id != id) 1839 return true; 1840 } 1841 1842 return false; 1843 } 1844 1845 /* 1846 * Allocate some memory and give it an address in the guest physical address 1847 * space. 1848 * 1849 * Discontiguous memory is allowed, mostly for framebuffers. 1850 * 1851 * Must be called holding kvm->slots_lock for write. 1852 */ 1853 int __kvm_set_memory_region(struct kvm *kvm, 1854 const struct kvm_userspace_memory_region *mem) 1855 { 1856 struct kvm_memory_slot *old, *new; 1857 struct kvm_memslots *slots; 1858 enum kvm_mr_change change; 1859 unsigned long npages; 1860 gfn_t base_gfn; 1861 int as_id, id; 1862 int r; 1863 1864 r = check_memory_region_flags(mem); 1865 if (r) 1866 return r; 1867 1868 as_id = mem->slot >> 16; 1869 id = (u16)mem->slot; 1870 1871 /* General sanity checks */ 1872 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1873 (mem->memory_size != (unsigned long)mem->memory_size)) 1874 return -EINVAL; 1875 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1876 return -EINVAL; 1877 /* We can read the guest memory with __xxx_user() later on. */ 1878 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1879 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1880 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1881 mem->memory_size)) 1882 return -EINVAL; 1883 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1884 return -EINVAL; 1885 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1886 return -EINVAL; 1887 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1888 return -EINVAL; 1889 1890 slots = __kvm_memslots(kvm, as_id); 1891 1892 /* 1893 * Note, the old memslot (and the pointer itself!) may be invalidated 1894 * and/or destroyed by kvm_set_memslot(). 1895 */ 1896 old = id_to_memslot(slots, id); 1897 1898 if (!mem->memory_size) { 1899 if (!old || !old->npages) 1900 return -EINVAL; 1901 1902 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1903 return -EIO; 1904 1905 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1906 } 1907 1908 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1909 npages = (mem->memory_size >> PAGE_SHIFT); 1910 1911 if (!old || !old->npages) { 1912 change = KVM_MR_CREATE; 1913 1914 /* 1915 * To simplify KVM internals, the total number of pages across 1916 * all memslots must fit in an unsigned long. 1917 */ 1918 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1919 return -EINVAL; 1920 } else { /* Modify an existing slot. */ 1921 if ((mem->userspace_addr != old->userspace_addr) || 1922 (npages != old->npages) || 1923 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1924 return -EINVAL; 1925 1926 if (base_gfn != old->base_gfn) 1927 change = KVM_MR_MOVE; 1928 else if (mem->flags != old->flags) 1929 change = KVM_MR_FLAGS_ONLY; 1930 else /* Nothing to change. */ 1931 return 0; 1932 } 1933 1934 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 1935 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 1936 return -EEXIST; 1937 1938 /* Allocate a slot that will persist in the memslot. */ 1939 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 1940 if (!new) 1941 return -ENOMEM; 1942 1943 new->as_id = as_id; 1944 new->id = id; 1945 new->base_gfn = base_gfn; 1946 new->npages = npages; 1947 new->flags = mem->flags; 1948 new->userspace_addr = mem->userspace_addr; 1949 1950 r = kvm_set_memslot(kvm, old, new, change); 1951 if (r) 1952 kfree(new); 1953 return r; 1954 } 1955 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1956 1957 int kvm_set_memory_region(struct kvm *kvm, 1958 const struct kvm_userspace_memory_region *mem) 1959 { 1960 int r; 1961 1962 mutex_lock(&kvm->slots_lock); 1963 r = __kvm_set_memory_region(kvm, mem); 1964 mutex_unlock(&kvm->slots_lock); 1965 return r; 1966 } 1967 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1968 1969 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1970 struct kvm_userspace_memory_region *mem) 1971 { 1972 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1973 return -EINVAL; 1974 1975 return kvm_set_memory_region(kvm, mem); 1976 } 1977 1978 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1979 /** 1980 * kvm_get_dirty_log - get a snapshot of dirty pages 1981 * @kvm: pointer to kvm instance 1982 * @log: slot id and address to which we copy the log 1983 * @is_dirty: set to '1' if any dirty pages were found 1984 * @memslot: set to the associated memslot, always valid on success 1985 */ 1986 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1987 int *is_dirty, struct kvm_memory_slot **memslot) 1988 { 1989 struct kvm_memslots *slots; 1990 int i, as_id, id; 1991 unsigned long n; 1992 unsigned long any = 0; 1993 1994 /* Dirty ring tracking is exclusive to dirty log tracking */ 1995 if (kvm->dirty_ring_size) 1996 return -ENXIO; 1997 1998 *memslot = NULL; 1999 *is_dirty = 0; 2000 2001 as_id = log->slot >> 16; 2002 id = (u16)log->slot; 2003 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2004 return -EINVAL; 2005 2006 slots = __kvm_memslots(kvm, as_id); 2007 *memslot = id_to_memslot(slots, id); 2008 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2009 return -ENOENT; 2010 2011 kvm_arch_sync_dirty_log(kvm, *memslot); 2012 2013 n = kvm_dirty_bitmap_bytes(*memslot); 2014 2015 for (i = 0; !any && i < n/sizeof(long); ++i) 2016 any = (*memslot)->dirty_bitmap[i]; 2017 2018 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2019 return -EFAULT; 2020 2021 if (any) 2022 *is_dirty = 1; 2023 return 0; 2024 } 2025 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2026 2027 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2028 /** 2029 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2030 * and reenable dirty page tracking for the corresponding pages. 2031 * @kvm: pointer to kvm instance 2032 * @log: slot id and address to which we copy the log 2033 * 2034 * We need to keep it in mind that VCPU threads can write to the bitmap 2035 * concurrently. So, to avoid losing track of dirty pages we keep the 2036 * following order: 2037 * 2038 * 1. Take a snapshot of the bit and clear it if needed. 2039 * 2. Write protect the corresponding page. 2040 * 3. Copy the snapshot to the userspace. 2041 * 4. Upon return caller flushes TLB's if needed. 2042 * 2043 * Between 2 and 4, the guest may write to the page using the remaining TLB 2044 * entry. This is not a problem because the page is reported dirty using 2045 * the snapshot taken before and step 4 ensures that writes done after 2046 * exiting to userspace will be logged for the next call. 2047 * 2048 */ 2049 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2050 { 2051 struct kvm_memslots *slots; 2052 struct kvm_memory_slot *memslot; 2053 int i, as_id, id; 2054 unsigned long n; 2055 unsigned long *dirty_bitmap; 2056 unsigned long *dirty_bitmap_buffer; 2057 bool flush; 2058 2059 /* Dirty ring tracking is exclusive to dirty log tracking */ 2060 if (kvm->dirty_ring_size) 2061 return -ENXIO; 2062 2063 as_id = log->slot >> 16; 2064 id = (u16)log->slot; 2065 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2066 return -EINVAL; 2067 2068 slots = __kvm_memslots(kvm, as_id); 2069 memslot = id_to_memslot(slots, id); 2070 if (!memslot || !memslot->dirty_bitmap) 2071 return -ENOENT; 2072 2073 dirty_bitmap = memslot->dirty_bitmap; 2074 2075 kvm_arch_sync_dirty_log(kvm, memslot); 2076 2077 n = kvm_dirty_bitmap_bytes(memslot); 2078 flush = false; 2079 if (kvm->manual_dirty_log_protect) { 2080 /* 2081 * Unlike kvm_get_dirty_log, we always return false in *flush, 2082 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2083 * is some code duplication between this function and 2084 * kvm_get_dirty_log, but hopefully all architecture 2085 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2086 * can be eliminated. 2087 */ 2088 dirty_bitmap_buffer = dirty_bitmap; 2089 } else { 2090 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2091 memset(dirty_bitmap_buffer, 0, n); 2092 2093 KVM_MMU_LOCK(kvm); 2094 for (i = 0; i < n / sizeof(long); i++) { 2095 unsigned long mask; 2096 gfn_t offset; 2097 2098 if (!dirty_bitmap[i]) 2099 continue; 2100 2101 flush = true; 2102 mask = xchg(&dirty_bitmap[i], 0); 2103 dirty_bitmap_buffer[i] = mask; 2104 2105 offset = i * BITS_PER_LONG; 2106 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2107 offset, mask); 2108 } 2109 KVM_MMU_UNLOCK(kvm); 2110 } 2111 2112 if (flush) 2113 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2114 2115 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2116 return -EFAULT; 2117 return 0; 2118 } 2119 2120 2121 /** 2122 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2123 * @kvm: kvm instance 2124 * @log: slot id and address to which we copy the log 2125 * 2126 * Steps 1-4 below provide general overview of dirty page logging. See 2127 * kvm_get_dirty_log_protect() function description for additional details. 2128 * 2129 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2130 * always flush the TLB (step 4) even if previous step failed and the dirty 2131 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2132 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2133 * writes will be marked dirty for next log read. 2134 * 2135 * 1. Take a snapshot of the bit and clear it if needed. 2136 * 2. Write protect the corresponding page. 2137 * 3. Copy the snapshot to the userspace. 2138 * 4. Flush TLB's if needed. 2139 */ 2140 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2141 struct kvm_dirty_log *log) 2142 { 2143 int r; 2144 2145 mutex_lock(&kvm->slots_lock); 2146 2147 r = kvm_get_dirty_log_protect(kvm, log); 2148 2149 mutex_unlock(&kvm->slots_lock); 2150 return r; 2151 } 2152 2153 /** 2154 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2155 * and reenable dirty page tracking for the corresponding pages. 2156 * @kvm: pointer to kvm instance 2157 * @log: slot id and address from which to fetch the bitmap of dirty pages 2158 */ 2159 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2160 struct kvm_clear_dirty_log *log) 2161 { 2162 struct kvm_memslots *slots; 2163 struct kvm_memory_slot *memslot; 2164 int as_id, id; 2165 gfn_t offset; 2166 unsigned long i, n; 2167 unsigned long *dirty_bitmap; 2168 unsigned long *dirty_bitmap_buffer; 2169 bool flush; 2170 2171 /* Dirty ring tracking is exclusive to dirty log tracking */ 2172 if (kvm->dirty_ring_size) 2173 return -ENXIO; 2174 2175 as_id = log->slot >> 16; 2176 id = (u16)log->slot; 2177 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2178 return -EINVAL; 2179 2180 if (log->first_page & 63) 2181 return -EINVAL; 2182 2183 slots = __kvm_memslots(kvm, as_id); 2184 memslot = id_to_memslot(slots, id); 2185 if (!memslot || !memslot->dirty_bitmap) 2186 return -ENOENT; 2187 2188 dirty_bitmap = memslot->dirty_bitmap; 2189 2190 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2191 2192 if (log->first_page > memslot->npages || 2193 log->num_pages > memslot->npages - log->first_page || 2194 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2195 return -EINVAL; 2196 2197 kvm_arch_sync_dirty_log(kvm, memslot); 2198 2199 flush = false; 2200 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2201 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2202 return -EFAULT; 2203 2204 KVM_MMU_LOCK(kvm); 2205 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2206 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2207 i++, offset += BITS_PER_LONG) { 2208 unsigned long mask = *dirty_bitmap_buffer++; 2209 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2210 if (!mask) 2211 continue; 2212 2213 mask &= atomic_long_fetch_andnot(mask, p); 2214 2215 /* 2216 * mask contains the bits that really have been cleared. This 2217 * never includes any bits beyond the length of the memslot (if 2218 * the length is not aligned to 64 pages), therefore it is not 2219 * a problem if userspace sets them in log->dirty_bitmap. 2220 */ 2221 if (mask) { 2222 flush = true; 2223 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2224 offset, mask); 2225 } 2226 } 2227 KVM_MMU_UNLOCK(kvm); 2228 2229 if (flush) 2230 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2231 2232 return 0; 2233 } 2234 2235 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2236 struct kvm_clear_dirty_log *log) 2237 { 2238 int r; 2239 2240 mutex_lock(&kvm->slots_lock); 2241 2242 r = kvm_clear_dirty_log_protect(kvm, log); 2243 2244 mutex_unlock(&kvm->slots_lock); 2245 return r; 2246 } 2247 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2248 2249 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2250 { 2251 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2252 } 2253 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2254 2255 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2256 { 2257 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2258 u64 gen = slots->generation; 2259 struct kvm_memory_slot *slot; 2260 2261 /* 2262 * This also protects against using a memslot from a different address space, 2263 * since different address spaces have different generation numbers. 2264 */ 2265 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2266 vcpu->last_used_slot = NULL; 2267 vcpu->last_used_slot_gen = gen; 2268 } 2269 2270 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2271 if (slot) 2272 return slot; 2273 2274 /* 2275 * Fall back to searching all memslots. We purposely use 2276 * search_memslots() instead of __gfn_to_memslot() to avoid 2277 * thrashing the VM-wide last_used_slot in kvm_memslots. 