xref: /openbmc/linux/virt/kvm/kvm_main.c (revision a90fa0ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static struct file_operations kvm_chardev_ops;
121 
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 			   unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 				  unsigned long arg);
127 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 				unsigned long arg) { return -EINVAL; }
138 
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141 	return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
144 			.open		= kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148 
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150 
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153 
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159 
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161 
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163 						   unsigned long start, unsigned long end)
164 {
165 }
166 
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170 
171 bool kvm_is_zone_device_page(struct page *page)
172 {
173 	/*
174 	 * The metadata used by is_zone_device_page() to determine whether or
175 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
177 	 * page_count() is zero to help detect bad usage of this helper.
178 	 */
179 	if (WARN_ON_ONCE(!page_count(page)))
180 		return false;
181 
182 	return is_zone_device_page(page);
183 }
184 
185 /*
186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
188  * is likely incomplete, it has been compiled purely through people wanting to
189  * back guest with a certain type of memory and encountering issues.
190  */
191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193 	struct page *page;
194 
195 	if (!pfn_valid(pfn))
196 		return NULL;
197 
198 	page = pfn_to_page(pfn);
199 	if (!PageReserved(page))
200 		return page;
201 
202 	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203 	if (is_zero_pfn(pfn))
204 		return page;
205 
206 	/*
207 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208 	 * perspective they are "normal" pages, albeit with slightly different
209 	 * usage rules.
210 	 */
211 	if (kvm_is_zone_device_page(page))
212 		return page;
213 
214 	return NULL;
215 }
216 
217 /*
218  * Switches to specified vcpu, until a matching vcpu_put()
219  */
220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222 	int cpu = get_cpu();
223 
224 	__this_cpu_write(kvm_running_vcpu, vcpu);
225 	preempt_notifier_register(&vcpu->preempt_notifier);
226 	kvm_arch_vcpu_load(vcpu, cpu);
227 	put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230 
231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233 	preempt_disable();
234 	kvm_arch_vcpu_put(vcpu);
235 	preempt_notifier_unregister(&vcpu->preempt_notifier);
236 	__this_cpu_write(kvm_running_vcpu, NULL);
237 	preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240 
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245 
246 	/*
247 	 * We need to wait for the VCPU to reenable interrupts and get out of
248 	 * READING_SHADOW_PAGE_TABLES mode.
249 	 */
250 	if (req & KVM_REQUEST_WAIT)
251 		return mode != OUTSIDE_GUEST_MODE;
252 
253 	/*
254 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
255 	 */
256 	return mode == IN_GUEST_MODE;
257 }
258 
259 static void ack_kick(void *_completed)
260 {
261 }
262 
263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265 	if (cpumask_empty(cpus))
266 		return false;
267 
268 	smp_call_function_many(cpus, ack_kick, NULL, wait);
269 	return true;
270 }
271 
272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273 				  struct cpumask *tmp, int current_cpu)
274 {
275 	int cpu;
276 
277 	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278 		__kvm_make_request(req, vcpu);
279 
280 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281 		return;
282 
283 	/*
284 	 * Note, the vCPU could get migrated to a different pCPU at any point
285 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
286 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
287 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289 	 * after this point is also OK, as the requirement is only that KVM wait
290 	 * for vCPUs that were reading SPTEs _before_ any changes were
291 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
292 	 */
293 	if (kvm_request_needs_ipi(vcpu, req)) {
294 		cpu = READ_ONCE(vcpu->cpu);
295 		if (cpu != -1 && cpu != current_cpu)
296 			__cpumask_set_cpu(cpu, tmp);
297 	}
298 }
299 
300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301 				 unsigned long *vcpu_bitmap)
302 {
303 	struct kvm_vcpu *vcpu;
304 	struct cpumask *cpus;
305 	int i, me;
306 	bool called;
307 
308 	me = get_cpu();
309 
310 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311 	cpumask_clear(cpus);
312 
313 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314 		vcpu = kvm_get_vcpu(kvm, i);
315 		if (!vcpu)
316 			continue;
317 		kvm_make_vcpu_request(vcpu, req, cpus, me);
318 	}
319 
320 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321 	put_cpu();
322 
323 	return called;
324 }
325 
326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327 				      struct kvm_vcpu *except)
328 {
329 	struct kvm_vcpu *vcpu;
330 	struct cpumask *cpus;
331 	unsigned long i;
332 	bool called;
333 	int me;
334 
335 	me = get_cpu();
336 
337 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338 	cpumask_clear(cpus);
339 
340 	kvm_for_each_vcpu(i, vcpu, kvm) {
341 		if (vcpu == except)
342 			continue;
343 		kvm_make_vcpu_request(vcpu, req, cpus, me);
344 	}
345 
346 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347 	put_cpu();
348 
349 	return called;
350 }
351 
352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357 
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361 	++kvm->stat.generic.remote_tlb_flush_requests;
362 
363 	/*
364 	 * We want to publish modifications to the page tables before reading
365 	 * mode. Pairs with a memory barrier in arch-specific code.
366 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
368 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369 	 *
370 	 * There is already an smp_mb__after_atomic() before
371 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372 	 * barrier here.
373 	 */
374 	if (!kvm_arch_flush_remote_tlb(kvm)
375 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376 		++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380 
381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383 	kvm_arch_flush_shadow_all(kvm);
384 	kvm_arch_guest_memory_reclaimed(kvm);
385 }
386 
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389 					       gfp_t gfp_flags)
390 {
391 	gfp_flags |= mc->gfp_zero;
392 
393 	if (mc->kmem_cache)
394 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395 	else
396 		return (void *)__get_free_page(gfp_flags);
397 }
398 
399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402 	void *obj;
403 
404 	if (mc->nobjs >= min)
405 		return 0;
406 
407 	if (unlikely(!mc->objects)) {
408 		if (WARN_ON_ONCE(!capacity))
409 			return -EIO;
410 
411 		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412 		if (!mc->objects)
413 			return -ENOMEM;
414 
415 		mc->capacity = capacity;
416 	}
417 
418 	/* It is illegal to request a different capacity across topups. */
419 	if (WARN_ON_ONCE(mc->capacity != capacity))
420 		return -EIO;
421 
422 	while (mc->nobjs < mc->capacity) {
423 		obj = mmu_memory_cache_alloc_obj(mc, gfp);
424 		if (!obj)
425 			return mc->nobjs >= min ? 0 : -ENOMEM;
426 		mc->objects[mc->nobjs++] = obj;
427 	}
428 	return 0;
429 }
430 
431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435 
436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438 	return mc->nobjs;
439 }
440 
441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443 	while (mc->nobjs) {
444 		if (mc->kmem_cache)
445 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446 		else
447 			free_page((unsigned long)mc->objects[--mc->nobjs]);
448 	}
449 
450 	kvfree(mc->objects);
451 
452 	mc->objects = NULL;
453 	mc->capacity = 0;
454 }
455 
456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458 	void *p;
459 
460 	if (WARN_ON(!mc->nobjs))
461 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462 	else
463 		p = mc->objects[--mc->nobjs];
464 	BUG_ON(!p);
465 	return p;
466 }
467 #endif
468 
469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471 	mutex_init(&vcpu->mutex);
472 	vcpu->cpu = -1;
473 	vcpu->kvm = kvm;
474 	vcpu->vcpu_id = id;
475 	vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477 	rcuwait_init(&vcpu->wait);
478 #endif
479 	kvm_async_pf_vcpu_init(vcpu);
480 
481 	kvm_vcpu_set_in_spin_loop(vcpu, false);
482 	kvm_vcpu_set_dy_eligible(vcpu, false);
483 	vcpu->preempted = false;
484 	vcpu->ready = false;
485 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486 	vcpu->last_used_slot = NULL;
487 
488 	/* Fill the stats id string for the vcpu */
489 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490 		 task_pid_nr(current), id);
491 }
492 
493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494 {
495 	kvm_arch_vcpu_destroy(vcpu);
496 	kvm_dirty_ring_free(&vcpu->dirty_ring);
497 
498 	/*
499 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500 	 * the vcpu->pid pointer, and at destruction time all file descriptors
501 	 * are already gone.
502 	 */
503 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
504 
505 	free_page((unsigned long)vcpu->run);
506 	kmem_cache_free(kvm_vcpu_cache, vcpu);
507 }
508 
509 void kvm_destroy_vcpus(struct kvm *kvm)
510 {
511 	unsigned long i;
512 	struct kvm_vcpu *vcpu;
513 
514 	kvm_for_each_vcpu(i, vcpu, kvm) {
515 		kvm_vcpu_destroy(vcpu);
516 		xa_erase(&kvm->vcpu_array, i);
517 	}
518 
519 	atomic_set(&kvm->online_vcpus, 0);
520 }
521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522 
523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525 {
526 	return container_of(mn, struct kvm, mmu_notifier);
527 }
528 
529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530 					      struct mm_struct *mm,
531 					      unsigned long start, unsigned long end)
532 {
533 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
534 	int idx;
535 
536 	idx = srcu_read_lock(&kvm->srcu);
537 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538 	srcu_read_unlock(&kvm->srcu, idx);
539 }
540 
541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542 
543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544 			     unsigned long end);
545 
546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547 
548 struct kvm_hva_range {
549 	unsigned long start;
550 	unsigned long end;
551 	pte_t pte;
552 	hva_handler_t handler;
553 	on_lock_fn_t on_lock;
554 	on_unlock_fn_t on_unlock;
555 	bool flush_on_ret;
556 	bool may_block;
557 };
558 
559 /*
560  * Use a dedicated stub instead of NULL to indicate that there is no callback
561  * function/handler.  The compiler technically can't guarantee that a real
562  * function will have a non-zero address, and so it will generate code to
563  * check for !NULL, whereas comparing against a stub will be elided at compile
564  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565  */
566 static void kvm_null_fn(void)
567 {
568 
569 }
570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571 
572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
574 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575 	     node;							     \
576 	     node = interval_tree_iter_next(node, start, last))	     \
577 
578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579 						  const struct kvm_hva_range *range)
580 {
581 	bool ret = false, locked = false;
582 	struct kvm_gfn_range gfn_range;
583 	struct kvm_memory_slot *slot;
584 	struct kvm_memslots *slots;
585 	int i, idx;
586 
587 	if (WARN_ON_ONCE(range->end <= range->start))
588 		return 0;
589 
590 	/* A null handler is allowed if and only if on_lock() is provided. */
591 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592 			 IS_KVM_NULL_FN(range->handler)))
593 		return 0;
594 
595 	idx = srcu_read_lock(&kvm->srcu);
596 
597 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598 		struct interval_tree_node *node;
599 
600 		slots = __kvm_memslots(kvm, i);
601 		kvm_for_each_memslot_in_hva_range(node, slots,
602 						  range->start, range->end - 1) {
603 			unsigned long hva_start, hva_end;
604 
605 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606 			hva_start = max(range->start, slot->userspace_addr);
607 			hva_end = min(range->end, slot->userspace_addr +
608 						  (slot->npages << PAGE_SHIFT));
609 
610 			/*
611 			 * To optimize for the likely case where the address
612 			 * range is covered by zero or one memslots, don't
613 			 * bother making these conditional (to avoid writes on
614 			 * the second or later invocation of the handler).
615 			 */
616 			gfn_range.pte = range->pte;
617 			gfn_range.may_block = range->may_block;
618 
619 			/*
620 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
621 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622 			 */
623 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625 			gfn_range.slot = slot;
626 
627 			if (!locked) {
628 				locked = true;
629 				KVM_MMU_LOCK(kvm);
630 				if (!IS_KVM_NULL_FN(range->on_lock))
631 					range->on_lock(kvm, range->start, range->end);
632 				if (IS_KVM_NULL_FN(range->handler))
633 					break;
634 			}
635 			ret |= range->handler(kvm, &gfn_range);
636 		}
637 	}
638 
639 	if (range->flush_on_ret && ret)
640 		kvm_flush_remote_tlbs(kvm);
641 
642 	if (locked) {
643 		KVM_MMU_UNLOCK(kvm);
644 		if (!IS_KVM_NULL_FN(range->on_unlock))
645 			range->on_unlock(kvm);
646 	}
647 
648 	srcu_read_unlock(&kvm->srcu, idx);
649 
650 	/* The notifiers are averse to booleans. :-( */
651 	return (int)ret;
652 }
653 
654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655 						unsigned long start,
656 						unsigned long end,
657 						pte_t pte,
658 						hva_handler_t handler)
659 {
660 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
661 	const struct kvm_hva_range range = {
662 		.start		= start,
663 		.end		= end,
664 		.pte		= pte,
665 		.handler	= handler,
666 		.on_lock	= (void *)kvm_null_fn,
667 		.on_unlock	= (void *)kvm_null_fn,
668 		.flush_on_ret	= true,
669 		.may_block	= false,
670 	};
671 
672 	return __kvm_handle_hva_range(kvm, &range);
673 }
674 
675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676 							 unsigned long start,
677 							 unsigned long end,
678 							 hva_handler_t handler)
679 {
680 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
681 	const struct kvm_hva_range range = {
682 		.start		= start,
683 		.end		= end,
684 		.pte		= __pte(0),
685 		.handler	= handler,
686 		.on_lock	= (void *)kvm_null_fn,
687 		.on_unlock	= (void *)kvm_null_fn,
688 		.flush_on_ret	= false,
689 		.may_block	= false,
690 	};
691 
692 	return __kvm_handle_hva_range(kvm, &range);
693 }
694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695 					struct mm_struct *mm,
696 					unsigned long address,
697 					pte_t pte)
698 {
699 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
700 
701 	trace_kvm_set_spte_hva(address);
702 
703 	/*
704 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705 	 * If mmu_invalidate_in_progress is zero, then no in-progress
706 	 * invalidations, including this one, found a relevant memslot at
707 	 * start(); rechecking memslots here is unnecessary.  Note, a false
708 	 * positive (count elevated by a different invalidation) is sub-optimal
709 	 * but functionally ok.
710 	 */
711 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
712 	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
713 		return;
714 
715 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
716 }
717 
718 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
719 			      unsigned long end)
720 {
721 	/*
722 	 * The count increase must become visible at unlock time as no
723 	 * spte can be established without taking the mmu_lock and
724 	 * count is also read inside the mmu_lock critical section.
725 	 */
726 	kvm->mmu_invalidate_in_progress++;
727 	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
728 		kvm->mmu_invalidate_range_start = start;
729 		kvm->mmu_invalidate_range_end = end;
730 	} else {
731 		/*
732 		 * Fully tracking multiple concurrent ranges has diminishing
733 		 * returns. Keep things simple and just find the minimal range
734 		 * which includes the current and new ranges. As there won't be
735 		 * enough information to subtract a range after its invalidate
736 		 * completes, any ranges invalidated concurrently will
737 		 * accumulate and persist until all outstanding invalidates
738 		 * complete.
739 		 */
740 		kvm->mmu_invalidate_range_start =
741 			min(kvm->mmu_invalidate_range_start, start);
742 		kvm->mmu_invalidate_range_end =
743 			max(kvm->mmu_invalidate_range_end, end);
744 	}
745 }
746 
747 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
748 					const struct mmu_notifier_range *range)
749 {
750 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
751 	const struct kvm_hva_range hva_range = {
752 		.start		= range->start,
753 		.end		= range->end,
754 		.pte		= __pte(0),
755 		.handler	= kvm_unmap_gfn_range,
756 		.on_lock	= kvm_mmu_invalidate_begin,
757 		.on_unlock	= kvm_arch_guest_memory_reclaimed,
758 		.flush_on_ret	= true,
759 		.may_block	= mmu_notifier_range_blockable(range),
760 	};
761 
762 	trace_kvm_unmap_hva_range(range->start, range->end);
763 
764 	/*
765 	 * Prevent memslot modification between range_start() and range_end()
766 	 * so that conditionally locking provides the same result in both
767 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
768 	 * adjustments will be imbalanced.
769 	 *
770 	 * Pairs with the decrement in range_end().
771 	 */
772 	spin_lock(&kvm->mn_invalidate_lock);
773 	kvm->mn_active_invalidate_count++;
774 	spin_unlock(&kvm->mn_invalidate_lock);
775 
776 	/*
777 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
778 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
779 	 * each cache's lock.  There are relatively few caches in existence at
780 	 * any given time, and the caches themselves can check for hva overlap,
781 	 * i.e. don't need to rely on memslot overlap checks for performance.
782 	 * Because this runs without holding mmu_lock, the pfn caches must use
783 	 * mn_active_invalidate_count (see above) instead of
784 	 * mmu_invalidate_in_progress.
785 	 */
786 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
787 					  hva_range.may_block);
788 
789 	__kvm_handle_hva_range(kvm, &hva_range);
790 
791 	return 0;
792 }
793 
794 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
795 			    unsigned long end)
796 {
797 	/*
798 	 * This sequence increase will notify the kvm page fault that
799 	 * the page that is going to be mapped in the spte could have
800 	 * been freed.
801 	 */
802 	kvm->mmu_invalidate_seq++;
803 	smp_wmb();
804 	/*
805 	 * The above sequence increase must be visible before the
806 	 * below count decrease, which is ensured by the smp_wmb above
807 	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
808 	 */
809 	kvm->mmu_invalidate_in_progress--;
810 }
811 
812 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
813 					const struct mmu_notifier_range *range)
814 {
815 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
816 	const struct kvm_hva_range hva_range = {
817 		.start		= range->start,
818 		.end		= range->end,
819 		.pte		= __pte(0),
820 		.handler	= (void *)kvm_null_fn,
821 		.on_lock	= kvm_mmu_invalidate_end,
822 		.on_unlock	= (void *)kvm_null_fn,
823 		.flush_on_ret	= false,
824 		.may_block	= mmu_notifier_range_blockable(range),
825 	};
826 	bool wake;
827 
828 	__kvm_handle_hva_range(kvm, &hva_range);
829 
830 	/* Pairs with the increment in range_start(). */
831 	spin_lock(&kvm->mn_invalidate_lock);
832 	wake = (--kvm->mn_active_invalidate_count == 0);
833 	spin_unlock(&kvm->mn_invalidate_lock);
834 
835 	/*
836 	 * There can only be one waiter, since the wait happens under
837 	 * slots_lock.
838 	 */
839 	if (wake)
840 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
841 
842 	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
843 }
844 
845 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
846 					      struct mm_struct *mm,
847 					      unsigned long start,
848 					      unsigned long end)
849 {
850 	trace_kvm_age_hva(start, end);
851 
852 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
853 }
854 
855 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
856 					struct mm_struct *mm,
857 					unsigned long start,
858 					unsigned long end)
859 {
860 	trace_kvm_age_hva(start, end);
861 
862 	/*
863 	 * Even though we do not flush TLB, this will still adversely
864 	 * affect performance on pre-Haswell Intel EPT, where there is
865 	 * no EPT Access Bit to clear so that we have to tear down EPT
866 	 * tables instead. If we find this unacceptable, we can always
867 	 * add a parameter to kvm_age_hva so that it effectively doesn't
868 	 * do anything on clear_young.
869 	 *
870 	 * Also note that currently we never issue secondary TLB flushes
871 	 * from clear_young, leaving this job up to the regular system
872 	 * cadence. If we find this inaccurate, we might come up with a
873 	 * more sophisticated heuristic later.
874 	 */
875 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
876 }
877 
878 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
879 				       struct mm_struct *mm,
880 				       unsigned long address)
881 {
882 	trace_kvm_test_age_hva(address);
883 
884 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
885 					     kvm_test_age_gfn);
886 }
887 
888 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
889 				     struct mm_struct *mm)
890 {
891 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
892 	int idx;
893 
894 	idx = srcu_read_lock(&kvm->srcu);
895 	kvm_flush_shadow_all(kvm);
896 	srcu_read_unlock(&kvm->srcu, idx);
897 }
898 
899 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
900 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
901 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
902 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
903 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
904 	.clear_young		= kvm_mmu_notifier_clear_young,
905 	.test_young		= kvm_mmu_notifier_test_young,
906 	.change_pte		= kvm_mmu_notifier_change_pte,
907 	.release		= kvm_mmu_notifier_release,
908 };
909 
910 static int kvm_init_mmu_notifier(struct kvm *kvm)
911 {
912 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
913 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
914 }
915 
916 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
917 
918 static int kvm_init_mmu_notifier(struct kvm *kvm)
919 {
920 	return 0;
921 }
922 
923 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
924 
925 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
926 static int kvm_pm_notifier_call(struct notifier_block *bl,
927 				unsigned long state,
928 				void *unused)
929 {
930 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
931 
932 	return kvm_arch_pm_notifier(kvm, state);
933 }
934 
935 static void kvm_init_pm_notifier(struct kvm *kvm)
936 {
937 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
938 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
939 	kvm->pm_notifier.priority = INT_MAX;
940 	register_pm_notifier(&kvm->pm_notifier);
941 }
942 
943 static void kvm_destroy_pm_notifier(struct kvm *kvm)
944 {
945 	unregister_pm_notifier(&kvm->pm_notifier);
946 }
947 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
948 static void kvm_init_pm_notifier(struct kvm *kvm)
949 {
950 }
951 
952 static void kvm_destroy_pm_notifier(struct kvm *kvm)
953 {
954 }
955 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
956 
957 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
958 {
959 	if (!memslot->dirty_bitmap)
960 		return;
961 
962 	kvfree(memslot->dirty_bitmap);
963 	memslot->dirty_bitmap = NULL;
964 }
965 
966 /* This does not remove the slot from struct kvm_memslots data structures */
967 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
968 {
969 	kvm_destroy_dirty_bitmap(slot);
970 
971 	kvm_arch_free_memslot(kvm, slot);
972 
973 	kfree(slot);
974 }
975 
976 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
977 {
978 	struct hlist_node *idnode;
979 	struct kvm_memory_slot *memslot;
980 	int bkt;
981 
982 	/*
983 	 * The same memslot objects live in both active and inactive sets,
984 	 * arbitrarily free using index '1' so the second invocation of this
985 	 * function isn't operating over a structure with dangling pointers
986 	 * (even though this function isn't actually touching them).
