1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 55 #include <asm/processor.h> 56 #include <asm/ioctl.h> 57 #include <linux/uaccess.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, 0644); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* The start value to grow halt_poll_ns from */ 83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 84 module_param(halt_poll_ns_grow_start, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 86 87 /* Default resets per-vcpu halt_poll_ns . */ 88 unsigned int halt_poll_ns_shrink; 89 module_param(halt_poll_ns_shrink, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 91 92 /* 93 * Ordering of locks: 94 * 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 96 */ 97 98 DEFINE_MUTEX(kvm_lock); 99 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 100 LIST_HEAD(vm_list); 101 102 static cpumask_var_t cpus_hardware_enabled; 103 static int kvm_usage_count; 104 static atomic_t hardware_enable_failed; 105 106 static struct kmem_cache *kvm_vcpu_cache; 107 108 static __read_mostly struct preempt_ops kvm_preempt_ops; 109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 110 111 struct dentry *kvm_debugfs_dir; 112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 113 114 static int kvm_debugfs_num_entries; 115 static const struct file_operations stat_fops_per_vm; 116 117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #ifdef CONFIG_KVM_COMPAT 120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #define KVM_COMPAT(c) .compat_ioctl = (c) 123 #else 124 /* 125 * For architectures that don't implement a compat infrastructure, 126 * adopt a double line of defense: 127 * - Prevent a compat task from opening /dev/kvm 128 * - If the open has been done by a 64bit task, and the KVM fd 129 * passed to a compat task, let the ioctls fail. 130 */ 131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 132 unsigned long arg) { return -EINVAL; } 133 134 static int kvm_no_compat_open(struct inode *inode, struct file *file) 135 { 136 return is_compat_task() ? -ENODEV : 0; 137 } 138 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 139 .open = kvm_no_compat_open 140 #endif 141 static int hardware_enable_all(void); 142 static void hardware_disable_all(void); 143 144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 145 146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 147 148 __visible bool kvm_rebooting; 149 EXPORT_SYMBOL_GPL(kvm_rebooting); 150 151 #define KVM_EVENT_CREATE_VM 0 152 #define KVM_EVENT_DESTROY_VM 1 153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 154 static unsigned long long kvm_createvm_count; 155 static unsigned long long kvm_active_vms; 156 157 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 158 unsigned long start, unsigned long end, bool blockable) 159 { 160 return 0; 161 } 162 163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 164 { 165 /* 166 * The metadata used by is_zone_device_page() to determine whether or 167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 168 * the device has been pinned, e.g. by get_user_pages(). WARN if the 169 * page_count() is zero to help detect bad usage of this helper. 170 */ 171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 172 return false; 173 174 return is_zone_device_page(pfn_to_page(pfn)); 175 } 176 177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 178 { 179 /* 180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 181 * perspective they are "normal" pages, albeit with slightly different 182 * usage rules. 183 */ 184 if (pfn_valid(pfn)) 185 return PageReserved(pfn_to_page(pfn)) && 186 !is_zero_pfn(pfn) && 187 !kvm_is_zone_device_pfn(pfn); 188 189 return true; 190 } 191 192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 193 { 194 struct page *page = pfn_to_page(pfn); 195 196 if (!PageTransCompoundMap(page)) 197 return false; 198 199 return is_transparent_hugepage(compound_head(page)); 200 } 201 202 /* 203 * Switches to specified vcpu, until a matching vcpu_put() 204 */ 205 void vcpu_load(struct kvm_vcpu *vcpu) 206 { 207 int cpu = get_cpu(); 208 209 __this_cpu_write(kvm_running_vcpu, vcpu); 210 preempt_notifier_register(&vcpu->preempt_notifier); 211 kvm_arch_vcpu_load(vcpu, cpu); 212 put_cpu(); 213 } 214 EXPORT_SYMBOL_GPL(vcpu_load); 215 216 void vcpu_put(struct kvm_vcpu *vcpu) 217 { 218 preempt_disable(); 219 kvm_arch_vcpu_put(vcpu); 220 preempt_notifier_unregister(&vcpu->preempt_notifier); 221 __this_cpu_write(kvm_running_vcpu, NULL); 222 preempt_enable(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_put); 225 226 /* TODO: merge with kvm_arch_vcpu_should_kick */ 227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 228 { 229 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 230 231 /* 232 * We need to wait for the VCPU to reenable interrupts and get out of 233 * READING_SHADOW_PAGE_TABLES mode. 234 */ 235 if (req & KVM_REQUEST_WAIT) 236 return mode != OUTSIDE_GUEST_MODE; 237 238 /* 239 * Need to kick a running VCPU, but otherwise there is nothing to do. 240 */ 241 return mode == IN_GUEST_MODE; 242 } 243 244 static void ack_flush(void *_completed) 245 { 246 } 247 248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 249 { 250 if (unlikely(!cpus)) 251 cpus = cpu_online_mask; 252 253 if (cpumask_empty(cpus)) 254 return false; 255 256 smp_call_function_many(cpus, ack_flush, NULL, wait); 257 return true; 258 } 259 260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 261 struct kvm_vcpu *except, 262 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 263 { 264 int i, cpu, me; 265 struct kvm_vcpu *vcpu; 266 bool called; 267 268 me = get_cpu(); 269 270 kvm_for_each_vcpu(i, vcpu, kvm) { 271 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) || 272 vcpu == except) 273 continue; 274 275 kvm_make_request(req, vcpu); 276 cpu = vcpu->cpu; 277 278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 279 continue; 280 281 if (tmp != NULL && cpu != -1 && cpu != me && 282 kvm_request_needs_ipi(vcpu, req)) 283 __cpumask_set_cpu(cpu, tmp); 284 } 285 286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 287 put_cpu(); 288 289 return called; 290 } 291 292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 293 struct kvm_vcpu *except) 294 { 295 cpumask_var_t cpus; 296 bool called; 297 298 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 299 300 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus); 301 302 free_cpumask_var(cpus); 303 return called; 304 } 305 306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 307 { 308 return kvm_make_all_cpus_request_except(kvm, req, NULL); 309 } 310 311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 312 void kvm_flush_remote_tlbs(struct kvm *kvm) 313 { 314 /* 315 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 316 * kvm_make_all_cpus_request. 317 */ 318 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 319 320 /* 321 * We want to publish modifications to the page tables before reading 322 * mode. Pairs with a memory barrier in arch-specific code. 323 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 324 * and smp_mb in walk_shadow_page_lockless_begin/end. 325 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 326 * 327 * There is already an smp_mb__after_atomic() before 328 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 329 * barrier here. 330 */ 331 if (!kvm_arch_flush_remote_tlb(kvm) 332 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 333 ++kvm->stat.remote_tlb_flush; 334 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 335 } 336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 337 #endif 338 339 void kvm_reload_remote_mmus(struct kvm *kvm) 340 { 341 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 342 } 343 344 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 345 { 346 mutex_init(&vcpu->mutex); 347 vcpu->cpu = -1; 348 vcpu->kvm = kvm; 349 vcpu->vcpu_id = id; 350 vcpu->pid = NULL; 351 rcuwait_init(&vcpu->wait); 352 kvm_async_pf_vcpu_init(vcpu); 353 354 vcpu->pre_pcpu = -1; 355 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 356 357 kvm_vcpu_set_in_spin_loop(vcpu, false); 358 kvm_vcpu_set_dy_eligible(vcpu, false); 359 vcpu->preempted = false; 360 vcpu->ready = false; 361 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 362 } 363 364 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 365 { 366 kvm_arch_vcpu_destroy(vcpu); 367 368 /* 369 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 370 * the vcpu->pid pointer, and at destruction time all file descriptors 371 * are already gone. 372 */ 373 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 374 375 free_page((unsigned long)vcpu->run); 376 kmem_cache_free(kvm_vcpu_cache, vcpu); 377 } 378 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 379 380 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 381 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 382 { 383 return container_of(mn, struct kvm, mmu_notifier); 384 } 385 386 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 387 struct mm_struct *mm, 388 unsigned long address, 389 pte_t pte) 390 { 391 struct kvm *kvm = mmu_notifier_to_kvm(mn); 392 int idx; 393 394 idx = srcu_read_lock(&kvm->srcu); 395 spin_lock(&kvm->mmu_lock); 396 kvm->mmu_notifier_seq++; 397 398 if (kvm_set_spte_hva(kvm, address, pte)) 399 kvm_flush_remote_tlbs(kvm); 400 401 spin_unlock(&kvm->mmu_lock); 402 srcu_read_unlock(&kvm->srcu, idx); 403 } 404 405 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 406 const struct mmu_notifier_range *range) 407 { 408 struct kvm *kvm = mmu_notifier_to_kvm(mn); 409 int need_tlb_flush = 0, idx; 410 int ret; 411 412 idx = srcu_read_lock(&kvm->srcu); 413 spin_lock(&kvm->mmu_lock); 414 /* 415 * The count increase must become visible at unlock time as no 416 * spte can be established without taking the mmu_lock and 417 * count is also read inside the mmu_lock critical section. 418 */ 419 kvm->mmu_notifier_count++; 420 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 421 need_tlb_flush |= kvm->tlbs_dirty; 422 /* we've to flush the tlb before the pages can be freed */ 423 if (need_tlb_flush) 424 kvm_flush_remote_tlbs(kvm); 425 426 spin_unlock(&kvm->mmu_lock); 427 428 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 429 range->end, 430 mmu_notifier_range_blockable(range)); 431 432 srcu_read_unlock(&kvm->srcu, idx); 433 434 return ret; 435 } 436 437 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 438 const struct mmu_notifier_range *range) 439 { 440 struct kvm *kvm = mmu_notifier_to_kvm(mn); 441 442 spin_lock(&kvm->mmu_lock); 443 /* 444 * This sequence increase will notify the kvm page fault that 445 * the page that is going to be mapped in the spte could have 446 * been freed. 447 */ 448 kvm->mmu_notifier_seq++; 449 smp_wmb(); 450 /* 451 * The above sequence increase must be visible before the 452 * below count decrease, which is ensured by the smp_wmb above 453 * in conjunction with the smp_rmb in mmu_notifier_retry(). 454 */ 455 kvm->mmu_notifier_count--; 456 spin_unlock(&kvm->mmu_lock); 457 458 BUG_ON(kvm->mmu_notifier_count < 0); 459 } 460 461 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 462 struct mm_struct *mm, 463 unsigned long start, 464 unsigned long end) 465 { 466 struct kvm *kvm = mmu_notifier_to_kvm(mn); 467 int young, idx; 468 469 idx = srcu_read_lock(&kvm->srcu); 470 spin_lock(&kvm->mmu_lock); 471 472 young = kvm_age_hva(kvm, start, end); 473 if (young) 474 kvm_flush_remote_tlbs(kvm); 475 476 spin_unlock(&kvm->mmu_lock); 477 srcu_read_unlock(&kvm->srcu, idx); 478 479 return young; 480 } 481 482 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 483 struct mm_struct *mm, 484 unsigned long start, 485 unsigned long end) 486 { 487 struct kvm *kvm = mmu_notifier_to_kvm(mn); 488 int young, idx; 489 490 idx = srcu_read_lock(&kvm->srcu); 491 spin_lock(&kvm->mmu_lock); 492 /* 493 * Even though we do not flush TLB, this will still adversely 494 * affect performance on pre-Haswell Intel EPT, where there is 495 * no EPT Access Bit to clear so that we have to tear down EPT 496 * tables instead. If we find this unacceptable, we can always 497 * add a parameter to kvm_age_hva so that it effectively doesn't 498 * do anything on clear_young. 499 * 500 * Also note that currently we never issue secondary TLB flushes 501 * from clear_young, leaving this job up to the regular system 502 * cadence. If we find this inaccurate, we might come up with a 503 * more sophisticated heuristic later. 504 */ 505 young = kvm_age_hva(kvm, start, end); 506 spin_unlock(&kvm->mmu_lock); 507 srcu_read_unlock(&kvm->srcu, idx); 508 509 return young; 510 } 511 512 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 513 struct mm_struct *mm, 514 unsigned long address) 515 { 516 struct kvm *kvm = mmu_notifier_to_kvm(mn); 517 int young, idx; 518 519 idx = srcu_read_lock(&kvm->srcu); 520 spin_lock(&kvm->mmu_lock); 521 young = kvm_test_age_hva(kvm, address); 522 spin_unlock(&kvm->mmu_lock); 523 srcu_read_unlock(&kvm->srcu, idx); 524 525 return young; 526 } 527 528 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 529 struct mm_struct *mm) 530 { 531 struct kvm *kvm = mmu_notifier_to_kvm(mn); 532 int idx; 533 534 idx = srcu_read_lock(&kvm->srcu); 535 kvm_arch_flush_shadow_all(kvm); 536 srcu_read_unlock(&kvm->srcu, idx); 537 } 538 539 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 540 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 541 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 542 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 543 .clear_young = kvm_mmu_notifier_clear_young, 544 .test_young = kvm_mmu_notifier_test_young, 545 .change_pte = kvm_mmu_notifier_change_pte, 546 .release = kvm_mmu_notifier_release, 547 }; 548 549 static int kvm_init_mmu_notifier(struct kvm *kvm) 550 { 551 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 552 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 553 } 554 555 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 556 557 static int kvm_init_mmu_notifier(struct kvm *kvm) 558 { 559 return 0; 560 } 561 562 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 563 564 static struct kvm_memslots *kvm_alloc_memslots(void) 565 { 566 int i; 567 struct kvm_memslots *slots; 568 569 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 570 if (!slots) 571 return NULL; 572 573 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 574 slots->id_to_index[i] = -1; 575 576 return slots; 577 } 578 579 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 580 { 581 if (!memslot->dirty_bitmap) 582 return; 583 584 kvfree(memslot->dirty_bitmap); 585 memslot->dirty_bitmap = NULL; 586 } 587 588 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 589 { 590 kvm_destroy_dirty_bitmap(slot); 591 592 kvm_arch_free_memslot(kvm, slot); 593 594 slot->flags = 0; 595 slot->npages = 0; 596 } 597 598 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 599 { 600 struct kvm_memory_slot *memslot; 601 602 if (!slots) 603 return; 604 605 kvm_for_each_memslot(memslot, slots) 606 kvm_free_memslot(kvm, memslot); 607 608 kvfree(slots); 609 } 610 611 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 612 { 613 int i; 614 615 if (!kvm->debugfs_dentry) 616 return; 617 618 debugfs_remove_recursive(kvm->debugfs_dentry); 619 620 if (kvm->debugfs_stat_data) { 621 for (i = 0; i < kvm_debugfs_num_entries; i++) 622 kfree(kvm->debugfs_stat_data[i]); 623 kfree(kvm->debugfs_stat_data); 624 } 625 } 626 627 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 628 { 629 char dir_name[ITOA_MAX_LEN * 2]; 630 struct kvm_stat_data *stat_data; 631 struct kvm_stats_debugfs_item *p; 632 633 if (!debugfs_initialized()) 634 return 0; 635 636 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 637 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 638 639 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 640 sizeof(*kvm->debugfs_stat_data), 641 GFP_KERNEL_ACCOUNT); 642 if (!kvm->debugfs_stat_data) 643 return -ENOMEM; 644 645 for (p = debugfs_entries; p->name; p++) { 646 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 647 if (!stat_data) 648 return -ENOMEM; 649 650 stat_data->kvm = kvm; 651 stat_data->dbgfs_item = p; 652 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 653 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 654 kvm->debugfs_dentry, stat_data, 655 &stat_fops_per_vm); 656 } 657 return 0; 658 } 659 660 /* 661 * Called after the VM is otherwise initialized, but just before adding it to 662 * the vm_list. 663 */ 664 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 665 { 666 return 0; 667 } 668 669 /* 670 * Called just after removing the VM from the vm_list, but before doing any 671 * other destruction. 