xref: /openbmc/linux/virt/kvm/kvm_main.c (revision a16be368)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 				unsigned long arg) { return -EINVAL; }
133 
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136 	return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
139 			.open		= kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143 
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145 
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147 
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158 		unsigned long start, unsigned long end, bool blockable)
159 {
160 	return 0;
161 }
162 
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 		return false;
173 
174 	return is_zone_device_page(pfn_to_page(pfn));
175 }
176 
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 	/*
180 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 	 * perspective they are "normal" pages, albeit with slightly different
182 	 * usage rules.
183 	 */
184 	if (pfn_valid(pfn))
185 		return PageReserved(pfn_to_page(pfn)) &&
186 		       !is_zero_pfn(pfn) &&
187 		       !kvm_is_zone_device_pfn(pfn);
188 
189 	return true;
190 }
191 
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194 	struct page *page = pfn_to_page(pfn);
195 
196 	if (!PageTransCompoundMap(page))
197 		return false;
198 
199 	return is_transparent_hugepage(compound_head(page));
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_flush(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250 	if (unlikely(!cpus))
251 		cpus = cpu_online_mask;
252 
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_flush, NULL, wait);
257 	return true;
258 }
259 
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 				 struct kvm_vcpu *except,
262 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 	int i, cpu, me;
265 	struct kvm_vcpu *vcpu;
266 	bool called;
267 
268 	me = get_cpu();
269 
270 	kvm_for_each_vcpu(i, vcpu, kvm) {
271 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 		    vcpu == except)
273 			continue;
274 
275 		kvm_make_request(req, vcpu);
276 		cpu = vcpu->cpu;
277 
278 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 			continue;
280 
281 		if (tmp != NULL && cpu != -1 && cpu != me &&
282 		    kvm_request_needs_ipi(vcpu, req))
283 			__cpumask_set_cpu(cpu, tmp);
284 	}
285 
286 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 				      struct kvm_vcpu *except)
294 {
295 	cpumask_var_t cpus;
296 	bool called;
297 
298 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 
300 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 
302 	free_cpumask_var(cpus);
303 	return called;
304 }
305 
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm *kvm)
313 {
314 	/*
315 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316 	 * kvm_make_all_cpus_request.
317 	 */
318 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319 
320 	/*
321 	 * We want to publish modifications to the page tables before reading
322 	 * mode. Pairs with a memory barrier in arch-specific code.
323 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
325 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326 	 *
327 	 * There is already an smp_mb__after_atomic() before
328 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329 	 * barrier here.
330 	 */
331 	if (!kvm_arch_flush_remote_tlb(kvm)
332 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
333 		++kvm->stat.remote_tlb_flush;
334 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
337 #endif
338 
339 void kvm_reload_remote_mmus(struct kvm *kvm)
340 {
341 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
342 }
343 
344 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
345 {
346 	mutex_init(&vcpu->mutex);
347 	vcpu->cpu = -1;
348 	vcpu->kvm = kvm;
349 	vcpu->vcpu_id = id;
350 	vcpu->pid = NULL;
351 	rcuwait_init(&vcpu->wait);
352 	kvm_async_pf_vcpu_init(vcpu);
353 
354 	vcpu->pre_pcpu = -1;
355 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
356 
357 	kvm_vcpu_set_in_spin_loop(vcpu, false);
358 	kvm_vcpu_set_dy_eligible(vcpu, false);
359 	vcpu->preempted = false;
360 	vcpu->ready = false;
361 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
362 }
363 
364 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366 	kvm_arch_vcpu_destroy(vcpu);
367 
368 	/*
369 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
370 	 * the vcpu->pid pointer, and at destruction time all file descriptors
371 	 * are already gone.
372 	 */
373 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
374 
375 	free_page((unsigned long)vcpu->run);
376 	kmem_cache_free(kvm_vcpu_cache, vcpu);
377 }
378 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
379 
380 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
381 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
382 {
383 	return container_of(mn, struct kvm, mmu_notifier);
384 }
385 
386 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
387 					struct mm_struct *mm,
388 					unsigned long address,
389 					pte_t pte)
390 {
391 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
392 	int idx;
393 
394 	idx = srcu_read_lock(&kvm->srcu);
395 	spin_lock(&kvm->mmu_lock);
396 	kvm->mmu_notifier_seq++;
397 
398 	if (kvm_set_spte_hva(kvm, address, pte))
399 		kvm_flush_remote_tlbs(kvm);
400 
401 	spin_unlock(&kvm->mmu_lock);
402 	srcu_read_unlock(&kvm->srcu, idx);
403 }
404 
405 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
406 					const struct mmu_notifier_range *range)
407 {
408 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 	int need_tlb_flush = 0, idx;
410 	int ret;
411 
412 	idx = srcu_read_lock(&kvm->srcu);
413 	spin_lock(&kvm->mmu_lock);
414 	/*
415 	 * The count increase must become visible at unlock time as no
416 	 * spte can be established without taking the mmu_lock and
417 	 * count is also read inside the mmu_lock critical section.
418 	 */
419 	kvm->mmu_notifier_count++;
420 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
421 	need_tlb_flush |= kvm->tlbs_dirty;
422 	/* we've to flush the tlb before the pages can be freed */
423 	if (need_tlb_flush)
424 		kvm_flush_remote_tlbs(kvm);
425 
426 	spin_unlock(&kvm->mmu_lock);
427 
428 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
429 					range->end,
430 					mmu_notifier_range_blockable(range));
431 
432 	srcu_read_unlock(&kvm->srcu, idx);
433 
434 	return ret;
435 }
436 
437 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
438 					const struct mmu_notifier_range *range)
439 {
440 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
441 
442 	spin_lock(&kvm->mmu_lock);
443 	/*
444 	 * This sequence increase will notify the kvm page fault that
445 	 * the page that is going to be mapped in the spte could have
446 	 * been freed.
447 	 */
448 	kvm->mmu_notifier_seq++;
449 	smp_wmb();
450 	/*
451 	 * The above sequence increase must be visible before the
452 	 * below count decrease, which is ensured by the smp_wmb above
453 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
454 	 */
455 	kvm->mmu_notifier_count--;
456 	spin_unlock(&kvm->mmu_lock);
457 
458 	BUG_ON(kvm->mmu_notifier_count < 0);
459 }
460 
461 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
462 					      struct mm_struct *mm,
463 					      unsigned long start,
464 					      unsigned long end)
465 {
466 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
467 	int young, idx;
468 
469 	idx = srcu_read_lock(&kvm->srcu);
470 	spin_lock(&kvm->mmu_lock);
471 
472 	young = kvm_age_hva(kvm, start, end);
473 	if (young)
474 		kvm_flush_remote_tlbs(kvm);
475 
476 	spin_unlock(&kvm->mmu_lock);
477 	srcu_read_unlock(&kvm->srcu, idx);
478 
479 	return young;
480 }
481 
482 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
483 					struct mm_struct *mm,
484 					unsigned long start,
485 					unsigned long end)
486 {
487 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
488 	int young, idx;
489 
490 	idx = srcu_read_lock(&kvm->srcu);
491 	spin_lock(&kvm->mmu_lock);
492 	/*
493 	 * Even though we do not flush TLB, this will still adversely
494 	 * affect performance on pre-Haswell Intel EPT, where there is
495 	 * no EPT Access Bit to clear so that we have to tear down EPT
496 	 * tables instead. If we find this unacceptable, we can always
497 	 * add a parameter to kvm_age_hva so that it effectively doesn't
498 	 * do anything on clear_young.
499 	 *
500 	 * Also note that currently we never issue secondary TLB flushes
501 	 * from clear_young, leaving this job up to the regular system
502 	 * cadence. If we find this inaccurate, we might come up with a
503 	 * more sophisticated heuristic later.
504 	 */
505 	young = kvm_age_hva(kvm, start, end);
506 	spin_unlock(&kvm->mmu_lock);
507 	srcu_read_unlock(&kvm->srcu, idx);
508 
509 	return young;
510 }
511 
512 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
513 				       struct mm_struct *mm,
514 				       unsigned long address)
515 {
516 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
517 	int young, idx;
518 
519 	idx = srcu_read_lock(&kvm->srcu);
520 	spin_lock(&kvm->mmu_lock);
521 	young = kvm_test_age_hva(kvm, address);
522 	spin_unlock(&kvm->mmu_lock);
523 	srcu_read_unlock(&kvm->srcu, idx);
524 
525 	return young;
526 }
527 
528 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
529 				     struct mm_struct *mm)
530 {
531 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
532 	int idx;
533 
534 	idx = srcu_read_lock(&kvm->srcu);
535 	kvm_arch_flush_shadow_all(kvm);
536 	srcu_read_unlock(&kvm->srcu, idx);
537 }
538 
539 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
540 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
541 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
542 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
543 	.clear_young		= kvm_mmu_notifier_clear_young,
544 	.test_young		= kvm_mmu_notifier_test_young,
545 	.change_pte		= kvm_mmu_notifier_change_pte,
546 	.release		= kvm_mmu_notifier_release,
547 };
548 
549 static int kvm_init_mmu_notifier(struct kvm *kvm)
550 {
551 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
552 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
553 }
554 
555 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
556 
557 static int kvm_init_mmu_notifier(struct kvm *kvm)
558 {
559 	return 0;
560 }
561 
562 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
563 
564 static struct kvm_memslots *kvm_alloc_memslots(void)
565 {
566 	int i;
567 	struct kvm_memslots *slots;
568 
569 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
570 	if (!slots)
571 		return NULL;
572 
573 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
574 		slots->id_to_index[i] = -1;
575 
576 	return slots;
577 }
578 
579 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
580 {
581 	if (!memslot->dirty_bitmap)
582 		return;
583 
584 	kvfree(memslot->dirty_bitmap);
585 	memslot->dirty_bitmap = NULL;
586 }
587 
588 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
589 {
590 	kvm_destroy_dirty_bitmap(slot);
591 
592 	kvm_arch_free_memslot(kvm, slot);
593 
594 	slot->flags = 0;
595 	slot->npages = 0;
596 }
597 
598 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
599 {
600 	struct kvm_memory_slot *memslot;
601 
602 	if (!slots)
603 		return;
604 
605 	kvm_for_each_memslot(memslot, slots)
606 		kvm_free_memslot(kvm, memslot);
607 
608 	kvfree(slots);
609 }
610 
611 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
612 {
613 	int i;
614 
615 	if (!kvm->debugfs_dentry)
616 		return;
617 
618 	debugfs_remove_recursive(kvm->debugfs_dentry);
619 
620 	if (kvm->debugfs_stat_data) {
621 		for (i = 0; i < kvm_debugfs_num_entries; i++)
622 			kfree(kvm->debugfs_stat_data[i]);
623 		kfree(kvm->debugfs_stat_data);
624 	}
625 }
626 
627 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
628 {
629 	char dir_name[ITOA_MAX_LEN * 2];
630 	struct kvm_stat_data *stat_data;
631 	struct kvm_stats_debugfs_item *p;
632 
633 	if (!debugfs_initialized())
634 		return 0;
635 
636 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
637 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
638 
639 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
640 					 sizeof(*kvm->debugfs_stat_data),
641 					 GFP_KERNEL_ACCOUNT);
642 	if (!kvm->debugfs_stat_data)
643 		return -ENOMEM;
644 
645 	for (p = debugfs_entries; p->name; p++) {
646 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
647 		if (!stat_data)
648 			return -ENOMEM;
649 
650 		stat_data->kvm = kvm;
651 		stat_data->dbgfs_item = p;
652 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
653 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
654 				    kvm->debugfs_dentry, stat_data,
655 				    &stat_fops_per_vm);
656 	}
657 	return 0;
658 }
659 
660 /*
661  * Called after the VM is otherwise initialized, but just before adding it to
662  * the vm_list.
663  */
664 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
665 {
666 	return 0;
667 }
668 
669 /*
670  * Called just after removing the VM from the vm_list, but before doing any
671  * other destruction.
672  */
673 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
674 {
675 }
676 
677 static struct kvm *kvm_create_vm(unsigned long type)
678 {
679 	struct kvm *kvm = kvm_arch_alloc_vm();
680 	int r = -ENOMEM;
681 	int i;
682 
683 	if (!kvm)
684 		return ERR_PTR(-ENOMEM);
685 
686 	spin_lock_init(&kvm->mmu_lock);
687 	mmgrab(current->mm);
688 	kvm->mm = current->mm;
689 	kvm_eventfd_init(kvm);
690 	mutex_init(&kvm->lock);
691 	mutex_init(&kvm->irq_lock);
692 	mutex_init(&kvm->slots_lock);
693 	INIT_LIST_HEAD(&kvm->devices);
694 
695 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
696 
697 	if (init_srcu_struct(&kvm->srcu))
698 		goto out_err_no_srcu;
699 	if (init_srcu_struct(&kvm->irq_srcu))
700 		goto out_err_no_irq_srcu;
701 
702 	refcount_set(&kvm->users_count, 1);
703 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
704 		struct kvm_memslots *slots = kvm_alloc_memslots();
705 
706 		if (!slots)
707 			goto out_err_no_arch_destroy_vm;
708 		/* Generations must be different for each address space. */
709 		slots->generation = i;
710 		rcu_assign_pointer(kvm->memslots[i], slots);
711 	}
712 
713 	for (i = 0; i < KVM_NR_BUSES; i++) {
714 		rcu_assign_pointer(kvm->buses[i],
715 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
716 		if (!kvm->buses[i])
717 			goto out_err_no_arch_destroy_vm;
718 	}
719 
720 	kvm->max_halt_poll_ns = halt_poll_ns;
721 
722 	r = kvm_arch_init_vm(kvm, type);
723 	if (r)
724 		goto out_err_no_arch_destroy_vm;
725 
726 	r = hardware_enable_all();
727 	if (r)
728 		goto out_err_no_disable;
729 
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733 
734 	r = kvm_init_mmu_notifier(kvm);
735 	if (r)
736 		goto out_err_no_mmu_notifier;
737 
738 	r = kvm_arch_post_init_vm(kvm);
739 	if (r)
740 		goto out_err;
741 
742 	mutex_lock(&kvm_lock);
743 	list_add(&kvm->vm_list, &vm_list);
744 	mutex_unlock(&kvm_lock);
745 
746 	preempt_notifier_inc();
747 
748 	return kvm;
749 
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752 	if (kvm->mmu_notifier.ops)
753 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756 	hardware_disable_all();
757 out_err_no_disable:
758 	kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761 	for (i = 0; i < KVM_NR_BUSES; i++)
762 		kfree(kvm_get_bus(kvm, i));
763 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765 	cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767 	cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769 	kvm_arch_free_vm(kvm);
770 	mmdrop(current->mm);
771 	return ERR_PTR(r);
772 }
773 
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776 	struct kvm_device *dev, *tmp;
777 
778 	/*
779 	 * We do not need to take the kvm->lock here, because nobody else
780 	 * has a reference to the struct kvm at this point and therefore
781 	 * cannot access the devices list anyhow.
782 	 */
783 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784 		list_del(&dev->vm_node);
785 		dev->ops->destroy(dev);
786 	}
787 }
788 
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791 	int i;
792 	struct mm_struct *mm = kvm->mm;
793 
794 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795 	kvm_destroy_vm_debugfs(kvm);
796 	kvm_arch_sync_events(kvm);
797 	mutex_lock(&kvm_lock);
798 	list_del(&kvm->vm_list);
799 	mutex_unlock(&kvm_lock);
800 	kvm_arch_pre_destroy_vm(kvm);
801 
802 	kvm_free_irq_routing(kvm);
803 	for (i = 0; i < KVM_NR_BUSES; i++) {
804 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805 
806 		if (bus)
807 			kvm_io_bus_destroy(bus);
808 		kvm->buses[i] = NULL;
809 	}
810 	kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814 	kvm_arch_flush_shadow_all(kvm);
815 #endif
816 	kvm_arch_destroy_vm(kvm);
817 	kvm_destroy_devices(kvm);
818 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820 	cleanup_srcu_struct(&kvm->irq_srcu);
821 	cleanup_srcu_struct(&kvm->srcu);
822 	kvm_arch_free_vm(kvm);
823 	preempt_notifier_dec();
824 	hardware_disable_all();
825 	mmdrop(mm);
826 }
827 
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830 	refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833 
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836 	if (refcount_dec_and_test(&kvm->users_count))
837 		kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840 
841 /*
842  * Used to put a reference that was taken on behalf of an object associated
843  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
844  * of the new file descriptor fails and the reference cannot be transferred to
845  * its final owner.  In such cases, the caller is still actively using @kvm and
846  * will fail miserably if the refcount unexpectedly hits zero.
