xref: /openbmc/linux/virt/kvm/kvm_main.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 				unsigned long arg) { return -EINVAL; }
133 
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136 	return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
139 			.open		= kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143 
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145 
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147 
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 						   unsigned long start, unsigned long end)
159 {
160 }
161 
162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
163 {
164 	/*
165 	 * The metadata used by is_zone_device_page() to determine whether or
166 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
167 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
168 	 * page_count() is zero to help detect bad usage of this helper.
169 	 */
170 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
171 		return false;
172 
173 	return is_zone_device_page(pfn_to_page(pfn));
174 }
175 
176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
177 {
178 	/*
179 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
180 	 * perspective they are "normal" pages, albeit with slightly different
181 	 * usage rules.
182 	 */
183 	if (pfn_valid(pfn))
184 		return PageReserved(pfn_to_page(pfn)) &&
185 		       !is_zero_pfn(pfn) &&
186 		       !kvm_is_zone_device_pfn(pfn);
187 
188 	return true;
189 }
190 
191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
192 {
193 	struct page *page = pfn_to_page(pfn);
194 
195 	if (!PageTransCompoundMap(page))
196 		return false;
197 
198 	return is_transparent_hugepage(compound_head(page));
199 }
200 
201 /*
202  * Switches to specified vcpu, until a matching vcpu_put()
203  */
204 void vcpu_load(struct kvm_vcpu *vcpu)
205 {
206 	int cpu = get_cpu();
207 
208 	__this_cpu_write(kvm_running_vcpu, vcpu);
209 	preempt_notifier_register(&vcpu->preempt_notifier);
210 	kvm_arch_vcpu_load(vcpu, cpu);
211 	put_cpu();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_load);
214 
215 void vcpu_put(struct kvm_vcpu *vcpu)
216 {
217 	preempt_disable();
218 	kvm_arch_vcpu_put(vcpu);
219 	preempt_notifier_unregister(&vcpu->preempt_notifier);
220 	__this_cpu_write(kvm_running_vcpu, NULL);
221 	preempt_enable();
222 }
223 EXPORT_SYMBOL_GPL(vcpu_put);
224 
225 /* TODO: merge with kvm_arch_vcpu_should_kick */
226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
227 {
228 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
229 
230 	/*
231 	 * We need to wait for the VCPU to reenable interrupts and get out of
232 	 * READING_SHADOW_PAGE_TABLES mode.
233 	 */
234 	if (req & KVM_REQUEST_WAIT)
235 		return mode != OUTSIDE_GUEST_MODE;
236 
237 	/*
238 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
239 	 */
240 	return mode == IN_GUEST_MODE;
241 }
242 
243 static void ack_flush(void *_completed)
244 {
245 }
246 
247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
248 {
249 	if (unlikely(!cpus))
250 		cpus = cpu_online_mask;
251 
252 	if (cpumask_empty(cpus))
253 		return false;
254 
255 	smp_call_function_many(cpus, ack_flush, NULL, wait);
256 	return true;
257 }
258 
259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
260 				 struct kvm_vcpu *except,
261 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
262 {
263 	int i, cpu, me;
264 	struct kvm_vcpu *vcpu;
265 	bool called;
266 
267 	me = get_cpu();
268 
269 	kvm_for_each_vcpu(i, vcpu, kvm) {
270 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
271 		    vcpu == except)
272 			continue;
273 
274 		kvm_make_request(req, vcpu);
275 		cpu = vcpu->cpu;
276 
277 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 			continue;
279 
280 		if (tmp != NULL && cpu != -1 && cpu != me &&
281 		    kvm_request_needs_ipi(vcpu, req))
282 			__cpumask_set_cpu(cpu, tmp);
283 	}
284 
285 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 	put_cpu();
287 
288 	return called;
289 }
290 
291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
292 				      struct kvm_vcpu *except)
293 {
294 	cpumask_var_t cpus;
295 	bool called;
296 
297 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
298 
299 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
300 
301 	free_cpumask_var(cpus);
302 	return called;
303 }
304 
305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
306 {
307 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
308 }
309 
310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
311 void kvm_flush_remote_tlbs(struct kvm *kvm)
312 {
313 	/*
314 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
315 	 * kvm_make_all_cpus_request.
316 	 */
317 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
318 
319 	/*
320 	 * We want to publish modifications to the page tables before reading
321 	 * mode. Pairs with a memory barrier in arch-specific code.
322 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
323 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
324 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
325 	 *
326 	 * There is already an smp_mb__after_atomic() before
327 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
328 	 * barrier here.
329 	 */
330 	if (!kvm_arch_flush_remote_tlb(kvm)
331 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
332 		++kvm->stat.remote_tlb_flush;
333 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
334 }
335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
336 #endif
337 
338 void kvm_reload_remote_mmus(struct kvm *kvm)
339 {
340 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
341 }
342 
343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
345 					       gfp_t gfp_flags)
346 {
347 	gfp_flags |= mc->gfp_zero;
348 
349 	if (mc->kmem_cache)
350 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
351 	else
352 		return (void *)__get_free_page(gfp_flags);
353 }
354 
355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
356 {
357 	void *obj;
358 
359 	if (mc->nobjs >= min)
360 		return 0;
361 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
362 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
363 		if (!obj)
364 			return mc->nobjs >= min ? 0 : -ENOMEM;
365 		mc->objects[mc->nobjs++] = obj;
366 	}
367 	return 0;
368 }
369 
370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
371 {
372 	return mc->nobjs;
373 }
374 
375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
376 {
377 	while (mc->nobjs) {
378 		if (mc->kmem_cache)
379 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
380 		else
381 			free_page((unsigned long)mc->objects[--mc->nobjs]);
382 	}
383 }
384 
385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
386 {
387 	void *p;
388 
389 	if (WARN_ON(!mc->nobjs))
390 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
391 	else
392 		p = mc->objects[--mc->nobjs];
393 	BUG_ON(!p);
394 	return p;
395 }
396 #endif
397 
398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
399 {
400 	mutex_init(&vcpu->mutex);
401 	vcpu->cpu = -1;
402 	vcpu->kvm = kvm;
403 	vcpu->vcpu_id = id;
404 	vcpu->pid = NULL;
405 	rcuwait_init(&vcpu->wait);
406 	kvm_async_pf_vcpu_init(vcpu);
407 
408 	vcpu->pre_pcpu = -1;
409 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
410 
411 	kvm_vcpu_set_in_spin_loop(vcpu, false);
412 	kvm_vcpu_set_dy_eligible(vcpu, false);
413 	vcpu->preempted = false;
414 	vcpu->ready = false;
415 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
416 }
417 
418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
419 {
420 	kvm_arch_vcpu_destroy(vcpu);
421 
422 	/*
423 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
424 	 * the vcpu->pid pointer, and at destruction time all file descriptors
425 	 * are already gone.
426 	 */
427 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
428 
429 	free_page((unsigned long)vcpu->run);
430 	kmem_cache_free(kvm_vcpu_cache, vcpu);
431 }
432 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
433 
434 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
435 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
436 {
437 	return container_of(mn, struct kvm, mmu_notifier);
438 }
439 
440 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
441 					      struct mm_struct *mm,
442 					      unsigned long start, unsigned long end)
443 {
444 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
445 	int idx;
446 
447 	idx = srcu_read_lock(&kvm->srcu);
448 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
449 	srcu_read_unlock(&kvm->srcu, idx);
450 }
451 
452 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
453 					struct mm_struct *mm,
454 					unsigned long address,
455 					pte_t pte)
456 {
457 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
458 	int idx;
459 
460 	idx = srcu_read_lock(&kvm->srcu);
461 	spin_lock(&kvm->mmu_lock);
462 	kvm->mmu_notifier_seq++;
463 
464 	if (kvm_set_spte_hva(kvm, address, pte))
465 		kvm_flush_remote_tlbs(kvm);
466 
467 	spin_unlock(&kvm->mmu_lock);
468 	srcu_read_unlock(&kvm->srcu, idx);
469 }
470 
471 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
472 					const struct mmu_notifier_range *range)
473 {
474 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
475 	int need_tlb_flush = 0, idx;
476 
477 	idx = srcu_read_lock(&kvm->srcu);
478 	spin_lock(&kvm->mmu_lock);
479 	/*
480 	 * The count increase must become visible at unlock time as no
481 	 * spte can be established without taking the mmu_lock and
482 	 * count is also read inside the mmu_lock critical section.
483 	 */
484 	kvm->mmu_notifier_count++;
485 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
486 					     range->flags);
487 	need_tlb_flush |= kvm->tlbs_dirty;
488 	/* we've to flush the tlb before the pages can be freed */
489 	if (need_tlb_flush)
490 		kvm_flush_remote_tlbs(kvm);
491 
492 	spin_unlock(&kvm->mmu_lock);
493 	srcu_read_unlock(&kvm->srcu, idx);
494 
495 	return 0;
496 }
497 
498 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
499 					const struct mmu_notifier_range *range)
500 {
501 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
502 
503 	spin_lock(&kvm->mmu_lock);
504 	/*
505 	 * This sequence increase will notify the kvm page fault that
506 	 * the page that is going to be mapped in the spte could have
507 	 * been freed.
508 	 */
509 	kvm->mmu_notifier_seq++;
510 	smp_wmb();
511 	/*
512 	 * The above sequence increase must be visible before the
513 	 * below count decrease, which is ensured by the smp_wmb above
514 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
515 	 */
516 	kvm->mmu_notifier_count--;
517 	spin_unlock(&kvm->mmu_lock);
518 
519 	BUG_ON(kvm->mmu_notifier_count < 0);
520 }
521 
522 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
523 					      struct mm_struct *mm,
524 					      unsigned long start,
525 					      unsigned long end)
526 {
527 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
528 	int young, idx;
529 
530 	idx = srcu_read_lock(&kvm->srcu);
531 	spin_lock(&kvm->mmu_lock);
532 
533 	young = kvm_age_hva(kvm, start, end);
534 	if (young)
535 		kvm_flush_remote_tlbs(kvm);
536 
537 	spin_unlock(&kvm->mmu_lock);
538 	srcu_read_unlock(&kvm->srcu, idx);
539 
540 	return young;
541 }
542 
543 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
544 					struct mm_struct *mm,
545 					unsigned long start,
546 					unsigned long end)
547 {
548 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
549 	int young, idx;
550 
551 	idx = srcu_read_lock(&kvm->srcu);
552 	spin_lock(&kvm->mmu_lock);
553 	/*
554 	 * Even though we do not flush TLB, this will still adversely
555 	 * affect performance on pre-Haswell Intel EPT, where there is
556 	 * no EPT Access Bit to clear so that we have to tear down EPT
557 	 * tables instead. If we find this unacceptable, we can always
558 	 * add a parameter to kvm_age_hva so that it effectively doesn't
559 	 * do anything on clear_young.
560 	 *
561 	 * Also note that currently we never issue secondary TLB flushes
562 	 * from clear_young, leaving this job up to the regular system
563 	 * cadence. If we find this inaccurate, we might come up with a
564 	 * more sophisticated heuristic later.
565 	 */
566 	young = kvm_age_hva(kvm, start, end);
567 	spin_unlock(&kvm->mmu_lock);
568 	srcu_read_unlock(&kvm->srcu, idx);
569 
570 	return young;
571 }
572 
573 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
574 				       struct mm_struct *mm,
575 				       unsigned long address)
576 {
577 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
578 	int young, idx;
579 
580 	idx = srcu_read_lock(&kvm->srcu);
581 	spin_lock(&kvm->mmu_lock);
582 	young = kvm_test_age_hva(kvm, address);
583 	spin_unlock(&kvm->mmu_lock);
584 	srcu_read_unlock(&kvm->srcu, idx);
585 
586 	return young;
587 }
588 
589 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
590 				     struct mm_struct *mm)
591 {
592 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
593 	int idx;
594 
595 	idx = srcu_read_lock(&kvm->srcu);
596 	kvm_arch_flush_shadow_all(kvm);
597 	srcu_read_unlock(&kvm->srcu, idx);
598 }
599 
600 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
601 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
602 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
603 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
604 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
605 	.clear_young		= kvm_mmu_notifier_clear_young,
606 	.test_young		= kvm_mmu_notifier_test_young,
607 	.change_pte		= kvm_mmu_notifier_change_pte,
608 	.release		= kvm_mmu_notifier_release,
609 };
610 
611 static int kvm_init_mmu_notifier(struct kvm *kvm)
612 {
613 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
614 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
615 }
616 
617 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
618 
619 static int kvm_init_mmu_notifier(struct kvm *kvm)
620 {
621 	return 0;
622 }
623 
624 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
625 
626 static struct kvm_memslots *kvm_alloc_memslots(void)
627 {
628 	int i;
629 	struct kvm_memslots *slots;
630 
631 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
632 	if (!slots)
633 		return NULL;
634 
635 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
636 		slots->id_to_index[i] = -1;
637 
638 	return slots;
639 }
640 
641 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
642 {
643 	if (!memslot->dirty_bitmap)
644 		return;
645 
646 	kvfree(memslot->dirty_bitmap);
647 	memslot->dirty_bitmap = NULL;
648 }
649 
650 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
651 {
652 	kvm_destroy_dirty_bitmap(slot);
653 
654 	kvm_arch_free_memslot(kvm, slot);
655 
656 	slot->flags = 0;
657 	slot->npages = 0;
658 }
659 
660 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
661 {
662 	struct kvm_memory_slot *memslot;
663 
664 	if (!slots)
665 		return;
666 
667 	kvm_for_each_memslot(memslot, slots)
668 		kvm_free_memslot(kvm, memslot);
669 
670 	kvfree(slots);
671 }
672 
673 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
674 {
675 	int i;
676 
677 	if (!kvm->debugfs_dentry)
678 		return;
679 
680 	debugfs_remove_recursive(kvm->debugfs_dentry);
681 
682 	if (kvm->debugfs_stat_data) {
683 		for (i = 0; i < kvm_debugfs_num_entries; i++)
684 			kfree(kvm->debugfs_stat_data[i]);
685 		kfree(kvm->debugfs_stat_data);
686 	}
687 }
688 
689 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
690 {
691 	char dir_name[ITOA_MAX_LEN * 2];
692 	struct kvm_stat_data *stat_data;
693 	struct kvm_stats_debugfs_item *p;
694 
695 	if (!debugfs_initialized())
696 		return 0;
697 
698 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
699 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
700 
701 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
702 					 sizeof(*kvm->debugfs_stat_data),
703 					 GFP_KERNEL_ACCOUNT);
704 	if (!kvm->debugfs_stat_data)
705 		return -ENOMEM;
706 
707 	for (p = debugfs_entries; p->name; p++) {
708 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
709 		if (!stat_data)
710 			return -ENOMEM;
711 
712 		stat_data->kvm = kvm;
713 		stat_data->dbgfs_item = p;
714 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
715 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
716 				    kvm->debugfs_dentry, stat_data,
717 				    &stat_fops_per_vm);
718 	}
719 	return 0;
720 }
721 
722 /*
723  * Called after the VM is otherwise initialized, but just before adding it to
724  * the vm_list.
725  */
726 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
727 {
728 	return 0;
729 }
730 
731 /*
732  * Called just after removing the VM from the vm_list, but before doing any
733  * other destruction.