2278 */ 2279 slot = search_memslots(slots, gfn, false); 2280 if (slot) { 2281 vcpu->last_used_slot = slot; 2282 return slot; 2283 } 2284 2285 return NULL; 2286 } 2287 2288 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2289 { 2290 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2291 2292 return kvm_is_visible_memslot(memslot); 2293 } 2294 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2295 2296 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2297 { 2298 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2299 2300 return kvm_is_visible_memslot(memslot); 2301 } 2302 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2303 2304 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2305 { 2306 struct vm_area_struct *vma; 2307 unsigned long addr, size; 2308 2309 size = PAGE_SIZE; 2310 2311 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2312 if (kvm_is_error_hva(addr)) 2313 return PAGE_SIZE; 2314 2315 mmap_read_lock(current->mm); 2316 vma = find_vma(current->mm, addr); 2317 if (!vma) 2318 goto out; 2319 2320 size = vma_kernel_pagesize(vma); 2321 2322 out: 2323 mmap_read_unlock(current->mm); 2324 2325 return size; 2326 } 2327 2328 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2329 { 2330 return slot->flags & KVM_MEM_READONLY; 2331 } 2332 2333 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2334 gfn_t *nr_pages, bool write) 2335 { 2336 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2337 return KVM_HVA_ERR_BAD; 2338 2339 if (memslot_is_readonly(slot) && write) 2340 return KVM_HVA_ERR_RO_BAD; 2341 2342 if (nr_pages) 2343 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2344 2345 return __gfn_to_hva_memslot(slot, gfn); 2346 } 2347 2348 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2349 gfn_t *nr_pages) 2350 { 2351 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2352 } 2353 2354 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2355 gfn_t gfn) 2356 { 2357 return gfn_to_hva_many(slot, gfn, NULL); 2358 } 2359 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2360 2361 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2362 { 2363 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2364 } 2365 EXPORT_SYMBOL_GPL(gfn_to_hva); 2366 2367 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2368 { 2369 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2370 } 2371 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2372 2373 /* 2374 * Return the hva of a @gfn and the R/W attribute if possible. 2375 * 2376 * @slot: the kvm_memory_slot which contains @gfn 2377 * @gfn: the gfn to be translated 2378 * @writable: used to return the read/write attribute of the @slot if the hva 2379 * is valid and @writable is not NULL 2380 */ 2381 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2382 gfn_t gfn, bool *writable) 2383 { 2384 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2385 2386 if (!kvm_is_error_hva(hva) && writable) 2387 *writable = !memslot_is_readonly(slot); 2388 2389 return hva; 2390 } 2391 2392 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2393 { 2394 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2395 2396 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2397 } 2398 2399 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2400 { 2401 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2402 2403 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2404 } 2405 2406 static inline int check_user_page_hwpoison(unsigned long addr) 2407 { 2408 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2409 2410 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2411 return rc == -EHWPOISON; 2412 } 2413 2414 /* 2415 * The fast path to get the writable pfn which will be stored in @pfn, 2416 * true indicates success, otherwise false is returned. It's also the 2417 * only part that runs if we can in atomic context. 2418 */ 2419 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2420 bool *writable, kvm_pfn_t *pfn) 2421 { 2422 struct page *page[1]; 2423 2424 /* 2425 * Fast pin a writable pfn only if it is a write fault request 2426 * or the caller allows to map a writable pfn for a read fault 2427 * request. 2428 */ 2429 if (!(write_fault || writable)) 2430 return false; 2431 2432 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2433 *pfn = page_to_pfn(page[0]); 2434 2435 if (writable) 2436 *writable = true; 2437 return true; 2438 } 2439 2440 return false; 2441 } 2442 2443 /* 2444 * The slow path to get the pfn of the specified host virtual address, 2445 * 1 indicates success, -errno is returned if error is detected. 2446 */ 2447 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2448 bool *writable, kvm_pfn_t *pfn) 2449 { 2450 unsigned int flags = FOLL_HWPOISON; 2451 struct page *page; 2452 int npages = 0; 2453 2454 might_sleep(); 2455 2456 if (writable) 2457 *writable = write_fault; 2458 2459 if (write_fault) 2460 flags |= FOLL_WRITE; 2461 if (async) 2462 flags |= FOLL_NOWAIT; 2463 2464 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2465 if (npages != 1) 2466 return npages; 2467 2468 /* map read fault as writable if possible */ 2469 if (unlikely(!write_fault) && writable) { 2470 struct page *wpage; 2471 2472 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2473 *writable = true; 2474 put_page(page); 2475 page = wpage; 2476 } 2477 } 2478 *pfn = page_to_pfn(page); 2479 return npages; 2480 } 2481 2482 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2483 { 2484 if (unlikely(!(vma->vm_flags & VM_READ))) 2485 return false; 2486 2487 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2488 return false; 2489 2490 return true; 2491 } 2492 2493 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2494 { 2495 if (kvm_is_reserved_pfn(pfn)) 2496 return 1; 2497 return get_page_unless_zero(pfn_to_page(pfn)); 2498 } 2499 2500 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2501 unsigned long addr, bool write_fault, 2502 bool *writable, kvm_pfn_t *p_pfn) 2503 { 2504 kvm_pfn_t pfn; 2505 pte_t *ptep; 2506 spinlock_t *ptl; 2507 int r; 2508 2509 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2510 if (r) { 2511 /* 2512 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2513 * not call the fault handler, so do it here. 2514 */ 2515 bool unlocked = false; 2516 r = fixup_user_fault(current->mm, addr, 2517 (write_fault ? FAULT_FLAG_WRITE : 0), 2518 &unlocked); 2519 if (unlocked) 2520 return -EAGAIN; 2521 if (r) 2522 return r; 2523 2524 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2525 if (r) 2526 return r; 2527 } 2528 2529 if (write_fault && !pte_write(*ptep)) { 2530 pfn = KVM_PFN_ERR_RO_FAULT; 2531 goto out; 2532 } 2533 2534 if (writable) 2535 *writable = pte_write(*ptep); 2536 pfn = pte_pfn(*ptep); 2537 2538 /* 2539 * Get a reference here because callers of *hva_to_pfn* and 2540 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2541 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2542 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2543 * simply do nothing for reserved pfns. 2544 * 2545 * Whoever called remap_pfn_range is also going to call e.g. 2546 * unmap_mapping_range before the underlying pages are freed, 2547 * causing a call to our MMU notifier. 2548 * 2549 * Certain IO or PFNMAP mappings can be backed with valid 2550 * struct pages, but be allocated without refcounting e.g., 2551 * tail pages of non-compound higher order allocations, which 2552 * would then underflow the refcount when the caller does the 2553 * required put_page. Don't allow those pages here. 2554 */ 2555 if (!kvm_try_get_pfn(pfn)) 2556 r = -EFAULT; 2557 2558 out: 2559 pte_unmap_unlock(ptep, ptl); 2560 *p_pfn = pfn; 2561 2562 return r; 2563 } 2564 2565 /* 2566 * Pin guest page in memory and return its pfn. 2567 * @addr: host virtual address which maps memory to the guest 2568 * @atomic: whether this function can sleep 2569 * @async: whether this function need to wait IO complete if the 2570 * host page is not in the memory 2571 * @write_fault: whether we should get a writable host page 2572 * @writable: whether it allows to map a writable host page for !@write_fault 2573 * 2574 * The function will map a writable host page for these two cases: 2575 * 1): @write_fault = true 2576 * 2): @write_fault = false && @writable, @writable will tell the caller 2577 * whether the mapping is writable. 2578 */ 2579 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 2580 bool write_fault, bool *writable) 2581 { 2582 struct vm_area_struct *vma; 2583 kvm_pfn_t pfn = 0; 2584 int npages, r; 2585 2586 /* we can do it either atomically or asynchronously, not both */ 2587 BUG_ON(atomic && async); 2588 2589 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2590 return pfn; 2591 2592 if (atomic) 2593 return KVM_PFN_ERR_FAULT; 2594 2595 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 2596 if (npages == 1) 2597 return pfn; 2598 2599 mmap_read_lock(current->mm); 2600 if (npages == -EHWPOISON || 2601 (!async && check_user_page_hwpoison(addr))) { 2602 pfn = KVM_PFN_ERR_HWPOISON; 2603 goto exit; 2604 } 2605 2606 retry: 2607 vma = vma_lookup(current->mm, addr); 2608 2609 if (vma == NULL) 2610 pfn = KVM_PFN_ERR_FAULT; 2611 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2612 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2613 if (r == -EAGAIN) 2614 goto retry; 2615 if (r < 0) 2616 pfn = KVM_PFN_ERR_FAULT; 2617 } else { 2618 if (async && vma_is_valid(vma, write_fault)) 2619 *async = true; 2620 pfn = KVM_PFN_ERR_FAULT; 2621 } 2622 exit: 2623 mmap_read_unlock(current->mm); 2624 return pfn; 2625 } 2626 2627 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2628 bool atomic, bool *async, bool write_fault, 2629 bool *writable, hva_t *hva) 2630 { 2631 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2632 2633 if (hva) 2634 *hva = addr; 2635 2636 if (addr == KVM_HVA_ERR_RO_BAD) { 2637 if (writable) 2638 *writable = false; 2639 return KVM_PFN_ERR_RO_FAULT; 2640 } 2641 2642 if (kvm_is_error_hva(addr)) { 2643 if (writable) 2644 *writable = false; 2645 return KVM_PFN_NOSLOT; 2646 } 2647 2648 /* Do not map writable pfn in the readonly memslot. */ 2649 if (writable && memslot_is_readonly(slot)) { 2650 *writable = false; 2651 writable = NULL; 2652 } 2653 2654 return hva_to_pfn(addr, atomic, async, write_fault, 2655 writable); 2656 } 2657 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2658 2659 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2660 bool *writable) 2661 { 2662 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2663 write_fault, writable, NULL); 2664 } 2665 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2666 2667 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2668 { 2669 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL); 2670 } 2671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2672 2673 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2674 { 2675 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL); 2676 } 2677 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2678 2679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2680 { 2681 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2682 } 2683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2684 2685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2686 { 2687 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2688 } 2689 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2690 2691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2692 { 2693 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2694 } 2695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2696 2697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2698 struct page **pages, int nr_pages) 2699 { 2700 unsigned long addr; 2701 gfn_t entry = 0; 2702 2703 addr = gfn_to_hva_many(slot, gfn, &entry); 2704 if (kvm_is_error_hva(addr)) 2705 return -1; 2706 2707 if (entry < nr_pages) 2708 return 0; 2709 2710 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2711 } 2712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2713 2714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2715 { 2716 if (is_error_noslot_pfn(pfn)) 2717 return KVM_ERR_PTR_BAD_PAGE; 2718 2719 if (kvm_is_reserved_pfn(pfn)) { 2720 WARN_ON(1); 2721 return KVM_ERR_PTR_BAD_PAGE; 2722 } 2723 2724 return pfn_to_page(pfn); 2725 } 2726 2727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2728 { 2729 kvm_pfn_t pfn; 2730 2731 pfn = gfn_to_pfn(kvm, gfn); 2732 2733 return kvm_pfn_to_page(pfn); 2734 } 2735 EXPORT_SYMBOL_GPL(gfn_to_page); 2736 2737 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2738 { 2739 if (pfn == 0) 2740 return; 2741 2742 if (dirty) 2743 kvm_release_pfn_dirty(pfn); 2744 else 2745 kvm_release_pfn_clean(pfn); 2746 } 2747 2748 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2749 { 2750 kvm_pfn_t pfn; 2751 void *hva = NULL; 2752 struct page *page = KVM_UNMAPPED_PAGE; 2753 2754 if (!map) 2755 return -EINVAL; 2756 2757 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2758 if (is_error_noslot_pfn(pfn)) 2759 return -EINVAL; 2760 2761 if (pfn_valid(pfn)) { 2762 page = pfn_to_page(pfn); 2763 hva = kmap(page); 2764 #ifdef CONFIG_HAS_IOMEM 2765 } else { 2766 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2767 #endif 2768 } 2769 2770 if (!hva) 2771 return -EFAULT; 2772 2773 map->page = page; 2774 map->hva = hva; 2775 map->pfn = pfn; 2776 map->gfn = gfn; 2777 2778 return 0; 2779 } 2780 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2781 2782 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2783 { 2784 if (!map) 2785 return; 2786 2787 if (!map->hva) 2788 return; 2789 2790 if (map->page != KVM_UNMAPPED_PAGE) 2791 kunmap(map->page); 2792 #ifdef CONFIG_HAS_IOMEM 2793 else 2794 memunmap(map->hva); 2795 #endif 2796 2797 if (dirty) 2798 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2799 2800 kvm_release_pfn(map->pfn, dirty); 2801 2802 map->hva = NULL; 2803 map->page = NULL; 2804 } 2805 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2806 2807 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2808 { 2809 kvm_pfn_t pfn; 2810 2811 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2812 2813 return kvm_pfn_to_page(pfn); 2814 } 2815 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2816 2817 void kvm_release_page_clean(struct page *page) 2818 { 2819 WARN_ON(is_error_page(page)); 2820 2821 kvm_release_pfn_clean(page_to_pfn(page)); 