xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 9b9c2cd4)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72 
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76 
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80 
81 /*
82  * Ordering of locks:
83  *
84  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86 
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90 
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94 
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97 
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99 
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102 
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 			   unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 				  unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111 
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113 
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116 
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119 
120 static bool largepages_enabled = true;
121 
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 	if (pfn_valid(pfn))
125 		return PageReserved(pfn_to_page(pfn));
126 
127 	return true;
128 }
129 
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 	int cpu;
136 
137 	if (mutex_lock_killable(&vcpu->mutex))
138 		return -EINTR;
139 	cpu = get_cpu();
140 	preempt_notifier_register(&vcpu->preempt_notifier);
141 	kvm_arch_vcpu_load(vcpu, cpu);
142 	put_cpu();
143 	return 0;
144 }
145 
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 	preempt_disable();
149 	kvm_arch_vcpu_put(vcpu);
150 	preempt_notifier_unregister(&vcpu->preempt_notifier);
151 	preempt_enable();
152 	mutex_unlock(&vcpu->mutex);
153 }
154 
155 static void ack_flush(void *_completed)
156 {
157 }
158 
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 	int i, cpu, me;
162 	cpumask_var_t cpus;
163 	bool called = true;
164 	struct kvm_vcpu *vcpu;
165 
166 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167 
168 	me = get_cpu();
169 	kvm_for_each_vcpu(i, vcpu, kvm) {
170 		kvm_make_request(req, vcpu);
171 		cpu = vcpu->cpu;
172 
173 		/* Set ->requests bit before we read ->mode */
174 		smp_mb();
175 
176 		if (cpus != NULL && cpu != -1 && cpu != me &&
177 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 			cpumask_set_cpu(cpu, cpus);
179 	}
180 	if (unlikely(cpus == NULL))
181 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 	else if (!cpumask_empty(cpus))
183 		smp_call_function_many(cpus, ack_flush, NULL, 1);
184 	else
185 		called = false;
186 	put_cpu();
187 	free_cpumask_var(cpus);
188 	return called;
189 }
190 
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 	long dirty_count = kvm->tlbs_dirty;
195 
196 	smp_mb();
197 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 		++kvm->stat.remote_tlb_flush;
199 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203 
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208 
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213 
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218 
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 	struct page *page;
222 	int r;
223 
224 	mutex_init(&vcpu->mutex);
225 	vcpu->cpu = -1;
226 	vcpu->kvm = kvm;
227 	vcpu->vcpu_id = id;
228 	vcpu->pid = NULL;
229 	vcpu->halt_poll_ns = 0;
230 	init_waitqueue_head(&vcpu->wq);
231 	kvm_async_pf_vcpu_init(vcpu);
232 
233 	vcpu->pre_pcpu = -1;
234 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
235 
236 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237 	if (!page) {
238 		r = -ENOMEM;
239 		goto fail;
240 	}
241 	vcpu->run = page_address(page);
242 
243 	kvm_vcpu_set_in_spin_loop(vcpu, false);
244 	kvm_vcpu_set_dy_eligible(vcpu, false);
245 	vcpu->preempted = false;
246 
247 	r = kvm_arch_vcpu_init(vcpu);
248 	if (r < 0)
249 		goto fail_free_run;
250 	return 0;
251 
252 fail_free_run:
253 	free_page((unsigned long)vcpu->run);
254 fail:
255 	return r;
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
258 
259 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
260 {
261 	put_pid(vcpu->pid);
262 	kvm_arch_vcpu_uninit(vcpu);
263 	free_page((unsigned long)vcpu->run);
264 }
265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
266 
267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
268 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
269 {
270 	return container_of(mn, struct kvm, mmu_notifier);
271 }
272 
273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
274 					     struct mm_struct *mm,
275 					     unsigned long address)
276 {
277 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
278 	int need_tlb_flush, idx;
279 
280 	/*
281 	 * When ->invalidate_page runs, the linux pte has been zapped
282 	 * already but the page is still allocated until
283 	 * ->invalidate_page returns. So if we increase the sequence
284 	 * here the kvm page fault will notice if the spte can't be
285 	 * established because the page is going to be freed. If
286 	 * instead the kvm page fault establishes the spte before
287 	 * ->invalidate_page runs, kvm_unmap_hva will release it
288 	 * before returning.
289 	 *
290 	 * The sequence increase only need to be seen at spin_unlock
291 	 * time, and not at spin_lock time.
292 	 *
293 	 * Increasing the sequence after the spin_unlock would be
294 	 * unsafe because the kvm page fault could then establish the
295 	 * pte after kvm_unmap_hva returned, without noticing the page
296 	 * is going to be freed.
297 	 */
298 	idx = srcu_read_lock(&kvm->srcu);
299 	spin_lock(&kvm->mmu_lock);
300 
301 	kvm->mmu_notifier_seq++;
302 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
303 	/* we've to flush the tlb before the pages can be freed */
304 	if (need_tlb_flush)
305 		kvm_flush_remote_tlbs(kvm);
306 
307 	spin_unlock(&kvm->mmu_lock);
308 
309 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
310 
311 	srcu_read_unlock(&kvm->srcu, idx);
312 }
313 
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315 					struct mm_struct *mm,
316 					unsigned long address,
317 					pte_t pte)
318 {
319 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 	int idx;
321 
322 	idx = srcu_read_lock(&kvm->srcu);
323 	spin_lock(&kvm->mmu_lock);
324 	kvm->mmu_notifier_seq++;
325 	kvm_set_spte_hva(kvm, address, pte);
326 	spin_unlock(&kvm->mmu_lock);
327 	srcu_read_unlock(&kvm->srcu, idx);
328 }
329 
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331 						    struct mm_struct *mm,
332 						    unsigned long start,
333 						    unsigned long end)
334 {
335 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 	int need_tlb_flush = 0, idx;
337 
338 	idx = srcu_read_lock(&kvm->srcu);
339 	spin_lock(&kvm->mmu_lock);
340 	/*
341 	 * The count increase must become visible at unlock time as no
342 	 * spte can be established without taking the mmu_lock and
343 	 * count is also read inside the mmu_lock critical section.
344 	 */
345 	kvm->mmu_notifier_count++;
346 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347 	need_tlb_flush |= kvm->tlbs_dirty;
348 	/* we've to flush the tlb before the pages can be freed */
349 	if (need_tlb_flush)
350 		kvm_flush_remote_tlbs(kvm);
351 
352 	spin_unlock(&kvm->mmu_lock);
353 	srcu_read_unlock(&kvm->srcu, idx);
354 }
355 
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357 						  struct mm_struct *mm,
358 						  unsigned long start,
359 						  unsigned long end)
360 {
361 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
362 
363 	spin_lock(&kvm->mmu_lock);
364 	/*
365 	 * This sequence increase will notify the kvm page fault that
366 	 * the page that is going to be mapped in the spte could have
367 	 * been freed.
368 	 */
369 	kvm->mmu_notifier_seq++;
370 	smp_wmb();
371 	/*
372 	 * The above sequence increase must be visible before the
373 	 * below count decrease, which is ensured by the smp_wmb above
374 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
375 	 */
376 	kvm->mmu_notifier_count--;
377 	spin_unlock(&kvm->mmu_lock);
378 
379 	BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381 
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383 					      struct mm_struct *mm,
384 					      unsigned long start,
385 					      unsigned long end)
386 {
387 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 	int young, idx;
389 
390 	idx = srcu_read_lock(&kvm->srcu);
391 	spin_lock(&kvm->mmu_lock);
392 
393 	young = kvm_age_hva(kvm, start, end);
394 	if (young)
395 		kvm_flush_remote_tlbs(kvm);
396 
397 	spin_unlock(&kvm->mmu_lock);
398 	srcu_read_unlock(&kvm->srcu, idx);
399 
400 	return young;
401 }
402 
403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
404 					struct mm_struct *mm,
405 					unsigned long start,
406 					unsigned long end)
407 {
408 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 	int young, idx;
410 
411 	idx = srcu_read_lock(&kvm->srcu);
412 	spin_lock(&kvm->mmu_lock);
413 	/*
414 	 * Even though we do not flush TLB, this will still adversely
415 	 * affect performance on pre-Haswell Intel EPT, where there is
416 	 * no EPT Access Bit to clear so that we have to tear down EPT
417 	 * tables instead. If we find this unacceptable, we can always
418 	 * add a parameter to kvm_age_hva so that it effectively doesn't
419 	 * do anything on clear_young.
420 	 *
421 	 * Also note that currently we never issue secondary TLB flushes
422 	 * from clear_young, leaving this job up to the regular system
423 	 * cadence. If we find this inaccurate, we might come up with a
424 	 * more sophisticated heuristic later.
425 	 */
426 	young = kvm_age_hva(kvm, start, end);
427 	spin_unlock(&kvm->mmu_lock);
428 	srcu_read_unlock(&kvm->srcu, idx);
429 
430 	return young;
431 }
432 
433 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
434 				       struct mm_struct *mm,
435 				       unsigned long address)
436 {
437 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
438 	int young, idx;
439 
440 	idx = srcu_read_lock(&kvm->srcu);
441 	spin_lock(&kvm->mmu_lock);
442 	young = kvm_test_age_hva(kvm, address);
443 	spin_unlock(&kvm->mmu_lock);
444 	srcu_read_unlock(&kvm->srcu, idx);
445 
446 	return young;
447 }
448 
449 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
450 				     struct mm_struct *mm)
451 {
452 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 	int idx;
454 
455 	idx = srcu_read_lock(&kvm->srcu);
456 	kvm_arch_flush_shadow_all(kvm);
457 	srcu_read_unlock(&kvm->srcu, idx);
458 }
459 
460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
461 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
462 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
463 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
464 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
465 	.clear_young		= kvm_mmu_notifier_clear_young,
466 	.test_young		= kvm_mmu_notifier_test_young,
467 	.change_pte		= kvm_mmu_notifier_change_pte,
468 	.release		= kvm_mmu_notifier_release,
469 };
470 
471 static int kvm_init_mmu_notifier(struct kvm *kvm)
472 {
473 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
474 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
475 }
476 
477 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
478 
479 static int kvm_init_mmu_notifier(struct kvm *kvm)
480 {
481 	return 0;
482 }
483 
484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
485 
486 static struct kvm_memslots *kvm_alloc_memslots(void)
487 {
488 	int i;
489 	struct kvm_memslots *slots;
490 
491 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
492 	if (!slots)
493 		return NULL;
494 
495 	/*
496 	 * Init kvm generation close to the maximum to easily test the
497 	 * code of handling generation number wrap-around.
498 	 */
499 	slots->generation = -150;
500 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
501 		slots->id_to_index[i] = slots->memslots[i].id = i;
502 
503 	return slots;
504 }
505 
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508 	if (!memslot->dirty_bitmap)
509 		return;
510 
511 	kvfree(memslot->dirty_bitmap);
512 	memslot->dirty_bitmap = NULL;
513 }
514 
515 /*
516  * Free any memory in @free but not in @dont.
