1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 55 #include <asm/processor.h> 56 #include <asm/ioctl.h> 57 #include <linux/uaccess.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, 0644); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* The start value to grow halt_poll_ns from */ 83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 84 module_param(halt_poll_ns_grow_start, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 86 87 /* Default resets per-vcpu halt_poll_ns . */ 88 unsigned int halt_poll_ns_shrink; 89 module_param(halt_poll_ns_shrink, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 91 92 /* 93 * Ordering of locks: 94 * 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 96 */ 97 98 DEFINE_MUTEX(kvm_lock); 99 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 100 LIST_HEAD(vm_list); 101 102 static cpumask_var_t cpus_hardware_enabled; 103 static int kvm_usage_count; 104 static atomic_t hardware_enable_failed; 105 106 static struct kmem_cache *kvm_vcpu_cache; 107 108 static __read_mostly struct preempt_ops kvm_preempt_ops; 109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 110 111 struct dentry *kvm_debugfs_dir; 112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 113 114 static int kvm_debugfs_num_entries; 115 static const struct file_operations stat_fops_per_vm; 116 117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #ifdef CONFIG_KVM_COMPAT 120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #define KVM_COMPAT(c) .compat_ioctl = (c) 123 #else 124 /* 125 * For architectures that don't implement a compat infrastructure, 126 * adopt a double line of defense: 127 * - Prevent a compat task from opening /dev/kvm 128 * - If the open has been done by a 64bit task, and the KVM fd 129 * passed to a compat task, let the ioctls fail. 130 */ 131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 132 unsigned long arg) { return -EINVAL; } 133 134 static int kvm_no_compat_open(struct inode *inode, struct file *file) 135 { 136 return is_compat_task() ? -ENODEV : 0; 137 } 138 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 139 .open = kvm_no_compat_open 140 #endif 141 static int hardware_enable_all(void); 142 static void hardware_disable_all(void); 143 144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 145 146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 147 148 __visible bool kvm_rebooting; 149 EXPORT_SYMBOL_GPL(kvm_rebooting); 150 151 #define KVM_EVENT_CREATE_VM 0 152 #define KVM_EVENT_DESTROY_VM 1 153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 154 static unsigned long long kvm_createvm_count; 155 static unsigned long long kvm_active_vms; 156 157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 158 unsigned long start, unsigned long end) 159 { 160 } 161 162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 163 { 164 /* 165 * The metadata used by is_zone_device_page() to determine whether or 166 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 167 * the device has been pinned, e.g. by get_user_pages(). WARN if the 168 * page_count() is zero to help detect bad usage of this helper. 169 */ 170 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 171 return false; 172 173 return is_zone_device_page(pfn_to_page(pfn)); 174 } 175 176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 177 { 178 /* 179 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 180 * perspective they are "normal" pages, albeit with slightly different 181 * usage rules. 182 */ 183 if (pfn_valid(pfn)) 184 return PageReserved(pfn_to_page(pfn)) && 185 !is_zero_pfn(pfn) && 186 !kvm_is_zone_device_pfn(pfn); 187 188 return true; 189 } 190 191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 192 { 193 struct page *page = pfn_to_page(pfn); 194 195 if (!PageTransCompoundMap(page)) 196 return false; 197 198 return is_transparent_hugepage(compound_head(page)); 199 } 200 201 /* 202 * Switches to specified vcpu, until a matching vcpu_put() 203 */ 204 void vcpu_load(struct kvm_vcpu *vcpu) 205 { 206 int cpu = get_cpu(); 207 208 __this_cpu_write(kvm_running_vcpu, vcpu); 209 preempt_notifier_register(&vcpu->preempt_notifier); 210 kvm_arch_vcpu_load(vcpu, cpu); 211 put_cpu(); 212 } 213 EXPORT_SYMBOL_GPL(vcpu_load); 214 215 void vcpu_put(struct kvm_vcpu *vcpu) 216 { 217 preempt_disable(); 218 kvm_arch_vcpu_put(vcpu); 219 preempt_notifier_unregister(&vcpu->preempt_notifier); 220 __this_cpu_write(kvm_running_vcpu, NULL); 221 preempt_enable(); 222 } 223 EXPORT_SYMBOL_GPL(vcpu_put); 224 225 /* TODO: merge with kvm_arch_vcpu_should_kick */ 226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 227 { 228 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 229 230 /* 231 * We need to wait for the VCPU to reenable interrupts and get out of 232 * READING_SHADOW_PAGE_TABLES mode. 233 */ 234 if (req & KVM_REQUEST_WAIT) 235 return mode != OUTSIDE_GUEST_MODE; 236 237 /* 238 * Need to kick a running VCPU, but otherwise there is nothing to do. 239 */ 240 return mode == IN_GUEST_MODE; 241 } 242 243 static void ack_flush(void *_completed) 244 { 245 } 246 247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 248 { 249 if (unlikely(!cpus)) 250 cpus = cpu_online_mask; 251 252 if (cpumask_empty(cpus)) 253 return false; 254 255 smp_call_function_many(cpus, ack_flush, NULL, wait); 256 return true; 257 } 258 259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 260 struct kvm_vcpu *except, 261 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 262 { 263 int i, cpu, me; 264 struct kvm_vcpu *vcpu; 265 bool called; 266 267 me = get_cpu(); 268 269 kvm_for_each_vcpu(i, vcpu, kvm) { 270 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) || 271 vcpu == except) 272 continue; 273 274 kvm_make_request(req, vcpu); 275 cpu = vcpu->cpu; 276 277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 278 continue; 279 280 if (tmp != NULL && cpu != -1 && cpu != me && 281 kvm_request_needs_ipi(vcpu, req)) 282 __cpumask_set_cpu(cpu, tmp); 283 } 284 285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 286 put_cpu(); 287 288 return called; 289 } 290 291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 292 struct kvm_vcpu *except) 293 { 294 cpumask_var_t cpus; 295 bool called; 296 297 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 298 299 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus); 300 301 free_cpumask_var(cpus); 302 return called; 303 } 304 305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 306 { 307 return kvm_make_all_cpus_request_except(kvm, req, NULL); 308 } 309 310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 311 void kvm_flush_remote_tlbs(struct kvm *kvm) 312 { 313 /* 314 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 315 * kvm_make_all_cpus_request. 316 */ 317 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 318 319 /* 320 * We want to publish modifications to the page tables before reading 321 * mode. Pairs with a memory barrier in arch-specific code. 322 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 323 * and smp_mb in walk_shadow_page_lockless_begin/end. 324 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 325 * 326 * There is already an smp_mb__after_atomic() before 327 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 328 * barrier here. 329 */ 330 if (!kvm_arch_flush_remote_tlb(kvm) 331 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 332 ++kvm->stat.remote_tlb_flush; 333 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 334 } 335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 336 #endif 337 338 void kvm_reload_remote_mmus(struct kvm *kvm) 339 { 340 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 341 } 342 343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 345 gfp_t gfp_flags) 346 { 347 gfp_flags |= mc->gfp_zero; 348 349 if (mc->kmem_cache) 350 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 351 else 352 return (void *)__get_free_page(gfp_flags); 353 } 354 355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 356 { 357 void *obj; 358 359 if (mc->nobjs >= min) 360 return 0; 361 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 362 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 363 if (!obj) 364 return mc->nobjs >= min ? 0 : -ENOMEM; 365 mc->objects[mc->nobjs++] = obj; 366 } 367 return 0; 368 } 369 370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 371 { 372 return mc->nobjs; 373 } 374 375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 376 { 377 while (mc->nobjs) { 378 if (mc->kmem_cache) 379 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 380 else 381 free_page((unsigned long)mc->objects[--mc->nobjs]); 382 } 383 } 384 385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 386 { 387 void *p; 388 389 if (WARN_ON(!mc->nobjs)) 390 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 391 else 392 p = mc->objects[--mc->nobjs]; 393 BUG_ON(!p); 394 return p; 395 } 396 #endif 397 398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 399 { 400 mutex_init(&vcpu->mutex); 401 vcpu->cpu = -1; 402 vcpu->kvm = kvm; 403 vcpu->vcpu_id = id; 404 vcpu->pid = NULL; 405 rcuwait_init(&vcpu->wait); 406 kvm_async_pf_vcpu_init(vcpu); 407 408 vcpu->pre_pcpu = -1; 409 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 410 411 kvm_vcpu_set_in_spin_loop(vcpu, false); 412 kvm_vcpu_set_dy_eligible(vcpu, false); 413 vcpu->preempted = false; 414 vcpu->ready = false; 415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 416 } 417 418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 419 { 420 kvm_arch_vcpu_destroy(vcpu); 421 422 /* 423 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 424 * the vcpu->pid pointer, and at destruction time all file descriptors 425 * are already gone. 426 */ 427 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 428 429 free_page((unsigned long)vcpu->run); 430 kmem_cache_free(kvm_vcpu_cache, vcpu); 431 } 432 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 433 434 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 435 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 436 { 437 return container_of(mn, struct kvm, mmu_notifier); 438 } 439 440 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 441 struct mm_struct *mm, 442 unsigned long start, unsigned long end) 443 { 444 struct kvm *kvm = mmu_notifier_to_kvm(mn); 445 int idx; 446 447 idx = srcu_read_lock(&kvm->srcu); 448 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 449 srcu_read_unlock(&kvm->srcu, idx); 450 } 451 452 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 453 struct mm_struct *mm, 454 unsigned long address, 455 pte_t pte) 456 { 457 struct kvm *kvm = mmu_notifier_to_kvm(mn); 458 int idx; 459 460 idx = srcu_read_lock(&kvm->srcu); 461 spin_lock(&kvm->mmu_lock); 462 kvm->mmu_notifier_seq++; 463 464 if (kvm_set_spte_hva(kvm, address, pte)) 465 kvm_flush_remote_tlbs(kvm); 466 467 spin_unlock(&kvm->mmu_lock); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 472 const struct mmu_notifier_range *range) 473 { 474 struct kvm *kvm = mmu_notifier_to_kvm(mn); 475 int need_tlb_flush = 0, idx; 476 477 idx = srcu_read_lock(&kvm->srcu); 478 spin_lock(&kvm->mmu_lock); 479 /* 480 * The count increase must become visible at unlock time as no 481 * spte can be established without taking the mmu_lock and 482 * count is also read inside the mmu_lock critical section. 483 */ 484 kvm->mmu_notifier_count++; 485 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end, 486 range->flags); 487 need_tlb_flush |= kvm->tlbs_dirty; 488 /* we've to flush the tlb before the pages can be freed */ 489 if (need_tlb_flush) 490 kvm_flush_remote_tlbs(kvm); 491 492 spin_unlock(&kvm->mmu_lock); 493 srcu_read_unlock(&kvm->srcu, idx); 494 495 return 0; 496 } 497 498 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 499 const struct mmu_notifier_range *range) 500 { 501 struct kvm *kvm = mmu_notifier_to_kvm(mn); 502 503 spin_lock(&kvm->mmu_lock); 504 /* 505 * This sequence increase will notify the kvm page fault that 506 * the page that is going to be mapped in the spte could have 507 * been freed. 508 */ 509 kvm->mmu_notifier_seq++; 510 smp_wmb(); 511 /* 512 * The above sequence increase must be visible before the 513 * below count decrease, which is ensured by the smp_wmb above 514 * in conjunction with the smp_rmb in mmu_notifier_retry(). 515 */ 516 kvm->mmu_notifier_count--; 517 spin_unlock(&kvm->mmu_lock); 518 519 BUG_ON(kvm->mmu_notifier_count < 0); 520 } 521 522 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 523 struct mm_struct *mm, 524 unsigned long start, 525 unsigned long end) 526 { 527 struct kvm *kvm = mmu_notifier_to_kvm(mn); 528 int young, idx; 529 530 idx = srcu_read_lock(&kvm->srcu); 531 spin_lock(&kvm->mmu_lock); 532 533 young = kvm_age_hva(kvm, start, end); 534 if (young) 535 kvm_flush_remote_tlbs(kvm); 536 537 spin_unlock(&kvm->mmu_lock); 538 srcu_read_unlock(&kvm->srcu, idx); 539 540 return young; 541 } 542 543 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 544 struct mm_struct *mm, 545 unsigned long start, 546 unsigned long end) 547 { 548 struct kvm *kvm = mmu_notifier_to_kvm(mn); 549 int young, idx; 550 551 idx = srcu_read_lock(&kvm->srcu); 552 spin_lock(&kvm->mmu_lock); 553 /* 554 * Even though we do not flush TLB, this will still adversely 555 * affect performance on pre-Haswell Intel EPT, where there is 556 * no EPT Access Bit to clear so that we have to tear down EPT 557 * tables instead. If we find this unacceptable, we can always 558 * add a parameter to kvm_age_hva so that it effectively doesn't 559 * do anything on clear_young. 560 * 561 * Also note that currently we never issue secondary TLB flushes 562 * from clear_young, leaving this job up to the regular system 563 * cadence. If we find this inaccurate, we might come up with a 564 * more sophisticated heuristic later. 565 */ 566 young = kvm_age_hva(kvm, start, end); 567 spin_unlock(&kvm->mmu_lock); 568 srcu_read_unlock(&kvm->srcu, idx); 569 570 return young; 571 } 572 573 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 574 struct mm_struct *mm, 575 unsigned long address) 576 { 577 struct kvm *kvm = mmu_notifier_to_kvm(mn); 578 int young, idx; 579 580 idx = srcu_read_lock(&kvm->srcu); 581 spin_lock(&kvm->mmu_lock); 582 young = kvm_test_age_hva(kvm, address); 583 spin_unlock(&kvm->mmu_lock); 584 srcu_read_unlock(&kvm->srcu, idx); 585 586 return young; 587 } 588 589 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 590 struct mm_struct *mm) 591 { 592 struct kvm *kvm = mmu_notifier_to_kvm(mn); 593 int idx; 594 595 idx = srcu_read_lock(&kvm->srcu); 596 kvm_arch_flush_shadow_all(kvm); 597 srcu_read_unlock(&kvm->srcu, idx); 598 } 599 600 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 601 .invalidate_range = kvm_mmu_notifier_invalidate_range, 602 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 603 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 604 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 605 .clear_young = kvm_mmu_notifier_clear_young, 606 .test_young = kvm_mmu_notifier_test_young, 607 .change_pte = kvm_mmu_notifier_change_pte, 608 .release = kvm_mmu_notifier_release, 609 }; 610 611 static int kvm_init_mmu_notifier(struct kvm *kvm) 612 { 613 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 614 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 615 } 616 617 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 618 619 static int kvm_init_mmu_notifier(struct kvm *kvm) 620 { 621 return 0; 622 } 623 624 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 625 626 static struct kvm_memslots *kvm_alloc_memslots(void) 627 { 628 int i; 629 struct kvm_memslots *slots; 630 631 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 632 if (!slots) 633 return NULL; 634 635 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 636 slots->id_to_index[i] = -1; 637 638 return slots; 639 } 640 641 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 642 { 643 if (!memslot->dirty_bitmap) 644 return; 645 646 kvfree(memslot->dirty_bitmap); 647 memslot->dirty_bitmap = NULL; 648 } 649 650 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 651 { 652 kvm_destroy_dirty_bitmap(slot); 653 654 kvm_arch_free_memslot(kvm, slot); 655 656 slot->flags = 0; 657 slot->npages = 0; 658 } 659 660 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 661 { 662 struct kvm_memory_slot *memslot; 663 664 if (!slots) 665 return; 666 667 kvm_for_each_memslot(memslot, slots) 668 kvm_free_memslot(kvm, memslot); 669 670 kvfree(slots); 671 } 672 673 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 674 { 675 int i; 676 677 if (!kvm->debugfs_dentry) 678 return; 679 680 debugfs_remove_recursive(kvm->debugfs_dentry); 681 682 if (kvm->debugfs_stat_data) { 683 for (i = 0; i < kvm_debugfs_num_entries; i++) 684 kfree(kvm->debugfs_stat_data[i]); 685 kfree(kvm->debugfs_stat_data); 686 } 687 } 688 689 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 690 { 691 char dir_name[ITOA_MAX_LEN * 2]; 692 struct kvm_stat_data *stat_data; 693 struct kvm_stats_debugfs_item *p; 694 695 if (!debugfs_initialized()) 696 return 0; 697 698 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 699 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 700 701 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 702 sizeof(*kvm->debugfs_stat_data), 703 GFP_KERNEL_ACCOUNT); 704 if (!kvm->debugfs_stat_data) 705 return -ENOMEM; 706 707 for (p = debugfs_entries; p->name; p++) { 708 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 709 if (!stat_data) 710 return -ENOMEM; 711 712 stat_data->kvm = kvm; 713 stat_data->dbgfs_item = p; 714 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 715 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 716 kvm->debugfs_dentry, stat_data, 717 &stat_fops_per_vm); 718 } 719 return 0; 720 } 721 722 /* 723 * Called after the VM is otherwise initialized, but just before adding it to 724 * the vm_list. 725 */ 726 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 727 { 728 return 0; 729 } 730 731 /* 732 * Called just after removing the VM from the vm_list, but before doing any 733 * other destruction. 