847  */
848 void kvm_put_kvm_no_destroy(struct kvm *kvm)
849 {
850 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
851 }
852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
853 
854 static int kvm_vm_release(struct inode *inode, struct file *filp)
855 {
856 	struct kvm *kvm = filp->private_data;
857 
858 	kvm_irqfd_release(kvm);
859 
860 	kvm_put_kvm(kvm);
861 	return 0;
862 }
863 
864 /*
865  * Allocation size is twice as large as the actual dirty bitmap size.
866  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
867  */
868 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
869 {
870 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
871 
872 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
873 	if (!memslot->dirty_bitmap)
874 		return -ENOMEM;
875 
876 	return 0;
877 }
878 
879 /*
880  * Delete a memslot by decrementing the number of used slots and shifting all
881  * other entries in the array forward one spot.
882  */
883 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
884 				      struct kvm_memory_slot *memslot)
885 {
886 	struct kvm_memory_slot *mslots = slots->memslots;
887 	int i;
888 
889 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
890 		return;
891 
892 	slots->used_slots--;
893 
894 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
895 		atomic_set(&slots->lru_slot, 0);
896 
897 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
898 		mslots[i] = mslots[i + 1];
899 		slots->id_to_index[mslots[i].id] = i;
900 	}
901 	mslots[i] = *memslot;
902 	slots->id_to_index[memslot->id] = -1;
903 }
904 
905 /*
906  * "Insert" a new memslot by incrementing the number of used slots.  Returns
907  * the new slot's initial index into the memslots array.
908  */
909 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
910 {
911 	return slots->used_slots++;
912 }
913 
914 /*
915  * Move a changed memslot backwards in the array by shifting existing slots
916  * with a higher GFN toward the front of the array.  Note, the changed memslot
917  * itself is not preserved in the array, i.e. not swapped at this time, only
918  * its new index into the array is tracked.  Returns the changed memslot's
919  * current index into the memslots array.
920  */
921 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
922 					    struct kvm_memory_slot *memslot)
923 {
924 	struct kvm_memory_slot *mslots = slots->memslots;
925 	int i;
926 
927 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
928 	    WARN_ON_ONCE(!slots->used_slots))
929 		return -1;
930 
931 	/*
932 	 * Move the target memslot backward in the array by shifting existing
933 	 * memslots with a higher GFN (than the target memslot) towards the
934 	 * front of the array.
935 	 */
936 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
937 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
938 			break;
939 
940 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
941 
942 		/* Shift the next memslot forward one and update its index. */
943 		mslots[i] = mslots[i + 1];
944 		slots->id_to_index[mslots[i].id] = i;
945 	}
946 	return i;
947 }
948 
949 /*
950  * Move a changed memslot forwards in the array by shifting existing slots with
951  * a lower GFN toward the back of the array.  Note, the changed memslot itself
952  * is not preserved in the array, i.e. not swapped at this time, only its new
953  * index into the array is tracked.  Returns the changed memslot's final index
954  * into the memslots array.
955  */
956 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
957 					   struct kvm_memory_slot *memslot,
958 					   int start)
959 {
960 	struct kvm_memory_slot *mslots = slots->memslots;
961 	int i;
962 
963 	for (i = start; i > 0; i--) {
964 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
965 			break;
966 
967 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
968 
969 		/* Shift the next memslot back one and update its index. */
970 		mslots[i] = mslots[i - 1];
971 		slots->id_to_index[mslots[i].id] = i;
972 	}
973 	return i;
974 }
975 
976 /*
977  * Re-sort memslots based on their GFN to account for an added, deleted, or
978  * moved memslot.  Sorting memslots by GFN allows using a binary search during
979  * memslot lookup.
980  *
981  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
982  * at memslots[0] has the highest GFN.
983  *
984  * The sorting algorithm takes advantage of having initially sorted memslots
985  * and knowing the position of the changed memslot.  Sorting is also optimized
986  * by not swapping the updated memslot and instead only shifting other memslots
987  * and tracking the new index for the update memslot.  Only once its final
988  * index is known is the updated memslot copied into its position in the array.
989  *
990  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
991  *    the end of the array.
992  *
993  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
994  *    end of the array and then it forward to its correct location.
995  *
996  *  - When moving a memslot, the algorithm first moves the updated memslot
997  *    backward to handle the scenario where the memslot's GFN was changed to a
998  *    lower value.  update_memslots() then falls through and runs the same flow
999  *    as creating a memslot to move the memslot forward to handle the scenario
1000  *    where its GFN was changed to a higher value.
1001  *
1002  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1003  * historical reasons.  Originally, invalid memslots where denoted by having
1004  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1005  * to the end of the array.  The current algorithm uses dedicated logic to
1006  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1007  *
1008  * The other historical motiviation for highest->lowest was to improve the
1009  * performance of memslot lookup.  KVM originally used a linear search starting
1010  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1011  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1012  * single memslot above the 4gb boundary.  As the largest memslot is also the
1013  * most likely to be referenced, sorting it to the front of the array was
1014  * advantageous.  The current binary search starts from the middle of the array
1015  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1016  */
1017 static void update_memslots(struct kvm_memslots *slots,
1018 			    struct kvm_memory_slot *memslot,
1019 			    enum kvm_mr_change change)
1020 {
1021 	int i;
1022 
1023 	if (change == KVM_MR_DELETE) {
1024 		kvm_memslot_delete(slots, memslot);
1025 	} else {
1026 		if (change == KVM_MR_CREATE)
1027 			i = kvm_memslot_insert_back(slots);
1028 		else
1029 			i = kvm_memslot_move_backward(slots, memslot);
1030 		i = kvm_memslot_move_forward(slots, memslot, i);
1031 
1032 		/*
1033 		 * Copy the memslot to its new position in memslots and update
1034 		 * its index accordingly.
1035 		 */
1036 		slots->memslots[i] = *memslot;
1037 		slots->id_to_index[memslot->id] = i;
1038 	}
1039 }
1040 
1041 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1042 {
1043 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1044 
1045 #ifdef __KVM_HAVE_READONLY_MEM
1046 	valid_flags |= KVM_MEM_READONLY;
1047 #endif
1048 
1049 	if (mem->flags & ~valid_flags)
1050 		return -EINVAL;
1051 
1052 	return 0;
1053 }
1054 
1055 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1056 		int as_id, struct kvm_memslots *slots)
1057 {
1058 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1059 	u64 gen = old_memslots->generation;
1060 
1061 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1062 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1063 
1064 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1065 	synchronize_srcu_expedited(&kvm->srcu);
1066 
1067 	/*
1068 	 * Increment the new memslot generation a second time, dropping the
1069 	 * update in-progress flag and incrementing the generation based on
1070 	 * the number of address spaces.  This provides a unique and easily
1071 	 * identifiable generation number while the memslots are in flux.
1072 	 */
1073 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1074 
1075 	/*
1076 	 * Generations must be unique even across address spaces.  We do not need
1077 	 * a global counter for that, instead the generation space is evenly split
1078 	 * across address spaces.  For example, with two address spaces, address
1079 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1080 	 * use generations 1, 3, 5, ...
1081 	 */
1082 	gen += KVM_ADDRESS_SPACE_NUM;
1083 
1084 	kvm_arch_memslots_updated(kvm, gen);
1085 
1086 	slots->generation = gen;
1087 
1088 	return old_memslots;
1089 }
1090 
1091 /*
1092  * Note, at a minimum, the current number of used slots must be allocated, even
1093  * when deleting a memslot, as we need a complete duplicate of the memslots for
1094  * use when invalidating a memslot prior to deleting/moving the memslot.
1095  */
1096 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1097 					     enum kvm_mr_change change)
1098 {
1099 	struct kvm_memslots *slots;
1100 	size_t old_size, new_size;
1101 
1102 	old_size = sizeof(struct kvm_memslots) +
1103 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1104 
1105 	if (change == KVM_MR_CREATE)
1106 		new_size = old_size + sizeof(struct kvm_memory_slot);
1107 	else
1108 		new_size = old_size;
1109 
1110 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1111 	if (likely(slots))
1112 		memcpy(slots, old, old_size);
1113 
1114 	return slots;
1115 }
1116 
1117 static int kvm_set_memslot(struct kvm *kvm,
1118 			   const struct kvm_userspace_memory_region *mem,
1119 			   struct kvm_memory_slot *old,
1120 			   struct kvm_memory_slot *new, int as_id,
1121 			   enum kvm_mr_change change)
1122 {
1123 	struct kvm_memory_slot *slot;
1124 	struct kvm_memslots *slots;
1125 	int r;
1126 
1127 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1128 	if (!slots)
1129 		return -ENOMEM;
1130 
1131 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1132 		/*
1133 		 * Note, the INVALID flag needs to be in the appropriate entry
1134 		 * in the freshly allocated memslots, not in @old or @new.
1135 		 */
1136 		slot = id_to_memslot(slots, old->id);
1137 		slot->flags |= KVM_MEMSLOT_INVALID;
1138 
1139 		/*
1140 		 * We can re-use the old memslots, the only difference from the
1141 		 * newly installed memslots is the invalid flag, which will get
1142 		 * dropped by update_memslots anyway.  We'll also revert to the
1143 		 * old memslots if preparing the new memory region fails.
1144 		 */
1145 		slots = install_new_memslots(kvm, as_id, slots);
1146 
1147 		/* From this point no new shadow pages pointing to a deleted,
1148 		 * or moved, memslot will be created.
1149 		 *
1150 		 * validation of sp->gfn happens in:
1151 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1152 		 *	- kvm_is_visible_gfn (mmu_check_root)
1153 		 */
1154 		kvm_arch_flush_shadow_memslot(kvm, slot);
1155 	}
1156 
1157 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1158 	if (r)
1159 		goto out_slots;
1160 
1161 	update_memslots(slots, new, change);
1162 	slots = install_new_memslots(kvm, as_id, slots);
1163 
1164 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1165 
1166 	kvfree(slots);
1167 	return 0;
1168 
1169 out_slots:
1170 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1171 		slots = install_new_memslots(kvm, as_id, slots);
1172 	kvfree(slots);
1173 	return r;
1174 }
1175 
1176 static int kvm_delete_memslot(struct kvm *kvm,
1177 			      const struct kvm_userspace_memory_region *mem,
1178 			      struct kvm_memory_slot *old, int as_id)
1179 {
1180 	struct kvm_memory_slot new;
1181 	int r;
1182 
1183 	if (!old->npages)
1184 		return -EINVAL;
1185 
1186 	memset(&new, 0, sizeof(new));
1187 	new.id = old->id;
1188 
1189 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1190 	if (r)
1191 		return r;
1192 
1193 	kvm_free_memslot(kvm, old);
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Allocate some memory and give it an address in the guest physical address
1199  * space.
1200  *
1201  * Discontiguous memory is allowed, mostly for framebuffers.
1202  *
1203  * Must be called holding kvm->slots_lock for write.
1204  */
1205 int __kvm_set_memory_region(struct kvm *kvm,
1206 			    const struct kvm_userspace_memory_region *mem)
1207 {
1208 	struct kvm_memory_slot old, new;
1209 	struct kvm_memory_slot *tmp;
1210 	enum kvm_mr_change change;
1211 	int as_id, id;
1212 	int r;
1213 
1214 	r = check_memory_region_flags(mem);
1215 	if (r)
1216 		return r;
1217 
1218 	as_id = mem->slot >> 16;
1219 	id = (u16)mem->slot;
1220 
1221 	/* General sanity checks */
1222 	if (mem->memory_size & (PAGE_SIZE - 1))
1223 		return -EINVAL;
1224 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1225 		return -EINVAL;
1226 	/* We can read the guest memory with __xxx_user() later on. */
1227 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1228 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1229 			mem->memory_size))
1230 		return -EINVAL;
1231 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1232 		return -EINVAL;
1233 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1234 		return -EINVAL;
1235 
1236 	/*
1237 	 * Make a full copy of the old memslot, the pointer will become stale
1238 	 * when the memslots are re-sorted by update_memslots(), and the old
1239 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1240 	 * to free its resources and for arch specific behavior.
1241 	 */
1242 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1243 	if (tmp) {
1244 		old = *tmp;
1245 		tmp = NULL;
1246 	} else {
1247 		memset(&old, 0, sizeof(old));
1248 		old.id = id;
1249 	}
1250 
1251 	if (!mem->memory_size)
1252 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1253 
1254 	new.id = id;
1255 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1256 	new.npages = mem->memory_size >> PAGE_SHIFT;
1257 	new.flags = mem->flags;
1258 	new.userspace_addr = mem->userspace_addr;
1259 
1260 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1261 		return -EINVAL;
1262 
1263 	if (!old.npages) {
1264 		change = KVM_MR_CREATE;
1265 		new.dirty_bitmap = NULL;
1266 		memset(&new.arch, 0, sizeof(new.arch));
1267 	} else { /* Modify an existing slot. */
1268 		if ((new.userspace_addr != old.userspace_addr) ||
1269 		    (new.npages != old.npages) ||
1270 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1271 			return -EINVAL;
1272 
1273 		if (new.base_gfn != old.base_gfn)
1274 			change = KVM_MR_MOVE;
1275 		else if (new.flags != old.flags)
1276 			change = KVM_MR_FLAGS_ONLY;
1277 		else /* Nothing to change. */
1278 			return 0;
1279 
1280 		/* Copy dirty_bitmap and arch from the current memslot. */
1281 		new.dirty_bitmap = old.dirty_bitmap;
1282 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1283 	}
1284 
1285 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1286 		/* Check for overlaps */
1287 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1288 			if (tmp->id == id)
1289 				continue;
1290 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1291 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1292 				return -EEXIST;
1293 		}
1294 	}
1295 
1296 	/* Allocate/free page dirty bitmap as needed */
1297 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1298 		new.dirty_bitmap = NULL;
1299 	else if (!new.dirty_bitmap) {
1300 		r = kvm_alloc_dirty_bitmap(&new);
1301 		if (r)
1302 			return r;
1303 
1304 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1305 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1306 	}
1307 
1308 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1309 	if (r)
1310 		goto out_bitmap;
1311 
1312 	if (old.dirty_bitmap && !new.dirty_bitmap)
1313 		kvm_destroy_dirty_bitmap(&old);
1314 	return 0;
1315 
1316 out_bitmap:
1317 	if (new.dirty_bitmap && !old.dirty_bitmap)
1318 		kvm_destroy_dirty_bitmap(&new);
1319 	return r;
1320 }
1321 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1322 
1323 int kvm_set_memory_region(struct kvm *kvm,
1324 			  const struct kvm_userspace_memory_region *mem)
1325 {
1326 	int r;
1327 
1328 	mutex_lock(&kvm->slots_lock);
1329 	r = __kvm_set_memory_region(kvm, mem);
1330 	mutex_unlock(&kvm->slots_lock);
1331 	return r;
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1334 
1335 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1336 					  struct kvm_userspace_memory_region *mem)
1337 {
1338 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1339 		return -EINVAL;
1340 
1341 	return kvm_set_memory_region(kvm, mem);
1342 }
1343 
1344 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1345 /**
1346  * kvm_get_dirty_log - get a snapshot of dirty pages
1347  * @kvm:	pointer to kvm instance
1348  * @log:	slot id and address to which we copy the log
1349  * @is_dirty:	set to '1' if any dirty pages were found
1350  * @memslot:	set to the associated memslot, always valid on success
1351  */
1352 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1353 		      int *is_dirty, struct kvm_memory_slot **memslot)
1354 {
1355 	struct kvm_memslots *slots;
1356 	int i, as_id, id;
1357 	unsigned long n;
1358 	unsigned long any = 0;
1359 
1360 	*memslot = NULL;
1361 	*is_dirty = 0;
1362 
1363 	as_id = log->slot >> 16;
1364 	id = (u16)log->slot;
1365 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1366 		return -EINVAL;
1367 
1368 	slots = __kvm_memslots(kvm, as_id);
1369 	*memslot = id_to_memslot(slots, id);
1370 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1371 		return -ENOENT;
1372 
1373 	kvm_arch_sync_dirty_log(kvm, *memslot);
1374 
1375 	n = kvm_dirty_bitmap_bytes(*memslot);
1376 
1377 	for (i = 0; !any && i < n/sizeof(long); ++i)
1378 		any = (*memslot)->dirty_bitmap[i];
1379 
1380 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1381 		return -EFAULT;
1382 
1383 	if (any)
1384 		*is_dirty = 1;
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1388 
1389 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1390 /**
1391  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1392  *	and reenable dirty page tracking for the corresponding pages.