517  */
518 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
519 			      struct kvm_memory_slot *dont)
520 {
521 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
522 		kvm_destroy_dirty_bitmap(free);
523 
524 	kvm_arch_free_memslot(kvm, free, dont);
525 
526 	free->npages = 0;
527 }
528 
529 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
530 {
531 	struct kvm_memory_slot *memslot;
532 
533 	if (!slots)
534 		return;
535 
536 	kvm_for_each_memslot(memslot, slots)
537 		kvm_free_memslot(kvm, memslot, NULL);
538 
539 	kvfree(slots);
540 }
541 
542 static struct kvm *kvm_create_vm(unsigned long type)
543 {
544 	int r, i;
545 	struct kvm *kvm = kvm_arch_alloc_vm();
546 
547 	if (!kvm)
548 		return ERR_PTR(-ENOMEM);
549 
550 	r = kvm_arch_init_vm(kvm, type);
551 	if (r)
552 		goto out_err_no_disable;
553 
554 	r = hardware_enable_all();
555 	if (r)
556 		goto out_err_no_disable;
557 
558 #ifdef CONFIG_HAVE_KVM_IRQFD
559 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
560 #endif
561 
562 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
563 
564 	r = -ENOMEM;
565 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
566 		kvm->memslots[i] = kvm_alloc_memslots();
567 		if (!kvm->memslots[i])
568 			goto out_err_no_srcu;
569 	}
570 
571 	if (init_srcu_struct(&kvm->srcu))
572 		goto out_err_no_srcu;
573 	if (init_srcu_struct(&kvm->irq_srcu))
574 		goto out_err_no_irq_srcu;
575 	for (i = 0; i < KVM_NR_BUSES; i++) {
576 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
577 					GFP_KERNEL);
578 		if (!kvm->buses[i])
579 			goto out_err;
580 	}
581 
582 	spin_lock_init(&kvm->mmu_lock);
583 	kvm->mm = current->mm;
584 	atomic_inc(&kvm->mm->mm_count);
585 	kvm_eventfd_init(kvm);
586 	mutex_init(&kvm->lock);
587 	mutex_init(&kvm->irq_lock);
588 	mutex_init(&kvm->slots_lock);
589 	atomic_set(&kvm->users_count, 1);
590 	INIT_LIST_HEAD(&kvm->devices);
591 
592 	r = kvm_init_mmu_notifier(kvm);
593 	if (r)
594 		goto out_err;
595 
596 	spin_lock(&kvm_lock);
597 	list_add(&kvm->vm_list, &vm_list);
598 	spin_unlock(&kvm_lock);
599 
600 	preempt_notifier_inc();
601 
602 	return kvm;
603 
604 out_err:
605 	cleanup_srcu_struct(&kvm->irq_srcu);
606 out_err_no_irq_srcu:
607 	cleanup_srcu_struct(&kvm->srcu);
608 out_err_no_srcu:
609 	hardware_disable_all();
610 out_err_no_disable:
611 	for (i = 0; i < KVM_NR_BUSES; i++)
612 		kfree(kvm->buses[i]);
613 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
614 		kvm_free_memslots(kvm, kvm->memslots[i]);
615 	kvm_arch_free_vm(kvm);
616 	return ERR_PTR(r);
617 }
618 
619 /*
620  * Avoid using vmalloc for a small buffer.
621  * Should not be used when the size is statically known.
622  */
623 void *kvm_kvzalloc(unsigned long size)
624 {
625 	if (size > PAGE_SIZE)
626 		return vzalloc(size);
627 	else
628 		return kzalloc(size, GFP_KERNEL);
629 }
630 
631 static void kvm_destroy_devices(struct kvm *kvm)
632 {
633 	struct list_head *node, *tmp;
634 
635 	list_for_each_safe(node, tmp, &kvm->devices) {
636 		struct kvm_device *dev =
637 			list_entry(node, struct kvm_device, vm_node);
638 
639 		list_del(node);
640 		dev->ops->destroy(dev);
641 	}
642 }
643 
644 static void kvm_destroy_vm(struct kvm *kvm)
645 {
646 	int i;
647 	struct mm_struct *mm = kvm->mm;
648 
649 	kvm_arch_sync_events(kvm);
650 	spin_lock(&kvm_lock);
651 	list_del(&kvm->vm_list);
652 	spin_unlock(&kvm_lock);
653 	kvm_free_irq_routing(kvm);
654 	for (i = 0; i < KVM_NR_BUSES; i++)
655 		kvm_io_bus_destroy(kvm->buses[i]);
656 	kvm_coalesced_mmio_free(kvm);
657 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
658 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
659 #else
660 	kvm_arch_flush_shadow_all(kvm);
661 #endif
662 	kvm_arch_destroy_vm(kvm);
663 	kvm_destroy_devices(kvm);
664 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
665 		kvm_free_memslots(kvm, kvm->memslots[i]);
666 	cleanup_srcu_struct(&kvm->irq_srcu);
667 	cleanup_srcu_struct(&kvm->srcu);
668 	kvm_arch_free_vm(kvm);
669 	preempt_notifier_dec();
670 	hardware_disable_all();
671 	mmdrop(mm);
672 }
673 
674 void kvm_get_kvm(struct kvm *kvm)
675 {
676 	atomic_inc(&kvm->users_count);
677 }
678 EXPORT_SYMBOL_GPL(kvm_get_kvm);
679 
680 void kvm_put_kvm(struct kvm *kvm)
681 {
682 	if (atomic_dec_and_test(&kvm->users_count))
683 		kvm_destroy_vm(kvm);
684 }
685 EXPORT_SYMBOL_GPL(kvm_put_kvm);
686 
687 
688 static int kvm_vm_release(struct inode *inode, struct file *filp)
689 {
690 	struct kvm *kvm = filp->private_data;
691 
692 	kvm_irqfd_release(kvm);
693 
694 	kvm_put_kvm(kvm);
695 	return 0;
696 }
697 
698 /*
699  * Allocation size is twice as large as the actual dirty bitmap size.
700  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
701  */
702 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
703 {
704 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
705 
706 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
707 	if (!memslot->dirty_bitmap)
708 		return -ENOMEM;
709 
710 	return 0;
711 }
712 
713 /*
714  * Insert memslot and re-sort memslots based on their GFN,
715  * so binary search could be used to lookup GFN.
716  * Sorting algorithm takes advantage of having initially
717  * sorted array and known changed memslot position.
718  */
719 static void update_memslots(struct kvm_memslots *slots,
720 			    struct kvm_memory_slot *new)
721 {
722 	int id = new->id;
723 	int i = slots->id_to_index[id];
724 	struct kvm_memory_slot *mslots = slots->memslots;
725 
726 	WARN_ON(mslots[i].id != id);
727 	if (!new->npages) {
728 		WARN_ON(!mslots[i].npages);
729 		if (mslots[i].npages)
730 			slots->used_slots--;
731 	} else {
732 		if (!mslots[i].npages)
733 			slots->used_slots++;
734 	}
735 
736 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
737 	       new->base_gfn <= mslots[i + 1].base_gfn) {
738 		if (!mslots[i + 1].npages)
739 			break;
740 		mslots[i] = mslots[i + 1];
741 		slots->id_to_index[mslots[i].id] = i;
742 		i++;
743 	}
744 
745 	/*
746 	 * The ">=" is needed when creating a slot with base_gfn == 0,
747 	 * so that it moves before all those with base_gfn == npages == 0.
748 	 *
749 	 * On the other hand, if new->npages is zero, the above loop has
750 	 * already left i pointing to the beginning of the empty part of
751 	 * mslots, and the ">=" would move the hole backwards in this
752 	 * case---which is wrong.  So skip the loop when deleting a slot.
753 	 */
754 	if (new->npages) {
755 		while (i > 0 &&
756 		       new->base_gfn >= mslots[i - 1].base_gfn) {
757 			mslots[i] = mslots[i - 1];
758 			slots->id_to_index[mslots[i].id] = i;
759 			i--;
760 		}
761 	} else
762 		WARN_ON_ONCE(i != slots->used_slots);
763 
764 	mslots[i] = *new;
765 	slots->id_to_index[mslots[i].id] = i;
766 }
767 
768 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
769 {
770 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
771 
772 #ifdef __KVM_HAVE_READONLY_MEM
773 	valid_flags |= KVM_MEM_READONLY;
774 #endif
775 
776 	if (mem->flags & ~valid_flags)
777 		return -EINVAL;
778 
779 	return 0;
780 }
781 
782 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
783 		int as_id, struct kvm_memslots *slots)
784 {
785 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
786 
787 	/*
788 	 * Set the low bit in the generation, which disables SPTE caching
789 	 * until the end of synchronize_srcu_expedited.
790 	 */
791 	WARN_ON(old_memslots->generation & 1);
792 	slots->generation = old_memslots->generation + 1;
793 
794 	rcu_assign_pointer(kvm->memslots[as_id], slots);
795 	synchronize_srcu_expedited(&kvm->srcu);
796 
797 	/*
798 	 * Increment the new memslot generation a second time. This prevents
799 	 * vm exits that race with memslot updates from caching a memslot
800 	 * generation that will (potentially) be valid forever.
801 	 */
802 	slots->generation++;
803 
804 	kvm_arch_memslots_updated(kvm, slots);
805 
806 	return old_memslots;
807 }
808 
809 /*
810  * Allocate some memory and give it an address in the guest physical address
811  * space.
812  *
813  * Discontiguous memory is allowed, mostly for framebuffers.
814  *
815  * Must be called holding kvm->slots_lock for write.
816  */
817 int __kvm_set_memory_region(struct kvm *kvm,
818 			    const struct kvm_userspace_memory_region *mem)
819 {
820 	int r;
821 	gfn_t base_gfn;
822 	unsigned long npages;
823 	struct kvm_memory_slot *slot;
824 	struct kvm_memory_slot old, new;
825 	struct kvm_memslots *slots = NULL, *old_memslots;
826 	int as_id, id;
827 	enum kvm_mr_change change;
828 
829 	r = check_memory_region_flags(mem);
830 	if (r)
831 		goto out;
832 
833 	r = -EINVAL;
834 	as_id = mem->slot >> 16;
835 	id = (u16)mem->slot;
836 
837 	/* General sanity checks */
838 	if (mem->memory_size & (PAGE_SIZE - 1))
839 		goto out;
840 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
841 		goto out;
842 	/* We can read the guest memory with __xxx_user() later on. */
843 	if ((id < KVM_USER_MEM_SLOTS) &&
844 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
845 	     !access_ok(VERIFY_WRITE,
846 			(void __user *)(unsigned long)mem->userspace_addr,
847 			mem->memory_size)))
848 		goto out;
849 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
850 		goto out;
851 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
852 		goto out;
853 
854 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
855 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
856 	npages = mem->memory_size >> PAGE_SHIFT;
857 
858 	if (npages > KVM_MEM_MAX_NR_PAGES)
859 		goto out;
860 
861 	new = old = *slot;
862 
863 	new.id = id;
864 	new.base_gfn = base_gfn;
865 	new.npages = npages;
866 	new.flags = mem->flags;
867 
868 	if (npages) {
869 		if (!old.npages)
870 			change = KVM_MR_CREATE;
871 		else { /* Modify an existing slot. */
872 			if ((mem->userspace_addr != old.userspace_addr) ||
873 			    (npages != old.npages) ||
874 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
875 				goto out;
876 
877 			if (base_gfn != old.base_gfn)
878 				change = KVM_MR_MOVE;
879 			else if (new.flags != old.flags)
880 				change = KVM_MR_FLAGS_ONLY;
881 			else { /* Nothing to change. */
882 				r = 0;
883 				goto out;
884 			}
885 		}
886 	} else {
887 		if (!old.npages)
888 			goto out;
889 
890 		change = KVM_MR_DELETE;
891 		new.base_gfn = 0;
892 		new.flags = 0;
893 	}
894 
895 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
896 		/* Check for overlaps */
897 		r = -EEXIST;
898 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
899 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
900 			    (slot->id == id))
901 				continue;
902 			if (!((base_gfn + npages <= slot->base_gfn) ||
903 			      (base_gfn >= slot->base_gfn + slot->npages)))
904 				goto out;
905 		}
906 	}
907 
908 	/* Free page dirty bitmap if unneeded */
909 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
910 		new.dirty_bitmap = NULL;
911 
912 	r = -ENOMEM;
913 	if (change == KVM_MR_CREATE) {
914 		new.userspace_addr = mem->userspace_addr;
915 
916 		if (kvm_arch_create_memslot(kvm, &new, npages))
917 			goto out_free;
918 	}
919 
920 	/* Allocate page dirty bitmap if needed */
921 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
922 		if (kvm_create_dirty_bitmap(&new) < 0)
923 			goto out_free;
924 	}
925 
926 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
927 	if (!slots)
928 		goto out_free;
929 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
930 
931 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
932 		slot = id_to_memslot(slots, id);
933 		slot->flags |= KVM_MEMSLOT_INVALID;
934 
935 		old_memslots = install_new_memslots(kvm, as_id, slots);
936 
937 		/* slot was deleted or moved, clear iommu mapping */
938 		kvm_iommu_unmap_pages(kvm, &old);
939 		/* From this point no new shadow pages pointing to a deleted,
940 		 * or moved, memslot will be created.
941 		 *
942 		 * validation of sp->gfn happens in:
943 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
944 		 *	- kvm_is_visible_gfn (mmu_check_roots)
945 		 */
946 		kvm_arch_flush_shadow_memslot(kvm, slot);
947 
948 		/*
949 		 * We can re-use the old_memslots from above, the only difference
950 		 * from the currently installed memslots is the invalid flag.  This
951 		 * will get overwritten by update_memslots anyway.
