xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 9b93eb47)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/io.h>
55 #include <linux/lockdep.h>
56 
57 #include <asm/processor.h>
58 #include <asm/ioctl.h>
59 #include <linux/uaccess.h>
60 #include <asm/pgtable.h>
61 
62 #include "coalesced_mmio.h"
63 #include "async_pf.h"
64 #include "vfio.h"
65 
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/kvm.h>
68 
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71 
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74 
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89 
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94 
95 /*
96  * Ordering of locks:
97  *
98  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100 
101 DEFINE_SPINLOCK(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104 
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108 
109 struct kmem_cache *kvm_vcpu_cache;
110 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations *stat_fops_per_vm[];
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
128 				unsigned long arg) { return -EINVAL; }
129 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
130 #endif
131 static int hardware_enable_all(void);
132 static void hardware_disable_all(void);
133 
134 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
135 
136 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
137 
138 __visible bool kvm_rebooting;
139 EXPORT_SYMBOL_GPL(kvm_rebooting);
140 
141 static bool largepages_enabled = true;
142 
143 #define KVM_EVENT_CREATE_VM 0
144 #define KVM_EVENT_DESTROY_VM 1
145 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
146 static unsigned long long kvm_createvm_count;
147 static unsigned long long kvm_active_vms;
148 
149 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
150 		unsigned long start, unsigned long end, bool blockable)
151 {
152 	return 0;
153 }
154 
155 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
156 {
157 	if (pfn_valid(pfn))
158 		return PageReserved(pfn_to_page(pfn));
159 
160 	return true;
161 }
162 
163 /*
164  * Switches to specified vcpu, until a matching vcpu_put()
165  */
166 void vcpu_load(struct kvm_vcpu *vcpu)
167 {
168 	int cpu = get_cpu();
169 	preempt_notifier_register(&vcpu->preempt_notifier);
170 	kvm_arch_vcpu_load(vcpu, cpu);
171 	put_cpu();
172 }
173 EXPORT_SYMBOL_GPL(vcpu_load);
174 
175 void vcpu_put(struct kvm_vcpu *vcpu)
176 {
177 	preempt_disable();
178 	kvm_arch_vcpu_put(vcpu);
179 	preempt_notifier_unregister(&vcpu->preempt_notifier);
180 	preempt_enable();
181 }
182 EXPORT_SYMBOL_GPL(vcpu_put);
183 
184 /* TODO: merge with kvm_arch_vcpu_should_kick */
185 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
186 {
187 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
188 
189 	/*
190 	 * We need to wait for the VCPU to reenable interrupts and get out of
191 	 * READING_SHADOW_PAGE_TABLES mode.
192 	 */
193 	if (req & KVM_REQUEST_WAIT)
194 		return mode != OUTSIDE_GUEST_MODE;
195 
196 	/*
197 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
198 	 */
199 	return mode == IN_GUEST_MODE;
200 }
201 
202 static void ack_flush(void *_completed)
203 {
204 }
205 
206 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
207 {
208 	if (unlikely(!cpus))
209 		cpus = cpu_online_mask;
210 
211 	if (cpumask_empty(cpus))
212 		return false;
213 
214 	smp_call_function_many(cpus, ack_flush, NULL, wait);
215 	return true;
216 }
217 
218 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
219 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
220 {
221 	int i, cpu, me;
222 	struct kvm_vcpu *vcpu;
223 	bool called;
224 
225 	me = get_cpu();
226 
227 	kvm_for_each_vcpu(i, vcpu, kvm) {
228 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
229 			continue;
230 
231 		kvm_make_request(req, vcpu);
232 		cpu = vcpu->cpu;
233 
234 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
235 			continue;
236 
237 		if (tmp != NULL && cpu != -1 && cpu != me &&
238 		    kvm_request_needs_ipi(vcpu, req))
239 			__cpumask_set_cpu(cpu, tmp);
240 	}
241 
242 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
243 	put_cpu();
244 
245 	return called;
246 }
247 
248 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
249 {
250 	cpumask_var_t cpus;
251 	bool called;
252 
253 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
254 
255 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
256 
257 	free_cpumask_var(cpus);
258 	return called;
259 }
260 
261 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
262 void kvm_flush_remote_tlbs(struct kvm *kvm)
263 {
264 	/*
265 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
266 	 * kvm_make_all_cpus_request.
267 	 */
268 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
269 
270 	/*
271 	 * We want to publish modifications to the page tables before reading
272 	 * mode. Pairs with a memory barrier in arch-specific code.
273 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
274 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
275 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
276 	 *
277 	 * There is already an smp_mb__after_atomic() before
278 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
279 	 * barrier here.
280 	 */
281 	if (!kvm_arch_flush_remote_tlb(kvm)
282 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
283 		++kvm->stat.remote_tlb_flush;
284 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
285 }
286 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
287 #endif
288 
289 void kvm_reload_remote_mmus(struct kvm *kvm)
290 {
291 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
292 }
293 
294 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
295 {
296 	struct page *page;
297 	int r;
298 
299 	mutex_init(&vcpu->mutex);
300 	vcpu->cpu = -1;
301 	vcpu->kvm = kvm;
302 	vcpu->vcpu_id = id;
303 	vcpu->pid = NULL;
304 	init_swait_queue_head(&vcpu->wq);
305 	kvm_async_pf_vcpu_init(vcpu);
306 
307 	vcpu->pre_pcpu = -1;
308 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
309 
310 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
311 	if (!page) {
312 		r = -ENOMEM;
313 		goto fail;
314 	}
315 	vcpu->run = page_address(page);
316 
317 	kvm_vcpu_set_in_spin_loop(vcpu, false);
318 	kvm_vcpu_set_dy_eligible(vcpu, false);
319 	vcpu->preempted = false;
320 
321 	r = kvm_arch_vcpu_init(vcpu);
322 	if (r < 0)
323 		goto fail_free_run;
324 	return 0;
325 
326 fail_free_run:
327 	free_page((unsigned long)vcpu->run);
328 fail:
329 	return r;
330 }
331 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
332 
333 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
334 {
335 	/*
336 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
337 	 * will change the vcpu->pid pointer and on uninit all file
338 	 * descriptors are already gone.
339 	 */
340 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
341 	kvm_arch_vcpu_uninit(vcpu);
342 	free_page((unsigned long)vcpu->run);
343 }
344 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
345 
346 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
347 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
348 {
349 	return container_of(mn, struct kvm, mmu_notifier);
350 }
351 
352 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
353 					struct mm_struct *mm,
354 					unsigned long address,
355 					pte_t pte)
356 {
357 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
358 	int idx;
359 
360 	idx = srcu_read_lock(&kvm->srcu);
361 	spin_lock(&kvm->mmu_lock);
362 	kvm->mmu_notifier_seq++;
363 
364 	if (kvm_set_spte_hva(kvm, address, pte))
365 		kvm_flush_remote_tlbs(kvm);
366 
367 	spin_unlock(&kvm->mmu_lock);
368 	srcu_read_unlock(&kvm->srcu, idx);
369 }
370 
371 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
372 					const struct mmu_notifier_range *range)
373 {
374 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 	int need_tlb_flush = 0, idx;
376 	int ret;
377 
378 	idx = srcu_read_lock(&kvm->srcu);
379 	spin_lock(&kvm->mmu_lock);
380 	/*
381 	 * The count increase must become visible at unlock time as no
382 	 * spte can be established without taking the mmu_lock and
383 	 * count is also read inside the mmu_lock critical section.
384 	 */
385 	kvm->mmu_notifier_count++;
386 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
387 	need_tlb_flush |= kvm->tlbs_dirty;
388 	/* we've to flush the tlb before the pages can be freed */
389 	if (need_tlb_flush)
390 		kvm_flush_remote_tlbs(kvm);
391 
392 	spin_unlock(&kvm->mmu_lock);
393 
394 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
395 					range->end,
396 					mmu_notifier_range_blockable(range));
397 
398 	srcu_read_unlock(&kvm->srcu, idx);
399 
400 	return ret;
401 }
402 
403 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
404 					const struct mmu_notifier_range *range)
405 {
406 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 
408 	spin_lock(&kvm->mmu_lock);
409 	/*
410 	 * This sequence increase will notify the kvm page fault that
411 	 * the page that is going to be mapped in the spte could have
412 	 * been freed.
413 	 */
414 	kvm->mmu_notifier_seq++;
415 	smp_wmb();
416 	/*
417 	 * The above sequence increase must be visible before the
418 	 * below count decrease, which is ensured by the smp_wmb above
419 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
420 	 */
421 	kvm->mmu_notifier_count--;
422 	spin_unlock(&kvm->mmu_lock);
423 
424 	BUG_ON(kvm->mmu_notifier_count < 0);
425 }
426 
427 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
428 					      struct mm_struct *mm,
429 					      unsigned long start,
430 					      unsigned long end)
431 {
432 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
433 	int young, idx;
434 
435 	idx = srcu_read_lock(&kvm->srcu);
436 	spin_lock(&kvm->mmu_lock);
437 
438 	young = kvm_age_hva(kvm, start, end);
439 	if (young)
440 		kvm_flush_remote_tlbs(kvm);
441 
442 	spin_unlock(&kvm->mmu_lock);
443 	srcu_read_unlock(&kvm->srcu, idx);
444 
445 	return young;
446 }
447 
448 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
449 					struct mm_struct *mm,
450 					unsigned long start,
451 					unsigned long end)
452 {
453 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
454 	int young, idx;
455 
456 	idx = srcu_read_lock(&kvm->srcu);
457 	spin_lock(&kvm->mmu_lock);
458 	/*
459 	 * Even though we do not flush TLB, this will still adversely
460 	 * affect performance on pre-Haswell Intel EPT, where there is
461 	 * no EPT Access Bit to clear so that we have to tear down EPT
462 	 * tables instead. If we find this unacceptable, we can always
463 	 * add a parameter to kvm_age_hva so that it effectively doesn't
464 	 * do anything on clear_young.
465 	 *
466 	 * Also note that currently we never issue secondary TLB flushes
467 	 * from clear_young, leaving this job up to the regular system
468 	 * cadence. If we find this inaccurate, we might come up with a
469 	 * more sophisticated heuristic later.
470 	 */
471 	young = kvm_age_hva(kvm, start, end);
472 	spin_unlock(&kvm->mmu_lock);
473 	srcu_read_unlock(&kvm->srcu, idx);
474 
475 	return young;
476 }
477 
478 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
479 				       struct mm_struct *mm,
480 				       unsigned long address)
481 {
482 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
483 	int young, idx;
484 
485 	idx = srcu_read_lock(&kvm->srcu);
486 	spin_lock(&kvm->mmu_lock);
487 	young = kvm_test_age_hva(kvm, address);
488 	spin_unlock(&kvm->mmu_lock);
489 	srcu_read_unlock(&kvm->srcu, idx);
490 
491 	return young;
492 }
493 
494 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
495 				     struct mm_struct *mm)
496 {
497 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
498 	int idx;
499 
500 	idx = srcu_read_lock(&kvm->srcu);
501 	kvm_arch_flush_shadow_all(kvm);
502 	srcu_read_unlock(&kvm->srcu, idx);
503 }
504 
505 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
506 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
507 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
508 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
509 	.clear_young		= kvm_mmu_notifier_clear_young,
510 	.test_young		= kvm_mmu_notifier_test_young,
511 	.change_pte		= kvm_mmu_notifier_change_pte,
512 	.release		= kvm_mmu_notifier_release,
513 };
514 
515 static int kvm_init_mmu_notifier(struct kvm *kvm)
516 {
517 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
518 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
519 }
520 
521 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
522 
523 static int kvm_init_mmu_notifier(struct kvm *kvm)
524 {
525 	return 0;
526 }
527 
528 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
529 
530 static struct kvm_memslots *kvm_alloc_memslots(void)
531 {
532 	int i;
533 	struct kvm_memslots *slots;
534 
535 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
536 	if (!slots)
537 		return NULL;
538 
539 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
540 		slots->id_to_index[i] = slots->memslots[i].id = i;
541 
542 	return slots;
543 }
544 
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 	if (!memslot->dirty_bitmap)
548 		return;
549 
550 	kvfree(memslot->dirty_bitmap);
551 	memslot->dirty_bitmap = NULL;
552 }
553 
554 /*
555  * Free any memory in @free but not in @dont.