1393  * @kvm:	pointer to kvm instance
1394  * @log:	slot id and address to which we copy the log
1395  *
1396  * We need to keep it in mind that VCPU threads can write to the bitmap
1397  * concurrently. So, to avoid losing track of dirty pages we keep the
1398  * following order:
1399  *
1400  *    1. Take a snapshot of the bit and clear it if needed.
1401  *    2. Write protect the corresponding page.
1402  *    3. Copy the snapshot to the userspace.
1403  *    4. Upon return caller flushes TLB's if needed.
1404  *
1405  * Between 2 and 4, the guest may write to the page using the remaining TLB
1406  * entry.  This is not a problem because the page is reported dirty using
1407  * the snapshot taken before and step 4 ensures that writes done after
1408  * exiting to userspace will be logged for the next call.
1409  *
1410  */
1411 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1412 {
1413 	struct kvm_memslots *slots;
1414 	struct kvm_memory_slot *memslot;
1415 	int i, as_id, id;
1416 	unsigned long n;
1417 	unsigned long *dirty_bitmap;
1418 	unsigned long *dirty_bitmap_buffer;
1419 	bool flush;
1420 
1421 	as_id = log->slot >> 16;
1422 	id = (u16)log->slot;
1423 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1424 		return -EINVAL;
1425 
1426 	slots = __kvm_memslots(kvm, as_id);
1427 	memslot = id_to_memslot(slots, id);
1428 	if (!memslot || !memslot->dirty_bitmap)
1429 		return -ENOENT;
1430 
1431 	dirty_bitmap = memslot->dirty_bitmap;
1432 
1433 	kvm_arch_sync_dirty_log(kvm, memslot);
1434 
1435 	n = kvm_dirty_bitmap_bytes(memslot);
1436 	flush = false;
1437 	if (kvm->manual_dirty_log_protect) {
1438 		/*
1439 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1440 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1441 		 * is some code duplication between this function and
1442 		 * kvm_get_dirty_log, but hopefully all architecture
1443 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1444 		 * can be eliminated.
1445 		 */
1446 		dirty_bitmap_buffer = dirty_bitmap;
1447 	} else {
1448 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1449 		memset(dirty_bitmap_buffer, 0, n);
1450 
1451 		spin_lock(&kvm->mmu_lock);
1452 		for (i = 0; i < n / sizeof(long); i++) {
1453 			unsigned long mask;
1454 			gfn_t offset;
1455 
1456 			if (!dirty_bitmap[i])
1457 				continue;
1458 
1459 			flush = true;
1460 			mask = xchg(&dirty_bitmap[i], 0);
1461 			dirty_bitmap_buffer[i] = mask;
1462 
1463 			offset = i * BITS_PER_LONG;
1464 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1465 								offset, mask);
1466 		}
1467 		spin_unlock(&kvm->mmu_lock);
1468 	}
1469 
1470 	if (flush)
1471 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1472 
1473 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1474 		return -EFAULT;
1475 	return 0;
1476 }
1477 
1478 
1479 /**
1480  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1481  * @kvm: kvm instance
1482  * @log: slot id and address to which we copy the log
1483  *
1484  * Steps 1-4 below provide general overview of dirty page logging. See
1485  * kvm_get_dirty_log_protect() function description for additional details.
1486  *
1487  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1488  * always flush the TLB (step 4) even if previous step failed  and the dirty
1489  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1490  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1491  * writes will be marked dirty for next log read.
1492  *
1493  *   1. Take a snapshot of the bit and clear it if needed.
1494  *   2. Write protect the corresponding page.
1495  *   3. Copy the snapshot to the userspace.
1496  *   4. Flush TLB's if needed.
1497  */
1498 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1499 				      struct kvm_dirty_log *log)
1500 {
1501 	int r;
1502 
1503 	mutex_lock(&kvm->slots_lock);
1504 
1505 	r = kvm_get_dirty_log_protect(kvm, log);
1506 
1507 	mutex_unlock(&kvm->slots_lock);
1508 	return r;
1509 }
1510 
1511 /**
1512  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1513  *	and reenable dirty page tracking for the corresponding pages.
1514  * @kvm:	pointer to kvm instance
1515  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1516  */
1517 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1518 				       struct kvm_clear_dirty_log *log)
1519 {
1520 	struct kvm_memslots *slots;
1521 	struct kvm_memory_slot *memslot;
1522 	int as_id, id;
1523 	gfn_t offset;
1524 	unsigned long i, n;
1525 	unsigned long *dirty_bitmap;
1526 	unsigned long *dirty_bitmap_buffer;
1527 	bool flush;
1528 
1529 	as_id = log->slot >> 16;
1530 	id = (u16)log->slot;
1531 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1532 		return -EINVAL;
1533 
1534 	if (log->first_page & 63)
1535 		return -EINVAL;
1536 
1537 	slots = __kvm_memslots(kvm, as_id);
1538 	memslot = id_to_memslot(slots, id);
1539 	if (!memslot || !memslot->dirty_bitmap)
1540 		return -ENOENT;
1541 
1542 	dirty_bitmap = memslot->dirty_bitmap;
1543 
1544 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1545 
1546 	if (log->first_page > memslot->npages ||
1547 	    log->num_pages > memslot->npages - log->first_page ||
1548 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1549 	    return -EINVAL;
1550 
1551 	kvm_arch_sync_dirty_log(kvm, memslot);
1552 
1553 	flush = false;
1554 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1555 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1556 		return -EFAULT;
1557 
1558 	spin_lock(&kvm->mmu_lock);
1559 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1560 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1561 	     i++, offset += BITS_PER_LONG) {
1562 		unsigned long mask = *dirty_bitmap_buffer++;
1563 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1564 		if (!mask)
1565 			continue;
1566 
1567 		mask &= atomic_long_fetch_andnot(mask, p);
1568 
1569 		/*
1570 		 * mask contains the bits that really have been cleared.  This
1571 		 * never includes any bits beyond the length of the memslot (if
1572 		 * the length is not aligned to 64 pages), therefore it is not
1573 		 * a problem if userspace sets them in log->dirty_bitmap.
1574 		*/
1575 		if (mask) {
1576 			flush = true;
1577 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1578 								offset, mask);
1579 		}
1580 	}
1581 	spin_unlock(&kvm->mmu_lock);
1582 
1583 	if (flush)
1584 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1585 
1586 	return 0;
1587 }
1588 
1589 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1590 					struct kvm_clear_dirty_log *log)
1591 {
1592 	int r;
1593 
1594 	mutex_lock(&kvm->slots_lock);
1595 
1596 	r = kvm_clear_dirty_log_protect(kvm, log);
1597 
1598 	mutex_unlock(&kvm->slots_lock);
1599 	return r;
1600 }
1601 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1602 
1603 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1604 {
1605 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1608 
1609 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1610 {
1611 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1614 
1615 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1616 {
1617 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1618 
1619 	return kvm_is_visible_memslot(memslot);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1622 
1623 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1624 {
1625 	struct vm_area_struct *vma;
1626 	unsigned long addr, size;
1627 
1628 	size = PAGE_SIZE;
1629 
1630 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1631 	if (kvm_is_error_hva(addr))
1632 		return PAGE_SIZE;
1633 
1634 	mmap_read_lock(current->mm);
1635 	vma = find_vma(current->mm, addr);
1636 	if (!vma)
1637 		goto out;
1638 
1639 	size = vma_kernel_pagesize(vma);
1640 
1641 out:
1642 	mmap_read_unlock(current->mm);
1643 
1644 	return size;
1645 }
1646 
1647 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1648 {
1649 	return slot->flags & KVM_MEM_READONLY;
1650 }
1651 
1652 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1653 				       gfn_t *nr_pages, bool write)
1654 {
1655 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1656 		return KVM_HVA_ERR_BAD;
1657 
1658 	if (memslot_is_readonly(slot) && write)
1659 		return KVM_HVA_ERR_RO_BAD;
1660 
1661 	if (nr_pages)
1662 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1663 
1664 	return __gfn_to_hva_memslot(slot, gfn);
1665 }
1666 
1667 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1668 				     gfn_t *nr_pages)
1669 {
1670 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1671 }
1672 
1673 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1674 					gfn_t gfn)
1675 {
1676 	return gfn_to_hva_many(slot, gfn, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1679 
1680 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1681 {
1682 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_hva);
1685 
1686 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1687 {
1688 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1691 
1692 /*
1693  * Return the hva of a @gfn and the R/W attribute if possible.
1694  *
1695  * @slot: the kvm_memory_slot which contains @gfn
1696  * @gfn: the gfn to be translated
1697  * @writable: used to return the read/write attribute of the @slot if the hva
1698  * is valid and @writable is not NULL
1699  */
1700 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1701 				      gfn_t gfn, bool *writable)
1702 {
1703 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1704 
1705 	if (!kvm_is_error_hva(hva) && writable)
1706 		*writable = !memslot_is_readonly(slot);
1707 
1708 	return hva;
1709 }
1710 
1711 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1712 {
1713 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1714 
1715 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1716 }
1717 
1718 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1719 {
1720 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721 
1722 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1723 }
1724 
1725 static inline int check_user_page_hwpoison(unsigned long addr)
1726 {
1727 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1728 
1729 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1730 	return rc == -EHWPOISON;
1731 }
1732 
1733 /*
1734  * The fast path to get the writable pfn which will be stored in @pfn,
1735  * true indicates success, otherwise false is returned.  It's also the
1736  * only part that runs if we can in atomic context.
1737  */
1738 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1739 			    bool *writable, kvm_pfn_t *pfn)
1740 {
1741 	struct page *page[1];
1742 
1743 	/*
1744 	 * Fast pin a writable pfn only if it is a write fault request
1745 	 * or the caller allows to map a writable pfn for a read fault
1746 	 * request.
1747 	 */
1748 	if (!(write_fault || writable))
1749 		return false;
1750 
1751 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1752 		*pfn = page_to_pfn(page[0]);
1753 
1754 		if (writable)
1755 			*writable = true;
1756 		return true;
1757 	}
1758 
1759 	return false;
1760 }
1761 
1762 /*
1763  * The slow path to get the pfn of the specified host virtual address,
1764  * 1 indicates success, -errno is returned if error is detected.
1765  */
1766 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1767 			   bool *writable, kvm_pfn_t *pfn)
1768 {
1769 	unsigned int flags = FOLL_HWPOISON;
1770 	struct page *page;
1771 	int npages = 0;
1772 
1773 	might_sleep();
1774 
1775 	if (writable)
1776 		*writable = write_fault;
1777 
1778 	if (write_fault)
1779 		flags |= FOLL_WRITE;
1780 	if (async)
1781 		flags |= FOLL_NOWAIT;
1782 
1783 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1784 	if (npages != 1)
1785 		return npages;
1786 
1787 	/* map read fault as writable if possible */
1788 	if (unlikely(!write_fault) && writable) {
1789 		struct page *wpage;
1790 
1791 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1792 			*writable = true;
1793 			put_page(page);
1794 			page = wpage;
1795 		}
1796 	}
1797 	*pfn = page_to_pfn(page);
1798 	return npages;
1799 }
1800 
1801 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1802 {
1803 	if (unlikely(!(vma->vm_flags & VM_READ)))
1804 		return false;
1805 
1806 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1807 		return false;
1808 
1809 	return true;
1810 }
1811 
1812 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1813 			       unsigned long addr, bool *async,
1814 			       bool write_fault, bool *writable,
1815 			       kvm_pfn_t *p_pfn)
1816 {
1817 	unsigned long pfn;
1818 	int r;
1819 
1820 	r = follow_pfn(vma, addr, &pfn);
1821 	if (r) {
1822 		/*
1823 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1824 		 * not call the fault handler, so do it here.
1825 		 */
1826 		bool unlocked = false;
1827 		r = fixup_user_fault(current, current->mm, addr,
1828 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1829 				     &unlocked);
1830 		if (unlocked)
1831 			return -EAGAIN;
1832 		if (r)
1833 			return r;
1834 
1835 		r = follow_pfn(vma, addr, &pfn);
1836 		if (r)
1837 			return r;
1838 
1839 	}
1840 
1841 	if (writable)
1842 		*writable = true;
1843 
1844 	/*
1845 	 * Get a reference here because callers of *hva_to_pfn* and
1846 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1847 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1848 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1849 	 * simply do nothing for reserved pfns.
1850 	 *
1851 	 * Whoever called remap_pfn_range is also going to call e.g.
1852 	 * unmap_mapping_range before the underlying pages are freed,
1853 	 * causing a call to our MMU notifier.
1854 	 */
1855 	kvm_get_pfn(pfn);
1856 
1857 	*p_pfn = pfn;
1858 	return 0;
1859 }
1860 
1861 /*
1862  * Pin guest page in memory and return its pfn.
1863  * @addr: host virtual address which maps memory to the guest
1864  * @atomic: whether this function can sleep
1865  * @async: whether this function need to wait IO complete if the
1866  *         host page is not in the memory
1867  * @write_fault: whether we should get a writable host page
1868  * @writable: whether it allows to map a writable host page for !@write_fault
1869  *
1870  * The function will map a writable host page for these two cases:
1871  * 1): @write_fault = true
1872  * 2): @write_fault = false && @writable, @writable will tell the caller
1873  *     whether the mapping is writable.