672 */ 673 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 674 { 675 } 676 677 static struct kvm *kvm_create_vm(unsigned long type) 678 { 679 struct kvm *kvm = kvm_arch_alloc_vm(); 680 int r = -ENOMEM; 681 int i; 682 683 if (!kvm) 684 return ERR_PTR(-ENOMEM); 685 686 spin_lock_init(&kvm->mmu_lock); 687 mmgrab(current->mm); 688 kvm->mm = current->mm; 689 kvm_eventfd_init(kvm); 690 mutex_init(&kvm->lock); 691 mutex_init(&kvm->irq_lock); 692 mutex_init(&kvm->slots_lock); 693 INIT_LIST_HEAD(&kvm->devices); 694 695 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 696 697 if (init_srcu_struct(&kvm->srcu)) 698 goto out_err_no_srcu; 699 if (init_srcu_struct(&kvm->irq_srcu)) 700 goto out_err_no_irq_srcu; 701 702 refcount_set(&kvm->users_count, 1); 703 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 704 struct kvm_memslots *slots = kvm_alloc_memslots(); 705 706 if (!slots) 707 goto out_err_no_arch_destroy_vm; 708 /* Generations must be different for each address space. */ 709 slots->generation = i; 710 rcu_assign_pointer(kvm->memslots[i], slots); 711 } 712 713 for (i = 0; i < KVM_NR_BUSES; i++) { 714 rcu_assign_pointer(kvm->buses[i], 715 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 716 if (!kvm->buses[i]) 717 goto out_err_no_arch_destroy_vm; 718 } 719 720 kvm->max_halt_poll_ns = halt_poll_ns; 721 722 r = kvm_arch_init_vm(kvm, type); 723 if (r) 724 goto out_err_no_arch_destroy_vm; 725 726 r = hardware_enable_all(); 727 if (r) 728 goto out_err_no_disable; 729 730 #ifdef CONFIG_HAVE_KVM_IRQFD 731 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 732 #endif 733 734 r = kvm_init_mmu_notifier(kvm); 735 if (r) 736 goto out_err_no_mmu_notifier; 737 738 r = kvm_arch_post_init_vm(kvm); 739 if (r) 740 goto out_err; 741 742 mutex_lock(&kvm_lock); 743 list_add(&kvm->vm_list, &vm_list); 744 mutex_unlock(&kvm_lock); 745 746 preempt_notifier_inc(); 747 748 return kvm; 749 750 out_err: 751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 752 if (kvm->mmu_notifier.ops) 753 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 754 #endif 755 out_err_no_mmu_notifier: 756 hardware_disable_all(); 757 out_err_no_disable: 758 kvm_arch_destroy_vm(kvm); 759 out_err_no_arch_destroy_vm: 760 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 761 for (i = 0; i < KVM_NR_BUSES; i++) 762 kfree(kvm_get_bus(kvm, i)); 763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 764 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 765 cleanup_srcu_struct(&kvm->irq_srcu); 766 out_err_no_irq_srcu: 767 cleanup_srcu_struct(&kvm->srcu); 768 out_err_no_srcu: 769 kvm_arch_free_vm(kvm); 770 mmdrop(current->mm); 771 return ERR_PTR(r); 772 } 773 774 static void kvm_destroy_devices(struct kvm *kvm) 775 { 776 struct kvm_device *dev, *tmp; 777 778 /* 779 * We do not need to take the kvm->lock here, because nobody else 780 * has a reference to the struct kvm at this point and therefore 781 * cannot access the devices list anyhow. 782 */ 783 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 784 list_del(&dev->vm_node); 785 dev->ops->destroy(dev); 786 } 787 } 788 789 static void kvm_destroy_vm(struct kvm *kvm) 790 { 791 int i; 792 struct mm_struct *mm = kvm->mm; 793 794 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 795 kvm_destroy_vm_debugfs(kvm); 796 kvm_arch_sync_events(kvm); 797 mutex_lock(&kvm_lock); 798 list_del(&kvm->vm_list); 799 mutex_unlock(&kvm_lock); 800 kvm_arch_pre_destroy_vm(kvm); 801 802 kvm_free_irq_routing(kvm); 803 for (i = 0; i < KVM_NR_BUSES; i++) { 804 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 805 806 if (bus) 807 kvm_io_bus_destroy(bus); 808 kvm->buses[i] = NULL; 809 } 810 kvm_coalesced_mmio_free(kvm); 811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 812 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 813 #else 814 kvm_arch_flush_shadow_all(kvm); 815 #endif 816 kvm_arch_destroy_vm(kvm); 817 kvm_destroy_devices(kvm); 818 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 819 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 820 cleanup_srcu_struct(&kvm->irq_srcu); 821 cleanup_srcu_struct(&kvm->srcu); 822 kvm_arch_free_vm(kvm); 823 preempt_notifier_dec(); 824 hardware_disable_all(); 825 mmdrop(mm); 826 } 827 828 void kvm_get_kvm(struct kvm *kvm) 829 { 830 refcount_inc(&kvm->users_count); 831 } 832 EXPORT_SYMBOL_GPL(kvm_get_kvm); 833 834 void kvm_put_kvm(struct kvm *kvm) 835 { 836 if (refcount_dec_and_test(&kvm->users_count)) 837 kvm_destroy_vm(kvm); 838 } 839 EXPORT_SYMBOL_GPL(kvm_put_kvm); 840 841 /* 842 * Used to put a reference that was taken on behalf of an object associated 843 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 844 * of the new file descriptor fails and the reference cannot be transferred to 845 * its final owner. In such cases, the caller is still actively using @kvm and 846 * will fail miserably if the refcount unexpectedly hits zero. 847 */ 848 void kvm_put_kvm_no_destroy(struct kvm *kvm) 849 { 850 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 851 } 852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 853 854 static int kvm_vm_release(struct inode *inode, struct file *filp) 855 { 856 struct kvm *kvm = filp->private_data; 857 858 kvm_irqfd_release(kvm); 859 860 kvm_put_kvm(kvm); 861 return 0; 862 } 863 864 /* 865 * Allocation size is twice as large as the actual dirty bitmap size. 866 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 867 */ 868 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 869 { 870 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 871 872 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 873 if (!memslot->dirty_bitmap) 874 return -ENOMEM; 875 876 return 0; 877 } 878 879 /* 880 * Delete a memslot by decrementing the number of used slots and shifting all 881 * other entries in the array forward one spot. 882 */ 883 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 884 struct kvm_memory_slot *memslot) 885 { 886 struct kvm_memory_slot *mslots = slots->memslots; 887 int i; 888 889 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 890 return; 891 892 slots->used_slots--; 893 894 if (atomic_read(&slots->lru_slot) >= slots->used_slots) 895 atomic_set(&slots->lru_slot, 0); 896 897 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 898 mslots[i] = mslots[i + 1]; 899 slots->id_to_index[mslots[i].id] = i; 900 } 901 mslots[i] = *memslot; 902 slots->id_to_index[memslot->id] = -1; 903 } 904 905 /* 906 * "Insert" a new memslot by incrementing the number of used slots. Returns 907 * the new slot's initial index into the memslots array. 908 */ 909 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 910 { 911 return slots->used_slots++; 912 } 913 914 /* 915 * Move a changed memslot backwards in the array by shifting existing slots 916 * with a higher GFN toward the front of the array. Note, the changed memslot 917 * itself is not preserved in the array, i.e. not swapped at this time, only 918 * its new index into the array is tracked. Returns the changed memslot's 919 * current index into the memslots array. 920 */ 921 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 922 struct kvm_memory_slot *memslot) 923 { 924 struct kvm_memory_slot *mslots = slots->memslots; 925 int i; 926 927 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 928 WARN_ON_ONCE(!slots->used_slots)) 929 return -1; 930 931 /* 932 * Move the target memslot backward in the array by shifting existing 933 * memslots with a higher GFN (than the target memslot) towards the 934 * front of the array. 935 */ 936 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 937 if (memslot->base_gfn > mslots[i + 1].base_gfn) 938 break; 939 940 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 941 942 /* Shift the next memslot forward one and update its index. */ 943 mslots[i] = mslots[i + 1]; 944 slots->id_to_index[mslots[i].id] = i; 945 } 946 return i; 947 } 948 949 /* 950 * Move a changed memslot forwards in the array by shifting existing slots with 951 * a lower GFN toward the back of the array. Note, the changed memslot itself 952 * is not preserved in the array, i.e. not swapped at this time, only its new 953 * index into the array is tracked. Returns the changed memslot's final index 954 * into the memslots array. 955 */ 956 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 957 struct kvm_memory_slot *memslot, 958 int start) 959 { 960 struct kvm_memory_slot *mslots = slots->memslots; 961 int i; 962 963 for (i = start; i > 0; i--) { 964 if (memslot->base_gfn < mslots[i - 1].base_gfn) 965 break; 966 967 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 968 969 /* Shift the next memslot back one and update its index. */ 970 mslots[i] = mslots[i - 1]; 971 slots->id_to_index[mslots[i].id] = i; 972 } 973 return i; 974 } 975 976 /* 977 * Re-sort memslots based on their GFN to account for an added, deleted, or 978 * moved memslot. Sorting memslots by GFN allows using a binary search during 979 * memslot lookup. 980 * 981 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 982 * at memslots[0] has the highest GFN. 983 * 984 * The sorting algorithm takes advantage of having initially sorted memslots 985 * and knowing the position of the changed memslot. Sorting is also optimized 986 * by not swapping the updated memslot and instead only shifting other memslots 987 * and tracking the new index for the update memslot. Only once its final 988 * index is known is the updated memslot copied into its position in the array. 989 * 990 * - When deleting a memslot, the deleted memslot simply needs to be moved to 991 * the end of the array. 992 * 993 * - When creating a memslot, the algorithm "inserts" the new memslot at the 994 * end of the array and then it forward to its correct location. 995 * 996 * - When moving a memslot, the algorithm first moves the updated memslot 997 * backward to handle the scenario where the memslot's GFN was changed to a 998 * lower value. update_memslots() then falls through and runs the same flow 999 * as creating a memslot to move the memslot forward to handle the scenario 1000 * where its GFN was changed to a higher value. 1001 * 1002 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1003 * historical reasons. Originally, invalid memslots where denoted by having 1004 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1005 * to the end of the array. The current algorithm uses dedicated logic to 1006 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1007 * 1008 * The other historical motiviation for highest->lowest was to improve the 1009 * performance of memslot lookup. KVM originally used a linear search starting 1010 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1011 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1012 * single memslot above the 4gb boundary. As the largest memslot is also the 1013 * most likely to be referenced, sorting it to the front of the array was 1014 * advantageous. The current binary search starts from the middle of the array 1015 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1016 */ 1017 static void update_memslots(struct kvm_memslots *slots, 1018 struct kvm_memory_slot *memslot, 1019 enum kvm_mr_change change) 1020 { 1021 int i; 1022 1023 if (change == KVM_MR_DELETE) { 1024 kvm_memslot_delete(slots, memslot); 1025 } else { 1026 if (change == KVM_MR_CREATE) 1027 i = kvm_memslot_insert_back(slots); 1028 else 1029 i = kvm_memslot_move_backward(slots, memslot); 1030 i = kvm_memslot_move_forward(slots, memslot, i); 1031 1032 /* 1033 * Copy the memslot to its new position in memslots and update 1034 * its index accordingly. 1035 */ 1036 slots->memslots[i] = *memslot; 1037 slots->id_to_index[memslot->id] = i; 1038 } 1039 } 1040 1041 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1042 { 1043 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1044 1045 #ifdef __KVM_HAVE_READONLY_MEM 1046 valid_flags |= KVM_MEM_READONLY; 1047 #endif 1048 1049 if (mem->flags & ~valid_flags) 1050 return -EINVAL; 1051 1052 return 0; 1053 } 1054 1055 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1056 int as_id, struct kvm_memslots *slots) 1057 { 1058 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1059 u64 gen = old_memslots->generation; 1060 1061 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1062 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1063 1064 rcu_assign_pointer(kvm->memslots[as_id], slots); 1065 synchronize_srcu_expedited(&kvm->srcu); 1066 1067 /* 1068 * Increment the new memslot generation a second time, dropping the 1069 * update in-progress flag and incrementing the generation based on 1070 * the number of address spaces. This provides a unique and easily 1071 * identifiable generation number while the memslots are in flux. 1072 */ 1073 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1074 1075 /* 1076 * Generations must be unique even across address spaces. We do not need 1077 * a global counter for that, instead the generation space is evenly split 1078 * across address spaces. For example, with two address spaces, address 1079 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1080 * use generations 1, 3, 5, ... 1081 */ 1082 gen += KVM_ADDRESS_SPACE_NUM; 1083 1084 kvm_arch_memslots_updated(kvm, gen); 1085 1086 slots->generation = gen; 1087 1088 return old_memslots; 1089 } 1090 1091 /* 1092 * Note, at a minimum, the current number of used slots must be allocated, even 1093 * when deleting a memslot, as we need a complete duplicate of the memslots for 1094 * use when invalidating a memslot prior to deleting/moving the memslot. 1095 */ 1096 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1097 enum kvm_mr_change change) 1098 { 1099 struct kvm_memslots *slots; 1100 size_t old_size, new_size; 1101 1102 old_size = sizeof(struct kvm_memslots) + 1103 (sizeof(struct kvm_memory_slot) * old->used_slots); 1104 1105 if (change == KVM_MR_CREATE) 1106 new_size = old_size + sizeof(struct kvm_memory_slot); 1107 else 1108 new_size = old_size; 1109 1110 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1111 if (likely(slots)) 1112 memcpy(slots, old, old_size); 1113 1114 return slots; 1115 } 1116 1117 static int kvm_set_memslot(struct kvm *kvm, 1118 const struct kvm_userspace_memory_region *mem, 1119 struct kvm_memory_slot *old, 1120 struct kvm_memory_slot *new, int as_id, 1121 enum kvm_mr_change change) 1122 { 1123 struct kvm_memory_slot *slot; 1124 struct kvm_memslots *slots; 1125 int r; 1126 1127 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1128 if (!slots) 1129 return -ENOMEM; 1130 1131 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1132 /* 1133 * Note, the INVALID flag needs to be in the appropriate entry 1134 * in the freshly allocated memslots, not in @old or @new. 1135 */ 1136 slot = id_to_memslot(slots, old->id); 1137 slot->flags |= KVM_MEMSLOT_INVALID; 1138 1139 /* 1140 * We can re-use the old memslots, the only difference from the 1141 * newly installed memslots is the invalid flag, which will get 1142 * dropped by update_memslots anyway. We'll also revert to the 1143 * old memslots if preparing the new memory region fails. 1144 */ 1145 slots = install_new_memslots(kvm, as_id, slots); 1146 1147 /* From this point no new shadow pages pointing to a deleted, 1148 * or moved, memslot will be created. 1149 * 1150 * validation of sp->gfn happens in: 1151 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1152 * - kvm_is_visible_gfn (mmu_check_root) 1153 */ 1154 kvm_arch_flush_shadow_memslot(kvm, slot); 1155 } 1156 1157 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1158 if (r) 1159 goto out_slots; 1160 1161 update_memslots(slots, new, change); 1162 slots = install_new_memslots(kvm, as_id, slots); 1163 1164 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1165 1166 kvfree(slots); 1167 return 0; 1168 1169 out_slots: 1170 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1171 slots = install_new_memslots(kvm, as_id, slots); 1172 kvfree(slots); 1173 return r; 1174 } 1175 1176 static int kvm_delete_memslot(struct kvm *kvm, 1177 const struct kvm_userspace_memory_region *mem, 1178 struct kvm_memory_slot *old, int as_id) 1179 { 1180 struct kvm_memory_slot new; 1181 int r; 1182 1183 if (!old->npages) 1184 return -EINVAL; 1185 1186 memset(&new, 0, sizeof(new)); 1187 new.id = old->id; 1188 1189 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1190 if (r) 1191 return r; 1192 1193 kvm_free_memslot(kvm, old); 1194 return 0; 1195 } 1196 1197 /* 1198 * Allocate some memory and give it an address in the guest physical address 1199 * space. 