952 		 */
953 		slots = old_memslots;
954 	}
955 
956 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
957 	if (r)
958 		goto out_slots;
959 
960 	/* actual memory is freed via old in kvm_free_memslot below */
961 	if (change == KVM_MR_DELETE) {
962 		new.dirty_bitmap = NULL;
963 		memset(&new.arch, 0, sizeof(new.arch));
964 	}
965 
966 	update_memslots(slots, &new);
967 	old_memslots = install_new_memslots(kvm, as_id, slots);
968 
969 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
970 
971 	kvm_free_memslot(kvm, &old, &new);
972 	kvfree(old_memslots);
973 
974 	/*
975 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
976 	 * un-mapped and re-mapped if their base changes.  Since base change
977 	 * unmapping is handled above with slot deletion, mapping alone is
978 	 * needed here.  Anything else the iommu might care about for existing
979 	 * slots (size changes, userspace addr changes and read-only flag
980 	 * changes) is disallowed above, so any other attribute changes getting
981 	 * here can be skipped.
982 	 */
983 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
984 		r = kvm_iommu_map_pages(kvm, &new);
985 		return r;
986 	}
987 
988 	return 0;
989 
990 out_slots:
991 	kvfree(slots);
992 out_free:
993 	kvm_free_memslot(kvm, &new, &old);
994 out:
995 	return r;
996 }
997 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
998 
999 int kvm_set_memory_region(struct kvm *kvm,
1000 			  const struct kvm_userspace_memory_region *mem)
1001 {
1002 	int r;
1003 
1004 	mutex_lock(&kvm->slots_lock);
1005 	r = __kvm_set_memory_region(kvm, mem);
1006 	mutex_unlock(&kvm->slots_lock);
1007 	return r;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1010 
1011 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1012 					  struct kvm_userspace_memory_region *mem)
1013 {
1014 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1015 		return -EINVAL;
1016 
1017 	return kvm_set_memory_region(kvm, mem);
1018 }
1019 
1020 int kvm_get_dirty_log(struct kvm *kvm,
1021 			struct kvm_dirty_log *log, int *is_dirty)
1022 {
1023 	struct kvm_memslots *slots;
1024 	struct kvm_memory_slot *memslot;
1025 	int r, i, as_id, id;
1026 	unsigned long n;
1027 	unsigned long any = 0;
1028 
1029 	r = -EINVAL;
1030 	as_id = log->slot >> 16;
1031 	id = (u16)log->slot;
1032 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1033 		goto out;
1034 
1035 	slots = __kvm_memslots(kvm, as_id);
1036 	memslot = id_to_memslot(slots, id);
1037 	r = -ENOENT;
1038 	if (!memslot->dirty_bitmap)
1039 		goto out;
1040 
1041 	n = kvm_dirty_bitmap_bytes(memslot);
1042 
1043 	for (i = 0; !any && i < n/sizeof(long); ++i)
1044 		any = memslot->dirty_bitmap[i];
1045 
1046 	r = -EFAULT;
1047 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1048 		goto out;
1049 
1050 	if (any)
1051 		*is_dirty = 1;
1052 
1053 	r = 0;
1054 out:
1055 	return r;
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1058 
1059 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1060 /**
1061  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1062  *	are dirty write protect them for next write.
1063  * @kvm:	pointer to kvm instance
1064  * @log:	slot id and address to which we copy the log
1065  * @is_dirty:	flag set if any page is dirty
1066  *
1067  * We need to keep it in mind that VCPU threads can write to the bitmap
1068  * concurrently. So, to avoid losing track of dirty pages we keep the
1069  * following order:
1070  *
1071  *    1. Take a snapshot of the bit and clear it if needed.
1072  *    2. Write protect the corresponding page.
1073  *    3. Copy the snapshot to the userspace.
1074  *    4. Upon return caller flushes TLB's if needed.
1075  *
1076  * Between 2 and 4, the guest may write to the page using the remaining TLB
1077  * entry.  This is not a problem because the page is reported dirty using
1078  * the snapshot taken before and step 4 ensures that writes done after
1079  * exiting to userspace will be logged for the next call.
1080  *
1081  */
1082 int kvm_get_dirty_log_protect(struct kvm *kvm,
1083 			struct kvm_dirty_log *log, bool *is_dirty)
1084 {
1085 	struct kvm_memslots *slots;
1086 	struct kvm_memory_slot *memslot;
1087 	int r, i, as_id, id;
1088 	unsigned long n;
1089 	unsigned long *dirty_bitmap;
1090 	unsigned long *dirty_bitmap_buffer;
1091 
1092 	r = -EINVAL;
1093 	as_id = log->slot >> 16;
1094 	id = (u16)log->slot;
1095 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1096 		goto out;
1097 
1098 	slots = __kvm_memslots(kvm, as_id);
1099 	memslot = id_to_memslot(slots, id);
1100 
1101 	dirty_bitmap = memslot->dirty_bitmap;
1102 	r = -ENOENT;
1103 	if (!dirty_bitmap)
1104 		goto out;
1105 
1106 	n = kvm_dirty_bitmap_bytes(memslot);
1107 
1108 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1109 	memset(dirty_bitmap_buffer, 0, n);
1110 
1111 	spin_lock(&kvm->mmu_lock);
1112 	*is_dirty = false;
1113 	for (i = 0; i < n / sizeof(long); i++) {
1114 		unsigned long mask;
1115 		gfn_t offset;
1116 
1117 		if (!dirty_bitmap[i])
1118 			continue;
1119 
1120 		*is_dirty = true;
1121 
1122 		mask = xchg(&dirty_bitmap[i], 0);
1123 		dirty_bitmap_buffer[i] = mask;
1124 
1125 		if (mask) {
1126 			offset = i * BITS_PER_LONG;
1127 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1128 								offset, mask);
1129 		}
1130 	}
1131 
1132 	spin_unlock(&kvm->mmu_lock);
1133 
1134 	r = -EFAULT;
1135 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1136 		goto out;
1137 
1138 	r = 0;
1139 out:
1140 	return r;
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1143 #endif
1144 
1145 bool kvm_largepages_enabled(void)
1146 {
1147 	return largepages_enabled;
1148 }
1149 
1150 void kvm_disable_largepages(void)
1151 {
1152 	largepages_enabled = false;
1153 }
1154 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1155 
1156 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1157 {
1158 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1159 }
1160 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1161 
1162 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1163 {
1164 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1165 }
1166 
1167 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1168 {
1169 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1170 
1171 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1172 	      memslot->flags & KVM_MEMSLOT_INVALID)
1173 		return 0;
1174 
1175 	return 1;
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1178 
1179 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1180 {
1181 	struct vm_area_struct *vma;
1182 	unsigned long addr, size;
1183 
1184 	size = PAGE_SIZE;
1185 
1186 	addr = gfn_to_hva(kvm, gfn);
1187 	if (kvm_is_error_hva(addr))
1188 		return PAGE_SIZE;
1189 
1190 	down_read(&current->mm->mmap_sem);
1191 	vma = find_vma(current->mm, addr);
1192 	if (!vma)
1193 		goto out;
1194 
1195 	size = vma_kernel_pagesize(vma);
1196 
1197 out:
1198 	up_read(&current->mm->mmap_sem);
1199 
1200 	return size;
1201 }
1202 
1203 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1204 {
1205 	return slot->flags & KVM_MEM_READONLY;
1206 }
1207 
1208 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1209 				       gfn_t *nr_pages, bool write)
1210 {
1211 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1212 		return KVM_HVA_ERR_BAD;
1213 
1214 	if (memslot_is_readonly(slot) && write)
1215 		return KVM_HVA_ERR_RO_BAD;
1216 
1217 	if (nr_pages)
1218 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1219 
1220 	return __gfn_to_hva_memslot(slot, gfn);
1221 }
1222 
1223 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1224 				     gfn_t *nr_pages)
1225 {
1226 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1227 }
1228 
1229 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1230 					gfn_t gfn)
1231 {
1232 	return gfn_to_hva_many(slot, gfn, NULL);
1233 }
1234 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1235 
1236 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1237 {
1238 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1239 }
1240 EXPORT_SYMBOL_GPL(gfn_to_hva);
1241 
1242 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1243 {
1244 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1247 
1248 /*
1249  * If writable is set to false, the hva returned by this function is only
1250  * allowed to be read.
1251  */
1252 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1253 				      gfn_t gfn, bool *writable)
1254 {
1255 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1256 
1257 	if (!kvm_is_error_hva(hva) && writable)
1258 		*writable = !memslot_is_readonly(slot);
1259 
1260 	return hva;
1261 }
1262 
1263 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1264 {
1265 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1266 
1267 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1268 }
1269 
1270 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1271 {
1272 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1273 
1274 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1275 }
1276 
1277 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1278 	unsigned long start, int write, struct page **page)
1279 {
1280 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1281 
1282 	if (write)
1283 		flags |= FOLL_WRITE;
1284 
1285 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1286 }
1287 
1288 static inline int check_user_page_hwpoison(unsigned long addr)
1289 {
1290 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1291 
1292 	rc = __get_user_pages(current, current->mm, addr, 1,
1293 			      flags, NULL, NULL, NULL);
1294 	return rc == -EHWPOISON;
1295 }
1296 
1297 /*
1298  * The atomic path to get the writable pfn which will be stored in @pfn,
1299  * true indicates success, otherwise false is returned.
1300  */
1301 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1302 			    bool write_fault, bool *writable, pfn_t *pfn)
1303 {
1304 	struct page *page[1];
1305 	int npages;
1306 
1307 	if (!(async || atomic))
1308 		return false;
1309 
1310 	/*
1311 	 * Fast pin a writable pfn only if it is a write fault request
1312 	 * or the caller allows to map a writable pfn for a read fault
1313 	 * request.
1314 	 */
1315 	if (!(write_fault || writable))
1316 		return false;
1317 
1318 	npages = __get_user_pages_fast(addr, 1, 1, page);
1319 	if (npages == 1) {
1320 		*pfn = page_to_pfn(page[0]);
1321 
1322 		if (writable)
1323 			*writable = true;
1324 		return true;
1325 	}
1326 
1327 	return false;
1328 }
1329 
1330 /*
1331  * The slow path to get the pfn of the specified host virtual address,
1332  * 1 indicates success, -errno is returned if error is detected.
1333  */
1334 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1335 			   bool *writable, pfn_t *pfn)
1336 {
1337 	struct page *page[1];
1338 	int npages = 0;
1339 
1340 	might_sleep();
1341 
1342 	if (writable)
1343 		*writable = write_fault;
1344 
1345 	if (async) {
1346 		down_read(&current->mm->mmap_sem);
1347 		npages = get_user_page_nowait(current, current->mm,
1348 					      addr, write_fault, page);
1349 		up_read(&current->mm->mmap_sem);
1350 	} else
1351 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1352 						   write_fault, 0, page,
1353 						   FOLL_TOUCH|FOLL_HWPOISON);
1354 	if (npages != 1)
1355 		return npages;
1356 
1357 	/* map read fault as writable if possible */
1358 	if (unlikely(!write_fault) && writable) {
1359 		struct page *wpage[1];
1360 
1361 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1362 		if (npages == 1) {
1363 			*writable = true;
1364 			put_page(page[0]);
1365 			page[0] = wpage[0];
1366 		}
1367 
1368 		npages = 1;
1369 	}
1370 	*pfn = page_to_pfn(page[0]);
1371 	return npages;
1372 }
1373 
1374 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1375 {
1376 	if (unlikely(!(vma->vm_flags & VM_READ)))
1377 		return false;
1378 
1379 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1380 		return false;
1381 
1382 	return true;
1383 }
1384 
1385 /*
1386  * Pin guest page in memory and return its pfn.
1387  * @addr: host virtual address which maps memory to the guest
1388  * @atomic: whether this function can sleep
1389  * @async: whether this function need to wait IO complete if the
1390  *         host page is not in the memory
1391  * @write_fault: whether we should get a writable host page
1392  * @writable: whether it allows to map a writable host page for !@write_fault
1393  *
1394  * The function will map a writable host page for these two cases:
1395  * 1): @write_fault = true
1396  * 2): @write_fault = false && @writable, @writable will tell the caller
1397  *     whether the mapping is writable.
