xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 9fb29c73)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 				unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127 
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129 
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131 
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134 
135 static bool largepages_enabled = true;
136 
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142 
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 		unsigned long start, unsigned long end, bool blockable)
145 {
146 	return 0;
147 }
148 
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 	if (pfn_valid(pfn))
152 		return PageReserved(pfn_to_page(pfn));
153 
154 	return true;
155 }
156 
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 	int cpu = get_cpu();
163 	preempt_notifier_register(&vcpu->preempt_notifier);
164 	kvm_arch_vcpu_load(vcpu, cpu);
165 	put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168 
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 	preempt_disable();
172 	kvm_arch_vcpu_put(vcpu);
173 	preempt_notifier_unregister(&vcpu->preempt_notifier);
174 	preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183 	/*
184 	 * We need to wait for the VCPU to reenable interrupts and get out of
185 	 * READING_SHADOW_PAGE_TABLES mode.
186 	 */
187 	if (req & KVM_REQUEST_WAIT)
188 		return mode != OUTSIDE_GUEST_MODE;
189 
190 	/*
191 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 	 */
193 	return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 	if (unlikely(!cpus))
203 		cpus = cpu_online_mask;
204 
205 	if (cpumask_empty(cpus))
206 		return false;
207 
208 	smp_call_function_many(cpus, ack_flush, NULL, wait);
209 	return true;
210 }
211 
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 	int i, cpu, me;
216 	struct kvm_vcpu *vcpu;
217 	bool called;
218 
219 	me = get_cpu();
220 
221 	kvm_for_each_vcpu(i, vcpu, kvm) {
222 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223 			continue;
224 
225 		kvm_make_request(req, vcpu);
226 		cpu = vcpu->cpu;
227 
228 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 			continue;
230 
231 		if (tmp != NULL && cpu != -1 && cpu != me &&
232 		    kvm_request_needs_ipi(vcpu, req))
233 			__cpumask_set_cpu(cpu, tmp);
234 	}
235 
236 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 	put_cpu();
238 
239 	return called;
240 }
241 
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 	cpumask_var_t cpus;
245 	bool called;
246 
247 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248 
249 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250 
251 	free_cpumask_var(cpus);
252 	return called;
253 }
254 
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258 	/*
259 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 	 * kvm_make_all_cpus_request.
261 	 */
262 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263 
264 	/*
265 	 * We want to publish modifications to the page tables before reading
266 	 * mode. Pairs with a memory barrier in arch-specific code.
267 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 	 *
271 	 * There is already an smp_mb__after_atomic() before
272 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 	 * barrier here.
274 	 */
275 	if (!kvm_arch_flush_remote_tlb(kvm)
276 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 		++kvm->stat.remote_tlb_flush;
278 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282 
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287 
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 	struct page *page;
291 	int r;
292 
293 	mutex_init(&vcpu->mutex);
294 	vcpu->cpu = -1;
295 	vcpu->kvm = kvm;
296 	vcpu->vcpu_id = id;
297 	vcpu->pid = NULL;
298 	init_swait_queue_head(&vcpu->wq);
299 	kvm_async_pf_vcpu_init(vcpu);
300 
301 	vcpu->pre_pcpu = -1;
302 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303 
304 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 	if (!page) {
306 		r = -ENOMEM;
307 		goto fail;
308 	}
309 	vcpu->run = page_address(page);
310 
311 	kvm_vcpu_set_in_spin_loop(vcpu, false);
312 	kvm_vcpu_set_dy_eligible(vcpu, false);
313 	vcpu->preempted = false;
314 
315 	r = kvm_arch_vcpu_init(vcpu);
316 	if (r < 0)
317 		goto fail_free_run;
318 	return 0;
319 
320 fail_free_run:
321 	free_page((unsigned long)vcpu->run);
322 fail:
323 	return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326 
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 	/*
330 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 	 * will change the vcpu->pid pointer and on uninit all file
332 	 * descriptors are already gone.
333 	 */
334 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 	kvm_arch_vcpu_uninit(vcpu);
336 	free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339 
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 	return container_of(mn, struct kvm, mmu_notifier);
344 }
345 
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 					struct mm_struct *mm,
348 					unsigned long address,
349 					pte_t pte)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 	int idx;
353 
354 	idx = srcu_read_lock(&kvm->srcu);
355 	spin_lock(&kvm->mmu_lock);
356 	kvm->mmu_notifier_seq++;
357 
358 	if (kvm_set_spte_hva(kvm, address, pte))
359 		kvm_flush_remote_tlbs(kvm);
360 
361 	spin_unlock(&kvm->mmu_lock);
362 	srcu_read_unlock(&kvm->srcu, idx);
363 }
364 
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 					const struct mmu_notifier_range *range)
367 {
368 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 	int need_tlb_flush = 0, idx;
370 	int ret;
371 
372 	idx = srcu_read_lock(&kvm->srcu);
373 	spin_lock(&kvm->mmu_lock);
374 	/*
375 	 * The count increase must become visible at unlock time as no
376 	 * spte can be established without taking the mmu_lock and
377 	 * count is also read inside the mmu_lock critical section.
378 	 */
379 	kvm->mmu_notifier_count++;
380 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381 	need_tlb_flush |= kvm->tlbs_dirty;
382 	/* we've to flush the tlb before the pages can be freed */
383 	if (need_tlb_flush)
384 		kvm_flush_remote_tlbs(kvm);
385 
386 	spin_unlock(&kvm->mmu_lock);
387 
388 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389 					range->end, range->blockable);
390 
391 	srcu_read_unlock(&kvm->srcu, idx);
392 
393 	return ret;
394 }
395 
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397 					const struct mmu_notifier_range *range)
398 {
399 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 
401 	spin_lock(&kvm->mmu_lock);
402 	/*
403 	 * This sequence increase will notify the kvm page fault that
404 	 * the page that is going to be mapped in the spte could have
405 	 * been freed.
406 	 */
407 	kvm->mmu_notifier_seq++;
408 	smp_wmb();
409 	/*
410 	 * The above sequence increase must be visible before the
411 	 * below count decrease, which is ensured by the smp_wmb above
412 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
413 	 */
414 	kvm->mmu_notifier_count--;
415 	spin_unlock(&kvm->mmu_lock);
416 
417 	BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419 
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421 					      struct mm_struct *mm,
422 					      unsigned long start,
423 					      unsigned long end)
424 {
425 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
426 	int young, idx;
427 
428 	idx = srcu_read_lock(&kvm->srcu);
429 	spin_lock(&kvm->mmu_lock);
430 
431 	young = kvm_age_hva(kvm, start, end);
432 	if (young)
433 		kvm_flush_remote_tlbs(kvm);
434 
435 	spin_unlock(&kvm->mmu_lock);
436 	srcu_read_unlock(&kvm->srcu, idx);
437 
438 	return young;
439 }
440 
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442 					struct mm_struct *mm,
443 					unsigned long start,
444 					unsigned long end)
445 {
446 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 	int young, idx;
448 
449 	idx = srcu_read_lock(&kvm->srcu);
450 	spin_lock(&kvm->mmu_lock);
451 	/*
452 	 * Even though we do not flush TLB, this will still adversely
453 	 * affect performance on pre-Haswell Intel EPT, where there is
454 	 * no EPT Access Bit to clear so that we have to tear down EPT
455 	 * tables instead. If we find this unacceptable, we can always
456 	 * add a parameter to kvm_age_hva so that it effectively doesn't
457 	 * do anything on clear_young.
458 	 *
459 	 * Also note that currently we never issue secondary TLB flushes
460 	 * from clear_young, leaving this job up to the regular system
461 	 * cadence. If we find this inaccurate, we might come up with a
462 	 * more sophisticated heuristic later.
463 	 */
464 	young = kvm_age_hva(kvm, start, end);
465 	spin_unlock(&kvm->mmu_lock);
466 	srcu_read_unlock(&kvm->srcu, idx);
467 
468 	return young;
469 }
470 
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472 				       struct mm_struct *mm,
473 				       unsigned long address)
474 {
475 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 	int young, idx;
477 
478 	idx = srcu_read_lock(&kvm->srcu);
479 	spin_lock(&kvm->mmu_lock);
480 	young = kvm_test_age_hva(kvm, address);
481 	spin_unlock(&kvm->mmu_lock);
482 	srcu_read_unlock(&kvm->srcu, idx);
483 
484 	return young;
485 }
486 
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488 				     struct mm_struct *mm)
489 {
490 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
491 	int idx;
492 
493 	idx = srcu_read_lock(&kvm->srcu);
494 	kvm_arch_flush_shadow_all(kvm);
495 	srcu_read_unlock(&kvm->srcu, idx);
496 }
497 
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
500 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
501 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
502 	.clear_young		= kvm_mmu_notifier_clear_young,
503 	.test_young		= kvm_mmu_notifier_test_young,
504 	.change_pte		= kvm_mmu_notifier_change_pte,
505 	.release		= kvm_mmu_notifier_release,
506 };
507 
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513 
514 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515 
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518 	return 0;
519 }
520 
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522 
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525 	int i;
526 	struct kvm_memslots *slots;
527 
528 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529 	if (!slots)
530 		return NULL;
531 
532 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533 		slots->id_to_index[i] = slots->memslots[i].id = i;
534 
535 	return slots;
536 }
537 
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540 	if (!memslot->dirty_bitmap)
541 		return;
542 
543 	kvfree(memslot->dirty_bitmap);
544 	memslot->dirty_bitmap = NULL;
545 }
546 
547 /*
548  * Free any memory in @free but not in @dont.
549  */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551 			      struct kvm_memory_slot *dont)
552 {
553 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554 		kvm_destroy_dirty_bitmap(free);
555 
556 	kvm_arch_free_memslot(kvm, free, dont);
557 
558 	free->npages = 0;
559 }
560 
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563 	struct kvm_memory_slot *memslot;
564 
565 	if (!slots)
566 		return;
567 
568 	kvm_for_each_memslot(memslot, slots)
569 		kvm_free_memslot(kvm, memslot, NULL);
570 
571 	kvfree(slots);
572 }
573 
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576 	int i;
577 
578 	if (!kvm->debugfs_dentry)
579 		return;
580 
581 	debugfs_remove_recursive(kvm->debugfs_dentry);
582 
583 	if (kvm->debugfs_stat_data) {
584 		for (i = 0; i < kvm_debugfs_num_entries; i++)
585 			kfree(kvm->debugfs_stat_data[i]);
586 		kfree(kvm->debugfs_stat_data);
587 	}
588 }
589 
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592 	char dir_name[ITOA_MAX_LEN * 2];
593 	struct kvm_stat_data *stat_data;
594 	struct kvm_stats_debugfs_item *p;
595 
596 	if (!debugfs_initialized())
597 		return 0;
598 
599 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601 
602 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603 					 sizeof(*kvm->debugfs_stat_data),
604 					 GFP_KERNEL);
605 	if (!kvm->debugfs_stat_data)
606 		return -ENOMEM;
607 
608 	for (p = debugfs_entries; p->name; p++) {
609 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610 		if (!stat_data)
611 			return -ENOMEM;
612 
613 		stat_data->kvm = kvm;
614 		stat_data->offset = p->offset;
615 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617 				    stat_data, stat_fops_per_vm[p->kind]);
618 	}
619 	return 0;
620 }
621 
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624 	int r, i;
625 	struct kvm *kvm = kvm_arch_alloc_vm();
626 
627 	if (!kvm)
628 		return ERR_PTR(-ENOMEM);
629 
630 	spin_lock_init(&kvm->mmu_lock);
631 	mmgrab(current->mm);
632 	kvm->mm = current->mm;
633 	kvm_eventfd_init(kvm);
634 	mutex_init(&kvm->lock);
635 	mutex_init(&kvm->irq_lock);
636 	mutex_init(&kvm->slots_lock);
637 	refcount_set(&kvm->users_count, 1);
638 	INIT_LIST_HEAD(&kvm->devices);
639 
640 	r = kvm_arch_init_vm(kvm, type);
641 	if (r)
642 		goto out_err_no_disable;
643 
644 	r = hardware_enable_all();
645 	if (r)
646 		goto out_err_no_disable;
647 
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651 
652 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653 
654 	r = -ENOMEM;
655 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656 		struct kvm_memslots *slots = kvm_alloc_memslots();
657 		if (!slots)
658 			goto out_err_no_srcu;
659 		/*
660 		 * Generations must be different for each address space.
661 		 * Init kvm generation close to the maximum to easily test the
662 		 * code of handling generation number wrap-around.
663 		 */
664 		slots->generation = i * 2 - 150;
665 		rcu_assign_pointer(kvm->memslots[i], slots);
666 	}
667 
668 	if (init_srcu_struct(&kvm->srcu))
669 		goto out_err_no_srcu;
670 	if (init_srcu_struct(&kvm->irq_srcu))
671 		goto out_err_no_irq_srcu;
672 	for (i = 0; i < KVM_NR_BUSES; i++) {
673 		rcu_assign_pointer(kvm->buses[i],
674 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675 		if (!kvm->buses[i])
676 			goto out_err;
677 	}
678 
679 	r = kvm_init_mmu_notifier(kvm);
680 	if (r)
681 		goto out_err;
682 
683 	spin_lock(&kvm_lock);
684 	list_add(&kvm->vm_list, &vm_list);
685 	spin_unlock(&kvm_lock);
686 
687 	preempt_notifier_inc();
688 
689 	return kvm;
690 
691 out_err:
692 	cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694 	cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696 	hardware_disable_all();
697 out_err_no_disable:
698 	refcount_set(&kvm->users_count, 0);
699 	for (i = 0; i < KVM_NR_BUSES; i++)
700 		kfree(kvm_get_bus(kvm, i));
701 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703 	kvm_arch_free_vm(kvm);
704 	mmdrop(current->mm);
705 	return ERR_PTR(r);
706 }
707 
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710 	struct kvm_device *dev, *tmp;
711 
712 	/*
713 	 * We do not need to take the kvm->lock here, because nobody else
714 	 * has a reference to the struct kvm at this point and therefore
715 	 * cannot access the devices list anyhow.
