xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 9be08a27)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 				unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127 
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129 
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131 
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134 
135 static bool largepages_enabled = true;
136 
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142 
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 		unsigned long start, unsigned long end, bool blockable)
145 {
146 	return 0;
147 }
148 
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 	if (pfn_valid(pfn))
152 		return PageReserved(pfn_to_page(pfn));
153 
154 	return true;
155 }
156 
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 	int cpu = get_cpu();
163 	preempt_notifier_register(&vcpu->preempt_notifier);
164 	kvm_arch_vcpu_load(vcpu, cpu);
165 	put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168 
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 	preempt_disable();
172 	kvm_arch_vcpu_put(vcpu);
173 	preempt_notifier_unregister(&vcpu->preempt_notifier);
174 	preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183 	/*
184 	 * We need to wait for the VCPU to reenable interrupts and get out of
185 	 * READING_SHADOW_PAGE_TABLES mode.
186 	 */
187 	if (req & KVM_REQUEST_WAIT)
188 		return mode != OUTSIDE_GUEST_MODE;
189 
190 	/*
191 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 	 */
193 	return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 	if (unlikely(!cpus))
203 		cpus = cpu_online_mask;
204 
205 	if (cpumask_empty(cpus))
206 		return false;
207 
208 	smp_call_function_many(cpus, ack_flush, NULL, wait);
209 	return true;
210 }
211 
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 	int i, cpu, me;
216 	struct kvm_vcpu *vcpu;
217 	bool called;
218 
219 	me = get_cpu();
220 
221 	kvm_for_each_vcpu(i, vcpu, kvm) {
222 		if (!test_bit(i, vcpu_bitmap))
223 			continue;
224 
225 		kvm_make_request(req, vcpu);
226 		cpu = vcpu->cpu;
227 
228 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 			continue;
230 
231 		if (tmp != NULL && cpu != -1 && cpu != me &&
232 		    kvm_request_needs_ipi(vcpu, req))
233 			__cpumask_set_cpu(cpu, tmp);
234 	}
235 
236 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 	put_cpu();
238 
239 	return called;
240 }
241 
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 	cpumask_var_t cpus;
245 	bool called;
246 	static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
247 		= {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
248 
249 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
250 
251 	called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
252 
253 	free_cpumask_var(cpus);
254 	return called;
255 }
256 
257 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
258 void kvm_flush_remote_tlbs(struct kvm *kvm)
259 {
260 	/*
261 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
262 	 * kvm_make_all_cpus_request.
263 	 */
264 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
265 
266 	/*
267 	 * We want to publish modifications to the page tables before reading
268 	 * mode. Pairs with a memory barrier in arch-specific code.
269 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
270 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
271 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
272 	 *
273 	 * There is already an smp_mb__after_atomic() before
274 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
275 	 * barrier here.
276 	 */
277 	if (!kvm_arch_flush_remote_tlb(kvm)
278 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
279 		++kvm->stat.remote_tlb_flush;
280 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
281 }
282 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
283 #endif
284 
285 void kvm_reload_remote_mmus(struct kvm *kvm)
286 {
287 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
288 }
289 
290 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
291 {
292 	struct page *page;
293 	int r;
294 
295 	mutex_init(&vcpu->mutex);
296 	vcpu->cpu = -1;
297 	vcpu->kvm = kvm;
298 	vcpu->vcpu_id = id;
299 	vcpu->pid = NULL;
300 	init_swait_queue_head(&vcpu->wq);
301 	kvm_async_pf_vcpu_init(vcpu);
302 
303 	vcpu->pre_pcpu = -1;
304 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
305 
306 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
307 	if (!page) {
308 		r = -ENOMEM;
309 		goto fail;
310 	}
311 	vcpu->run = page_address(page);
312 
313 	kvm_vcpu_set_in_spin_loop(vcpu, false);
314 	kvm_vcpu_set_dy_eligible(vcpu, false);
315 	vcpu->preempted = false;
316 
317 	r = kvm_arch_vcpu_init(vcpu);
318 	if (r < 0)
319 		goto fail_free_run;
320 	return 0;
321 
322 fail_free_run:
323 	free_page((unsigned long)vcpu->run);
324 fail:
325 	return r;
326 }
327 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
328 
329 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
330 {
331 	/*
332 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
333 	 * will change the vcpu->pid pointer and on uninit all file
334 	 * descriptors are already gone.
335 	 */
336 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
337 	kvm_arch_vcpu_uninit(vcpu);
338 	free_page((unsigned long)vcpu->run);
339 }
340 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
341 
342 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
343 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
344 {
345 	return container_of(mn, struct kvm, mmu_notifier);
346 }
347 
348 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
349 					struct mm_struct *mm,
350 					unsigned long address,
351 					pte_t pte)
352 {
353 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
354 	int idx;
355 
356 	idx = srcu_read_lock(&kvm->srcu);
357 	spin_lock(&kvm->mmu_lock);
358 	kvm->mmu_notifier_seq++;
359 	kvm_set_spte_hva(kvm, address, pte);
360 	spin_unlock(&kvm->mmu_lock);
361 	srcu_read_unlock(&kvm->srcu, idx);
362 }
363 
364 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
365 						    struct mm_struct *mm,
366 						    unsigned long start,
367 						    unsigned long end,
368 						    bool blockable)
369 {
370 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
371 	int need_tlb_flush = 0, idx;
372 	int ret;
373 
374 	idx = srcu_read_lock(&kvm->srcu);
375 	spin_lock(&kvm->mmu_lock);
376 	/*
377 	 * The count increase must become visible at unlock time as no
378 	 * spte can be established without taking the mmu_lock and
379 	 * count is also read inside the mmu_lock critical section.
380 	 */
381 	kvm->mmu_notifier_count++;
382 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
383 	need_tlb_flush |= kvm->tlbs_dirty;
384 	/* we've to flush the tlb before the pages can be freed */
385 	if (need_tlb_flush)
386 		kvm_flush_remote_tlbs(kvm);
387 
388 	spin_unlock(&kvm->mmu_lock);
389 
390 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
391 
392 	srcu_read_unlock(&kvm->srcu, idx);
393 
394 	return ret;
395 }
396 
397 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
398 						  struct mm_struct *mm,
399 						  unsigned long start,
400 						  unsigned long end)
401 {
402 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 
404 	spin_lock(&kvm->mmu_lock);
405 	/*
406 	 * This sequence increase will notify the kvm page fault that
407 	 * the page that is going to be mapped in the spte could have
408 	 * been freed.
409 	 */
410 	kvm->mmu_notifier_seq++;
411 	smp_wmb();
412 	/*
413 	 * The above sequence increase must be visible before the
414 	 * below count decrease, which is ensured by the smp_wmb above
415 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
416 	 */
417 	kvm->mmu_notifier_count--;
418 	spin_unlock(&kvm->mmu_lock);
419 
420 	BUG_ON(kvm->mmu_notifier_count < 0);
421 }
422 
423 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
424 					      struct mm_struct *mm,
425 					      unsigned long start,
426 					      unsigned long end)
427 {
428 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
429 	int young, idx;
430 
431 	idx = srcu_read_lock(&kvm->srcu);
432 	spin_lock(&kvm->mmu_lock);
433 
434 	young = kvm_age_hva(kvm, start, end);
435 	if (young)
436 		kvm_flush_remote_tlbs(kvm);
437 
438 	spin_unlock(&kvm->mmu_lock);
439 	srcu_read_unlock(&kvm->srcu, idx);
440 
441 	return young;
442 }
443 
444 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
445 					struct mm_struct *mm,
446 					unsigned long start,
447 					unsigned long end)
448 {
449 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 	int young, idx;
451 
452 	idx = srcu_read_lock(&kvm->srcu);
453 	spin_lock(&kvm->mmu_lock);
454 	/*
455 	 * Even though we do not flush TLB, this will still adversely
456 	 * affect performance on pre-Haswell Intel EPT, where there is
457 	 * no EPT Access Bit to clear so that we have to tear down EPT
458 	 * tables instead. If we find this unacceptable, we can always
459 	 * add a parameter to kvm_age_hva so that it effectively doesn't
460 	 * do anything on clear_young.
461 	 *
462 	 * Also note that currently we never issue secondary TLB flushes
463 	 * from clear_young, leaving this job up to the regular system
464 	 * cadence. If we find this inaccurate, we might come up with a
465 	 * more sophisticated heuristic later.
466 	 */
467 	young = kvm_age_hva(kvm, start, end);
468 	spin_unlock(&kvm->mmu_lock);
469 	srcu_read_unlock(&kvm->srcu, idx);
470 
471 	return young;
472 }
473 
474 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
475 				       struct mm_struct *mm,
476 				       unsigned long address)
477 {
478 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
479 	int young, idx;
480 
481 	idx = srcu_read_lock(&kvm->srcu);
482 	spin_lock(&kvm->mmu_lock);
483 	young = kvm_test_age_hva(kvm, address);
484 	spin_unlock(&kvm->mmu_lock);
485 	srcu_read_unlock(&kvm->srcu, idx);
486 
487 	return young;
488 }
489 
490 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
491 				     struct mm_struct *mm)
492 {
493 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
494 	int idx;
495 
496 	idx = srcu_read_lock(&kvm->srcu);
497 	kvm_arch_flush_shadow_all(kvm);
498 	srcu_read_unlock(&kvm->srcu, idx);
499 }
500 
501 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
502 	.flags			= MMU_INVALIDATE_DOES_NOT_BLOCK,
503 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
504 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
505 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
506 	.clear_young		= kvm_mmu_notifier_clear_young,
507 	.test_young		= kvm_mmu_notifier_test_young,
508 	.change_pte		= kvm_mmu_notifier_change_pte,
509 	.release		= kvm_mmu_notifier_release,
510 };
511 
512 static int kvm_init_mmu_notifier(struct kvm *kvm)
513 {
514 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
515 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
516 }
517 
518 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
519 
520 static int kvm_init_mmu_notifier(struct kvm *kvm)
521 {
522 	return 0;
523 }
524 
525 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
526 
527 static struct kvm_memslots *kvm_alloc_memslots(void)
528 {
529 	int i;
530 	struct kvm_memslots *slots;
531 
532 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
533 	if (!slots)
534 		return NULL;
535 
536 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
537 		slots->id_to_index[i] = slots->memslots[i].id = i;
538 
539 	return slots;
540 }
541 
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544 	if (!memslot->dirty_bitmap)
545 		return;
546 
547 	kvfree(memslot->dirty_bitmap);
548 	memslot->dirty_bitmap = NULL;
549 }
550 
551 /*
552  * Free any memory in @free but not in @dont.
553  */
554 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
555 			      struct kvm_memory_slot *dont)
556 {
557 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 		kvm_destroy_dirty_bitmap(free);
559 
560 	kvm_arch_free_memslot(kvm, free, dont);
561 
562 	free->npages = 0;
563 }
564 
565 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
566 {
567 	struct kvm_memory_slot *memslot;
568 
569 	if (!slots)
570 		return;
571 
572 	kvm_for_each_memslot(memslot, slots)
573 		kvm_free_memslot(kvm, memslot, NULL);
574 
575 	kvfree(slots);
576 }
577 
578 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
579 {
580 	int i;
581 
582 	if (!kvm->debugfs_dentry)
583 		return;
584 
585 	debugfs_remove_recursive(kvm->debugfs_dentry);
586 
587 	if (kvm->debugfs_stat_data) {
588 		for (i = 0; i < kvm_debugfs_num_entries; i++)
589 			kfree(kvm->debugfs_stat_data[i]);
590 		kfree(kvm->debugfs_stat_data);
591 	}
592 }
593 
594 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
595 {
596 	char dir_name[ITOA_MAX_LEN * 2];
597 	struct kvm_stat_data *stat_data;
598 	struct kvm_stats_debugfs_item *p;
599 
600 	if (!debugfs_initialized())
601 		return 0;
602 
603 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
604 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
605 
606 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
607 					 sizeof(*kvm->debugfs_stat_data),
608 					 GFP_KERNEL);
609 	if (!kvm->debugfs_stat_data)
610 		return -ENOMEM;
611 
612 	for (p = debugfs_entries; p->name; p++) {
613 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
614 		if (!stat_data)
615 			return -ENOMEM;
616 
617 		stat_data->kvm = kvm;
618 		stat_data->offset = p->offset;
619 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
620 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
621 				    stat_data, stat_fops_per_vm[p->kind]);
622 	}
623 	return 0;
624 }
625 
626 static struct kvm *kvm_create_vm(unsigned long type)
627 {
628 	int r, i;
629 	struct kvm *kvm = kvm_arch_alloc_vm();
630 
631 	if (!kvm)
632 		return ERR_PTR(-ENOMEM);
633 
634 	spin_lock_init(&kvm->mmu_lock);
635 	mmgrab(current->mm);
636 	kvm->mm = current->mm;
637 	kvm_eventfd_init(kvm);
638 	mutex_init(&kvm->lock);
639 	mutex_init(&kvm->irq_lock);
640 	mutex_init(&kvm->slots_lock);
641 	refcount_set(&kvm->users_count, 1);
642 	INIT_LIST_HEAD(&kvm->devices);
643 
644 	r = kvm_arch_init_vm(kvm, type);
645 	if (r)
646 		goto out_err_no_disable;
647 
648 	r = hardware_enable_all();
649 	if (r)
650 		goto out_err_no_disable;
651 
652 #ifdef CONFIG_HAVE_KVM_IRQFD
653 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
654 #endif
655 
656 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
657 
658 	r = -ENOMEM;
659 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
660 		struct kvm_memslots *slots = kvm_alloc_memslots();
661 		if (!slots)
662 			goto out_err_no_srcu;
663 		/*
664 		 * Generations must be different for each address space.