734 */ 735 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 736 { 737 } 738 739 static struct kvm *kvm_create_vm(unsigned long type) 740 { 741 struct kvm *kvm = kvm_arch_alloc_vm(); 742 int r = -ENOMEM; 743 int i; 744 745 if (!kvm) 746 return ERR_PTR(-ENOMEM); 747 748 spin_lock_init(&kvm->mmu_lock); 749 mmgrab(current->mm); 750 kvm->mm = current->mm; 751 kvm_eventfd_init(kvm); 752 mutex_init(&kvm->lock); 753 mutex_init(&kvm->irq_lock); 754 mutex_init(&kvm->slots_lock); 755 INIT_LIST_HEAD(&kvm->devices); 756 757 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 758 759 if (init_srcu_struct(&kvm->srcu)) 760 goto out_err_no_srcu; 761 if (init_srcu_struct(&kvm->irq_srcu)) 762 goto out_err_no_irq_srcu; 763 764 refcount_set(&kvm->users_count, 1); 765 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 766 struct kvm_memslots *slots = kvm_alloc_memslots(); 767 768 if (!slots) 769 goto out_err_no_arch_destroy_vm; 770 /* Generations must be different for each address space. */ 771 slots->generation = i; 772 rcu_assign_pointer(kvm->memslots[i], slots); 773 } 774 775 for (i = 0; i < KVM_NR_BUSES; i++) { 776 rcu_assign_pointer(kvm->buses[i], 777 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 778 if (!kvm->buses[i]) 779 goto out_err_no_arch_destroy_vm; 780 } 781 782 kvm->max_halt_poll_ns = halt_poll_ns; 783 784 r = kvm_arch_init_vm(kvm, type); 785 if (r) 786 goto out_err_no_arch_destroy_vm; 787 788 r = hardware_enable_all(); 789 if (r) 790 goto out_err_no_disable; 791 792 #ifdef CONFIG_HAVE_KVM_IRQFD 793 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 794 #endif 795 796 r = kvm_init_mmu_notifier(kvm); 797 if (r) 798 goto out_err_no_mmu_notifier; 799 800 r = kvm_arch_post_init_vm(kvm); 801 if (r) 802 goto out_err; 803 804 mutex_lock(&kvm_lock); 805 list_add(&kvm->vm_list, &vm_list); 806 mutex_unlock(&kvm_lock); 807 808 preempt_notifier_inc(); 809 810 return kvm; 811 812 out_err: 813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 814 if (kvm->mmu_notifier.ops) 815 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 816 #endif 817 out_err_no_mmu_notifier: 818 hardware_disable_all(); 819 out_err_no_disable: 820 kvm_arch_destroy_vm(kvm); 821 out_err_no_arch_destroy_vm: 822 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 823 for (i = 0; i < KVM_NR_BUSES; i++) 824 kfree(kvm_get_bus(kvm, i)); 825 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 826 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 827 cleanup_srcu_struct(&kvm->irq_srcu); 828 out_err_no_irq_srcu: 829 cleanup_srcu_struct(&kvm->srcu); 830 out_err_no_srcu: 831 kvm_arch_free_vm(kvm); 832 mmdrop(current->mm); 833 return ERR_PTR(r); 834 } 835 836 static void kvm_destroy_devices(struct kvm *kvm) 837 { 838 struct kvm_device *dev, *tmp; 839 840 /* 841 * We do not need to take the kvm->lock here, because nobody else 842 * has a reference to the struct kvm at this point and therefore 843 * cannot access the devices list anyhow. 844 */ 845 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 846 list_del(&dev->vm_node); 847 dev->ops->destroy(dev); 848 } 849 } 850 851 static void kvm_destroy_vm(struct kvm *kvm) 852 { 853 int i; 854 struct mm_struct *mm = kvm->mm; 855 856 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 857 kvm_destroy_vm_debugfs(kvm); 858 kvm_arch_sync_events(kvm); 859 mutex_lock(&kvm_lock); 860 list_del(&kvm->vm_list); 861 mutex_unlock(&kvm_lock); 862 kvm_arch_pre_destroy_vm(kvm); 863 864 kvm_free_irq_routing(kvm); 865 for (i = 0; i < KVM_NR_BUSES; i++) { 866 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 867 868 if (bus) 869 kvm_io_bus_destroy(bus); 870 kvm->buses[i] = NULL; 871 } 872 kvm_coalesced_mmio_free(kvm); 873 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 874 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 875 #else 876 kvm_arch_flush_shadow_all(kvm); 877 #endif 878 kvm_arch_destroy_vm(kvm); 879 kvm_destroy_devices(kvm); 880 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 881 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 882 cleanup_srcu_struct(&kvm->irq_srcu); 883 cleanup_srcu_struct(&kvm->srcu); 884 kvm_arch_free_vm(kvm); 885 preempt_notifier_dec(); 886 hardware_disable_all(); 887 mmdrop(mm); 888 } 889 890 void kvm_get_kvm(struct kvm *kvm) 891 { 892 refcount_inc(&kvm->users_count); 893 } 894 EXPORT_SYMBOL_GPL(kvm_get_kvm); 895 896 void kvm_put_kvm(struct kvm *kvm) 897 { 898 if (refcount_dec_and_test(&kvm->users_count)) 899 kvm_destroy_vm(kvm); 900 } 901 EXPORT_SYMBOL_GPL(kvm_put_kvm); 902 903 /* 904 * Used to put a reference that was taken on behalf of an object associated 905 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 906 * of the new file descriptor fails and the reference cannot be transferred to 907 * its final owner. In such cases, the caller is still actively using @kvm and 908 * will fail miserably if the refcount unexpectedly hits zero. 909 */ 910 void kvm_put_kvm_no_destroy(struct kvm *kvm) 911 { 912 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 913 } 914 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 915 916 static int kvm_vm_release(struct inode *inode, struct file *filp) 917 { 918 struct kvm *kvm = filp->private_data; 919 920 kvm_irqfd_release(kvm); 921 922 kvm_put_kvm(kvm); 923 return 0; 924 } 925 926 /* 927 * Allocation size is twice as large as the actual dirty bitmap size. 928 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 929 */ 930 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 931 { 932 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 933 934 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 935 if (!memslot->dirty_bitmap) 936 return -ENOMEM; 937 938 return 0; 939 } 940 941 /* 942 * Delete a memslot by decrementing the number of used slots and shifting all 943 * other entries in the array forward one spot. 944 */ 945 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 946 struct kvm_memory_slot *memslot) 947 { 948 struct kvm_memory_slot *mslots = slots->memslots; 949 int i; 950 951 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 952 return; 953 954 slots->used_slots--; 955 956 if (atomic_read(&slots->lru_slot) >= slots->used_slots) 957 atomic_set(&slots->lru_slot, 0); 958 959 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 960 mslots[i] = mslots[i + 1]; 961 slots->id_to_index[mslots[i].id] = i; 962 } 963 mslots[i] = *memslot; 964 slots->id_to_index[memslot->id] = -1; 965 } 966 967 /* 968 * "Insert" a new memslot by incrementing the number of used slots. Returns 969 * the new slot's initial index into the memslots array. 970 */ 971 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 972 { 973 return slots->used_slots++; 974 } 975 976 /* 977 * Move a changed memslot backwards in the array by shifting existing slots 978 * with a higher GFN toward the front of the array. Note, the changed memslot 979 * itself is not preserved in the array, i.e. not swapped at this time, only 980 * its new index into the array is tracked. Returns the changed memslot's 981 * current index into the memslots array. 982 */ 983 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 984 struct kvm_memory_slot *memslot) 985 { 986 struct kvm_memory_slot *mslots = slots->memslots; 987 int i; 988 989 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 990 WARN_ON_ONCE(!slots->used_slots)) 991 return -1; 992 993 /* 994 * Move the target memslot backward in the array by shifting existing 995 * memslots with a higher GFN (than the target memslot) towards the 996 * front of the array. 997 */ 998 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 999 if (memslot->base_gfn > mslots[i + 1].base_gfn) 1000 break; 1001 1002 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1003 1004 /* Shift the next memslot forward one and update its index. */ 1005 mslots[i] = mslots[i + 1]; 1006 slots->id_to_index[mslots[i].id] = i; 1007 } 1008 return i; 1009 } 1010 1011 /* 1012 * Move a changed memslot forwards in the array by shifting existing slots with 1013 * a lower GFN toward the back of the array. Note, the changed memslot itself 1014 * is not preserved in the array, i.e. not swapped at this time, only its new 1015 * index into the array is tracked. Returns the changed memslot's final index 1016 * into the memslots array. 1017 */ 1018 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1019 struct kvm_memory_slot *memslot, 1020 int start) 1021 { 1022 struct kvm_memory_slot *mslots = slots->memslots; 1023 int i; 1024 1025 for (i = start; i > 0; i--) { 1026 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1027 break; 1028 1029 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1030 1031 /* Shift the next memslot back one and update its index. */ 1032 mslots[i] = mslots[i - 1]; 1033 slots->id_to_index[mslots[i].id] = i; 1034 } 1035 return i; 1036 } 1037 1038 /* 1039 * Re-sort memslots based on their GFN to account for an added, deleted, or 1040 * moved memslot. Sorting memslots by GFN allows using a binary search during 1041 * memslot lookup. 1042 * 1043 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1044 * at memslots[0] has the highest GFN. 1045 * 1046 * The sorting algorithm takes advantage of having initially sorted memslots 1047 * and knowing the position of the changed memslot. Sorting is also optimized 1048 * by not swapping the updated memslot and instead only shifting other memslots 1049 * and tracking the new index for the update memslot. Only once its final 1050 * index is known is the updated memslot copied into its position in the array. 1051 * 1052 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1053 * the end of the array. 1054 * 1055 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1056 * end of the array and then it forward to its correct location. 1057 * 1058 * - When moving a memslot, the algorithm first moves the updated memslot 1059 * backward to handle the scenario where the memslot's GFN was changed to a 1060 * lower value. update_memslots() then falls through and runs the same flow 1061 * as creating a memslot to move the memslot forward to handle the scenario 1062 * where its GFN was changed to a higher value. 1063 * 1064 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1065 * historical reasons. Originally, invalid memslots where denoted by having 1066 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1067 * to the end of the array. The current algorithm uses dedicated logic to 1068 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1069 * 1070 * The other historical motiviation for highest->lowest was to improve the 1071 * performance of memslot lookup. KVM originally used a linear search starting 1072 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1073 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1074 * single memslot above the 4gb boundary. As the largest memslot is also the 1075 * most likely to be referenced, sorting it to the front of the array was 1076 * advantageous. The current binary search starts from the middle of the array 1077 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1078 */ 1079 static void update_memslots(struct kvm_memslots *slots, 1080 struct kvm_memory_slot *memslot, 1081 enum kvm_mr_change change) 1082 { 1083 int i; 1084 1085 if (change == KVM_MR_DELETE) { 1086 kvm_memslot_delete(slots, memslot); 1087 } else { 1088 if (change == KVM_MR_CREATE) 1089 i = kvm_memslot_insert_back(slots); 1090 else 1091 i = kvm_memslot_move_backward(slots, memslot); 1092 i = kvm_memslot_move_forward(slots, memslot, i); 1093 1094 /* 1095 * Copy the memslot to its new position in memslots and update 1096 * its index accordingly. 1097 */ 1098 slots->memslots[i] = *memslot; 1099 slots->id_to_index[memslot->id] = i; 1100 } 1101 } 1102 1103 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1104 { 1105 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1106 1107 #ifdef __KVM_HAVE_READONLY_MEM 1108 valid_flags |= KVM_MEM_READONLY; 1109 #endif 1110 1111 if (mem->flags & ~valid_flags) 1112 return -EINVAL; 1113 1114 return 0; 1115 } 1116 1117 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1118 int as_id, struct kvm_memslots *slots) 1119 { 1120 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1121 u64 gen = old_memslots->generation; 1122 1123 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1124 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1125 1126 rcu_assign_pointer(kvm->memslots[as_id], slots); 1127 synchronize_srcu_expedited(&kvm->srcu); 1128 1129 /* 1130 * Increment the new memslot generation a second time, dropping the 1131 * update in-progress flag and incrementing the generation based on 1132 * the number of address spaces. This provides a unique and easily 1133 * identifiable generation number while the memslots are in flux. 1134 */ 1135 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1136 1137 /* 1138 * Generations must be unique even across address spaces. We do not need 1139 * a global counter for that, instead the generation space is evenly split 1140 * across address spaces. For example, with two address spaces, address 1141 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1142 * use generations 1, 3, 5, ... 1143 */ 1144 gen += KVM_ADDRESS_SPACE_NUM; 1145 1146 kvm_arch_memslots_updated(kvm, gen); 1147 1148 slots->generation = gen; 1149 1150 return old_memslots; 1151 } 1152 1153 /* 1154 * Note, at a minimum, the current number of used slots must be allocated, even 1155 * when deleting a memslot, as we need a complete duplicate of the memslots for 1156 * use when invalidating a memslot prior to deleting/moving the memslot. 1157 */ 1158 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1159 enum kvm_mr_change change) 1160 { 1161 struct kvm_memslots *slots; 1162 size_t old_size, new_size; 1163 1164 old_size = sizeof(struct kvm_memslots) + 1165 (sizeof(struct kvm_memory_slot) * old->used_slots); 1166 1167 if (change == KVM_MR_CREATE) 1168 new_size = old_size + sizeof(struct kvm_memory_slot); 1169 else 1170 new_size = old_size; 1171 1172 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1173 if (likely(slots)) 1174 memcpy(slots, old, old_size); 1175 1176 return slots; 1177 } 1178 1179 static int kvm_set_memslot(struct kvm *kvm, 1180 const struct kvm_userspace_memory_region *mem, 1181 struct kvm_memory_slot *old, 1182 struct kvm_memory_slot *new, int as_id, 1183 enum kvm_mr_change change) 1184 { 1185 struct kvm_memory_slot *slot; 1186 struct kvm_memslots *slots; 1187 int r; 1188 1189 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1190 if (!slots) 1191 return -ENOMEM; 1192 1193 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1194 /* 1195 * Note, the INVALID flag needs to be in the appropriate entry 1196 * in the freshly allocated memslots, not in @old or @new. 1197 */ 1198 slot = id_to_memslot(slots, old->id); 1199 slot->flags |= KVM_MEMSLOT_INVALID; 1200 1201 /* 1202 * We can re-use the old memslots, the only difference from the 1203 * newly installed memslots is the invalid flag, which will get 1204 * dropped by update_memslots anyway. We'll also revert to the 1205 * old memslots if preparing the new memory region fails. 1206 */ 1207 slots = install_new_memslots(kvm, as_id, slots); 1208 1209 /* From this point no new shadow pages pointing to a deleted, 1210 * or moved, memslot will be created. 