1874  */
1875 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1876 			bool write_fault, bool *writable)
1877 {
1878 	struct vm_area_struct *vma;
1879 	kvm_pfn_t pfn = 0;
1880 	int npages, r;
1881 
1882 	/* we can do it either atomically or asynchronously, not both */
1883 	BUG_ON(atomic && async);
1884 
1885 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1886 		return pfn;
1887 
1888 	if (atomic)
1889 		return KVM_PFN_ERR_FAULT;
1890 
1891 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1892 	if (npages == 1)
1893 		return pfn;
1894 
1895 	mmap_read_lock(current->mm);
1896 	if (npages == -EHWPOISON ||
1897 	      (!async && check_user_page_hwpoison(addr))) {
1898 		pfn = KVM_PFN_ERR_HWPOISON;
1899 		goto exit;
1900 	}
1901 
1902 retry:
1903 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1904 
1905 	if (vma == NULL)
1906 		pfn = KVM_PFN_ERR_FAULT;
1907 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1908 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1909 		if (r == -EAGAIN)
1910 			goto retry;
1911 		if (r < 0)
1912 			pfn = KVM_PFN_ERR_FAULT;
1913 	} else {
1914 		if (async && vma_is_valid(vma, write_fault))
1915 			*async = true;
1916 		pfn = KVM_PFN_ERR_FAULT;
1917 	}
1918 exit:
1919 	mmap_read_unlock(current->mm);
1920 	return pfn;
1921 }
1922 
1923 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1924 			       bool atomic, bool *async, bool write_fault,
1925 			       bool *writable)
1926 {
1927 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1928 
1929 	if (addr == KVM_HVA_ERR_RO_BAD) {
1930 		if (writable)
1931 			*writable = false;
1932 		return KVM_PFN_ERR_RO_FAULT;
1933 	}
1934 
1935 	if (kvm_is_error_hva(addr)) {
1936 		if (writable)
1937 			*writable = false;
1938 		return KVM_PFN_NOSLOT;
1939 	}
1940 
1941 	/* Do not map writable pfn in the readonly memslot. */
1942 	if (writable && memslot_is_readonly(slot)) {
1943 		*writable = false;
1944 		writable = NULL;
1945 	}
1946 
1947 	return hva_to_pfn(addr, atomic, async, write_fault,
1948 			  writable);
1949 }
1950 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1951 
1952 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1953 		      bool *writable)
1954 {
1955 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1956 				    write_fault, writable);
1957 }
1958 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1959 
1960 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1961 {
1962 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1963 }
1964 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1965 
1966 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1967 {
1968 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1969 }
1970 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1971 
1972 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1973 {
1974 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1977 
1978 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1979 {
1980 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1981 }
1982 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1983 
1984 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1985 {
1986 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1989 
1990 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1991 			    struct page **pages, int nr_pages)
1992 {
1993 	unsigned long addr;
1994 	gfn_t entry = 0;
1995 
1996 	addr = gfn_to_hva_many(slot, gfn, &entry);
1997 	if (kvm_is_error_hva(addr))
1998 		return -1;
1999 
2000 	if (entry < nr_pages)
2001 		return 0;
2002 
2003 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2004 }
2005 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2006 
2007 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2008 {
2009 	if (is_error_noslot_pfn(pfn))
2010 		return KVM_ERR_PTR_BAD_PAGE;
2011 
2012 	if (kvm_is_reserved_pfn(pfn)) {
2013 		WARN_ON(1);
2014 		return KVM_ERR_PTR_BAD_PAGE;
2015 	}
2016 
2017 	return pfn_to_page(pfn);
2018 }
2019 
2020 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2021 {
2022 	kvm_pfn_t pfn;
2023 
2024 	pfn = gfn_to_pfn(kvm, gfn);
2025 
2026 	return kvm_pfn_to_page(pfn);
2027 }
2028 EXPORT_SYMBOL_GPL(gfn_to_page);
2029 
2030 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2031 {
2032 	if (pfn == 0)
2033 		return;
2034 
2035 	if (cache)
2036 		cache->pfn = cache->gfn = 0;
2037 
2038 	if (dirty)
2039 		kvm_release_pfn_dirty(pfn);
2040 	else
2041 		kvm_release_pfn_clean(pfn);
2042 }
2043 
2044 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2045 				 struct gfn_to_pfn_cache *cache, u64 gen)
2046 {
2047 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2048 
2049 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2050 	cache->gfn = gfn;
2051 	cache->dirty = false;
2052 	cache->generation = gen;
2053 }
2054 
2055 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2056 			 struct kvm_host_map *map,
2057 			 struct gfn_to_pfn_cache *cache,
2058 			 bool atomic)
2059 {
2060 	kvm_pfn_t pfn;
2061 	void *hva = NULL;
2062 	struct page *page = KVM_UNMAPPED_PAGE;
2063 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2064 	u64 gen = slots->generation;
2065 
2066 	if (!map)
2067 		return -EINVAL;
2068 
2069 	if (cache) {
2070 		if (!cache->pfn || cache->gfn != gfn ||
2071 			cache->generation != gen) {
2072 			if (atomic)
2073 				return -EAGAIN;
2074 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2075 		}
2076 		pfn = cache->pfn;
2077 	} else {
2078 		if (atomic)
2079 			return -EAGAIN;
2080 		pfn = gfn_to_pfn_memslot(slot, gfn);
2081 	}
2082 	if (is_error_noslot_pfn(pfn))
2083 		return -EINVAL;
2084 
2085 	if (pfn_valid(pfn)) {
2086 		page = pfn_to_page(pfn);
2087 		if (atomic)
2088 			hva = kmap_atomic(page);
2089 		else
2090 			hva = kmap(page);
2091 #ifdef CONFIG_HAS_IOMEM
2092 	} else if (!atomic) {
2093 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2094 	} else {
2095 		return -EINVAL;
2096 #endif
2097 	}
2098 
2099 	if (!hva)
2100 		return -EFAULT;
2101 
2102 	map->page = page;
2103 	map->hva = hva;
2104 	map->pfn = pfn;
2105 	map->gfn = gfn;
2106 
2107 	return 0;
2108 }
2109 
2110 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2111 		struct gfn_to_pfn_cache *cache, bool atomic)
2112 {
2113 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2114 			cache, atomic);
2115 }
2116 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2117 
2118 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2119 {
2120 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2121 		NULL, false);
2122 }
2123 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2124 
2125 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2126 			struct kvm_host_map *map,
2127 			struct gfn_to_pfn_cache *cache,
2128 			bool dirty, bool atomic)
2129 {
2130 	if (!map)
2131 		return;
2132 
2133 	if (!map->hva)
2134 		return;
2135 
2136 	if (map->page != KVM_UNMAPPED_PAGE) {
2137 		if (atomic)
2138 			kunmap_atomic(map->hva);
2139 		else
2140 			kunmap(map->page);
2141 	}
2142 #ifdef CONFIG_HAS_IOMEM
2143 	else if (!atomic)
2144 		memunmap(map->hva);
2145 	else
2146 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2147 #endif
2148 
2149 	if (dirty)
2150 		mark_page_dirty_in_slot(memslot, map->gfn);
2151 
2152 	if (cache)
2153 		cache->dirty |= dirty;
2154 	else
2155 		kvm_release_pfn(map->pfn, dirty, NULL);
2156 
2157 	map->hva = NULL;
2158 	map->page = NULL;
2159 }
2160 
2161 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2162 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2163 {
2164 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2165 			cache, dirty, atomic);
2166 	return 0;
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2169 
2170 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2171 {
2172 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2173 			dirty, false);
2174 }
2175 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2176 
2177 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2178 {
2179 	kvm_pfn_t pfn;
2180 
2181 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2182 
2183 	return kvm_pfn_to_page(pfn);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2186 
2187 void kvm_release_page_clean(struct page *page)
2188 {
2189 	WARN_ON(is_error_page(page));
2190 
2191 	kvm_release_pfn_clean(page_to_pfn(page));
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2194 
2195 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2196 {
2197 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2198 		put_page(pfn_to_page(pfn));
2199 }
2200 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2201 
2202 void kvm_release_page_dirty(struct page *page)
2203 {
2204 	WARN_ON(is_error_page(page));
2205 
2206 	kvm_release_pfn_dirty(page_to_pfn(page));
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2209 
2210 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2211 {
2212 	kvm_set_pfn_dirty(pfn);
2213 	kvm_release_pfn_clean(pfn);
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2216 
2217 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2218 {
2219 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2220 		SetPageDirty(pfn_to_page(pfn));
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2223 
2224 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2225 {
2226 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2227 		mark_page_accessed(pfn_to_page(pfn));
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2230 
2231 void kvm_get_pfn(kvm_pfn_t pfn)
2232 {
2233 	if (!kvm_is_reserved_pfn(pfn))
2234 		get_page(pfn_to_page(pfn));
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2237 
2238 static int next_segment(unsigned long len, int offset)
2239 {
2240 	if (len > PAGE_SIZE - offset)
2241 		return PAGE_SIZE - offset;
2242 	else
2243 		return len;
2244 }
2245 
2246 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2247 				 void *data, int offset, int len)
2248 {
2249 	int r;
2250 	unsigned long addr;
2251 
2252 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2253 	if (kvm_is_error_hva(addr))
2254 		return -EFAULT;
2255 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2256 	if (r)
2257 		return -EFAULT;
2258 	return 0;
2259 }
2260 
2261 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2262 			int len)
2263 {
2264 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2265 
2266 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2267 }
2268 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2269 
2270 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2271 			     int offset, int len)
2272 {
2273 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2274 
2275 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2278 
2279 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2280 {
2281 	gfn_t gfn = gpa >> PAGE_SHIFT;
2282 	int seg;
2283 	int offset = offset_in_page(gpa);
2284 	int ret;
2285 
2286 	while ((seg = next_segment(len, offset)) != 0) {
2287 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2288 		if (ret < 0)
2289 			return ret;
2290 		offset = 0;
2291 		len -= seg;
2292 		data += seg;
2293 		++gfn;
2294 	}
2295 	return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_read_guest);
2298 
2299 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2300 {
2301 	gfn_t gfn = gpa >> PAGE_SHIFT;
2302 	int seg;
2303 	int offset = offset_in_page(gpa);
2304 	int ret;
2305 
2306 	while ((seg = next_segment(len, offset)) != 0) {
2307 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2308 		if (ret < 0)
2309 			return ret;
2310 		offset = 0;
2311 		len -= seg;
2312 		data += seg;
2313 		++gfn;
2314 	}
2315 	return 0;
2316 }
2317 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2318 
2319 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2320 			           void *data, int offset, unsigned long len)
2321 {
2322 	int r;
2323 	unsigned long addr;
2324 
2325 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2326 	if (kvm_is_error_hva(addr))
2327 		return -EFAULT;
2328 	pagefault_disable();
2329 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2330 	pagefault_enable();
2331 	if (r)
2332 		return -EFAULT;
2333 	return 0;
2334 }
2335 
2336 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2337 			       void *data, unsigned long len)
2338 {
2339 	gfn_t gfn = gpa >> PAGE_SHIFT;
2340 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2341 	int offset = offset_in_page(gpa);
2342 
2343 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2344 }
2345 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2346 
2347 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2348 			          const void *data, int offset, int len)
2349 {
2350 	int r;
2351 	unsigned long addr;
2352 
2353 	addr = gfn_to_hva_memslot(memslot, gfn);
2354 	if (kvm_is_error_hva(addr))
2355 		return -EFAULT;
2356 	r = __copy_to_user((void __user *)addr + offset, data, len);
2357 	if (r)
2358 		return -EFAULT;
2359 	mark_page_dirty_in_slot(memslot, gfn);
2360 	return 0;
2361 }
2362 
2363 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2364 			 const void *data, int offset, int len)
2365 {
2366 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2367 
2368 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2371 
2372 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2373 			      const void *data, int offset, int len)
2374 {
2375 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2376 
2377 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2380 
2381 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2382 		    unsigned long len)
2383 {
2384 	gfn_t gfn = gpa >> PAGE_SHIFT;
2385 	int seg;
2386 	int offset = offset_in_page(gpa);
2387 	int ret;
2388 
2389 	while ((seg = next_segment(len, offset)) != 0) {
2390 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2391 		if (ret < 0)
2392 			return ret;
2393 		offset = 0;
2394 		len -= seg;
2395 		data += seg;
2396 		++gfn;
2397 	}
2398 	return 0;
2399 }
2400 EXPORT_SYMBOL_GPL(kvm_write_guest);
2401 
2402 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2403 		         unsigned long len)
2404 {
2405 	gfn_t gfn = gpa >> PAGE_SHIFT;
2406 	int seg;
2407 	int offset = offset_in_page(gpa);
2408 	int ret;
2409 
2410 	while ((seg = next_segment(len, offset)) != 0) {
2411 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2412 		if (ret < 0)
2413 			return ret;
2414 		offset = 0;
2415 		len -= seg;
2416 		data += seg;
2417 		++gfn;
2418 	}
2419 	return 0;
2420 }
2421 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2422 
2423 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2424 				       struct gfn_to_hva_cache *ghc,
2425 				       gpa_t gpa, unsigned long len)
2426 {
2427 	int offset = offset_in_page(gpa);
2428 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2429 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2430 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2431 	gfn_t nr_pages_avail;
2432 
2433 	/* Update ghc->generation before performing any error checks. */
2434 	ghc->generation = slots->generation;
2435 
2436 	if (start_gfn > end_gfn) {
2437 		ghc->hva = KVM_HVA_ERR_BAD;
2438 		return -EINVAL;
2439 	}
2440 
2441 	/*
2442 	 * If the requested region crosses two memslots, we still
2443 	 * verify that the entire region is valid here.
2444 	 */
2445 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2446 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2447 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2448 					   &nr_pages_avail);
2449 		if (kvm_is_error_hva(ghc->hva))
2450 			return -EFAULT;
2451 	}
2452 
2453 	/* Use the slow path for cross page reads and writes. */
2454 	if (nr_pages_needed == 1)
2455 		ghc->hva += offset;
2456 	else
2457 		ghc->memslot = NULL;
2458 
2459 	ghc->gpa = gpa;
2460 	ghc->len = len;
2461 	return 0;
2462 }
2463 
2464 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2465 			      gpa_t gpa, unsigned long len)
2466 {
2467 	struct kvm_memslots *slots = kvm_memslots(kvm);
2468 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2471 
2472 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2473 				  void *data, unsigned int offset,
2474 				  unsigned long len)
2475 {
2476 	struct kvm_memslots *slots = kvm_memslots(kvm);
2477 	int r;
2478 	gpa_t gpa = ghc->gpa + offset;
2479 
2480 	BUG_ON(len + offset > ghc->len);
2481 
2482 	if (slots->generation != ghc->generation) {
2483 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2484 			return -EFAULT;
2485 	}
2486 
2487 	if (kvm_is_error_hva(ghc->hva))
2488 		return -EFAULT;
2489 
2490 	if (unlikely(!ghc->memslot))
2491 		return kvm_write_guest(kvm, gpa, data, len);
2492 
2493 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2494 	if (r)
2495 		return -EFAULT;
2496 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2497 
2498 	return 0;
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2501 
2502 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2503 			   void *data, unsigned long len)
2504 {
2505 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2508 
2509 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2510 				 void *data, unsigned int offset,
2511 				 unsigned long len)
2512 {
2513 	struct kvm_memslots *slots = kvm_memslots(kvm);
2514 	int r;
2515 	gpa_t gpa = ghc->gpa + offset;
2516 
2517 	BUG_ON(len + offset > ghc->len);
2518 
2519 	if (slots->generation != ghc->generation) {
2520 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2521 			return -EFAULT;
2522 	}
2523 
2524 	if (kvm_is_error_hva(ghc->hva))
2525 		return -EFAULT;
2526 
2527 	if (unlikely(!ghc->memslot))
2528 		return kvm_read_guest(kvm, gpa, data, len);
2529 
2530 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2531 	if (r)
2532 		return -EFAULT;
2533 
2534 	return 0;
2535 }
2536 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2537 
2538 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2539 			  void *data, unsigned long len)
2540 {
2541 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2544 
2545 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2546 {
2547 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2548 
2549 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2550 }
2551 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2552 
2553 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2554 {
2555 	gfn_t gfn = gpa >> PAGE_SHIFT;
2556 	int seg;
2557 	int offset = offset_in_page(gpa);
2558 	int ret;
2559 
2560 	while ((seg = next_segment(len, offset)) != 0) {
2561 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2562 		if (ret < 0)
2563 			return ret;
2564 		offset = 0;
2565 		len -= seg;
2566 		++gfn;
2567 	}
2568 	return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2571 
2572 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2573 				    gfn_t gfn)
2574 {
2575 	if (memslot && memslot->dirty_bitmap) {
2576 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2577 
2578 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2579 	}
2580 }
2581 
2582 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2583 {
2584 	struct kvm_memory_slot *memslot;
2585 
2586 	memslot = gfn_to_memslot(kvm, gfn);
2587 	mark_page_dirty_in_slot(memslot, gfn);
2588 }
2589 EXPORT_SYMBOL_GPL(mark_page_dirty);
2590 
2591 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2592 {
2593 	struct kvm_memory_slot *memslot;
2594 
2595 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2596 	mark_page_dirty_in_slot(memslot, gfn);
2597 }
2598 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2599 
2600 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2601 {
2602 	if (!vcpu->sigset_active)
2603 		return;
2604 
2605 	/*
2606 	 * This does a lockless modification of ->real_blocked, which is fine
2607 	 * because, only current can change ->real_blocked and all readers of
2608 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2609 	 * of ->blocked.
2610 	 */
2611 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2612 }
2613 
2614 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2615 {
2616 	if (!vcpu->sigset_active)
2617 		return;
2618 
2619 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2620 	sigemptyset(&current->real_blocked);
2621 }
2622 
2623 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2624 {
2625 	unsigned int old, val, grow, grow_start;
2626 
2627 	old = val = vcpu->halt_poll_ns;
2628 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2629 	grow = READ_ONCE(halt_poll_ns_grow);
2630 	if (!grow)
2631 		goto out;
2632 
2633 	val *= grow;
2634 	if (val < grow_start)
2635 		val = grow_start;
2636 
2637 	if (val > halt_poll_ns)
2638 		val = halt_poll_ns;
2639 
2640 	vcpu->halt_poll_ns = val;
2641 out:
2642 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2643 }
2644 
2645 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2646 {
2647 	unsigned int old, val, shrink;
2648 
2649 	old = val = vcpu->halt_poll_ns;
2650 	shrink = READ_ONCE(halt_poll_ns_shrink);
2651 	if (shrink == 0)
2652 		val = 0;
2653 	else
2654 		val /= shrink;
2655 
2656 	vcpu->halt_poll_ns = val;
2657 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2658 }
2659 
2660 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2661 {
2662 	int ret = -EINTR;
2663 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2664 
2665 	if (kvm_arch_vcpu_runnable(vcpu)) {
2666 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2667 		goto out;
2668 	}
2669 	if (kvm_cpu_has_pending_timer(vcpu))
2670 		goto out;
2671 	if (signal_pending(current))
2672 		goto out;
2673 
2674 	ret = 0;
2675 out:
2676 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2677 	return ret;
2678 }
2679 
2680 static inline void
2681 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2682 {
2683 	if (waited)
2684 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2685 	else
2686 		vcpu->stat.halt_poll_success_ns += poll_ns;
2687 }
2688 
2689 /*
2690  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2691  */
2692 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2693 {
2694 	ktime_t start, cur, poll_end;
2695 	bool waited = false;
2696 	u64 block_ns;
2697 
2698 	kvm_arch_vcpu_blocking(vcpu);
2699 
2700 	start = cur = poll_end = ktime_get();
2701 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2702 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2703 
2704 		++vcpu->stat.halt_attempted_poll;
2705 		do {
2706 			/*
2707 			 * This sets KVM_REQ_UNHALT if an interrupt
2708 			 * arrives.