734  */
735 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
736 {
737 }
738 
739 static struct kvm *kvm_create_vm(unsigned long type)
740 {
741 	struct kvm *kvm = kvm_arch_alloc_vm();
742 	int r = -ENOMEM;
743 	int i;
744 
745 	if (!kvm)
746 		return ERR_PTR(-ENOMEM);
747 
748 	spin_lock_init(&kvm->mmu_lock);
749 	mmgrab(current->mm);
750 	kvm->mm = current->mm;
751 	kvm_eventfd_init(kvm);
752 	mutex_init(&kvm->lock);
753 	mutex_init(&kvm->irq_lock);
754 	mutex_init(&kvm->slots_lock);
755 	INIT_LIST_HEAD(&kvm->devices);
756 
757 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
758 
759 	if (init_srcu_struct(&kvm->srcu))
760 		goto out_err_no_srcu;
761 	if (init_srcu_struct(&kvm->irq_srcu))
762 		goto out_err_no_irq_srcu;
763 
764 	refcount_set(&kvm->users_count, 1);
765 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
766 		struct kvm_memslots *slots = kvm_alloc_memslots();
767 
768 		if (!slots)
769 			goto out_err_no_arch_destroy_vm;
770 		/* Generations must be different for each address space. */
771 		slots->generation = i;
772 		rcu_assign_pointer(kvm->memslots[i], slots);
773 	}
774 
775 	for (i = 0; i < KVM_NR_BUSES; i++) {
776 		rcu_assign_pointer(kvm->buses[i],
777 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
778 		if (!kvm->buses[i])
779 			goto out_err_no_arch_destroy_vm;
780 	}
781 
782 	kvm->max_halt_poll_ns = halt_poll_ns;
783 
784 	r = kvm_arch_init_vm(kvm, type);
785 	if (r)
786 		goto out_err_no_arch_destroy_vm;
787 
788 	r = hardware_enable_all();
789 	if (r)
790 		goto out_err_no_disable;
791 
792 #ifdef CONFIG_HAVE_KVM_IRQFD
793 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
794 #endif
795 
796 	r = kvm_init_mmu_notifier(kvm);
797 	if (r)
798 		goto out_err_no_mmu_notifier;
799 
800 	r = kvm_arch_post_init_vm(kvm);
801 	if (r)
802 		goto out_err;
803 
804 	mutex_lock(&kvm_lock);
805 	list_add(&kvm->vm_list, &vm_list);
806 	mutex_unlock(&kvm_lock);
807 
808 	preempt_notifier_inc();
809 
810 	return kvm;
811 
812 out_err:
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814 	if (kvm->mmu_notifier.ops)
815 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
816 #endif
817 out_err_no_mmu_notifier:
818 	hardware_disable_all();
819 out_err_no_disable:
820 	kvm_arch_destroy_vm(kvm);
821 out_err_no_arch_destroy_vm:
822 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
823 	for (i = 0; i < KVM_NR_BUSES; i++)
824 		kfree(kvm_get_bus(kvm, i));
825 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
826 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
827 	cleanup_srcu_struct(&kvm->irq_srcu);
828 out_err_no_irq_srcu:
829 	cleanup_srcu_struct(&kvm->srcu);
830 out_err_no_srcu:
831 	kvm_arch_free_vm(kvm);
832 	mmdrop(current->mm);
833 	return ERR_PTR(r);
834 }
835 
836 static void kvm_destroy_devices(struct kvm *kvm)
837 {
838 	struct kvm_device *dev, *tmp;
839 
840 	/*
841 	 * We do not need to take the kvm->lock here, because nobody else
842 	 * has a reference to the struct kvm at this point and therefore
843 	 * cannot access the devices list anyhow.
844 	 */
845 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
846 		list_del(&dev->vm_node);
847 		dev->ops->destroy(dev);
848 	}
849 }
850 
851 static void kvm_destroy_vm(struct kvm *kvm)
852 {
853 	int i;
854 	struct mm_struct *mm = kvm->mm;
855 
856 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
857 	kvm_destroy_vm_debugfs(kvm);
858 	kvm_arch_sync_events(kvm);
859 	mutex_lock(&kvm_lock);
860 	list_del(&kvm->vm_list);
861 	mutex_unlock(&kvm_lock);
862 	kvm_arch_pre_destroy_vm(kvm);
863 
864 	kvm_free_irq_routing(kvm);
865 	for (i = 0; i < KVM_NR_BUSES; i++) {
866 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
867 
868 		if (bus)
869 			kvm_io_bus_destroy(bus);
870 		kvm->buses[i] = NULL;
871 	}
872 	kvm_coalesced_mmio_free(kvm);
873 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
874 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
875 #else
876 	kvm_arch_flush_shadow_all(kvm);
877 #endif
878 	kvm_arch_destroy_vm(kvm);
879 	kvm_destroy_devices(kvm);
880 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
881 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
882 	cleanup_srcu_struct(&kvm->irq_srcu);
883 	cleanup_srcu_struct(&kvm->srcu);
884 	kvm_arch_free_vm(kvm);
885 	preempt_notifier_dec();
886 	hardware_disable_all();
887 	mmdrop(mm);
888 }
889 
890 void kvm_get_kvm(struct kvm *kvm)
891 {
892 	refcount_inc(&kvm->users_count);
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_kvm);
895 
896 void kvm_put_kvm(struct kvm *kvm)
897 {
898 	if (refcount_dec_and_test(&kvm->users_count))
899 		kvm_destroy_vm(kvm);
900 }
901 EXPORT_SYMBOL_GPL(kvm_put_kvm);
902 
903 /*
904  * Used to put a reference that was taken on behalf of an object associated
905  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
906  * of the new file descriptor fails and the reference cannot be transferred to
907  * its final owner.  In such cases, the caller is still actively using @kvm and
908  * will fail miserably if the refcount unexpectedly hits zero.
909  */
910 void kvm_put_kvm_no_destroy(struct kvm *kvm)
911 {
912 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
913 }
914 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
915 
916 static int kvm_vm_release(struct inode *inode, struct file *filp)
917 {
918 	struct kvm *kvm = filp->private_data;
919 
920 	kvm_irqfd_release(kvm);
921 
922 	kvm_put_kvm(kvm);
923 	return 0;
924 }
925 
926 /*
927  * Allocation size is twice as large as the actual dirty bitmap size.
928  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
929  */
930 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
931 {
932 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
933 
934 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
935 	if (!memslot->dirty_bitmap)
936 		return -ENOMEM;
937 
938 	return 0;
939 }
940 
941 /*
942  * Delete a memslot by decrementing the number of used slots and shifting all
943  * other entries in the array forward one spot.
944  */
945 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
946 				      struct kvm_memory_slot *memslot)
947 {
948 	struct kvm_memory_slot *mslots = slots->memslots;
949 	int i;
950 
951 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
952 		return;
953 
954 	slots->used_slots--;
955 
956 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
957 		atomic_set(&slots->lru_slot, 0);
958 
959 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
960 		mslots[i] = mslots[i + 1];
961 		slots->id_to_index[mslots[i].id] = i;
962 	}
963 	mslots[i] = *memslot;
964 	slots->id_to_index[memslot->id] = -1;
965 }
966 
967 /*
968  * "Insert" a new memslot by incrementing the number of used slots.  Returns
969  * the new slot's initial index into the memslots array.
970  */
971 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
972 {
973 	return slots->used_slots++;
974 }
975 
976 /*
977  * Move a changed memslot backwards in the array by shifting existing slots
978  * with a higher GFN toward the front of the array.  Note, the changed memslot
979  * itself is not preserved in the array, i.e. not swapped at this time, only
980  * its new index into the array is tracked.  Returns the changed memslot's
981  * current index into the memslots array.
982  */
983 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
984 					    struct kvm_memory_slot *memslot)
985 {
986 	struct kvm_memory_slot *mslots = slots->memslots;
987 	int i;
988 
989 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
990 	    WARN_ON_ONCE(!slots->used_slots))
991 		return -1;
992 
993 	/*
994 	 * Move the target memslot backward in the array by shifting existing
995 	 * memslots with a higher GFN (than the target memslot) towards the
996 	 * front of the array.
997 	 */
998 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
999 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000 			break;
1001 
1002 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003 
1004 		/* Shift the next memslot forward one and update its index. */
1005 		mslots[i] = mslots[i + 1];
1006 		slots->id_to_index[mslots[i].id] = i;
1007 	}
1008 	return i;
1009 }
1010 
1011 /*
1012  * Move a changed memslot forwards in the array by shifting existing slots with
1013  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014  * is not preserved in the array, i.e. not swapped at this time, only its new
1015  * index into the array is tracked.  Returns the changed memslot's final index
1016  * into the memslots array.
1017  */
1018 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019 					   struct kvm_memory_slot *memslot,
1020 					   int start)
1021 {
1022 	struct kvm_memory_slot *mslots = slots->memslots;
1023 	int i;
1024 
1025 	for (i = start; i > 0; i--) {
1026 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027 			break;
1028 
1029 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030 
1031 		/* Shift the next memslot back one and update its index. */
1032 		mslots[i] = mslots[i - 1];
1033 		slots->id_to_index[mslots[i].id] = i;
1034 	}
1035 	return i;
1036 }
1037 
1038 /*
1039  * Re-sort memslots based on their GFN to account for an added, deleted, or
1040  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041  * memslot lookup.
1042  *
1043  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044  * at memslots[0] has the highest GFN.
1045  *
1046  * The sorting algorithm takes advantage of having initially sorted memslots
1047  * and knowing the position of the changed memslot.  Sorting is also optimized
1048  * by not swapping the updated memslot and instead only shifting other memslots
1049  * and tracking the new index for the update memslot.  Only once its final
1050  * index is known is the updated memslot copied into its position in the array.
1051  *
1052  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053  *    the end of the array.
1054  *
1055  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056  *    end of the array and then it forward to its correct location.
1057  *
1058  *  - When moving a memslot, the algorithm first moves the updated memslot
1059  *    backward to handle the scenario where the memslot's GFN was changed to a
1060  *    lower value.  update_memslots() then falls through and runs the same flow
1061  *    as creating a memslot to move the memslot forward to handle the scenario
1062  *    where its GFN was changed to a higher value.
1063  *
1064  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065  * historical reasons.  Originally, invalid memslots where denoted by having
1066  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067  * to the end of the array.  The current algorithm uses dedicated logic to
1068  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069  *
1070  * The other historical motiviation for highest->lowest was to improve the
1071  * performance of memslot lookup.  KVM originally used a linear search starting
1072  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074  * single memslot above the 4gb boundary.  As the largest memslot is also the
1075  * most likely to be referenced, sorting it to the front of the array was
1076  * advantageous.  The current binary search starts from the middle of the array
1077  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078  */
1079 static void update_memslots(struct kvm_memslots *slots,
1080 			    struct kvm_memory_slot *memslot,
1081 			    enum kvm_mr_change change)
1082 {
1083 	int i;
1084 
1085 	if (change == KVM_MR_DELETE) {
1086 		kvm_memslot_delete(slots, memslot);
1087 	} else {
1088 		if (change == KVM_MR_CREATE)
1089 			i = kvm_memslot_insert_back(slots);
1090 		else
1091 			i = kvm_memslot_move_backward(slots, memslot);
1092 		i = kvm_memslot_move_forward(slots, memslot, i);
1093 
1094 		/*
1095 		 * Copy the memslot to its new position in memslots and update
1096 		 * its index accordingly.
1097 		 */
1098 		slots->memslots[i] = *memslot;
1099 		slots->id_to_index[memslot->id] = i;
1100 	}
1101 }
1102 
1103 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104 {
1105 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106 
1107 #ifdef __KVM_HAVE_READONLY_MEM
1108 	valid_flags |= KVM_MEM_READONLY;
1109 #endif
1110 
1111 	if (mem->flags & ~valid_flags)
1112 		return -EINVAL;
1113 
1114 	return 0;
1115 }
1116 
1117 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118 		int as_id, struct kvm_memslots *slots)
1119 {
1120 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121 	u64 gen = old_memslots->generation;
1122 
1123 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1125 
1126 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1127 	synchronize_srcu_expedited(&kvm->srcu);
1128 
1129 	/*
1130 	 * Increment the new memslot generation a second time, dropping the
1131 	 * update in-progress flag and incrementing the generation based on
1132 	 * the number of address spaces.  This provides a unique and easily
1133 	 * identifiable generation number while the memslots are in flux.
1134 	 */
1135 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136 
1137 	/*
1138 	 * Generations must be unique even across address spaces.  We do not need
1139 	 * a global counter for that, instead the generation space is evenly split
1140 	 * across address spaces.  For example, with two address spaces, address
1141 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142 	 * use generations 1, 3, 5, ...
1143 	 */
1144 	gen += KVM_ADDRESS_SPACE_NUM;
1145 
1146 	kvm_arch_memslots_updated(kvm, gen);
1147 
1148 	slots->generation = gen;
1149 
1150 	return old_memslots;
1151 }
1152 
1153 /*
1154  * Note, at a minimum, the current number of used slots must be allocated, even
1155  * when deleting a memslot, as we need a complete duplicate of the memslots for
1156  * use when invalidating a memslot prior to deleting/moving the memslot.
1157  */
1158 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159 					     enum kvm_mr_change change)
1160 {
1161 	struct kvm_memslots *slots;
1162 	size_t old_size, new_size;
1163 
1164 	old_size = sizeof(struct kvm_memslots) +
1165 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1166 
1167 	if (change == KVM_MR_CREATE)
1168 		new_size = old_size + sizeof(struct kvm_memory_slot);
1169 	else
1170 		new_size = old_size;
1171 
1172 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173 	if (likely(slots))
1174 		memcpy(slots, old, old_size);
1175 
1176 	return slots;
1177 }
1178 
1179 static int kvm_set_memslot(struct kvm *kvm,
1180 			   const struct kvm_userspace_memory_region *mem,
1181 			   struct kvm_memory_slot *old,
1182 			   struct kvm_memory_slot *new, int as_id,
1183 			   enum kvm_mr_change change)
1184 {
1185 	struct kvm_memory_slot *slot;
1186 	struct kvm_memslots *slots;
1187 	int r;
1188 
1189 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190 	if (!slots)
1191 		return -ENOMEM;
1192 
1193 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194 		/*
1195 		 * Note, the INVALID flag needs to be in the appropriate entry
1196 		 * in the freshly allocated memslots, not in @old or @new.
1197 		 */
1198 		slot = id_to_memslot(slots, old->id);
1199 		slot->flags |= KVM_MEMSLOT_INVALID;
1200 
1201 		/*
1202 		 * We can re-use the old memslots, the only difference from the
1203 		 * newly installed memslots is the invalid flag, which will get
1204 		 * dropped by update_memslots anyway.  We'll also revert to the
1205 		 * old memslots if preparing the new memory region fails.
1206 		 */
1207 		slots = install_new_memslots(kvm, as_id, slots);
1208 
1209 		/* From this point no new shadow pages pointing to a deleted,
1210 		 * or moved, memslot will be created.
1211 		 *
1212 		 * validation of sp->gfn happens in:
1213 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214 		 *	- kvm_is_visible_gfn (mmu_check_root)
1215 		 */
1216 		kvm_arch_flush_shadow_memslot(kvm, slot);
1217 	}
1218 
1219 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220 	if (r)
1221 		goto out_slots;
1222 
1223 	update_memslots(slots, new, change);
1224 	slots = install_new_memslots(kvm, as_id, slots);
1225 
1226 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1227 
1228 	kvfree(slots);
1229 	return 0;
1230 
1231 out_slots:
1232 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233 		slots = install_new_memslots(kvm, as_id, slots);
1234 	kvfree(slots);
1235 	return r;
1236 }
1237 
1238 static int kvm_delete_memslot(struct kvm *kvm,
1239 			      const struct kvm_userspace_memory_region *mem,
1240 			      struct kvm_memory_slot *old, int as_id)
1241 {
1242 	struct kvm_memory_slot new;
1243 	int r;
1244 
1245 	if (!old->npages)
1246 		return -EINVAL;
1247 
1248 	memset(&new, 0, sizeof(new));
1249 	new.id = old->id;
1250 
1251 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1252 	if (r)
1253 		return r;
1254 
1255 	kvm_free_memslot(kvm, old);
1256 	return 0;
1257 }
1258 
1259 /*
1260  * Allocate some memory and give it an address in the guest physical address
1261  * space.
1262  *
1263  * Discontiguous memory is allowed, mostly for framebuffers.
1264  *
1265  * Must be called holding kvm->slots_lock for write.
1266  */
1267 int __kvm_set_memory_region(struct kvm *kvm,
1268 			    const struct kvm_userspace_memory_region *mem)
1269 {
1270 	struct kvm_memory_slot old, new;
1271 	struct kvm_memory_slot *tmp;
1272 	enum kvm_mr_change change;
1273 	int as_id, id;
1274 	int r;
1275 
1276 	r = check_memory_region_flags(mem);
1277 	if (r)
1278 		return r;
1279 
1280 	as_id = mem->slot >> 16;
1281 	id = (u16)mem->slot;
1282 
1283 	/* General sanity checks */
1284 	if (mem->memory_size & (PAGE_SIZE - 1))
1285 		return -EINVAL;
1286 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287 		return -EINVAL;
1288 	/* We can read the guest memory with __xxx_user() later on. */
1289 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1290 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1291 			mem->memory_size))
1292 		return -EINVAL;
1293 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1294 		return -EINVAL;
1295 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1296 		return -EINVAL;
1297 
1298 	/*
1299 	 * Make a full copy of the old memslot, the pointer will become stale
1300 	 * when the memslots are re-sorted by update_memslots(), and the old
1301 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1302 	 * to free its resources and for arch specific behavior.