665 		 * Init kvm generation close to the maximum to easily test the
666 		 * code of handling generation number wrap-around.
667 		 */
668 		slots->generation = i * 2 - 150;
669 		rcu_assign_pointer(kvm->memslots[i], slots);
670 	}
671 
672 	if (init_srcu_struct(&kvm->srcu))
673 		goto out_err_no_srcu;
674 	if (init_srcu_struct(&kvm->irq_srcu))
675 		goto out_err_no_irq_srcu;
676 	for (i = 0; i < KVM_NR_BUSES; i++) {
677 		rcu_assign_pointer(kvm->buses[i],
678 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
679 		if (!kvm->buses[i])
680 			goto out_err;
681 	}
682 
683 	r = kvm_init_mmu_notifier(kvm);
684 	if (r)
685 		goto out_err;
686 
687 	spin_lock(&kvm_lock);
688 	list_add(&kvm->vm_list, &vm_list);
689 	spin_unlock(&kvm_lock);
690 
691 	preempt_notifier_inc();
692 
693 	return kvm;
694 
695 out_err:
696 	cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698 	cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700 	hardware_disable_all();
701 out_err_no_disable:
702 	refcount_set(&kvm->users_count, 0);
703 	for (i = 0; i < KVM_NR_BUSES; i++)
704 		kfree(kvm_get_bus(kvm, i));
705 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
706 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
707 	kvm_arch_free_vm(kvm);
708 	mmdrop(current->mm);
709 	return ERR_PTR(r);
710 }
711 
712 static void kvm_destroy_devices(struct kvm *kvm)
713 {
714 	struct kvm_device *dev, *tmp;
715 
716 	/*
717 	 * We do not need to take the kvm->lock here, because nobody else
718 	 * has a reference to the struct kvm at this point and therefore
719 	 * cannot access the devices list anyhow.
720 	 */
721 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
722 		list_del(&dev->vm_node);
723 		dev->ops->destroy(dev);
724 	}
725 }
726 
727 static void kvm_destroy_vm(struct kvm *kvm)
728 {
729 	int i;
730 	struct mm_struct *mm = kvm->mm;
731 
732 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
733 	kvm_destroy_vm_debugfs(kvm);
734 	kvm_arch_sync_events(kvm);
735 	spin_lock(&kvm_lock);
736 	list_del(&kvm->vm_list);
737 	spin_unlock(&kvm_lock);
738 	kvm_free_irq_routing(kvm);
739 	for (i = 0; i < KVM_NR_BUSES; i++) {
740 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
741 
742 		if (bus)
743 			kvm_io_bus_destroy(bus);
744 		kvm->buses[i] = NULL;
745 	}
746 	kvm_coalesced_mmio_free(kvm);
747 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
748 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
749 #else
750 	kvm_arch_flush_shadow_all(kvm);
751 #endif
752 	kvm_arch_destroy_vm(kvm);
753 	kvm_destroy_devices(kvm);
754 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
755 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
756 	cleanup_srcu_struct(&kvm->irq_srcu);
757 	cleanup_srcu_struct(&kvm->srcu);
758 	kvm_arch_free_vm(kvm);
759 	preempt_notifier_dec();
760 	hardware_disable_all();
761 	mmdrop(mm);
762 }
763 
764 void kvm_get_kvm(struct kvm *kvm)
765 {
766 	refcount_inc(&kvm->users_count);
767 }
768 EXPORT_SYMBOL_GPL(kvm_get_kvm);
769 
770 void kvm_put_kvm(struct kvm *kvm)
771 {
772 	if (refcount_dec_and_test(&kvm->users_count))
773 		kvm_destroy_vm(kvm);
774 }
775 EXPORT_SYMBOL_GPL(kvm_put_kvm);
776 
777 
778 static int kvm_vm_release(struct inode *inode, struct file *filp)
779 {
780 	struct kvm *kvm = filp->private_data;
781 
782 	kvm_irqfd_release(kvm);
783 
784 	kvm_put_kvm(kvm);
785 	return 0;
786 }
787 
788 /*
789  * Allocation size is twice as large as the actual dirty bitmap size.
790  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
791  */
792 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
793 {
794 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
795 
796 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
797 	if (!memslot->dirty_bitmap)
798 		return -ENOMEM;
799 
800 	return 0;
801 }
802 
803 /*
804  * Insert memslot and re-sort memslots based on their GFN,
805  * so binary search could be used to lookup GFN.
806  * Sorting algorithm takes advantage of having initially
807  * sorted array and known changed memslot position.
808  */
809 static void update_memslots(struct kvm_memslots *slots,
810 			    struct kvm_memory_slot *new)
811 {
812 	int id = new->id;
813 	int i = slots->id_to_index[id];
814 	struct kvm_memory_slot *mslots = slots->memslots;
815 
816 	WARN_ON(mslots[i].id != id);
817 	if (!new->npages) {
818 		WARN_ON(!mslots[i].npages);
819 		if (mslots[i].npages)
820 			slots->used_slots--;
821 	} else {
822 		if (!mslots[i].npages)
823 			slots->used_slots++;
824 	}
825 
826 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
827 	       new->base_gfn <= mslots[i + 1].base_gfn) {
828 		if (!mslots[i + 1].npages)
829 			break;
830 		mslots[i] = mslots[i + 1];
831 		slots->id_to_index[mslots[i].id] = i;
832 		i++;
833 	}
834 
835 	/*
836 	 * The ">=" is needed when creating a slot with base_gfn == 0,
837 	 * so that it moves before all those with base_gfn == npages == 0.
838 	 *
839 	 * On the other hand, if new->npages is zero, the above loop has
840 	 * already left i pointing to the beginning of the empty part of
841 	 * mslots, and the ">=" would move the hole backwards in this
842 	 * case---which is wrong.  So skip the loop when deleting a slot.
843 	 */
844 	if (new->npages) {
845 		while (i > 0 &&
846 		       new->base_gfn >= mslots[i - 1].base_gfn) {
847 			mslots[i] = mslots[i - 1];
848 			slots->id_to_index[mslots[i].id] = i;
849 			i--;
850 		}
851 	} else
852 		WARN_ON_ONCE(i != slots->used_slots);
853 
854 	mslots[i] = *new;
855 	slots->id_to_index[mslots[i].id] = i;
856 }
857 
858 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
859 {
860 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
861 
862 #ifdef __KVM_HAVE_READONLY_MEM
863 	valid_flags |= KVM_MEM_READONLY;
864 #endif
865 
866 	if (mem->flags & ~valid_flags)
867 		return -EINVAL;
868 
869 	return 0;
870 }
871 
872 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
873 		int as_id, struct kvm_memslots *slots)
874 {
875 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
876 
877 	/*
878 	 * Set the low bit in the generation, which disables SPTE caching
879 	 * until the end of synchronize_srcu_expedited.
880 	 */
881 	WARN_ON(old_memslots->generation & 1);
882 	slots->generation = old_memslots->generation + 1;
883 
884 	rcu_assign_pointer(kvm->memslots[as_id], slots);
885 	synchronize_srcu_expedited(&kvm->srcu);
886 
887 	/*
888 	 * Increment the new memslot generation a second time. This prevents
889 	 * vm exits that race with memslot updates from caching a memslot
890 	 * generation that will (potentially) be valid forever.
891 	 *
892 	 * Generations must be unique even across address spaces.  We do not need
893 	 * a global counter for that, instead the generation space is evenly split
894 	 * across address spaces.  For example, with two address spaces, address
895 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
896 	 * use generations 2, 6, 10, 14, ...
897 	 */
898 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
899 
900 	kvm_arch_memslots_updated(kvm, slots);
901 
902 	return old_memslots;
903 }
904 
905 /*
906  * Allocate some memory and give it an address in the guest physical address
907  * space.
908  *
909  * Discontiguous memory is allowed, mostly for framebuffers.
910  *
911  * Must be called holding kvm->slots_lock for write.
912  */
913 int __kvm_set_memory_region(struct kvm *kvm,
914 			    const struct kvm_userspace_memory_region *mem)
915 {
916 	int r;
917 	gfn_t base_gfn;
918 	unsigned long npages;
919 	struct kvm_memory_slot *slot;
920 	struct kvm_memory_slot old, new;
921 	struct kvm_memslots *slots = NULL, *old_memslots;
922 	int as_id, id;
923 	enum kvm_mr_change change;
924 
925 	r = check_memory_region_flags(mem);
926 	if (r)
927 		goto out;
928 
929 	r = -EINVAL;
930 	as_id = mem->slot >> 16;
931 	id = (u16)mem->slot;
932 
933 	/* General sanity checks */
934 	if (mem->memory_size & (PAGE_SIZE - 1))
935 		goto out;
936 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
937 		goto out;
938 	/* We can read the guest memory with __xxx_user() later on. */
939 	if ((id < KVM_USER_MEM_SLOTS) &&
940 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
941 	     !access_ok(VERIFY_WRITE,
942 			(void __user *)(unsigned long)mem->userspace_addr,
943 			mem->memory_size)))
944 		goto out;
945 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
946 		goto out;
947 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
948 		goto out;
949 
950 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
951 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
952 	npages = mem->memory_size >> PAGE_SHIFT;
953 
954 	if (npages > KVM_MEM_MAX_NR_PAGES)
955 		goto out;
956 
957 	new = old = *slot;
958 
959 	new.id = id;
960 	new.base_gfn = base_gfn;
961 	new.npages = npages;
962 	new.flags = mem->flags;
963 
964 	if (npages) {
965 		if (!old.npages)
966 			change = KVM_MR_CREATE;
967 		else { /* Modify an existing slot. */
968 			if ((mem->userspace_addr != old.userspace_addr) ||
969 			    (npages != old.npages) ||
970 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
971 				goto out;
972 
973 			if (base_gfn != old.base_gfn)
974 				change = KVM_MR_MOVE;
975 			else if (new.flags != old.flags)
976 				change = KVM_MR_FLAGS_ONLY;
977 			else { /* Nothing to change. */
978 				r = 0;
979 				goto out;
980 			}
981 		}
982 	} else {
983 		if (!old.npages)
984 			goto out;
985 
986 		change = KVM_MR_DELETE;
987 		new.base_gfn = 0;
988 		new.flags = 0;
989 	}
990 
991 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
992 		/* Check for overlaps */
993 		r = -EEXIST;
994 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
995 			if (slot->id == id)
996 				continue;
997 			if (!((base_gfn + npages <= slot->base_gfn) ||
998 			      (base_gfn >= slot->base_gfn + slot->npages)))
999 				goto out;
1000 		}
1001 	}
1002 
1003 	/* Free page dirty bitmap if unneeded */
1004 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005 		new.dirty_bitmap = NULL;
1006 
1007 	r = -ENOMEM;
1008 	if (change == KVM_MR_CREATE) {
1009 		new.userspace_addr = mem->userspace_addr;
1010 
1011 		if (kvm_arch_create_memslot(kvm, &new, npages))
1012 			goto out_free;
1013 	}
1014 
1015 	/* Allocate page dirty bitmap if needed */
1016 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017 		if (kvm_create_dirty_bitmap(&new) < 0)
1018 			goto out_free;
1019 	}
1020 
1021 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022 	if (!slots)
1023 		goto out_free;
1024 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025 
1026 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027 		slot = id_to_memslot(slots, id);
1028 		slot->flags |= KVM_MEMSLOT_INVALID;
1029 
1030 		old_memslots = install_new_memslots(kvm, as_id, slots);
1031 
1032 		/* From this point no new shadow pages pointing to a deleted,
1033 		 * or moved, memslot will be created.
1034 		 *
1035 		 * validation of sp->gfn happens in:
1036 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1038 		 */
1039 		kvm_arch_flush_shadow_memslot(kvm, slot);
1040 
1041 		/*
1042 		 * We can re-use the old_memslots from above, the only difference
1043 		 * from the currently installed memslots is the invalid flag.  This
1044 		 * will get overwritten by update_memslots anyway.
1045 		 */
1046 		slots = old_memslots;
1047 	}
1048 
1049 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050 	if (r)
1051 		goto out_slots;
1052 
1053 	/* actual memory is freed via old in kvm_free_memslot below */
1054 	if (change == KVM_MR_DELETE) {
1055 		new.dirty_bitmap = NULL;
1056 		memset(&new.arch, 0, sizeof(new.arch));
1057 	}
1058 
1059 	update_memslots(slots, &new);
1060 	old_memslots = install_new_memslots(kvm, as_id, slots);
1061 
1062 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063 
1064 	kvm_free_memslot(kvm, &old, &new);
1065 	kvfree(old_memslots);
1066 	return 0;
1067 
1068 out_slots:
1069 	kvfree(slots);
1070 out_free:
1071 	kvm_free_memslot(kvm, &new, &old);
1072 out:
1073 	return r;
1074 }
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076 
1077 int kvm_set_memory_region(struct kvm *kvm,
1078 			  const struct kvm_userspace_memory_region *mem)
1079 {
1080 	int r;
1081 
1082 	mutex_lock(&kvm->slots_lock);
1083 	r = __kvm_set_memory_region(kvm, mem);
1084 	mutex_unlock(&kvm->slots_lock);
1085 	return r;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088 
1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090 					  struct kvm_userspace_memory_region *mem)
1091 {
1092 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093 		return -EINVAL;
1094 
1095 	return kvm_set_memory_region(kvm, mem);
1096 }
1097 
1098 int kvm_get_dirty_log(struct kvm *kvm,
1099 			struct kvm_dirty_log *log, int *is_dirty)
1100 {
1101 	struct kvm_memslots *slots;
1102 	struct kvm_memory_slot *memslot;
1103 	int i, as_id, id;
1104 	unsigned long n;
1105 	unsigned long any = 0;
1106 
1107 	as_id = log->slot >> 16;
1108 	id = (u16)log->slot;
1109 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110 		return -EINVAL;
1111 
1112 	slots = __kvm_memslots(kvm, as_id);
1113 	memslot = id_to_memslot(slots, id);
1114 	if (!memslot->dirty_bitmap)
1115 		return -ENOENT;
1116 
1117 	n = kvm_dirty_bitmap_bytes(memslot);
1118 
1119 	for (i = 0; !any && i < n/sizeof(long); ++i)
1120 		any = memslot->dirty_bitmap[i];
1121 
1122 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123 		return -EFAULT;
1124 
1125 	if (any)
1126 		*is_dirty = 1;
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130 
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *	are dirty write protect them for next write.