1211 * 1212 * validation of sp->gfn happens in: 1213 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1214 * - kvm_is_visible_gfn (mmu_check_root) 1215 */ 1216 kvm_arch_flush_shadow_memslot(kvm, slot); 1217 } 1218 1219 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1220 if (r) 1221 goto out_slots; 1222 1223 update_memslots(slots, new, change); 1224 slots = install_new_memslots(kvm, as_id, slots); 1225 1226 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1227 1228 kvfree(slots); 1229 return 0; 1230 1231 out_slots: 1232 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1233 slots = install_new_memslots(kvm, as_id, slots); 1234 kvfree(slots); 1235 return r; 1236 } 1237 1238 static int kvm_delete_memslot(struct kvm *kvm, 1239 const struct kvm_userspace_memory_region *mem, 1240 struct kvm_memory_slot *old, int as_id) 1241 { 1242 struct kvm_memory_slot new; 1243 int r; 1244 1245 if (!old->npages) 1246 return -EINVAL; 1247 1248 memset(&new, 0, sizeof(new)); 1249 new.id = old->id; 1250 1251 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1252 if (r) 1253 return r; 1254 1255 kvm_free_memslot(kvm, old); 1256 return 0; 1257 } 1258 1259 /* 1260 * Allocate some memory and give it an address in the guest physical address 1261 * space. 1262 * 1263 * Discontiguous memory is allowed, mostly for framebuffers. 1264 * 1265 * Must be called holding kvm->slots_lock for write. 1266 */ 1267 int __kvm_set_memory_region(struct kvm *kvm, 1268 const struct kvm_userspace_memory_region *mem) 1269 { 1270 struct kvm_memory_slot old, new; 1271 struct kvm_memory_slot *tmp; 1272 enum kvm_mr_change change; 1273 int as_id, id; 1274 int r; 1275 1276 r = check_memory_region_flags(mem); 1277 if (r) 1278 return r; 1279 1280 as_id = mem->slot >> 16; 1281 id = (u16)mem->slot; 1282 1283 /* General sanity checks */ 1284 if (mem->memory_size & (PAGE_SIZE - 1)) 1285 return -EINVAL; 1286 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1287 return -EINVAL; 1288 /* We can read the guest memory with __xxx_user() later on. */ 1289 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1290 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1291 mem->memory_size)) 1292 return -EINVAL; 1293 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1294 return -EINVAL; 1295 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1296 return -EINVAL; 1297 1298 /* 1299 * Make a full copy of the old memslot, the pointer will become stale 1300 * when the memslots are re-sorted by update_memslots(), and the old 1301 * memslot needs to be referenced after calling update_memslots(), e.g. 1302 * to free its resources and for arch specific behavior. 1303 */ 1304 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1305 if (tmp) { 1306 old = *tmp; 1307 tmp = NULL; 1308 } else { 1309 memset(&old, 0, sizeof(old)); 1310 old.id = id; 1311 } 1312 1313 if (!mem->memory_size) 1314 return kvm_delete_memslot(kvm, mem, &old, as_id); 1315 1316 new.id = id; 1317 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1318 new.npages = mem->memory_size >> PAGE_SHIFT; 1319 new.flags = mem->flags; 1320 new.userspace_addr = mem->userspace_addr; 1321 1322 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1323 return -EINVAL; 1324 1325 if (!old.npages) { 1326 change = KVM_MR_CREATE; 1327 new.dirty_bitmap = NULL; 1328 memset(&new.arch, 0, sizeof(new.arch)); 1329 } else { /* Modify an existing slot. */ 1330 if ((new.userspace_addr != old.userspace_addr) || 1331 (new.npages != old.npages) || 1332 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1333 return -EINVAL; 1334 1335 if (new.base_gfn != old.base_gfn) 1336 change = KVM_MR_MOVE; 1337 else if (new.flags != old.flags) 1338 change = KVM_MR_FLAGS_ONLY; 1339 else /* Nothing to change. */ 1340 return 0; 1341 1342 /* Copy dirty_bitmap and arch from the current memslot. */ 1343 new.dirty_bitmap = old.dirty_bitmap; 1344 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1345 } 1346 1347 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1348 /* Check for overlaps */ 1349 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1350 if (tmp->id == id) 1351 continue; 1352 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1353 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1354 return -EEXIST; 1355 } 1356 } 1357 1358 /* Allocate/free page dirty bitmap as needed */ 1359 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1360 new.dirty_bitmap = NULL; 1361 else if (!new.dirty_bitmap) { 1362 r = kvm_alloc_dirty_bitmap(&new); 1363 if (r) 1364 return r; 1365 1366 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1367 bitmap_set(new.dirty_bitmap, 0, new.npages); 1368 } 1369 1370 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1371 if (r) 1372 goto out_bitmap; 1373 1374 if (old.dirty_bitmap && !new.dirty_bitmap) 1375 kvm_destroy_dirty_bitmap(&old); 1376 return 0; 1377 1378 out_bitmap: 1379 if (new.dirty_bitmap && !old.dirty_bitmap) 1380 kvm_destroy_dirty_bitmap(&new); 1381 return r; 1382 } 1383 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1384 1385 int kvm_set_memory_region(struct kvm *kvm, 1386 const struct kvm_userspace_memory_region *mem) 1387 { 1388 int r; 1389 1390 mutex_lock(&kvm->slots_lock); 1391 r = __kvm_set_memory_region(kvm, mem); 1392 mutex_unlock(&kvm->slots_lock); 1393 return r; 1394 } 1395 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1396 1397 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1398 struct kvm_userspace_memory_region *mem) 1399 { 1400 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1401 return -EINVAL; 1402 1403 return kvm_set_memory_region(kvm, mem); 1404 } 1405 1406 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1407 /** 1408 * kvm_get_dirty_log - get a snapshot of dirty pages 1409 * @kvm: pointer to kvm instance 1410 * @log: slot id and address to which we copy the log 1411 * @is_dirty: set to '1' if any dirty pages were found 1412 * @memslot: set to the associated memslot, always valid on success 1413 */ 1414 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1415 int *is_dirty, struct kvm_memory_slot **memslot) 1416 { 1417 struct kvm_memslots *slots; 1418 int i, as_id, id; 1419 unsigned long n; 1420 unsigned long any = 0; 1421 1422 *memslot = NULL; 1423 *is_dirty = 0; 1424 1425 as_id = log->slot >> 16; 1426 id = (u16)log->slot; 1427 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1428 return -EINVAL; 1429 1430 slots = __kvm_memslots(kvm, as_id); 1431 *memslot = id_to_memslot(slots, id); 1432 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1433 return -ENOENT; 1434 1435 kvm_arch_sync_dirty_log(kvm, *memslot); 1436 1437 n = kvm_dirty_bitmap_bytes(*memslot); 1438 1439 for (i = 0; !any && i < n/sizeof(long); ++i) 1440 any = (*memslot)->dirty_bitmap[i]; 1441 1442 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1443 return -EFAULT; 1444 1445 if (any) 1446 *is_dirty = 1; 1447 return 0; 1448 } 1449 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1450 1451 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1452 /** 1453 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1454 * and reenable dirty page tracking for the corresponding pages. 1455 * @kvm: pointer to kvm instance 1456 * @log: slot id and address to which we copy the log 1457 * 1458 * We need to keep it in mind that VCPU threads can write to the bitmap 1459 * concurrently. So, to avoid losing track of dirty pages we keep the 1460 * following order: 1461 * 1462 * 1. Take a snapshot of the bit and clear it if needed. 1463 * 2. Write protect the corresponding page. 1464 * 3. Copy the snapshot to the userspace. 1465 * 4. Upon return caller flushes TLB's if needed. 1466 * 1467 * Between 2 and 4, the guest may write to the page using the remaining TLB 1468 * entry. This is not a problem because the page is reported dirty using 1469 * the snapshot taken before and step 4 ensures that writes done after 1470 * exiting to userspace will be logged for the next call. 1471 * 1472 */ 1473 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1474 { 1475 struct kvm_memslots *slots; 1476 struct kvm_memory_slot *memslot; 1477 int i, as_id, id; 1478 unsigned long n; 1479 unsigned long *dirty_bitmap; 1480 unsigned long *dirty_bitmap_buffer; 1481 bool flush; 1482 1483 as_id = log->slot >> 16; 1484 id = (u16)log->slot; 1485 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1486 return -EINVAL; 1487 1488 slots = __kvm_memslots(kvm, as_id); 1489 memslot = id_to_memslot(slots, id); 1490 if (!memslot || !memslot->dirty_bitmap) 1491 return -ENOENT; 1492 1493 dirty_bitmap = memslot->dirty_bitmap; 1494 1495 kvm_arch_sync_dirty_log(kvm, memslot); 1496 1497 n = kvm_dirty_bitmap_bytes(memslot); 1498 flush = false; 1499 if (kvm->manual_dirty_log_protect) { 1500 /* 1501 * Unlike kvm_get_dirty_log, we always return false in *flush, 1502 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1503 * is some code duplication between this function and 1504 * kvm_get_dirty_log, but hopefully all architecture 1505 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1506 * can be eliminated. 1507 */ 1508 dirty_bitmap_buffer = dirty_bitmap; 1509 } else { 1510 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1511 memset(dirty_bitmap_buffer, 0, n); 1512 1513 spin_lock(&kvm->mmu_lock); 1514 for (i = 0; i < n / sizeof(long); i++) { 1515 unsigned long mask; 1516 gfn_t offset; 1517 1518 if (!dirty_bitmap[i]) 1519 continue; 1520 1521 flush = true; 1522 mask = xchg(&dirty_bitmap[i], 0); 1523 dirty_bitmap_buffer[i] = mask; 1524 1525 offset = i * BITS_PER_LONG; 1526 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1527 offset, mask); 1528 } 1529 spin_unlock(&kvm->mmu_lock); 1530 } 1531 1532 if (flush) 1533 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1534 1535 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1536 return -EFAULT; 1537 return 0; 1538 } 1539 1540 1541 /** 1542 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1543 * @kvm: kvm instance 1544 * @log: slot id and address to which we copy the log 1545 * 1546 * Steps 1-4 below provide general overview of dirty page logging. See 1547 * kvm_get_dirty_log_protect() function description for additional details. 1548 * 1549 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1550 * always flush the TLB (step 4) even if previous step failed and the dirty 1551 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1552 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1553 * writes will be marked dirty for next log read. 1554 * 1555 * 1. Take a snapshot of the bit and clear it if needed. 1556 * 2. Write protect the corresponding page. 1557 * 3. Copy the snapshot to the userspace. 1558 * 4. Flush TLB's if needed. 1559 */ 1560 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1561 struct kvm_dirty_log *log) 1562 { 1563 int r; 1564 1565 mutex_lock(&kvm->slots_lock); 1566 1567 r = kvm_get_dirty_log_protect(kvm, log); 1568 1569 mutex_unlock(&kvm->slots_lock); 1570 return r; 1571 } 1572 1573 /** 1574 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1575 * and reenable dirty page tracking for the corresponding pages. 1576 * @kvm: pointer to kvm instance 1577 * @log: slot id and address from which to fetch the bitmap of dirty pages 1578 */ 1579 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1580 struct kvm_clear_dirty_log *log) 1581 { 1582 struct kvm_memslots *slots; 1583 struct kvm_memory_slot *memslot; 1584 int as_id, id; 1585 gfn_t offset; 1586 unsigned long i, n; 1587 unsigned long *dirty_bitmap; 1588 unsigned long *dirty_bitmap_buffer; 1589 bool flush; 1590 1591 as_id = log->slot >> 16; 1592 id = (u16)log->slot; 1593 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1594 return -EINVAL; 1595 1596 if (log->first_page & 63) 1597 return -EINVAL; 1598 1599 slots = __kvm_memslots(kvm, as_id); 1600 memslot = id_to_memslot(slots, id); 1601 if (!memslot || !memslot->dirty_bitmap) 1602 return -ENOENT; 1603 1604 dirty_bitmap = memslot->dirty_bitmap; 1605 1606 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1607 1608 if (log->first_page > memslot->npages || 1609 log->num_pages > memslot->npages - log->first_page || 1610 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1611 return -EINVAL; 1612 1613 kvm_arch_sync_dirty_log(kvm, memslot); 1614 1615 flush = false; 1616 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1617 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1618 return -EFAULT; 1619 1620 spin_lock(&kvm->mmu_lock); 1621 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1622 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1623 i++, offset += BITS_PER_LONG) { 1624 unsigned long mask = *dirty_bitmap_buffer++; 1625 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1626 if (!mask) 1627 continue; 1628 1629 mask &= atomic_long_fetch_andnot(mask, p); 1630 1631 /* 1632 * mask contains the bits that really have been cleared. This 1633 * never includes any bits beyond the length of the memslot (if 1634 * the length is not aligned to 64 pages), therefore it is not 1635 * a problem if userspace sets them in log->dirty_bitmap. 1636 */ 1637 if (mask) { 1638 flush = true; 1639 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1640 offset, mask); 1641 } 1642 } 1643 spin_unlock(&kvm->mmu_lock); 1644 1645 if (flush) 1646 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1647 1648 return 0; 1649 } 1650 1651 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 1652 struct kvm_clear_dirty_log *log) 1653 { 1654 int r; 1655 1656 mutex_lock(&kvm->slots_lock); 1657 1658 r = kvm_clear_dirty_log_protect(kvm, log); 1659 1660 mutex_unlock(&kvm->slots_lock); 1661 return r; 1662 } 1663 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1664 1665 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1666 { 1667 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1668 } 1669 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1670 1671 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1672 { 1673 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1674 } 1675 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 1676 1677 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1678 { 1679 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1680 1681 return kvm_is_visible_memslot(memslot); 1682 } 1683 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1684 1685 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1686 { 1687 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1688 1689 return kvm_is_visible_memslot(memslot); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 1692 1693 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 1694 { 1695 struct vm_area_struct *vma; 1696 unsigned long addr, size; 1697 1698 size = PAGE_SIZE; 1699 1700 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 1701 if (kvm_is_error_hva(addr)) 1702 return PAGE_SIZE; 1703 1704 mmap_read_lock(current->mm); 1705 vma = find_vma(current->mm, addr); 1706 if (!vma) 1707 goto out; 1708 1709 size = vma_kernel_pagesize(vma); 1710 1711 out: 1712 mmap_read_unlock(current->mm); 1713 1714 return size; 1715 } 1716 1717 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1718 { 1719 return slot->flags & KVM_MEM_READONLY; 1720 } 1721 1722 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1723 gfn_t *nr_pages, bool write) 1724 { 1725 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1726 return KVM_HVA_ERR_BAD; 1727 1728 if (memslot_is_readonly(slot) && write) 1729 return KVM_HVA_ERR_RO_BAD; 1730 1731 if (nr_pages) 1732 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1733 1734 return __gfn_to_hva_memslot(slot, gfn); 1735 } 1736 1737 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1738 gfn_t *nr_pages) 1739 { 1740 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1741 } 1742 1743 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1744 gfn_t gfn) 1745 { 1746 return gfn_to_hva_many(slot, gfn, NULL); 1747 } 1748 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1749 1750 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1751 { 1752 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1753 } 1754 EXPORT_SYMBOL_GPL(gfn_to_hva); 1755 1756 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1757 { 1758 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1759 } 1760 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1761 1762 /* 1763 * Return the hva of a @gfn and the R/W attribute if possible. 