1398  */
1399 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1400 			bool write_fault, bool *writable)
1401 {
1402 	struct vm_area_struct *vma;
1403 	pfn_t pfn = 0;
1404 	int npages;
1405 
1406 	/* we can do it either atomically or asynchronously, not both */
1407 	BUG_ON(atomic && async);
1408 
1409 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1410 		return pfn;
1411 
1412 	if (atomic)
1413 		return KVM_PFN_ERR_FAULT;
1414 
1415 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1416 	if (npages == 1)
1417 		return pfn;
1418 
1419 	down_read(&current->mm->mmap_sem);
1420 	if (npages == -EHWPOISON ||
1421 	      (!async && check_user_page_hwpoison(addr))) {
1422 		pfn = KVM_PFN_ERR_HWPOISON;
1423 		goto exit;
1424 	}
1425 
1426 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1427 
1428 	if (vma == NULL)
1429 		pfn = KVM_PFN_ERR_FAULT;
1430 	else if ((vma->vm_flags & VM_PFNMAP)) {
1431 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1432 			vma->vm_pgoff;
1433 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1434 	} else {
1435 		if (async && vma_is_valid(vma, write_fault))
1436 			*async = true;
1437 		pfn = KVM_PFN_ERR_FAULT;
1438 	}
1439 exit:
1440 	up_read(&current->mm->mmap_sem);
1441 	return pfn;
1442 }
1443 
1444 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1445 			   bool *async, bool write_fault, bool *writable)
1446 {
1447 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1448 
1449 	if (addr == KVM_HVA_ERR_RO_BAD)
1450 		return KVM_PFN_ERR_RO_FAULT;
1451 
1452 	if (kvm_is_error_hva(addr))
1453 		return KVM_PFN_NOSLOT;
1454 
1455 	/* Do not map writable pfn in the readonly memslot. */
1456 	if (writable && memslot_is_readonly(slot)) {
1457 		*writable = false;
1458 		writable = NULL;
1459 	}
1460 
1461 	return hva_to_pfn(addr, atomic, async, write_fault,
1462 			  writable);
1463 }
1464 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1465 
1466 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1467 		      bool *writable)
1468 {
1469 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1470 				    write_fault, writable);
1471 }
1472 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1473 
1474 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1475 {
1476 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1479 
1480 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1481 {
1482 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1483 }
1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1485 
1486 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1487 {
1488 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1489 }
1490 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1491 
1492 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1493 {
1494 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1497 
1498 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1499 {
1500 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1501 }
1502 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1503 
1504 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1505 {
1506 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1509 
1510 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1511 			    struct page **pages, int nr_pages)
1512 {
1513 	unsigned long addr;
1514 	gfn_t entry;
1515 
1516 	addr = gfn_to_hva_many(slot, gfn, &entry);
1517 	if (kvm_is_error_hva(addr))
1518 		return -1;
1519 
1520 	if (entry < nr_pages)
1521 		return 0;
1522 
1523 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1524 }
1525 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1526 
1527 static struct page *kvm_pfn_to_page(pfn_t pfn)
1528 {
1529 	if (is_error_noslot_pfn(pfn))
1530 		return KVM_ERR_PTR_BAD_PAGE;
1531 
1532 	if (kvm_is_reserved_pfn(pfn)) {
1533 		WARN_ON(1);
1534 		return KVM_ERR_PTR_BAD_PAGE;
1535 	}
1536 
1537 	return pfn_to_page(pfn);
1538 }
1539 
1540 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1541 {
1542 	pfn_t pfn;
1543 
1544 	pfn = gfn_to_pfn(kvm, gfn);
1545 
1546 	return kvm_pfn_to_page(pfn);
1547 }
1548 EXPORT_SYMBOL_GPL(gfn_to_page);
1549 
1550 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1551 {
1552 	pfn_t pfn;
1553 
1554 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1555 
1556 	return kvm_pfn_to_page(pfn);
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1559 
1560 void kvm_release_page_clean(struct page *page)
1561 {
1562 	WARN_ON(is_error_page(page));
1563 
1564 	kvm_release_pfn_clean(page_to_pfn(page));
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1567 
1568 void kvm_release_pfn_clean(pfn_t pfn)
1569 {
1570 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1571 		put_page(pfn_to_page(pfn));
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1574 
1575 void kvm_release_page_dirty(struct page *page)
1576 {
1577 	WARN_ON(is_error_page(page));
1578 
1579 	kvm_release_pfn_dirty(page_to_pfn(page));
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1582 
1583 static void kvm_release_pfn_dirty(pfn_t pfn)
1584 {
1585 	kvm_set_pfn_dirty(pfn);
1586 	kvm_release_pfn_clean(pfn);
1587 }
1588 
1589 void kvm_set_pfn_dirty(pfn_t pfn)
1590 {
1591 	if (!kvm_is_reserved_pfn(pfn)) {
1592 		struct page *page = pfn_to_page(pfn);
1593 
1594 		if (!PageReserved(page))
1595 			SetPageDirty(page);
1596 	}
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1599 
1600 void kvm_set_pfn_accessed(pfn_t pfn)
1601 {
1602 	if (!kvm_is_reserved_pfn(pfn))
1603 		mark_page_accessed(pfn_to_page(pfn));
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1606 
1607 void kvm_get_pfn(pfn_t pfn)
1608 {
1609 	if (!kvm_is_reserved_pfn(pfn))
1610 		get_page(pfn_to_page(pfn));
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1613 
1614 static int next_segment(unsigned long len, int offset)
1615 {
1616 	if (len > PAGE_SIZE - offset)
1617 		return PAGE_SIZE - offset;
1618 	else
1619 		return len;
1620 }
1621 
1622 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1623 				 void *data, int offset, int len)
1624 {
1625 	int r;
1626 	unsigned long addr;
1627 
1628 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1629 	if (kvm_is_error_hva(addr))
1630 		return -EFAULT;
1631 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1632 	if (r)
1633 		return -EFAULT;
1634 	return 0;
1635 }
1636 
1637 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1638 			int len)
1639 {
1640 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1641 
1642 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1645 
1646 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1647 			     int offset, int len)
1648 {
1649 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1650 
1651 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1652 }
1653 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1654 
1655 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1656 {
1657 	gfn_t gfn = gpa >> PAGE_SHIFT;
1658 	int seg;
1659 	int offset = offset_in_page(gpa);
1660 	int ret;
1661 
1662 	while ((seg = next_segment(len, offset)) != 0) {
1663 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1664 		if (ret < 0)
1665 			return ret;
1666 		offset = 0;
1667 		len -= seg;
1668 		data += seg;
1669 		++gfn;
1670 	}
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(kvm_read_guest);
1674 
1675 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1676 {
1677 	gfn_t gfn = gpa >> PAGE_SHIFT;
1678 	int seg;
1679 	int offset = offset_in_page(gpa);
1680 	int ret;
1681 
1682 	while ((seg = next_segment(len, offset)) != 0) {
1683 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1684 		if (ret < 0)
1685 			return ret;
1686 		offset = 0;
1687 		len -= seg;
1688 		data += seg;
1689 		++gfn;
1690 	}
1691 	return 0;
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1694 
1695 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1696 			           void *data, int offset, unsigned long len)
1697 {
1698 	int r;
1699 	unsigned long addr;
1700 
1701 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1702 	if (kvm_is_error_hva(addr))
1703 		return -EFAULT;
1704 	pagefault_disable();
1705 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1706 	pagefault_enable();
1707 	if (r)
1708 		return -EFAULT;
1709 	return 0;
1710 }
1711 
1712 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1713 			  unsigned long len)
1714 {
1715 	gfn_t gfn = gpa >> PAGE_SHIFT;
1716 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1717 	int offset = offset_in_page(gpa);
1718 
1719 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1722 
1723 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1724 			       void *data, unsigned long len)
1725 {
1726 	gfn_t gfn = gpa >> PAGE_SHIFT;
1727 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1728 	int offset = offset_in_page(gpa);
1729 
1730 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1733 
1734 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1735 			          const void *data, int offset, int len)
1736 {
1737 	int r;
1738 	unsigned long addr;
1739 
1740 	addr = gfn_to_hva_memslot(memslot, gfn);
1741 	if (kvm_is_error_hva(addr))
1742 		return -EFAULT;
1743 	r = __copy_to_user((void __user *)addr + offset, data, len);
1744 	if (r)
1745 		return -EFAULT;
1746 	mark_page_dirty_in_slot(memslot, gfn);
1747 	return 0;
1748 }
1749 
1750 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1751 			 const void *data, int offset, int len)
1752 {
1753 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1754 
1755 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1758 
1759 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1760 			      const void *data, int offset, int len)
1761 {
1762 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1763 
1764 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1767 
1768 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1769 		    unsigned long len)
1770 {
1771 	gfn_t gfn = gpa >> PAGE_SHIFT;
1772 	int seg;
1773 	int offset = offset_in_page(gpa);
1774 	int ret;
1775 
1776 	while ((seg = next_segment(len, offset)) != 0) {
1777 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1778 		if (ret < 0)
1779 			return ret;
1780 		offset = 0;
1781 		len -= seg;
1782 		data += seg;
1783 		++gfn;
1784 	}
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_write_guest);
1788 
1789 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1790 		         unsigned long len)
1791 {
1792 	gfn_t gfn = gpa >> PAGE_SHIFT;
1793 	int seg;
1794 	int offset = offset_in_page(gpa);
1795 	int ret;
1796 
1797 	while ((seg = next_segment(len, offset)) != 0) {
1798 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1799 		if (ret < 0)
1800 			return ret;
1801 		offset = 0;
1802 		len -= seg;
1803 		data += seg;
1804 		++gfn;
1805 	}
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1809 
1810 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1811 			      gpa_t gpa, unsigned long len)
1812 {
1813 	struct kvm_memslots *slots = kvm_memslots(kvm);
1814 	int offset = offset_in_page(gpa);
1815 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1816 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1817 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1818 	gfn_t nr_pages_avail;
1819 
1820 	ghc->gpa = gpa;
1821 	ghc->generation = slots->generation;
1822 	ghc->len = len;
1823 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1824 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1825 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1826 		ghc->hva += offset;
1827 	} else {
1828 		/*
1829 		 * If the requested region crosses two memslots, we still
1830 		 * verify that the entire region is valid here.
1831 		 */
1832 		while (start_gfn <= end_gfn) {
1833 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1834 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1835 						   &nr_pages_avail);
1836 			if (kvm_is_error_hva(ghc->hva))
1837 				return -EFAULT;
1838 			start_gfn += nr_pages_avail;
1839 		}
1840 		/* Use the slow path for cross page reads and writes. */
1841 		ghc->memslot = NULL;
1842 	}
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1846 
1847 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1848 			   void *data, unsigned long len)
1849 {
1850 	struct kvm_memslots *slots = kvm_memslots(kvm);
1851 	int r;
1852 
1853 	BUG_ON(len > ghc->len);
1854 
1855 	if (slots->generation != ghc->generation)
1856 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1857 
1858 	if (unlikely(!ghc->memslot))
1859 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1860 
1861 	if (kvm_is_error_hva(ghc->hva))
1862 		return -EFAULT;
1863 
1864 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1865 	if (r)
1866 		return -EFAULT;
1867 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1868 
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1872 
1873 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1874 			   void *data, unsigned long len)
1875 {
1876 	struct kvm_memslots *slots = kvm_memslots(kvm);
1877 	int r;
1878 
1879 	BUG_ON(len > ghc->len);
1880 
1881 	if (slots->generation != ghc->generation)
1882 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1883 
1884 	if (unlikely(!ghc->memslot))
1885 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1886 
1887 	if (kvm_is_error_hva(ghc->hva))
1888 		return -EFAULT;
1889 
1890 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1891 	if (r)
1892 		return -EFAULT;
1893 
1894 	return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1897 
1898 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1899 {
1900 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1901 
1902 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1905 
1906 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1907 {
1908 	gfn_t gfn = gpa >> PAGE_SHIFT;
1909 	int seg;
1910 	int offset = offset_in_page(gpa);
1911 	int ret;
1912 
1913 	while ((seg = next_segment(len, offset)) != 0) {
1914 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1915 		if (ret < 0)
1916 			return ret;
1917 		offset = 0;
1918 		len -= seg;
1919 		++gfn;
1920 	}
1921 	return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1924 
1925 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1926 				    gfn_t gfn)
1927 {
1928 	if (memslot && memslot->dirty_bitmap) {
1929 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1930 
1931 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1932 	}
1933 }
1934 
1935 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1936 {
1937 	struct kvm_memory_slot *memslot;
1938 
1939 	memslot = gfn_to_memslot(kvm, gfn);
1940 	mark_page_dirty_in_slot(memslot, gfn);
1941 }
1942 EXPORT_SYMBOL_GPL(mark_page_dirty);
1943 
1944 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1945 {
1946 	struct kvm_memory_slot *memslot;
1947 
1948 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1949 	mark_page_dirty_in_slot(memslot, gfn);
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1952 
1953 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1954 {
1955 	int old, val;
1956 
1957 	old = val = vcpu->halt_poll_ns;
1958 	/* 10us base */
1959 	if (val == 0 && halt_poll_ns_grow)
1960 		val = 10000;
1961 	else
1962 		val *= halt_poll_ns_grow;
1963 
1964 	vcpu->halt_poll_ns = val;
1965 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1966 }
1967 
1968 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1969 {
1970 	int old, val;
1971 
1972 	old = val = vcpu->halt_poll_ns;
1973 	if (halt_poll_ns_shrink == 0)
1974 		val = 0;
1975 	else
1976 		val /= halt_poll_ns_shrink;
1977 
1978 	vcpu->halt_poll_ns = val;
1979 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1980 }
1981 
1982 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1983 {
1984 	if (kvm_arch_vcpu_runnable(vcpu)) {
1985 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1986 		return -EINTR;
1987 	}
1988 	if (kvm_cpu_has_pending_timer(vcpu))
1989 		return -EINTR;
1990 	if (signal_pending(current))
1991 		return -EINTR;
1992 
1993 	return 0;
1994 }
1995 
1996 /*
1997  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1998  */
1999 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2000 {
2001 	ktime_t start, cur;
2002 	DEFINE_WAIT(wait);
2003 	bool waited = false;
2004 	u64 block_ns;
2005 
2006 	start = cur = ktime_get();
2007 	if (vcpu->halt_poll_ns) {
2008 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2009 
2010 		++vcpu->stat.halt_attempted_poll;
2011 		do {
2012 			/*
2013 			 * This sets KVM_REQ_UNHALT if an interrupt
2014 			 * arrives.