556  */
557 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
558 			      struct kvm_memory_slot *dont)
559 {
560 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 		kvm_destroy_dirty_bitmap(free);
562 
563 	kvm_arch_free_memslot(kvm, free, dont);
564 
565 	free->npages = 0;
566 }
567 
568 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
569 {
570 	struct kvm_memory_slot *memslot;
571 
572 	if (!slots)
573 		return;
574 
575 	kvm_for_each_memslot(memslot, slots)
576 		kvm_free_memslot(kvm, memslot, NULL);
577 
578 	kvfree(slots);
579 }
580 
581 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
582 {
583 	int i;
584 
585 	if (!kvm->debugfs_dentry)
586 		return;
587 
588 	debugfs_remove_recursive(kvm->debugfs_dentry);
589 
590 	if (kvm->debugfs_stat_data) {
591 		for (i = 0; i < kvm_debugfs_num_entries; i++)
592 			kfree(kvm->debugfs_stat_data[i]);
593 		kfree(kvm->debugfs_stat_data);
594 	}
595 }
596 
597 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
598 {
599 	char dir_name[ITOA_MAX_LEN * 2];
600 	struct kvm_stat_data *stat_data;
601 	struct kvm_stats_debugfs_item *p;
602 
603 	if (!debugfs_initialized())
604 		return 0;
605 
606 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
607 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
608 
609 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
610 					 sizeof(*kvm->debugfs_stat_data),
611 					 GFP_KERNEL_ACCOUNT);
612 	if (!kvm->debugfs_stat_data)
613 		return -ENOMEM;
614 
615 	for (p = debugfs_entries; p->name; p++) {
616 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
617 		if (!stat_data)
618 			return -ENOMEM;
619 
620 		stat_data->kvm = kvm;
621 		stat_data->offset = p->offset;
622 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
623 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
624 				    stat_data, stat_fops_per_vm[p->kind]);
625 	}
626 	return 0;
627 }
628 
629 static struct kvm *kvm_create_vm(unsigned long type)
630 {
631 	int r, i;
632 	struct kvm *kvm = kvm_arch_alloc_vm();
633 
634 	if (!kvm)
635 		return ERR_PTR(-ENOMEM);
636 
637 	spin_lock_init(&kvm->mmu_lock);
638 	mmgrab(current->mm);
639 	kvm->mm = current->mm;
640 	kvm_eventfd_init(kvm);
641 	mutex_init(&kvm->lock);
642 	mutex_init(&kvm->irq_lock);
643 	mutex_init(&kvm->slots_lock);
644 	refcount_set(&kvm->users_count, 1);
645 	INIT_LIST_HEAD(&kvm->devices);
646 
647 	r = kvm_arch_init_vm(kvm, type);
648 	if (r)
649 		goto out_err_no_disable;
650 
651 	r = hardware_enable_all();
652 	if (r)
653 		goto out_err_no_disable;
654 
655 #ifdef CONFIG_HAVE_KVM_IRQFD
656 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
657 #endif
658 
659 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
660 
661 	r = -ENOMEM;
662 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
663 		struct kvm_memslots *slots = kvm_alloc_memslots();
664 		if (!slots)
665 			goto out_err_no_srcu;
666 		/* Generations must be different for each address space. */
667 		slots->generation = i;
668 		rcu_assign_pointer(kvm->memslots[i], slots);
669 	}
670 
671 	if (init_srcu_struct(&kvm->srcu))
672 		goto out_err_no_srcu;
673 	if (init_srcu_struct(&kvm->irq_srcu))
674 		goto out_err_no_irq_srcu;
675 	for (i = 0; i < KVM_NR_BUSES; i++) {
676 		rcu_assign_pointer(kvm->buses[i],
677 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
678 		if (!kvm->buses[i])
679 			goto out_err;
680 	}
681 
682 	r = kvm_init_mmu_notifier(kvm);
683 	if (r)
684 		goto out_err;
685 
686 	spin_lock(&kvm_lock);
687 	list_add(&kvm->vm_list, &vm_list);
688 	spin_unlock(&kvm_lock);
689 
690 	preempt_notifier_inc();
691 
692 	return kvm;
693 
694 out_err:
695 	cleanup_srcu_struct(&kvm->irq_srcu);
696 out_err_no_irq_srcu:
697 	cleanup_srcu_struct(&kvm->srcu);
698 out_err_no_srcu:
699 	hardware_disable_all();
700 out_err_no_disable:
701 	refcount_set(&kvm->users_count, 0);
702 	for (i = 0; i < KVM_NR_BUSES; i++)
703 		kfree(kvm_get_bus(kvm, i));
704 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
705 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
706 	kvm_arch_free_vm(kvm);
707 	mmdrop(current->mm);
708 	return ERR_PTR(r);
709 }
710 
711 static void kvm_destroy_devices(struct kvm *kvm)
712 {
713 	struct kvm_device *dev, *tmp;
714 
715 	/*
716 	 * We do not need to take the kvm->lock here, because nobody else
717 	 * has a reference to the struct kvm at this point and therefore
718 	 * cannot access the devices list anyhow.
719 	 */
720 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
721 		list_del(&dev->vm_node);
722 		dev->ops->destroy(dev);
723 	}
724 }
725 
726 static void kvm_destroy_vm(struct kvm *kvm)
727 {
728 	int i;
729 	struct mm_struct *mm = kvm->mm;
730 
731 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
732 	kvm_destroy_vm_debugfs(kvm);
733 	kvm_arch_sync_events(kvm);
734 	spin_lock(&kvm_lock);
735 	list_del(&kvm->vm_list);
736 	spin_unlock(&kvm_lock);
737 	kvm_free_irq_routing(kvm);
738 	for (i = 0; i < KVM_NR_BUSES; i++) {
739 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
740 
741 		if (bus)
742 			kvm_io_bus_destroy(bus);
743 		kvm->buses[i] = NULL;
744 	}
745 	kvm_coalesced_mmio_free(kvm);
746 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
747 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
748 #else
749 	kvm_arch_flush_shadow_all(kvm);
750 #endif
751 	kvm_arch_destroy_vm(kvm);
752 	kvm_destroy_devices(kvm);
753 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
754 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
755 	cleanup_srcu_struct(&kvm->irq_srcu);
756 	cleanup_srcu_struct(&kvm->srcu);
757 	kvm_arch_free_vm(kvm);
758 	preempt_notifier_dec();
759 	hardware_disable_all();
760 	mmdrop(mm);
761 }
762 
763 void kvm_get_kvm(struct kvm *kvm)
764 {
765 	refcount_inc(&kvm->users_count);
766 }
767 EXPORT_SYMBOL_GPL(kvm_get_kvm);
768 
769 void kvm_put_kvm(struct kvm *kvm)
770 {
771 	if (refcount_dec_and_test(&kvm->users_count))
772 		kvm_destroy_vm(kvm);
773 }
774 EXPORT_SYMBOL_GPL(kvm_put_kvm);
775 
776 
777 static int kvm_vm_release(struct inode *inode, struct file *filp)
778 {
779 	struct kvm *kvm = filp->private_data;
780 
781 	kvm_irqfd_release(kvm);
782 
783 	kvm_put_kvm(kvm);
784 	return 0;
785 }
786 
787 /*
788  * Allocation size is twice as large as the actual dirty bitmap size.
789  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
790  */
791 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
792 {
793 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
794 
795 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
796 	if (!memslot->dirty_bitmap)
797 		return -ENOMEM;
798 
799 	return 0;
800 }
801 
802 /*
803  * Insert memslot and re-sort memslots based on their GFN,
804  * so binary search could be used to lookup GFN.
805  * Sorting algorithm takes advantage of having initially
806  * sorted array and known changed memslot position.
807  */
808 static void update_memslots(struct kvm_memslots *slots,
809 			    struct kvm_memory_slot *new,
810 			    enum kvm_mr_change change)
811 {
812 	int id = new->id;
813 	int i = slots->id_to_index[id];
814 	struct kvm_memory_slot *mslots = slots->memslots;
815 
816 	WARN_ON(mslots[i].id != id);
817 	switch (change) {
818 	case KVM_MR_CREATE:
819 		slots->used_slots++;
820 		WARN_ON(mslots[i].npages || !new->npages);
821 		break;
822 	case KVM_MR_DELETE:
823 		slots->used_slots--;
824 		WARN_ON(new->npages || !mslots[i].npages);
825 		break;
826 	default:
827 		break;
828 	}
829 
830 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
831 	       new->base_gfn <= mslots[i + 1].base_gfn) {
832 		if (!mslots[i + 1].npages)
833 			break;
834 		mslots[i] = mslots[i + 1];
835 		slots->id_to_index[mslots[i].id] = i;
836 		i++;
837 	}
838 
839 	/*
840 	 * The ">=" is needed when creating a slot with base_gfn == 0,
841 	 * so that it moves before all those with base_gfn == npages == 0.
842 	 *
843 	 * On the other hand, if new->npages is zero, the above loop has
844 	 * already left i pointing to the beginning of the empty part of
845 	 * mslots, and the ">=" would move the hole backwards in this
846 	 * case---which is wrong.  So skip the loop when deleting a slot.
847 	 */
848 	if (new->npages) {
849 		while (i > 0 &&
850 		       new->base_gfn >= mslots[i - 1].base_gfn) {
851 			mslots[i] = mslots[i - 1];
852 			slots->id_to_index[mslots[i].id] = i;
853 			i--;
854 		}
855 	} else
856 		WARN_ON_ONCE(i != slots->used_slots);
857 
858 	mslots[i] = *new;
859 	slots->id_to_index[mslots[i].id] = i;
860 }
861 
862 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
863 {
864 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
865 
866 #ifdef __KVM_HAVE_READONLY_MEM
867 	valid_flags |= KVM_MEM_READONLY;
868 #endif
869 
870 	if (mem->flags & ~valid_flags)
871 		return -EINVAL;
872 
873 	return 0;
874 }
875 
876 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
877 		int as_id, struct kvm_memslots *slots)
878 {
879 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
880 	u64 gen = old_memslots->generation;
881 
882 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
883 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
884 
885 	rcu_assign_pointer(kvm->memslots[as_id], slots);
886 	synchronize_srcu_expedited(&kvm->srcu);
887 
888 	/*
889 	 * Increment the new memslot generation a second time, dropping the
890 	 * update in-progress flag and incrementing then generation based on
891 	 * the number of address spaces.  This provides a unique and easily
892 	 * identifiable generation number while the memslots are in flux.
893 	 */
894 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
895 
896 	/*
897 	 * Generations must be unique even across address spaces.  We do not need
898 	 * a global counter for that, instead the generation space is evenly split
899 	 * across address spaces.  For example, with two address spaces, address
900 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
901 	 * use generations 1, 3, 5, ...
902 	 */
903 	gen += KVM_ADDRESS_SPACE_NUM;
904 
905 	kvm_arch_memslots_updated(kvm, gen);
906 
907 	slots->generation = gen;
908 
909 	return old_memslots;
910 }
911 
912 /*
913  * Allocate some memory and give it an address in the guest physical address
914  * space.