2822 } 2823 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2824 2825 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2826 { 2827 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2828 put_page(pfn_to_page(pfn)); 2829 } 2830 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2831 2832 void kvm_release_page_dirty(struct page *page) 2833 { 2834 WARN_ON(is_error_page(page)); 2835 2836 kvm_release_pfn_dirty(page_to_pfn(page)); 2837 } 2838 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2839 2840 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2841 { 2842 kvm_set_pfn_dirty(pfn); 2843 kvm_release_pfn_clean(pfn); 2844 } 2845 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2846 2847 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2848 { 2849 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2850 SetPageDirty(pfn_to_page(pfn)); 2851 } 2852 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2853 2854 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2855 { 2856 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2857 mark_page_accessed(pfn_to_page(pfn)); 2858 } 2859 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2860 2861 static int next_segment(unsigned long len, int offset) 2862 { 2863 if (len > PAGE_SIZE - offset) 2864 return PAGE_SIZE - offset; 2865 else 2866 return len; 2867 } 2868 2869 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2870 void *data, int offset, int len) 2871 { 2872 int r; 2873 unsigned long addr; 2874 2875 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2876 if (kvm_is_error_hva(addr)) 2877 return -EFAULT; 2878 r = __copy_from_user(data, (void __user *)addr + offset, len); 2879 if (r) 2880 return -EFAULT; 2881 return 0; 2882 } 2883 2884 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2885 int len) 2886 { 2887 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2888 2889 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2890 } 2891 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2892 2893 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2894 int offset, int len) 2895 { 2896 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2897 2898 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2899 } 2900 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2901 2902 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2903 { 2904 gfn_t gfn = gpa >> PAGE_SHIFT; 2905 int seg; 2906 int offset = offset_in_page(gpa); 2907 int ret; 2908 2909 while ((seg = next_segment(len, offset)) != 0) { 2910 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2911 if (ret < 0) 2912 return ret; 2913 offset = 0; 2914 len -= seg; 2915 data += seg; 2916 ++gfn; 2917 } 2918 return 0; 2919 } 2920 EXPORT_SYMBOL_GPL(kvm_read_guest); 2921 2922 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2923 { 2924 gfn_t gfn = gpa >> PAGE_SHIFT; 2925 int seg; 2926 int offset = offset_in_page(gpa); 2927 int ret; 2928 2929 while ((seg = next_segment(len, offset)) != 0) { 2930 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2931 if (ret < 0) 2932 return ret; 2933 offset = 0; 2934 len -= seg; 2935 data += seg; 2936 ++gfn; 2937 } 2938 return 0; 2939 } 2940 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2941 2942 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2943 void *data, int offset, unsigned long len) 2944 { 2945 int r; 2946 unsigned long addr; 2947 2948 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2949 if (kvm_is_error_hva(addr)) 2950 return -EFAULT; 2951 pagefault_disable(); 2952 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2953 pagefault_enable(); 2954 if (r) 2955 return -EFAULT; 2956 return 0; 2957 } 2958 2959 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2960 void *data, unsigned long len) 2961 { 2962 gfn_t gfn = gpa >> PAGE_SHIFT; 2963 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2964 int offset = offset_in_page(gpa); 2965 2966 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2967 } 2968 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2969 2970 static int __kvm_write_guest_page(struct kvm *kvm, 2971 struct kvm_memory_slot *memslot, gfn_t gfn, 2972 const void *data, int offset, int len) 2973 { 2974 int r; 2975 unsigned long addr; 2976 2977 addr = gfn_to_hva_memslot(memslot, gfn); 2978 if (kvm_is_error_hva(addr)) 2979 return -EFAULT; 2980 r = __copy_to_user((void __user *)addr + offset, data, len); 2981 if (r) 2982 return -EFAULT; 2983 mark_page_dirty_in_slot(kvm, memslot, gfn); 2984 return 0; 2985 } 2986 2987 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2988 const void *data, int offset, int len) 2989 { 2990 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2991 2992 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 2993 } 2994 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2995 2996 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2997 const void *data, int offset, int len) 2998 { 2999 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3000 3001 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3002 } 3003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3004 3005 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3006 unsigned long len) 3007 { 3008 gfn_t gfn = gpa >> PAGE_SHIFT; 3009 int seg; 3010 int offset = offset_in_page(gpa); 3011 int ret; 3012 3013 while ((seg = next_segment(len, offset)) != 0) { 3014 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3015 if (ret < 0) 3016 return ret; 3017 offset = 0; 3018 len -= seg; 3019 data += seg; 3020 ++gfn; 3021 } 3022 return 0; 3023 } 3024 EXPORT_SYMBOL_GPL(kvm_write_guest); 3025 3026 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3027 unsigned long len) 3028 { 3029 gfn_t gfn = gpa >> PAGE_SHIFT; 3030 int seg; 3031 int offset = offset_in_page(gpa); 3032 int ret; 3033 3034 while ((seg = next_segment(len, offset)) != 0) { 3035 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3036 if (ret < 0) 3037 return ret; 3038 offset = 0; 3039 len -= seg; 3040 data += seg; 3041 ++gfn; 3042 } 3043 return 0; 3044 } 3045 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3046 3047 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3048 struct gfn_to_hva_cache *ghc, 3049 gpa_t gpa, unsigned long len) 3050 { 3051 int offset = offset_in_page(gpa); 3052 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3053 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3054 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3055 gfn_t nr_pages_avail; 3056 3057 /* Update ghc->generation before performing any error checks. */ 3058 ghc->generation = slots->generation; 3059 3060 if (start_gfn > end_gfn) { 3061 ghc->hva = KVM_HVA_ERR_BAD; 3062 return -EINVAL; 3063 } 3064 3065 /* 3066 * If the requested region crosses two memslots, we still 3067 * verify that the entire region is valid here. 3068 */ 3069 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3070 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3071 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3072 &nr_pages_avail); 3073 if (kvm_is_error_hva(ghc->hva)) 3074 return -EFAULT; 3075 } 3076 3077 /* Use the slow path for cross page reads and writes. */ 3078 if (nr_pages_needed == 1) 3079 ghc->hva += offset; 3080 else 3081 ghc->memslot = NULL; 3082 3083 ghc->gpa = gpa; 3084 ghc->len = len; 3085 return 0; 3086 } 3087 3088 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3089 gpa_t gpa, unsigned long len) 3090 { 3091 struct kvm_memslots *slots = kvm_memslots(kvm); 3092 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3093 } 3094 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3095 3096 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3097 void *data, unsigned int offset, 3098 unsigned long len) 3099 { 3100 struct kvm_memslots *slots = kvm_memslots(kvm); 3101 int r; 3102 gpa_t gpa = ghc->gpa + offset; 3103 3104 if (WARN_ON_ONCE(len + offset > ghc->len)) 3105 return -EINVAL; 3106 3107 if (slots->generation != ghc->generation) { 3108 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3109 return -EFAULT; 3110 } 3111 3112 if (kvm_is_error_hva(ghc->hva)) 3113 return -EFAULT; 3114 3115 if (unlikely(!ghc->memslot)) 3116 return kvm_write_guest(kvm, gpa, data, len); 3117 3118 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3119 if (r) 3120 return -EFAULT; 3121 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3122 3123 return 0; 3124 } 3125 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3126 3127 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3128 void *data, unsigned long len) 3129 { 3130 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3131 } 3132 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3133 3134 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3135 void *data, unsigned int offset, 3136 unsigned long len) 3137 { 3138 struct kvm_memslots *slots = kvm_memslots(kvm); 3139 int r; 3140 gpa_t gpa = ghc->gpa + offset; 3141 3142 if (WARN_ON_ONCE(len + offset > ghc->len)) 3143 return -EINVAL; 3144 3145 if (slots->generation != ghc->generation) { 3146 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3147 return -EFAULT; 3148 } 3149 3150 if (kvm_is_error_hva(ghc->hva)) 3151 return -EFAULT; 3152 3153 if (unlikely(!ghc->memslot)) 3154 return kvm_read_guest(kvm, gpa, data, len); 3155 3156 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3157 if (r) 3158 return -EFAULT; 3159 3160 return 0; 3161 } 3162 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3163 3164 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3165 void *data, unsigned long len) 3166 { 3167 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3168 } 3169 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3170 3171 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3172 { 3173 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3174 gfn_t gfn = gpa >> PAGE_SHIFT; 3175 int seg; 3176 int offset = offset_in_page(gpa); 3177 int ret; 3178 3179 while ((seg = next_segment(len, offset)) != 0) { 3180 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3181 if (ret < 0) 3182 return ret; 3183 offset = 0; 3184 len -= seg; 3185 ++gfn; 3186 } 3187 return 0; 3188 } 3189 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3190 3191 void mark_page_dirty_in_slot(struct kvm *kvm, 3192 const struct kvm_memory_slot *memslot, 3193 gfn_t gfn) 3194 { 3195 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3196 3197 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3198 if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm)) 3199 return; 3200 #endif 3201 3202 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3203 unsigned long rel_gfn = gfn - memslot->base_gfn; 3204 u32 slot = (memslot->as_id << 16) | memslot->id; 3205 3206 if (kvm->dirty_ring_size) 3207 kvm_dirty_ring_push(&vcpu->dirty_ring, 3208 slot, rel_gfn); 3209 else 3210 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3211 } 3212 } 3213 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3214 3215 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3216 { 3217 struct kvm_memory_slot *memslot; 3218 3219 memslot = gfn_to_memslot(kvm, gfn); 3220 mark_page_dirty_in_slot(kvm, memslot, gfn); 3221 } 3222 EXPORT_SYMBOL_GPL(mark_page_dirty); 3223 3224 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3225 { 3226 struct kvm_memory_slot *memslot; 3227 3228 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3229 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3230 } 3231 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3232 3233 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3234 { 3235 if (!vcpu->sigset_active) 3236 return; 3237 3238 /* 3239 * This does a lockless modification of ->real_blocked, which is fine 3240 * because, only current can change ->real_blocked and all readers of 3241 * ->real_blocked don't care as long ->real_blocked is always a subset 3242 * of ->blocked. 3243 */ 3244 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3245 } 3246 3247 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3248 { 3249 if (!vcpu->sigset_active) 3250 return; 3251 3252 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3253 sigemptyset(¤t->real_blocked); 3254 } 3255 3256 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3257 { 3258 unsigned int old, val, grow, grow_start; 3259 3260 old = val = vcpu->halt_poll_ns; 3261 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3262 grow = READ_ONCE(halt_poll_ns_grow); 3263 if (!grow) 3264 goto out; 3265 3266 val *= grow; 3267 if (val < grow_start) 3268 val = grow_start; 3269 3270 if (val > vcpu->kvm->max_halt_poll_ns) 3271 val = vcpu->kvm->max_halt_poll_ns; 3272 3273 vcpu->halt_poll_ns = val; 3274 out: 3275 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3276 } 3277 3278 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3279 { 3280 unsigned int old, val, shrink, grow_start; 3281 3282 old = val = vcpu->halt_poll_ns; 3283 shrink = READ_ONCE(halt_poll_ns_shrink); 3284 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3285 if (shrink == 0) 3286 val = 0; 3287 else 3288 val /= shrink; 3289 3290 if (val < grow_start) 3291 val = 0; 3292 3293 vcpu->halt_poll_ns = val; 3294 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3295 } 3296 3297 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3298 { 3299 int ret = -EINTR; 3300 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3301 3302 if (kvm_arch_vcpu_runnable(vcpu)) { 3303 kvm_make_request(KVM_REQ_UNHALT, vcpu); 3304 goto out; 3305 } 3306 if (kvm_cpu_has_pending_timer(vcpu)) 3307 goto out; 3308 if (signal_pending(current)) 3309 goto out; 3310 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3311 goto out; 3312 3313 ret = 0; 3314 out: 3315 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3316 return ret; 3317 } 3318 3319 /* 3320 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3321 * pending. This is mostly used when halting a vCPU, but may also be used 3322 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3323 */ 3324 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3325 { 3326 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3327 bool waited = false; 3328 3329 vcpu->stat.generic.blocking = 1; 3330 3331 preempt_disable(); 3332 kvm_arch_vcpu_blocking(vcpu); 3333 prepare_to_rcuwait(wait); 3334 preempt_enable(); 3335 3336 for (;;) { 3337 set_current_state(TASK_INTERRUPTIBLE); 3338 3339 if (kvm_vcpu_check_block(vcpu) < 0) 3340 break; 3341 3342 waited = true; 3343 schedule(); 3344 } 3345 3346 preempt_disable(); 3347 finish_rcuwait(wait); 3348 kvm_arch_vcpu_unblocking(vcpu); 3349 preempt_enable(); 3350 3351 vcpu->stat.generic.blocking = 0; 3352 3353 return waited; 3354 } 3355 3356 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3357 ktime_t end, bool success) 3358 { 3359 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3360 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3361 3362 ++vcpu->stat.generic.halt_attempted_poll; 3363 3364 if (success) { 3365 ++vcpu->stat.generic.halt_successful_poll; 3366 3367 if (!vcpu_valid_wakeup(vcpu)) 3368 ++vcpu->stat.generic.halt_poll_invalid; 3369 3370 stats->halt_poll_success_ns += poll_ns; 3371 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3372 } else { 3373 stats->halt_poll_fail_ns += poll_ns; 3374 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3375 } 3376 } 3377 3378 /* 3379 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3380 * polling is enabled, busy wait for a short time before blocking to avoid the 3381 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3382 * is halted. 