1135  * @kvm:	pointer to kvm instance
1136  * @log:	slot id and address to which we copy the log
1137  * @is_dirty:	flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 			struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157 	struct kvm_memslots *slots;
1158 	struct kvm_memory_slot *memslot;
1159 	int i, as_id, id;
1160 	unsigned long n;
1161 	unsigned long *dirty_bitmap;
1162 	unsigned long *dirty_bitmap_buffer;
1163 
1164 	as_id = log->slot >> 16;
1165 	id = (u16)log->slot;
1166 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167 		return -EINVAL;
1168 
1169 	slots = __kvm_memslots(kvm, as_id);
1170 	memslot = id_to_memslot(slots, id);
1171 
1172 	dirty_bitmap = memslot->dirty_bitmap;
1173 	if (!dirty_bitmap)
1174 		return -ENOENT;
1175 
1176 	n = kvm_dirty_bitmap_bytes(memslot);
1177 
1178 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1179 	memset(dirty_bitmap_buffer, 0, n);
1180 
1181 	spin_lock(&kvm->mmu_lock);
1182 	*is_dirty = false;
1183 	for (i = 0; i < n / sizeof(long); i++) {
1184 		unsigned long mask;
1185 		gfn_t offset;
1186 
1187 		if (!dirty_bitmap[i])
1188 			continue;
1189 
1190 		*is_dirty = true;
1191 
1192 		mask = xchg(&dirty_bitmap[i], 0);
1193 		dirty_bitmap_buffer[i] = mask;
1194 
1195 		if (mask) {
1196 			offset = i * BITS_PER_LONG;
1197 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1198 								offset, mask);
1199 		}
1200 	}
1201 
1202 	spin_unlock(&kvm->mmu_lock);
1203 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1204 		return -EFAULT;
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1208 #endif
1209 
1210 bool kvm_largepages_enabled(void)
1211 {
1212 	return largepages_enabled;
1213 }
1214 
1215 void kvm_disable_largepages(void)
1216 {
1217 	largepages_enabled = false;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1220 
1221 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1222 {
1223 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1224 }
1225 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1226 
1227 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1228 {
1229 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1230 }
1231 
1232 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1233 {
1234 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1235 
1236 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1237 	      memslot->flags & KVM_MEMSLOT_INVALID)
1238 		return false;
1239 
1240 	return true;
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1243 
1244 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1245 {
1246 	struct vm_area_struct *vma;
1247 	unsigned long addr, size;
1248 
1249 	size = PAGE_SIZE;
1250 
1251 	addr = gfn_to_hva(kvm, gfn);
1252 	if (kvm_is_error_hva(addr))
1253 		return PAGE_SIZE;
1254 
1255 	down_read(&current->mm->mmap_sem);
1256 	vma = find_vma(current->mm, addr);
1257 	if (!vma)
1258 		goto out;
1259 
1260 	size = vma_kernel_pagesize(vma);
1261 
1262 out:
1263 	up_read(&current->mm->mmap_sem);
1264 
1265 	return size;
1266 }
1267 
1268 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1269 {
1270 	return slot->flags & KVM_MEM_READONLY;
1271 }
1272 
1273 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1274 				       gfn_t *nr_pages, bool write)
1275 {
1276 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1277 		return KVM_HVA_ERR_BAD;
1278 
1279 	if (memslot_is_readonly(slot) && write)
1280 		return KVM_HVA_ERR_RO_BAD;
1281 
1282 	if (nr_pages)
1283 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1284 
1285 	return __gfn_to_hva_memslot(slot, gfn);
1286 }
1287 
1288 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1289 				     gfn_t *nr_pages)
1290 {
1291 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1292 }
1293 
1294 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1295 					gfn_t gfn)
1296 {
1297 	return gfn_to_hva_many(slot, gfn, NULL);
1298 }
1299 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1300 
1301 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1302 {
1303 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(gfn_to_hva);
1306 
1307 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1308 {
1309 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1310 }
1311 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1312 
1313 /*
1314  * If writable is set to false, the hva returned by this function is only
1315  * allowed to be read.
1316  */
1317 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1318 				      gfn_t gfn, bool *writable)
1319 {
1320 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1321 
1322 	if (!kvm_is_error_hva(hva) && writable)
1323 		*writable = !memslot_is_readonly(slot);
1324 
1325 	return hva;
1326 }
1327 
1328 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1329 {
1330 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1331 
1332 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1333 }
1334 
1335 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1336 {
1337 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1338 
1339 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341 
1342 static inline int check_user_page_hwpoison(unsigned long addr)
1343 {
1344 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1345 
1346 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1347 	return rc == -EHWPOISON;
1348 }
1349 
1350 /*
1351  * The fast path to get the writable pfn which will be stored in @pfn,
1352  * true indicates success, otherwise false is returned.  It's also the
1353  * only part that runs if we can are in atomic context.
1354  */
1355 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1356 			    bool *writable, kvm_pfn_t *pfn)
1357 {
1358 	struct page *page[1];
1359 	int npages;
1360 
1361 	/*
1362 	 * Fast pin a writable pfn only if it is a write fault request
1363 	 * or the caller allows to map a writable pfn for a read fault
1364 	 * request.
1365 	 */
1366 	if (!(write_fault || writable))
1367 		return false;
1368 
1369 	npages = __get_user_pages_fast(addr, 1, 1, page);
1370 	if (npages == 1) {
1371 		*pfn = page_to_pfn(page[0]);
1372 
1373 		if (writable)
1374 			*writable = true;
1375 		return true;
1376 	}
1377 
1378 	return false;
1379 }
1380 
1381 /*
1382  * The slow path to get the pfn of the specified host virtual address,
1383  * 1 indicates success, -errno is returned if error is detected.
1384  */
1385 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1386 			   bool *writable, kvm_pfn_t *pfn)
1387 {
1388 	unsigned int flags = FOLL_HWPOISON;
1389 	struct page *page;
1390 	int npages = 0;
1391 
1392 	might_sleep();
1393 
1394 	if (writable)
1395 		*writable = write_fault;
1396 
1397 	if (write_fault)
1398 		flags |= FOLL_WRITE;
1399 	if (async)
1400 		flags |= FOLL_NOWAIT;
1401 
1402 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1403 	if (npages != 1)
1404 		return npages;
1405 
1406 	/* map read fault as writable if possible */
1407 	if (unlikely(!write_fault) && writable) {
1408 		struct page *wpage;
1409 
1410 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1411 			*writable = true;
1412 			put_page(page);
1413 			page = wpage;
1414 		}
1415 	}
1416 	*pfn = page_to_pfn(page);
1417 	return npages;
1418 }
1419 
1420 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1421 {
1422 	if (unlikely(!(vma->vm_flags & VM_READ)))
1423 		return false;
1424 
1425 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1426 		return false;
1427 
1428 	return true;
1429 }
1430 
1431 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1432 			       unsigned long addr, bool *async,
1433 			       bool write_fault, bool *writable,
1434 			       kvm_pfn_t *p_pfn)
1435 {
1436 	unsigned long pfn;
1437 	int r;
1438 
1439 	r = follow_pfn(vma, addr, &pfn);
1440 	if (r) {
1441 		/*
1442 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1443 		 * not call the fault handler, so do it here.
1444 		 */
1445 		bool unlocked = false;
1446 		r = fixup_user_fault(current, current->mm, addr,
1447 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1448 				     &unlocked);
1449 		if (unlocked)
1450 			return -EAGAIN;
1451 		if (r)
1452 			return r;
1453 
1454 		r = follow_pfn(vma, addr, &pfn);
1455 		if (r)
1456 			return r;
1457 
1458 	}
1459 
1460 	if (writable)
1461 		*writable = true;
1462 
1463 	/*
1464 	 * Get a reference here because callers of *hva_to_pfn* and
1465 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1466 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1467 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1468 	 * simply do nothing for reserved pfns.
1469 	 *
1470 	 * Whoever called remap_pfn_range is also going to call e.g.
1471 	 * unmap_mapping_range before the underlying pages are freed,
1472 	 * causing a call to our MMU notifier.
1473 	 */
1474 	kvm_get_pfn(pfn);
1475 
1476 	*p_pfn = pfn;
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Pin guest page in memory and return its pfn.
1482  * @addr: host virtual address which maps memory to the guest
1483  * @atomic: whether this function can sleep
1484  * @async: whether this function need to wait IO complete if the
1485  *         host page is not in the memory
1486  * @write_fault: whether we should get a writable host page
1487  * @writable: whether it allows to map a writable host page for !@write_fault
1488  *
1489  * The function will map a writable host page for these two cases:
1490  * 1): @write_fault = true
1491  * 2): @write_fault = false && @writable, @writable will tell the caller
1492  *     whether the mapping is writable.