1200 * 1201 * Discontiguous memory is allowed, mostly for framebuffers. 1202 * 1203 * Must be called holding kvm->slots_lock for write. 1204 */ 1205 int __kvm_set_memory_region(struct kvm *kvm, 1206 const struct kvm_userspace_memory_region *mem) 1207 { 1208 struct kvm_memory_slot old, new; 1209 struct kvm_memory_slot *tmp; 1210 enum kvm_mr_change change; 1211 int as_id, id; 1212 int r; 1213 1214 r = check_memory_region_flags(mem); 1215 if (r) 1216 return r; 1217 1218 as_id = mem->slot >> 16; 1219 id = (u16)mem->slot; 1220 1221 /* General sanity checks */ 1222 if (mem->memory_size & (PAGE_SIZE - 1)) 1223 return -EINVAL; 1224 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1225 return -EINVAL; 1226 /* We can read the guest memory with __xxx_user() later on. */ 1227 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1228 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1229 mem->memory_size)) 1230 return -EINVAL; 1231 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1232 return -EINVAL; 1233 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1234 return -EINVAL; 1235 1236 /* 1237 * Make a full copy of the old memslot, the pointer will become stale 1238 * when the memslots are re-sorted by update_memslots(), and the old 1239 * memslot needs to be referenced after calling update_memslots(), e.g. 1240 * to free its resources and for arch specific behavior. 1241 */ 1242 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1243 if (tmp) { 1244 old = *tmp; 1245 tmp = NULL; 1246 } else { 1247 memset(&old, 0, sizeof(old)); 1248 old.id = id; 1249 } 1250 1251 if (!mem->memory_size) 1252 return kvm_delete_memslot(kvm, mem, &old, as_id); 1253 1254 new.id = id; 1255 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1256 new.npages = mem->memory_size >> PAGE_SHIFT; 1257 new.flags = mem->flags; 1258 new.userspace_addr = mem->userspace_addr; 1259 1260 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1261 return -EINVAL; 1262 1263 if (!old.npages) { 1264 change = KVM_MR_CREATE; 1265 new.dirty_bitmap = NULL; 1266 memset(&new.arch, 0, sizeof(new.arch)); 1267 } else { /* Modify an existing slot. */ 1268 if ((new.userspace_addr != old.userspace_addr) || 1269 (new.npages != old.npages) || 1270 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1271 return -EINVAL; 1272 1273 if (new.base_gfn != old.base_gfn) 1274 change = KVM_MR_MOVE; 1275 else if (new.flags != old.flags) 1276 change = KVM_MR_FLAGS_ONLY; 1277 else /* Nothing to change. */ 1278 return 0; 1279 1280 /* Copy dirty_bitmap and arch from the current memslot. */ 1281 new.dirty_bitmap = old.dirty_bitmap; 1282 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1283 } 1284 1285 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1286 /* Check for overlaps */ 1287 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1288 if (tmp->id == id) 1289 continue; 1290 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1291 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1292 return -EEXIST; 1293 } 1294 } 1295 1296 /* Allocate/free page dirty bitmap as needed */ 1297 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1298 new.dirty_bitmap = NULL; 1299 else if (!new.dirty_bitmap) { 1300 r = kvm_alloc_dirty_bitmap(&new); 1301 if (r) 1302 return r; 1303 1304 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1305 bitmap_set(new.dirty_bitmap, 0, new.npages); 1306 } 1307 1308 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1309 if (r) 1310 goto out_bitmap; 1311 1312 if (old.dirty_bitmap && !new.dirty_bitmap) 1313 kvm_destroy_dirty_bitmap(&old); 1314 return 0; 1315 1316 out_bitmap: 1317 if (new.dirty_bitmap && !old.dirty_bitmap) 1318 kvm_destroy_dirty_bitmap(&new); 1319 return r; 1320 } 1321 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1322 1323 int kvm_set_memory_region(struct kvm *kvm, 1324 const struct kvm_userspace_memory_region *mem) 1325 { 1326 int r; 1327 1328 mutex_lock(&kvm->slots_lock); 1329 r = __kvm_set_memory_region(kvm, mem); 1330 mutex_unlock(&kvm->slots_lock); 1331 return r; 1332 } 1333 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1334 1335 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1336 struct kvm_userspace_memory_region *mem) 1337 { 1338 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1339 return -EINVAL; 1340 1341 return kvm_set_memory_region(kvm, mem); 1342 } 1343 1344 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1345 /** 1346 * kvm_get_dirty_log - get a snapshot of dirty pages 1347 * @kvm: pointer to kvm instance 1348 * @log: slot id and address to which we copy the log 1349 * @is_dirty: set to '1' if any dirty pages were found 1350 * @memslot: set to the associated memslot, always valid on success 1351 */ 1352 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1353 int *is_dirty, struct kvm_memory_slot **memslot) 1354 { 1355 struct kvm_memslots *slots; 1356 int i, as_id, id; 1357 unsigned long n; 1358 unsigned long any = 0; 1359 1360 *memslot = NULL; 1361 *is_dirty = 0; 1362 1363 as_id = log->slot >> 16; 1364 id = (u16)log->slot; 1365 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1366 return -EINVAL; 1367 1368 slots = __kvm_memslots(kvm, as_id); 1369 *memslot = id_to_memslot(slots, id); 1370 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1371 return -ENOENT; 1372 1373 kvm_arch_sync_dirty_log(kvm, *memslot); 1374 1375 n = kvm_dirty_bitmap_bytes(*memslot); 1376 1377 for (i = 0; !any && i < n/sizeof(long); ++i) 1378 any = (*memslot)->dirty_bitmap[i]; 1379 1380 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1381 return -EFAULT; 1382 1383 if (any) 1384 *is_dirty = 1; 1385 return 0; 1386 } 1387 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1388 1389 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1390 /** 1391 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1392 * and reenable dirty page tracking for the corresponding pages. 1393 * @kvm: pointer to kvm instance 1394 * @log: slot id and address to which we copy the log 1395 * 1396 * We need to keep it in mind that VCPU threads can write to the bitmap 1397 * concurrently. So, to avoid losing track of dirty pages we keep the 1398 * following order: 1399 * 1400 * 1. Take a snapshot of the bit and clear it if needed. 1401 * 2. Write protect the corresponding page. 1402 * 3. Copy the snapshot to the userspace. 1403 * 4. Upon return caller flushes TLB's if needed. 1404 * 1405 * Between 2 and 4, the guest may write to the page using the remaining TLB 1406 * entry. This is not a problem because the page is reported dirty using 1407 * the snapshot taken before and step 4 ensures that writes done after 1408 * exiting to userspace will be logged for the next call. 1409 * 1410 */ 1411 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1412 { 1413 struct kvm_memslots *slots; 1414 struct kvm_memory_slot *memslot; 1415 int i, as_id, id; 1416 unsigned long n; 1417 unsigned long *dirty_bitmap; 1418 unsigned long *dirty_bitmap_buffer; 1419 bool flush; 1420 1421 as_id = log->slot >> 16; 1422 id = (u16)log->slot; 1423 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1424 return -EINVAL; 1425 1426 slots = __kvm_memslots(kvm, as_id); 1427 memslot = id_to_memslot(slots, id); 1428 if (!memslot || !memslot->dirty_bitmap) 1429 return -ENOENT; 1430 1431 dirty_bitmap = memslot->dirty_bitmap; 1432 1433 kvm_arch_sync_dirty_log(kvm, memslot); 1434 1435 n = kvm_dirty_bitmap_bytes(memslot); 1436 flush = false; 1437 if (kvm->manual_dirty_log_protect) { 1438 /* 1439 * Unlike kvm_get_dirty_log, we always return false in *flush, 1440 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1441 * is some code duplication between this function and 1442 * kvm_get_dirty_log, but hopefully all architecture 1443 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1444 * can be eliminated. 1445 */ 1446 dirty_bitmap_buffer = dirty_bitmap; 1447 } else { 1448 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1449 memset(dirty_bitmap_buffer, 0, n); 1450 1451 spin_lock(&kvm->mmu_lock); 1452 for (i = 0; i < n / sizeof(long); i++) { 1453 unsigned long mask; 1454 gfn_t offset; 1455 1456 if (!dirty_bitmap[i]) 1457 continue; 1458 1459 flush = true; 1460 mask = xchg(&dirty_bitmap[i], 0); 1461 dirty_bitmap_buffer[i] = mask; 1462 1463 offset = i * BITS_PER_LONG; 1464 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1465 offset, mask); 1466 } 1467 spin_unlock(&kvm->mmu_lock); 1468 } 1469 1470 if (flush) 1471 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1472 1473 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1474 return -EFAULT; 1475 return 0; 1476 } 1477 1478 1479 /** 1480 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1481 * @kvm: kvm instance 1482 * @log: slot id and address to which we copy the log 1483 * 1484 * Steps 1-4 below provide general overview of dirty page logging. See 1485 * kvm_get_dirty_log_protect() function description for additional details. 1486 * 1487 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1488 * always flush the TLB (step 4) even if previous step failed and the dirty 1489 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1490 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1491 * writes will be marked dirty for next log read. 1492 * 1493 * 1. Take a snapshot of the bit and clear it if needed. 1494 * 2. Write protect the corresponding page. 1495 * 3. Copy the snapshot to the userspace. 1496 * 4. Flush TLB's if needed. 1497 */ 1498 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1499 struct kvm_dirty_log *log) 1500 { 1501 int r; 1502 1503 mutex_lock(&kvm->slots_lock); 1504 1505 r = kvm_get_dirty_log_protect(kvm, log); 1506 1507 mutex_unlock(&kvm->slots_lock); 1508 return r; 1509 } 1510 1511 /** 1512 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1513 * and reenable dirty page tracking for the corresponding pages. 1514 * @kvm: pointer to kvm instance 1515 * @log: slot id and address from which to fetch the bitmap of dirty pages 1516 */ 1517 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1518 struct kvm_clear_dirty_log *log) 1519 { 1520 struct kvm_memslots *slots; 1521 struct kvm_memory_slot *memslot; 1522 int as_id, id; 1523 gfn_t offset; 1524 unsigned long i, n; 1525 unsigned long *dirty_bitmap; 1526 unsigned long *dirty_bitmap_buffer; 1527 bool flush; 1528 1529 as_id = log->slot >> 16; 1530 id = (u16)log->slot; 1531 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1532 return -EINVAL; 1533 1534 if (log->first_page & 63) 1535 return -EINVAL; 1536 1537 slots = __kvm_memslots(kvm, as_id); 1538 memslot = id_to_memslot(slots, id); 1539 if (!memslot || !memslot->dirty_bitmap) 1540 return -ENOENT; 1541 1542 dirty_bitmap = memslot->dirty_bitmap; 1543 1544 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1545 1546 if (log->first_page > memslot->npages || 1547 log->num_pages > memslot->npages - log->first_page || 1548 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1549 return -EINVAL; 1550 1551 kvm_arch_sync_dirty_log(kvm, memslot); 1552 1553 flush = false; 1554 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1555 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1556 return -EFAULT; 1557 1558 spin_lock(&kvm->mmu_lock); 1559 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1560 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1561 i++, offset += BITS_PER_LONG) { 1562 unsigned long mask = *dirty_bitmap_buffer++; 1563 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1564 if (!mask) 1565 continue; 1566 1567 mask &= atomic_long_fetch_andnot(mask, p); 1568 1569 /* 1570 * mask contains the bits that really have been cleared. This 1571 * never includes any bits beyond the length of the memslot (if 1572 * the length is not aligned to 64 pages), therefore it is not 1573 * a problem if userspace sets them in log->dirty_bitmap. 1574 */ 1575 if (mask) { 1576 flush = true; 1577 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1578 offset, mask); 1579 } 1580 } 1581 spin_unlock(&kvm->mmu_lock); 1582 1583 if (flush) 1584 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1585 1586 return 0; 1587 } 1588 1589 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 1590 struct kvm_clear_dirty_log *log) 1591 { 1592 int r; 1593 1594 mutex_lock(&kvm->slots_lock); 1595 1596 r = kvm_clear_dirty_log_protect(kvm, log); 1597 1598 mutex_unlock(&kvm->slots_lock); 1599 return r; 1600 } 1601 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1602 1603 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1604 { 1605 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1606 } 1607 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1608 1609 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1610 { 1611 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1612 } 1613 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 1614 1615 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1616 { 1617 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1618 1619 return kvm_is_visible_memslot(memslot); 1620 } 1621 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1622 1623 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 1624 { 1625 struct vm_area_struct *vma; 1626 unsigned long addr, size; 1627 1628 size = PAGE_SIZE; 1629 1630 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 1631 if (kvm_is_error_hva(addr)) 1632 return PAGE_SIZE; 1633 1634 mmap_read_lock(current->mm); 1635 vma = find_vma(current->mm, addr); 1636 if (!vma) 1637 goto out; 1638 1639 size = vma_kernel_pagesize(vma); 1640 1641 out: 1642 mmap_read_unlock(current->mm); 1643 1644 return size; 1645 } 1646 1647 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1648 { 1649 return slot->flags & KVM_MEM_READONLY; 1650 } 1651 1652 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1653 gfn_t *nr_pages, bool write) 1654 { 1655 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1656 return KVM_HVA_ERR_BAD; 1657 1658 if (memslot_is_readonly(slot) && write) 1659 return KVM_HVA_ERR_RO_BAD; 1660 1661 if (nr_pages) 1662 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1663 1664 return __gfn_to_hva_memslot(slot, gfn); 1665 } 1666 1667 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1668 gfn_t *nr_pages) 1669 { 1670 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1671 } 1672 1673 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1674 gfn_t gfn) 1675 { 1676 return gfn_to_hva_many(slot, gfn, NULL); 1677 } 1678 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1679 1680 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1681 { 1682 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1683 } 1684 EXPORT_SYMBOL_GPL(gfn_to_hva); 1685 1686 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1687 { 1688 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1689 } 1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1691 1692 /* 1693 * Return the hva of a @gfn and the R/W attribute if possible. 1694 * 1695 * @slot: the kvm_memory_slot which contains @gfn 1696 * @gfn: the gfn to be translated 1697 * @writable: used to return the read/write attribute of the @slot if the hva 1698 * is valid and @writable is not NULL 1699 */ 1700 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1701 gfn_t gfn, bool *writable) 1702 { 1703 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1704 1705 if (!kvm_is_error_hva(hva) && writable) 1706 *writable = !memslot_is_readonly(slot); 1707 1708 return hva; 1709 } 1710 1711 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1712 { 1713 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1714 1715 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1716 } 1717 1718 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1719 { 1720 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1721 1722 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1723 } 1724 1725 static inline int check_user_page_hwpoison(unsigned long addr) 1726 { 1727 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1728 1729 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1730 return rc == -EHWPOISON; 1731 } 1732 1733 /* 1734 * The fast path to get the writable pfn which will be stored in @pfn, 1735 * true indicates success, otherwise false is returned. It's also the 1736 * only part that runs if we can in atomic context. 1737 */ 1738 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1739 bool *writable, kvm_pfn_t *pfn) 1740 { 1741 struct page *page[1]; 1742 1743 /* 1744 * Fast pin a writable pfn only if it is a write fault request 1745 * or the caller allows to map a writable pfn for a read fault 1746 * request. 