987 	 */
988 	if (!slots->node_idx)
989 		return;
990 
991 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
992 		kvm_free_memslot(kvm, memslot);
993 }
994 
995 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
996 {
997 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
998 	case KVM_STATS_TYPE_INSTANT:
999 		return 0444;
1000 	case KVM_STATS_TYPE_CUMULATIVE:
1001 	case KVM_STATS_TYPE_PEAK:
1002 	default:
1003 		return 0644;
1004 	}
1005 }
1006 
1007 
1008 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1009 {
1010 	int i;
1011 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1012 				      kvm_vcpu_stats_header.num_desc;
1013 
1014 	if (IS_ERR(kvm->debugfs_dentry))
1015 		return;
1016 
1017 	debugfs_remove_recursive(kvm->debugfs_dentry);
1018 
1019 	if (kvm->debugfs_stat_data) {
1020 		for (i = 0; i < kvm_debugfs_num_entries; i++)
1021 			kfree(kvm->debugfs_stat_data[i]);
1022 		kfree(kvm->debugfs_stat_data);
1023 	}
1024 }
1025 
1026 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1027 {
1028 	static DEFINE_MUTEX(kvm_debugfs_lock);
1029 	struct dentry *dent;
1030 	char dir_name[ITOA_MAX_LEN * 2];
1031 	struct kvm_stat_data *stat_data;
1032 	const struct _kvm_stats_desc *pdesc;
1033 	int i, ret = -ENOMEM;
1034 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1035 				      kvm_vcpu_stats_header.num_desc;
1036 
1037 	if (!debugfs_initialized())
1038 		return 0;
1039 
1040 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1041 	mutex_lock(&kvm_debugfs_lock);
1042 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1043 	if (dent) {
1044 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1045 		dput(dent);
1046 		mutex_unlock(&kvm_debugfs_lock);
1047 		return 0;
1048 	}
1049 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1050 	mutex_unlock(&kvm_debugfs_lock);
1051 	if (IS_ERR(dent))
1052 		return 0;
1053 
1054 	kvm->debugfs_dentry = dent;
1055 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1056 					 sizeof(*kvm->debugfs_stat_data),
1057 					 GFP_KERNEL_ACCOUNT);
1058 	if (!kvm->debugfs_stat_data)
1059 		goto out_err;
1060 
1061 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1062 		pdesc = &kvm_vm_stats_desc[i];
1063 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1064 		if (!stat_data)
1065 			goto out_err;
1066 
1067 		stat_data->kvm = kvm;
1068 		stat_data->desc = pdesc;
1069 		stat_data->kind = KVM_STAT_VM;
1070 		kvm->debugfs_stat_data[i] = stat_data;
1071 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1072 				    kvm->debugfs_dentry, stat_data,
1073 				    &stat_fops_per_vm);
1074 	}
1075 
1076 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1077 		pdesc = &kvm_vcpu_stats_desc[i];
1078 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1079 		if (!stat_data)
1080 			goto out_err;
1081 
1082 		stat_data->kvm = kvm;
1083 		stat_data->desc = pdesc;
1084 		stat_data->kind = KVM_STAT_VCPU;
1085 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1086 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1087 				    kvm->debugfs_dentry, stat_data,
1088 				    &stat_fops_per_vm);
1089 	}
1090 
1091 	ret = kvm_arch_create_vm_debugfs(kvm);
1092 	if (ret)
1093 		goto out_err;
1094 
1095 	return 0;
1096 out_err:
1097 	kvm_destroy_vm_debugfs(kvm);
1098 	return ret;
1099 }
1100 
1101 /*
1102  * Called after the VM is otherwise initialized, but just before adding it to
1103  * the vm_list.
1104  */
1105 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1106 {
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Called just after removing the VM from the vm_list, but before doing any
1112  * other destruction.
1113  */
1114 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1115 {
1116 }
1117 
1118 /*
1119  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1120  * be setup already, so we can create arch-specific debugfs entries under it.
1121  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1122  * a per-arch destroy interface is not needed.
1123  */
1124 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1125 {
1126 	return 0;
1127 }
1128 
1129 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1130 {
1131 	struct kvm *kvm = kvm_arch_alloc_vm();
1132 	struct kvm_memslots *slots;
1133 	int r = -ENOMEM;
1134 	int i, j;
1135 
1136 	if (!kvm)
1137 		return ERR_PTR(-ENOMEM);
1138 
1139 	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1140 	__module_get(kvm_chardev_ops.owner);
1141 
1142 	KVM_MMU_LOCK_INIT(kvm);
1143 	mmgrab(current->mm);
1144 	kvm->mm = current->mm;
1145 	kvm_eventfd_init(kvm);
1146 	mutex_init(&kvm->lock);
1147 	mutex_init(&kvm->irq_lock);
1148 	mutex_init(&kvm->slots_lock);
1149 	mutex_init(&kvm->slots_arch_lock);
1150 	spin_lock_init(&kvm->mn_invalidate_lock);
1151 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1152 	xa_init(&kvm->vcpu_array);
1153 
1154 	INIT_LIST_HEAD(&kvm->gpc_list);
1155 	spin_lock_init(&kvm->gpc_lock);
1156 
1157 	INIT_LIST_HEAD(&kvm->devices);
1158 	kvm->max_vcpus = KVM_MAX_VCPUS;
1159 
1160 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1161 
1162 	/*
1163 	 * Force subsequent debugfs file creations to fail if the VM directory
1164 	 * is not created (by kvm_create_vm_debugfs()).
1165 	 */
1166 	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1167 
1168 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1169 		 task_pid_nr(current));
1170 
1171 	if (init_srcu_struct(&kvm->srcu))
1172 		goto out_err_no_srcu;
1173 	if (init_srcu_struct(&kvm->irq_srcu))
1174 		goto out_err_no_irq_srcu;
1175 
1176 	refcount_set(&kvm->users_count, 1);
1177 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1178 		for (j = 0; j < 2; j++) {
1179 			slots = &kvm->__memslots[i][j];
1180 
1181 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1182 			slots->hva_tree = RB_ROOT_CACHED;
1183 			slots->gfn_tree = RB_ROOT;
1184 			hash_init(slots->id_hash);
1185 			slots->node_idx = j;
1186 
1187 			/* Generations must be different for each address space. */
1188 			slots->generation = i;
1189 		}
1190 
1191 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1192 	}
1193 
1194 	for (i = 0; i < KVM_NR_BUSES; i++) {
1195 		rcu_assign_pointer(kvm->buses[i],
1196 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1197 		if (!kvm->buses[i])
1198 			goto out_err_no_arch_destroy_vm;
1199 	}
1200 
1201 	r = kvm_arch_init_vm(kvm, type);
1202 	if (r)
1203 		goto out_err_no_arch_destroy_vm;
1204 
1205 	r = hardware_enable_all();
1206 	if (r)
1207 		goto out_err_no_disable;
1208 
1209 #ifdef CONFIG_HAVE_KVM_IRQFD
1210 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1211 #endif
1212 
1213 	r = kvm_init_mmu_notifier(kvm);
1214 	if (r)
1215 		goto out_err_no_mmu_notifier;
1216 
1217 	r = kvm_coalesced_mmio_init(kvm);
1218 	if (r < 0)
1219 		goto out_no_coalesced_mmio;
1220 
1221 	r = kvm_create_vm_debugfs(kvm, fdname);
1222 	if (r)
1223 		goto out_err_no_debugfs;
1224 
1225 	r = kvm_arch_post_init_vm(kvm);
1226 	if (r)
1227 		goto out_err;
1228 
1229 	mutex_lock(&kvm_lock);
1230 	list_add(&kvm->vm_list, &vm_list);
1231 	mutex_unlock(&kvm_lock);
1232 
1233 	preempt_notifier_inc();
1234 	kvm_init_pm_notifier(kvm);
1235 
1236 	return kvm;
1237 
1238 out_err:
1239 	kvm_destroy_vm_debugfs(kvm);
1240 out_err_no_debugfs:
1241 	kvm_coalesced_mmio_free(kvm);
1242 out_no_coalesced_mmio:
1243 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1244 	if (kvm->mmu_notifier.ops)
1245 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1246 #endif
1247 out_err_no_mmu_notifier:
1248 	hardware_disable_all();
1249 out_err_no_disable:
1250 	kvm_arch_destroy_vm(kvm);
1251 out_err_no_arch_destroy_vm:
1252 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1253 	for (i = 0; i < KVM_NR_BUSES; i++)
1254 		kfree(kvm_get_bus(kvm, i));
1255 	cleanup_srcu_struct(&kvm->irq_srcu);
1256 out_err_no_irq_srcu:
1257 	cleanup_srcu_struct(&kvm->srcu);
1258 out_err_no_srcu:
1259 	kvm_arch_free_vm(kvm);
1260 	mmdrop(current->mm);
1261 	module_put(kvm_chardev_ops.owner);
1262 	return ERR_PTR(r);
1263 }
1264 
1265 static void kvm_destroy_devices(struct kvm *kvm)
1266 {
1267 	struct kvm_device *dev, *tmp;
1268 
1269 	/*
1270 	 * We do not need to take the kvm->lock here, because nobody else
1271 	 * has a reference to the struct kvm at this point and therefore
1272 	 * cannot access the devices list anyhow.
1273 	 */
1274 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1275 		list_del(&dev->vm_node);
1276 		dev->ops->destroy(dev);
1277 	}
1278 }
1279 
1280 static void kvm_destroy_vm(struct kvm *kvm)
1281 {
1282 	int i;
1283 	struct mm_struct *mm = kvm->mm;
1284 
1285 	kvm_destroy_pm_notifier(kvm);
1286 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1287 	kvm_destroy_vm_debugfs(kvm);
1288 	kvm_arch_sync_events(kvm);
1289 	mutex_lock(&kvm_lock);
1290 	list_del(&kvm->vm_list);
1291 	mutex_unlock(&kvm_lock);
1292 	kvm_arch_pre_destroy_vm(kvm);
1293 
1294 	kvm_free_irq_routing(kvm);
1295 	for (i = 0; i < KVM_NR_BUSES; i++) {
1296 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1297 
1298 		if (bus)
1299 			kvm_io_bus_destroy(bus);
1300 		kvm->buses[i] = NULL;
1301 	}
1302 	kvm_coalesced_mmio_free(kvm);
1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1304 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1305 	/*
1306 	 * At this point, pending calls to invalidate_range_start()
1307 	 * have completed but no more MMU notifiers will run, so
1308 	 * mn_active_invalidate_count may remain unbalanced.
1309 	 * No threads can be waiting in install_new_memslots as the
1310 	 * last reference on KVM has been dropped, but freeing
1311 	 * memslots would deadlock without this manual intervention.
1312 	 */
1313 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1314 	kvm->mn_active_invalidate_count = 0;
1315 #else
1316 	kvm_flush_shadow_all(kvm);
1317 #endif
1318 	kvm_arch_destroy_vm(kvm);
1319 	kvm_destroy_devices(kvm);
1320 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1321 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1322 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1323 	}
1324 	cleanup_srcu_struct(&kvm->irq_srcu);
1325 	cleanup_srcu_struct(&kvm->srcu);
1326 	kvm_arch_free_vm(kvm);
1327 	preempt_notifier_dec();
1328 	hardware_disable_all();
1329 	mmdrop(mm);
1330 	module_put(kvm_chardev_ops.owner);
1331 }
1332 
1333 void kvm_get_kvm(struct kvm *kvm)
1334 {
1335 	refcount_inc(&kvm->users_count);
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1338 
1339 /*
1340  * Make sure the vm is not during destruction, which is a safe version of
1341  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1342  */
1343 bool kvm_get_kvm_safe(struct kvm *kvm)
1344 {
1345 	return refcount_inc_not_zero(&kvm->users_count);
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1348 
1349 void kvm_put_kvm(struct kvm *kvm)
1350 {
1351 	if (refcount_dec_and_test(&kvm->users_count))
1352 		kvm_destroy_vm(kvm);
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1355 
1356 /*
1357  * Used to put a reference that was taken on behalf of an object associated
1358  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1359  * of the new file descriptor fails and the reference cannot be transferred to
1360  * its final owner.  In such cases, the caller is still actively using @kvm and
1361  * will fail miserably if the refcount unexpectedly hits zero.
1362  */
1363 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1364 {
1365 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1368 
1369 static int kvm_vm_release(struct inode *inode, struct file *filp)
1370 {
1371 	struct kvm *kvm = filp->private_data;
1372 
1373 	kvm_irqfd_release(kvm);
1374 
1375 	kvm_put_kvm(kvm);
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Allocation size is twice as large as the actual dirty bitmap size.
1381  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1382  */
1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1384 {
1385 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1386 
1387 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1388 	if (!memslot->dirty_bitmap)
1389 		return -ENOMEM;
1390 
1391 	return 0;
1392 }
1393 
1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1395 {
1396 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1397 	int node_idx_inactive = active->node_idx ^ 1;
1398 
1399 	return &kvm->__memslots[as_id][node_idx_inactive];
1400 }
1401 
1402 /*
1403  * Helper to get the address space ID when one of memslot pointers may be NULL.
1404  * This also serves as a sanity that at least one of the pointers is non-NULL,
1405  * and that their address space IDs don't diverge.
1406  */
1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1408 				  struct kvm_memory_slot *b)
1409 {
1410 	if (WARN_ON_ONCE(!a && !b))
1411 		return 0;
1412 
1413 	if (!a)
1414 		return b->as_id;
1415 	if (!b)
1416 		return a->as_id;
1417 
1418 	WARN_ON_ONCE(a->as_id != b->as_id);
1419 	return a->as_id;
1420 }
1421 
1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1423 				struct kvm_memory_slot *slot)
1424 {
1425 	struct rb_root *gfn_tree = &slots->gfn_tree;
1426 	struct rb_node **node, *parent;
1427 	int idx = slots->node_idx;
1428 
1429 	parent = NULL;
1430 	for (node = &gfn_tree->rb_node; *node; ) {
1431 		struct kvm_memory_slot *tmp;
1432 
1433 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1434 		parent = *node;
1435 		if (slot->base_gfn < tmp->base_gfn)
1436 			node = &(*node)->rb_left;
1437 		else if (slot->base_gfn > tmp->base_gfn)
1438 			node = &(*node)->rb_right;
1439 		else
1440 			BUG();
1441 	}
1442 
1443 	rb_link_node(&slot->gfn_node[idx], parent, node);
1444 	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1445 }
1446 
1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1448 			       struct kvm_memory_slot *slot)
1449 {
1450 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1451 }
1452 
1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1454 				 struct kvm_memory_slot *old,
1455 				 struct kvm_memory_slot *new)
1456 {
1457 	int idx = slots->node_idx;
1458 
1459 	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1460 
1461 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1462 			&slots->gfn_tree);
1463 }
1464 
1465 /*
1466  * Replace @old with @new in the inactive memslots.
1467  *
1468  * With NULL @old this simply adds @new.
1469  * With NULL @new this simply removes @old.
1470  *
1471  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1472  * appropriately.
1473  */
1474 static void kvm_replace_memslot(struct kvm *kvm,
1475 				struct kvm_memory_slot *old,
1476 				struct kvm_memory_slot *new)
1477 {
1478 	int as_id = kvm_memslots_get_as_id(old, new);
1479 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480 	int idx = slots->node_idx;
1481 
1482 	if (old) {
1483 		hash_del(&old->id_node[idx]);
1484 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1485 
1486 		if ((long)old == atomic_long_read(&slots->last_used_slot))
1487 			atomic_long_set(&slots->last_used_slot, (long)new);
1488 
1489 		if (!new) {
1490 			kvm_erase_gfn_node(slots, old);
1491 			return;
1492 		}
1493 	}
1494 
1495 	/*
1496 	 * Initialize @new's hva range.  Do this even when replacing an @old
1497 	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1498 	 */
1499 	new->hva_node[idx].start = new->userspace_addr;
1500 	new->hva_node[idx].last = new->userspace_addr +
1501 				  (new->npages << PAGE_SHIFT) - 1;
1502 
1503 	/*
1504 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1505 	 * hva_node needs to be swapped with remove+insert even though hva can't
1506 	 * change when replacing an existing slot.
1507 	 */
1508 	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1509 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1510 
1511 	/*
1512 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1513 	 * switch the node in the gfn tree instead of removing the old and
1514 	 * inserting the new as two separate operations. Replacement is a
1515 	 * single O(1) operation versus two O(log(n)) operations for
1516 	 * remove+insert.
1517 	 */
1518 	if (old && old->base_gfn == new->base_gfn) {
1519 		kvm_replace_gfn_node(slots, old, new);
1520 	} else {
1521 		if (old)
1522 			kvm_erase_gfn_node(slots, old);
1523 		kvm_insert_gfn_node(slots, new);
1524 	}
1525 }
1526 
1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1528 {
1529 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1530 
1531 #ifdef __KVM_HAVE_READONLY_MEM
1532 	valid_flags |= KVM_MEM_READONLY;
1533 #endif
1534 
1535 	if (mem->flags & ~valid_flags)
1536 		return -EINVAL;
1537 
1538 	return 0;
1539 }
1540 
1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1542 {
1543 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1544 
1545 	/* Grab the generation from the activate memslots. */
1546 	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1547 
1548 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1549 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1550 
1551 	/*
1552 	 * Do not store the new memslots while there are invalidations in
1553 	 * progress, otherwise the locking in invalidate_range_start and
1554 	 * invalidate_range_end will be unbalanced.
1555 	 */
1556 	spin_lock(&kvm->mn_invalidate_lock);
1557 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558 	while (kvm->mn_active_invalidate_count) {
1559 		set_current_state(TASK_UNINTERRUPTIBLE);
1560 		spin_unlock(&kvm->mn_invalidate_lock);
1561 		schedule();
1562 		spin_lock(&kvm->mn_invalidate_lock);
1563 	}
1564 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1565 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1566 	spin_unlock(&kvm->mn_invalidate_lock);
1567 
1568 	/*
1569 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1570 	 * SRCU below in order to avoid deadlock with another thread
1571 	 * acquiring the slots_arch_lock in an srcu critical section.
1572 	 */
1573 	mutex_unlock(&kvm->slots_arch_lock);
1574 
1575 	synchronize_srcu_expedited(&kvm->srcu);
1576 
1577 	/*
1578 	 * Increment the new memslot generation a second time, dropping the
1579 	 * update in-progress flag and incrementing the generation based on
1580 	 * the number of address spaces.  This provides a unique and easily
1581 	 * identifiable generation number while the memslots are in flux.
1582 	 */
1583 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1584 
1585 	/*
1586 	 * Generations must be unique even across address spaces.  We do not need
1587 	 * a global counter for that, instead the generation space is evenly split
1588 	 * across address spaces.  For example, with two address spaces, address
1589 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1590 	 * use generations 1, 3, 5, ...
1591 	 */
1592 	gen += KVM_ADDRESS_SPACE_NUM;
1593 
1594 	kvm_arch_memslots_updated(kvm, gen);
1595 
1596 	slots->generation = gen;
1597 }
1598 
1599 static int kvm_prepare_memory_region(struct kvm *kvm,
1600 				     const struct kvm_memory_slot *old,
1601 				     struct kvm_memory_slot *new,
1602 				     enum kvm_mr_change change)
1603 {
1604 	int r;
1605 
1606 	/*
1607 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1608 	 * will be freed on "commit".  If logging is enabled in both old and
1609 	 * new, reuse the existing bitmap.  If logging is enabled only in the
1610 	 * new and KVM isn't using a ring buffer, allocate and initialize a
1611 	 * new bitmap.
1612 	 */
1613 	if (change != KVM_MR_DELETE) {
1614 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1615 			new->dirty_bitmap = NULL;
1616 		else if (old && old->dirty_bitmap)
1617 			new->dirty_bitmap = old->dirty_bitmap;
1618 		else if (kvm_use_dirty_bitmap(kvm)) {
1619 			r = kvm_alloc_dirty_bitmap(new);
1620 			if (r)
1621 				return r;
1622 
1623 			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1624 				bitmap_set(new->dirty_bitmap, 0, new->npages);
1625 		}
1626 	}
1627 
1628 	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1629 
1630 	/* Free the bitmap on failure if it was allocated above. */
1631 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1632 		kvm_destroy_dirty_bitmap(new);
1633 
1634 	return r;
1635 }
1636 
1637 static void kvm_commit_memory_region(struct kvm *kvm,
1638 				     struct kvm_memory_slot *old,
1639 				     const struct kvm_memory_slot *new,
1640 				     enum kvm_mr_change change)
1641 {
1642 	int old_flags = old ? old->flags : 0;
1643 	int new_flags = new ? new->flags : 0;
1644 	/*
1645 	 * Update the total number of memslot pages before calling the arch
1646 	 * hook so that architectures can consume the result directly.