2015 			 */
2016 			if (kvm_vcpu_check_block(vcpu) < 0) {
2017 				++vcpu->stat.halt_successful_poll;
2018 				goto out;
2019 			}
2020 			cur = ktime_get();
2021 		} while (single_task_running() && ktime_before(cur, stop));
2022 	}
2023 
2024 	kvm_arch_vcpu_blocking(vcpu);
2025 
2026 	for (;;) {
2027 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2028 
2029 		if (kvm_vcpu_check_block(vcpu) < 0)
2030 			break;
2031 
2032 		waited = true;
2033 		schedule();
2034 	}
2035 
2036 	finish_wait(&vcpu->wq, &wait);
2037 	cur = ktime_get();
2038 
2039 	kvm_arch_vcpu_unblocking(vcpu);
2040 out:
2041 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2042 
2043 	if (halt_poll_ns) {
2044 		if (block_ns <= vcpu->halt_poll_ns)
2045 			;
2046 		/* we had a long block, shrink polling */
2047 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2048 			shrink_halt_poll_ns(vcpu);
2049 		/* we had a short halt and our poll time is too small */
2050 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2051 			block_ns < halt_poll_ns)
2052 			grow_halt_poll_ns(vcpu);
2053 	} else
2054 		vcpu->halt_poll_ns = 0;
2055 
2056 	trace_kvm_vcpu_wakeup(block_ns, waited);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2059 
2060 #ifndef CONFIG_S390
2061 /*
2062  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2063  */
2064 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2065 {
2066 	int me;
2067 	int cpu = vcpu->cpu;
2068 	wait_queue_head_t *wqp;
2069 
2070 	wqp = kvm_arch_vcpu_wq(vcpu);
2071 	if (waitqueue_active(wqp)) {
2072 		wake_up_interruptible(wqp);
2073 		++vcpu->stat.halt_wakeup;
2074 	}
2075 
2076 	me = get_cpu();
2077 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2078 		if (kvm_arch_vcpu_should_kick(vcpu))
2079 			smp_send_reschedule(cpu);
2080 	put_cpu();
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2083 #endif /* !CONFIG_S390 */
2084 
2085 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2086 {
2087 	struct pid *pid;
2088 	struct task_struct *task = NULL;
2089 	int ret = 0;
2090 
2091 	rcu_read_lock();
2092 	pid = rcu_dereference(target->pid);
2093 	if (pid)
2094 		task = get_pid_task(pid, PIDTYPE_PID);
2095 	rcu_read_unlock();
2096 	if (!task)
2097 		return ret;
2098 	ret = yield_to(task, 1);
2099 	put_task_struct(task);
2100 
2101 	return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2104 
2105 /*
2106  * Helper that checks whether a VCPU is eligible for directed yield.
2107  * Most eligible candidate to yield is decided by following heuristics:
2108  *
2109  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2110  *  (preempted lock holder), indicated by @in_spin_loop.
2111  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2112  *
2113  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2114  *  chance last time (mostly it has become eligible now since we have probably
2115  *  yielded to lockholder in last iteration. This is done by toggling
2116  *  @dy_eligible each time a VCPU checked for eligibility.)
2117  *
2118  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2119  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2120  *  burning. Giving priority for a potential lock-holder increases lock
2121  *  progress.
2122  *
2123  *  Since algorithm is based on heuristics, accessing another VCPU data without
2124  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2125  *  and continue with next VCPU and so on.
2126  */
2127 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2128 {
2129 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2130 	bool eligible;
2131 
2132 	eligible = !vcpu->spin_loop.in_spin_loop ||
2133 		    vcpu->spin_loop.dy_eligible;
2134 
2135 	if (vcpu->spin_loop.in_spin_loop)
2136 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2137 
2138 	return eligible;
2139 #else
2140 	return true;
2141 #endif
2142 }
2143 
2144 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2145 {
2146 	struct kvm *kvm = me->kvm;
2147 	struct kvm_vcpu *vcpu;
2148 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2149 	int yielded = 0;
2150 	int try = 3;
2151 	int pass;
2152 	int i;
2153 
2154 	kvm_vcpu_set_in_spin_loop(me, true);
2155 	/*
2156 	 * We boost the priority of a VCPU that is runnable but not
2157 	 * currently running, because it got preempted by something
2158 	 * else and called schedule in __vcpu_run.  Hopefully that
2159 	 * VCPU is holding the lock that we need and will release it.
2160 	 * We approximate round-robin by starting at the last boosted VCPU.
2161 	 */
2162 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2163 		kvm_for_each_vcpu(i, vcpu, kvm) {
2164 			if (!pass && i <= last_boosted_vcpu) {
2165 				i = last_boosted_vcpu;
2166 				continue;
2167 			} else if (pass && i > last_boosted_vcpu)
2168 				break;
2169 			if (!ACCESS_ONCE(vcpu->preempted))
2170 				continue;
2171 			if (vcpu == me)
2172 				continue;
2173 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2174 				continue;
2175 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2176 				continue;
2177 
2178 			yielded = kvm_vcpu_yield_to(vcpu);
2179 			if (yielded > 0) {
2180 				kvm->last_boosted_vcpu = i;
2181 				break;
2182 			} else if (yielded < 0) {
2183 				try--;
2184 				if (!try)
2185 					break;
2186 			}
2187 		}
2188 	}
2189 	kvm_vcpu_set_in_spin_loop(me, false);
2190 
2191 	/* Ensure vcpu is not eligible during next spinloop */
2192 	kvm_vcpu_set_dy_eligible(me, false);
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2195 
2196 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2197 {
2198 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2199 	struct page *page;
2200 
2201 	if (vmf->pgoff == 0)
2202 		page = virt_to_page(vcpu->run);
2203 #ifdef CONFIG_X86
2204 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2205 		page = virt_to_page(vcpu->arch.pio_data);
2206 #endif
2207 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2208 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2209 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2210 #endif
2211 	else
2212 		return kvm_arch_vcpu_fault(vcpu, vmf);
2213 	get_page(page);
2214 	vmf->page = page;
2215 	return 0;
2216 }
2217 
2218 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2219 	.fault = kvm_vcpu_fault,
2220 };
2221 
2222 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2223 {
2224 	vma->vm_ops = &kvm_vcpu_vm_ops;
2225 	return 0;
2226 }
2227 
2228 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2229 {
2230 	struct kvm_vcpu *vcpu = filp->private_data;
2231 
2232 	kvm_put_kvm(vcpu->kvm);
2233 	return 0;
2234 }
2235 
2236 static struct file_operations kvm_vcpu_fops = {
2237 	.release        = kvm_vcpu_release,
2238 	.unlocked_ioctl = kvm_vcpu_ioctl,
2239 #ifdef CONFIG_KVM_COMPAT
2240 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2241 #endif
2242 	.mmap           = kvm_vcpu_mmap,
2243 	.llseek		= noop_llseek,
2244 };
2245 
2246 /*
2247  * Allocates an inode for the vcpu.
2248  */
2249 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2250 {
2251 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2252 }
2253 
2254 /*
2255  * Creates some virtual cpus.  Good luck creating more than one.
2256  */
2257 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2258 {
2259 	int r;
2260 	struct kvm_vcpu *vcpu, *v;
2261 
2262 	if (id >= KVM_MAX_VCPUS)
2263 		return -EINVAL;
2264 
2265 	vcpu = kvm_arch_vcpu_create(kvm, id);
2266 	if (IS_ERR(vcpu))
2267 		return PTR_ERR(vcpu);
2268 
2269 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2270 
2271 	r = kvm_arch_vcpu_setup(vcpu);
2272 	if (r)
2273 		goto vcpu_destroy;
2274 
2275 	mutex_lock(&kvm->lock);
2276 	if (!kvm_vcpu_compatible(vcpu)) {
2277 		r = -EINVAL;
2278 		goto unlock_vcpu_destroy;
2279 	}
2280 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2281 		r = -EINVAL;
2282 		goto unlock_vcpu_destroy;
2283 	}
2284 
2285 	kvm_for_each_vcpu(r, v, kvm)
2286 		if (v->vcpu_id == id) {
2287 			r = -EEXIST;
2288 			goto unlock_vcpu_destroy;
2289 		}
2290 
2291 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2292 
2293 	/* Now it's all set up, let userspace reach it */
2294 	kvm_get_kvm(kvm);
2295 	r = create_vcpu_fd(vcpu);
2296 	if (r < 0) {
2297 		kvm_put_kvm(kvm);
2298 		goto unlock_vcpu_destroy;
2299 	}
2300 
2301 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2302 
2303 	/*
2304 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2305 	 * before kvm->online_vcpu's incremented value.
2306 	 */
2307 	smp_wmb();
2308 	atomic_inc(&kvm->online_vcpus);
2309 
2310 	mutex_unlock(&kvm->lock);
2311 	kvm_arch_vcpu_postcreate(vcpu);
2312 	return r;
2313 
2314 unlock_vcpu_destroy:
2315 	mutex_unlock(&kvm->lock);
2316 vcpu_destroy:
2317 	kvm_arch_vcpu_destroy(vcpu);
2318 	return r;
2319 }
2320 
2321 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2322 {
2323 	if (sigset) {
2324 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2325 		vcpu->sigset_active = 1;
2326 		vcpu->sigset = *sigset;
2327 	} else
2328 		vcpu->sigset_active = 0;
2329 	return 0;
2330 }
2331 
2332 static long kvm_vcpu_ioctl(struct file *filp,
2333 			   unsigned int ioctl, unsigned long arg)
2334 {
2335 	struct kvm_vcpu *vcpu = filp->private_data;
2336 	void __user *argp = (void __user *)arg;
2337 	int r;
2338 	struct kvm_fpu *fpu = NULL;
2339 	struct kvm_sregs *kvm_sregs = NULL;
2340 
2341 	if (vcpu->kvm->mm != current->mm)
2342 		return -EIO;
2343 
2344 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2345 		return -EINVAL;
2346 
2347 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2348 	/*
2349 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2350 	 * so vcpu_load() would break it.