716 	 */
717 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718 		list_del(&dev->vm_node);
719 		dev->ops->destroy(dev);
720 	}
721 }
722 
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725 	int i;
726 	struct mm_struct *mm = kvm->mm;
727 
728 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729 	kvm_destroy_vm_debugfs(kvm);
730 	kvm_arch_sync_events(kvm);
731 	spin_lock(&kvm_lock);
732 	list_del(&kvm->vm_list);
733 	spin_unlock(&kvm_lock);
734 	kvm_free_irq_routing(kvm);
735 	for (i = 0; i < KVM_NR_BUSES; i++) {
736 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737 
738 		if (bus)
739 			kvm_io_bus_destroy(bus);
740 		kvm->buses[i] = NULL;
741 	}
742 	kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 	kvm_arch_flush_shadow_all(kvm);
747 #endif
748 	kvm_arch_destroy_vm(kvm);
749 	kvm_destroy_devices(kvm);
750 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 	cleanup_srcu_struct(&kvm->irq_srcu);
753 	cleanup_srcu_struct(&kvm->srcu);
754 	kvm_arch_free_vm(kvm);
755 	preempt_notifier_dec();
756 	hardware_disable_all();
757 	mmdrop(mm);
758 }
759 
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 	refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765 
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 	if (refcount_dec_and_test(&kvm->users_count))
769 		kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772 
773 
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 	struct kvm *kvm = filp->private_data;
777 
778 	kvm_irqfd_release(kvm);
779 
780 	kvm_put_kvm(kvm);
781 	return 0;
782 }
783 
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791 
792 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 	if (!memslot->dirty_bitmap)
794 		return -ENOMEM;
795 
796 	return 0;
797 }
798 
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806 			    struct kvm_memory_slot *new,
807 			    enum kvm_mr_change change)
808 {
809 	int id = new->id;
810 	int i = slots->id_to_index[id];
811 	struct kvm_memory_slot *mslots = slots->memslots;
812 
813 	WARN_ON(mslots[i].id != id);
814 	switch (change) {
815 	case KVM_MR_CREATE:
816 		slots->used_slots++;
817 		WARN_ON(mslots[i].npages || !new->npages);
818 		break;
819 	case KVM_MR_DELETE:
820 		slots->used_slots--;
821 		WARN_ON(new->npages || !mslots[i].npages);
822 		break;
823 	default:
824 		break;
825 	}
826 
827 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
828 	       new->base_gfn <= mslots[i + 1].base_gfn) {
829 		if (!mslots[i + 1].npages)
830 			break;
831 		mslots[i] = mslots[i + 1];
832 		slots->id_to_index[mslots[i].id] = i;
833 		i++;
834 	}
835 
836 	/*
837 	 * The ">=" is needed when creating a slot with base_gfn == 0,
838 	 * so that it moves before all those with base_gfn == npages == 0.
839 	 *
840 	 * On the other hand, if new->npages is zero, the above loop has
841 	 * already left i pointing to the beginning of the empty part of
842 	 * mslots, and the ">=" would move the hole backwards in this
843 	 * case---which is wrong.  So skip the loop when deleting a slot.
844 	 */
845 	if (new->npages) {
846 		while (i > 0 &&
847 		       new->base_gfn >= mslots[i - 1].base_gfn) {
848 			mslots[i] = mslots[i - 1];
849 			slots->id_to_index[mslots[i].id] = i;
850 			i--;
851 		}
852 	} else
853 		WARN_ON_ONCE(i != slots->used_slots);
854 
855 	mslots[i] = *new;
856 	slots->id_to_index[mslots[i].id] = i;
857 }
858 
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862 
863 #ifdef __KVM_HAVE_READONLY_MEM
864 	valid_flags |= KVM_MEM_READONLY;
865 #endif
866 
867 	if (mem->flags & ~valid_flags)
868 		return -EINVAL;
869 
870 	return 0;
871 }
872 
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874 		int as_id, struct kvm_memslots *slots)
875 {
876 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877 
878 	/*
879 	 * Set the low bit in the generation, which disables SPTE caching
880 	 * until the end of synchronize_srcu_expedited.
881 	 */
882 	WARN_ON(old_memslots->generation & 1);
883 	slots->generation = old_memslots->generation + 1;
884 
885 	rcu_assign_pointer(kvm->memslots[as_id], slots);
886 	synchronize_srcu_expedited(&kvm->srcu);
887 
888 	/*
889 	 * Increment the new memslot generation a second time. This prevents
890 	 * vm exits that race with memslot updates from caching a memslot
891 	 * generation that will (potentially) be valid forever.
892 	 *
893 	 * Generations must be unique even across address spaces.  We do not need
894 	 * a global counter for that, instead the generation space is evenly split
895 	 * across address spaces.  For example, with two address spaces, address
896 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897 	 * use generations 2, 6, 10, 14, ...
898 	 */
899 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900 
901 	kvm_arch_memslots_updated(kvm, slots);
902 
903 	return old_memslots;
904 }
905 
906 /*
907  * Allocate some memory and give it an address in the guest physical address
908  * space.
909  *
910  * Discontiguous memory is allowed, mostly for framebuffers.
911  *
912  * Must be called holding kvm->slots_lock for write.
913  */
914 int __kvm_set_memory_region(struct kvm *kvm,
915 			    const struct kvm_userspace_memory_region *mem)
916 {
917 	int r;
918 	gfn_t base_gfn;
919 	unsigned long npages;
920 	struct kvm_memory_slot *slot;
921 	struct kvm_memory_slot old, new;
922 	struct kvm_memslots *slots = NULL, *old_memslots;
923 	int as_id, id;
924 	enum kvm_mr_change change;
925 
926 	r = check_memory_region_flags(mem);
927 	if (r)
928 		goto out;
929 
930 	r = -EINVAL;
931 	as_id = mem->slot >> 16;
932 	id = (u16)mem->slot;
933 
934 	/* General sanity checks */
935 	if (mem->memory_size & (PAGE_SIZE - 1))
936 		goto out;
937 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938 		goto out;
939 	/* We can read the guest memory with __xxx_user() later on. */
940 	if ((id < KVM_USER_MEM_SLOTS) &&
941 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
943 			mem->memory_size)))
944 		goto out;
945 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
946 		goto out;
947 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
948 		goto out;
949 
950 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
951 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
952 	npages = mem->memory_size >> PAGE_SHIFT;
953 
954 	if (npages > KVM_MEM_MAX_NR_PAGES)
955 		goto out;
956 
957 	new = old = *slot;
958 
959 	new.id = id;
960 	new.base_gfn = base_gfn;
961 	new.npages = npages;
962 	new.flags = mem->flags;
963 
964 	if (npages) {
965 		if (!old.npages)
966 			change = KVM_MR_CREATE;
967 		else { /* Modify an existing slot. */
968 			if ((mem->userspace_addr != old.userspace_addr) ||
969 			    (npages != old.npages) ||
970 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
971 				goto out;
972 
973 			if (base_gfn != old.base_gfn)
974 				change = KVM_MR_MOVE;
975 			else if (new.flags != old.flags)
976 				change = KVM_MR_FLAGS_ONLY;
977 			else { /* Nothing to change. */
978 				r = 0;
979 				goto out;
980 			}
981 		}
982 	} else {
983 		if (!old.npages)
984 			goto out;
985 
986 		change = KVM_MR_DELETE;
987 		new.base_gfn = 0;
988 		new.flags = 0;
989 	}
990 
991 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
992 		/* Check for overlaps */
993 		r = -EEXIST;
994 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
995 			if (slot->id == id)
996 				continue;
997 			if (!((base_gfn + npages <= slot->base_gfn) ||
998 			      (base_gfn >= slot->base_gfn + slot->npages)))
999 				goto out;
1000 		}
1001 	}
1002 
1003 	/* Free page dirty bitmap if unneeded */
1004 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005 		new.dirty_bitmap = NULL;
1006 
1007 	r = -ENOMEM;
1008 	if (change == KVM_MR_CREATE) {
1009 		new.userspace_addr = mem->userspace_addr;
1010 
1011 		if (kvm_arch_create_memslot(kvm, &new, npages))
1012 			goto out_free;
1013 	}
1014 
1015 	/* Allocate page dirty bitmap if needed */
1016 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017 		if (kvm_create_dirty_bitmap(&new) < 0)
1018 			goto out_free;
1019 	}
1020 
1021 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022 	if (!slots)
1023 		goto out_free;
1024 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025 
1026 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027 		slot = id_to_memslot(slots, id);
1028 		slot->flags |= KVM_MEMSLOT_INVALID;
1029 
1030 		old_memslots = install_new_memslots(kvm, as_id, slots);
1031 
1032 		/* From this point no new shadow pages pointing to a deleted,
1033 		 * or moved, memslot will be created.
1034 		 *
1035 		 * validation of sp->gfn happens in:
1036 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1038 		 */
1039 		kvm_arch_flush_shadow_memslot(kvm, slot);
1040 
1041 		/*
1042 		 * We can re-use the old_memslots from above, the only difference
1043 		 * from the currently installed memslots is the invalid flag.  This
1044 		 * will get overwritten by update_memslots anyway.
1045 		 */
1046 		slots = old_memslots;
1047 	}
1048 
1049 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050 	if (r)
1051 		goto out_slots;
1052 
1053 	/* actual memory is freed via old in kvm_free_memslot below */
1054 	if (change == KVM_MR_DELETE) {
1055 		new.dirty_bitmap = NULL;
1056 		memset(&new.arch, 0, sizeof(new.arch));
1057 	}
1058 
1059 	update_memslots(slots, &new, change);
1060 	old_memslots = install_new_memslots(kvm, as_id, slots);
1061 
1062 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063 
1064 	kvm_free_memslot(kvm, &old, &new);
1065 	kvfree(old_memslots);
1066 	return 0;
1067 
1068 out_slots:
1069 	kvfree(slots);
1070 out_free:
1071 	kvm_free_memslot(kvm, &new, &old);
1072 out:
1073 	return r;
1074 }
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076 
1077 int kvm_set_memory_region(struct kvm *kvm,
1078 			  const struct kvm_userspace_memory_region *mem)
1079 {
1080 	int r;
1081 
1082 	mutex_lock(&kvm->slots_lock);
1083 	r = __kvm_set_memory_region(kvm, mem);
1084 	mutex_unlock(&kvm->slots_lock);
1085 	return r;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088 
1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090 					  struct kvm_userspace_memory_region *mem)
1091 {
1092 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093 		return -EINVAL;
1094 
1095 	return kvm_set_memory_region(kvm, mem);
1096 }
1097 
1098 int kvm_get_dirty_log(struct kvm *kvm,
1099 			struct kvm_dirty_log *log, int *is_dirty)
1100 {
1101 	struct kvm_memslots *slots;
1102 	struct kvm_memory_slot *memslot;
1103 	int i, as_id, id;
1104 	unsigned long n;
1105 	unsigned long any = 0;
1106 
1107 	as_id = log->slot >> 16;
1108 	id = (u16)log->slot;
1109 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110 		return -EINVAL;
1111 
1112 	slots = __kvm_memslots(kvm, as_id);
1113 	memslot = id_to_memslot(slots, id);
1114 	if (!memslot->dirty_bitmap)
1115 		return -ENOENT;
1116 
1117 	n = kvm_dirty_bitmap_bytes(memslot);
1118 
1119 	for (i = 0; !any && i < n/sizeof(long); ++i)
1120 		any = memslot->dirty_bitmap[i];
1121 
1122 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123 		return -EFAULT;
1124 
1125 	if (any)
1126 		*is_dirty = 1;
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130 
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *	and reenable dirty page tracking for the corresponding pages.
1135  * @kvm:	pointer to kvm instance
1136  * @log:	slot id and address to which we copy the log
1137  * @is_dirty:	flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 			struct kvm_dirty_log *log, bool *flush)
1156 {
1157 	struct kvm_memslots *slots;
1158 	struct kvm_memory_slot *memslot;
1159 	int i, as_id, id;
1160 	unsigned long n;
1161 	unsigned long *dirty_bitmap;
1162 	unsigned long *dirty_bitmap_buffer;
1163 
1164 	as_id = log->slot >> 16;
1165 	id = (u16)log->slot;
1166 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167 		return -EINVAL;
1168 
1169 	slots = __kvm_memslots(kvm, as_id);
1170 	memslot = id_to_memslot(slots, id);
1171 
1172 	dirty_bitmap = memslot->dirty_bitmap;
1173 	if (!dirty_bitmap)
1174 		return -ENOENT;
1175 
1176 	n = kvm_dirty_bitmap_bytes(memslot);
1177 	*flush = false;
1178 	if (kvm->manual_dirty_log_protect) {
1179 		/*
1180 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1181 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1182 		 * is some code duplication between this function and
1183 		 * kvm_get_dirty_log, but hopefully all architecture
1184 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1185 		 * can be eliminated.
1186 		 */
1187 		dirty_bitmap_buffer = dirty_bitmap;
1188 	} else {
1189 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1190 		memset(dirty_bitmap_buffer, 0, n);
1191 
1192 		spin_lock(&kvm->mmu_lock);
1193 		for (i = 0; i < n / sizeof(long); i++) {
1194 			unsigned long mask;
1195 			gfn_t offset;
1196 
1197 			if (!dirty_bitmap[i])
1198 				continue;
1199 
1200 			*flush = true;
1201 			mask = xchg(&dirty_bitmap[i], 0);
1202 			dirty_bitmap_buffer[i] = mask;
1203 
1204 			if (mask) {
1205 				offset = i * BITS_PER_LONG;
1206 				kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207 									offset, mask);
1208 			}
1209 		}
1210 		spin_unlock(&kvm->mmu_lock);
1211 	}
1212 
1213 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1214 		return -EFAULT;
1215 	return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1218 
1219 /**
1220  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1221  *	and reenable dirty page tracking for the corresponding pages.