1303 	 */
1304 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1305 	if (tmp) {
1306 		old = *tmp;
1307 		tmp = NULL;
1308 	} else {
1309 		memset(&old, 0, sizeof(old));
1310 		old.id = id;
1311 	}
1312 
1313 	if (!mem->memory_size)
1314 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1315 
1316 	new.id = id;
1317 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1318 	new.npages = mem->memory_size >> PAGE_SHIFT;
1319 	new.flags = mem->flags;
1320 	new.userspace_addr = mem->userspace_addr;
1321 
1322 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1323 		return -EINVAL;
1324 
1325 	if (!old.npages) {
1326 		change = KVM_MR_CREATE;
1327 		new.dirty_bitmap = NULL;
1328 		memset(&new.arch, 0, sizeof(new.arch));
1329 	} else { /* Modify an existing slot. */
1330 		if ((new.userspace_addr != old.userspace_addr) ||
1331 		    (new.npages != old.npages) ||
1332 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1333 			return -EINVAL;
1334 
1335 		if (new.base_gfn != old.base_gfn)
1336 			change = KVM_MR_MOVE;
1337 		else if (new.flags != old.flags)
1338 			change = KVM_MR_FLAGS_ONLY;
1339 		else /* Nothing to change. */
1340 			return 0;
1341 
1342 		/* Copy dirty_bitmap and arch from the current memslot. */
1343 		new.dirty_bitmap = old.dirty_bitmap;
1344 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1345 	}
1346 
1347 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1348 		/* Check for overlaps */
1349 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1350 			if (tmp->id == id)
1351 				continue;
1352 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1353 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1354 				return -EEXIST;
1355 		}
1356 	}
1357 
1358 	/* Allocate/free page dirty bitmap as needed */
1359 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1360 		new.dirty_bitmap = NULL;
1361 	else if (!new.dirty_bitmap) {
1362 		r = kvm_alloc_dirty_bitmap(&new);
1363 		if (r)
1364 			return r;
1365 
1366 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1367 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1368 	}
1369 
1370 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1371 	if (r)
1372 		goto out_bitmap;
1373 
1374 	if (old.dirty_bitmap && !new.dirty_bitmap)
1375 		kvm_destroy_dirty_bitmap(&old);
1376 	return 0;
1377 
1378 out_bitmap:
1379 	if (new.dirty_bitmap && !old.dirty_bitmap)
1380 		kvm_destroy_dirty_bitmap(&new);
1381 	return r;
1382 }
1383 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384 
1385 int kvm_set_memory_region(struct kvm *kvm,
1386 			  const struct kvm_userspace_memory_region *mem)
1387 {
1388 	int r;
1389 
1390 	mutex_lock(&kvm->slots_lock);
1391 	r = __kvm_set_memory_region(kvm, mem);
1392 	mutex_unlock(&kvm->slots_lock);
1393 	return r;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396 
1397 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1398 					  struct kvm_userspace_memory_region *mem)
1399 {
1400 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1401 		return -EINVAL;
1402 
1403 	return kvm_set_memory_region(kvm, mem);
1404 }
1405 
1406 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407 /**
1408  * kvm_get_dirty_log - get a snapshot of dirty pages
1409  * @kvm:	pointer to kvm instance
1410  * @log:	slot id and address to which we copy the log
1411  * @is_dirty:	set to '1' if any dirty pages were found
1412  * @memslot:	set to the associated memslot, always valid on success
1413  */
1414 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1415 		      int *is_dirty, struct kvm_memory_slot **memslot)
1416 {
1417 	struct kvm_memslots *slots;
1418 	int i, as_id, id;
1419 	unsigned long n;
1420 	unsigned long any = 0;
1421 
1422 	*memslot = NULL;
1423 	*is_dirty = 0;
1424 
1425 	as_id = log->slot >> 16;
1426 	id = (u16)log->slot;
1427 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1428 		return -EINVAL;
1429 
1430 	slots = __kvm_memslots(kvm, as_id);
1431 	*memslot = id_to_memslot(slots, id);
1432 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1433 		return -ENOENT;
1434 
1435 	kvm_arch_sync_dirty_log(kvm, *memslot);
1436 
1437 	n = kvm_dirty_bitmap_bytes(*memslot);
1438 
1439 	for (i = 0; !any && i < n/sizeof(long); ++i)
1440 		any = (*memslot)->dirty_bitmap[i];
1441 
1442 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1443 		return -EFAULT;
1444 
1445 	if (any)
1446 		*is_dirty = 1;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450 
1451 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452 /**
1453  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1454  *	and reenable dirty page tracking for the corresponding pages.
1455  * @kvm:	pointer to kvm instance
1456  * @log:	slot id and address to which we copy the log
1457  *
1458  * We need to keep it in mind that VCPU threads can write to the bitmap
1459  * concurrently. So, to avoid losing track of dirty pages we keep the
1460  * following order:
1461  *
1462  *    1. Take a snapshot of the bit and clear it if needed.
1463  *    2. Write protect the corresponding page.
1464  *    3. Copy the snapshot to the userspace.
1465  *    4. Upon return caller flushes TLB's if needed.
1466  *
1467  * Between 2 and 4, the guest may write to the page using the remaining TLB
1468  * entry.  This is not a problem because the page is reported dirty using
1469  * the snapshot taken before and step 4 ensures that writes done after
1470  * exiting to userspace will be logged for the next call.
1471  *
1472  */
1473 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474 {
1475 	struct kvm_memslots *slots;
1476 	struct kvm_memory_slot *memslot;
1477 	int i, as_id, id;
1478 	unsigned long n;
1479 	unsigned long *dirty_bitmap;
1480 	unsigned long *dirty_bitmap_buffer;
1481 	bool flush;
1482 
1483 	as_id = log->slot >> 16;
1484 	id = (u16)log->slot;
1485 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1486 		return -EINVAL;
1487 
1488 	slots = __kvm_memslots(kvm, as_id);
1489 	memslot = id_to_memslot(slots, id);
1490 	if (!memslot || !memslot->dirty_bitmap)
1491 		return -ENOENT;
1492 
1493 	dirty_bitmap = memslot->dirty_bitmap;
1494 
1495 	kvm_arch_sync_dirty_log(kvm, memslot);
1496 
1497 	n = kvm_dirty_bitmap_bytes(memslot);
1498 	flush = false;
1499 	if (kvm->manual_dirty_log_protect) {
1500 		/*
1501 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1502 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1503 		 * is some code duplication between this function and
1504 		 * kvm_get_dirty_log, but hopefully all architecture
1505 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1506 		 * can be eliminated.
1507 		 */
1508 		dirty_bitmap_buffer = dirty_bitmap;
1509 	} else {
1510 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1511 		memset(dirty_bitmap_buffer, 0, n);
1512 
1513 		spin_lock(&kvm->mmu_lock);
1514 		for (i = 0; i < n / sizeof(long); i++) {
1515 			unsigned long mask;
1516 			gfn_t offset;
1517 
1518 			if (!dirty_bitmap[i])
1519 				continue;
1520 
1521 			flush = true;
1522 			mask = xchg(&dirty_bitmap[i], 0);
1523 			dirty_bitmap_buffer[i] = mask;
1524 
1525 			offset = i * BITS_PER_LONG;
1526 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1527 								offset, mask);
1528 		}
1529 		spin_unlock(&kvm->mmu_lock);
1530 	}
1531 
1532 	if (flush)
1533 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534 
1535 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1536 		return -EFAULT;
1537 	return 0;
1538 }
1539 
1540 
1541 /**
1542  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1543  * @kvm: kvm instance
1544  * @log: slot id and address to which we copy the log
1545  *
1546  * Steps 1-4 below provide general overview of dirty page logging. See
1547  * kvm_get_dirty_log_protect() function description for additional details.
1548  *
1549  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1550  * always flush the TLB (step 4) even if previous step failed  and the dirty
1551  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1552  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1553  * writes will be marked dirty for next log read.
1554  *
1555  *   1. Take a snapshot of the bit and clear it if needed.
1556  *   2. Write protect the corresponding page.
1557  *   3. Copy the snapshot to the userspace.
1558  *   4. Flush TLB's if needed.
1559  */
1560 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1561 				      struct kvm_dirty_log *log)
1562 {
1563 	int r;
1564 
1565 	mutex_lock(&kvm->slots_lock);
1566 
1567 	r = kvm_get_dirty_log_protect(kvm, log);
1568 
1569 	mutex_unlock(&kvm->slots_lock);
1570 	return r;
1571 }
1572 
1573 /**
1574  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1575  *	and reenable dirty page tracking for the corresponding pages.
1576  * @kvm:	pointer to kvm instance
1577  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1578  */
1579 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1580 				       struct kvm_clear_dirty_log *log)
1581 {
1582 	struct kvm_memslots *slots;
1583 	struct kvm_memory_slot *memslot;
1584 	int as_id, id;
1585 	gfn_t offset;
1586 	unsigned long i, n;
1587 	unsigned long *dirty_bitmap;
1588 	unsigned long *dirty_bitmap_buffer;
1589 	bool flush;
1590 
1591 	as_id = log->slot >> 16;
1592 	id = (u16)log->slot;
1593 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1594 		return -EINVAL;
1595 
1596 	if (log->first_page & 63)
1597 		return -EINVAL;
1598 
1599 	slots = __kvm_memslots(kvm, as_id);
1600 	memslot = id_to_memslot(slots, id);
1601 	if (!memslot || !memslot->dirty_bitmap)
1602 		return -ENOENT;
1603 
1604 	dirty_bitmap = memslot->dirty_bitmap;
1605 
1606 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607 
1608 	if (log->first_page > memslot->npages ||
1609 	    log->num_pages > memslot->npages - log->first_page ||
1610 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1611 	    return -EINVAL;
1612 
1613 	kvm_arch_sync_dirty_log(kvm, memslot);
1614 
1615 	flush = false;
1616 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1617 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1618 		return -EFAULT;
1619 
1620 	spin_lock(&kvm->mmu_lock);
1621 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1622 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1623 	     i++, offset += BITS_PER_LONG) {
1624 		unsigned long mask = *dirty_bitmap_buffer++;
1625 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1626 		if (!mask)
1627 			continue;
1628 
1629 		mask &= atomic_long_fetch_andnot(mask, p);
1630 
1631 		/*
1632 		 * mask contains the bits that really have been cleared.  This
1633 		 * never includes any bits beyond the length of the memslot (if
1634 		 * the length is not aligned to 64 pages), therefore it is not
1635 		 * a problem if userspace sets them in log->dirty_bitmap.
1636 		*/
1637 		if (mask) {
1638 			flush = true;
1639 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1640 								offset, mask);
1641 		}
1642 	}
1643 	spin_unlock(&kvm->mmu_lock);
1644 
1645 	if (flush)
1646 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1647 
1648 	return 0;
1649 }
1650 
1651 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1652 					struct kvm_clear_dirty_log *log)
1653 {
1654 	int r;
1655 
1656 	mutex_lock(&kvm->slots_lock);
1657 
1658 	r = kvm_clear_dirty_log_protect(kvm, log);
1659 
1660 	mutex_unlock(&kvm->slots_lock);
1661 	return r;
1662 }
1663 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664 
1665 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666 {
1667 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670 
1671 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672 {
1673 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1674 }
1675 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676 
1677 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678 {
1679 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680 
1681 	return kvm_is_visible_memslot(memslot);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684 
1685 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686 {
1687 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688 
1689 	return kvm_is_visible_memslot(memslot);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692 
1693 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694 {
1695 	struct vm_area_struct *vma;
1696 	unsigned long addr, size;
1697 
1698 	size = PAGE_SIZE;
1699 
1700 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1701 	if (kvm_is_error_hva(addr))
1702 		return PAGE_SIZE;
1703 
1704 	mmap_read_lock(current->mm);
1705 	vma = find_vma(current->mm, addr);
1706 	if (!vma)
1707 		goto out;
1708 
1709 	size = vma_kernel_pagesize(vma);
1710 
1711 out:
1712 	mmap_read_unlock(current->mm);
1713 
1714 	return size;
1715 }
1716 
1717 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718 {
1719 	return slot->flags & KVM_MEM_READONLY;
1720 }
1721 
1722 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1723 				       gfn_t *nr_pages, bool write)
1724 {
1725 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1726 		return KVM_HVA_ERR_BAD;
1727 
1728 	if (memslot_is_readonly(slot) && write)
1729 		return KVM_HVA_ERR_RO_BAD;
1730 
1731 	if (nr_pages)
1732 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1733 
1734 	return __gfn_to_hva_memslot(slot, gfn);
1735 }
1736 
1737 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1738 				     gfn_t *nr_pages)
1739 {
1740 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1741 }
1742 
1743 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1744 					gfn_t gfn)
1745 {
1746 	return gfn_to_hva_many(slot, gfn, NULL);
1747 }
1748 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749 
1750 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751 {
1752 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753 }
1754 EXPORT_SYMBOL_GPL(gfn_to_hva);
1755 
1756 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757 {
1758 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1761 
1762 /*
1763  * Return the hva of a @gfn and the R/W attribute if possible.
1764  *
1765  * @slot: the kvm_memory_slot which contains @gfn
1766  * @gfn: the gfn to be translated
1767  * @writable: used to return the read/write attribute of the @slot if the hva
1768  * is valid and @writable is not NULL
1769  */
1770 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1771 				      gfn_t gfn, bool *writable)
1772 {
1773 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774 
1775 	if (!kvm_is_error_hva(hva) && writable)
1776 		*writable = !memslot_is_readonly(slot);
1777 
1778 	return hva;
1779 }
1780 
1781 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1782 {
1783 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784 
1785 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1786 }
1787 
1788 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789 {
1790 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791 
1792 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1793 }
1794 
1795 static inline int check_user_page_hwpoison(unsigned long addr)
1796 {
1797 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1798 
1799 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1800 	return rc == -EHWPOISON;
1801 }
1802 
1803 /*
1804  * The fast path to get the writable pfn which will be stored in @pfn,
1805  * true indicates success, otherwise false is returned.  It's also the
1806  * only part that runs if we can in atomic context.
1807  */
1808 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1809 			    bool *writable, kvm_pfn_t *pfn)
1810 {
1811 	struct page *page[1];
1812 
1813 	/*
1814 	 * Fast pin a writable pfn only if it is a write fault request
1815 	 * or the caller allows to map a writable pfn for a read fault
1816 	 * request.
1817 	 */
1818 	if (!(write_fault || writable))
1819 		return false;
1820 
1821 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1822 		*pfn = page_to_pfn(page[0]);
1823 
1824 		if (writable)
1825 			*writable = true;
1826 		return true;
1827 	}
1828 
1829 	return false;
1830 }
1831 
1832 /*
1833  * The slow path to get the pfn of the specified host virtual address,
1834  * 1 indicates success, -errno is returned if error is detected.
1835  */
1836 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1837 			   bool *writable, kvm_pfn_t *pfn)
1838 {
1839 	unsigned int flags = FOLL_HWPOISON;
1840 	struct page *page;
1841 	int npages = 0;
1842 
1843 	might_sleep();
1844 
1845 	if (writable)
1846 		*writable = write_fault;
1847 
1848 	if (write_fault)
1849 		flags |= FOLL_WRITE;
1850 	if (async)
1851 		flags |= FOLL_NOWAIT;
1852 
1853 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1854 	if (npages != 1)
1855 		return npages;
1856 
1857 	/* map read fault as writable if possible */
1858 	if (unlikely(!write_fault) && writable) {
1859 		struct page *wpage;
1860 
1861 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1862 			*writable = true;
1863 			put_page(page);
1864 			page = wpage;
1865 		}
1866 	}
1867 	*pfn = page_to_pfn(page);
1868 	return npages;
1869 }
1870 
1871 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872 {
1873 	if (unlikely(!(vma->vm_flags & VM_READ)))
1874 		return false;
1875 
1876 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1877 		return false;
1878 
1879 	return true;
1880 }
1881 
1882 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1883 			       unsigned long addr, bool *async,
1884 			       bool write_fault, bool *writable,
1885 			       kvm_pfn_t *p_pfn)
1886 {
1887 	unsigned long pfn;
1888 	int r;
1889 
1890 	r = follow_pfn(vma, addr, &pfn);
1891 	if (r) {
1892 		/*
1893 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1894 		 * not call the fault handler, so do it here.
1895 		 */
1896 		bool unlocked = false;
1897 		r = fixup_user_fault(current->mm, addr,
1898 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1899 				     &unlocked);
1900 		if (unlocked)
1901 			return -EAGAIN;
1902 		if (r)
1903 			return r;
1904 
1905 		r = follow_pfn(vma, addr, &pfn);
1906 		if (r)
1907 			return r;
1908 
1909 	}
1910 
1911 	if (writable)
1912 		*writable = true;
1913 
1914 	/*
1915 	 * Get a reference here because callers of *hva_to_pfn* and
1916 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1917 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1918 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1919 	 * simply do nothing for reserved pfns.
1920 	 *
1921 	 * Whoever called remap_pfn_range is also going to call e.g.
1922 	 * unmap_mapping_range before the underlying pages are freed,
1923 	 * causing a call to our MMU notifier.
1924 	 */
1925 	kvm_get_pfn(pfn);
1926 
1927 	*p_pfn = pfn;
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Pin guest page in memory and return its pfn.
1933  * @addr: host virtual address which maps memory to the guest
1934  * @atomic: whether this function can sleep
1935  * @async: whether this function need to wait IO complete if the
1936  *         host page is not in the memory
1937  * @write_fault: whether we should get a writable host page
1938  * @writable: whether it allows to map a writable host page for !@write_fault
1939  *
1940  * The function will map a writable host page for these two cases:
1941  * 1): @write_fault = true
1942  * 2): @write_fault = false && @writable, @writable will tell the caller
1943  *     whether the mapping is writable.