3383 */ 3384 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3385 { 3386 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3387 bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3388 ktime_t start, cur, poll_end; 3389 bool waited = false; 3390 u64 halt_ns; 3391 3392 start = cur = poll_end = ktime_get(); 3393 if (do_halt_poll) { 3394 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3395 3396 do { 3397 /* 3398 * This sets KVM_REQ_UNHALT if an interrupt 3399 * arrives. 3400 */ 3401 if (kvm_vcpu_check_block(vcpu) < 0) 3402 goto out; 3403 cpu_relax(); 3404 poll_end = cur = ktime_get(); 3405 } while (kvm_vcpu_can_poll(cur, stop)); 3406 } 3407 3408 waited = kvm_vcpu_block(vcpu); 3409 3410 cur = ktime_get(); 3411 if (waited) { 3412 vcpu->stat.generic.halt_wait_ns += 3413 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3414 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3415 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3416 } 3417 out: 3418 /* The total time the vCPU was "halted", including polling time. */ 3419 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3420 3421 /* 3422 * Note, halt-polling is considered successful so long as the vCPU was 3423 * never actually scheduled out, i.e. even if the wake event arrived 3424 * after of the halt-polling loop itself, but before the full wait. 3425 */ 3426 if (do_halt_poll) 3427 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3428 3429 if (halt_poll_allowed) { 3430 if (!vcpu_valid_wakeup(vcpu)) { 3431 shrink_halt_poll_ns(vcpu); 3432 } else if (vcpu->kvm->max_halt_poll_ns) { 3433 if (halt_ns <= vcpu->halt_poll_ns) 3434 ; 3435 /* we had a long block, shrink polling */ 3436 else if (vcpu->halt_poll_ns && 3437 halt_ns > vcpu->kvm->max_halt_poll_ns) 3438 shrink_halt_poll_ns(vcpu); 3439 /* we had a short halt and our poll time is too small */ 3440 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 3441 halt_ns < vcpu->kvm->max_halt_poll_ns) 3442 grow_halt_poll_ns(vcpu); 3443 } else { 3444 vcpu->halt_poll_ns = 0; 3445 } 3446 } 3447 3448 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3449 } 3450 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3451 3452 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3453 { 3454 if (__kvm_vcpu_wake_up(vcpu)) { 3455 WRITE_ONCE(vcpu->ready, true); 3456 ++vcpu->stat.generic.halt_wakeup; 3457 return true; 3458 } 3459 3460 return false; 3461 } 3462 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3463 3464 #ifndef CONFIG_S390 3465 /* 3466 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3467 */ 3468 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3469 { 3470 int me, cpu; 3471 3472 if (kvm_vcpu_wake_up(vcpu)) 3473 return; 3474 3475 me = get_cpu(); 3476 /* 3477 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3478 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3479 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3480 * within the vCPU thread itself. 3481 */ 3482 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3483 if (vcpu->mode == IN_GUEST_MODE) 3484 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3485 goto out; 3486 } 3487 3488 /* 3489 * Note, the vCPU could get migrated to a different pCPU at any point 3490 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3491 * IPI to the previous pCPU. But, that's ok because the purpose of the 3492 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3493 * vCPU also requires it to leave IN_GUEST_MODE. 3494 */ 3495 if (kvm_arch_vcpu_should_kick(vcpu)) { 3496 cpu = READ_ONCE(vcpu->cpu); 3497 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3498 smp_send_reschedule(cpu); 3499 } 3500 out: 3501 put_cpu(); 3502 } 3503 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3504 #endif /* !CONFIG_S390 */ 3505 3506 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3507 { 3508 struct pid *pid; 3509 struct task_struct *task = NULL; 3510 int ret = 0; 3511 3512 rcu_read_lock(); 3513 pid = rcu_dereference(target->pid); 3514 if (pid) 3515 task = get_pid_task(pid, PIDTYPE_PID); 3516 rcu_read_unlock(); 3517 if (!task) 3518 return ret; 3519 ret = yield_to(task, 1); 3520 put_task_struct(task); 3521 3522 return ret; 3523 } 3524 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3525 3526 /* 3527 * Helper that checks whether a VCPU is eligible for directed yield. 3528 * Most eligible candidate to yield is decided by following heuristics: 3529 * 3530 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3531 * (preempted lock holder), indicated by @in_spin_loop. 3532 * Set at the beginning and cleared at the end of interception/PLE handler. 3533 * 3534 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3535 * chance last time (mostly it has become eligible now since we have probably 3536 * yielded to lockholder in last iteration. This is done by toggling 3537 * @dy_eligible each time a VCPU checked for eligibility.) 3538 * 3539 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3540 * to preempted lock-holder could result in wrong VCPU selection and CPU 3541 * burning. Giving priority for a potential lock-holder increases lock 3542 * progress. 3543 * 3544 * Since algorithm is based on heuristics, accessing another VCPU data without 3545 * locking does not harm. It may result in trying to yield to same VCPU, fail 3546 * and continue with next VCPU and so on. 3547 */ 3548 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3549 { 3550 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3551 bool eligible; 3552 3553 eligible = !vcpu->spin_loop.in_spin_loop || 3554 vcpu->spin_loop.dy_eligible; 3555 3556 if (vcpu->spin_loop.in_spin_loop) 3557 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3558 3559 return eligible; 3560 #else 3561 return true; 3562 #endif 3563 } 3564 3565 /* 3566 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3567 * a vcpu_load/vcpu_put pair. However, for most architectures 3568 * kvm_arch_vcpu_runnable does not require vcpu_load. 3569 */ 3570 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3571 { 3572 return kvm_arch_vcpu_runnable(vcpu); 3573 } 3574 3575 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3576 { 3577 if (kvm_arch_dy_runnable(vcpu)) 3578 return true; 3579 3580 #ifdef CONFIG_KVM_ASYNC_PF 3581 if (!list_empty_careful(&vcpu->async_pf.done)) 3582 return true; 3583 #endif 3584 3585 return false; 3586 } 3587 3588 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3589 { 3590 return false; 3591 } 3592 3593 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3594 { 3595 struct kvm *kvm = me->kvm; 3596 struct kvm_vcpu *vcpu; 3597 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3598 unsigned long i; 3599 int yielded = 0; 3600 int try = 3; 3601 int pass; 3602 3603 kvm_vcpu_set_in_spin_loop(me, true); 3604 /* 3605 * We boost the priority of a VCPU that is runnable but not 3606 * currently running, because it got preempted by something 3607 * else and called schedule in __vcpu_run. Hopefully that 3608 * VCPU is holding the lock that we need and will release it. 3609 * We approximate round-robin by starting at the last boosted VCPU. 3610 */ 3611 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3612 kvm_for_each_vcpu(i, vcpu, kvm) { 3613 if (!pass && i <= last_boosted_vcpu) { 3614 i = last_boosted_vcpu; 3615 continue; 3616 } else if (pass && i > last_boosted_vcpu) 3617 break; 3618 if (!READ_ONCE(vcpu->ready)) 3619 continue; 3620 if (vcpu == me) 3621 continue; 3622 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3623 continue; 3624 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3625 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3626 !kvm_arch_vcpu_in_kernel(vcpu)) 3627 continue; 3628 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3629 continue; 3630 3631 yielded = kvm_vcpu_yield_to(vcpu); 3632 if (yielded > 0) { 3633 kvm->last_boosted_vcpu = i; 3634 break; 3635 } else if (yielded < 0) { 3636 try--; 3637 if (!try) 3638 break; 3639 } 3640 } 3641 } 3642 kvm_vcpu_set_in_spin_loop(me, false); 3643 3644 /* Ensure vcpu is not eligible during next spinloop */ 3645 kvm_vcpu_set_dy_eligible(me, false); 3646 } 3647 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3648 3649 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3650 { 3651 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3652 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3653 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3654 kvm->dirty_ring_size / PAGE_SIZE); 3655 #else 3656 return false; 3657 #endif 3658 } 3659 3660 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3661 { 3662 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3663 struct page *page; 3664 3665 if (vmf->pgoff == 0) 3666 page = virt_to_page(vcpu->run); 3667 #ifdef CONFIG_X86 3668 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3669 page = virt_to_page(vcpu->arch.pio_data); 3670 #endif 3671 #ifdef CONFIG_KVM_MMIO 3672 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3673 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3674 #endif 3675 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3676 page = kvm_dirty_ring_get_page( 3677 &vcpu->dirty_ring, 3678 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3679 else 3680 return kvm_arch_vcpu_fault(vcpu, vmf); 3681 get_page(page); 3682 vmf->page = page; 3683 return 0; 3684 } 3685 3686 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3687 .fault = kvm_vcpu_fault, 3688 }; 3689 3690 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3691 { 3692 struct kvm_vcpu *vcpu = file->private_data; 3693 unsigned long pages = vma_pages(vma); 3694 3695 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3696 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3697 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3698 return -EINVAL; 3699 3700 vma->vm_ops = &kvm_vcpu_vm_ops; 3701 return 0; 3702 } 3703 3704 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3705 { 3706 struct kvm_vcpu *vcpu = filp->private_data; 3707 3708 kvm_put_kvm(vcpu->kvm); 3709 return 0; 3710 } 3711 3712 static const struct file_operations kvm_vcpu_fops = { 3713 .release = kvm_vcpu_release, 3714 .unlocked_ioctl = kvm_vcpu_ioctl, 3715 .mmap = kvm_vcpu_mmap, 3716 .llseek = noop_llseek, 3717 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3718 }; 3719 3720 /* 3721 * Allocates an inode for the vcpu. 3722 */ 3723 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3724 { 3725 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3726 3727 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3728 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3729 } 3730 3731 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3732 { 3733 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3734 struct dentry *debugfs_dentry; 3735 char dir_name[ITOA_MAX_LEN * 2]; 3736 3737 if (!debugfs_initialized()) 3738 return; 3739 3740 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3741 debugfs_dentry = debugfs_create_dir(dir_name, 3742 vcpu->kvm->debugfs_dentry); 3743 3744 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3745 #endif 3746 } 3747 3748 /* 3749 * Creates some virtual cpus. Good luck creating more than one. 3750 */ 3751 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3752 { 3753 int r; 3754 struct kvm_vcpu *vcpu; 3755 struct page *page; 3756 3757 if (id >= KVM_MAX_VCPU_IDS) 3758 return -EINVAL; 3759 3760 mutex_lock(&kvm->lock); 3761 if (kvm->created_vcpus >= kvm->max_vcpus) { 3762 mutex_unlock(&kvm->lock); 3763 return -EINVAL; 3764 } 3765 3766 kvm->created_vcpus++; 3767 mutex_unlock(&kvm->lock); 3768 3769 r = kvm_arch_vcpu_precreate(kvm, id); 3770 if (r) 3771 goto vcpu_decrement; 3772 3773 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3774 if (!vcpu) { 3775 r = -ENOMEM; 3776 goto vcpu_decrement; 3777 } 3778 3779 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3780 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3781 if (!page) { 3782 r = -ENOMEM; 3783 goto vcpu_free; 3784 } 3785 vcpu->run = page_address(page); 3786 3787 kvm_vcpu_init(vcpu, kvm, id); 3788 3789 r = kvm_arch_vcpu_create(vcpu); 3790 if (r) 3791 goto vcpu_free_run_page; 3792 3793 if (kvm->dirty_ring_size) { 3794 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3795 id, kvm->dirty_ring_size); 3796 if (r) 3797 goto arch_vcpu_destroy; 3798 } 3799 3800 mutex_lock(&kvm->lock); 3801 if (kvm_get_vcpu_by_id(kvm, id)) { 3802 r = -EEXIST; 3803 goto unlock_vcpu_destroy; 3804 } 3805 3806 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3807 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3808 BUG_ON(r == -EBUSY); 3809 if (r) 3810 goto unlock_vcpu_destroy; 3811 3812 /* Fill the stats id string for the vcpu */ 3813 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 3814 task_pid_nr(current), id); 3815 3816 /* Now it's all set up, let userspace reach it */ 3817 kvm_get_kvm(kvm); 3818 r = create_vcpu_fd(vcpu); 3819 if (r < 0) { 3820 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3821 kvm_put_kvm_no_destroy(kvm); 3822 goto unlock_vcpu_destroy; 3823 } 3824 3825 /* 3826 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3827 * pointer before kvm->online_vcpu's incremented value. 