1493  */
1494 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1495 			bool write_fault, bool *writable)
1496 {
1497 	struct vm_area_struct *vma;
1498 	kvm_pfn_t pfn = 0;
1499 	int npages, r;
1500 
1501 	/* we can do it either atomically or asynchronously, not both */
1502 	BUG_ON(atomic && async);
1503 
1504 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1505 		return pfn;
1506 
1507 	if (atomic)
1508 		return KVM_PFN_ERR_FAULT;
1509 
1510 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1511 	if (npages == 1)
1512 		return pfn;
1513 
1514 	down_read(&current->mm->mmap_sem);
1515 	if (npages == -EHWPOISON ||
1516 	      (!async && check_user_page_hwpoison(addr))) {
1517 		pfn = KVM_PFN_ERR_HWPOISON;
1518 		goto exit;
1519 	}
1520 
1521 retry:
1522 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1523 
1524 	if (vma == NULL)
1525 		pfn = KVM_PFN_ERR_FAULT;
1526 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1527 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1528 		if (r == -EAGAIN)
1529 			goto retry;
1530 		if (r < 0)
1531 			pfn = KVM_PFN_ERR_FAULT;
1532 	} else {
1533 		if (async && vma_is_valid(vma, write_fault))
1534 			*async = true;
1535 		pfn = KVM_PFN_ERR_FAULT;
1536 	}
1537 exit:
1538 	up_read(&current->mm->mmap_sem);
1539 	return pfn;
1540 }
1541 
1542 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1543 			       bool atomic, bool *async, bool write_fault,
1544 			       bool *writable)
1545 {
1546 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1547 
1548 	if (addr == KVM_HVA_ERR_RO_BAD) {
1549 		if (writable)
1550 			*writable = false;
1551 		return KVM_PFN_ERR_RO_FAULT;
1552 	}
1553 
1554 	if (kvm_is_error_hva(addr)) {
1555 		if (writable)
1556 			*writable = false;
1557 		return KVM_PFN_NOSLOT;
1558 	}
1559 
1560 	/* Do not map writable pfn in the readonly memslot. */
1561 	if (writable && memslot_is_readonly(slot)) {
1562 		*writable = false;
1563 		writable = NULL;
1564 	}
1565 
1566 	return hva_to_pfn(addr, atomic, async, write_fault,
1567 			  writable);
1568 }
1569 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1570 
1571 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1572 		      bool *writable)
1573 {
1574 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1575 				    write_fault, writable);
1576 }
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1578 
1579 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1580 {
1581 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1584 
1585 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1586 {
1587 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1590 
1591 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1592 {
1593 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1596 
1597 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1598 {
1599 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1602 
1603 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1604 {
1605 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1608 
1609 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1610 {
1611 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1614 
1615 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1616 			    struct page **pages, int nr_pages)
1617 {
1618 	unsigned long addr;
1619 	gfn_t entry = 0;
1620 
1621 	addr = gfn_to_hva_many(slot, gfn, &entry);
1622 	if (kvm_is_error_hva(addr))
1623 		return -1;
1624 
1625 	if (entry < nr_pages)
1626 		return 0;
1627 
1628 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1629 }
1630 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1631 
1632 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1633 {
1634 	if (is_error_noslot_pfn(pfn))
1635 		return KVM_ERR_PTR_BAD_PAGE;
1636 
1637 	if (kvm_is_reserved_pfn(pfn)) {
1638 		WARN_ON(1);
1639 		return KVM_ERR_PTR_BAD_PAGE;
1640 	}
1641 
1642 	return pfn_to_page(pfn);
1643 }
1644 
1645 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1646 {
1647 	kvm_pfn_t pfn;
1648 
1649 	pfn = gfn_to_pfn(kvm, gfn);
1650 
1651 	return kvm_pfn_to_page(pfn);
1652 }
1653 EXPORT_SYMBOL_GPL(gfn_to_page);
1654 
1655 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1656 {
1657 	kvm_pfn_t pfn;
1658 
1659 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1660 
1661 	return kvm_pfn_to_page(pfn);
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1664 
1665 void kvm_release_page_clean(struct page *page)
1666 {
1667 	WARN_ON(is_error_page(page));
1668 
1669 	kvm_release_pfn_clean(page_to_pfn(page));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1672 
1673 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1674 {
1675 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1676 		put_page(pfn_to_page(pfn));
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1679 
1680 void kvm_release_page_dirty(struct page *page)
1681 {
1682 	WARN_ON(is_error_page(page));
1683 
1684 	kvm_release_pfn_dirty(page_to_pfn(page));
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1687 
1688 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1689 {
1690 	kvm_set_pfn_dirty(pfn);
1691 	kvm_release_pfn_clean(pfn);
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1694 
1695 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1696 {
1697 	if (!kvm_is_reserved_pfn(pfn)) {
1698 		struct page *page = pfn_to_page(pfn);
1699 
1700 		if (!PageReserved(page))
1701 			SetPageDirty(page);
1702 	}
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1705 
1706 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1707 {
1708 	if (!kvm_is_reserved_pfn(pfn))
1709 		mark_page_accessed(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1712 
1713 void kvm_get_pfn(kvm_pfn_t pfn)
1714 {
1715 	if (!kvm_is_reserved_pfn(pfn))
1716 		get_page(pfn_to_page(pfn));
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1719 
1720 static int next_segment(unsigned long len, int offset)
1721 {
1722 	if (len > PAGE_SIZE - offset)
1723 		return PAGE_SIZE - offset;
1724 	else
1725 		return len;
1726 }
1727 
1728 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1729 				 void *data, int offset, int len)
1730 {
1731 	int r;
1732 	unsigned long addr;
1733 
1734 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1735 	if (kvm_is_error_hva(addr))
1736 		return -EFAULT;
1737 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1738 	if (r)
1739 		return -EFAULT;
1740 	return 0;
1741 }
1742 
1743 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1744 			int len)
1745 {
1746 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1747 
1748 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1751 
1752 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1753 			     int offset, int len)
1754 {
1755 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1756 
1757 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1760 
1761 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1762 {
1763 	gfn_t gfn = gpa >> PAGE_SHIFT;
1764 	int seg;
1765 	int offset = offset_in_page(gpa);
1766 	int ret;
1767 
1768 	while ((seg = next_segment(len, offset)) != 0) {
1769 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1770 		if (ret < 0)
1771 			return ret;
1772 		offset = 0;
1773 		len -= seg;
1774 		data += seg;
1775 		++gfn;
1776 	}
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_read_guest);
1780 
1781 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1782 {
1783 	gfn_t gfn = gpa >> PAGE_SHIFT;
1784 	int seg;
1785 	int offset = offset_in_page(gpa);
1786 	int ret;
1787 
1788 	while ((seg = next_segment(len, offset)) != 0) {
1789 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1790 		if (ret < 0)
1791 			return ret;
1792 		offset = 0;
1793 		len -= seg;
1794 		data += seg;
1795 		++gfn;
1796 	}
1797 	return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1800 
1801 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1802 			           void *data, int offset, unsigned long len)
1803 {
1804 	int r;
1805 	unsigned long addr;
1806 
1807 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1808 	if (kvm_is_error_hva(addr))
1809 		return -EFAULT;
1810 	pagefault_disable();
1811 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1812 	pagefault_enable();
1813 	if (r)
1814 		return -EFAULT;
1815 	return 0;
1816 }
1817 
1818 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1819 			  unsigned long len)
1820 {
1821 	gfn_t gfn = gpa >> PAGE_SHIFT;
1822 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1823 	int offset = offset_in_page(gpa);
1824 
1825 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1828 
1829 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1830 			       void *data, unsigned long len)
1831 {
1832 	gfn_t gfn = gpa >> PAGE_SHIFT;
1833 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1834 	int offset = offset_in_page(gpa);
1835 
1836 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1839 
1840 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1841 			          const void *data, int offset, int len)
1842 {
1843 	int r;
1844 	unsigned long addr;
1845 
1846 	addr = gfn_to_hva_memslot(memslot, gfn);
1847 	if (kvm_is_error_hva(addr))
1848 		return -EFAULT;
1849 	r = __copy_to_user((void __user *)addr + offset, data, len);
1850 	if (r)
1851 		return -EFAULT;
1852 	mark_page_dirty_in_slot(memslot, gfn);
1853 	return 0;
1854 }
1855 
1856 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1857 			 const void *data, int offset, int len)
1858 {
1859 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1860 
1861 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1864 
1865 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1866 			      const void *data, int offset, int len)
1867 {
1868 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1869 
1870 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1873 
1874 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1875 		    unsigned long len)
1876 {
1877 	gfn_t gfn = gpa >> PAGE_SHIFT;
1878 	int seg;
1879 	int offset = offset_in_page(gpa);
1880 	int ret;
1881 
1882 	while ((seg = next_segment(len, offset)) != 0) {
1883 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1884 		if (ret < 0)
1885 			return ret;
1886 		offset = 0;
1887 		len -= seg;
1888 		data += seg;
1889 		++gfn;
1890 	}
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(kvm_write_guest);
1894 
1895 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1896 		         unsigned long len)
1897 {
1898 	gfn_t gfn = gpa >> PAGE_SHIFT;
1899 	int seg;
1900 	int offset = offset_in_page(gpa);
1901 	int ret;
1902 
1903 	while ((seg = next_segment(len, offset)) != 0) {
1904 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1905 		if (ret < 0)
1906 			return ret;
1907 		offset = 0;
1908 		len -= seg;
1909 		data += seg;
1910 		++gfn;
1911 	}
1912 	return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1915 
1916 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1917 				       struct gfn_to_hva_cache *ghc,
1918 				       gpa_t gpa, unsigned long len)
1919 {
1920 	int offset = offset_in_page(gpa);
1921 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1922 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1923 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1924 	gfn_t nr_pages_avail;
1925 
1926 	ghc->gpa = gpa;
1927 	ghc->generation = slots->generation;
1928 	ghc->len = len;
1929 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1930 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1931 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1932 		ghc->hva += offset;
1933 	} else {
1934 		/*
1935 		 * If the requested region crosses two memslots, we still
1936 		 * verify that the entire region is valid here.
1937 		 */
1938 		while (start_gfn <= end_gfn) {
1939 			nr_pages_avail = 0;
1940 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1941 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1942 						   &nr_pages_avail);
1943 			if (kvm_is_error_hva(ghc->hva))
1944 				return -EFAULT;
1945 			start_gfn += nr_pages_avail;
1946 		}
1947 		/* Use the slow path for cross page reads and writes. */
1948 		ghc->memslot = NULL;
1949 	}
1950 	return 0;
1951 }
1952 
1953 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1954 			      gpa_t gpa, unsigned long len)
1955 {
1956 	struct kvm_memslots *slots = kvm_memslots(kvm);
1957 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1960 
1961 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1962 			   void *data, int offset, unsigned long len)
1963 {
1964 	struct kvm_memslots *slots = kvm_memslots(kvm);
1965 	int r;
1966 	gpa_t gpa = ghc->gpa + offset;
1967 
1968 	BUG_ON(len + offset > ghc->len);
1969 
1970 	if (slots->generation != ghc->generation)
1971 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1972 
1973 	if (unlikely(!ghc->memslot))
1974 		return kvm_write_guest(kvm, gpa, data, len);
1975 
1976 	if (kvm_is_error_hva(ghc->hva))
1977 		return -EFAULT;
1978 
1979 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1980 	if (r)
1981 		return -EFAULT;
1982 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1983 
1984 	return 0;
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1987 
1988 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989 			   void *data, unsigned long len)
1990 {
1991 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1994 
1995 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1996 			   void *data, unsigned long len)
1997 {
1998 	struct kvm_memslots *slots = kvm_memslots(kvm);
1999 	int r;
2000 
2001 	BUG_ON(len > ghc->len);
2002 
2003 	if (slots->generation != ghc->generation)
2004 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2005 
2006 	if (unlikely(!ghc->memslot))
2007 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2008 
2009 	if (kvm_is_error_hva(ghc->hva))
2010 		return -EFAULT;
2011 
2012 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2013 	if (r)
2014 		return -EFAULT;
2015 
2016 	return 0;
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2019 
2020 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2021 {
2022 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2023 
2024 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2027 
2028 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2029 {
2030 	gfn_t gfn = gpa >> PAGE_SHIFT;
2031 	int seg;
2032 	int offset = offset_in_page(gpa);
2033 	int ret;
2034 
2035 	while ((seg = next_segment(len, offset)) != 0) {
2036 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2037 		if (ret < 0)
2038 			return ret;
2039 		offset = 0;
2040 		len -= seg;
2041 		++gfn;
2042 	}
2043 	return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2046 
2047 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2048 				    gfn_t gfn)
2049 {
2050 	if (memslot && memslot->dirty_bitmap) {
2051 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2052 
2053 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2054 	}
2055 }
2056 
2057 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2058 {
2059 	struct kvm_memory_slot *memslot;
2060 
2061 	memslot = gfn_to_memslot(kvm, gfn);
2062 	mark_page_dirty_in_slot(memslot, gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(mark_page_dirty);
2065 
2066 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2067 {
2068 	struct kvm_memory_slot *memslot;
2069 
2070 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2071 	mark_page_dirty_in_slot(memslot, gfn);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2074 
2075 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2076 {
2077 	if (!vcpu->sigset_active)
2078 		return;
2079 
2080 	/*
2081 	 * This does a lockless modification of ->real_blocked, which is fine
2082 	 * because, only current can change ->real_blocked and all readers of
2083 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2084 	 * of ->blocked.
2085 	 */
2086 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2087 }
2088 
2089 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2090 {
2091 	if (!vcpu->sigset_active)
2092 		return;
2093 
2094 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2095 	sigemptyset(&current->real_blocked);
2096 }
2097 
2098 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2099 {
2100 	unsigned int old, val, grow;
2101 
2102 	old = val = vcpu->halt_poll_ns;
2103 	grow = READ_ONCE(halt_poll_ns_grow);
2104 	/* 10us base */
2105 	if (val == 0 && grow)
2106 		val = 10000;
2107 	else
2108 		val *= grow;
2109 
2110 	if (val > halt_poll_ns)
2111 		val = halt_poll_ns;
2112 
2113 	vcpu->halt_poll_ns = val;
2114 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2115 }
2116 
2117 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2118 {
2119 	unsigned int old, val, shrink;
2120 
2121 	old = val = vcpu->halt_poll_ns;
2122 	shrink = READ_ONCE(halt_poll_ns_shrink);
2123 	if (shrink == 0)
2124 		val = 0;
2125 	else
2126 		val /= shrink;
2127 
2128 	vcpu->halt_poll_ns = val;
2129 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2130 }
2131 
2132 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2133 {
2134 	int ret = -EINTR;
2135 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2136 
2137 	if (kvm_arch_vcpu_runnable(vcpu)) {
2138 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2139 		goto out;
2140 	}
2141 	if (kvm_cpu_has_pending_timer(vcpu))
2142 		goto out;
2143 	if (signal_pending(current))
2144 		goto out;
2145 
2146 	ret = 0;
2147 out:
2148 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2149 	return ret;
2150 }
2151 
2152 /*
2153  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2154  */
2155 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2156 {
2157 	ktime_t start, cur;
2158 	DECLARE_SWAITQUEUE(wait);
2159 	bool waited = false;
2160 	u64 block_ns;
2161 
2162 	start = cur = ktime_get();
2163 	if (vcpu->halt_poll_ns) {
2164 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2165 
2166 		++vcpu->stat.halt_attempted_poll;
2167 		do {
2168 			/*
2169 			 * This sets KVM_REQ_UNHALT if an interrupt
2170 			 * arrives.
2171 			 */
2172 			if (kvm_vcpu_check_block(vcpu) < 0) {
2173 				++vcpu->stat.halt_successful_poll;
2174 				if (!vcpu_valid_wakeup(vcpu))
2175 					++vcpu->stat.halt_poll_invalid;
2176 				goto out;
2177 			}
2178 			cur = ktime_get();
2179 		} while (single_task_running() && ktime_before(cur, stop));
2180 	}
2181 
2182 	kvm_arch_vcpu_blocking(vcpu);
2183 
2184 	for (;;) {
2185 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2186 
2187 		if (kvm_vcpu_check_block(vcpu) < 0)
2188 			break;
2189 
2190 		waited = true;
2191 		schedule();
2192 	}
2193 
2194 	finish_swait(&vcpu->wq, &wait);
2195 	cur = ktime_get();
2196 
2197 	kvm_arch_vcpu_unblocking(vcpu);
2198 out:
2199 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2200 
2201 	if (!vcpu_valid_wakeup(vcpu))
2202 		shrink_halt_poll_ns(vcpu);
2203 	else if (halt_poll_ns) {
2204 		if (block_ns <= vcpu->halt_poll_ns)
2205 			;
2206 		/* we had a long block, shrink polling */
2207 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2208 			shrink_halt_poll_ns(vcpu);
2209 		/* we had a short halt and our poll time is too small */
2210 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2211 			block_ns < halt_poll_ns)
2212 			grow_halt_poll_ns(vcpu);
2213 	} else
2214 		vcpu->halt_poll_ns = 0;
2215 
2216 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2217 	kvm_arch_vcpu_block_finish(vcpu);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2220 
2221 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2222 {
2223 	struct swait_queue_head *wqp;
2224 
2225 	wqp = kvm_arch_vcpu_wq(vcpu);
2226 	if (swq_has_sleeper(wqp)) {
2227 		swake_up_one(wqp);
2228 		++vcpu->stat.halt_wakeup;
2229 		return true;
2230 	}
2231 
2232 	return false;
2233 }
2234 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2235 
2236 #ifndef CONFIG_S390
2237 /*
2238  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2239  */
2240 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2241 {
2242 	int me;
2243 	int cpu = vcpu->cpu;
2244 
2245 	if (kvm_vcpu_wake_up(vcpu))
2246 		return;
2247 
2248 	me = get_cpu();
2249 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2250 		if (kvm_arch_vcpu_should_kick(vcpu))
2251 			smp_send_reschedule(cpu);
2252 	put_cpu();
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2255 #endif /* !CONFIG_S390 */
2256 
2257 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2258 {
2259 	struct pid *pid;
2260 	struct task_struct *task = NULL;
2261 	int ret = 0;
2262 
2263 	rcu_read_lock();
2264 	pid = rcu_dereference(target->pid);
2265 	if (pid)
2266 		task = get_pid_task(pid, PIDTYPE_PID);
2267 	rcu_read_unlock();
2268 	if (!task)
2269 		return ret;
2270 	ret = yield_to(task, 1);
2271 	put_task_struct(task);
2272 
2273 	return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2276 
2277 /*
2278  * Helper that checks whether a VCPU is eligible for directed yield.