1747 */ 1748 if (!(write_fault || writable)) 1749 return false; 1750 1751 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 1752 *pfn = page_to_pfn(page[0]); 1753 1754 if (writable) 1755 *writable = true; 1756 return true; 1757 } 1758 1759 return false; 1760 } 1761 1762 /* 1763 * The slow path to get the pfn of the specified host virtual address, 1764 * 1 indicates success, -errno is returned if error is detected. 1765 */ 1766 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1767 bool *writable, kvm_pfn_t *pfn) 1768 { 1769 unsigned int flags = FOLL_HWPOISON; 1770 struct page *page; 1771 int npages = 0; 1772 1773 might_sleep(); 1774 1775 if (writable) 1776 *writable = write_fault; 1777 1778 if (write_fault) 1779 flags |= FOLL_WRITE; 1780 if (async) 1781 flags |= FOLL_NOWAIT; 1782 1783 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1784 if (npages != 1) 1785 return npages; 1786 1787 /* map read fault as writable if possible */ 1788 if (unlikely(!write_fault) && writable) { 1789 struct page *wpage; 1790 1791 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 1792 *writable = true; 1793 put_page(page); 1794 page = wpage; 1795 } 1796 } 1797 *pfn = page_to_pfn(page); 1798 return npages; 1799 } 1800 1801 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1802 { 1803 if (unlikely(!(vma->vm_flags & VM_READ))) 1804 return false; 1805 1806 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1807 return false; 1808 1809 return true; 1810 } 1811 1812 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1813 unsigned long addr, bool *async, 1814 bool write_fault, bool *writable, 1815 kvm_pfn_t *p_pfn) 1816 { 1817 unsigned long pfn; 1818 int r; 1819 1820 r = follow_pfn(vma, addr, &pfn); 1821 if (r) { 1822 /* 1823 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1824 * not call the fault handler, so do it here. 1825 */ 1826 bool unlocked = false; 1827 r = fixup_user_fault(current, current->mm, addr, 1828 (write_fault ? FAULT_FLAG_WRITE : 0), 1829 &unlocked); 1830 if (unlocked) 1831 return -EAGAIN; 1832 if (r) 1833 return r; 1834 1835 r = follow_pfn(vma, addr, &pfn); 1836 if (r) 1837 return r; 1838 1839 } 1840 1841 if (writable) 1842 *writable = true; 1843 1844 /* 1845 * Get a reference here because callers of *hva_to_pfn* and 1846 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1847 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1848 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1849 * simply do nothing for reserved pfns. 1850 * 1851 * Whoever called remap_pfn_range is also going to call e.g. 1852 * unmap_mapping_range before the underlying pages are freed, 1853 * causing a call to our MMU notifier. 1854 */ 1855 kvm_get_pfn(pfn); 1856 1857 *p_pfn = pfn; 1858 return 0; 1859 } 1860 1861 /* 1862 * Pin guest page in memory and return its pfn. 1863 * @addr: host virtual address which maps memory to the guest 1864 * @atomic: whether this function can sleep 1865 * @async: whether this function need to wait IO complete if the 1866 * host page is not in the memory 1867 * @write_fault: whether we should get a writable host page 1868 * @writable: whether it allows to map a writable host page for !@write_fault 1869 * 1870 * The function will map a writable host page for these two cases: 1871 * 1): @write_fault = true 1872 * 2): @write_fault = false && @writable, @writable will tell the caller 1873 * whether the mapping is writable. 1874 */ 1875 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1876 bool write_fault, bool *writable) 1877 { 1878 struct vm_area_struct *vma; 1879 kvm_pfn_t pfn = 0; 1880 int npages, r; 1881 1882 /* we can do it either atomically or asynchronously, not both */ 1883 BUG_ON(atomic && async); 1884 1885 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1886 return pfn; 1887 1888 if (atomic) 1889 return KVM_PFN_ERR_FAULT; 1890 1891 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1892 if (npages == 1) 1893 return pfn; 1894 1895 mmap_read_lock(current->mm); 1896 if (npages == -EHWPOISON || 1897 (!async && check_user_page_hwpoison(addr))) { 1898 pfn = KVM_PFN_ERR_HWPOISON; 1899 goto exit; 1900 } 1901 1902 retry: 1903 vma = find_vma_intersection(current->mm, addr, addr + 1); 1904 1905 if (vma == NULL) 1906 pfn = KVM_PFN_ERR_FAULT; 1907 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1908 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1909 if (r == -EAGAIN) 1910 goto retry; 1911 if (r < 0) 1912 pfn = KVM_PFN_ERR_FAULT; 1913 } else { 1914 if (async && vma_is_valid(vma, write_fault)) 1915 *async = true; 1916 pfn = KVM_PFN_ERR_FAULT; 1917 } 1918 exit: 1919 mmap_read_unlock(current->mm); 1920 return pfn; 1921 } 1922 1923 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1924 bool atomic, bool *async, bool write_fault, 1925 bool *writable) 1926 { 1927 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1928 1929 if (addr == KVM_HVA_ERR_RO_BAD) { 1930 if (writable) 1931 *writable = false; 1932 return KVM_PFN_ERR_RO_FAULT; 1933 } 1934 1935 if (kvm_is_error_hva(addr)) { 1936 if (writable) 1937 *writable = false; 1938 return KVM_PFN_NOSLOT; 1939 } 1940 1941 /* Do not map writable pfn in the readonly memslot. */ 1942 if (writable && memslot_is_readonly(slot)) { 1943 *writable = false; 1944 writable = NULL; 1945 } 1946 1947 return hva_to_pfn(addr, atomic, async, write_fault, 1948 writable); 1949 } 1950 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1951 1952 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1953 bool *writable) 1954 { 1955 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1956 write_fault, writable); 1957 } 1958 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1959 1960 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1961 { 1962 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1963 } 1964 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1965 1966 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1967 { 1968 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1969 } 1970 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1971 1972 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1973 { 1974 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1975 } 1976 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1977 1978 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1979 { 1980 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1981 } 1982 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1983 1984 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1985 { 1986 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1987 } 1988 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1989 1990 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1991 struct page **pages, int nr_pages) 1992 { 1993 unsigned long addr; 1994 gfn_t entry = 0; 1995 1996 addr = gfn_to_hva_many(slot, gfn, &entry); 1997 if (kvm_is_error_hva(addr)) 1998 return -1; 1999 2000 if (entry < nr_pages) 2001 return 0; 2002 2003 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2004 } 2005 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2006 2007 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2008 { 2009 if (is_error_noslot_pfn(pfn)) 2010 return KVM_ERR_PTR_BAD_PAGE; 2011 2012 if (kvm_is_reserved_pfn(pfn)) { 2013 WARN_ON(1); 2014 return KVM_ERR_PTR_BAD_PAGE; 2015 } 2016 2017 return pfn_to_page(pfn); 2018 } 2019 2020 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2021 { 2022 kvm_pfn_t pfn; 2023 2024 pfn = gfn_to_pfn(kvm, gfn); 2025 2026 return kvm_pfn_to_page(pfn); 2027 } 2028 EXPORT_SYMBOL_GPL(gfn_to_page); 2029 2030 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2031 { 2032 if (pfn == 0) 2033 return; 2034 2035 if (cache) 2036 cache->pfn = cache->gfn = 0; 2037 2038 if (dirty) 2039 kvm_release_pfn_dirty(pfn); 2040 else 2041 kvm_release_pfn_clean(pfn); 2042 } 2043 2044 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2045 struct gfn_to_pfn_cache *cache, u64 gen) 2046 { 2047 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2048 2049 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2050 cache->gfn = gfn; 2051 cache->dirty = false; 2052 cache->generation = gen; 2053 } 2054 2055 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2056 struct kvm_host_map *map, 2057 struct gfn_to_pfn_cache *cache, 2058 bool atomic) 2059 { 2060 kvm_pfn_t pfn; 2061 void *hva = NULL; 2062 struct page *page = KVM_UNMAPPED_PAGE; 2063 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2064 u64 gen = slots->generation; 2065 2066 if (!map) 2067 return -EINVAL; 2068 2069 if (cache) { 2070 if (!cache->pfn || cache->gfn != gfn || 2071 cache->generation != gen) { 2072 if (atomic) 2073 return -EAGAIN; 2074 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2075 } 2076 pfn = cache->pfn; 2077 } else { 2078 if (atomic) 2079 return -EAGAIN; 2080 pfn = gfn_to_pfn_memslot(slot, gfn); 2081 } 2082 if (is_error_noslot_pfn(pfn)) 2083 return -EINVAL; 2084 2085 if (pfn_valid(pfn)) { 2086 page = pfn_to_page(pfn); 2087 if (atomic) 2088 hva = kmap_atomic(page); 2089 else 2090 hva = kmap(page); 2091 #ifdef CONFIG_HAS_IOMEM 2092 } else if (!atomic) { 2093 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2094 } else { 2095 return -EINVAL; 2096 #endif 2097 } 2098 2099 if (!hva) 2100 return -EFAULT; 2101 2102 map->page = page; 2103 map->hva = hva; 2104 map->pfn = pfn; 2105 map->gfn = gfn; 2106 2107 return 0; 2108 } 2109 2110 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2111 struct gfn_to_pfn_cache *cache, bool atomic) 2112 { 2113 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2114 cache, atomic); 2115 } 2116 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2117 2118 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2119 { 2120 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2121 NULL, false); 2122 } 2123 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2124 2125 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot, 2126 struct kvm_host_map *map, 2127 struct gfn_to_pfn_cache *cache, 2128 bool dirty, bool atomic) 2129 { 2130 if (!map) 2131 return; 2132 2133 if (!map->hva) 2134 return; 2135 2136 if (map->page != KVM_UNMAPPED_PAGE) { 2137 if (atomic) 2138 kunmap_atomic(map->hva); 2139 else 2140 kunmap(map->page); 2141 } 2142 #ifdef CONFIG_HAS_IOMEM 2143 else if (!atomic) 2144 memunmap(map->hva); 2145 else 2146 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2147 #endif 2148 2149 if (dirty) 2150 mark_page_dirty_in_slot(memslot, map->gfn); 2151 2152 if (cache) 2153 cache->dirty |= dirty; 2154 else 2155 kvm_release_pfn(map->pfn, dirty, NULL); 2156 2157 map->hva = NULL; 2158 map->page = NULL; 2159 } 2160 2161 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2162 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2163 { 2164 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, 2165 cache, dirty, atomic); 2166 return 0; 2167 } 2168 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2169 2170 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2171 { 2172 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL, 2173 dirty, false); 2174 } 2175 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2176 2177 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2178 { 2179 kvm_pfn_t pfn; 2180 2181 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2182 2183 return kvm_pfn_to_page(pfn); 2184 } 2185 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2186 2187 void kvm_release_page_clean(struct page *page) 2188 { 2189 WARN_ON(is_error_page(page)); 2190 2191 kvm_release_pfn_clean(page_to_pfn(page)); 2192 } 2193 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2194 2195 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2196 { 2197 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2198 put_page(pfn_to_page(pfn)); 2199 } 2200 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2201 2202 void kvm_release_page_dirty(struct page *page) 2203 { 2204 WARN_ON(is_error_page(page)); 2205 2206 kvm_release_pfn_dirty(page_to_pfn(page)); 2207 } 2208 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2209 2210 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2211 { 2212 kvm_set_pfn_dirty(pfn); 2213 kvm_release_pfn_clean(pfn); 2214 } 2215 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2216 2217 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2218 { 2219 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2220 SetPageDirty(pfn_to_page(pfn)); 2221 } 2222 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2223 2224 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2225 { 2226 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2227 mark_page_accessed(pfn_to_page(pfn)); 2228 } 2229 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2230 2231 void kvm_get_pfn(kvm_pfn_t pfn) 2232 { 2233 if (!kvm_is_reserved_pfn(pfn)) 2234 get_page(pfn_to_page(pfn)); 2235 } 2236 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2237 2238 static int next_segment(unsigned long len, int offset) 2239 { 2240 if (len > PAGE_SIZE - offset) 2241 return PAGE_SIZE - offset; 2242 else 2243 return len; 2244 } 2245 2246 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2247 void *data, int offset, int len) 2248 { 2249 int r; 2250 unsigned long addr; 2251 2252 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2253 if (kvm_is_error_hva(addr)) 2254 return -EFAULT; 2255 r = __copy_from_user(data, (void __user *)addr + offset, len); 2256 if (r) 2257 return -EFAULT; 2258 return 0; 2259 } 2260 2261 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2262 int len) 2263 { 2264 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2265 2266 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2267 } 2268 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2269 2270 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2271 int offset, int len) 2272 { 2273 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2274 2275 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2276 } 2277 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2278 2279 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2280 { 2281 gfn_t gfn = gpa >> PAGE_SHIFT; 2282 int seg; 2283 int offset = offset_in_page(gpa); 2284 int ret; 2285 2286 while ((seg = next_segment(len, offset)) != 0) { 2287 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2288 if (ret < 0) 2289 return ret; 2290 offset = 0; 2291 len -= seg; 2292 data += seg; 2293 ++gfn; 2294 } 2295 return 0; 2296 } 2297 EXPORT_SYMBOL_GPL(kvm_read_guest); 2298 2299 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2300 { 2301 gfn_t gfn = gpa >> PAGE_SHIFT; 2302 int seg; 2303 int offset = offset_in_page(gpa); 2304 int ret; 2305 2306 while ((seg = next_segment(len, offset)) != 0) { 2307 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2308 if (ret < 0) 2309 return ret; 2310 offset = 0; 2311 len -= seg; 2312 data += seg; 2313 ++gfn; 2314 } 2315 return 0; 2316 } 2317 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2318 2319 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2320 void *data, int offset, unsigned long len) 2321 { 2322 int r; 2323 unsigned long addr; 2324 2325 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2326 if (kvm_is_error_hva(addr)) 2327 return -EFAULT; 2328 pagefault_disable(); 2329 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2330 pagefault_enable(); 2331 if (r) 2332 return -EFAULT; 2333 return 0; 2334 } 2335 2336 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2337 void *data, unsigned long len) 2338 { 2339 gfn_t gfn = gpa >> PAGE_SHIFT; 2340 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2341 int offset = offset_in_page(gpa); 2342 2343 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2344 } 2345 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2346 2347 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2348 const void *data, int offset, int len) 2349 { 2350 int r; 2351 unsigned long addr; 2352 2353 addr = gfn_to_hva_memslot(memslot, gfn); 2354 if (kvm_is_error_hva(addr)) 2355 return -EFAULT; 2356 r = __copy_to_user((void __user *)addr + offset, data, len); 2357 if (r) 2358 return -EFAULT; 2359 mark_page_dirty_in_slot(memslot, gfn); 2360 return 0; 2361 } 2362 2363 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2364 const void *data, int offset, int len) 2365 { 2366 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2367 2368 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2369 } 2370 