1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 #include <linux/kvm_dirty_ring.h> 69 70 /* Worst case buffer size needed for holding an integer. */ 71 #define ITOA_MAX_LEN 12 72 73 MODULE_AUTHOR("Qumranet"); 74 MODULE_LICENSE("GPL"); 75 76 /* Architectures should define their poll value according to the halt latency */ 77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 78 module_param(halt_poll_ns, uint, 0644); 79 EXPORT_SYMBOL_GPL(halt_poll_ns); 80 81 /* Default doubles per-vcpu halt_poll_ns. */ 82 unsigned int halt_poll_ns_grow = 2; 83 module_param(halt_poll_ns_grow, uint, 0644); 84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 85 86 /* The start value to grow halt_poll_ns from */ 87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 88 module_param(halt_poll_ns_grow_start, uint, 0644); 89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 90 91 /* Default resets per-vcpu halt_poll_ns . */ 92 unsigned int halt_poll_ns_shrink; 93 module_param(halt_poll_ns_shrink, uint, 0644); 94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 95 96 /* 97 * Ordering of locks: 98 * 99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 100 */ 101 102 DEFINE_MUTEX(kvm_lock); 103 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 104 LIST_HEAD(vm_list); 105 106 static cpumask_var_t cpus_hardware_enabled; 107 static int kvm_usage_count; 108 static atomic_t hardware_enable_failed; 109 110 static struct kmem_cache *kvm_vcpu_cache; 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 114 115 struct dentry *kvm_debugfs_dir; 116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 117 118 static const struct file_operations stat_fops_per_vm; 119 120 static struct file_operations kvm_chardev_ops; 121 122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #ifdef CONFIG_KVM_COMPAT 125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 126 unsigned long arg); 127 #define KVM_COMPAT(c) .compat_ioctl = (c) 128 #else 129 /* 130 * For architectures that don't implement a compat infrastructure, 131 * adopt a double line of defense: 132 * - Prevent a compat task from opening /dev/kvm 133 * - If the open has been done by a 64bit task, and the KVM fd 134 * passed to a compat task, let the ioctls fail. 135 */ 136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 137 unsigned long arg) { return -EINVAL; } 138 139 static int kvm_no_compat_open(struct inode *inode, struct file *file) 140 { 141 return is_compat_task() ? -ENODEV : 0; 142 } 143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 144 .open = kvm_no_compat_open 145 #endif 146 static int hardware_enable_all(void); 147 static void hardware_disable_all(void); 148 149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 150 151 __visible bool kvm_rebooting; 152 EXPORT_SYMBOL_GPL(kvm_rebooting); 153 154 #define KVM_EVENT_CREATE_VM 0 155 #define KVM_EVENT_DESTROY_VM 1 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 157 static unsigned long long kvm_createvm_count; 158 static unsigned long long kvm_active_vms; 159 160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 161 162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 163 unsigned long start, unsigned long end) 164 { 165 } 166 167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 168 { 169 } 170 171 bool kvm_is_zone_device_page(struct page *page) 172 { 173 /* 174 * The metadata used by is_zone_device_page() to determine whether or 175 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 176 * the device has been pinned, e.g. by get_user_pages(). WARN if the 177 * page_count() is zero to help detect bad usage of this helper. 178 */ 179 if (WARN_ON_ONCE(!page_count(page))) 180 return false; 181 182 return is_zone_device_page(page); 183 } 184 185 /* 186 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 187 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 188 * is likely incomplete, it has been compiled purely through people wanting to 189 * back guest with a certain type of memory and encountering issues. 190 */ 191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 192 { 193 struct page *page; 194 195 if (!pfn_valid(pfn)) 196 return NULL; 197 198 page = pfn_to_page(pfn); 199 if (!PageReserved(page)) 200 return page; 201 202 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 203 if (is_zero_pfn(pfn)) 204 return page; 205 206 /* 207 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 208 * perspective they are "normal" pages, albeit with slightly different 209 * usage rules. 210 */ 211 if (kvm_is_zone_device_page(page)) 212 return page; 213 214 return NULL; 215 } 216 217 /* 218 * Switches to specified vcpu, until a matching vcpu_put() 219 */ 220 void vcpu_load(struct kvm_vcpu *vcpu) 221 { 222 int cpu = get_cpu(); 223 224 __this_cpu_write(kvm_running_vcpu, vcpu); 225 preempt_notifier_register(&vcpu->preempt_notifier); 226 kvm_arch_vcpu_load(vcpu, cpu); 227 put_cpu(); 228 } 229 EXPORT_SYMBOL_GPL(vcpu_load); 230 231 void vcpu_put(struct kvm_vcpu *vcpu) 232 { 233 preempt_disable(); 234 kvm_arch_vcpu_put(vcpu); 235 preempt_notifier_unregister(&vcpu->preempt_notifier); 236 __this_cpu_write(kvm_running_vcpu, NULL); 237 preempt_enable(); 238 } 239 EXPORT_SYMBOL_GPL(vcpu_put); 240 241 /* TODO: merge with kvm_arch_vcpu_should_kick */ 242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 243 { 244 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 245 246 /* 247 * We need to wait for the VCPU to reenable interrupts and get out of 248 * READING_SHADOW_PAGE_TABLES mode. 249 */ 250 if (req & KVM_REQUEST_WAIT) 251 return mode != OUTSIDE_GUEST_MODE; 252 253 /* 254 * Need to kick a running VCPU, but otherwise there is nothing to do. 255 */ 256 return mode == IN_GUEST_MODE; 257 } 258 259 static void ack_kick(void *_completed) 260 { 261 } 262 263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 264 { 265 if (cpumask_empty(cpus)) 266 return false; 267 268 smp_call_function_many(cpus, ack_kick, NULL, wait); 269 return true; 270 } 271 272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 273 struct cpumask *tmp, int current_cpu) 274 { 275 int cpu; 276 277 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 278 __kvm_make_request(req, vcpu); 279 280 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 281 return; 282 283 /* 284 * Note, the vCPU could get migrated to a different pCPU at any point 285 * after kvm_request_needs_ipi(), which could result in sending an IPI 286 * to the previous pCPU. But, that's OK because the purpose of the IPI 287 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 288 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 289 * after this point is also OK, as the requirement is only that KVM wait 290 * for vCPUs that were reading SPTEs _before_ any changes were 291 * finalized. See kvm_vcpu_kick() for more details on handling requests. 292 */ 293 if (kvm_request_needs_ipi(vcpu, req)) { 294 cpu = READ_ONCE(vcpu->cpu); 295 if (cpu != -1 && cpu != current_cpu) 296 __cpumask_set_cpu(cpu, tmp); 297 } 298 } 299 300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 301 unsigned long *vcpu_bitmap) 302 { 303 struct kvm_vcpu *vcpu; 304 struct cpumask *cpus; 305 int i, me; 306 bool called; 307 308 me = get_cpu(); 309 310 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 311 cpumask_clear(cpus); 312 313 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 314 vcpu = kvm_get_vcpu(kvm, i); 315 if (!vcpu) 316 continue; 317 kvm_make_vcpu_request(vcpu, req, cpus, me); 318 } 319 320 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 321 put_cpu(); 322 323 return called; 324 } 325 326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 327 struct kvm_vcpu *except) 328 { 329 struct kvm_vcpu *vcpu; 330 struct cpumask *cpus; 331 unsigned long i; 332 bool called; 333 int me; 334 335 me = get_cpu(); 336 337 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 338 cpumask_clear(cpus); 339 340 kvm_for_each_vcpu(i, vcpu, kvm) { 341 if (vcpu == except) 342 continue; 343 kvm_make_vcpu_request(vcpu, req, cpus, me); 344 } 345 346 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 347 put_cpu(); 348 349 return called; 350 } 351 352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 353 { 354 return kvm_make_all_cpus_request_except(kvm, req, NULL); 355 } 356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 357 358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 359 void kvm_flush_remote_tlbs(struct kvm *kvm) 360 { 361 ++kvm->stat.generic.remote_tlb_flush_requests; 362 363 /* 364 * We want to publish modifications to the page tables before reading 365 * mode. Pairs with a memory barrier in arch-specific code. 366 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 367 * and smp_mb in walk_shadow_page_lockless_begin/end. 368 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 369 * 370 * There is already an smp_mb__after_atomic() before 371 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 372 * barrier here. 373 */ 374 if (!kvm_arch_flush_remote_tlb(kvm) 375 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 376 ++kvm->stat.generic.remote_tlb_flush; 377 } 378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 379 #endif 380 381 static void kvm_flush_shadow_all(struct kvm *kvm) 382 { 383 kvm_arch_flush_shadow_all(kvm); 384 kvm_arch_guest_memory_reclaimed(kvm); 385 } 386 387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 389 gfp_t gfp_flags) 390 { 391 gfp_flags |= mc->gfp_zero; 392 393 if (mc->kmem_cache) 394 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 395 else 396 return (void *)__get_free_page(gfp_flags); 397 } 398 399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 400 { 401 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 402 void *obj; 403 404 if (mc->nobjs >= min) 405 return 0; 406 407 if (unlikely(!mc->objects)) { 408 if (WARN_ON_ONCE(!capacity)) 409 return -EIO; 410 411 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 412 if (!mc->objects) 413 return -ENOMEM; 414 415 mc->capacity = capacity; 416 } 417 418 /* It is illegal to request a different capacity across topups. */ 419 if (WARN_ON_ONCE(mc->capacity != capacity)) 420 return -EIO; 421 422 while (mc->nobjs < mc->capacity) { 423 obj = mmu_memory_cache_alloc_obj(mc, gfp); 424 if (!obj) 425 return mc->nobjs >= min ? 0 : -ENOMEM; 426 mc->objects[mc->nobjs++] = obj; 427 } 428 return 0; 429 } 430 431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 432 { 433 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 434 } 435 436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 437 { 438 return mc->nobjs; 439 } 440 441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 442 { 443 while (mc->nobjs) { 444 if (mc->kmem_cache) 445 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 446 else 447 free_page((unsigned long)mc->objects[--mc->nobjs]); 448 } 449 450 kvfree(mc->objects); 451 452 mc->objects = NULL; 453 mc->capacity = 0; 454 } 455 456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 457 { 458 void *p; 459 460 if (WARN_ON(!mc->nobjs)) 461 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 462 else 463 p = mc->objects[--mc->nobjs]; 464 BUG_ON(!p); 465 return p; 466 } 467 #endif 468 469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 470 { 471 mutex_init(&vcpu->mutex); 472 vcpu->cpu = -1; 473 vcpu->kvm = kvm; 474 vcpu->vcpu_id = id; 475 vcpu->pid = NULL; 476 #ifndef __KVM_HAVE_ARCH_WQP 477 rcuwait_init(&vcpu->wait); 478 #endif 479 kvm_async_pf_vcpu_init(vcpu); 480 481 kvm_vcpu_set_in_spin_loop(vcpu, false); 482 kvm_vcpu_set_dy_eligible(vcpu, false); 483 vcpu->preempted = false; 484 vcpu->ready = false; 485 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 486 vcpu->last_used_slot = NULL; 487 488 /* Fill the stats id string for the vcpu */ 489 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 490 task_pid_nr(current), id); 491 } 492 493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 494 { 495 kvm_arch_vcpu_destroy(vcpu); 496 kvm_dirty_ring_free(&vcpu->dirty_ring); 497 498 /* 499 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 500 * the vcpu->pid pointer, and at destruction time all file descriptors 501 * are already gone. 502 */ 503 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 504 505 free_page((unsigned long)vcpu->run); 506 kmem_cache_free(kvm_vcpu_cache, vcpu); 507 } 508 509 void kvm_destroy_vcpus(struct kvm *kvm) 510 { 511 unsigned long i; 512 struct kvm_vcpu *vcpu; 513 514 kvm_for_each_vcpu(i, vcpu, kvm) { 515 kvm_vcpu_destroy(vcpu); 516 xa_erase(&kvm->vcpu_array, i); 517 } 518 519 atomic_set(&kvm->online_vcpus, 0); 520 } 521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 522 523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 525 { 526 return container_of(mn, struct kvm, mmu_notifier); 527 } 528 529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 530 struct mm_struct *mm, 531 unsigned long start, unsigned long end) 532 { 533 struct kvm *kvm = mmu_notifier_to_kvm(mn); 534 int idx; 535 536 idx = srcu_read_lock(&kvm->srcu); 537 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 538 srcu_read_unlock(&kvm->srcu, idx); 539 } 540 541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 542 543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 544 unsigned long end); 545 546 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 547 548 struct kvm_hva_range { 549 unsigned long start; 550 unsigned long end; 551 pte_t pte; 552 hva_handler_t handler; 553 on_lock_fn_t on_lock; 554 on_unlock_fn_t on_unlock; 555 bool flush_on_ret; 556 bool may_block; 557 }; 558 559 /* 560 * Use a dedicated stub instead of NULL to indicate that there is no callback 561 * function/handler. The compiler technically can't guarantee that a real 562 * function will have a non-zero address, and so it will generate code to 563 * check for !NULL, whereas comparing against a stub will be elided at compile 564 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 565 */ 566 static void kvm_null_fn(void) 567 { 568 569 } 570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 571 572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 574 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 575 node; \ 576 node = interval_tree_iter_next(node, start, last)) \ 577 578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 579 const struct kvm_hva_range *range) 580 { 581 bool ret = false, locked = false; 582 struct kvm_gfn_range gfn_range; 583 struct kvm_memory_slot *slot; 584 struct kvm_memslots *slots; 585 int i, idx; 586 587 if (WARN_ON_ONCE(range->end <= range->start)) 588 return 0; 589 590 /* A null handler is allowed if and only if on_lock() is provided. */ 591 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 592 IS_KVM_NULL_FN(range->handler))) 593 return 0; 594 595 idx = srcu_read_lock(&kvm->srcu); 596 597 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 598 struct interval_tree_node *node; 599 600 slots = __kvm_memslots(kvm, i); 601 kvm_for_each_memslot_in_hva_range(node, slots, 602 range->start, range->end - 1) { 603 unsigned long hva_start, hva_end; 604 605 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 606 hva_start = max(range->start, slot->userspace_addr); 607 hva_end = min(range->end, slot->userspace_addr + 608 (slot->npages << PAGE_SHIFT)); 609 610 /* 611 * To optimize for the likely case where the address 612 * range is covered by zero or one memslots, don't 613 * bother making these conditional (to avoid writes on 614 * the second or later invocation of the handler). 615 */ 616 gfn_range.pte = range->pte; 617 gfn_range.may_block = range->may_block; 618 619 /* 620 * {gfn(page) | page intersects with [hva_start, hva_end)} = 621 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 622 */ 623 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 624 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 625 gfn_range.slot = slot; 626 627 if (!locked) { 628 locked = true; 629 KVM_MMU_LOCK(kvm); 630 if (!IS_KVM_NULL_FN(range->on_lock)) 631 range->on_lock(kvm, range->start, range->end); 632 if (IS_KVM_NULL_FN(range->handler)) 633 break; 634 } 635 ret |= range->handler(kvm, &gfn_range); 636 } 637 } 638 639 if (range->flush_on_ret && ret) 640 kvm_flush_remote_tlbs(kvm); 641 642 if (locked) { 643 KVM_MMU_UNLOCK(kvm); 644 if (!IS_KVM_NULL_FN(range->on_unlock)) 645 range->on_unlock(kvm); 646 } 647 648 srcu_read_unlock(&kvm->srcu, idx); 649 650 /* The notifiers are averse to booleans. :-( */ 651 return (int)ret; 652 } 653 654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 655 unsigned long start, 656 unsigned long end, 657 pte_t pte, 658 hva_handler_t handler) 659 { 660 struct kvm *kvm = mmu_notifier_to_kvm(mn); 661 const struct kvm_hva_range range = { 662 .start = start, 663 .end = end, 664 .pte = pte, 665 .handler = handler, 666 .on_lock = (void *)kvm_null_fn, 667 .on_unlock = (void *)kvm_null_fn, 668 .flush_on_ret = true, 669 .may_block = false, 670 }; 671 672 return __kvm_handle_hva_range(kvm, &range); 673 } 674 675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 676 unsigned long start, 677 unsigned long end, 678 hva_handler_t handler) 679 { 680 struct kvm *kvm = mmu_notifier_to_kvm(mn); 681 const struct kvm_hva_range range = { 682 .start = start, 683 .end = end, 684 .pte = __pte(0), 685 .handler = handler, 686 .on_lock = (void *)kvm_null_fn, 687 .on_unlock = (void *)kvm_null_fn, 688 .flush_on_ret = false, 689 .may_block = false, 690 }; 691 692 return __kvm_handle_hva_range(kvm, &range); 693 } 694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 695 struct mm_struct *mm, 696 unsigned long address, 697 pte_t pte) 698 { 699 struct kvm *kvm = mmu_notifier_to_kvm(mn); 700 701 trace_kvm_set_spte_hva(address); 702 703 /* 704 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 705 * If mmu_invalidate_in_progress is zero, then no in-progress 706 * invalidations, including this one, found a relevant memslot at 707 * start(); rechecking memslots here is unnecessary. Note, a false 708 * positive (count elevated by a different invalidation) is sub-optimal 709 * but functionally ok. 710 */ 711 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 712 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 713 return; 714 715 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 716 } 717 718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 719 unsigned long end) 720 { 721 /* 722 * The count increase must become visible at unlock time as no 723 * spte can be established without taking the mmu_lock and 724 * count is also read inside the mmu_lock critical section. 725 */ 726 kvm->mmu_invalidate_in_progress++; 727 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 728 kvm->mmu_invalidate_range_start = start; 729 kvm->mmu_invalidate_range_end = end; 730 } else { 731 /* 732 * Fully tracking multiple concurrent ranges has diminishing 733 * returns. Keep things simple and just find the minimal range 734 * which includes the current and new ranges. As there won't be 735 * enough information to subtract a range after its invalidate 736 * completes, any ranges invalidated concurrently will 737 * accumulate and persist until all outstanding invalidates 738 * complete. 739 */ 740 kvm->mmu_invalidate_range_start = 741 min(kvm->mmu_invalidate_range_start, start); 742 kvm->mmu_invalidate_range_end = 743 max(kvm->mmu_invalidate_range_end, end); 744 } 745 } 746 747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 748 const struct mmu_notifier_range *range) 749 { 750 struct kvm *kvm = mmu_notifier_to_kvm(mn); 751 const struct kvm_hva_range hva_range = { 752 .start = range->start, 753 .end = range->end, 754 .pte = __pte(0), 755 .handler = kvm_unmap_gfn_range, 756 .on_lock = kvm_mmu_invalidate_begin, 757 .on_unlock = kvm_arch_guest_memory_reclaimed, 758 .flush_on_ret = true, 759 .may_block = mmu_notifier_range_blockable(range), 760 }; 761 762 trace_kvm_unmap_hva_range(range->start, range->end); 763 764 /* 765 * Prevent memslot modification between range_start() and range_end() 766 * so that conditionally locking provides the same result in both 767 * functions. Without that guarantee, the mmu_invalidate_in_progress 768 * adjustments will be imbalanced. 769 * 770 * Pairs with the decrement in range_end(). 771 */ 772 spin_lock(&kvm->mn_invalidate_lock); 773 kvm->mn_active_invalidate_count++; 774 spin_unlock(&kvm->mn_invalidate_lock); 775 776 /* 777 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 778 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 779 * each cache's lock. There are relatively few caches in existence at 780 * any given time, and the caches themselves can check for hva overlap, 781 * i.e. don't need to rely on memslot overlap checks for performance. 782 * Because this runs without holding mmu_lock, the pfn caches must use 783 * mn_active_invalidate_count (see above) instead of 784 * mmu_invalidate_in_progress. 785 */ 786 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 787 hva_range.may_block); 788 789 __kvm_handle_hva_range(kvm, &hva_range); 790 791 return 0; 792 } 793 794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 795 unsigned long end) 796 { 797 /* 798 * This sequence increase will notify the kvm page fault that 799 * the page that is going to be mapped in the spte could have 800 * been freed. 