1222  * @kvm:	pointer to kvm instance
1223  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1224  */
1225 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1226 				struct kvm_clear_dirty_log *log, bool *flush)
1227 {
1228 	struct kvm_memslots *slots;
1229 	struct kvm_memory_slot *memslot;
1230 	int as_id, id;
1231 	gfn_t offset;
1232 	unsigned long i, n;
1233 	unsigned long *dirty_bitmap;
1234 	unsigned long *dirty_bitmap_buffer;
1235 
1236 	as_id = log->slot >> 16;
1237 	id = (u16)log->slot;
1238 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1239 		return -EINVAL;
1240 
1241 	if ((log->first_page & 63) || (log->num_pages & 63))
1242 		return -EINVAL;
1243 
1244 	slots = __kvm_memslots(kvm, as_id);
1245 	memslot = id_to_memslot(slots, id);
1246 
1247 	dirty_bitmap = memslot->dirty_bitmap;
1248 	if (!dirty_bitmap)
1249 		return -ENOENT;
1250 
1251 	n = kvm_dirty_bitmap_bytes(memslot);
1252 
1253 	if (log->first_page > memslot->npages ||
1254 	    log->num_pages > memslot->npages - log->first_page)
1255 			return -EINVAL;
1256 
1257 	*flush = false;
1258 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1259 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1260 		return -EFAULT;
1261 
1262 	spin_lock(&kvm->mmu_lock);
1263 	for (offset = log->first_page,
1264 	     i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1265 	     i++, offset += BITS_PER_LONG) {
1266 		unsigned long mask = *dirty_bitmap_buffer++;
1267 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1268 		if (!mask)
1269 			continue;
1270 
1271 		mask &= atomic_long_fetch_andnot(mask, p);
1272 
1273 		/*
1274 		 * mask contains the bits that really have been cleared.  This
1275 		 * never includes any bits beyond the length of the memslot (if
1276 		 * the length is not aligned to 64 pages), therefore it is not
1277 		 * a problem if userspace sets them in log->dirty_bitmap.
1278 		*/
1279 		if (mask) {
1280 			*flush = true;
1281 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1282 								offset, mask);
1283 		}
1284 	}
1285 	spin_unlock(&kvm->mmu_lock);
1286 
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1290 #endif
1291 
1292 bool kvm_largepages_enabled(void)
1293 {
1294 	return largepages_enabled;
1295 }
1296 
1297 void kvm_disable_largepages(void)
1298 {
1299 	largepages_enabled = false;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1302 
1303 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1304 {
1305 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1308 
1309 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1312 }
1313 
1314 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1315 {
1316 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1317 
1318 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1319 	      memslot->flags & KVM_MEMSLOT_INVALID)
1320 		return false;
1321 
1322 	return true;
1323 }
1324 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1325 
1326 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1327 {
1328 	struct vm_area_struct *vma;
1329 	unsigned long addr, size;
1330 
1331 	size = PAGE_SIZE;
1332 
1333 	addr = gfn_to_hva(kvm, gfn);
1334 	if (kvm_is_error_hva(addr))
1335 		return PAGE_SIZE;
1336 
1337 	down_read(&current->mm->mmap_sem);
1338 	vma = find_vma(current->mm, addr);
1339 	if (!vma)
1340 		goto out;
1341 
1342 	size = vma_kernel_pagesize(vma);
1343 
1344 out:
1345 	up_read(&current->mm->mmap_sem);
1346 
1347 	return size;
1348 }
1349 
1350 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1351 {
1352 	return slot->flags & KVM_MEM_READONLY;
1353 }
1354 
1355 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1356 				       gfn_t *nr_pages, bool write)
1357 {
1358 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1359 		return KVM_HVA_ERR_BAD;
1360 
1361 	if (memslot_is_readonly(slot) && write)
1362 		return KVM_HVA_ERR_RO_BAD;
1363 
1364 	if (nr_pages)
1365 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1366 
1367 	return __gfn_to_hva_memslot(slot, gfn);
1368 }
1369 
1370 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1371 				     gfn_t *nr_pages)
1372 {
1373 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1374 }
1375 
1376 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1377 					gfn_t gfn)
1378 {
1379 	return gfn_to_hva_many(slot, gfn, NULL);
1380 }
1381 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1382 
1383 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1384 {
1385 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1386 }
1387 EXPORT_SYMBOL_GPL(gfn_to_hva);
1388 
1389 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1390 {
1391 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1394 
1395 /*
1396  * Return the hva of a @gfn and the R/W attribute if possible.
1397  *
1398  * @slot: the kvm_memory_slot which contains @gfn
1399  * @gfn: the gfn to be translated
1400  * @writable: used to return the read/write attribute of the @slot if the hva
1401  * is valid and @writable is not NULL
1402  */
1403 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1404 				      gfn_t gfn, bool *writable)
1405 {
1406 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1407 
1408 	if (!kvm_is_error_hva(hva) && writable)
1409 		*writable = !memslot_is_readonly(slot);
1410 
1411 	return hva;
1412 }
1413 
1414 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1415 {
1416 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1417 
1418 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1419 }
1420 
1421 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1422 {
1423 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1424 
1425 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1426 }
1427 
1428 static inline int check_user_page_hwpoison(unsigned long addr)
1429 {
1430 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1431 
1432 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1433 	return rc == -EHWPOISON;
1434 }
1435 
1436 /*
1437  * The fast path to get the writable pfn which will be stored in @pfn,
1438  * true indicates success, otherwise false is returned.  It's also the
1439  * only part that runs if we can are in atomic context.
1440  */
1441 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1442 			    bool *writable, kvm_pfn_t *pfn)
1443 {
1444 	struct page *page[1];
1445 	int npages;
1446 
1447 	/*
1448 	 * Fast pin a writable pfn only if it is a write fault request
1449 	 * or the caller allows to map a writable pfn for a read fault
1450 	 * request.
1451 	 */
1452 	if (!(write_fault || writable))
1453 		return false;
1454 
1455 	npages = __get_user_pages_fast(addr, 1, 1, page);
1456 	if (npages == 1) {
1457 		*pfn = page_to_pfn(page[0]);
1458 
1459 		if (writable)
1460 			*writable = true;
1461 		return true;
1462 	}
1463 
1464 	return false;
1465 }
1466 
1467 /*
1468  * The slow path to get the pfn of the specified host virtual address,
1469  * 1 indicates success, -errno is returned if error is detected.
1470  */
1471 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1472 			   bool *writable, kvm_pfn_t *pfn)
1473 {
1474 	unsigned int flags = FOLL_HWPOISON;
1475 	struct page *page;
1476 	int npages = 0;
1477 
1478 	might_sleep();
1479 
1480 	if (writable)
1481 		*writable = write_fault;
1482 
1483 	if (write_fault)
1484 		flags |= FOLL_WRITE;
1485 	if (async)
1486 		flags |= FOLL_NOWAIT;
1487 
1488 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1489 	if (npages != 1)
1490 		return npages;
1491 
1492 	/* map read fault as writable if possible */
1493 	if (unlikely(!write_fault) && writable) {
1494 		struct page *wpage;
1495 
1496 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1497 			*writable = true;
1498 			put_page(page);
1499 			page = wpage;
1500 		}
1501 	}
1502 	*pfn = page_to_pfn(page);
1503 	return npages;
1504 }
1505 
1506 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1507 {
1508 	if (unlikely(!(vma->vm_flags & VM_READ)))
1509 		return false;
1510 
1511 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1512 		return false;
1513 
1514 	return true;
1515 }
1516 
1517 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1518 			       unsigned long addr, bool *async,
1519 			       bool write_fault, bool *writable,
1520 			       kvm_pfn_t *p_pfn)
1521 {
1522 	unsigned long pfn;
1523 	int r;
1524 
1525 	r = follow_pfn(vma, addr, &pfn);
1526 	if (r) {
1527 		/*
1528 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1529 		 * not call the fault handler, so do it here.
1530 		 */
1531 		bool unlocked = false;
1532 		r = fixup_user_fault(current, current->mm, addr,
1533 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1534 				     &unlocked);
1535 		if (unlocked)
1536 			return -EAGAIN;
1537 		if (r)
1538 			return r;
1539 
1540 		r = follow_pfn(vma, addr, &pfn);
1541 		if (r)
1542 			return r;
1543 
1544 	}
1545 
1546 	if (writable)
1547 		*writable = true;
1548 
1549 	/*
1550 	 * Get a reference here because callers of *hva_to_pfn* and
1551 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1552 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1553 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1554 	 * simply do nothing for reserved pfns.
1555 	 *
1556 	 * Whoever called remap_pfn_range is also going to call e.g.
1557 	 * unmap_mapping_range before the underlying pages are freed,
1558 	 * causing a call to our MMU notifier.
1559 	 */
1560 	kvm_get_pfn(pfn);
1561 
1562 	*p_pfn = pfn;
1563 	return 0;
1564 }
1565 
1566 /*
1567  * Pin guest page in memory and return its pfn.
1568  * @addr: host virtual address which maps memory to the guest
1569  * @atomic: whether this function can sleep
1570  * @async: whether this function need to wait IO complete if the
1571  *         host page is not in the memory
1572  * @write_fault: whether we should get a writable host page
1573  * @writable: whether it allows to map a writable host page for !@write_fault
1574  *
1575  * The function will map a writable host page for these two cases:
1576  * 1): @write_fault = true
1577  * 2): @write_fault = false && @writable, @writable will tell the caller
1578  *     whether the mapping is writable.
1579  */
1580 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1581 			bool write_fault, bool *writable)
1582 {
1583 	struct vm_area_struct *vma;
1584 	kvm_pfn_t pfn = 0;
1585 	int npages, r;
1586 
1587 	/* we can do it either atomically or asynchronously, not both */
1588 	BUG_ON(atomic && async);
1589 
1590 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1591 		return pfn;
1592 
1593 	if (atomic)
1594 		return KVM_PFN_ERR_FAULT;
1595 
1596 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1597 	if (npages == 1)
1598 		return pfn;
1599 
1600 	down_read(&current->mm->mmap_sem);
1601 	if (npages == -EHWPOISON ||
1602 	      (!async && check_user_page_hwpoison(addr))) {
1603 		pfn = KVM_PFN_ERR_HWPOISON;
1604 		goto exit;
1605 	}
1606 
1607 retry:
1608 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1609 
1610 	if (vma == NULL)
1611 		pfn = KVM_PFN_ERR_FAULT;
1612 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1613 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1614 		if (r == -EAGAIN)
1615 			goto retry;
1616 		if (r < 0)
1617 			pfn = KVM_PFN_ERR_FAULT;
1618 	} else {
1619 		if (async && vma_is_valid(vma, write_fault))
1620 			*async = true;
1621 		pfn = KVM_PFN_ERR_FAULT;
1622 	}
1623 exit:
1624 	up_read(&current->mm->mmap_sem);
1625 	return pfn;
1626 }
1627 
1628 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1629 			       bool atomic, bool *async, bool write_fault,
1630 			       bool *writable)
1631 {
1632 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1633 
1634 	if (addr == KVM_HVA_ERR_RO_BAD) {
1635 		if (writable)
1636 			*writable = false;
1637 		return KVM_PFN_ERR_RO_FAULT;
1638 	}
1639 
1640 	if (kvm_is_error_hva(addr)) {
1641 		if (writable)
1642 			*writable = false;
1643 		return KVM_PFN_NOSLOT;
1644 	}
1645 
1646 	/* Do not map writable pfn in the readonly memslot. */
1647 	if (writable && memslot_is_readonly(slot)) {
1648 		*writable = false;
1649 		writable = NULL;
1650 	}
1651 
1652 	return hva_to_pfn(addr, atomic, async, write_fault,
1653 			  writable);
1654 }
1655 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1656 
1657 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1658 		      bool *writable)
1659 {
1660 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1661 				    write_fault, writable);
1662 }
1663 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1664 
1665 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1666 {
1667 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1670 
1671 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1672 {
1673 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1676 
1677 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1678 {
1679 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1682 
1683 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1684 {
1685 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1688 
1689 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1690 {
1691 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1692 }
1693 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1694 
1695 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1696 {
1697 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1700 
1701 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1702 			    struct page **pages, int nr_pages)
1703 {
1704 	unsigned long addr;
1705 	gfn_t entry = 0;
1706 
1707 	addr = gfn_to_hva_many(slot, gfn, &entry);
1708 	if (kvm_is_error_hva(addr))
1709 		return -1;
1710 
1711 	if (entry < nr_pages)
1712 		return 0;
1713 
1714 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1715 }
1716 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1717 
1718 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1719 {
1720 	if (is_error_noslot_pfn(pfn))
1721 		return KVM_ERR_PTR_BAD_PAGE;
1722 
1723 	if (kvm_is_reserved_pfn(pfn)) {
1724 		WARN_ON(1);
1725 		return KVM_ERR_PTR_BAD_PAGE;
1726 	}
1727 
1728 	return pfn_to_page(pfn);
1729 }
1730 
1731 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1732 {
1733 	kvm_pfn_t pfn;
1734 
1735 	pfn = gfn_to_pfn(kvm, gfn);
1736 
1737 	return kvm_pfn_to_page(pfn);
1738 }
1739 EXPORT_SYMBOL_GPL(gfn_to_page);
1740 
1741 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1742 {
1743 	kvm_pfn_t pfn;
1744 
1745 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1746 
1747 	return kvm_pfn_to_page(pfn);
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1750 
1751 void kvm_release_page_clean(struct page *page)
1752 {
1753 	WARN_ON(is_error_page(page));
1754 
1755 	kvm_release_pfn_clean(page_to_pfn(page));
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1758 
1759 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1760 {
1761 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1762 		put_page(pfn_to_page(pfn));
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1765 
1766 void kvm_release_page_dirty(struct page *page)
1767 {
1768 	WARN_ON(is_error_page(page));
1769 
1770 	kvm_release_pfn_dirty(page_to_pfn(page));
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1773 
1774 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1775 {
1776 	kvm_set_pfn_dirty(pfn);
1777 	kvm_release_pfn_clean(pfn);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1780 
1781 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1782 {
1783 	if (!kvm_is_reserved_pfn(pfn)) {
1784 		struct page *page = pfn_to_page(pfn);