915  *
916  * Discontiguous memory is allowed, mostly for framebuffers.
917  *
918  * Must be called holding kvm->slots_lock for write.
919  */
920 int __kvm_set_memory_region(struct kvm *kvm,
921 			    const struct kvm_userspace_memory_region *mem)
922 {
923 	int r;
924 	gfn_t base_gfn;
925 	unsigned long npages;
926 	struct kvm_memory_slot *slot;
927 	struct kvm_memory_slot old, new;
928 	struct kvm_memslots *slots = NULL, *old_memslots;
929 	int as_id, id;
930 	enum kvm_mr_change change;
931 
932 	r = check_memory_region_flags(mem);
933 	if (r)
934 		goto out;
935 
936 	r = -EINVAL;
937 	as_id = mem->slot >> 16;
938 	id = (u16)mem->slot;
939 
940 	/* General sanity checks */
941 	if (mem->memory_size & (PAGE_SIZE - 1))
942 		goto out;
943 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
944 		goto out;
945 	/* We can read the guest memory with __xxx_user() later on. */
946 	if ((id < KVM_USER_MEM_SLOTS) &&
947 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
948 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
949 			mem->memory_size)))
950 		goto out;
951 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
952 		goto out;
953 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
954 		goto out;
955 
956 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
957 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
958 	npages = mem->memory_size >> PAGE_SHIFT;
959 
960 	if (npages > KVM_MEM_MAX_NR_PAGES)
961 		goto out;
962 
963 	new = old = *slot;
964 
965 	new.id = id;
966 	new.base_gfn = base_gfn;
967 	new.npages = npages;
968 	new.flags = mem->flags;
969 
970 	if (npages) {
971 		if (!old.npages)
972 			change = KVM_MR_CREATE;
973 		else { /* Modify an existing slot. */
974 			if ((mem->userspace_addr != old.userspace_addr) ||
975 			    (npages != old.npages) ||
976 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
977 				goto out;
978 
979 			if (base_gfn != old.base_gfn)
980 				change = KVM_MR_MOVE;
981 			else if (new.flags != old.flags)
982 				change = KVM_MR_FLAGS_ONLY;
983 			else { /* Nothing to change. */
984 				r = 0;
985 				goto out;
986 			}
987 		}
988 	} else {
989 		if (!old.npages)
990 			goto out;
991 
992 		change = KVM_MR_DELETE;
993 		new.base_gfn = 0;
994 		new.flags = 0;
995 	}
996 
997 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
998 		/* Check for overlaps */
999 		r = -EEXIST;
1000 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1001 			if (slot->id == id)
1002 				continue;
1003 			if (!((base_gfn + npages <= slot->base_gfn) ||
1004 			      (base_gfn >= slot->base_gfn + slot->npages)))
1005 				goto out;
1006 		}
1007 	}
1008 
1009 	/* Free page dirty bitmap if unneeded */
1010 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1011 		new.dirty_bitmap = NULL;
1012 
1013 	r = -ENOMEM;
1014 	if (change == KVM_MR_CREATE) {
1015 		new.userspace_addr = mem->userspace_addr;
1016 
1017 		if (kvm_arch_create_memslot(kvm, &new, npages))
1018 			goto out_free;
1019 	}
1020 
1021 	/* Allocate page dirty bitmap if needed */
1022 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1023 		if (kvm_create_dirty_bitmap(&new) < 0)
1024 			goto out_free;
1025 	}
1026 
1027 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1028 	if (!slots)
1029 		goto out_free;
1030 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1031 
1032 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1033 		slot = id_to_memslot(slots, id);
1034 		slot->flags |= KVM_MEMSLOT_INVALID;
1035 
1036 		old_memslots = install_new_memslots(kvm, as_id, slots);
1037 
1038 		/* From this point no new shadow pages pointing to a deleted,
1039 		 * or moved, memslot will be created.
1040 		 *
1041 		 * validation of sp->gfn happens in:
1042 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1043 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1044 		 */
1045 		kvm_arch_flush_shadow_memslot(kvm, slot);
1046 
1047 		/*
1048 		 * We can re-use the old_memslots from above, the only difference
1049 		 * from the currently installed memslots is the invalid flag.  This
1050 		 * will get overwritten by update_memslots anyway.
1051 		 */
1052 		slots = old_memslots;
1053 	}
1054 
1055 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1056 	if (r)
1057 		goto out_slots;
1058 
1059 	/* actual memory is freed via old in kvm_free_memslot below */
1060 	if (change == KVM_MR_DELETE) {
1061 		new.dirty_bitmap = NULL;
1062 		memset(&new.arch, 0, sizeof(new.arch));
1063 	}
1064 
1065 	update_memslots(slots, &new, change);
1066 	old_memslots = install_new_memslots(kvm, as_id, slots);
1067 
1068 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1069 
1070 	kvm_free_memslot(kvm, &old, &new);
1071 	kvfree(old_memslots);
1072 	return 0;
1073 
1074 out_slots:
1075 	kvfree(slots);
1076 out_free:
1077 	kvm_free_memslot(kvm, &new, &old);
1078 out:
1079 	return r;
1080 }
1081 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1082 
1083 int kvm_set_memory_region(struct kvm *kvm,
1084 			  const struct kvm_userspace_memory_region *mem)
1085 {
1086 	int r;
1087 
1088 	mutex_lock(&kvm->slots_lock);
1089 	r = __kvm_set_memory_region(kvm, mem);
1090 	mutex_unlock(&kvm->slots_lock);
1091 	return r;
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1094 
1095 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1096 					  struct kvm_userspace_memory_region *mem)
1097 {
1098 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1099 		return -EINVAL;
1100 
1101 	return kvm_set_memory_region(kvm, mem);
1102 }
1103 
1104 int kvm_get_dirty_log(struct kvm *kvm,
1105 			struct kvm_dirty_log *log, int *is_dirty)
1106 {
1107 	struct kvm_memslots *slots;
1108 	struct kvm_memory_slot *memslot;
1109 	int i, as_id, id;
1110 	unsigned long n;
1111 	unsigned long any = 0;
1112 
1113 	as_id = log->slot >> 16;
1114 	id = (u16)log->slot;
1115 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1116 		return -EINVAL;
1117 
1118 	slots = __kvm_memslots(kvm, as_id);
1119 	memslot = id_to_memslot(slots, id);
1120 	if (!memslot->dirty_bitmap)
1121 		return -ENOENT;
1122 
1123 	n = kvm_dirty_bitmap_bytes(memslot);
1124 
1125 	for (i = 0; !any && i < n/sizeof(long); ++i)
1126 		any = memslot->dirty_bitmap[i];
1127 
1128 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1129 		return -EFAULT;
1130 
1131 	if (any)
1132 		*is_dirty = 1;
1133 	return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1136 
1137 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1138 /**
1139  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1140  *	and reenable dirty page tracking for the corresponding pages.
1141  * @kvm:	pointer to kvm instance
1142  * @log:	slot id and address to which we copy the log
1143  * @flush:	true if TLB flush is needed by caller
1144  *
1145  * We need to keep it in mind that VCPU threads can write to the bitmap
1146  * concurrently. So, to avoid losing track of dirty pages we keep the
1147  * following order:
1148  *
1149  *    1. Take a snapshot of the bit and clear it if needed.
1150  *    2. Write protect the corresponding page.
1151  *    3. Copy the snapshot to the userspace.
1152  *    4. Upon return caller flushes TLB's if needed.
1153  *
1154  * Between 2 and 4, the guest may write to the page using the remaining TLB
1155  * entry.  This is not a problem because the page is reported dirty using
1156  * the snapshot taken before and step 4 ensures that writes done after
1157  * exiting to userspace will be logged for the next call.
1158  *
1159  */
1160 int kvm_get_dirty_log_protect(struct kvm *kvm,
1161 			struct kvm_dirty_log *log, bool *flush)
1162 {
1163 	struct kvm_memslots *slots;
1164 	struct kvm_memory_slot *memslot;
1165 	int i, as_id, id;
1166 	unsigned long n;
1167 	unsigned long *dirty_bitmap;
1168 	unsigned long *dirty_bitmap_buffer;
1169 
1170 	as_id = log->slot >> 16;
1171 	id = (u16)log->slot;
1172 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1173 		return -EINVAL;
1174 
1175 	slots = __kvm_memslots(kvm, as_id);
1176 	memslot = id_to_memslot(slots, id);
1177 
1178 	dirty_bitmap = memslot->dirty_bitmap;
1179 	if (!dirty_bitmap)
1180 		return -ENOENT;
1181 
1182 	n = kvm_dirty_bitmap_bytes(memslot);
1183 	*flush = false;
1184 	if (kvm->manual_dirty_log_protect) {
1185 		/*
1186 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1187 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1188 		 * is some code duplication between this function and
1189 		 * kvm_get_dirty_log, but hopefully all architecture
1190 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1191 		 * can be eliminated.
1192 		 */
1193 		dirty_bitmap_buffer = dirty_bitmap;
1194 	} else {
1195 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1196 		memset(dirty_bitmap_buffer, 0, n);
1197 
1198 		spin_lock(&kvm->mmu_lock);
1199 		for (i = 0; i < n / sizeof(long); i++) {
1200 			unsigned long mask;
1201 			gfn_t offset;
1202 
1203 			if (!dirty_bitmap[i])
1204 				continue;
1205 
1206 			*flush = true;
1207 			mask = xchg(&dirty_bitmap[i], 0);
1208 			dirty_bitmap_buffer[i] = mask;
1209 
1210 			offset = i * BITS_PER_LONG;
1211 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1212 								offset, mask);
1213 		}
1214 		spin_unlock(&kvm->mmu_lock);
1215 	}
1216 
1217 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1218 		return -EFAULT;
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1222 
1223 /**
1224  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1225  *	and reenable dirty page tracking for the corresponding pages.
1226  * @kvm:	pointer to kvm instance
1227  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1228  * @flush:	true if TLB flush is needed by caller
1229  */
1230 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1231 				struct kvm_clear_dirty_log *log, bool *flush)
1232 {
1233 	struct kvm_memslots *slots;
1234 	struct kvm_memory_slot *memslot;
1235 	int as_id, id;
1236 	gfn_t offset;
1237 	unsigned long i, n;
1238 	unsigned long *dirty_bitmap;
1239 	unsigned long *dirty_bitmap_buffer;
1240 
1241 	as_id = log->slot >> 16;
1242 	id = (u16)log->slot;
1243 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1244 		return -EINVAL;
1245 
1246 	if (log->first_page & 63)
1247 		return -EINVAL;
1248 
1249 	slots = __kvm_memslots(kvm, as_id);
1250 	memslot = id_to_memslot(slots, id);
1251 
1252 	dirty_bitmap = memslot->dirty_bitmap;
1253 	if (!dirty_bitmap)
1254 		return -ENOENT;
1255 
1256 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1257 
1258 	if (log->first_page > memslot->npages ||
1259 	    log->num_pages > memslot->npages - log->first_page ||
1260 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1261 	    return -EINVAL;
1262 
1263 	*flush = false;
1264 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1265 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1266 		return -EFAULT;
1267 
1268 	spin_lock(&kvm->mmu_lock);
1269 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1270 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1271 	     i++, offset += BITS_PER_LONG) {
1272 		unsigned long mask = *dirty_bitmap_buffer++;
1273 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1274 		if (!mask)
1275 			continue;
1276 
1277 		mask &= atomic_long_fetch_andnot(mask, p);
1278 
1279 		/*
1280 		 * mask contains the bits that really have been cleared.  This
1281 		 * never includes any bits beyond the length of the memslot (if
1282 		 * the length is not aligned to 64 pages), therefore it is not
1283 		 * a problem if userspace sets them in log->dirty_bitmap.