2351 	 */
2352 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2353 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2354 #endif
2355 
2356 
2357 	r = vcpu_load(vcpu);
2358 	if (r)
2359 		return r;
2360 	switch (ioctl) {
2361 	case KVM_RUN:
2362 		r = -EINVAL;
2363 		if (arg)
2364 			goto out;
2365 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2366 			/* The thread running this VCPU changed. */
2367 			struct pid *oldpid = vcpu->pid;
2368 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2369 
2370 			rcu_assign_pointer(vcpu->pid, newpid);
2371 			if (oldpid)
2372 				synchronize_rcu();
2373 			put_pid(oldpid);
2374 		}
2375 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2376 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2377 		break;
2378 	case KVM_GET_REGS: {
2379 		struct kvm_regs *kvm_regs;
2380 
2381 		r = -ENOMEM;
2382 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2383 		if (!kvm_regs)
2384 			goto out;
2385 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2386 		if (r)
2387 			goto out_free1;
2388 		r = -EFAULT;
2389 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2390 			goto out_free1;
2391 		r = 0;
2392 out_free1:
2393 		kfree(kvm_regs);
2394 		break;
2395 	}
2396 	case KVM_SET_REGS: {
2397 		struct kvm_regs *kvm_regs;
2398 
2399 		r = -ENOMEM;
2400 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2401 		if (IS_ERR(kvm_regs)) {
2402 			r = PTR_ERR(kvm_regs);
2403 			goto out;
2404 		}
2405 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2406 		kfree(kvm_regs);
2407 		break;
2408 	}
2409 	case KVM_GET_SREGS: {
2410 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2411 		r = -ENOMEM;
2412 		if (!kvm_sregs)
2413 			goto out;
2414 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2415 		if (r)
2416 			goto out;
2417 		r = -EFAULT;
2418 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2419 			goto out;
2420 		r = 0;
2421 		break;
2422 	}
2423 	case KVM_SET_SREGS: {
2424 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2425 		if (IS_ERR(kvm_sregs)) {
2426 			r = PTR_ERR(kvm_sregs);
2427 			kvm_sregs = NULL;
2428 			goto out;
2429 		}
2430 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2431 		break;
2432 	}
2433 	case KVM_GET_MP_STATE: {
2434 		struct kvm_mp_state mp_state;
2435 
2436 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2437 		if (r)
2438 			goto out;
2439 		r = -EFAULT;
2440 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2441 			goto out;
2442 		r = 0;
2443 		break;
2444 	}
2445 	case KVM_SET_MP_STATE: {
2446 		struct kvm_mp_state mp_state;
2447 
2448 		r = -EFAULT;
2449 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2450 			goto out;
2451 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2452 		break;
2453 	}
2454 	case KVM_TRANSLATE: {
2455 		struct kvm_translation tr;
2456 
2457 		r = -EFAULT;
2458 		if (copy_from_user(&tr, argp, sizeof(tr)))
2459 			goto out;
2460 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2461 		if (r)
2462 			goto out;
2463 		r = -EFAULT;
2464 		if (copy_to_user(argp, &tr, sizeof(tr)))
2465 			goto out;
2466 		r = 0;
2467 		break;
2468 	}
2469 	case KVM_SET_GUEST_DEBUG: {
2470 		struct kvm_guest_debug dbg;
2471 
2472 		r = -EFAULT;
2473 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2474 			goto out;
2475 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2476 		break;
2477 	}
2478 	case KVM_SET_SIGNAL_MASK: {
2479 		struct kvm_signal_mask __user *sigmask_arg = argp;
2480 		struct kvm_signal_mask kvm_sigmask;
2481 		sigset_t sigset, *p;
2482 
2483 		p = NULL;
2484 		if (argp) {
2485 			r = -EFAULT;
2486 			if (copy_from_user(&kvm_sigmask, argp,
2487 					   sizeof(kvm_sigmask)))
2488 				goto out;
2489 			r = -EINVAL;
2490 			if (kvm_sigmask.len != sizeof(sigset))
2491 				goto out;
2492 			r = -EFAULT;
2493 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2494 					   sizeof(sigset)))
2495 				goto out;
2496 			p = &sigset;
2497 		}
2498 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2499 		break;
2500 	}
2501 	case KVM_GET_FPU: {
2502 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2503 		r = -ENOMEM;
2504 		if (!fpu)
2505 			goto out;
2506 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2507 		if (r)
2508 			goto out;
2509 		r = -EFAULT;
2510 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2511 			goto out;
2512 		r = 0;
2513 		break;
2514 	}
2515 	case KVM_SET_FPU: {
2516 		fpu = memdup_user(argp, sizeof(*fpu));
2517 		if (IS_ERR(fpu)) {
2518 			r = PTR_ERR(fpu);
2519 			fpu = NULL;
2520 			goto out;
2521 		}
2522 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2523 		break;
2524 	}
2525 	default:
2526 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2527 	}
2528 out:
2529 	vcpu_put(vcpu);
2530 	kfree(fpu);
2531 	kfree(kvm_sregs);
2532 	return r;
2533 }
2534 
2535 #ifdef CONFIG_KVM_COMPAT
2536 static long kvm_vcpu_compat_ioctl(struct file *filp,
2537 				  unsigned int ioctl, unsigned long arg)
2538 {
2539 	struct kvm_vcpu *vcpu = filp->private_data;
2540 	void __user *argp = compat_ptr(arg);
2541 	int r;
2542 
2543 	if (vcpu->kvm->mm != current->mm)
2544 		return -EIO;
2545 
2546 	switch (ioctl) {
2547 	case KVM_SET_SIGNAL_MASK: {
2548 		struct kvm_signal_mask __user *sigmask_arg = argp;
2549 		struct kvm_signal_mask kvm_sigmask;
2550 		compat_sigset_t csigset;
2551 		sigset_t sigset;
2552 
2553 		if (argp) {
2554 			r = -EFAULT;
2555 			if (copy_from_user(&kvm_sigmask, argp,
2556 					   sizeof(kvm_sigmask)))
2557 				goto out;
2558 			r = -EINVAL;
2559 			if (kvm_sigmask.len != sizeof(csigset))
2560 				goto out;
2561 			r = -EFAULT;
2562 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2563 					   sizeof(csigset)))
2564 				goto out;
2565 			sigset_from_compat(&sigset, &csigset);
2566 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2567 		} else
2568 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2569 		break;
2570 	}
2571 	default:
2572 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2573 	}
2574 
2575 out:
2576 	return r;
2577 }
2578 #endif
2579 
2580 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2581 				 int (*accessor)(struct kvm_device *dev,
2582 						 struct kvm_device_attr *attr),
2583 				 unsigned long arg)
2584 {
2585 	struct kvm_device_attr attr;
2586 
2587 	if (!accessor)
2588 		return -EPERM;
2589 
2590 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2591 		return -EFAULT;
2592 
2593 	return accessor(dev, &attr);
2594 }
2595 
2596 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2597 			     unsigned long arg)
2598 {
2599 	struct kvm_device *dev = filp->private_data;
2600 
2601 	switch (ioctl) {
2602 	case KVM_SET_DEVICE_ATTR:
2603 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2604 	case KVM_GET_DEVICE_ATTR:
2605 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2606 	case KVM_HAS_DEVICE_ATTR:
2607 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2608 	default:
2609 		if (dev->ops->ioctl)
2610 			return dev->ops->ioctl(dev, ioctl, arg);
2611 
2612 		return -ENOTTY;
2613 	}
2614 }
2615 
2616 static int kvm_device_release(struct inode *inode, struct file *filp)
2617 {
2618 	struct kvm_device *dev = filp->private_data;
2619 	struct kvm *kvm = dev->kvm;
2620 
2621 	kvm_put_kvm(kvm);
2622 	return 0;
2623 }
2624 
2625 static const struct file_operations kvm_device_fops = {
2626 	.unlocked_ioctl = kvm_device_ioctl,
2627 #ifdef CONFIG_KVM_COMPAT
2628 	.compat_ioctl = kvm_device_ioctl,
2629 #endif
2630 	.release = kvm_device_release,
2631 };
2632 
2633 struct kvm_device *kvm_device_from_filp(struct file *filp)
2634 {
2635 	if (filp->f_op != &kvm_device_fops)
2636 		return NULL;
2637 
2638 	return filp->private_data;
2639 }
2640 
2641 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2642 #ifdef CONFIG_KVM_MPIC
2643 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2644 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2645 #endif
2646 
2647 #ifdef CONFIG_KVM_XICS
2648 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2649 #endif
2650 };
2651 
2652 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2653 {
2654 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2655 		return -ENOSPC;
2656 
2657 	if (kvm_device_ops_table[type] != NULL)
2658 		return -EEXIST;
2659 
2660 	kvm_device_ops_table[type] = ops;
2661 	return 0;
2662 }
2663 
2664 void kvm_unregister_device_ops(u32 type)
2665 {
2666 	if (kvm_device_ops_table[type] != NULL)
2667 		kvm_device_ops_table[type] = NULL;
2668 }
2669 
2670 static int kvm_ioctl_create_device(struct kvm *kvm,
2671 				   struct kvm_create_device *cd)
2672 {
2673 	struct kvm_device_ops *ops = NULL;
2674 	struct kvm_device *dev;
2675 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2676 	int ret;
2677 
2678 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2679 		return -ENODEV;
2680 
2681 	ops = kvm_device_ops_table[cd->type];
2682 	if (ops == NULL)
2683 		return -ENODEV;
2684 
2685 	if (test)
2686 		return 0;
2687 
2688 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2689 	if (!dev)
2690 		return -ENOMEM;
2691 
2692 	dev->ops = ops;
2693 	dev->kvm = kvm;
2694 
2695 	ret = ops->create(dev, cd->type);
2696 	if (ret < 0) {
2697 		kfree(dev);
2698 		return ret;
2699 	}
2700 
2701 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2702 	if (ret < 0) {
2703 		ops->destroy(dev);
2704 		return ret;
2705 	}
2706 
2707 	list_add(&dev->vm_node, &kvm->devices);
2708 	kvm_get_kvm(kvm);
2709 	cd->fd = ret;
2710 	return 0;
2711 }
2712 
2713 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2714 {
2715 	switch (arg) {
2716 	case KVM_CAP_USER_MEMORY:
2717 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2718 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2719 	case KVM_CAP_INTERNAL_ERROR_DATA:
2720 #ifdef CONFIG_HAVE_KVM_MSI
2721 	case KVM_CAP_SIGNAL_MSI:
2722 #endif
2723 #ifdef CONFIG_HAVE_KVM_IRQFD
2724 	case KVM_CAP_IRQFD:
2725 	case KVM_CAP_IRQFD_RESAMPLE:
2726 #endif
2727 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2728 	case KVM_CAP_CHECK_EXTENSION_VM:
2729 		return 1;
2730 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2731 	case KVM_CAP_IRQ_ROUTING:
2732 		return KVM_MAX_IRQ_ROUTES;
2733 #endif
2734 #if KVM_ADDRESS_SPACE_NUM > 1
2735 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2736 		return KVM_ADDRESS_SPACE_NUM;
2737 #endif
2738 	default:
2739 		break;
2740 	}
2741 	return kvm_vm_ioctl_check_extension(kvm, arg);
2742 }
2743 
2744 static long kvm_vm_ioctl(struct file *filp,
2745 			   unsigned int ioctl, unsigned long arg)
2746 {
2747 	struct kvm *kvm = filp->private_data;
2748 	void __user *argp = (void __user *)arg;
2749 	int r;
2750 
2751 	if (kvm->mm != current->mm)
2752 		return -EIO;
2753 	switch (ioctl) {
2754 	case KVM_CREATE_VCPU:
2755 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2756 		break;
2757 	case KVM_SET_USER_MEMORY_REGION: {