801 */ 802 kvm->mmu_invalidate_seq++; 803 smp_wmb(); 804 /* 805 * The above sequence increase must be visible before the 806 * below count decrease, which is ensured by the smp_wmb above 807 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 808 */ 809 kvm->mmu_invalidate_in_progress--; 810 } 811 812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 813 const struct mmu_notifier_range *range) 814 { 815 struct kvm *kvm = mmu_notifier_to_kvm(mn); 816 const struct kvm_hva_range hva_range = { 817 .start = range->start, 818 .end = range->end, 819 .pte = __pte(0), 820 .handler = (void *)kvm_null_fn, 821 .on_lock = kvm_mmu_invalidate_end, 822 .on_unlock = (void *)kvm_null_fn, 823 .flush_on_ret = false, 824 .may_block = mmu_notifier_range_blockable(range), 825 }; 826 bool wake; 827 828 __kvm_handle_hva_range(kvm, &hva_range); 829 830 /* Pairs with the increment in range_start(). */ 831 spin_lock(&kvm->mn_invalidate_lock); 832 wake = (--kvm->mn_active_invalidate_count == 0); 833 spin_unlock(&kvm->mn_invalidate_lock); 834 835 /* 836 * There can only be one waiter, since the wait happens under 837 * slots_lock. 838 */ 839 if (wake) 840 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 841 842 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 843 } 844 845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 846 struct mm_struct *mm, 847 unsigned long start, 848 unsigned long end) 849 { 850 trace_kvm_age_hva(start, end); 851 852 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 853 } 854 855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 856 struct mm_struct *mm, 857 unsigned long start, 858 unsigned long end) 859 { 860 trace_kvm_age_hva(start, end); 861 862 /* 863 * Even though we do not flush TLB, this will still adversely 864 * affect performance on pre-Haswell Intel EPT, where there is 865 * no EPT Access Bit to clear so that we have to tear down EPT 866 * tables instead. If we find this unacceptable, we can always 867 * add a parameter to kvm_age_hva so that it effectively doesn't 868 * do anything on clear_young. 869 * 870 * Also note that currently we never issue secondary TLB flushes 871 * from clear_young, leaving this job up to the regular system 872 * cadence. If we find this inaccurate, we might come up with a 873 * more sophisticated heuristic later. 874 */ 875 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 876 } 877 878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 879 struct mm_struct *mm, 880 unsigned long address) 881 { 882 trace_kvm_test_age_hva(address); 883 884 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 885 kvm_test_age_gfn); 886 } 887 888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 889 struct mm_struct *mm) 890 { 891 struct kvm *kvm = mmu_notifier_to_kvm(mn); 892 int idx; 893 894 idx = srcu_read_lock(&kvm->srcu); 895 kvm_flush_shadow_all(kvm); 896 srcu_read_unlock(&kvm->srcu, idx); 897 } 898 899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 900 .invalidate_range = kvm_mmu_notifier_invalidate_range, 901 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 902 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 903 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 904 .clear_young = kvm_mmu_notifier_clear_young, 905 .test_young = kvm_mmu_notifier_test_young, 906 .change_pte = kvm_mmu_notifier_change_pte, 907 .release = kvm_mmu_notifier_release, 908 }; 909 910 static int kvm_init_mmu_notifier(struct kvm *kvm) 911 { 912 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 913 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 914 } 915 916 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 917 918 static int kvm_init_mmu_notifier(struct kvm *kvm) 919 { 920 return 0; 921 } 922 923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 924 925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 926 static int kvm_pm_notifier_call(struct notifier_block *bl, 927 unsigned long state, 928 void *unused) 929 { 930 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 931 932 return kvm_arch_pm_notifier(kvm, state); 933 } 934 935 static void kvm_init_pm_notifier(struct kvm *kvm) 936 { 937 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 938 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 939 kvm->pm_notifier.priority = INT_MAX; 940 register_pm_notifier(&kvm->pm_notifier); 941 } 942 943 static void kvm_destroy_pm_notifier(struct kvm *kvm) 944 { 945 unregister_pm_notifier(&kvm->pm_notifier); 946 } 947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 948 static void kvm_init_pm_notifier(struct kvm *kvm) 949 { 950 } 951 952 static void kvm_destroy_pm_notifier(struct kvm *kvm) 953 { 954 } 955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 956 957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 958 { 959 if (!memslot->dirty_bitmap) 960 return; 961 962 kvfree(memslot->dirty_bitmap); 963 memslot->dirty_bitmap = NULL; 964 } 965 966 /* This does not remove the slot from struct kvm_memslots data structures */ 967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 968 { 969 kvm_destroy_dirty_bitmap(slot); 970 971 kvm_arch_free_memslot(kvm, slot); 972 973 kfree(slot); 974 } 975 976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 977 { 978 struct hlist_node *idnode; 979 struct kvm_memory_slot *memslot; 980 int bkt; 981 982 /* 983 * The same memslot objects live in both active and inactive sets, 984 * arbitrarily free using index '1' so the second invocation of this 985 * function isn't operating over a structure with dangling pointers 986 * (even though this function isn't actually touching them). 987 */ 988 if (!slots->node_idx) 989 return; 990 991 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 992 kvm_free_memslot(kvm, memslot); 993 } 994 995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 996 { 997 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 998 case KVM_STATS_TYPE_INSTANT: 999 return 0444; 1000 case KVM_STATS_TYPE_CUMULATIVE: 1001 case KVM_STATS_TYPE_PEAK: 1002 default: 1003 return 0644; 1004 } 1005 } 1006 1007 1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1009 { 1010 int i; 1011 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1012 kvm_vcpu_stats_header.num_desc; 1013 1014 if (IS_ERR(kvm->debugfs_dentry)) 1015 return; 1016 1017 debugfs_remove_recursive(kvm->debugfs_dentry); 1018 1019 if (kvm->debugfs_stat_data) { 1020 for (i = 0; i < kvm_debugfs_num_entries; i++) 1021 kfree(kvm->debugfs_stat_data[i]); 1022 kfree(kvm->debugfs_stat_data); 1023 } 1024 } 1025 1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1027 { 1028 static DEFINE_MUTEX(kvm_debugfs_lock); 1029 struct dentry *dent; 1030 char dir_name[ITOA_MAX_LEN * 2]; 1031 struct kvm_stat_data *stat_data; 1032 const struct _kvm_stats_desc *pdesc; 1033 int i, ret = -ENOMEM; 1034 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1035 kvm_vcpu_stats_header.num_desc; 1036 1037 if (!debugfs_initialized()) 1038 return 0; 1039 1040 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1041 mutex_lock(&kvm_debugfs_lock); 1042 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1043 if (dent) { 1044 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1045 dput(dent); 1046 mutex_unlock(&kvm_debugfs_lock); 1047 return 0; 1048 } 1049 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1050 mutex_unlock(&kvm_debugfs_lock); 1051 if (IS_ERR(dent)) 1052 return 0; 1053 1054 kvm->debugfs_dentry = dent; 1055 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1056 sizeof(*kvm->debugfs_stat_data), 1057 GFP_KERNEL_ACCOUNT); 1058 if (!kvm->debugfs_stat_data) 1059 goto out_err; 1060 1061 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1062 pdesc = &kvm_vm_stats_desc[i]; 1063 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1064 if (!stat_data) 1065 goto out_err; 1066 1067 stat_data->kvm = kvm; 1068 stat_data->desc = pdesc; 1069 stat_data->kind = KVM_STAT_VM; 1070 kvm->debugfs_stat_data[i] = stat_data; 1071 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1072 kvm->debugfs_dentry, stat_data, 1073 &stat_fops_per_vm); 1074 } 1075 1076 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1077 pdesc = &kvm_vcpu_stats_desc[i]; 1078 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1079 if (!stat_data) 1080 goto out_err; 1081 1082 stat_data->kvm = kvm; 1083 stat_data->desc = pdesc; 1084 stat_data->kind = KVM_STAT_VCPU; 1085 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1086 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1087 kvm->debugfs_dentry, stat_data, 1088 &stat_fops_per_vm); 1089 } 1090 1091 ret = kvm_arch_create_vm_debugfs(kvm); 1092 if (ret) 1093 goto out_err; 1094 1095 return 0; 1096 out_err: 1097 kvm_destroy_vm_debugfs(kvm); 1098 return ret; 1099 } 1100 1101 /* 1102 * Called after the VM is otherwise initialized, but just before adding it to 1103 * the vm_list. 1104 */ 1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1106 { 1107 return 0; 1108 } 1109 1110 /* 1111 * Called just after removing the VM from the vm_list, but before doing any 1112 * other destruction. 1113 */ 1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1115 { 1116 } 1117 1118 /* 1119 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1120 * be setup already, so we can create arch-specific debugfs entries under it. 1121 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1122 * a per-arch destroy interface is not needed. 1123 */ 1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1125 { 1126 return 0; 1127 } 1128 1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1130 { 1131 struct kvm *kvm = kvm_arch_alloc_vm(); 1132 struct kvm_memslots *slots; 1133 int r = -ENOMEM; 1134 int i, j; 1135 1136 if (!kvm) 1137 return ERR_PTR(-ENOMEM); 1138 1139 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1140 __module_get(kvm_chardev_ops.owner); 1141 1142 KVM_MMU_LOCK_INIT(kvm); 1143 mmgrab(current->mm); 1144 kvm->mm = current->mm; 1145 kvm_eventfd_init(kvm); 1146 mutex_init(&kvm->lock); 1147 mutex_init(&kvm->irq_lock); 1148 mutex_init(&kvm->slots_lock); 1149 mutex_init(&kvm->slots_arch_lock); 1150 spin_lock_init(&kvm->mn_invalidate_lock); 1151 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1152 xa_init(&kvm->vcpu_array); 1153 1154 INIT_LIST_HEAD(&kvm->gpc_list); 1155 spin_lock_init(&kvm->gpc_lock); 1156 1157 INIT_LIST_HEAD(&kvm->devices); 1158 kvm->max_vcpus = KVM_MAX_VCPUS; 1159 1160 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1161 1162 /* 1163 * Force subsequent debugfs file creations to fail if the VM directory 1164 * is not created (by kvm_create_vm_debugfs()). 1165 */ 1166 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1167 1168 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1169 task_pid_nr(current)); 1170 1171 if (init_srcu_struct(&kvm->srcu)) 1172 goto out_err_no_srcu; 1173 if (init_srcu_struct(&kvm->irq_srcu)) 1174 goto out_err_no_irq_srcu; 1175 1176 refcount_set(&kvm->users_count, 1); 1177 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1178 for (j = 0; j < 2; j++) { 1179 slots = &kvm->__memslots[i][j]; 1180 1181 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1182 slots->hva_tree = RB_ROOT_CACHED; 1183 slots->gfn_tree = RB_ROOT; 1184 hash_init(slots->id_hash); 1185 slots->node_idx = j; 1186 1187 /* Generations must be different for each address space. */ 1188 slots->generation = i; 1189 } 1190 1191 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1192 } 1193 1194 for (i = 0; i < KVM_NR_BUSES; i++) { 1195 rcu_assign_pointer(kvm->buses[i], 1196 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1197 if (!kvm->buses[i]) 1198 goto out_err_no_arch_destroy_vm; 1199 } 1200 1201 r = kvm_arch_init_vm(kvm, type); 1202 if (r) 1203 goto out_err_no_arch_destroy_vm; 1204 1205 r = hardware_enable_all(); 1206 if (r) 1207 goto out_err_no_disable; 1208 1209 #ifdef CONFIG_HAVE_KVM_IRQFD 1210 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1211 #endif 1212 1213 r = kvm_init_mmu_notifier(kvm); 1214 if (r) 1215 goto out_err_no_mmu_notifier; 1216 1217 r = kvm_coalesced_mmio_init(kvm); 1218 if (r < 0) 1219 goto out_no_coalesced_mmio; 1220 1221 r = kvm_create_vm_debugfs(kvm, fdname); 1222 if (r) 1223 goto out_err_no_debugfs; 1224 1225 r = kvm_arch_post_init_vm(kvm); 1226 if (r) 1227 goto out_err; 1228 1229 mutex_lock(&kvm_lock); 1230 list_add(&kvm->vm_list, &vm_list); 1231 mutex_unlock(&kvm_lock); 1232 1233 preempt_notifier_inc(); 1234 kvm_init_pm_notifier(kvm); 1235 1236 return kvm; 1237 1238 out_err: 1239 kvm_destroy_vm_debugfs(kvm); 1240 out_err_no_debugfs: 1241 kvm_coalesced_mmio_free(kvm); 1242 out_no_coalesced_mmio: 1243 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1244 if (kvm->mmu_notifier.ops) 1245 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1246 #endif 1247 out_err_no_mmu_notifier: 1248 hardware_disable_all(); 1249 out_err_no_disable: 1250 kvm_arch_destroy_vm(kvm); 1251 out_err_no_arch_destroy_vm: 1252 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1253 for (i = 0; i < KVM_NR_BUSES; i++) 1254 kfree(kvm_get_bus(kvm, i)); 1255 cleanup_srcu_struct(&kvm->irq_srcu); 1256 out_err_no_irq_srcu: 1257 cleanup_srcu_struct(&kvm->srcu); 1258 out_err_no_srcu: 1259 kvm_arch_free_vm(kvm); 1260 mmdrop(current->mm); 1261 module_put(kvm_chardev_ops.owner); 1262 return ERR_PTR(r); 1263 } 1264 1265 static void kvm_destroy_devices(struct kvm *kvm) 1266 { 1267 struct kvm_device *dev, *tmp; 1268 1269 /* 1270 * We do not need to take the kvm->lock here, because nobody else 1271 * has a reference to the struct kvm at this point and therefore 1272 * cannot access the devices list anyhow. 1273 */ 1274 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1275 list_del(&dev->vm_node); 1276 dev->ops->destroy(dev); 1277 } 1278 } 1279 1280 static void kvm_destroy_vm(struct kvm *kvm) 1281 { 1282 int i; 1283 struct mm_struct *mm = kvm->mm; 1284 1285 kvm_destroy_pm_notifier(kvm); 1286 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1287 kvm_destroy_vm_debugfs(kvm); 1288 kvm_arch_sync_events(kvm); 1289 mutex_lock(&kvm_lock); 1290 list_del(&kvm->vm_list); 1291 mutex_unlock(&kvm_lock); 1292 kvm_arch_pre_destroy_vm(kvm); 1293 1294 kvm_free_irq_routing(kvm); 1295 for (i = 0; i < KVM_NR_BUSES; i++) { 1296 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1297 1298 if (bus) 1299 kvm_io_bus_destroy(bus); 1300 kvm->buses[i] = NULL; 1301 } 1302 kvm_coalesced_mmio_free(kvm); 1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1304 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1305 /* 1306 * At this point, pending calls to invalidate_range_start() 1307 * have completed but no more MMU notifiers will run, so 1308 * mn_active_invalidate_count may remain unbalanced. 1309 * No threads can be waiting in install_new_memslots as the 1310 * last reference on KVM has been dropped, but freeing 1311 * memslots would deadlock without this manual intervention. 1312 */ 1313 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1314 kvm->mn_active_invalidate_count = 0; 1315 #else 1316 kvm_flush_shadow_all(kvm); 1317 #endif 1318 kvm_arch_destroy_vm(kvm); 1319 kvm_destroy_devices(kvm); 1320 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1321 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1322 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1323 } 1324 cleanup_srcu_struct(&kvm->irq_srcu); 1325 cleanup_srcu_struct(&kvm->srcu); 1326 kvm_arch_free_vm(kvm); 1327 preempt_notifier_dec(); 1328 hardware_disable_all(); 1329 mmdrop(mm); 1330 module_put(kvm_chardev_ops.owner); 1331 } 1332 1333 void kvm_get_kvm(struct kvm *kvm) 1334 { 1335 refcount_inc(&kvm->users_count); 1336 } 1337 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1338 1339 /* 1340 * Make sure the vm is not during destruction, which is a safe version of 1341 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1342 */ 1343 bool kvm_get_kvm_safe(struct kvm *kvm) 1344 { 1345 return refcount_inc_not_zero(&kvm->users_count); 1346 } 1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1348 1349 void kvm_put_kvm(struct kvm *kvm) 1350 { 1351 if (refcount_dec_and_test(&kvm->users_count)) 1352 kvm_destroy_vm(kvm); 1353 } 1354 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1355 1356 /* 1357 * Used to put a reference that was taken on behalf of an object associated 1358 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1359 * of the new file descriptor fails and the reference cannot be transferred to 1360 * its final owner. In such cases, the caller is still actively using @kvm and 1361 * will fail miserably if the refcount unexpectedly hits zero. 1362 */ 1363 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1364 { 1365 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1366 } 1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1368 1369 static int kvm_vm_release(struct inode *inode, struct file *filp) 1370 { 1371 struct kvm *kvm = filp->private_data; 1372 1373 kvm_irqfd_release(kvm); 1374 1375 kvm_put_kvm(kvm); 1376 return 0; 1377 } 1378 1379 /* 1380 * Allocation size is twice as large as the actual dirty bitmap size. 1381 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1382 */ 1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1384 { 1385 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1386 1387 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1388 if (!memslot->dirty_bitmap) 1389 return -ENOMEM; 1390 1391 return 0; 1392 } 1393 1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1395 { 1396 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1397 int node_idx_inactive = active->node_idx ^ 1; 1398 1399 return &kvm->__memslots[as_id][node_idx_inactive]; 1400 } 1401 1402 /* 1403 * Helper to get the address space ID when one of memslot pointers may be NULL. 1404 * This also serves as a sanity that at least one of the pointers is non-NULL, 1405 * and that their address space IDs don't diverge. 1406 */ 1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1408 struct kvm_memory_slot *b) 1409 { 1410 if (WARN_ON_ONCE(!a && !b)) 1411 return 0; 1412 1413 if (!a) 1414 return b->as_id; 1415 if (!b) 1416 return a->as_id; 1417 1418 WARN_ON_ONCE(a->as_id != b->as_id); 1419 return a->as_id; 1420 } 1421 1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1423 struct kvm_memory_slot *slot) 1424 { 1425 struct rb_root *gfn_tree = &slots->gfn_tree; 1426 struct rb_node **node, *parent; 1427 int idx = slots->node_idx; 1428 1429 parent = NULL; 1430 for (node = &gfn_tree->rb_node; *node; ) { 1431 struct kvm_memory_slot *tmp; 1432 1433 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1434 parent = *node; 1435 if (slot->base_gfn < tmp->base_gfn) 1436 node = &(*node)->rb_left; 1437 else if (slot->base_gfn > tmp->base_gfn) 1438 node = &(*node)->rb_right; 1439 else 1440 BUG(); 1441 } 1442 1443 rb_link_node(&slot->gfn_node[idx], parent, node); 1444 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1445 } 1446 1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1448 struct kvm_memory_slot *slot) 1449 { 1450 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1451 } 1452 1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1454 struct kvm_memory_slot *old, 1455 struct kvm_memory_slot *new) 1456 { 1457 int idx = slots->node_idx; 1458 1459 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1460 1461 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1462 &slots->gfn_tree); 1463 } 1464 1465 /* 1466 * Replace @old with @new in the inactive memslots. 1467 * 1468 * With NULL @old this simply adds @new. 1469 * With NULL @new this simply removes @old. 1470 * 1471 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1472 * appropriately. 1473 */ 1474 static void kvm_replace_memslot(struct kvm *kvm, 1475 struct kvm_memory_slot *old, 1476 struct kvm_memory_slot *new) 1477 { 1478 int as_id = kvm_memslots_get_as_id(old, new); 1479 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1480 int idx = slots->node_idx; 1481 1482 if (old) { 1483 hash_del(&old->id_node[idx]); 1484 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1485 1486 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1487 atomic_long_set(&slots->last_used_slot, (long)new); 1488 1489 if (!new) { 1490 kvm_erase_gfn_node(slots, old); 1491 return; 1492 } 1493 } 1494 1495 /* 1496 * Initialize @new's hva range. Do this even when replacing an @old 1497 * slot, kvm_copy_memslot() deliberately does not touch node data. 1498 */ 1499 new->hva_node[idx].start = new->userspace_addr; 1500 new->hva_node[idx].last = new->userspace_addr + 1501 (new->npages << PAGE_SHIFT) - 1; 1502 1503 /* 1504 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1505 * hva_node needs to be swapped with remove+insert even though hva can't 1506 * change when replacing an existing slot. 1507 */ 1508 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1509 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1510 1511 /* 1512 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1513 * switch the node in the gfn tree instead of removing the old and 1514 * inserting the new as two separate operations. Replacement is a 1515 * single O(1) operation versus two O(log(n)) operations for 1516 * remove+insert. 