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2371 2372 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2373 const void *data, int offset, int len) 2374 { 2375 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2376 2377 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2378 } 2379 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2380 2381 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2382 unsigned long len) 2383 { 2384 gfn_t gfn = gpa >> PAGE_SHIFT; 2385 int seg; 2386 int offset = offset_in_page(gpa); 2387 int ret; 2388 2389 while ((seg = next_segment(len, offset)) != 0) { 2390 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2391 if (ret < 0) 2392 return ret; 2393 offset = 0; 2394 len -= seg; 2395 data += seg; 2396 ++gfn; 2397 } 2398 return 0; 2399 } 2400 EXPORT_SYMBOL_GPL(kvm_write_guest); 2401 2402 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2403 unsigned long len) 2404 { 2405 gfn_t gfn = gpa >> PAGE_SHIFT; 2406 int seg; 2407 int offset = offset_in_page(gpa); 2408 int ret; 2409 2410 while ((seg = next_segment(len, offset)) != 0) { 2411 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2412 if (ret < 0) 2413 return ret; 2414 offset = 0; 2415 len -= seg; 2416 data += seg; 2417 ++gfn; 2418 } 2419 return 0; 2420 } 2421 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2422 2423 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2424 struct gfn_to_hva_cache *ghc, 2425 gpa_t gpa, unsigned long len) 2426 { 2427 int offset = offset_in_page(gpa); 2428 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2429 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2430 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2431 gfn_t nr_pages_avail; 2432 2433 /* Update ghc->generation before performing any error checks. */ 2434 ghc->generation = slots->generation; 2435 2436 if (start_gfn > end_gfn) { 2437 ghc->hva = KVM_HVA_ERR_BAD; 2438 return -EINVAL; 2439 } 2440 2441 /* 2442 * If the requested region crosses two memslots, we still 2443 * verify that the entire region is valid here. 2444 */ 2445 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2446 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2447 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2448 &nr_pages_avail); 2449 if (kvm_is_error_hva(ghc->hva)) 2450 return -EFAULT; 2451 } 2452 2453 /* Use the slow path for cross page reads and writes. */ 2454 if (nr_pages_needed == 1) 2455 ghc->hva += offset; 2456 else 2457 ghc->memslot = NULL; 2458 2459 ghc->gpa = gpa; 2460 ghc->len = len; 2461 return 0; 2462 } 2463 2464 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2465 gpa_t gpa, unsigned long len) 2466 { 2467 struct kvm_memslots *slots = kvm_memslots(kvm); 2468 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2469 } 2470 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2471 2472 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2473 void *data, unsigned int offset, 2474 unsigned long len) 2475 { 2476 struct kvm_memslots *slots = kvm_memslots(kvm); 2477 int r; 2478 gpa_t gpa = ghc->gpa + offset; 2479 2480 BUG_ON(len + offset > ghc->len); 2481 2482 if (slots->generation != ghc->generation) { 2483 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2484 return -EFAULT; 2485 } 2486 2487 if (kvm_is_error_hva(ghc->hva)) 2488 return -EFAULT; 2489 2490 if (unlikely(!ghc->memslot)) 2491 return kvm_write_guest(kvm, gpa, data, len); 2492 2493 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2494 if (r) 2495 return -EFAULT; 2496 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2497 2498 return 0; 2499 } 2500 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2501 2502 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2503 void *data, unsigned long len) 2504 { 2505 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2506 } 2507 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2508 2509 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2510 void *data, unsigned int offset, 2511 unsigned long len) 2512 { 2513 struct kvm_memslots *slots = kvm_memslots(kvm); 2514 int r; 2515 gpa_t gpa = ghc->gpa + offset; 2516 2517 BUG_ON(len + offset > ghc->len); 2518 2519 if (slots->generation != ghc->generation) { 2520 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2521 return -EFAULT; 2522 } 2523 2524 if (kvm_is_error_hva(ghc->hva)) 2525 return -EFAULT; 2526 2527 if (unlikely(!ghc->memslot)) 2528 return kvm_read_guest(kvm, gpa, data, len); 2529 2530 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2531 if (r) 2532 return -EFAULT; 2533 2534 return 0; 2535 } 2536 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2537 2538 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2539 void *data, unsigned long len) 2540 { 2541 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2542 } 2543 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2544 2545 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2546 { 2547 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2548 2549 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2550 } 2551 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2552 2553 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2554 { 2555 gfn_t gfn = gpa >> PAGE_SHIFT; 2556 int seg; 2557 int offset = offset_in_page(gpa); 2558 int ret; 2559 2560 while ((seg = next_segment(len, offset)) != 0) { 2561 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2562 if (ret < 0) 2563 return ret; 2564 offset = 0; 2565 len -= seg; 2566 ++gfn; 2567 } 2568 return 0; 2569 } 2570 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2571 2572 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2573 gfn_t gfn) 2574 { 2575 if (memslot && memslot->dirty_bitmap) { 2576 unsigned long rel_gfn = gfn - memslot->base_gfn; 2577 2578 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2579 } 2580 } 2581 2582 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2583 { 2584 struct kvm_memory_slot *memslot; 2585 2586 memslot = gfn_to_memslot(kvm, gfn); 2587 mark_page_dirty_in_slot(memslot, gfn); 2588 } 2589 EXPORT_SYMBOL_GPL(mark_page_dirty); 2590 2591 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2592 { 2593 struct kvm_memory_slot *memslot; 2594 2595 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2596 mark_page_dirty_in_slot(memslot, gfn); 2597 } 2598 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2599 2600 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2601 { 2602 if (!vcpu->sigset_active) 2603 return; 2604 2605 /* 2606 * This does a lockless modification of ->real_blocked, which is fine 2607 * because, only current can change ->real_blocked and all readers of 2608 * ->real_blocked don't care as long ->real_blocked is always a subset 2609 * of ->blocked. 2610 */ 2611 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2612 } 2613 2614 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2615 { 2616 if (!vcpu->sigset_active) 2617 return; 2618 2619 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2620 sigemptyset(¤t->real_blocked); 2621 } 2622 2623 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2624 { 2625 unsigned int old, val, grow, grow_start; 2626 2627 old = val = vcpu->halt_poll_ns; 2628 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2629 grow = READ_ONCE(halt_poll_ns_grow); 2630 if (!grow) 2631 goto out; 2632 2633 val *= grow; 2634 if (val < grow_start) 2635 val = grow_start; 2636 2637 if (val > halt_poll_ns) 2638 val = halt_poll_ns; 2639 2640 vcpu->halt_poll_ns = val; 2641 out: 2642 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2643 } 2644 2645 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2646 { 2647 unsigned int old, val, shrink; 2648 2649 old = val = vcpu->halt_poll_ns; 2650 shrink = READ_ONCE(halt_poll_ns_shrink); 2651 if (shrink == 0) 2652 val = 0; 2653 else 2654 val /= shrink; 2655 2656 vcpu->halt_poll_ns = val; 2657 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2658 } 2659 2660 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2661 { 2662 int ret = -EINTR; 2663 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2664 2665 if (kvm_arch_vcpu_runnable(vcpu)) { 2666 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2667 goto out; 2668 } 2669 if (kvm_cpu_has_pending_timer(vcpu)) 2670 goto out; 2671 if (signal_pending(current)) 2672 goto out; 2673 2674 ret = 0; 2675 out: 2676 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2677 return ret; 2678 } 2679 2680 static inline void 2681 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 2682 { 2683 if (waited) 2684 vcpu->stat.halt_poll_fail_ns += poll_ns; 2685 else 2686 vcpu->stat.halt_poll_success_ns += poll_ns; 2687 } 2688 2689 /* 2690 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2691 */ 2692 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2693 { 2694 ktime_t start, cur, poll_end; 2695 bool waited = false; 2696 u64 block_ns; 2697 2698 kvm_arch_vcpu_blocking(vcpu); 2699 2700 start = cur = poll_end = ktime_get(); 2701 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2702 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2703 2704 ++vcpu->stat.halt_attempted_poll; 2705 do { 2706 /* 2707 * This sets KVM_REQ_UNHALT if an interrupt 2708 * arrives. 2709 */ 2710 if (kvm_vcpu_check_block(vcpu) < 0) { 2711 ++vcpu->stat.halt_successful_poll; 2712 if (!vcpu_valid_wakeup(vcpu)) 2713 ++vcpu->stat.halt_poll_invalid; 2714 goto out; 2715 } 2716 poll_end = cur = ktime_get(); 2717 } while (single_task_running() && ktime_before(cur, stop)); 2718 } 2719 2720 prepare_to_rcuwait(&vcpu->wait); 2721 for (;;) { 2722 set_current_state(TASK_INTERRUPTIBLE); 2723 2724 if (kvm_vcpu_check_block(vcpu) < 0) 2725 break; 2726 2727 waited = true; 2728 schedule(); 2729 } 2730 finish_rcuwait(&vcpu->wait); 2731 cur = ktime_get(); 2732 out: 2733 kvm_arch_vcpu_unblocking(vcpu); 2734 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2735 2736 update_halt_poll_stats( 2737 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 2738 2739 if (!kvm_arch_no_poll(vcpu)) { 2740 if (!vcpu_valid_wakeup(vcpu)) { 2741 shrink_halt_poll_ns(vcpu); 2742 } else if (vcpu->kvm->max_halt_poll_ns) { 2743 if (block_ns <= vcpu->halt_poll_ns) 2744 ; 2745 /* we had a long block, shrink polling */ 2746 else if (vcpu->halt_poll_ns && 2747 block_ns > vcpu->kvm->max_halt_poll_ns) 2748 shrink_halt_poll_ns(vcpu); 2749 /* we had a short halt and our poll time is too small */ 2750 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 2751 block_ns < vcpu->kvm->max_halt_poll_ns) 2752 grow_halt_poll_ns(vcpu); 2753 } else { 2754 vcpu->halt_poll_ns = 0; 2755 } 2756 } 2757 2758 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2759 kvm_arch_vcpu_block_finish(vcpu); 2760 } 2761 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2762 2763 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2764 { 2765 struct rcuwait *waitp; 2766 2767 waitp = kvm_arch_vcpu_get_wait(vcpu); 2768 if (rcuwait_wake_up(waitp)) { 2769 WRITE_ONCE(vcpu->ready, true); 2770 ++vcpu->stat.halt_wakeup; 2771 return true; 2772 } 2773 2774 return false; 2775 } 2776 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2777 2778 #ifndef CONFIG_S390 2779 /* 2780 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2781 */ 2782 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2783 { 2784 int me; 2785 int cpu = vcpu->cpu; 2786 2787 if (kvm_vcpu_wake_up(vcpu)) 2788 return; 2789 2790 me = get_cpu(); 2791 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2792 if (kvm_arch_vcpu_should_kick(vcpu)) 2793 smp_send_reschedule(cpu); 2794 put_cpu(); 2795 } 2796 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2797 #endif /* !CONFIG_S390 */ 2798 2799 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2800 { 2801 struct pid *pid; 2802 struct task_struct *task = NULL; 2803 int ret = 0; 2804 2805 rcu_read_lock(); 2806 pid = rcu_dereference(target->pid); 2807 if (pid) 2808 task = get_pid_task(pid, PIDTYPE_PID); 2809 rcu_read_unlock(); 2810 if (!task) 2811 return ret; 2812 ret = yield_to(task, 1); 2813 put_task_struct(task); 2814 2815 return ret; 2816 } 2817 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2818 2819 /* 2820 * Helper that checks whether a VCPU is eligible for directed yield. 2821 * Most eligible candidate to yield is decided by following heuristics: 2822 * 2823 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2824 * (preempted lock holder), indicated by @in_spin_loop. 2825 * Set at the beginning and cleared at the end of interception/PLE handler. 2826 * 2827 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2828 * chance last time (mostly it has become eligible now since we have probably 2829 * yielded to lockholder in last iteration. This is done by toggling 2830 * @dy_eligible each time a VCPU checked for eligibility.) 2831 * 2832 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2833 * to preempted lock-holder could result in wrong VCPU selection and CPU 2834 * burning. Giving priority for a potential lock-holder increases lock 2835 * progress. 2836 * 2837 * Since algorithm is based on heuristics, accessing another VCPU data without 2838 * locking does not harm. It may result in trying to yield to same VCPU, fail 2839 * and continue with next VCPU and so on. 2840 */ 2841 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2842 { 2843 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2844 bool eligible; 2845 2846 eligible = !vcpu->spin_loop.in_spin_loop || 2847 vcpu->spin_loop.dy_eligible; 2848 2849 if (vcpu->spin_loop.in_spin_loop) 2850 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2851 2852 return eligible; 2853 #else 2854 return true; 2855 #endif 2856 } 2857 2858 /* 2859 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2860 * a vcpu_load/vcpu_put pair. However, for most architectures 2861 * kvm_arch_vcpu_runnable does not require vcpu_load. 2862 */ 2863 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2864 { 2865 return kvm_arch_vcpu_runnable(vcpu); 2866 } 2867 2868 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2869 { 2870 if (kvm_arch_dy_runnable(vcpu)) 2871 return true; 2872 2873 #ifdef CONFIG_KVM_ASYNC_PF 2874 if (!list_empty_careful(&vcpu->async_pf.done)) 2875 return true; 2876 #endif 2877 2878 return false; 2879 } 2880 2881 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2882 { 2883 struct kvm *kvm = me->kvm; 2884 struct kvm_vcpu *vcpu; 2885 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2886 int yielded = 0; 2887 int try = 3; 2888 int pass; 2889 int i; 2890 2891 kvm_vcpu_set_in_spin_loop(me, true); 2892 /* 2893 * We boost the priority of a VCPU that is runnable but not 2894 * currently running, because it got preempted by something 2895 * else and called schedule in __vcpu_run. Hopefully that 2896 * VCPU is holding the lock that we need and will release it. 2897 * We approximate round-robin by starting at the last boosted VCPU. 2898 */ 2899 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2900 kvm_for_each_vcpu(i, vcpu, kvm) { 2901 if (!pass && i <= last_boosted_vcpu) { 2902 i = last_boosted_vcpu; 2903 continue; 2904 } else if (pass && i > last_boosted_vcpu) 2905 break; 2906 if (!READ_ONCE(vcpu->ready)) 2907 continue; 2908 if (vcpu == me) 2909 continue; 2910 if (rcuwait_active(&vcpu->wait) && 2911 !vcpu_dy_runnable(vcpu)) 2912 continue; 2913 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2914 !kvm_arch_vcpu_in_kernel(vcpu)) 2915 continue; 2916 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2917 continue; 2918 2919 yielded = kvm_vcpu_yield_to(vcpu); 2920 if (yielded > 0) { 2921 kvm->last_boosted_vcpu = i; 2922 break; 2923 } else if (yielded < 0) { 2924 try--; 2925 if (!try) 2926 break; 2927 } 2928 } 2929 } 2930 kvm_vcpu_set_in_spin_loop(me, false); 2931 2932 /* Ensure vcpu is not eligible during next spinloop */ 2933 kvm_vcpu_set_dy_eligible(me, false); 2934 } 2935 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2936 2937 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2938 { 2939 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2940 struct page *page; 2941 2942 if (vmf->pgoff == 0) 2943 page = virt_to_page(vcpu->run); 2944 #ifdef CONFIG_X86 2945 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2946 page = virt_to_page(vcpu->arch.pio_data); 2947 #endif 2948 #ifdef CONFIG_KVM_MMIO 2949 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2950 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2951 #endif 2952 else 2953 return kvm_arch_vcpu_fault(vcpu, vmf); 2954 get_page(page); 2955 vmf->page = page; 2956 return 0; 2957 } 2958 2959 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2960 .fault = kvm_vcpu_fault, 2961 }; 2962 2963 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2964 { 2965 vma->vm_ops = &kvm_vcpu_vm_ops; 2966 return 0; 2967 } 2968 2969 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2970 { 2971 struct kvm_vcpu *vcpu = filp->private_data; 2972 2973 debugfs_remove_recursive(vcpu->debugfs_dentry); 2974 kvm_put_kvm(vcpu->kvm); 2975 return 0; 2976 } 2977 2978 static struct file_operations kvm_vcpu_fops = { 2979 .release = kvm_vcpu_release, 2980 .unlocked_ioctl = kvm_vcpu_ioctl, 2981 .mmap = kvm_vcpu_mmap, 2982 .llseek = noop_llseek, 2983 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2984 }; 2985 2986 /* 2987 * Allocates an inode for the vcpu. 2988 */ 2989 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2990 { 2991 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2992 2993 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2994 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2995 } 2996 2997 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2998 { 2999 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3000 char dir_name[ITOA_MAX_LEN * 2]; 3001 3002 if (!debugfs_initialized()) 3003 return; 3004 3005 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3006 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 3007 vcpu->kvm->debugfs_dentry); 3008 3009 kvm_arch_create_vcpu_debugfs(vcpu); 3010 #endif 3011 } 3012 3013 /* 3014 * Creates some virtual cpus. Good luck creating more than one. 3015 */ 3016 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3017 { 3018 int r; 3019 struct kvm_vcpu *vcpu; 3020 struct page *page; 3021 3022 if (id >= KVM_MAX_VCPU_ID) 3023 return -EINVAL; 3024 3025 mutex_lock(&kvm->lock); 3026 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3027 mutex_unlock(&kvm->lock); 3028 return -EINVAL; 3029 } 3030 3031 kvm->created_vcpus++; 3032 mutex_unlock(&kvm->lock); 3033 3034 r = kvm_arch_vcpu_precreate(kvm, id); 3035 if (r) 3036 goto vcpu_decrement; 3037 3038 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 3039 if (!vcpu) { 3040 r = -ENOMEM; 3041 goto vcpu_decrement; 3042 } 3043 3044 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3045 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 3046 if (!page) { 3047 r = -ENOMEM; 3048 goto vcpu_free; 3049 } 3050 vcpu->run = page_address(page); 3051 3052 kvm_vcpu_init(vcpu, kvm, id); 3053 3054 r = kvm_arch_vcpu_create(vcpu); 3055 if (r) 3056 goto vcpu_free_run_page; 3057 3058 mutex_lock(&kvm->lock); 3059 if (kvm_get_vcpu_by_id(kvm, id)) { 3060 r = -EEXIST; 3061 goto unlock_vcpu_destroy; 3062 } 3063 3064 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3065 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3066 3067 /* Now it's all set up, let userspace reach it */ 3068 kvm_get_kvm(kvm); 3069 r = create_vcpu_fd(vcpu); 3070 if (r < 0) { 3071 kvm_put_kvm_no_destroy(kvm); 3072 goto unlock_vcpu_destroy; 3073 } 3074 3075 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3076 3077 /* 3078 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3079 * before kvm->online_vcpu's incremented value. 3080 */ 3081 smp_wmb(); 3082 atomic_inc(&kvm->online_vcpus); 3083 3084 mutex_unlock(&kvm->lock); 3085 kvm_arch_vcpu_postcreate(vcpu); 3086 kvm_create_vcpu_debugfs(vcpu); 3087 return r; 3088 3089 unlock_vcpu_destroy: 3090 mutex_unlock(&kvm->lock); 3091 kvm_arch_vcpu_destroy(vcpu); 3092 vcpu_free_run_page: 3093 free_page((unsigned long)vcpu->run); 3094 vcpu_free: 3095 kmem_cache_free(kvm_vcpu_cache, vcpu); 3096 vcpu_decrement: 3097 mutex_lock(&kvm->lock); 3098 kvm->created_vcpus--; 3099 mutex_unlock(&kvm->lock); 3100 return r; 3101 } 3102 3103 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3104 { 3105 if (sigset) { 3106 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3107 vcpu->sigset_active = 1; 3108 vcpu->sigset = *sigset; 3109 } else 3110 vcpu->sigset_active = 0; 3111 return 0; 3112 } 3113 3114 static long kvm_vcpu_ioctl(struct file *filp, 3115 unsigned int ioctl, unsigned long arg) 3116 { 3117 struct kvm_vcpu *vcpu = filp->private_data; 3118 void __user *argp = (void __user *)arg; 3119 int r; 3120 struct kvm_fpu *fpu = NULL; 3121 struct kvm_sregs *kvm_sregs = NULL; 3122 3123 if (vcpu->kvm->mm != current->mm) 3124 return -EIO; 3125 3126 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3127 return -EINVAL; 3128 3129 /* 3130 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3131 * execution; mutex_lock() would break them. 3132 */ 3133 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3134 if (r != -ENOIOCTLCMD) 3135 return r; 3136 3137 if (mutex_lock_killable(&vcpu->mutex)) 3138 return -EINTR; 3139 switch (ioctl) { 3140 case KVM_RUN: { 3141 struct pid *oldpid; 3142 r = -EINVAL; 3143 if (arg) 3144 goto out; 3145 oldpid = rcu_access_pointer(vcpu->pid); 3146 if (unlikely(oldpid != task_pid(current))) { 3147 /* The thread running this VCPU changed. */ 3148 struct pid *newpid; 3149 3150 r = kvm_arch_vcpu_run_pid_change(vcpu); 3151 if (r) 3152 break; 3153 3154 newpid = get_task_pid(current, PIDTYPE_PID); 3155 rcu_assign_pointer(vcpu->pid, newpid); 3156 if (oldpid) 3157 synchronize_rcu(); 3158 put_pid(oldpid); 3159 } 3160 r = kvm_arch_vcpu_ioctl_run(vcpu); 3161 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3162 break; 3163 } 3164 case KVM_GET_REGS: { 3165 struct kvm_regs *kvm_regs; 3166 3167 r = -ENOMEM; 3168 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3169 if (!kvm_regs) 3170 goto out; 3171 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3172 if (r) 3173 goto out_free1; 3174 r = -EFAULT; 3175 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3176 goto out_free1; 3177 r = 0; 3178 out_free1: 3179 kfree(kvm_regs); 3180 break; 3181 } 3182 case KVM_SET_REGS: { 3183 struct kvm_regs *kvm_regs; 3184 3185 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3186 if (IS_ERR(kvm_regs)) { 3187 r = PTR_ERR(kvm_regs); 3188 goto out; 3189 } 3190 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3191 kfree(kvm_regs); 3192 break; 3193 } 3194 case KVM_GET_SREGS: { 3195 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3196 GFP_KERNEL_ACCOUNT); 3197 r = -ENOMEM; 3198 if (!kvm_sregs) 3199 goto out; 3200 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3201 if (r) 3202 goto out; 3203 r = -EFAULT; 3204 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3205 goto out; 3206 r = 0; 3207 break; 3208 } 3209 case KVM_SET_SREGS: { 3210 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3211 if (IS_ERR(kvm_sregs)) { 3212 r = PTR_ERR(kvm_sregs); 3213 kvm_sregs = NULL; 3214 goto out; 3215 } 3216 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3217 break; 3218 } 3219 case KVM_GET_MP_STATE: { 3220 struct kvm_mp_state mp_state; 3221 3222 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3223 if (r) 3224 goto out; 3225 r = -EFAULT; 3226 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3227 goto out; 3228 r = 0; 3229 break; 3230 } 3231 case KVM_SET_MP_STATE: { 3232 struct kvm_mp_state mp_state; 3233 3234 r = -EFAULT; 3235 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3236 goto out; 3237 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3238 break; 3239 } 3240 case KVM_TRANSLATE: { 3241 struct kvm_translation tr; 3242 3243 r = -EFAULT; 3244 if (copy_from_user(&tr, argp, sizeof(tr))) 3245 goto out; 3246 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3247 if (r) 3248 goto out; 3249 r = -EFAULT; 3250 if (copy_to_user(argp, &tr, sizeof(tr))) 3251 goto out; 3252 r = 0; 3253 break; 3254 } 3255 case KVM_SET_GUEST_DEBUG: { 3256 struct kvm_guest_debug dbg; 3257 3258 r = -EFAULT; 3259 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3260 goto out; 3261 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3262 break; 3263 } 3264 case KVM_SET_SIGNAL_MASK: { 3265 struct kvm_signal_mask __user *sigmask_arg = argp; 3266 struct kvm_signal_mask kvm_sigmask; 3267 sigset_t sigset, *p; 3268 3269 p = NULL; 3270 if (argp) { 3271 r = -EFAULT; 3272 if (copy_from_user(&kvm_sigmask, argp, 3273 sizeof(kvm_sigmask))) 3274 goto out; 3275 r = -EINVAL; 3276 if (kvm_sigmask.len != sizeof(sigset)) 3277 goto out; 3278 r = -EFAULT; 3279 if (copy_from_user(&sigset, sigmask_arg->sigset, 3280 sizeof(sigset))) 3281 goto out; 3282 p = &sigset; 3283 } 3284 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3285 break; 3286 } 3287 case KVM_GET_FPU: { 3288 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3289 r = -ENOMEM; 3290 if (!fpu) 3291 goto out; 3292 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3293 if (r) 3294 goto out; 3295 r = -EFAULT; 3296 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3297 goto out; 3298 r = 0; 3299 break; 3300 } 3301 case KVM_SET_FPU: { 3302 fpu = memdup_user(argp, sizeof(*fpu)); 3303 if (IS_ERR(fpu)) { 3304 r = PTR_ERR(fpu); 3305 fpu = NULL; 3306 goto out; 3307 } 3308 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3309 break; 3310 } 3311 default: 3312 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3313 } 3314 out: 3315 mutex_unlock(&vcpu->mutex); 3316 kfree(fpu); 3317 kfree(kvm_sregs); 3318 return r; 3319 } 3320 3321 #ifdef CONFIG_KVM_COMPAT 3322 static long kvm_vcpu_compat_ioctl(struct file *filp, 3323 unsigned int ioctl, unsigned long arg) 3324 { 3325 struct kvm_vcpu *vcpu = filp->private_data; 3326 void __user *argp = compat_ptr(arg); 3327 int r; 3328 3329 if (vcpu->kvm->mm != current->mm) 3330 return -EIO; 3331 3332 switch (ioctl) { 3333 case KVM_SET_SIGNAL_MASK: { 3334 struct kvm_signal_mask __user *sigmask_arg = argp; 3335 struct kvm_signal_mask kvm_sigmask; 3336 sigset_t sigset; 3337 3338 if (argp) { 3339 r = -EFAULT; 3340 if (copy_from_user(&kvm_sigmask, argp, 3341 sizeof(kvm_sigmask))) 3342 goto out; 3343 r = -EINVAL; 3344 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3345 goto out; 3346 r = -EFAULT; 3347 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 3348 goto out; 3349 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3350 } else 3351 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3352 break; 3353 } 3354 default: 3355 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3356 } 3357 3358 out: 3359 return r; 3360 } 3361 #endif 3362 3363 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3364 { 3365 struct kvm_device *dev = filp->private_data; 3366 3367 if (dev->ops->mmap) 3368 return dev->ops->mmap(dev, vma); 3369 3370 return -ENODEV; 3371 } 3372 3373 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3374 int (*accessor)(struct kvm_device *dev, 3375 struct kvm_device_attr *attr), 3376 unsigned long arg) 3377 { 3378 struct kvm_device_attr attr; 3379 3380 if (!accessor) 3381 return -EPERM; 3382 3383 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3384 return -EFAULT; 3385 3386 return accessor(dev, &attr); 3387 } 3388 3389 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3390 unsigned long arg) 3391 { 3392 struct kvm_device *dev = filp->private_data; 3393 3394 if (dev->kvm->mm != current->mm) 3395 return -EIO; 3396 3397 switch (ioctl) { 3398 case KVM_SET_DEVICE_ATTR: 3399 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3400 case KVM_GET_DEVICE_ATTR: 3401 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3402 case KVM_HAS_DEVICE_ATTR: 3403 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3404 default: 3405 if (dev->ops->ioctl) 3406 return dev->ops->ioctl(dev, ioctl, arg); 3407 3408 return -ENOTTY; 3409 } 3410 } 3411 3412 static int kvm_device_release(struct inode *inode, struct file *filp) 3413 { 3414 struct kvm_device *dev = filp->private_data; 3415 struct kvm *kvm = dev->kvm; 3416 3417 if (dev->ops->release) { 3418 mutex_lock(&kvm->lock); 3419 list_del(&dev->vm_node); 3420 dev->ops->release(dev); 3421 mutex_unlock(&kvm->lock); 3422 } 3423 3424 kvm_put_kvm(kvm); 3425 return 0; 3426 } 3427 3428 static const struct file_operations kvm_device_fops = { 3429 .unlocked_ioctl = kvm_device_ioctl, 3430 .release = kvm_device_release, 3431 KVM_COMPAT(kvm_device_ioctl), 3432 .mmap = kvm_device_mmap, 3433 }; 3434 3435 struct kvm_device *kvm_device_from_filp(struct file *filp) 3436 { 3437 if (filp->f_op != &kvm_device_fops) 3438 return NULL; 3439 3440 return filp->private_data; 3441 } 3442 3443 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3444 #ifdef CONFIG_KVM_MPIC 3445 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3446 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3447 #endif 3448 }; 3449 3450 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3451 { 3452 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3453 return -ENOSPC; 3454 3455 if (kvm_device_ops_table[type] != NULL) 3456 return -EEXIST; 3457 3458 kvm_device_ops_table[type] = ops; 3459 return 0; 3460 } 3461 3462 void kvm_unregister_device_ops(u32 type) 3463 { 3464 if (kvm_device_ops_table[type] != NULL) 3465 kvm_device_ops_table[type] = NULL; 3466 } 3467 3468 static int kvm_ioctl_create_device(struct kvm *kvm, 3469 struct kvm_create_device *cd) 3470 { 3471 const struct kvm_device_ops *ops = NULL; 3472 struct kvm_device *dev; 3473 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3474 int type; 3475 int ret; 3476 3477 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3478 return -ENODEV; 3479 3480 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3481 ops = kvm_device_ops_table[type]; 3482 if (ops == NULL) 3483 return -ENODEV; 3484 3485 if (test) 3486 return 0; 3487 3488 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3489 if (!dev) 3490 return -ENOMEM; 3491 3492 dev->ops = ops; 3493 dev->kvm = kvm; 3494 3495 mutex_lock(&kvm->lock); 3496 ret = ops->create(dev, type); 3497 if (ret < 0) { 3498 mutex_unlock(&kvm->lock); 3499 kfree(dev); 3500 return ret; 3501 } 3502 list_add(&dev->vm_node, &kvm->devices); 3503 mutex_unlock(&kvm->lock); 3504 3505 if (ops->init) 3506 ops->init(dev); 3507 3508 kvm_get_kvm(kvm); 3509 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3510 if (ret < 0) { 3511 kvm_put_kvm_no_destroy(kvm); 3512 mutex_lock(&kvm->lock); 3513 list_del(&dev->vm_node); 3514 mutex_unlock(&kvm->lock); 3515 ops->destroy(dev); 3516 return ret; 3517 } 3518 3519 cd->fd = ret; 3520 return 0; 3521 } 3522 3523 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3524 { 3525 switch (arg) { 3526 case KVM_CAP_USER_MEMORY: 3527 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3528 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3529 case KVM_CAP_INTERNAL_ERROR_DATA: 3530 #ifdef CONFIG_HAVE_KVM_MSI 3531 case KVM_CAP_SIGNAL_MSI: 3532 #endif 3533 #ifdef CONFIG_HAVE_KVM_IRQFD 3534 case KVM_CAP_IRQFD: 3535 case KVM_CAP_IRQFD_RESAMPLE: 3536 #endif 3537 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3538 case KVM_CAP_CHECK_EXTENSION_VM: 3539 case KVM_CAP_ENABLE_CAP_VM: 3540 case KVM_CAP_HALT_POLL: 3541 return 1; 3542 #ifdef CONFIG_KVM_MMIO 3543 case KVM_CAP_COALESCED_MMIO: 3544 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3545 case KVM_CAP_COALESCED_PIO: 3546 return 1; 3547 #endif 3548 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3549 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3550 return KVM_DIRTY_LOG_MANUAL_CAPS; 3551 #endif 3552 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3553 case KVM_CAP_IRQ_ROUTING: 3554 return KVM_MAX_IRQ_ROUTES; 3555 #endif 3556 #if KVM_ADDRESS_SPACE_NUM > 1 3557 case KVM_CAP_MULTI_ADDRESS_SPACE: 3558 return KVM_ADDRESS_SPACE_NUM; 3559 #endif 3560 case KVM_CAP_NR_MEMSLOTS: 3561 return KVM_USER_MEM_SLOTS; 3562 default: 3563 break; 3564 } 3565 return kvm_vm_ioctl_check_extension(kvm, arg); 3566 } 3567 3568 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3569 struct kvm_enable_cap *cap) 3570 { 3571 return -EINVAL; 3572 } 3573 3574 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3575 struct kvm_enable_cap *cap) 3576 { 3577 switch (cap->cap) { 3578 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3579 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 3580 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 3581 3582 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 3583 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 3584 3585 if (cap->flags || (cap->args[0] & ~allowed_options)) 3586 return -EINVAL; 3587 kvm->manual_dirty_log_protect = cap->args[0]; 3588 return 0; 3589 } 3590 #endif 3591 case KVM_CAP_HALT_POLL: { 3592 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 3593 return -EINVAL; 3594 3595 kvm->max_halt_poll_ns = cap->args[0]; 3596 return 0; 3597 } 3598 default: 3599 return kvm_vm_ioctl_enable_cap(kvm, cap); 3600 } 3601 } 3602 3603 static long kvm_vm_ioctl(struct file *filp, 3604 unsigned int ioctl, unsigned