1647 	 */
1648 	if (change == KVM_MR_DELETE)
1649 		kvm->nr_memslot_pages -= old->npages;
1650 	else if (change == KVM_MR_CREATE)
1651 		kvm->nr_memslot_pages += new->npages;
1652 
1653 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1654 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1655 		atomic_set(&kvm->nr_memslots_dirty_logging,
1656 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1657 	}
1658 
1659 	kvm_arch_commit_memory_region(kvm, old, new, change);
1660 
1661 	switch (change) {
1662 	case KVM_MR_CREATE:
1663 		/* Nothing more to do. */
1664 		break;
1665 	case KVM_MR_DELETE:
1666 		/* Free the old memslot and all its metadata. */
1667 		kvm_free_memslot(kvm, old);
1668 		break;
1669 	case KVM_MR_MOVE:
1670 	case KVM_MR_FLAGS_ONLY:
1671 		/*
1672 		 * Free the dirty bitmap as needed; the below check encompasses
1673 		 * both the flags and whether a ring buffer is being used)
1674 		 */
1675 		if (old->dirty_bitmap && !new->dirty_bitmap)
1676 			kvm_destroy_dirty_bitmap(old);
1677 
1678 		/*
1679 		 * The final quirk.  Free the detached, old slot, but only its
1680 		 * memory, not any metadata.  Metadata, including arch specific
1681 		 * data, may be reused by @new.
1682 		 */
1683 		kfree(old);
1684 		break;
1685 	default:
1686 		BUG();
1687 	}
1688 }
1689 
1690 /*
1691  * Activate @new, which must be installed in the inactive slots by the caller,
1692  * by swapping the active slots and then propagating @new to @old once @old is
1693  * unreachable and can be safely modified.
1694  *
1695  * With NULL @old this simply adds @new to @active (while swapping the sets).
1696  * With NULL @new this simply removes @old from @active and frees it
1697  * (while also swapping the sets).
1698  */
1699 static void kvm_activate_memslot(struct kvm *kvm,
1700 				 struct kvm_memory_slot *old,
1701 				 struct kvm_memory_slot *new)
1702 {
1703 	int as_id = kvm_memslots_get_as_id(old, new);
1704 
1705 	kvm_swap_active_memslots(kvm, as_id);
1706 
1707 	/* Propagate the new memslot to the now inactive memslots. */
1708 	kvm_replace_memslot(kvm, old, new);
1709 }
1710 
1711 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1712 			     const struct kvm_memory_slot *src)
1713 {
1714 	dest->base_gfn = src->base_gfn;
1715 	dest->npages = src->npages;
1716 	dest->dirty_bitmap = src->dirty_bitmap;
1717 	dest->arch = src->arch;
1718 	dest->userspace_addr = src->userspace_addr;
1719 	dest->flags = src->flags;
1720 	dest->id = src->id;
1721 	dest->as_id = src->as_id;
1722 }
1723 
1724 static void kvm_invalidate_memslot(struct kvm *kvm,
1725 				   struct kvm_memory_slot *old,
1726 				   struct kvm_memory_slot *invalid_slot)
1727 {
1728 	/*
1729 	 * Mark the current slot INVALID.  As with all memslot modifications,
1730 	 * this must be done on an unreachable slot to avoid modifying the
1731 	 * current slot in the active tree.
1732 	 */
1733 	kvm_copy_memslot(invalid_slot, old);
1734 	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1735 	kvm_replace_memslot(kvm, old, invalid_slot);
1736 
1737 	/*
1738 	 * Activate the slot that is now marked INVALID, but don't propagate
1739 	 * the slot to the now inactive slots. The slot is either going to be
1740 	 * deleted or recreated as a new slot.
1741 	 */
1742 	kvm_swap_active_memslots(kvm, old->as_id);
1743 
1744 	/*
1745 	 * From this point no new shadow pages pointing to a deleted, or moved,
1746 	 * memslot will be created.  Validation of sp->gfn happens in:
1747 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1748 	 *	- kvm_is_visible_gfn (mmu_check_root)
1749 	 */
1750 	kvm_arch_flush_shadow_memslot(kvm, old);
1751 	kvm_arch_guest_memory_reclaimed(kvm);
1752 
1753 	/* Was released by kvm_swap_active_memslots, reacquire. */
1754 	mutex_lock(&kvm->slots_arch_lock);
1755 
1756 	/*
1757 	 * Copy the arch-specific field of the newly-installed slot back to the
1758 	 * old slot as the arch data could have changed between releasing
1759 	 * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1760 	 * above.  Writers are required to retrieve memslots *after* acquiring
1761 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1762 	 */
1763 	old->arch = invalid_slot->arch;
1764 }
1765 
1766 static void kvm_create_memslot(struct kvm *kvm,
1767 			       struct kvm_memory_slot *new)
1768 {
1769 	/* Add the new memslot to the inactive set and activate. */
1770 	kvm_replace_memslot(kvm, NULL, new);
1771 	kvm_activate_memslot(kvm, NULL, new);
1772 }
1773 
1774 static void kvm_delete_memslot(struct kvm *kvm,
1775 			       struct kvm_memory_slot *old,
1776 			       struct kvm_memory_slot *invalid_slot)
1777 {
1778 	/*
1779 	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1780 	 * the "new" slot, and for the invalid version in the active slots.
1781 	 */
1782 	kvm_replace_memslot(kvm, old, NULL);
1783 	kvm_activate_memslot(kvm, invalid_slot, NULL);
1784 }
1785 
1786 static void kvm_move_memslot(struct kvm *kvm,
1787 			     struct kvm_memory_slot *old,
1788 			     struct kvm_memory_slot *new,
1789 			     struct kvm_memory_slot *invalid_slot)
1790 {
1791 	/*
1792 	 * Replace the old memslot in the inactive slots, and then swap slots
1793 	 * and replace the current INVALID with the new as well.
1794 	 */
1795 	kvm_replace_memslot(kvm, old, new);
1796 	kvm_activate_memslot(kvm, invalid_slot, new);
1797 }
1798 
1799 static void kvm_update_flags_memslot(struct kvm *kvm,
1800 				     struct kvm_memory_slot *old,
1801 				     struct kvm_memory_slot *new)
1802 {
1803 	/*
1804 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1805 	 * an intermediate step. Instead, the old memslot is simply replaced
1806 	 * with a new, updated copy in both memslot sets.
1807 	 */
1808 	kvm_replace_memslot(kvm, old, new);
1809 	kvm_activate_memslot(kvm, old, new);
1810 }
1811 
1812 static int kvm_set_memslot(struct kvm *kvm,
1813 			   struct kvm_memory_slot *old,
1814 			   struct kvm_memory_slot *new,
1815 			   enum kvm_mr_change change)
1816 {
1817 	struct kvm_memory_slot *invalid_slot;
1818 	int r;
1819 
1820 	/*
1821 	 * Released in kvm_swap_active_memslots.
1822 	 *
1823 	 * Must be held from before the current memslots are copied until
1824 	 * after the new memslots are installed with rcu_assign_pointer,
1825 	 * then released before the synchronize srcu in kvm_swap_active_memslots.
1826 	 *
1827 	 * When modifying memslots outside of the slots_lock, must be held
1828 	 * before reading the pointer to the current memslots until after all
1829 	 * changes to those memslots are complete.
1830 	 *
1831 	 * These rules ensure that installing new memslots does not lose
1832 	 * changes made to the previous memslots.
1833 	 */
1834 	mutex_lock(&kvm->slots_arch_lock);
1835 
1836 	/*
1837 	 * Invalidate the old slot if it's being deleted or moved.  This is
1838 	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1839 	 * continue running by ensuring there are no mappings or shadow pages
1840 	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1841 	 * (and without a lock), a window would exist between effecting the
1842 	 * delete/move and committing the changes in arch code where KVM or a
1843 	 * guest could access a non-existent memslot.
1844 	 *
1845 	 * Modifications are done on a temporary, unreachable slot.  The old
1846 	 * slot needs to be preserved in case a later step fails and the
1847 	 * invalidation needs to be reverted.
1848 	 */
1849 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1850 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1851 		if (!invalid_slot) {
1852 			mutex_unlock(&kvm->slots_arch_lock);
1853 			return -ENOMEM;
1854 		}
1855 		kvm_invalidate_memslot(kvm, old, invalid_slot);
1856 	}
1857 
1858 	r = kvm_prepare_memory_region(kvm, old, new, change);
1859 	if (r) {
1860 		/*
1861 		 * For DELETE/MOVE, revert the above INVALID change.  No
1862 		 * modifications required since the original slot was preserved
1863 		 * in the inactive slots.  Changing the active memslots also
1864 		 * release slots_arch_lock.
1865 		 */
1866 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1867 			kvm_activate_memslot(kvm, invalid_slot, old);
1868 			kfree(invalid_slot);
1869 		} else {
1870 			mutex_unlock(&kvm->slots_arch_lock);
1871 		}
1872 		return r;
1873 	}
1874 
1875 	/*
1876 	 * For DELETE and MOVE, the working slot is now active as the INVALID
1877 	 * version of the old slot.  MOVE is particularly special as it reuses
1878 	 * the old slot and returns a copy of the old slot (in working_slot).
1879 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1880 	 * old slot is detached but otherwise preserved.
1881 	 */
1882 	if (change == KVM_MR_CREATE)
1883 		kvm_create_memslot(kvm, new);
1884 	else if (change == KVM_MR_DELETE)
1885 		kvm_delete_memslot(kvm, old, invalid_slot);
1886 	else if (change == KVM_MR_MOVE)
1887 		kvm_move_memslot(kvm, old, new, invalid_slot);
1888 	else if (change == KVM_MR_FLAGS_ONLY)
1889 		kvm_update_flags_memslot(kvm, old, new);
1890 	else
1891 		BUG();
1892 
1893 	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1894 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1895 		kfree(invalid_slot);
1896 
1897 	/*
1898 	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1899 	 * will directly hit the final, active memslot.  Architectures are
1900 	 * responsible for knowing that new->arch may be stale.
1901 	 */
1902 	kvm_commit_memory_region(kvm, old, new, change);
1903 
1904 	return 0;
1905 }
1906 
1907 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1908 				      gfn_t start, gfn_t end)
1909 {
1910 	struct kvm_memslot_iter iter;
1911 
1912 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1913 		if (iter.slot->id != id)
1914 			return true;
1915 	}
1916 
1917 	return false;
1918 }
1919 
1920 /*
1921  * Allocate some memory and give it an address in the guest physical address
1922  * space.
1923  *
1924  * Discontiguous memory is allowed, mostly for framebuffers.
1925  *
1926  * Must be called holding kvm->slots_lock for write.
1927  */
1928 int __kvm_set_memory_region(struct kvm *kvm,
1929 			    const struct kvm_userspace_memory_region *mem)
1930 {
1931 	struct kvm_memory_slot *old, *new;
1932 	struct kvm_memslots *slots;
1933 	enum kvm_mr_change change;
1934 	unsigned long npages;
1935 	gfn_t base_gfn;
1936 	int as_id, id;
1937 	int r;
1938 
1939 	r = check_memory_region_flags(mem);
1940 	if (r)
1941 		return r;
1942 
1943 	as_id = mem->slot >> 16;
1944 	id = (u16)mem->slot;
1945 
1946 	/* General sanity checks */
1947 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1948 	    (mem->memory_size != (unsigned long)mem->memory_size))
1949 		return -EINVAL;
1950 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1951 		return -EINVAL;
1952 	/* We can read the guest memory with __xxx_user() later on. */
1953 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1954 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1955 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1956 			mem->memory_size))
1957 		return -EINVAL;
1958 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1959 		return -EINVAL;
1960 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1961 		return -EINVAL;
1962 	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1963 		return -EINVAL;
1964 
1965 	slots = __kvm_memslots(kvm, as_id);
1966 
1967 	/*
1968 	 * Note, the old memslot (and the pointer itself!) may be invalidated
1969 	 * and/or destroyed by kvm_set_memslot().
1970 	 */
1971 	old = id_to_memslot(slots, id);
1972 
1973 	if (!mem->memory_size) {
1974 		if (!old || !old->npages)
1975 			return -EINVAL;
1976 
1977 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1978 			return -EIO;
1979 
1980 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1981 	}
1982 
1983 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1984 	npages = (mem->memory_size >> PAGE_SHIFT);
1985 
1986 	if (!old || !old->npages) {
1987 		change = KVM_MR_CREATE;
1988 
1989 		/*
1990 		 * To simplify KVM internals, the total number of pages across
1991 		 * all memslots must fit in an unsigned long.
1992 		 */
1993 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1994 			return -EINVAL;
1995 	} else { /* Modify an existing slot. */
1996 		if ((mem->userspace_addr != old->userspace_addr) ||
1997 		    (npages != old->npages) ||
1998 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1999 			return -EINVAL;
2000 
2001 		if (base_gfn != old->base_gfn)
2002 			change = KVM_MR_MOVE;
2003 		else if (mem->flags != old->flags)
2004 			change = KVM_MR_FLAGS_ONLY;
2005 		else /* Nothing to change. */
2006 			return 0;
2007 	}
2008 
2009 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2010 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2011 		return -EEXIST;
2012 
2013 	/* Allocate a slot that will persist in the memslot. */
2014 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2015 	if (!new)
2016 		return -ENOMEM;
2017 
2018 	new->as_id = as_id;
2019 	new->id = id;
2020 	new->base_gfn = base_gfn;
2021 	new->npages = npages;
2022 	new->flags = mem->flags;
2023 	new->userspace_addr = mem->userspace_addr;
2024 
2025 	r = kvm_set_memslot(kvm, old, new, change);
2026 	if (r)
2027 		kfree(new);
2028 	return r;
2029 }
2030 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2031 
2032 int kvm_set_memory_region(struct kvm *kvm,
2033 			  const struct kvm_userspace_memory_region *mem)
2034 {
2035 	int r;
2036 
2037 	mutex_lock(&kvm->slots_lock);
2038 	r = __kvm_set_memory_region(kvm, mem);
2039 	mutex_unlock(&kvm->slots_lock);
2040 	return r;
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2043 
2044 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2045 					  struct kvm_userspace_memory_region *mem)
2046 {
2047 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2048 		return -EINVAL;
2049 
2050 	return kvm_set_memory_region(kvm, mem);
2051 }
2052 
2053 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2054 /**
2055  * kvm_get_dirty_log - get a snapshot of dirty pages
2056  * @kvm:	pointer to kvm instance
2057  * @log:	slot id and address to which we copy the log
2058  * @is_dirty:	set to '1' if any dirty pages were found
2059  * @memslot:	set to the associated memslot, always valid on success
2060  */
2061 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2062 		      int *is_dirty, struct kvm_memory_slot **memslot)
2063 {
2064 	struct kvm_memslots *slots;
2065 	int i, as_id, id;
2066 	unsigned long n;
2067 	unsigned long any = 0;
2068 
2069 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2070 	if (!kvm_use_dirty_bitmap(kvm))
2071 		return -ENXIO;
2072 
2073 	*memslot = NULL;
2074 	*is_dirty = 0;
2075 
2076 	as_id = log->slot >> 16;
2077 	id = (u16)log->slot;
2078 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2079 		return -EINVAL;
2080 
2081 	slots = __kvm_memslots(kvm, as_id);
2082 	*memslot = id_to_memslot(slots, id);
2083 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2084 		return -ENOENT;
2085 
2086 	kvm_arch_sync_dirty_log(kvm, *memslot);
2087 
2088 	n = kvm_dirty_bitmap_bytes(*memslot);
2089 
2090 	for (i = 0; !any && i < n/sizeof(long); ++i)
2091 		any = (*memslot)->dirty_bitmap[i];
2092 
2093 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2094 		return -EFAULT;
2095 
2096 	if (any)
2097 		*is_dirty = 1;
2098 	return 0;
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2101 
2102 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2103 /**
2104  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2105  *	and reenable dirty page tracking for the corresponding pages.
2106  * @kvm:	pointer to kvm instance
2107  * @log:	slot id and address to which we copy the log
2108  *
2109  * We need to keep it in mind that VCPU threads can write to the bitmap
2110  * concurrently. So, to avoid losing track of dirty pages we keep the
2111  * following order:
2112  *
2113  *    1. Take a snapshot of the bit and clear it if needed.
2114  *    2. Write protect the corresponding page.
2115  *    3. Copy the snapshot to the userspace.
2116  *    4. Upon return caller flushes TLB's if needed.
2117  *
2118  * Between 2 and 4, the guest may write to the page using the remaining TLB
2119  * entry.  This is not a problem because the page is reported dirty using
2120  * the snapshot taken before and step 4 ensures that writes done after
2121  * exiting to userspace will be logged for the next call.
2122  *
2123  */
2124 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2125 {
2126 	struct kvm_memslots *slots;
2127 	struct kvm_memory_slot *memslot;
2128 	int i, as_id, id;
2129 	unsigned long n;
2130 	unsigned long *dirty_bitmap;
2131 	unsigned long *dirty_bitmap_buffer;
2132 	bool flush;
2133 
2134 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2135 	if (!kvm_use_dirty_bitmap(kvm))
2136 		return -ENXIO;
2137 
2138 	as_id = log->slot >> 16;
2139 	id = (u16)log->slot;
2140 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2141 		return -EINVAL;
2142 
2143 	slots = __kvm_memslots(kvm, as_id);
2144 	memslot = id_to_memslot(slots, id);
2145 	if (!memslot || !memslot->dirty_bitmap)
2146 		return -ENOENT;
2147 
2148 	dirty_bitmap = memslot->dirty_bitmap;
2149 
2150 	kvm_arch_sync_dirty_log(kvm, memslot);
2151 
2152 	n = kvm_dirty_bitmap_bytes(memslot);
2153 	flush = false;
2154 	if (kvm->manual_dirty_log_protect) {
2155 		/*
2156 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2157 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2158 		 * is some code duplication between this function and
2159 		 * kvm_get_dirty_log, but hopefully all architecture
2160 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2161 		 * can be eliminated.
2162 		 */
2163 		dirty_bitmap_buffer = dirty_bitmap;
2164 	} else {
2165 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2166 		memset(dirty_bitmap_buffer, 0, n);
2167 
2168 		KVM_MMU_LOCK(kvm);
2169 		for (i = 0; i < n / sizeof(long); i++) {
2170 			unsigned long mask;
2171 			gfn_t offset;
2172 
2173 			if (!dirty_bitmap[i])
2174 				continue;
2175 
2176 			flush = true;
2177 			mask = xchg(&dirty_bitmap[i], 0);
2178 			dirty_bitmap_buffer[i] = mask;
2179 
2180 			offset = i * BITS_PER_LONG;
2181 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2182 								offset, mask);
2183 		}
2184 		KVM_MMU_UNLOCK(kvm);
2185 	}
2186 
2187 	if (flush)
2188 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2189 
2190 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2191 		return -EFAULT;
2192 	return 0;
2193 }
2194 
2195 
2196 /**
2197  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2198  * @kvm: kvm instance
2199  * @log: slot id and address to which we copy the log
2200  *
2201  * Steps 1-4 below provide general overview of dirty page logging. See
2202  * kvm_get_dirty_log_protect() function description for additional details.
2203  *
2204  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2205  * always flush the TLB (step 4) even if previous step failed  and the dirty
2206  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2207  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2208  * writes will be marked dirty for next log read.
2209  *
2210  *   1. Take a snapshot of the bit and clear it if needed.
2211  *   2. Write protect the corresponding page.
2212  *   3. Copy the snapshot to the userspace.
2213  *   4. Flush TLB's if needed.
2214  */
2215 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2216 				      struct kvm_dirty_log *log)
2217 {
2218 	int r;
2219 
2220 	mutex_lock(&kvm->slots_lock);
2221 
2222 	r = kvm_get_dirty_log_protect(kvm, log);
2223 
2224 	mutex_unlock(&kvm->slots_lock);
2225 	return r;
2226 }
2227 
2228 /**
2229  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2230  *	and reenable dirty page tracking for the corresponding pages.
2231  * @kvm:	pointer to kvm instance
2232  * @log:	slot id and address from which to fetch the bitmap of dirty pages
2233  */
2234 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2235 				       struct kvm_clear_dirty_log *log)
2236 {
2237 	struct kvm_memslots *slots;
2238 	struct kvm_memory_slot *memslot;
2239 	int as_id, id;
2240 	gfn_t offset;
2241 	unsigned long i, n;
2242 	unsigned long *dirty_bitmap;
2243 	unsigned long *dirty_bitmap_buffer;
2244 	bool flush;
2245 
2246 	/* Dirty ring tracking may be exclusive to dirty log tracking */
2247 	if (!kvm_use_dirty_bitmap(kvm))
2248 		return -ENXIO;
2249 
2250 	as_id = log->slot >> 16;
2251 	id = (u16)log->slot;
2252 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2253 		return -EINVAL;
2254 
2255 	if (log->first_page & 63)
2256 		return -EINVAL;
2257 
2258 	slots = __kvm_memslots(kvm, as_id);
2259 	memslot = id_to_memslot(slots, id);
2260 	if (!memslot || !memslot->dirty_bitmap)
2261 		return -ENOENT;
2262 
2263 	dirty_bitmap = memslot->dirty_bitmap;
2264 
2265 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2266 
2267 	if (log->first_page > memslot->npages ||
2268 	    log->num_pages > memslot->npages - log->first_page ||
2269 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2270 	    return -EINVAL;
2271 
2272 	kvm_arch_sync_dirty_log(kvm, memslot);
2273 
2274 	flush = false;
2275 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2276 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2277 		return -EFAULT;
2278 
2279 	KVM_MMU_LOCK(kvm);
2280 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2281 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2282 	     i++, offset += BITS_PER_LONG) {
2283 		unsigned long mask = *dirty_bitmap_buffer++;
2284 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2285 		if (!mask)
2286 			continue;
2287 
2288 		mask &= atomic_long_fetch_andnot(mask, p);
2289 
2290 		/*
2291 		 * mask contains the bits that really have been cleared.  This
2292 		 * never includes any bits beyond the length of the memslot (if
2293 		 * the length is not aligned to 64 pages), therefore it is not
2294 		 * a problem if userspace sets them in log->dirty_bitmap.