1785 
1786 		if (!PageReserved(page))
1787 			SetPageDirty(page);
1788 	}
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1791 
1792 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1793 {
1794 	if (!kvm_is_reserved_pfn(pfn))
1795 		mark_page_accessed(pfn_to_page(pfn));
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1798 
1799 void kvm_get_pfn(kvm_pfn_t pfn)
1800 {
1801 	if (!kvm_is_reserved_pfn(pfn))
1802 		get_page(pfn_to_page(pfn));
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1805 
1806 static int next_segment(unsigned long len, int offset)
1807 {
1808 	if (len > PAGE_SIZE - offset)
1809 		return PAGE_SIZE - offset;
1810 	else
1811 		return len;
1812 }
1813 
1814 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1815 				 void *data, int offset, int len)
1816 {
1817 	int r;
1818 	unsigned long addr;
1819 
1820 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1821 	if (kvm_is_error_hva(addr))
1822 		return -EFAULT;
1823 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1824 	if (r)
1825 		return -EFAULT;
1826 	return 0;
1827 }
1828 
1829 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1830 			int len)
1831 {
1832 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1833 
1834 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1837 
1838 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1839 			     int offset, int len)
1840 {
1841 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1842 
1843 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1846 
1847 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1848 {
1849 	gfn_t gfn = gpa >> PAGE_SHIFT;
1850 	int seg;
1851 	int offset = offset_in_page(gpa);
1852 	int ret;
1853 
1854 	while ((seg = next_segment(len, offset)) != 0) {
1855 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1856 		if (ret < 0)
1857 			return ret;
1858 		offset = 0;
1859 		len -= seg;
1860 		data += seg;
1861 		++gfn;
1862 	}
1863 	return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_read_guest);
1866 
1867 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1868 {
1869 	gfn_t gfn = gpa >> PAGE_SHIFT;
1870 	int seg;
1871 	int offset = offset_in_page(gpa);
1872 	int ret;
1873 
1874 	while ((seg = next_segment(len, offset)) != 0) {
1875 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1876 		if (ret < 0)
1877 			return ret;
1878 		offset = 0;
1879 		len -= seg;
1880 		data += seg;
1881 		++gfn;
1882 	}
1883 	return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1886 
1887 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1888 			           void *data, int offset, unsigned long len)
1889 {
1890 	int r;
1891 	unsigned long addr;
1892 
1893 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1894 	if (kvm_is_error_hva(addr))
1895 		return -EFAULT;
1896 	pagefault_disable();
1897 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1898 	pagefault_enable();
1899 	if (r)
1900 		return -EFAULT;
1901 	return 0;
1902 }
1903 
1904 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1905 			  unsigned long len)
1906 {
1907 	gfn_t gfn = gpa >> PAGE_SHIFT;
1908 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1909 	int offset = offset_in_page(gpa);
1910 
1911 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1914 
1915 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1916 			       void *data, unsigned long len)
1917 {
1918 	gfn_t gfn = gpa >> PAGE_SHIFT;
1919 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1920 	int offset = offset_in_page(gpa);
1921 
1922 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1923 }
1924 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1925 
1926 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1927 			          const void *data, int offset, int len)
1928 {
1929 	int r;
1930 	unsigned long addr;
1931 
1932 	addr = gfn_to_hva_memslot(memslot, gfn);
1933 	if (kvm_is_error_hva(addr))
1934 		return -EFAULT;
1935 	r = __copy_to_user((void __user *)addr + offset, data, len);
1936 	if (r)
1937 		return -EFAULT;
1938 	mark_page_dirty_in_slot(memslot, gfn);
1939 	return 0;
1940 }
1941 
1942 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1943 			 const void *data, int offset, int len)
1944 {
1945 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1946 
1947 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1950 
1951 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1952 			      const void *data, int offset, int len)
1953 {
1954 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1955 
1956 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1959 
1960 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1961 		    unsigned long len)
1962 {
1963 	gfn_t gfn = gpa >> PAGE_SHIFT;
1964 	int seg;
1965 	int offset = offset_in_page(gpa);
1966 	int ret;
1967 
1968 	while ((seg = next_segment(len, offset)) != 0) {
1969 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1970 		if (ret < 0)
1971 			return ret;
1972 		offset = 0;
1973 		len -= seg;
1974 		data += seg;
1975 		++gfn;
1976 	}
1977 	return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest);
1980 
1981 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1982 		         unsigned long len)
1983 {
1984 	gfn_t gfn = gpa >> PAGE_SHIFT;
1985 	int seg;
1986 	int offset = offset_in_page(gpa);
1987 	int ret;
1988 
1989 	while ((seg = next_segment(len, offset)) != 0) {
1990 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1991 		if (ret < 0)
1992 			return ret;
1993 		offset = 0;
1994 		len -= seg;
1995 		data += seg;
1996 		++gfn;
1997 	}
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2001 
2002 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2003 				       struct gfn_to_hva_cache *ghc,
2004 				       gpa_t gpa, unsigned long len)
2005 {
2006 	int offset = offset_in_page(gpa);
2007 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2008 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2009 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2010 	gfn_t nr_pages_avail;
2011 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2012 
2013 	ghc->gpa = gpa;
2014 	ghc->generation = slots->generation;
2015 	ghc->len = len;
2016 	ghc->hva = KVM_HVA_ERR_BAD;
2017 
2018 	/*
2019 	 * If the requested region crosses two memslots, we still
2020 	 * verify that the entire region is valid here.
2021 	 */
2022 	while (!r && start_gfn <= end_gfn) {
2023 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2024 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2025 					   &nr_pages_avail);
2026 		if (kvm_is_error_hva(ghc->hva))
2027 			r = -EFAULT;
2028 		start_gfn += nr_pages_avail;
2029 	}
2030 
2031 	/* Use the slow path for cross page reads and writes. */
2032 	if (!r && nr_pages_needed == 1)
2033 		ghc->hva += offset;
2034 	else
2035 		ghc->memslot = NULL;
2036 
2037 	return r;
2038 }
2039 
2040 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2041 			      gpa_t gpa, unsigned long len)
2042 {
2043 	struct kvm_memslots *slots = kvm_memslots(kvm);
2044 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2047 
2048 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2049 				  void *data, unsigned int offset,
2050 				  unsigned long len)
2051 {
2052 	struct kvm_memslots *slots = kvm_memslots(kvm);
2053 	int r;
2054 	gpa_t gpa = ghc->gpa + offset;
2055 
2056 	BUG_ON(len + offset > ghc->len);
2057 
2058 	if (slots->generation != ghc->generation)
2059 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2060 
2061 	if (unlikely(!ghc->memslot))
2062 		return kvm_write_guest(kvm, gpa, data, len);
2063 
2064 	if (kvm_is_error_hva(ghc->hva))
2065 		return -EFAULT;
2066 
2067 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2068 	if (r)
2069 		return -EFAULT;
2070 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2071 
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2075 
2076 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2077 			   void *data, unsigned long len)
2078 {
2079 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2082 
2083 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2084 			   void *data, unsigned long len)
2085 {
2086 	struct kvm_memslots *slots = kvm_memslots(kvm);
2087 	int r;
2088 
2089 	BUG_ON(len > ghc->len);
2090 
2091 	if (slots->generation != ghc->generation)
2092 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2093 
2094 	if (unlikely(!ghc->memslot))
2095 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2096 
2097 	if (kvm_is_error_hva(ghc->hva))
2098 		return -EFAULT;
2099 
2100 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2101 	if (r)
2102 		return -EFAULT;
2103 
2104 	return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2107 
2108 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2109 {
2110 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2111 
2112 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2115 
2116 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2117 {
2118 	gfn_t gfn = gpa >> PAGE_SHIFT;
2119 	int seg;
2120 	int offset = offset_in_page(gpa);
2121 	int ret;
2122 
2123 	while ((seg = next_segment(len, offset)) != 0) {
2124 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2125 		if (ret < 0)
2126 			return ret;
2127 		offset = 0;
2128 		len -= seg;
2129 		++gfn;
2130 	}
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2134 
2135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2136 				    gfn_t gfn)
2137 {
2138 	if (memslot && memslot->dirty_bitmap) {
2139 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2140 
2141 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2142 	}
2143 }
2144 
2145 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2146 {
2147 	struct kvm_memory_slot *memslot;
2148 
2149 	memslot = gfn_to_memslot(kvm, gfn);
2150 	mark_page_dirty_in_slot(memslot, gfn);
2151 }
2152 EXPORT_SYMBOL_GPL(mark_page_dirty);
2153 
2154 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2155 {
2156 	struct kvm_memory_slot *memslot;
2157 
2158 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2159 	mark_page_dirty_in_slot(memslot, gfn);
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2162 
2163 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2164 {
2165 	if (!vcpu->sigset_active)
2166 		return;
2167 
2168 	/*
2169 	 * This does a lockless modification of ->real_blocked, which is fine
2170 	 * because, only current can change ->real_blocked and all readers of
2171 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2172 	 * of ->blocked.
2173 	 */
2174 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2175 }
2176 
2177 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2178 {
2179 	if (!vcpu->sigset_active)
2180 		return;
2181 
2182 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2183 	sigemptyset(&current->real_blocked);
2184 }
2185 
2186 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2187 {
2188 	unsigned int old, val, grow;
2189 
2190 	old = val = vcpu->halt_poll_ns;
2191 	grow = READ_ONCE(halt_poll_ns_grow);
2192 	/* 10us base */
2193 	if (val == 0 && grow)
2194 		val = 10000;
2195 	else
2196 		val *= grow;
2197 
2198 	if (val > halt_poll_ns)
2199 		val = halt_poll_ns;
2200 
2201 	vcpu->halt_poll_ns = val;
2202 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2203 }
2204 
2205 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2206 {
2207 	unsigned int old, val, shrink;
2208 
2209 	old = val = vcpu->halt_poll_ns;
2210 	shrink = READ_ONCE(halt_poll_ns_shrink);
2211 	if (shrink == 0)
2212 		val = 0;
2213 	else
2214 		val /= shrink;
2215 
2216 	vcpu->halt_poll_ns = val;
2217 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2218 }
2219 
2220 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2221 {
2222 	int ret = -EINTR;
2223 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2224 
2225 	if (kvm_arch_vcpu_runnable(vcpu)) {
2226 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2227 		goto out;
2228 	}
2229 	if (kvm_cpu_has_pending_timer(vcpu))
2230 		goto out;
2231 	if (signal_pending(current))
2232 		goto out;
2233 
2234 	ret = 0;
2235 out:
2236 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2237 	return ret;
2238 }
2239 
2240 /*
2241  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2242  */
2243 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2244 {
2245 	ktime_t start, cur;
2246 	DECLARE_SWAITQUEUE(wait);
2247 	bool waited = false;
2248 	u64 block_ns;
2249 
2250 	start = cur = ktime_get();
2251 	if (vcpu->halt_poll_ns) {
2252 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2253 
2254 		++vcpu->stat.halt_attempted_poll;
2255 		do {
2256 			/*
2257 			 * This sets KVM_REQ_UNHALT if an interrupt
2258 			 * arrives.
2259 			 */
2260 			if (kvm_vcpu_check_block(vcpu) < 0) {
2261 				++vcpu->stat.halt_successful_poll;
2262 				if (!vcpu_valid_wakeup(vcpu))
2263 					++vcpu->stat.halt_poll_invalid;
2264 				goto out;
2265 			}
2266 			cur = ktime_get();
2267 		} while (single_task_running() && ktime_before(cur, stop));
2268 	}
2269 
2270 	kvm_arch_vcpu_blocking(vcpu);
2271 
2272 	for (;;) {
2273 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2274 
2275 		if (kvm_vcpu_check_block(vcpu) < 0)
2276 			break;
2277 
2278 		waited = true;
2279 		schedule();
2280 	}
2281 
2282 	finish_swait(&vcpu->wq, &wait);
2283 	cur = ktime_get();
2284 
2285 	kvm_arch_vcpu_unblocking(vcpu);
2286 out:
2287 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2288 
2289 	if (!vcpu_valid_wakeup(vcpu))
2290 		shrink_halt_poll_ns(vcpu);
2291 	else if (halt_poll_ns) {
2292 		if (block_ns <= vcpu->halt_poll_ns)
2293 			;
2294 		/* we had a long block, shrink polling */
2295 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2296 			shrink_halt_poll_ns(vcpu);
2297 		/* we had a short halt and our poll time is too small */
2298 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2299 			block_ns < halt_poll_ns)
2300 			grow_halt_poll_ns(vcpu);
2301 	} else
2302 		vcpu->halt_poll_ns = 0;
2303 
2304 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2305 	kvm_arch_vcpu_block_finish(vcpu);
2306 }
2307 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2308 
2309 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2310 {
2311 	struct swait_queue_head *wqp;
2312 
2313 	wqp = kvm_arch_vcpu_wq(vcpu);
2314 	if (swq_has_sleeper(wqp)) {
2315 		swake_up_one(wqp);
2316 		++vcpu->stat.halt_wakeup;
2317 		return true;
2318 	}
2319 
2320 	return false;
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2323 
2324 #ifndef CONFIG_S390
2325 /*
2326  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2327  */
2328 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2329 {
2330 	int me;
2331 	int cpu = vcpu->cpu;
2332 
2333 	if (kvm_vcpu_wake_up(vcpu))
2334 		return;
2335 
2336 	me = get_cpu();
2337 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2338 		if (kvm_arch_vcpu_should_kick(vcpu))
2339 			smp_send_reschedule(cpu);
2340 	put_cpu();
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2343 #endif /* !CONFIG_S390 */
2344 
2345 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2346 {
2347 	struct pid *pid;
2348 	struct task_struct *task = NULL;
2349 	int ret = 0;
2350 
2351 	rcu_read_lock();
2352 	pid = rcu_dereference(target->pid);
2353 	if (pid)
2354 		task = get_pid_task(pid, PIDTYPE_PID);
2355 	rcu_read_unlock();
2356 	if (!task)
2357 		return ret;
2358 	ret = yield_to(task, 1);
2359 	put_task_struct(task);
2360 
2361 	return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2364 
2365 /*
2366  * Helper that checks whether a VCPU is eligible for directed yield.