long arg) 3605 { 3606 struct kvm *kvm = filp->private_data; 3607 void __user *argp = (void __user *)arg; 3608 int r; 3609 3610 if (kvm->mm != current->mm) 3611 return -EIO; 3612 switch (ioctl) { 3613 case KVM_CREATE_VCPU: 3614 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3615 break; 3616 case KVM_ENABLE_CAP: { 3617 struct kvm_enable_cap cap; 3618 3619 r = -EFAULT; 3620 if (copy_from_user(&cap, argp, sizeof(cap))) 3621 goto out; 3622 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3623 break; 3624 } 3625 case KVM_SET_USER_MEMORY_REGION: { 3626 struct kvm_userspace_memory_region kvm_userspace_mem; 3627 3628 r = -EFAULT; 3629 if (copy_from_user(&kvm_userspace_mem, argp, 3630 sizeof(kvm_userspace_mem))) 3631 goto out; 3632 3633 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3634 break; 3635 } 3636 case KVM_GET_DIRTY_LOG: { 3637 struct kvm_dirty_log log; 3638 3639 r = -EFAULT; 3640 if (copy_from_user(&log, argp, sizeof(log))) 3641 goto out; 3642 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3643 break; 3644 } 3645 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3646 case KVM_CLEAR_DIRTY_LOG: { 3647 struct kvm_clear_dirty_log log; 3648 3649 r = -EFAULT; 3650 if (copy_from_user(&log, argp, sizeof(log))) 3651 goto out; 3652 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3653 break; 3654 } 3655 #endif 3656 #ifdef CONFIG_KVM_MMIO 3657 case KVM_REGISTER_COALESCED_MMIO: { 3658 struct kvm_coalesced_mmio_zone zone; 3659 3660 r = -EFAULT; 3661 if (copy_from_user(&zone, argp, sizeof(zone))) 3662 goto out; 3663 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3664 break; 3665 } 3666 case KVM_UNREGISTER_COALESCED_MMIO: { 3667 struct kvm_coalesced_mmio_zone zone; 3668 3669 r = -EFAULT; 3670 if (copy_from_user(&zone, argp, sizeof(zone))) 3671 goto out; 3672 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3673 break; 3674 } 3675 #endif 3676 case KVM_IRQFD: { 3677 struct kvm_irqfd data; 3678 3679 r = -EFAULT; 3680 if (copy_from_user(&data, argp, sizeof(data))) 3681 goto out; 3682 r = kvm_irqfd(kvm, &data); 3683 break; 3684 } 3685 case KVM_IOEVENTFD: { 3686 struct kvm_ioeventfd data; 3687 3688 r = -EFAULT; 3689 if (copy_from_user(&data, argp, sizeof(data))) 3690 goto out; 3691 r = kvm_ioeventfd(kvm, &data); 3692 break; 3693 } 3694 #ifdef CONFIG_HAVE_KVM_MSI 3695 case KVM_SIGNAL_MSI: { 3696 struct kvm_msi msi; 3697 3698 r = -EFAULT; 3699 if (copy_from_user(&msi, argp, sizeof(msi))) 3700 goto out; 3701 r = kvm_send_userspace_msi(kvm, &msi); 3702 break; 3703 } 3704 #endif 3705 #ifdef __KVM_HAVE_IRQ_LINE 3706 case KVM_IRQ_LINE_STATUS: 3707 case KVM_IRQ_LINE: { 3708 struct kvm_irq_level irq_event; 3709 3710 r = -EFAULT; 3711 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3712 goto out; 3713 3714 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3715 ioctl == KVM_IRQ_LINE_STATUS); 3716 if (r) 3717 goto out; 3718 3719 r = -EFAULT; 3720 if (ioctl == KVM_IRQ_LINE_STATUS) { 3721 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3722 goto out; 3723 } 3724 3725 r = 0; 3726 break; 3727 } 3728 #endif 3729 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3730 case KVM_SET_GSI_ROUTING: { 3731 struct kvm_irq_routing routing; 3732 struct kvm_irq_routing __user *urouting; 3733 struct kvm_irq_routing_entry *entries = NULL; 3734 3735 r = -EFAULT; 3736 if (copy_from_user(&routing, argp, sizeof(routing))) 3737 goto out; 3738 r = -EINVAL; 3739 if (!kvm_arch_can_set_irq_routing(kvm)) 3740 goto out; 3741 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3742 goto out; 3743 if (routing.flags) 3744 goto out; 3745 if (routing.nr) { 3746 r = -ENOMEM; 3747 entries = vmalloc(array_size(sizeof(*entries), 3748 routing.nr)); 3749 if (!entries) 3750 goto out; 3751 r = -EFAULT; 3752 urouting = argp; 3753 if (copy_from_user(entries, urouting->entries, 3754 routing.nr * sizeof(*entries))) 3755 goto out_free_irq_routing; 3756 } 3757 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3758 routing.flags); 3759 out_free_irq_routing: 3760 vfree(entries); 3761 break; 3762 } 3763 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3764 case KVM_CREATE_DEVICE: { 3765 struct kvm_create_device cd; 3766 3767 r = -EFAULT; 3768 if (copy_from_user(&cd, argp, sizeof(cd))) 3769 goto out; 3770 3771 r = kvm_ioctl_create_device(kvm, &cd); 3772 if (r) 3773 goto out; 3774 3775 r = -EFAULT; 3776 if (copy_to_user(argp, &cd, sizeof(cd))) 3777 goto out; 3778 3779 r = 0; 3780 break; 3781 } 3782 case KVM_CHECK_EXTENSION: 3783 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3784 break; 3785 default: 3786 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3787 } 3788 out: 3789 return r; 3790 } 3791 3792 #ifdef CONFIG_KVM_COMPAT 3793 struct compat_kvm_dirty_log { 3794 __u32 slot; 3795 __u32 padding1; 3796 union { 3797 compat_uptr_t dirty_bitmap; /* one bit per page */ 3798 __u64 padding2; 3799 }; 3800 }; 3801 3802 static long kvm_vm_compat_ioctl(struct file *filp, 3803 unsigned int ioctl, unsigned long arg) 3804 { 3805 struct kvm *kvm = filp->private_data; 3806 int r; 3807 3808 if (kvm->mm != current->mm) 3809 return -EIO; 3810 switch (ioctl) { 3811 case KVM_GET_DIRTY_LOG: { 3812 struct compat_kvm_dirty_log compat_log; 3813 struct kvm_dirty_log log; 3814 3815 if (copy_from_user(&compat_log, (void __user *)arg, 3816 sizeof(compat_log))) 3817 return -EFAULT; 3818 log.slot = compat_log.slot; 3819 log.padding1 = compat_log.padding1; 3820 log.padding2 = compat_log.padding2; 3821 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3822 3823 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3824 break; 3825 } 3826 default: 3827 r = kvm_vm_ioctl(filp, ioctl, arg); 3828 } 3829 return r; 3830 } 3831 #endif 3832 3833 static struct file_operations kvm_vm_fops = { 3834 .release = kvm_vm_release, 3835 .unlocked_ioctl = kvm_vm_ioctl, 3836 .llseek = noop_llseek, 3837 KVM_COMPAT(kvm_vm_compat_ioctl), 3838 }; 3839 3840 static int kvm_dev_ioctl_create_vm(unsigned long type) 3841 { 3842 int r; 3843 struct kvm *kvm; 3844 struct file *file; 3845 3846 kvm = kvm_create_vm(type); 3847 if (IS_ERR(kvm)) 3848 return PTR_ERR(kvm); 3849 #ifdef CONFIG_KVM_MMIO 3850 r = kvm_coalesced_mmio_init(kvm); 3851 if (r < 0) 3852 goto put_kvm; 3853 #endif 3854 r = get_unused_fd_flags(O_CLOEXEC); 3855 if (r < 0) 3856 goto put_kvm; 3857 3858 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3859 if (IS_ERR(file)) { 3860 put_unused_fd(r); 3861 r = PTR_ERR(file); 3862 goto put_kvm; 3863 } 3864 3865 /* 3866 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3867 * already set, with ->release() being kvm_vm_release(). In error 3868 * cases it will be called by the final fput(file) and will take 3869 * care of doing kvm_put_kvm(kvm). 3870 */ 3871 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3872 put_unused_fd(r); 3873 fput(file); 3874 return -ENOMEM; 3875 } 3876 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3877 3878 fd_install(r, file); 3879 return r; 3880 3881 put_kvm: 3882 kvm_put_kvm(kvm); 3883 return r; 3884 } 3885 3886 static long kvm_dev_ioctl(struct file *filp, 3887 unsigned int ioctl, unsigned long arg) 3888 { 3889 long r = -EINVAL; 3890 3891 switch (ioctl) { 3892 case KVM_GET_API_VERSION: 3893 if (arg) 3894 goto out; 3895 r = KVM_API_VERSION; 3896 break; 3897 case KVM_CREATE_VM: 3898 r = kvm_dev_ioctl_create_vm(arg); 3899 break; 3900 case KVM_CHECK_EXTENSION: 3901 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3902 break; 3903 case KVM_GET_VCPU_MMAP_SIZE: 3904 if (arg) 3905 goto out; 3906 r = PAGE_SIZE; /* struct kvm_run */ 3907 #ifdef CONFIG_X86 3908 r += PAGE_SIZE; /* pio data page */ 3909 #endif 3910 #ifdef CONFIG_KVM_MMIO 3911 r += PAGE_SIZE; /* coalesced mmio ring page */ 3912 #endif 3913 break; 3914 case KVM_TRACE_ENABLE: 3915 case KVM_TRACE_PAUSE: 3916 case KVM_TRACE_DISABLE: 3917 r = -EOPNOTSUPP; 3918 break; 3919 default: 3920 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3921 } 3922 out: 3923 return r; 3924 } 3925 3926 static struct file_operations kvm_chardev_ops = { 3927 .unlocked_ioctl = kvm_dev_ioctl, 3928 .llseek = noop_llseek, 3929 KVM_COMPAT(kvm_dev_ioctl), 3930 }; 3931 3932 static struct miscdevice kvm_dev = { 3933 KVM_MINOR, 3934 "kvm", 3935 &kvm_chardev_ops, 3936 }; 3937 3938 static void hardware_enable_nolock(void *junk) 3939 { 3940 int cpu = raw_smp_processor_id(); 3941 int r; 3942 3943 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3944 return; 3945 3946 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3947 3948 r = kvm_arch_hardware_enable(); 3949 3950 if (r) { 3951 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3952 atomic_inc(&hardware_enable_failed); 3953 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3954 } 3955 } 3956 3957 static int kvm_starting_cpu(unsigned int cpu) 3958 { 3959 raw_spin_lock(&kvm_count_lock); 3960 if (kvm_usage_count) 3961 hardware_enable_nolock(NULL); 3962 raw_spin_unlock(&kvm_count_lock); 3963 return 0; 3964 } 3965 3966 static void hardware_disable_nolock(void *junk) 3967 { 3968 int cpu = raw_smp_processor_id(); 3969 3970 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3971 return; 3972 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3973 kvm_arch_hardware_disable(); 3974 } 3975 3976 static int kvm_dying_cpu(unsigned int cpu) 3977 { 3978 raw_spin_lock(&kvm_count_lock); 3979 if (kvm_usage_count) 3980 hardware_disable_nolock(NULL); 3981 raw_spin_unlock(&kvm_count_lock); 3982 return 0; 3983 } 3984 3985 static void hardware_disable_all_nolock(void) 3986 { 3987 BUG_ON(!kvm_usage_count); 3988 3989 kvm_usage_count--; 3990 if (!kvm_usage_count) 3991 on_each_cpu(hardware_disable_nolock, NULL, 1); 3992 } 3993 3994 static void hardware_disable_all(void) 3995 { 3996 raw_spin_lock(&kvm_count_lock); 3997 hardware_disable_all_nolock(); 3998 raw_spin_unlock(&kvm_count_lock); 3999 } 4000 4001 static int hardware_enable_all(void) 4002 { 4003 int r = 0; 4004 4005 raw_spin_lock(&kvm_count_lock); 4006 4007 kvm_usage_count++; 4008 if (kvm_usage_count == 1) { 4009 atomic_set(&hardware_enable_failed, 0); 4010 on_each_cpu(hardware_enable_nolock, NULL, 1); 4011 4012 if (atomic_read(&hardware_enable_failed)) { 4013 hardware_disable_all_nolock(); 4014 r = -EBUSY; 4015 } 4016 } 4017 4018 raw_spin_unlock(&kvm_count_lock); 4019 4020 return r; 4021 } 4022 4023 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4024 void *v) 4025 { 4026 /* 4027 * Some (well, at least mine) BIOSes hang on reboot if 4028 * in vmx root mode. 4029 * 4030 * And Intel TXT required VMX off for all cpu when system shutdown. 4031 */ 4032 pr_info("kvm: exiting hardware virtualization\n"); 4033 kvm_rebooting = true; 4034 on_each_cpu(hardware_disable_nolock, NULL, 1); 4035 return NOTIFY_OK; 4036 } 4037 4038 static struct notifier_block kvm_reboot_notifier = { 4039 .notifier_call = kvm_reboot, 4040 .priority = 0, 4041 }; 4042 4043 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4044 { 4045 int i; 4046 4047 for (i = 0; i < bus->dev_count; i++) { 4048 struct kvm_io_device *pos = bus->range[i].dev; 4049 4050 kvm_iodevice_destructor(pos); 4051 } 4052 kfree(bus); 4053 } 4054 4055 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4056 const struct kvm_io_range *r2) 4057 { 4058 gpa_t addr1 = r1->addr; 4059 gpa_t addr2 = r2->addr; 4060 4061 if (addr1 < addr2) 4062 return -1; 4063 4064 /* If r2->len == 0, match the exact address. If r2->len != 0, 4065 * accept any overlapping write. Any order is acceptable for 4066 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4067 * we process all of them. 4068 */ 4069 if (r2->len) { 4070 addr1 += r1->len; 4071 addr2 += r2->len; 4072 } 4073 4074 if (addr1 > addr2) 4075 return 1; 4076 4077 return 0; 4078 } 4079 4080 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4081 { 4082 return kvm_io_bus_cmp(p1, p2); 4083 } 4084 4085 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4086 gpa_t addr, int len) 4087 { 4088 struct kvm_io_range *range, key; 4089 int off; 4090 4091 key = (struct kvm_io_range) { 4092 .addr = addr, 4093 .len = len, 4094 }; 4095 4096 range = bsearch(&key, bus->range, bus->dev_count, 4097 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4098 if (range == NULL) 4099 return -ENOENT; 4100 4101 off = range - bus->range; 4102 4103 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4104 off--; 4105 4106 return off; 4107 } 4108 4109 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4110 struct kvm_io_range *range, const void *val) 4111 { 4112 int idx; 4113 4114 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4115 if (idx < 0) 4116 return -EOPNOTSUPP; 4117 4118 while (idx < bus->dev_count && 4119 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4120 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4121 range->len, val)) 4122 return idx; 4123 idx++; 4124 } 4125 4126 return -EOPNOTSUPP; 4127 } 4128 4129 /* kvm_io_bus_write - called under kvm->slots_lock */ 4130 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4131 int len, const void *val) 4132 { 4133 struct kvm_io_bus *bus; 4134 struct kvm_io_range range; 4135 int r; 4136 4137 range = (struct kvm_io_range) { 4138 .addr = addr, 4139 .len = len, 4140 }; 4141 4142 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4143 if (!bus) 4144 return -ENOMEM; 4145 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4146 return r < 0 ? r : 0; 4147 } 4148 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4149 4150 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4151 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4152 gpa_t addr, int len, const void *val, long cookie) 4153 { 4154 struct kvm_io_bus *bus; 4155 struct kvm_io_range range; 4156 4157 range = (struct kvm_io_range) { 4158 .addr = addr, 4159 .len = len, 4160 }; 4161 4162 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4163 if (!bus) 4164 return -ENOMEM; 4165 4166 /* First try the device referenced by cookie. */ 4167 if ((cookie >= 0) && (cookie < bus->dev_count) && 4168 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4169 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4170 val)) 4171 return cookie; 4172 4173 /* 4174 * cookie contained garbage; fall back to search and return the 4175 * correct cookie value. 4176 */ 4177 return __kvm_io_bus_write(vcpu, bus, &range, val); 4178 } 4179 4180 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4181 struct kvm_io_range *range, void *val) 4182 { 4183 int idx; 4184 4185 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4186 if (idx < 0) 4187 return -EOPNOTSUPP; 4188 4189 while (idx < bus->dev_count && 4190 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4191 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4192 range->len, val)) 4193 return idx; 4194 idx++; 4195 } 4196 4197 return -EOPNOTSUPP; 4198 } 4199 4200 /* kvm_io_bus_read - called under kvm->slots_lock */ 4201 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4202 int len, void *val) 4203 { 4204 struct kvm_io_bus *bus; 4205 struct kvm_io_range range; 4206 int r; 4207 4208 range = (struct kvm_io_range) { 4209 .addr = addr, 4210 .len = len, 4211 }; 4212 4213 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4214 if (!bus) 4215 return -ENOMEM; 4216 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4217 return r < 0 ? r : 0; 4218 } 4219 4220 /* Caller must hold slots_lock. */ 4221 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4222 int len, struct kvm_io_device *dev) 4223 { 4224 int i; 4225 struct kvm_io_bus *new_bus, *bus; 4226 struct kvm_io_range range; 4227 4228 bus = kvm_get_bus(kvm, bus_idx); 4229 if (!bus) 4230 return -ENOMEM; 4231 4232 /* exclude ioeventfd which is limited by maximum fd */ 4233 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4234 return -ENOSPC; 4235 4236 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4237 GFP_KERNEL_ACCOUNT); 4238 if (!new_bus) 4239 return -ENOMEM; 4240 4241 range = (struct kvm_io_range) { 4242 .addr = addr, 4243 .len = len, 4244 .dev = dev, 4245 }; 4246 4247 for (i = 0; i < bus->dev_count; i++) 4248 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4249 break; 4250 4251 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4252 new_bus->dev_count++; 4253 new_bus->range[i] = range; 4254 memcpy(new_bus->range + i + 1, bus->range + i, 4255 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4256 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4257 synchronize_srcu_expedited(&kvm->srcu); 4258 kfree(bus); 4259 4260 return 0; 4261 } 4262 4263 /* Caller must hold slots_lock. */ 4264 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4265 struct kvm_io_device *dev) 4266 { 4267 int i; 4268 struct kvm_io_bus *new_bus, *bus; 4269 4270 bus = kvm_get_bus(kvm, bus_idx); 4271 if (!bus) 4272 return; 4273 4274 for (i = 0; i < bus->dev_count; i++) 4275 if (bus->range[i].dev == dev) { 4276 break; 4277 } 4278 4279 if (i == bus->dev_count) 4280 return; 4281 4282 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4283 GFP_KERNEL_ACCOUNT); 4284 if (!new_bus) { 4285 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4286 goto broken; 4287 } 4288 4289 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4290 new_bus->dev_count--; 4291 memcpy(new_bus->range + i, bus->range + i + 1, 4292 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 4293 4294 broken: 4295 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4296 synchronize_srcu_expedited(&kvm->srcu); 4297 kfree(bus); 4298 return; 4299 } 4300 4301 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4302 gpa_t addr) 4303 { 4304 struct kvm_io_bus *bus; 4305 int dev_idx, srcu_idx; 4306 struct kvm_io_device *iodev = NULL; 4307 4308 srcu_idx = srcu_read_lock(&kvm->srcu); 4309 4310 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4311 if (!bus) 4312 goto out_unlock; 4313 4314 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4315 if (dev_idx < 0) 4316 goto out_unlock; 4317 4318 iodev = bus->range[dev_idx].dev; 4319 4320 out_unlock: 4321 srcu_read_unlock(&kvm->srcu, srcu_idx); 4322 4323 return iodev; 4324 } 4325 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4326 4327 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4328 int (*get)(void *, u64 *), int (*set)(void *, u64), 4329 const char *fmt) 4330 { 4331 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4332 inode->i_private; 4333 4334 /* The debugfs files are a reference to the kvm struct which 4335 * is still valid when kvm_destroy_vm is called. 