3828 */ 3829 smp_wmb(); 3830 atomic_inc(&kvm->online_vcpus); 3831 3832 mutex_unlock(&kvm->lock); 3833 kvm_arch_vcpu_postcreate(vcpu); 3834 kvm_create_vcpu_debugfs(vcpu); 3835 return r; 3836 3837 unlock_vcpu_destroy: 3838 mutex_unlock(&kvm->lock); 3839 kvm_dirty_ring_free(&vcpu->dirty_ring); 3840 arch_vcpu_destroy: 3841 kvm_arch_vcpu_destroy(vcpu); 3842 vcpu_free_run_page: 3843 free_page((unsigned long)vcpu->run); 3844 vcpu_free: 3845 kmem_cache_free(kvm_vcpu_cache, vcpu); 3846 vcpu_decrement: 3847 mutex_lock(&kvm->lock); 3848 kvm->created_vcpus--; 3849 mutex_unlock(&kvm->lock); 3850 return r; 3851 } 3852 3853 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3854 { 3855 if (sigset) { 3856 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3857 vcpu->sigset_active = 1; 3858 vcpu->sigset = *sigset; 3859 } else 3860 vcpu->sigset_active = 0; 3861 return 0; 3862 } 3863 3864 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 3865 size_t size, loff_t *offset) 3866 { 3867 struct kvm_vcpu *vcpu = file->private_data; 3868 3869 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 3870 &kvm_vcpu_stats_desc[0], &vcpu->stat, 3871 sizeof(vcpu->stat), user_buffer, size, offset); 3872 } 3873 3874 static const struct file_operations kvm_vcpu_stats_fops = { 3875 .read = kvm_vcpu_stats_read, 3876 .llseek = noop_llseek, 3877 }; 3878 3879 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 3880 { 3881 int fd; 3882 struct file *file; 3883 char name[15 + ITOA_MAX_LEN + 1]; 3884 3885 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 3886 3887 fd = get_unused_fd_flags(O_CLOEXEC); 3888 if (fd < 0) 3889 return fd; 3890 3891 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 3892 if (IS_ERR(file)) { 3893 put_unused_fd(fd); 3894 return PTR_ERR(file); 3895 } 3896 file->f_mode |= FMODE_PREAD; 3897 fd_install(fd, file); 3898 3899 return fd; 3900 } 3901 3902 static long kvm_vcpu_ioctl(struct file *filp, 3903 unsigned int ioctl, unsigned long arg) 3904 { 3905 struct kvm_vcpu *vcpu = filp->private_data; 3906 void __user *argp = (void __user *)arg; 3907 int r; 3908 struct kvm_fpu *fpu = NULL; 3909 struct kvm_sregs *kvm_sregs = NULL; 3910 3911 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 3912 return -EIO; 3913 3914 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3915 return -EINVAL; 3916 3917 /* 3918 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3919 * execution; mutex_lock() would break them. 3920 */ 3921 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3922 if (r != -ENOIOCTLCMD) 3923 return r; 3924 3925 if (mutex_lock_killable(&vcpu->mutex)) 3926 return -EINTR; 3927 switch (ioctl) { 3928 case KVM_RUN: { 3929 struct pid *oldpid; 3930 r = -EINVAL; 3931 if (arg) 3932 goto out; 3933 oldpid = rcu_access_pointer(vcpu->pid); 3934 if (unlikely(oldpid != task_pid(current))) { 3935 /* The thread running this VCPU changed. */ 3936 struct pid *newpid; 3937 3938 r = kvm_arch_vcpu_run_pid_change(vcpu); 3939 if (r) 3940 break; 3941 3942 newpid = get_task_pid(current, PIDTYPE_PID); 3943 rcu_assign_pointer(vcpu->pid, newpid); 3944 if (oldpid) 3945 synchronize_rcu(); 3946 put_pid(oldpid); 3947 } 3948 r = kvm_arch_vcpu_ioctl_run(vcpu); 3949 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3950 break; 3951 } 3952 case KVM_GET_REGS: { 3953 struct kvm_regs *kvm_regs; 3954 3955 r = -ENOMEM; 3956 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3957 if (!kvm_regs) 3958 goto out; 3959 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3960 if (r) 3961 goto out_free1; 3962 r = -EFAULT; 3963 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3964 goto out_free1; 3965 r = 0; 3966 out_free1: 3967 kfree(kvm_regs); 3968 break; 3969 } 3970 case KVM_SET_REGS: { 3971 struct kvm_regs *kvm_regs; 3972 3973 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3974 if (IS_ERR(kvm_regs)) { 3975 r = PTR_ERR(kvm_regs); 3976 goto out; 3977 } 3978 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3979 kfree(kvm_regs); 3980 break; 3981 } 3982 case KVM_GET_SREGS: { 3983 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3984 GFP_KERNEL_ACCOUNT); 3985 r = -ENOMEM; 3986 if (!kvm_sregs) 3987 goto out; 3988 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3989 if (r) 3990 goto out; 3991 r = -EFAULT; 3992 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3993 goto out; 3994 r = 0; 3995 break; 3996 } 3997 case KVM_SET_SREGS: { 3998 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3999 if (IS_ERR(kvm_sregs)) { 4000 r = PTR_ERR(kvm_sregs); 4001 kvm_sregs = NULL; 4002 goto out; 4003 } 4004 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4005 break; 4006 } 4007 case KVM_GET_MP_STATE: { 4008 struct kvm_mp_state mp_state; 4009 4010 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4011 if (r) 4012 goto out; 4013 r = -EFAULT; 4014 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4015 goto out; 4016 r = 0; 4017 break; 4018 } 4019 case KVM_SET_MP_STATE: { 4020 struct kvm_mp_state mp_state; 4021 4022 r = -EFAULT; 4023 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4024 goto out; 4025 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4026 break; 4027 } 4028 case KVM_TRANSLATE: { 4029 struct kvm_translation tr; 4030 4031 r = -EFAULT; 4032 if (copy_from_user(&tr, argp, sizeof(tr))) 4033 goto out; 4034 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4035 if (r) 4036 goto out; 4037 r = -EFAULT; 4038 if (copy_to_user(argp, &tr, sizeof(tr))) 4039 goto out; 4040 r = 0; 4041 break; 4042 } 4043 case KVM_SET_GUEST_DEBUG: { 4044 struct kvm_guest_debug dbg; 4045 4046 r = -EFAULT; 4047 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4048 goto out; 4049 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4050 break; 4051 } 4052 case KVM_SET_SIGNAL_MASK: { 4053 struct kvm_signal_mask __user *sigmask_arg = argp; 4054 struct kvm_signal_mask kvm_sigmask; 4055 sigset_t sigset, *p; 4056 4057 p = NULL; 4058 if (argp) { 4059 r = -EFAULT; 4060 if (copy_from_user(&kvm_sigmask, argp, 4061 sizeof(kvm_sigmask))) 4062 goto out; 4063 r = -EINVAL; 4064 if (kvm_sigmask.len != sizeof(sigset)) 4065 goto out; 4066 r = -EFAULT; 4067 if (copy_from_user(&sigset, sigmask_arg->sigset, 4068 sizeof(sigset))) 4069 goto out; 4070 p = &sigset; 4071 } 4072 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4073 break; 4074 } 4075 case KVM_GET_FPU: { 4076 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4077 r = -ENOMEM; 4078 if (!fpu) 4079 goto out; 4080 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4081 if (r) 4082 goto out; 4083 r = -EFAULT; 4084 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4085 goto out; 4086 r = 0; 4087 break; 4088 } 4089 case KVM_SET_FPU: { 4090 fpu = memdup_user(argp, sizeof(*fpu)); 4091 if (IS_ERR(fpu)) { 4092 r = PTR_ERR(fpu); 4093 fpu = NULL; 4094 goto out; 4095 } 4096 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4097 break; 4098 } 4099 case KVM_GET_STATS_FD: { 4100 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4101 break; 4102 } 4103 default: 4104 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4105 } 4106 out: 4107 mutex_unlock(&vcpu->mutex); 4108 kfree(fpu); 4109 kfree(kvm_sregs); 4110 return r; 4111 } 4112 4113 #ifdef CONFIG_KVM_COMPAT 4114 static long kvm_vcpu_compat_ioctl(struct file *filp, 4115 unsigned int ioctl, unsigned long arg) 4116 { 4117 struct kvm_vcpu *vcpu = filp->private_data; 4118 void __user *argp = compat_ptr(arg); 4119 int r; 4120 4121 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4122 return -EIO; 4123 4124 switch (ioctl) { 4125 case KVM_SET_SIGNAL_MASK: { 4126 struct kvm_signal_mask __user *sigmask_arg = argp; 4127 struct kvm_signal_mask kvm_sigmask; 4128 sigset_t sigset; 4129 4130 if (argp) { 4131 r = -EFAULT; 4132 if (copy_from_user(&kvm_sigmask, argp, 4133 sizeof(kvm_sigmask))) 4134 goto out; 4135 r = -EINVAL; 4136 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4137 goto out; 4138 r = -EFAULT; 4139 if (get_compat_sigset(&sigset, 4140 (compat_sigset_t __user *)sigmask_arg->sigset)) 4141 goto out; 4142 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4143 } else 4144 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4145 break; 4146 } 4147 default: 4148 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4149 } 4150 4151 out: 4152 return r; 4153 } 4154 #endif 4155 4156 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4157 { 4158 struct kvm_device *dev = filp->private_data; 4159 4160 if (dev->ops->mmap) 4161 return dev->ops->mmap(dev, vma); 4162 4163 return -ENODEV; 4164 } 4165 4166 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4167 int (*accessor)(struct kvm_device *dev, 4168 struct kvm_device_attr *attr), 4169 unsigned long arg) 4170 { 4171 struct kvm_device_attr attr; 4172 4173 if (!accessor) 4174 return -EPERM; 4175 4176 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4177 return -EFAULT; 4178 4179 return accessor(dev, &attr); 4180 } 4181 4182 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4183 unsigned long arg) 4184 { 4185 struct kvm_device *dev = filp->private_data; 4186 4187 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4188 return -EIO; 4189 4190 switch (ioctl) { 4191 case KVM_SET_DEVICE_ATTR: 4192 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4193 case KVM_GET_DEVICE_ATTR: 4194 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4195 case KVM_HAS_DEVICE_ATTR: 4196 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4197 default: 4198 if (dev->ops->ioctl) 4199 return dev->ops->ioctl(dev, ioctl, arg); 4200 4201 return -ENOTTY; 4202 } 4203 } 4204 4205 static int kvm_device_release(struct inode *inode, struct file *filp) 4206 { 4207 struct kvm_device *dev = filp->private_data; 4208 struct kvm *kvm = dev->kvm; 4209 4210 if (dev->ops->release) { 4211 mutex_lock(&kvm->lock); 4212 list_del(&dev->vm_node); 4213 dev->ops->release(dev); 4214 mutex_unlock(&kvm->lock); 4215 } 4216 4217 kvm_put_kvm(kvm); 4218 return 0; 4219 } 4220 4221 static const struct file_operations kvm_device_fops = { 4222 .unlocked_ioctl = kvm_device_ioctl, 4223 .release = kvm_device_release, 4224 KVM_COMPAT(kvm_device_ioctl), 4225 .mmap = kvm_device_mmap, 4226 }; 4227 4228 struct kvm_device *kvm_device_from_filp(struct file *filp) 4229 { 4230 if (filp->f_op != &kvm_device_fops) 4231 return NULL; 4232 4233 return filp->private_data; 4234 } 4235 4236 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4237 #ifdef CONFIG_KVM_MPIC 4238 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4239 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4240 #endif 4241 }; 4242 4243 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4244 { 4245 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4246 return -ENOSPC; 4247 4248 if (kvm_device_ops_table[type] != NULL) 4249 return -EEXIST; 4250 4251 kvm_device_ops_table[type] = ops; 4252 return 0; 4253 } 4254 4255 void kvm_unregister_device_ops(u32 type) 4256 { 4257 if (kvm_device_ops_table[type] != NULL) 4258 kvm_device_ops_table[type] = NULL; 4259 } 4260 4261 static int kvm_ioctl_create_device(struct kvm *kvm, 4262 struct kvm_create_device *cd) 4263 { 4264 const struct kvm_device_ops *ops = NULL; 4265 struct kvm_device *dev; 4266 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4267 int type; 4268 int ret; 4269 4270 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4271 return -ENODEV; 4272 4273 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4274 ops = kvm_device_ops_table[type]; 4275 if (ops == NULL) 4276 return -ENODEV; 4277 4278 if (test) 4279 return 0; 4280 4281 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4282 if (!dev) 4283 return -ENOMEM; 4284 4285 dev->ops = ops; 4286 dev->kvm = kvm; 4287 4288 mutex_lock(&kvm->lock); 4289 ret = ops->create(dev, type); 4290 if (ret < 0) { 4291 mutex_unlock(&kvm->lock); 4292 kfree(dev); 4293 return ret; 4294 } 4295 list_add(&dev->vm_node, &kvm->devices); 4296 mutex_unlock(&kvm->lock); 4297 4298 if (ops->init) 4299 ops->init(dev); 4300 4301 kvm_get_kvm(kvm); 4302 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4303 if (ret < 0) { 4304 kvm_put_kvm_no_destroy(kvm); 4305 mutex_lock(&kvm->lock); 4306 list_del(&dev->vm_node); 4307 if (ops->release) 4308 ops->release(dev); 4309 mutex_unlock(&kvm->lock); 4310 if (ops->destroy) 4311 ops->destroy(dev); 4312 return ret; 4313 } 4314 4315 cd->fd = ret; 4316 return 0; 4317 } 4318 4319 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4320 { 4321 switch (arg) { 4322 case KVM_CAP_USER_MEMORY: 4323 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4324 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4325 case KVM_CAP_INTERNAL_ERROR_DATA: 4326 #ifdef CONFIG_HAVE_KVM_MSI 4327 case KVM_CAP_SIGNAL_MSI: 4328 #endif 4329 #ifdef CONFIG_HAVE_KVM_IRQFD 4330 case KVM_CAP_IRQFD: 4331 case KVM_CAP_IRQFD_RESAMPLE: 4332 #endif 4333 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4334 case KVM_CAP_CHECK_EXTENSION_VM: 4335 case KVM_CAP_ENABLE_CAP_VM: 4336 case KVM_CAP_HALT_POLL: 4337 return 1; 4338 #ifdef CONFIG_KVM_MMIO 4339 case KVM_CAP_COALESCED_MMIO: 4340 