1284 		*/
1285 		if (mask) {
1286 			*flush = true;
1287 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1288 								offset, mask);
1289 		}
1290 	}
1291 	spin_unlock(&kvm->mmu_lock);
1292 
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1296 #endif
1297 
1298 bool kvm_largepages_enabled(void)
1299 {
1300 	return largepages_enabled;
1301 }
1302 
1303 void kvm_disable_largepages(void)
1304 {
1305 	largepages_enabled = false;
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1308 
1309 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1310 {
1311 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1314 
1315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1316 {
1317 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1318 }
1319 
1320 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1321 {
1322 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1323 
1324 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1325 	      memslot->flags & KVM_MEMSLOT_INVALID)
1326 		return false;
1327 
1328 	return true;
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1331 
1332 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1333 {
1334 	struct vm_area_struct *vma;
1335 	unsigned long addr, size;
1336 
1337 	size = PAGE_SIZE;
1338 
1339 	addr = gfn_to_hva(kvm, gfn);
1340 	if (kvm_is_error_hva(addr))
1341 		return PAGE_SIZE;
1342 
1343 	down_read(&current->mm->mmap_sem);
1344 	vma = find_vma(current->mm, addr);
1345 	if (!vma)
1346 		goto out;
1347 
1348 	size = vma_kernel_pagesize(vma);
1349 
1350 out:
1351 	up_read(&current->mm->mmap_sem);
1352 
1353 	return size;
1354 }
1355 
1356 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1357 {
1358 	return slot->flags & KVM_MEM_READONLY;
1359 }
1360 
1361 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1362 				       gfn_t *nr_pages, bool write)
1363 {
1364 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1365 		return KVM_HVA_ERR_BAD;
1366 
1367 	if (memslot_is_readonly(slot) && write)
1368 		return KVM_HVA_ERR_RO_BAD;
1369 
1370 	if (nr_pages)
1371 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1372 
1373 	return __gfn_to_hva_memslot(slot, gfn);
1374 }
1375 
1376 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1377 				     gfn_t *nr_pages)
1378 {
1379 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1380 }
1381 
1382 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1383 					gfn_t gfn)
1384 {
1385 	return gfn_to_hva_many(slot, gfn, NULL);
1386 }
1387 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1388 
1389 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1390 {
1391 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1392 }
1393 EXPORT_SYMBOL_GPL(gfn_to_hva);
1394 
1395 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1396 {
1397 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1400 
1401 /*
1402  * Return the hva of a @gfn and the R/W attribute if possible.
1403  *
1404  * @slot: the kvm_memory_slot which contains @gfn
1405  * @gfn: the gfn to be translated
1406  * @writable: used to return the read/write attribute of the @slot if the hva
1407  * is valid and @writable is not NULL
1408  */
1409 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1410 				      gfn_t gfn, bool *writable)
1411 {
1412 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1413 
1414 	if (!kvm_is_error_hva(hva) && writable)
1415 		*writable = !memslot_is_readonly(slot);
1416 
1417 	return hva;
1418 }
1419 
1420 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1421 {
1422 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1423 
1424 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1425 }
1426 
1427 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1428 {
1429 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1430 
1431 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1432 }
1433 
1434 static inline int check_user_page_hwpoison(unsigned long addr)
1435 {
1436 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1437 
1438 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1439 	return rc == -EHWPOISON;
1440 }
1441 
1442 /*
1443  * The fast path to get the writable pfn which will be stored in @pfn,
1444  * true indicates success, otherwise false is returned.  It's also the
1445  * only part that runs if we can are in atomic context.
1446  */
1447 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1448 			    bool *writable, kvm_pfn_t *pfn)
1449 {
1450 	struct page *page[1];
1451 	int npages;
1452 
1453 	/*
1454 	 * Fast pin a writable pfn only if it is a write fault request
1455 	 * or the caller allows to map a writable pfn for a read fault
1456 	 * request.
1457 	 */
1458 	if (!(write_fault || writable))
1459 		return false;
1460 
1461 	npages = __get_user_pages_fast(addr, 1, 1, page);
1462 	if (npages == 1) {
1463 		*pfn = page_to_pfn(page[0]);
1464 
1465 		if (writable)
1466 			*writable = true;
1467 		return true;
1468 	}
1469 
1470 	return false;
1471 }
1472 
1473 /*
1474  * The slow path to get the pfn of the specified host virtual address,
1475  * 1 indicates success, -errno is returned if error is detected.
1476  */
1477 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1478 			   bool *writable, kvm_pfn_t *pfn)
1479 {
1480 	unsigned int flags = FOLL_HWPOISON;
1481 	struct page *page;
1482 	int npages = 0;
1483 
1484 	might_sleep();
1485 
1486 	if (writable)
1487 		*writable = write_fault;
1488 
1489 	if (write_fault)
1490 		flags |= FOLL_WRITE;
1491 	if (async)
1492 		flags |= FOLL_NOWAIT;
1493 
1494 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1495 	if (npages != 1)
1496 		return npages;
1497 
1498 	/* map read fault as writable if possible */
1499 	if (unlikely(!write_fault) && writable) {
1500 		struct page *wpage;
1501 
1502 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1503 			*writable = true;
1504 			put_page(page);
1505 			page = wpage;
1506 		}
1507 	}
1508 	*pfn = page_to_pfn(page);
1509 	return npages;
1510 }
1511 
1512 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1513 {
1514 	if (unlikely(!(vma->vm_flags & VM_READ)))
1515 		return false;
1516 
1517 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1518 		return false;
1519 
1520 	return true;
1521 }
1522 
1523 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1524 			       unsigned long addr, bool *async,
1525 			       bool write_fault, bool *writable,
1526 			       kvm_pfn_t *p_pfn)
1527 {
1528 	unsigned long pfn;
1529 	int r;
1530 
1531 	r = follow_pfn(vma, addr, &pfn);
1532 	if (r) {
1533 		/*
1534 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1535 		 * not call the fault handler, so do it here.
1536 		 */
1537 		bool unlocked = false;
1538 		r = fixup_user_fault(current, current->mm, addr,
1539 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1540 				     &unlocked);
1541 		if (unlocked)
1542 			return -EAGAIN;
1543 		if (r)
1544 			return r;
1545 
1546 		r = follow_pfn(vma, addr, &pfn);
1547 		if (r)
1548 			return r;
1549 
1550 	}
1551 
1552 	if (writable)
1553 		*writable = true;
1554 
1555 	/*
1556 	 * Get a reference here because callers of *hva_to_pfn* and
1557 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1558 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1559 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1560 	 * simply do nothing for reserved pfns.
1561 	 *
1562 	 * Whoever called remap_pfn_range is also going to call e.g.
1563 	 * unmap_mapping_range before the underlying pages are freed,
1564 	 * causing a call to our MMU notifier.
1565 	 */
1566 	kvm_get_pfn(pfn);
1567 
1568 	*p_pfn = pfn;
1569 	return 0;
1570 }
1571 
1572 /*
1573  * Pin guest page in memory and return its pfn.
1574  * @addr: host virtual address which maps memory to the guest
1575  * @atomic: whether this function can sleep
1576  * @async: whether this function need to wait IO complete if the
1577  *         host page is not in the memory
1578  * @write_fault: whether we should get a writable host page
1579  * @writable: whether it allows to map a writable host page for !@write_fault
1580  *
1581  * The function will map a writable host page for these two cases:
1582  * 1): @write_fault = true
1583  * 2): @write_fault = false && @writable, @writable will tell the caller
1584  *     whether the mapping is writable.
1585  */
1586 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1587 			bool write_fault, bool *writable)
1588 {
1589 	struct vm_area_struct *vma;
1590 	kvm_pfn_t pfn = 0;
1591 	int npages, r;
1592 
1593 	/* we can do it either atomically or asynchronously, not both */
1594 	BUG_ON(atomic && async);
1595 
1596 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1597 		return pfn;
1598 
1599 	if (atomic)
1600 		return KVM_PFN_ERR_FAULT;
1601 
1602 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1603 	if (npages == 1)
1604 		return pfn;
1605 
1606 	down_read(&current->mm->mmap_sem);
1607 	if (npages == -EHWPOISON ||
1608 	      (!async && check_user_page_hwpoison(addr))) {
1609 		pfn = KVM_PFN_ERR_HWPOISON;
1610 		goto exit;
1611 	}
1612 
1613 retry:
1614 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1615 
1616 	if (vma == NULL)
1617 		pfn = KVM_PFN_ERR_FAULT;
1618 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1619 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1620 		if (r == -EAGAIN)
1621 			goto retry;
1622 		if (r < 0)
1623 			pfn = KVM_PFN_ERR_FAULT;
1624 	} else {
1625 		if (async && vma_is_valid(vma, write_fault))
1626 			*async = true;
1627 		pfn = KVM_PFN_ERR_FAULT;
1628 	}
1629 exit:
1630 	up_read(&current->mm->mmap_sem);
1631 	return pfn;
1632 }
1633 
1634 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1635 			       bool atomic, bool *async, bool write_fault,
1636 			       bool *writable)
1637 {
1638 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1639 
1640 	if (addr == KVM_HVA_ERR_RO_BAD) {
1641 		if (writable)
1642 			*writable = false;
1643 		return KVM_PFN_ERR_RO_FAULT;
1644 	}
1645 
1646 	if (kvm_is_error_hva(addr)) {
1647 		if (writable)
1648 			*writable = false;
1649 		return KVM_PFN_NOSLOT;
1650 	}
1651 
1652 	/* Do not map writable pfn in the readonly memslot. */
1653 	if (writable && memslot_is_readonly(slot)) {
1654 		*writable = false;
1655 		writable = NULL;
1656 	}
1657 
1658 	return hva_to_pfn(addr, atomic, async, write_fault,
1659 			  writable);
1660 }
1661 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1662 
1663 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1664 		      bool *writable)
1665 {
1666 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1667 				    write_fault, writable);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1670 
1671 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1672 {
1673 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1676 
1677 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1678 {
1679 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1682 
1683 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1684 {
1685 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1686 }
1687 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1688 
1689 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1690 {
1691 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1694 
1695 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1696 {
1697 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1698 }
1699 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1700 
1701 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1702 {
1703 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1706 
1707 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1708 			    struct page **pages, int nr_pages)
1709 {
1710 	unsigned long addr;
1711 	gfn_t entry = 0;
1712 
1713 	addr = gfn_to_hva_many(slot, gfn, &entry);
1714 	if (kvm_is_error_hva(addr))
1715 		return -1;
1716 
1717 	if (entry < nr_pages)
1718 		return 0;
1719 
1720 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1721 }
1722 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1723 
1724 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1725 {
1726 	if (is_error_noslot_pfn(pfn))
1727 		return KVM_ERR_PTR_BAD_PAGE;
1728 
1729 	if (kvm_is_reserved_pfn(pfn)) {
1730 		WARN_ON(1);
1731 		return KVM_ERR_PTR_BAD_PAGE;
1732 	}
1733 
1734 	return pfn_to_page(pfn);
1735 }
1736 
1737 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1738 {
1739 	kvm_pfn_t pfn;
1740 
1741 	pfn = gfn_to_pfn(kvm, gfn);
1742 
1743 	return kvm_pfn_to_page(pfn);
1744 }
1745 EXPORT_SYMBOL_GPL(gfn_to_page);
1746 
1747 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1748 			 struct kvm_host_map *map)
1749 {
1750 	kvm_pfn_t pfn;
1751 	void *hva = NULL;
1752 	struct page *page = KVM_UNMAPPED_PAGE;
1753 
1754 	if (!map)
1755 		return -EINVAL;
1756 
1757 	pfn = gfn_to_pfn_memslot(slot, gfn);
1758 	if (is_error_noslot_pfn(pfn))