2295 		*/
2296 		if (mask) {
2297 			flush = true;
2298 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2299 								offset, mask);
2300 		}
2301 	}
2302 	KVM_MMU_UNLOCK(kvm);
2303 
2304 	if (flush)
2305 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2306 
2307 	return 0;
2308 }
2309 
2310 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2311 					struct kvm_clear_dirty_log *log)
2312 {
2313 	int r;
2314 
2315 	mutex_lock(&kvm->slots_lock);
2316 
2317 	r = kvm_clear_dirty_log_protect(kvm, log);
2318 
2319 	mutex_unlock(&kvm->slots_lock);
2320 	return r;
2321 }
2322 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2323 
2324 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2325 {
2326 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2327 }
2328 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2329 
2330 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2331 {
2332 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2333 	u64 gen = slots->generation;
2334 	struct kvm_memory_slot *slot;
2335 
2336 	/*
2337 	 * This also protects against using a memslot from a different address space,
2338 	 * since different address spaces have different generation numbers.
2339 	 */
2340 	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2341 		vcpu->last_used_slot = NULL;
2342 		vcpu->last_used_slot_gen = gen;
2343 	}
2344 
2345 	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2346 	if (slot)
2347 		return slot;
2348 
2349 	/*
2350 	 * Fall back to searching all memslots. We purposely use
2351 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2352 	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2353 	 */
2354 	slot = search_memslots(slots, gfn, false);
2355 	if (slot) {
2356 		vcpu->last_used_slot = slot;
2357 		return slot;
2358 	}
2359 
2360 	return NULL;
2361 }
2362 
2363 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2364 {
2365 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2366 
2367 	return kvm_is_visible_memslot(memslot);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2370 
2371 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 {
2373 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2374 
2375 	return kvm_is_visible_memslot(memslot);
2376 }
2377 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2378 
2379 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2380 {
2381 	struct vm_area_struct *vma;
2382 	unsigned long addr, size;
2383 
2384 	size = PAGE_SIZE;
2385 
2386 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2387 	if (kvm_is_error_hva(addr))
2388 		return PAGE_SIZE;
2389 
2390 	mmap_read_lock(current->mm);
2391 	vma = find_vma(current->mm, addr);
2392 	if (!vma)
2393 		goto out;
2394 
2395 	size = vma_kernel_pagesize(vma);
2396 
2397 out:
2398 	mmap_read_unlock(current->mm);
2399 
2400 	return size;
2401 }
2402 
2403 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2404 {
2405 	return slot->flags & KVM_MEM_READONLY;
2406 }
2407 
2408 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2409 				       gfn_t *nr_pages, bool write)
2410 {
2411 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2412 		return KVM_HVA_ERR_BAD;
2413 
2414 	if (memslot_is_readonly(slot) && write)
2415 		return KVM_HVA_ERR_RO_BAD;
2416 
2417 	if (nr_pages)
2418 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2419 
2420 	return __gfn_to_hva_memslot(slot, gfn);
2421 }
2422 
2423 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2424 				     gfn_t *nr_pages)
2425 {
2426 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2427 }
2428 
2429 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2430 					gfn_t gfn)
2431 {
2432 	return gfn_to_hva_many(slot, gfn, NULL);
2433 }
2434 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2435 
2436 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2437 {
2438 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2439 }
2440 EXPORT_SYMBOL_GPL(gfn_to_hva);
2441 
2442 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2443 {
2444 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2445 }
2446 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2447 
2448 /*
2449  * Return the hva of a @gfn and the R/W attribute if possible.
2450  *
2451  * @slot: the kvm_memory_slot which contains @gfn
2452  * @gfn: the gfn to be translated
2453  * @writable: used to return the read/write attribute of the @slot if the hva
2454  * is valid and @writable is not NULL
2455  */
2456 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2457 				      gfn_t gfn, bool *writable)
2458 {
2459 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2460 
2461 	if (!kvm_is_error_hva(hva) && writable)
2462 		*writable = !memslot_is_readonly(slot);
2463 
2464 	return hva;
2465 }
2466 
2467 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2468 {
2469 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2470 
2471 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2472 }
2473 
2474 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2475 {
2476 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2477 
2478 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2479 }
2480 
2481 static inline int check_user_page_hwpoison(unsigned long addr)
2482 {
2483 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2484 
2485 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2486 	return rc == -EHWPOISON;
2487 }
2488 
2489 /*
2490  * The fast path to get the writable pfn which will be stored in @pfn,
2491  * true indicates success, otherwise false is returned.  It's also the
2492  * only part that runs if we can in atomic context.
2493  */
2494 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2495 			    bool *writable, kvm_pfn_t *pfn)
2496 {
2497 	struct page *page[1];
2498 
2499 	/*
2500 	 * Fast pin a writable pfn only if it is a write fault request
2501 	 * or the caller allows to map a writable pfn for a read fault
2502 	 * request.
2503 	 */
2504 	if (!(write_fault || writable))
2505 		return false;
2506 
2507 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2508 		*pfn = page_to_pfn(page[0]);
2509 
2510 		if (writable)
2511 			*writable = true;
2512 		return true;
2513 	}
2514 
2515 	return false;
2516 }
2517 
2518 /*
2519  * The slow path to get the pfn of the specified host virtual address,
2520  * 1 indicates success, -errno is returned if error is detected.
2521  */
2522 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2523 			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2524 {
2525 	unsigned int flags = FOLL_HWPOISON;
2526 	struct page *page;
2527 	int npages;
2528 
2529 	might_sleep();
2530 
2531 	if (writable)
2532 		*writable = write_fault;
2533 
2534 	if (write_fault)
2535 		flags |= FOLL_WRITE;
2536 	if (async)
2537 		flags |= FOLL_NOWAIT;
2538 	if (interruptible)
2539 		flags |= FOLL_INTERRUPTIBLE;
2540 
2541 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2542 	if (npages != 1)
2543 		return npages;
2544 
2545 	/* map read fault as writable if possible */
2546 	if (unlikely(!write_fault) && writable) {
2547 		struct page *wpage;
2548 
2549 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2550 			*writable = true;
2551 			put_page(page);
2552 			page = wpage;
2553 		}
2554 	}
2555 	*pfn = page_to_pfn(page);
2556 	return npages;
2557 }
2558 
2559 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2560 {
2561 	if (unlikely(!(vma->vm_flags & VM_READ)))
2562 		return false;
2563 
2564 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2565 		return false;
2566 
2567 	return true;
2568 }
2569 
2570 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2571 {
2572 	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2573 
2574 	if (!page)
2575 		return 1;
2576 
2577 	return get_page_unless_zero(page);
2578 }
2579 
2580 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2581 			       unsigned long addr, bool write_fault,
2582 			       bool *writable, kvm_pfn_t *p_pfn)
2583 {
2584 	kvm_pfn_t pfn;
2585 	pte_t *ptep;
2586 	spinlock_t *ptl;
2587 	int r;
2588 
2589 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2590 	if (r) {
2591 		/*
2592 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2593 		 * not call the fault handler, so do it here.
2594 		 */
2595 		bool unlocked = false;
2596 		r = fixup_user_fault(current->mm, addr,
2597 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2598 				     &unlocked);
2599 		if (unlocked)
2600 			return -EAGAIN;
2601 		if (r)
2602 			return r;
2603 
2604 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2605 		if (r)
2606 			return r;
2607 	}
2608 
2609 	if (write_fault && !pte_write(*ptep)) {
2610 		pfn = KVM_PFN_ERR_RO_FAULT;
2611 		goto out;
2612 	}
2613 
2614 	if (writable)
2615 		*writable = pte_write(*ptep);
2616 	pfn = pte_pfn(*ptep);
2617 
2618 	/*
2619 	 * Get a reference here because callers of *hva_to_pfn* and
2620 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2621 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2622 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2623 	 * simply do nothing for reserved pfns.
2624 	 *
2625 	 * Whoever called remap_pfn_range is also going to call e.g.
2626 	 * unmap_mapping_range before the underlying pages are freed,
2627 	 * causing a call to our MMU notifier.
2628 	 *
2629 	 * Certain IO or PFNMAP mappings can be backed with valid
2630 	 * struct pages, but be allocated without refcounting e.g.,
2631 	 * tail pages of non-compound higher order allocations, which
2632 	 * would then underflow the refcount when the caller does the
2633 	 * required put_page. Don't allow those pages here.
2634 	 */
2635 	if (!kvm_try_get_pfn(pfn))
2636 		r = -EFAULT;
2637 
2638 out:
2639 	pte_unmap_unlock(ptep, ptl);
2640 	*p_pfn = pfn;
2641 
2642 	return r;
2643 }
2644 
2645 /*
2646  * Pin guest page in memory and return its pfn.
2647  * @addr: host virtual address which maps memory to the guest
2648  * @atomic: whether this function can sleep
2649  * @interruptible: whether the process can be interrupted by non-fatal signals
2650  * @async: whether this function need to wait IO complete if the
2651  *         host page is not in the memory
2652  * @write_fault: whether we should get a writable host page
2653  * @writable: whether it allows to map a writable host page for !@write_fault
2654  *
2655  * The function will map a writable host page for these two cases:
2656  * 1): @write_fault = true
2657  * 2): @write_fault = false && @writable, @writable will tell the caller
2658  *     whether the mapping is writable.
2659  */
2660 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2661 		     bool *async, bool write_fault, bool *writable)
2662 {
2663 	struct vm_area_struct *vma;
2664 	kvm_pfn_t pfn;
2665 	int npages, r;
2666 
2667 	/* we can do it either atomically or asynchronously, not both */
2668 	BUG_ON(atomic && async);
2669 
2670 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2671 		return pfn;
2672 
2673 	if (atomic)
2674 		return KVM_PFN_ERR_FAULT;
2675 
2676 	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2677 				 writable, &pfn);
2678 	if (npages == 1)
2679 		return pfn;
2680 	if (npages == -EINTR)
2681 		return KVM_PFN_ERR_SIGPENDING;
2682 
2683 	mmap_read_lock(current->mm);
2684 	if (npages == -EHWPOISON ||
2685 	      (!async && check_user_page_hwpoison(addr))) {
2686 		pfn = KVM_PFN_ERR_HWPOISON;
2687 		goto exit;
2688 	}
2689 
2690 retry:
2691 	vma = vma_lookup(current->mm, addr);
2692 
2693 	if (vma == NULL)
2694 		pfn = KVM_PFN_ERR_FAULT;
2695 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2696 		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2697 		if (r == -EAGAIN)
2698 			goto retry;
2699 		if (r < 0)
2700 			pfn = KVM_PFN_ERR_FAULT;
2701 	} else {
2702 		if (async && vma_is_valid(vma, write_fault))
2703 			*async = true;
2704 		pfn = KVM_PFN_ERR_FAULT;
2705 	}
2706 exit:
2707 	mmap_read_unlock(current->mm);
2708 	return pfn;
2709 }
2710 
2711 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2712 			       bool atomic, bool interruptible, bool *async,
2713 			       bool write_fault, bool *writable, hva_t *hva)
2714 {
2715 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2716 
2717 	if (hva)
2718 		*hva = addr;
2719 
2720 	if (addr == KVM_HVA_ERR_RO_BAD) {
2721 		if (writable)
2722 			*writable = false;
2723 		return KVM_PFN_ERR_RO_FAULT;
2724 	}
2725 
2726 	if (kvm_is_error_hva(addr)) {
2727 		if (writable)
2728 			*writable = false;
2729 		return KVM_PFN_NOSLOT;
2730 	}
2731 
2732 	/* Do not map writable pfn in the readonly memslot. */
2733 	if (writable && memslot_is_readonly(slot)) {
2734 		*writable = false;
2735 		writable = NULL;
2736 	}
2737 
2738 	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2739 			  writable);
2740 }
2741 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2742 
2743 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2744 		      bool *writable)
2745 {
2746 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2747 				    NULL, write_fault, writable, NULL);
2748 }
2749 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2750 
2751 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2752 {
2753 	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2754 				    NULL, NULL);
2755 }
2756 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2757 
2758 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2759 {
2760 	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2761 				    NULL, NULL);
2762 }
2763 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2764 
2765 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2766 {
2767 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2770 
2771 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2772 {
2773 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2774 }
2775 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2776 
2777 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2778 {
2779 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2780 }
2781 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2782 
2783 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2784 			    struct page **pages, int nr_pages)
2785 {
2786 	unsigned long addr;
2787 	gfn_t entry = 0;
2788 
2789 	addr = gfn_to_hva_many(slot, gfn, &entry);
2790 	if (kvm_is_error_hva(addr))
2791 		return -1;
2792 
2793 	if (entry < nr_pages)
2794 		return 0;
2795 
2796 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2797 }
2798 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2799 
2800 /*
2801  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2802  * backed by 'struct page'.  A valid example is if the backing memslot is
2803  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2804  * been elevated by gfn_to_pfn().
2805  */
2806 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2807 {
2808 	struct page *page;
2809 	kvm_pfn_t pfn;
2810 
2811 	pfn = gfn_to_pfn(kvm, gfn);
2812 
2813 	if (is_error_noslot_pfn(pfn))
2814 		return KVM_ERR_PTR_BAD_PAGE;
2815 
2816 	page = kvm_pfn_to_refcounted_page(pfn);
2817 	if (!page)
2818 		return KVM_ERR_PTR_BAD_PAGE;
2819 
2820 	return page;
2821 }
2822 EXPORT_SYMBOL_GPL(gfn_to_page);
2823 
2824 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2825 {
2826 	if (dirty)
2827 		kvm_release_pfn_dirty(pfn);
2828 	else
2829 		kvm_release_pfn_clean(pfn);
2830 }
2831 
2832 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2833 {
2834 	kvm_pfn_t pfn;
2835 	void *hva = NULL;
2836 	struct page *page = KVM_UNMAPPED_PAGE;
2837 
2838 	if (!map)
2839 		return -EINVAL;
2840 
2841 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2842 	if (is_error_noslot_pfn(pfn))
2843 		return -EINVAL;
2844 
2845 	if (pfn_valid(pfn)) {
2846 		page = pfn_to_page(pfn);
2847 		hva = kmap(page);
2848 #ifdef CONFIG_HAS_IOMEM
2849 	} else {
2850 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2851 #endif
2852 	}
2853 
2854 	if (!hva)
2855 		return -EFAULT;
2856 
2857 	map->page = page;
2858 	map->hva = hva;
2859 	map->pfn = pfn;
2860 	map->gfn = gfn;
2861 
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2865 
2866 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2867 {
2868 	if (!map)
2869 		return;
2870 
2871 	if (!map->hva)
2872 		return;
2873 
2874 	if (map->page != KVM_UNMAPPED_PAGE)
2875 		kunmap(map->page);
2876 #ifdef CONFIG_HAS_IOMEM
2877 	else
2878 		memunmap(map->hva);
2879 #endif
2880 
2881 	if (dirty)
2882 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2883 
2884 	kvm_release_pfn(map->pfn, dirty);
2885 
2886 	map->hva = NULL;
2887 	map->page = NULL;
2888 }
2889 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2890 
2891 static bool kvm_is_ad_tracked_page(struct page *page)
2892 {
2893 	/*
2894 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2895 	 * touched (e.g. set dirty) except by its owner".
2896 	 */
2897 	return !PageReserved(page);
2898 }
2899 
2900 static void kvm_set_page_dirty(struct page *page)
2901 {
2902 	if (kvm_is_ad_tracked_page(page))
2903 		SetPageDirty(page);
2904 }
2905 
2906 static void kvm_set_page_accessed(struct page *page)
2907 {
2908 	if (kvm_is_ad_tracked_page(page))
2909 		mark_page_accessed(page);
2910 }
2911 
2912 void kvm_release_page_clean(struct page *page)
2913 {
2914 	WARN_ON(is_error_page(page));
2915 
2916 	kvm_set_page_accessed(page);
2917 	put_page(page);
2918 }
2919 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2920 
2921 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2922 {
2923 	struct page *page;
2924 
2925 	if (is_error_noslot_pfn(pfn))
2926 		return;
2927 
2928 	page = kvm_pfn_to_refcounted_page(pfn);
2929 	if (!page)
2930 		return;
2931 
2932 	kvm_release_page_clean(page);
2933 }
2934 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2935 
2936 void kvm_release_page_dirty(struct page *page)
2937 {
2938 	WARN_ON(is_error_page(page));
2939 
2940 	kvm_set_page_dirty(page);
2941 	kvm_release_page_clean(page);
2942 }
2943 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2944 
2945 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2946 {
2947 	struct page *page;
2948 
2949 	if (is_error_noslot_pfn(pfn))
2950 		return;
2951 
2952 	page = kvm_pfn_to_refcounted_page(pfn);
2953 	if (!page)
2954 		return;
2955 
2956 	kvm_release_page_dirty(page);
2957 }
2958 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2959 
2960 /*
2961  * Note, checking for an error/noslot pfn is the caller's responsibility when
2962  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2963  * "set" helpers are not to be used when the pfn might point at garbage.
2964  */
2965 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2966 {
2967 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2968 		return;
2969 
2970 	if (pfn_valid(pfn))
2971 		kvm_set_page_dirty(pfn_to_page(pfn));
2972 }
2973 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2974 
2975 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2976 {
2977 	if (WARN_ON(is_error_noslot_pfn(pfn)))
2978 		return;
2979 
2980 	if (pfn_valid(pfn))
2981 		kvm_set_page_accessed(pfn_to_page(pfn));
2982 }
2983 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2984 
2985 static int next_segment(unsigned long len, int offset)
2986 {
2987 	if (len > PAGE_SIZE - offset)
2988 		return PAGE_SIZE - offset;
2989 	else
2990 		return len;
2991 }
2992 
2993 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2994 				 void *data, int offset, int len)
2995 {
2996 	int r;
2997 	unsigned long addr;
2998 
2999 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3000 	if (kvm_is_error_hva(addr))
3001 		return -EFAULT;
3002 	r = __copy_from_user(data, (void __user *)addr + offset, len);
3003 	if (r)
3004 		return -EFAULT;
3005 	return 0;
3006 }
3007 
3008 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3009 			int len)
3010 {
3011 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3012 
3013 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3014 }
3015 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3016 
3017 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3018 			     int offset, int len)
3019 {
3020 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3021 
3022 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3023 }
3024 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3025 
3026 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3027 {
3028 	gfn_t gfn = gpa >> PAGE_SHIFT;
3029 	int seg;
3030 	int offset = offset_in_page(gpa);
3031 	int ret;
3032 
3033 	while ((seg = next_segment(len, offset)) != 0) {
3034 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3035 		if (ret < 0)
3036 			return ret;
3037 		offset = 0;
3038 		len -= seg;
3039 		data += seg;
3040 		++gfn;
3041 	}
3042 	return 0;
3043 }
3044 EXPORT_SYMBOL_GPL(kvm_read_guest);
3045 
3046 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3047 {
3048 	gfn_t gfn = gpa >> PAGE_SHIFT;
3049 	int seg;
3050 	int offset = offset_in_page(gpa);
3051 	int ret;
3052 
3053 	while ((seg = next_segment(len, offset)) != 0) {
3054 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3055 		if (ret < 0)
3056 			return ret;
3057 		offset = 0;
3058 		len -= seg;
3059 		data += seg;
3060 		++gfn;
3061 	}
3062 	return 0;
3063 }
3064 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3065 
3066 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3067 			           void *data, int offset, unsigned long len)
3068 {
3069 	int r;
3070 	unsigned long addr;
3071 
3072 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3073 	if (kvm_is_error_hva(addr))
3074 		return -EFAULT;
3075 	pagefault_disable();
3076 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3077 	pagefault_enable();
3078 	if (r)
3079 		return -EFAULT;
3080 	return 0;
3081 }
3082 
3083 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3084 			       void *data, unsigned long len)
3085 {
3086 	gfn_t gfn = gpa >> PAGE_SHIFT;
3087 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3088 	int offset = offset_in_page(gpa);
3089 
3090 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3091 }
3092 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3093 
3094 static int __kvm_write_guest_page(struct kvm *kvm,
3095 				  struct kvm_memory_slot *memslot, gfn_t gfn,
3096 			          const void *data, int offset, int len)
3097 {
3098 	int r;
3099 	unsigned long addr;
3100 
3101 	addr = gfn_to_hva_memslot(memslot, gfn);
3102 	if (kvm_is_error_hva(addr))
3103 		return -EFAULT;
3104 	r = __copy_to_user((void __user *)addr + offset, data, len);
3105 	if (r)
3106 		return -EFAULT;
3107 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3108 	return 0;
3109 }
3110 
3111 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3112 			 const void *data, int offset, int len)
3113 {
3114 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3115 
3116 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3117 }
3118 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3119 
3120 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3121 			      const void *data, int offset, int len)
3122 {
3123 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3124 
3125 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3126 }
3127 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3128 
3129 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3130 		    unsigned long len)
3131 {
3132 	gfn_t gfn = gpa >> PAGE_SHIFT;
3133 	int seg;
3134 	int offset = offset_in_page(gpa);
3135 	int ret;
3136 
3137 	while ((seg = next_segment(len, offset)) != 0) {
3138 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3139 		if (ret < 0)
3140 			return ret;
3141 		offset = 0;
3142 		len -= seg;
3143 		data += seg;
3144 		++gfn;
3145 	}
3146 	return 0;
3147 }
3148 EXPORT_SYMBOL_GPL(kvm_write_guest);
3149 
3150 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3151 		         unsigned long len)
3152 {
3153 	gfn_t gfn = gpa >> PAGE_SHIFT;
3154 	int seg;
3155 	int offset = offset_in_page(gpa);
3156 	int ret;
3157 
3158 	while ((seg = next_segment(len, offset)) != 0) {
3159 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3160 		if (ret < 0)
3161 			return ret;
3162 		offset = 0;
3163 		len -= seg;
3164 		data += seg;
3165 		++gfn;
3166 	}
3167 	return 0;
3168 }
3169 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3170 
3171 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3172 				       struct gfn_to_hva_cache *ghc,
3173 				       gpa_t gpa, unsigned long len)
3174 {
3175 	int offset = offset_in_page(gpa);
3176 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3177 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3178 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3179 	gfn_t nr_pages_avail;
3180 
3181 	/* Update ghc->generation before performing any error checks. */
3182 	ghc->generation = slots->generation;
3183 
3184 	if (start_gfn > end_gfn) {
3185 		ghc->hva = KVM_HVA_ERR_BAD;
3186 		return -EINVAL;
3187 	}
3188 
3189 	/*
3190 	 * If the requested region crosses two memslots, we still
3191 	 * verify that the entire region is valid here.