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4341 case KVM_CAP_COALESCED_PIO: 4342 return 1; 4343 #endif 4344 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4345 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4346 return KVM_DIRTY_LOG_MANUAL_CAPS; 4347 #endif 4348 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4349 case KVM_CAP_IRQ_ROUTING: 4350 return KVM_MAX_IRQ_ROUTES; 4351 #endif 4352 #if KVM_ADDRESS_SPACE_NUM > 1 4353 case KVM_CAP_MULTI_ADDRESS_SPACE: 4354 return KVM_ADDRESS_SPACE_NUM; 4355 #endif 4356 case KVM_CAP_NR_MEMSLOTS: 4357 return KVM_USER_MEM_SLOTS; 4358 case KVM_CAP_DIRTY_LOG_RING: 4359 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 4360 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4361 #else 4362 return 0; 4363 #endif 4364 case KVM_CAP_BINARY_STATS_FD: 4365 case KVM_CAP_SYSTEM_EVENT_DATA: 4366 return 1; 4367 default: 4368 break; 4369 } 4370 return kvm_vm_ioctl_check_extension(kvm, arg); 4371 } 4372 4373 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4374 { 4375 int r; 4376 4377 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4378 return -EINVAL; 4379 4380 /* the size should be power of 2 */ 4381 if (!size || (size & (size - 1))) 4382 return -EINVAL; 4383 4384 /* Should be bigger to keep the reserved entries, or a page */ 4385 if (size < kvm_dirty_ring_get_rsvd_entries() * 4386 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4387 return -EINVAL; 4388 4389 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4390 sizeof(struct kvm_dirty_gfn)) 4391 return -E2BIG; 4392 4393 /* We only allow it to set once */ 4394 if (kvm->dirty_ring_size) 4395 return -EINVAL; 4396 4397 mutex_lock(&kvm->lock); 4398 4399 if (kvm->created_vcpus) { 4400 /* We don't allow to change this value after vcpu created */ 4401 r = -EINVAL; 4402 } else { 4403 kvm->dirty_ring_size = size; 4404 r = 0; 4405 } 4406 4407 mutex_unlock(&kvm->lock); 4408 return r; 4409 } 4410 4411 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4412 { 4413 unsigned long i; 4414 struct kvm_vcpu *vcpu; 4415 int cleared = 0; 4416 4417 if (!kvm->dirty_ring_size) 4418 return -EINVAL; 4419 4420 mutex_lock(&kvm->slots_lock); 4421 4422 kvm_for_each_vcpu(i, vcpu, kvm) 4423 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4424 4425 mutex_unlock(&kvm->slots_lock); 4426 4427 if (cleared) 4428 kvm_flush_remote_tlbs(kvm); 4429 4430 return cleared; 4431 } 4432 4433 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4434 struct kvm_enable_cap *cap) 4435 { 4436 return -EINVAL; 4437 } 4438 4439 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4440 struct kvm_enable_cap *cap) 4441 { 4442 switch (cap->cap) { 4443 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4444 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4445 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4446 4447 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4448 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4449 4450 if (cap->flags || (cap->args[0] & ~allowed_options)) 4451 return -EINVAL; 4452 kvm->manual_dirty_log_protect = cap->args[0]; 4453 return 0; 4454 } 4455 #endif 4456 case KVM_CAP_HALT_POLL: { 4457 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4458 return -EINVAL; 4459 4460 kvm->max_halt_poll_ns = cap->args[0]; 4461 return 0; 4462 } 4463 case KVM_CAP_DIRTY_LOG_RING: 4464 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4465 default: 4466 return kvm_vm_ioctl_enable_cap(kvm, cap); 4467 } 4468 } 4469 4470 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4471 size_t size, loff_t *offset) 4472 { 4473 struct kvm *kvm = file->private_data; 4474 4475 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4476 &kvm_vm_stats_desc[0], &kvm->stat, 4477 sizeof(kvm->stat), user_buffer, size, offset); 4478 } 4479 4480 static const struct file_operations kvm_vm_stats_fops = { 4481 .read = kvm_vm_stats_read, 4482 .llseek = noop_llseek, 4483 }; 4484 4485 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4486 { 4487 int fd; 4488 struct file *file; 4489 4490 fd = get_unused_fd_flags(O_CLOEXEC); 4491 if (fd < 0) 4492 return fd; 4493 4494 file = anon_inode_getfile("kvm-vm-stats", 4495 &kvm_vm_stats_fops, kvm, O_RDONLY); 4496 if (IS_ERR(file)) { 4497 put_unused_fd(fd); 4498 return PTR_ERR(file); 4499 } 4500 file->f_mode |= FMODE_PREAD; 4501 fd_install(fd, file); 4502 4503 return fd; 4504 } 4505 4506 static long kvm_vm_ioctl(struct file *filp, 4507 unsigned int ioctl, unsigned long arg) 4508 { 4509 struct kvm *kvm = filp->private_data; 4510 void __user *argp = (void __user *)arg; 4511 int r; 4512 4513 if (kvm->mm != current->mm || kvm->vm_dead) 4514 return -EIO; 4515 switch (ioctl) { 4516 case KVM_CREATE_VCPU: 4517 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4518 break; 4519 case KVM_ENABLE_CAP: { 4520 struct kvm_enable_cap cap; 4521 4522 r = -EFAULT; 4523 if (copy_from_user(&cap, argp, sizeof(cap))) 4524 goto out; 4525 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4526 break; 4527 } 4528 case KVM_SET_USER_MEMORY_REGION: { 4529 struct kvm_userspace_memory_region kvm_userspace_mem; 4530 4531 r = -EFAULT; 4532 if (copy_from_user(&kvm_userspace_mem, argp, 4533 sizeof(kvm_userspace_mem))) 4534 goto out; 4535 4536 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4537 break; 4538 } 4539 case KVM_GET_DIRTY_LOG: { 4540 struct kvm_dirty_log log; 4541 4542 r = -EFAULT; 4543 if (copy_from_user(&log, argp, sizeof(log))) 4544 goto out; 4545 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4546 break; 4547 } 4548 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4549 case KVM_CLEAR_DIRTY_LOG: { 4550 struct kvm_clear_dirty_log log; 4551 4552 r = -EFAULT; 4553 if (copy_from_user(&log, argp, sizeof(log))) 4554 goto out; 4555 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4556 break; 4557 } 4558 #endif 4559 #ifdef CONFIG_KVM_MMIO 4560 case KVM_REGISTER_COALESCED_MMIO: { 4561 struct kvm_coalesced_mmio_zone zone; 4562 4563 r = -EFAULT; 4564 if (copy_from_user(&zone, argp, sizeof(zone))) 4565 goto out; 4566 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4567 break; 4568 } 4569 case KVM_UNREGISTER_COALESCED_MMIO: { 4570 struct kvm_coalesced_mmio_zone zone; 4571 4572 r = -EFAULT; 4573 if (copy_from_user(&zone, argp, sizeof(zone))) 4574 goto out; 4575 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4576 break; 4577 } 4578 #endif 4579 case KVM_IRQFD: { 4580 struct kvm_irqfd data; 4581 4582 r = -EFAULT; 4583 if (copy_from_user(&data, argp, sizeof(data))) 4584 goto out; 4585 r = kvm_irqfd(kvm, &data); 4586 break; 4587 } 4588 case KVM_IOEVENTFD: { 4589 struct kvm_ioeventfd data; 4590 4591 r = -EFAULT; 4592 if (copy_from_user(&data, argp, sizeof(data))) 4593 goto out; 4594 r = kvm_ioeventfd(kvm, &data); 4595 break; 4596 } 4597 #ifdef CONFIG_HAVE_KVM_MSI 4598 case KVM_SIGNAL_MSI: { 4599 struct kvm_msi msi; 4600 4601 r = -EFAULT; 4602 if (copy_from_user(&msi, argp, sizeof(msi))) 4603 goto out; 4604 r = kvm_send_userspace_msi(kvm, &msi); 4605 break; 4606 } 4607 #endif 4608 #ifdef __KVM_HAVE_IRQ_LINE 4609 case KVM_IRQ_LINE_STATUS: 4610 case KVM_IRQ_LINE: { 4611 struct kvm_irq_level irq_event; 4612 4613 r = -EFAULT; 4614 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4615 goto out; 4616 4617 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4618 ioctl == KVM_IRQ_LINE_STATUS); 4619 if (r) 4620 goto out; 4621 4622 r = -EFAULT; 4623 if (ioctl == KVM_IRQ_LINE_STATUS) { 4624 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4625 goto out; 4626 } 4627 4628 r = 0; 4629 break; 4630 } 4631 #endif 4632 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4633 case KVM_SET_GSI_ROUTING: { 4634 struct kvm_irq_routing routing; 4635 struct kvm_irq_routing __user *urouting; 4636 struct kvm_irq_routing_entry *entries = NULL; 4637 4638 r = -EFAULT; 4639 if (copy_from_user(&routing, argp, sizeof(routing))) 4640 goto out; 4641 r = -EINVAL; 4642 if (!kvm_arch_can_set_irq_routing(kvm)) 4643 goto out; 4644 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4645 goto out; 4646 if (routing.flags) 4647 goto out; 4648 if (routing.nr) { 4649 urouting = argp; 4650 entries = vmemdup_user(urouting->entries, 4651 array_size(sizeof(*entries), 4652 routing.nr)); 4653 if (IS_ERR(entries)) { 4654 r = PTR_ERR(entries); 4655 goto out; 4656 } 4657 } 4658 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4659 routing.flags); 4660 kvfree(entries); 4661 break; 4662 } 4663 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4664 case KVM_CREATE_DEVICE: { 4665 struct kvm_create_device cd; 4666 4667 r = -EFAULT; 4668 if (copy_from_user(&cd, argp, sizeof(cd))) 4669 goto out; 4670 4671 r = kvm_ioctl_create_device(kvm, &cd); 4672 if (r) 4673 goto out; 4674 4675 r = -EFAULT; 4676 if (copy_to_user(argp, &cd, sizeof(cd))) 4677 goto out; 4678 4679 r = 0; 4680 break; 4681 } 4682 case KVM_CHECK_EXTENSION: 4683 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4684 break; 4685 case KVM_RESET_DIRTY_RINGS: 4686 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4687 break; 4688 case KVM_GET_STATS_FD: 4689 r = kvm_vm_ioctl_get_stats_fd(kvm); 4690 break; 4691 default: 4692 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4693 } 4694 out: 4695 return r; 4696 } 4697 4698 #ifdef CONFIG_KVM_COMPAT 4699 struct compat_kvm_dirty_log { 4700 __u32 slot; 4701 __u32 padding1; 4702 union { 4703 compat_uptr_t dirty_bitmap; /* one bit per page */ 4704 __u64 padding2; 4705 }; 4706 }; 4707 4708 struct compat_kvm_clear_dirty_log { 4709 __u32 slot; 4710 __u32 num_pages; 4711 __u64 first_page; 4712 union { 4713 compat_uptr_t dirty_bitmap; /* one bit per page */ 4714 __u64 padding2; 4715 }; 4716 }; 4717 4718 static long kvm_vm_compat_ioctl(struct file *filp, 4719 unsigned int ioctl, unsigned long arg) 4720 { 4721 struct kvm *kvm = filp->private_data; 4722 int r; 4723 4724 if (kvm->mm != current->mm || kvm->vm_dead) 4725 return -EIO; 4726 switch (ioctl) { 4727 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4728 case KVM_CLEAR_DIRTY_LOG: { 4729 struct compat_kvm_clear_dirty_log compat_log; 4730 struct kvm_clear_dirty_log log; 4731 4732 if (copy_from_user(&compat_log, (void __user *)arg, 4733 sizeof(compat_log))) 4734 return -EFAULT; 4735 log.slot = compat_log.slot; 4736 log.num_pages = compat_log.num_pages; 4737 log.first_page = compat_log.first_page; 4738 log.padding2 = compat_log.padding2; 4739 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4740 4741 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4742 break; 4743 } 4744 #endif 4745 case KVM_GET_DIRTY_LOG: { 4746 struct compat_kvm_dirty_log compat_log; 4747 struct kvm_dirty_log log; 4748 4749 if (copy_from_user(&compat_log, (void __user *)arg, 4750 sizeof(compat_log))) 4751 return -EFAULT; 4752 log.slot = compat_log.slot; 4753 log.padding1 = compat_log.padding1; 4754 log.padding2 = compat_log.padding2; 4755 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4756 4757 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4758 break; 4759 } 4760 default: 4761 r = kvm_vm_ioctl(filp, ioctl, arg); 4762 } 4763 return r; 4764 } 4765 #endif 4766 4767 static const struct file_operations kvm_vm_fops = { 4768 .release = kvm_vm_release, 4769 .unlocked_ioctl = kvm_vm_ioctl, 4770 .llseek = noop_llseek, 4771 KVM_COMPAT(kvm_vm_compat_ioctl), 4772 }; 4773 4774 bool file_is_kvm(struct file *file) 4775 { 4776 return file && file->f_op == &kvm_vm_fops; 4777 } 4778 EXPORT_SYMBOL_GPL(file_is_kvm); 4779 4780 static int kvm_dev_ioctl_create_vm(unsigned long type) 4781 { 4782 int r; 4783 struct kvm *kvm; 4784 struct file *file; 4785 4786 kvm = kvm_create_vm(type); 4787 if (IS_ERR(kvm)) 4788 return PTR_ERR(kvm); 4789 #ifdef CONFIG_KVM_MMIO 4790 r = kvm_coalesced_mmio_init(kvm); 4791 if (r < 0) 4792 goto put_kvm; 4793 #endif 4794 r = get_unused_fd_flags(O_CLOEXEC); 4795 if (r < 0) 4796 goto put_kvm; 4797 4798 snprintf(kvm->stats_id, sizeof(kvm->stats_id), 4799 "kvm-%d", task_pid_nr(current)); 4800 4801 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 4802 if (IS_ERR(file)) { 4803 put_unused_fd(r); 4804 r = PTR_ERR(file); 4805 goto put_kvm; 4806 } 4807 4808 /* 4809 * Don't call kvm_put_kvm anymore at this point; file->f_op is 4810 * already set, with ->release() being kvm_vm_release(). In error 4811 * cases it will be called by the final fput(file) and will take 4812 * care of doing kvm_put_kvm(kvm). 