1759 		return -EINVAL;
1760 
1761 	if (pfn_valid(pfn)) {
1762 		page = pfn_to_page(pfn);
1763 		hva = kmap(page);
1764 #ifdef CONFIG_HAS_IOMEM
1765 	} else {
1766 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1767 #endif
1768 	}
1769 
1770 	if (!hva)
1771 		return -EFAULT;
1772 
1773 	map->page = page;
1774 	map->hva = hva;
1775 	map->pfn = pfn;
1776 	map->gfn = gfn;
1777 
1778 	return 0;
1779 }
1780 
1781 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1782 {
1783 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1786 
1787 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1788 		    bool dirty)
1789 {
1790 	if (!map)
1791 		return;
1792 
1793 	if (!map->hva)
1794 		return;
1795 
1796 	if (map->page)
1797 		kunmap(map->page);
1798 	else
1799 		memunmap(map->hva);
1800 
1801 	if (dirty) {
1802 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1803 		kvm_release_pfn_dirty(map->pfn);
1804 	} else {
1805 		kvm_release_pfn_clean(map->pfn);
1806 	}
1807 
1808 	map->hva = NULL;
1809 	map->page = NULL;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1812 
1813 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1814 {
1815 	kvm_pfn_t pfn;
1816 
1817 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1818 
1819 	return kvm_pfn_to_page(pfn);
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1822 
1823 void kvm_release_page_clean(struct page *page)
1824 {
1825 	WARN_ON(is_error_page(page));
1826 
1827 	kvm_release_pfn_clean(page_to_pfn(page));
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1830 
1831 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1832 {
1833 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1834 		put_page(pfn_to_page(pfn));
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1837 
1838 void kvm_release_page_dirty(struct page *page)
1839 {
1840 	WARN_ON(is_error_page(page));
1841 
1842 	kvm_release_pfn_dirty(page_to_pfn(page));
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1845 
1846 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1847 {
1848 	kvm_set_pfn_dirty(pfn);
1849 	kvm_release_pfn_clean(pfn);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1852 
1853 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1854 {
1855 	if (!kvm_is_reserved_pfn(pfn)) {
1856 		struct page *page = pfn_to_page(pfn);
1857 
1858 		if (!PageReserved(page))
1859 			SetPageDirty(page);
1860 	}
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1863 
1864 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1865 {
1866 	if (!kvm_is_reserved_pfn(pfn))
1867 		mark_page_accessed(pfn_to_page(pfn));
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1870 
1871 void kvm_get_pfn(kvm_pfn_t pfn)
1872 {
1873 	if (!kvm_is_reserved_pfn(pfn))
1874 		get_page(pfn_to_page(pfn));
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1877 
1878 static int next_segment(unsigned long len, int offset)
1879 {
1880 	if (len > PAGE_SIZE - offset)
1881 		return PAGE_SIZE - offset;
1882 	else
1883 		return len;
1884 }
1885 
1886 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1887 				 void *data, int offset, int len)
1888 {
1889 	int r;
1890 	unsigned long addr;
1891 
1892 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1893 	if (kvm_is_error_hva(addr))
1894 		return -EFAULT;
1895 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1896 	if (r)
1897 		return -EFAULT;
1898 	return 0;
1899 }
1900 
1901 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1902 			int len)
1903 {
1904 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905 
1906 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1909 
1910 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1911 			     int offset, int len)
1912 {
1913 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1914 
1915 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1918 
1919 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1920 {
1921 	gfn_t gfn = gpa >> PAGE_SHIFT;
1922 	int seg;
1923 	int offset = offset_in_page(gpa);
1924 	int ret;
1925 
1926 	while ((seg = next_segment(len, offset)) != 0) {
1927 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1928 		if (ret < 0)
1929 			return ret;
1930 		offset = 0;
1931 		len -= seg;
1932 		data += seg;
1933 		++gfn;
1934 	}
1935 	return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_read_guest);
1938 
1939 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1940 {
1941 	gfn_t gfn = gpa >> PAGE_SHIFT;
1942 	int seg;
1943 	int offset = offset_in_page(gpa);
1944 	int ret;
1945 
1946 	while ((seg = next_segment(len, offset)) != 0) {
1947 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1948 		if (ret < 0)
1949 			return ret;
1950 		offset = 0;
1951 		len -= seg;
1952 		data += seg;
1953 		++gfn;
1954 	}
1955 	return 0;
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1958 
1959 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1960 			           void *data, int offset, unsigned long len)
1961 {
1962 	int r;
1963 	unsigned long addr;
1964 
1965 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1966 	if (kvm_is_error_hva(addr))
1967 		return -EFAULT;
1968 	pagefault_disable();
1969 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1970 	pagefault_enable();
1971 	if (r)
1972 		return -EFAULT;
1973 	return 0;
1974 }
1975 
1976 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1977 			  unsigned long len)
1978 {
1979 	gfn_t gfn = gpa >> PAGE_SHIFT;
1980 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1981 	int offset = offset_in_page(gpa);
1982 
1983 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1986 
1987 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1988 			       void *data, unsigned long len)
1989 {
1990 	gfn_t gfn = gpa >> PAGE_SHIFT;
1991 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1992 	int offset = offset_in_page(gpa);
1993 
1994 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1997 
1998 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1999 			          const void *data, int offset, int len)
2000 {
2001 	int r;
2002 	unsigned long addr;
2003 
2004 	addr = gfn_to_hva_memslot(memslot, gfn);
2005 	if (kvm_is_error_hva(addr))
2006 		return -EFAULT;
2007 	r = __copy_to_user((void __user *)addr + offset, data, len);
2008 	if (r)
2009 		return -EFAULT;
2010 	mark_page_dirty_in_slot(memslot, gfn);
2011 	return 0;
2012 }
2013 
2014 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2015 			 const void *data, int offset, int len)
2016 {
2017 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2018 
2019 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2022 
2023 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2024 			      const void *data, int offset, int len)
2025 {
2026 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2027 
2028 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2029 }
2030 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2031 
2032 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2033 		    unsigned long len)
2034 {
2035 	gfn_t gfn = gpa >> PAGE_SHIFT;
2036 	int seg;
2037 	int offset = offset_in_page(gpa);
2038 	int ret;
2039 
2040 	while ((seg = next_segment(len, offset)) != 0) {
2041 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2042 		if (ret < 0)
2043 			return ret;
2044 		offset = 0;
2045 		len -= seg;
2046 		data += seg;
2047 		++gfn;
2048 	}
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_write_guest);
2052 
2053 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2054 		         unsigned long len)
2055 {
2056 	gfn_t gfn = gpa >> PAGE_SHIFT;
2057 	int seg;
2058 	int offset = offset_in_page(gpa);
2059 	int ret;
2060 
2061 	while ((seg = next_segment(len, offset)) != 0) {
2062 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2063 		if (ret < 0)
2064 			return ret;
2065 		offset = 0;
2066 		len -= seg;
2067 		data += seg;
2068 		++gfn;
2069 	}
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2073 
2074 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2075 				       struct gfn_to_hva_cache *ghc,
2076 				       gpa_t gpa, unsigned long len)
2077 {
2078 	int offset = offset_in_page(gpa);
2079 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2080 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2081 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2082 	gfn_t nr_pages_avail;
2083 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2084 
2085 	ghc->gpa = gpa;
2086 	ghc->generation = slots->generation;
2087 	ghc->len = len;
2088 	ghc->hva = KVM_HVA_ERR_BAD;
2089 
2090 	/*
2091 	 * If the requested region crosses two memslots, we still
2092 	 * verify that the entire region is valid here.
2093 	 */
2094 	while (!r && start_gfn <= end_gfn) {
2095 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2096 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2097 					   &nr_pages_avail);
2098 		if (kvm_is_error_hva(ghc->hva))
2099 			r = -EFAULT;
2100 		start_gfn += nr_pages_avail;
2101 	}
2102 
2103 	/* Use the slow path for cross page reads and writes. */
2104 	if (!r && nr_pages_needed == 1)
2105 		ghc->hva += offset;
2106 	else
2107 		ghc->memslot = NULL;
2108 
2109 	return r;
2110 }
2111 
2112 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2113 			      gpa_t gpa, unsigned long len)
2114 {
2115 	struct kvm_memslots *slots = kvm_memslots(kvm);
2116 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2119 
2120 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2121 				  void *data, unsigned int offset,
2122 				  unsigned long len)
2123 {
2124 	struct kvm_memslots *slots = kvm_memslots(kvm);
2125 	int r;
2126 	gpa_t gpa = ghc->gpa + offset;
2127 
2128 	BUG_ON(len + offset > ghc->len);
2129 
2130 	if (slots->generation != ghc->generation)
2131 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2132 
2133 	if (unlikely(!ghc->memslot))
2134 		return kvm_write_guest(kvm, gpa, data, len);
2135 
2136 	if (kvm_is_error_hva(ghc->hva))
2137 		return -EFAULT;
2138 
2139 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2140 	if (r)
2141 		return -EFAULT;
2142 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2143 
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2147 
2148 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2149 			   void *data, unsigned long len)
2150 {
2151 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2152 }
2153 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2154 
2155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2156 			   void *data, unsigned long len)
2157 {
2158 	struct kvm_memslots *slots = kvm_memslots(kvm);
2159 	int r;
2160 
2161 	BUG_ON(len > ghc->len);
2162 
2163 	if (slots->generation != ghc->generation)
2164 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165 
2166 	if (unlikely(!ghc->memslot))
2167 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2168 
2169 	if (kvm_is_error_hva(ghc->hva))
2170 		return -EFAULT;
2171 
2172 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2173 	if (r)
2174 		return -EFAULT;
2175 
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2179 
2180 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2181 {
2182 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2183 
2184 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2187 
2188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2189 {
2190 	gfn_t gfn = gpa >> PAGE_SHIFT;
2191 	int seg;
2192 	int offset = offset_in_page(gpa);
2193 	int ret;
2194 
2195 	while ((seg = next_segment(len, offset)) != 0) {
2196 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2197 		if (ret < 0)
2198 			return ret;
2199 		offset = 0;
2200 		len -= seg;
2201 		++gfn;
2202 	}
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2206 
2207 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2208 				    gfn_t gfn)
2209 {
2210 	if (memslot && memslot->dirty_bitmap) {
2211 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2212 
2213 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2214 	}
2215 }
2216 
2217 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2218 {
2219 	struct kvm_memory_slot *memslot;
2220 
2221 	memslot = gfn_to_memslot(kvm, gfn);
2222 	mark_page_dirty_in_slot(memslot, gfn);
2223 }
2224 EXPORT_SYMBOL_GPL(mark_page_dirty);
2225 
2226 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2227 {
2228 	struct kvm_memory_slot *memslot;
2229 
2230 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2231 	mark_page_dirty_in_slot(memslot, gfn);
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2234 
2235 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2236 {
2237 	if (!vcpu->sigset_active)
2238 		return;
2239 
2240 	/*
2241 	 * This does a lockless modification of ->real_blocked, which is fine
2242 	 * because, only current can change ->real_blocked and all readers of
2243 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2244 	 * of ->blocked.