2709 			 */
2710 			if (kvm_vcpu_check_block(vcpu) < 0) {
2711 				++vcpu->stat.halt_successful_poll;
2712 				if (!vcpu_valid_wakeup(vcpu))
2713 					++vcpu->stat.halt_poll_invalid;
2714 				goto out;
2715 			}
2716 			poll_end = cur = ktime_get();
2717 		} while (single_task_running() && ktime_before(cur, stop));
2718 	}
2719 
2720 	prepare_to_rcuwait(&vcpu->wait);
2721 	for (;;) {
2722 		set_current_state(TASK_INTERRUPTIBLE);
2723 
2724 		if (kvm_vcpu_check_block(vcpu) < 0)
2725 			break;
2726 
2727 		waited = true;
2728 		schedule();
2729 	}
2730 	finish_rcuwait(&vcpu->wait);
2731 	cur = ktime_get();
2732 out:
2733 	kvm_arch_vcpu_unblocking(vcpu);
2734 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2735 
2736 	update_halt_poll_stats(
2737 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2738 
2739 	if (!kvm_arch_no_poll(vcpu)) {
2740 		if (!vcpu_valid_wakeup(vcpu)) {
2741 			shrink_halt_poll_ns(vcpu);
2742 		} else if (vcpu->kvm->max_halt_poll_ns) {
2743 			if (block_ns <= vcpu->halt_poll_ns)
2744 				;
2745 			/* we had a long block, shrink polling */
2746 			else if (vcpu->halt_poll_ns &&
2747 					block_ns > vcpu->kvm->max_halt_poll_ns)
2748 				shrink_halt_poll_ns(vcpu);
2749 			/* we had a short halt and our poll time is too small */
2750 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2751 					block_ns < vcpu->kvm->max_halt_poll_ns)
2752 				grow_halt_poll_ns(vcpu);
2753 		} else {
2754 			vcpu->halt_poll_ns = 0;
2755 		}
2756 	}
2757 
2758 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2759 	kvm_arch_vcpu_block_finish(vcpu);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2762 
2763 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2764 {
2765 	struct rcuwait *waitp;
2766 
2767 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2768 	if (rcuwait_wake_up(waitp)) {
2769 		WRITE_ONCE(vcpu->ready, true);
2770 		++vcpu->stat.halt_wakeup;
2771 		return true;
2772 	}
2773 
2774 	return false;
2775 }
2776 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2777 
2778 #ifndef CONFIG_S390
2779 /*
2780  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2781  */
2782 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2783 {
2784 	int me;
2785 	int cpu = vcpu->cpu;
2786 
2787 	if (kvm_vcpu_wake_up(vcpu))
2788 		return;
2789 
2790 	me = get_cpu();
2791 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2792 		if (kvm_arch_vcpu_should_kick(vcpu))
2793 			smp_send_reschedule(cpu);
2794 	put_cpu();
2795 }
2796 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2797 #endif /* !CONFIG_S390 */
2798 
2799 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2800 {
2801 	struct pid *pid;
2802 	struct task_struct *task = NULL;
2803 	int ret = 0;
2804 
2805 	rcu_read_lock();
2806 	pid = rcu_dereference(target->pid);
2807 	if (pid)
2808 		task = get_pid_task(pid, PIDTYPE_PID);
2809 	rcu_read_unlock();
2810 	if (!task)
2811 		return ret;
2812 	ret = yield_to(task, 1);
2813 	put_task_struct(task);
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2818 
2819 /*
2820  * Helper that checks whether a VCPU is eligible for directed yield.
2821  * Most eligible candidate to yield is decided by following heuristics:
2822  *
2823  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2824  *  (preempted lock holder), indicated by @in_spin_loop.
2825  *  Set at the beginning and cleared at the end of interception/PLE handler.
2826  *
2827  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2828  *  chance last time (mostly it has become eligible now since we have probably
2829  *  yielded to lockholder in last iteration. This is done by toggling
2830  *  @dy_eligible each time a VCPU checked for eligibility.)
2831  *
2832  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2833  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2834  *  burning. Giving priority for a potential lock-holder increases lock
2835  *  progress.
2836  *
2837  *  Since algorithm is based on heuristics, accessing another VCPU data without
2838  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2839  *  and continue with next VCPU and so on.
2840  */
2841 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2842 {
2843 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2844 	bool eligible;
2845 
2846 	eligible = !vcpu->spin_loop.in_spin_loop ||
2847 		    vcpu->spin_loop.dy_eligible;
2848 
2849 	if (vcpu->spin_loop.in_spin_loop)
2850 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2851 
2852 	return eligible;
2853 #else
2854 	return true;
2855 #endif
2856 }
2857 
2858 /*
2859  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2860  * a vcpu_load/vcpu_put pair.  However, for most architectures
2861  * kvm_arch_vcpu_runnable does not require vcpu_load.
2862  */
2863 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2864 {
2865 	return kvm_arch_vcpu_runnable(vcpu);
2866 }
2867 
2868 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2869 {
2870 	if (kvm_arch_dy_runnable(vcpu))
2871 		return true;
2872 
2873 #ifdef CONFIG_KVM_ASYNC_PF
2874 	if (!list_empty_careful(&vcpu->async_pf.done))
2875 		return true;
2876 #endif
2877 
2878 	return false;
2879 }
2880 
2881 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2882 {
2883 	struct kvm *kvm = me->kvm;
2884 	struct kvm_vcpu *vcpu;
2885 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2886 	int yielded = 0;
2887 	int try = 3;
2888 	int pass;
2889 	int i;
2890 
2891 	kvm_vcpu_set_in_spin_loop(me, true);
2892 	/*
2893 	 * We boost the priority of a VCPU that is runnable but not
2894 	 * currently running, because it got preempted by something
2895 	 * else and called schedule in __vcpu_run.  Hopefully that
2896 	 * VCPU is holding the lock that we need and will release it.
2897 	 * We approximate round-robin by starting at the last boosted VCPU.
2898 	 */
2899 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2900 		kvm_for_each_vcpu(i, vcpu, kvm) {
2901 			if (!pass && i <= last_boosted_vcpu) {
2902 				i = last_boosted_vcpu;
2903 				continue;
2904 			} else if (pass && i > last_boosted_vcpu)
2905 				break;
2906 			if (!READ_ONCE(vcpu->ready))
2907 				continue;
2908 			if (vcpu == me)
2909 				continue;
2910 			if (rcuwait_active(&vcpu->wait) &&
2911 			    !vcpu_dy_runnable(vcpu))
2912 				continue;
2913 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2914 				!kvm_arch_vcpu_in_kernel(vcpu))
2915 				continue;
2916 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2917 				continue;
2918 
2919 			yielded = kvm_vcpu_yield_to(vcpu);
2920 			if (yielded > 0) {
2921 				kvm->last_boosted_vcpu = i;
2922 				break;
2923 			} else if (yielded < 0) {
2924 				try--;
2925 				if (!try)
2926 					break;
2927 			}
2928 		}
2929 	}
2930 	kvm_vcpu_set_in_spin_loop(me, false);
2931 
2932 	/* Ensure vcpu is not eligible during next spinloop */
2933 	kvm_vcpu_set_dy_eligible(me, false);
2934 }
2935 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2936 
2937 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2938 {
2939 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2940 	struct page *page;
2941 
2942 	if (vmf->pgoff == 0)
2943 		page = virt_to_page(vcpu->run);
2944 #ifdef CONFIG_X86
2945 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2946 		page = virt_to_page(vcpu->arch.pio_data);
2947 #endif
2948 #ifdef CONFIG_KVM_MMIO
2949 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2950 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2951 #endif
2952 	else
2953 		return kvm_arch_vcpu_fault(vcpu, vmf);
2954 	get_page(page);
2955 	vmf->page = page;
2956 	return 0;
2957 }
2958 
2959 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2960 	.fault = kvm_vcpu_fault,
2961 };
2962 
2963 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2964 {
2965 	vma->vm_ops = &kvm_vcpu_vm_ops;
2966 	return 0;
2967 }
2968 
2969 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2970 {
2971 	struct kvm_vcpu *vcpu = filp->private_data;
2972 
2973 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2974 	kvm_put_kvm(vcpu->kvm);
2975 	return 0;
2976 }
2977 
2978 static struct file_operations kvm_vcpu_fops = {
2979 	.release        = kvm_vcpu_release,
2980 	.unlocked_ioctl = kvm_vcpu_ioctl,
2981 	.mmap           = kvm_vcpu_mmap,
2982 	.llseek		= noop_llseek,
2983 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2984 };
2985 
2986 /*
2987  * Allocates an inode for the vcpu.
2988  */
2989 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2990 {
2991 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2992 
2993 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2994 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2995 }
2996 
2997 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2998 {
2999 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3000 	char dir_name[ITOA_MAX_LEN * 2];
3001 
3002 	if (!debugfs_initialized())
3003 		return;
3004 
3005 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3006 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3007 						  vcpu->kvm->debugfs_dentry);
3008 
3009 	kvm_arch_create_vcpu_debugfs(vcpu);
3010 #endif
3011 }
3012 
3013 /*
3014  * Creates some virtual cpus.  Good luck creating more than one.
3015  */
3016 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3017 {
3018 	int r;
3019 	struct kvm_vcpu *vcpu;
3020 	struct page *page;
3021 
3022 	if (id >= KVM_MAX_VCPU_ID)
3023 		return -EINVAL;
3024 
3025 	mutex_lock(&kvm->lock);
3026 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3027 		mutex_unlock(&kvm->lock);
3028 		return -EINVAL;
3029 	}
3030 
3031 	kvm->created_vcpus++;
3032 	mutex_unlock(&kvm->lock);
3033 
3034 	r = kvm_arch_vcpu_precreate(kvm, id);
3035 	if (r)
3036 		goto vcpu_decrement;
3037 
3038 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3039 	if (!vcpu) {
3040 		r = -ENOMEM;
3041 		goto vcpu_decrement;
3042 	}
3043 
3044 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3045 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3046 	if (!page) {
3047 		r = -ENOMEM;
3048 		goto vcpu_free;
3049 	}
3050 	vcpu->run = page_address(page);
3051 
3052 	kvm_vcpu_init(vcpu, kvm, id);
3053 
3054 	r = kvm_arch_vcpu_create(vcpu);
3055 	if (r)
3056 		goto vcpu_free_run_page;
3057 
3058 	mutex_lock(&kvm->lock);
3059 	if (kvm_get_vcpu_by_id(kvm, id)) {
3060 		r = -EEXIST;
3061 		goto unlock_vcpu_destroy;
3062 	}
3063 
3064 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3065 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3066 
3067 	/* Now it's all set up, let userspace reach it */
3068 	kvm_get_kvm(kvm);
3069 	r = create_vcpu_fd(vcpu);
3070 	if (r < 0) {
3071 		kvm_put_kvm_no_destroy(kvm);
3072 		goto unlock_vcpu_destroy;
3073 	}
3074 
3075 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3076 
3077 	/*
3078 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3079 	 * before kvm->online_vcpu's incremented value.
3080 	 */
3081 	smp_wmb();
3082 	atomic_inc(&kvm->online_vcpus);
3083 
3084 	mutex_unlock(&kvm->lock);
3085 	kvm_arch_vcpu_postcreate(vcpu);
3086 	kvm_create_vcpu_debugfs(vcpu);
3087 	return r;
3088 
3089 unlock_vcpu_destroy:
3090 	mutex_unlock(&kvm->lock);
3091 	kvm_arch_vcpu_destroy(vcpu);
3092 vcpu_free_run_page:
3093 	free_page((unsigned long)vcpu->run);
3094 vcpu_free:
3095 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3096 vcpu_decrement:
3097 	mutex_lock(&kvm->lock);
3098 	kvm->created_vcpus--;
3099 	mutex_unlock(&kvm->lock);
3100 	return r;
3101 }
3102 
3103 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3104 {
3105 	if (sigset) {
3106 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3107 		vcpu->sigset_active = 1;
3108 		vcpu->sigset = *sigset;
3109 	} else
3110 		vcpu->sigset_active = 0;
3111 	return 0;
3112 }
3113 
3114 static long kvm_vcpu_ioctl(struct file *filp,
3115 			   unsigned int ioctl, unsigned long arg)
3116 {
3117 	struct kvm_vcpu *vcpu = filp->private_data;
3118 	void __user *argp = (void __user *)arg;
3119 	int r;
3120 	struct kvm_fpu *fpu = NULL;
3121 	struct kvm_sregs *kvm_sregs = NULL;
3122 
3123 	if (vcpu->kvm->mm != current->mm)
3124 		return -EIO;
3125 
3126 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3127 		return -EINVAL;
3128 
3129 	/*
3130 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3131 	 * execution; mutex_lock() would break them.