2758 		struct kvm_userspace_memory_region kvm_userspace_mem;
2759 
2760 		r = -EFAULT;
2761 		if (copy_from_user(&kvm_userspace_mem, argp,
2762 						sizeof(kvm_userspace_mem)))
2763 			goto out;
2764 
2765 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2766 		break;
2767 	}
2768 	case KVM_GET_DIRTY_LOG: {
2769 		struct kvm_dirty_log log;
2770 
2771 		r = -EFAULT;
2772 		if (copy_from_user(&log, argp, sizeof(log)))
2773 			goto out;
2774 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2775 		break;
2776 	}
2777 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2778 	case KVM_REGISTER_COALESCED_MMIO: {
2779 		struct kvm_coalesced_mmio_zone zone;
2780 
2781 		r = -EFAULT;
2782 		if (copy_from_user(&zone, argp, sizeof(zone)))
2783 			goto out;
2784 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2785 		break;
2786 	}
2787 	case KVM_UNREGISTER_COALESCED_MMIO: {
2788 		struct kvm_coalesced_mmio_zone zone;
2789 
2790 		r = -EFAULT;
2791 		if (copy_from_user(&zone, argp, sizeof(zone)))
2792 			goto out;
2793 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2794 		break;
2795 	}
2796 #endif
2797 	case KVM_IRQFD: {
2798 		struct kvm_irqfd data;
2799 
2800 		r = -EFAULT;
2801 		if (copy_from_user(&data, argp, sizeof(data)))
2802 			goto out;
2803 		r = kvm_irqfd(kvm, &data);
2804 		break;
2805 	}
2806 	case KVM_IOEVENTFD: {
2807 		struct kvm_ioeventfd data;
2808 
2809 		r = -EFAULT;
2810 		if (copy_from_user(&data, argp, sizeof(data)))
2811 			goto out;
2812 		r = kvm_ioeventfd(kvm, &data);
2813 		break;
2814 	}
2815 #ifdef CONFIG_HAVE_KVM_MSI
2816 	case KVM_SIGNAL_MSI: {
2817 		struct kvm_msi msi;
2818 
2819 		r = -EFAULT;
2820 		if (copy_from_user(&msi, argp, sizeof(msi)))
2821 			goto out;
2822 		r = kvm_send_userspace_msi(kvm, &msi);
2823 		break;
2824 	}
2825 #endif
2826 #ifdef __KVM_HAVE_IRQ_LINE
2827 	case KVM_IRQ_LINE_STATUS:
2828 	case KVM_IRQ_LINE: {
2829 		struct kvm_irq_level irq_event;
2830 
2831 		r = -EFAULT;
2832 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2833 			goto out;
2834 
2835 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2836 					ioctl == KVM_IRQ_LINE_STATUS);
2837 		if (r)
2838 			goto out;
2839 
2840 		r = -EFAULT;
2841 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2842 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2843 				goto out;
2844 		}
2845 
2846 		r = 0;
2847 		break;
2848 	}
2849 #endif
2850 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2851 	case KVM_SET_GSI_ROUTING: {
2852 		struct kvm_irq_routing routing;
2853 		struct kvm_irq_routing __user *urouting;
2854 		struct kvm_irq_routing_entry *entries;
2855 
2856 		r = -EFAULT;
2857 		if (copy_from_user(&routing, argp, sizeof(routing)))
2858 			goto out;
2859 		r = -EINVAL;
2860 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2861 			goto out;
2862 		if (routing.flags)
2863 			goto out;
2864 		r = -ENOMEM;
2865 		entries = vmalloc(routing.nr * sizeof(*entries));
2866 		if (!entries)
2867 			goto out;
2868 		r = -EFAULT;
2869 		urouting = argp;
2870 		if (copy_from_user(entries, urouting->entries,
2871 				   routing.nr * sizeof(*entries)))
2872 			goto out_free_irq_routing;
2873 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2874 					routing.flags);
2875 out_free_irq_routing:
2876 		vfree(entries);
2877 		break;
2878 	}
2879 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2880 	case KVM_CREATE_DEVICE: {
2881 		struct kvm_create_device cd;
2882 
2883 		r = -EFAULT;
2884 		if (copy_from_user(&cd, argp, sizeof(cd)))
2885 			goto out;
2886 
2887 		r = kvm_ioctl_create_device(kvm, &cd);
2888 		if (r)
2889 			goto out;
2890 
2891 		r = -EFAULT;
2892 		if (copy_to_user(argp, &cd, sizeof(cd)))
2893 			goto out;
2894 
2895 		r = 0;
2896 		break;
2897 	}
2898 	case KVM_CHECK_EXTENSION:
2899 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2900 		break;
2901 	default:
2902 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2903 	}
2904 out:
2905 	return r;
2906 }
2907 
2908 #ifdef CONFIG_KVM_COMPAT
2909 struct compat_kvm_dirty_log {
2910 	__u32 slot;
2911 	__u32 padding1;
2912 	union {
2913 		compat_uptr_t dirty_bitmap; /* one bit per page */
2914 		__u64 padding2;
2915 	};
2916 };
2917 
2918 static long kvm_vm_compat_ioctl(struct file *filp,
2919 			   unsigned int ioctl, unsigned long arg)
2920 {
2921 	struct kvm *kvm = filp->private_data;
2922 	int r;
2923 
2924 	if (kvm->mm != current->mm)
2925 		return -EIO;
2926 	switch (ioctl) {
2927 	case KVM_GET_DIRTY_LOG: {
2928 		struct compat_kvm_dirty_log compat_log;
2929 		struct kvm_dirty_log log;
2930 
2931 		r = -EFAULT;
2932 		if (copy_from_user(&compat_log, (void __user *)arg,
2933 				   sizeof(compat_log)))
2934 			goto out;
2935 		log.slot	 = compat_log.slot;
2936 		log.padding1	 = compat_log.padding1;
2937 		log.padding2	 = compat_log.padding2;
2938 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2939 
2940 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2941 		break;
2942 	}
2943 	default:
2944 		r = kvm_vm_ioctl(filp, ioctl, arg);
2945 	}
2946 
2947 out:
2948 	return r;
2949 }
2950 #endif
2951 
2952 static struct file_operations kvm_vm_fops = {
2953 	.release        = kvm_vm_release,
2954 	.unlocked_ioctl = kvm_vm_ioctl,
2955 #ifdef CONFIG_KVM_COMPAT
2956 	.compat_ioctl   = kvm_vm_compat_ioctl,
2957 #endif
2958 	.llseek		= noop_llseek,
2959 };
2960 
2961 static int kvm_dev_ioctl_create_vm(unsigned long type)
2962 {
2963 	int r;
2964 	struct kvm *kvm;
2965 
2966 	kvm = kvm_create_vm(type);
2967 	if (IS_ERR(kvm))
2968 		return PTR_ERR(kvm);
2969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2970 	r = kvm_coalesced_mmio_init(kvm);
2971 	if (r < 0) {
2972 		kvm_put_kvm(kvm);
2973 		return r;
2974 	}
2975 #endif
2976 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2977 	if (r < 0)
2978 		kvm_put_kvm(kvm);
2979 
2980 	return r;
2981 }
2982 
2983 static long kvm_dev_ioctl(struct file *filp,
2984 			  unsigned int ioctl, unsigned long arg)
2985 {
2986 	long r = -EINVAL;
2987 
2988 	switch (ioctl) {
2989 	case KVM_GET_API_VERSION:
2990 		if (arg)
2991 			goto out;
2992 		r = KVM_API_VERSION;
2993 		break;
2994 	case KVM_CREATE_VM:
2995 		r = kvm_dev_ioctl_create_vm(arg);
2996 		break;
2997 	case KVM_CHECK_EXTENSION:
2998 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2999 		break;
3000 	case KVM_GET_VCPU_MMAP_SIZE:
3001 		if (arg)
3002 			goto out;
3003 		r = PAGE_SIZE;     /* struct kvm_run */
3004 #ifdef CONFIG_X86
3005 		r += PAGE_SIZE;    /* pio data page */
3006 #endif
3007 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3008 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3009 #endif
3010 		break;
3011 	case KVM_TRACE_ENABLE:
3012 	case KVM_TRACE_PAUSE:
3013 	case KVM_TRACE_DISABLE:
3014 		r = -EOPNOTSUPP;
3015 		break;
3016 	default:
3017 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3018 	}
3019 out:
3020 	return r;
3021 }
3022 
3023 static struct file_operations kvm_chardev_ops = {
3024 	.unlocked_ioctl = kvm_dev_ioctl,
3025 	.compat_ioctl   = kvm_dev_ioctl,
3026 	.llseek		= noop_llseek,
3027 };
3028 
3029 static struct miscdevice kvm_dev = {
3030 	KVM_MINOR,
3031 	"kvm",
3032 	&kvm_chardev_ops,
3033 };
3034 
3035 static void hardware_enable_nolock(void *junk)
3036 {
3037 	int cpu = raw_smp_processor_id();
3038 	int r;
3039 
3040 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3041 		return;
3042 
3043 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3044 
3045 	r = kvm_arch_hardware_enable();
3046 
3047 	if (r) {
3048 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3049 		atomic_inc(&hardware_enable_failed);
3050 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3051 	}
3052 }
3053 
3054 static void hardware_enable(void)
3055 {
3056 	raw_spin_lock(&kvm_count_lock);
3057 	if (kvm_usage_count)
3058 		hardware_enable_nolock(NULL);
3059 	raw_spin_unlock(&kvm_count_lock);
3060 }
3061 
3062 static void hardware_disable_nolock(void *junk)
3063 {
3064 	int cpu = raw_smp_processor_id();
3065 
3066 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3067 		return;
3068 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3069 	kvm_arch_hardware_disable();
3070 }
3071 
3072 static void hardware_disable(void)
3073 {
3074 	raw_spin_lock(&kvm_count_lock);
3075 	if (kvm_usage_count)
3076 		hardware_disable_nolock(NULL);
3077 	raw_spin_unlock(&kvm_count_lock);
3078 }
3079 
3080 static void hardware_disable_all_nolock(void)
3081 {
3082 	BUG_ON(!kvm_usage_count);
3083 
3084 	kvm_usage_count--;
3085 	if (!kvm_usage_count)
3086 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3087 }
3088 
3089 static void hardware_disable_all(void)
3090 {
3091 	raw_spin_lock(&kvm_count_lock);
3092 	hardware_disable_all_nolock();
3093 	raw_spin_unlock(&kvm_count_lock);
3094 }
3095 
3096 static int hardware_enable_all(void)
3097 {
3098 	int r = 0;
3099 
3100 	raw_spin_lock(&kvm_count_lock);
3101 
3102 	kvm_usage_count++;
3103 	if (kvm_usage_count == 1) {
3104 		atomic_set(&hardware_enable_failed, 0);
3105 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3106 
3107 		if (atomic_read(&hardware_enable_failed)) {
3108 			hardware_disable_all_nolock();
3109 			r = -EBUSY;
3110 		}
3111 	}
3112 
3113 	raw_spin_unlock(&kvm_count_lock);
3114 
3115 	return r;
3116 }
3117 
3118 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3119 			   void *v)
3120 {
3121 	val &= ~CPU_TASKS_FROZEN;
3122 	switch (val) {
3123 	case CPU_DYING:
3124 		hardware_disable();
3125 		break;
3126 	case CPU_STARTING:
3127 		hardware_enable();
3128 		break;
3129 	}
3130 	return NOTIFY_OK;
3131 }
3132 
3133 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3134 		      void *v)
3135 {
3136 	/*
3137 	 * Some (well, at least mine) BIOSes hang on reboot if
3138 	 * in vmx root mode.
3139 	 *
3140 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3141 	 */
3142 	pr_info("kvm: exiting hardware virtualization\n");
3143 	kvm_rebooting = true;
3144 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3145 	return NOTIFY_OK;
3146 }
3147 
3148 static struct notifier_block kvm_reboot_notifier = {
3149 	.notifier_call = kvm_reboot,
3150 	.priority = 0,
3151 };
3152 
3153 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3154 {
3155 	int i;
3156 
3157 	for (i = 0; i < bus->dev_count; i++) {
3158 		struct kvm_io_device *pos = bus->range[i].dev;
3159 
3160 		kvm_iodevice_destructor(pos);
3161 	}
3162 	kfree(bus);
3163 }
3164 
3165 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3166 				 const struct kvm_io_range *r2)
3167 {
3168 	gpa_t addr1 = r1->addr;
3169 	gpa_t addr2 = r2->addr;
3170 
3171 	if (addr1 < addr2)
3172 		return -1;
3173 
3174 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3175 	 * accept any overlapping write.  Any order is acceptable for
3176 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3177 	 * we process all of them.