1944  */
1945 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1946 			bool write_fault, bool *writable)
1947 {
1948 	struct vm_area_struct *vma;
1949 	kvm_pfn_t pfn = 0;
1950 	int npages, r;
1951 
1952 	/* we can do it either atomically or asynchronously, not both */
1953 	BUG_ON(atomic && async);
1954 
1955 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1956 		return pfn;
1957 
1958 	if (atomic)
1959 		return KVM_PFN_ERR_FAULT;
1960 
1961 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1962 	if (npages == 1)
1963 		return pfn;
1964 
1965 	mmap_read_lock(current->mm);
1966 	if (npages == -EHWPOISON ||
1967 	      (!async && check_user_page_hwpoison(addr))) {
1968 		pfn = KVM_PFN_ERR_HWPOISON;
1969 		goto exit;
1970 	}
1971 
1972 retry:
1973 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1974 
1975 	if (vma == NULL)
1976 		pfn = KVM_PFN_ERR_FAULT;
1977 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1978 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1979 		if (r == -EAGAIN)
1980 			goto retry;
1981 		if (r < 0)
1982 			pfn = KVM_PFN_ERR_FAULT;
1983 	} else {
1984 		if (async && vma_is_valid(vma, write_fault))
1985 			*async = true;
1986 		pfn = KVM_PFN_ERR_FAULT;
1987 	}
1988 exit:
1989 	mmap_read_unlock(current->mm);
1990 	return pfn;
1991 }
1992 
1993 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1994 			       bool atomic, bool *async, bool write_fault,
1995 			       bool *writable)
1996 {
1997 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998 
1999 	if (addr == KVM_HVA_ERR_RO_BAD) {
2000 		if (writable)
2001 			*writable = false;
2002 		return KVM_PFN_ERR_RO_FAULT;
2003 	}
2004 
2005 	if (kvm_is_error_hva(addr)) {
2006 		if (writable)
2007 			*writable = false;
2008 		return KVM_PFN_NOSLOT;
2009 	}
2010 
2011 	/* Do not map writable pfn in the readonly memslot. */
2012 	if (writable && memslot_is_readonly(slot)) {
2013 		*writable = false;
2014 		writable = NULL;
2015 	}
2016 
2017 	return hva_to_pfn(addr, atomic, async, write_fault,
2018 			  writable);
2019 }
2020 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021 
2022 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2023 		      bool *writable)
2024 {
2025 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2026 				    write_fault, writable);
2027 }
2028 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2029 
2030 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2031 {
2032 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2033 }
2034 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035 
2036 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037 {
2038 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2039 }
2040 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041 
2042 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2043 {
2044 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047 
2048 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049 {
2050 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051 }
2052 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053 
2054 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2055 {
2056 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059 
2060 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2061 			    struct page **pages, int nr_pages)
2062 {
2063 	unsigned long addr;
2064 	gfn_t entry = 0;
2065 
2066 	addr = gfn_to_hva_many(slot, gfn, &entry);
2067 	if (kvm_is_error_hva(addr))
2068 		return -1;
2069 
2070 	if (entry < nr_pages)
2071 		return 0;
2072 
2073 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074 }
2075 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076 
2077 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2078 {
2079 	if (is_error_noslot_pfn(pfn))
2080 		return KVM_ERR_PTR_BAD_PAGE;
2081 
2082 	if (kvm_is_reserved_pfn(pfn)) {
2083 		WARN_ON(1);
2084 		return KVM_ERR_PTR_BAD_PAGE;
2085 	}
2086 
2087 	return pfn_to_page(pfn);
2088 }
2089 
2090 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2091 {
2092 	kvm_pfn_t pfn;
2093 
2094 	pfn = gfn_to_pfn(kvm, gfn);
2095 
2096 	return kvm_pfn_to_page(pfn);
2097 }
2098 EXPORT_SYMBOL_GPL(gfn_to_page);
2099 
2100 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2101 {
2102 	if (pfn == 0)
2103 		return;
2104 
2105 	if (cache)
2106 		cache->pfn = cache->gfn = 0;
2107 
2108 	if (dirty)
2109 		kvm_release_pfn_dirty(pfn);
2110 	else
2111 		kvm_release_pfn_clean(pfn);
2112 }
2113 
2114 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2115 				 struct gfn_to_pfn_cache *cache, u64 gen)
2116 {
2117 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118 
2119 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120 	cache->gfn = gfn;
2121 	cache->dirty = false;
2122 	cache->generation = gen;
2123 }
2124 
2125 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2126 			 struct kvm_host_map *map,
2127 			 struct gfn_to_pfn_cache *cache,
2128 			 bool atomic)
2129 {
2130 	kvm_pfn_t pfn;
2131 	void *hva = NULL;
2132 	struct page *page = KVM_UNMAPPED_PAGE;
2133 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2134 	u64 gen = slots->generation;
2135 
2136 	if (!map)
2137 		return -EINVAL;
2138 
2139 	if (cache) {
2140 		if (!cache->pfn || cache->gfn != gfn ||
2141 			cache->generation != gen) {
2142 			if (atomic)
2143 				return -EAGAIN;
2144 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2145 		}
2146 		pfn = cache->pfn;
2147 	} else {
2148 		if (atomic)
2149 			return -EAGAIN;
2150 		pfn = gfn_to_pfn_memslot(slot, gfn);
2151 	}
2152 	if (is_error_noslot_pfn(pfn))
2153 		return -EINVAL;
2154 
2155 	if (pfn_valid(pfn)) {
2156 		page = pfn_to_page(pfn);
2157 		if (atomic)
2158 			hva = kmap_atomic(page);
2159 		else
2160 			hva = kmap(page);
2161 #ifdef CONFIG_HAS_IOMEM
2162 	} else if (!atomic) {
2163 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2164 	} else {
2165 		return -EINVAL;
2166 #endif
2167 	}
2168 
2169 	if (!hva)
2170 		return -EFAULT;
2171 
2172 	map->page = page;
2173 	map->hva = hva;
2174 	map->pfn = pfn;
2175 	map->gfn = gfn;
2176 
2177 	return 0;
2178 }
2179 
2180 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2181 		struct gfn_to_pfn_cache *cache, bool atomic)
2182 {
2183 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2184 			cache, atomic);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187 
2188 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189 {
2190 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2191 		NULL, false);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194 
2195 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2196 			struct kvm_host_map *map,
2197 			struct gfn_to_pfn_cache *cache,
2198 			bool dirty, bool atomic)
2199 {
2200 	if (!map)
2201 		return;
2202 
2203 	if (!map->hva)
2204 		return;
2205 
2206 	if (map->page != KVM_UNMAPPED_PAGE) {
2207 		if (atomic)
2208 			kunmap_atomic(map->hva);
2209 		else
2210 			kunmap(map->page);
2211 	}
2212 #ifdef CONFIG_HAS_IOMEM
2213 	else if (!atomic)
2214 		memunmap(map->hva);
2215 	else
2216 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2217 #endif
2218 
2219 	if (dirty)
2220 		mark_page_dirty_in_slot(memslot, map->gfn);
2221 
2222 	if (cache)
2223 		cache->dirty |= dirty;
2224 	else
2225 		kvm_release_pfn(map->pfn, dirty, NULL);
2226 
2227 	map->hva = NULL;
2228 	map->page = NULL;
2229 }
2230 
2231 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2232 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233 {
2234 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2235 			cache, dirty, atomic);
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239 
2240 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241 {
2242 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2243 			dirty, false);
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246 
2247 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2248 {
2249 	kvm_pfn_t pfn;
2250 
2251 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252 
2253 	return kvm_pfn_to_page(pfn);
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256 
2257 void kvm_release_page_clean(struct page *page)
2258 {
2259 	WARN_ON(is_error_page(page));
2260 
2261 	kvm_release_pfn_clean(page_to_pfn(page));
2262 }
2263 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264 
2265 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266 {
2267 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2268 		put_page(pfn_to_page(pfn));
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271 
2272 void kvm_release_page_dirty(struct page *page)
2273 {
2274 	WARN_ON(is_error_page(page));
2275 
2276 	kvm_release_pfn_dirty(page_to_pfn(page));
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279 
2280 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281 {
2282 	kvm_set_pfn_dirty(pfn);
2283 	kvm_release_pfn_clean(pfn);
2284 }
2285 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286 
2287 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288 {
2289 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2290 		SetPageDirty(pfn_to_page(pfn));
2291 }
2292 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293 
2294 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295 {
2296 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2297 		mark_page_accessed(pfn_to_page(pfn));
2298 }
2299 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300 
2301 void kvm_get_pfn(kvm_pfn_t pfn)
2302 {
2303 	if (!kvm_is_reserved_pfn(pfn))
2304 		get_page(pfn_to_page(pfn));
2305 }
2306 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307 
2308 static int next_segment(unsigned long len, int offset)
2309 {
2310 	if (len > PAGE_SIZE - offset)
2311 		return PAGE_SIZE - offset;
2312 	else
2313 		return len;
2314 }
2315 
2316 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2317 				 void *data, int offset, int len)
2318 {
2319 	int r;
2320 	unsigned long addr;
2321 
2322 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323 	if (kvm_is_error_hva(addr))
2324 		return -EFAULT;
2325 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2326 	if (r)
2327 		return -EFAULT;
2328 	return 0;
2329 }
2330 
2331 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2332 			int len)
2333 {
2334 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335 
2336 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339 
2340 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2341 			     int offset, int len)
2342 {
2343 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344 
2345 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346 }
2347 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348 
2349 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350 {
2351 	gfn_t gfn = gpa >> PAGE_SHIFT;
2352 	int seg;
2353 	int offset = offset_in_page(gpa);
2354 	int ret;
2355 
2356 	while ((seg = next_segment(len, offset)) != 0) {
2357 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2358 		if (ret < 0)
2359 			return ret;
2360 		offset = 0;
2361 		len -= seg;
2362 		data += seg;
2363 		++gfn;
2364 	}
2365 	return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_read_guest);
2368 
2369 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2370 {
2371 	gfn_t gfn = gpa >> PAGE_SHIFT;
2372 	int seg;
2373 	int offset = offset_in_page(gpa);
2374 	int ret;
2375 
2376 	while ((seg = next_segment(len, offset)) != 0) {
2377 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2378 		if (ret < 0)
2379 			return ret;
2380 		offset = 0;
2381 		len -= seg;
2382 		data += seg;
2383 		++gfn;
2384 	}
2385 	return 0;
2386 }
2387 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388 
2389 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2390 			           void *data, int offset, unsigned long len)
2391 {
2392 	int r;
2393 	unsigned long addr;
2394 
2395 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2396 	if (kvm_is_error_hva(addr))
2397 		return -EFAULT;
2398 	pagefault_disable();
2399 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2400 	pagefault_enable();
2401 	if (r)
2402 		return -EFAULT;
2403 	return 0;
2404 }
2405 
2406 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2407 			       void *data, unsigned long len)
2408 {
2409 	gfn_t gfn = gpa >> PAGE_SHIFT;
2410 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411 	int offset = offset_in_page(gpa);
2412 
2413 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414 }
2415 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416 
2417 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2418 			          const void *data, int offset, int len)
2419 {
2420 	int r;
2421 	unsigned long addr;
2422 
2423 	addr = gfn_to_hva_memslot(memslot, gfn);
2424 	if (kvm_is_error_hva(addr))
2425 		return -EFAULT;
2426 	r = __copy_to_user((void __user *)addr + offset, data, len);
2427 	if (r)
2428 		return -EFAULT;
2429 	mark_page_dirty_in_slot(memslot, gfn);
2430 	return 0;
2431 }
2432 
2433 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2434 			 const void *data, int offset, int len)
2435 {
2436 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437 
2438 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441 
2442 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2443 			      const void *data, int offset, int len)
2444 {
2445 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446 
2447 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448 }
2449 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450 
2451 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2452 		    unsigned long len)
2453 {
2454 	gfn_t gfn = gpa >> PAGE_SHIFT;
2455 	int seg;
2456 	int offset = offset_in_page(gpa);
2457 	int ret;
2458 
2459 	while ((seg = next_segment(len, offset)) != 0) {
2460 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2461 		if (ret < 0)
2462 			return ret;
2463 		offset = 0;
2464 		len -= seg;
2465 		data += seg;
2466 		++gfn;
2467 	}
2468 	return 0;
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_write_guest);
2471 
2472 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2473 		         unsigned long len)
2474 {
2475 	gfn_t gfn = gpa >> PAGE_SHIFT;
2476 	int seg;
2477 	int offset = offset_in_page(gpa);
2478 	int ret;
2479 
2480 	while ((seg = next_segment(len, offset)) != 0) {
2481 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2482 		if (ret < 0)
2483 			return ret;
2484 		offset = 0;
2485 		len -= seg;
2486 		data += seg;
2487 		++gfn;
2488 	}
2489 	return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492 
2493 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2494 				       struct gfn_to_hva_cache *ghc,
2495 				       gpa_t gpa, unsigned long len)
2496 {
2497 	int offset = offset_in_page(gpa);
2498 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2499 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2500 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2501 	gfn_t nr_pages_avail;
2502 
2503 	/* Update ghc->generation before performing any error checks. */
2504 	ghc->generation = slots->generation;
2505 
2506 	if (start_gfn > end_gfn) {
2507 		ghc->hva = KVM_HVA_ERR_BAD;
2508 		return -EINVAL;
2509 	}
2510 
2511 	/*
2512 	 * If the requested region crosses two memslots, we still
2513 	 * verify that the entire region is valid here.
2514 	 */
2515 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2516 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2517 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518 					   &nr_pages_avail);
2519 		if (kvm_is_error_hva(ghc->hva))
2520 			return -EFAULT;
2521 	}
2522 
2523 	/* Use the slow path for cross page reads and writes. */
2524 	if (nr_pages_needed == 1)
2525 		ghc->hva += offset;
2526 	else
2527 		ghc->memslot = NULL;
2528 
2529 	ghc->gpa = gpa;
2530 	ghc->len = len;
2531 	return 0;
2532 }
2533 
2534 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2535 			      gpa_t gpa, unsigned long len)
2536 {
2537 	struct kvm_memslots *slots = kvm_memslots(kvm);
2538 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539 }
2540 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541 
2542 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2543 				  void *data, unsigned int offset,
2544 				  unsigned long len)
2545 {
2546 	struct kvm_memslots *slots = kvm_memslots(kvm);
2547 	int r;
2548 	gpa_t gpa = ghc->gpa + offset;
2549 
2550 	BUG_ON(len + offset > ghc->len);
2551 
2552 	if (slots->generation != ghc->generation) {
2553 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2554 			return -EFAULT;
2555 	}
2556 
2557 	if (kvm_is_error_hva(ghc->hva))
2558 		return -EFAULT;
2559 
2560 	if (unlikely(!ghc->memslot))
2561 		return kvm_write_guest(kvm, gpa, data, len);
2562 
2563 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2564 	if (r)
2565 		return -EFAULT;
2566 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2567 
2568 	return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571 
2572 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2573 			   void *data, unsigned long len)
2574 {
2575 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576 }
2577 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578 
2579 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2580 				 void *data, unsigned int offset,
2581 				 unsigned long len)
2582 {
2583 	struct kvm_memslots *slots = kvm_memslots(kvm);
2584 	int r;
2585 	gpa_t gpa = ghc->gpa + offset;
2586 
2587 	BUG_ON(len + offset > ghc->len);
2588 
2589 	if (slots->generation != ghc->generation) {
2590 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2591 			return -EFAULT;
2592 	}
2593 
2594 	if (kvm_is_error_hva(ghc->hva))
2595 		return -EFAULT;
2596 
2597 	if (unlikely(!ghc->memslot))
2598 		return kvm_read_guest(kvm, gpa, data, len);
2599 
2600 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2601 	if (r)
2602 		return -EFAULT;
2603 
2604 	return 0;
2605 }
2606 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607 
2608 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2609 			  void *data, unsigned long len)
2610 {
2611 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614 
2615 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616 {
2617 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618 
2619 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622 
2623 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624 {
2625 	gfn_t gfn = gpa >> PAGE_SHIFT;
2626 	int seg;
2627 	int offset = offset_in_page(gpa);
2628 	int ret;
2629 
2630 	while ((seg = next_segment(len, offset)) != 0) {
2631 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2632 		if (ret < 0)
2633 			return ret;
2634 		offset = 0;
2635 		len -= seg;
2636 		++gfn;
2637 	}
2638 	return 0;
2639 }
2640 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641 
2642 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2643 				    gfn_t gfn)
2644 {
2645 	if (memslot && memslot->dirty_bitmap) {
2646 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2647 
2648 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2649 	}
2650 }
2651 
2652 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653 {
2654 	struct kvm_memory_slot *memslot;
2655 
2656 	memslot = gfn_to_memslot(kvm, gfn);
2657 	mark_page_dirty_in_slot(memslot, gfn);
2658 }
2659 EXPORT_SYMBOL_GPL(mark_page_dirty);
2660 
2661 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662 {
2663 	struct kvm_memory_slot *memslot;
2664 
2665 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2666 	mark_page_dirty_in_slot(memslot, gfn);
2667 }
2668 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669 
2670 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671 {
2672 	if (!vcpu->sigset_active)
2673 		return;
2674 
2675 	/*
2676 	 * This does a lockless modification of ->real_blocked, which is fine
2677 	 * because, only current can change ->real_blocked and all readers of
2678 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2679 	 * of ->blocked.