4336 * To avoid the race between open and the removal of the debugfs 4337 * directory we test against the users count. 4338 */ 4339 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4340 return -ENOENT; 4341 4342 if (simple_attr_open(inode, file, get, 4343 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222 4344 ? set : NULL, 4345 fmt)) { 4346 kvm_put_kvm(stat_data->kvm); 4347 return -ENOMEM; 4348 } 4349 4350 return 0; 4351 } 4352 4353 static int kvm_debugfs_release(struct inode *inode, struct file *file) 4354 { 4355 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4356 inode->i_private; 4357 4358 simple_attr_release(inode, file); 4359 kvm_put_kvm(stat_data->kvm); 4360 4361 return 0; 4362 } 4363 4364 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 4365 { 4366 *val = *(ulong *)((void *)kvm + offset); 4367 4368 return 0; 4369 } 4370 4371 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 4372 { 4373 *(ulong *)((void *)kvm + offset) = 0; 4374 4375 return 0; 4376 } 4377 4378 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 4379 { 4380 int i; 4381 struct kvm_vcpu *vcpu; 4382 4383 *val = 0; 4384 4385 kvm_for_each_vcpu(i, vcpu, kvm) 4386 *val += *(u64 *)((void *)vcpu + offset); 4387 4388 return 0; 4389 } 4390 4391 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 4392 { 4393 int i; 4394 struct kvm_vcpu *vcpu; 4395 4396 kvm_for_each_vcpu(i, vcpu, kvm) 4397 *(u64 *)((void *)vcpu + offset) = 0; 4398 4399 return 0; 4400 } 4401 4402 static int kvm_stat_data_get(void *data, u64 *val) 4403 { 4404 int r = -EFAULT; 4405 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4406 4407 switch (stat_data->dbgfs_item->kind) { 4408 case KVM_STAT_VM: 4409 r = kvm_get_stat_per_vm(stat_data->kvm, 4410 stat_data->dbgfs_item->offset, val); 4411 break; 4412 case KVM_STAT_VCPU: 4413 r = kvm_get_stat_per_vcpu(stat_data->kvm, 4414 stat_data->dbgfs_item->offset, val); 4415 break; 4416 } 4417 4418 return r; 4419 } 4420 4421 static int kvm_stat_data_clear(void *data, u64 val) 4422 { 4423 int r = -EFAULT; 4424 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4425 4426 if (val) 4427 return -EINVAL; 4428 4429 switch (stat_data->dbgfs_item->kind) { 4430 case KVM_STAT_VM: 4431 r = kvm_clear_stat_per_vm(stat_data->kvm, 4432 stat_data->dbgfs_item->offset); 4433 break; 4434 case KVM_STAT_VCPU: 4435 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 4436 stat_data->dbgfs_item->offset); 4437 break; 4438 } 4439 4440 return r; 4441 } 4442 4443 static int kvm_stat_data_open(struct inode *inode, struct file *file) 4444 { 4445 __simple_attr_check_format("%llu\n", 0ull); 4446 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 4447 kvm_stat_data_clear, "%llu\n"); 4448 } 4449 4450 static const struct file_operations stat_fops_per_vm = { 4451 .owner = THIS_MODULE, 4452 .open = kvm_stat_data_open, 4453 .release = kvm_debugfs_release, 4454 .read = simple_attr_read, 4455 .write = simple_attr_write, 4456 .llseek = no_llseek, 4457 }; 4458 4459 static int vm_stat_get(void *_offset, u64 *val) 4460 { 4461 unsigned offset = (long)_offset; 4462 struct kvm *kvm; 4463 u64 tmp_val; 4464 4465 *val = 0; 4466 mutex_lock(&kvm_lock); 4467 list_for_each_entry(kvm, &vm_list, vm_list) { 4468 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 4469 *val += tmp_val; 4470 } 4471 mutex_unlock(&kvm_lock); 4472 return 0; 4473 } 4474 4475 static int vm_stat_clear(void *_offset, u64 val) 4476 { 4477 unsigned offset = (long)_offset; 4478 struct kvm *kvm; 4479 4480 if (val) 4481 return -EINVAL; 4482 4483 mutex_lock(&kvm_lock); 4484 list_for_each_entry(kvm, &vm_list, vm_list) { 4485 kvm_clear_stat_per_vm(kvm, offset); 4486 } 4487 mutex_unlock(&kvm_lock); 4488 4489 return 0; 4490 } 4491 4492 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4493 4494 static int vcpu_stat_get(void *_offset, u64 *val) 4495 { 4496 unsigned offset = (long)_offset; 4497 struct kvm *kvm; 4498 u64 tmp_val; 4499 4500 *val = 0; 4501 mutex_lock(&kvm_lock); 4502 list_for_each_entry(kvm, &vm_list, vm_list) { 4503 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 4504 *val += tmp_val; 4505 } 4506 mutex_unlock(&kvm_lock); 4507 return 0; 4508 } 4509 4510 static int vcpu_stat_clear(void *_offset, u64 val) 4511 { 4512 unsigned offset = (long)_offset; 4513 struct kvm *kvm; 4514 4515 if (val) 4516 return -EINVAL; 4517 4518 mutex_lock(&kvm_lock); 4519 list_for_each_entry(kvm, &vm_list, vm_list) { 4520 kvm_clear_stat_per_vcpu(kvm, offset); 4521 } 4522 mutex_unlock(&kvm_lock); 4523 4524 return 0; 4525 } 4526 4527 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4528 "%llu\n"); 4529 4530 static const struct file_operations *stat_fops[] = { 4531 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4532 [KVM_STAT_VM] = &vm_stat_fops, 4533 }; 4534 4535 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4536 { 4537 struct kobj_uevent_env *env; 4538 unsigned long long created, active; 4539 4540 if (!kvm_dev.this_device || !kvm) 4541 return; 4542 4543 mutex_lock(&kvm_lock); 4544 if (type == KVM_EVENT_CREATE_VM) { 4545 kvm_createvm_count++; 4546 kvm_active_vms++; 4547 } else if (type == KVM_EVENT_DESTROY_VM) { 4548 kvm_active_vms--; 4549 } 4550 created = kvm_createvm_count; 4551 active = kvm_active_vms; 4552 mutex_unlock(&kvm_lock); 4553 4554 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4555 if (!env) 4556 return; 4557 4558 add_uevent_var(env, "CREATED=%llu", created); 4559 add_uevent_var(env, "COUNT=%llu", active); 4560 4561 if (type == KVM_EVENT_CREATE_VM) { 4562 add_uevent_var(env, "EVENT=create"); 4563 kvm->userspace_pid = task_pid_nr(current); 4564 } else if (type == KVM_EVENT_DESTROY_VM) { 4565 add_uevent_var(env, "EVENT=destroy"); 4566 } 4567 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4568 4569 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4570 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4571 4572 if (p) { 4573 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4574 if (!IS_ERR(tmp)) 4575 add_uevent_var(env, "STATS_PATH=%s", tmp); 4576 kfree(p); 4577 } 4578 } 4579 /* no need for checks, since we are adding at most only 5 keys */ 4580 env->envp[env->envp_idx++] = NULL; 4581 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4582 kfree(env); 4583 } 4584 4585 static void kvm_init_debug(void) 4586 { 4587 struct kvm_stats_debugfs_item *p; 4588 4589 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4590 4591 kvm_debugfs_num_entries = 0; 4592 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4593 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 4594 kvm_debugfs_dir, (void *)(long)p->offset, 4595 stat_fops[p->kind]); 4596 } 4597 } 4598 4599 static int kvm_suspend(void) 4600 { 4601 if (kvm_usage_count) 4602 hardware_disable_nolock(NULL); 4603 return 0; 4604 } 4605 4606 static void kvm_resume(void) 4607 { 4608 if (kvm_usage_count) { 4609 #ifdef CONFIG_LOCKDEP 4610 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4611 #endif 4612 hardware_enable_nolock(NULL); 4613 } 4614 } 4615 4616 static struct syscore_ops kvm_syscore_ops = { 4617 .suspend = kvm_suspend, 4618 .resume = kvm_resume, 4619 }; 4620 4621 static inline 4622 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4623 { 4624 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4625 } 4626 4627 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4628 { 4629 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4630 4631 WRITE_ONCE(vcpu->preempted, false); 4632 WRITE_ONCE(vcpu->ready, false); 4633 4634 __this_cpu_write(kvm_running_vcpu, vcpu); 4635 kvm_arch_sched_in(vcpu, cpu); 4636 kvm_arch_vcpu_load(vcpu, cpu); 4637 } 4638 4639 static void kvm_sched_out(struct preempt_notifier *pn, 4640 struct task_struct *next) 4641 { 4642 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4643 4644 if (current->state == TASK_RUNNING) { 4645 WRITE_ONCE(vcpu->preempted, true); 4646 WRITE_ONCE(vcpu->ready, true); 4647 } 4648 kvm_arch_vcpu_put(vcpu); 4649 __this_cpu_write(kvm_running_vcpu, NULL); 4650 } 4651 4652 /** 4653 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 4654 * 4655 * We can disable preemption locally around accessing the per-CPU variable, 4656 * and use the resolved vcpu pointer after enabling preemption again, 4657 * because even if the current thread is migrated to another CPU, reading 4658 * the per-CPU value later will give us the same value as we update the 4659 * per-CPU variable in the preempt notifier handlers. 4660 */ 4661 struct kvm_vcpu *kvm_get_running_vcpu(void) 4662 { 4663 struct kvm_vcpu *vcpu; 4664 4665 preempt_disable(); 4666 vcpu = __this_cpu_read(kvm_running_vcpu); 4667 preempt_enable(); 4668 4669 return vcpu; 4670 } 4671 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 4672 4673 /** 4674 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 4675 */ 4676 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 4677 { 4678 return &kvm_running_vcpu; 4679 } 4680 4681 struct kvm_cpu_compat_check { 4682 void *opaque; 4683 int *ret; 4684 }; 4685 4686 static void check_processor_compat(void *data) 4687 { 4688 struct kvm_cpu_compat_check *c = data; 4689 4690 *c->ret = kvm_arch_check_processor_compat(c->opaque); 4691 } 4692 4693 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4694 struct module *module) 4695 { 4696 struct kvm_cpu_compat_check c; 4697 int r; 4698 int cpu; 4699 4700 r = kvm_arch_init(opaque); 4701 if (r) 4702 goto out_fail; 4703 4704 /* 4705 * kvm_arch_init makes sure there's at most one caller 4706 * for architectures that support multiple implementations, 4707 * like intel and amd on x86. 4708 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4709 * conflicts in case kvm is already setup for another implementation. 4710 */ 4711 r = kvm_irqfd_init(); 4712 if (r) 4713 goto out_irqfd; 4714 4715 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4716 r = -ENOMEM; 4717 goto out_free_0; 4718 } 4719 4720 r = kvm_arch_hardware_setup(opaque); 4721 if (r < 0) 4722 goto out_free_1; 4723 4724 c.ret = &r; 4725 c.opaque = opaque; 4726 for_each_online_cpu(cpu) { 4727 smp_call_function_single(cpu, check_processor_compat, &c, 1); 4728 if (r < 0) 4729 goto out_free_2; 4730 } 4731 4732 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4733 kvm_starting_cpu, kvm_dying_cpu); 4734 if (r) 4735 goto out_free_2; 4736 register_reboot_notifier(&kvm_reboot_notifier); 4737 4738 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4739 if (!vcpu_align) 4740 vcpu_align = __alignof__(struct kvm_vcpu); 4741 kvm_vcpu_cache = 4742 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4743 SLAB_ACCOUNT, 4744 offsetof(struct kvm_vcpu, arch), 4745 sizeof_field(struct kvm_vcpu, arch), 4746 NULL); 4747 if (!kvm_vcpu_cache) { 4748 r = -ENOMEM; 4749 goto out_free_3; 4750 } 4751 4752 r = kvm_async_pf_init(); 4753 if (r) 4754 goto out_free; 4755 4756 kvm_chardev_ops.owner = module; 4757 kvm_vm_fops.owner = module; 4758 kvm_vcpu_fops.owner = module; 4759 4760 r = misc_register(&kvm_dev); 4761 if (r) { 4762 pr_err("kvm: misc device register failed\n"); 4763 goto out_unreg; 4764 } 4765 4766 register_syscore_ops(&kvm_syscore_ops); 4767 4768 kvm_preempt_ops.sched_in = kvm_sched_in; 4769 kvm_preempt_ops.sched_out = kvm_sched_out; 4770 4771 kvm_init_debug(); 4772 4773 r = kvm_vfio_ops_init(); 4774 WARN_ON(r); 4775 4776 return 0; 4777 4778 out_unreg: 4779 kvm_async_pf_deinit(); 4780 out_free: 4781 kmem_cache_destroy(kvm_vcpu_cache); 4782 out_free_3: 4783 unregister_reboot_notifier(&kvm_reboot_notifier); 4784 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4785 out_free_2: 4786 kvm_arch_hardware_unsetup(); 4787 out_free_1: 4788 free_cpumask_var(cpus_hardware_enabled); 4789 out_free_0: 4790 kvm_irqfd_exit(); 4791 out_irqfd: 4792 kvm_arch_exit(); 4793 out_fail: 4794 return r; 4795 } 4796 EXPORT_SYMBOL_GPL(kvm_init); 4797 4798 void kvm_exit(void) 4799 { 4800 debugfs_remove_recursive(kvm_debugfs_dir); 4801 misc_deregister(&kvm_dev); 4802 kmem_cache_destroy(kvm_vcpu_cache); 4803 kvm_async_pf_deinit(); 4804 unregister_syscore_ops(&kvm_syscore_ops); 4805 unregister_reboot_notifier(&kvm_reboot_notifier); 4806 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4807 on_each_cpu(hardware_disable_nolock, NULL, 1); 4808 kvm_arch_hardware_unsetup(); 4809 kvm_arch_exit(); 4810 kvm_irqfd_exit(); 4811 free_cpumask_var(cpus_hardware_enabled); 4812 kvm_vfio_ops_exit(); 4813 } 4814 EXPORT_SYMBOL_GPL(kvm_exit); 4815 4816 struct kvm_vm_worker_thread_context { 4817 struct kvm *kvm; 4818 struct task_struct *parent; 4819 struct completion init_done; 4820 kvm_vm_thread_fn_t thread_fn; 4821 uintptr_t data; 4822 int err; 4823 }; 4824 4825 static int kvm_vm_worker_thread(void *context) 4826 { 4827 /* 4828 * The init_context is allocated on the stack of the parent thread, so 4829 * we have to locally copy anything that is needed beyond initialization 4830 */ 4831 struct kvm_vm_worker_thread_context *init_context = context; 4832 struct kvm *kvm = init_context->kvm; 4833 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 4834 uintptr_t data = init_context->data; 4835 int err; 4836 4837 err = kthread_park(current); 4838 /* kthread_park(current) is never supposed to return an error */ 4839 WARN_ON(err != 0); 4840 if (err) 4841 goto init_complete; 4842 4843 err = cgroup_attach_task_all(init_context->parent, current); 4844 if (err) { 4845 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 4846 __func__, err); 4847 goto init_complete; 4848 } 4849 4850 set_user_nice(current, task_nice(init_context->parent)); 4851 4852 init_complete: 4853 init_context->err = err; 4854 complete(&init_context->init_done); 4855 init_context = NULL; 4856 4857 if (err) 4858 return err; 4859 4860 /* Wait to be woken up by the spawner before proceeding. */ 4861 kthread_parkme(); 4862 4863 if (!kthread_should_stop()) 4864 err = thread_fn(kvm, data); 4865 4866 return err; 4867 } 4868 4869 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 4870 uintptr_t data, const char *name, 4871 struct task_struct **thread_ptr) 4872 { 4873 struct kvm_vm_worker_thread_context init_context = {}; 4874 struct task_struct *thread; 4875 4876 *thread_ptr = NULL; 4877 init_context.kvm = kvm; 4878 init_context.parent = current; 4879 init_context.thread_fn = thread_fn; 4880 init_context.data = data; 4881 init_completion(&init_context.init_done); 4882 4883 thread = kthread_run(kvm_vm_worker_thread, &init_context, 4884 "%s-%d", name, task_pid_nr(current)); 4885 if (IS_ERR(thread)) 4886 return PTR_ERR(thread); 4887 4888 /* kthread_run is never supposed to return NULL */ 4889 WARN_ON(thread == NULL); 4890 4891 wait_for_completion(&init_context.init_done); 4892 4893 if (!init_context.err) 4894 *thread_ptr = thread; 4895 4896 return init_context.err; 4897 } 4898