4813 */ 4814 if (kvm_create_vm_debugfs(kvm, r) < 0) { 4815 put_unused_fd(r); 4816 fput(file); 4817 return -ENOMEM; 4818 } 4819 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 4820 4821 fd_install(r, file); 4822 return r; 4823 4824 put_kvm: 4825 kvm_put_kvm(kvm); 4826 return r; 4827 } 4828 4829 static long kvm_dev_ioctl(struct file *filp, 4830 unsigned int ioctl, unsigned long arg) 4831 { 4832 long r = -EINVAL; 4833 4834 switch (ioctl) { 4835 case KVM_GET_API_VERSION: 4836 if (arg) 4837 goto out; 4838 r = KVM_API_VERSION; 4839 break; 4840 case KVM_CREATE_VM: 4841 r = kvm_dev_ioctl_create_vm(arg); 4842 break; 4843 case KVM_CHECK_EXTENSION: 4844 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 4845 break; 4846 case KVM_GET_VCPU_MMAP_SIZE: 4847 if (arg) 4848 goto out; 4849 r = PAGE_SIZE; /* struct kvm_run */ 4850 #ifdef CONFIG_X86 4851 r += PAGE_SIZE; /* pio data page */ 4852 #endif 4853 #ifdef CONFIG_KVM_MMIO 4854 r += PAGE_SIZE; /* coalesced mmio ring page */ 4855 #endif 4856 break; 4857 case KVM_TRACE_ENABLE: 4858 case KVM_TRACE_PAUSE: 4859 case KVM_TRACE_DISABLE: 4860 r = -EOPNOTSUPP; 4861 break; 4862 default: 4863 return kvm_arch_dev_ioctl(filp, ioctl, arg); 4864 } 4865 out: 4866 return r; 4867 } 4868 4869 static struct file_operations kvm_chardev_ops = { 4870 .unlocked_ioctl = kvm_dev_ioctl, 4871 .llseek = noop_llseek, 4872 KVM_COMPAT(kvm_dev_ioctl), 4873 }; 4874 4875 static struct miscdevice kvm_dev = { 4876 KVM_MINOR, 4877 "kvm", 4878 &kvm_chardev_ops, 4879 }; 4880 4881 static void hardware_enable_nolock(void *junk) 4882 { 4883 int cpu = raw_smp_processor_id(); 4884 int r; 4885 4886 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4887 return; 4888 4889 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4890 4891 r = kvm_arch_hardware_enable(); 4892 4893 if (r) { 4894 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4895 atomic_inc(&hardware_enable_failed); 4896 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4897 } 4898 } 4899 4900 static int kvm_starting_cpu(unsigned int cpu) 4901 { 4902 raw_spin_lock(&kvm_count_lock); 4903 if (kvm_usage_count) 4904 hardware_enable_nolock(NULL); 4905 raw_spin_unlock(&kvm_count_lock); 4906 return 0; 4907 } 4908 4909 static void hardware_disable_nolock(void *junk) 4910 { 4911 int cpu = raw_smp_processor_id(); 4912 4913 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4914 return; 4915 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4916 kvm_arch_hardware_disable(); 4917 } 4918 4919 static int kvm_dying_cpu(unsigned int cpu) 4920 { 4921 raw_spin_lock(&kvm_count_lock); 4922 if (kvm_usage_count) 4923 hardware_disable_nolock(NULL); 4924 raw_spin_unlock(&kvm_count_lock); 4925 return 0; 4926 } 4927 4928 static void hardware_disable_all_nolock(void) 4929 { 4930 BUG_ON(!kvm_usage_count); 4931 4932 kvm_usage_count--; 4933 if (!kvm_usage_count) 4934 on_each_cpu(hardware_disable_nolock, NULL, 1); 4935 } 4936 4937 static void hardware_disable_all(void) 4938 { 4939 raw_spin_lock(&kvm_count_lock); 4940 hardware_disable_all_nolock(); 4941 raw_spin_unlock(&kvm_count_lock); 4942 } 4943 4944 static int hardware_enable_all(void) 4945 { 4946 int r = 0; 4947 4948 raw_spin_lock(&kvm_count_lock); 4949 4950 kvm_usage_count++; 4951 if (kvm_usage_count == 1) { 4952 atomic_set(&hardware_enable_failed, 0); 4953 on_each_cpu(hardware_enable_nolock, NULL, 1); 4954 4955 if (atomic_read(&hardware_enable_failed)) { 4956 hardware_disable_all_nolock(); 4957 r = -EBUSY; 4958 } 4959 } 4960 4961 raw_spin_unlock(&kvm_count_lock); 4962 4963 return r; 4964 } 4965 4966 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4967 void *v) 4968 { 4969 /* 4970 * Some (well, at least mine) BIOSes hang on reboot if 4971 * in vmx root mode. 4972 * 4973 * And Intel TXT required VMX off for all cpu when system shutdown. 4974 */ 4975 pr_info("kvm: exiting hardware virtualization\n"); 4976 kvm_rebooting = true; 4977 on_each_cpu(hardware_disable_nolock, NULL, 1); 4978 return NOTIFY_OK; 4979 } 4980 4981 static struct notifier_block kvm_reboot_notifier = { 4982 .notifier_call = kvm_reboot, 4983 .priority = 0, 4984 }; 4985 4986 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4987 { 4988 int i; 4989 4990 for (i = 0; i < bus->dev_count; i++) { 4991 struct kvm_io_device *pos = bus->range[i].dev; 4992 4993 kvm_iodevice_destructor(pos); 4994 } 4995 kfree(bus); 4996 } 4997 4998 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4999 const struct kvm_io_range *r2) 5000 { 5001 gpa_t addr1 = r1->addr; 5002 gpa_t addr2 = r2->addr; 5003 5004 if (addr1 < addr2) 5005 return -1; 5006 5007 /* If r2->len == 0, match the exact address. If r2->len != 0, 5008 * accept any overlapping write. Any order is acceptable for 5009 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5010 * we process all of them. 5011 */ 5012 if (r2->len) { 5013 addr1 += r1->len; 5014 addr2 += r2->len; 5015 } 5016 5017 if (addr1 > addr2) 5018 return 1; 5019 5020 return 0; 5021 } 5022 5023 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5024 { 5025 return kvm_io_bus_cmp(p1, p2); 5026 } 5027 5028 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5029 gpa_t addr, int len) 5030 { 5031 struct kvm_io_range *range, key; 5032 int off; 5033 5034 key = (struct kvm_io_range) { 5035 .addr = addr, 5036 .len = len, 5037 }; 5038 5039 range = bsearch(&key, bus->range, bus->dev_count, 5040 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5041 if (range == NULL) 5042 return -ENOENT; 5043 5044 off = range - bus->range; 5045 5046 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5047 off--; 5048 5049 return off; 5050 } 5051 5052 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5053 struct kvm_io_range *range, const void *val) 5054 { 5055 int idx; 5056 5057 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5058 if (idx < 0) 5059 return -EOPNOTSUPP; 5060 5061 while (idx < bus->dev_count && 5062 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5063 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5064 range->len, val)) 5065 return idx; 5066 idx++; 5067 } 5068 5069 return -EOPNOTSUPP; 5070 } 5071 5072 /* kvm_io_bus_write - called under kvm->slots_lock */ 5073 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5074 int len, const void *val) 5075 { 5076 struct kvm_io_bus *bus; 5077 struct kvm_io_range range; 5078 int r; 5079 5080 range = (struct kvm_io_range) { 5081 .addr = addr, 5082 .len = len, 5083 }; 5084 5085 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5086 if (!bus) 5087 return -ENOMEM; 5088 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5089 return r < 0 ? r : 0; 5090 } 5091 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5092 5093 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5094 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5095 gpa_t addr, int len, const void *val, long cookie) 5096 { 5097 struct kvm_io_bus *bus; 5098 struct kvm_io_range range; 5099 5100 range = (struct kvm_io_range) { 5101 .addr = addr, 5102 .len = len, 5103 }; 5104 5105 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5106 if (!bus) 5107 return -ENOMEM; 5108 5109 /* First try the device referenced by cookie. */ 5110 if ((cookie >= 0) && (cookie < bus->dev_count) && 5111 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5112 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5113 val)) 5114 return cookie; 5115 5116 /* 5117 * cookie contained garbage; fall back to search and return the 5118 * correct cookie value. 5119 */ 5120 return __kvm_io_bus_write(vcpu, bus, &range, val); 5121 } 5122 5123 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5124 struct kvm_io_range *range, void *val) 5125 { 5126 int idx; 5127 5128 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5129 if (idx < 0) 5130 return -EOPNOTSUPP; 5131 5132 while (idx < bus->dev_count && 5133 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5134 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5135 range->len, val)) 5136 return idx; 5137 idx++; 5138 } 5139 5140 return -EOPNOTSUPP; 5141 } 5142 5143 /* kvm_io_bus_read - called under kvm->slots_lock */ 5144 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5145 int len, void *val) 5146 { 5147 struct kvm_io_bus *bus; 5148 struct kvm_io_range range; 5149 int r; 5150 5151 range = (struct kvm_io_range) { 5152 .addr = addr, 5153 .len = len, 5154 }; 5155 5156 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5157 if (!bus) 5158 return -ENOMEM; 5159 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5160 return r < 0 ? r : 0; 5161 } 5162 5163 /* Caller must hold slots_lock. */ 5164 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5165 int len, struct kvm_io_device *dev) 5166 { 5167 int i; 5168 struct kvm_io_bus *new_bus, *bus; 5169 struct kvm_io_range range; 5170 5171 bus = kvm_get_bus(kvm, bus_idx); 5172 if (!bus) 5173 return -ENOMEM; 5174 5175 /* exclude ioeventfd which is limited by maximum fd */ 5176 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5177 return -ENOSPC; 5178 5179 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5180 GFP_KERNEL_ACCOUNT); 5181 if (!new_bus) 5182 return -ENOMEM; 5183 5184 range = (struct kvm_io_range) { 5185 .addr = addr, 5186 .len = len, 5187 .dev = dev, 5188 }; 5189 5190 for (i = 0; i < bus->dev_count; i++) 5191 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5192 break; 5193 5194 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5195 new_bus->dev_count++; 5196 new_bus->range[i] = range; 5197 memcpy(new_bus->range + i + 1, bus->range + i, 5198 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5199 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5200 synchronize_srcu_expedited(&kvm->srcu); 5201 kfree(bus); 5202 5203 return 0; 5204 } 5205 5206 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5207 struct kvm_io_device *dev) 5208 { 5209 int i, j; 5210 struct kvm_io_bus *new_bus, *bus; 5211 5212 lockdep_assert_held(&kvm->slots_lock); 5213 5214 bus = kvm_get_bus(kvm, bus_idx); 5215 if (!bus) 5216 return 0; 5217 5218 for (i = 0; i < bus->dev_count; i++) { 5219 if (bus->range[i].dev == dev) { 5220 break; 5221 } 5222 } 5223 5224 if (i == bus->dev_count) 5225 return 0; 5226 5227 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5228 GFP_KERNEL_ACCOUNT); 5229 if (new_bus) { 5230 memcpy(new_bus, bus, struct_size(bus, range, i)); 5231 new_bus->dev_count--; 5232 memcpy(new_bus->range + i, bus->range + i + 1, 5233 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5234 } 5235 5236 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5237 synchronize_srcu_expedited(&kvm->srcu); 5238 5239 /* Destroy the old bus _after_ installing the (null) bus. */ 5240 if (!new_bus) { 5241 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5242 for (j = 0; j < bus->dev_count; j++) { 5243 if (j == i) 5244 continue; 5245 kvm_iodevice_destructor(bus->range[j].dev); 5246 } 5247 } 5248 5249 kfree(bus); 5250 return new_bus ? 0 : -ENOMEM; 5251 } 5252 5253 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5254 gpa_t addr) 5255 { 5256 struct kvm_io_bus *bus; 5257 int dev_idx, srcu_idx; 5258 struct kvm_io_device *iodev = NULL; 5259 5260 srcu_idx = srcu_read_lock(&kvm->srcu); 5261 5262 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5263 if (!bus) 5264 goto out_unlock; 5265 5266 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5267 if (dev_idx < 0) 5268 goto out_unlock; 5269 5270 iodev = bus->range[dev_idx].dev; 5271 5272 out_unlock: 5273 srcu_read_unlock(&kvm->srcu, srcu_idx); 5274 5275 return iodev; 5276 } 5277 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5278 5279 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5280 int (*get)(void *, u64 *), int (*set)(void *, u64), 5281 const char *fmt) 5282 { 5283 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5284 inode->i_private; 5285 5286 /* 5287 * The debugfs files are a reference to the kvm struct which 5288 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5289 * avoids the race between open and the removal of the debugfs directory. 5290 */ 5291 if (!kvm_get_kvm_safe(stat_data->kvm)) 5292 return -ENOENT; 5293 5294 if (simple_attr_open(inode, file, get, 5295 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5296 ? set : NULL, 5297 fmt)) { 5298 kvm_put_kvm(stat_data->kvm); 5299 return -ENOMEM; 5300 } 5301 5302 return 0; 5303 } 5304 5305 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5306 { 5307 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5308 inode->i_private; 5309 5310 simple_attr_release(inode, file); 5311 kvm_put_kvm(stat_data->kvm); 5312 5313 return 0; 5314 } 5315 5316 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5317 { 5318 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5319 5320 return 0; 5321 } 5322 5323 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5324 { 5325 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5326 5327 return 0; 5328 } 5329 5330 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5331 { 5332 unsigned long i; 5333 struct kvm_vcpu *vcpu; 5334 5335 *val = 0; 5336 5337 kvm_for_each_vcpu(i, vcpu, kvm) 5338 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5339 5340 return 0; 5341 } 5342 5343 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5344 { 5345 unsigned long i; 5346 struct kvm_vcpu *vcpu; 5347 5348 kvm_for_each_vcpu(i, vcpu, kvm) 5349 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5350 5351 return 0; 5352 } 5353 5354 static int kvm_stat_data_get(void *data, u64 *val) 5355 { 5356 int r = -EFAULT; 5357 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5358 5359 switch (stat_data->kind) { 5360 case KVM_STAT_VM: 5361 r = kvm_get_stat_per_vm(stat_data->kvm, 5362 stat_data->desc->desc.offset, val); 5363 break; 5364 case KVM_STAT_VCPU: 5365 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5366 stat_data->desc->desc.offset, val); 5367 break; 5368 } 5369 5370 return r; 5371 } 5372 5373 static int kvm_stat_data_clear(void *data, u64 val) 5374 { 5375 int r = -EFAULT; 5376 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5377 5378 if (val) 5379 return -EINVAL; 5380 5381 switch (stat_data->kind) { 5382 case KVM_STAT_VM: 5383 r = kvm_clear_stat_per_vm(stat_data->kvm, 5384 stat_data->desc->desc.offset); 5385 break; 5386 case KVM_STAT_VCPU: 5387 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5388 stat_data->desc->desc.offset); 5389 break; 5390 } 5391 5392 return r; 5393 } 5394 5395 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5396 { 5397 __simple_attr_check_format("%llu\n", 0ull); 5398 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5399 kvm_stat_data_clear, "%llu\n"); 5400 } 5401 5402 static const struct file_operations stat_fops_per_vm = { 5403 .owner = THIS_MODULE, 5404 .open = kvm_stat_data_open, 5405 .release = kvm_debugfs_release, 5406 .read = simple_attr_read, 5407 .write = simple_attr_write, 5408 .llseek = no_llseek, 5409 }; 5410 5411 static int vm_stat_get(void *_offset, u64 *val) 5412 { 5413 unsigned offset = (long)_offset; 5414 struct kvm *kvm; 5415 u64 tmp_val; 5416 5417 *val = 0; 5418 mutex_lock(&kvm_lock); 5419 list_for_each_entry(kvm, &vm_list, vm_list) { 5420 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5421 *val += tmp_val; 5422 } 5423 mutex_unlock(&kvm_lock); 5424 return 0; 5425 } 5426 5427 static int vm_stat_clear(void *_offset, u64 val) 5428 { 5429 unsigned offset = (long)_offset; 5430 struct kvm *kvm; 5431 5432 if (val) 5433 return -EINVAL; 5434 5435 mutex_lock(&kvm_lock); 5436 