2680 	 */
2681 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2682 }
2683 
2684 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685 {
2686 	if (!vcpu->sigset_active)
2687 		return;
2688 
2689 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2690 	sigemptyset(&current->real_blocked);
2691 }
2692 
2693 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694 {
2695 	unsigned int old, val, grow, grow_start;
2696 
2697 	old = val = vcpu->halt_poll_ns;
2698 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2699 	grow = READ_ONCE(halt_poll_ns_grow);
2700 	if (!grow)
2701 		goto out;
2702 
2703 	val *= grow;
2704 	if (val < grow_start)
2705 		val = grow_start;
2706 
2707 	if (val > halt_poll_ns)
2708 		val = halt_poll_ns;
2709 
2710 	vcpu->halt_poll_ns = val;
2711 out:
2712 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2713 }
2714 
2715 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716 {
2717 	unsigned int old, val, shrink;
2718 
2719 	old = val = vcpu->halt_poll_ns;
2720 	shrink = READ_ONCE(halt_poll_ns_shrink);
2721 	if (shrink == 0)
2722 		val = 0;
2723 	else
2724 		val /= shrink;
2725 
2726 	vcpu->halt_poll_ns = val;
2727 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2728 }
2729 
2730 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2731 {
2732 	int ret = -EINTR;
2733 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734 
2735 	if (kvm_arch_vcpu_runnable(vcpu)) {
2736 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2737 		goto out;
2738 	}
2739 	if (kvm_cpu_has_pending_timer(vcpu))
2740 		goto out;
2741 	if (signal_pending(current))
2742 		goto out;
2743 
2744 	ret = 0;
2745 out:
2746 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2747 	return ret;
2748 }
2749 
2750 static inline void
2751 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2752 {
2753 	if (waited)
2754 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2755 	else
2756 		vcpu->stat.halt_poll_success_ns += poll_ns;
2757 }
2758 
2759 /*
2760  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2761  */
2762 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763 {
2764 	ktime_t start, cur, poll_end;
2765 	bool waited = false;
2766 	u64 block_ns;
2767 
2768 	kvm_arch_vcpu_blocking(vcpu);
2769 
2770 	start = cur = poll_end = ktime_get();
2771 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2772 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773 
2774 		++vcpu->stat.halt_attempted_poll;
2775 		do {
2776 			/*
2777 			 * This sets KVM_REQ_UNHALT if an interrupt
2778 			 * arrives.
2779 			 */
2780 			if (kvm_vcpu_check_block(vcpu) < 0) {
2781 				++vcpu->stat.halt_successful_poll;
2782 				if (!vcpu_valid_wakeup(vcpu))
2783 					++vcpu->stat.halt_poll_invalid;
2784 				goto out;
2785 			}
2786 			poll_end = cur = ktime_get();
2787 		} while (single_task_running() && ktime_before(cur, stop));
2788 	}
2789 
2790 	prepare_to_rcuwait(&vcpu->wait);
2791 	for (;;) {
2792 		set_current_state(TASK_INTERRUPTIBLE);
2793 
2794 		if (kvm_vcpu_check_block(vcpu) < 0)
2795 			break;
2796 
2797 		waited = true;
2798 		schedule();
2799 	}
2800 	finish_rcuwait(&vcpu->wait);
2801 	cur = ktime_get();
2802 out:
2803 	kvm_arch_vcpu_unblocking(vcpu);
2804 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2805 
2806 	update_halt_poll_stats(
2807 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2808 
2809 	if (!kvm_arch_no_poll(vcpu)) {
2810 		if (!vcpu_valid_wakeup(vcpu)) {
2811 			shrink_halt_poll_ns(vcpu);
2812 		} else if (vcpu->kvm->max_halt_poll_ns) {
2813 			if (block_ns <= vcpu->halt_poll_ns)
2814 				;
2815 			/* we had a long block, shrink polling */
2816 			else if (vcpu->halt_poll_ns &&
2817 					block_ns > vcpu->kvm->max_halt_poll_ns)
2818 				shrink_halt_poll_ns(vcpu);
2819 			/* we had a short halt and our poll time is too small */
2820 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2821 					block_ns < vcpu->kvm->max_halt_poll_ns)
2822 				grow_halt_poll_ns(vcpu);
2823 		} else {
2824 			vcpu->halt_poll_ns = 0;
2825 		}
2826 	}
2827 
2828 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2829 	kvm_arch_vcpu_block_finish(vcpu);
2830 }
2831 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832 
2833 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834 {
2835 	struct rcuwait *waitp;
2836 
2837 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2838 	if (rcuwait_wake_up(waitp)) {
2839 		WRITE_ONCE(vcpu->ready, true);
2840 		++vcpu->stat.halt_wakeup;
2841 		return true;
2842 	}
2843 
2844 	return false;
2845 }
2846 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2847 
2848 #ifndef CONFIG_S390
2849 /*
2850  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851  */
2852 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2853 {
2854 	int me;
2855 	int cpu = vcpu->cpu;
2856 
2857 	if (kvm_vcpu_wake_up(vcpu))
2858 		return;
2859 
2860 	me = get_cpu();
2861 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2862 		if (kvm_arch_vcpu_should_kick(vcpu))
2863 			smp_send_reschedule(cpu);
2864 	put_cpu();
2865 }
2866 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2867 #endif /* !CONFIG_S390 */
2868 
2869 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2870 {
2871 	struct pid *pid;
2872 	struct task_struct *task = NULL;
2873 	int ret = 0;
2874 
2875 	rcu_read_lock();
2876 	pid = rcu_dereference(target->pid);
2877 	if (pid)
2878 		task = get_pid_task(pid, PIDTYPE_PID);
2879 	rcu_read_unlock();
2880 	if (!task)
2881 		return ret;
2882 	ret = yield_to(task, 1);
2883 	put_task_struct(task);
2884 
2885 	return ret;
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2888 
2889 /*
2890  * Helper that checks whether a VCPU is eligible for directed yield.
2891  * Most eligible candidate to yield is decided by following heuristics:
2892  *
2893  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2894  *  (preempted lock holder), indicated by @in_spin_loop.
2895  *  Set at the beginning and cleared at the end of interception/PLE handler.
2896  *
2897  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2898  *  chance last time (mostly it has become eligible now since we have probably
2899  *  yielded to lockholder in last iteration. This is done by toggling
2900  *  @dy_eligible each time a VCPU checked for eligibility.)
2901  *
2902  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2903  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2904  *  burning. Giving priority for a potential lock-holder increases lock
2905  *  progress.
2906  *
2907  *  Since algorithm is based on heuristics, accessing another VCPU data without
2908  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2909  *  and continue with next VCPU and so on.
2910  */
2911 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912 {
2913 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2914 	bool eligible;
2915 
2916 	eligible = !vcpu->spin_loop.in_spin_loop ||
2917 		    vcpu->spin_loop.dy_eligible;
2918 
2919 	if (vcpu->spin_loop.in_spin_loop)
2920 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2921 
2922 	return eligible;
2923 #else
2924 	return true;
2925 #endif
2926 }
2927 
2928 /*
2929  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2930  * a vcpu_load/vcpu_put pair.  However, for most architectures
2931  * kvm_arch_vcpu_runnable does not require vcpu_load.
2932  */
2933 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934 {
2935 	return kvm_arch_vcpu_runnable(vcpu);
2936 }
2937 
2938 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939 {
2940 	if (kvm_arch_dy_runnable(vcpu))
2941 		return true;
2942 
2943 #ifdef CONFIG_KVM_ASYNC_PF
2944 	if (!list_empty_careful(&vcpu->async_pf.done))
2945 		return true;
2946 #endif
2947 
2948 	return false;
2949 }
2950 
2951 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952 {
2953 	struct kvm *kvm = me->kvm;
2954 	struct kvm_vcpu *vcpu;
2955 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2956 	int yielded = 0;
2957 	int try = 3;
2958 	int pass;
2959 	int i;
2960 
2961 	kvm_vcpu_set_in_spin_loop(me, true);
2962 	/*
2963 	 * We boost the priority of a VCPU that is runnable but not
2964 	 * currently running, because it got preempted by something
2965 	 * else and called schedule in __vcpu_run.  Hopefully that
2966 	 * VCPU is holding the lock that we need and will release it.
2967 	 * We approximate round-robin by starting at the last boosted VCPU.
2968 	 */
2969 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2970 		kvm_for_each_vcpu(i, vcpu, kvm) {
2971 			if (!pass && i <= last_boosted_vcpu) {
2972 				i = last_boosted_vcpu;
2973 				continue;
2974 			} else if (pass && i > last_boosted_vcpu)
2975 				break;
2976 			if (!READ_ONCE(vcpu->ready))
2977 				continue;
2978 			if (vcpu == me)
2979 				continue;
2980 			if (rcuwait_active(&vcpu->wait) &&
2981 			    !vcpu_dy_runnable(vcpu))
2982 				continue;
2983 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2984 				!kvm_arch_vcpu_in_kernel(vcpu))
2985 				continue;
2986 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2987 				continue;
2988 
2989 			yielded = kvm_vcpu_yield_to(vcpu);
2990 			if (yielded > 0) {
2991 				kvm->last_boosted_vcpu = i;
2992 				break;
2993 			} else if (yielded < 0) {
2994 				try--;
2995 				if (!try)
2996 					break;
2997 			}
2998 		}
2999 	}
3000 	kvm_vcpu_set_in_spin_loop(me, false);
3001 
3002 	/* Ensure vcpu is not eligible during next spinloop */
3003 	kvm_vcpu_set_dy_eligible(me, false);
3004 }
3005 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006 
3007 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008 {
3009 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3010 	struct page *page;
3011 
3012 	if (vmf->pgoff == 0)
3013 		page = virt_to_page(vcpu->run);
3014 #ifdef CONFIG_X86
3015 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3016 		page = virt_to_page(vcpu->arch.pio_data);
3017 #endif
3018 #ifdef CONFIG_KVM_MMIO
3019 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3020 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3021 #endif
3022 	else
3023 		return kvm_arch_vcpu_fault(vcpu, vmf);
3024 	get_page(page);
3025 	vmf->page = page;
3026 	return 0;
3027 }
3028 
3029 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3030 	.fault = kvm_vcpu_fault,
3031 };
3032 
3033 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034 {
3035 	vma->vm_ops = &kvm_vcpu_vm_ops;
3036 	return 0;
3037 }
3038 
3039 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040 {
3041 	struct kvm_vcpu *vcpu = filp->private_data;
3042 
3043 	kvm_put_kvm(vcpu->kvm);
3044 	return 0;
3045 }
3046 
3047 static struct file_operations kvm_vcpu_fops = {
3048 	.release        = kvm_vcpu_release,
3049 	.unlocked_ioctl = kvm_vcpu_ioctl,
3050 	.mmap           = kvm_vcpu_mmap,
3051 	.llseek		= noop_llseek,
3052 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3053 };
3054 
3055 /*
3056  * Allocates an inode for the vcpu.
3057  */
3058 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059 {
3060 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3061 
3062 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3063 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3064 }
3065 
3066 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067 {
3068 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3069 	struct dentry *debugfs_dentry;
3070 	char dir_name[ITOA_MAX_LEN * 2];
3071 
3072 	if (!debugfs_initialized())
3073 		return;
3074 
3075 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3076 	debugfs_dentry = debugfs_create_dir(dir_name,
3077 					    vcpu->kvm->debugfs_dentry);
3078 
3079 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3080 #endif
3081 }
3082 
3083 /*
3084  * Creates some virtual cpus.  Good luck creating more than one.
3085  */
3086 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3087 {
3088 	int r;
3089 	struct kvm_vcpu *vcpu;
3090 	struct page *page;
3091 
3092 	if (id >= KVM_MAX_VCPU_ID)
3093 		return -EINVAL;
3094 
3095 	mutex_lock(&kvm->lock);
3096 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3097 		mutex_unlock(&kvm->lock);
3098 		return -EINVAL;
3099 	}
3100 
3101 	kvm->created_vcpus++;
3102 	mutex_unlock(&kvm->lock);
3103 
3104 	r = kvm_arch_vcpu_precreate(kvm, id);
3105 	if (r)
3106 		goto vcpu_decrement;
3107 
3108 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3109 	if (!vcpu) {
3110 		r = -ENOMEM;
3111 		goto vcpu_decrement;
3112 	}
3113 
3114 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3115 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3116 	if (!page) {
3117 		r = -ENOMEM;
3118 		goto vcpu_free;
3119 	}
3120 	vcpu->run = page_address(page);
3121 
3122 	kvm_vcpu_init(vcpu, kvm, id);
3123 
3124 	r = kvm_arch_vcpu_create(vcpu);
3125 	if (r)
3126 		goto vcpu_free_run_page;
3127 
3128 	mutex_lock(&kvm->lock);
3129 	if (kvm_get_vcpu_by_id(kvm, id)) {
3130 		r = -EEXIST;
3131 		goto unlock_vcpu_destroy;
3132 	}
3133 
3134 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3135 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3136 
3137 	/* Now it's all set up, let userspace reach it */
3138 	kvm_get_kvm(kvm);
3139 	r = create_vcpu_fd(vcpu);
3140 	if (r < 0) {
3141 		kvm_put_kvm_no_destroy(kvm);
3142 		goto unlock_vcpu_destroy;
3143 	}
3144 
3145 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3146 
3147 	/*
3148 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3149 	 * before kvm->online_vcpu's incremented value.
3150 	 */
3151 	smp_wmb();
3152 	atomic_inc(&kvm->online_vcpus);
3153 
3154 	mutex_unlock(&kvm->lock);
3155 	kvm_arch_vcpu_postcreate(vcpu);
3156 	kvm_create_vcpu_debugfs(vcpu);
3157 	return r;
3158 
3159 unlock_vcpu_destroy:
3160 	mutex_unlock(&kvm->lock);
3161 	kvm_arch_vcpu_destroy(vcpu);
3162 vcpu_free_run_page:
3163 	free_page((unsigned long)vcpu->run);
3164 vcpu_free:
3165 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3166 vcpu_decrement:
3167 	mutex_lock(&kvm->lock);
3168 	kvm->created_vcpus--;
3169 	mutex_unlock(&kvm->lock);
3170 	return r;
3171 }
3172 
3173 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3174 {
3175 	if (sigset) {
3176 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177 		vcpu->sigset_active = 1;
3178 		vcpu->sigset = *sigset;
3179 	} else
3180 		vcpu->sigset_active = 0;
3181 	return 0;
3182 }
3183 
3184 static long kvm_vcpu_ioctl(struct file *filp,
3185 			   unsigned int ioctl, unsigned long arg)
3186 {
3187 	struct kvm_vcpu *vcpu = filp->private_data;
3188 	void __user *argp = (void __user *)arg;
3189 	int r;
3190 	struct kvm_fpu *fpu = NULL;
3191 	struct kvm_sregs *kvm_sregs = NULL;
3192 
3193 	if (vcpu->kvm->mm != current->mm)
3194 		return -EIO;
3195 
3196 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3197 		return -EINVAL;
3198 
3199 	/*
3200 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3201 	 * execution; mutex_lock() would break them.