3132 	 */
3133 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3134 	if (r != -ENOIOCTLCMD)
3135 		return r;
3136 
3137 	if (mutex_lock_killable(&vcpu->mutex))
3138 		return -EINTR;
3139 	switch (ioctl) {
3140 	case KVM_RUN: {
3141 		struct pid *oldpid;
3142 		r = -EINVAL;
3143 		if (arg)
3144 			goto out;
3145 		oldpid = rcu_access_pointer(vcpu->pid);
3146 		if (unlikely(oldpid != task_pid(current))) {
3147 			/* The thread running this VCPU changed. */
3148 			struct pid *newpid;
3149 
3150 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3151 			if (r)
3152 				break;
3153 
3154 			newpid = get_task_pid(current, PIDTYPE_PID);
3155 			rcu_assign_pointer(vcpu->pid, newpid);
3156 			if (oldpid)
3157 				synchronize_rcu();
3158 			put_pid(oldpid);
3159 		}
3160 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3161 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3162 		break;
3163 	}
3164 	case KVM_GET_REGS: {
3165 		struct kvm_regs *kvm_regs;
3166 
3167 		r = -ENOMEM;
3168 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3169 		if (!kvm_regs)
3170 			goto out;
3171 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3172 		if (r)
3173 			goto out_free1;
3174 		r = -EFAULT;
3175 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3176 			goto out_free1;
3177 		r = 0;
3178 out_free1:
3179 		kfree(kvm_regs);
3180 		break;
3181 	}
3182 	case KVM_SET_REGS: {
3183 		struct kvm_regs *kvm_regs;
3184 
3185 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3186 		if (IS_ERR(kvm_regs)) {
3187 			r = PTR_ERR(kvm_regs);
3188 			goto out;
3189 		}
3190 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3191 		kfree(kvm_regs);
3192 		break;
3193 	}
3194 	case KVM_GET_SREGS: {
3195 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3196 				    GFP_KERNEL_ACCOUNT);
3197 		r = -ENOMEM;
3198 		if (!kvm_sregs)
3199 			goto out;
3200 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3201 		if (r)
3202 			goto out;
3203 		r = -EFAULT;
3204 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3205 			goto out;
3206 		r = 0;
3207 		break;
3208 	}
3209 	case KVM_SET_SREGS: {
3210 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3211 		if (IS_ERR(kvm_sregs)) {
3212 			r = PTR_ERR(kvm_sregs);
3213 			kvm_sregs = NULL;
3214 			goto out;
3215 		}
3216 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3217 		break;
3218 	}
3219 	case KVM_GET_MP_STATE: {
3220 		struct kvm_mp_state mp_state;
3221 
3222 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3223 		if (r)
3224 			goto out;
3225 		r = -EFAULT;
3226 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3227 			goto out;
3228 		r = 0;
3229 		break;
3230 	}
3231 	case KVM_SET_MP_STATE: {
3232 		struct kvm_mp_state mp_state;
3233 
3234 		r = -EFAULT;
3235 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3236 			goto out;
3237 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3238 		break;
3239 	}
3240 	case KVM_TRANSLATE: {
3241 		struct kvm_translation tr;
3242 
3243 		r = -EFAULT;
3244 		if (copy_from_user(&tr, argp, sizeof(tr)))
3245 			goto out;
3246 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3247 		if (r)
3248 			goto out;
3249 		r = -EFAULT;
3250 		if (copy_to_user(argp, &tr, sizeof(tr)))
3251 			goto out;
3252 		r = 0;
3253 		break;
3254 	}
3255 	case KVM_SET_GUEST_DEBUG: {
3256 		struct kvm_guest_debug dbg;
3257 
3258 		r = -EFAULT;
3259 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3260 			goto out;
3261 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3262 		break;
3263 	}
3264 	case KVM_SET_SIGNAL_MASK: {
3265 		struct kvm_signal_mask __user *sigmask_arg = argp;
3266 		struct kvm_signal_mask kvm_sigmask;
3267 		sigset_t sigset, *p;
3268 
3269 		p = NULL;
3270 		if (argp) {
3271 			r = -EFAULT;
3272 			if (copy_from_user(&kvm_sigmask, argp,
3273 					   sizeof(kvm_sigmask)))
3274 				goto out;
3275 			r = -EINVAL;
3276 			if (kvm_sigmask.len != sizeof(sigset))
3277 				goto out;
3278 			r = -EFAULT;
3279 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3280 					   sizeof(sigset)))
3281 				goto out;
3282 			p = &sigset;
3283 		}
3284 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3285 		break;
3286 	}
3287 	case KVM_GET_FPU: {
3288 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3289 		r = -ENOMEM;
3290 		if (!fpu)
3291 			goto out;
3292 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3293 		if (r)
3294 			goto out;
3295 		r = -EFAULT;
3296 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3297 			goto out;
3298 		r = 0;
3299 		break;
3300 	}
3301 	case KVM_SET_FPU: {
3302 		fpu = memdup_user(argp, sizeof(*fpu));
3303 		if (IS_ERR(fpu)) {
3304 			r = PTR_ERR(fpu);
3305 			fpu = NULL;
3306 			goto out;
3307 		}
3308 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3309 		break;
3310 	}
3311 	default:
3312 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3313 	}
3314 out:
3315 	mutex_unlock(&vcpu->mutex);
3316 	kfree(fpu);
3317 	kfree(kvm_sregs);
3318 	return r;
3319 }
3320 
3321 #ifdef CONFIG_KVM_COMPAT
3322 static long kvm_vcpu_compat_ioctl(struct file *filp,
3323 				  unsigned int ioctl, unsigned long arg)
3324 {
3325 	struct kvm_vcpu *vcpu = filp->private_data;
3326 	void __user *argp = compat_ptr(arg);
3327 	int r;
3328 
3329 	if (vcpu->kvm->mm != current->mm)
3330 		return -EIO;
3331 
3332 	switch (ioctl) {
3333 	case KVM_SET_SIGNAL_MASK: {
3334 		struct kvm_signal_mask __user *sigmask_arg = argp;
3335 		struct kvm_signal_mask kvm_sigmask;
3336 		sigset_t sigset;
3337 
3338 		if (argp) {
3339 			r = -EFAULT;
3340 			if (copy_from_user(&kvm_sigmask, argp,
3341 					   sizeof(kvm_sigmask)))
3342 				goto out;
3343 			r = -EINVAL;
3344 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3345 				goto out;
3346 			r = -EFAULT;
3347 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3348 				goto out;
3349 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3350 		} else
3351 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3352 		break;
3353 	}
3354 	default:
3355 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3356 	}
3357 
3358 out:
3359 	return r;
3360 }
3361 #endif
3362 
3363 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3364 {
3365 	struct kvm_device *dev = filp->private_data;
3366 
3367 	if (dev->ops->mmap)
3368 		return dev->ops->mmap(dev, vma);
3369 
3370 	return -ENODEV;
3371 }
3372 
3373 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3374 				 int (*accessor)(struct kvm_device *dev,
3375 						 struct kvm_device_attr *attr),
3376 				 unsigned long arg)
3377 {
3378 	struct kvm_device_attr attr;
3379 
3380 	if (!accessor)
3381 		return -EPERM;
3382 
3383 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3384 		return -EFAULT;
3385 
3386 	return accessor(dev, &attr);
3387 }
3388 
3389 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3390 			     unsigned long arg)
3391 {
3392 	struct kvm_device *dev = filp->private_data;
3393 
3394 	if (dev->kvm->mm != current->mm)
3395 		return -EIO;
3396 
3397 	switch (ioctl) {
3398 	case KVM_SET_DEVICE_ATTR:
3399 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3400 	case KVM_GET_DEVICE_ATTR:
3401 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3402 	case KVM_HAS_DEVICE_ATTR:
3403 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3404 	default:
3405 		if (dev->ops->ioctl)
3406 			return dev->ops->ioctl(dev, ioctl, arg);
3407 
3408 		return -ENOTTY;
3409 	}
3410 }
3411 
3412 static int kvm_device_release(struct inode *inode, struct file *filp)
3413 {
3414 	struct kvm_device *dev = filp->private_data;
3415 	struct kvm *kvm = dev->kvm;
3416 
3417 	if (dev->ops->release) {
3418 		mutex_lock(&kvm->lock);
3419 		list_del(&dev->vm_node);
3420 		dev->ops->release(dev);
3421 		mutex_unlock(&kvm->lock);
3422 	}
3423 
3424 	kvm_put_kvm(kvm);
3425 	return 0;
3426 }
3427 
3428 static const struct file_operations kvm_device_fops = {
3429 	.unlocked_ioctl = kvm_device_ioctl,
3430 	.release = kvm_device_release,
3431 	KVM_COMPAT(kvm_device_ioctl),
3432 	.mmap = kvm_device_mmap,
3433 };
3434 
3435 struct kvm_device *kvm_device_from_filp(struct file *filp)
3436 {
3437 	if (filp->f_op != &kvm_device_fops)
3438 		return NULL;
3439 
3440 	return filp->private_data;
3441 }
3442 
3443 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3444 #ifdef CONFIG_KVM_MPIC
3445 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3446 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3447 #endif
3448 };
3449 
3450 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3451 {
3452 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3453 		return -ENOSPC;
3454 
3455 	if (kvm_device_ops_table[type] != NULL)
3456 		return -EEXIST;
3457 
3458 	kvm_device_ops_table[type] = ops;
3459 	return 0;
3460 }
3461 
3462 void kvm_unregister_device_ops(u32 type)
3463 {
3464 	if (kvm_device_ops_table[type] != NULL)
3465 		kvm_device_ops_table[type] = NULL;
3466 }
3467 
3468 static int kvm_ioctl_create_device(struct kvm *kvm,
3469 				   struct kvm_create_device *cd)
3470 {
3471 	const struct kvm_device_ops *ops = NULL;
3472 	struct kvm_device *dev;
3473 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3474 	int type;
3475 	int ret;
3476 
3477 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3478 		return -ENODEV;
3479 
3480 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3481 	ops = kvm_device_ops_table[type];
3482 	if (ops == NULL)
3483 		return -ENODEV;
3484 
3485 	if (test)
3486 		return 0;
3487 
3488 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3489 	if (!dev)
3490 		return -ENOMEM;
3491 
3492 	dev->ops = ops;
3493 	dev->kvm = kvm;
3494 
3495 	mutex_lock(&kvm->lock);
3496 	ret = ops->create(dev, type);
3497 	if (ret < 0) {
3498 		mutex_unlock(&kvm->lock);
3499 		kfree(dev);
3500 		return ret;
3501 	}
3502 	list_add(&dev->vm_node, &kvm->devices);
3503 	mutex_unlock(&kvm->lock);
3504 
3505 	if (ops->init)
3506 		ops->init(dev);
3507 
3508 	kvm_get_kvm(kvm);
3509 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3510 	if (ret < 0) {
3511 		kvm_put_kvm_no_destroy(kvm);
3512 		mutex_lock(&kvm->lock);
3513 		list_del(&dev->vm_node);
3514 		mutex_unlock(&kvm->lock);
3515 		ops->destroy(dev);
3516 		return ret;
3517 	}
3518 
3519 	cd->fd = ret;
3520 	return 0;
3521 }
3522 
3523 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3524 {
3525 	switch (arg) {
3526 	case KVM_CAP_USER_MEMORY:
3527 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3528 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3529 	case KVM_CAP_INTERNAL_ERROR_DATA:
3530 #ifdef CONFIG_HAVE_KVM_MSI
3531 	case KVM_CAP_SIGNAL_MSI:
3532 #endif
3533 #ifdef CONFIG_HAVE_KVM_IRQFD
3534 	case KVM_CAP_IRQFD:
3535 	case KVM_CAP_IRQFD_RESAMPLE:
3536 #endif
3537 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3538 	case KVM_CAP_CHECK_EXTENSION_VM:
3539 	case KVM_CAP_ENABLE_CAP_VM:
3540 	case KVM_CAP_HALT_POLL:
3541 		return 1;
3542 #ifdef CONFIG_KVM_MMIO
3543 	case KVM_CAP_COALESCED_MMIO:
3544 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3545 	case KVM_CAP_COALESCED_PIO:
3546 		return 1;
3547 #endif
3548 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3549 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3550 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3551 #endif
3552 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3553 	case KVM_CAP_IRQ_ROUTING:
3554 		return KVM_MAX_IRQ_ROUTES;
3555 #endif
3556 #if KVM_ADDRESS_SPACE_NUM > 1
3557 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3558 		return KVM_ADDRESS_SPACE_NUM;
3559 #endif
3560 	case KVM_CAP_NR_MEMSLOTS:
3561 		return KVM_USER_MEM_SLOTS;
3562 	default:
3563 		break;
3564 	}
3565 	return kvm_vm_ioctl_check_extension(kvm, arg);
3566 }
3567 
3568 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3569 						  struct kvm_enable_cap *cap)
3570 {
3571 	return -EINVAL;
3572 }
3573 
3574 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3575 					   struct kvm_enable_cap *cap)
3576 {
3577 	switch (cap->cap) {
3578 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3579 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3580 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3581 
3582 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3583 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3584 
3585 		if (cap->flags || (cap->args[0] & ~allowed_options))
3586 			return -EINVAL;
3587 		kvm->manual_dirty_log_protect = cap->args[0];
3588 		return 0;
3589 	}
3590 #endif
3591 	case KVM_CAP_HALT_POLL: {
3592 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3593 			return -EINVAL;
3594 
3595 		kvm->max_halt_poll_ns = cap->args[0];
3596 		return 0;
3597 	}
3598 	default:
3599 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3600 	}
3601 }
3602 
3603 static long kvm_vm_ioctl(struct file *filp,
3604 			   unsigned int ioctl, unsigned long arg)
3605 {
3606 	struct kvm *kvm = filp->private_data;
3607 	void __user *argp = (void __user *)arg;
3608 	int r;
3609 
3610 	if (kvm->mm != current->mm)
3611 		return -EIO;
3612 	switch (ioctl) {
3613 	case KVM_CREATE_VCPU:
3614 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3615 		break;
3616 	case KVM_ENABLE_CAP: {
3617 		struct kvm_enable_cap cap;
3618 
3619 		r = -EFAULT;
3620 		if (copy_from_user(&cap, argp, sizeof(cap)))
3621 			goto out;
3622 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3623 		break;
3624 	}
3625 	case KVM_SET_USER_MEMORY_REGION: {
3626 		struct kvm_userspace_memory_region kvm_userspace_mem;
3627 
3628 		r = -EFAULT;
3629 		if (copy_from_user(&kvm_userspace_mem, argp,
3630 						sizeof(kvm_userspace_mem)))
3631 			goto out;
3632 
3633 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3634 		break;
3635 	}
3636 	case KVM_GET_DIRTY_LOG: {
3637 		struct kvm_dirty_log log;
3638 
3639 		r = -EFAULT;
3640 		if (copy_from_user(&log, argp, sizeof(log)))
3641 			goto out;
3642 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3643 		break;
3644 	}
3645 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3646 	case KVM_CLEAR_DIRTY_LOG: {
3647 		struct kvm_clear_dirty_log log;
3648 
3649 		r = -EFAULT;
3650 		if (copy_from_user(&log, argp, sizeof(log)))
3651 			goto out;
3652 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3653 		break;
3654 	}
3655 #endif
3656 #ifdef CONFIG_KVM_MMIO
3657 	case KVM_REGISTER_COALESCED_MMIO: {
3658 		struct kvm_coalesced_mmio_zone zone;
3659 
3660 		r = -EFAULT;
3661 		if (copy_from_user(&zone, argp, sizeof(zone)))
3662 			goto out;
3663 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3664 		break;
3665 	}
3666 	case KVM_UNREGISTER_COALESCED_MMIO: {
3667 		struct kvm_coalesced_mmio_zone zone;
3668 
3669 		r = -EFAULT;
3670 		if (copy_from_user(&zone, argp, sizeof(zone)))
3671 			goto out;
3672 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3673 		break;
3674 	}
3675 #endif
3676 	case KVM_IRQFD: {
3677 		struct kvm_irqfd data;
3678 
3679 		r = -EFAULT;
3680 		if (copy_from_user(&data, argp, sizeof(data)))
3681 			goto out;
3682 		r = kvm_irqfd(kvm, &data);
3683 		break;
3684 	}
3685 	case KVM_IOEVENTFD: {
3686 		struct kvm_ioeventfd data;
3687 
3688 		r = -EFAULT;
3689 		if (copy_from_user(&data, argp, sizeof(data)))
3690 			goto out;
3691 		r = kvm_ioeventfd(kvm, &data);
3692 		break;
3693 	}
3694 #ifdef CONFIG_HAVE_KVM_MSI
3695 	case KVM_SIGNAL_MSI: {
3696 		struct kvm_msi msi;
3697 
3698 		r = -EFAULT;
3699 		if (copy_from_user(&msi, argp, sizeof(msi)))
3700 			goto out;
3701 		r = kvm_send_userspace_msi(kvm, &msi);
3702 		break;
3703 	}
3704 #endif
3705 #ifdef __KVM_HAVE_IRQ_LINE
3706 	case KVM_IRQ_LINE_STATUS:
3707 	case KVM_IRQ_LINE: {
3708 		struct kvm_irq_level irq_event;
3709 
3710 		r = -EFAULT;
3711 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3712 			goto out;
3713 
3714 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3715 					ioctl == KVM_IRQ_LINE_STATUS);
3716 		if (r)
3717 			goto out;
3718 
3719 		r = -EFAULT;
3720 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3721 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3722 				goto out;
3723 		}
3724 
3725 		r = 0;
3726 		break;
3727 	}
3728 #endif
3729 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3730 	case KVM_SET_GSI_ROUTING: {
3731 		struct kvm_irq_routing routing;
3732 		struct kvm_irq_routing __user *urouting;
3733 		struct kvm_irq_routing_entry *entries = NULL;
3734 
3735 		r = -EFAULT;
3736 		if (copy_from_user(&routing, argp, sizeof(routing)))
3737 			goto out;
3738 		r = -EINVAL;
3739 		if (!kvm_arch_can_set_irq_routing(kvm))
3740 			goto out;
3741 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3742 			goto out;
3743 		if (routing.flags)
3744 			goto out;
3745 		if (routing.nr) {
3746 			r = -ENOMEM;
3747 			entries = vmalloc(array_size(sizeof(*entries),
3748 						     routing.nr));
3749 			if (!entries)
3750 				goto out;
3751 			r = -EFAULT;
3752 			urouting = argp;
3753 			if (copy_from_user(entries, urouting->entries,
3754 					   routing.nr * sizeof(*entries)))
3755 				goto out_free_irq_routing;
3756 		}
3757 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3758 					routing.flags);
3759 out_free_irq_routing:
3760 		vfree(entries);
3761 		break;
3762 	}
3763 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3764 	case KVM_CREATE_DEVICE: {
3765 		struct kvm_create_device cd;
3766 
3767 		r = -EFAULT;
3768 		if (copy_from_user(&cd, argp, sizeof(cd)))
3769 			goto out;
3770 
3771 		r = kvm_ioctl_create_device(kvm, &cd);
3772 		if (r)
3773 			goto out;
3774 
3775 		r = -EFAULT;
3776 		if (copy_to_user(argp, &cd, sizeof(cd)))
3777 			goto out;
3778 
3779 		r = 0;
3780 		break;
3781 	}
3782 	case KVM_CHECK_EXTENSION:
3783 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3784 		break;
3785 	default:
3786 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3787 	}
3788 out:
3789 	return r;
3790 }
3791 
3792 #ifdef CONFIG_KVM_COMPAT
3793 struct compat_kvm_dirty_log {
3794 	__u32 slot;
3795 	__u32 padding1;
3796 	union {
3797 		compat_uptr_t dirty_bitmap; /* one bit per page */
3798 		__u64 padding2;
3799 	};
3800 };
3801 
3802 static long kvm_vm_compat_ioctl(struct file *filp,
3803 			   unsigned int ioctl, unsigned long arg)
3804 {
3805 	struct kvm *kvm = filp->private_data;
3806 	int r;
3807 
3808 	if (kvm->mm != current->mm)
3809 		return -EIO;
3810 	switch (ioctl) {
3811 	case KVM_GET_DIRTY_LOG: {
3812 		struct compat_kvm_dirty_log compat_log;
3813 		struct kvm_dirty_log log;
3814 
3815 		if (copy_from_user(&compat_log, (void __user *)arg,
3816 				   sizeof(compat_log)))
3817 			return -EFAULT;
3818 		log.slot	 = compat_log.slot;
3819 		log.padding1	 = compat_log.padding1;
3820 		log.padding2	 = compat_log.padding2;
3821 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3822 
3823 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3824 		break;
3825 	}
3826 	default:
3827 		r = kvm_vm_ioctl(filp, ioctl, arg);
3828 	}
3829 	return r;
3830 }
3831 #endif
3832 
3833 static struct file_operations kvm_vm_fops = {
3834 	.release        = kvm_vm_release,
3835 	.unlocked_ioctl = kvm_vm_ioctl,
3836 	.llseek		= noop_llseek,
3837 	KVM_COMPAT(kvm_vm_compat_ioctl),
3838 };
3839 
3840 static int kvm_dev_ioctl_create_vm(unsigned long type)
3841 {
3842 	int r;
3843 	struct kvm *kvm;
3844 	struct file *file;
3845 
3846 	kvm = kvm_create_vm(type);
3847 	if (IS_ERR(kvm))
3848 		return PTR_ERR(kvm);
3849 #ifdef CONFIG_KVM_MMIO
3850 	r = kvm_coalesced_mmio_init(kvm);
3851 	if (r < 0)
3852 		goto put_kvm;
3853 #endif
3854 	r = get_unused_fd_flags(O_CLOEXEC);
3855 	if (r < 0)
3856 		goto put_kvm;
3857 
3858 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3859 	if (IS_ERR(file)) {
3860 		put_unused_fd(r);
3861 		r = PTR_ERR(file);
3862 		goto put_kvm;
3863 	}
3864 
3865 	/*
3866 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3867 	 * already set, with ->release() being kvm_vm_release().  In error
3868 	 * cases it will be called by the final fput(file) and will take
3869 	 * care of doing kvm_put_kvm(kvm).