1764 * 1765 * @slot: the kvm_memory_slot which contains @gfn 1766 * @gfn: the gfn to be translated 1767 * @writable: used to return the read/write attribute of the @slot if the hva 1768 * is valid and @writable is not NULL 1769 */ 1770 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1771 gfn_t gfn, bool *writable) 1772 { 1773 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1774 1775 if (!kvm_is_error_hva(hva) && writable) 1776 *writable = !memslot_is_readonly(slot); 1777 1778 return hva; 1779 } 1780 1781 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1782 { 1783 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1784 1785 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1786 } 1787 1788 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1789 { 1790 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1791 1792 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1793 } 1794 1795 static inline int check_user_page_hwpoison(unsigned long addr) 1796 { 1797 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1798 1799 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1800 return rc == -EHWPOISON; 1801 } 1802 1803 /* 1804 * The fast path to get the writable pfn which will be stored in @pfn, 1805 * true indicates success, otherwise false is returned. It's also the 1806 * only part that runs if we can in atomic context. 1807 */ 1808 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1809 bool *writable, kvm_pfn_t *pfn) 1810 { 1811 struct page *page[1]; 1812 1813 /* 1814 * Fast pin a writable pfn only if it is a write fault request 1815 * or the caller allows to map a writable pfn for a read fault 1816 * request. 1817 */ 1818 if (!(write_fault || writable)) 1819 return false; 1820 1821 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 1822 *pfn = page_to_pfn(page[0]); 1823 1824 if (writable) 1825 *writable = true; 1826 return true; 1827 } 1828 1829 return false; 1830 } 1831 1832 /* 1833 * The slow path to get the pfn of the specified host virtual address, 1834 * 1 indicates success, -errno is returned if error is detected. 1835 */ 1836 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1837 bool *writable, kvm_pfn_t *pfn) 1838 { 1839 unsigned int flags = FOLL_HWPOISON; 1840 struct page *page; 1841 int npages = 0; 1842 1843 might_sleep(); 1844 1845 if (writable) 1846 *writable = write_fault; 1847 1848 if (write_fault) 1849 flags |= FOLL_WRITE; 1850 if (async) 1851 flags |= FOLL_NOWAIT; 1852 1853 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1854 if (npages != 1) 1855 return npages; 1856 1857 /* map read fault as writable if possible */ 1858 if (unlikely(!write_fault) && writable) { 1859 struct page *wpage; 1860 1861 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 1862 *writable = true; 1863 put_page(page); 1864 page = wpage; 1865 } 1866 } 1867 *pfn = page_to_pfn(page); 1868 return npages; 1869 } 1870 1871 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1872 { 1873 if (unlikely(!(vma->vm_flags & VM_READ))) 1874 return false; 1875 1876 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1877 return false; 1878 1879 return true; 1880 } 1881 1882 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1883 unsigned long addr, bool *async, 1884 bool write_fault, bool *writable, 1885 kvm_pfn_t *p_pfn) 1886 { 1887 unsigned long pfn; 1888 int r; 1889 1890 r = follow_pfn(vma, addr, &pfn); 1891 if (r) { 1892 /* 1893 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1894 * not call the fault handler, so do it here. 1895 */ 1896 bool unlocked = false; 1897 r = fixup_user_fault(current->mm, addr, 1898 (write_fault ? FAULT_FLAG_WRITE : 0), 1899 &unlocked); 1900 if (unlocked) 1901 return -EAGAIN; 1902 if (r) 1903 return r; 1904 1905 r = follow_pfn(vma, addr, &pfn); 1906 if (r) 1907 return r; 1908 1909 } 1910 1911 if (writable) 1912 *writable = true; 1913 1914 /* 1915 * Get a reference here because callers of *hva_to_pfn* and 1916 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1917 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1918 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1919 * simply do nothing for reserved pfns. 1920 * 1921 * Whoever called remap_pfn_range is also going to call e.g. 1922 * unmap_mapping_range before the underlying pages are freed, 1923 * causing a call to our MMU notifier. 1924 */ 1925 kvm_get_pfn(pfn); 1926 1927 *p_pfn = pfn; 1928 return 0; 1929 } 1930 1931 /* 1932 * Pin guest page in memory and return its pfn. 1933 * @addr: host virtual address which maps memory to the guest 1934 * @atomic: whether this function can sleep 1935 * @async: whether this function need to wait IO complete if the 1936 * host page is not in the memory 1937 * @write_fault: whether we should get a writable host page 1938 * @writable: whether it allows to map a writable host page for !@write_fault 1939 * 1940 * The function will map a writable host page for these two cases: 1941 * 1): @write_fault = true 1942 * 2): @write_fault = false && @writable, @writable will tell the caller 1943 * whether the mapping is writable. 1944 */ 1945 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1946 bool write_fault, bool *writable) 1947 { 1948 struct vm_area_struct *vma; 1949 kvm_pfn_t pfn = 0; 1950 int npages, r; 1951 1952 /* we can do it either atomically or asynchronously, not both */ 1953 BUG_ON(atomic && async); 1954 1955 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1956 return pfn; 1957 1958 if (atomic) 1959 return KVM_PFN_ERR_FAULT; 1960 1961 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1962 if (npages == 1) 1963 return pfn; 1964 1965 mmap_read_lock(current->mm); 1966 if (npages == -EHWPOISON || 1967 (!async && check_user_page_hwpoison(addr))) { 1968 pfn = KVM_PFN_ERR_HWPOISON; 1969 goto exit; 1970 } 1971 1972 retry: 1973 vma = find_vma_intersection(current->mm, addr, addr + 1); 1974 1975 if (vma == NULL) 1976 pfn = KVM_PFN_ERR_FAULT; 1977 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1978 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1979 if (r == -EAGAIN) 1980 goto retry; 1981 if (r < 0) 1982 pfn = KVM_PFN_ERR_FAULT; 1983 } else { 1984 if (async && vma_is_valid(vma, write_fault)) 1985 *async = true; 1986 pfn = KVM_PFN_ERR_FAULT; 1987 } 1988 exit: 1989 mmap_read_unlock(current->mm); 1990 return pfn; 1991 } 1992 1993 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1994 bool atomic, bool *async, bool write_fault, 1995 bool *writable) 1996 { 1997 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1998 1999 if (addr == KVM_HVA_ERR_RO_BAD) { 2000 if (writable) 2001 *writable = false; 2002 return KVM_PFN_ERR_RO_FAULT; 2003 } 2004 2005 if (kvm_is_error_hva(addr)) { 2006 if (writable) 2007 *writable = false; 2008 return KVM_PFN_NOSLOT; 2009 } 2010 2011 /* Do not map writable pfn in the readonly memslot. */ 2012 if (writable && memslot_is_readonly(slot)) { 2013 *writable = false; 2014 writable = NULL; 2015 } 2016 2017 return hva_to_pfn(addr, atomic, async, write_fault, 2018 writable); 2019 } 2020 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2021 2022 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2023 bool *writable) 2024 { 2025 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2026 write_fault, writable); 2027 } 2028 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2029 2030 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2031 { 2032 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 2033 } 2034 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2035 2036 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2037 { 2038 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 2039 } 2040 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2041 2042 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2043 { 2044 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2045 } 2046 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2047 2048 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2049 { 2050 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2051 } 2052 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2053 2054 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2055 { 2056 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2057 } 2058 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2059 2060 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2061 struct page **pages, int nr_pages) 2062 { 2063 unsigned long addr; 2064 gfn_t entry = 0; 2065 2066 addr = gfn_to_hva_many(slot, gfn, &entry); 2067 if (kvm_is_error_hva(addr)) 2068 return -1; 2069 2070 if (entry < nr_pages) 2071 return 0; 2072 2073 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2074 } 2075 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2076 2077 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2078 { 2079 if (is_error_noslot_pfn(pfn)) 2080 return KVM_ERR_PTR_BAD_PAGE; 2081 2082 if (kvm_is_reserved_pfn(pfn)) { 2083 WARN_ON(1); 2084 return KVM_ERR_PTR_BAD_PAGE; 2085 } 2086 2087 return pfn_to_page(pfn); 2088 } 2089 2090 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2091 { 2092 kvm_pfn_t pfn; 2093 2094 pfn = gfn_to_pfn(kvm, gfn); 2095 2096 return kvm_pfn_to_page(pfn); 2097 } 2098 EXPORT_SYMBOL_GPL(gfn_to_page); 2099 2100 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2101 { 2102 if (pfn == 0) 2103 return; 2104 2105 if (cache) 2106 cache->pfn = cache->gfn = 0; 2107 2108 if (dirty) 2109 kvm_release_pfn_dirty(pfn); 2110 else 2111 kvm_release_pfn_clean(pfn); 2112 } 2113 2114 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2115 struct gfn_to_pfn_cache *cache, u64 gen) 2116 { 2117 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2118 2119 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2120 cache->gfn = gfn; 2121 cache->dirty = false; 2122 cache->generation = gen; 2123 } 2124 2125 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2126 struct kvm_host_map *map, 2127 struct gfn_to_pfn_cache *cache, 2128 bool atomic) 2129 { 2130 kvm_pfn_t pfn; 2131 void *hva = NULL; 2132 struct page *page = KVM_UNMAPPED_PAGE; 2133 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2134 u64 gen = slots->generation; 2135 2136 if (!map) 2137 return -EINVAL; 2138 2139 if (cache) { 2140 if (!cache->pfn || cache->gfn != gfn || 2141 cache->generation != gen) { 2142 if (atomic) 2143 return -EAGAIN; 2144 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2145 } 2146 pfn = cache->pfn; 2147 } else { 2148 if (atomic) 2149 return -EAGAIN; 2150 pfn = gfn_to_pfn_memslot(slot, gfn); 2151 } 2152 if (is_error_noslot_pfn(pfn)) 2153 return -EINVAL; 2154 2155 if (pfn_valid(pfn)) { 2156 page = pfn_to_page(pfn); 2157 if (atomic) 2158 hva = kmap_atomic(page); 2159 else 2160 hva = kmap(page); 2161 #ifdef CONFIG_HAS_IOMEM 2162 } else if (!atomic) { 2163 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2164 } else { 2165 return -EINVAL; 2166 #endif 2167 } 2168 2169 if (!hva) 2170 return -EFAULT; 2171 2172 map->page = page; 2173 map->hva = hva; 2174 map->pfn = pfn; 2175 map->gfn = gfn; 2176 2177 return 0; 2178 } 2179 2180 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2181 struct gfn_to_pfn_cache *cache, bool atomic) 2182 { 2183 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2184 cache, atomic); 2185 } 2186 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2187 2188 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2189 { 2190 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2191 NULL, false); 2192 } 2193 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2194 2195 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot, 2196 struct kvm_host_map *map, 2197 struct gfn_to_pfn_cache *cache, 2198 bool dirty, bool atomic) 2199 { 2200 if (!map) 2201 return; 2202 2203 if (!map->hva) 2204 return; 2205 2206 if (map->page != KVM_UNMAPPED_PAGE) { 2207 if (atomic) 2208 kunmap_atomic(map->hva); 2209 else 2210 kunmap(map->page); 2211 } 2212 #ifdef CONFIG_HAS_IOMEM 2213 else if (!atomic) 2214 memunmap(map->hva); 2215 else 2216 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2217 #endif 2218 2219 if (dirty) 2220 mark_page_dirty_in_slot(memslot, map->gfn); 2221 2222 if (cache) 2223 cache->dirty |= dirty; 2224 else 2225 kvm_release_pfn(map->pfn, dirty, NULL); 2226 2227 map->hva = NULL; 2228 map->page = NULL; 2229 } 2230 2231 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2232 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2233 { 2234 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, 2235 cache, dirty, atomic); 2236 return 0; 2237 } 2238 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2239 2240 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2241 { 2242 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL, 2243 dirty, false); 2244 } 2245 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2246 2247 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2248 { 2249 kvm_pfn_t pfn; 2250 2251 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2252 2253 return kvm_pfn_to_page(pfn); 2254 } 2255 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2256 2257 void kvm_release_page_clean(struct page *page) 2258 { 2259 WARN_ON(is_error_page(page)); 2260 2261 kvm_release_pfn_clean(page_to_pfn(page)); 2262 } 2263 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2264 2265 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2266 { 2267 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2268 put_page(pfn_to_page(pfn)); 2269 } 2270 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2271 2272 void kvm_release_page_dirty(struct page *page) 2273 { 2274 WARN_ON(is_error_page(page)); 2275 2276 kvm_release_pfn_dirty(page_to_pfn(page)); 2277 } 2278 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2279 2280 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2281 { 2282 kvm_set_pfn_dirty(pfn); 2283 kvm_release_pfn_clean(pfn); 2284 } 2285 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2286 2287 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2288 { 2289 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2290 SetPageDirty(pfn_to_page(pfn)); 2291 } 2292 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2293 2294 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2295 { 2296 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2297 mark_page_accessed(pfn_to_page(pfn)); 2298 } 2299 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2300 2301 void kvm_get_pfn(kvm_pfn_t pfn) 2302 { 2303 if (!kvm_is_reserved_pfn(pfn)) 2304 get_page(pfn_to_page(pfn)); 2305 } 2306 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2307 2308 static int next_segment(unsigned long len, int offset) 2309 { 2310 if (len > PAGE_SIZE - offset) 2311 return PAGE_SIZE - offset; 2312 else 2313 return len; 2314 } 2315 2316 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2317 void *data, int offset, int len) 2318 { 2319 int r; 2320 unsigned long addr; 2321 2322 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2323 if (kvm_is_error_hva(addr)) 2324 return -EFAULT; 2325 r = __copy_from_user(data, (void __user *)addr + offset, len); 2326 if (r) 2327 return -EFAULT; 2328 return 0; 2329 } 2330 2331 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2332 int len) 2333 { 2334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2335 2336 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2337 } 2338 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2339 2340 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2341 int offset, int len) 2342 { 2343 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2344 2345 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2346 } 2347 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2348 2349 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2350 { 2351 gfn_t gfn = gpa >> PAGE_SHIFT; 2352 int seg; 2353 int offset = offset_in_page(gpa); 2354 int ret; 2355 2356 while ((seg = next_segment(len, offset)) != 0) { 2357 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2358 if (ret < 0) 2359 return ret; 2360 offset = 0; 2361 len -= seg; 2362 data += seg; 2363 ++gfn; 2364 } 2365 return 0; 2366 } 2367 EXPORT_SYMBOL_GPL(kvm_read_guest); 2368 2369 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2370 { 2371 gfn_t gfn = gpa >> PAGE_SHIFT; 2372 int seg; 2373 int offset = offset_in_page(gpa); 2374 int ret; 2375 2376 while ((seg = next_segment(len, offset)) != 0) { 2377 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2378 if (ret < 0) 2379 return ret; 2380 offset = 0; 2381 len -= seg; 2382 data += seg; 2383 ++gfn; 2384 } 2385 return 0; 2386 } 2387 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2388 2389 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2390 void *data, int offset, unsigned long len) 2391 { 2392 int r; 2393 unsigned long addr; 2394 2395 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2396 if (kvm_is_error_hva(addr)) 2397 return -EFAULT; 2398 pagefault_disable(); 2399 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2400 pagefault_enable(); 2401 if (r) 2402 return -EFAULT; 2403 return 0; 2404 } 2405 2406 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2407 void *data, unsigned long len) 2408 { 2409 gfn_t gfn = gpa >> PAGE_SHIFT; 2410 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2411 int offset = offset_in_page(gpa); 