3192 	 */
3193 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3194 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3195 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3196 					   &nr_pages_avail);
3197 		if (kvm_is_error_hva(ghc->hva))
3198 			return -EFAULT;
3199 	}
3200 
3201 	/* Use the slow path for cross page reads and writes. */
3202 	if (nr_pages_needed == 1)
3203 		ghc->hva += offset;
3204 	else
3205 		ghc->memslot = NULL;
3206 
3207 	ghc->gpa = gpa;
3208 	ghc->len = len;
3209 	return 0;
3210 }
3211 
3212 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3213 			      gpa_t gpa, unsigned long len)
3214 {
3215 	struct kvm_memslots *slots = kvm_memslots(kvm);
3216 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3217 }
3218 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3219 
3220 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3221 				  void *data, unsigned int offset,
3222 				  unsigned long len)
3223 {
3224 	struct kvm_memslots *slots = kvm_memslots(kvm);
3225 	int r;
3226 	gpa_t gpa = ghc->gpa + offset;
3227 
3228 	if (WARN_ON_ONCE(len + offset > ghc->len))
3229 		return -EINVAL;
3230 
3231 	if (slots->generation != ghc->generation) {
3232 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3233 			return -EFAULT;
3234 	}
3235 
3236 	if (kvm_is_error_hva(ghc->hva))
3237 		return -EFAULT;
3238 
3239 	if (unlikely(!ghc->memslot))
3240 		return kvm_write_guest(kvm, gpa, data, len);
3241 
3242 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3243 	if (r)
3244 		return -EFAULT;
3245 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3246 
3247 	return 0;
3248 }
3249 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3250 
3251 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3252 			   void *data, unsigned long len)
3253 {
3254 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3255 }
3256 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3257 
3258 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3259 				 void *data, unsigned int offset,
3260 				 unsigned long len)
3261 {
3262 	struct kvm_memslots *slots = kvm_memslots(kvm);
3263 	int r;
3264 	gpa_t gpa = ghc->gpa + offset;
3265 
3266 	if (WARN_ON_ONCE(len + offset > ghc->len))
3267 		return -EINVAL;
3268 
3269 	if (slots->generation != ghc->generation) {
3270 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3271 			return -EFAULT;
3272 	}
3273 
3274 	if (kvm_is_error_hva(ghc->hva))
3275 		return -EFAULT;
3276 
3277 	if (unlikely(!ghc->memslot))
3278 		return kvm_read_guest(kvm, gpa, data, len);
3279 
3280 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3281 	if (r)
3282 		return -EFAULT;
3283 
3284 	return 0;
3285 }
3286 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3287 
3288 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3289 			  void *data, unsigned long len)
3290 {
3291 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3292 }
3293 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3294 
3295 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3296 {
3297 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3298 	gfn_t gfn = gpa >> PAGE_SHIFT;
3299 	int seg;
3300 	int offset = offset_in_page(gpa);
3301 	int ret;
3302 
3303 	while ((seg = next_segment(len, offset)) != 0) {
3304 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3305 		if (ret < 0)
3306 			return ret;
3307 		offset = 0;
3308 		len -= seg;
3309 		++gfn;
3310 	}
3311 	return 0;
3312 }
3313 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3314 
3315 void mark_page_dirty_in_slot(struct kvm *kvm,
3316 			     const struct kvm_memory_slot *memslot,
3317 		 	     gfn_t gfn)
3318 {
3319 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3320 
3321 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3322 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3323 		return;
3324 
3325 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3326 #endif
3327 
3328 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3329 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3330 		u32 slot = (memslot->as_id << 16) | memslot->id;
3331 
3332 		if (kvm->dirty_ring_size && vcpu)
3333 			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3334 		else if (memslot->dirty_bitmap)
3335 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3336 	}
3337 }
3338 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3339 
3340 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3341 {
3342 	struct kvm_memory_slot *memslot;
3343 
3344 	memslot = gfn_to_memslot(kvm, gfn);
3345 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3346 }
3347 EXPORT_SYMBOL_GPL(mark_page_dirty);
3348 
3349 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3350 {
3351 	struct kvm_memory_slot *memslot;
3352 
3353 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3354 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3355 }
3356 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3357 
3358 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3359 {
3360 	if (!vcpu->sigset_active)
3361 		return;
3362 
3363 	/*
3364 	 * This does a lockless modification of ->real_blocked, which is fine
3365 	 * because, only current can change ->real_blocked and all readers of
3366 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3367 	 * of ->blocked.
3368 	 */
3369 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3370 }
3371 
3372 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3373 {
3374 	if (!vcpu->sigset_active)
3375 		return;
3376 
3377 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3378 	sigemptyset(&current->real_blocked);
3379 }
3380 
3381 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3382 {
3383 	unsigned int old, val, grow, grow_start;
3384 
3385 	old = val = vcpu->halt_poll_ns;
3386 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3387 	grow = READ_ONCE(halt_poll_ns_grow);
3388 	if (!grow)
3389 		goto out;
3390 
3391 	val *= grow;
3392 	if (val < grow_start)
3393 		val = grow_start;
3394 
3395 	vcpu->halt_poll_ns = val;
3396 out:
3397 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3398 }
3399 
3400 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3401 {
3402 	unsigned int old, val, shrink, grow_start;
3403 
3404 	old = val = vcpu->halt_poll_ns;
3405 	shrink = READ_ONCE(halt_poll_ns_shrink);
3406 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3407 	if (shrink == 0)
3408 		val = 0;
3409 	else
3410 		val /= shrink;
3411 
3412 	if (val < grow_start)
3413 		val = 0;
3414 
3415 	vcpu->halt_poll_ns = val;
3416 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3417 }
3418 
3419 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3420 {
3421 	int ret = -EINTR;
3422 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3423 
3424 	if (kvm_arch_vcpu_runnable(vcpu))
3425 		goto out;
3426 	if (kvm_cpu_has_pending_timer(vcpu))
3427 		goto out;
3428 	if (signal_pending(current))
3429 		goto out;
3430 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3431 		goto out;
3432 
3433 	ret = 0;
3434 out:
3435 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3436 	return ret;
3437 }
3438 
3439 /*
3440  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3441  * pending.  This is mostly used when halting a vCPU, but may also be used
3442  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3443  */
3444 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3445 {
3446 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3447 	bool waited = false;
3448 
3449 	vcpu->stat.generic.blocking = 1;
3450 
3451 	preempt_disable();
3452 	kvm_arch_vcpu_blocking(vcpu);
3453 	prepare_to_rcuwait(wait);
3454 	preempt_enable();
3455 
3456 	for (;;) {
3457 		set_current_state(TASK_INTERRUPTIBLE);
3458 
3459 		if (kvm_vcpu_check_block(vcpu) < 0)
3460 			break;
3461 
3462 		waited = true;
3463 		schedule();
3464 	}
3465 
3466 	preempt_disable();
3467 	finish_rcuwait(wait);
3468 	kvm_arch_vcpu_unblocking(vcpu);
3469 	preempt_enable();
3470 
3471 	vcpu->stat.generic.blocking = 0;
3472 
3473 	return waited;
3474 }
3475 
3476 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3477 					  ktime_t end, bool success)
3478 {
3479 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3480 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3481 
3482 	++vcpu->stat.generic.halt_attempted_poll;
3483 
3484 	if (success) {
3485 		++vcpu->stat.generic.halt_successful_poll;
3486 
3487 		if (!vcpu_valid_wakeup(vcpu))
3488 			++vcpu->stat.generic.halt_poll_invalid;
3489 
3490 		stats->halt_poll_success_ns += poll_ns;
3491 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3492 	} else {
3493 		stats->halt_poll_fail_ns += poll_ns;
3494 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3495 	}
3496 }
3497 
3498 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3499 {
3500 	struct kvm *kvm = vcpu->kvm;
3501 
3502 	if (kvm->override_halt_poll_ns) {
3503 		/*
3504 		 * Ensure kvm->max_halt_poll_ns is not read before
3505 		 * kvm->override_halt_poll_ns.
3506 		 *
3507 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3508 		 */
3509 		smp_rmb();
3510 		return READ_ONCE(kvm->max_halt_poll_ns);
3511 	}
3512 
3513 	return READ_ONCE(halt_poll_ns);
3514 }
3515 
3516 /*
3517  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3518  * polling is enabled, busy wait for a short time before blocking to avoid the
3519  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3520  * is halted.
3521  */
3522 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3523 {
3524 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3525 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3526 	ktime_t start, cur, poll_end;
3527 	bool waited = false;
3528 	bool do_halt_poll;
3529 	u64 halt_ns;
3530 
3531 	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3532 		vcpu->halt_poll_ns = max_halt_poll_ns;
3533 
3534 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3535 
3536 	start = cur = poll_end = ktime_get();
3537 	if (do_halt_poll) {
3538 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3539 
3540 		do {
3541 			if (kvm_vcpu_check_block(vcpu) < 0)
3542 				goto out;
3543 			cpu_relax();
3544 			poll_end = cur = ktime_get();
3545 		} while (kvm_vcpu_can_poll(cur, stop));
3546 	}
3547 
3548 	waited = kvm_vcpu_block(vcpu);
3549 
3550 	cur = ktime_get();
3551 	if (waited) {
3552 		vcpu->stat.generic.halt_wait_ns +=
3553 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3554 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3555 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3556 	}
3557 out:
3558 	/* The total time the vCPU was "halted", including polling time. */
3559 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3560 
3561 	/*
3562 	 * Note, halt-polling is considered successful so long as the vCPU was
3563 	 * never actually scheduled out, i.e. even if the wake event arrived
3564 	 * after of the halt-polling loop itself, but before the full wait.
3565 	 */
3566 	if (do_halt_poll)
3567 		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3568 
3569 	if (halt_poll_allowed) {
3570 		/* Recompute the max halt poll time in case it changed. */
3571 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3572 
3573 		if (!vcpu_valid_wakeup(vcpu)) {
3574 			shrink_halt_poll_ns(vcpu);
3575 		} else if (max_halt_poll_ns) {
3576 			if (halt_ns <= vcpu->halt_poll_ns)
3577 				;
3578 			/* we had a long block, shrink polling */
3579 			else if (vcpu->halt_poll_ns &&
3580 				 halt_ns > max_halt_poll_ns)
3581 				shrink_halt_poll_ns(vcpu);
3582 			/* we had a short halt and our poll time is too small */
3583 			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3584 				 halt_ns < max_halt_poll_ns)
3585 				grow_halt_poll_ns(vcpu);
3586 		} else {
3587 			vcpu->halt_poll_ns = 0;
3588 		}
3589 	}
3590 
3591 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3592 }
3593 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3594 
3595 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3596 {
3597 	if (__kvm_vcpu_wake_up(vcpu)) {
3598 		WRITE_ONCE(vcpu->ready, true);
3599 		++vcpu->stat.generic.halt_wakeup;
3600 		return true;
3601 	}
3602 
3603 	return false;
3604 }
3605 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3606 
3607 #ifndef CONFIG_S390
3608 /*
3609  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3610  */
3611 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3612 {
3613 	int me, cpu;
3614 
3615 	if (kvm_vcpu_wake_up(vcpu))
3616 		return;
3617 
3618 	me = get_cpu();
3619 	/*
3620 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3621 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3622 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3623 	 * within the vCPU thread itself.
3624 	 */
3625 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3626 		if (vcpu->mode == IN_GUEST_MODE)
3627 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3628 		goto out;
3629 	}
3630 
3631 	/*
3632 	 * Note, the vCPU could get migrated to a different pCPU at any point
3633 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3634 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3635 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3636 	 * vCPU also requires it to leave IN_GUEST_MODE.
3637 	 */
3638 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3639 		cpu = READ_ONCE(vcpu->cpu);
3640 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3641 			smp_send_reschedule(cpu);
3642 	}
3643 out:
3644 	put_cpu();
3645 }
3646 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3647 #endif /* !CONFIG_S390 */
3648 
3649 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3650 {
3651 	struct pid *pid;
3652 	struct task_struct *task = NULL;
3653 	int ret = 0;
3654 
3655 	rcu_read_lock();
3656 	pid = rcu_dereference(target->pid);
3657 	if (pid)
3658 		task = get_pid_task(pid, PIDTYPE_PID);
3659 	rcu_read_unlock();
3660 	if (!task)
3661 		return ret;
3662 	ret = yield_to(task, 1);
3663 	put_task_struct(task);
3664 
3665 	return ret;
3666 }
3667 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3668 
3669 /*
3670  * Helper that checks whether a VCPU is eligible for directed yield.
3671  * Most eligible candidate to yield is decided by following heuristics:
3672  *
3673  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3674  *  (preempted lock holder), indicated by @in_spin_loop.
3675  *  Set at the beginning and cleared at the end of interception/PLE handler.
3676  *
3677  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3678  *  chance last time (mostly it has become eligible now since we have probably
3679  *  yielded to lockholder in last iteration. This is done by toggling
3680  *  @dy_eligible each time a VCPU checked for eligibility.)
3681  *
3682  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3683  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3684  *  burning. Giving priority for a potential lock-holder increases lock
3685  *  progress.
3686  *
3687  *  Since algorithm is based on heuristics, accessing another VCPU data without
3688  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3689  *  and continue with next VCPU and so on.
3690  */
3691 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3692 {
3693 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3694 	bool eligible;
3695 
3696 	eligible = !vcpu->spin_loop.in_spin_loop ||
3697 		    vcpu->spin_loop.dy_eligible;
3698 
3699 	if (vcpu->spin_loop.in_spin_loop)
3700 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3701 
3702 	return eligible;
3703 #else
3704 	return true;
3705 #endif
3706 }
3707 
3708 /*
3709  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3710  * a vcpu_load/vcpu_put pair.  However, for most architectures
3711  * kvm_arch_vcpu_runnable does not require vcpu_load.
3712  */
3713 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3714 {
3715 	return kvm_arch_vcpu_runnable(vcpu);
3716 }
3717 
3718 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3719 {
3720 	if (kvm_arch_dy_runnable(vcpu))
3721 		return true;
3722 
3723 #ifdef CONFIG_KVM_ASYNC_PF
3724 	if (!list_empty_careful(&vcpu->async_pf.done))
3725 		return true;
3726 #endif
3727 
3728 	return false;
3729 }
3730 
3731 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3732 {
3733 	return false;
3734 }
3735 
3736 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3737 {
3738 	struct kvm *kvm = me->kvm;
3739 	struct kvm_vcpu *vcpu;
3740 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3741 	unsigned long i;
3742 	int yielded = 0;
3743 	int try = 3;
3744 	int pass;
3745 
3746 	kvm_vcpu_set_in_spin_loop(me, true);
3747 	/*
3748 	 * We boost the priority of a VCPU that is runnable but not
3749 	 * currently running, because it got preempted by something
3750 	 * else and called schedule in __vcpu_run.  Hopefully that
3751 	 * VCPU is holding the lock that we need and will release it.
3752 	 * We approximate round-robin by starting at the last boosted VCPU.
3753 	 */
3754 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3755 		kvm_for_each_vcpu(i, vcpu, kvm) {
3756 			if (!pass && i <= last_boosted_vcpu) {
3757 				i = last_boosted_vcpu;
3758 				continue;
3759 			} else if (pass && i > last_boosted_vcpu)
3760 				break;
3761 			if (!READ_ONCE(vcpu->ready))
3762 				continue;
3763 			if (vcpu == me)
3764 				continue;
3765 			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3766 				continue;
3767 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3768 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3769 			    !kvm_arch_vcpu_in_kernel(vcpu))
3770 				continue;
3771 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3772 				continue;
3773 
3774 			yielded = kvm_vcpu_yield_to(vcpu);
3775 			if (yielded > 0) {
3776 				kvm->last_boosted_vcpu = i;
3777 				break;
3778 			} else if (yielded < 0) {
3779 				try--;
3780 				if (!try)
3781 					break;
3782 			}
3783 		}
3784 	}
3785 	kvm_vcpu_set_in_spin_loop(me, false);
3786 
3787 	/* Ensure vcpu is not eligible during next spinloop */
3788 	kvm_vcpu_set_dy_eligible(me, false);
3789 }
3790 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3791 
3792 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3793 {
3794 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3795 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3796 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3797 	     kvm->dirty_ring_size / PAGE_SIZE);
3798 #else
3799 	return false;
3800 #endif
3801 }
3802 
3803 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3804 {
3805 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3806 	struct page *page;
3807 
3808 	if (vmf->pgoff == 0)
3809 		page = virt_to_page(vcpu->run);
3810 #ifdef CONFIG_X86
3811 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3812 		page = virt_to_page(vcpu->arch.pio_data);
3813 #endif
3814 #ifdef CONFIG_KVM_MMIO
3815 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3816 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3817 #endif
3818 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3819 		page = kvm_dirty_ring_get_page(
3820 		    &vcpu->dirty_ring,
3821 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3822 	else
3823 		return kvm_arch_vcpu_fault(vcpu, vmf);
3824 	get_page(page);
3825 	vmf->page = page;
3826 	return 0;
3827 }
3828 
3829 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3830 	.fault = kvm_vcpu_fault,
3831 };
3832 
3833 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3834 {
3835 	struct kvm_vcpu *vcpu = file->private_data;
3836 	unsigned long pages = vma_pages(vma);
3837 
3838 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3839 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3840 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3841 		return -EINVAL;
3842 
3843 	vma->vm_ops = &kvm_vcpu_vm_ops;
3844 	return 0;
3845 }
3846 
3847 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3848 {
3849 	struct kvm_vcpu *vcpu = filp->private_data;
3850 
3851 	kvm_put_kvm(vcpu->kvm);
3852 	return 0;
3853 }
3854 
3855 static const struct file_operations kvm_vcpu_fops = {
3856 	.release        = kvm_vcpu_release,
3857 	.unlocked_ioctl = kvm_vcpu_ioctl,
3858 	.mmap           = kvm_vcpu_mmap,
3859 	.llseek		= noop_llseek,
3860 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3861 };
3862 
3863 /*
3864  * Allocates an inode for the vcpu.
3865  */
3866 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3867 {
3868 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3869 
3870 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3871 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3872 }
3873 
3874 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3875 static int vcpu_get_pid(void *data, u64 *val)
3876 {
3877 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3878 	*val = pid_nr(rcu_access_pointer(vcpu->pid));
3879 	return 0;
3880 }
3881 
3882 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3883 
3884 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3885 {
3886 	struct dentry *debugfs_dentry;
3887 	char dir_name[ITOA_MAX_LEN * 2];
3888 
3889 	if (!debugfs_initialized())
3890 		return;
3891 
3892 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3893 	debugfs_dentry = debugfs_create_dir(dir_name,
3894 					    vcpu->kvm->debugfs_dentry);
3895 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3896 			    &vcpu_get_pid_fops);
3897 
3898 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3899 }
3900 #endif
3901 
3902 /*
3903  * Creates some virtual cpus.  Good luck creating more than one.
3904  */
3905 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3906 {
3907 	int r;
3908 	struct kvm_vcpu *vcpu;
3909 	struct page *page;
3910 
3911 	if (id >= KVM_MAX_VCPU_IDS)
3912 		return -EINVAL;
3913 
3914 	mutex_lock(&kvm->lock);
3915 	if (kvm->created_vcpus >= kvm->max_vcpus) {
3916 		mutex_unlock(&kvm->lock);
3917 		return -EINVAL;
3918 	}
3919 
3920 	r = kvm_arch_vcpu_precreate(kvm, id);
3921 	if (r) {
3922 		mutex_unlock(&kvm->lock);
3923 		return r;
3924 	}
3925 
3926 	kvm->created_vcpus++;
3927 	mutex_unlock(&kvm->lock);
3928 
3929 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3930 	if (!vcpu) {
3931 		r = -ENOMEM;
3932 		goto vcpu_decrement;
3933 	}
3934 
3935 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3936 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3937 	if (!page) {
3938 		r = -ENOMEM;
3939 		goto vcpu_free;
3940 	}
3941 	vcpu->run = page_address(page);
3942 
3943 	kvm_vcpu_init(vcpu, kvm, id);
3944 
3945 	r = kvm_arch_vcpu_create(vcpu);
3946 	if (r)
3947 		goto vcpu_free_run_page;
3948 
3949 	if (kvm->dirty_ring_size) {
3950 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3951 					 id, kvm->dirty_ring_size);
3952 		if (r)
3953 			goto arch_vcpu_destroy;
3954 	}
3955 
3956 	mutex_lock(&kvm->lock);
3957 
3958 #ifdef CONFIG_LOCKDEP
3959 	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3960 	mutex_lock(&vcpu->mutex);
3961 	mutex_unlock(&vcpu->mutex);
3962 #endif
3963 
3964 	if (kvm_get_vcpu_by_id(kvm, id)) {
3965 		r = -EEXIST;
3966 		goto unlock_vcpu_destroy;
3967 	}
3968 
3969 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3970 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3971 	BUG_ON(r == -EBUSY);
3972 	if (r)
3973 		goto unlock_vcpu_destroy;
3974 
3975 	/* Now it's all set up, let userspace reach it */
3976 	kvm_get_kvm(kvm);
3977 	r = create_vcpu_fd(vcpu);
3978 	if (r < 0) {
3979 		xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3980 		kvm_put_kvm_no_destroy(kvm);
3981 		goto unlock_vcpu_destroy;
3982 	}
3983 
3984 	/*
3985 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3986 	 * pointer before kvm->online_vcpu's incremented value.