3202 	 */
3203 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3204 	if (r != -ENOIOCTLCMD)
3205 		return r;
3206 
3207 	if (mutex_lock_killable(&vcpu->mutex))
3208 		return -EINTR;
3209 	switch (ioctl) {
3210 	case KVM_RUN: {
3211 		struct pid *oldpid;
3212 		r = -EINVAL;
3213 		if (arg)
3214 			goto out;
3215 		oldpid = rcu_access_pointer(vcpu->pid);
3216 		if (unlikely(oldpid != task_pid(current))) {
3217 			/* The thread running this VCPU changed. */
3218 			struct pid *newpid;
3219 
3220 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3221 			if (r)
3222 				break;
3223 
3224 			newpid = get_task_pid(current, PIDTYPE_PID);
3225 			rcu_assign_pointer(vcpu->pid, newpid);
3226 			if (oldpid)
3227 				synchronize_rcu();
3228 			put_pid(oldpid);
3229 		}
3230 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3231 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3232 		break;
3233 	}
3234 	case KVM_GET_REGS: {
3235 		struct kvm_regs *kvm_regs;
3236 
3237 		r = -ENOMEM;
3238 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3239 		if (!kvm_regs)
3240 			goto out;
3241 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3242 		if (r)
3243 			goto out_free1;
3244 		r = -EFAULT;
3245 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3246 			goto out_free1;
3247 		r = 0;
3248 out_free1:
3249 		kfree(kvm_regs);
3250 		break;
3251 	}
3252 	case KVM_SET_REGS: {
3253 		struct kvm_regs *kvm_regs;
3254 
3255 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3256 		if (IS_ERR(kvm_regs)) {
3257 			r = PTR_ERR(kvm_regs);
3258 			goto out;
3259 		}
3260 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3261 		kfree(kvm_regs);
3262 		break;
3263 	}
3264 	case KVM_GET_SREGS: {
3265 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3266 				    GFP_KERNEL_ACCOUNT);
3267 		r = -ENOMEM;
3268 		if (!kvm_sregs)
3269 			goto out;
3270 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3271 		if (r)
3272 			goto out;
3273 		r = -EFAULT;
3274 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3275 			goto out;
3276 		r = 0;
3277 		break;
3278 	}
3279 	case KVM_SET_SREGS: {
3280 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3281 		if (IS_ERR(kvm_sregs)) {
3282 			r = PTR_ERR(kvm_sregs);
3283 			kvm_sregs = NULL;
3284 			goto out;
3285 		}
3286 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3287 		break;
3288 	}
3289 	case KVM_GET_MP_STATE: {
3290 		struct kvm_mp_state mp_state;
3291 
3292 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3293 		if (r)
3294 			goto out;
3295 		r = -EFAULT;
3296 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3297 			goto out;
3298 		r = 0;
3299 		break;
3300 	}
3301 	case KVM_SET_MP_STATE: {
3302 		struct kvm_mp_state mp_state;
3303 
3304 		r = -EFAULT;
3305 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306 			goto out;
3307 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3308 		break;
3309 	}
3310 	case KVM_TRANSLATE: {
3311 		struct kvm_translation tr;
3312 
3313 		r = -EFAULT;
3314 		if (copy_from_user(&tr, argp, sizeof(tr)))
3315 			goto out;
3316 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3317 		if (r)
3318 			goto out;
3319 		r = -EFAULT;
3320 		if (copy_to_user(argp, &tr, sizeof(tr)))
3321 			goto out;
3322 		r = 0;
3323 		break;
3324 	}
3325 	case KVM_SET_GUEST_DEBUG: {
3326 		struct kvm_guest_debug dbg;
3327 
3328 		r = -EFAULT;
3329 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330 			goto out;
3331 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3332 		break;
3333 	}
3334 	case KVM_SET_SIGNAL_MASK: {
3335 		struct kvm_signal_mask __user *sigmask_arg = argp;
3336 		struct kvm_signal_mask kvm_sigmask;
3337 		sigset_t sigset, *p;
3338 
3339 		p = NULL;
3340 		if (argp) {
3341 			r = -EFAULT;
3342 			if (copy_from_user(&kvm_sigmask, argp,
3343 					   sizeof(kvm_sigmask)))
3344 				goto out;
3345 			r = -EINVAL;
3346 			if (kvm_sigmask.len != sizeof(sigset))
3347 				goto out;
3348 			r = -EFAULT;
3349 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3350 					   sizeof(sigset)))
3351 				goto out;
3352 			p = &sigset;
3353 		}
3354 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3355 		break;
3356 	}
3357 	case KVM_GET_FPU: {
3358 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3359 		r = -ENOMEM;
3360 		if (!fpu)
3361 			goto out;
3362 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3363 		if (r)
3364 			goto out;
3365 		r = -EFAULT;
3366 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3367 			goto out;
3368 		r = 0;
3369 		break;
3370 	}
3371 	case KVM_SET_FPU: {
3372 		fpu = memdup_user(argp, sizeof(*fpu));
3373 		if (IS_ERR(fpu)) {
3374 			r = PTR_ERR(fpu);
3375 			fpu = NULL;
3376 			goto out;
3377 		}
3378 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3379 		break;
3380 	}
3381 	default:
3382 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3383 	}
3384 out:
3385 	mutex_unlock(&vcpu->mutex);
3386 	kfree(fpu);
3387 	kfree(kvm_sregs);
3388 	return r;
3389 }
3390 
3391 #ifdef CONFIG_KVM_COMPAT
3392 static long kvm_vcpu_compat_ioctl(struct file *filp,
3393 				  unsigned int ioctl, unsigned long arg)
3394 {
3395 	struct kvm_vcpu *vcpu = filp->private_data;
3396 	void __user *argp = compat_ptr(arg);
3397 	int r;
3398 
3399 	if (vcpu->kvm->mm != current->mm)
3400 		return -EIO;
3401 
3402 	switch (ioctl) {
3403 	case KVM_SET_SIGNAL_MASK: {
3404 		struct kvm_signal_mask __user *sigmask_arg = argp;
3405 		struct kvm_signal_mask kvm_sigmask;
3406 		sigset_t sigset;
3407 
3408 		if (argp) {
3409 			r = -EFAULT;
3410 			if (copy_from_user(&kvm_sigmask, argp,
3411 					   sizeof(kvm_sigmask)))
3412 				goto out;
3413 			r = -EINVAL;
3414 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3415 				goto out;
3416 			r = -EFAULT;
3417 			if (get_compat_sigset(&sigset,
3418 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3419 				goto out;
3420 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421 		} else
3422 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3423 		break;
3424 	}
3425 	default:
3426 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3427 	}
3428 
3429 out:
3430 	return r;
3431 }
3432 #endif
3433 
3434 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435 {
3436 	struct kvm_device *dev = filp->private_data;
3437 
3438 	if (dev->ops->mmap)
3439 		return dev->ops->mmap(dev, vma);
3440 
3441 	return -ENODEV;
3442 }
3443 
3444 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3445 				 int (*accessor)(struct kvm_device *dev,
3446 						 struct kvm_device_attr *attr),
3447 				 unsigned long arg)
3448 {
3449 	struct kvm_device_attr attr;
3450 
3451 	if (!accessor)
3452 		return -EPERM;
3453 
3454 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3455 		return -EFAULT;
3456 
3457 	return accessor(dev, &attr);
3458 }
3459 
3460 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3461 			     unsigned long arg)
3462 {
3463 	struct kvm_device *dev = filp->private_data;
3464 
3465 	if (dev->kvm->mm != current->mm)
3466 		return -EIO;
3467 
3468 	switch (ioctl) {
3469 	case KVM_SET_DEVICE_ATTR:
3470 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3471 	case KVM_GET_DEVICE_ATTR:
3472 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3473 	case KVM_HAS_DEVICE_ATTR:
3474 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475 	default:
3476 		if (dev->ops->ioctl)
3477 			return dev->ops->ioctl(dev, ioctl, arg);
3478 
3479 		return -ENOTTY;
3480 	}
3481 }
3482 
3483 static int kvm_device_release(struct inode *inode, struct file *filp)
3484 {
3485 	struct kvm_device *dev = filp->private_data;
3486 	struct kvm *kvm = dev->kvm;
3487 
3488 	if (dev->ops->release) {
3489 		mutex_lock(&kvm->lock);
3490 		list_del(&dev->vm_node);
3491 		dev->ops->release(dev);
3492 		mutex_unlock(&kvm->lock);
3493 	}
3494 
3495 	kvm_put_kvm(kvm);
3496 	return 0;
3497 }
3498 
3499 static const struct file_operations kvm_device_fops = {
3500 	.unlocked_ioctl = kvm_device_ioctl,
3501 	.release = kvm_device_release,
3502 	KVM_COMPAT(kvm_device_ioctl),
3503 	.mmap = kvm_device_mmap,
3504 };
3505 
3506 struct kvm_device *kvm_device_from_filp(struct file *filp)
3507 {
3508 	if (filp->f_op != &kvm_device_fops)
3509 		return NULL;
3510 
3511 	return filp->private_data;
3512 }
3513 
3514 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3515 #ifdef CONFIG_KVM_MPIC
3516 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3517 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3518 #endif
3519 };
3520 
3521 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522 {
3523 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3524 		return -ENOSPC;
3525 
3526 	if (kvm_device_ops_table[type] != NULL)
3527 		return -EEXIST;
3528 
3529 	kvm_device_ops_table[type] = ops;
3530 	return 0;
3531 }
3532 
3533 void kvm_unregister_device_ops(u32 type)
3534 {
3535 	if (kvm_device_ops_table[type] != NULL)
3536 		kvm_device_ops_table[type] = NULL;
3537 }
3538 
3539 static int kvm_ioctl_create_device(struct kvm *kvm,
3540 				   struct kvm_create_device *cd)
3541 {
3542 	const struct kvm_device_ops *ops = NULL;
3543 	struct kvm_device *dev;
3544 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3545 	int type;
3546 	int ret;
3547 
3548 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3549 		return -ENODEV;
3550 
3551 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3552 	ops = kvm_device_ops_table[type];
3553 	if (ops == NULL)
3554 		return -ENODEV;
3555 
3556 	if (test)
3557 		return 0;
3558 
3559 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3560 	if (!dev)
3561 		return -ENOMEM;
3562 
3563 	dev->ops = ops;
3564 	dev->kvm = kvm;
3565 
3566 	mutex_lock(&kvm->lock);
3567 	ret = ops->create(dev, type);
3568 	if (ret < 0) {
3569 		mutex_unlock(&kvm->lock);
3570 		kfree(dev);
3571 		return ret;
3572 	}
3573 	list_add(&dev->vm_node, &kvm->devices);
3574 	mutex_unlock(&kvm->lock);
3575 
3576 	if (ops->init)
3577 		ops->init(dev);
3578 
3579 	kvm_get_kvm(kvm);
3580 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581 	if (ret < 0) {
3582 		kvm_put_kvm_no_destroy(kvm);
3583 		mutex_lock(&kvm->lock);
3584 		list_del(&dev->vm_node);
3585 		mutex_unlock(&kvm->lock);
3586 		ops->destroy(dev);
3587 		return ret;
3588 	}
3589 
3590 	cd->fd = ret;
3591 	return 0;
3592 }
3593 
3594 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3595 {
3596 	switch (arg) {
3597 	case KVM_CAP_USER_MEMORY:
3598 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3599 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3600 	case KVM_CAP_INTERNAL_ERROR_DATA:
3601 #ifdef CONFIG_HAVE_KVM_MSI
3602 	case KVM_CAP_SIGNAL_MSI:
3603 #endif
3604 #ifdef CONFIG_HAVE_KVM_IRQFD
3605 	case KVM_CAP_IRQFD:
3606 	case KVM_CAP_IRQFD_RESAMPLE:
3607 #endif
3608 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3609 	case KVM_CAP_CHECK_EXTENSION_VM:
3610 	case KVM_CAP_ENABLE_CAP_VM:
3611 	case KVM_CAP_HALT_POLL:
3612 		return 1;
3613 #ifdef CONFIG_KVM_MMIO
3614 	case KVM_CAP_COALESCED_MMIO:
3615 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3616 	case KVM_CAP_COALESCED_PIO:
3617 		return 1;
3618 #endif
3619 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3620 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3621 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3622 #endif
3623 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3624 	case KVM_CAP_IRQ_ROUTING:
3625 		return KVM_MAX_IRQ_ROUTES;
3626 #endif
3627 #if KVM_ADDRESS_SPACE_NUM > 1
3628 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3629 		return KVM_ADDRESS_SPACE_NUM;
3630 #endif
3631 	case KVM_CAP_NR_MEMSLOTS:
3632 		return KVM_USER_MEM_SLOTS;
3633 	default:
3634 		break;
3635 	}
3636 	return kvm_vm_ioctl_check_extension(kvm, arg);
3637 }
3638 
3639 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3640 						  struct kvm_enable_cap *cap)
3641 {
3642 	return -EINVAL;
3643 }
3644 
3645 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3646 					   struct kvm_enable_cap *cap)
3647 {
3648 	switch (cap->cap) {
3649 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3650 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3651 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652 
3653 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3654 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655 
3656 		if (cap->flags || (cap->args[0] & ~allowed_options))
3657 			return -EINVAL;
3658 		kvm->manual_dirty_log_protect = cap->args[0];
3659 		return 0;
3660 	}
3661 #endif
3662 	case KVM_CAP_HALT_POLL: {
3663 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3664 			return -EINVAL;
3665 
3666 		kvm->max_halt_poll_ns = cap->args[0];
3667 		return 0;
3668 	}
3669 	default:
3670 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3671 	}
3672 }
3673 
3674 static long kvm_vm_ioctl(struct file *filp,
3675 			   unsigned int ioctl, unsigned long arg)
3676 {
3677 	struct kvm *kvm = filp->private_data;
3678 	void __user *argp = (void __user *)arg;
3679 	int r;
3680 
3681 	if (kvm->mm != current->mm)
3682 		return -EIO;
3683 	switch (ioctl) {
3684 	case KVM_CREATE_VCPU:
3685 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686 		break;
3687 	case KVM_ENABLE_CAP: {
3688 		struct kvm_enable_cap cap;
3689 
3690 		r = -EFAULT;
3691 		if (copy_from_user(&cap, argp, sizeof(cap)))
3692 			goto out;
3693 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3694 		break;
3695 	}
3696 	case KVM_SET_USER_MEMORY_REGION: {
3697 		struct kvm_userspace_memory_region kvm_userspace_mem;
3698 
3699 		r = -EFAULT;
3700 		if (copy_from_user(&kvm_userspace_mem, argp,
3701 						sizeof(kvm_userspace_mem)))
3702 			goto out;
3703 
3704 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3705 		break;
3706 	}
3707 	case KVM_GET_DIRTY_LOG: {
3708 		struct kvm_dirty_log log;
3709 
3710 		r = -EFAULT;
3711 		if (copy_from_user(&log, argp, sizeof(log)))
3712 			goto out;
3713 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3714 		break;
3715 	}
3716 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3717 	case KVM_CLEAR_DIRTY_LOG: {
3718 		struct kvm_clear_dirty_log log;
3719 
3720 		r = -EFAULT;
3721 		if (copy_from_user(&log, argp, sizeof(log)))
3722 			goto out;
3723 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3724 		break;
3725 	}
3726 #endif
3727 #ifdef CONFIG_KVM_MMIO
3728 	case KVM_REGISTER_COALESCED_MMIO: {
3729 		struct kvm_coalesced_mmio_zone zone;
3730 
3731 		r = -EFAULT;
3732 		if (copy_from_user(&zone, argp, sizeof(zone)))
3733 			goto out;
3734 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3735 		break;
3736 	}
3737 	case KVM_UNREGISTER_COALESCED_MMIO: {
3738 		struct kvm_coalesced_mmio_zone zone;
3739 
3740 		r = -EFAULT;
3741 		if (copy_from_user(&zone, argp, sizeof(zone)))
3742 			goto out;
3743 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3744 		break;
3745 	}
3746 #endif
3747 	case KVM_IRQFD: {
3748 		struct kvm_irqfd data;
3749 
3750 		r = -EFAULT;
3751 		if (copy_from_user(&data, argp, sizeof(data)))
3752 			goto out;
3753 		r = kvm_irqfd(kvm, &data);
3754 		break;
3755 	}
3756 	case KVM_IOEVENTFD: {
3757 		struct kvm_ioeventfd data;
3758 
3759 		r = -EFAULT;
3760 		if (copy_from_user(&data, argp, sizeof(data)))
3761 			goto out;
3762 		r = kvm_ioeventfd(kvm, &data);
3763 		break;
3764 	}
3765 #ifdef CONFIG_HAVE_KVM_MSI
3766 	case KVM_SIGNAL_MSI: {
3767 		struct kvm_msi msi;
3768 
3769 		r = -EFAULT;
3770 		if (copy_from_user(&msi, argp, sizeof(msi)))
3771 			goto out;
3772 		r = kvm_send_userspace_msi(kvm, &msi);
3773 		break;
3774 	}
3775 #endif
3776 #ifdef __KVM_HAVE_IRQ_LINE
3777 	case KVM_IRQ_LINE_STATUS:
3778 	case KVM_IRQ_LINE: {
3779 		struct kvm_irq_level irq_event;
3780 
3781 		r = -EFAULT;
3782 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3783 			goto out;
3784 
3785 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3786 					ioctl == KVM_IRQ_LINE_STATUS);
3787 		if (r)
3788 			goto out;
3789 
3790 		r = -EFAULT;
3791 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3792 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3793 				goto out;
3794 		}
3795 
3796 		r = 0;
3797 		break;
3798 	}
3799 #endif
3800 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3801 	case KVM_SET_GSI_ROUTING: {
3802 		struct kvm_irq_routing routing;
3803 		struct kvm_irq_routing __user *urouting;
3804 		struct kvm_irq_routing_entry *entries = NULL;
3805 
3806 		r = -EFAULT;
3807 		if (copy_from_user(&routing, argp, sizeof(routing)))
3808 			goto out;
3809 		r = -EINVAL;
3810 		if (!kvm_arch_can_set_irq_routing(kvm))
3811 			goto out;
3812 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3813 			goto out;
3814 		if (routing.flags)
3815 			goto out;
3816 		if (routing.nr) {
3817 			urouting = argp;
3818 			entries = vmemdup_user(urouting->entries,
3819 					       array_size(sizeof(*entries),
3820 							  routing.nr));
3821 			if (IS_ERR(entries)) {
3822 				r = PTR_ERR(entries);
3823 				goto out;
3824 			}
3825 		}
3826 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3827 					routing.flags);
3828 		kvfree(entries);
3829 		break;
3830 	}
3831 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3832 	case KVM_CREATE_DEVICE: {
3833 		struct kvm_create_device cd;
3834 
3835 		r = -EFAULT;
3836 		if (copy_from_user(&cd, argp, sizeof(cd)))
3837 			goto out;
3838 
3839 		r = kvm_ioctl_create_device(kvm, &cd);
3840 		if (r)
3841 			goto out;
3842 
3843 		r = -EFAULT;
3844 		if (copy_to_user(argp, &cd, sizeof(cd)))
3845 			goto out;
3846 
3847 		r = 0;
3848 		break;
3849 	}
3850 	case KVM_CHECK_EXTENSION:
3851 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3852 		break;
3853 	default:
3854 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3855 	}
3856 out:
3857 	return r;
3858 }
3859 
3860 #ifdef CONFIG_KVM_COMPAT
3861 struct compat_kvm_dirty_log {
3862 	__u32 slot;
3863 	__u32 padding1;
3864 	union {
3865 		compat_uptr_t dirty_bitmap; /* one bit per page */
3866 		__u64 padding2;
3867 	};
3868 };
3869 
3870 static long kvm_vm_compat_ioctl(struct file *filp,
3871 			   unsigned int ioctl, unsigned long arg)
3872 {
3873 	struct kvm *kvm = filp->private_data;
3874 	int r;
3875 
3876 	if (kvm->mm != current->mm)
3877 		return -EIO;
3878 	switch (ioctl) {
3879 	case KVM_GET_DIRTY_LOG: {
3880 		struct compat_kvm_dirty_log compat_log;
3881 		struct kvm_dirty_log log;
3882 
3883 		if (copy_from_user(&compat_log, (void __user *)arg,
3884 				   sizeof(compat_log)))
3885 			return -EFAULT;
3886 		log.slot	 = compat_log.slot;
3887 		log.padding1	 = compat_log.padding1;
3888 		log.padding2	 = compat_log.padding2;
3889 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890 
3891 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3892 		break;
3893 	}
3894 	default:
3895 		r = kvm_vm_ioctl(filp, ioctl, arg);
3896 	}
3897 	return r;
3898 }
3899 #endif
3900 
3901 static struct file_operations kvm_vm_fops = {
3902 	.release        = kvm_vm_release,
3903 	.unlocked_ioctl = kvm_vm_ioctl,
3904 	.llseek		= noop_llseek,
3905 	KVM_COMPAT(kvm_vm_compat_ioctl),
3906 };
3907 
3908 static int kvm_dev_ioctl_create_vm(unsigned long type)
3909 {
3910 	int r;
3911 	struct kvm *kvm;
3912 	struct file *file;
3913 
3914 	kvm = kvm_create_vm(type);
3915 	if (IS_ERR(kvm))
3916 		return PTR_ERR(kvm);
3917 #ifdef CONFIG_KVM_MMIO
3918 	r = kvm_coalesced_mmio_init(kvm);
3919 	if (r < 0)
3920 		goto put_kvm;
3921 #endif
3922 	r = get_unused_fd_flags(O_CLOEXEC);
3923 	if (r < 0)
3924 		goto put_kvm;
3925 
3926 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3927 	if (IS_ERR(file)) {
3928 		put_unused_fd(r);
3929 		r = PTR_ERR(file);
3930 		goto put_kvm;
3931 	}
3932 
3933 	/*
3934 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3935 	 * already set, with ->release() being kvm_vm_release().  In error
3936 	 * cases it will be called by the final fput(file) and will take
3937 	 * care of doing kvm_put_kvm(kvm).