2245 	 */
2246 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2247 }
2248 
2249 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2250 {
2251 	if (!vcpu->sigset_active)
2252 		return;
2253 
2254 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2255 	sigemptyset(&current->real_blocked);
2256 }
2257 
2258 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2259 {
2260 	unsigned int old, val, grow, grow_start;
2261 
2262 	old = val = vcpu->halt_poll_ns;
2263 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2264 	grow = READ_ONCE(halt_poll_ns_grow);
2265 	if (!grow)
2266 		goto out;
2267 
2268 	val *= grow;
2269 	if (val < grow_start)
2270 		val = grow_start;
2271 
2272 	if (val > halt_poll_ns)
2273 		val = halt_poll_ns;
2274 
2275 	vcpu->halt_poll_ns = val;
2276 out:
2277 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2278 }
2279 
2280 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2281 {
2282 	unsigned int old, val, shrink;
2283 
2284 	old = val = vcpu->halt_poll_ns;
2285 	shrink = READ_ONCE(halt_poll_ns_shrink);
2286 	if (shrink == 0)
2287 		val = 0;
2288 	else
2289 		val /= shrink;
2290 
2291 	vcpu->halt_poll_ns = val;
2292 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2293 }
2294 
2295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2296 {
2297 	int ret = -EINTR;
2298 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2299 
2300 	if (kvm_arch_vcpu_runnable(vcpu)) {
2301 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2302 		goto out;
2303 	}
2304 	if (kvm_cpu_has_pending_timer(vcpu))
2305 		goto out;
2306 	if (signal_pending(current))
2307 		goto out;
2308 
2309 	ret = 0;
2310 out:
2311 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2312 	return ret;
2313 }
2314 
2315 /*
2316  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2317  */
2318 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2319 {
2320 	ktime_t start, cur;
2321 	DECLARE_SWAITQUEUE(wait);
2322 	bool waited = false;
2323 	u64 block_ns;
2324 
2325 	start = cur = ktime_get();
2326 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2327 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2328 
2329 		++vcpu->stat.halt_attempted_poll;
2330 		do {
2331 			/*
2332 			 * This sets KVM_REQ_UNHALT if an interrupt
2333 			 * arrives.
2334 			 */
2335 			if (kvm_vcpu_check_block(vcpu) < 0) {
2336 				++vcpu->stat.halt_successful_poll;
2337 				if (!vcpu_valid_wakeup(vcpu))
2338 					++vcpu->stat.halt_poll_invalid;
2339 				goto out;
2340 			}
2341 			cur = ktime_get();
2342 		} while (single_task_running() && ktime_before(cur, stop));
2343 	}
2344 
2345 	kvm_arch_vcpu_blocking(vcpu);
2346 
2347 	for (;;) {
2348 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2349 
2350 		if (kvm_vcpu_check_block(vcpu) < 0)
2351 			break;
2352 
2353 		waited = true;
2354 		schedule();
2355 	}
2356 
2357 	finish_swait(&vcpu->wq, &wait);
2358 	cur = ktime_get();
2359 
2360 	kvm_arch_vcpu_unblocking(vcpu);
2361 out:
2362 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2363 
2364 	if (!vcpu_valid_wakeup(vcpu))
2365 		shrink_halt_poll_ns(vcpu);
2366 	else if (halt_poll_ns) {
2367 		if (block_ns <= vcpu->halt_poll_ns)
2368 			;
2369 		/* we had a long block, shrink polling */
2370 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2371 			shrink_halt_poll_ns(vcpu);
2372 		/* we had a short halt and our poll time is too small */
2373 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2374 			block_ns < halt_poll_ns)
2375 			grow_halt_poll_ns(vcpu);
2376 	} else
2377 		vcpu->halt_poll_ns = 0;
2378 
2379 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2380 	kvm_arch_vcpu_block_finish(vcpu);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2383 
2384 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2385 {
2386 	struct swait_queue_head *wqp;
2387 
2388 	wqp = kvm_arch_vcpu_wq(vcpu);
2389 	if (swq_has_sleeper(wqp)) {
2390 		swake_up_one(wqp);
2391 		++vcpu->stat.halt_wakeup;
2392 		return true;
2393 	}
2394 
2395 	return false;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2398 
2399 #ifndef CONFIG_S390
2400 /*
2401  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2402  */
2403 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2404 {
2405 	int me;
2406 	int cpu = vcpu->cpu;
2407 
2408 	if (kvm_vcpu_wake_up(vcpu))
2409 		return;
2410 
2411 	me = get_cpu();
2412 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2413 		if (kvm_arch_vcpu_should_kick(vcpu))
2414 			smp_send_reschedule(cpu);
2415 	put_cpu();
2416 }
2417 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2418 #endif /* !CONFIG_S390 */
2419 
2420 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2421 {
2422 	struct pid *pid;
2423 	struct task_struct *task = NULL;
2424 	int ret = 0;
2425 
2426 	rcu_read_lock();
2427 	pid = rcu_dereference(target->pid);
2428 	if (pid)
2429 		task = get_pid_task(pid, PIDTYPE_PID);
2430 	rcu_read_unlock();
2431 	if (!task)
2432 		return ret;
2433 	ret = yield_to(task, 1);
2434 	put_task_struct(task);
2435 
2436 	return ret;
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2439 
2440 /*
2441  * Helper that checks whether a VCPU is eligible for directed yield.
2442  * Most eligible candidate to yield is decided by following heuristics:
2443  *
2444  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2445  *  (preempted lock holder), indicated by @in_spin_loop.
2446  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2447  *
2448  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2449  *  chance last time (mostly it has become eligible now since we have probably
2450  *  yielded to lockholder in last iteration. This is done by toggling
2451  *  @dy_eligible each time a VCPU checked for eligibility.)
2452  *
2453  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2454  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2455  *  burning. Giving priority for a potential lock-holder increases lock
2456  *  progress.
2457  *
2458  *  Since algorithm is based on heuristics, accessing another VCPU data without
2459  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2460  *  and continue with next VCPU and so on.
2461  */
2462 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2463 {
2464 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2465 	bool eligible;
2466 
2467 	eligible = !vcpu->spin_loop.in_spin_loop ||
2468 		    vcpu->spin_loop.dy_eligible;
2469 
2470 	if (vcpu->spin_loop.in_spin_loop)
2471 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2472 
2473 	return eligible;
2474 #else
2475 	return true;
2476 #endif
2477 }
2478 
2479 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2480 {
2481 	struct kvm *kvm = me->kvm;
2482 	struct kvm_vcpu *vcpu;
2483 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2484 	int yielded = 0;
2485 	int try = 3;
2486 	int pass;
2487 	int i;
2488 
2489 	kvm_vcpu_set_in_spin_loop(me, true);
2490 	/*
2491 	 * We boost the priority of a VCPU that is runnable but not
2492 	 * currently running, because it got preempted by something
2493 	 * else and called schedule in __vcpu_run.  Hopefully that
2494 	 * VCPU is holding the lock that we need and will release it.
2495 	 * We approximate round-robin by starting at the last boosted VCPU.
2496 	 */
2497 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2498 		kvm_for_each_vcpu(i, vcpu, kvm) {
2499 			if (!pass && i <= last_boosted_vcpu) {
2500 				i = last_boosted_vcpu;
2501 				continue;
2502 			} else if (pass && i > last_boosted_vcpu)
2503 				break;
2504 			if (!READ_ONCE(vcpu->preempted))
2505 				continue;
2506 			if (vcpu == me)
2507 				continue;
2508 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2509 				continue;
2510 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2511 				continue;
2512 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2513 				continue;
2514 
2515 			yielded = kvm_vcpu_yield_to(vcpu);
2516 			if (yielded > 0) {
2517 				kvm->last_boosted_vcpu = i;
2518 				break;
2519 			} else if (yielded < 0) {
2520 				try--;
2521 				if (!try)
2522 					break;
2523 			}
2524 		}
2525 	}
2526 	kvm_vcpu_set_in_spin_loop(me, false);
2527 
2528 	/* Ensure vcpu is not eligible during next spinloop */
2529 	kvm_vcpu_set_dy_eligible(me, false);
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2532 
2533 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2534 {
2535 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2536 	struct page *page;
2537 
2538 	if (vmf->pgoff == 0)
2539 		page = virt_to_page(vcpu->run);
2540 #ifdef CONFIG_X86
2541 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2542 		page = virt_to_page(vcpu->arch.pio_data);
2543 #endif
2544 #ifdef CONFIG_KVM_MMIO
2545 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2546 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2547 #endif
2548 	else
2549 		return kvm_arch_vcpu_fault(vcpu, vmf);
2550 	get_page(page);
2551 	vmf->page = page;
2552 	return 0;
2553 }
2554 
2555 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2556 	.fault = kvm_vcpu_fault,
2557 };
2558 
2559 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2560 {
2561 	vma->vm_ops = &kvm_vcpu_vm_ops;
2562 	return 0;
2563 }
2564 
2565 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2566 {
2567 	struct kvm_vcpu *vcpu = filp->private_data;
2568 
2569 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2570 	kvm_put_kvm(vcpu->kvm);
2571 	return 0;
2572 }
2573 
2574 static struct file_operations kvm_vcpu_fops = {
2575 	.release        = kvm_vcpu_release,
2576 	.unlocked_ioctl = kvm_vcpu_ioctl,
2577 	.mmap           = kvm_vcpu_mmap,
2578 	.llseek		= noop_llseek,
2579 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2580 };
2581 
2582 /*
2583  * Allocates an inode for the vcpu.
2584  */
2585 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2586 {
2587 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2588 
2589 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2590 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2591 }
2592 
2593 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2594 {
2595 	char dir_name[ITOA_MAX_LEN * 2];
2596 	int ret;
2597 
2598 	if (!kvm_arch_has_vcpu_debugfs())
2599 		return 0;
2600 
2601 	if (!debugfs_initialized())
2602 		return 0;
2603 
2604 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2605 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2606 								vcpu->kvm->debugfs_dentry);
2607 	if (!vcpu->debugfs_dentry)
2608 		return -ENOMEM;
2609 
2610 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2611 	if (ret < 0) {
2612 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2613 		return ret;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 /*
2620  * Creates some virtual cpus.  Good luck creating more than one.
2621  */
2622 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2623 {
2624 	int r;
2625 	struct kvm_vcpu *vcpu;
2626 
2627 	if (id >= KVM_MAX_VCPU_ID)
2628 		return -EINVAL;
2629 
2630 	mutex_lock(&kvm->lock);
2631 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2632 		mutex_unlock(&kvm->lock);
2633 		return -EINVAL;
2634 	}
2635 
2636 	kvm->created_vcpus++;
2637 	mutex_unlock(&kvm->lock);
2638 
2639 	vcpu = kvm_arch_vcpu_create(kvm, id);
2640 	if (IS_ERR(vcpu)) {
2641 		r = PTR_ERR(vcpu);
2642 		goto vcpu_decrement;
2643 	}
2644 
2645 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2646 
2647 	r = kvm_arch_vcpu_setup(vcpu);
2648 	if (r)
2649 		goto vcpu_destroy;
2650 
2651 	r = kvm_create_vcpu_debugfs(vcpu);
2652 	if (r)
2653 		goto vcpu_destroy;
2654 
2655 	mutex_lock(&kvm->lock);
2656 	if (kvm_get_vcpu_by_id(kvm, id)) {
2657 		r = -EEXIST;
2658 		goto unlock_vcpu_destroy;
2659 	}
2660 
2661 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2662 
2663 	/* Now it's all set up, let userspace reach it */
2664 	kvm_get_kvm(kvm);
2665 	r = create_vcpu_fd(vcpu);
2666 	if (r < 0) {
2667 		kvm_put_kvm(kvm);
2668 		goto unlock_vcpu_destroy;
2669 	}
2670 
2671 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2672 
2673 	/*
2674 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2675 	 * before kvm->online_vcpu's incremented value.