1517 */ 1518 if (old && old->base_gfn == new->base_gfn) { 1519 kvm_replace_gfn_node(slots, old, new); 1520 } else { 1521 if (old) 1522 kvm_erase_gfn_node(slots, old); 1523 kvm_insert_gfn_node(slots, new); 1524 } 1525 } 1526 1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1528 { 1529 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1530 1531 #ifdef __KVM_HAVE_READONLY_MEM 1532 valid_flags |= KVM_MEM_READONLY; 1533 #endif 1534 1535 if (mem->flags & ~valid_flags) 1536 return -EINVAL; 1537 1538 return 0; 1539 } 1540 1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1542 { 1543 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1544 1545 /* Grab the generation from the activate memslots. */ 1546 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1547 1548 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1549 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1550 1551 /* 1552 * Do not store the new memslots while there are invalidations in 1553 * progress, otherwise the locking in invalidate_range_start and 1554 * invalidate_range_end will be unbalanced. 1555 */ 1556 spin_lock(&kvm->mn_invalidate_lock); 1557 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1558 while (kvm->mn_active_invalidate_count) { 1559 set_current_state(TASK_UNINTERRUPTIBLE); 1560 spin_unlock(&kvm->mn_invalidate_lock); 1561 schedule(); 1562 spin_lock(&kvm->mn_invalidate_lock); 1563 } 1564 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1565 rcu_assign_pointer(kvm->memslots[as_id], slots); 1566 spin_unlock(&kvm->mn_invalidate_lock); 1567 1568 /* 1569 * Acquired in kvm_set_memslot. Must be released before synchronize 1570 * SRCU below in order to avoid deadlock with another thread 1571 * acquiring the slots_arch_lock in an srcu critical section. 1572 */ 1573 mutex_unlock(&kvm->slots_arch_lock); 1574 1575 synchronize_srcu_expedited(&kvm->srcu); 1576 1577 /* 1578 * Increment the new memslot generation a second time, dropping the 1579 * update in-progress flag and incrementing the generation based on 1580 * the number of address spaces. This provides a unique and easily 1581 * identifiable generation number while the memslots are in flux. 1582 */ 1583 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1584 1585 /* 1586 * Generations must be unique even across address spaces. We do not need 1587 * a global counter for that, instead the generation space is evenly split 1588 * across address spaces. For example, with two address spaces, address 1589 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1590 * use generations 1, 3, 5, ... 1591 */ 1592 gen += KVM_ADDRESS_SPACE_NUM; 1593 1594 kvm_arch_memslots_updated(kvm, gen); 1595 1596 slots->generation = gen; 1597 } 1598 1599 static int kvm_prepare_memory_region(struct kvm *kvm, 1600 const struct kvm_memory_slot *old, 1601 struct kvm_memory_slot *new, 1602 enum kvm_mr_change change) 1603 { 1604 int r; 1605 1606 /* 1607 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1608 * will be freed on "commit". If logging is enabled in both old and 1609 * new, reuse the existing bitmap. If logging is enabled only in the 1610 * new and KVM isn't using a ring buffer, allocate and initialize a 1611 * new bitmap. 1612 */ 1613 if (change != KVM_MR_DELETE) { 1614 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1615 new->dirty_bitmap = NULL; 1616 else if (old && old->dirty_bitmap) 1617 new->dirty_bitmap = old->dirty_bitmap; 1618 else if (kvm_use_dirty_bitmap(kvm)) { 1619 r = kvm_alloc_dirty_bitmap(new); 1620 if (r) 1621 return r; 1622 1623 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1624 bitmap_set(new->dirty_bitmap, 0, new->npages); 1625 } 1626 } 1627 1628 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1629 1630 /* Free the bitmap on failure if it was allocated above. */ 1631 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1632 kvm_destroy_dirty_bitmap(new); 1633 1634 return r; 1635 } 1636 1637 static void kvm_commit_memory_region(struct kvm *kvm, 1638 struct kvm_memory_slot *old, 1639 const struct kvm_memory_slot *new, 1640 enum kvm_mr_change change) 1641 { 1642 int old_flags = old ? old->flags : 0; 1643 int new_flags = new ? new->flags : 0; 1644 /* 1645 * Update the total number of memslot pages before calling the arch 1646 * hook so that architectures can consume the result directly. 1647 */ 1648 if (change == KVM_MR_DELETE) 1649 kvm->nr_memslot_pages -= old->npages; 1650 else if (change == KVM_MR_CREATE) 1651 kvm->nr_memslot_pages += new->npages; 1652 1653 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1654 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1655 atomic_set(&kvm->nr_memslots_dirty_logging, 1656 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1657 } 1658 1659 kvm_arch_commit_memory_region(kvm, old, new, change); 1660 1661 switch (change) { 1662 case KVM_MR_CREATE: 1663 /* Nothing more to do. */ 1664 break; 1665 case KVM_MR_DELETE: 1666 /* Free the old memslot and all its metadata. */ 1667 kvm_free_memslot(kvm, old); 1668 break; 1669 case KVM_MR_MOVE: 1670 case KVM_MR_FLAGS_ONLY: 1671 /* 1672 * Free the dirty bitmap as needed; the below check encompasses 1673 * both the flags and whether a ring buffer is being used) 1674 */ 1675 if (old->dirty_bitmap && !new->dirty_bitmap) 1676 kvm_destroy_dirty_bitmap(old); 1677 1678 /* 1679 * The final quirk. Free the detached, old slot, but only its 1680 * memory, not any metadata. Metadata, including arch specific 1681 * data, may be reused by @new. 1682 */ 1683 kfree(old); 1684 break; 1685 default: 1686 BUG(); 1687 } 1688 } 1689 1690 /* 1691 * Activate @new, which must be installed in the inactive slots by the caller, 1692 * by swapping the active slots and then propagating @new to @old once @old is 1693 * unreachable and can be safely modified. 1694 * 1695 * With NULL @old this simply adds @new to @active (while swapping the sets). 1696 * With NULL @new this simply removes @old from @active and frees it 1697 * (while also swapping the sets). 1698 */ 1699 static void kvm_activate_memslot(struct kvm *kvm, 1700 struct kvm_memory_slot *old, 1701 struct kvm_memory_slot *new) 1702 { 1703 int as_id = kvm_memslots_get_as_id(old, new); 1704 1705 kvm_swap_active_memslots(kvm, as_id); 1706 1707 /* Propagate the new memslot to the now inactive memslots. */ 1708 kvm_replace_memslot(kvm, old, new); 1709 } 1710 1711 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1712 const struct kvm_memory_slot *src) 1713 { 1714 dest->base_gfn = src->base_gfn; 1715 dest->npages = src->npages; 1716 dest->dirty_bitmap = src->dirty_bitmap; 1717 dest->arch = src->arch; 1718 dest->userspace_addr = src->userspace_addr; 1719 dest->flags = src->flags; 1720 dest->id = src->id; 1721 dest->as_id = src->as_id; 1722 } 1723 1724 static void kvm_invalidate_memslot(struct kvm *kvm, 1725 struct kvm_memory_slot *old, 1726 struct kvm_memory_slot *invalid_slot) 1727 { 1728 /* 1729 * Mark the current slot INVALID. As with all memslot modifications, 1730 * this must be done on an unreachable slot to avoid modifying the 1731 * current slot in the active tree. 1732 */ 1733 kvm_copy_memslot(invalid_slot, old); 1734 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1735 kvm_replace_memslot(kvm, old, invalid_slot); 1736 1737 /* 1738 * Activate the slot that is now marked INVALID, but don't propagate 1739 * the slot to the now inactive slots. The slot is either going to be 1740 * deleted or recreated as a new slot. 1741 */ 1742 kvm_swap_active_memslots(kvm, old->as_id); 1743 1744 /* 1745 * From this point no new shadow pages pointing to a deleted, or moved, 1746 * memslot will be created. Validation of sp->gfn happens in: 1747 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1748 * - kvm_is_visible_gfn (mmu_check_root) 1749 */ 1750 kvm_arch_flush_shadow_memslot(kvm, old); 1751 kvm_arch_guest_memory_reclaimed(kvm); 1752 1753 /* Was released by kvm_swap_active_memslots, reacquire. */ 1754 mutex_lock(&kvm->slots_arch_lock); 1755 1756 /* 1757 * Copy the arch-specific field of the newly-installed slot back to the 1758 * old slot as the arch data could have changed between releasing 1759 * slots_arch_lock in install_new_memslots() and re-acquiring the lock 1760 * above. Writers are required to retrieve memslots *after* acquiring 1761 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1762 */ 1763 old->arch = invalid_slot->arch; 1764 } 1765 1766 static void kvm_create_memslot(struct kvm *kvm, 1767 struct kvm_memory_slot *new) 1768 { 1769 /* Add the new memslot to the inactive set and activate. */ 1770 kvm_replace_memslot(kvm, NULL, new); 1771 kvm_activate_memslot(kvm, NULL, new); 1772 } 1773 1774 static void kvm_delete_memslot(struct kvm *kvm, 1775 struct kvm_memory_slot *old, 1776 struct kvm_memory_slot *invalid_slot) 1777 { 1778 /* 1779 * Remove the old memslot (in the inactive memslots) by passing NULL as 1780 * the "new" slot, and for the invalid version in the active slots. 1781 */ 1782 kvm_replace_memslot(kvm, old, NULL); 1783 kvm_activate_memslot(kvm, invalid_slot, NULL); 1784 } 1785 1786 static void kvm_move_memslot(struct kvm *kvm, 1787 struct kvm_memory_slot *old, 1788 struct kvm_memory_slot *new, 1789 struct kvm_memory_slot *invalid_slot) 1790 { 1791 /* 1792 * Replace the old memslot in the inactive slots, and then swap slots 1793 * and replace the current INVALID with the new as well. 1794 */ 1795 kvm_replace_memslot(kvm, old, new); 1796 kvm_activate_memslot(kvm, invalid_slot, new); 1797 } 1798 1799 static void kvm_update_flags_memslot(struct kvm *kvm, 1800 struct kvm_memory_slot *old, 1801 struct kvm_memory_slot *new) 1802 { 1803 /* 1804 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1805 * an intermediate step. Instead, the old memslot is simply replaced 1806 * with a new, updated copy in both memslot sets. 1807 */ 1808 kvm_replace_memslot(kvm, old, new); 1809 kvm_activate_memslot(kvm, old, new); 1810 } 1811 1812 static int kvm_set_memslot(struct kvm *kvm, 1813 struct kvm_memory_slot *old, 1814 struct kvm_memory_slot *new, 1815 enum kvm_mr_change change) 1816 { 1817 struct kvm_memory_slot *invalid_slot; 1818 int r; 1819 1820 /* 1821 * Released in kvm_swap_active_memslots. 1822 * 1823 * Must be held from before the current memslots are copied until 1824 * after the new memslots are installed with rcu_assign_pointer, 1825 * then released before the synchronize srcu in kvm_swap_active_memslots. 1826 * 1827 * When modifying memslots outside of the slots_lock, must be held 1828 * before reading the pointer to the current memslots until after all 1829 * changes to those memslots are complete. 1830 * 1831 * These rules ensure that installing new memslots does not lose 1832 * changes made to the previous memslots. 1833 */ 1834 mutex_lock(&kvm->slots_arch_lock); 1835 1836 /* 1837 * Invalidate the old slot if it's being deleted or moved. This is 1838 * done prior to actually deleting/moving the memslot to allow vCPUs to 1839 * continue running by ensuring there are no mappings or shadow pages 1840 * for the memslot when it is deleted/moved. Without pre-invalidation 1841 * (and without a lock), a window would exist between effecting the 1842 * delete/move and committing the changes in arch code where KVM or a 1843 * guest could access a non-existent memslot. 1844 * 1845 * Modifications are done on a temporary, unreachable slot. The old 1846 * slot needs to be preserved in case a later step fails and the 1847 * invalidation needs to be reverted. 1848 */ 1849 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1850 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1851 if (!invalid_slot) { 1852 mutex_unlock(&kvm->slots_arch_lock); 1853 return -ENOMEM; 1854 } 1855 kvm_invalidate_memslot(kvm, old, invalid_slot); 1856 } 1857 1858 r = kvm_prepare_memory_region(kvm, old, new, change); 1859 if (r) { 1860 /* 1861 * For DELETE/MOVE, revert the above INVALID change. No 1862 * modifications required since the original slot was preserved 1863 * in the inactive slots. Changing the active memslots also 1864 * release slots_arch_lock. 1865 */ 1866 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1867 kvm_activate_memslot(kvm, invalid_slot, old); 1868 kfree(invalid_slot); 1869 } else { 1870 mutex_unlock(&kvm->slots_arch_lock); 1871 } 1872 return r; 1873 } 1874 1875 /* 1876 * For DELETE and MOVE, the working slot is now active as the INVALID 1877 * version of the old slot. MOVE is particularly special as it reuses 1878 * the old slot and returns a copy of the old slot (in working_slot). 1879 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1880 * old slot is detached but otherwise preserved. 1881 */ 1882 if (change == KVM_MR_CREATE) 1883 kvm_create_memslot(kvm, new); 1884 else if (change == KVM_MR_DELETE) 1885 kvm_delete_memslot(kvm, old, invalid_slot); 1886 else if (change == KVM_MR_MOVE) 1887 kvm_move_memslot(kvm, old, new, invalid_slot); 1888 else if (change == KVM_MR_FLAGS_ONLY) 1889 kvm_update_flags_memslot(kvm, old, new); 1890 else 1891 BUG(); 1892 1893 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1894 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1895 kfree(invalid_slot); 1896 1897 /* 1898 * No need to refresh new->arch, changes after dropping slots_arch_lock 1899 * will directly hit the final, active memslot. Architectures are 1900 * responsible for knowing that new->arch may be stale. 1901 */ 1902 kvm_commit_memory_region(kvm, old, new, change); 1903 1904 return 0; 1905 } 1906 1907 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1908 gfn_t start, gfn_t end) 1909 { 1910 struct kvm_memslot_iter iter; 1911 1912 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1913 if (iter.slot->id != id) 1914 return true; 1915 } 1916 1917 return false; 1918 } 1919 1920 /* 1921 * Allocate some memory and give it an address in the guest physical address 1922 * space. 1923 * 1924 * Discontiguous memory is allowed, mostly for framebuffers. 1925 * 1926 * Must be called holding kvm->slots_lock for write. 1927 */ 1928 int __kvm_set_memory_region(struct kvm *kvm, 1929 const struct kvm_userspace_memory_region *mem) 1930 { 1931 struct kvm_memory_slot *old, *new; 1932 struct kvm_memslots *slots; 1933 enum kvm_mr_change change; 1934 unsigned long npages; 1935 gfn_t base_gfn; 1936 int as_id, id; 1937 int r; 1938 1939 r = check_memory_region_flags(mem); 1940 if (r) 1941 return r; 1942 1943 as_id = mem->slot >> 16; 1944 id = (u16)mem->slot; 1945 1946 /* General sanity checks */ 1947 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1948 (mem->memory_size != (unsigned long)mem->memory_size)) 1949 return -EINVAL; 1950 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1951 return -EINVAL; 1952 /* We can read the guest memory with __xxx_user() later on. */ 1953 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1954 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1955 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1956 mem->memory_size)) 1957 return -EINVAL; 1958 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1959 return -EINVAL; 1960 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1961 return -EINVAL; 1962 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1963 return -EINVAL; 1964 1965 slots = __kvm_memslots(kvm, as_id); 1966 1967 /* 1968 * Note, the old memslot (and the pointer itself!) may be invalidated 1969 * and/or destroyed by kvm_set_memslot(). 1970 */ 1971 old = id_to_memslot(slots, id); 1972 1973 if (!mem->memory_size) { 1974 if (!old || !old->npages) 1975 return -EINVAL; 1976 1977 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1978 return -EIO; 1979 1980 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1981 } 1982 1983 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1984 npages = (mem->memory_size >> PAGE_SHIFT); 1985 1986 if (!old || !old->npages) { 1987 change = KVM_MR_CREATE; 1988 1989 /* 1990 * To simplify KVM internals, the total number of pages across 1991 * all memslots must fit in an unsigned long. 1992 */ 1993 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1994 return -EINVAL; 1995 } else { /* Modify an existing slot. */ 1996 if ((mem->userspace_addr != old->userspace_addr) || 1997 (npages != old->npages) || 1998 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1999 return -EINVAL; 2000 2001 if (base_gfn != old->base_gfn) 2002 change = KVM_MR_MOVE; 2003 else if (mem->flags != old->flags) 2004 change = KVM_MR_FLAGS_ONLY; 2005 else /* Nothing to change. */ 2006 return 0; 2007 } 2008 2009 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2010 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2011 return -EEXIST; 2012 2013 /* Allocate a slot that will persist in the memslot. */ 2014 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2015 if (!new) 2016 return -ENOMEM; 2017 2018 new->as_id = as_id; 2019 new->id = id; 2020 new->base_gfn = base_gfn; 2021 new->npages = npages; 2022 new->flags = mem->flags; 2023 new->userspace_addr = mem->userspace_addr; 2024 2025 r = kvm_set_memslot(kvm, old, new, change); 2026 if (r) 2027 kfree(new); 2028 return r; 2029 } 2030 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2031 2032 int kvm_set_memory_region(struct kvm *kvm, 2033 const struct kvm_userspace_memory_region *mem) 2034 { 2035 int r; 2036 2037 mutex_lock(&kvm->slots_lock); 2038 r = __kvm_set_memory_region(kvm, mem); 2039 mutex_unlock(&kvm->slots_lock); 2040 return r; 2041 } 2042 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2043 2044 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2045 struct kvm_userspace_memory_region *mem) 2046 { 2047 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2048 return -EINVAL; 2049 2050 return kvm_set_memory_region(kvm, mem); 2051 } 2052 2053 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2054 /** 2055 * kvm_get_dirty_log - get a snapshot of dirty pages 2056 * @kvm: pointer to kvm instance 2057 * @log: slot id and address to which we copy the log 2058 * @is_dirty: set to '1' if any dirty pages were found 2059 * @memslot: set to the associated memslot, always valid on success 2060 */ 2061 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2062 int *is_dirty, struct kvm_memory_slot **memslot) 2063 { 2064 struct kvm_memslots *slots; 2065 int i, as_id, id; 2066 unsigned long n; 2067 unsigned long any = 0; 2068 2069 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2070 if (!kvm_use_dirty_bitmap(kvm)) 2071 return -ENXIO; 2072 2073 *memslot = NULL; 2074 *is_dirty = 0; 2075 2076 as_id = log->slot >> 16; 2077 id = (u16)log->slot; 2078 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2079 return -EINVAL; 2080 2081 slots = __kvm_memslots(kvm, as_id); 2082 *memslot = id_to_memslot(slots, id); 2083 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2084 return -ENOENT; 2085 2086 kvm_arch_sync_dirty_log(kvm, *memslot); 2087 2088 n = kvm_dirty_bitmap_bytes(*memslot); 2089 2090 for (i = 0; !any && i < n/sizeof(long); ++i) 2091 any = (*memslot)->dirty_bitmap[i]; 2092 2093 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2094 return -EFAULT; 2095 2096 if (any) 2097 *is_dirty = 1; 2098 return 0; 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2101 2102 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2103 /** 2104 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2105 * and reenable dirty page tracking for the corresponding pages. 2106 * @kvm: pointer to kvm instance 2107 * @log: slot id and address to which we copy the log 2108 * 2109 * We need to keep it in mind that VCPU threads can write to the bitmap 2110 * concurrently. So, to avoid losing track of dirty pages we keep the 2111 * following order: 2112 * 2113 * 1. Take a snapshot of the bit and clear it if needed. 2114 * 2. Write protect the corresponding page. 2115 * 3. Copy the snapshot to the userspace. 2116 * 4. Upon return caller flushes TLB's if needed. 2117 * 2118 * Between 2 and 4, the guest may write to the page using the remaining TLB 2119 * entry. This is not a problem because the page is reported dirty using 2120 * the snapshot taken before and step 4 ensures that writes done after 2121 * exiting to userspace will be logged for the next call. 2122 * 2123 */ 2124 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2125 { 2126 struct kvm_memslots *slots; 2127 struct kvm_memory_slot *memslot; 2128 int i, as_id, id; 2129 unsigned long n; 2130 unsigned long *dirty_bitmap; 2131 unsigned long *dirty_bitmap_buffer; 2132 bool flush; 2133 2134 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2135 if (!kvm_use_dirty_bitmap(kvm)) 2136 return -ENXIO; 2137 2138 as_id = log->slot >> 16; 2139 id = (u16)log->slot; 2140 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2141 return -EINVAL; 2142 2143 slots = __kvm_memslots(kvm, as_id); 2144 memslot = id_to_memslot(slots, id); 2145 if (!memslot || !memslot->dirty_bitmap) 2146 return -ENOENT; 2147 2148 dirty_bitmap = memslot->dirty_bitmap; 2149 2150 kvm_arch_sync_dirty_log(kvm, memslot); 2151 2152 n = kvm_dirty_bitmap_bytes(memslot); 2153 flush = false; 2154 if (kvm->manual_dirty_log_protect) { 2155 /* 2156 * Unlike kvm_get_dirty_log, we always return false in *flush, 2157 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2158 * is some code duplication between this function and 2159 * kvm_get_dirty_log, but hopefully all architecture 2160 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2161 * can be eliminated. 