2412 2413 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2414 } 2415 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2416 2417 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2418 const void *data, int offset, int len) 2419 { 2420 int r; 2421 unsigned long addr; 2422 2423 addr = gfn_to_hva_memslot(memslot, gfn); 2424 if (kvm_is_error_hva(addr)) 2425 return -EFAULT; 2426 r = __copy_to_user((void __user *)addr + offset, data, len); 2427 if (r) 2428 return -EFAULT; 2429 mark_page_dirty_in_slot(memslot, gfn); 2430 return 0; 2431 } 2432 2433 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2434 const void *data, int offset, int len) 2435 { 2436 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2437 2438 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2439 } 2440 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2441 2442 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2443 const void *data, int offset, int len) 2444 { 2445 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2446 2447 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2448 } 2449 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2450 2451 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2452 unsigned long len) 2453 { 2454 gfn_t gfn = gpa >> PAGE_SHIFT; 2455 int seg; 2456 int offset = offset_in_page(gpa); 2457 int ret; 2458 2459 while ((seg = next_segment(len, offset)) != 0) { 2460 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2461 if (ret < 0) 2462 return ret; 2463 offset = 0; 2464 len -= seg; 2465 data += seg; 2466 ++gfn; 2467 } 2468 return 0; 2469 } 2470 EXPORT_SYMBOL_GPL(kvm_write_guest); 2471 2472 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2473 unsigned long len) 2474 { 2475 gfn_t gfn = gpa >> PAGE_SHIFT; 2476 int seg; 2477 int offset = offset_in_page(gpa); 2478 int ret; 2479 2480 while ((seg = next_segment(len, offset)) != 0) { 2481 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2482 if (ret < 0) 2483 return ret; 2484 offset = 0; 2485 len -= seg; 2486 data += seg; 2487 ++gfn; 2488 } 2489 return 0; 2490 } 2491 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2492 2493 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2494 struct gfn_to_hva_cache *ghc, 2495 gpa_t gpa, unsigned long len) 2496 { 2497 int offset = offset_in_page(gpa); 2498 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2499 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2500 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2501 gfn_t nr_pages_avail; 2502 2503 /* Update ghc->generation before performing any error checks. */ 2504 ghc->generation = slots->generation; 2505 2506 if (start_gfn > end_gfn) { 2507 ghc->hva = KVM_HVA_ERR_BAD; 2508 return -EINVAL; 2509 } 2510 2511 /* 2512 * If the requested region crosses two memslots, we still 2513 * verify that the entire region is valid here. 2514 */ 2515 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2516 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2517 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2518 &nr_pages_avail); 2519 if (kvm_is_error_hva(ghc->hva)) 2520 return -EFAULT; 2521 } 2522 2523 /* Use the slow path for cross page reads and writes. */ 2524 if (nr_pages_needed == 1) 2525 ghc->hva += offset; 2526 else 2527 ghc->memslot = NULL; 2528 2529 ghc->gpa = gpa; 2530 ghc->len = len; 2531 return 0; 2532 } 2533 2534 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2535 gpa_t gpa, unsigned long len) 2536 { 2537 struct kvm_memslots *slots = kvm_memslots(kvm); 2538 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2539 } 2540 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2541 2542 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2543 void *data, unsigned int offset, 2544 unsigned long len) 2545 { 2546 struct kvm_memslots *slots = kvm_memslots(kvm); 2547 int r; 2548 gpa_t gpa = ghc->gpa + offset; 2549 2550 BUG_ON(len + offset > ghc->len); 2551 2552 if (slots->generation != ghc->generation) { 2553 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2554 return -EFAULT; 2555 } 2556 2557 if (kvm_is_error_hva(ghc->hva)) 2558 return -EFAULT; 2559 2560 if (unlikely(!ghc->memslot)) 2561 return kvm_write_guest(kvm, gpa, data, len); 2562 2563 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2564 if (r) 2565 return -EFAULT; 2566 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2567 2568 return 0; 2569 } 2570 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2571 2572 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2573 void *data, unsigned long len) 2574 { 2575 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2576 } 2577 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2578 2579 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2580 void *data, unsigned int offset, 2581 unsigned long len) 2582 { 2583 struct kvm_memslots *slots = kvm_memslots(kvm); 2584 int r; 2585 gpa_t gpa = ghc->gpa + offset; 2586 2587 BUG_ON(len + offset > ghc->len); 2588 2589 if (slots->generation != ghc->generation) { 2590 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2591 return -EFAULT; 2592 } 2593 2594 if (kvm_is_error_hva(ghc->hva)) 2595 return -EFAULT; 2596 2597 if (unlikely(!ghc->memslot)) 2598 return kvm_read_guest(kvm, gpa, data, len); 2599 2600 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2601 if (r) 2602 return -EFAULT; 2603 2604 return 0; 2605 } 2606 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2607 2608 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2609 void *data, unsigned long len) 2610 { 2611 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2612 } 2613 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2614 2615 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2616 { 2617 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2618 2619 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2620 } 2621 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2622 2623 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2624 { 2625 gfn_t gfn = gpa >> PAGE_SHIFT; 2626 int seg; 2627 int offset = offset_in_page(gpa); 2628 int ret; 2629 2630 while ((seg = next_segment(len, offset)) != 0) { 2631 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2632 if (ret < 0) 2633 return ret; 2634 offset = 0; 2635 len -= seg; 2636 ++gfn; 2637 } 2638 return 0; 2639 } 2640 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2641 2642 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2643 gfn_t gfn) 2644 { 2645 if (memslot && memslot->dirty_bitmap) { 2646 unsigned long rel_gfn = gfn - memslot->base_gfn; 2647 2648 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2649 } 2650 } 2651 2652 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2653 { 2654 struct kvm_memory_slot *memslot; 2655 2656 memslot = gfn_to_memslot(kvm, gfn); 2657 mark_page_dirty_in_slot(memslot, gfn); 2658 } 2659 EXPORT_SYMBOL_GPL(mark_page_dirty); 2660 2661 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2662 { 2663 struct kvm_memory_slot *memslot; 2664 2665 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2666 mark_page_dirty_in_slot(memslot, gfn); 2667 } 2668 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2669 2670 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2671 { 2672 if (!vcpu->sigset_active) 2673 return; 2674 2675 /* 2676 * This does a lockless modification of ->real_blocked, which is fine 2677 * because, only current can change ->real_blocked and all readers of 2678 * ->real_blocked don't care as long ->real_blocked is always a subset 2679 * of ->blocked. 2680 */ 2681 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2682 } 2683 2684 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2685 { 2686 if (!vcpu->sigset_active) 2687 return; 2688 2689 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2690 sigemptyset(¤t->real_blocked); 2691 } 2692 2693 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2694 { 2695 unsigned int old, val, grow, grow_start; 2696 2697 old = val = vcpu->halt_poll_ns; 2698 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2699 grow = READ_ONCE(halt_poll_ns_grow); 2700 if (!grow) 2701 goto out; 2702 2703 val *= grow; 2704 if (val < grow_start) 2705 val = grow_start; 2706 2707 if (val > halt_poll_ns) 2708 val = halt_poll_ns; 2709 2710 vcpu->halt_poll_ns = val; 2711 out: 2712 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2713 } 2714 2715 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2716 { 2717 unsigned int old, val, shrink; 2718 2719 old = val = vcpu->halt_poll_ns; 2720 shrink = READ_ONCE(halt_poll_ns_shrink); 2721 if (shrink == 0) 2722 val = 0; 2723 else 2724 val /= shrink; 2725 2726 vcpu->halt_poll_ns = val; 2727 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2728 } 2729 2730 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2731 { 2732 int ret = -EINTR; 2733 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2734 2735 if (kvm_arch_vcpu_runnable(vcpu)) { 2736 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2737 goto out; 2738 } 2739 if (kvm_cpu_has_pending_timer(vcpu)) 2740 goto out; 2741 if (signal_pending(current)) 2742 goto out; 2743 2744 ret = 0; 2745 out: 2746 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2747 return ret; 2748 } 2749 2750 static inline void 2751 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 2752 { 2753 if (waited) 2754 vcpu->stat.halt_poll_fail_ns += poll_ns; 2755 else 2756 vcpu->stat.halt_poll_success_ns += poll_ns; 2757 } 2758 2759 /* 2760 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2761 */ 2762 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2763 { 2764 ktime_t start, cur, poll_end; 2765 bool waited = false; 2766 u64 block_ns; 2767 2768 kvm_arch_vcpu_blocking(vcpu); 2769 2770 start = cur = poll_end = ktime_get(); 2771 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2772 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2773 2774 ++vcpu->stat.halt_attempted_poll; 2775 do { 2776 /* 2777 * This sets KVM_REQ_UNHALT if an interrupt 2778 * arrives. 2779 */ 2780 if (kvm_vcpu_check_block(vcpu) < 0) { 2781 ++vcpu->stat.halt_successful_poll; 2782 if (!vcpu_valid_wakeup(vcpu)) 2783 ++vcpu->stat.halt_poll_invalid; 2784 goto out; 2785 } 2786 poll_end = cur = ktime_get(); 2787 } while (single_task_running() && ktime_before(cur, stop)); 2788 } 2789 2790 prepare_to_rcuwait(&vcpu->wait); 2791 for (;;) { 2792 set_current_state(TASK_INTERRUPTIBLE); 2793 2794 if (kvm_vcpu_check_block(vcpu) < 0) 2795 break; 2796 2797 waited = true; 2798 schedule(); 2799 } 2800 finish_rcuwait(&vcpu->wait); 2801 cur = ktime_get(); 2802 out: 2803 kvm_arch_vcpu_unblocking(vcpu); 2804 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2805 2806 update_halt_poll_stats( 2807 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 2808 2809 if (!kvm_arch_no_poll(vcpu)) { 2810 if (!vcpu_valid_wakeup(vcpu)) { 2811 shrink_halt_poll_ns(vcpu); 2812 } else if (vcpu->kvm->max_halt_poll_ns) { 2813 if (block_ns <= vcpu->halt_poll_ns) 2814 ; 2815 /* we had a long block, shrink polling */ 2816 else if (vcpu->halt_poll_ns && 2817 block_ns > vcpu->kvm->max_halt_poll_ns) 2818 shrink_halt_poll_ns(vcpu); 2819 /* we had a short halt and our poll time is too small */ 2820 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 2821 block_ns < vcpu->kvm->max_halt_poll_ns) 2822 grow_halt_poll_ns(vcpu); 2823 } else { 2824 vcpu->halt_poll_ns = 0; 2825 } 2826 } 2827 2828 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2829 kvm_arch_vcpu_block_finish(vcpu); 2830 } 2831 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2832 2833 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2834 { 2835 struct rcuwait *waitp; 2836 2837 waitp = kvm_arch_vcpu_get_wait(vcpu); 2838 if (rcuwait_wake_up(waitp)) { 2839 WRITE_ONCE(vcpu->ready, true); 2840 ++vcpu->stat.halt_wakeup; 2841 return true; 2842 } 2843 2844 return false; 2845 } 2846 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2847 2848 #ifndef CONFIG_S390 2849 /* 2850 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2851 */ 2852 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2853 { 2854 int me; 2855 int cpu = vcpu->cpu; 2856 2857 if (kvm_vcpu_wake_up(vcpu)) 2858 return; 2859 2860 me = get_cpu(); 2861 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2862 if (kvm_arch_vcpu_should_kick(vcpu)) 2863 smp_send_reschedule(cpu); 2864 put_cpu(); 2865 } 2866 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2867 #endif /* !CONFIG_S390 */ 2868 2869 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2870 { 2871 struct pid *pid; 2872 struct task_struct *task = NULL; 2873 int ret = 0; 2874 2875 rcu_read_lock(); 2876 pid = rcu_dereference(target->pid); 2877 if (pid) 2878 task = get_pid_task(pid, PIDTYPE_PID); 2879 rcu_read_unlock(); 2880 if (!task) 2881 return ret; 2882 ret = yield_to(task, 1); 2883 put_task_struct(task); 2884 2885 return ret; 2886 } 2887 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2888 2889 /* 2890 * Helper that checks whether a VCPU is eligible for directed yield. 2891 * Most eligible candidate to yield is decided by following heuristics: 2892 * 2893 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2894 * (preempted lock holder), indicated by @in_spin_loop. 2895 * Set at the beginning and cleared at the end of interception/PLE handler. 2896 * 2897 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2898 * chance last time (mostly it has become eligible now since we have probably 2899 * yielded to lockholder in last iteration. This is done by toggling 2900 * @dy_eligible each time a VCPU checked for eligibility.) 2901 * 2902 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2903 * to preempted lock-holder could result in wrong VCPU selection and CPU 2904 * burning. Giving priority for a potential lock-holder increases lock 2905 * progress. 2906 * 2907 * Since algorithm is based on heuristics, accessing another VCPU data without 2908 * locking does not harm. It may result in trying to yield to same VCPU, fail 2909 * and continue with next VCPU and so on. 2910 */ 2911 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2912 { 2913 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2914 bool eligible; 2915 2916 eligible = !vcpu->spin_loop.in_spin_loop || 2917 vcpu->spin_loop.dy_eligible; 2918 2919 if (vcpu->spin_loop.in_spin_loop) 2920 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2921 2922 return eligible; 2923 #else 2924 return true; 2925 #endif 2926 } 2927 2928 /* 2929 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2930 * a vcpu_load/vcpu_put pair. However, for most architectures 2931 * kvm_arch_vcpu_runnable does not require vcpu_load. 2932 */ 2933 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2934 { 2935 return kvm_arch_vcpu_runnable(vcpu); 2936 } 2937 2938 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2939 { 2940 if (kvm_arch_dy_runnable(vcpu)) 2941 return true; 2942 2943 #ifdef CONFIG_KVM_ASYNC_PF 2944 if (!list_empty_careful(&vcpu->async_pf.done)) 2945 return true; 2946 #endif 2947 2948 return false; 2949 } 2950 2951 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2952 { 2953 struct kvm *kvm = me->kvm; 2954 struct kvm_vcpu *vcpu; 2955 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2956 int yielded = 0; 2957 int try = 3; 2958 int pass; 2959 int i; 2960 2961 kvm_vcpu_set_in_spin_loop(me, true); 2962 /* 2963 * We boost the priority of a VCPU that is runnable but not 2964 * currently running, because it got preempted by something 2965 * else and called schedule in __vcpu_run. Hopefully that 2966 * VCPU is holding the lock that we need and will release it. 2967 * We approximate round-robin by starting at the last boosted VCPU. 2968 */ 2969 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2970 kvm_for_each_vcpu(i, vcpu, kvm) { 2971 if (!pass && i <= last_boosted_vcpu) { 2972 i = last_boosted_vcpu; 2973 continue; 2974 } else if (pass && i > last_boosted_vcpu) 2975 break; 2976 if (!READ_ONCE(vcpu->ready)) 2977 continue; 2978 if (vcpu == me) 2979 continue; 2980 if (rcuwait_active(&vcpu->wait) && 2981 !vcpu_dy_runnable(vcpu)) 2982 continue; 2983 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2984 !kvm_arch_vcpu_in_kernel(vcpu)) 2985 continue; 2986 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2987 continue; 2988 2989 yielded = kvm_vcpu_yield_to(vcpu); 2990 if (yielded > 0) { 2991 kvm->last_boosted_vcpu = i; 2992 break; 2993 } else if (yielded < 0) { 2994 try--; 2995 if (!try) 2996 break; 2997 } 2998 } 2999 } 3000 kvm_vcpu_set_in_spin_loop(me, false); 3001 3002 /* Ensure vcpu is not eligible during next spinloop */ 3003 kvm_vcpu_set_dy_eligible(me, false); 3004 } 3005 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3006 3007 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3008 { 3009 