2279  * Most eligible candidate to yield is decided by following heuristics:
2280  *
2281  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2282  *  (preempted lock holder), indicated by @in_spin_loop.
2283  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2284  *
2285  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2286  *  chance last time (mostly it has become eligible now since we have probably
2287  *  yielded to lockholder in last iteration. This is done by toggling
2288  *  @dy_eligible each time a VCPU checked for eligibility.)
2289  *
2290  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2291  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2292  *  burning. Giving priority for a potential lock-holder increases lock
2293  *  progress.
2294  *
2295  *  Since algorithm is based on heuristics, accessing another VCPU data without
2296  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2297  *  and continue with next VCPU and so on.
2298  */
2299 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2300 {
2301 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2302 	bool eligible;
2303 
2304 	eligible = !vcpu->spin_loop.in_spin_loop ||
2305 		    vcpu->spin_loop.dy_eligible;
2306 
2307 	if (vcpu->spin_loop.in_spin_loop)
2308 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2309 
2310 	return eligible;
2311 #else
2312 	return true;
2313 #endif
2314 }
2315 
2316 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2317 {
2318 	struct kvm *kvm = me->kvm;
2319 	struct kvm_vcpu *vcpu;
2320 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2321 	int yielded = 0;
2322 	int try = 3;
2323 	int pass;
2324 	int i;
2325 
2326 	kvm_vcpu_set_in_spin_loop(me, true);
2327 	/*
2328 	 * We boost the priority of a VCPU that is runnable but not
2329 	 * currently running, because it got preempted by something
2330 	 * else and called schedule in __vcpu_run.  Hopefully that
2331 	 * VCPU is holding the lock that we need and will release it.
2332 	 * We approximate round-robin by starting at the last boosted VCPU.
2333 	 */
2334 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2335 		kvm_for_each_vcpu(i, vcpu, kvm) {
2336 			if (!pass && i <= last_boosted_vcpu) {
2337 				i = last_boosted_vcpu;
2338 				continue;
2339 			} else if (pass && i > last_boosted_vcpu)
2340 				break;
2341 			if (!READ_ONCE(vcpu->preempted))
2342 				continue;
2343 			if (vcpu == me)
2344 				continue;
2345 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2346 				continue;
2347 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2348 				continue;
2349 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2350 				continue;
2351 
2352 			yielded = kvm_vcpu_yield_to(vcpu);
2353 			if (yielded > 0) {
2354 				kvm->last_boosted_vcpu = i;
2355 				break;
2356 			} else if (yielded < 0) {
2357 				try--;
2358 				if (!try)
2359 					break;
2360 			}
2361 		}
2362 	}
2363 	kvm_vcpu_set_in_spin_loop(me, false);
2364 
2365 	/* Ensure vcpu is not eligible during next spinloop */
2366 	kvm_vcpu_set_dy_eligible(me, false);
2367 }
2368 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2369 
2370 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2371 {
2372 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2373 	struct page *page;
2374 
2375 	if (vmf->pgoff == 0)
2376 		page = virt_to_page(vcpu->run);
2377 #ifdef CONFIG_X86
2378 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2379 		page = virt_to_page(vcpu->arch.pio_data);
2380 #endif
2381 #ifdef CONFIG_KVM_MMIO
2382 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2383 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2384 #endif
2385 	else
2386 		return kvm_arch_vcpu_fault(vcpu, vmf);
2387 	get_page(page);
2388 	vmf->page = page;
2389 	return 0;
2390 }
2391 
2392 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2393 	.fault = kvm_vcpu_fault,
2394 };
2395 
2396 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2397 {
2398 	vma->vm_ops = &kvm_vcpu_vm_ops;
2399 	return 0;
2400 }
2401 
2402 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2403 {
2404 	struct kvm_vcpu *vcpu = filp->private_data;
2405 
2406 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2407 	kvm_put_kvm(vcpu->kvm);
2408 	return 0;
2409 }
2410 
2411 static struct file_operations kvm_vcpu_fops = {
2412 	.release        = kvm_vcpu_release,
2413 	.unlocked_ioctl = kvm_vcpu_ioctl,
2414 	.mmap           = kvm_vcpu_mmap,
2415 	.llseek		= noop_llseek,
2416 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2417 };
2418 
2419 /*
2420  * Allocates an inode for the vcpu.
2421  */
2422 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2423 {
2424 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2425 
2426 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2427 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2428 }
2429 
2430 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2431 {
2432 	char dir_name[ITOA_MAX_LEN * 2];
2433 	int ret;
2434 
2435 	if (!kvm_arch_has_vcpu_debugfs())
2436 		return 0;
2437 
2438 	if (!debugfs_initialized())
2439 		return 0;
2440 
2441 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2442 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2443 								vcpu->kvm->debugfs_dentry);
2444 	if (!vcpu->debugfs_dentry)
2445 		return -ENOMEM;
2446 
2447 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2448 	if (ret < 0) {
2449 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2450 		return ret;
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 /*
2457  * Creates some virtual cpus.  Good luck creating more than one.
2458  */
2459 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2460 {
2461 	int r;
2462 	struct kvm_vcpu *vcpu;
2463 
2464 	if (id >= KVM_MAX_VCPU_ID)
2465 		return -EINVAL;
2466 
2467 	mutex_lock(&kvm->lock);
2468 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2469 		mutex_unlock(&kvm->lock);
2470 		return -EINVAL;
2471 	}
2472 
2473 	kvm->created_vcpus++;
2474 	mutex_unlock(&kvm->lock);
2475 
2476 	vcpu = kvm_arch_vcpu_create(kvm, id);
2477 	if (IS_ERR(vcpu)) {
2478 		r = PTR_ERR(vcpu);
2479 		goto vcpu_decrement;
2480 	}
2481 
2482 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2483 
2484 	r = kvm_arch_vcpu_setup(vcpu);
2485 	if (r)
2486 		goto vcpu_destroy;
2487 
2488 	r = kvm_create_vcpu_debugfs(vcpu);
2489 	if (r)
2490 		goto vcpu_destroy;
2491 
2492 	mutex_lock(&kvm->lock);
2493 	if (kvm_get_vcpu_by_id(kvm, id)) {
2494 		r = -EEXIST;
2495 		goto unlock_vcpu_destroy;
2496 	}
2497 
2498 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2499 
2500 	/* Now it's all set up, let userspace reach it */
2501 	kvm_get_kvm(kvm);
2502 	r = create_vcpu_fd(vcpu);
2503 	if (r < 0) {
2504 		kvm_put_kvm(kvm);
2505 		goto unlock_vcpu_destroy;
2506 	}
2507 
2508 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2509 
2510 	/*
2511 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2512 	 * before kvm->online_vcpu's incremented value.
2513 	 */
2514 	smp_wmb();
2515 	atomic_inc(&kvm->online_vcpus);
2516 
2517 	mutex_unlock(&kvm->lock);
2518 	kvm_arch_vcpu_postcreate(vcpu);
2519 	return r;
2520 
2521 unlock_vcpu_destroy:
2522 	mutex_unlock(&kvm->lock);
2523 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2524 vcpu_destroy:
2525 	kvm_arch_vcpu_destroy(vcpu);
2526 vcpu_decrement:
2527 	mutex_lock(&kvm->lock);
2528 	kvm->created_vcpus--;
2529 	mutex_unlock(&kvm->lock);
2530 	return r;
2531 }
2532 
2533 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2534 {
2535 	if (sigset) {
2536 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2537 		vcpu->sigset_active = 1;
2538 		vcpu->sigset = *sigset;
2539 	} else
2540 		vcpu->sigset_active = 0;
2541 	return 0;
2542 }
2543 
2544 static long kvm_vcpu_ioctl(struct file *filp,
2545 			   unsigned int ioctl, unsigned long arg)
2546 {
2547 	struct kvm_vcpu *vcpu = filp->private_data;
2548 	void __user *argp = (void __user *)arg;
2549 	int r;
2550 	struct kvm_fpu *fpu = NULL;
2551 	struct kvm_sregs *kvm_sregs = NULL;
2552 
2553 	if (vcpu->kvm->mm != current->mm)
2554 		return -EIO;
2555 
2556 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2557 		return -EINVAL;
2558 
2559 	/*
2560 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2561 	 * execution; mutex_lock() would break them.