2162 */ 2163 dirty_bitmap_buffer = dirty_bitmap; 2164 } else { 2165 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2166 memset(dirty_bitmap_buffer, 0, n); 2167 2168 KVM_MMU_LOCK(kvm); 2169 for (i = 0; i < n / sizeof(long); i++) { 2170 unsigned long mask; 2171 gfn_t offset; 2172 2173 if (!dirty_bitmap[i]) 2174 continue; 2175 2176 flush = true; 2177 mask = xchg(&dirty_bitmap[i], 0); 2178 dirty_bitmap_buffer[i] = mask; 2179 2180 offset = i * BITS_PER_LONG; 2181 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2182 offset, mask); 2183 } 2184 KVM_MMU_UNLOCK(kvm); 2185 } 2186 2187 if (flush) 2188 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2189 2190 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2191 return -EFAULT; 2192 return 0; 2193 } 2194 2195 2196 /** 2197 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2198 * @kvm: kvm instance 2199 * @log: slot id and address to which we copy the log 2200 * 2201 * Steps 1-4 below provide general overview of dirty page logging. See 2202 * kvm_get_dirty_log_protect() function description for additional details. 2203 * 2204 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2205 * always flush the TLB (step 4) even if previous step failed and the dirty 2206 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2207 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2208 * writes will be marked dirty for next log read. 2209 * 2210 * 1. Take a snapshot of the bit and clear it if needed. 2211 * 2. Write protect the corresponding page. 2212 * 3. Copy the snapshot to the userspace. 2213 * 4. Flush TLB's if needed. 2214 */ 2215 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2216 struct kvm_dirty_log *log) 2217 { 2218 int r; 2219 2220 mutex_lock(&kvm->slots_lock); 2221 2222 r = kvm_get_dirty_log_protect(kvm, log); 2223 2224 mutex_unlock(&kvm->slots_lock); 2225 return r; 2226 } 2227 2228 /** 2229 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2230 * and reenable dirty page tracking for the corresponding pages. 2231 * @kvm: pointer to kvm instance 2232 * @log: slot id and address from which to fetch the bitmap of dirty pages 2233 */ 2234 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2235 struct kvm_clear_dirty_log *log) 2236 { 2237 struct kvm_memslots *slots; 2238 struct kvm_memory_slot *memslot; 2239 int as_id, id; 2240 gfn_t offset; 2241 unsigned long i, n; 2242 unsigned long *dirty_bitmap; 2243 unsigned long *dirty_bitmap_buffer; 2244 bool flush; 2245 2246 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2247 if (!kvm_use_dirty_bitmap(kvm)) 2248 return -ENXIO; 2249 2250 as_id = log->slot >> 16; 2251 id = (u16)log->slot; 2252 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2253 return -EINVAL; 2254 2255 if (log->first_page & 63) 2256 return -EINVAL; 2257 2258 slots = __kvm_memslots(kvm, as_id); 2259 memslot = id_to_memslot(slots, id); 2260 if (!memslot || !memslot->dirty_bitmap) 2261 return -ENOENT; 2262 2263 dirty_bitmap = memslot->dirty_bitmap; 2264 2265 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2266 2267 if (log->first_page > memslot->npages || 2268 log->num_pages > memslot->npages - log->first_page || 2269 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2270 return -EINVAL; 2271 2272 kvm_arch_sync_dirty_log(kvm, memslot); 2273 2274 flush = false; 2275 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2276 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2277 return -EFAULT; 2278 2279 KVM_MMU_LOCK(kvm); 2280 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2281 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2282 i++, offset += BITS_PER_LONG) { 2283 unsigned long mask = *dirty_bitmap_buffer++; 2284 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2285 if (!mask) 2286 continue; 2287 2288 mask &= atomic_long_fetch_andnot(mask, p); 2289 2290 /* 2291 * mask contains the bits that really have been cleared. This 2292 * never includes any bits beyond the length of the memslot (if 2293 * the length is not aligned to 64 pages), therefore it is not 2294 * a problem if userspace sets them in log->dirty_bitmap. 2295 */ 2296 if (mask) { 2297 flush = true; 2298 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2299 offset, mask); 2300 } 2301 } 2302 KVM_MMU_UNLOCK(kvm); 2303 2304 if (flush) 2305 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2306 2307 return 0; 2308 } 2309 2310 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2311 struct kvm_clear_dirty_log *log) 2312 { 2313 int r; 2314 2315 mutex_lock(&kvm->slots_lock); 2316 2317 r = kvm_clear_dirty_log_protect(kvm, log); 2318 2319 mutex_unlock(&kvm->slots_lock); 2320 return r; 2321 } 2322 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2323 2324 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2325 { 2326 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2327 } 2328 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2329 2330 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2331 { 2332 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2333 u64 gen = slots->generation; 2334 struct kvm_memory_slot *slot; 2335 2336 /* 2337 * This also protects against using a memslot from a different address space, 2338 * since different address spaces have different generation numbers. 2339 */ 2340 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2341 vcpu->last_used_slot = NULL; 2342 vcpu->last_used_slot_gen = gen; 2343 } 2344 2345 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2346 if (slot) 2347 return slot; 2348 2349 /* 2350 * Fall back to searching all memslots. We purposely use 2351 * search_memslots() instead of __gfn_to_memslot() to avoid 2352 * thrashing the VM-wide last_used_slot in kvm_memslots. 2353 */ 2354 slot = search_memslots(slots, gfn, false); 2355 if (slot) { 2356 vcpu->last_used_slot = slot; 2357 return slot; 2358 } 2359 2360 return NULL; 2361 } 2362 2363 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2364 { 2365 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2366 2367 return kvm_is_visible_memslot(memslot); 2368 } 2369 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2370 2371 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2372 { 2373 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2374 2375 return kvm_is_visible_memslot(memslot); 2376 } 2377 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2378 2379 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2380 { 2381 struct vm_area_struct *vma; 2382 unsigned long addr, size; 2383 2384 size = PAGE_SIZE; 2385 2386 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2387 if (kvm_is_error_hva(addr)) 2388 return PAGE_SIZE; 2389 2390 mmap_read_lock(current->mm); 2391 vma = find_vma(current->mm, addr); 2392 if (!vma) 2393 goto out; 2394 2395 size = vma_kernel_pagesize(vma); 2396 2397 out: 2398 mmap_read_unlock(current->mm); 2399 2400 return size; 2401 } 2402 2403 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2404 { 2405 return slot->flags & KVM_MEM_READONLY; 2406 } 2407 2408 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2409 gfn_t *nr_pages, bool write) 2410 { 2411 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2412 return KVM_HVA_ERR_BAD; 2413 2414 if (memslot_is_readonly(slot) && write) 2415 return KVM_HVA_ERR_RO_BAD; 2416 2417 if (nr_pages) 2418 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2419 2420 return __gfn_to_hva_memslot(slot, gfn); 2421 } 2422 2423 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2424 gfn_t *nr_pages) 2425 { 2426 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2427 } 2428 2429 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2430 gfn_t gfn) 2431 { 2432 return gfn_to_hva_many(slot, gfn, NULL); 2433 } 2434 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2435 2436 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2437 { 2438 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2439 } 2440 EXPORT_SYMBOL_GPL(gfn_to_hva); 2441 2442 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2443 { 2444 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2445 } 2446 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2447 2448 /* 2449 * Return the hva of a @gfn and the R/W attribute if possible. 2450 * 2451 * @slot: the kvm_memory_slot which contains @gfn 2452 * @gfn: the gfn to be translated 2453 * @writable: used to return the read/write attribute of the @slot if the hva 2454 * is valid and @writable is not NULL 2455 */ 2456 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2457 gfn_t gfn, bool *writable) 2458 { 2459 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2460 2461 if (!kvm_is_error_hva(hva) && writable) 2462 *writable = !memslot_is_readonly(slot); 2463 2464 return hva; 2465 } 2466 2467 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2468 { 2469 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2470 2471 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2472 } 2473 2474 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2475 { 2476 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2477 2478 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2479 } 2480 2481 static inline int check_user_page_hwpoison(unsigned long addr) 2482 { 2483 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2484 2485 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2486 return rc == -EHWPOISON; 2487 } 2488 2489 /* 2490 * The fast path to get the writable pfn which will be stored in @pfn, 2491 * true indicates success, otherwise false is returned. It's also the 2492 * only part that runs if we can in atomic context. 2493 */ 2494 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2495 bool *writable, kvm_pfn_t *pfn) 2496 { 2497 struct page *page[1]; 2498 2499 /* 2500 * Fast pin a writable pfn only if it is a write fault request 2501 * or the caller allows to map a writable pfn for a read fault 2502 * request. 2503 */ 2504 if (!(write_fault || writable)) 2505 return false; 2506 2507 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2508 *pfn = page_to_pfn(page[0]); 2509 2510 if (writable) 2511 *writable = true; 2512 return true; 2513 } 2514 2515 return false; 2516 } 2517 2518 /* 2519 * The slow path to get the pfn of the specified host virtual address, 2520 * 1 indicates success, -errno is returned if error is detected. 2521 */ 2522 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2523 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2524 { 2525 unsigned int flags = FOLL_HWPOISON; 2526 struct page *page; 2527 int npages; 2528 2529 might_sleep(); 2530 2531 if (writable) 2532 *writable = write_fault; 2533 2534 if (write_fault) 2535 flags |= FOLL_WRITE; 2536 if (async) 2537 flags |= FOLL_NOWAIT; 2538 if (interruptible) 2539 flags |= FOLL_INTERRUPTIBLE; 2540 2541 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2542 if (npages != 1) 2543 return npages; 2544 2545 /* map read fault as writable if possible */ 2546 if (unlikely(!write_fault) && writable) { 2547 struct page *wpage; 2548 2549 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2550 *writable = true; 2551 put_page(page); 2552 page = wpage; 2553 } 2554 } 2555 *pfn = page_to_pfn(page); 2556 return npages; 2557 } 2558 2559 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2560 { 2561 if (unlikely(!(vma->vm_flags & VM_READ))) 2562 return false; 2563 2564 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2565 return false; 2566 2567 return true; 2568 } 2569 2570 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2571 { 2572 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2573 2574 if (!page) 2575 return 1; 2576 2577 return get_page_unless_zero(page); 2578 } 2579 2580 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2581 unsigned long addr, bool write_fault, 2582 bool *writable, kvm_pfn_t *p_pfn) 2583 { 2584 kvm_pfn_t pfn; 2585 pte_t *ptep; 2586 spinlock_t *ptl; 2587 int r; 2588 2589 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2590 if (r) { 2591 /* 2592 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2593 * not call the fault handler, so do it here. 2594 */ 2595 bool unlocked = false; 2596 r = fixup_user_fault(current->mm, addr, 2597 (write_fault ? FAULT_FLAG_WRITE : 0), 2598 &unlocked); 2599 if (unlocked) 2600 return -EAGAIN; 2601 if (r) 2602 return r; 2603 2604 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2605 if (r) 2606 return r; 2607 } 2608 2609 if (write_fault && !pte_write(*ptep)) { 2610 pfn = KVM_PFN_ERR_RO_FAULT; 2611 goto out; 2612 } 2613 2614 if (writable) 2615 *writable = pte_write(*ptep); 2616 pfn = pte_pfn(*ptep); 2617 2618 /* 2619 * Get a reference here because callers of *hva_to_pfn* and 2620 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2621 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2622 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2623 * simply do nothing for reserved pfns. 2624 * 2625 * Whoever called remap_pfn_range is also going to call e.g. 2626 * unmap_mapping_range before the underlying pages are freed, 2627 * causing a call to our MMU notifier. 2628 * 2629 * Certain IO or PFNMAP mappings can be backed with valid 2630 * struct pages, but be allocated without refcounting e.g., 2631 * tail pages of non-compound higher order allocations, which 2632 * would then underflow the refcount when the caller does the 2633 * required put_page. Don't allow those pages here. 2634 */ 2635 if (!kvm_try_get_pfn(pfn)) 2636 r = -EFAULT; 2637 2638 out: 2639 pte_unmap_unlock(ptep, ptl); 2640 *p_pfn = pfn; 2641 2642 return r; 2643 } 2644 2645 /* 2646 * Pin guest page in memory and return its pfn. 2647 * @addr: host virtual address which maps memory to the guest 2648 * @atomic: whether this function can sleep 2649 * @interruptible: whether the process can be interrupted by non-fatal signals 2650 * @async: whether this function need to wait IO complete if the 2651 * host page is not in the memory 2652 * @write_fault: whether we should get a writable host page 2653 * @writable: whether it allows to map a writable host page for !@write_fault 2654 * 2655 * The function will map a writable host page for these two cases: 2656 * 1): @write_fault = true 2657 * 2): @write_fault = false && @writable, @writable will tell the caller 2658 * whether the mapping is writable. 2659 */ 2660 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2661 bool *async, bool write_fault, bool *writable) 2662 { 2663 struct vm_area_struct *vma; 2664 kvm_pfn_t pfn; 2665 int npages, r; 2666 2667 /* we can do it either atomically or asynchronously, not both */ 2668 BUG_ON(atomic && async); 2669 2670 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2671 return pfn; 2672 2673 if (atomic) 2674 return KVM_PFN_ERR_FAULT; 2675 2676 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2677 writable, &pfn); 2678 if (npages == 1) 2679 return pfn; 2680 if (npages == -EINTR) 2681 return KVM_PFN_ERR_SIGPENDING; 2682 2683 mmap_read_lock(current->mm); 2684 if (npages == -EHWPOISON || 2685 (!async && check_user_page_hwpoison(addr))) { 2686 pfn = KVM_PFN_ERR_HWPOISON; 2687 goto exit; 2688 } 2689 2690 retry: 2691 vma = vma_lookup(current->mm, addr); 2692 2693 if (vma == NULL) 2694 pfn = KVM_PFN_ERR_FAULT; 2695 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2696 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2697 if (r == -EAGAIN) 2698 goto retry; 2699 if (r < 0) 2700 pfn = KVM_PFN_ERR_FAULT; 2701 } else { 2702 if (async && vma_is_valid(vma, write_fault)) 2703 *async = true; 2704 pfn = KVM_PFN_ERR_FAULT; 2705 } 2706 exit: 2707 mmap_read_unlock(current->mm); 2708 return pfn; 2709 } 2710 2711 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2712 bool atomic, bool interruptible, bool *async, 2713 bool write_fault, bool *writable, hva_t *hva) 2714 { 2715 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2716 2717 if (hva) 2718 *hva = addr; 2719 2720 if (addr == KVM_HVA_ERR_RO_BAD) { 2721 if (writable) 2722 *writable = false; 2723 return KVM_PFN_ERR_RO_FAULT; 2724 } 2725 2726 if (kvm_is_error_hva(addr)) { 2727 if (writable) 2728 *writable = false; 2729 return KVM_PFN_NOSLOT; 2730 } 2731 2732 /* Do not map writable pfn in the readonly memslot. */ 2733 if (writable && memslot_is_readonly(slot)) { 2734 *writable = false; 2735 writable = NULL; 2736 } 2737 2738 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 2739 writable); 2740 } 2741 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2742 2743 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2744 bool *writable) 2745 { 2746 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 2747 NULL, write_fault, writable, NULL); 2748 } 2749 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2750 2751 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2752 { 2753 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 2754 NULL, NULL); 2755 } 2756 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2757 2758 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2759 { 2760 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 2761 NULL, NULL); 2762 } 2763 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2764 2765 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2766 { 2767 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2768 } 2769 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2770 2771 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2772 { 2773 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2774 } 2775 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2776 2777 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2778 { 2779 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2780 } 2781 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2782 2783 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2784 struct page **pages, int nr_pages) 2785 { 2786 unsigned long addr; 2787 gfn_t entry = 0; 2788 2789 addr = gfn_to_hva_many(slot, gfn, &entry); 2790 if (kvm_is_error_hva(addr)) 2791 return -1; 2792 2793 if (entry < nr_pages) 2794 return 0; 2795 2796 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2797 } 2798 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2799 2800 /* 2801 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2802 * backed by 'struct page'. A valid example is if the backing memslot is 2803 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2804 * been elevated by gfn_to_pfn(). 2805 */ 2806 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2807 { 2808 struct page *page; 2809 kvm_pfn_t pfn; 2810 2811 pfn = gfn_to_pfn(kvm, gfn); 2812 2813 if (is_error_noslot_pfn(pfn)) 2814 return KVM_ERR_PTR_BAD_PAGE; 2815 2816 page = kvm_pfn_to_refcounted_page(pfn); 2817 if (!page) 2818 return KVM_ERR_PTR_BAD_PAGE; 2819 2820 return page; 2821 } 2822 EXPORT_SYMBOL_GPL(gfn_to_page); 2823 2824 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2825 { 2826 if (dirty) 2827 kvm_release_pfn_dirty(pfn); 2828 else 2829 kvm_release_pfn_clean(pfn); 2830 } 2831 2832 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2833 { 2834 kvm_pfn_t pfn; 2835 void *hva = NULL; 2836 struct page *page = KVM_UNMAPPED_PAGE; 2837 2838 if (!map) 2839 return -EINVAL; 2840 2841 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2842 if (is_error_noslot_pfn(pfn)) 2843 return -EINVAL; 2844 2845 if (pfn_valid(pfn)) { 2846 page = pfn_to_page(pfn); 2847 hva = kmap(page); 2848 #ifdef CONFIG_HAS_IOMEM 2849 } else { 2850 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2851 #endif 2852 } 2853 2854 if (!hva) 2855 return -EFAULT; 2856 2857 map->page = page; 2858 map->hva = hva; 2859 map->pfn = pfn; 2860 map->gfn = gfn; 2861 2862 return 0; 2863 } 2864 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2865 2866 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2867 { 2868 if (!map) 2869 return; 2870 2871 if (!map->hva) 2872 return; 2873 2874 if (map->page != KVM_UNMAPPED_PAGE) 2875 kunmap(map->page); 2876 #ifdef CONFIG_HAS_IOMEM 2877 else 2878 memunmap(map->hva); 2879 #endif 2880 2881 if (dirty) 2882 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2883 2884 kvm_release_pfn(map->pfn, dirty); 2885 2886 map->hva = NULL; 2887 map->page = NULL; 2888 } 2889 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2890 2891 static bool kvm_is_ad_tracked_page(struct page *page) 2892 { 2893 /* 2894 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2895 * touched (e.g. set dirty) except by its owner". 2896 */ 2897 return !PageReserved(page); 2898 } 2899 2900 static void kvm_set_page_dirty(struct page *page) 2901 { 2902 if (kvm_is_ad_tracked_page(page)) 2903 SetPageDirty(page); 2904 } 2905 2906 static void kvm_set_page_accessed(struct page *page) 2907 { 2908 if (kvm_is_ad_tracked_page(page)) 2909 mark_page_accessed(page); 2910 } 2911 2912 void kvm_release_page_clean(struct page *page) 2913 { 2914 WARN_ON(is_error_page(page)); 2915 2916 kvm_set_page_accessed(page); 2917 put_page(page); 2918 } 2919 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2920 2921 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2922 { 2923 struct page *page; 2924 2925 if (is_error_noslot_pfn(pfn)) 2926 return; 2927 2928 page = kvm_pfn_to_refcounted_page(pfn); 2929 if (!page) 2930 return; 2931 2932 kvm_release_page_clean(page); 2933 } 2934 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2935 2936 void kvm_release_page_dirty(struct page *page) 2937 { 2938 WARN_ON(is_error_page(page)); 2939 2940 kvm_set_page_dirty(page); 2941 kvm_release_page_clean(page); 2942 } 2943 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2944 2945 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2946 { 2947 struct page *page; 2948 2949 if (is_error_noslot_pfn(pfn)) 2950 return; 2951 2952 page = kvm_pfn_to_refcounted_page(pfn); 2953 if (!page) 2954 return; 2955 2956 kvm_release_page_dirty(page); 2957 } 2958 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2959 2960 /* 2961 * Note, checking for an error/noslot pfn is the caller's responsibility when 2962 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2963 * "set" helpers are not to be used when the pfn might point at garbage. 