2676 	 */
2677 	smp_wmb();
2678 	atomic_inc(&kvm->online_vcpus);
2679 
2680 	mutex_unlock(&kvm->lock);
2681 	kvm_arch_vcpu_postcreate(vcpu);
2682 	return r;
2683 
2684 unlock_vcpu_destroy:
2685 	mutex_unlock(&kvm->lock);
2686 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2687 vcpu_destroy:
2688 	kvm_arch_vcpu_destroy(vcpu);
2689 vcpu_decrement:
2690 	mutex_lock(&kvm->lock);
2691 	kvm->created_vcpus--;
2692 	mutex_unlock(&kvm->lock);
2693 	return r;
2694 }
2695 
2696 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2697 {
2698 	if (sigset) {
2699 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2700 		vcpu->sigset_active = 1;
2701 		vcpu->sigset = *sigset;
2702 	} else
2703 		vcpu->sigset_active = 0;
2704 	return 0;
2705 }
2706 
2707 static long kvm_vcpu_ioctl(struct file *filp,
2708 			   unsigned int ioctl, unsigned long arg)
2709 {
2710 	struct kvm_vcpu *vcpu = filp->private_data;
2711 	void __user *argp = (void __user *)arg;
2712 	int r;
2713 	struct kvm_fpu *fpu = NULL;
2714 	struct kvm_sregs *kvm_sregs = NULL;
2715 
2716 	if (vcpu->kvm->mm != current->mm)
2717 		return -EIO;
2718 
2719 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2720 		return -EINVAL;
2721 
2722 	/*
2723 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2724 	 * execution; mutex_lock() would break them.
2725 	 */
2726 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2727 	if (r != -ENOIOCTLCMD)
2728 		return r;
2729 
2730 	if (mutex_lock_killable(&vcpu->mutex))
2731 		return -EINTR;
2732 	switch (ioctl) {
2733 	case KVM_RUN: {
2734 		struct pid *oldpid;
2735 		r = -EINVAL;
2736 		if (arg)
2737 			goto out;
2738 		oldpid = rcu_access_pointer(vcpu->pid);
2739 		if (unlikely(oldpid != task_pid(current))) {
2740 			/* The thread running this VCPU changed. */
2741 			struct pid *newpid;
2742 
2743 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2744 			if (r)
2745 				break;
2746 
2747 			newpid = get_task_pid(current, PIDTYPE_PID);
2748 			rcu_assign_pointer(vcpu->pid, newpid);
2749 			if (oldpid)
2750 				synchronize_rcu();
2751 			put_pid(oldpid);
2752 		}
2753 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2754 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2755 		break;
2756 	}
2757 	case KVM_GET_REGS: {
2758 		struct kvm_regs *kvm_regs;
2759 
2760 		r = -ENOMEM;
2761 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2762 		if (!kvm_regs)
2763 			goto out;
2764 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2765 		if (r)
2766 			goto out_free1;
2767 		r = -EFAULT;
2768 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2769 			goto out_free1;
2770 		r = 0;
2771 out_free1:
2772 		kfree(kvm_regs);
2773 		break;
2774 	}
2775 	case KVM_SET_REGS: {
2776 		struct kvm_regs *kvm_regs;
2777 
2778 		r = -ENOMEM;
2779 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2780 		if (IS_ERR(kvm_regs)) {
2781 			r = PTR_ERR(kvm_regs);
2782 			goto out;
2783 		}
2784 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2785 		kfree(kvm_regs);
2786 		break;
2787 	}
2788 	case KVM_GET_SREGS: {
2789 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2790 				    GFP_KERNEL_ACCOUNT);
2791 		r = -ENOMEM;
2792 		if (!kvm_sregs)
2793 			goto out;
2794 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2795 		if (r)
2796 			goto out;
2797 		r = -EFAULT;
2798 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2799 			goto out;
2800 		r = 0;
2801 		break;
2802 	}
2803 	case KVM_SET_SREGS: {
2804 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2805 		if (IS_ERR(kvm_sregs)) {
2806 			r = PTR_ERR(kvm_sregs);
2807 			kvm_sregs = NULL;
2808 			goto out;
2809 		}
2810 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2811 		break;
2812 	}
2813 	case KVM_GET_MP_STATE: {
2814 		struct kvm_mp_state mp_state;
2815 
2816 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2817 		if (r)
2818 			goto out;
2819 		r = -EFAULT;
2820 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2821 			goto out;
2822 		r = 0;
2823 		break;
2824 	}
2825 	case KVM_SET_MP_STATE: {
2826 		struct kvm_mp_state mp_state;
2827 
2828 		r = -EFAULT;
2829 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2830 			goto out;
2831 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2832 		break;
2833 	}
2834 	case KVM_TRANSLATE: {
2835 		struct kvm_translation tr;
2836 
2837 		r = -EFAULT;
2838 		if (copy_from_user(&tr, argp, sizeof(tr)))
2839 			goto out;
2840 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2841 		if (r)
2842 			goto out;
2843 		r = -EFAULT;
2844 		if (copy_to_user(argp, &tr, sizeof(tr)))
2845 			goto out;
2846 		r = 0;
2847 		break;
2848 	}
2849 	case KVM_SET_GUEST_DEBUG: {
2850 		struct kvm_guest_debug dbg;
2851 
2852 		r = -EFAULT;
2853 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2854 			goto out;
2855 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2856 		break;
2857 	}
2858 	case KVM_SET_SIGNAL_MASK: {
2859 		struct kvm_signal_mask __user *sigmask_arg = argp;
2860 		struct kvm_signal_mask kvm_sigmask;
2861 		sigset_t sigset, *p;
2862 
2863 		p = NULL;
2864 		if (argp) {
2865 			r = -EFAULT;
2866 			if (copy_from_user(&kvm_sigmask, argp,
2867 					   sizeof(kvm_sigmask)))
2868 				goto out;
2869 			r = -EINVAL;
2870 			if (kvm_sigmask.len != sizeof(sigset))
2871 				goto out;
2872 			r = -EFAULT;
2873 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2874 					   sizeof(sigset)))
2875 				goto out;
2876 			p = &sigset;
2877 		}
2878 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2879 		break;
2880 	}
2881 	case KVM_GET_FPU: {
2882 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2883 		r = -ENOMEM;
2884 		if (!fpu)
2885 			goto out;
2886 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2887 		if (r)
2888 			goto out;
2889 		r = -EFAULT;
2890 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2891 			goto out;
2892 		r = 0;
2893 		break;
2894 	}
2895 	case KVM_SET_FPU: {
2896 		fpu = memdup_user(argp, sizeof(*fpu));
2897 		if (IS_ERR(fpu)) {
2898 			r = PTR_ERR(fpu);
2899 			fpu = NULL;
2900 			goto out;
2901 		}
2902 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2903 		break;
2904 	}
2905 	default:
2906 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2907 	}
2908 out:
2909 	mutex_unlock(&vcpu->mutex);
2910 	kfree(fpu);
2911 	kfree(kvm_sregs);
2912 	return r;
2913 }
2914 
2915 #ifdef CONFIG_KVM_COMPAT
2916 static long kvm_vcpu_compat_ioctl(struct file *filp,
2917 				  unsigned int ioctl, unsigned long arg)
2918 {
2919 	struct kvm_vcpu *vcpu = filp->private_data;
2920 	void __user *argp = compat_ptr(arg);
2921 	int r;
2922 
2923 	if (vcpu->kvm->mm != current->mm)
2924 		return -EIO;
2925 
2926 	switch (ioctl) {
2927 	case KVM_SET_SIGNAL_MASK: {
2928 		struct kvm_signal_mask __user *sigmask_arg = argp;
2929 		struct kvm_signal_mask kvm_sigmask;
2930 		sigset_t sigset;
2931 
2932 		if (argp) {
2933 			r = -EFAULT;
2934 			if (copy_from_user(&kvm_sigmask, argp,
2935 					   sizeof(kvm_sigmask)))
2936 				goto out;
2937 			r = -EINVAL;
2938 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2939 				goto out;
2940 			r = -EFAULT;
2941 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2942 				goto out;
2943 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2944 		} else
2945 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2946 		break;
2947 	}
2948 	default:
2949 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2950 	}
2951 
2952 out:
2953 	return r;
2954 }
2955 #endif
2956 
2957 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2958 {
2959 	struct kvm_device *dev = filp->private_data;
2960 
2961 	if (dev->ops->mmap)
2962 		return dev->ops->mmap(dev, vma);
2963 
2964 	return -ENODEV;
2965 }
2966 
2967 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2968 				 int (*accessor)(struct kvm_device *dev,
2969 						 struct kvm_device_attr *attr),
2970 				 unsigned long arg)
2971 {
2972 	struct kvm_device_attr attr;
2973 
2974 	if (!accessor)
2975 		return -EPERM;
2976 
2977 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2978 		return -EFAULT;
2979 
2980 	return accessor(dev, &attr);
2981 }
2982 
2983 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2984 			     unsigned long arg)
2985 {
2986 	struct kvm_device *dev = filp->private_data;
2987 
2988 	if (dev->kvm->mm != current->mm)
2989 		return -EIO;
2990 
2991 	switch (ioctl) {
2992 	case KVM_SET_DEVICE_ATTR:
2993 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2994 	case KVM_GET_DEVICE_ATTR:
2995 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2996 	case KVM_HAS_DEVICE_ATTR:
2997 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2998 	default:
2999 		if (dev->ops->ioctl)
3000 			return dev->ops->ioctl(dev, ioctl, arg);
3001 
3002 		return -ENOTTY;
3003 	}
3004 }
3005 
3006 static int kvm_device_release(struct inode *inode, struct file *filp)
3007 {
3008 	struct kvm_device *dev = filp->private_data;
3009 	struct kvm *kvm = dev->kvm;
3010 
3011 	if (dev->ops->release) {
3012 		mutex_lock(&kvm->lock);
3013 		list_del(&dev->vm_node);
3014 		dev->ops->release(dev);
3015 		mutex_unlock(&kvm->lock);
3016 	}
3017 
3018 	kvm_put_kvm(kvm);
3019 	return 0;
3020 }
3021 
3022 static const struct file_operations kvm_device_fops = {
3023 	.unlocked_ioctl = kvm_device_ioctl,
3024 	.release = kvm_device_release,
3025 	KVM_COMPAT(kvm_device_ioctl),
3026 	.mmap = kvm_device_mmap,
3027 };
3028 
3029 struct kvm_device *kvm_device_from_filp(struct file *filp)
3030 {
3031 	if (filp->f_op != &kvm_device_fops)
3032 		return NULL;
3033 
3034 	return filp->private_data;
3035 }
3036 
3037 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3038 #ifdef CONFIG_KVM_MPIC
3039 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3040 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3041 #endif
3042 };
3043 
3044 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3045 {
3046 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3047 		return -ENOSPC;
3048 
3049 	if (kvm_device_ops_table[type] != NULL)
3050 		return -EEXIST;
3051 
3052 	kvm_device_ops_table[type] = ops;
3053 	return 0;
3054 }
3055 
3056 void kvm_unregister_device_ops(u32 type)