2367  * Most eligible candidate to yield is decided by following heuristics:
2368  *
2369  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2370  *  (preempted lock holder), indicated by @in_spin_loop.
2371  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2372  *
2373  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2374  *  chance last time (mostly it has become eligible now since we have probably
2375  *  yielded to lockholder in last iteration. This is done by toggling
2376  *  @dy_eligible each time a VCPU checked for eligibility.)
2377  *
2378  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2379  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2380  *  burning. Giving priority for a potential lock-holder increases lock
2381  *  progress.
2382  *
2383  *  Since algorithm is based on heuristics, accessing another VCPU data without
2384  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2385  *  and continue with next VCPU and so on.
2386  */
2387 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2388 {
2389 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2390 	bool eligible;
2391 
2392 	eligible = !vcpu->spin_loop.in_spin_loop ||
2393 		    vcpu->spin_loop.dy_eligible;
2394 
2395 	if (vcpu->spin_loop.in_spin_loop)
2396 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2397 
2398 	return eligible;
2399 #else
2400 	return true;
2401 #endif
2402 }
2403 
2404 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2405 {
2406 	struct kvm *kvm = me->kvm;
2407 	struct kvm_vcpu *vcpu;
2408 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2409 	int yielded = 0;
2410 	int try = 3;
2411 	int pass;
2412 	int i;
2413 
2414 	kvm_vcpu_set_in_spin_loop(me, true);
2415 	/*
2416 	 * We boost the priority of a VCPU that is runnable but not
2417 	 * currently running, because it got preempted by something
2418 	 * else and called schedule in __vcpu_run.  Hopefully that
2419 	 * VCPU is holding the lock that we need and will release it.
2420 	 * We approximate round-robin by starting at the last boosted VCPU.
2421 	 */
2422 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2423 		kvm_for_each_vcpu(i, vcpu, kvm) {
2424 			if (!pass && i <= last_boosted_vcpu) {
2425 				i = last_boosted_vcpu;
2426 				continue;
2427 			} else if (pass && i > last_boosted_vcpu)
2428 				break;
2429 			if (!READ_ONCE(vcpu->preempted))
2430 				continue;
2431 			if (vcpu == me)
2432 				continue;
2433 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2434 				continue;
2435 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2436 				continue;
2437 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2438 				continue;
2439 
2440 			yielded = kvm_vcpu_yield_to(vcpu);
2441 			if (yielded > 0) {
2442 				kvm->last_boosted_vcpu = i;
2443 				break;
2444 			} else if (yielded < 0) {
2445 				try--;
2446 				if (!try)
2447 					break;
2448 			}
2449 		}
2450 	}
2451 	kvm_vcpu_set_in_spin_loop(me, false);
2452 
2453 	/* Ensure vcpu is not eligible during next spinloop */
2454 	kvm_vcpu_set_dy_eligible(me, false);
2455 }
2456 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2457 
2458 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2459 {
2460 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2461 	struct page *page;
2462 
2463 	if (vmf->pgoff == 0)
2464 		page = virt_to_page(vcpu->run);
2465 #ifdef CONFIG_X86
2466 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2467 		page = virt_to_page(vcpu->arch.pio_data);
2468 #endif
2469 #ifdef CONFIG_KVM_MMIO
2470 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2471 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2472 #endif
2473 	else
2474 		return kvm_arch_vcpu_fault(vcpu, vmf);
2475 	get_page(page);
2476 	vmf->page = page;
2477 	return 0;
2478 }
2479 
2480 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2481 	.fault = kvm_vcpu_fault,
2482 };
2483 
2484 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2485 {
2486 	vma->vm_ops = &kvm_vcpu_vm_ops;
2487 	return 0;
2488 }
2489 
2490 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2491 {
2492 	struct kvm_vcpu *vcpu = filp->private_data;
2493 
2494 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2495 	kvm_put_kvm(vcpu->kvm);
2496 	return 0;
2497 }
2498 
2499 static struct file_operations kvm_vcpu_fops = {
2500 	.release        = kvm_vcpu_release,
2501 	.unlocked_ioctl = kvm_vcpu_ioctl,
2502 	.mmap           = kvm_vcpu_mmap,
2503 	.llseek		= noop_llseek,
2504 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2505 };
2506 
2507 /*
2508  * Allocates an inode for the vcpu.
2509  */
2510 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2511 {
2512 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2513 
2514 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2515 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2516 }
2517 
2518 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2519 {
2520 	char dir_name[ITOA_MAX_LEN * 2];
2521 	int ret;
2522 
2523 	if (!kvm_arch_has_vcpu_debugfs())
2524 		return 0;
2525 
2526 	if (!debugfs_initialized())
2527 		return 0;
2528 
2529 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2530 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2531 								vcpu->kvm->debugfs_dentry);
2532 	if (!vcpu->debugfs_dentry)
2533 		return -ENOMEM;
2534 
2535 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2536 	if (ret < 0) {
2537 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2538 		return ret;
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 /*
2545  * Creates some virtual cpus.  Good luck creating more than one.
2546  */
2547 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2548 {
2549 	int r;
2550 	struct kvm_vcpu *vcpu;
2551 
2552 	if (id >= KVM_MAX_VCPU_ID)
2553 		return -EINVAL;
2554 
2555 	mutex_lock(&kvm->lock);
2556 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2557 		mutex_unlock(&kvm->lock);
2558 		return -EINVAL;
2559 	}
2560 
2561 	kvm->created_vcpus++;
2562 	mutex_unlock(&kvm->lock);
2563 
2564 	vcpu = kvm_arch_vcpu_create(kvm, id);
2565 	if (IS_ERR(vcpu)) {
2566 		r = PTR_ERR(vcpu);
2567 		goto vcpu_decrement;
2568 	}
2569 
2570 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2571 
2572 	r = kvm_arch_vcpu_setup(vcpu);
2573 	if (r)
2574 		goto vcpu_destroy;
2575 
2576 	r = kvm_create_vcpu_debugfs(vcpu);
2577 	if (r)
2578 		goto vcpu_destroy;
2579 
2580 	mutex_lock(&kvm->lock);
2581 	if (kvm_get_vcpu_by_id(kvm, id)) {
2582 		r = -EEXIST;
2583 		goto unlock_vcpu_destroy;
2584 	}
2585 
2586 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2587 
2588 	/* Now it's all set up, let userspace reach it */
2589 	kvm_get_kvm(kvm);
2590 	r = create_vcpu_fd(vcpu);
2591 	if (r < 0) {
2592 		kvm_put_kvm(kvm);
2593 		goto unlock_vcpu_destroy;
2594 	}
2595 
2596 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2597 
2598 	/*
2599 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2600 	 * before kvm->online_vcpu's incremented value.
2601 	 */
2602 	smp_wmb();
2603 	atomic_inc(&kvm->online_vcpus);
2604 
2605 	mutex_unlock(&kvm->lock);
2606 	kvm_arch_vcpu_postcreate(vcpu);
2607 	return r;
2608 
2609 unlock_vcpu_destroy:
2610 	mutex_unlock(&kvm->lock);
2611 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2612 vcpu_destroy:
2613 	kvm_arch_vcpu_destroy(vcpu);
2614 vcpu_decrement:
2615 	mutex_lock(&kvm->lock);
2616 	kvm->created_vcpus--;
2617 	mutex_unlock(&kvm->lock);
2618 	return r;
2619 }
2620 
2621 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2622 {
2623 	if (sigset) {
2624 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2625 		vcpu->sigset_active = 1;
2626 		vcpu->sigset = *sigset;
2627 	} else
2628 		vcpu->sigset_active = 0;
2629 	return 0;
2630 }
2631 
2632 static long kvm_vcpu_ioctl(struct file *filp,
2633 			   unsigned int ioctl, unsigned long arg)
2634 {
2635 	struct kvm_vcpu *vcpu = filp->private_data;
2636 	void __user *argp = (void __user *)arg;
2637 	int r;
2638 	struct kvm_fpu *fpu = NULL;
2639 	struct kvm_sregs *kvm_sregs = NULL;
2640 
2641 	if (vcpu->kvm->mm != current->mm)
2642 		return -EIO;
2643 
2644 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2645 		return -EINVAL;
2646 
2647 	/*
2648 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2649 	 * execution; mutex_lock() would break them.
2650 	 */
2651 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2652 	if (r != -ENOIOCTLCMD)
2653 		return r;
2654 
2655 	if (mutex_lock_killable(&vcpu->mutex))
2656 		return -EINTR;
2657 	switch (ioctl) {
2658 	case KVM_RUN: {
2659 		struct pid *oldpid;
2660 		r = -EINVAL;
2661 		if (arg)
2662 			goto out;
2663 		oldpid = rcu_access_pointer(vcpu->pid);
2664 		if (unlikely(oldpid != task_pid(current))) {
2665 			/* The thread running this VCPU changed. */
2666 			struct pid *newpid;
2667 
2668 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2669 			if (r)
2670 				break;
2671 
2672 			newpid = get_task_pid(current, PIDTYPE_PID);
2673 			rcu_assign_pointer(vcpu->pid, newpid);
2674 			if (oldpid)
2675 				synchronize_rcu();
2676 			put_pid(oldpid);
2677 		}
2678 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2679 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2680 		break;
2681 	}
2682 	case KVM_GET_REGS: {
2683 		struct kvm_regs *kvm_regs;
2684 
2685 		r = -ENOMEM;
2686 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2687 		if (!kvm_regs)
2688 			goto out;
2689 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2690 		if (r)
2691 			goto out_free1;
2692 		r = -EFAULT;
2693 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2694 			goto out_free1;
2695 		r = 0;
2696 out_free1:
2697 		kfree(kvm_regs);
2698 		break;
2699 	}
2700 	case KVM_SET_REGS: {
2701 		struct kvm_regs *kvm_regs;
2702 
2703 		r = -ENOMEM;
2704 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2705 		if (IS_ERR(kvm_regs)) {
2706 			r = PTR_ERR(kvm_regs);
2707 			goto out;
2708 		}
2709 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2710 		kfree(kvm_regs);
2711 		break;
2712 	}
2713 	case KVM_GET_SREGS: {
2714 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2715 		r = -ENOMEM;
2716 		if (!kvm_sregs)
2717 			goto out;
2718 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2719 		if (r)
2720 			goto out;
2721 		r = -EFAULT;
2722 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2723 			goto out;
2724 		r = 0;
2725 		break;
2726 	}
2727 	case KVM_SET_SREGS: {
2728 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2729 		if (IS_ERR(kvm_sregs)) {
2730 			r = PTR_ERR(kvm_sregs);
2731 			kvm_sregs = NULL;
2732 			goto out;
2733 		}
2734 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2735 		break;
2736 	}
2737 	case KVM_GET_MP_STATE: {
2738 		struct kvm_mp_state mp_state;
2739 
2740 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2741 		if (r)
2742 			goto out;
2743 		r = -EFAULT;
2744 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2745 			goto out;
2746 		r = 0;
2747 		break;
2748 	}
2749 	case KVM_SET_MP_STATE: {
2750 		struct kvm_mp_state mp_state;
2751 
2752 		r = -EFAULT;
2753 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2754 			goto out;
2755 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2756 		break;
2757 	}
2758 	case KVM_TRANSLATE: {
2759 		struct kvm_translation tr;
2760 
2761 		r = -EFAULT;
2762 		if (copy_from_user(&tr, argp, sizeof(tr)))
2763 			goto out;
2764 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2765 		if (r)
2766 			goto out;
2767 		r = -EFAULT;
2768 		if (copy_to_user(argp, &tr, sizeof(tr)))
2769 			goto out;
2770 		r = 0;
2771 		break;
2772 	}
2773 	case KVM_SET_GUEST_DEBUG: {
2774 		struct kvm_guest_debug dbg;
2775 
2776 		r = -EFAULT;
2777 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2778 			goto out;
2779 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2780 		break;
2781 	}
2782 	case KVM_SET_SIGNAL_MASK: {
2783 		struct kvm_signal_mask __user *sigmask_arg = argp;
2784 		struct kvm_signal_mask kvm_sigmask;
2785 		sigset_t sigset, *p;
2786 
2787 		p = NULL;
2788 		if (argp) {
2789 			r = -EFAULT;
2790 			if (copy_from_user(&kvm_sigmask, argp,
2791 					   sizeof(kvm_sigmask)))
2792 				goto out;
2793 			r = -EINVAL;
2794 			if (kvm_sigmask.len != sizeof(sigset))
2795 				goto out;
2796 			r = -EFAULT;
2797 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2798 					   sizeof(sigset)))
2799 				goto out;
2800 			p = &sigset;
2801 		}
2802 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2803 		break;
2804 	}
2805 	case KVM_GET_FPU: {
2806 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2807 		r = -ENOMEM;
2808 		if (!fpu)
2809 			goto out;
2810 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2811 		if (r)
2812 			goto out;
2813 		r = -EFAULT;
2814 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2815 			goto out;
2816 		r = 0;
2817 		break;
2818 	}
2819 	case KVM_SET_FPU: {
2820 		fpu = memdup_user(argp, sizeof(*fpu));
2821 		if (IS_ERR(fpu)) {
2822 			r = PTR_ERR(fpu);
2823 			fpu = NULL;
2824 			goto out;
2825 		}
2826 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2827 		break;
2828 	}
2829 	default:
2830 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2831 	}
2832 out:
2833 	mutex_unlock(&vcpu->mutex);
2834 	kfree(fpu);
2835 	kfree(kvm_sregs);
2836 	return r;
2837 }
2838 
2839 #ifdef CONFIG_KVM_COMPAT
2840 static long kvm_vcpu_compat_ioctl(struct file *filp,
2841 				  unsigned int ioctl, unsigned long arg)
2842 {
2843 	struct kvm_vcpu *vcpu = filp->private_data;
2844 	void __user *argp = compat_ptr(arg);
2845 	int r;
2846 
2847 	if (vcpu->kvm->mm != current->mm)