3987 	 */
3988 	smp_wmb();
3989 	atomic_inc(&kvm->online_vcpus);
3990 
3991 	mutex_unlock(&kvm->lock);
3992 	kvm_arch_vcpu_postcreate(vcpu);
3993 	kvm_create_vcpu_debugfs(vcpu);
3994 	return r;
3995 
3996 unlock_vcpu_destroy:
3997 	mutex_unlock(&kvm->lock);
3998 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3999 arch_vcpu_destroy:
4000 	kvm_arch_vcpu_destroy(vcpu);
4001 vcpu_free_run_page:
4002 	free_page((unsigned long)vcpu->run);
4003 vcpu_free:
4004 	kmem_cache_free(kvm_vcpu_cache, vcpu);
4005 vcpu_decrement:
4006 	mutex_lock(&kvm->lock);
4007 	kvm->created_vcpus--;
4008 	mutex_unlock(&kvm->lock);
4009 	return r;
4010 }
4011 
4012 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4013 {
4014 	if (sigset) {
4015 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4016 		vcpu->sigset_active = 1;
4017 		vcpu->sigset = *sigset;
4018 	} else
4019 		vcpu->sigset_active = 0;
4020 	return 0;
4021 }
4022 
4023 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4024 			      size_t size, loff_t *offset)
4025 {
4026 	struct kvm_vcpu *vcpu = file->private_data;
4027 
4028 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4029 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4030 			sizeof(vcpu->stat), user_buffer, size, offset);
4031 }
4032 
4033 static const struct file_operations kvm_vcpu_stats_fops = {
4034 	.read = kvm_vcpu_stats_read,
4035 	.llseek = noop_llseek,
4036 };
4037 
4038 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4039 {
4040 	int fd;
4041 	struct file *file;
4042 	char name[15 + ITOA_MAX_LEN + 1];
4043 
4044 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4045 
4046 	fd = get_unused_fd_flags(O_CLOEXEC);
4047 	if (fd < 0)
4048 		return fd;
4049 
4050 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4051 	if (IS_ERR(file)) {
4052 		put_unused_fd(fd);
4053 		return PTR_ERR(file);
4054 	}
4055 	file->f_mode |= FMODE_PREAD;
4056 	fd_install(fd, file);
4057 
4058 	return fd;
4059 }
4060 
4061 static long kvm_vcpu_ioctl(struct file *filp,
4062 			   unsigned int ioctl, unsigned long arg)
4063 {
4064 	struct kvm_vcpu *vcpu = filp->private_data;
4065 	void __user *argp = (void __user *)arg;
4066 	int r;
4067 	struct kvm_fpu *fpu = NULL;
4068 	struct kvm_sregs *kvm_sregs = NULL;
4069 
4070 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4071 		return -EIO;
4072 
4073 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4074 		return -EINVAL;
4075 
4076 	/*
4077 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4078 	 * execution; mutex_lock() would break them.
4079 	 */
4080 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4081 	if (r != -ENOIOCTLCMD)
4082 		return r;
4083 
4084 	if (mutex_lock_killable(&vcpu->mutex))
4085 		return -EINTR;
4086 	switch (ioctl) {
4087 	case KVM_RUN: {
4088 		struct pid *oldpid;
4089 		r = -EINVAL;
4090 		if (arg)
4091 			goto out;
4092 		oldpid = rcu_access_pointer(vcpu->pid);
4093 		if (unlikely(oldpid != task_pid(current))) {
4094 			/* The thread running this VCPU changed. */
4095 			struct pid *newpid;
4096 
4097 			r = kvm_arch_vcpu_run_pid_change(vcpu);
4098 			if (r)
4099 				break;
4100 
4101 			newpid = get_task_pid(current, PIDTYPE_PID);
4102 			rcu_assign_pointer(vcpu->pid, newpid);
4103 			if (oldpid)
4104 				synchronize_rcu();
4105 			put_pid(oldpid);
4106 		}
4107 		r = kvm_arch_vcpu_ioctl_run(vcpu);
4108 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4109 		break;
4110 	}
4111 	case KVM_GET_REGS: {
4112 		struct kvm_regs *kvm_regs;
4113 
4114 		r = -ENOMEM;
4115 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4116 		if (!kvm_regs)
4117 			goto out;
4118 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4119 		if (r)
4120 			goto out_free1;
4121 		r = -EFAULT;
4122 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4123 			goto out_free1;
4124 		r = 0;
4125 out_free1:
4126 		kfree(kvm_regs);
4127 		break;
4128 	}
4129 	case KVM_SET_REGS: {
4130 		struct kvm_regs *kvm_regs;
4131 
4132 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4133 		if (IS_ERR(kvm_regs)) {
4134 			r = PTR_ERR(kvm_regs);
4135 			goto out;
4136 		}
4137 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4138 		kfree(kvm_regs);
4139 		break;
4140 	}
4141 	case KVM_GET_SREGS: {
4142 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4143 				    GFP_KERNEL_ACCOUNT);
4144 		r = -ENOMEM;
4145 		if (!kvm_sregs)
4146 			goto out;
4147 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4148 		if (r)
4149 			goto out;
4150 		r = -EFAULT;
4151 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4152 			goto out;
4153 		r = 0;
4154 		break;
4155 	}
4156 	case KVM_SET_SREGS: {
4157 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4158 		if (IS_ERR(kvm_sregs)) {
4159 			r = PTR_ERR(kvm_sregs);
4160 			kvm_sregs = NULL;
4161 			goto out;
4162 		}
4163 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4164 		break;
4165 	}
4166 	case KVM_GET_MP_STATE: {
4167 		struct kvm_mp_state mp_state;
4168 
4169 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4170 		if (r)
4171 			goto out;
4172 		r = -EFAULT;
4173 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4174 			goto out;
4175 		r = 0;
4176 		break;
4177 	}
4178 	case KVM_SET_MP_STATE: {
4179 		struct kvm_mp_state mp_state;
4180 
4181 		r = -EFAULT;
4182 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4183 			goto out;
4184 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4185 		break;
4186 	}
4187 	case KVM_TRANSLATE: {
4188 		struct kvm_translation tr;
4189 
4190 		r = -EFAULT;
4191 		if (copy_from_user(&tr, argp, sizeof(tr)))
4192 			goto out;
4193 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4194 		if (r)
4195 			goto out;
4196 		r = -EFAULT;
4197 		if (copy_to_user(argp, &tr, sizeof(tr)))
4198 			goto out;
4199 		r = 0;
4200 		break;
4201 	}
4202 	case KVM_SET_GUEST_DEBUG: {
4203 		struct kvm_guest_debug dbg;
4204 
4205 		r = -EFAULT;
4206 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4207 			goto out;
4208 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4209 		break;
4210 	}
4211 	case KVM_SET_SIGNAL_MASK: {
4212 		struct kvm_signal_mask __user *sigmask_arg = argp;
4213 		struct kvm_signal_mask kvm_sigmask;
4214 		sigset_t sigset, *p;
4215 
4216 		p = NULL;
4217 		if (argp) {
4218 			r = -EFAULT;
4219 			if (copy_from_user(&kvm_sigmask, argp,
4220 					   sizeof(kvm_sigmask)))
4221 				goto out;
4222 			r = -EINVAL;
4223 			if (kvm_sigmask.len != sizeof(sigset))
4224 				goto out;
4225 			r = -EFAULT;
4226 			if (copy_from_user(&sigset, sigmask_arg->sigset,
4227 					   sizeof(sigset)))
4228 				goto out;
4229 			p = &sigset;
4230 		}
4231 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4232 		break;
4233 	}
4234 	case KVM_GET_FPU: {
4235 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4236 		r = -ENOMEM;
4237 		if (!fpu)
4238 			goto out;
4239 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4240 		if (r)
4241 			goto out;
4242 		r = -EFAULT;
4243 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4244 			goto out;
4245 		r = 0;
4246 		break;
4247 	}
4248 	case KVM_SET_FPU: {
4249 		fpu = memdup_user(argp, sizeof(*fpu));
4250 		if (IS_ERR(fpu)) {
4251 			r = PTR_ERR(fpu);
4252 			fpu = NULL;
4253 			goto out;
4254 		}
4255 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4256 		break;
4257 	}
4258 	case KVM_GET_STATS_FD: {
4259 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4260 		break;
4261 	}
4262 	default:
4263 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4264 	}
4265 out:
4266 	mutex_unlock(&vcpu->mutex);
4267 	kfree(fpu);
4268 	kfree(kvm_sregs);
4269 	return r;
4270 }
4271 
4272 #ifdef CONFIG_KVM_COMPAT
4273 static long kvm_vcpu_compat_ioctl(struct file *filp,
4274 				  unsigned int ioctl, unsigned long arg)
4275 {
4276 	struct kvm_vcpu *vcpu = filp->private_data;
4277 	void __user *argp = compat_ptr(arg);
4278 	int r;
4279 
4280 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4281 		return -EIO;
4282 
4283 	switch (ioctl) {
4284 	case KVM_SET_SIGNAL_MASK: {
4285 		struct kvm_signal_mask __user *sigmask_arg = argp;
4286 		struct kvm_signal_mask kvm_sigmask;
4287 		sigset_t sigset;
4288 
4289 		if (argp) {
4290 			r = -EFAULT;
4291 			if (copy_from_user(&kvm_sigmask, argp,
4292 					   sizeof(kvm_sigmask)))
4293 				goto out;
4294 			r = -EINVAL;
4295 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4296 				goto out;
4297 			r = -EFAULT;
4298 			if (get_compat_sigset(&sigset,
4299 					      (compat_sigset_t __user *)sigmask_arg->sigset))
4300 				goto out;
4301 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4302 		} else
4303 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4304 		break;
4305 	}
4306 	default:
4307 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4308 	}
4309 
4310 out:
4311 	return r;
4312 }
4313 #endif
4314 
4315 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4316 {
4317 	struct kvm_device *dev = filp->private_data;
4318 
4319 	if (dev->ops->mmap)
4320 		return dev->ops->mmap(dev, vma);
4321 
4322 	return -ENODEV;
4323 }
4324 
4325 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4326 				 int (*accessor)(struct kvm_device *dev,
4327 						 struct kvm_device_attr *attr),
4328 				 unsigned long arg)
4329 {
4330 	struct kvm_device_attr attr;
4331 
4332 	if (!accessor)
4333 		return -EPERM;
4334 
4335 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4336 		return -EFAULT;
4337 
4338 	return accessor(dev, &attr);
4339 }
4340 
4341 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4342 			     unsigned long arg)
4343 {
4344 	struct kvm_device *dev = filp->private_data;
4345 
4346 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4347 		return -EIO;
4348 
4349 	switch (ioctl) {
4350 	case KVM_SET_DEVICE_ATTR:
4351 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4352 	case KVM_GET_DEVICE_ATTR:
4353 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4354 	case KVM_HAS_DEVICE_ATTR:
4355 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4356 	default:
4357 		if (dev->ops->ioctl)
4358 			return dev->ops->ioctl(dev, ioctl, arg);
4359 
4360 		return -ENOTTY;
4361 	}
4362 }
4363 
4364 static int kvm_device_release(struct inode *inode, struct file *filp)
4365 {
4366 	struct kvm_device *dev = filp->private_data;
4367 	struct kvm *kvm = dev->kvm;
4368 
4369 	if (dev->ops->release) {
4370 		mutex_lock(&kvm->lock);
4371 		list_del(&dev->vm_node);
4372 		dev->ops->release(dev);
4373 		mutex_unlock(&kvm->lock);
4374 	}
4375 
4376 	kvm_put_kvm(kvm);
4377 	return 0;
4378 }
4379 
4380 static const struct file_operations kvm_device_fops = {
4381 	.unlocked_ioctl = kvm_device_ioctl,
4382 	.release = kvm_device_release,
4383 	KVM_COMPAT(kvm_device_ioctl),
4384 	.mmap = kvm_device_mmap,
4385 };
4386 
4387 struct kvm_device *kvm_device_from_filp(struct file *filp)
4388 {
4389 	if (filp->f_op != &kvm_device_fops)
4390 		return NULL;
4391 
4392 	return filp->private_data;
4393 }
4394 
4395 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4396 #ifdef CONFIG_KVM_MPIC
4397 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4398 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4399 #endif
4400 };
4401 
4402 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4403 {
4404 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4405 		return -ENOSPC;
4406 
4407 	if (kvm_device_ops_table[type] != NULL)
4408 		return -EEXIST;
4409 
4410 	kvm_device_ops_table[type] = ops;
4411 	return 0;
4412 }
4413 
4414 void kvm_unregister_device_ops(u32 type)
4415 {
4416 	if (kvm_device_ops_table[type] != NULL)
4417 		kvm_device_ops_table[type] = NULL;
4418 }
4419 
4420 static int kvm_ioctl_create_device(struct kvm *kvm,
4421 				   struct kvm_create_device *cd)
4422 {
4423 	const struct kvm_device_ops *ops;
4424 	struct kvm_device *dev;
4425 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4426 	int type;
4427 	int ret;
4428 
4429 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4430 		return -ENODEV;
4431 
4432 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4433 	ops = kvm_device_ops_table[type];
4434 	if (ops == NULL)
4435 		return -ENODEV;
4436 
4437 	if (test)
4438 		return 0;
4439 
4440 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4441 	if (!dev)
4442 		return -ENOMEM;
4443 
4444 	dev->ops = ops;
4445 	dev->kvm = kvm;
4446 
4447 	mutex_lock(&kvm->lock);
4448 	ret = ops->create(dev, type);
4449 	if (ret < 0) {
4450 		mutex_unlock(&kvm->lock);
4451 		kfree(dev);
4452 		return ret;
4453 	}
4454 	list_add(&dev->vm_node, &kvm->devices);
4455 	mutex_unlock(&kvm->lock);
4456 
4457 	if (ops->init)
4458 		ops->init(dev);
4459 
4460 	kvm_get_kvm(kvm);
4461 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4462 	if (ret < 0) {
4463 		kvm_put_kvm_no_destroy(kvm);
4464 		mutex_lock(&kvm->lock);
4465 		list_del(&dev->vm_node);
4466 		if (ops->release)
4467 			ops->release(dev);
4468 		mutex_unlock(&kvm->lock);
4469 		if (ops->destroy)
4470 			ops->destroy(dev);
4471 		return ret;
4472 	}
4473 
4474 	cd->fd = ret;
4475 	return 0;
4476 }
4477 
4478 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4479 {
4480 	switch (arg) {
4481 	case KVM_CAP_USER_MEMORY:
4482 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4483 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4484 	case KVM_CAP_INTERNAL_ERROR_DATA:
4485 #ifdef CONFIG_HAVE_KVM_MSI
4486 	case KVM_CAP_SIGNAL_MSI:
4487 #endif
4488 #ifdef CONFIG_HAVE_KVM_IRQFD
4489 	case KVM_CAP_IRQFD:
4490 	case KVM_CAP_IRQFD_RESAMPLE:
4491 #endif
4492 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4493 	case KVM_CAP_CHECK_EXTENSION_VM:
4494 	case KVM_CAP_ENABLE_CAP_VM:
4495 	case KVM_CAP_HALT_POLL:
4496 		return 1;
4497 #ifdef CONFIG_KVM_MMIO
4498 	case KVM_CAP_COALESCED_MMIO:
4499 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4500 	case KVM_CAP_COALESCED_PIO:
4501 		return 1;
4502 #endif
4503 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4504 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4505 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4506 #endif
4507 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4508 	case KVM_CAP_IRQ_ROUTING:
4509 		return KVM_MAX_IRQ_ROUTES;
4510 #endif
4511 #if KVM_ADDRESS_SPACE_NUM > 1
4512 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4513 		return KVM_ADDRESS_SPACE_NUM;
4514 #endif
4515 	case KVM_CAP_NR_MEMSLOTS:
4516 		return KVM_USER_MEM_SLOTS;
4517 	case KVM_CAP_DIRTY_LOG_RING:
4518 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4519 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4520 #else
4521 		return 0;
4522 #endif
4523 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4524 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4525 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4526 #else
4527 		return 0;
4528 #endif
4529 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4530 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4531 #endif
4532 	case KVM_CAP_BINARY_STATS_FD:
4533 	case KVM_CAP_SYSTEM_EVENT_DATA:
4534 		return 1;
4535 	default:
4536 		break;
4537 	}
4538 	return kvm_vm_ioctl_check_extension(kvm, arg);
4539 }
4540 
4541 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4542 {
4543 	int r;
4544 
4545 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4546 		return -EINVAL;
4547 
4548 	/* the size should be power of 2 */
4549 	if (!size || (size & (size - 1)))
4550 		return -EINVAL;
4551 
4552 	/* Should be bigger to keep the reserved entries, or a page */
4553 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4554 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4555 		return -EINVAL;
4556 
4557 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4558 	    sizeof(struct kvm_dirty_gfn))
4559 		return -E2BIG;
4560 
4561 	/* We only allow it to set once */
4562 	if (kvm->dirty_ring_size)
4563 		return -EINVAL;
4564 
4565 	mutex_lock(&kvm->lock);
4566 
4567 	if (kvm->created_vcpus) {
4568 		/* We don't allow to change this value after vcpu created */
4569 		r = -EINVAL;
4570 	} else {
4571 		kvm->dirty_ring_size = size;
4572 		r = 0;
4573 	}
4574 
4575 	mutex_unlock(&kvm->lock);
4576 	return r;
4577 }
4578 
4579 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4580 {
4581 	unsigned long i;
4582 	struct kvm_vcpu *vcpu;
4583 	int cleared = 0;
4584 
4585 	if (!kvm->dirty_ring_size)
4586 		return -EINVAL;
4587 
4588 	mutex_lock(&kvm->slots_lock);
4589 
4590 	kvm_for_each_vcpu(i, vcpu, kvm)
4591 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4592 
4593 	mutex_unlock(&kvm->slots_lock);
4594 
4595 	if (cleared)
4596 		kvm_flush_remote_tlbs(kvm);
4597 
4598 	return cleared;
4599 }
4600 
4601 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4602 						  struct kvm_enable_cap *cap)
4603 {
4604 	return -EINVAL;
4605 }
4606 
4607 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4608 {
4609 	int i;
4610 
4611 	lockdep_assert_held(&kvm->slots_lock);
4612 
4613 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4614 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4615 			return false;
4616 	}
4617 
4618 	return true;
4619 }
4620 
4621 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4622 					   struct kvm_enable_cap *cap)
4623 {
4624 	switch (cap->cap) {
4625 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4626 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4627 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4628 
4629 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4630 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4631 
4632 		if (cap->flags || (cap->args[0] & ~allowed_options))
4633 			return -EINVAL;
4634 		kvm->manual_dirty_log_protect = cap->args[0];
4635 		return 0;
4636 	}
4637 #endif
4638 	case KVM_CAP_HALT_POLL: {
4639 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4640 			return -EINVAL;
4641 
4642 		kvm->max_halt_poll_ns = cap->args[0];
4643 
4644 		/*
4645 		 * Ensure kvm->override_halt_poll_ns does not become visible
4646 		 * before kvm->max_halt_poll_ns.
4647 		 *
4648 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4649 		 */
4650 		smp_wmb();
4651 		kvm->override_halt_poll_ns = true;
4652 
4653 		return 0;
4654 	}
4655 	case KVM_CAP_DIRTY_LOG_RING:
4656 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4657 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4658 			return -EINVAL;
4659 
4660 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4661 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4662 		int r = -EINVAL;
4663 
4664 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4665 		    !kvm->dirty_ring_size || cap->flags)
4666 			return r;
4667 
4668 		mutex_lock(&kvm->slots_lock);
4669 
4670 		/*
4671 		 * For simplicity, allow enabling ring+bitmap if and only if
4672 		 * there are no memslots, e.g. to ensure all memslots allocate
4673 		 * a bitmap after the capability is enabled.