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3010 struct page *page; 3011 3012 if (vmf->pgoff == 0) 3013 page = virt_to_page(vcpu->run); 3014 #ifdef CONFIG_X86 3015 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3016 page = virt_to_page(vcpu->arch.pio_data); 3017 #endif 3018 #ifdef CONFIG_KVM_MMIO 3019 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3020 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3021 #endif 3022 else 3023 return kvm_arch_vcpu_fault(vcpu, vmf); 3024 get_page(page); 3025 vmf->page = page; 3026 return 0; 3027 } 3028 3029 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3030 .fault = kvm_vcpu_fault, 3031 }; 3032 3033 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3034 { 3035 vma->vm_ops = &kvm_vcpu_vm_ops; 3036 return 0; 3037 } 3038 3039 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3040 { 3041 struct kvm_vcpu *vcpu = filp->private_data; 3042 3043 kvm_put_kvm(vcpu->kvm); 3044 return 0; 3045 } 3046 3047 static struct file_operations kvm_vcpu_fops = { 3048 .release = kvm_vcpu_release, 3049 .unlocked_ioctl = kvm_vcpu_ioctl, 3050 .mmap = kvm_vcpu_mmap, 3051 .llseek = noop_llseek, 3052 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3053 }; 3054 3055 /* 3056 * Allocates an inode for the vcpu. 3057 */ 3058 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3059 { 3060 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3061 3062 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3063 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3064 } 3065 3066 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3067 { 3068 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3069 struct dentry *debugfs_dentry; 3070 char dir_name[ITOA_MAX_LEN * 2]; 3071 3072 if (!debugfs_initialized()) 3073 return; 3074 3075 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3076 debugfs_dentry = debugfs_create_dir(dir_name, 3077 vcpu->kvm->debugfs_dentry); 3078 3079 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3080 #endif 3081 } 3082 3083 /* 3084 * Creates some virtual cpus. Good luck creating more than one. 3085 */ 3086 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3087 { 3088 int r; 3089 struct kvm_vcpu *vcpu; 3090 struct page *page; 3091 3092 if (id >= KVM_MAX_VCPU_ID) 3093 return -EINVAL; 3094 3095 mutex_lock(&kvm->lock); 3096 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3097 mutex_unlock(&kvm->lock); 3098 return -EINVAL; 3099 } 3100 3101 kvm->created_vcpus++; 3102 mutex_unlock(&kvm->lock); 3103 3104 r = kvm_arch_vcpu_precreate(kvm, id); 3105 if (r) 3106 goto vcpu_decrement; 3107 3108 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 3109 if (!vcpu) { 3110 r = -ENOMEM; 3111 goto vcpu_decrement; 3112 } 3113 3114 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3115 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 3116 if (!page) { 3117 r = -ENOMEM; 3118 goto vcpu_free; 3119 } 3120 vcpu->run = page_address(page); 3121 3122 kvm_vcpu_init(vcpu, kvm, id); 3123 3124 r = kvm_arch_vcpu_create(vcpu); 3125 if (r) 3126 goto vcpu_free_run_page; 3127 3128 mutex_lock(&kvm->lock); 3129 if (kvm_get_vcpu_by_id(kvm, id)) { 3130 r = -EEXIST; 3131 goto unlock_vcpu_destroy; 3132 } 3133 3134 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3135 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3136 3137 /* Now it's all set up, let userspace reach it */ 3138 kvm_get_kvm(kvm); 3139 r = create_vcpu_fd(vcpu); 3140 if (r < 0) { 3141 kvm_put_kvm_no_destroy(kvm); 3142 goto unlock_vcpu_destroy; 3143 } 3144 3145 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3146 3147 /* 3148 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3149 * before kvm->online_vcpu's incremented value. 3150 */ 3151 smp_wmb(); 3152 atomic_inc(&kvm->online_vcpus); 3153 3154 mutex_unlock(&kvm->lock); 3155 kvm_arch_vcpu_postcreate(vcpu); 3156 kvm_create_vcpu_debugfs(vcpu); 3157 return r; 3158 3159 unlock_vcpu_destroy: 3160 mutex_unlock(&kvm->lock); 3161 kvm_arch_vcpu_destroy(vcpu); 3162 vcpu_free_run_page: 3163 free_page((unsigned long)vcpu->run); 3164 vcpu_free: 3165 kmem_cache_free(kvm_vcpu_cache, vcpu); 3166 vcpu_decrement: 3167 mutex_lock(&kvm->lock); 3168 kvm->created_vcpus--; 3169 mutex_unlock(&kvm->lock); 3170 return r; 3171 } 3172 3173 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3174 { 3175 if (sigset) { 3176 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3177 vcpu->sigset_active = 1; 3178 vcpu->sigset = *sigset; 3179 } else 3180 vcpu->sigset_active = 0; 3181 return 0; 3182 } 3183 3184 static long kvm_vcpu_ioctl(struct file *filp, 3185 unsigned int ioctl, unsigned long arg) 3186 { 3187 struct kvm_vcpu *vcpu = filp->private_data; 3188 void __user *argp = (void __user *)arg; 3189 int r; 3190 struct kvm_fpu *fpu = NULL; 3191 struct kvm_sregs *kvm_sregs = NULL; 3192 3193 if (vcpu->kvm->mm != current->mm) 3194 return -EIO; 3195 3196 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3197 return -EINVAL; 3198 3199 /* 3200 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3201 * execution; mutex_lock() would break them. 3202 */ 3203 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3204 if (r != -ENOIOCTLCMD) 3205 return r; 3206 3207 if (mutex_lock_killable(&vcpu->mutex)) 3208 return -EINTR; 3209 switch (ioctl) { 3210 case KVM_RUN: { 3211 struct pid *oldpid; 3212 r = -EINVAL; 3213 if (arg) 3214 goto out; 3215 oldpid = rcu_access_pointer(vcpu->pid); 3216 if (unlikely(oldpid != task_pid(current))) { 3217 /* The thread running this VCPU changed. */ 3218 struct pid *newpid; 3219 3220 r = kvm_arch_vcpu_run_pid_change(vcpu); 3221 if (r) 3222 break; 3223 3224 newpid = get_task_pid(current, PIDTYPE_PID); 3225 rcu_assign_pointer(vcpu->pid, newpid); 3226 if (oldpid) 3227 synchronize_rcu(); 3228 put_pid(oldpid); 3229 } 3230 r = kvm_arch_vcpu_ioctl_run(vcpu); 3231 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3232 break; 3233 } 3234 case KVM_GET_REGS: { 3235 struct kvm_regs *kvm_regs; 3236 3237 r = -ENOMEM; 3238 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3239 if (!kvm_regs) 3240 goto out; 3241 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3242 if (r) 3243 goto out_free1; 3244 r = -EFAULT; 3245 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3246 goto out_free1; 3247 r = 0; 3248 out_free1: 3249 kfree(kvm_regs); 3250 break; 3251 } 3252 case KVM_SET_REGS: { 3253 struct kvm_regs *kvm_regs; 3254 3255 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3256 if (IS_ERR(kvm_regs)) { 3257 r = PTR_ERR(kvm_regs); 3258 goto out; 3259 } 3260 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3261 kfree(kvm_regs); 3262 break; 3263 } 3264 case KVM_GET_SREGS: { 3265 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3266 GFP_KERNEL_ACCOUNT); 3267 r = -ENOMEM; 3268 if (!kvm_sregs) 3269 goto out; 3270 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3271 if (r) 3272 goto out; 3273 r = -EFAULT; 3274 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3275 goto out; 3276 r = 0; 3277 break; 3278 } 3279 case KVM_SET_SREGS: { 3280 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3281 if (IS_ERR(kvm_sregs)) { 3282 r = PTR_ERR(kvm_sregs); 3283 kvm_sregs = NULL; 3284 goto out; 3285 } 3286 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3287 break; 3288 } 3289 case KVM_GET_MP_STATE: { 3290 struct kvm_mp_state mp_state; 3291 3292 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3293 if (r) 3294 goto out; 3295 r = -EFAULT; 3296 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3297 goto out; 3298 r = 0; 3299 break; 3300 } 3301 case KVM_SET_MP_STATE: { 3302 struct kvm_mp_state mp_state; 3303 3304 r = -EFAULT; 3305 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3306 goto out; 3307 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3308 break; 3309 } 3310 case KVM_TRANSLATE: { 3311 struct kvm_translation tr; 3312 3313 r = -EFAULT; 3314 if (copy_from_user(&tr, argp, sizeof(tr))) 3315 goto out; 3316 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3317 if (r) 3318 goto out; 3319 r = -EFAULT; 3320 if (copy_to_user(argp, &tr, sizeof(tr))) 3321 goto out; 3322 r = 0; 3323 break; 3324 } 3325 case KVM_SET_GUEST_DEBUG: { 3326 struct kvm_guest_debug dbg; 3327 3328 r = -EFAULT; 3329 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3330 goto out; 3331 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3332 break; 3333 } 3334 case KVM_SET_SIGNAL_MASK: { 3335 struct kvm_signal_mask __user *sigmask_arg = argp; 3336 struct kvm_signal_mask kvm_sigmask; 3337 sigset_t sigset, *p; 3338 3339 p = NULL; 3340 if (argp) { 3341 r = -EFAULT; 3342 if (copy_from_user(&kvm_sigmask, argp, 3343 sizeof(kvm_sigmask))) 3344 goto out; 3345 r = -EINVAL; 3346 if (kvm_sigmask.len != sizeof(sigset)) 3347 goto out; 3348 r = -EFAULT; 3349 if (copy_from_user(&sigset, sigmask_arg->sigset, 3350 sizeof(sigset))) 3351 goto out; 3352 p = &sigset; 3353 } 3354 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3355 break; 3356 } 3357 case KVM_GET_FPU: { 3358 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3359 r = -ENOMEM; 3360 if (!fpu) 3361 goto out; 3362 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3363 if (r) 3364 goto out; 3365 r = -EFAULT; 3366 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3367 goto out; 3368 r = 0; 3369 break; 3370 } 3371 case KVM_SET_FPU: { 3372 fpu = memdup_user(argp, sizeof(*fpu)); 3373 if (IS_ERR(fpu)) { 3374 r = PTR_ERR(fpu); 3375 fpu = NULL; 3376 goto out; 3377 } 3378 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3379 break; 3380 } 3381 default: 3382 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3383 } 3384 out: 3385 mutex_unlock(&vcpu->mutex); 3386 kfree(fpu); 3387 kfree(kvm_sregs); 3388 return r; 3389 } 3390 3391 #ifdef CONFIG_KVM_COMPAT 3392 static long kvm_vcpu_compat_ioctl(struct file *filp, 3393 unsigned int ioctl, unsigned long arg) 3394 { 3395 struct kvm_vcpu *vcpu = filp->private_data; 3396 void __user *argp = compat_ptr(arg); 3397 int r; 3398 3399 if (vcpu->kvm->mm != current->mm) 3400 return -EIO; 3401 3402 switch (ioctl) { 3403 case KVM_SET_SIGNAL_MASK: { 3404 struct kvm_signal_mask __user *sigmask_arg = argp; 3405 struct kvm_signal_mask kvm_sigmask; 3406 sigset_t sigset; 3407 3408 if (argp) { 3409 r = -EFAULT; 3410 if (copy_from_user(&kvm_sigmask, argp, 3411 sizeof(kvm_sigmask))) 3412 goto out; 3413 r = -EINVAL; 3414 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3415 goto out; 3416 r = -EFAULT; 3417 if (get_compat_sigset(&sigset, 3418 (compat_sigset_t __user *)sigmask_arg->sigset)) 3419 goto out; 3420 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3421 } else 3422 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3423 break; 3424 } 3425 default: 3426 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3427 } 3428 3429 out: 3430 return r; 3431 } 3432 #endif 3433 3434 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3435 { 3436 struct kvm_device *dev = filp->private_data; 3437 3438 if (dev->ops->mmap) 3439 return dev->ops->mmap(dev, vma); 3440 3441 return -ENODEV; 3442 } 3443 3444 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3445 int (*accessor)(struct kvm_device *dev, 3446 struct kvm_device_attr *attr), 3447 unsigned long arg) 3448 { 3449 struct kvm_device_attr attr; 3450 3451 if (!accessor) 3452 return -EPERM; 3453 3454 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3455 return -EFAULT; 3456 3457 return accessor(dev, &attr); 3458 } 3459 3460 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3461 unsigned long arg) 3462 { 3463 struct kvm_device *dev = filp->private_data; 3464 3465 if (dev->kvm->mm != current->mm) 3466 return -EIO; 3467 3468 switch (ioctl) { 3469 case KVM_SET_DEVICE_ATTR: 3470 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3471 case KVM_GET_DEVICE_ATTR: 3472 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3473 case KVM_HAS_DEVICE_ATTR: 3474 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3475 default: 3476 if (dev->ops->ioctl) 3477 return dev->ops->ioctl(dev, ioctl, arg); 3478 3479 return -ENOTTY; 3480 } 3481 } 3482 3483 static int kvm_device_release(struct inode *inode, struct file *filp) 3484 { 3485 struct kvm_device *dev = filp->private_data; 3486 struct kvm *kvm = dev->kvm; 3487 3488 if (dev->ops->release) { 3489 mutex_lock(&kvm->lock); 3490 list_del(&dev->vm_node); 3491 dev->ops->release(dev); 3492 mutex_unlock(&kvm->lock); 3493 } 3494 3495 kvm_put_kvm(kvm); 3496 return 0; 3497 } 3498 3499 static const struct file_operations kvm_device_fops = { 3500 .unlocked_ioctl = kvm_device_ioctl, 3501 .release = kvm_device_release, 3502 KVM_COMPAT(kvm_device_ioctl), 3503 .mmap = kvm_device_mmap, 3504 }; 3505 3506 struct kvm_device *kvm_device_from_filp(struct file *filp) 3507 { 3508 if (filp->f_op != &kvm_device_fops) 3509 return NULL; 3510 3511 return filp->private_data; 3512 } 3513 3514 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3515 #ifdef CONFIG_KVM_MPIC 3516 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3517 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3518 #endif 3519 }; 3520 3521 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3522 { 3523 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3524 return -ENOSPC; 3525 3526 if (kvm_device_ops_table[type] != NULL) 3527 return -EEXIST; 3528 3529 kvm_device_ops_table[type] = ops; 3530 return 0; 3531 } 3532 3533 void kvm_unregister_device_ops(u32 type) 3534 { 3535 if (kvm_device_ops_table[type] != NULL) 3536 kvm_device_ops_table[type] = NULL; 3537 } 3538 3539 static int kvm_ioctl_create_device(struct kvm *kvm, 3540 struct kvm_create_device *cd) 3541 { 3542 const struct kvm_device_ops *ops = NULL; 3543 struct kvm_device *dev; 3544 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3545 int type; 3546 int ret; 3547 3548 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3549 return -ENODEV; 3550 3551 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3552 ops = kvm_device_ops_table[type]; 3553 if (ops == NULL) 3554 return -ENODEV; 3555 3556 if (test) 3557 return 0; 3558 3559 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3560 if (!dev) 3561 return -ENOMEM; 3562 3563 dev->ops = ops; 3564 dev->kvm = kvm; 3565 3566 mutex_lock(&kvm->lock); 3567 ret = ops->create(dev, type); 3568 if (ret < 0) { 3569 mutex_unlock(&kvm->lock); 3570 kfree(dev); 3571 return ret; 3572 } 3573 list_add(&dev->vm_node, &kvm->devices); 3574 mutex_unlock(&kvm->lock); 3575 3576 if (ops->init) 3577 ops->init(dev); 3578 3579 kvm_get_kvm(kvm); 3580 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3581 if (ret < 0) { 3582 kvm_put_kvm_no_destroy(kvm); 3583 mutex_lock(&kvm->lock); 3584 list_del(&dev->vm_node); 3585 mutex_unlock(&kvm->lock); 3586 ops->destroy(dev); 3587 return ret; 3588 } 3589 3590 cd->fd = ret; 3591 return 0; 3592 } 3593 3594 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3595 { 3596 switch (arg) { 3597 case KVM_CAP_USER_MEMORY: 3598 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3599 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3600 case KVM_CAP_INTERNAL_ERROR_DATA: 3601 #ifdef CONFIG_HAVE_KVM_MSI 3602 case KVM_CAP_SIGNAL_MSI: 3603 #endif 3604 #ifdef CONFIG_HAVE_KVM_IRQFD 3605 case KVM_CAP_IRQFD: 3606 case KVM_CAP_IRQFD_RESAMPLE: 3607 #endif 3608 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3609 case KVM_CAP_CHECK_EXTENSION_VM: 3610 case KVM_CAP_ENABLE_CAP_VM: 3611 case KVM_CAP_HALT_POLL: 3612 return 1; 3613 #ifdef CONFIG_KVM_MMIO 3614 case KVM_CAP_COALESCED_MMIO: 3615 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3616 case KVM_CAP_COALESCED_PIO: 3617 return 1; 3618 #endif 3619 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3620 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3621 return KVM_DIRTY_LOG_MANUAL_CAPS; 3622 #endif 3623 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3624 case KVM_CAP_IRQ_ROUTING: 3625 return KVM_MAX_IRQ_ROUTES; 3626 #endif 3627 #if KVM_ADDRESS_SPACE_NUM > 1 3628 case KVM_CAP_MULTI_ADDRESS_SPACE: 3629 return KVM_ADDRESS_SPACE_NUM; 3630 #endif 3631 case KVM_CAP_NR_MEMSLOTS: 3632 return KVM_USER_MEM_SLOTS; 3633 default: 3634 break; 3635 } 3636 return kvm_vm_ioctl_check_extension(kvm, arg); 3637 } 3638 3639 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3640 struct kvm_enable_cap *cap) 3641 { 3642 return -EINVAL; 3643 } 3644 3645 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3646 struct kvm_enable_cap *cap) 3647 { 3648 switch (cap->cap) { 3649 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3650 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 3651 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 3652 3653 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 3654 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 3655 3656 if (cap->flags || (cap->args[0] & ~allowed_options)) 3657 return -EINVAL; 