2848 		return -EIO;
2849 
2850 	switch (ioctl) {
2851 	case KVM_SET_SIGNAL_MASK: {
2852 		struct kvm_signal_mask __user *sigmask_arg = argp;
2853 		struct kvm_signal_mask kvm_sigmask;
2854 		sigset_t sigset;
2855 
2856 		if (argp) {
2857 			r = -EFAULT;
2858 			if (copy_from_user(&kvm_sigmask, argp,
2859 					   sizeof(kvm_sigmask)))
2860 				goto out;
2861 			r = -EINVAL;
2862 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2863 				goto out;
2864 			r = -EFAULT;
2865 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2866 				goto out;
2867 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2868 		} else
2869 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2870 		break;
2871 	}
2872 	default:
2873 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2874 	}
2875 
2876 out:
2877 	return r;
2878 }
2879 #endif
2880 
2881 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2882 				 int (*accessor)(struct kvm_device *dev,
2883 						 struct kvm_device_attr *attr),
2884 				 unsigned long arg)
2885 {
2886 	struct kvm_device_attr attr;
2887 
2888 	if (!accessor)
2889 		return -EPERM;
2890 
2891 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2892 		return -EFAULT;
2893 
2894 	return accessor(dev, &attr);
2895 }
2896 
2897 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2898 			     unsigned long arg)
2899 {
2900 	struct kvm_device *dev = filp->private_data;
2901 
2902 	switch (ioctl) {
2903 	case KVM_SET_DEVICE_ATTR:
2904 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2905 	case KVM_GET_DEVICE_ATTR:
2906 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2907 	case KVM_HAS_DEVICE_ATTR:
2908 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2909 	default:
2910 		if (dev->ops->ioctl)
2911 			return dev->ops->ioctl(dev, ioctl, arg);
2912 
2913 		return -ENOTTY;
2914 	}
2915 }
2916 
2917 static int kvm_device_release(struct inode *inode, struct file *filp)
2918 {
2919 	struct kvm_device *dev = filp->private_data;
2920 	struct kvm *kvm = dev->kvm;
2921 
2922 	kvm_put_kvm(kvm);
2923 	return 0;
2924 }
2925 
2926 static const struct file_operations kvm_device_fops = {
2927 	.unlocked_ioctl = kvm_device_ioctl,
2928 	.release = kvm_device_release,
2929 	KVM_COMPAT(kvm_device_ioctl),
2930 };
2931 
2932 struct kvm_device *kvm_device_from_filp(struct file *filp)
2933 {
2934 	if (filp->f_op != &kvm_device_fops)
2935 		return NULL;
2936 
2937 	return filp->private_data;
2938 }
2939 
2940 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2941 #ifdef CONFIG_KVM_MPIC
2942 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2943 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2944 #endif
2945 };
2946 
2947 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2948 {
2949 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2950 		return -ENOSPC;
2951 
2952 	if (kvm_device_ops_table[type] != NULL)
2953 		return -EEXIST;
2954 
2955 	kvm_device_ops_table[type] = ops;
2956 	return 0;
2957 }
2958 
2959 void kvm_unregister_device_ops(u32 type)
2960 {
2961 	if (kvm_device_ops_table[type] != NULL)
2962 		kvm_device_ops_table[type] = NULL;
2963 }
2964 
2965 static int kvm_ioctl_create_device(struct kvm *kvm,
2966 				   struct kvm_create_device *cd)
2967 {
2968 	struct kvm_device_ops *ops = NULL;
2969 	struct kvm_device *dev;
2970 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2971 	int ret;
2972 
2973 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2974 		return -ENODEV;
2975 
2976 	ops = kvm_device_ops_table[cd->type];
2977 	if (ops == NULL)
2978 		return -ENODEV;
2979 
2980 	if (test)
2981 		return 0;
2982 
2983 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2984 	if (!dev)
2985 		return -ENOMEM;
2986 
2987 	dev->ops = ops;
2988 	dev->kvm = kvm;
2989 
2990 	mutex_lock(&kvm->lock);
2991 	ret = ops->create(dev, cd->type);
2992 	if (ret < 0) {
2993 		mutex_unlock(&kvm->lock);
2994 		kfree(dev);
2995 		return ret;
2996 	}
2997 	list_add(&dev->vm_node, &kvm->devices);
2998 	mutex_unlock(&kvm->lock);
2999 
3000 	if (ops->init)
3001 		ops->init(dev);
3002 
3003 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3004 	if (ret < 0) {
3005 		mutex_lock(&kvm->lock);
3006 		list_del(&dev->vm_node);
3007 		mutex_unlock(&kvm->lock);
3008 		ops->destroy(dev);
3009 		return ret;
3010 	}
3011 
3012 	kvm_get_kvm(kvm);
3013 	cd->fd = ret;
3014 	return 0;
3015 }
3016 
3017 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3018 {
3019 	switch (arg) {
3020 	case KVM_CAP_USER_MEMORY:
3021 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3022 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3023 	case KVM_CAP_INTERNAL_ERROR_DATA:
3024 #ifdef CONFIG_HAVE_KVM_MSI
3025 	case KVM_CAP_SIGNAL_MSI:
3026 #endif
3027 #ifdef CONFIG_HAVE_KVM_IRQFD
3028 	case KVM_CAP_IRQFD:
3029 	case KVM_CAP_IRQFD_RESAMPLE:
3030 #endif
3031 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3032 	case KVM_CAP_CHECK_EXTENSION_VM:
3033 	case KVM_CAP_ENABLE_CAP_VM:
3034 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3035 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3036 #endif
3037 		return 1;
3038 #ifdef CONFIG_KVM_MMIO
3039 	case KVM_CAP_COALESCED_MMIO:
3040 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3041 	case KVM_CAP_COALESCED_PIO:
3042 		return 1;
3043 #endif
3044 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3045 	case KVM_CAP_IRQ_ROUTING:
3046 		return KVM_MAX_IRQ_ROUTES;
3047 #endif
3048 #if KVM_ADDRESS_SPACE_NUM > 1
3049 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3050 		return KVM_ADDRESS_SPACE_NUM;
3051 #endif
3052 	case KVM_CAP_MAX_VCPU_ID:
3053 		return KVM_MAX_VCPU_ID;
3054 	default:
3055 		break;
3056 	}
3057 	return kvm_vm_ioctl_check_extension(kvm, arg);
3058 }
3059 
3060 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3061 						  struct kvm_enable_cap *cap)
3062 {
3063 	return -EINVAL;
3064 }
3065 
3066 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3067 					   struct kvm_enable_cap *cap)
3068 {
3069 	switch (cap->cap) {
3070 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3071 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3072 		if (cap->flags || (cap->args[0] & ~1))
3073 			return -EINVAL;
3074 		kvm->manual_dirty_log_protect = cap->args[0];
3075 		return 0;
3076 #endif
3077 	default:
3078 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3079 	}
3080 }
3081 
3082 static long kvm_vm_ioctl(struct file *filp,
3083 			   unsigned int ioctl, unsigned long arg)
3084 {
3085 	struct kvm *kvm = filp->private_data;
3086 	void __user *argp = (void __user *)arg;
3087 	int r;
3088 
3089 	if (kvm->mm != current->mm)
3090 		return -EIO;
3091 	switch (ioctl) {
3092 	case KVM_CREATE_VCPU:
3093 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3094 		break;
3095 	case KVM_ENABLE_CAP: {
3096 		struct kvm_enable_cap cap;
3097 
3098 		r = -EFAULT;
3099 		if (copy_from_user(&cap, argp, sizeof(cap)))
3100 			goto out;
3101 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3102 		break;
3103 	}
3104 	case KVM_SET_USER_MEMORY_REGION: {
3105 		struct kvm_userspace_memory_region kvm_userspace_mem;
3106 
3107 		r = -EFAULT;
3108 		if (copy_from_user(&kvm_userspace_mem, argp,
3109 						sizeof(kvm_userspace_mem)))
3110 			goto out;
3111 
3112 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3113 		break;
3114 	}
3115 	case KVM_GET_DIRTY_LOG: {
3116 		struct kvm_dirty_log log;
3117 
3118 		r = -EFAULT;
3119 		if (copy_from_user(&log, argp, sizeof(log)))
3120 			goto out;
3121 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3122 		break;
3123 	}
3124 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3125 	case KVM_CLEAR_DIRTY_LOG: {
3126 		struct kvm_clear_dirty_log log;
3127 
3128 		r = -EFAULT;
3129 		if (copy_from_user(&log, argp, sizeof(log)))
3130 			goto out;
3131 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3132 		break;
3133 	}
3134 #endif
3135 #ifdef CONFIG_KVM_MMIO
3136 	case KVM_REGISTER_COALESCED_MMIO: {
3137 		struct kvm_coalesced_mmio_zone zone;
3138 
3139 		r = -EFAULT;
3140 		if (copy_from_user(&zone, argp, sizeof(zone)))
3141 			goto out;
3142 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3143 		break;
3144 	}
3145 	case KVM_UNREGISTER_COALESCED_MMIO: {
3146 		struct kvm_coalesced_mmio_zone zone;
3147 
3148 		r = -EFAULT;
3149 		if (copy_from_user(&zone, argp, sizeof(zone)))
3150 			goto out;
3151 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3152 		break;
3153 	}
3154 #endif
3155 	case KVM_IRQFD: {
3156 		struct kvm_irqfd data;
3157 
3158 		r = -EFAULT;
3159 		if (copy_from_user(&data, argp, sizeof(data)))
3160 			goto out;
3161 		r = kvm_irqfd(kvm, &data);
3162 		break;
3163 	}
3164 	case KVM_IOEVENTFD: {
3165 		struct kvm_ioeventfd data;
3166 
3167 		r = -EFAULT;
3168 		if (copy_from_user(&data, argp, sizeof(data)))
3169 			goto out;
3170 		r = kvm_ioeventfd(kvm, &data);
3171 		break;
3172 	}
3173 #ifdef CONFIG_HAVE_KVM_MSI
3174 	case KVM_SIGNAL_MSI: {
3175 		struct kvm_msi msi;
3176 
3177 		r = -EFAULT;
3178 		if (copy_from_user(&msi, argp, sizeof(msi)))
3179 			goto out;
3180 		r = kvm_send_userspace_msi(kvm, &msi);
3181 		break;
3182 	}
3183 #endif
3184 #ifdef __KVM_HAVE_IRQ_LINE
3185 	case KVM_IRQ_LINE_STATUS:
3186 	case KVM_IRQ_LINE: {
3187 		struct kvm_irq_level irq_event;
3188 
3189 		r = -EFAULT;
3190 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3191 			goto out;
3192 
3193 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3194 					ioctl == KVM_IRQ_LINE_STATUS);
3195 		if (r)
3196 			goto out;
3197 
3198 		r = -EFAULT;
3199 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3200 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3201 				goto out;
3202 		}
3203 
3204 		r = 0;
3205 		break;
3206 	}
3207 #endif
3208 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3209 	case KVM_SET_GSI_ROUTING: {
3210 		struct kvm_irq_routing routing;
3211 		struct kvm_irq_routing __user *urouting;
3212 		struct kvm_irq_routing_entry *entries = NULL;
3213 
3214 		r = -EFAULT;
3215 		if (copy_from_user(&routing, argp, sizeof(routing)))
3216 			goto out;
3217 		r = -EINVAL;
3218 		if (!kvm_arch_can_set_irq_routing(kvm))
3219 			goto out;
3220 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3221 			goto out;
3222 		if (routing.flags)
3223 			goto out;
3224 		if (routing.nr) {
3225 			r = -ENOMEM;
3226 			entries = vmalloc(array_size(sizeof(*entries),
3227 						     routing.nr));
3228 			if (!entries)
3229 				goto out;
3230 			r = -EFAULT;
3231 			urouting = argp;
3232 			if (copy_from_user(entries, urouting->entries,
3233 					   routing.nr * sizeof(*entries)))
3234 				goto out_free_irq_routing;
3235 		}
3236 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3237 					routing.flags);
3238 out_free_irq_routing:
3239 		vfree(entries);
3240 		break;
3241 	}
3242 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3243 	case KVM_CREATE_DEVICE: {
3244 		struct kvm_create_device cd;
3245 
3246 		r = -EFAULT;
3247 		if (copy_from_user(&cd, argp, sizeof(cd)))
3248 			goto out;
3249 
3250 		r = kvm_ioctl_create_device(kvm, &cd);
3251 		if (r)
3252 			goto out;
3253 
3254 		r = -EFAULT;
3255 		if (copy_to_user(argp, &cd, sizeof(cd)))
3256 			goto out;
3257 
3258 		r = 0;
3259 		break;
3260 	}
3261 	case KVM_CHECK_EXTENSION:
3262 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3263 		break;
3264 	default:
3265 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3266 	}
3267 out:
3268 	return r;
3269 }
3270 
3271 #ifdef CONFIG_KVM_COMPAT
3272 struct compat_kvm_dirty_log {
3273 	__u32 slot;
3274 	__u32 padding1;
3275 	union {
3276 		compat_uptr_t dirty_bitmap; /* one bit per page */
3277 		__u64 padding2;
3278 	};
3279 };
3280 
3281 static long kvm_vm_compat_ioctl(struct file *filp,
3282 			   unsigned int ioctl, unsigned long arg)
3283 {
3284 	struct kvm *kvm = filp->private_data;
3285 	int r;
3286 
3287 	if (kvm->mm != current->mm)
3288 		return -EIO;
3289 	switch (ioctl) {
3290 	case KVM_GET_DIRTY_LOG: {
3291 		struct compat_kvm_dirty_log compat_log;
3292 		struct kvm_dirty_log log;
3293 
3294 		if (copy_from_user(&compat_log, (void __user *)arg,
3295 				   sizeof(compat_log)))
3296 			return -EFAULT;
3297 		log.slot	 = compat_log.slot;
3298 		log.padding1	 = compat_log.padding1;
3299 		log.padding2	 = compat_log.padding2;
3300 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3301 
3302 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3303 		break;
3304 	}
3305 	default:
3306 		r = kvm_vm_ioctl(filp, ioctl, arg);
3307 	}
3308 	return r;
3309 }
3310 #endif
3311 
3312 static struct file_operations kvm_vm_fops = {
3313 	.release        = kvm_vm_release,
3314 	.unlocked_ioctl = kvm_vm_ioctl,
3315 	.llseek		= noop_llseek,
3316 	KVM_COMPAT(kvm_vm_compat_ioctl),
3317 };
3318 
3319 static int kvm_dev_ioctl_create_vm(unsigned long type)
3320 {
3321 	int r;
3322 	struct kvm *kvm;
3323 	struct file *file;
3324 
3325 	kvm = kvm_create_vm(type);
3326 	if (IS_ERR(kvm))
3327 		return PTR_ERR(kvm);
3328 #ifdef CONFIG_KVM_MMIO
3329 	r = kvm_coalesced_mmio_init(kvm);
3330 	if (r < 0)
3331 		goto put_kvm;
3332 #endif
3333 	r = get_unused_fd_flags(O_CLOEXEC);
3334 	if (r < 0)
3335 		goto put_kvm;
3336 
3337 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3338 	if (IS_ERR(file)) {
3339 		put_unused_fd(r);
3340 		r = PTR_ERR(file);
3341 		goto put_kvm;
3342 	}
3343 
3344 	/*
3345 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3346 	 * already set, with ->release() being kvm_vm_release().  In error
3347 	 * cases it will be called by the final fput(file) and will take
3348 	 * care of doing kvm_put_kvm(kvm).