3938 	 */
3939 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3940 		put_unused_fd(r);
3941 		fput(file);
3942 		return -ENOMEM;
3943 	}
3944 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945 
3946 	fd_install(r, file);
3947 	return r;
3948 
3949 put_kvm:
3950 	kvm_put_kvm(kvm);
3951 	return r;
3952 }
3953 
3954 static long kvm_dev_ioctl(struct file *filp,
3955 			  unsigned int ioctl, unsigned long arg)
3956 {
3957 	long r = -EINVAL;
3958 
3959 	switch (ioctl) {
3960 	case KVM_GET_API_VERSION:
3961 		if (arg)
3962 			goto out;
3963 		r = KVM_API_VERSION;
3964 		break;
3965 	case KVM_CREATE_VM:
3966 		r = kvm_dev_ioctl_create_vm(arg);
3967 		break;
3968 	case KVM_CHECK_EXTENSION:
3969 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970 		break;
3971 	case KVM_GET_VCPU_MMAP_SIZE:
3972 		if (arg)
3973 			goto out;
3974 		r = PAGE_SIZE;     /* struct kvm_run */
3975 #ifdef CONFIG_X86
3976 		r += PAGE_SIZE;    /* pio data page */
3977 #endif
3978 #ifdef CONFIG_KVM_MMIO
3979 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3980 #endif
3981 		break;
3982 	case KVM_TRACE_ENABLE:
3983 	case KVM_TRACE_PAUSE:
3984 	case KVM_TRACE_DISABLE:
3985 		r = -EOPNOTSUPP;
3986 		break;
3987 	default:
3988 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3989 	}
3990 out:
3991 	return r;
3992 }
3993 
3994 static struct file_operations kvm_chardev_ops = {
3995 	.unlocked_ioctl = kvm_dev_ioctl,
3996 	.llseek		= noop_llseek,
3997 	KVM_COMPAT(kvm_dev_ioctl),
3998 };
3999 
4000 static struct miscdevice kvm_dev = {
4001 	KVM_MINOR,
4002 	"kvm",
4003 	&kvm_chardev_ops,
4004 };
4005 
4006 static void hardware_enable_nolock(void *junk)
4007 {
4008 	int cpu = raw_smp_processor_id();
4009 	int r;
4010 
4011 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4012 		return;
4013 
4014 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015 
4016 	r = kvm_arch_hardware_enable();
4017 
4018 	if (r) {
4019 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4020 		atomic_inc(&hardware_enable_failed);
4021 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4022 	}
4023 }
4024 
4025 static int kvm_starting_cpu(unsigned int cpu)
4026 {
4027 	raw_spin_lock(&kvm_count_lock);
4028 	if (kvm_usage_count)
4029 		hardware_enable_nolock(NULL);
4030 	raw_spin_unlock(&kvm_count_lock);
4031 	return 0;
4032 }
4033 
4034 static void hardware_disable_nolock(void *junk)
4035 {
4036 	int cpu = raw_smp_processor_id();
4037 
4038 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039 		return;
4040 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4041 	kvm_arch_hardware_disable();
4042 }
4043 
4044 static int kvm_dying_cpu(unsigned int cpu)
4045 {
4046 	raw_spin_lock(&kvm_count_lock);
4047 	if (kvm_usage_count)
4048 		hardware_disable_nolock(NULL);
4049 	raw_spin_unlock(&kvm_count_lock);
4050 	return 0;
4051 }
4052 
4053 static void hardware_disable_all_nolock(void)
4054 {
4055 	BUG_ON(!kvm_usage_count);
4056 
4057 	kvm_usage_count--;
4058 	if (!kvm_usage_count)
4059 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4060 }
4061 
4062 static void hardware_disable_all(void)
4063 {
4064 	raw_spin_lock(&kvm_count_lock);
4065 	hardware_disable_all_nolock();
4066 	raw_spin_unlock(&kvm_count_lock);
4067 }
4068 
4069 static int hardware_enable_all(void)
4070 {
4071 	int r = 0;
4072 
4073 	raw_spin_lock(&kvm_count_lock);
4074 
4075 	kvm_usage_count++;
4076 	if (kvm_usage_count == 1) {
4077 		atomic_set(&hardware_enable_failed, 0);
4078 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4079 
4080 		if (atomic_read(&hardware_enable_failed)) {
4081 			hardware_disable_all_nolock();
4082 			r = -EBUSY;
4083 		}
4084 	}
4085 
4086 	raw_spin_unlock(&kvm_count_lock);
4087 
4088 	return r;
4089 }
4090 
4091 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4092 		      void *v)
4093 {
4094 	/*
4095 	 * Some (well, at least mine) BIOSes hang on reboot if
4096 	 * in vmx root mode.
4097 	 *
4098 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4099 	 */
4100 	pr_info("kvm: exiting hardware virtualization\n");
4101 	kvm_rebooting = true;
4102 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4103 	return NOTIFY_OK;
4104 }
4105 
4106 static struct notifier_block kvm_reboot_notifier = {
4107 	.notifier_call = kvm_reboot,
4108 	.priority = 0,
4109 };
4110 
4111 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4112 {
4113 	int i;
4114 
4115 	for (i = 0; i < bus->dev_count; i++) {
4116 		struct kvm_io_device *pos = bus->range[i].dev;
4117 
4118 		kvm_iodevice_destructor(pos);
4119 	}
4120 	kfree(bus);
4121 }
4122 
4123 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4124 				 const struct kvm_io_range *r2)
4125 {
4126 	gpa_t addr1 = r1->addr;
4127 	gpa_t addr2 = r2->addr;
4128 
4129 	if (addr1 < addr2)
4130 		return -1;
4131 
4132 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4133 	 * accept any overlapping write.  Any order is acceptable for
4134 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4135 	 * we process all of them.
4136 	 */
4137 	if (r2->len) {
4138 		addr1 += r1->len;
4139 		addr2 += r2->len;
4140 	}
4141 
4142 	if (addr1 > addr2)
4143 		return 1;
4144 
4145 	return 0;
4146 }
4147 
4148 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4149 {
4150 	return kvm_io_bus_cmp(p1, p2);
4151 }
4152 
4153 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4154 			     gpa_t addr, int len)
4155 {
4156 	struct kvm_io_range *range, key;
4157 	int off;
4158 
4159 	key = (struct kvm_io_range) {
4160 		.addr = addr,
4161 		.len = len,
4162 	};
4163 
4164 	range = bsearch(&key, bus->range, bus->dev_count,
4165 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4166 	if (range == NULL)
4167 		return -ENOENT;
4168 
4169 	off = range - bus->range;
4170 
4171 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4172 		off--;
4173 
4174 	return off;
4175 }
4176 
4177 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4178 			      struct kvm_io_range *range, const void *val)
4179 {
4180 	int idx;
4181 
4182 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4183 	if (idx < 0)
4184 		return -EOPNOTSUPP;
4185 
4186 	while (idx < bus->dev_count &&
4187 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4188 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4189 					range->len, val))
4190 			return idx;
4191 		idx++;
4192 	}
4193 
4194 	return -EOPNOTSUPP;
4195 }
4196 
4197 /* kvm_io_bus_write - called under kvm->slots_lock */
4198 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4199 		     int len, const void *val)
4200 {
4201 	struct kvm_io_bus *bus;
4202 	struct kvm_io_range range;
4203 	int r;
4204 
4205 	range = (struct kvm_io_range) {
4206 		.addr = addr,
4207 		.len = len,
4208 	};
4209 
4210 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4211 	if (!bus)
4212 		return -ENOMEM;
4213 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4214 	return r < 0 ? r : 0;
4215 }
4216 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217 
4218 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4219 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4220 			    gpa_t addr, int len, const void *val, long cookie)
4221 {
4222 	struct kvm_io_bus *bus;
4223 	struct kvm_io_range range;
4224 
4225 	range = (struct kvm_io_range) {
4226 		.addr = addr,
4227 		.len = len,
4228 	};
4229 
4230 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4231 	if (!bus)
4232 		return -ENOMEM;
4233 
4234 	/* First try the device referenced by cookie. */
4235 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4236 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4237 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4238 					val))
4239 			return cookie;
4240 
4241 	/*
4242 	 * cookie contained garbage; fall back to search and return the
4243 	 * correct cookie value.
4244 	 */
4245 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4246 }
4247 
4248 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4249 			     struct kvm_io_range *range, void *val)
4250 {
4251 	int idx;
4252 
4253 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4254 	if (idx < 0)
4255 		return -EOPNOTSUPP;
4256 
4257 	while (idx < bus->dev_count &&
4258 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4259 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4260 				       range->len, val))
4261 			return idx;
4262 		idx++;
4263 	}
4264 
4265 	return -EOPNOTSUPP;
4266 }
4267 
4268 /* kvm_io_bus_read - called under kvm->slots_lock */
4269 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4270 		    int len, void *val)
4271 {
4272 	struct kvm_io_bus *bus;
4273 	struct kvm_io_range range;
4274 	int r;
4275 
4276 	range = (struct kvm_io_range) {
4277 		.addr = addr,
4278 		.len = len,
4279 	};
4280 
4281 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4282 	if (!bus)
4283 		return -ENOMEM;
4284 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4285 	return r < 0 ? r : 0;
4286 }
4287 
4288 /* Caller must hold slots_lock. */
4289 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4290 			    int len, struct kvm_io_device *dev)
4291 {
4292 	int i;
4293 	struct kvm_io_bus *new_bus, *bus;
4294 	struct kvm_io_range range;
4295 
4296 	bus = kvm_get_bus(kvm, bus_idx);
4297 	if (!bus)
4298 		return -ENOMEM;
4299 
4300 	/* exclude ioeventfd which is limited by maximum fd */
4301 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4302 		return -ENOSPC;
4303 
4304 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4305 			  GFP_KERNEL_ACCOUNT);
4306 	if (!new_bus)
4307 		return -ENOMEM;
4308 
4309 	range = (struct kvm_io_range) {
4310 		.addr = addr,
4311 		.len = len,
4312 		.dev = dev,
4313 	};
4314 
4315 	for (i = 0; i < bus->dev_count; i++)
4316 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4317 			break;
4318 
4319 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4320 	new_bus->dev_count++;
4321 	new_bus->range[i] = range;
4322 	memcpy(new_bus->range + i + 1, bus->range + i,
4323 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4324 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4325 	synchronize_srcu_expedited(&kvm->srcu);
4326 	kfree(bus);
4327 
4328 	return 0;
4329 }
4330 
4331 /* Caller must hold slots_lock. */
4332 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4333 			       struct kvm_io_device *dev)
4334 {
4335 	int i, j;
4336 	struct kvm_io_bus *new_bus, *bus;
4337 
4338 	bus = kvm_get_bus(kvm, bus_idx);
4339 	if (!bus)
4340 		return;
4341 
4342 	for (i = 0; i < bus->dev_count; i++)
4343 		if (bus->range[i].dev == dev) {
4344 			break;
4345 		}
4346 
4347 	if (i == bus->dev_count)
4348 		return;
4349 
4350 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4351 			  GFP_KERNEL_ACCOUNT);
4352 	if (new_bus) {
4353 		memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4354 		new_bus->dev_count--;
4355 		memcpy(new_bus->range + i, bus->range + i + 1,
4356 		       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4357 	} else {
4358 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4359 		for (j = 0; j < bus->dev_count; j++) {
4360 			if (j == i)
4361 				continue;
4362 			kvm_iodevice_destructor(bus->range[j].dev);
4363 		}
4364 	}
4365 
4366 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4367 	synchronize_srcu_expedited(&kvm->srcu);
4368 	kfree(bus);
4369 	return;
4370 }
4371 
4372 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4373 					 gpa_t addr)
4374 {
4375 	struct kvm_io_bus *bus;
4376 	int dev_idx, srcu_idx;
4377 	struct kvm_io_device *iodev = NULL;
4378 
4379 	srcu_idx = srcu_read_lock(&kvm->srcu);
4380 
4381 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4382 	if (!bus)
4383 		goto out_unlock;
4384 
4385 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4386 	if (dev_idx < 0)
4387 		goto out_unlock;
4388 
4389 	iodev = bus->range[dev_idx].dev;
4390 
4391 out_unlock:
4392 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4393 
4394 	return iodev;
4395 }
4396 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4397 
4398 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4399 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4400 			   const char *fmt)
4401 {
4402 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4403 					  inode->i_private;
4404 
4405 	/* The debugfs files are a reference to the kvm struct which
4406 	 * is still valid when kvm_destroy_vm is called.
4407 	 * To avoid the race between open and the removal of the debugfs
4408 	 * directory we test against the users count.