2562 	 */
2563 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2564 	if (r != -ENOIOCTLCMD)
2565 		return r;
2566 
2567 	if (mutex_lock_killable(&vcpu->mutex))
2568 		return -EINTR;
2569 	switch (ioctl) {
2570 	case KVM_RUN: {
2571 		struct pid *oldpid;
2572 		r = -EINVAL;
2573 		if (arg)
2574 			goto out;
2575 		oldpid = rcu_access_pointer(vcpu->pid);
2576 		if (unlikely(oldpid != task_pid(current))) {
2577 			/* The thread running this VCPU changed. */
2578 			struct pid *newpid;
2579 
2580 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2581 			if (r)
2582 				break;
2583 
2584 			newpid = get_task_pid(current, PIDTYPE_PID);
2585 			rcu_assign_pointer(vcpu->pid, newpid);
2586 			if (oldpid)
2587 				synchronize_rcu();
2588 			put_pid(oldpid);
2589 		}
2590 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2591 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2592 		break;
2593 	}
2594 	case KVM_GET_REGS: {
2595 		struct kvm_regs *kvm_regs;
2596 
2597 		r = -ENOMEM;
2598 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2599 		if (!kvm_regs)
2600 			goto out;
2601 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2602 		if (r)
2603 			goto out_free1;
2604 		r = -EFAULT;
2605 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2606 			goto out_free1;
2607 		r = 0;
2608 out_free1:
2609 		kfree(kvm_regs);
2610 		break;
2611 	}
2612 	case KVM_SET_REGS: {
2613 		struct kvm_regs *kvm_regs;
2614 
2615 		r = -ENOMEM;
2616 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2617 		if (IS_ERR(kvm_regs)) {
2618 			r = PTR_ERR(kvm_regs);
2619 			goto out;
2620 		}
2621 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2622 		kfree(kvm_regs);
2623 		break;
2624 	}
2625 	case KVM_GET_SREGS: {
2626 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2627 		r = -ENOMEM;
2628 		if (!kvm_sregs)
2629 			goto out;
2630 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2631 		if (r)
2632 			goto out;
2633 		r = -EFAULT;
2634 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2635 			goto out;
2636 		r = 0;
2637 		break;
2638 	}
2639 	case KVM_SET_SREGS: {
2640 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2641 		if (IS_ERR(kvm_sregs)) {
2642 			r = PTR_ERR(kvm_sregs);
2643 			kvm_sregs = NULL;
2644 			goto out;
2645 		}
2646 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2647 		break;
2648 	}
2649 	case KVM_GET_MP_STATE: {
2650 		struct kvm_mp_state mp_state;
2651 
2652 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2653 		if (r)
2654 			goto out;
2655 		r = -EFAULT;
2656 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2657 			goto out;
2658 		r = 0;
2659 		break;
2660 	}
2661 	case KVM_SET_MP_STATE: {
2662 		struct kvm_mp_state mp_state;
2663 
2664 		r = -EFAULT;
2665 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2666 			goto out;
2667 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2668 		break;
2669 	}
2670 	case KVM_TRANSLATE: {
2671 		struct kvm_translation tr;
2672 
2673 		r = -EFAULT;
2674 		if (copy_from_user(&tr, argp, sizeof(tr)))
2675 			goto out;
2676 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2677 		if (r)
2678 			goto out;
2679 		r = -EFAULT;
2680 		if (copy_to_user(argp, &tr, sizeof(tr)))
2681 			goto out;
2682 		r = 0;
2683 		break;
2684 	}
2685 	case KVM_SET_GUEST_DEBUG: {
2686 		struct kvm_guest_debug dbg;
2687 
2688 		r = -EFAULT;
2689 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2690 			goto out;
2691 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2692 		break;
2693 	}
2694 	case KVM_SET_SIGNAL_MASK: {
2695 		struct kvm_signal_mask __user *sigmask_arg = argp;
2696 		struct kvm_signal_mask kvm_sigmask;
2697 		sigset_t sigset, *p;
2698 
2699 		p = NULL;
2700 		if (argp) {
2701 			r = -EFAULT;
2702 			if (copy_from_user(&kvm_sigmask, argp,
2703 					   sizeof(kvm_sigmask)))
2704 				goto out;
2705 			r = -EINVAL;
2706 			if (kvm_sigmask.len != sizeof(sigset))
2707 				goto out;
2708 			r = -EFAULT;
2709 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2710 					   sizeof(sigset)))
2711 				goto out;
2712 			p = &sigset;
2713 		}
2714 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2715 		break;
2716 	}
2717 	case KVM_GET_FPU: {
2718 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2719 		r = -ENOMEM;
2720 		if (!fpu)
2721 			goto out;
2722 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2723 		if (r)
2724 			goto out;
2725 		r = -EFAULT;
2726 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2727 			goto out;
2728 		r = 0;
2729 		break;
2730 	}
2731 	case KVM_SET_FPU: {
2732 		fpu = memdup_user(argp, sizeof(*fpu));
2733 		if (IS_ERR(fpu)) {
2734 			r = PTR_ERR(fpu);
2735 			fpu = NULL;
2736 			goto out;
2737 		}
2738 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2739 		break;
2740 	}
2741 	default:
2742 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2743 	}
2744 out:
2745 	mutex_unlock(&vcpu->mutex);
2746 	kfree(fpu);
2747 	kfree(kvm_sregs);
2748 	return r;
2749 }
2750 
2751 #ifdef CONFIG_KVM_COMPAT
2752 static long kvm_vcpu_compat_ioctl(struct file *filp,
2753 				  unsigned int ioctl, unsigned long arg)
2754 {
2755 	struct kvm_vcpu *vcpu = filp->private_data;
2756 	void __user *argp = compat_ptr(arg);
2757 	int r;
2758 
2759 	if (vcpu->kvm->mm != current->mm)
2760 		return -EIO;
2761 
2762 	switch (ioctl) {
2763 	case KVM_SET_SIGNAL_MASK: {
2764 		struct kvm_signal_mask __user *sigmask_arg = argp;
2765 		struct kvm_signal_mask kvm_sigmask;
2766 		sigset_t sigset;
2767 
2768 		if (argp) {
2769 			r = -EFAULT;
2770 			if (copy_from_user(&kvm_sigmask, argp,
2771 					   sizeof(kvm_sigmask)))
2772 				goto out;
2773 			r = -EINVAL;
2774 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2775 				goto out;
2776 			r = -EFAULT;
2777 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2778 				goto out;
2779 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2780 		} else
2781 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2782 		break;
2783 	}
2784 	default:
2785 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2786 	}
2787 
2788 out:
2789 	return r;
2790 }
2791 #endif
2792 
2793 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2794 				 int (*accessor)(struct kvm_device *dev,
2795 						 struct kvm_device_attr *attr),
2796 				 unsigned long arg)
2797 {
2798 	struct kvm_device_attr attr;
2799 
2800 	if (!accessor)
2801 		return -EPERM;
2802 
2803 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2804 		return -EFAULT;
2805 
2806 	return accessor(dev, &attr);
2807 }
2808 
2809 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2810 			     unsigned long arg)
2811 {
2812 	struct kvm_device *dev = filp->private_data;
2813 
2814 	switch (ioctl) {
2815 	case KVM_SET_DEVICE_ATTR:
2816 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2817 	case KVM_GET_DEVICE_ATTR:
2818 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2819 	case KVM_HAS_DEVICE_ATTR:
2820 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2821 	default:
2822 		if (dev->ops->ioctl)
2823 			return dev->ops->ioctl(dev, ioctl, arg);
2824 
2825 		return -ENOTTY;
2826 	}
2827 }
2828 
2829 static int kvm_device_release(struct inode *inode, struct file *filp)
2830 {
2831 	struct kvm_device *dev = filp->private_data;
2832 	struct kvm *kvm = dev->kvm;
2833 
2834 	kvm_put_kvm(kvm);
2835 	return 0;
2836 }
2837 
2838 static const struct file_operations kvm_device_fops = {
2839 	.unlocked_ioctl = kvm_device_ioctl,
2840 	.release = kvm_device_release,
2841 	KVM_COMPAT(kvm_device_ioctl),
2842 };
2843 
2844 struct kvm_device *kvm_device_from_filp(struct file *filp)
2845 {
2846 	if (filp->f_op != &kvm_device_fops)
2847 		return NULL;
2848 
2849 	return filp->private_data;
2850 }
2851 
2852 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2853 #ifdef CONFIG_KVM_MPIC
2854 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2855 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2856 #endif
2857 };
2858 
2859 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2860 {
2861 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2862 		return -ENOSPC;
2863 
2864 	if (kvm_device_ops_table[type] != NULL)
2865 		return -EEXIST;
2866 
2867 	kvm_device_ops_table[type] = ops;
2868 	return 0;
2869 }
2870 
2871 void kvm_unregister_device_ops(u32 type)
2872 {
2873 	if (kvm_device_ops_table[type] != NULL)
2874 		kvm_device_ops_table[type] = NULL;
2875 }
2876 
2877 static int kvm_ioctl_create_device(struct kvm *kvm,
2878 				   struct kvm_create_device *cd)
2879 {
2880 	struct kvm_device_ops *ops = NULL;
2881 	struct kvm_device *dev;
2882 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2883 	int ret;
2884 
2885 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2886 		return -ENODEV;
2887 
2888 	ops = kvm_device_ops_table[cd->type];
2889 	if (ops == NULL)
2890 		return -ENODEV;
2891 
2892 	if (test)
2893 		return 0;
2894 
2895 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2896 	if (!dev)
2897 		return -ENOMEM;
2898 
2899 	dev->ops = ops;
2900 	dev->kvm = kvm;
2901 
2902 	mutex_lock(&kvm->lock);
2903 	ret = ops->create(dev, cd->type);
2904 	if (ret < 0) {
2905 		mutex_unlock(&kvm->lock);
2906 		kfree(dev);
2907 		return ret;
2908 	}
2909 	list_add(&dev->vm_node, &kvm->devices);
2910 	mutex_unlock(&kvm->lock);
2911 
2912 	if (ops->init)
2913 		ops->init(dev);
2914 
2915 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2916 	if (ret < 0) {
2917 		mutex_lock(&kvm->lock);
2918 		list_del(&dev->vm_node);
2919 		mutex_unlock(&kvm->lock);
2920 		ops->destroy(dev);
2921 		return ret;
2922 	}
2923 
2924 	kvm_get_kvm(kvm);
2925 	cd->fd = ret;
2926 	return 0;
2927 }
2928 
2929 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2930 {
2931 	switch (arg) {
2932 	case KVM_CAP_USER_MEMORY:
2933 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2934 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2935 	case KVM_CAP_INTERNAL_ERROR_DATA:
2936 #ifdef CONFIG_HAVE_KVM_MSI
2937 	case KVM_CAP_SIGNAL_MSI:
2938 #endif
2939 #ifdef CONFIG_HAVE_KVM_IRQFD
2940 	case KVM_CAP_IRQFD:
2941 	case KVM_CAP_IRQFD_RESAMPLE:
2942 #endif
2943 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2944 	case KVM_CAP_CHECK_EXTENSION_VM:
2945 		return 1;
2946 #ifdef CONFIG_KVM_MMIO
2947 	case KVM_CAP_COALESCED_MMIO:
2948 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2949 #endif
2950 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2951 	case KVM_CAP_IRQ_ROUTING:
2952 		return KVM_MAX_IRQ_ROUTES;
2953 #endif
2954 #if KVM_ADDRESS_SPACE_NUM > 1
2955 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2956 		return KVM_ADDRESS_SPACE_NUM;
2957 #endif
2958 	case KVM_CAP_MAX_VCPU_ID:
2959 		return KVM_MAX_VCPU_ID;
2960 	default:
2961 		break;
2962 	}
2963 	return kvm_vm_ioctl_check_extension(kvm, arg);
2964 }
2965 
2966 static long kvm_vm_ioctl(struct file *filp,
2967 			   unsigned int ioctl, unsigned long arg)
2968 {
2969 	struct kvm *kvm = filp->private_data;
2970 	void __user *argp = (void __user *)arg;
2971 	int r;
2972 
2973 	if (kvm->mm != current->mm)
2974 		return -EIO;
2975 	switch (ioctl) {
2976 	case KVM_CREATE_VCPU:
2977 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2978 		break;
2979 	case KVM_SET_USER_MEMORY_REGION: {
2980 		struct kvm_userspace_memory_region kvm_userspace_mem;
2981 
2982 		r = -EFAULT;
2983 		if (copy_from_user(&kvm_userspace_mem, argp,
2984 						sizeof(kvm_userspace_mem)))
2985 			goto out;
2986 
2987 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2988 		break;
2989 	}
2990 	case KVM_GET_DIRTY_LOG: {
2991 		struct kvm_dirty_log log;
2992 
2993 		r = -EFAULT;
2994 		if (copy_from_user(&log, argp, sizeof(log)))
2995 			goto out;
2996 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2997 		break;
2998 	}
2999 #ifdef CONFIG_KVM_MMIO
3000 	case KVM_REGISTER_COALESCED_MMIO: {
3001 		struct kvm_coalesced_mmio_zone zone;
3002 
3003 		r = -EFAULT;
3004 		if (copy_from_user(&zone, argp, sizeof(zone)))
3005 			goto out;
3006 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3007 		break;
3008 	}
3009 	case KVM_UNREGISTER_COALESCED_MMIO: {
3010 		struct kvm_coalesced_mmio_zone zone;
3011 
3012 		r = -EFAULT;
3013 		if (copy_from_user(&zone, argp, sizeof(zone)))
3014 			goto out;
3015 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3016 		break;
3017 	}
3018 #endif
3019 	case KVM_IRQFD: {
3020 		struct kvm_irqfd data;
3021 
3022 		r = -EFAULT;
3023 		if (copy_from_user(&data, argp, sizeof(data)))
3024 			goto out;
3025 		r = kvm_irqfd(kvm, &data);
3026 		break;
3027 	}
3028 	case KVM_IOEVENTFD: {
3029 		struct kvm_ioeventfd data;
3030 
3031 		r = -EFAULT;
3032 		if (copy_from_user(&data, argp, sizeof(data)))
3033 			goto out;
3034 		r = kvm_ioeventfd(kvm, &data);
3035 		break;
3036 	}
3037 #ifdef CONFIG_HAVE_KVM_MSI
3038 	case KVM_SIGNAL_MSI: {
3039 		struct kvm_msi msi;
3040 
3041 		r = -EFAULT;
3042 		if (copy_from_user(&msi, argp, sizeof(msi)))
3043 			goto out;
3044 		r = kvm_send_userspace_msi(kvm, &msi);
3045 		break;
3046 	}
3047 #endif
3048 #ifdef __KVM_HAVE_IRQ_LINE
3049 	case KVM_IRQ_LINE_STATUS:
3050 	case KVM_IRQ_LINE: {
3051 		struct kvm_irq_level irq_event;
3052 
3053 		r = -EFAULT;
3054 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3055 			goto out;
3056 
3057 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3058 					ioctl == KVM_IRQ_LINE_STATUS);
3059 		if (r)
3060 			goto out;
3061 
3062 		r = -EFAULT;
3063 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3064 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3065 				goto out;
3066 		}
3067 
3068 		r = 0;
3069 		break;
3070 	}
3071 #endif
3072 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3073 	case KVM_SET_GSI_ROUTING: {
3074 		struct kvm_irq_routing routing;
3075 		struct kvm_irq_routing __user *urouting;
3076 		struct kvm_irq_routing_entry *entries = NULL;
3077 
3078 		r = -EFAULT;
3079 		if (copy_from_user(&routing, argp, sizeof(routing)))
3080 			goto out;
3081 		r = -EINVAL;
3082 		if (!kvm_arch_can_set_irq_routing(kvm))
3083 			goto out;
3084 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3085 			goto out;
3086 		if (routing.flags)
3087 			goto out;
3088 		if (routing.nr) {
3089 			r = -ENOMEM;
3090 			entries = vmalloc(array_size(sizeof(*entries),
3091 						     routing.nr));
3092 			if (!entries)
3093 				goto out;
3094 			r = -EFAULT;
3095 			urouting = argp;
3096 			if (copy_from_user(entries, urouting->entries,
3097 					   routing.nr * sizeof(*entries)))
3098 				goto out_free_irq_routing;
3099 		}
3100 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3101 					routing.flags);
3102 out_free_irq_routing:
3103 		vfree(entries);
3104 		break;
3105 	}
3106 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3107 	case KVM_CREATE_DEVICE: {
3108 		struct kvm_create_device cd;
3109 
3110 		r = -EFAULT;
3111 		if (copy_from_user(&cd, argp, sizeof(cd)))
3112 			goto out;
3113 
3114 		r = kvm_ioctl_create_device(kvm, &cd);
3115 		if (r)
3116 			goto out;
3117 
3118 		r = -EFAULT;
3119 		if (copy_to_user(argp, &cd, sizeof(cd)))
3120 			goto out;
3121 
3122 		r = 0;
3123 		break;
3124 	}
3125 	case KVM_CHECK_EXTENSION:
3126 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3127 		break;
3128 	default:
3129 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3130 	}
3131 out:
3132 	return r;
3133 }
3134 
3135 #ifdef CONFIG_KVM_COMPAT
3136 struct compat_kvm_dirty_log {
3137 	__u32 slot;
3138 	__u32 padding1;
3139 	union {
3140 		compat_uptr_t dirty_bitmap; /* one bit per page */
3141 		__u64 padding2;
3142 	};
3143 };
3144 
3145 static long kvm_vm_compat_ioctl(struct file *filp,
3146 			   unsigned int ioctl, unsigned long arg)
3147 {
3148 	struct kvm *kvm = filp->private_data;
3149 	int r;
3150 
3151 	if (kvm->mm != current->mm)
3152 		return -EIO;
3153 	switch (ioctl) {
3154 	case KVM_GET_DIRTY_LOG: {
3155 		struct compat_kvm_dirty_log compat_log;
3156 		struct kvm_dirty_log log;
3157 
3158 		if (copy_from_user(&compat_log, (void __user *)arg,
3159 				   sizeof(compat_log)))
3160 			return -EFAULT;
3161 		log.slot	 = compat_log.slot;
3162 		log.padding1	 = compat_log.padding1;
3163 		log.padding2	 = compat_log.padding2;
3164 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3165 
3166 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3167 		break;
3168 	}
3169 	default:
3170 		r = kvm_vm_ioctl(filp, ioctl, arg);
3171 	}
3172 	return r;
3173 }
3174 #endif
3175 
3176 static struct file_operations kvm_vm_fops = {
3177 	.release        = kvm_vm_release,
3178 	.unlocked_ioctl = kvm_vm_ioctl,
3179 	.llseek		= noop_llseek,
3180 	KVM_COMPAT(kvm_vm_compat_ioctl),
3181 };
3182 
3183 static int kvm_dev_ioctl_create_vm(unsigned long type)
3184 {
3185 	int r;
3186 	struct kvm *kvm;
3187 	struct file *file;
3188 
3189 	kvm = kvm_create_vm(type);
3190 	if (IS_ERR(kvm))
3191 		return PTR_ERR(kvm);
3192 #ifdef CONFIG_KVM_MMIO
3193 	r = kvm_coalesced_mmio_init(kvm);
3194 	if (r < 0)
3195 		goto put_kvm;
3196 #endif
3197 	r = get_unused_fd_flags(O_CLOEXEC);
3198 	if (r < 0)
3199 		goto put_kvm;
3200 
3201 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3202 	if (IS_ERR(file)) {
3203 		put_unused_fd(r);
3204 		r = PTR_ERR(file);
3205 		goto put_kvm;
3206 	}
3207 
3208 	/*
3209 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3210 	 * already set, with ->release() being kvm_vm_release().  In error
3211 	 * cases it will be called by the final fput(file) and will take
3212 	 * care of doing kvm_put_kvm(kvm).