3870 	 */
3871 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3872 		put_unused_fd(r);
3873 		fput(file);
3874 		return -ENOMEM;
3875 	}
3876 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3877 
3878 	fd_install(r, file);
3879 	return r;
3880 
3881 put_kvm:
3882 	kvm_put_kvm(kvm);
3883 	return r;
3884 }
3885 
3886 static long kvm_dev_ioctl(struct file *filp,
3887 			  unsigned int ioctl, unsigned long arg)
3888 {
3889 	long r = -EINVAL;
3890 
3891 	switch (ioctl) {
3892 	case KVM_GET_API_VERSION:
3893 		if (arg)
3894 			goto out;
3895 		r = KVM_API_VERSION;
3896 		break;
3897 	case KVM_CREATE_VM:
3898 		r = kvm_dev_ioctl_create_vm(arg);
3899 		break;
3900 	case KVM_CHECK_EXTENSION:
3901 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3902 		break;
3903 	case KVM_GET_VCPU_MMAP_SIZE:
3904 		if (arg)
3905 			goto out;
3906 		r = PAGE_SIZE;     /* struct kvm_run */
3907 #ifdef CONFIG_X86
3908 		r += PAGE_SIZE;    /* pio data page */
3909 #endif
3910 #ifdef CONFIG_KVM_MMIO
3911 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3912 #endif
3913 		break;
3914 	case KVM_TRACE_ENABLE:
3915 	case KVM_TRACE_PAUSE:
3916 	case KVM_TRACE_DISABLE:
3917 		r = -EOPNOTSUPP;
3918 		break;
3919 	default:
3920 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3921 	}
3922 out:
3923 	return r;
3924 }
3925 
3926 static struct file_operations kvm_chardev_ops = {
3927 	.unlocked_ioctl = kvm_dev_ioctl,
3928 	.llseek		= noop_llseek,
3929 	KVM_COMPAT(kvm_dev_ioctl),
3930 };
3931 
3932 static struct miscdevice kvm_dev = {
3933 	KVM_MINOR,
3934 	"kvm",
3935 	&kvm_chardev_ops,
3936 };
3937 
3938 static void hardware_enable_nolock(void *junk)
3939 {
3940 	int cpu = raw_smp_processor_id();
3941 	int r;
3942 
3943 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3944 		return;
3945 
3946 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3947 
3948 	r = kvm_arch_hardware_enable();
3949 
3950 	if (r) {
3951 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3952 		atomic_inc(&hardware_enable_failed);
3953 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3954 	}
3955 }
3956 
3957 static int kvm_starting_cpu(unsigned int cpu)
3958 {
3959 	raw_spin_lock(&kvm_count_lock);
3960 	if (kvm_usage_count)
3961 		hardware_enable_nolock(NULL);
3962 	raw_spin_unlock(&kvm_count_lock);
3963 	return 0;
3964 }
3965 
3966 static void hardware_disable_nolock(void *junk)
3967 {
3968 	int cpu = raw_smp_processor_id();
3969 
3970 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3971 		return;
3972 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3973 	kvm_arch_hardware_disable();
3974 }
3975 
3976 static int kvm_dying_cpu(unsigned int cpu)
3977 {
3978 	raw_spin_lock(&kvm_count_lock);
3979 	if (kvm_usage_count)
3980 		hardware_disable_nolock(NULL);
3981 	raw_spin_unlock(&kvm_count_lock);
3982 	return 0;
3983 }
3984 
3985 static void hardware_disable_all_nolock(void)
3986 {
3987 	BUG_ON(!kvm_usage_count);
3988 
3989 	kvm_usage_count--;
3990 	if (!kvm_usage_count)
3991 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3992 }
3993 
3994 static void hardware_disable_all(void)
3995 {
3996 	raw_spin_lock(&kvm_count_lock);
3997 	hardware_disable_all_nolock();
3998 	raw_spin_unlock(&kvm_count_lock);
3999 }
4000 
4001 static int hardware_enable_all(void)
4002 {
4003 	int r = 0;
4004 
4005 	raw_spin_lock(&kvm_count_lock);
4006 
4007 	kvm_usage_count++;
4008 	if (kvm_usage_count == 1) {
4009 		atomic_set(&hardware_enable_failed, 0);
4010 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4011 
4012 		if (atomic_read(&hardware_enable_failed)) {
4013 			hardware_disable_all_nolock();
4014 			r = -EBUSY;
4015 		}
4016 	}
4017 
4018 	raw_spin_unlock(&kvm_count_lock);
4019 
4020 	return r;
4021 }
4022 
4023 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4024 		      void *v)
4025 {
4026 	/*
4027 	 * Some (well, at least mine) BIOSes hang on reboot if
4028 	 * in vmx root mode.
4029 	 *
4030 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4031 	 */
4032 	pr_info("kvm: exiting hardware virtualization\n");
4033 	kvm_rebooting = true;
4034 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4035 	return NOTIFY_OK;
4036 }
4037 
4038 static struct notifier_block kvm_reboot_notifier = {
4039 	.notifier_call = kvm_reboot,
4040 	.priority = 0,
4041 };
4042 
4043 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4044 {
4045 	int i;
4046 
4047 	for (i = 0; i < bus->dev_count; i++) {
4048 		struct kvm_io_device *pos = bus->range[i].dev;
4049 
4050 		kvm_iodevice_destructor(pos);
4051 	}
4052 	kfree(bus);
4053 }
4054 
4055 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4056 				 const struct kvm_io_range *r2)
4057 {
4058 	gpa_t addr1 = r1->addr;
4059 	gpa_t addr2 = r2->addr;
4060 
4061 	if (addr1 < addr2)
4062 		return -1;
4063 
4064 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4065 	 * accept any overlapping write.  Any order is acceptable for
4066 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4067 	 * we process all of them.
4068 	 */
4069 	if (r2->len) {
4070 		addr1 += r1->len;
4071 		addr2 += r2->len;
4072 	}
4073 
4074 	if (addr1 > addr2)
4075 		return 1;
4076 
4077 	return 0;
4078 }
4079 
4080 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4081 {
4082 	return kvm_io_bus_cmp(p1, p2);
4083 }
4084 
4085 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4086 			     gpa_t addr, int len)
4087 {
4088 	struct kvm_io_range *range, key;
4089 	int off;
4090 
4091 	key = (struct kvm_io_range) {
4092 		.addr = addr,
4093 		.len = len,
4094 	};
4095 
4096 	range = bsearch(&key, bus->range, bus->dev_count,
4097 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4098 	if (range == NULL)
4099 		return -ENOENT;
4100 
4101 	off = range - bus->range;
4102 
4103 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4104 		off--;
4105 
4106 	return off;
4107 }
4108 
4109 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4110 			      struct kvm_io_range *range, const void *val)
4111 {
4112 	int idx;
4113 
4114 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4115 	if (idx < 0)
4116 		return -EOPNOTSUPP;
4117 
4118 	while (idx < bus->dev_count &&
4119 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4120 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4121 					range->len, val))
4122 			return idx;
4123 		idx++;
4124 	}
4125 
4126 	return -EOPNOTSUPP;
4127 }
4128 
4129 /* kvm_io_bus_write - called under kvm->slots_lock */
4130 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4131 		     int len, const void *val)
4132 {
4133 	struct kvm_io_bus *bus;
4134 	struct kvm_io_range range;
4135 	int r;
4136 
4137 	range = (struct kvm_io_range) {
4138 		.addr = addr,
4139 		.len = len,
4140 	};
4141 
4142 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4143 	if (!bus)
4144 		return -ENOMEM;
4145 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4146 	return r < 0 ? r : 0;
4147 }
4148 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4149 
4150 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4151 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4152 			    gpa_t addr, int len, const void *val, long cookie)
4153 {
4154 	struct kvm_io_bus *bus;
4155 	struct kvm_io_range range;
4156 
4157 	range = (struct kvm_io_range) {
4158 		.addr = addr,
4159 		.len = len,
4160 	};
4161 
4162 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4163 	if (!bus)
4164 		return -ENOMEM;
4165 
4166 	/* First try the device referenced by cookie. */
4167 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4168 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4169 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4170 					val))
4171 			return cookie;
4172 
4173 	/*
4174 	 * cookie contained garbage; fall back to search and return the
4175 	 * correct cookie value.
4176 	 */
4177 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4178 }
4179 
4180 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4181 			     struct kvm_io_range *range, void *val)
4182 {
4183 	int idx;
4184 
4185 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4186 	if (idx < 0)
4187 		return -EOPNOTSUPP;
4188 
4189 	while (idx < bus->dev_count &&
4190 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4191 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4192 				       range->len, val))
4193 			return idx;
4194 		idx++;
4195 	}
4196 
4197 	return -EOPNOTSUPP;
4198 }
4199 
4200 /* kvm_io_bus_read - called under kvm->slots_lock */
4201 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4202 		    int len, void *val)
4203 {
4204 	struct kvm_io_bus *bus;
4205 	struct kvm_io_range range;
4206 	int r;
4207 
4208 	range = (struct kvm_io_range) {
4209 		.addr = addr,
4210 		.len = len,
4211 	};
4212 
4213 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4214 	if (!bus)
4215 		return -ENOMEM;
4216 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4217 	return r < 0 ? r : 0;
4218 }
4219 
4220 /* Caller must hold slots_lock. */
4221 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4222 			    int len, struct kvm_io_device *dev)
4223 {
4224 	int i;
4225 	struct kvm_io_bus *new_bus, *bus;
4226 	struct kvm_io_range range;
4227 
4228 	bus = kvm_get_bus(kvm, bus_idx);
4229 	if (!bus)
4230 		return -ENOMEM;
4231 
4232 	/* exclude ioeventfd which is limited by maximum fd */
4233 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4234 		return -ENOSPC;
4235 
4236 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4237 			  GFP_KERNEL_ACCOUNT);
4238 	if (!new_bus)
4239 		return -ENOMEM;
4240 
4241 	range = (struct kvm_io_range) {
4242 		.addr = addr,
4243 		.len = len,
4244 		.dev = dev,
4245 	};
4246 
4247 	for (i = 0; i < bus->dev_count; i++)
4248 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4249 			break;
4250 
4251 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4252 	new_bus->dev_count++;
4253 	new_bus->range[i] = range;
4254 	memcpy(new_bus->range + i + 1, bus->range + i,
4255 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4256 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4257 	synchronize_srcu_expedited(&kvm->srcu);
4258 	kfree(bus);
4259 
4260 	return 0;
4261 }
4262 
4263 /* Caller must hold slots_lock. */
4264 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4265 			       struct kvm_io_device *dev)
4266 {
4267 	int i;
4268 	struct kvm_io_bus *new_bus, *bus;
4269 
4270 	bus = kvm_get_bus(kvm, bus_idx);
4271 	if (!bus)
4272 		return;
4273 
4274 	for (i = 0; i < bus->dev_count; i++)
4275 		if (bus->range[i].dev == dev) {
4276 			break;
4277 		}
4278 
4279 	if (i == bus->dev_count)
4280 		return;
4281 
4282 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4283 			  GFP_KERNEL_ACCOUNT);
4284 	if (!new_bus)  {
4285 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4286 		goto broken;
4287 	}
4288 
4289 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4290 	new_bus->dev_count--;
4291 	memcpy(new_bus->range + i, bus->range + i + 1,
4292 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4293 
4294 broken:
4295 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4296 	synchronize_srcu_expedited(&kvm->srcu);
4297 	kfree(bus);
4298 	return;
4299 }
4300 
4301 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4302 					 gpa_t addr)
4303 {
4304 	struct kvm_io_bus *bus;
4305 	int dev_idx, srcu_idx;
4306 	struct kvm_io_device *iodev = NULL;
4307 
4308 	srcu_idx = srcu_read_lock(&kvm->srcu);
4309 
4310 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4311 	if (!bus)
4312 		goto out_unlock;
4313 
4314 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4315 	if (dev_idx < 0)
4316 		goto out_unlock;
4317 
4318 	iodev = bus->range[dev_idx].dev;
4319 
4320 out_unlock:
4321 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4322 
4323 	return iodev;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4326 
4327 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4328 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4329 			   const char *fmt)
4330 {
4331 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4332 					  inode->i_private;
4333 
4334 	/* The debugfs files are a reference to the kvm struct which
4335 	 * is still valid when kvm_destroy_vm is called.
4336 	 * To avoid the race between open and the removal of the debugfs
4337 	 * directory we test against the users count.