3658 kvm->manual_dirty_log_protect = cap->args[0]; 3659 return 0; 3660 } 3661 #endif 3662 case KVM_CAP_HALT_POLL: { 3663 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 3664 return -EINVAL; 3665 3666 kvm->max_halt_poll_ns = cap->args[0]; 3667 return 0; 3668 } 3669 default: 3670 return kvm_vm_ioctl_enable_cap(kvm, cap); 3671 } 3672 } 3673 3674 static long kvm_vm_ioctl(struct file *filp, 3675 unsigned int ioctl, unsigned long arg) 3676 { 3677 struct kvm *kvm = filp->private_data; 3678 void __user *argp = (void __user *)arg; 3679 int r; 3680 3681 if (kvm->mm != current->mm) 3682 return -EIO; 3683 switch (ioctl) { 3684 case KVM_CREATE_VCPU: 3685 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3686 break; 3687 case KVM_ENABLE_CAP: { 3688 struct kvm_enable_cap cap; 3689 3690 r = -EFAULT; 3691 if (copy_from_user(&cap, argp, sizeof(cap))) 3692 goto out; 3693 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3694 break; 3695 } 3696 case KVM_SET_USER_MEMORY_REGION: { 3697 struct kvm_userspace_memory_region kvm_userspace_mem; 3698 3699 r = -EFAULT; 3700 if (copy_from_user(&kvm_userspace_mem, argp, 3701 sizeof(kvm_userspace_mem))) 3702 goto out; 3703 3704 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3705 break; 3706 } 3707 case KVM_GET_DIRTY_LOG: { 3708 struct kvm_dirty_log log; 3709 3710 r = -EFAULT; 3711 if (copy_from_user(&log, argp, sizeof(log))) 3712 goto out; 3713 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3714 break; 3715 } 3716 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3717 case KVM_CLEAR_DIRTY_LOG: { 3718 struct kvm_clear_dirty_log log; 3719 3720 r = -EFAULT; 3721 if (copy_from_user(&log, argp, sizeof(log))) 3722 goto out; 3723 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3724 break; 3725 } 3726 #endif 3727 #ifdef CONFIG_KVM_MMIO 3728 case KVM_REGISTER_COALESCED_MMIO: { 3729 struct kvm_coalesced_mmio_zone zone; 3730 3731 r = -EFAULT; 3732 if (copy_from_user(&zone, argp, sizeof(zone))) 3733 goto out; 3734 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3735 break; 3736 } 3737 case KVM_UNREGISTER_COALESCED_MMIO: { 3738 struct kvm_coalesced_mmio_zone zone; 3739 3740 r = -EFAULT; 3741 if (copy_from_user(&zone, argp, sizeof(zone))) 3742 goto out; 3743 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3744 break; 3745 } 3746 #endif 3747 case KVM_IRQFD: { 3748 struct kvm_irqfd data; 3749 3750 r = -EFAULT; 3751 if (copy_from_user(&data, argp, sizeof(data))) 3752 goto out; 3753 r = kvm_irqfd(kvm, &data); 3754 break; 3755 } 3756 case KVM_IOEVENTFD: { 3757 struct kvm_ioeventfd data; 3758 3759 r = -EFAULT; 3760 if (copy_from_user(&data, argp, sizeof(data))) 3761 goto out; 3762 r = kvm_ioeventfd(kvm, &data); 3763 break; 3764 } 3765 #ifdef CONFIG_HAVE_KVM_MSI 3766 case KVM_SIGNAL_MSI: { 3767 struct kvm_msi msi; 3768 3769 r = -EFAULT; 3770 if (copy_from_user(&msi, argp, sizeof(msi))) 3771 goto out; 3772 r = kvm_send_userspace_msi(kvm, &msi); 3773 break; 3774 } 3775 #endif 3776 #ifdef __KVM_HAVE_IRQ_LINE 3777 case KVM_IRQ_LINE_STATUS: 3778 case KVM_IRQ_LINE: { 3779 struct kvm_irq_level irq_event; 3780 3781 r = -EFAULT; 3782 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3783 goto out; 3784 3785 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3786 ioctl == KVM_IRQ_LINE_STATUS); 3787 if (r) 3788 goto out; 3789 3790 r = -EFAULT; 3791 if (ioctl == KVM_IRQ_LINE_STATUS) { 3792 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3793 goto out; 3794 } 3795 3796 r = 0; 3797 break; 3798 } 3799 #endif 3800 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3801 case KVM_SET_GSI_ROUTING: { 3802 struct kvm_irq_routing routing; 3803 struct kvm_irq_routing __user *urouting; 3804 struct kvm_irq_routing_entry *entries = NULL; 3805 3806 r = -EFAULT; 3807 if (copy_from_user(&routing, argp, sizeof(routing))) 3808 goto out; 3809 r = -EINVAL; 3810 if (!kvm_arch_can_set_irq_routing(kvm)) 3811 goto out; 3812 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3813 goto out; 3814 if (routing.flags) 3815 goto out; 3816 if (routing.nr) { 3817 urouting = argp; 3818 entries = vmemdup_user(urouting->entries, 3819 array_size(sizeof(*entries), 3820 routing.nr)); 3821 if (IS_ERR(entries)) { 3822 r = PTR_ERR(entries); 3823 goto out; 3824 } 3825 } 3826 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3827 routing.flags); 3828 kvfree(entries); 3829 break; 3830 } 3831 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3832 case KVM_CREATE_DEVICE: { 3833 struct kvm_create_device cd; 3834 3835 r = -EFAULT; 3836 if (copy_from_user(&cd, argp, sizeof(cd))) 3837 goto out; 3838 3839 r = kvm_ioctl_create_device(kvm, &cd); 3840 if (r) 3841 goto out; 3842 3843 r = -EFAULT; 3844 if (copy_to_user(argp, &cd, sizeof(cd))) 3845 goto out; 3846 3847 r = 0; 3848 break; 3849 } 3850 case KVM_CHECK_EXTENSION: 3851 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3852 break; 3853 default: 3854 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3855 } 3856 out: 3857 return r; 3858 } 3859 3860 #ifdef CONFIG_KVM_COMPAT 3861 struct compat_kvm_dirty_log { 3862 __u32 slot; 3863 __u32 padding1; 3864 union { 3865 compat_uptr_t dirty_bitmap; /* one bit per page */ 3866 __u64 padding2; 3867 }; 3868 }; 3869 3870 static long kvm_vm_compat_ioctl(struct file *filp, 3871 unsigned int ioctl, unsigned long arg) 3872 { 3873 struct kvm *kvm = filp->private_data; 3874 int r; 3875 3876 if (kvm->mm != current->mm) 3877 return -EIO; 3878 switch (ioctl) { 3879 case KVM_GET_DIRTY_LOG: { 3880 struct compat_kvm_dirty_log compat_log; 3881 struct kvm_dirty_log log; 3882 3883 if (copy_from_user(&compat_log, (void __user *)arg, 3884 sizeof(compat_log))) 3885 return -EFAULT; 3886 log.slot = compat_log.slot; 3887 log.padding1 = compat_log.padding1; 3888 log.padding2 = compat_log.padding2; 3889 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3890 3891 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3892 break; 3893 } 3894 default: 3895 r = kvm_vm_ioctl(filp, ioctl, arg); 3896 } 3897 return r; 3898 } 3899 #endif 3900 3901 static struct file_operations kvm_vm_fops = { 3902 .release = kvm_vm_release, 3903 .unlocked_ioctl = kvm_vm_ioctl, 3904 .llseek = noop_llseek, 3905 KVM_COMPAT(kvm_vm_compat_ioctl), 3906 }; 3907 3908 static int kvm_dev_ioctl_create_vm(unsigned long type) 3909 { 3910 int r; 3911 struct kvm *kvm; 3912 struct file *file; 3913 3914 kvm = kvm_create_vm(type); 3915 if (IS_ERR(kvm)) 3916 return PTR_ERR(kvm); 3917 #ifdef CONFIG_KVM_MMIO 3918 r = kvm_coalesced_mmio_init(kvm); 3919 if (r < 0) 3920 goto put_kvm; 3921 #endif 3922 r = get_unused_fd_flags(O_CLOEXEC); 3923 if (r < 0) 3924 goto put_kvm; 3925 3926 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3927 if (IS_ERR(file)) { 3928 put_unused_fd(r); 3929 r = PTR_ERR(file); 3930 goto put_kvm; 3931 } 3932 3933 /* 3934 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3935 * already set, with ->release() being kvm_vm_release(). In error 3936 * cases it will be called by the final fput(file) and will take 3937 * care of doing kvm_put_kvm(kvm). 3938 */ 3939 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3940 put_unused_fd(r); 3941 fput(file); 3942 return -ENOMEM; 3943 } 3944 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3945 3946 fd_install(r, file); 3947 return r; 3948 3949 put_kvm: 3950 kvm_put_kvm(kvm); 3951 return r; 3952 } 3953 3954 static long kvm_dev_ioctl(struct file *filp, 3955 unsigned int ioctl, unsigned long arg) 3956 { 3957 long r = -EINVAL; 3958 3959 switch (ioctl) { 3960 case KVM_GET_API_VERSION: 3961 if (arg) 3962 goto out; 3963 r = KVM_API_VERSION; 3964 break; 3965 case KVM_CREATE_VM: 3966 r = kvm_dev_ioctl_create_vm(arg); 3967 break; 3968 case KVM_CHECK_EXTENSION: 3969 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3970 break; 3971 case KVM_GET_VCPU_MMAP_SIZE: 3972 if (arg) 3973 goto out; 3974 r = PAGE_SIZE; /* struct kvm_run */ 3975 #ifdef CONFIG_X86 3976 r += PAGE_SIZE; /* pio data page */ 3977 #endif 3978 #ifdef CONFIG_KVM_MMIO 3979 r += PAGE_SIZE; /* coalesced mmio ring page */ 3980 #endif 3981 break; 3982 case KVM_TRACE_ENABLE: 3983 case KVM_TRACE_PAUSE: 3984 case KVM_TRACE_DISABLE: 3985 r = -EOPNOTSUPP; 3986 break; 3987 default: 3988 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3989 } 3990 out: 3991 return r; 3992 } 3993 3994 static struct file_operations kvm_chardev_ops = { 3995 .unlocked_ioctl = kvm_dev_ioctl, 3996 .llseek = noop_llseek, 3997 KVM_COMPAT(kvm_dev_ioctl), 3998 }; 3999 4000 static struct miscdevice kvm_dev = { 4001 KVM_MINOR, 4002 "kvm", 4003 &kvm_chardev_ops, 4004 }; 4005 4006 static void hardware_enable_nolock(void *junk) 4007 { 4008 int cpu = raw_smp_processor_id(); 4009 int r; 4010 4011 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4012 return; 4013 4014 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4015 4016 r = kvm_arch_hardware_enable(); 4017 4018 if (r) { 4019 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4020 atomic_inc(&hardware_enable_failed); 4021 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4022 } 4023 } 4024 4025 static int kvm_starting_cpu(unsigned int cpu) 4026 { 4027 raw_spin_lock(&kvm_count_lock); 4028 if (kvm_usage_count) 4029 hardware_enable_nolock(NULL); 4030 raw_spin_unlock(&kvm_count_lock); 4031 return 0; 4032 } 4033 4034 static void hardware_disable_nolock(void *junk) 4035 { 4036 int cpu = raw_smp_processor_id(); 4037 4038 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4039 return; 4040 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4041 kvm_arch_hardware_disable(); 4042 } 4043 4044 static int kvm_dying_cpu(unsigned int cpu) 4045 { 4046 raw_spin_lock(&kvm_count_lock); 4047 if (kvm_usage_count) 4048 hardware_disable_nolock(NULL); 4049 raw_spin_unlock(&kvm_count_lock); 4050 return 0; 4051 } 4052 4053 static void hardware_disable_all_nolock(void) 4054 { 4055 BUG_ON(!kvm_usage_count); 4056 4057 kvm_usage_count--; 4058 if (!kvm_usage_count) 4059 on_each_cpu(hardware_disable_nolock, NULL, 1); 4060 } 4061 4062 static void hardware_disable_all(void) 4063 { 4064 raw_spin_lock(&kvm_count_lock); 4065 hardware_disable_all_nolock(); 4066 raw_spin_unlock(&kvm_count_lock); 4067 } 4068 4069 static int hardware_enable_all(void) 4070 { 4071 int r = 0; 4072 4073 raw_spin_lock(&kvm_count_lock); 4074 4075 kvm_usage_count++; 4076 if (kvm_usage_count == 1) { 4077 atomic_set(&hardware_enable_failed, 0); 4078 on_each_cpu(hardware_enable_nolock, NULL, 1); 4079 4080 if (atomic_read(&hardware_enable_failed)) { 4081 hardware_disable_all_nolock(); 4082 r = -EBUSY; 4083 } 4084 } 4085 4086 raw_spin_unlock(&kvm_count_lock); 4087 4088 return r; 4089 } 4090 4091 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4092 void *v) 4093 { 4094 /* 4095 * Some (well, at least mine) BIOSes hang on reboot if 4096 * in vmx root mode. 4097 * 4098 * And Intel TXT required VMX off for all cpu when system shutdown. 4099 */ 4100 pr_info("kvm: exiting hardware virtualization\n"); 4101 kvm_rebooting = true; 4102 on_each_cpu(hardware_disable_nolock, NULL, 1); 4103 return NOTIFY_OK; 4104 } 4105 4106 static struct notifier_block kvm_reboot_notifier = { 4107 .notifier_call = kvm_reboot, 4108 .priority = 0, 4109 }; 4110 4111 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4112 { 4113 int i; 4114 4115 for (i = 0; i < bus->dev_count; i++) { 4116 struct kvm_io_device *pos = bus->range[i].dev; 4117 4118 kvm_iodevice_destructor(pos); 4119 } 4120 kfree(bus); 4121 } 4122 4123 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4124 const struct kvm_io_range *r2) 4125 { 4126 gpa_t addr1 = r1->addr; 4127 gpa_t addr2 = r2->addr; 4128 4129 if (addr1 < addr2) 4130 return -1; 4131 4132 /* If r2->len == 0, match the exact address. If r2->len != 0, 4133 * accept any overlapping write. Any order is acceptable for 4134 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4135 * we process all of them. 4136 */ 4137 if (r2->len) { 4138 addr1 += r1->len; 4139 addr2 += r2->len; 4140 } 4141 4142 if (addr1 > addr2) 4143 return 1; 4144 4145 return 0; 4146 } 4147 4148 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4149 { 4150 return kvm_io_bus_cmp(p1, p2); 4151 } 4152 4153 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4154 gpa_t addr, int len) 4155 { 4156 struct kvm_io_range *range, key; 4157 int off; 4158 4159 key = (struct kvm_io_range) { 4160 .addr = addr, 4161 .len = len, 4162 }; 4163 4164 range = bsearch(&key, bus->range, bus->dev_count, 4165 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4166 if (range == NULL) 4167 return -ENOENT; 4168 4169 off = range - bus->range; 4170 4171 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4172 off--; 4173 4174 return off; 4175 } 4176 4177 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4178 struct kvm_io_range *range, const void *val) 4179 { 4180 int idx; 4181 4182 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4183 if (idx < 0) 4184 return -EOPNOTSUPP; 4185 4186 while (idx < bus->dev_count && 4187 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4188 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4189 range->len, val)) 4190 return idx; 4191 idx++; 4192 } 4193 4194 return -EOPNOTSUPP; 4195 } 4196 4197 /* kvm_io_bus_write - called under kvm->slots_lock */ 4198 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4199 int len, const void *val) 4200 { 4201 struct kvm_io_bus *bus; 4202 struct kvm_io_range range; 4203 int r; 4204 4205 range = (struct kvm_io_range) { 4206 .addr = addr, 4207 .len = len, 4208 }; 4209 4210 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4211 if (!bus) 4212 return -ENOMEM; 4213 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4214 return r < 0 ? r : 0; 4215 } 4216 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4217 4218 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4219 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4220 gpa_t addr, int len, const void *val, long cookie) 4221 { 4222 struct kvm_io_bus *bus; 4223 struct kvm_io_range range; 4224 4225 range = (struct kvm_io_range) { 4226 .addr = addr, 4227 .len = len, 4228 }; 4229 4230 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4231 if (!bus) 4232 return -ENOMEM; 4233 4234 /* First try the device referenced by cookie. */ 4235 if ((cookie >= 0) && (cookie < bus->dev_count) && 4236 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4237 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4238 val)) 4239 return cookie; 4240 4241 /* 4242 * cookie contained garbage; fall back to search and return the 4243 * correct cookie value. 4244 */ 4245 return __kvm_io_bus_write(vcpu, bus, &range, val); 4246 } 4247 4248 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4249 struct kvm_io_range *range, void *val) 4250 { 4251 int idx; 4252 4253 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4254 if (idx < 0) 4255 return -EOPNOTSUPP; 4256 4257 while (idx < bus->dev_count && 4258 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4259 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4260 range->len, val)) 4261 return idx; 4262 idx++; 4263 } 4264 4265 return -EOPNOTSUPP; 4266 } 4267 4268 /* kvm_io_bus_read - called under kvm->slots_lock */ 4269 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4270 int len, void *val) 4271 { 4272 struct kvm_io_bus *bus; 4273 struct kvm_io_range range; 4274 int r; 4275 4276 range = (struct kvm_io_range) { 4277 .addr = addr, 4278 .len = len, 4279 }; 4280 4281 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4282 if (!bus) 4283 return -ENOMEM; 4284 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4285 return r < 0 ? r : 0; 4286 } 4287 4288 /* Caller must hold slots_lock. */ 4289 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4290 int len, struct kvm_io_device *dev) 4291 { 4292 int i; 4293 struct kvm_io_bus *new_bus, *bus; 4294 struct kvm_io_range range; 4295 4296 bus = kvm_get_bus(kvm, bus_idx); 4297 if (!bus) 4298 return -ENOMEM; 4299 4300 /* exclude ioeventfd which is limited by maximum fd */ 4301 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4302 return -ENOSPC; 4303 4304 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4305 GFP_KERNEL_ACCOUNT); 4306 if (!new_bus) 4307 return -ENOMEM; 4308 4309 range = (struct kvm_io_range) { 4310 .addr = addr, 4311 .len = len, 4312 .dev = dev, 4313 }; 4314 4315 for (i = 0; i < bus->dev_count; i++) 4316 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4317 break; 4318 4319 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4320 new_bus->dev_count++; 4321 new_bus->range[i] = range; 4322 memcpy(new_bus->range + i + 1, bus->range + i, 4323 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4324 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4325 synchronize_srcu_expedited(&kvm->srcu); 4326 kfree(bus); 4327 4328 return 0; 4329 } 4330 4331 /* Caller must hold slots_lock. */ 4332 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4333 struct kvm_io_device *dev) 4334 { 4335 int i, j; 4336 struct kvm_io_bus *new_bus, *bus; 4337 4338 bus = kvm_get_bus(kvm, bus_idx); 4339 if (!bus) 4340 return; 4341 4342 for (i = 0; i < bus->dev_count; i++) 4343 if (bus->range[i].dev == dev) { 4344 break; 4345 } 4346 4347 if (i == bus->dev_count) 4348 return; 4349 4350 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4351 GFP_KERNEL_ACCOUNT); 4352 if (new_bus) { 4353 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4354 new_bus->dev_count--; 4355 memcpy(new_bus->range + i, bus->range + i + 1, 4356 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 4357 } else { 4358 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4359 for (j = 0; j < bus->dev_count; j++) { 4360 if (j == i) 4361 continue; 4362 kvm_iodevice_destructor(bus->range[j].dev); 4363 } 4364 } 4365 4366 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4367 synchronize_srcu_expedited(&kvm->srcu); 4368 kfree(bus); 4369 return; 4370 } 4371 4372 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4373 gpa_t addr) 4374 { 4375 struct kvm_io_bus *bus; 4376 int dev_idx, srcu_idx; 4377 struct kvm_io_device *iodev = NULL; 4378 4379 srcu_idx = srcu_read_lock(&kvm->srcu); 4380 4381 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4382 if (!bus) 4383 goto out_unlock; 4384 4385 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4386 if (dev_idx < 0) 4387 goto out_unlock; 4388 4389 iodev = bus->range[dev_idx].dev; 4390 4391 out_unlock: 4392 srcu_read_unlock(&kvm->srcu, srcu_idx); 4393 4394 return iodev; 4395 } 4396 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4397 4398 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4399 int (*get)(void *, u64 *), int (*set)(void *, u64), 4400 const char *fmt) 4401 { 4402 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4403 inode->i_private; 4404 4405 /* The debugfs files are a reference to the kvm struct which 4406 * is still valid when kvm_destroy_vm is called. 