3178 	 */
3179 	if (r2->len) {
3180 		addr1 += r1->len;
3181 		addr2 += r2->len;
3182 	}
3183 
3184 	if (addr1 > addr2)
3185 		return 1;
3186 
3187 	return 0;
3188 }
3189 
3190 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3191 {
3192 	return kvm_io_bus_cmp(p1, p2);
3193 }
3194 
3195 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3196 			  gpa_t addr, int len)
3197 {
3198 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3199 		.addr = addr,
3200 		.len = len,
3201 		.dev = dev,
3202 	};
3203 
3204 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3205 		kvm_io_bus_sort_cmp, NULL);
3206 
3207 	return 0;
3208 }
3209 
3210 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3211 			     gpa_t addr, int len)
3212 {
3213 	struct kvm_io_range *range, key;
3214 	int off;
3215 
3216 	key = (struct kvm_io_range) {
3217 		.addr = addr,
3218 		.len = len,
3219 	};
3220 
3221 	range = bsearch(&key, bus->range, bus->dev_count,
3222 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3223 	if (range == NULL)
3224 		return -ENOENT;
3225 
3226 	off = range - bus->range;
3227 
3228 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3229 		off--;
3230 
3231 	return off;
3232 }
3233 
3234 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3235 			      struct kvm_io_range *range, const void *val)
3236 {
3237 	int idx;
3238 
3239 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3240 	if (idx < 0)
3241 		return -EOPNOTSUPP;
3242 
3243 	while (idx < bus->dev_count &&
3244 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3245 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3246 					range->len, val))
3247 			return idx;
3248 		idx++;
3249 	}
3250 
3251 	return -EOPNOTSUPP;
3252 }
3253 
3254 /* kvm_io_bus_write - called under kvm->slots_lock */
3255 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3256 		     int len, const void *val)
3257 {
3258 	struct kvm_io_bus *bus;
3259 	struct kvm_io_range range;
3260 	int r;
3261 
3262 	range = (struct kvm_io_range) {
3263 		.addr = addr,
3264 		.len = len,
3265 	};
3266 
3267 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3268 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3269 	return r < 0 ? r : 0;
3270 }
3271 
3272 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3273 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3274 			    gpa_t addr, int len, const void *val, long cookie)
3275 {
3276 	struct kvm_io_bus *bus;
3277 	struct kvm_io_range range;
3278 
3279 	range = (struct kvm_io_range) {
3280 		.addr = addr,
3281 		.len = len,
3282 	};
3283 
3284 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3285 
3286 	/* First try the device referenced by cookie. */
3287 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3288 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3289 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3290 					val))
3291 			return cookie;
3292 
3293 	/*
3294 	 * cookie contained garbage; fall back to search and return the
3295 	 * correct cookie value.
3296 	 */
3297 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3298 }
3299 
3300 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3301 			     struct kvm_io_range *range, void *val)
3302 {
3303 	int idx;
3304 
3305 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3306 	if (idx < 0)
3307 		return -EOPNOTSUPP;
3308 
3309 	while (idx < bus->dev_count &&
3310 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3311 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3312 				       range->len, val))
3313 			return idx;
3314 		idx++;
3315 	}
3316 
3317 	return -EOPNOTSUPP;
3318 }
3319 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3320 
3321 /* kvm_io_bus_read - called under kvm->slots_lock */
3322 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3323 		    int len, void *val)
3324 {
3325 	struct kvm_io_bus *bus;
3326 	struct kvm_io_range range;
3327 	int r;
3328 
3329 	range = (struct kvm_io_range) {
3330 		.addr = addr,
3331 		.len = len,
3332 	};
3333 
3334 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3335 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3336 	return r < 0 ? r : 0;
3337 }
3338 
3339 
3340 /* Caller must hold slots_lock. */
3341 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3342 			    int len, struct kvm_io_device *dev)
3343 {
3344 	struct kvm_io_bus *new_bus, *bus;
3345 
3346 	bus = kvm->buses[bus_idx];
3347 	/* exclude ioeventfd which is limited by maximum fd */
3348 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3349 		return -ENOSPC;
3350 
3351 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3352 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3353 	if (!new_bus)
3354 		return -ENOMEM;
3355 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3356 	       sizeof(struct kvm_io_range)));
3357 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3358 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3359 	synchronize_srcu_expedited(&kvm->srcu);
3360 	kfree(bus);
3361 
3362 	return 0;
3363 }
3364 
3365 /* Caller must hold slots_lock. */
3366 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3367 			      struct kvm_io_device *dev)
3368 {
3369 	int i, r;
3370 	struct kvm_io_bus *new_bus, *bus;
3371 
3372 	bus = kvm->buses[bus_idx];
3373 	r = -ENOENT;
3374 	for (i = 0; i < bus->dev_count; i++)
3375 		if (bus->range[i].dev == dev) {
3376 			r = 0;
3377 			break;
3378 		}
3379 
3380 	if (r)
3381 		return r;
3382 
3383 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3384 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3385 	if (!new_bus)
3386 		return -ENOMEM;
3387 
3388 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3389 	new_bus->dev_count--;
3390 	memcpy(new_bus->range + i, bus->range + i + 1,
3391 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3392 
3393 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3394 	synchronize_srcu_expedited(&kvm->srcu);
3395 	kfree(bus);
3396 	return r;
3397 }
3398 
3399 static struct notifier_block kvm_cpu_notifier = {
3400 	.notifier_call = kvm_cpu_hotplug,
3401 };
3402 
3403 static int vm_stat_get(void *_offset, u64 *val)
3404 {
3405 	unsigned offset = (long)_offset;
3406 	struct kvm *kvm;
3407 
3408 	*val = 0;
3409 	spin_lock(&kvm_lock);
3410 	list_for_each_entry(kvm, &vm_list, vm_list)
3411 		*val += *(u32 *)((void *)kvm + offset);
3412 	spin_unlock(&kvm_lock);
3413 	return 0;
3414 }
3415 
3416 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3417 
3418 static int vcpu_stat_get(void *_offset, u64 *val)
3419 {
3420 	unsigned offset = (long)_offset;
3421 	struct kvm *kvm;
3422 	struct kvm_vcpu *vcpu;
3423 	int i;
3424 
3425 	*val = 0;
3426 	spin_lock(&kvm_lock);
3427 	list_for_each_entry(kvm, &vm_list, vm_list)
3428 		kvm_for_each_vcpu(i, vcpu, kvm)
3429 			*val += *(u32 *)((void *)vcpu + offset);
3430 
3431 	spin_unlock(&kvm_lock);
3432 	return 0;
3433 }
3434 
3435 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3436 
3437 static const struct file_operations *stat_fops[] = {
3438 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3439 	[KVM_STAT_VM]   = &vm_stat_fops,
3440 };
3441 
3442 static int kvm_init_debug(void)
3443 {
3444 	int r = -EEXIST;
3445 	struct kvm_stats_debugfs_item *p;
3446 
3447 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3448 	if (kvm_debugfs_dir == NULL)
3449 		goto out;
3450 
3451 	for (p = debugfs_entries; p->name; ++p) {
3452 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3453 						(void *)(long)p->offset,
3454 						stat_fops[p->kind]);
3455 		if (p->dentry == NULL)
3456 			goto out_dir;
3457 	}
3458 
3459 	return 0;
3460 
3461 out_dir:
3462 	debugfs_remove_recursive(kvm_debugfs_dir);
3463 out:
3464 	return r;
3465 }
3466 
3467 static void kvm_exit_debug(void)
3468 {
3469 	struct kvm_stats_debugfs_item *p;
3470 
3471 	for (p = debugfs_entries; p->name; ++p)
3472 		debugfs_remove(p->dentry);
3473 	debugfs_remove(kvm_debugfs_dir);
3474 }
3475 
3476 static int kvm_suspend(void)
3477 {
3478 	if (kvm_usage_count)
3479 		hardware_disable_nolock(NULL);
3480 	return 0;
3481 }
3482 
3483 static void kvm_resume(void)
3484 {
3485 	if (kvm_usage_count) {
3486 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3487 		hardware_enable_nolock(NULL);
3488 	}
3489 }
3490 
3491 static struct syscore_ops kvm_syscore_ops = {
3492 	.suspend = kvm_suspend,
3493 	.resume = kvm_resume,
3494 };
3495 
3496 static inline
3497 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3498 {
3499 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3500 }
3501 
3502 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3503 {
3504 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3505 
3506 	if (vcpu->preempted)
3507 		vcpu->preempted = false;
3508 
3509 	kvm_arch_sched_in(vcpu, cpu);
3510 
3511 	kvm_arch_vcpu_load(vcpu, cpu);
3512 }
3513 
3514 static void kvm_sched_out(struct preempt_notifier *pn,
3515 			  struct task_struct *next)
3516 {
3517 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3518 
3519 	if (current->state == TASK_RUNNING)
3520 		vcpu->preempted = true;
3521 	kvm_arch_vcpu_put(vcpu);
3522 }
3523 
3524 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3525 		  struct module *module)
3526 {
3527 	int r;
3528 	int cpu;
3529 
3530 	r = kvm_arch_init(opaque);
3531 	if (r)
3532 		goto out_fail;
3533 
3534 	/*
3535 	 * kvm_arch_init makes sure there's at most one caller
3536 	 * for architectures that support multiple implementations,
3537 	 * like intel and amd on x86.
3538 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3539 	 * conflicts in case kvm is already setup for another implementation.
3540 	 */
3541 	r = kvm_irqfd_init();
3542 	if (r)
3543 		goto out_irqfd;
3544 
3545 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3546 		r = -ENOMEM;
3547 		goto out_free_0;
3548 	}
3549 
3550 	r = kvm_arch_hardware_setup();
3551 	if (r < 0)
3552 		goto out_free_0a;
3553 
3554 	for_each_online_cpu(cpu) {
3555 		smp_call_function_single(cpu,
3556 				kvm_arch_check_processor_compat,
3557 				&r, 1);
3558 		if (r < 0)
3559 			goto out_free_1;
3560 	}
3561 
3562 	r = register_cpu_notifier(&kvm_cpu_notifier);
3563 	if (r)
3564 		goto out_free_2;
3565 	register_reboot_notifier(&kvm_reboot_notifier);
3566 
3567 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3568 	if (!vcpu_align)
3569 		vcpu_align = __alignof__(struct kvm_vcpu);
3570 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3571 					   0, NULL);
3572 	if (!kvm_vcpu_cache) {
3573 		r = -ENOMEM;
3574 		goto out_free_3;
3575 	}
3576 
3577 	r = kvm_async_pf_init();
3578 	if (r)
3579 		goto out_free;
3580 
3581 	kvm_chardev_ops.owner = module;
3582 	kvm_vm_fops.owner = module;
3583 	kvm_vcpu_fops.owner = module;
3584 
3585 	r = misc_register(&kvm_dev);
3586 	if (r) {
3587 		pr_err("kvm: misc device register failed\n");
3588 		goto out_unreg;
3589 	}
3590 
3591 	register_syscore_ops(&kvm_syscore_ops);
3592 
3593 	kvm_preempt_ops.sched_in = kvm_sched_in;
3594 	kvm_preempt_ops.sched_out = kvm_sched_out;
3595 
3596 	r = kvm_init_debug();
3597 	if (r) {
3598 		pr_err("kvm: create debugfs files failed\n");
3599 		goto out_undebugfs;
3600 	}
3601 
3602 	r = kvm_vfio_ops_init();
3603 	WARN_ON(r);
3604 
3605 	return 0;
3606 
3607 out_undebugfs:
3608 	unregister_syscore_ops(&kvm_syscore_ops);
3609 	misc_deregister(&kvm_dev);
3610 out_unreg:
3611 	kvm_async_pf_deinit();
3612 out_free:
3613 	kmem_cache_destroy(kvm_vcpu_cache);
3614 out_free_3:
3615 	unregister_reboot_notifier(&kvm_reboot_notifier);
3616 	unregister_cpu_notifier(&kvm_cpu_notifier);
3617 out_free_2:
3618 out_free_1:
3619 	kvm_arch_hardware_unsetup();
3620 out_free_0a:
3621 	free_cpumask_var(cpus_hardware_enabled);
3622 out_free_0:
3623 	kvm_irqfd_exit();
3624 out_irqfd:
3625 	kvm_arch_exit();
3626 out_fail:
3627 	return r;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_init);
3630 
3631 void kvm_exit(void)
3632 {
3633 	kvm_exit_debug();
3634 	misc_deregister(&kvm_dev);
3635 	kmem_cache_destroy(kvm_vcpu_cache);
3636 	kvm_async_pf_deinit();
3637 	unregister_syscore_ops(&kvm_syscore_ops);
3638 	unregister_reboot_notifier(&kvm_reboot_notifier);
3639 	unregister_cpu_notifier(&kvm_cpu_notifier);
3640 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3641 	kvm_arch_hardware_unsetup();
3642 	kvm_arch_exit();
3643 	kvm_irqfd_exit();
3644 	free_cpumask_var(cpus_hardware_enabled);
3645 	kvm_vfio_ops_exit();
3646 }
3647 EXPORT_SYMBOL_GPL(kvm_exit);
3648