4338 	 */
4339 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4340 		return -ENOENT;
4341 
4342 	if (simple_attr_open(inode, file, get,
4343 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4344 		    ? set : NULL,
4345 		    fmt)) {
4346 		kvm_put_kvm(stat_data->kvm);
4347 		return -ENOMEM;
4348 	}
4349 
4350 	return 0;
4351 }
4352 
4353 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4354 {
4355 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4356 					  inode->i_private;
4357 
4358 	simple_attr_release(inode, file);
4359 	kvm_put_kvm(stat_data->kvm);
4360 
4361 	return 0;
4362 }
4363 
4364 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4365 {
4366 	*val = *(ulong *)((void *)kvm + offset);
4367 
4368 	return 0;
4369 }
4370 
4371 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4372 {
4373 	*(ulong *)((void *)kvm + offset) = 0;
4374 
4375 	return 0;
4376 }
4377 
4378 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4379 {
4380 	int i;
4381 	struct kvm_vcpu *vcpu;
4382 
4383 	*val = 0;
4384 
4385 	kvm_for_each_vcpu(i, vcpu, kvm)
4386 		*val += *(u64 *)((void *)vcpu + offset);
4387 
4388 	return 0;
4389 }
4390 
4391 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4392 {
4393 	int i;
4394 	struct kvm_vcpu *vcpu;
4395 
4396 	kvm_for_each_vcpu(i, vcpu, kvm)
4397 		*(u64 *)((void *)vcpu + offset) = 0;
4398 
4399 	return 0;
4400 }
4401 
4402 static int kvm_stat_data_get(void *data, u64 *val)
4403 {
4404 	int r = -EFAULT;
4405 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4406 
4407 	switch (stat_data->dbgfs_item->kind) {
4408 	case KVM_STAT_VM:
4409 		r = kvm_get_stat_per_vm(stat_data->kvm,
4410 					stat_data->dbgfs_item->offset, val);
4411 		break;
4412 	case KVM_STAT_VCPU:
4413 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4414 					  stat_data->dbgfs_item->offset, val);
4415 		break;
4416 	}
4417 
4418 	return r;
4419 }
4420 
4421 static int kvm_stat_data_clear(void *data, u64 val)
4422 {
4423 	int r = -EFAULT;
4424 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4425 
4426 	if (val)
4427 		return -EINVAL;
4428 
4429 	switch (stat_data->dbgfs_item->kind) {
4430 	case KVM_STAT_VM:
4431 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4432 					  stat_data->dbgfs_item->offset);
4433 		break;
4434 	case KVM_STAT_VCPU:
4435 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4436 					    stat_data->dbgfs_item->offset);
4437 		break;
4438 	}
4439 
4440 	return r;
4441 }
4442 
4443 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4444 {
4445 	__simple_attr_check_format("%llu\n", 0ull);
4446 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4447 				kvm_stat_data_clear, "%llu\n");
4448 }
4449 
4450 static const struct file_operations stat_fops_per_vm = {
4451 	.owner = THIS_MODULE,
4452 	.open = kvm_stat_data_open,
4453 	.release = kvm_debugfs_release,
4454 	.read = simple_attr_read,
4455 	.write = simple_attr_write,
4456 	.llseek = no_llseek,
4457 };
4458 
4459 static int vm_stat_get(void *_offset, u64 *val)
4460 {
4461 	unsigned offset = (long)_offset;
4462 	struct kvm *kvm;
4463 	u64 tmp_val;
4464 
4465 	*val = 0;
4466 	mutex_lock(&kvm_lock);
4467 	list_for_each_entry(kvm, &vm_list, vm_list) {
4468 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4469 		*val += tmp_val;
4470 	}
4471 	mutex_unlock(&kvm_lock);
4472 	return 0;
4473 }
4474 
4475 static int vm_stat_clear(void *_offset, u64 val)
4476 {
4477 	unsigned offset = (long)_offset;
4478 	struct kvm *kvm;
4479 
4480 	if (val)
4481 		return -EINVAL;
4482 
4483 	mutex_lock(&kvm_lock);
4484 	list_for_each_entry(kvm, &vm_list, vm_list) {
4485 		kvm_clear_stat_per_vm(kvm, offset);
4486 	}
4487 	mutex_unlock(&kvm_lock);
4488 
4489 	return 0;
4490 }
4491 
4492 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4493 
4494 static int vcpu_stat_get(void *_offset, u64 *val)
4495 {
4496 	unsigned offset = (long)_offset;
4497 	struct kvm *kvm;
4498 	u64 tmp_val;
4499 
4500 	*val = 0;
4501 	mutex_lock(&kvm_lock);
4502 	list_for_each_entry(kvm, &vm_list, vm_list) {
4503 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4504 		*val += tmp_val;
4505 	}
4506 	mutex_unlock(&kvm_lock);
4507 	return 0;
4508 }
4509 
4510 static int vcpu_stat_clear(void *_offset, u64 val)
4511 {
4512 	unsigned offset = (long)_offset;
4513 	struct kvm *kvm;
4514 
4515 	if (val)
4516 		return -EINVAL;
4517 
4518 	mutex_lock(&kvm_lock);
4519 	list_for_each_entry(kvm, &vm_list, vm_list) {
4520 		kvm_clear_stat_per_vcpu(kvm, offset);
4521 	}
4522 	mutex_unlock(&kvm_lock);
4523 
4524 	return 0;
4525 }
4526 
4527 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4528 			"%llu\n");
4529 
4530 static const struct file_operations *stat_fops[] = {
4531 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4532 	[KVM_STAT_VM]   = &vm_stat_fops,
4533 };
4534 
4535 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4536 {
4537 	struct kobj_uevent_env *env;
4538 	unsigned long long created, active;
4539 
4540 	if (!kvm_dev.this_device || !kvm)
4541 		return;
4542 
4543 	mutex_lock(&kvm_lock);
4544 	if (type == KVM_EVENT_CREATE_VM) {
4545 		kvm_createvm_count++;
4546 		kvm_active_vms++;
4547 	} else if (type == KVM_EVENT_DESTROY_VM) {
4548 		kvm_active_vms--;
4549 	}
4550 	created = kvm_createvm_count;
4551 	active = kvm_active_vms;
4552 	mutex_unlock(&kvm_lock);
4553 
4554 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4555 	if (!env)
4556 		return;
4557 
4558 	add_uevent_var(env, "CREATED=%llu", created);
4559 	add_uevent_var(env, "COUNT=%llu", active);
4560 
4561 	if (type == KVM_EVENT_CREATE_VM) {
4562 		add_uevent_var(env, "EVENT=create");
4563 		kvm->userspace_pid = task_pid_nr(current);
4564 	} else if (type == KVM_EVENT_DESTROY_VM) {
4565 		add_uevent_var(env, "EVENT=destroy");
4566 	}
4567 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4568 
4569 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4570 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4571 
4572 		if (p) {
4573 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4574 			if (!IS_ERR(tmp))
4575 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4576 			kfree(p);
4577 		}
4578 	}
4579 	/* no need for checks, since we are adding at most only 5 keys */
4580 	env->envp[env->envp_idx++] = NULL;
4581 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4582 	kfree(env);
4583 }
4584 
4585 static void kvm_init_debug(void)
4586 {
4587 	struct kvm_stats_debugfs_item *p;
4588 
4589 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4590 
4591 	kvm_debugfs_num_entries = 0;
4592 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4593 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4594 				    kvm_debugfs_dir, (void *)(long)p->offset,
4595 				    stat_fops[p->kind]);
4596 	}
4597 }
4598 
4599 static int kvm_suspend(void)
4600 {
4601 	if (kvm_usage_count)
4602 		hardware_disable_nolock(NULL);
4603 	return 0;
4604 }
4605 
4606 static void kvm_resume(void)
4607 {
4608 	if (kvm_usage_count) {
4609 #ifdef CONFIG_LOCKDEP
4610 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4611 #endif
4612 		hardware_enable_nolock(NULL);
4613 	}
4614 }
4615 
4616 static struct syscore_ops kvm_syscore_ops = {
4617 	.suspend = kvm_suspend,
4618 	.resume = kvm_resume,
4619 };
4620 
4621 static inline
4622 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4623 {
4624 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4625 }
4626 
4627 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4628 {
4629 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4630 
4631 	WRITE_ONCE(vcpu->preempted, false);
4632 	WRITE_ONCE(vcpu->ready, false);
4633 
4634 	__this_cpu_write(kvm_running_vcpu, vcpu);
4635 	kvm_arch_sched_in(vcpu, cpu);
4636 	kvm_arch_vcpu_load(vcpu, cpu);
4637 }
4638 
4639 static void kvm_sched_out(struct preempt_notifier *pn,
4640 			  struct task_struct *next)
4641 {
4642 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4643 
4644 	if (current->state == TASK_RUNNING) {
4645 		WRITE_ONCE(vcpu->preempted, true);
4646 		WRITE_ONCE(vcpu->ready, true);
4647 	}
4648 	kvm_arch_vcpu_put(vcpu);
4649 	__this_cpu_write(kvm_running_vcpu, NULL);
4650 }
4651 
4652 /**
4653  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4654  *
4655  * We can disable preemption locally around accessing the per-CPU variable,
4656  * and use the resolved vcpu pointer after enabling preemption again,
4657  * because even if the current thread is migrated to another CPU, reading
4658  * the per-CPU value later will give us the same value as we update the
4659  * per-CPU variable in the preempt notifier handlers.
4660  */
4661 struct kvm_vcpu *kvm_get_running_vcpu(void)
4662 {
4663 	struct kvm_vcpu *vcpu;
4664 
4665 	preempt_disable();
4666 	vcpu = __this_cpu_read(kvm_running_vcpu);
4667 	preempt_enable();
4668 
4669 	return vcpu;
4670 }
4671 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4672 
4673 /**
4674  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4675  */
4676 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4677 {
4678         return &kvm_running_vcpu;
4679 }
4680 
4681 struct kvm_cpu_compat_check {
4682 	void *opaque;
4683 	int *ret;
4684 };
4685 
4686 static void check_processor_compat(void *data)
4687 {
4688 	struct kvm_cpu_compat_check *c = data;
4689 
4690 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4691 }
4692 
4693 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4694 		  struct module *module)
4695 {
4696 	struct kvm_cpu_compat_check c;
4697 	int r;
4698 	int cpu;
4699 
4700 	r = kvm_arch_init(opaque);
4701 	if (r)
4702 		goto out_fail;
4703 
4704 	/*
4705 	 * kvm_arch_init makes sure there's at most one caller
4706 	 * for architectures that support multiple implementations,
4707 	 * like intel and amd on x86.
4708 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4709 	 * conflicts in case kvm is already setup for another implementation.
4710 	 */
4711 	r = kvm_irqfd_init();
4712 	if (r)
4713 		goto out_irqfd;
4714 
4715 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4716 		r = -ENOMEM;
4717 		goto out_free_0;
4718 	}
4719 
4720 	r = kvm_arch_hardware_setup(opaque);
4721 	if (r < 0)
4722 		goto out_free_1;
4723 
4724 	c.ret = &r;
4725 	c.opaque = opaque;
4726 	for_each_online_cpu(cpu) {
4727 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4728 		if (r < 0)
4729 			goto out_free_2;
4730 	}
4731 
4732 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4733 				      kvm_starting_cpu, kvm_dying_cpu);
4734 	if (r)
4735 		goto out_free_2;
4736 	register_reboot_notifier(&kvm_reboot_notifier);
4737 
4738 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4739 	if (!vcpu_align)
4740 		vcpu_align = __alignof__(struct kvm_vcpu);
4741 	kvm_vcpu_cache =
4742 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4743 					   SLAB_ACCOUNT,
4744 					   offsetof(struct kvm_vcpu, arch),
4745 					   sizeof_field(struct kvm_vcpu, arch),
4746 					   NULL);
4747 	if (!kvm_vcpu_cache) {
4748 		r = -ENOMEM;
4749 		goto out_free_3;
4750 	}
4751 
4752 	r = kvm_async_pf_init();
4753 	if (r)
4754 		goto out_free;
4755 
4756 	kvm_chardev_ops.owner = module;
4757 	kvm_vm_fops.owner = module;
4758 	kvm_vcpu_fops.owner = module;
4759 
4760 	r = misc_register(&kvm_dev);
4761 	if (r) {
4762 		pr_err("kvm: misc device register failed\n");
4763 		goto out_unreg;
4764 	}
4765 
4766 	register_syscore_ops(&kvm_syscore_ops);
4767 
4768 	kvm_preempt_ops.sched_in = kvm_sched_in;
4769 	kvm_preempt_ops.sched_out = kvm_sched_out;
4770 
4771 	kvm_init_debug();
4772 
4773 	r = kvm_vfio_ops_init();
4774 	WARN_ON(r);
4775 
4776 	return 0;
4777 
4778 out_unreg:
4779 	kvm_async_pf_deinit();
4780 out_free:
4781 	kmem_cache_destroy(kvm_vcpu_cache);
4782 out_free_3:
4783 	unregister_reboot_notifier(&kvm_reboot_notifier);
4784 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4785 out_free_2:
4786 	kvm_arch_hardware_unsetup();
4787 out_free_1:
4788 	free_cpumask_var(cpus_hardware_enabled);
4789 out_free_0:
4790 	kvm_irqfd_exit();
4791 out_irqfd:
4792 	kvm_arch_exit();
4793 out_fail:
4794 	return r;
4795 }
4796 EXPORT_SYMBOL_GPL(kvm_init);
4797 
4798 void kvm_exit(void)
4799 {
4800 	debugfs_remove_recursive(kvm_debugfs_dir);
4801 	misc_deregister(&kvm_dev);
4802 	kmem_cache_destroy(kvm_vcpu_cache);
4803 	kvm_async_pf_deinit();
4804 	unregister_syscore_ops(&kvm_syscore_ops);
4805 	unregister_reboot_notifier(&kvm_reboot_notifier);
4806 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4807 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4808 	kvm_arch_hardware_unsetup();
4809 	kvm_arch_exit();
4810 	kvm_irqfd_exit();
4811 	free_cpumask_var(cpus_hardware_enabled);
4812 	kvm_vfio_ops_exit();
4813 }
4814 EXPORT_SYMBOL_GPL(kvm_exit);
4815 
4816 struct kvm_vm_worker_thread_context {
4817 	struct kvm *kvm;
4818 	struct task_struct *parent;
4819 	struct completion init_done;
4820 	kvm_vm_thread_fn_t thread_fn;
4821 	uintptr_t data;
4822 	int err;
4823 };
4824 
4825 static int kvm_vm_worker_thread(void *context)
4826 {
4827 	/*
4828 	 * The init_context is allocated on the stack of the parent thread, so
4829 	 * we have to locally copy anything that is needed beyond initialization
4830 	 */
4831 	struct kvm_vm_worker_thread_context *init_context = context;
4832 	struct kvm *kvm = init_context->kvm;
4833 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4834 	uintptr_t data = init_context->data;
4835 	int err;
4836 
4837 	err = kthread_park(current);
4838 	/* kthread_park(current) is never supposed to return an error */
4839 	WARN_ON(err != 0);
4840 	if (err)
4841 		goto init_complete;
4842 
4843 	err = cgroup_attach_task_all(init_context->parent, current);
4844 	if (err) {
4845 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4846 			__func__, err);
4847 		goto init_complete;
4848 	}
4849 
4850 	set_user_nice(current, task_nice(init_context->parent));
4851 
4852 init_complete:
4853 	init_context->err = err;
4854 	complete(&init_context->init_done);
4855 	init_context = NULL;
4856 
4857 	if (err)
4858 		return err;
4859 
4860 	/* Wait to be woken up by the spawner before proceeding. */
4861 	kthread_parkme();
4862 
4863 	if (!kthread_should_stop())
4864 		err = thread_fn(kvm, data);
4865 
4866 	return err;
4867 }
4868 
4869 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4870 				uintptr_t data, const char *name,
4871 				struct task_struct **thread_ptr)
4872 {
4873 	struct kvm_vm_worker_thread_context init_context = {};
4874 	struct task_struct *thread;
4875 
4876 	*thread_ptr = NULL;
4877 	init_context.kvm = kvm;
4878 	init_context.parent = current;
4879 	init_context.thread_fn = thread_fn;
4880 	init_context.data = data;
4881 	init_completion(&init_context.init_done);
4882 
4883 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4884 			     "%s-%d", name, task_pid_nr(current));
4885 	if (IS_ERR(thread))
4886 		return PTR_ERR(thread);
4887 
4888 	/* kthread_run is never supposed to return NULL */
4889 	WARN_ON(thread == NULL);
4890 
4891 	wait_for_completion(&init_context.init_done);
4892 
4893 	if (!init_context.err)
4894 		*thread_ptr = thread;
4895 
4896 	return init_context.err;
4897 }
4898