2964 */ 2965 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2966 { 2967 if (WARN_ON(is_error_noslot_pfn(pfn))) 2968 return; 2969 2970 if (pfn_valid(pfn)) 2971 kvm_set_page_dirty(pfn_to_page(pfn)); 2972 } 2973 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2974 2975 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2976 { 2977 if (WARN_ON(is_error_noslot_pfn(pfn))) 2978 return; 2979 2980 if (pfn_valid(pfn)) 2981 kvm_set_page_accessed(pfn_to_page(pfn)); 2982 } 2983 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2984 2985 static int next_segment(unsigned long len, int offset) 2986 { 2987 if (len > PAGE_SIZE - offset) 2988 return PAGE_SIZE - offset; 2989 else 2990 return len; 2991 } 2992 2993 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2994 void *data, int offset, int len) 2995 { 2996 int r; 2997 unsigned long addr; 2998 2999 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3000 if (kvm_is_error_hva(addr)) 3001 return -EFAULT; 3002 r = __copy_from_user(data, (void __user *)addr + offset, len); 3003 if (r) 3004 return -EFAULT; 3005 return 0; 3006 } 3007 3008 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3009 int len) 3010 { 3011 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3012 3013 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3014 } 3015 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3016 3017 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3018 int offset, int len) 3019 { 3020 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3021 3022 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3023 } 3024 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3025 3026 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3027 { 3028 gfn_t gfn = gpa >> PAGE_SHIFT; 3029 int seg; 3030 int offset = offset_in_page(gpa); 3031 int ret; 3032 3033 while ((seg = next_segment(len, offset)) != 0) { 3034 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3035 if (ret < 0) 3036 return ret; 3037 offset = 0; 3038 len -= seg; 3039 data += seg; 3040 ++gfn; 3041 } 3042 return 0; 3043 } 3044 EXPORT_SYMBOL_GPL(kvm_read_guest); 3045 3046 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3047 { 3048 gfn_t gfn = gpa >> PAGE_SHIFT; 3049 int seg; 3050 int offset = offset_in_page(gpa); 3051 int ret; 3052 3053 while ((seg = next_segment(len, offset)) != 0) { 3054 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3055 if (ret < 0) 3056 return ret; 3057 offset = 0; 3058 len -= seg; 3059 data += seg; 3060 ++gfn; 3061 } 3062 return 0; 3063 } 3064 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3065 3066 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3067 void *data, int offset, unsigned long len) 3068 { 3069 int r; 3070 unsigned long addr; 3071 3072 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3073 if (kvm_is_error_hva(addr)) 3074 return -EFAULT; 3075 pagefault_disable(); 3076 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3077 pagefault_enable(); 3078 if (r) 3079 return -EFAULT; 3080 return 0; 3081 } 3082 3083 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3084 void *data, unsigned long len) 3085 { 3086 gfn_t gfn = gpa >> PAGE_SHIFT; 3087 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3088 int offset = offset_in_page(gpa); 3089 3090 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3091 } 3092 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3093 3094 static int __kvm_write_guest_page(struct kvm *kvm, 3095 struct kvm_memory_slot *memslot, gfn_t gfn, 3096 const void *data, int offset, int len) 3097 { 3098 int r; 3099 unsigned long addr; 3100 3101 addr = gfn_to_hva_memslot(memslot, gfn); 3102 if (kvm_is_error_hva(addr)) 3103 return -EFAULT; 3104 r = __copy_to_user((void __user *)addr + offset, data, len); 3105 if (r) 3106 return -EFAULT; 3107 mark_page_dirty_in_slot(kvm, memslot, gfn); 3108 return 0; 3109 } 3110 3111 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3112 const void *data, int offset, int len) 3113 { 3114 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3115 3116 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3117 } 3118 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3119 3120 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3121 const void *data, int offset, int len) 3122 { 3123 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3124 3125 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3126 } 3127 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3128 3129 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3130 unsigned long len) 3131 { 3132 gfn_t gfn = gpa >> PAGE_SHIFT; 3133 int seg; 3134 int offset = offset_in_page(gpa); 3135 int ret; 3136 3137 while ((seg = next_segment(len, offset)) != 0) { 3138 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3139 if (ret < 0) 3140 return ret; 3141 offset = 0; 3142 len -= seg; 3143 data += seg; 3144 ++gfn; 3145 } 3146 return 0; 3147 } 3148 EXPORT_SYMBOL_GPL(kvm_write_guest); 3149 3150 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3151 unsigned long len) 3152 { 3153 gfn_t gfn = gpa >> PAGE_SHIFT; 3154 int seg; 3155 int offset = offset_in_page(gpa); 3156 int ret; 3157 3158 while ((seg = next_segment(len, offset)) != 0) { 3159 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3160 if (ret < 0) 3161 return ret; 3162 offset = 0; 3163 len -= seg; 3164 data += seg; 3165 ++gfn; 3166 } 3167 return 0; 3168 } 3169 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3170 3171 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3172 struct gfn_to_hva_cache *ghc, 3173 gpa_t gpa, unsigned long len) 3174 { 3175 int offset = offset_in_page(gpa); 3176 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3177 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3178 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3179 gfn_t nr_pages_avail; 3180 3181 /* Update ghc->generation before performing any error checks. */ 3182 ghc->generation = slots->generation; 3183 3184 if (start_gfn > end_gfn) { 3185 ghc->hva = KVM_HVA_ERR_BAD; 3186 return -EINVAL; 3187 } 3188 3189 /* 3190 * If the requested region crosses two memslots, we still 3191 * verify that the entire region is valid here. 3192 */ 3193 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3194 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3195 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3196 &nr_pages_avail); 3197 if (kvm_is_error_hva(ghc->hva)) 3198 return -EFAULT; 3199 } 3200 3201 /* Use the slow path for cross page reads and writes. */ 3202 if (nr_pages_needed == 1) 3203 ghc->hva += offset; 3204 else 3205 ghc->memslot = NULL; 3206 3207 ghc->gpa = gpa; 3208 ghc->len = len; 3209 return 0; 3210 } 3211 3212 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3213 gpa_t gpa, unsigned long len) 3214 { 3215 struct kvm_memslots *slots = kvm_memslots(kvm); 3216 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3217 } 3218 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3219 3220 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3221 void *data, unsigned int offset, 3222 unsigned long len) 3223 { 3224 struct kvm_memslots *slots = kvm_memslots(kvm); 3225 int r; 3226 gpa_t gpa = ghc->gpa + offset; 3227 3228 if (WARN_ON_ONCE(len + offset > ghc->len)) 3229 return -EINVAL; 3230 3231 if (slots->generation != ghc->generation) { 3232 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3233 return -EFAULT; 3234 } 3235 3236 if (kvm_is_error_hva(ghc->hva)) 3237 return -EFAULT; 3238 3239 if (unlikely(!ghc->memslot)) 3240 return kvm_write_guest(kvm, gpa, data, len); 3241 3242 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3243 if (r) 3244 return -EFAULT; 3245 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3246 3247 return 0; 3248 } 3249 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3250 3251 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3252 void *data, unsigned long len) 3253 { 3254 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3255 } 3256 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3257 3258 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3259 void *data, unsigned int offset, 3260 unsigned long len) 3261 { 3262 struct kvm_memslots *slots = kvm_memslots(kvm); 3263 int r; 3264 gpa_t gpa = ghc->gpa + offset; 3265 3266 if (WARN_ON_ONCE(len + offset > ghc->len)) 3267 return -EINVAL; 3268 3269 if (slots->generation != ghc->generation) { 3270 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3271 return -EFAULT; 3272 } 3273 3274 if (kvm_is_error_hva(ghc->hva)) 3275 return -EFAULT; 3276 3277 if (unlikely(!ghc->memslot)) 3278 return kvm_read_guest(kvm, gpa, data, len); 3279 3280 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3281 if (r) 3282 return -EFAULT; 3283 3284 return 0; 3285 } 3286 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3287 3288 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3289 void *data, unsigned long len) 3290 { 3291 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3292 } 3293 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3294 3295 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3296 { 3297 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3298 gfn_t gfn = gpa >> PAGE_SHIFT; 3299 int seg; 3300 int offset = offset_in_page(gpa); 3301 int ret; 3302 3303 while ((seg = next_segment(len, offset)) != 0) { 3304 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3305 if (ret < 0) 3306 return ret; 3307 offset = 0; 3308 len -= seg; 3309 ++gfn; 3310 } 3311 return 0; 3312 } 3313 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3314 3315 void mark_page_dirty_in_slot(struct kvm *kvm, 3316 const struct kvm_memory_slot *memslot, 3317 gfn_t gfn) 3318 { 3319 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3320 3321 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3322 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3323 return; 3324 3325 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3326 #endif 3327 3328 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3329 unsigned long rel_gfn = gfn - memslot->base_gfn; 3330 u32 slot = (memslot->as_id << 16) | memslot->id; 3331 3332 if (kvm->dirty_ring_size && vcpu) 3333 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3334 else if (memslot->dirty_bitmap) 3335 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3336 } 3337 } 3338 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3339 3340 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3341 { 3342 struct kvm_memory_slot *memslot; 3343 3344 memslot = gfn_to_memslot(kvm, gfn); 3345 mark_page_dirty_in_slot(kvm, memslot, gfn); 3346 } 3347 EXPORT_SYMBOL_GPL(mark_page_dirty); 3348 3349 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3350 { 3351 struct kvm_memory_slot *memslot; 3352 3353 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3354 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3355 } 3356 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3357 3358 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3359 { 3360 if (!vcpu->sigset_active) 3361 return; 3362 3363 /* 3364 * This does a lockless modification of ->real_blocked, which is fine 3365 * because, only current can change ->real_blocked and all readers of 3366 * ->real_blocked don't care as long ->real_blocked is always a subset 3367 * of ->blocked. 3368 */ 3369 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3370 } 3371 3372 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3373 { 3374 if (!vcpu->sigset_active) 3375 return; 3376 3377 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3378 sigemptyset(¤t->real_blocked); 3379 } 3380 3381 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3382 { 3383 unsigned int old, val, grow, grow_start; 3384 3385 old = val = vcpu->halt_poll_ns; 3386 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3387 grow = READ_ONCE(halt_poll_ns_grow); 3388 if (!grow) 3389 goto out; 3390 3391 val *= grow; 3392 if (val < grow_start) 3393 val = grow_start; 3394 3395 vcpu->halt_poll_ns = val; 3396 out: 3397 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3398 } 3399 3400 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3401 { 3402 unsigned int old, val, shrink, grow_start; 3403 3404 old = val = vcpu->halt_poll_ns; 3405 shrink = READ_ONCE(halt_poll_ns_shrink); 3406 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3407 if (shrink == 0) 3408 val = 0; 3409 else 3410 val /= shrink; 3411 3412 if (val < grow_start) 3413 val = 0; 3414 3415 vcpu->halt_poll_ns = val; 3416 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3417 } 3418 3419 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3420 { 3421 int ret = -EINTR; 3422 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3423 3424 if (kvm_arch_vcpu_runnable(vcpu)) 3425 goto out; 3426 if (kvm_cpu_has_pending_timer(vcpu)) 3427 goto out; 3428 if (signal_pending(current)) 3429 goto out; 3430 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3431 goto out; 3432 3433 ret = 0; 3434 out: 3435 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3436 return ret; 3437 } 3438 3439 /* 3440 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3441 * pending. This is mostly used when halting a vCPU, but may also be used 3442 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3443 */ 3444 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3445 { 3446 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3447 bool waited = false; 3448 3449 vcpu->stat.generic.blocking = 1; 3450 3451 preempt_disable(); 3452 kvm_arch_vcpu_blocking(vcpu); 3453 prepare_to_rcuwait(wait); 3454 preempt_enable(); 3455 3456 for (;;) { 3457 set_current_state(TASK_INTERRUPTIBLE); 3458 3459 if (kvm_vcpu_check_block(vcpu) < 0) 3460 break; 3461 3462 waited = true; 3463 schedule(); 3464 } 3465 3466 preempt_disable(); 3467 finish_rcuwait(wait); 3468 kvm_arch_vcpu_unblocking(vcpu); 3469 preempt_enable(); 3470 3471 vcpu->stat.generic.blocking = 0; 3472 3473 return waited; 3474 } 3475 3476 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3477 ktime_t end, bool success) 3478 { 3479 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3480 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3481 3482 ++vcpu->stat.generic.halt_attempted_poll; 3483 3484 if (success) { 3485 ++vcpu->stat.generic.halt_successful_poll; 3486 3487 if (!vcpu_valid_wakeup(vcpu)) 3488 ++vcpu->stat.generic.halt_poll_invalid; 3489 3490 stats->halt_poll_success_ns += poll_ns; 3491 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3492 } else { 3493 stats->halt_poll_fail_ns += poll_ns; 3494 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3495 } 3496 } 3497 3498 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3499 { 3500 struct kvm *kvm = vcpu->kvm; 3501 3502 if (kvm->override_halt_poll_ns) { 3503 /* 3504 * Ensure kvm->max_halt_poll_ns is not read before 3505 * kvm->override_halt_poll_ns. 3506 * 3507 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3508 */ 3509 smp_rmb(); 3510 return READ_ONCE(kvm->max_halt_poll_ns); 3511 } 3512 3513 return READ_ONCE(halt_poll_ns); 3514 } 3515 3516 /* 3517 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3518 * polling is enabled, busy wait for a short time before blocking to avoid the 3519 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3520 * is halted. 3521 */ 3522 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3523 { 3524 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3525 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3526 ktime_t start, cur, poll_end; 3527 bool waited = false; 3528 bool do_halt_poll; 3529 u64 halt_ns; 3530 3531 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3532 vcpu->halt_poll_ns = max_halt_poll_ns; 3533 3534 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3535 3536 start = cur = poll_end = ktime_get(); 3537 if (do_halt_poll) { 3538 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3539 3540 do { 3541 if (kvm_vcpu_check_block(vcpu) < 0) 3542 goto out; 3543 cpu_relax(); 3544 poll_end = cur = ktime_get(); 3545 } while (kvm_vcpu_can_poll(cur, stop)); 3546 } 3547 3548 waited = kvm_vcpu_block(vcpu); 3549 3550 cur = ktime_get(); 3551 if (waited) { 3552 vcpu->stat.generic.halt_wait_ns += 3553 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3554 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3555 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3556 } 3557 out: 3558 /* The total time the vCPU was "halted", including polling time. */ 3559 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3560 3561 /* 3562 * Note, halt-polling is considered successful so long as the vCPU was 3563 * never actually scheduled out, i.e. even if the wake event arrived 3564 * after of the halt-polling loop itself, but before the full wait. 3565 */ 3566 if (do_halt_poll) 3567 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3568 3569 if (halt_poll_allowed) { 3570 /* Recompute the max halt poll time in case it changed. */ 3571 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3572 3573 if (!vcpu_valid_wakeup(vcpu)) { 3574 shrink_halt_poll_ns(vcpu); 3575 } else if (max_halt_poll_ns) { 3576 if (halt_ns <= vcpu->halt_poll_ns) 3577 ; 3578 /* we had a long block, shrink polling */ 3579 else if (vcpu->halt_poll_ns && 3580 halt_ns > max_halt_poll_ns) 3581 shrink_halt_poll_ns(vcpu); 3582 /* we had a short halt and our poll time is too small */ 3583 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3584 halt_ns < max_halt_poll_ns) 3585 grow_halt_poll_ns(vcpu); 3586 } else { 3587 vcpu->halt_poll_ns = 0; 3588 } 3589 } 3590 3591 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3592 } 3593 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3594 3595 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3596 { 3597 if (__kvm_vcpu_wake_up(vcpu)) { 3598 WRITE_ONCE(vcpu->ready, true); 3599 ++vcpu->stat.generic.halt_wakeup; 3600 return true; 3601 } 3602 3603 return false; 3604 } 3605 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3606 3607 #ifndef CONFIG_S390 3608 /* 3609 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3610 */ 3611 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3612 { 3613 int me, cpu; 3614 3615 if (kvm_vcpu_wake_up(vcpu)) 3616 return; 3617 3618 me = get_cpu(); 3619 /* 3620 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3621 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3622 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3623 * within the vCPU thread itself. 3624 */ 3625 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3626 if (vcpu->mode == IN_GUEST_MODE) 3627 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3628 goto out; 3629 } 3630 3631 /* 3632 * Note, the vCPU could get migrated to a different pCPU at any point 3633 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3634 * IPI to the previous pCPU. But, that's ok because the purpose of the 3635 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3636 * vCPU also requires it to leave IN_GUEST_MODE. 3637 */ 3638 if (kvm_arch_vcpu_should_kick(vcpu)) { 3639 cpu = READ_ONCE(vcpu->cpu); 3640 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3641 smp_send_reschedule(cpu); 3642 } 3643 out: 3644 put_cpu(); 3645 } 3646 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3647 #endif /* !CONFIG_S390 */ 3648 3649 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3650 { 3651 struct pid *pid; 3652 struct task_struct *task = NULL; 3653 int ret = 0; 3654 3655 rcu_read_lock(); 3656 pid = rcu_dereference(target->pid); 3657 if (pid) 3658 task = get_pid_task(pid, PIDTYPE_PID); 3659 rcu_read_unlock(); 3660 if (!task) 3661 return ret; 3662 ret = yield_to(task, 1); 3663 put_task_struct(task); 3664 3665 return ret; 3666 } 3667 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3668 3669 /* 3670 * Helper that checks whether a VCPU is eligible for directed yield. 3671 * Most eligible candidate to yield is decided by following heuristics: 3672 * 3673 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3674 * (preempted lock holder), indicated by @in_spin_loop. 3675 * Set at the beginning and cleared at the end of interception/PLE handler. 3676 * 3677 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3678 * chance last time (mostly it has become eligible now since we have probably 3679 * yielded to lockholder in last iteration. This is done by toggling 3680 * @dy_eligible each time a VCPU checked for eligibility.) 3681 * 3682 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3683 * to preempted lock-holder could result in wrong VCPU selection and CPU 3684 * burning. Giving priority for a potential lock-holder increases lock 3685 * progress. 