3349 	 */
3350 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3351 		put_unused_fd(r);
3352 		fput(file);
3353 		return -ENOMEM;
3354 	}
3355 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3356 
3357 	fd_install(r, file);
3358 	return r;
3359 
3360 put_kvm:
3361 	kvm_put_kvm(kvm);
3362 	return r;
3363 }
3364 
3365 static long kvm_dev_ioctl(struct file *filp,
3366 			  unsigned int ioctl, unsigned long arg)
3367 {
3368 	long r = -EINVAL;
3369 
3370 	switch (ioctl) {
3371 	case KVM_GET_API_VERSION:
3372 		if (arg)
3373 			goto out;
3374 		r = KVM_API_VERSION;
3375 		break;
3376 	case KVM_CREATE_VM:
3377 		r = kvm_dev_ioctl_create_vm(arg);
3378 		break;
3379 	case KVM_CHECK_EXTENSION:
3380 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3381 		break;
3382 	case KVM_GET_VCPU_MMAP_SIZE:
3383 		if (arg)
3384 			goto out;
3385 		r = PAGE_SIZE;     /* struct kvm_run */
3386 #ifdef CONFIG_X86
3387 		r += PAGE_SIZE;    /* pio data page */
3388 #endif
3389 #ifdef CONFIG_KVM_MMIO
3390 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3391 #endif
3392 		break;
3393 	case KVM_TRACE_ENABLE:
3394 	case KVM_TRACE_PAUSE:
3395 	case KVM_TRACE_DISABLE:
3396 		r = -EOPNOTSUPP;
3397 		break;
3398 	default:
3399 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3400 	}
3401 out:
3402 	return r;
3403 }
3404 
3405 static struct file_operations kvm_chardev_ops = {
3406 	.unlocked_ioctl = kvm_dev_ioctl,
3407 	.llseek		= noop_llseek,
3408 	KVM_COMPAT(kvm_dev_ioctl),
3409 };
3410 
3411 static struct miscdevice kvm_dev = {
3412 	KVM_MINOR,
3413 	"kvm",
3414 	&kvm_chardev_ops,
3415 };
3416 
3417 static void hardware_enable_nolock(void *junk)
3418 {
3419 	int cpu = raw_smp_processor_id();
3420 	int r;
3421 
3422 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3423 		return;
3424 
3425 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3426 
3427 	r = kvm_arch_hardware_enable();
3428 
3429 	if (r) {
3430 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3431 		atomic_inc(&hardware_enable_failed);
3432 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3433 	}
3434 }
3435 
3436 static int kvm_starting_cpu(unsigned int cpu)
3437 {
3438 	raw_spin_lock(&kvm_count_lock);
3439 	if (kvm_usage_count)
3440 		hardware_enable_nolock(NULL);
3441 	raw_spin_unlock(&kvm_count_lock);
3442 	return 0;
3443 }
3444 
3445 static void hardware_disable_nolock(void *junk)
3446 {
3447 	int cpu = raw_smp_processor_id();
3448 
3449 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3450 		return;
3451 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3452 	kvm_arch_hardware_disable();
3453 }
3454 
3455 static int kvm_dying_cpu(unsigned int cpu)
3456 {
3457 	raw_spin_lock(&kvm_count_lock);
3458 	if (kvm_usage_count)
3459 		hardware_disable_nolock(NULL);
3460 	raw_spin_unlock(&kvm_count_lock);
3461 	return 0;
3462 }
3463 
3464 static void hardware_disable_all_nolock(void)
3465 {
3466 	BUG_ON(!kvm_usage_count);
3467 
3468 	kvm_usage_count--;
3469 	if (!kvm_usage_count)
3470 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3471 }
3472 
3473 static void hardware_disable_all(void)
3474 {
3475 	raw_spin_lock(&kvm_count_lock);
3476 	hardware_disable_all_nolock();
3477 	raw_spin_unlock(&kvm_count_lock);
3478 }
3479 
3480 static int hardware_enable_all(void)
3481 {
3482 	int r = 0;
3483 
3484 	raw_spin_lock(&kvm_count_lock);
3485 
3486 	kvm_usage_count++;
3487 	if (kvm_usage_count == 1) {
3488 		atomic_set(&hardware_enable_failed, 0);
3489 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3490 
3491 		if (atomic_read(&hardware_enable_failed)) {
3492 			hardware_disable_all_nolock();
3493 			r = -EBUSY;
3494 		}
3495 	}
3496 
3497 	raw_spin_unlock(&kvm_count_lock);
3498 
3499 	return r;
3500 }
3501 
3502 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3503 		      void *v)
3504 {
3505 	/*
3506 	 * Some (well, at least mine) BIOSes hang on reboot if
3507 	 * in vmx root mode.
3508 	 *
3509 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3510 	 */
3511 	pr_info("kvm: exiting hardware virtualization\n");
3512 	kvm_rebooting = true;
3513 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3514 	return NOTIFY_OK;
3515 }
3516 
3517 static struct notifier_block kvm_reboot_notifier = {
3518 	.notifier_call = kvm_reboot,
3519 	.priority = 0,
3520 };
3521 
3522 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3523 {
3524 	int i;
3525 
3526 	for (i = 0; i < bus->dev_count; i++) {
3527 		struct kvm_io_device *pos = bus->range[i].dev;
3528 
3529 		kvm_iodevice_destructor(pos);
3530 	}
3531 	kfree(bus);
3532 }
3533 
3534 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3535 				 const struct kvm_io_range *r2)
3536 {
3537 	gpa_t addr1 = r1->addr;
3538 	gpa_t addr2 = r2->addr;
3539 
3540 	if (addr1 < addr2)
3541 		return -1;
3542 
3543 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3544 	 * accept any overlapping write.  Any order is acceptable for
3545 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3546 	 * we process all of them.
3547 	 */
3548 	if (r2->len) {
3549 		addr1 += r1->len;
3550 		addr2 += r2->len;
3551 	}
3552 
3553 	if (addr1 > addr2)
3554 		return 1;
3555 
3556 	return 0;
3557 }
3558 
3559 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3560 {
3561 	return kvm_io_bus_cmp(p1, p2);
3562 }
3563 
3564 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3565 			     gpa_t addr, int len)
3566 {
3567 	struct kvm_io_range *range, key;
3568 	int off;
3569 
3570 	key = (struct kvm_io_range) {
3571 		.addr = addr,
3572 		.len = len,
3573 	};
3574 
3575 	range = bsearch(&key, bus->range, bus->dev_count,
3576 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3577 	if (range == NULL)
3578 		return -ENOENT;
3579 
3580 	off = range - bus->range;
3581 
3582 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3583 		off--;
3584 
3585 	return off;
3586 }
3587 
3588 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3589 			      struct kvm_io_range *range, const void *val)
3590 {
3591 	int idx;
3592 
3593 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3594 	if (idx < 0)
3595 		return -EOPNOTSUPP;
3596 
3597 	while (idx < bus->dev_count &&
3598 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3599 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3600 					range->len, val))
3601 			return idx;
3602 		idx++;
3603 	}
3604 
3605 	return -EOPNOTSUPP;
3606 }
3607 
3608 /* kvm_io_bus_write - called under kvm->slots_lock */
3609 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3610 		     int len, const void *val)
3611 {
3612 	struct kvm_io_bus *bus;
3613 	struct kvm_io_range range;
3614 	int r;
3615 
3616 	range = (struct kvm_io_range) {
3617 		.addr = addr,
3618 		.len = len,
3619 	};
3620 
3621 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3622 	if (!bus)
3623 		return -ENOMEM;
3624 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3625 	return r < 0 ? r : 0;
3626 }
3627 
3628 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3629 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3630 			    gpa_t addr, int len, const void *val, long cookie)
3631 {
3632 	struct kvm_io_bus *bus;
3633 	struct kvm_io_range range;
3634 
3635 	range = (struct kvm_io_range) {
3636 		.addr = addr,
3637 		.len = len,
3638 	};
3639 
3640 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3641 	if (!bus)
3642 		return -ENOMEM;
3643 
3644 	/* First try the device referenced by cookie. */
3645 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3646 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3647 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3648 					val))
3649 			return cookie;
3650 
3651 	/*
3652 	 * cookie contained garbage; fall back to search and return the
3653 	 * correct cookie value.
3654 	 */
3655 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3656 }
3657 
3658 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3659 			     struct kvm_io_range *range, void *val)
3660 {
3661 	int idx;
3662 
3663 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3664 	if (idx < 0)
3665 		return -EOPNOTSUPP;
3666 
3667 	while (idx < bus->dev_count &&
3668 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3669 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3670 				       range->len, val))
3671 			return idx;
3672 		idx++;
3673 	}
3674 
3675 	return -EOPNOTSUPP;
3676 }
3677 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3678 
3679 /* kvm_io_bus_read - called under kvm->slots_lock */
3680 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3681 		    int len, void *val)
3682 {
3683 	struct kvm_io_bus *bus;
3684 	struct kvm_io_range range;
3685 	int r;
3686 
3687 	range = (struct kvm_io_range) {
3688 		.addr = addr,
3689 		.len = len,
3690 	};
3691 
3692 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3693 	if (!bus)
3694 		return -ENOMEM;
3695 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3696 	return r < 0 ? r : 0;
3697 }
3698 
3699 
3700 /* Caller must hold slots_lock. */
3701 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3702 			    int len, struct kvm_io_device *dev)
3703 {
3704 	int i;
3705 	struct kvm_io_bus *new_bus, *bus;
3706 	struct kvm_io_range range;
3707 
3708 	bus = kvm_get_bus(kvm, bus_idx);
3709 	if (!bus)
3710 		return -ENOMEM;
3711 
3712 	/* exclude ioeventfd which is limited by maximum fd */
3713 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3714 		return -ENOSPC;
3715 
3716 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3717 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3718 	if (!new_bus)
3719 		return -ENOMEM;
3720 
3721 	range = (struct kvm_io_range) {
3722 		.addr = addr,
3723 		.len = len,
3724 		.dev = dev,
3725 	};
3726 
3727 	for (i = 0; i < bus->dev_count; i++)
3728 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3729 			break;
3730 
3731 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3732 	new_bus->dev_count++;
3733 	new_bus->range[i] = range;
3734 	memcpy(new_bus->range + i + 1, bus->range + i,
3735 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3736 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3737 	synchronize_srcu_expedited(&kvm->srcu);
3738 	kfree(bus);
3739 
3740 	return 0;
3741 }
3742 
3743 /* Caller must hold slots_lock. */
3744 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3745 			       struct kvm_io_device *dev)
3746 {
3747 	int i;
3748 	struct kvm_io_bus *new_bus, *bus;
3749 
3750 	bus = kvm_get_bus(kvm, bus_idx);
3751 	if (!bus)
3752 		return;
3753 
3754 	for (i = 0; i < bus->dev_count; i++)
3755 		if (bus->range[i].dev == dev) {
3756 			break;
3757 		}
3758 
3759 	if (i == bus->dev_count)
3760 		return;
3761 
3762 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3763 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3764 	if (!new_bus)  {
3765 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3766 		goto broken;
3767 	}
3768 
3769 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3770 	new_bus->dev_count--;
3771 	memcpy(new_bus->range + i, bus->range + i + 1,
3772 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3773 
3774 broken:
3775 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3776 	synchronize_srcu_expedited(&kvm->srcu);
3777 	kfree(bus);
3778 	return;
3779 }
3780 
3781 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3782 					 gpa_t addr)
3783 {
3784 	struct kvm_io_bus *bus;
3785 	int dev_idx, srcu_idx;
3786 	struct kvm_io_device *iodev = NULL;
3787 
3788 	srcu_idx = srcu_read_lock(&kvm->srcu);
3789 
3790 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3791 	if (!bus)
3792 		goto out_unlock;
3793 
3794 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3795 	if (dev_idx < 0)
3796 		goto out_unlock;
3797 
3798 	iodev = bus->range[dev_idx].dev;
3799 
3800 out_unlock:
3801 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3802 
3803 	return iodev;
3804 }
3805 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3806 
3807 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3808 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3809 			   const char *fmt)
3810 {
3811 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3812 					  inode->i_private;
3813 
3814 	/* The debugfs files are a reference to the kvm struct which
3815 	 * is still valid when kvm_destroy_vm is called.