4407 * To avoid the race between open and the removal of the debugfs 4408 * directory we test against the users count. 4409 */ 4410 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4411 return -ENOENT; 4412 4413 if (simple_attr_open(inode, file, get, 4414 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222 4415 ? set : NULL, 4416 fmt)) { 4417 kvm_put_kvm(stat_data->kvm); 4418 return -ENOMEM; 4419 } 4420 4421 return 0; 4422 } 4423 4424 static int kvm_debugfs_release(struct inode *inode, struct file *file) 4425 { 4426 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4427 inode->i_private; 4428 4429 simple_attr_release(inode, file); 4430 kvm_put_kvm(stat_data->kvm); 4431 4432 return 0; 4433 } 4434 4435 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 4436 { 4437 *val = *(ulong *)((void *)kvm + offset); 4438 4439 return 0; 4440 } 4441 4442 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 4443 { 4444 *(ulong *)((void *)kvm + offset) = 0; 4445 4446 return 0; 4447 } 4448 4449 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 4450 { 4451 int i; 4452 struct kvm_vcpu *vcpu; 4453 4454 *val = 0; 4455 4456 kvm_for_each_vcpu(i, vcpu, kvm) 4457 *val += *(u64 *)((void *)vcpu + offset); 4458 4459 return 0; 4460 } 4461 4462 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 4463 { 4464 int i; 4465 struct kvm_vcpu *vcpu; 4466 4467 kvm_for_each_vcpu(i, vcpu, kvm) 4468 *(u64 *)((void *)vcpu + offset) = 0; 4469 4470 return 0; 4471 } 4472 4473 static int kvm_stat_data_get(void *data, u64 *val) 4474 { 4475 int r = -EFAULT; 4476 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4477 4478 switch (stat_data->dbgfs_item->kind) { 4479 case KVM_STAT_VM: 4480 r = kvm_get_stat_per_vm(stat_data->kvm, 4481 stat_data->dbgfs_item->offset, val); 4482 break; 4483 case KVM_STAT_VCPU: 4484 r = kvm_get_stat_per_vcpu(stat_data->kvm, 4485 stat_data->dbgfs_item->offset, val); 4486 break; 4487 } 4488 4489 return r; 4490 } 4491 4492 static int kvm_stat_data_clear(void *data, u64 val) 4493 { 4494 int r = -EFAULT; 4495 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4496 4497 if (val) 4498 return -EINVAL; 4499 4500 switch (stat_data->dbgfs_item->kind) { 4501 case KVM_STAT_VM: 4502 r = kvm_clear_stat_per_vm(stat_data->kvm, 4503 stat_data->dbgfs_item->offset); 4504 break; 4505 case KVM_STAT_VCPU: 4506 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 4507 stat_data->dbgfs_item->offset); 4508 break; 4509 } 4510 4511 return r; 4512 } 4513 4514 static int kvm_stat_data_open(struct inode *inode, struct file *file) 4515 { 4516 __simple_attr_check_format("%llu\n", 0ull); 4517 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 4518 kvm_stat_data_clear, "%llu\n"); 4519 } 4520 4521 static const struct file_operations stat_fops_per_vm = { 4522 .owner = THIS_MODULE, 4523 .open = kvm_stat_data_open, 4524 .release = kvm_debugfs_release, 4525 .read = simple_attr_read, 4526 .write = simple_attr_write, 4527 .llseek = no_llseek, 4528 }; 4529 4530 static int vm_stat_get(void *_offset, u64 *val) 4531 { 4532 unsigned offset = (long)_offset; 4533 struct kvm *kvm; 4534 u64 tmp_val; 4535 4536 *val = 0; 4537 mutex_lock(&kvm_lock); 4538 list_for_each_entry(kvm, &vm_list, vm_list) { 4539 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 4540 *val += tmp_val; 4541 } 4542 mutex_unlock(&kvm_lock); 4543 return 0; 4544 } 4545 4546 static int vm_stat_clear(void *_offset, u64 val) 4547 { 4548 unsigned offset = (long)_offset; 4549 struct kvm *kvm; 4550 4551 if (val) 4552 return -EINVAL; 4553 4554 mutex_lock(&kvm_lock); 4555 list_for_each_entry(kvm, &vm_list, vm_list) { 4556 kvm_clear_stat_per_vm(kvm, offset); 4557 } 4558 mutex_unlock(&kvm_lock); 4559 4560 return 0; 4561 } 4562 4563 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4564 4565 static int vcpu_stat_get(void *_offset, u64 *val) 4566 { 4567 unsigned offset = (long)_offset; 4568 struct kvm *kvm; 4569 u64 tmp_val; 4570 4571 *val = 0; 4572 mutex_lock(&kvm_lock); 4573 list_for_each_entry(kvm, &vm_list, vm_list) { 4574 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 4575 *val += tmp_val; 4576 } 4577 mutex_unlock(&kvm_lock); 4578 return 0; 4579 } 4580 4581 static int vcpu_stat_clear(void *_offset, u64 val) 4582 { 4583 unsigned offset = (long)_offset; 4584 struct kvm *kvm; 4585 4586 if (val) 4587 return -EINVAL; 4588 4589 mutex_lock(&kvm_lock); 4590 list_for_each_entry(kvm, &vm_list, vm_list) { 4591 kvm_clear_stat_per_vcpu(kvm, offset); 4592 } 4593 mutex_unlock(&kvm_lock); 4594 4595 return 0; 4596 } 4597 4598 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4599 "%llu\n"); 4600 4601 static const struct file_operations *stat_fops[] = { 4602 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4603 [KVM_STAT_VM] = &vm_stat_fops, 4604 }; 4605 4606 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4607 { 4608 struct kobj_uevent_env *env; 4609 unsigned long long created, active; 4610 4611 if (!kvm_dev.this_device || !kvm) 4612 return; 4613 4614 mutex_lock(&kvm_lock); 4615 if (type == KVM_EVENT_CREATE_VM) { 4616 kvm_createvm_count++; 4617 kvm_active_vms++; 4618 } else if (type == KVM_EVENT_DESTROY_VM) { 4619 kvm_active_vms--; 4620 } 4621 created = kvm_createvm_count; 4622 active = kvm_active_vms; 4623 mutex_unlock(&kvm_lock); 4624 4625 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4626 if (!env) 4627 return; 4628 4629 add_uevent_var(env, "CREATED=%llu", created); 4630 add_uevent_var(env, "COUNT=%llu", active); 4631 4632 if (type == KVM_EVENT_CREATE_VM) { 4633 add_uevent_var(env, "EVENT=create"); 4634 kvm->userspace_pid = task_pid_nr(current); 4635 } else if (type == KVM_EVENT_DESTROY_VM) { 4636 add_uevent_var(env, "EVENT=destroy"); 4637 } 4638 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4639 4640 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4641 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4642 4643 if (p) { 4644 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4645 if (!IS_ERR(tmp)) 4646 add_uevent_var(env, "STATS_PATH=%s", tmp); 4647 kfree(p); 4648 } 4649 } 4650 /* no need for checks, since we are adding at most only 5 keys */ 4651 env->envp[env->envp_idx++] = NULL; 4652 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4653 kfree(env); 4654 } 4655 4656 static void kvm_init_debug(void) 4657 { 4658 struct kvm_stats_debugfs_item *p; 4659 4660 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4661 4662 kvm_debugfs_num_entries = 0; 4663 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4664 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 4665 kvm_debugfs_dir, (void *)(long)p->offset, 4666 stat_fops[p->kind]); 4667 } 4668 } 4669 4670 static int kvm_suspend(void) 4671 { 4672 if (kvm_usage_count) 4673 hardware_disable_nolock(NULL); 4674 return 0; 4675 } 4676 4677 static void kvm_resume(void) 4678 { 4679 if (kvm_usage_count) { 4680 #ifdef CONFIG_LOCKDEP 4681 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4682 #endif 4683 hardware_enable_nolock(NULL); 4684 } 4685 } 4686 4687 static struct syscore_ops kvm_syscore_ops = { 4688 .suspend = kvm_suspend, 4689 .resume = kvm_resume, 4690 }; 4691 4692 static inline 4693 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4694 { 4695 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4696 } 4697 4698 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4699 { 4700 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4701 4702 WRITE_ONCE(vcpu->preempted, false); 4703 WRITE_ONCE(vcpu->ready, false); 4704 4705 __this_cpu_write(kvm_running_vcpu, vcpu); 4706 kvm_arch_sched_in(vcpu, cpu); 4707 kvm_arch_vcpu_load(vcpu, cpu); 4708 } 4709 4710 static void kvm_sched_out(struct preempt_notifier *pn, 4711 struct task_struct *next) 4712 { 4713 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4714 4715 if (current->state == TASK_RUNNING) { 4716 WRITE_ONCE(vcpu->preempted, true); 4717 WRITE_ONCE(vcpu->ready, true); 4718 } 4719 kvm_arch_vcpu_put(vcpu); 4720 __this_cpu_write(kvm_running_vcpu, NULL); 4721 } 4722 4723 /** 4724 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 4725 * 4726 * We can disable preemption locally around accessing the per-CPU variable, 4727 * and use the resolved vcpu pointer after enabling preemption again, 4728 * because even if the current thread is migrated to another CPU, reading 4729 * the per-CPU value later will give us the same value as we update the 4730 * per-CPU variable in the preempt notifier handlers. 4731 */ 4732 struct kvm_vcpu *kvm_get_running_vcpu(void) 4733 { 4734 struct kvm_vcpu *vcpu; 4735 4736 preempt_disable(); 4737 vcpu = __this_cpu_read(kvm_running_vcpu); 4738 preempt_enable(); 4739 4740 return vcpu; 4741 } 4742 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 4743 4744 /** 4745 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 4746 */ 4747 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 4748 { 4749 return &kvm_running_vcpu; 4750 } 4751 4752 struct kvm_cpu_compat_check { 4753 void *opaque; 4754 int *ret; 4755 }; 4756 4757 static void check_processor_compat(void *data) 4758 { 4759 struct kvm_cpu_compat_check *c = data; 4760 4761 *c->ret = kvm_arch_check_processor_compat(c->opaque); 4762 } 4763 4764 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4765 struct module *module) 4766 { 4767 struct kvm_cpu_compat_check c; 4768 int r; 4769 int cpu; 4770 4771 r = kvm_arch_init(opaque); 4772 if (r) 4773 goto out_fail; 4774 4775 /* 4776 * kvm_arch_init makes sure there's at most one caller 4777 * for architectures that support multiple implementations, 4778 * like intel and amd on x86. 4779 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4780 * conflicts in case kvm is already setup for another implementation. 4781 */ 4782 r = kvm_irqfd_init(); 4783 if (r) 4784 goto out_irqfd; 4785 4786 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4787 r = -ENOMEM; 4788 goto out_free_0; 4789 } 4790 4791 r = kvm_arch_hardware_setup(opaque); 4792 if (r < 0) 4793 goto out_free_1; 4794 4795 c.ret = &r; 4796 c.opaque = opaque; 4797 for_each_online_cpu(cpu) { 4798 smp_call_function_single(cpu, check_processor_compat, &c, 1); 4799 if (r < 0) 4800 goto out_free_2; 4801 } 4802 4803 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4804 kvm_starting_cpu, kvm_dying_cpu); 4805 if (r) 4806 goto out_free_2; 4807 register_reboot_notifier(&kvm_reboot_notifier); 4808 4809 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4810 if (!vcpu_align) 4811 vcpu_align = __alignof__(struct kvm_vcpu); 4812 kvm_vcpu_cache = 4813 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4814 SLAB_ACCOUNT, 4815 offsetof(struct kvm_vcpu, arch), 4816 sizeof_field(struct kvm_vcpu, arch), 4817 NULL); 4818 if (!kvm_vcpu_cache) { 4819 r = -ENOMEM; 4820 goto out_free_3; 4821 } 4822 4823 r = kvm_async_pf_init(); 4824 if (r) 4825 goto out_free; 4826 4827 kvm_chardev_ops.owner = module; 4828 kvm_vm_fops.owner = module; 4829 kvm_vcpu_fops.owner = module; 4830 4831 r = misc_register(&kvm_dev); 4832 if (r) { 4833 pr_err("kvm: misc device register failed\n"); 4834 goto out_unreg; 4835 } 4836 4837 register_syscore_ops(&kvm_syscore_ops); 4838 4839 kvm_preempt_ops.sched_in = kvm_sched_in; 4840 kvm_preempt_ops.sched_out = kvm_sched_out; 4841 4842 kvm_init_debug(); 4843 4844 r = kvm_vfio_ops_init(); 4845 WARN_ON(r); 4846 4847 return 0; 4848 4849 out_unreg: 4850 kvm_async_pf_deinit(); 4851 out_free: 4852 kmem_cache_destroy(kvm_vcpu_cache); 4853 out_free_3: 4854 unregister_reboot_notifier(&kvm_reboot_notifier); 4855 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4856 out_free_2: 4857 kvm_arch_hardware_unsetup(); 4858 out_free_1: 4859 free_cpumask_var(cpus_hardware_enabled); 4860 out_free_0: 4861 kvm_irqfd_exit(); 4862 out_irqfd: 4863 kvm_arch_exit(); 4864 out_fail: 4865 return r; 4866 } 4867 EXPORT_SYMBOL_GPL(kvm_init); 4868 4869 void kvm_exit(void) 4870 { 4871 debugfs_remove_recursive(kvm_debugfs_dir); 4872 misc_deregister(&kvm_dev); 4873 kmem_cache_destroy(kvm_vcpu_cache); 4874 kvm_async_pf_deinit(); 4875 unregister_syscore_ops(&kvm_syscore_ops); 4876 unregister_reboot_notifier(&kvm_reboot_notifier); 4877 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4878 on_each_cpu(hardware_disable_nolock, NULL, 1); 4879 kvm_arch_hardware_unsetup(); 4880 kvm_arch_exit(); 4881 kvm_irqfd_exit(); 4882 free_cpumask_var(cpus_hardware_enabled); 4883 kvm_vfio_ops_exit(); 4884 } 4885 EXPORT_SYMBOL_GPL(kvm_exit); 4886 4887 struct kvm_vm_worker_thread_context { 4888 struct kvm *kvm; 4889 struct task_struct *parent; 4890 struct completion init_done; 4891 kvm_vm_thread_fn_t thread_fn; 4892 uintptr_t data; 4893 int err; 4894 }; 4895 4896 static int kvm_vm_worker_thread(void *context) 4897 { 4898 /* 4899 * The init_context is allocated on the stack of the parent thread, so 4900 * we have to locally copy anything that is needed beyond initialization 4901 */ 4902 struct kvm_vm_worker_thread_context *init_context = context; 4903 struct kvm *kvm = init_context->kvm; 4904 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 4905 uintptr_t data = init_context->data; 4906 int err; 4907 4908 err = kthread_park(current); 4909 /* kthread_park(current) is never supposed to return an error */ 4910 WARN_ON(err != 0); 4911 if (err) 4912 goto init_complete; 4913 4914 err = cgroup_attach_task_all(init_context->parent, current); 4915 if (err) { 4916 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 4917 __func__, err); 4918 goto init_complete; 4919 } 4920 4921 set_user_nice(current, task_nice(init_context->parent)); 4922 4923 init_complete: 4924 init_context->err = err; 4925 complete(&init_context->init_done); 4926 init_context = NULL; 4927 4928 if (err) 4929 return err; 4930 4931 /* Wait to be woken up by the spawner before proceeding. */ 4932 kthread_parkme(); 4933 4934 if (!kthread_should_stop()) 4935 err = thread_fn(kvm, data); 4936 4937 return err; 4938 } 4939 4940 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 4941 uintptr_t data, const char *name, 4942 struct task_struct **thread_ptr) 4943 { 4944 struct kvm_vm_worker_thread_context init_context = {}; 4945 struct task_struct *thread; 4946 4947 *thread_ptr = NULL; 4948 init_context.kvm = kvm; 4949 init_context.parent = current; 4950 init_context.thread_fn = thread_fn; 4951 init_context.data = data; 4952 init_completion(&init_context.init_done); 4953 4954 thread = kthread_run(kvm_vm_worker_thread, &init_context, 4955 "%s-%d", name, task_pid_nr(current)); 4956 if (IS_ERR(thread)) 4957 return PTR_ERR(thread); 4958 4959 /* kthread_run is never supposed to return NULL */ 4960 WARN_ON(thread == NULL); 4961 4962 wait_for_completion(&init_context.init_done); 4963 4964 if (!init_context.err) 4965 *thread_ptr = thread; 4966 4967 return init_context.err; 4968 } 4969