3686 * 3687 * Since algorithm is based on heuristics, accessing another VCPU data without 3688 * locking does not harm. It may result in trying to yield to same VCPU, fail 3689 * and continue with next VCPU and so on. 3690 */ 3691 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3692 { 3693 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3694 bool eligible; 3695 3696 eligible = !vcpu->spin_loop.in_spin_loop || 3697 vcpu->spin_loop.dy_eligible; 3698 3699 if (vcpu->spin_loop.in_spin_loop) 3700 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3701 3702 return eligible; 3703 #else 3704 return true; 3705 #endif 3706 } 3707 3708 /* 3709 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3710 * a vcpu_load/vcpu_put pair. However, for most architectures 3711 * kvm_arch_vcpu_runnable does not require vcpu_load. 3712 */ 3713 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3714 { 3715 return kvm_arch_vcpu_runnable(vcpu); 3716 } 3717 3718 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3719 { 3720 if (kvm_arch_dy_runnable(vcpu)) 3721 return true; 3722 3723 #ifdef CONFIG_KVM_ASYNC_PF 3724 if (!list_empty_careful(&vcpu->async_pf.done)) 3725 return true; 3726 #endif 3727 3728 return false; 3729 } 3730 3731 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3732 { 3733 return false; 3734 } 3735 3736 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3737 { 3738 struct kvm *kvm = me->kvm; 3739 struct kvm_vcpu *vcpu; 3740 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3741 unsigned long i; 3742 int yielded = 0; 3743 int try = 3; 3744 int pass; 3745 3746 kvm_vcpu_set_in_spin_loop(me, true); 3747 /* 3748 * We boost the priority of a VCPU that is runnable but not 3749 * currently running, because it got preempted by something 3750 * else and called schedule in __vcpu_run. Hopefully that 3751 * VCPU is holding the lock that we need and will release it. 3752 * We approximate round-robin by starting at the last boosted VCPU. 3753 */ 3754 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3755 kvm_for_each_vcpu(i, vcpu, kvm) { 3756 if (!pass && i <= last_boosted_vcpu) { 3757 i = last_boosted_vcpu; 3758 continue; 3759 } else if (pass && i > last_boosted_vcpu) 3760 break; 3761 if (!READ_ONCE(vcpu->ready)) 3762 continue; 3763 if (vcpu == me) 3764 continue; 3765 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3766 continue; 3767 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3768 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3769 !kvm_arch_vcpu_in_kernel(vcpu)) 3770 continue; 3771 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3772 continue; 3773 3774 yielded = kvm_vcpu_yield_to(vcpu); 3775 if (yielded > 0) { 3776 kvm->last_boosted_vcpu = i; 3777 break; 3778 } else if (yielded < 0) { 3779 try--; 3780 if (!try) 3781 break; 3782 } 3783 } 3784 } 3785 kvm_vcpu_set_in_spin_loop(me, false); 3786 3787 /* Ensure vcpu is not eligible during next spinloop */ 3788 kvm_vcpu_set_dy_eligible(me, false); 3789 } 3790 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3791 3792 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3793 { 3794 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3795 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3796 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3797 kvm->dirty_ring_size / PAGE_SIZE); 3798 #else 3799 return false; 3800 #endif 3801 } 3802 3803 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3804 { 3805 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3806 struct page *page; 3807 3808 if (vmf->pgoff == 0) 3809 page = virt_to_page(vcpu->run); 3810 #ifdef CONFIG_X86 3811 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3812 page = virt_to_page(vcpu->arch.pio_data); 3813 #endif 3814 #ifdef CONFIG_KVM_MMIO 3815 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3816 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3817 #endif 3818 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3819 page = kvm_dirty_ring_get_page( 3820 &vcpu->dirty_ring, 3821 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3822 else 3823 return kvm_arch_vcpu_fault(vcpu, vmf); 3824 get_page(page); 3825 vmf->page = page; 3826 return 0; 3827 } 3828 3829 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3830 .fault = kvm_vcpu_fault, 3831 }; 3832 3833 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3834 { 3835 struct kvm_vcpu *vcpu = file->private_data; 3836 unsigned long pages = vma_pages(vma); 3837 3838 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3839 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3840 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3841 return -EINVAL; 3842 3843 vma->vm_ops = &kvm_vcpu_vm_ops; 3844 return 0; 3845 } 3846 3847 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3848 { 3849 struct kvm_vcpu *vcpu = filp->private_data; 3850 3851 kvm_put_kvm(vcpu->kvm); 3852 return 0; 3853 } 3854 3855 static const struct file_operations kvm_vcpu_fops = { 3856 .release = kvm_vcpu_release, 3857 .unlocked_ioctl = kvm_vcpu_ioctl, 3858 .mmap = kvm_vcpu_mmap, 3859 .llseek = noop_llseek, 3860 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3861 }; 3862 3863 /* 3864 * Allocates an inode for the vcpu. 3865 */ 3866 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3867 { 3868 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3869 3870 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3871 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3872 } 3873 3874 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3875 static int vcpu_get_pid(void *data, u64 *val) 3876 { 3877 struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data; 3878 *val = pid_nr(rcu_access_pointer(vcpu->pid)); 3879 return 0; 3880 } 3881 3882 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3883 3884 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3885 { 3886 struct dentry *debugfs_dentry; 3887 char dir_name[ITOA_MAX_LEN * 2]; 3888 3889 if (!debugfs_initialized()) 3890 return; 3891 3892 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3893 debugfs_dentry = debugfs_create_dir(dir_name, 3894 vcpu->kvm->debugfs_dentry); 3895 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3896 &vcpu_get_pid_fops); 3897 3898 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3899 } 3900 #endif 3901 3902 /* 3903 * Creates some virtual cpus. Good luck creating more than one. 3904 */ 3905 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3906 { 3907 int r; 3908 struct kvm_vcpu *vcpu; 3909 struct page *page; 3910 3911 if (id >= KVM_MAX_VCPU_IDS) 3912 return -EINVAL; 3913 3914 mutex_lock(&kvm->lock); 3915 if (kvm->created_vcpus >= kvm->max_vcpus) { 3916 mutex_unlock(&kvm->lock); 3917 return -EINVAL; 3918 } 3919 3920 r = kvm_arch_vcpu_precreate(kvm, id); 3921 if (r) { 3922 mutex_unlock(&kvm->lock); 3923 return r; 3924 } 3925 3926 kvm->created_vcpus++; 3927 mutex_unlock(&kvm->lock); 3928 3929 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3930 if (!vcpu) { 3931 r = -ENOMEM; 3932 goto vcpu_decrement; 3933 } 3934 3935 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3936 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3937 if (!page) { 3938 r = -ENOMEM; 3939 goto vcpu_free; 3940 } 3941 vcpu->run = page_address(page); 3942 3943 kvm_vcpu_init(vcpu, kvm, id); 3944 3945 r = kvm_arch_vcpu_create(vcpu); 3946 if (r) 3947 goto vcpu_free_run_page; 3948 3949 if (kvm->dirty_ring_size) { 3950 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3951 id, kvm->dirty_ring_size); 3952 if (r) 3953 goto arch_vcpu_destroy; 3954 } 3955 3956 mutex_lock(&kvm->lock); 3957 3958 #ifdef CONFIG_LOCKDEP 3959 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 3960 mutex_lock(&vcpu->mutex); 3961 mutex_unlock(&vcpu->mutex); 3962 #endif 3963 3964 if (kvm_get_vcpu_by_id(kvm, id)) { 3965 r = -EEXIST; 3966 goto unlock_vcpu_destroy; 3967 } 3968 3969 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3970 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3971 BUG_ON(r == -EBUSY); 3972 if (r) 3973 goto unlock_vcpu_destroy; 3974 3975 /* Now it's all set up, let userspace reach it */ 3976 kvm_get_kvm(kvm); 3977 r = create_vcpu_fd(vcpu); 3978 if (r < 0) { 3979 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3980 kvm_put_kvm_no_destroy(kvm); 3981 goto unlock_vcpu_destroy; 3982 } 3983 3984 /* 3985 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3986 * pointer before kvm->online_vcpu's incremented value. 3987 */ 3988 smp_wmb(); 3989 atomic_inc(&kvm->online_vcpus); 3990 3991 mutex_unlock(&kvm->lock); 3992 kvm_arch_vcpu_postcreate(vcpu); 3993 kvm_create_vcpu_debugfs(vcpu); 3994 return r; 3995 3996 unlock_vcpu_destroy: 3997 mutex_unlock(&kvm->lock); 3998 kvm_dirty_ring_free(&vcpu->dirty_ring); 3999 arch_vcpu_destroy: 4000 kvm_arch_vcpu_destroy(vcpu); 4001 vcpu_free_run_page: 4002 free_page((unsigned long)vcpu->run); 4003 vcpu_free: 4004 kmem_cache_free(kvm_vcpu_cache, vcpu); 4005 vcpu_decrement: 4006 mutex_lock(&kvm->lock); 4007 kvm->created_vcpus--; 4008 mutex_unlock(&kvm->lock); 4009 return r; 4010 } 4011 4012 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4013 { 4014 if (sigset) { 4015 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4016 vcpu->sigset_active = 1; 4017 vcpu->sigset = *sigset; 4018 } else 4019 vcpu->sigset_active = 0; 4020 return 0; 4021 } 4022 4023 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4024 size_t size, loff_t *offset) 4025 { 4026 struct kvm_vcpu *vcpu = file->private_data; 4027 4028 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4029 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4030 sizeof(vcpu->stat), user_buffer, size, offset); 4031 } 4032 4033 static const struct file_operations kvm_vcpu_stats_fops = { 4034 .read = kvm_vcpu_stats_read, 4035 .llseek = noop_llseek, 4036 }; 4037 4038 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4039 { 4040 int fd; 4041 struct file *file; 4042 char name[15 + ITOA_MAX_LEN + 1]; 4043 4044 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4045 4046 fd = get_unused_fd_flags(O_CLOEXEC); 4047 if (fd < 0) 4048 return fd; 4049 4050 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4051 if (IS_ERR(file)) { 4052 put_unused_fd(fd); 4053 return PTR_ERR(file); 4054 } 4055 file->f_mode |= FMODE_PREAD; 4056 fd_install(fd, file); 4057 4058 return fd; 4059 } 4060 4061 static long kvm_vcpu_ioctl(struct file *filp, 4062 unsigned int ioctl, unsigned long arg) 4063 { 4064 struct kvm_vcpu *vcpu = filp->private_data; 4065 void __user *argp = (void __user *)arg; 4066 int r; 4067 struct kvm_fpu *fpu = NULL; 4068 struct kvm_sregs *kvm_sregs = NULL; 4069 4070 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4071 return -EIO; 4072 4073 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4074 return -EINVAL; 4075 4076 /* 4077 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4078 * execution; mutex_lock() would break them. 4079 */ 4080 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4081 if (r != -ENOIOCTLCMD) 4082 return r; 4083 4084 if (mutex_lock_killable(&vcpu->mutex)) 4085 return -EINTR; 4086 switch (ioctl) { 4087 case KVM_RUN: { 4088 struct pid *oldpid; 4089 r = -EINVAL; 4090 if (arg) 4091 goto out; 4092 oldpid = rcu_access_pointer(vcpu->pid); 4093 if (unlikely(oldpid != task_pid(current))) { 4094 /* The thread running this VCPU changed. */ 4095 struct pid *newpid; 4096 4097 r = kvm_arch_vcpu_run_pid_change(vcpu); 4098 if (r) 4099 break; 4100 4101 newpid = get_task_pid(current, PIDTYPE_PID); 4102 rcu_assign_pointer(vcpu->pid, newpid); 4103 if (oldpid) 4104 synchronize_rcu(); 4105 put_pid(oldpid); 4106 } 4107 r = kvm_arch_vcpu_ioctl_run(vcpu); 4108 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4109 break; 4110 } 4111 case KVM_GET_REGS: { 4112 struct kvm_regs *kvm_regs; 4113 4114 r = -ENOMEM; 4115 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4116 if (!kvm_regs) 4117 goto out; 4118 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4119 if (r) 4120 goto out_free1; 4121 r = -EFAULT; 4122 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4123 goto out_free1; 4124 r = 0; 4125 out_free1: 4126 kfree(kvm_regs); 4127 break; 4128 } 4129 case KVM_SET_REGS: { 4130 struct kvm_regs *kvm_regs; 4131 4132 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4133 if (IS_ERR(kvm_regs)) { 4134 r = PTR_ERR(kvm_regs); 4135 goto out; 4136 } 4137 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4138 kfree(kvm_regs); 4139 break; 4140 } 4141 case KVM_GET_SREGS: { 4142 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4143 GFP_KERNEL_ACCOUNT); 4144 r = -ENOMEM; 4145 if (!kvm_sregs) 4146 goto out; 4147 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4148 if (r) 4149 goto out; 4150 r = -EFAULT; 4151 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4152 goto out; 4153 r = 0; 4154 break; 4155 } 4156 case KVM_SET_SREGS: { 4157 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4158 if (IS_ERR(kvm_sregs)) { 4159 r = PTR_ERR(kvm_sregs); 4160 kvm_sregs = NULL; 4161 goto out; 4162 } 4163 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4164 break; 4165 } 4166 case KVM_GET_MP_STATE: { 4167 struct kvm_mp_state mp_state; 4168 4169 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4170 if (r) 4171 goto out; 4172 r = -EFAULT; 4173 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4174 goto out; 4175 r = 0; 4176 break; 4177 } 4178 case KVM_SET_MP_STATE: { 4179 struct kvm_mp_state mp_state; 4180 4181 r = -EFAULT; 4182 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4183 goto out; 4184 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4185 break; 4186 } 4187 case KVM_TRANSLATE: { 4188 struct kvm_translation tr; 4189 4190 r = -EFAULT; 4191 if (copy_from_user(&tr, argp, sizeof(tr))) 4192 goto out; 4193 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4194 if (r) 4195 goto out; 4196 r = -EFAULT; 4197 if (copy_to_user(argp, &tr, sizeof(tr))) 4198 goto out; 4199 r = 0; 4200 break; 4201 } 4202 case KVM_SET_GUEST_DEBUG: { 4203 struct kvm_guest_debug dbg; 4204 4205 r = -EFAULT; 4206 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4207 goto out; 4208 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4209 break; 4210 } 4211 case KVM_SET_SIGNAL_MASK: { 4212 struct kvm_signal_mask __user *sigmask_arg = argp; 4213 struct kvm_signal_mask kvm_sigmask; 4214 sigset_t sigset, *p; 4215 4216 p = NULL; 4217 if (argp) { 4218 r = -EFAULT; 4219 if (copy_from_user(&kvm_sigmask, argp, 4220 sizeof(kvm_sigmask))) 4221 goto out; 4222 r = -EINVAL; 4223 if (kvm_sigmask.len != sizeof(sigset)) 4224 goto out; 4225 r = -EFAULT; 4226 if (copy_from_user(&sigset, sigmask_arg->sigset, 4227 sizeof(sigset))) 4228 goto out; 4229 p = &sigset; 4230 } 4231 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4232 break; 4233 } 4234 case KVM_GET_FPU: { 4235 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4236 r = -ENOMEM; 4237 if (!fpu) 4238 goto out; 4239 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4240 if (r) 4241 goto out; 4242 r = -EFAULT; 4243 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4244 goto out; 4245 r = 0; 4246 break; 4247 } 4248 case KVM_SET_FPU: { 4249 fpu = memdup_user(argp, sizeof(*fpu)); 4250 if (IS_ERR(fpu)) { 4251 r = PTR_ERR(fpu); 4252 fpu = NULL; 4253 goto out; 4254 } 4255 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4256 break; 4257 } 4258 case KVM_GET_STATS_FD: { 4259 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4260 break; 4261 } 4262 default: 4263 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4264 } 4265 out: 4266 mutex_unlock(&vcpu->mutex); 4267 kfree(fpu); 4268 kfree(kvm_sregs); 4269 return r; 4270 } 4271 4272 #ifdef CONFIG_KVM_COMPAT 4273 static long kvm_vcpu_compat_ioctl(struct file *filp, 4274 unsigned int ioctl, unsigned long arg) 4275 { 4276 struct kvm_vcpu *vcpu = filp->private_data; 4277 void __user *argp = compat_ptr(arg); 4278 int r; 4279 4280 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4281 return -EIO; 4282 4283 switch (ioctl) { 4284 case KVM_SET_SIGNAL_MASK: { 4285 struct kvm_signal_mask __user *sigmask_arg = argp; 4286 struct kvm_signal_mask kvm_sigmask; 4287 sigset_t sigset; 4288 4289 if (argp) { 4290 r = -EFAULT; 4291 if (copy_from_user(&kvm_sigmask, argp, 4292 sizeof(kvm_sigmask))) 4293 goto out; 4294 r = -EINVAL; 4295 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4296 goto out; 4297 r = -EFAULT; 4298 if (get_compat_sigset(&sigset, 4299 (compat_sigset_t __user *)sigmask_arg->sigset)) 4300 goto out; 4301 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4302 } else 4303 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4304 break; 4305 } 4306 default: 4307 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4308 } 4309 4310 out: 4311 return r; 4312 } 4313 #endif 4314 4315 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4316 { 4317 struct kvm_device *dev = filp->private_data; 4318 4319 if (dev->ops->mmap) 4320 return dev->ops->mmap(dev, vma); 4321 4322 return -ENODEV; 4323 } 4324 4325 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4326 int (*accessor)(struct kvm_device *dev, 4327 struct kvm_device_attr *attr), 4328 unsigned long arg) 4329 { 4330 struct kvm_device_attr attr; 4331 4332 if (!accessor) 4333 return -EPERM; 4334 4335 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4336 return -EFAULT; 4337 4338 return accessor(dev, &attr); 4339 } 4340 4341 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4342 unsigned long arg) 4343 { 4344 struct kvm_device *dev = filp->private_data; 4345 4346 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4347 return -EIO; 4348 4349 switch (ioctl) { 4350 case KVM_SET_DEVICE_ATTR: 4351 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4352 case KVM_GET_DEVICE_ATTR: 4353 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4354 case KVM_HAS_DEVICE_ATTR: 4355 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4356 default: 4357 if (dev->ops->ioctl) 4358 return dev->ops->ioctl(dev, ioctl, arg); 4359 4360 return -ENOTTY; 4361 } 4362 } 4363 4364 static int kvm_device_release(struct inode *inode, struct file *filp) 4365 { 4366 struct kvm_device *dev = filp->private_data; 4367 struct kvm *kvm = dev->kvm; 4368 4369 if (dev->ops->release) { 4370 mutex_lock(&kvm->lock); 4371 list_del(&dev->vm_node); 4372 dev->ops->release(dev); 4373 mutex_unlock(&kvm->lock); 4374 } 4375 4376 kvm_put_kvm(kvm); 4377 return 0; 4378 } 4379 4380 static const struct file_operations kvm_device_fops = { 4381 .unlocked_ioctl = kvm_device_ioctl, 4382 .release = kvm_device_release, 4383 KVM_COMPAT(kvm_device_ioctl), 4384 .mmap = kvm_device_mmap, 4385 }; 4386 4387 struct kvm_device *kvm_device_from_filp(struct file *filp) 4388 { 4389 if (filp->f_op != &kvm_device_fops) 4390 return NULL; 4391 4392 return filp->private_data; 4393 } 4394 4395 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4396 #ifdef CONFIG_KVM_MPIC 4397 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4398 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4399 #endif 4400 }; 4401 4402 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4403 { 4404 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4405 return -ENOSPC; 4406 4407 if (kvm_device_ops_table[type] != NULL) 4408 return -EEXIST; 4409 4410 kvm_device_ops_table[type] = ops; 4411 return 0; 4412 } 4413 4414 void kvm_unregister_device_ops(u32 type) 4415 { 4416 if (kvm_device_ops_table[type] != NULL) 4417 kvm_device_ops_table[type] = NULL; 4418 } 4419 4420 static int kvm_ioctl_create_device(struct kvm *kvm, 4421 struct kvm_create_device *cd) 4422 { 4423 const struct kvm_device_ops *ops; 4424 struct kvm_device *dev; 4425 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4426 int type; 4427 int ret; 4428 4429 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4430 return -ENODEV; 4431 4432 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4433 ops = kvm_device_ops_table[type]; 4434 if (ops == NULL) 4435 return -ENODEV; 4436 4437 if (test) 4438 return 0; 4439 4440 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4441 if (!dev) 4442 return -ENOMEM; 4443 4444 dev->ops = ops; 4445 dev->kvm = kvm; 4446 4447 mutex_lock(&kvm->lock); 4448 ret = ops->create(dev, type); 4449 if (ret < 0) { 4450 mutex_unlock(&kvm->lock); 4451 kfree(dev); 4452 return ret; 4453 } 4454 list_add(&dev->vm_node, &kvm->devices); 4455 mutex_unlock(&kvm->lock); 4456 4457 if (ops->init) 4458 ops->init(dev); 4459 4460 kvm_get_kvm(kvm); 4461 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4462 if (ret < 0) { 4463 kvm_put_kvm_no_destroy(kvm); 4464 mutex_lock(&kvm->lock); 4465 list_del(&dev->vm_node); 4466 if (ops->release) 4467 ops->release(dev); 4468 mutex_unlock(&kvm->lock); 4469 if (ops->destroy) 4470 ops->destroy(dev); 4471 return ret; 4472 } 4473 4474 cd->fd = ret; 4475 return 0; 4476 } 4477 4478 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4479 { 4480 switch (arg) { 4481 case KVM_CAP_USER_MEMORY: 4482 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4483 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4484 case KVM_CAP_INTERNAL_ERROR_DATA: 4485 #ifdef CONFIG_HAVE_KVM_MSI 4486 case KVM_CAP_SIGNAL_MSI: 4487 #endif 4488 #ifdef CONFIG_HAVE_KVM_IRQFD 4489 case KVM_CAP_IRQFD: 4490 case KVM_CAP_IRQFD_RESAMPLE: 4491 #endif 4492 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4493 case KVM_CAP_CHECK_EXTENSION_VM: 4494 case KVM_CAP_ENABLE_CAP_VM: 4495 case KVM_CAP_HALT_POLL: 4496 return 1; 4497 #ifdef CONFIG_KVM_MMIO 4498 case KVM_CAP_COALESCED_MMIO: 4499 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4500 case KVM_CAP_COALESCED_PIO: 4501 return 1; 4502 #endif 4503 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4504 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4505 return KVM_DIRTY_LOG_MANUAL_CAPS; 4506 #endif 4507 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4508 case KVM_CAP_IRQ_ROUTING: 4509 return KVM_MAX_IRQ_ROUTES; 4510 #endif 4511 #if KVM_ADDRESS_SPACE_NUM > 1 4512 case KVM_CAP_MULTI_ADDRESS_SPACE: 4513 return KVM_ADDRESS_SPACE_NUM; 4514 #endif 4515 case KVM_CAP_NR_MEMSLOTS: 4516 return