3816 	 * To avoid the race between open and the removal of the debugfs
3817 	 * directory we test against the users count.
3818 	 */
3819 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3820 		return -ENOENT;
3821 
3822 	if (simple_attr_open(inode, file, get, set, fmt)) {
3823 		kvm_put_kvm(stat_data->kvm);
3824 		return -ENOMEM;
3825 	}
3826 
3827 	return 0;
3828 }
3829 
3830 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3831 {
3832 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3833 					  inode->i_private;
3834 
3835 	simple_attr_release(inode, file);
3836 	kvm_put_kvm(stat_data->kvm);
3837 
3838 	return 0;
3839 }
3840 
3841 static int vm_stat_get_per_vm(void *data, u64 *val)
3842 {
3843 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3844 
3845 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3846 
3847 	return 0;
3848 }
3849 
3850 static int vm_stat_clear_per_vm(void *data, u64 val)
3851 {
3852 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3853 
3854 	if (val)
3855 		return -EINVAL;
3856 
3857 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3858 
3859 	return 0;
3860 }
3861 
3862 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3863 {
3864 	__simple_attr_check_format("%llu\n", 0ull);
3865 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3866 				vm_stat_clear_per_vm, "%llu\n");
3867 }
3868 
3869 static const struct file_operations vm_stat_get_per_vm_fops = {
3870 	.owner   = THIS_MODULE,
3871 	.open    = vm_stat_get_per_vm_open,
3872 	.release = kvm_debugfs_release,
3873 	.read    = simple_attr_read,
3874 	.write   = simple_attr_write,
3875 	.llseek  = no_llseek,
3876 };
3877 
3878 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3879 {
3880 	int i;
3881 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3882 	struct kvm_vcpu *vcpu;
3883 
3884 	*val = 0;
3885 
3886 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3887 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3888 
3889 	return 0;
3890 }
3891 
3892 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3893 {
3894 	int i;
3895 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3896 	struct kvm_vcpu *vcpu;
3897 
3898 	if (val)
3899 		return -EINVAL;
3900 
3901 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3902 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3903 
3904 	return 0;
3905 }
3906 
3907 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3908 {
3909 	__simple_attr_check_format("%llu\n", 0ull);
3910 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3911 				 vcpu_stat_clear_per_vm, "%llu\n");
3912 }
3913 
3914 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3915 	.owner   = THIS_MODULE,
3916 	.open    = vcpu_stat_get_per_vm_open,
3917 	.release = kvm_debugfs_release,
3918 	.read    = simple_attr_read,
3919 	.write   = simple_attr_write,
3920 	.llseek  = no_llseek,
3921 };
3922 
3923 static const struct file_operations *stat_fops_per_vm[] = {
3924 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3925 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3926 };
3927 
3928 static int vm_stat_get(void *_offset, u64 *val)
3929 {
3930 	unsigned offset = (long)_offset;
3931 	struct kvm *kvm;
3932 	struct kvm_stat_data stat_tmp = {.offset = offset};
3933 	u64 tmp_val;
3934 
3935 	*val = 0;
3936 	spin_lock(&kvm_lock);
3937 	list_for_each_entry(kvm, &vm_list, vm_list) {
3938 		stat_tmp.kvm = kvm;
3939 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3940 		*val += tmp_val;
3941 	}
3942 	spin_unlock(&kvm_lock);
3943 	return 0;
3944 }
3945 
3946 static int vm_stat_clear(void *_offset, u64 val)
3947 {
3948 	unsigned offset = (long)_offset;
3949 	struct kvm *kvm;
3950 	struct kvm_stat_data stat_tmp = {.offset = offset};
3951 
3952 	if (val)
3953 		return -EINVAL;
3954 
3955 	spin_lock(&kvm_lock);
3956 	list_for_each_entry(kvm, &vm_list, vm_list) {
3957 		stat_tmp.kvm = kvm;
3958 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3959 	}
3960 	spin_unlock(&kvm_lock);
3961 
3962 	return 0;
3963 }
3964 
3965 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3966 
3967 static int vcpu_stat_get(void *_offset, u64 *val)
3968 {
3969 	unsigned offset = (long)_offset;
3970 	struct kvm *kvm;
3971 	struct kvm_stat_data stat_tmp = {.offset = offset};
3972 	u64 tmp_val;
3973 
3974 	*val = 0;
3975 	spin_lock(&kvm_lock);
3976 	list_for_each_entry(kvm, &vm_list, vm_list) {
3977 		stat_tmp.kvm = kvm;
3978 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3979 		*val += tmp_val;
3980 	}
3981 	spin_unlock(&kvm_lock);
3982 	return 0;
3983 }
3984 
3985 static int vcpu_stat_clear(void *_offset, u64 val)
3986 {
3987 	unsigned offset = (long)_offset;
3988 	struct kvm *kvm;
3989 	struct kvm_stat_data stat_tmp = {.offset = offset};
3990 
3991 	if (val)
3992 		return -EINVAL;
3993 
3994 	spin_lock(&kvm_lock);
3995 	list_for_each_entry(kvm, &vm_list, vm_list) {
3996 		stat_tmp.kvm = kvm;
3997 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3998 	}
3999 	spin_unlock(&kvm_lock);
4000 
4001 	return 0;
4002 }
4003 
4004 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4005 			"%llu\n");
4006 
4007 static const struct file_operations *stat_fops[] = {
4008 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4009 	[KVM_STAT_VM]   = &vm_stat_fops,
4010 };
4011 
4012 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4013 {
4014 	struct kobj_uevent_env *env;
4015 	unsigned long long created, active;
4016 
4017 	if (!kvm_dev.this_device || !kvm)
4018 		return;
4019 
4020 	spin_lock(&kvm_lock);
4021 	if (type == KVM_EVENT_CREATE_VM) {
4022 		kvm_createvm_count++;
4023 		kvm_active_vms++;
4024 	} else if (type == KVM_EVENT_DESTROY_VM) {
4025 		kvm_active_vms--;
4026 	}
4027 	created = kvm_createvm_count;
4028 	active = kvm_active_vms;
4029 	spin_unlock(&kvm_lock);
4030 
4031 	env = kzalloc(sizeof(*env), GFP_KERNEL);
4032 	if (!env)
4033 		return;
4034 
4035 	add_uevent_var(env, "CREATED=%llu", created);
4036 	add_uevent_var(env, "COUNT=%llu", active);
4037 
4038 	if (type == KVM_EVENT_CREATE_VM) {
4039 		add_uevent_var(env, "EVENT=create");
4040 		kvm->userspace_pid = task_pid_nr(current);
4041 	} else if (type == KVM_EVENT_DESTROY_VM) {
4042 		add_uevent_var(env, "EVENT=destroy");
4043 	}
4044 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4045 
4046 	if (kvm->debugfs_dentry) {
4047 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4048 
4049 		if (p) {
4050 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4051 			if (!IS_ERR(tmp))
4052 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4053 			kfree(p);
4054 		}
4055 	}
4056 	/* no need for checks, since we are adding at most only 5 keys */
4057 	env->envp[env->envp_idx++] = NULL;
4058 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4059 	kfree(env);
4060 }
4061 
4062 static void kvm_init_debug(void)
4063 {
4064 	struct kvm_stats_debugfs_item *p;
4065 
4066 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4067 
4068 	kvm_debugfs_num_entries = 0;
4069 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4070 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4071 				    (void *)(long)p->offset,
4072 				    stat_fops[p->kind]);
4073 	}
4074 }
4075 
4076 static int kvm_suspend(void)
4077 {
4078 	if (kvm_usage_count)
4079 		hardware_disable_nolock(NULL);
4080 	return 0;
4081 }
4082 
4083 static void kvm_resume(void)
4084 {
4085 	if (kvm_usage_count) {
4086 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4087 		hardware_enable_nolock(NULL);
4088 	}
4089 }
4090 
4091 static struct syscore_ops kvm_syscore_ops = {
4092 	.suspend = kvm_suspend,
4093 	.resume = kvm_resume,
4094 };
4095 
4096 static inline
4097 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4098 {
4099 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4100 }
4101 
4102 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4103 {
4104 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4105 
4106 	if (vcpu->preempted)
4107 		vcpu->preempted = false;
4108 
4109 	kvm_arch_sched_in(vcpu, cpu);
4110 
4111 	kvm_arch_vcpu_load(vcpu, cpu);
4112 }
4113 
4114 static void kvm_sched_out(struct preempt_notifier *pn,
4115 			  struct task_struct *next)
4116 {
4117 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4118 
4119 	if (current->state == TASK_RUNNING)
4120 		vcpu->preempted = true;
4121 	kvm_arch_vcpu_put(vcpu);
4122 }
4123 
4124 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4125 		  struct module *module)
4126 {
4127 	int r;
4128 	int cpu;
4129 
4130 	r = kvm_arch_init(opaque);
4131 	if (r)
4132 		goto out_fail;
4133 
4134 	/*
4135 	 * kvm_arch_init makes sure there's at most one caller
4136 	 * for architectures that support multiple implementations,
4137 	 * like intel and amd on x86.
4138 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4139 	 * conflicts in case kvm is already setup for another implementation.
4140 	 */
4141 	r = kvm_irqfd_init();
4142 	if (r)
4143 		goto out_irqfd;
4144 
4145 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4146 		r = -ENOMEM;
4147 		goto out_free_0;
4148 	}
4149 
4150 	r = kvm_arch_hardware_setup();
4151 	if (r < 0)
4152 		goto out_free_0a;
4153 
4154 	for_each_online_cpu(cpu) {
4155 		smp_call_function_single(cpu,
4156 				kvm_arch_check_processor_compat,
4157 				&r, 1);
4158 		if (r < 0)
4159 			goto out_free_1;
4160 	}
4161 
4162 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4163 				      kvm_starting_cpu, kvm_dying_cpu);
4164 	if (r)
4165 		goto out_free_2;
4166 	register_reboot_notifier(&kvm_reboot_notifier);
4167 
4168 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4169 	if (!vcpu_align)
4170 		vcpu_align = __alignof__(struct kvm_vcpu);
4171 	kvm_vcpu_cache =
4172 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4173 					   SLAB_ACCOUNT,
4174 					   offsetof(struct kvm_vcpu, arch),
4175 					   sizeof_field(struct kvm_vcpu, arch),
4176 					   NULL);
4177 	if (!kvm_vcpu_cache) {
4178 		r = -ENOMEM;
4179 		goto out_free_3;
4180 	}
4181 
4182 	r = kvm_async_pf_init();
4183 	if (r)
4184 		goto out_free;
4185 
4186 	kvm_chardev_ops.owner = module;
4187 	kvm_vm_fops.owner = module;
4188 	kvm_vcpu_fops.owner = module;
4189 
4190 	r = misc_register(&kvm_dev);
4191 	if (r) {
4192 		pr_err("kvm: misc device register failed\n");
4193 		goto out_unreg;
4194 	}
4195 
4196 	register_syscore_ops(&kvm_syscore_ops);
4197 
4198 	kvm_preempt_ops.sched_in = kvm_sched_in;
4199 	kvm_preempt_ops.sched_out = kvm_sched_out;
4200 
4201 	kvm_init_debug();
4202 
4203 	r = kvm_vfio_ops_init();
4204 	WARN_ON(r);
4205 
4206 	return 0;
4207 
4208 out_unreg:
4209 	kvm_async_pf_deinit();
4210 out_free:
4211 	kmem_cache_destroy(kvm_vcpu_cache);
4212 out_free_3:
4213 	unregister_reboot_notifier(&kvm_reboot_notifier);
4214 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4215 out_free_2:
4216 out_free_1:
4217 	kvm_arch_hardware_unsetup();
4218 out_free_0a:
4219 	free_cpumask_var(cpus_hardware_enabled);
4220 out_free_0:
4221 	kvm_irqfd_exit();
4222 out_irqfd:
4223 	kvm_arch_exit();
4224 out_fail:
4225 	return r;
4226 }
4227 EXPORT_SYMBOL_GPL(kvm_init);
4228 
4229 void kvm_exit(void)
4230 {
4231 	debugfs_remove_recursive(kvm_debugfs_dir);
4232 	misc_deregister(&kvm_dev);
4233 	kmem_cache_destroy(kvm_vcpu_cache);
4234 	kvm_async_pf_deinit();
4235 	unregister_syscore_ops(&kvm_syscore_ops);
4236 	unregister_reboot_notifier(&kvm_reboot_notifier);
4237 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4238 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4239 	kvm_arch_hardware_unsetup();
4240 	kvm_arch_exit();
4241 	kvm_irqfd_exit();
4242 	free_cpumask_var(cpus_hardware_enabled);
4243 	kvm_vfio_ops_exit();
4244 }
4245 EXPORT_SYMBOL_GPL(kvm_exit);
4246