3213 	 */
3214 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3215 		put_unused_fd(r);
3216 		fput(file);
3217 		return -ENOMEM;
3218 	}
3219 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3220 
3221 	fd_install(r, file);
3222 	return r;
3223 
3224 put_kvm:
3225 	kvm_put_kvm(kvm);
3226 	return r;
3227 }
3228 
3229 static long kvm_dev_ioctl(struct file *filp,
3230 			  unsigned int ioctl, unsigned long arg)
3231 {
3232 	long r = -EINVAL;
3233 
3234 	switch (ioctl) {
3235 	case KVM_GET_API_VERSION:
3236 		if (arg)
3237 			goto out;
3238 		r = KVM_API_VERSION;
3239 		break;
3240 	case KVM_CREATE_VM:
3241 		r = kvm_dev_ioctl_create_vm(arg);
3242 		break;
3243 	case KVM_CHECK_EXTENSION:
3244 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3245 		break;
3246 	case KVM_GET_VCPU_MMAP_SIZE:
3247 		if (arg)
3248 			goto out;
3249 		r = PAGE_SIZE;     /* struct kvm_run */
3250 #ifdef CONFIG_X86
3251 		r += PAGE_SIZE;    /* pio data page */
3252 #endif
3253 #ifdef CONFIG_KVM_MMIO
3254 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3255 #endif
3256 		break;
3257 	case KVM_TRACE_ENABLE:
3258 	case KVM_TRACE_PAUSE:
3259 	case KVM_TRACE_DISABLE:
3260 		r = -EOPNOTSUPP;
3261 		break;
3262 	default:
3263 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3264 	}
3265 out:
3266 	return r;
3267 }
3268 
3269 static struct file_operations kvm_chardev_ops = {
3270 	.unlocked_ioctl = kvm_dev_ioctl,
3271 	.llseek		= noop_llseek,
3272 	KVM_COMPAT(kvm_dev_ioctl),
3273 };
3274 
3275 static struct miscdevice kvm_dev = {
3276 	KVM_MINOR,
3277 	"kvm",
3278 	&kvm_chardev_ops,
3279 };
3280 
3281 static void hardware_enable_nolock(void *junk)
3282 {
3283 	int cpu = raw_smp_processor_id();
3284 	int r;
3285 
3286 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3287 		return;
3288 
3289 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3290 
3291 	r = kvm_arch_hardware_enable();
3292 
3293 	if (r) {
3294 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3295 		atomic_inc(&hardware_enable_failed);
3296 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3297 	}
3298 }
3299 
3300 static int kvm_starting_cpu(unsigned int cpu)
3301 {
3302 	raw_spin_lock(&kvm_count_lock);
3303 	if (kvm_usage_count)
3304 		hardware_enable_nolock(NULL);
3305 	raw_spin_unlock(&kvm_count_lock);
3306 	return 0;
3307 }
3308 
3309 static void hardware_disable_nolock(void *junk)
3310 {
3311 	int cpu = raw_smp_processor_id();
3312 
3313 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3314 		return;
3315 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3316 	kvm_arch_hardware_disable();
3317 }
3318 
3319 static int kvm_dying_cpu(unsigned int cpu)
3320 {
3321 	raw_spin_lock(&kvm_count_lock);
3322 	if (kvm_usage_count)
3323 		hardware_disable_nolock(NULL);
3324 	raw_spin_unlock(&kvm_count_lock);
3325 	return 0;
3326 }
3327 
3328 static void hardware_disable_all_nolock(void)
3329 {
3330 	BUG_ON(!kvm_usage_count);
3331 
3332 	kvm_usage_count--;
3333 	if (!kvm_usage_count)
3334 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3335 }
3336 
3337 static void hardware_disable_all(void)
3338 {
3339 	raw_spin_lock(&kvm_count_lock);
3340 	hardware_disable_all_nolock();
3341 	raw_spin_unlock(&kvm_count_lock);
3342 }
3343 
3344 static int hardware_enable_all(void)
3345 {
3346 	int r = 0;
3347 
3348 	raw_spin_lock(&kvm_count_lock);
3349 
3350 	kvm_usage_count++;
3351 	if (kvm_usage_count == 1) {
3352 		atomic_set(&hardware_enable_failed, 0);
3353 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3354 
3355 		if (atomic_read(&hardware_enable_failed)) {
3356 			hardware_disable_all_nolock();
3357 			r = -EBUSY;
3358 		}
3359 	}
3360 
3361 	raw_spin_unlock(&kvm_count_lock);
3362 
3363 	return r;
3364 }
3365 
3366 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3367 		      void *v)
3368 {
3369 	/*
3370 	 * Some (well, at least mine) BIOSes hang on reboot if
3371 	 * in vmx root mode.
3372 	 *
3373 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3374 	 */
3375 	pr_info("kvm: exiting hardware virtualization\n");
3376 	kvm_rebooting = true;
3377 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3378 	return NOTIFY_OK;
3379 }
3380 
3381 static struct notifier_block kvm_reboot_notifier = {
3382 	.notifier_call = kvm_reboot,
3383 	.priority = 0,
3384 };
3385 
3386 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3387 {
3388 	int i;
3389 
3390 	for (i = 0; i < bus->dev_count; i++) {
3391 		struct kvm_io_device *pos = bus->range[i].dev;
3392 
3393 		kvm_iodevice_destructor(pos);
3394 	}
3395 	kfree(bus);
3396 }
3397 
3398 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3399 				 const struct kvm_io_range *r2)
3400 {
3401 	gpa_t addr1 = r1->addr;
3402 	gpa_t addr2 = r2->addr;
3403 
3404 	if (addr1 < addr2)
3405 		return -1;
3406 
3407 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3408 	 * accept any overlapping write.  Any order is acceptable for
3409 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3410 	 * we process all of them.
3411 	 */
3412 	if (r2->len) {
3413 		addr1 += r1->len;
3414 		addr2 += r2->len;
3415 	}
3416 
3417 	if (addr1 > addr2)
3418 		return 1;
3419 
3420 	return 0;
3421 }
3422 
3423 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3424 {
3425 	return kvm_io_bus_cmp(p1, p2);
3426 }
3427 
3428 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3429 			     gpa_t addr, int len)
3430 {
3431 	struct kvm_io_range *range, key;
3432 	int off;
3433 
3434 	key = (struct kvm_io_range) {
3435 		.addr = addr,
3436 		.len = len,
3437 	};
3438 
3439 	range = bsearch(&key, bus->range, bus->dev_count,
3440 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3441 	if (range == NULL)
3442 		return -ENOENT;
3443 
3444 	off = range - bus->range;
3445 
3446 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3447 		off--;
3448 
3449 	return off;
3450 }
3451 
3452 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3453 			      struct kvm_io_range *range, const void *val)
3454 {
3455 	int idx;
3456 
3457 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3458 	if (idx < 0)
3459 		return -EOPNOTSUPP;
3460 
3461 	while (idx < bus->dev_count &&
3462 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3463 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3464 					range->len, val))
3465 			return idx;
3466 		idx++;
3467 	}
3468 
3469 	return -EOPNOTSUPP;
3470 }
3471 
3472 /* kvm_io_bus_write - called under kvm->slots_lock */
3473 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3474 		     int len, const void *val)
3475 {
3476 	struct kvm_io_bus *bus;
3477 	struct kvm_io_range range;
3478 	int r;
3479 
3480 	range = (struct kvm_io_range) {
3481 		.addr = addr,
3482 		.len = len,
3483 	};
3484 
3485 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486 	if (!bus)
3487 		return -ENOMEM;
3488 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3489 	return r < 0 ? r : 0;
3490 }
3491 
3492 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3493 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3494 			    gpa_t addr, int len, const void *val, long cookie)
3495 {
3496 	struct kvm_io_bus *bus;
3497 	struct kvm_io_range range;
3498 
3499 	range = (struct kvm_io_range) {
3500 		.addr = addr,
3501 		.len = len,
3502 	};
3503 
3504 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3505 	if (!bus)
3506 		return -ENOMEM;
3507 
3508 	/* First try the device referenced by cookie. */
3509 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3510 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3511 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3512 					val))
3513 			return cookie;
3514 
3515 	/*
3516 	 * cookie contained garbage; fall back to search and return the
3517 	 * correct cookie value.
3518 	 */
3519 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3520 }
3521 
3522 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3523 			     struct kvm_io_range *range, void *val)
3524 {
3525 	int idx;
3526 
3527 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3528 	if (idx < 0)
3529 		return -EOPNOTSUPP;
3530 
3531 	while (idx < bus->dev_count &&
3532 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3533 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3534 				       range->len, val))
3535 			return idx;
3536 		idx++;
3537 	}
3538 
3539 	return -EOPNOTSUPP;
3540 }
3541 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3542 
3543 /* kvm_io_bus_read - called under kvm->slots_lock */
3544 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3545 		    int len, void *val)
3546 {
3547 	struct kvm_io_bus *bus;
3548 	struct kvm_io_range range;
3549 	int r;
3550 
3551 	range = (struct kvm_io_range) {
3552 		.addr = addr,
3553 		.len = len,
3554 	};
3555 
3556 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3557 	if (!bus)
3558 		return -ENOMEM;
3559 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3560 	return r < 0 ? r : 0;
3561 }
3562 
3563 
3564 /* Caller must hold slots_lock. */
3565 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3566 			    int len, struct kvm_io_device *dev)
3567 {
3568 	int i;
3569 	struct kvm_io_bus *new_bus, *bus;
3570 	struct kvm_io_range range;
3571 
3572 	bus = kvm_get_bus(kvm, bus_idx);
3573 	if (!bus)
3574 		return -ENOMEM;
3575 
3576 	/* exclude ioeventfd which is limited by maximum fd */
3577 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3578 		return -ENOSPC;
3579 
3580 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3581 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3582 	if (!new_bus)
3583 		return -ENOMEM;
3584 
3585 	range = (struct kvm_io_range) {
3586 		.addr = addr,
3587 		.len = len,
3588 		.dev = dev,
3589 	};
3590 
3591 	for (i = 0; i < bus->dev_count; i++)
3592 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3593 			break;
3594 
3595 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596 	new_bus->dev_count++;
3597 	new_bus->range[i] = range;
3598 	memcpy(new_bus->range + i + 1, bus->range + i,
3599 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3600 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3601 	synchronize_srcu_expedited(&kvm->srcu);
3602 	kfree(bus);
3603 
3604 	return 0;
3605 }
3606 
3607 /* Caller must hold slots_lock. */
3608 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609 			       struct kvm_io_device *dev)
3610 {
3611 	int i;
3612 	struct kvm_io_bus *new_bus, *bus;
3613 
3614 	bus = kvm_get_bus(kvm, bus_idx);
3615 	if (!bus)
3616 		return;
3617 
3618 	for (i = 0; i < bus->dev_count; i++)
3619 		if (bus->range[i].dev == dev) {
3620 			break;
3621 		}
3622 
3623 	if (i == bus->dev_count)
3624 		return;
3625 
3626 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3627 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3628 	if (!new_bus)  {
3629 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3630 		goto broken;
3631 	}
3632 
3633 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3634 	new_bus->dev_count--;
3635 	memcpy(new_bus->range + i, bus->range + i + 1,
3636 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3637 
3638 broken:
3639 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3640 	synchronize_srcu_expedited(&kvm->srcu);
3641 	kfree(bus);
3642 	return;
3643 }
3644 
3645 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3646 					 gpa_t addr)
3647 {
3648 	struct kvm_io_bus *bus;
3649 	int dev_idx, srcu_idx;
3650 	struct kvm_io_device *iodev = NULL;
3651 
3652 	srcu_idx = srcu_read_lock(&kvm->srcu);
3653 
3654 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3655 	if (!bus)
3656 		goto out_unlock;
3657 
3658 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3659 	if (dev_idx < 0)
3660 		goto out_unlock;
3661 
3662 	iodev = bus->range[dev_idx].dev;
3663 
3664 out_unlock:
3665 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3666 
3667 	return iodev;
3668 }
3669 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3670 
3671 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3672 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3673 			   const char *fmt)
3674 {
3675 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3676 					  inode->i_private;
3677 
3678 	/* The debugfs files are a reference to the kvm struct which
3679 	 * is still valid when kvm_destroy_vm is called.