KVM_USER_MEM_SLOTS; 4517 case KVM_CAP_DIRTY_LOG_RING: 4518 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4519 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4520 #else 4521 return 0; 4522 #endif 4523 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4524 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4525 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4526 #else 4527 return 0; 4528 #endif 4529 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4530 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4531 #endif 4532 case KVM_CAP_BINARY_STATS_FD: 4533 case KVM_CAP_SYSTEM_EVENT_DATA: 4534 return 1; 4535 default: 4536 break; 4537 } 4538 return kvm_vm_ioctl_check_extension(kvm, arg); 4539 } 4540 4541 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4542 { 4543 int r; 4544 4545 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4546 return -EINVAL; 4547 4548 /* the size should be power of 2 */ 4549 if (!size || (size & (size - 1))) 4550 return -EINVAL; 4551 4552 /* Should be bigger to keep the reserved entries, or a page */ 4553 if (size < kvm_dirty_ring_get_rsvd_entries() * 4554 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4555 return -EINVAL; 4556 4557 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4558 sizeof(struct kvm_dirty_gfn)) 4559 return -E2BIG; 4560 4561 /* We only allow it to set once */ 4562 if (kvm->dirty_ring_size) 4563 return -EINVAL; 4564 4565 mutex_lock(&kvm->lock); 4566 4567 if (kvm->created_vcpus) { 4568 /* We don't allow to change this value after vcpu created */ 4569 r = -EINVAL; 4570 } else { 4571 kvm->dirty_ring_size = size; 4572 r = 0; 4573 } 4574 4575 mutex_unlock(&kvm->lock); 4576 return r; 4577 } 4578 4579 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4580 { 4581 unsigned long i; 4582 struct kvm_vcpu *vcpu; 4583 int cleared = 0; 4584 4585 if (!kvm->dirty_ring_size) 4586 return -EINVAL; 4587 4588 mutex_lock(&kvm->slots_lock); 4589 4590 kvm_for_each_vcpu(i, vcpu, kvm) 4591 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4592 4593 mutex_unlock(&kvm->slots_lock); 4594 4595 if (cleared) 4596 kvm_flush_remote_tlbs(kvm); 4597 4598 return cleared; 4599 } 4600 4601 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4602 struct kvm_enable_cap *cap) 4603 { 4604 return -EINVAL; 4605 } 4606 4607 static bool kvm_are_all_memslots_empty(struct kvm *kvm) 4608 { 4609 int i; 4610 4611 lockdep_assert_held(&kvm->slots_lock); 4612 4613 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 4614 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4615 return false; 4616 } 4617 4618 return true; 4619 } 4620 4621 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4622 struct kvm_enable_cap *cap) 4623 { 4624 switch (cap->cap) { 4625 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4626 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4627 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4628 4629 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4630 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4631 4632 if (cap->flags || (cap->args[0] & ~allowed_options)) 4633 return -EINVAL; 4634 kvm->manual_dirty_log_protect = cap->args[0]; 4635 return 0; 4636 } 4637 #endif 4638 case KVM_CAP_HALT_POLL: { 4639 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4640 return -EINVAL; 4641 4642 kvm->max_halt_poll_ns = cap->args[0]; 4643 4644 /* 4645 * Ensure kvm->override_halt_poll_ns does not become visible 4646 * before kvm->max_halt_poll_ns. 4647 * 4648 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4649 */ 4650 smp_wmb(); 4651 kvm->override_halt_poll_ns = true; 4652 4653 return 0; 4654 } 4655 case KVM_CAP_DIRTY_LOG_RING: 4656 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4657 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4658 return -EINVAL; 4659 4660 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4661 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4662 int r = -EINVAL; 4663 4664 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4665 !kvm->dirty_ring_size || cap->flags) 4666 return r; 4667 4668 mutex_lock(&kvm->slots_lock); 4669 4670 /* 4671 * For simplicity, allow enabling ring+bitmap if and only if 4672 * there are no memslots, e.g. to ensure all memslots allocate 4673 * a bitmap after the capability is enabled. 4674 */ 4675 if (kvm_are_all_memslots_empty(kvm)) { 4676 kvm->dirty_ring_with_bitmap = true; 4677 r = 0; 4678 } 4679 4680 mutex_unlock(&kvm->slots_lock); 4681 4682 return r; 4683 } 4684 default: 4685 return kvm_vm_ioctl_enable_cap(kvm, cap); 4686 } 4687 } 4688 4689 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4690 size_t size, loff_t *offset) 4691 { 4692 struct kvm *kvm = file->private_data; 4693 4694 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4695 &kvm_vm_stats_desc[0], &kvm->stat, 4696 sizeof(kvm->stat), user_buffer, size, offset); 4697 } 4698 4699 static const struct file_operations kvm_vm_stats_fops = { 4700 .read = kvm_vm_stats_read, 4701 .llseek = noop_llseek, 4702 }; 4703 4704 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4705 { 4706 int fd; 4707 struct file *file; 4708 4709 fd = get_unused_fd_flags(O_CLOEXEC); 4710 if (fd < 0) 4711 return fd; 4712 4713 file = anon_inode_getfile("kvm-vm-stats", 4714 &kvm_vm_stats_fops, kvm, O_RDONLY); 4715 if (IS_ERR(file)) { 4716 put_unused_fd(fd); 4717 return PTR_ERR(file); 4718 } 4719 file->f_mode |= FMODE_PREAD; 4720 fd_install(fd, file); 4721 4722 return fd; 4723 } 4724 4725 static long kvm_vm_ioctl(struct file *filp, 4726 unsigned int ioctl, unsigned long arg) 4727 { 4728 struct kvm *kvm = filp->private_data; 4729 void __user *argp = (void __user *)arg; 4730 int r; 4731 4732 if (kvm->mm != current->mm || kvm->vm_dead) 4733 return -EIO; 4734 switch (ioctl) { 4735 case KVM_CREATE_VCPU: 4736 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4737 break; 4738 case KVM_ENABLE_CAP: { 4739 struct kvm_enable_cap cap; 4740 4741 r = -EFAULT; 4742 if (copy_from_user(&cap, argp, sizeof(cap))) 4743 goto out; 4744 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4745 break; 4746 } 4747 case KVM_SET_USER_MEMORY_REGION: { 4748 struct kvm_userspace_memory_region kvm_userspace_mem; 4749 4750 r = -EFAULT; 4751 if (copy_from_user(&kvm_userspace_mem, argp, 4752 sizeof(kvm_userspace_mem))) 4753 goto out; 4754 4755 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4756 break; 4757 } 4758 case KVM_GET_DIRTY_LOG: { 4759 struct kvm_dirty_log log; 4760 4761 r = -EFAULT; 4762 if (copy_from_user(&log, argp, sizeof(log))) 4763 goto out; 4764 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4765 break; 4766 } 4767 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4768 case KVM_CLEAR_DIRTY_LOG: { 4769 struct kvm_clear_dirty_log log; 4770 4771 r = -EFAULT; 4772 if (copy_from_user(&log, argp, sizeof(log))) 4773 goto out; 4774 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4775 break; 4776 } 4777 #endif 4778 #ifdef CONFIG_KVM_MMIO 4779 case KVM_REGISTER_COALESCED_MMIO: { 4780 struct kvm_coalesced_mmio_zone zone; 4781 4782 r = -EFAULT; 4783 if (copy_from_user(&zone, argp, sizeof(zone))) 4784 goto out; 4785 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4786 break; 4787 } 4788 case KVM_UNREGISTER_COALESCED_MMIO: { 4789 struct kvm_coalesced_mmio_zone zone; 4790 4791 r = -EFAULT; 4792 if (copy_from_user(&zone, argp, sizeof(zone))) 4793 goto out; 4794 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4795 break; 4796 } 4797 #endif 4798 case KVM_IRQFD: { 4799 struct kvm_irqfd data; 4800 4801 r = -EFAULT; 4802 if (copy_from_user(&data, argp, sizeof(data))) 4803 goto out; 4804 r = kvm_irqfd(kvm, &data); 4805 break; 4806 } 4807 case KVM_IOEVENTFD: { 4808 struct kvm_ioeventfd data; 4809 4810 r = -EFAULT; 4811 if (copy_from_user(&data, argp, sizeof(data))) 4812 goto out; 4813 r = kvm_ioeventfd(kvm, &data); 4814 break; 4815 } 4816 #ifdef CONFIG_HAVE_KVM_MSI 4817 case KVM_SIGNAL_MSI: { 4818 struct kvm_msi msi; 4819 4820 r = -EFAULT; 4821 if (copy_from_user(&msi, argp, sizeof(msi))) 4822 goto out; 4823 r = kvm_send_userspace_msi(kvm, &msi); 4824 break; 4825 } 4826 #endif 4827 #ifdef __KVM_HAVE_IRQ_LINE 4828 case KVM_IRQ_LINE_STATUS: 4829 case KVM_IRQ_LINE: { 4830 struct kvm_irq_level irq_event; 4831 4832 r = -EFAULT; 4833 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4834 goto out; 4835 4836 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4837 ioctl == KVM_IRQ_LINE_STATUS); 4838 if (r) 4839 goto out; 4840 4841 r = -EFAULT; 4842 if (ioctl == KVM_IRQ_LINE_STATUS) { 4843 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4844 goto out; 4845 } 4846 4847 r = 0; 4848 break; 4849 } 4850 #endif 4851 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4852 case KVM_SET_GSI_ROUTING: { 4853 struct kvm_irq_routing routing; 4854 struct kvm_irq_routing __user *urouting; 4855 struct kvm_irq_routing_entry *entries = NULL; 4856 4857 r = -EFAULT; 4858 if (copy_from_user(&routing, argp, sizeof(routing))) 4859 goto out; 4860 r = -EINVAL; 4861 if (!kvm_arch_can_set_irq_routing(kvm)) 4862 goto out; 4863 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4864 goto out; 4865 if (routing.flags) 4866 goto out; 4867 if (routing.nr) { 4868 urouting = argp; 4869 entries = vmemdup_user(urouting->entries, 4870 array_size(sizeof(*entries), 4871 routing.nr)); 4872 if (IS_ERR(entries)) { 4873 r = PTR_ERR(entries); 4874 goto out; 4875 } 4876 } 4877 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4878 routing.flags); 4879 kvfree(entries); 4880 break; 4881 } 4882 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4883 case KVM_CREATE_DEVICE: { 4884 struct kvm_create_device cd; 4885 4886 r = -EFAULT; 4887 if (copy_from_user(&cd, argp, sizeof(cd))) 4888 goto out; 4889 4890 r = kvm_ioctl_create_device(kvm, &cd); 4891 if (r) 4892 goto out; 4893 4894 r = -EFAULT; 4895 if (copy_to_user(argp, &cd, sizeof(cd))) 4896 goto out; 4897 4898 r = 0; 4899 break; 4900 } 4901 case KVM_CHECK_EXTENSION: 4902 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4903 break; 4904 case KVM_RESET_DIRTY_RINGS: 4905 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4906 break; 4907 case KVM_GET_STATS_FD: 4908 r = kvm_vm_ioctl_get_stats_fd(kvm); 4909 break; 4910 default: 4911 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4912 } 4913 out: 4914 return r; 4915 } 4916 4917 #ifdef CONFIG_KVM_COMPAT 4918 struct compat_kvm_dirty_log { 4919 __u32 slot; 4920 __u32 padding1; 4921 union { 4922 compat_uptr_t dirty_bitmap; /* one bit per page */ 4923 __u64 padding2; 4924 }; 4925 }; 4926 4927 struct compat_kvm_clear_dirty_log { 4928 __u32 slot; 4929 __u32 num_pages; 4930 __u64 first_page; 4931 union { 4932 compat_uptr_t dirty_bitmap; /* one bit per page */ 4933 __u64 padding2; 4934 }; 4935 }; 4936 4937 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 4938 unsigned long arg) 4939 { 4940 return -ENOTTY; 4941 } 4942 4943 static long kvm_vm_compat_ioctl(struct file *filp, 4944 unsigned int ioctl, unsigned long arg) 4945 { 4946 struct kvm *kvm = filp->private_data; 4947 int r; 4948 4949 if (kvm->mm != current->mm || kvm->vm_dead) 4950 return -EIO; 4951 4952 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 4953 if (r != -ENOTTY) 4954 return r; 4955 4956 switch (ioctl) { 4957 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4958 case KVM_CLEAR_DIRTY_LOG: { 4959 struct compat_kvm_clear_dirty_log compat_log; 4960 struct kvm_clear_dirty_log log; 4961 4962 if (copy_from_user(&compat_log, (void __user *)arg, 4963 sizeof(compat_log))) 4964 return -EFAULT; 4965 log.slot = compat_log.slot; 4966 log.num_pages = compat_log.num_pages; 4967 log.first_page = compat_log.first_page; 4968 log.padding2 = compat_log.padding2; 4969 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4970 4971 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4972 break; 4973 } 4974 #endif 4975 case KVM_GET_DIRTY_LOG: { 4976 struct compat_kvm_dirty_log compat_log; 4977 struct kvm_dirty_log log; 4978 4979 if (copy_from_user(&compat_log, (void __user *)arg, 4980 sizeof(compat_log))) 4981 return -EFAULT; 4982 log.slot = compat_log.slot; 4983 log.padding1 = compat_log.padding1; 4984 log.padding2 = compat_log.padding2; 4985 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4986 4987 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4988 break; 4989 } 4990 default: 4991 r = kvm_vm_ioctl(filp, ioctl, arg); 4992 } 4993 return r; 4994 } 4995 #endif 4996 4997 static const struct file_operations kvm_vm_fops = { 4998 .release = kvm_vm_release, 4999 .unlocked_ioctl = kvm_vm_ioctl, 5000 .llseek = noop_llseek, 5001 KVM_COMPAT(kvm_vm_compat_ioctl), 5002 }; 5003 5004 bool file_is_kvm(struct file *file) 5005 { 5006 return file && file->f_op == &kvm_vm_fops; 5007 } 5008 EXPORT_SYMBOL_GPL(file_is_kvm); 5009 5010 static int kvm_dev_ioctl_create_vm(unsigned long type) 5011 { 5012 char fdname[ITOA_MAX_LEN + 1]; 5013 int r, fd; 5014 struct kvm *kvm; 5015 struct file *file; 5016 5017 fd = get_unused_fd_flags(O_CLOEXEC); 5018 if (fd < 0) 5019 return fd; 5020 5021 snprintf(fdname, sizeof(fdname), "%d", fd); 5022 5023 kvm = kvm_create_vm(type, fdname); 5024 if (IS_ERR(kvm)) { 5025 r = PTR_ERR(kvm); 5026 goto put_fd; 5027 } 5028 5029 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5030 if (IS_ERR(file)) { 5031 r = PTR_ERR(file); 5032 goto put_kvm; 5033 } 5034 5035 /* 5036 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5037 * already set, with ->release() being kvm_vm_release(). In error 5038 * cases it will be called by the final fput(file) and will take 5039 * care of doing kvm_put_kvm(kvm). 5040 */ 5041 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5042 5043 fd_install(fd, file); 5044 return fd; 5045 5046 put_kvm: 5047 kvm_put_kvm(kvm); 5048 put_fd: 5049 put_unused_fd(fd); 5050 return r; 5051 } 5052 5053 static long kvm_dev_ioctl(struct file *filp, 5054 unsigned int ioctl, unsigned long arg) 5055 { 5056 long r = -EINVAL; 5057 5058 switch (ioctl) { 5059 case KVM_GET_API_VERSION: 5060 if (arg) 5061 goto out; 5062 r = KVM_API_VERSION; 5063 break; 5064 case KVM_CREATE_VM: 5065 r = kvm_dev_ioctl_create_vm(arg); 5066 break; 5067 case KVM_CHECK_EXTENSION: 5068 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5069 break; 5070 case KVM_GET_VCPU_MMAP_SIZE: 5071 if (arg) 5072 goto out; 5073 r = PAGE_SIZE; /* struct kvm_run */ 5074 #ifdef CONFIG_X86 5075 r += PAGE_SIZE; /* pio data page */ 5076 #endif 5077 #ifdef CONFIG_KVM_MMIO 5078 r += PAGE_SIZE; /* coalesced mmio ring page */ 5079 #endif 5080 break; 5081 case KVM_TRACE_ENABLE: 5082 case KVM_TRACE_PAUSE: 5083 case KVM_TRACE_DISABLE: 5084 r = -EOPNOTSUPP; 5085 break; 5086 default: 5087 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5088 } 5089 out: 5090 return r; 5091 } 5092 5093 static struct file_operations kvm_chardev_ops = { 5094 .unlocked_ioctl = kvm_dev_ioctl, 5095 .llseek = noop_llseek, 5096 KVM_COMPAT(kvm_dev_ioctl), 5097 }; 5098 5099 static struct miscdevice kvm_dev = { 5100 KVM_MINOR, 5101 "kvm", 5102 &kvm_chardev_ops, 5103 }; 5104 5105 static void hardware_enable_nolock(void *junk) 5106 { 5107 int cpu = raw_smp_processor_id(); 5108 int r; 5109 5110 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5111 return; 5112 5113 cpumask_set_cpu(cpu, cpus_hardware_enabled); 5114 5115 r = kvm_arch_hardware_enable(); 5116 5117 if (r) { 5118 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5119 atomic_inc(&hardware_enable_failed); 5120 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 5121 } 5122 } 5123 5124 static int kvm_starting_cpu(unsigned int cpu) 5125 { 5126 raw_spin_lock(&kvm_count_lock); 5127 if (kvm_usage_count) 5128 hardware_enable_nolock(NULL); 5129 raw_spin_unlock(&kvm_count_lock); 5130 return 0; 5131 } 5132 5133 static void hardware_disable_nolock(void *junk) 5134 { 5135 int cpu = raw_smp_processor_id(); 5136 5137 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 5138 return; 5139 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 5140 kvm_arch_hardware_disable(); 5141 } 5142 5143 static int kvm_dying_cpu(unsigned int cpu) 5144 { 5145 raw_spin_lock(&kvm_count_lock); 5146 if (kvm_usage_count) 5147 hardware_disable_nolock(NULL); 5148 raw_spin_unlock(&kvm_count_lock); 5149 return 0; 5150 } 5151 5152 static void hardware_disable_all_nolock(void) 5153 { 5154 BUG_ON(!kvm_usage_count); 5155 5156 kvm_usage_count--; 5157 if (!kvm_usage_count) 5158 on_each_cpu(hardware_disable_nolock, NULL, 1); 5159 } 5160 5161 static void hardware_disable_all(void) 5162 { 5163 raw_spin_lock(&kvm_count_lock); 5164 hardware_disable_all_nolock(); 5165 raw_spin_unlock(&kvm_count_lock); 5166 } 5167 5168 static int hardware_enable_all(void) 5169 { 5170 int r = 0; 5171 5172 raw_spin_lock(&kvm_count_lock); 5173 5174 kvm_usage_count++; 5175 if (kvm_usage_count == 1) { 5176 atomic_set(&hardware_enable_failed, 0); 5177 on_each_cpu(hardware_enable_nolock, NULL, 1); 5178 5179 if (atomic_read(&hardware_enable_failed)) { 5180 hardware_disable_all_nolock(); 5181 r = -EBUSY; 5182 } 5183 } 5184 5185 raw_spin_unlock(&kvm_count_lock); 5186 5187 return r; 5188 } 5189 5190 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 5191 void *v) 5192 { 5193 /* 5194 * Some (well, at least mine) BIOSes hang on reboot if 5195 * in vmx root mode. 5196 * 5197 * And Intel TXT required VMX off for all cpu when system shutdown. 5198 */ 5199 pr_info("kvm: exiting hardware virtualization\n"); 5200 kvm_rebooting = true; 5201 on_each_cpu(hardware_disable_nolock, NULL, 1); 5202 return NOTIFY_OK; 5203 } 5204 5205 static struct notifier_block kvm_reboot_notifier = { 5206 .notifier_call = kvm_reboot, 5207 .priority = 0, 5208 }; 5209 5210 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5211 { 5212 int i; 5213 5214 for (i = 0; i < bus->dev_count; i++) { 5215 struct kvm_io_device *pos = bus->range[i].dev; 5216 5217 kvm_iodevice_destructor(pos); 5218 } 5219 kfree(bus); 5220 } 5221 5222 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5223 const struct kvm_io_range *r2) 5224 { 5225 gpa_t addr1 = r1->addr; 5226 gpa_t addr2 = r2->addr; 5227 5228 if (addr1 < addr2) 5229 return -1; 5230 5231 /* If r2->len == 0, match the exact address. If r2->len != 0, 5232 * accept any overlapping write. Any order is acceptable for 5233 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5234 * we process all of them. 5235 */ 5236 if (r2->len) { 5237 addr1 += r1->len; 5238 addr2 += r2->len; 5239 } 5240 5241 if (addr1 > addr2) 5242 return 1; 5243 5244 return 0; 5245 } 5246 5247 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5248 { 5249 return kvm_io_bus_cmp(p1, p2); 5250 } 5251 5252 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5253 gpa_t addr, int len) 5254 { 5255 struct kvm_io_range *range, key; 5256 int off; 5257 5258 key = (struct kvm_io_range) { 5259 .addr = addr, 5260 .len = len, 5261 }; 5262 5263 range = bsearch(&key, bus->range, bus->dev_count, 5264 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5265 if (range == NULL) 5266 return -ENOENT; 5267 5268 off = range - bus->range; 5269 5270 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5271 off--; 5272 5273 return off; 5274 } 5275 5276 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5277 struct kvm_io_range *range, const void *val) 5278 { 5279 int idx; 5280 5281 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5282 if (idx < 0) 5283 return -EOPNOTSUPP; 5284 5285 while (idx < bus->dev_count && 5286 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5287 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5288 range->len, val)) 5289 return idx; 5290 idx++; 5291 } 5292 5293 return -EOPNOTSUPP; 5294 } 5295 5296 /* kvm_io_bus_write - called under kvm->slots_lock */ 5297 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5298 int len, const void *val) 5299 { 5300 struct kvm_io_bus *bus; 5301 struct kvm_io_range range; 5302 int r; 5303 5304 range = (struct kvm_io_range) { 5305 .addr = addr, 5306 .len = len, 5307 }; 5308 5309 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5310 if (!bus) 5311 return -ENOMEM; 5312 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5313 return r < 0 ? r : 0; 5314 } 5315 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5316 5317 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5318 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5319 gpa_t addr, int len, const void *val, long cookie) 5320 { 5321 struct kvm_io_bus *bus; 5322 struct kvm_io_range range; 5323 5324 range = (struct kvm_io_range) { 5325 .addr = addr, 5326 .len = len, 5327 }; 5328 5329 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5330 if (!bus) 5331 return -ENOMEM; 5332 5333 /* First try the device referenced by cookie. */ 5334 if ((cookie >= 0) && (cookie < bus->dev_count) && 5335 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5336 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5337 val)) 5338 return cookie; 5339 5340 /* 5341 * cookie contained garbage; fall back to search and return the 5342 * correct cookie value. 