4674 		 */
4675 		if (kvm_are_all_memslots_empty(kvm)) {
4676 			kvm->dirty_ring_with_bitmap = true;
4677 			r = 0;
4678 		}
4679 
4680 		mutex_unlock(&kvm->slots_lock);
4681 
4682 		return r;
4683 	}
4684 	default:
4685 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4686 	}
4687 }
4688 
4689 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4690 			      size_t size, loff_t *offset)
4691 {
4692 	struct kvm *kvm = file->private_data;
4693 
4694 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4695 				&kvm_vm_stats_desc[0], &kvm->stat,
4696 				sizeof(kvm->stat), user_buffer, size, offset);
4697 }
4698 
4699 static const struct file_operations kvm_vm_stats_fops = {
4700 	.read = kvm_vm_stats_read,
4701 	.llseek = noop_llseek,
4702 };
4703 
4704 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4705 {
4706 	int fd;
4707 	struct file *file;
4708 
4709 	fd = get_unused_fd_flags(O_CLOEXEC);
4710 	if (fd < 0)
4711 		return fd;
4712 
4713 	file = anon_inode_getfile("kvm-vm-stats",
4714 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4715 	if (IS_ERR(file)) {
4716 		put_unused_fd(fd);
4717 		return PTR_ERR(file);
4718 	}
4719 	file->f_mode |= FMODE_PREAD;
4720 	fd_install(fd, file);
4721 
4722 	return fd;
4723 }
4724 
4725 static long kvm_vm_ioctl(struct file *filp,
4726 			   unsigned int ioctl, unsigned long arg)
4727 {
4728 	struct kvm *kvm = filp->private_data;
4729 	void __user *argp = (void __user *)arg;
4730 	int r;
4731 
4732 	if (kvm->mm != current->mm || kvm->vm_dead)
4733 		return -EIO;
4734 	switch (ioctl) {
4735 	case KVM_CREATE_VCPU:
4736 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4737 		break;
4738 	case KVM_ENABLE_CAP: {
4739 		struct kvm_enable_cap cap;
4740 
4741 		r = -EFAULT;
4742 		if (copy_from_user(&cap, argp, sizeof(cap)))
4743 			goto out;
4744 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4745 		break;
4746 	}
4747 	case KVM_SET_USER_MEMORY_REGION: {
4748 		struct kvm_userspace_memory_region kvm_userspace_mem;
4749 
4750 		r = -EFAULT;
4751 		if (copy_from_user(&kvm_userspace_mem, argp,
4752 						sizeof(kvm_userspace_mem)))
4753 			goto out;
4754 
4755 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4756 		break;
4757 	}
4758 	case KVM_GET_DIRTY_LOG: {
4759 		struct kvm_dirty_log log;
4760 
4761 		r = -EFAULT;
4762 		if (copy_from_user(&log, argp, sizeof(log)))
4763 			goto out;
4764 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4765 		break;
4766 	}
4767 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4768 	case KVM_CLEAR_DIRTY_LOG: {
4769 		struct kvm_clear_dirty_log log;
4770 
4771 		r = -EFAULT;
4772 		if (copy_from_user(&log, argp, sizeof(log)))
4773 			goto out;
4774 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4775 		break;
4776 	}
4777 #endif
4778 #ifdef CONFIG_KVM_MMIO
4779 	case KVM_REGISTER_COALESCED_MMIO: {
4780 		struct kvm_coalesced_mmio_zone zone;
4781 
4782 		r = -EFAULT;
4783 		if (copy_from_user(&zone, argp, sizeof(zone)))
4784 			goto out;
4785 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4786 		break;
4787 	}
4788 	case KVM_UNREGISTER_COALESCED_MMIO: {
4789 		struct kvm_coalesced_mmio_zone zone;
4790 
4791 		r = -EFAULT;
4792 		if (copy_from_user(&zone, argp, sizeof(zone)))
4793 			goto out;
4794 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4795 		break;
4796 	}
4797 #endif
4798 	case KVM_IRQFD: {
4799 		struct kvm_irqfd data;
4800 
4801 		r = -EFAULT;
4802 		if (copy_from_user(&data, argp, sizeof(data)))
4803 			goto out;
4804 		r = kvm_irqfd(kvm, &data);
4805 		break;
4806 	}
4807 	case KVM_IOEVENTFD: {
4808 		struct kvm_ioeventfd data;
4809 
4810 		r = -EFAULT;
4811 		if (copy_from_user(&data, argp, sizeof(data)))
4812 			goto out;
4813 		r = kvm_ioeventfd(kvm, &data);
4814 		break;
4815 	}
4816 #ifdef CONFIG_HAVE_KVM_MSI
4817 	case KVM_SIGNAL_MSI: {
4818 		struct kvm_msi msi;
4819 
4820 		r = -EFAULT;
4821 		if (copy_from_user(&msi, argp, sizeof(msi)))
4822 			goto out;
4823 		r = kvm_send_userspace_msi(kvm, &msi);
4824 		break;
4825 	}
4826 #endif
4827 #ifdef __KVM_HAVE_IRQ_LINE
4828 	case KVM_IRQ_LINE_STATUS:
4829 	case KVM_IRQ_LINE: {
4830 		struct kvm_irq_level irq_event;
4831 
4832 		r = -EFAULT;
4833 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4834 			goto out;
4835 
4836 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4837 					ioctl == KVM_IRQ_LINE_STATUS);
4838 		if (r)
4839 			goto out;
4840 
4841 		r = -EFAULT;
4842 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4843 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4844 				goto out;
4845 		}
4846 
4847 		r = 0;
4848 		break;
4849 	}
4850 #endif
4851 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4852 	case KVM_SET_GSI_ROUTING: {
4853 		struct kvm_irq_routing routing;
4854 		struct kvm_irq_routing __user *urouting;
4855 		struct kvm_irq_routing_entry *entries = NULL;
4856 
4857 		r = -EFAULT;
4858 		if (copy_from_user(&routing, argp, sizeof(routing)))
4859 			goto out;
4860 		r = -EINVAL;
4861 		if (!kvm_arch_can_set_irq_routing(kvm))
4862 			goto out;
4863 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4864 			goto out;
4865 		if (routing.flags)
4866 			goto out;
4867 		if (routing.nr) {
4868 			urouting = argp;
4869 			entries = vmemdup_user(urouting->entries,
4870 					       array_size(sizeof(*entries),
4871 							  routing.nr));
4872 			if (IS_ERR(entries)) {
4873 				r = PTR_ERR(entries);
4874 				goto out;
4875 			}
4876 		}
4877 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4878 					routing.flags);
4879 		kvfree(entries);
4880 		break;
4881 	}
4882 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4883 	case KVM_CREATE_DEVICE: {
4884 		struct kvm_create_device cd;
4885 
4886 		r = -EFAULT;
4887 		if (copy_from_user(&cd, argp, sizeof(cd)))
4888 			goto out;
4889 
4890 		r = kvm_ioctl_create_device(kvm, &cd);
4891 		if (r)
4892 			goto out;
4893 
4894 		r = -EFAULT;
4895 		if (copy_to_user(argp, &cd, sizeof(cd)))
4896 			goto out;
4897 
4898 		r = 0;
4899 		break;
4900 	}
4901 	case KVM_CHECK_EXTENSION:
4902 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4903 		break;
4904 	case KVM_RESET_DIRTY_RINGS:
4905 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4906 		break;
4907 	case KVM_GET_STATS_FD:
4908 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4909 		break;
4910 	default:
4911 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4912 	}
4913 out:
4914 	return r;
4915 }
4916 
4917 #ifdef CONFIG_KVM_COMPAT
4918 struct compat_kvm_dirty_log {
4919 	__u32 slot;
4920 	__u32 padding1;
4921 	union {
4922 		compat_uptr_t dirty_bitmap; /* one bit per page */
4923 		__u64 padding2;
4924 	};
4925 };
4926 
4927 struct compat_kvm_clear_dirty_log {
4928 	__u32 slot;
4929 	__u32 num_pages;
4930 	__u64 first_page;
4931 	union {
4932 		compat_uptr_t dirty_bitmap; /* one bit per page */
4933 		__u64 padding2;
4934 	};
4935 };
4936 
4937 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4938 				     unsigned long arg)
4939 {
4940 	return -ENOTTY;
4941 }
4942 
4943 static long kvm_vm_compat_ioctl(struct file *filp,
4944 			   unsigned int ioctl, unsigned long arg)
4945 {
4946 	struct kvm *kvm = filp->private_data;
4947 	int r;
4948 
4949 	if (kvm->mm != current->mm || kvm->vm_dead)
4950 		return -EIO;
4951 
4952 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4953 	if (r != -ENOTTY)
4954 		return r;
4955 
4956 	switch (ioctl) {
4957 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4958 	case KVM_CLEAR_DIRTY_LOG: {
4959 		struct compat_kvm_clear_dirty_log compat_log;
4960 		struct kvm_clear_dirty_log log;
4961 
4962 		if (copy_from_user(&compat_log, (void __user *)arg,
4963 				   sizeof(compat_log)))
4964 			return -EFAULT;
4965 		log.slot	 = compat_log.slot;
4966 		log.num_pages	 = compat_log.num_pages;
4967 		log.first_page	 = compat_log.first_page;
4968 		log.padding2	 = compat_log.padding2;
4969 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4970 
4971 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4972 		break;
4973 	}
4974 #endif
4975 	case KVM_GET_DIRTY_LOG: {
4976 		struct compat_kvm_dirty_log compat_log;
4977 		struct kvm_dirty_log log;
4978 
4979 		if (copy_from_user(&compat_log, (void __user *)arg,
4980 				   sizeof(compat_log)))
4981 			return -EFAULT;
4982 		log.slot	 = compat_log.slot;
4983 		log.padding1	 = compat_log.padding1;
4984 		log.padding2	 = compat_log.padding2;
4985 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4986 
4987 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4988 		break;
4989 	}
4990 	default:
4991 		r = kvm_vm_ioctl(filp, ioctl, arg);
4992 	}
4993 	return r;
4994 }
4995 #endif
4996 
4997 static const struct file_operations kvm_vm_fops = {
4998 	.release        = kvm_vm_release,
4999 	.unlocked_ioctl = kvm_vm_ioctl,
5000 	.llseek		= noop_llseek,
5001 	KVM_COMPAT(kvm_vm_compat_ioctl),
5002 };
5003 
5004 bool file_is_kvm(struct file *file)
5005 {
5006 	return file && file->f_op == &kvm_vm_fops;
5007 }
5008 EXPORT_SYMBOL_GPL(file_is_kvm);
5009 
5010 static int kvm_dev_ioctl_create_vm(unsigned long type)
5011 {
5012 	char fdname[ITOA_MAX_LEN + 1];
5013 	int r, fd;
5014 	struct kvm *kvm;
5015 	struct file *file;
5016 
5017 	fd = get_unused_fd_flags(O_CLOEXEC);
5018 	if (fd < 0)
5019 		return fd;
5020 
5021 	snprintf(fdname, sizeof(fdname), "%d", fd);
5022 
5023 	kvm = kvm_create_vm(type, fdname);
5024 	if (IS_ERR(kvm)) {
5025 		r = PTR_ERR(kvm);
5026 		goto put_fd;
5027 	}
5028 
5029 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5030 	if (IS_ERR(file)) {
5031 		r = PTR_ERR(file);
5032 		goto put_kvm;
5033 	}
5034 
5035 	/*
5036 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5037 	 * already set, with ->release() being kvm_vm_release().  In error
5038 	 * cases it will be called by the final fput(file) and will take
5039 	 * care of doing kvm_put_kvm(kvm).
5040 	 */
5041 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5042 
5043 	fd_install(fd, file);
5044 	return fd;
5045 
5046 put_kvm:
5047 	kvm_put_kvm(kvm);
5048 put_fd:
5049 	put_unused_fd(fd);
5050 	return r;
5051 }
5052 
5053 static long kvm_dev_ioctl(struct file *filp,
5054 			  unsigned int ioctl, unsigned long arg)
5055 {
5056 	long r = -EINVAL;
5057 
5058 	switch (ioctl) {
5059 	case KVM_GET_API_VERSION:
5060 		if (arg)
5061 			goto out;
5062 		r = KVM_API_VERSION;
5063 		break;
5064 	case KVM_CREATE_VM:
5065 		r = kvm_dev_ioctl_create_vm(arg);
5066 		break;
5067 	case KVM_CHECK_EXTENSION:
5068 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5069 		break;
5070 	case KVM_GET_VCPU_MMAP_SIZE:
5071 		if (arg)
5072 			goto out;
5073 		r = PAGE_SIZE;     /* struct kvm_run */
5074 #ifdef CONFIG_X86
5075 		r += PAGE_SIZE;    /* pio data page */
5076 #endif
5077 #ifdef CONFIG_KVM_MMIO
5078 		r += PAGE_SIZE;    /* coalesced mmio ring page */
5079 #endif
5080 		break;
5081 	case KVM_TRACE_ENABLE:
5082 	case KVM_TRACE_PAUSE:
5083 	case KVM_TRACE_DISABLE:
5084 		r = -EOPNOTSUPP;
5085 		break;
5086 	default:
5087 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5088 	}
5089 out:
5090 	return r;
5091 }
5092 
5093 static struct file_operations kvm_chardev_ops = {
5094 	.unlocked_ioctl = kvm_dev_ioctl,
5095 	.llseek		= noop_llseek,
5096 	KVM_COMPAT(kvm_dev_ioctl),
5097 };
5098 
5099 static struct miscdevice kvm_dev = {
5100 	KVM_MINOR,
5101 	"kvm",
5102 	&kvm_chardev_ops,
5103 };
5104 
5105 static void hardware_enable_nolock(void *junk)
5106 {
5107 	int cpu = raw_smp_processor_id();
5108 	int r;
5109 
5110 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5111 		return;
5112 
5113 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
5114 
5115 	r = kvm_arch_hardware_enable();
5116 
5117 	if (r) {
5118 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5119 		atomic_inc(&hardware_enable_failed);
5120 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5121 	}
5122 }
5123 
5124 static int kvm_starting_cpu(unsigned int cpu)
5125 {
5126 	raw_spin_lock(&kvm_count_lock);
5127 	if (kvm_usage_count)
5128 		hardware_enable_nolock(NULL);
5129 	raw_spin_unlock(&kvm_count_lock);
5130 	return 0;
5131 }
5132 
5133 static void hardware_disable_nolock(void *junk)
5134 {
5135 	int cpu = raw_smp_processor_id();
5136 
5137 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5138 		return;
5139 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5140 	kvm_arch_hardware_disable();
5141 }
5142 
5143 static int kvm_dying_cpu(unsigned int cpu)
5144 {
5145 	raw_spin_lock(&kvm_count_lock);
5146 	if (kvm_usage_count)
5147 		hardware_disable_nolock(NULL);
5148 	raw_spin_unlock(&kvm_count_lock);
5149 	return 0;
5150 }
5151 
5152 static void hardware_disable_all_nolock(void)
5153 {
5154 	BUG_ON(!kvm_usage_count);
5155 
5156 	kvm_usage_count--;
5157 	if (!kvm_usage_count)
5158 		on_each_cpu(hardware_disable_nolock, NULL, 1);
5159 }
5160 
5161 static void hardware_disable_all(void)
5162 {
5163 	raw_spin_lock(&kvm_count_lock);
5164 	hardware_disable_all_nolock();
5165 	raw_spin_unlock(&kvm_count_lock);
5166 }
5167 
5168 static int hardware_enable_all(void)
5169 {
5170 	int r = 0;
5171 
5172 	raw_spin_lock(&kvm_count_lock);
5173 
5174 	kvm_usage_count++;
5175 	if (kvm_usage_count == 1) {
5176 		atomic_set(&hardware_enable_failed, 0);
5177 		on_each_cpu(hardware_enable_nolock, NULL, 1);
5178 
5179 		if (atomic_read(&hardware_enable_failed)) {
5180 			hardware_disable_all_nolock();
5181 			r = -EBUSY;
5182 		}
5183 	}
5184 
5185 	raw_spin_unlock(&kvm_count_lock);
5186 
5187 	return r;
5188 }
5189 
5190 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5191 		      void *v)
5192 {
5193 	/*
5194 	 * Some (well, at least mine) BIOSes hang on reboot if
5195 	 * in vmx root mode.
5196 	 *
5197 	 * And Intel TXT required VMX off for all cpu when system shutdown.
5198 	 */
5199 	pr_info("kvm: exiting hardware virtualization\n");
5200 	kvm_rebooting = true;
5201 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5202 	return NOTIFY_OK;
5203 }
5204 
5205 static struct notifier_block kvm_reboot_notifier = {
5206 	.notifier_call = kvm_reboot,
5207 	.priority = 0,
5208 };
5209 
5210 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5211 {
5212 	int i;
5213 
5214 	for (i = 0; i < bus->dev_count; i++) {
5215 		struct kvm_io_device *pos = bus->range[i].dev;
5216 
5217 		kvm_iodevice_destructor(pos);
5218 	}
5219 	kfree(bus);
5220 }
5221 
5222 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5223 				 const struct kvm_io_range *r2)
5224 {
5225 	gpa_t addr1 = r1->addr;
5226 	gpa_t addr2 = r2->addr;
5227 
5228 	if (addr1 < addr2)
5229 		return -1;
5230 
5231 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5232 	 * accept any overlapping write.  Any order is acceptable for
5233 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5234 	 * we process all of them.
5235 	 */
5236 	if (r2->len) {
5237 		addr1 += r1->len;
5238 		addr2 += r2->len;
5239 	}
5240 
5241 	if (addr1 > addr2)
5242 		return 1;
5243 
5244 	return 0;
5245 }
5246 
5247 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5248 {
5249 	return kvm_io_bus_cmp(p1, p2);
5250 }
5251 
5252 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5253 			     gpa_t addr, int len)
5254 {
5255 	struct kvm_io_range *range, key;
5256 	int off;
5257 
5258 	key = (struct kvm_io_range) {
5259 		.addr = addr,
5260 		.len = len,
5261 	};
5262 
5263 	range = bsearch(&key, bus->range, bus->dev_count,
5264 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5265 	if (range == NULL)
5266 		return -ENOENT;
5267 
5268 	off = range - bus->range;
5269 
5270 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5271 		off--;
5272 
5273 	return off;
5274 }
5275 
5276 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5277 			      struct kvm_io_range *range, const void *val)
5278 {
5279 	int idx;
5280 
5281 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5282 	if (idx < 0)
5283 		return -EOPNOTSUPP;
5284 
5285 	while (idx < bus->dev_count &&
5286 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5287 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5288 					range->len, val))
5289 			return idx;
5290 		idx++;
5291 	}
5292 
5293 	return -EOPNOTSUPP;
5294 }
5295 
5296 /* kvm_io_bus_write - called under kvm->slots_lock */
5297 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5298 		     int len, const void *val)
5299 {
5300 	struct kvm_io_bus *bus;
5301 	struct kvm_io_range range;
5302 	int r;
5303 
5304 	range = (struct kvm_io_range) {
5305 		.addr = addr,
5306 		.len = len,
5307 	};
5308 
5309 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5310 	if (!bus)
5311 		return -ENOMEM;
5312 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5313 	return r < 0 ? r : 0;
5314 }
5315 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5316 
5317 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5318 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5319 			    gpa_t addr, int len, const void *val, long cookie)
5320 {
5321 	struct kvm_io_bus *bus;
5322 	struct kvm_io_range range;
5323 
5324 	range = (struct kvm_io_range) {
5325 		.addr = addr,
5326 		.len = len,
5327 	};
5328 
5329 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5330 	if (!bus)
5331 		return -ENOMEM;
5332 
5333 	/* First try the device referenced by cookie. */
5334 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5335 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5336 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5337 					val))
5338 			return cookie;
5339 
5340 	/*
5341 	 * cookie contained garbage; fall back to search and return the
5342 	 * correct cookie value.
5343 	 */
5344 	return __kvm_io_bus_write(vcpu, bus, &range, val);
5345 }
5346 
5347 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5348 			     struct kvm_io_range *range, void *val)
5349 {
5350 	int idx;
5351 
5352 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5353 	if (idx < 0)
5354 		return -EOPNOTSUPP;
5355 
5356 	while (idx < bus->dev_count &&
5357 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5358 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5359 				       range->len, val))
5360 			return idx;
5361 		idx++;
5362 	}
5363 
5364 	return -EOPNOTSUPP;
5365 }
5366 
5367 /* kvm_io_bus_read - called under kvm->slots_lock */
5368 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5369 		    int len, void *val)
5370 {
5371 	struct kvm_io_bus *bus;
5372 	struct kvm_io_range range;
5373 	int r;
5374 
5375 	range = (struct kvm_io_range) {
5376 		.addr = addr,
5377 		.len = len,
5378 	};
5379 
5380 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5381 	if (!bus)
5382 		return -ENOMEM;
5383 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5384 	return r < 0 ? r : 0;
5385 }
5386 
5387 /* Caller must hold slots_lock. */
5388 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5389 			    int len, struct kvm_io_device *dev)
5390 {
5391 	int i;
5392 	struct kvm_io_bus *new_bus, *bus;
5393 	struct kvm_io_range range;
5394 
5395 	bus = kvm_get_bus(kvm, bus_idx);
5396 	if (!bus)
5397 		return -ENOMEM;
5398 
5399 	/* exclude ioeventfd which is limited by maximum fd */
5400 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5401 		return -ENOSPC;
5402 
5403 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5404 			  GFP_KERNEL_ACCOUNT);
5405 	if (!new_bus)
5406 		return -ENOMEM;
5407 
5408 	range = (struct kvm_io_range) {
5409 		.addr = addr,
5410 		.len = len,
5411 		.dev = dev,
5412 	};
5413 
5414 	for (i = 0; i < bus->dev_count; i++)
5415 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5416 			break;
5417 
5418 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5419 	new_bus->dev_count++;
5420 	new_bus->range[i] = range;
5421 	memcpy(new_bus->range + i + 1, bus->range + i,
5422 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5423 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5424 	synchronize_srcu_expedited(&kvm->srcu);
5425 	kfree(bus);
5426 
5427 	return 0;
5428 }
5429 
5430 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5431 			      struct kvm_io_device *dev)
5432 {
5433 	int i, j;
5434 	struct kvm_io_bus *new_bus, *bus;
5435 
5436 	lockdep_assert_held(&kvm->slots_lock);
5437 
5438 	bus = kvm_get_bus(kvm, bus_idx);
5439 	if (!bus)
5440 		return 0;
5441 
5442 	for (i = 0; i < bus->dev_count; i++) {
5443 		if (bus->range[i].dev == dev) {
5444 			break;
5445 		}
5446 	}
5447 
5448 	if (i == bus->dev_count)
5449 		return 0;
5450 
5451 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5452 			  GFP_KERNEL_ACCOUNT);
5453 	if (new_bus) {
5454 		memcpy(new_bus, bus, struct_size(bus, range, i));
5455 		new_bus->dev_count--;
5456 		memcpy(new_bus->range + i, bus->range + i + 1,
5457 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5458 	}
5459 
5460 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5461 	synchronize_srcu_expedited(&kvm->srcu);
5462 
5463 	/* Destroy the old bus _after_ installing the (null) bus. */
5464 	if (!new_bus) {
5465 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5466 		for (j = 0; j < bus->dev_count; j++) {
5467 			if (j == i)
5468 				continue;
5469 			kvm_iodevice_destructor(bus->range[j].dev);
5470 		}
5471 	}
5472 
5473 	kfree(bus);
5474 	return new_bus ? 0 : -ENOMEM;
5475 }
5476 
5477 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5478 					 gpa_t addr)
5479 {
5480 	struct kvm_io_bus *bus;
5481 	int dev_idx, srcu_idx;
5482 	struct kvm_io_device *iodev = NULL;
5483 
5484 	srcu_idx = srcu_read_lock(&kvm->srcu);
5485 
5486 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5487 	if (!bus)
5488 		goto out_unlock;
5489 
5490 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5491 	if (dev_idx < 0)
5492 		goto out_unlock;
5493 
5494 	iodev = bus->range[dev_idx].dev;
5495 
5496 out_unlock:
5497 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5498 
5499 	return iodev;
5500 }
5501 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5502 
5503 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5504 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5505 			   const char *fmt)
5506 {
5507 	int ret;
5508 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5509 					  inode->i_private;
5510 
5511 	/*
5512 	 * The debugfs files are a reference to the kvm struct which
5513         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5514         * avoids the race between open and the removal of the debugfs directory.