4409 	 */
4410 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4411 		return -ENOENT;
4412 
4413 	if (simple_attr_open(inode, file, get,
4414 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4415 		    ? set : NULL,
4416 		    fmt)) {
4417 		kvm_put_kvm(stat_data->kvm);
4418 		return -ENOMEM;
4419 	}
4420 
4421 	return 0;
4422 }
4423 
4424 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4425 {
4426 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4427 					  inode->i_private;
4428 
4429 	simple_attr_release(inode, file);
4430 	kvm_put_kvm(stat_data->kvm);
4431 
4432 	return 0;
4433 }
4434 
4435 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4436 {
4437 	*val = *(ulong *)((void *)kvm + offset);
4438 
4439 	return 0;
4440 }
4441 
4442 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4443 {
4444 	*(ulong *)((void *)kvm + offset) = 0;
4445 
4446 	return 0;
4447 }
4448 
4449 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4450 {
4451 	int i;
4452 	struct kvm_vcpu *vcpu;
4453 
4454 	*val = 0;
4455 
4456 	kvm_for_each_vcpu(i, vcpu, kvm)
4457 		*val += *(u64 *)((void *)vcpu + offset);
4458 
4459 	return 0;
4460 }
4461 
4462 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4463 {
4464 	int i;
4465 	struct kvm_vcpu *vcpu;
4466 
4467 	kvm_for_each_vcpu(i, vcpu, kvm)
4468 		*(u64 *)((void *)vcpu + offset) = 0;
4469 
4470 	return 0;
4471 }
4472 
4473 static int kvm_stat_data_get(void *data, u64 *val)
4474 {
4475 	int r = -EFAULT;
4476 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4477 
4478 	switch (stat_data->dbgfs_item->kind) {
4479 	case KVM_STAT_VM:
4480 		r = kvm_get_stat_per_vm(stat_data->kvm,
4481 					stat_data->dbgfs_item->offset, val);
4482 		break;
4483 	case KVM_STAT_VCPU:
4484 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4485 					  stat_data->dbgfs_item->offset, val);
4486 		break;
4487 	}
4488 
4489 	return r;
4490 }
4491 
4492 static int kvm_stat_data_clear(void *data, u64 val)
4493 {
4494 	int r = -EFAULT;
4495 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4496 
4497 	if (val)
4498 		return -EINVAL;
4499 
4500 	switch (stat_data->dbgfs_item->kind) {
4501 	case KVM_STAT_VM:
4502 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4503 					  stat_data->dbgfs_item->offset);
4504 		break;
4505 	case KVM_STAT_VCPU:
4506 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4507 					    stat_data->dbgfs_item->offset);
4508 		break;
4509 	}
4510 
4511 	return r;
4512 }
4513 
4514 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4515 {
4516 	__simple_attr_check_format("%llu\n", 0ull);
4517 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4518 				kvm_stat_data_clear, "%llu\n");
4519 }
4520 
4521 static const struct file_operations stat_fops_per_vm = {
4522 	.owner = THIS_MODULE,
4523 	.open = kvm_stat_data_open,
4524 	.release = kvm_debugfs_release,
4525 	.read = simple_attr_read,
4526 	.write = simple_attr_write,
4527 	.llseek = no_llseek,
4528 };
4529 
4530 static int vm_stat_get(void *_offset, u64 *val)
4531 {
4532 	unsigned offset = (long)_offset;
4533 	struct kvm *kvm;
4534 	u64 tmp_val;
4535 
4536 	*val = 0;
4537 	mutex_lock(&kvm_lock);
4538 	list_for_each_entry(kvm, &vm_list, vm_list) {
4539 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4540 		*val += tmp_val;
4541 	}
4542 	mutex_unlock(&kvm_lock);
4543 	return 0;
4544 }
4545 
4546 static int vm_stat_clear(void *_offset, u64 val)
4547 {
4548 	unsigned offset = (long)_offset;
4549 	struct kvm *kvm;
4550 
4551 	if (val)
4552 		return -EINVAL;
4553 
4554 	mutex_lock(&kvm_lock);
4555 	list_for_each_entry(kvm, &vm_list, vm_list) {
4556 		kvm_clear_stat_per_vm(kvm, offset);
4557 	}
4558 	mutex_unlock(&kvm_lock);
4559 
4560 	return 0;
4561 }
4562 
4563 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4564 
4565 static int vcpu_stat_get(void *_offset, u64 *val)
4566 {
4567 	unsigned offset = (long)_offset;
4568 	struct kvm *kvm;
4569 	u64 tmp_val;
4570 
4571 	*val = 0;
4572 	mutex_lock(&kvm_lock);
4573 	list_for_each_entry(kvm, &vm_list, vm_list) {
4574 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4575 		*val += tmp_val;
4576 	}
4577 	mutex_unlock(&kvm_lock);
4578 	return 0;
4579 }
4580 
4581 static int vcpu_stat_clear(void *_offset, u64 val)
4582 {
4583 	unsigned offset = (long)_offset;
4584 	struct kvm *kvm;
4585 
4586 	if (val)
4587 		return -EINVAL;
4588 
4589 	mutex_lock(&kvm_lock);
4590 	list_for_each_entry(kvm, &vm_list, vm_list) {
4591 		kvm_clear_stat_per_vcpu(kvm, offset);
4592 	}
4593 	mutex_unlock(&kvm_lock);
4594 
4595 	return 0;
4596 }
4597 
4598 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4599 			"%llu\n");
4600 
4601 static const struct file_operations *stat_fops[] = {
4602 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4603 	[KVM_STAT_VM]   = &vm_stat_fops,
4604 };
4605 
4606 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4607 {
4608 	struct kobj_uevent_env *env;
4609 	unsigned long long created, active;
4610 
4611 	if (!kvm_dev.this_device || !kvm)
4612 		return;
4613 
4614 	mutex_lock(&kvm_lock);
4615 	if (type == KVM_EVENT_CREATE_VM) {
4616 		kvm_createvm_count++;
4617 		kvm_active_vms++;
4618 	} else if (type == KVM_EVENT_DESTROY_VM) {
4619 		kvm_active_vms--;
4620 	}
4621 	created = kvm_createvm_count;
4622 	active = kvm_active_vms;
4623 	mutex_unlock(&kvm_lock);
4624 
4625 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4626 	if (!env)
4627 		return;
4628 
4629 	add_uevent_var(env, "CREATED=%llu", created);
4630 	add_uevent_var(env, "COUNT=%llu", active);
4631 
4632 	if (type == KVM_EVENT_CREATE_VM) {
4633 		add_uevent_var(env, "EVENT=create");
4634 		kvm->userspace_pid = task_pid_nr(current);
4635 	} else if (type == KVM_EVENT_DESTROY_VM) {
4636 		add_uevent_var(env, "EVENT=destroy");
4637 	}
4638 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4639 
4640 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4641 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4642 
4643 		if (p) {
4644 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4645 			if (!IS_ERR(tmp))
4646 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4647 			kfree(p);
4648 		}
4649 	}
4650 	/* no need for checks, since we are adding at most only 5 keys */
4651 	env->envp[env->envp_idx++] = NULL;
4652 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4653 	kfree(env);
4654 }
4655 
4656 static void kvm_init_debug(void)
4657 {
4658 	struct kvm_stats_debugfs_item *p;
4659 
4660 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4661 
4662 	kvm_debugfs_num_entries = 0;
4663 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4664 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4665 				    kvm_debugfs_dir, (void *)(long)p->offset,
4666 				    stat_fops[p->kind]);
4667 	}
4668 }
4669 
4670 static int kvm_suspend(void)
4671 {
4672 	if (kvm_usage_count)
4673 		hardware_disable_nolock(NULL);
4674 	return 0;
4675 }
4676 
4677 static void kvm_resume(void)
4678 {
4679 	if (kvm_usage_count) {
4680 #ifdef CONFIG_LOCKDEP
4681 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4682 #endif
4683 		hardware_enable_nolock(NULL);
4684 	}
4685 }
4686 
4687 static struct syscore_ops kvm_syscore_ops = {
4688 	.suspend = kvm_suspend,
4689 	.resume = kvm_resume,
4690 };
4691 
4692 static inline
4693 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4694 {
4695 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4696 }
4697 
4698 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4699 {
4700 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4701 
4702 	WRITE_ONCE(vcpu->preempted, false);
4703 	WRITE_ONCE(vcpu->ready, false);
4704 
4705 	__this_cpu_write(kvm_running_vcpu, vcpu);
4706 	kvm_arch_sched_in(vcpu, cpu);
4707 	kvm_arch_vcpu_load(vcpu, cpu);
4708 }
4709 
4710 static void kvm_sched_out(struct preempt_notifier *pn,
4711 			  struct task_struct *next)
4712 {
4713 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4714 
4715 	if (current->state == TASK_RUNNING) {
4716 		WRITE_ONCE(vcpu->preempted, true);
4717 		WRITE_ONCE(vcpu->ready, true);
4718 	}
4719 	kvm_arch_vcpu_put(vcpu);
4720 	__this_cpu_write(kvm_running_vcpu, NULL);
4721 }
4722 
4723 /**
4724  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4725  *
4726  * We can disable preemption locally around accessing the per-CPU variable,
4727  * and use the resolved vcpu pointer after enabling preemption again,
4728  * because even if the current thread is migrated to another CPU, reading
4729  * the per-CPU value later will give us the same value as we update the
4730  * per-CPU variable in the preempt notifier handlers.
4731  */
4732 struct kvm_vcpu *kvm_get_running_vcpu(void)
4733 {
4734 	struct kvm_vcpu *vcpu;
4735 
4736 	preempt_disable();
4737 	vcpu = __this_cpu_read(kvm_running_vcpu);
4738 	preempt_enable();
4739 
4740 	return vcpu;
4741 }
4742 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4743 
4744 /**
4745  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4746  */
4747 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4748 {
4749         return &kvm_running_vcpu;
4750 }
4751 
4752 struct kvm_cpu_compat_check {
4753 	void *opaque;
4754 	int *ret;
4755 };
4756 
4757 static void check_processor_compat(void *data)
4758 {
4759 	struct kvm_cpu_compat_check *c = data;
4760 
4761 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4762 }
4763 
4764 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4765 		  struct module *module)
4766 {
4767 	struct kvm_cpu_compat_check c;
4768 	int r;
4769 	int cpu;
4770 
4771 	r = kvm_arch_init(opaque);
4772 	if (r)
4773 		goto out_fail;
4774 
4775 	/*
4776 	 * kvm_arch_init makes sure there's at most one caller
4777 	 * for architectures that support multiple implementations,
4778 	 * like intel and amd on x86.
4779 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4780 	 * conflicts in case kvm is already setup for another implementation.
4781 	 */
4782 	r = kvm_irqfd_init();
4783 	if (r)
4784 		goto out_irqfd;
4785 
4786 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4787 		r = -ENOMEM;
4788 		goto out_free_0;
4789 	}
4790 
4791 	r = kvm_arch_hardware_setup(opaque);
4792 	if (r < 0)
4793 		goto out_free_1;
4794 
4795 	c.ret = &r;
4796 	c.opaque = opaque;
4797 	for_each_online_cpu(cpu) {
4798 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4799 		if (r < 0)
4800 			goto out_free_2;
4801 	}
4802 
4803 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4804 				      kvm_starting_cpu, kvm_dying_cpu);
4805 	if (r)
4806 		goto out_free_2;
4807 	register_reboot_notifier(&kvm_reboot_notifier);
4808 
4809 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4810 	if (!vcpu_align)
4811 		vcpu_align = __alignof__(struct kvm_vcpu);
4812 	kvm_vcpu_cache =
4813 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4814 					   SLAB_ACCOUNT,
4815 					   offsetof(struct kvm_vcpu, arch),
4816 					   sizeof_field(struct kvm_vcpu, arch),
4817 					   NULL);
4818 	if (!kvm_vcpu_cache) {
4819 		r = -ENOMEM;
4820 		goto out_free_3;
4821 	}
4822 
4823 	r = kvm_async_pf_init();
4824 	if (r)
4825 		goto out_free;
4826 
4827 	kvm_chardev_ops.owner = module;
4828 	kvm_vm_fops.owner = module;
4829 	kvm_vcpu_fops.owner = module;
4830 
4831 	r = misc_register(&kvm_dev);
4832 	if (r) {
4833 		pr_err("kvm: misc device register failed\n");
4834 		goto out_unreg;
4835 	}
4836 
4837 	register_syscore_ops(&kvm_syscore_ops);
4838 
4839 	kvm_preempt_ops.sched_in = kvm_sched_in;
4840 	kvm_preempt_ops.sched_out = kvm_sched_out;
4841 
4842 	kvm_init_debug();
4843 
4844 	r = kvm_vfio_ops_init();
4845 	WARN_ON(r);
4846 
4847 	return 0;
4848 
4849 out_unreg:
4850 	kvm_async_pf_deinit();
4851 out_free:
4852 	kmem_cache_destroy(kvm_vcpu_cache);
4853 out_free_3:
4854 	unregister_reboot_notifier(&kvm_reboot_notifier);
4855 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4856 out_free_2:
4857 	kvm_arch_hardware_unsetup();
4858 out_free_1:
4859 	free_cpumask_var(cpus_hardware_enabled);
4860 out_free_0:
4861 	kvm_irqfd_exit();
4862 out_irqfd:
4863 	kvm_arch_exit();
4864 out_fail:
4865 	return r;
4866 }
4867 EXPORT_SYMBOL_GPL(kvm_init);
4868 
4869 void kvm_exit(void)
4870 {
4871 	debugfs_remove_recursive(kvm_debugfs_dir);
4872 	misc_deregister(&kvm_dev);
4873 	kmem_cache_destroy(kvm_vcpu_cache);
4874 	kvm_async_pf_deinit();
4875 	unregister_syscore_ops(&kvm_syscore_ops);
4876 	unregister_reboot_notifier(&kvm_reboot_notifier);
4877 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4878 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4879 	kvm_arch_hardware_unsetup();
4880 	kvm_arch_exit();
4881 	kvm_irqfd_exit();
4882 	free_cpumask_var(cpus_hardware_enabled);
4883 	kvm_vfio_ops_exit();
4884 }
4885 EXPORT_SYMBOL_GPL(kvm_exit);
4886 
4887 struct kvm_vm_worker_thread_context {
4888 	struct kvm *kvm;
4889 	struct task_struct *parent;
4890 	struct completion init_done;
4891 	kvm_vm_thread_fn_t thread_fn;
4892 	uintptr_t data;
4893 	int err;
4894 };
4895 
4896 static int kvm_vm_worker_thread(void *context)
4897 {
4898 	/*
4899 	 * The init_context is allocated on the stack of the parent thread, so
4900 	 * we have to locally copy anything that is needed beyond initialization
4901 	 */
4902 	struct kvm_vm_worker_thread_context *init_context = context;
4903 	struct kvm *kvm = init_context->kvm;
4904 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4905 	uintptr_t data = init_context->data;
4906 	int err;
4907 
4908 	err = kthread_park(current);
4909 	/* kthread_park(current) is never supposed to return an error */
4910 	WARN_ON(err != 0);
4911 	if (err)
4912 		goto init_complete;
4913 
4914 	err = cgroup_attach_task_all(init_context->parent, current);
4915 	if (err) {
4916 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4917 			__func__, err);
4918 		goto init_complete;
4919 	}
4920 
4921 	set_user_nice(current, task_nice(init_context->parent));
4922 
4923 init_complete:
4924 	init_context->err = err;
4925 	complete(&init_context->init_done);
4926 	init_context = NULL;
4927 
4928 	if (err)
4929 		return err;
4930 
4931 	/* Wait to be woken up by the spawner before proceeding. */
4932 	kthread_parkme();
4933 
4934 	if (!kthread_should_stop())
4935 		err = thread_fn(kvm, data);
4936 
4937 	return err;
4938 }
4939 
4940 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4941 				uintptr_t data, const char *name,
4942 				struct task_struct **thread_ptr)
4943 {
4944 	struct kvm_vm_worker_thread_context init_context = {};
4945 	struct task_struct *thread;
4946 
4947 	*thread_ptr = NULL;
4948 	init_context.kvm = kvm;
4949 	init_context.parent = current;
4950 	init_context.thread_fn = thread_fn;
4951 	init_context.data = data;
4952 	init_completion(&init_context.init_done);
4953 
4954 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4955 			     "%s-%d", name, task_pid_nr(current));
4956 	if (IS_ERR(thread))
4957 		return PTR_ERR(thread);
4958 
4959 	/* kthread_run is never supposed to return NULL */
4960 	WARN_ON(thread == NULL);
4961 
4962 	wait_for_completion(&init_context.init_done);
4963 
4964 	if (!init_context.err)
4965 		*thread_ptr = thread;
4966 
4967 	return init_context.err;
4968 }
4969