5343 */ 5344 return __kvm_io_bus_write(vcpu, bus, &range, val); 5345 } 5346 5347 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5348 struct kvm_io_range *range, void *val) 5349 { 5350 int idx; 5351 5352 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5353 if (idx < 0) 5354 return -EOPNOTSUPP; 5355 5356 while (idx < bus->dev_count && 5357 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5358 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5359 range->len, val)) 5360 return idx; 5361 idx++; 5362 } 5363 5364 return -EOPNOTSUPP; 5365 } 5366 5367 /* kvm_io_bus_read - called under kvm->slots_lock */ 5368 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5369 int len, void *val) 5370 { 5371 struct kvm_io_bus *bus; 5372 struct kvm_io_range range; 5373 int r; 5374 5375 range = (struct kvm_io_range) { 5376 .addr = addr, 5377 .len = len, 5378 }; 5379 5380 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5381 if (!bus) 5382 return -ENOMEM; 5383 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5384 return r < 0 ? r : 0; 5385 } 5386 5387 /* Caller must hold slots_lock. */ 5388 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5389 int len, struct kvm_io_device *dev) 5390 { 5391 int i; 5392 struct kvm_io_bus *new_bus, *bus; 5393 struct kvm_io_range range; 5394 5395 bus = kvm_get_bus(kvm, bus_idx); 5396 if (!bus) 5397 return -ENOMEM; 5398 5399 /* exclude ioeventfd which is limited by maximum fd */ 5400 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5401 return -ENOSPC; 5402 5403 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5404 GFP_KERNEL_ACCOUNT); 5405 if (!new_bus) 5406 return -ENOMEM; 5407 5408 range = (struct kvm_io_range) { 5409 .addr = addr, 5410 .len = len, 5411 .dev = dev, 5412 }; 5413 5414 for (i = 0; i < bus->dev_count; i++) 5415 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5416 break; 5417 5418 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5419 new_bus->dev_count++; 5420 new_bus->range[i] = range; 5421 memcpy(new_bus->range + i + 1, bus->range + i, 5422 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5423 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5424 synchronize_srcu_expedited(&kvm->srcu); 5425 kfree(bus); 5426 5427 return 0; 5428 } 5429 5430 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5431 struct kvm_io_device *dev) 5432 { 5433 int i, j; 5434 struct kvm_io_bus *new_bus, *bus; 5435 5436 lockdep_assert_held(&kvm->slots_lock); 5437 5438 bus = kvm_get_bus(kvm, bus_idx); 5439 if (!bus) 5440 return 0; 5441 5442 for (i = 0; i < bus->dev_count; i++) { 5443 if (bus->range[i].dev == dev) { 5444 break; 5445 } 5446 } 5447 5448 if (i == bus->dev_count) 5449 return 0; 5450 5451 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5452 GFP_KERNEL_ACCOUNT); 5453 if (new_bus) { 5454 memcpy(new_bus, bus, struct_size(bus, range, i)); 5455 new_bus->dev_count--; 5456 memcpy(new_bus->range + i, bus->range + i + 1, 5457 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5458 } 5459 5460 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5461 synchronize_srcu_expedited(&kvm->srcu); 5462 5463 /* Destroy the old bus _after_ installing the (null) bus. */ 5464 if (!new_bus) { 5465 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5466 for (j = 0; j < bus->dev_count; j++) { 5467 if (j == i) 5468 continue; 5469 kvm_iodevice_destructor(bus->range[j].dev); 5470 } 5471 } 5472 5473 kfree(bus); 5474 return new_bus ? 0 : -ENOMEM; 5475 } 5476 5477 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5478 gpa_t addr) 5479 { 5480 struct kvm_io_bus *bus; 5481 int dev_idx, srcu_idx; 5482 struct kvm_io_device *iodev = NULL; 5483 5484 srcu_idx = srcu_read_lock(&kvm->srcu); 5485 5486 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5487 if (!bus) 5488 goto out_unlock; 5489 5490 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5491 if (dev_idx < 0) 5492 goto out_unlock; 5493 5494 iodev = bus->range[dev_idx].dev; 5495 5496 out_unlock: 5497 srcu_read_unlock(&kvm->srcu, srcu_idx); 5498 5499 return iodev; 5500 } 5501 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5502 5503 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5504 int (*get)(void *, u64 *), int (*set)(void *, u64), 5505 const char *fmt) 5506 { 5507 int ret; 5508 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5509 inode->i_private; 5510 5511 /* 5512 * The debugfs files are a reference to the kvm struct which 5513 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5514 * avoids the race between open and the removal of the debugfs directory. 5515 */ 5516 if (!kvm_get_kvm_safe(stat_data->kvm)) 5517 return -ENOENT; 5518 5519 ret = simple_attr_open(inode, file, get, 5520 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5521 ? set : NULL, fmt); 5522 if (ret) 5523 kvm_put_kvm(stat_data->kvm); 5524 5525 return ret; 5526 } 5527 5528 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5529 { 5530 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 5531 inode->i_private; 5532 5533 simple_attr_release(inode, file); 5534 kvm_put_kvm(stat_data->kvm); 5535 5536 return 0; 5537 } 5538 5539 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5540 { 5541 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5542 5543 return 0; 5544 } 5545 5546 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5547 { 5548 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5549 5550 return 0; 5551 } 5552 5553 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5554 { 5555 unsigned long i; 5556 struct kvm_vcpu *vcpu; 5557 5558 *val = 0; 5559 5560 kvm_for_each_vcpu(i, vcpu, kvm) 5561 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5562 5563 return 0; 5564 } 5565 5566 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5567 { 5568 unsigned long i; 5569 struct kvm_vcpu *vcpu; 5570 5571 kvm_for_each_vcpu(i, vcpu, kvm) 5572 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5573 5574 return 0; 5575 } 5576 5577 static int kvm_stat_data_get(void *data, u64 *val) 5578 { 5579 int r = -EFAULT; 5580 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5581 5582 switch (stat_data->kind) { 5583 case KVM_STAT_VM: 5584 r = kvm_get_stat_per_vm(stat_data->kvm, 5585 stat_data->desc->desc.offset, val); 5586 break; 5587 case KVM_STAT_VCPU: 5588 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5589 stat_data->desc->desc.offset, val); 5590 break; 5591 } 5592 5593 return r; 5594 } 5595 5596 static int kvm_stat_data_clear(void *data, u64 val) 5597 { 5598 int r = -EFAULT; 5599 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 5600 5601 if (val) 5602 return -EINVAL; 5603 5604 switch (stat_data->kind) { 5605 case KVM_STAT_VM: 5606 r = kvm_clear_stat_per_vm(stat_data->kvm, 5607 stat_data->desc->desc.offset); 5608 break; 5609 case KVM_STAT_VCPU: 5610 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5611 stat_data->desc->desc.offset); 5612 break; 5613 } 5614 5615 return r; 5616 } 5617 5618 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5619 { 5620 __simple_attr_check_format("%llu\n", 0ull); 5621 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5622 kvm_stat_data_clear, "%llu\n"); 5623 } 5624 5625 static const struct file_operations stat_fops_per_vm = { 5626 .owner = THIS_MODULE, 5627 .open = kvm_stat_data_open, 5628 .release = kvm_debugfs_release, 5629 .read = simple_attr_read, 5630 .write = simple_attr_write, 5631 .llseek = no_llseek, 5632 }; 5633 5634 static int vm_stat_get(void *_offset, u64 *val) 5635 { 5636 unsigned offset = (long)_offset; 5637 struct kvm *kvm; 5638 u64 tmp_val; 5639 5640 *val = 0; 5641 mutex_lock(&kvm_lock); 5642 list_for_each_entry(kvm, &vm_list, vm_list) { 5643 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5644 *val += tmp_val; 5645 } 5646 mutex_unlock(&kvm_lock); 5647 return 0; 5648 } 5649 5650 static int vm_stat_clear(void *_offset, u64 val) 5651 { 5652 unsigned offset = (long)_offset; 5653 struct kvm *kvm; 5654 5655 if (val) 5656 return -EINVAL; 5657 5658 mutex_lock(&kvm_lock); 5659 list_for_each_entry(kvm, &vm_list, vm_list) { 5660 kvm_clear_stat_per_vm(kvm, offset); 5661 } 5662 mutex_unlock(&kvm_lock); 5663 5664 return 0; 5665 } 5666 5667 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5668 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5669 5670 static int vcpu_stat_get(void *_offset, u64 *val) 5671 { 5672 unsigned offset = (long)_offset; 5673 struct kvm *kvm; 5674 u64 tmp_val; 5675 5676 *val = 0; 5677 mutex_lock(&kvm_lock); 5678 list_for_each_entry(kvm, &vm_list, vm_list) { 5679 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5680 *val += tmp_val; 5681 } 5682 mutex_unlock(&kvm_lock); 5683 return 0; 5684 } 5685 5686 static int vcpu_stat_clear(void *_offset, u64 val) 5687 { 5688 unsigned offset = (long)_offset; 5689 struct kvm *kvm; 5690 5691 if (val) 5692 return -EINVAL; 5693 5694 mutex_lock(&kvm_lock); 5695 list_for_each_entry(kvm, &vm_list, vm_list) { 5696 kvm_clear_stat_per_vcpu(kvm, offset); 5697 } 5698 mutex_unlock(&kvm_lock); 5699 5700 return 0; 5701 } 5702 5703 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5704 "%llu\n"); 5705 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5706 5707 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5708 { 5709 struct kobj_uevent_env *env; 5710 unsigned long long created, active; 5711 5712 if (!kvm_dev.this_device || !kvm) 5713 return; 5714 5715 mutex_lock(&kvm_lock); 5716 if (type == KVM_EVENT_CREATE_VM) { 5717 kvm_createvm_count++; 5718 kvm_active_vms++; 5719 } else if (type == KVM_EVENT_DESTROY_VM) { 5720 kvm_active_vms--; 5721 } 5722 created = kvm_createvm_count; 5723 active = kvm_active_vms; 5724 mutex_unlock(&kvm_lock); 5725 5726 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5727 if (!env) 5728 return; 5729 5730 add_uevent_var(env, "CREATED=%llu", created); 5731 add_uevent_var(env, "COUNT=%llu", active); 5732 5733 if (type == KVM_EVENT_CREATE_VM) { 5734 add_uevent_var(env, "EVENT=create"); 5735 kvm->userspace_pid = task_pid_nr(current); 5736 } else if (type == KVM_EVENT_DESTROY_VM) { 5737 add_uevent_var(env, "EVENT=destroy"); 5738 } 5739 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5740 5741 if (!IS_ERR(kvm->debugfs_dentry)) { 5742 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5743 5744 if (p) { 5745 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5746 if (!IS_ERR(tmp)) 5747 add_uevent_var(env, "STATS_PATH=%s", tmp); 5748 kfree(p); 5749 } 5750 } 5751 /* no need for checks, since we are adding at most only 5 keys */ 5752 env->envp[env->envp_idx++] = NULL; 5753 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5754 kfree(env); 5755 } 5756 5757 static void kvm_init_debug(void) 5758 { 5759 const struct file_operations *fops; 5760 const struct _kvm_stats_desc *pdesc; 5761 int i; 5762 5763 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5764 5765 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5766 pdesc = &kvm_vm_stats_desc[i]; 5767 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5768 fops = &vm_stat_fops; 5769 else 5770 fops = &vm_stat_readonly_fops; 5771 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5772 kvm_debugfs_dir, 5773 (void *)(long)pdesc->desc.offset, fops); 5774 } 5775 5776 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5777 pdesc = &kvm_vcpu_stats_desc[i]; 5778 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5779 fops = &vcpu_stat_fops; 5780 else 5781 fops = &vcpu_stat_readonly_fops; 5782 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5783 kvm_debugfs_dir, 5784 (void *)(long)pdesc->desc.offset, fops); 5785 } 5786 } 5787 5788 static int kvm_suspend(void) 5789 { 5790 if (kvm_usage_count) 5791 hardware_disable_nolock(NULL); 5792 return 0; 5793 } 5794 5795 static void kvm_resume(void) 5796 { 5797 if (kvm_usage_count) { 5798 lockdep_assert_not_held(&kvm_count_lock); 5799 hardware_enable_nolock(NULL); 5800 } 5801 } 5802 5803 static struct syscore_ops kvm_syscore_ops = { 5804 .suspend = kvm_suspend, 5805 .resume = kvm_resume, 5806 }; 5807 5808 static inline 5809 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5810 { 5811 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5812 } 5813 5814 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5815 { 5816 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5817 5818 WRITE_ONCE(vcpu->preempted, false); 5819 WRITE_ONCE(vcpu->ready, false); 5820 5821 __this_cpu_write(kvm_running_vcpu, vcpu); 5822 kvm_arch_sched_in(vcpu, cpu); 5823 kvm_arch_vcpu_load(vcpu, cpu); 5824 } 5825 5826 static void kvm_sched_out(struct preempt_notifier *pn, 5827 struct task_struct *next) 5828 { 5829 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5830 5831 if (current->on_rq) { 5832 WRITE_ONCE(vcpu->preempted, true); 5833 WRITE_ONCE(vcpu->ready, true); 5834 } 5835 kvm_arch_vcpu_put(vcpu); 5836 __this_cpu_write(kvm_running_vcpu, NULL); 5837 } 5838 5839 /** 5840 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5841 * 5842 * We can disable preemption locally around accessing the per-CPU variable, 5843 * and use the resolved vcpu pointer after enabling preemption again, 5844 * because even if the current thread is migrated to another CPU, reading 5845 * the per-CPU value later will give us the same value as we update the 5846 * per-CPU variable in the preempt notifier handlers. 5847 */ 5848 struct kvm_vcpu *kvm_get_running_vcpu(void) 5849 { 5850 struct kvm_vcpu *vcpu; 5851 5852 preempt_disable(); 5853 vcpu = __this_cpu_read(kvm_running_vcpu); 5854 preempt_enable(); 5855 5856 return vcpu; 5857 } 5858 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5859 5860 /** 5861 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5862 */ 5863 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5864 { 5865 return &kvm_running_vcpu; 5866 } 5867 5868 #ifdef CONFIG_GUEST_PERF_EVENTS 5869 static unsigned int kvm_guest_state(void) 5870 { 5871 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5872 unsigned int state; 5873 5874 if (!kvm_arch_pmi_in_guest(vcpu)) 5875 return 0; 5876 5877 state = PERF_GUEST_ACTIVE; 5878 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5879 state |= PERF_GUEST_USER; 5880 5881 return state; 5882 } 5883 5884 static unsigned long kvm_guest_get_ip(void) 5885 { 5886 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5887 5888 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5889 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5890 return 0; 5891 5892 return kvm_arch_vcpu_get_ip(vcpu); 5893 } 5894 5895 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5896 .state = kvm_guest_state, 5897 .get_ip = kvm_guest_get_ip, 5898 .handle_intel_pt_intr = NULL, 5899 }; 5900 5901 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5902 { 5903 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5904 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5905 } 5906 void kvm_unregister_perf_callbacks(void) 5907 { 5908 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5909 } 5910 #endif 5911 5912 struct kvm_cpu_compat_check { 5913 void *opaque; 5914 int *ret; 5915 }; 5916 5917 static void check_processor_compat(void *data) 5918 { 5919 struct kvm_cpu_compat_check *c = data; 5920 5921 *c->ret = kvm_arch_check_processor_compat(c->opaque); 5922 } 5923 5924 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 5925 struct module *module) 5926 { 5927 struct kvm_cpu_compat_check c; 5928 int r; 5929 int cpu; 5930 5931 r = kvm_arch_init(opaque); 5932 if (r) 5933 goto out_fail; 5934 5935 /* 5936 * kvm_arch_init makes sure there's at most one caller 5937 * for architectures that support multiple implementations, 5938 * like intel and amd on x86. 5939 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 5940 * conflicts in case kvm is already setup for another implementation. 5941 */ 5942 r = kvm_irqfd_init(); 5943 if (r) 5944 goto out_irqfd; 5945 5946 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 5947 r = -ENOMEM; 5948 goto out_free_0; 5949 } 5950 5951 r = kvm_arch_hardware_setup(opaque); 5952 if (r < 0) 5953 goto out_free_1; 5954 5955 c.ret = &r; 5956 c.opaque = opaque; 5957 for_each_online_cpu(cpu) { 5958 smp_call_function_single(cpu, check_processor_compat, &c, 1); 5959 if (r < 0) 5960 goto out_free_2; 5961 } 5962 5963 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 5964 kvm_starting_cpu, kvm_dying_cpu); 5965 if (r) 5966 goto out_free_2; 5967 register_reboot_notifier(&kvm_reboot_notifier); 5968 5969 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5970 if (!vcpu_align) 5971 vcpu_align = __alignof__(struct kvm_vcpu); 5972 kvm_vcpu_cache = 5973 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5974 SLAB_ACCOUNT, 5975 offsetof(struct kvm_vcpu, arch), 5976 offsetofend(struct kvm_vcpu, stats_id) 5977 - offsetof(struct kvm_vcpu, arch), 5978 NULL); 5979 if (!kvm_vcpu_cache) { 5980 r = -ENOMEM; 5981 goto out_free_3; 5982 } 5983 5984 for_each_possible_cpu(cpu) { 5985 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5986 GFP_KERNEL, cpu_to_node(cpu))) { 5987 r = -ENOMEM; 5988 goto out_free_4; 5989 } 5990 } 5991 5992 r = kvm_async_pf_init(); 5993 if (r) 5994 goto out_free_4; 5995 5996 kvm_chardev_ops.owner = module; 5997 5998 r = misc_register(&kvm_dev); 5999 if (r) { 6000 pr_err("kvm: misc device register failed\n"); 6001 goto out_unreg; 6002 } 6003 6004 register_syscore_ops(&kvm_syscore_ops); 6005 6006 kvm_preempt_ops.sched_in = kvm_sched_in; 6007 kvm_preempt_ops.sched_out = kvm_sched_out; 6008 6009 kvm_init_debug(); 6010 6011 r = kvm_vfio_ops_init(); 6012 WARN_ON(r); 6013 6014 return 0; 6015 6016 out_unreg: 6017 kvm_async_pf_deinit(); 6018 out_free_4: 6019 for_each_possible_cpu(cpu) 6020 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6021 kmem_cache_destroy(kvm_vcpu_cache); 6022 out_free_3: 6023 unregister_reboot_notifier(&kvm_reboot_notifier); 6024 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 6025 out_free_2: 6026 kvm_arch_hardware_unsetup(); 6027 out_free_1: 6028 free_cpumask_var(cpus_hardware_enabled); 6029 out_free_0: 6030 kvm_irqfd_exit(); 6031 out_irqfd: 6032 kvm_arch_exit(); 6033 out_fail: 6034 return r; 6035 } 6036 EXPORT_SYMBOL_GPL(kvm_init); 6037 6038 void kvm_exit(void) 6039 { 6040 int cpu; 6041 6042 debugfs_remove_recursive(kvm_debugfs_dir); 6043 misc_deregister(&kvm_dev); 6044 for_each_possible_cpu(cpu) 6045 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6046 kmem_cache_destroy(kvm_vcpu_cache); 6047 kvm_async_pf_deinit(); 6048 unregister_syscore_ops(&kvm_syscore_ops); 6049 unregister_reboot_notifier(&kvm_reboot_notifier); 6050 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 6051 on_each_cpu(hardware_disable_nolock, NULL, 1); 6052 kvm_arch_hardware_unsetup(); 6053 kvm_arch_exit(); 6054 kvm_irqfd_exit(); 6055 free_cpumask_var(cpus_hardware_enabled); 6056 kvm_vfio_ops_exit(); 6057 } 6058 EXPORT_SYMBOL_GPL(kvm_exit); 6059 6060 struct kvm_vm_worker_thread_context { 6061 struct kvm *kvm; 6062 struct task_struct *parent; 6063 struct completion init_done; 6064 kvm_vm_thread_fn_t thread_fn; 6065 uintptr_t data; 6066 int err; 6067 }; 6068 6069 static int kvm_vm_worker_thread(void *context) 6070 { 6071 /* 6072 * The init_context is allocated on the stack of the parent thread, so 6073 * we have to locally copy anything that is needed beyond initialization 6074 */ 6075 struct kvm_vm_worker_thread_context *init_context = context; 6076 struct task_struct *parent; 6077 struct kvm *kvm = init_context->kvm; 6078 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6079 uintptr_t data = init_context->data; 6080 int err; 6081 6082 err = kthread_park(current); 6083 /* kthread_park(current) is never supposed to return an error */ 6084 WARN_ON(err != 0); 6085 if (err) 6086 goto init_complete; 6087 6088 err = cgroup_attach_task_all(init_context->parent, current); 6089 if (err) { 6090 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6091 __func__, err); 6092 goto init_complete; 6093 } 6094 6095 set_user_nice(current, task_nice(init_context->parent)); 6096 6097 init_complete: 6098 init_context->err = err; 6099 complete(&init_context->init_done); 6100 init_context = NULL; 6101 6102 if (err) 6103 goto out; 6104 6105 /* Wait to be woken up by the spawner before proceeding. */ 6106 kthread_parkme(); 6107 6108 if (!kthread_should_stop()) 6109 err = thread_fn(kvm, data); 6110 6111 out: 6112 /* 6113 * Move kthread back to its original cgroup to prevent it lingering in 6114 * the cgroup of the VM process, after the latter finishes its 6115 * execution. 6116 * 6117 * kthread_stop() waits on the 'exited' completion condition which is 6118 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6119 * kthread is removed from the cgroup in the cgroup_exit() which is 6120 * called after the exit_mm(). This causes the kthread_stop() to return 6121 * before the kthread actually quits the cgroup. 6122 */ 6123 rcu_read_lock(); 6124 parent = rcu_dereference(current->real_parent); 6125 get_task_struct(parent); 6126 rcu_read_unlock(); 6127 cgroup_attach_task_all(parent, current); 6128 put_task_struct(parent); 6129 6130 return err; 6131 } 6132 6133 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6134 uintptr_t data, const char *name, 6135 struct task_struct **thread_ptr) 6136 { 6137 struct kvm_vm_worker_thread_context init_context = {}; 6138 struct task_struct *thread; 6139 6140 *thread_ptr = NULL; 6141 init_context.kvm = kvm; 6142 init_context.parent = current; 6143 init_context.thread_fn = thread_fn; 6144 init_context.data = data; 6145 init_completion(&init_context.init_done); 6146 6147 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6148 "%s-%d", name, task_pid_nr(current)); 6149 if (IS_ERR(thread)) 6150 return PTR_ERR(thread); 6151 6152 /* kthread_run is never supposed to return NULL */ 6153 WARN_ON(thread == NULL); 6154 6155 wait_for_completion(&init_context.init_done); 6156 6157 if (!init_context.err) 6158 *thread_ptr = thread; 6159 6160 return init_context.err; 6161 } 6162