5515 	 */
5516 	if (!kvm_get_kvm_safe(stat_data->kvm))
5517 		return -ENOENT;
5518 
5519 	ret = simple_attr_open(inode, file, get,
5520 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5521 			       ? set : NULL, fmt);
5522 	if (ret)
5523 		kvm_put_kvm(stat_data->kvm);
5524 
5525 	return ret;
5526 }
5527 
5528 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5529 {
5530 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5531 					  inode->i_private;
5532 
5533 	simple_attr_release(inode, file);
5534 	kvm_put_kvm(stat_data->kvm);
5535 
5536 	return 0;
5537 }
5538 
5539 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5540 {
5541 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5542 
5543 	return 0;
5544 }
5545 
5546 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5547 {
5548 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5549 
5550 	return 0;
5551 }
5552 
5553 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5554 {
5555 	unsigned long i;
5556 	struct kvm_vcpu *vcpu;
5557 
5558 	*val = 0;
5559 
5560 	kvm_for_each_vcpu(i, vcpu, kvm)
5561 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5562 
5563 	return 0;
5564 }
5565 
5566 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5567 {
5568 	unsigned long i;
5569 	struct kvm_vcpu *vcpu;
5570 
5571 	kvm_for_each_vcpu(i, vcpu, kvm)
5572 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5573 
5574 	return 0;
5575 }
5576 
5577 static int kvm_stat_data_get(void *data, u64 *val)
5578 {
5579 	int r = -EFAULT;
5580 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5581 
5582 	switch (stat_data->kind) {
5583 	case KVM_STAT_VM:
5584 		r = kvm_get_stat_per_vm(stat_data->kvm,
5585 					stat_data->desc->desc.offset, val);
5586 		break;
5587 	case KVM_STAT_VCPU:
5588 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5589 					  stat_data->desc->desc.offset, val);
5590 		break;
5591 	}
5592 
5593 	return r;
5594 }
5595 
5596 static int kvm_stat_data_clear(void *data, u64 val)
5597 {
5598 	int r = -EFAULT;
5599 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5600 
5601 	if (val)
5602 		return -EINVAL;
5603 
5604 	switch (stat_data->kind) {
5605 	case KVM_STAT_VM:
5606 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5607 					  stat_data->desc->desc.offset);
5608 		break;
5609 	case KVM_STAT_VCPU:
5610 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5611 					    stat_data->desc->desc.offset);
5612 		break;
5613 	}
5614 
5615 	return r;
5616 }
5617 
5618 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5619 {
5620 	__simple_attr_check_format("%llu\n", 0ull);
5621 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5622 				kvm_stat_data_clear, "%llu\n");
5623 }
5624 
5625 static const struct file_operations stat_fops_per_vm = {
5626 	.owner = THIS_MODULE,
5627 	.open = kvm_stat_data_open,
5628 	.release = kvm_debugfs_release,
5629 	.read = simple_attr_read,
5630 	.write = simple_attr_write,
5631 	.llseek = no_llseek,
5632 };
5633 
5634 static int vm_stat_get(void *_offset, u64 *val)
5635 {
5636 	unsigned offset = (long)_offset;
5637 	struct kvm *kvm;
5638 	u64 tmp_val;
5639 
5640 	*val = 0;
5641 	mutex_lock(&kvm_lock);
5642 	list_for_each_entry(kvm, &vm_list, vm_list) {
5643 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5644 		*val += tmp_val;
5645 	}
5646 	mutex_unlock(&kvm_lock);
5647 	return 0;
5648 }
5649 
5650 static int vm_stat_clear(void *_offset, u64 val)
5651 {
5652 	unsigned offset = (long)_offset;
5653 	struct kvm *kvm;
5654 
5655 	if (val)
5656 		return -EINVAL;
5657 
5658 	mutex_lock(&kvm_lock);
5659 	list_for_each_entry(kvm, &vm_list, vm_list) {
5660 		kvm_clear_stat_per_vm(kvm, offset);
5661 	}
5662 	mutex_unlock(&kvm_lock);
5663 
5664 	return 0;
5665 }
5666 
5667 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5668 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5669 
5670 static int vcpu_stat_get(void *_offset, u64 *val)
5671 {
5672 	unsigned offset = (long)_offset;
5673 	struct kvm *kvm;
5674 	u64 tmp_val;
5675 
5676 	*val = 0;
5677 	mutex_lock(&kvm_lock);
5678 	list_for_each_entry(kvm, &vm_list, vm_list) {
5679 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5680 		*val += tmp_val;
5681 	}
5682 	mutex_unlock(&kvm_lock);
5683 	return 0;
5684 }
5685 
5686 static int vcpu_stat_clear(void *_offset, u64 val)
5687 {
5688 	unsigned offset = (long)_offset;
5689 	struct kvm *kvm;
5690 
5691 	if (val)
5692 		return -EINVAL;
5693 
5694 	mutex_lock(&kvm_lock);
5695 	list_for_each_entry(kvm, &vm_list, vm_list) {
5696 		kvm_clear_stat_per_vcpu(kvm, offset);
5697 	}
5698 	mutex_unlock(&kvm_lock);
5699 
5700 	return 0;
5701 }
5702 
5703 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5704 			"%llu\n");
5705 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5706 
5707 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5708 {
5709 	struct kobj_uevent_env *env;
5710 	unsigned long long created, active;
5711 
5712 	if (!kvm_dev.this_device || !kvm)
5713 		return;
5714 
5715 	mutex_lock(&kvm_lock);
5716 	if (type == KVM_EVENT_CREATE_VM) {
5717 		kvm_createvm_count++;
5718 		kvm_active_vms++;
5719 	} else if (type == KVM_EVENT_DESTROY_VM) {
5720 		kvm_active_vms--;
5721 	}
5722 	created = kvm_createvm_count;
5723 	active = kvm_active_vms;
5724 	mutex_unlock(&kvm_lock);
5725 
5726 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5727 	if (!env)
5728 		return;
5729 
5730 	add_uevent_var(env, "CREATED=%llu", created);
5731 	add_uevent_var(env, "COUNT=%llu", active);
5732 
5733 	if (type == KVM_EVENT_CREATE_VM) {
5734 		add_uevent_var(env, "EVENT=create");
5735 		kvm->userspace_pid = task_pid_nr(current);
5736 	} else if (type == KVM_EVENT_DESTROY_VM) {
5737 		add_uevent_var(env, "EVENT=destroy");
5738 	}
5739 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5740 
5741 	if (!IS_ERR(kvm->debugfs_dentry)) {
5742 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5743 
5744 		if (p) {
5745 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5746 			if (!IS_ERR(tmp))
5747 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5748 			kfree(p);
5749 		}
5750 	}
5751 	/* no need for checks, since we are adding at most only 5 keys */
5752 	env->envp[env->envp_idx++] = NULL;
5753 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5754 	kfree(env);
5755 }
5756 
5757 static void kvm_init_debug(void)
5758 {
5759 	const struct file_operations *fops;
5760 	const struct _kvm_stats_desc *pdesc;
5761 	int i;
5762 
5763 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5764 
5765 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5766 		pdesc = &kvm_vm_stats_desc[i];
5767 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5768 			fops = &vm_stat_fops;
5769 		else
5770 			fops = &vm_stat_readonly_fops;
5771 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5772 				kvm_debugfs_dir,
5773 				(void *)(long)pdesc->desc.offset, fops);
5774 	}
5775 
5776 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5777 		pdesc = &kvm_vcpu_stats_desc[i];
5778 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5779 			fops = &vcpu_stat_fops;
5780 		else
5781 			fops = &vcpu_stat_readonly_fops;
5782 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5783 				kvm_debugfs_dir,
5784 				(void *)(long)pdesc->desc.offset, fops);
5785 	}
5786 }
5787 
5788 static int kvm_suspend(void)
5789 {
5790 	if (kvm_usage_count)
5791 		hardware_disable_nolock(NULL);
5792 	return 0;
5793 }
5794 
5795 static void kvm_resume(void)
5796 {
5797 	if (kvm_usage_count) {
5798 		lockdep_assert_not_held(&kvm_count_lock);
5799 		hardware_enable_nolock(NULL);
5800 	}
5801 }
5802 
5803 static struct syscore_ops kvm_syscore_ops = {
5804 	.suspend = kvm_suspend,
5805 	.resume = kvm_resume,
5806 };
5807 
5808 static inline
5809 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5810 {
5811 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5812 }
5813 
5814 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5815 {
5816 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5817 
5818 	WRITE_ONCE(vcpu->preempted, false);
5819 	WRITE_ONCE(vcpu->ready, false);
5820 
5821 	__this_cpu_write(kvm_running_vcpu, vcpu);
5822 	kvm_arch_sched_in(vcpu, cpu);
5823 	kvm_arch_vcpu_load(vcpu, cpu);
5824 }
5825 
5826 static void kvm_sched_out(struct preempt_notifier *pn,
5827 			  struct task_struct *next)
5828 {
5829 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5830 
5831 	if (current->on_rq) {
5832 		WRITE_ONCE(vcpu->preempted, true);
5833 		WRITE_ONCE(vcpu->ready, true);
5834 	}
5835 	kvm_arch_vcpu_put(vcpu);
5836 	__this_cpu_write(kvm_running_vcpu, NULL);
5837 }
5838 
5839 /**
5840  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5841  *
5842  * We can disable preemption locally around accessing the per-CPU variable,
5843  * and use the resolved vcpu pointer after enabling preemption again,
5844  * because even if the current thread is migrated to another CPU, reading
5845  * the per-CPU value later will give us the same value as we update the
5846  * per-CPU variable in the preempt notifier handlers.
5847  */
5848 struct kvm_vcpu *kvm_get_running_vcpu(void)
5849 {
5850 	struct kvm_vcpu *vcpu;
5851 
5852 	preempt_disable();
5853 	vcpu = __this_cpu_read(kvm_running_vcpu);
5854 	preempt_enable();
5855 
5856 	return vcpu;
5857 }
5858 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5859 
5860 /**
5861  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5862  */
5863 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5864 {
5865         return &kvm_running_vcpu;
5866 }
5867 
5868 #ifdef CONFIG_GUEST_PERF_EVENTS
5869 static unsigned int kvm_guest_state(void)
5870 {
5871 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5872 	unsigned int state;
5873 
5874 	if (!kvm_arch_pmi_in_guest(vcpu))
5875 		return 0;
5876 
5877 	state = PERF_GUEST_ACTIVE;
5878 	if (!kvm_arch_vcpu_in_kernel(vcpu))
5879 		state |= PERF_GUEST_USER;
5880 
5881 	return state;
5882 }
5883 
5884 static unsigned long kvm_guest_get_ip(void)
5885 {
5886 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5887 
5888 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5889 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5890 		return 0;
5891 
5892 	return kvm_arch_vcpu_get_ip(vcpu);
5893 }
5894 
5895 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5896 	.state			= kvm_guest_state,
5897 	.get_ip			= kvm_guest_get_ip,
5898 	.handle_intel_pt_intr	= NULL,
5899 };
5900 
5901 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5902 {
5903 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5904 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5905 }
5906 void kvm_unregister_perf_callbacks(void)
5907 {
5908 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5909 }
5910 #endif
5911 
5912 struct kvm_cpu_compat_check {
5913 	void *opaque;
5914 	int *ret;
5915 };
5916 
5917 static void check_processor_compat(void *data)
5918 {
5919 	struct kvm_cpu_compat_check *c = data;
5920 
5921 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5922 }
5923 
5924 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5925 		  struct module *module)
5926 {
5927 	struct kvm_cpu_compat_check c;
5928 	int r;
5929 	int cpu;
5930 
5931 	r = kvm_arch_init(opaque);
5932 	if (r)
5933 		goto out_fail;
5934 
5935 	/*
5936 	 * kvm_arch_init makes sure there's at most one caller
5937 	 * for architectures that support multiple implementations,
5938 	 * like intel and amd on x86.
5939 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5940 	 * conflicts in case kvm is already setup for another implementation.
5941 	 */
5942 	r = kvm_irqfd_init();
5943 	if (r)
5944 		goto out_irqfd;
5945 
5946 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5947 		r = -ENOMEM;
5948 		goto out_free_0;
5949 	}
5950 
5951 	r = kvm_arch_hardware_setup(opaque);
5952 	if (r < 0)
5953 		goto out_free_1;
5954 
5955 	c.ret = &r;
5956 	c.opaque = opaque;
5957 	for_each_online_cpu(cpu) {
5958 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5959 		if (r < 0)
5960 			goto out_free_2;
5961 	}
5962 
5963 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5964 				      kvm_starting_cpu, kvm_dying_cpu);
5965 	if (r)
5966 		goto out_free_2;
5967 	register_reboot_notifier(&kvm_reboot_notifier);
5968 
5969 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5970 	if (!vcpu_align)
5971 		vcpu_align = __alignof__(struct kvm_vcpu);
5972 	kvm_vcpu_cache =
5973 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5974 					   SLAB_ACCOUNT,
5975 					   offsetof(struct kvm_vcpu, arch),
5976 					   offsetofend(struct kvm_vcpu, stats_id)
5977 					   - offsetof(struct kvm_vcpu, arch),
5978 					   NULL);
5979 	if (!kvm_vcpu_cache) {
5980 		r = -ENOMEM;
5981 		goto out_free_3;
5982 	}
5983 
5984 	for_each_possible_cpu(cpu) {
5985 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5986 					    GFP_KERNEL, cpu_to_node(cpu))) {
5987 			r = -ENOMEM;
5988 			goto out_free_4;
5989 		}
5990 	}
5991 
5992 	r = kvm_async_pf_init();
5993 	if (r)
5994 		goto out_free_4;
5995 
5996 	kvm_chardev_ops.owner = module;
5997 
5998 	r = misc_register(&kvm_dev);
5999 	if (r) {
6000 		pr_err("kvm: misc device register failed\n");
6001 		goto out_unreg;
6002 	}
6003 
6004 	register_syscore_ops(&kvm_syscore_ops);
6005 
6006 	kvm_preempt_ops.sched_in = kvm_sched_in;
6007 	kvm_preempt_ops.sched_out = kvm_sched_out;
6008 
6009 	kvm_init_debug();
6010 
6011 	r = kvm_vfio_ops_init();
6012 	WARN_ON(r);
6013 
6014 	return 0;
6015 
6016 out_unreg:
6017 	kvm_async_pf_deinit();
6018 out_free_4:
6019 	for_each_possible_cpu(cpu)
6020 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6021 	kmem_cache_destroy(kvm_vcpu_cache);
6022 out_free_3:
6023 	unregister_reboot_notifier(&kvm_reboot_notifier);
6024 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6025 out_free_2:
6026 	kvm_arch_hardware_unsetup();
6027 out_free_1:
6028 	free_cpumask_var(cpus_hardware_enabled);
6029 out_free_0:
6030 	kvm_irqfd_exit();
6031 out_irqfd:
6032 	kvm_arch_exit();
6033 out_fail:
6034 	return r;
6035 }
6036 EXPORT_SYMBOL_GPL(kvm_init);
6037 
6038 void kvm_exit(void)
6039 {
6040 	int cpu;
6041 
6042 	debugfs_remove_recursive(kvm_debugfs_dir);
6043 	misc_deregister(&kvm_dev);
6044 	for_each_possible_cpu(cpu)
6045 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6046 	kmem_cache_destroy(kvm_vcpu_cache);
6047 	kvm_async_pf_deinit();
6048 	unregister_syscore_ops(&kvm_syscore_ops);
6049 	unregister_reboot_notifier(&kvm_reboot_notifier);
6050 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
6051 	on_each_cpu(hardware_disable_nolock, NULL, 1);
6052 	kvm_arch_hardware_unsetup();
6053 	kvm_arch_exit();
6054 	kvm_irqfd_exit();
6055 	free_cpumask_var(cpus_hardware_enabled);
6056 	kvm_vfio_ops_exit();
6057 }
6058 EXPORT_SYMBOL_GPL(kvm_exit);
6059 
6060 struct kvm_vm_worker_thread_context {
6061 	struct kvm *kvm;
6062 	struct task_struct *parent;
6063 	struct completion init_done;
6064 	kvm_vm_thread_fn_t thread_fn;
6065 	uintptr_t data;
6066 	int err;
6067 };
6068 
6069 static int kvm_vm_worker_thread(void *context)
6070 {
6071 	/*
6072 	 * The init_context is allocated on the stack of the parent thread, so
6073 	 * we have to locally copy anything that is needed beyond initialization
6074 	 */
6075 	struct kvm_vm_worker_thread_context *init_context = context;
6076 	struct task_struct *parent;
6077 	struct kvm *kvm = init_context->kvm;
6078 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6079 	uintptr_t data = init_context->data;
6080 	int err;
6081 
6082 	err = kthread_park(current);
6083 	/* kthread_park(current) is never supposed to return an error */
6084 	WARN_ON(err != 0);
6085 	if (err)
6086 		goto init_complete;
6087 
6088 	err = cgroup_attach_task_all(init_context->parent, current);
6089 	if (err) {
6090 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6091 			__func__, err);
6092 		goto init_complete;
6093 	}
6094 
6095 	set_user_nice(current, task_nice(init_context->parent));
6096 
6097 init_complete:
6098 	init_context->err = err;
6099 	complete(&init_context->init_done);
6100 	init_context = NULL;
6101 
6102 	if (err)
6103 		goto out;
6104 
6105 	/* Wait to be woken up by the spawner before proceeding. */
6106 	kthread_parkme();
6107 
6108 	if (!kthread_should_stop())
6109 		err = thread_fn(kvm, data);
6110 
6111 out:
6112 	/*
6113 	 * Move kthread back to its original cgroup to prevent it lingering in
6114 	 * the cgroup of the VM process, after the latter finishes its
6115 	 * execution.
6116 	 *
6117 	 * kthread_stop() waits on the 'exited' completion condition which is
6118 	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6119 	 * kthread is removed from the cgroup in the cgroup_exit() which is
6120 	 * called after the exit_mm(). This causes the kthread_stop() to return
6121 	 * before the kthread actually quits the cgroup.
6122 	 */
6123 	rcu_read_lock();
6124 	parent = rcu_dereference(current->real_parent);
6125 	get_task_struct(parent);
6126 	rcu_read_unlock();
6127 	cgroup_attach_task_all(parent, current);
6128 	put_task_struct(parent);
6129 
6130 	return err;
6131 }
6132 
6133 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6134 				uintptr_t data, const char *name,
6135 				struct task_struct **thread_ptr)
6136 {
6137 	struct kvm_vm_worker_thread_context init_context = {};
6138 	struct task_struct *thread;
6139 
6140 	*thread_ptr = NULL;
6141 	init_context.kvm = kvm;
6142 	init_context.parent = current;
6143 	init_context.thread_fn = thread_fn;
6144 	init_context.data = data;
6145 	init_completion(&init_context.init_done);
6146 
6147 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6148 			     "%s-%d", name, task_pid_nr(current));
6149 	if (IS_ERR(thread))
6150 		return PTR_ERR(thread);
6151 
6152 	/* kthread_run is never supposed to return NULL */
6153 	WARN_ON(thread == NULL);
6154 
6155 	wait_for_completion(&init_context.init_done);
6156 
6157 	if (!init_context.err)
6158 		*thread_ptr = thread;
6159 
6160 	return init_context.err;
6161 }
6162