list_for_each_entry(kvm, &vm_list, vm_list) { 5437 kvm_clear_stat_per_vm(kvm, offset); 5438 } 5439 mutex_unlock(&kvm_lock); 5440 5441 return 0; 5442 } 5443 5444 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5445 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5446 5447 static int vcpu_stat_get(void *_offset, u64 *val) 5448 { 5449 unsigned offset = (long)_offset; 5450 struct kvm *kvm; 5451 u64 tmp_val; 5452 5453 *val = 0; 5454 mutex_lock(&kvm_lock); 5455 list_for_each_entry(kvm, &vm_list, vm_list) { 5456 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5457 *val += tmp_val; 5458 } 5459 mutex_unlock(&kvm_lock); 5460 return 0; 5461 } 5462 5463 static int vcpu_stat_clear(void *_offset, u64 val) 5464 { 5465 unsigned offset = (long)_offset; 5466 struct kvm *kvm; 5467 5468 if (val) 5469 return -EINVAL; 5470 5471 mutex_lock(&kvm_lock); 5472 list_for_each_entry(kvm, &vm_list, vm_list) { 5473 kvm_clear_stat_per_vcpu(kvm, offset); 5474 } 5475 mutex_unlock(&kvm_lock); 5476 5477 return 0; 5478 } 5479 5480 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5481 "%llu\n"); 5482 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5483 5484 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5485 { 5486 struct kobj_uevent_env *env; 5487 unsigned long long created, active; 5488 5489 if (!kvm_dev.this_device || !kvm) 5490 return; 5491 5492 mutex_lock(&kvm_lock); 5493 if (type == KVM_EVENT_CREATE_VM) { 5494 kvm_createvm_count++; 5495 kvm_active_vms++; 5496 } else if (type == KVM_EVENT_DESTROY_VM) { 5497 kvm_active_vms--; 5498 } 5499 created = kvm_createvm_count; 5500 active = kvm_active_vms; 5501 mutex_unlock(&kvm_lock); 5502 5503 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5504 if (!env) 5505 return; 5506 5507 add_uevent_var(env, "CREATED=%llu", created); 5508 add_uevent_var(env, "COUNT=%llu", active); 5509 5510 if (type == KVM_EVENT_CREATE_VM) { 5511 add_uevent_var(env, "EVENT=create"); 5512 kvm->userspace_pid = task_pid_nr(current); 5513 } else if (type == KVM_EVENT_DESTROY_VM) { 5514 add_uevent_var(env, "EVENT=destroy"); 5515 } 5516 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5517 5518 if (!IS_ERR(kvm->debugfs_dentry)) { 5519 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5520 5521 if (p) { 5522 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5523 if (!IS_ERR(tmp)) 5524 add_uevent_var(env, "STATS_PATH=%s", tmp); 5525 kfree(p); 5526 } 5527 } 5528 /* no need for checks, since we are adding at most only 5 keys */ 5529 env->envp[env->envp_idx++] = NULL; 5530 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5531 kfree(env); 5532 } 5533 5534 static void kvm_init_debug(void) 5535 { 5536 const struct file_operations *fops; 5537 const struct _kvm_stats_desc *pdesc; 5538 int i; 5539 5540 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5541 5542 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5543 pdesc = &kvm_vm_stats_desc[i]; 5544 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5545 fops = &vm_stat_fops; 5546 else 5547 fops = &vm_stat_readonly_fops; 5548 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5549 kvm_debugfs_dir, 5550 (void *)(long)pdesc->desc.offset, fops); 5551 } 5552 5553 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5554 pdesc = &kvm_vcpu_stats_desc[i]; 5555 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5556 fops = &vcpu_stat_fops; 5557 else 5558 fops = &vcpu_stat_readonly_fops; 5559 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5560 kvm_debugfs_dir, 5561 (void *)(long)pdesc->desc.offset, fops); 5562 } 5563 } 5564 5565 static int kvm_suspend(void) 5566 { 5567 if (kvm_usage_count) 5568 hardware_disable_nolock(NULL); 5569 return 0; 5570 } 5571 5572 static void kvm_resume(void) 5573 { 5574 if (kvm_usage_count) { 5575 lockdep_assert_not_held(&kvm_count_lock); 5576 hardware_enable_nolock(NULL); 5577 } 5578 } 5579 5580 static struct syscore_ops kvm_syscore_ops = { 5581 .suspend = kvm_suspend, 5582 .resume = kvm_resume, 5583 }; 5584 5585 static inline 5586 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5587 { 5588 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5589 } 5590 5591 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5592 { 5593 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5594 5595 WRITE_ONCE(vcpu->preempted, false); 5596 WRITE_ONCE(vcpu->ready, false); 5597 5598 __this_cpu_write(kvm_running_vcpu, vcpu); 5599 kvm_arch_sched_in(vcpu, cpu); 5600 kvm_arch_vcpu_load(vcpu, cpu); 5601 } 5602 5603 static void kvm_sched_out(struct preempt_notifier *pn, 5604 struct task_struct *next) 5605 { 5606 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5607 5608 if (current->on_rq) { 5609 WRITE_ONCE(vcpu->preempted, true); 5610 WRITE_ONCE(vcpu->ready, true); 5611 } 5612 kvm_arch_vcpu_put(vcpu); 5613 __this_cpu_write(kvm_running_vcpu, NULL); 5614 } 5615 5616 /** 5617 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5618 * 5619 * We can disable preemption locally around accessing the per-CPU variable, 5620 * and use the resolved vcpu pointer after enabling preemption again, 5621 * because even if the current thread is migrated to another CPU, reading 5622 * the per-CPU value later will give us the same value as we update the 5623 * per-CPU variable in the preempt notifier handlers. 5624 */ 5625 struct kvm_vcpu *kvm_get_running_vcpu(void) 5626 { 5627 struct kvm_vcpu *vcpu; 5628 5629 preempt_disable(); 5630 vcpu = __this_cpu_read(kvm_running_vcpu); 5631 preempt_enable(); 5632 5633 return vcpu; 5634 } 5635 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5636 5637 /** 5638 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5639 */ 5640 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5641 { 5642 return &kvm_running_vcpu; 5643 } 5644 5645 #ifdef CONFIG_GUEST_PERF_EVENTS 5646 static unsigned int kvm_guest_state(void) 5647 { 5648 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5649 unsigned int state; 5650 5651 if (!kvm_arch_pmi_in_guest(vcpu)) 5652 return 0; 5653 5654 state = PERF_GUEST_ACTIVE; 5655 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5656 state |= PERF_GUEST_USER; 5657 5658 return state; 5659 } 5660 5661 static unsigned long kvm_guest_get_ip(void) 5662 { 5663 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5664 5665 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5666 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5667 return 0; 5668 5669 return kvm_arch_vcpu_get_ip(vcpu); 5670 } 5671 5672 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5673 .state = kvm_guest_state, 5674 .get_ip = kvm_guest_get_ip, 5675 .handle_intel_pt_intr = NULL, 5676 }; 5677 5678 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5679 { 5680 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5681 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5682 } 5683 void kvm_unregister_perf_callbacks(void) 5684 { 5685 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5686 } 5687 #endif 5688 5689 struct kvm_cpu_compat_check { 5690 void *opaque; 5691 int *ret; 5692 }; 5693 5694 static void check_processor_compat(void *data) 5695 { 5696 struct kvm_cpu_compat_check *c = data; 5697 5698 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5699 } 5700 5701 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5702 struct module *module) 5703 { 5704 struct kvm_cpu_compat_check c; 5705 int r; 5706 int cpu; 5707 5708 r = kvm_arch_init(opaque); 5709 if (r) 5710 goto out_fail; 5711 5712 /* 5713 * kvm_arch_init makes sure there's at most one caller 5714 * for architectures that support multiple implementations, 5715 * like intel and amd on x86. 5716 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5717 * conflicts in case kvm is already setup for another implementation. 5718 */ 5719 r = kvm_irqfd_init(); 5720 if (r) 5721 goto out_irqfd; 5722 5723 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5724 r = -ENOMEM; 5725 goto out_free_0; 5726 } 5727 5728 r = kvm_arch_hardware_setup(opaque); 5729 if (r < 0) 5730 goto out_free_1; 5731 5732 c.ret = &r; 5733 c.opaque = opaque; 5734 for_each_online_cpu(cpu) { 5735 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5736 if (r < 0) 5737 goto out_free_2; 5738 } 5739 5740 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5741 kvm_starting_cpu, kvm_dying_cpu); 5742 if (r) 5743 goto out_free_2; 5744 register_reboot_notifier(&kvm_reboot_notifier); 5745 5746 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5747 if (!vcpu_align) 5748 vcpu_align = __alignof__(struct kvm_vcpu); 5749 kvm_vcpu_cache = 5750 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5751 SLAB_ACCOUNT, 5752 offsetof(struct kvm_vcpu, arch), 5753 offsetofend(struct kvm_vcpu, stats_id) 5754 - offsetof(struct kvm_vcpu, arch), 5755 NULL); 5756 if (!kvm_vcpu_cache) { 5757 r = -ENOMEM; 5758 goto out_free_3; 5759 } 5760 5761 for_each_possible_cpu(cpu) { 5762 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5763 GFP_KERNEL, cpu_to_node(cpu))) { 5764 r = -ENOMEM; 5765 goto out_free_4; 5766 } 5767 } 5768 5769 r = kvm_async_pf_init(); 5770 if (r) 5771 goto out_free_5; 5772 5773 kvm_chardev_ops.owner = module; 5774 5775 r = misc_register(&kvm_dev); 5776 if (r) { 5777 pr_err("kvm: misc device register failed\n"); 5778 goto out_unreg; 5779 } 5780 5781 register_syscore_ops(&kvm_syscore_ops); 5782 5783 kvm_preempt_ops.sched_in = kvm_sched_in; 5784 kvm_preempt_ops.sched_out = kvm_sched_out; 5785 5786 kvm_init_debug(); 5787 5788 r = kvm_vfio_ops_init(); 5789 WARN_ON(r); 5790 5791 return 0; 5792 5793 out_unreg: 5794 kvm_async_pf_deinit(); 5795 out_free_5: 5796 for_each_possible_cpu(cpu) 5797 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5798 out_free_4: 5799 kmem_cache_destroy(kvm_vcpu_cache); 5800 out_free_3: 5801 unregister_reboot_notifier(&kvm_reboot_notifier); 5802 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5803 out_free_2: 5804 kvm_arch_hardware_unsetup(); 5805 out_free_1: 5806 free_cpumask_var(cpus_hardware_enabled); 5807 out_free_0: 5808 kvm_irqfd_exit(); 5809 out_irqfd: 5810 kvm_arch_exit(); 5811 out_fail: 5812 return r; 5813 } 5814 EXPORT_SYMBOL_GPL(kvm_init); 5815 5816 void kvm_exit(void) 5817 { 5818 int cpu; 5819 5820 debugfs_remove_recursive(kvm_debugfs_dir); 5821 misc_deregister(&kvm_dev); 5822 for_each_possible_cpu(cpu) 5823 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 5824 kmem_cache_destroy(kvm_vcpu_cache); 5825 kvm_async_pf_deinit(); 5826 unregister_syscore_ops(&kvm_syscore_ops); 5827 unregister_reboot_notifier(&kvm_reboot_notifier); 5828 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 5829 on_each_cpu(hardware_disable_nolock, NULL, 1); 5830 kvm_arch_hardware_unsetup(); 5831 kvm_arch_exit(); 5832 kvm_irqfd_exit(); 5833 free_cpumask_var(cpus_hardware_enabled); 5834 kvm_vfio_ops_exit(); 5835 } 5836 EXPORT_SYMBOL_GPL(kvm_exit); 5837 5838 struct kvm_vm_worker_thread_context { 5839 struct kvm *kvm; 5840 struct task_struct *parent; 5841 struct completion init_done; 5842 kvm_vm_thread_fn_t thread_fn; 5843 uintptr_t data; 5844 int err; 5845 }; 5846 5847 static int kvm_vm_worker_thread(void *context) 5848 { 5849 /* 5850 * The init_context is allocated on the stack of the parent thread, so 5851 * we have to locally copy anything that is needed beyond initialization 5852 */ 5853 struct kvm_vm_worker_thread_context *init_context = context; 5854 struct task_struct *parent; 5855 struct kvm *kvm = init_context->kvm; 5856 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 5857 uintptr_t data = init_context->data; 5858 int err; 5859 5860 err = kthread_park(current); 5861 /* kthread_park(current) is never supposed to return an error */ 5862 WARN_ON(err != 0); 5863 if (err) 5864 goto init_complete; 5865 5866 err = cgroup_attach_task_all(init_context->parent, current); 5867 if (err) { 5868 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 5869 __func__, err); 5870 goto init_complete; 5871 } 5872 5873 set_user_nice(current, task_nice(init_context->parent)); 5874 5875 init_complete: 5876 init_context->err = err; 5877 complete(&init_context->init_done); 5878 init_context = NULL; 5879 5880 if (err) 5881 goto out; 5882 5883 /* Wait to be woken up by the spawner before proceeding. */ 5884 kthread_parkme(); 5885 5886 if (!kthread_should_stop()) 5887 err = thread_fn(kvm, data); 5888 5889 out: 5890 /* 5891 * Move kthread back to its original cgroup to prevent it lingering in 5892 * the cgroup of the VM process, after the latter finishes its 5893 * execution. 5894 * 5895 * kthread_stop() waits on the 'exited' completion condition which is 5896 * set in exit_mm(), via mm_release(), in do_exit(). However, the 5897 * kthread is removed from the cgroup in the cgroup_exit() which is 5898 * called after the exit_mm(). This causes the kthread_stop() to return 5899 * before the kthread actually quits the cgroup. 5900 */ 5901 rcu_read_lock(); 5902 parent = rcu_dereference(current->real_parent); 5903 get_task_struct(parent); 5904 rcu_read_unlock(); 5905 cgroup_attach_task_all(parent, current); 5906 put_task_struct(parent); 5907 5908 return err; 5909 } 5910 5911 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 5912 uintptr_t data, const char *name, 5913 struct task_struct **thread_ptr) 5914 { 5915 struct kvm_vm_worker_thread_context init_context = {}; 5916 struct task_struct *thread; 5917 5918 *thread_ptr = NULL; 5919 init_context.kvm = kvm; 5920 init_context.parent = current; 5921 init_context.thread_fn = thread_fn; 5922 init_context.data = data; 5923 init_completion(&init_context.init_done); 5924 5925 thread = kthread_run(kvm_vm_worker_thread, &init_context, 5926 "%s-%d", name, task_pid_nr(current)); 5927 if (IS_ERR(thread)) 5928 return PTR_ERR(thread); 5929 5930 /* kthread_run is never supposed to return NULL */ 5931 WARN_ON(thread == NULL); 5932 5933 wait_for_completion(&init_context.init_done); 5934 5935 if (!init_context.err) 5936 *thread_ptr = thread; 5937 5938 return init_context.err; 5939 } 5940