3680 	 * To avoid the race between open and the removal of the debugfs
3681 	 * directory we test against the users count.
3682 	 */
3683 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3684 		return -ENOENT;
3685 
3686 	if (simple_attr_open(inode, file, get, set, fmt)) {
3687 		kvm_put_kvm(stat_data->kvm);
3688 		return -ENOMEM;
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3695 {
3696 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3697 					  inode->i_private;
3698 
3699 	simple_attr_release(inode, file);
3700 	kvm_put_kvm(stat_data->kvm);
3701 
3702 	return 0;
3703 }
3704 
3705 static int vm_stat_get_per_vm(void *data, u64 *val)
3706 {
3707 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708 
3709 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3710 
3711 	return 0;
3712 }
3713 
3714 static int vm_stat_clear_per_vm(void *data, u64 val)
3715 {
3716 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3717 
3718 	if (val)
3719 		return -EINVAL;
3720 
3721 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3722 
3723 	return 0;
3724 }
3725 
3726 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3727 {
3728 	__simple_attr_check_format("%llu\n", 0ull);
3729 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3730 				vm_stat_clear_per_vm, "%llu\n");
3731 }
3732 
3733 static const struct file_operations vm_stat_get_per_vm_fops = {
3734 	.owner   = THIS_MODULE,
3735 	.open    = vm_stat_get_per_vm_open,
3736 	.release = kvm_debugfs_release,
3737 	.read    = simple_attr_read,
3738 	.write   = simple_attr_write,
3739 	.llseek  = no_llseek,
3740 };
3741 
3742 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3743 {
3744 	int i;
3745 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3746 	struct kvm_vcpu *vcpu;
3747 
3748 	*val = 0;
3749 
3750 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3751 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3752 
3753 	return 0;
3754 }
3755 
3756 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3757 {
3758 	int i;
3759 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3760 	struct kvm_vcpu *vcpu;
3761 
3762 	if (val)
3763 		return -EINVAL;
3764 
3765 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3766 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3767 
3768 	return 0;
3769 }
3770 
3771 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3772 {
3773 	__simple_attr_check_format("%llu\n", 0ull);
3774 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3775 				 vcpu_stat_clear_per_vm, "%llu\n");
3776 }
3777 
3778 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3779 	.owner   = THIS_MODULE,
3780 	.open    = vcpu_stat_get_per_vm_open,
3781 	.release = kvm_debugfs_release,
3782 	.read    = simple_attr_read,
3783 	.write   = simple_attr_write,
3784 	.llseek  = no_llseek,
3785 };
3786 
3787 static const struct file_operations *stat_fops_per_vm[] = {
3788 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3789 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3790 };
3791 
3792 static int vm_stat_get(void *_offset, u64 *val)
3793 {
3794 	unsigned offset = (long)_offset;
3795 	struct kvm *kvm;
3796 	struct kvm_stat_data stat_tmp = {.offset = offset};
3797 	u64 tmp_val;
3798 
3799 	*val = 0;
3800 	spin_lock(&kvm_lock);
3801 	list_for_each_entry(kvm, &vm_list, vm_list) {
3802 		stat_tmp.kvm = kvm;
3803 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804 		*val += tmp_val;
3805 	}
3806 	spin_unlock(&kvm_lock);
3807 	return 0;
3808 }
3809 
3810 static int vm_stat_clear(void *_offset, u64 val)
3811 {
3812 	unsigned offset = (long)_offset;
3813 	struct kvm *kvm;
3814 	struct kvm_stat_data stat_tmp = {.offset = offset};
3815 
3816 	if (val)
3817 		return -EINVAL;
3818 
3819 	spin_lock(&kvm_lock);
3820 	list_for_each_entry(kvm, &vm_list, vm_list) {
3821 		stat_tmp.kvm = kvm;
3822 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3823 	}
3824 	spin_unlock(&kvm_lock);
3825 
3826 	return 0;
3827 }
3828 
3829 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3830 
3831 static int vcpu_stat_get(void *_offset, u64 *val)
3832 {
3833 	unsigned offset = (long)_offset;
3834 	struct kvm *kvm;
3835 	struct kvm_stat_data stat_tmp = {.offset = offset};
3836 	u64 tmp_val;
3837 
3838 	*val = 0;
3839 	spin_lock(&kvm_lock);
3840 	list_for_each_entry(kvm, &vm_list, vm_list) {
3841 		stat_tmp.kvm = kvm;
3842 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3843 		*val += tmp_val;
3844 	}
3845 	spin_unlock(&kvm_lock);
3846 	return 0;
3847 }
3848 
3849 static int vcpu_stat_clear(void *_offset, u64 val)
3850 {
3851 	unsigned offset = (long)_offset;
3852 	struct kvm *kvm;
3853 	struct kvm_stat_data stat_tmp = {.offset = offset};
3854 
3855 	if (val)
3856 		return -EINVAL;
3857 
3858 	spin_lock(&kvm_lock);
3859 	list_for_each_entry(kvm, &vm_list, vm_list) {
3860 		stat_tmp.kvm = kvm;
3861 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3862 	}
3863 	spin_unlock(&kvm_lock);
3864 
3865 	return 0;
3866 }
3867 
3868 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3869 			"%llu\n");
3870 
3871 static const struct file_operations *stat_fops[] = {
3872 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3873 	[KVM_STAT_VM]   = &vm_stat_fops,
3874 };
3875 
3876 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3877 {
3878 	struct kobj_uevent_env *env;
3879 	unsigned long long created, active;
3880 
3881 	if (!kvm_dev.this_device || !kvm)
3882 		return;
3883 
3884 	spin_lock(&kvm_lock);
3885 	if (type == KVM_EVENT_CREATE_VM) {
3886 		kvm_createvm_count++;
3887 		kvm_active_vms++;
3888 	} else if (type == KVM_EVENT_DESTROY_VM) {
3889 		kvm_active_vms--;
3890 	}
3891 	created = kvm_createvm_count;
3892 	active = kvm_active_vms;
3893 	spin_unlock(&kvm_lock);
3894 
3895 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3896 	if (!env)
3897 		return;
3898 
3899 	add_uevent_var(env, "CREATED=%llu", created);
3900 	add_uevent_var(env, "COUNT=%llu", active);
3901 
3902 	if (type == KVM_EVENT_CREATE_VM) {
3903 		add_uevent_var(env, "EVENT=create");
3904 		kvm->userspace_pid = task_pid_nr(current);
3905 	} else if (type == KVM_EVENT_DESTROY_VM) {
3906 		add_uevent_var(env, "EVENT=destroy");
3907 	}
3908 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3909 
3910 	if (kvm->debugfs_dentry) {
3911 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3912 
3913 		if (p) {
3914 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3915 			if (!IS_ERR(tmp))
3916 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3917 			kfree(p);
3918 		}
3919 	}
3920 	/* no need for checks, since we are adding at most only 5 keys */
3921 	env->envp[env->envp_idx++] = NULL;
3922 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3923 	kfree(env);
3924 }
3925 
3926 static void kvm_init_debug(void)
3927 {
3928 	struct kvm_stats_debugfs_item *p;
3929 
3930 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3931 
3932 	kvm_debugfs_num_entries = 0;
3933 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3934 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3935 				    (void *)(long)p->offset,
3936 				    stat_fops[p->kind]);
3937 	}
3938 }
3939 
3940 static int kvm_suspend(void)
3941 {
3942 	if (kvm_usage_count)
3943 		hardware_disable_nolock(NULL);
3944 	return 0;
3945 }
3946 
3947 static void kvm_resume(void)
3948 {
3949 	if (kvm_usage_count) {
3950 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3951 		hardware_enable_nolock(NULL);
3952 	}
3953 }
3954 
3955 static struct syscore_ops kvm_syscore_ops = {
3956 	.suspend = kvm_suspend,
3957 	.resume = kvm_resume,
3958 };
3959 
3960 static inline
3961 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3962 {
3963 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3964 }
3965 
3966 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3967 {
3968 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3969 
3970 	if (vcpu->preempted)
3971 		vcpu->preempted = false;
3972 
3973 	kvm_arch_sched_in(vcpu, cpu);
3974 
3975 	kvm_arch_vcpu_load(vcpu, cpu);
3976 }
3977 
3978 static void kvm_sched_out(struct preempt_notifier *pn,
3979 			  struct task_struct *next)
3980 {
3981 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3982 
3983 	if (current->state == TASK_RUNNING)
3984 		vcpu->preempted = true;
3985 	kvm_arch_vcpu_put(vcpu);
3986 }
3987 
3988 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3989 		  struct module *module)
3990 {
3991 	int r;
3992 	int cpu;
3993 
3994 	r = kvm_arch_init(opaque);
3995 	if (r)
3996 		goto out_fail;
3997 
3998 	/*
3999 	 * kvm_arch_init makes sure there's at most one caller
4000 	 * for architectures that support multiple implementations,
4001 	 * like intel and amd on x86.
4002 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4003 	 * conflicts in case kvm is already setup for another implementation.
4004 	 */
4005 	r = kvm_irqfd_init();
4006 	if (r)
4007 		goto out_irqfd;
4008 
4009 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4010 		r = -ENOMEM;
4011 		goto out_free_0;
4012 	}
4013 
4014 	r = kvm_arch_hardware_setup();
4015 	if (r < 0)
4016 		goto out_free_0a;
4017 
4018 	for_each_online_cpu(cpu) {
4019 		smp_call_function_single(cpu,
4020 				kvm_arch_check_processor_compat,
4021 				&r, 1);
4022 		if (r < 0)
4023 			goto out_free_1;
4024 	}
4025 
4026 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4027 				      kvm_starting_cpu, kvm_dying_cpu);
4028 	if (r)
4029 		goto out_free_2;
4030 	register_reboot_notifier(&kvm_reboot_notifier);
4031 
4032 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4033 	if (!vcpu_align)
4034 		vcpu_align = __alignof__(struct kvm_vcpu);
4035 	kvm_vcpu_cache =
4036 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4037 					   SLAB_ACCOUNT,
4038 					   offsetof(struct kvm_vcpu, arch),
4039 					   sizeof_field(struct kvm_vcpu, arch),
4040 					   NULL);
4041 	if (!kvm_vcpu_cache) {
4042 		r = -ENOMEM;
4043 		goto out_free_3;
4044 	}
4045 
4046 	r = kvm_async_pf_init();
4047 	if (r)
4048 		goto out_free;
4049 
4050 	kvm_chardev_ops.owner = module;
4051 	kvm_vm_fops.owner = module;
4052 	kvm_vcpu_fops.owner = module;
4053 
4054 	r = misc_register(&kvm_dev);
4055 	if (r) {
4056 		pr_err("kvm: misc device register failed\n");
4057 		goto out_unreg;
4058 	}
4059 
4060 	register_syscore_ops(&kvm_syscore_ops);
4061 
4062 	kvm_preempt_ops.sched_in = kvm_sched_in;
4063 	kvm_preempt_ops.sched_out = kvm_sched_out;
4064 
4065 	kvm_init_debug();
4066 
4067 	r = kvm_vfio_ops_init();
4068 	WARN_ON(r);
4069 
4070 	return 0;
4071 
4072 out_unreg:
4073 	kvm_async_pf_deinit();
4074 out_free:
4075 	kmem_cache_destroy(kvm_vcpu_cache);
4076 out_free_3:
4077 	unregister_reboot_notifier(&kvm_reboot_notifier);
4078 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4079 out_free_2:
4080 out_free_1:
4081 	kvm_arch_hardware_unsetup();
4082 out_free_0a:
4083 	free_cpumask_var(cpus_hardware_enabled);
4084 out_free_0:
4085 	kvm_irqfd_exit();
4086 out_irqfd:
4087 	kvm_arch_exit();
4088 out_fail:
4089 	return r;
4090 }
4091 EXPORT_SYMBOL_GPL(kvm_init);
4092 
4093 void kvm_exit(void)
4094 {
4095 	debugfs_remove_recursive(kvm_debugfs_dir);
4096 	misc_deregister(&kvm_dev);
4097 	kmem_cache_destroy(kvm_vcpu_cache);
4098 	kvm_async_pf_deinit();
4099 	unregister_syscore_ops(&kvm_syscore_ops);
4100 	unregister_reboot_notifier(&kvm_reboot_notifier);
4101 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4102 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4103 	kvm_arch_hardware_unsetup();
4104 	kvm_arch_exit();
4105 	kvm_irqfd_exit();
4106 	free_cpumask_var(cpus_hardware_enabled);
4107 	kvm_vfio_ops_exit();
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_exit);
4110