3057 {
3058 	if (kvm_device_ops_table[type] != NULL)
3059 		kvm_device_ops_table[type] = NULL;
3060 }
3061 
3062 static int kvm_ioctl_create_device(struct kvm *kvm,
3063 				   struct kvm_create_device *cd)
3064 {
3065 	struct kvm_device_ops *ops = NULL;
3066 	struct kvm_device *dev;
3067 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3068 	int type;
3069 	int ret;
3070 
3071 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3072 		return -ENODEV;
3073 
3074 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3075 	ops = kvm_device_ops_table[type];
3076 	if (ops == NULL)
3077 		return -ENODEV;
3078 
3079 	if (test)
3080 		return 0;
3081 
3082 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3083 	if (!dev)
3084 		return -ENOMEM;
3085 
3086 	dev->ops = ops;
3087 	dev->kvm = kvm;
3088 
3089 	mutex_lock(&kvm->lock);
3090 	ret = ops->create(dev, type);
3091 	if (ret < 0) {
3092 		mutex_unlock(&kvm->lock);
3093 		kfree(dev);
3094 		return ret;
3095 	}
3096 	list_add(&dev->vm_node, &kvm->devices);
3097 	mutex_unlock(&kvm->lock);
3098 
3099 	if (ops->init)
3100 		ops->init(dev);
3101 
3102 	kvm_get_kvm(kvm);
3103 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3104 	if (ret < 0) {
3105 		kvm_put_kvm(kvm);
3106 		mutex_lock(&kvm->lock);
3107 		list_del(&dev->vm_node);
3108 		mutex_unlock(&kvm->lock);
3109 		ops->destroy(dev);
3110 		return ret;
3111 	}
3112 
3113 	cd->fd = ret;
3114 	return 0;
3115 }
3116 
3117 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3118 {
3119 	switch (arg) {
3120 	case KVM_CAP_USER_MEMORY:
3121 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3122 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3123 	case KVM_CAP_INTERNAL_ERROR_DATA:
3124 #ifdef CONFIG_HAVE_KVM_MSI
3125 	case KVM_CAP_SIGNAL_MSI:
3126 #endif
3127 #ifdef CONFIG_HAVE_KVM_IRQFD
3128 	case KVM_CAP_IRQFD:
3129 	case KVM_CAP_IRQFD_RESAMPLE:
3130 #endif
3131 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3132 	case KVM_CAP_CHECK_EXTENSION_VM:
3133 	case KVM_CAP_ENABLE_CAP_VM:
3134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3135 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3136 #endif
3137 		return 1;
3138 #ifdef CONFIG_KVM_MMIO
3139 	case KVM_CAP_COALESCED_MMIO:
3140 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3141 	case KVM_CAP_COALESCED_PIO:
3142 		return 1;
3143 #endif
3144 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3145 	case KVM_CAP_IRQ_ROUTING:
3146 		return KVM_MAX_IRQ_ROUTES;
3147 #endif
3148 #if KVM_ADDRESS_SPACE_NUM > 1
3149 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3150 		return KVM_ADDRESS_SPACE_NUM;
3151 #endif
3152 	case KVM_CAP_MAX_VCPU_ID:
3153 		return KVM_MAX_VCPU_ID;
3154 	case KVM_CAP_NR_MEMSLOTS:
3155 		return KVM_USER_MEM_SLOTS;
3156 	default:
3157 		break;
3158 	}
3159 	return kvm_vm_ioctl_check_extension(kvm, arg);
3160 }
3161 
3162 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3163 						  struct kvm_enable_cap *cap)
3164 {
3165 	return -EINVAL;
3166 }
3167 
3168 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3169 					   struct kvm_enable_cap *cap)
3170 {
3171 	switch (cap->cap) {
3172 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3173 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3174 		if (cap->flags || (cap->args[0] & ~1))
3175 			return -EINVAL;
3176 		kvm->manual_dirty_log_protect = cap->args[0];
3177 		return 0;
3178 #endif
3179 	default:
3180 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3181 	}
3182 }
3183 
3184 static long kvm_vm_ioctl(struct file *filp,
3185 			   unsigned int ioctl, unsigned long arg)
3186 {
3187 	struct kvm *kvm = filp->private_data;
3188 	void __user *argp = (void __user *)arg;
3189 	int r;
3190 
3191 	if (kvm->mm != current->mm)
3192 		return -EIO;
3193 	switch (ioctl) {
3194 	case KVM_CREATE_VCPU:
3195 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3196 		break;
3197 	case KVM_ENABLE_CAP: {
3198 		struct kvm_enable_cap cap;
3199 
3200 		r = -EFAULT;
3201 		if (copy_from_user(&cap, argp, sizeof(cap)))
3202 			goto out;
3203 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3204 		break;
3205 	}
3206 	case KVM_SET_USER_MEMORY_REGION: {
3207 		struct kvm_userspace_memory_region kvm_userspace_mem;
3208 
3209 		r = -EFAULT;
3210 		if (copy_from_user(&kvm_userspace_mem, argp,
3211 						sizeof(kvm_userspace_mem)))
3212 			goto out;
3213 
3214 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3215 		break;
3216 	}
3217 	case KVM_GET_DIRTY_LOG: {
3218 		struct kvm_dirty_log log;
3219 
3220 		r = -EFAULT;
3221 		if (copy_from_user(&log, argp, sizeof(log)))
3222 			goto out;
3223 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3224 		break;
3225 	}
3226 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3227 	case KVM_CLEAR_DIRTY_LOG: {
3228 		struct kvm_clear_dirty_log log;
3229 
3230 		r = -EFAULT;
3231 		if (copy_from_user(&log, argp, sizeof(log)))
3232 			goto out;
3233 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3234 		break;
3235 	}
3236 #endif
3237 #ifdef CONFIG_KVM_MMIO
3238 	case KVM_REGISTER_COALESCED_MMIO: {
3239 		struct kvm_coalesced_mmio_zone zone;
3240 
3241 		r = -EFAULT;
3242 		if (copy_from_user(&zone, argp, sizeof(zone)))
3243 			goto out;
3244 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3245 		break;
3246 	}
3247 	case KVM_UNREGISTER_COALESCED_MMIO: {
3248 		struct kvm_coalesced_mmio_zone zone;
3249 
3250 		r = -EFAULT;
3251 		if (copy_from_user(&zone, argp, sizeof(zone)))
3252 			goto out;
3253 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3254 		break;
3255 	}
3256 #endif
3257 	case KVM_IRQFD: {
3258 		struct kvm_irqfd data;
3259 
3260 		r = -EFAULT;
3261 		if (copy_from_user(&data, argp, sizeof(data)))
3262 			goto out;
3263 		r = kvm_irqfd(kvm, &data);
3264 		break;
3265 	}
3266 	case KVM_IOEVENTFD: {
3267 		struct kvm_ioeventfd data;
3268 
3269 		r = -EFAULT;
3270 		if (copy_from_user(&data, argp, sizeof(data)))
3271 			goto out;
3272 		r = kvm_ioeventfd(kvm, &data);
3273 		break;
3274 	}
3275 #ifdef CONFIG_HAVE_KVM_MSI
3276 	case KVM_SIGNAL_MSI: {
3277 		struct kvm_msi msi;
3278 
3279 		r = -EFAULT;
3280 		if (copy_from_user(&msi, argp, sizeof(msi)))
3281 			goto out;
3282 		r = kvm_send_userspace_msi(kvm, &msi);
3283 		break;
3284 	}
3285 #endif
3286 #ifdef __KVM_HAVE_IRQ_LINE
3287 	case KVM_IRQ_LINE_STATUS:
3288 	case KVM_IRQ_LINE: {
3289 		struct kvm_irq_level irq_event;
3290 
3291 		r = -EFAULT;
3292 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3293 			goto out;
3294 
3295 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3296 					ioctl == KVM_IRQ_LINE_STATUS);
3297 		if (r)
3298 			goto out;
3299 
3300 		r = -EFAULT;
3301 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3302 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3303 				goto out;
3304 		}
3305 
3306 		r = 0;
3307 		break;
3308 	}
3309 #endif
3310 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3311 	case KVM_SET_GSI_ROUTING: {
3312 		struct kvm_irq_routing routing;
3313 		struct kvm_irq_routing __user *urouting;
3314 		struct kvm_irq_routing_entry *entries = NULL;
3315 
3316 		r = -EFAULT;
3317 		if (copy_from_user(&routing, argp, sizeof(routing)))
3318 			goto out;
3319 		r = -EINVAL;
3320 		if (!kvm_arch_can_set_irq_routing(kvm))
3321 			goto out;
3322 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3323 			goto out;
3324 		if (routing.flags)
3325 			goto out;
3326 		if (routing.nr) {
3327 			r = -ENOMEM;
3328 			entries = vmalloc(array_size(sizeof(*entries),
3329 						     routing.nr));
3330 			if (!entries)
3331 				goto out;
3332 			r = -EFAULT;
3333 			urouting = argp;
3334 			if (copy_from_user(entries, urouting->entries,
3335 					   routing.nr * sizeof(*entries)))
3336 				goto out_free_irq_routing;
3337 		}
3338 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3339 					routing.flags);
3340 out_free_irq_routing:
3341 		vfree(entries);
3342 		break;
3343 	}
3344 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3345 	case KVM_CREATE_DEVICE: {
3346 		struct kvm_create_device cd;
3347 
3348 		r = -EFAULT;
3349 		if (copy_from_user(&cd, argp, sizeof(cd)))
3350 			goto out;
3351 
3352 		r = kvm_ioctl_create_device(kvm, &cd);
3353 		if (r)
3354 			goto out;
3355 
3356 		r = -EFAULT;
3357 		if (copy_to_user(argp, &cd, sizeof(cd)))
3358 			goto out;
3359 
3360 		r = 0;
3361 		break;
3362 	}
3363 	case KVM_CHECK_EXTENSION:
3364 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3365 		break;
3366 	default:
3367 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3368 	}
3369 out:
3370 	return r;
3371 }
3372 
3373 #ifdef CONFIG_KVM_COMPAT
3374 struct compat_kvm_dirty_log {
3375 	__u32 slot;
3376 	__u32 padding1;
3377 	union {
3378 		compat_uptr_t dirty_bitmap; /* one bit per page */
3379 		__u64 padding2;
3380 	};
3381 };
3382 
3383 static long kvm_vm_compat_ioctl(struct file *filp,
3384 			   unsigned int ioctl, unsigned long arg)
3385 {
3386 	struct kvm *kvm = filp->private_data;
3387 	int r;
3388 
3389 	if (kvm->mm != current->mm)
3390 		return -EIO;
3391 	switch (ioctl) {
3392 	case KVM_GET_DIRTY_LOG: {
3393 		struct compat_kvm_dirty_log compat_log;
3394 		struct kvm_dirty_log log;
3395 
3396 		if (copy_from_user(&compat_log, (void __user *)arg,
3397 				   sizeof(compat_log)))
3398 			return -EFAULT;
3399 		log.slot	 = compat_log.slot;
3400 		log.padding1	 = compat_log.padding1;
3401 		log.padding2	 = compat_log.padding2;
3402 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3403 
3404 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3405 		break;
3406 	}
3407 	default:
3408 		r = kvm_vm_ioctl(filp, ioctl, arg);
3409 	}
3410 	return r;
3411 }
3412 #endif
3413 
3414 static struct file_operations kvm_vm_fops = {
3415 	.release        = kvm_vm_release,
3416 	.unlocked_ioctl = kvm_vm_ioctl,
3417 	.llseek		= noop_llseek,
3418 	KVM_COMPAT(kvm_vm_compat_ioctl),
3419 };
3420 
3421 static int kvm_dev_ioctl_create_vm(unsigned long type)
3422 {
3423 	int r;
3424 	struct kvm *kvm;
3425 	struct file *file;
3426 
3427 	kvm = kvm_create_vm(type);
3428 	if (IS_ERR(kvm))
3429 		return PTR_ERR(kvm);
3430 #ifdef CONFIG_KVM_MMIO
3431 	r = kvm_coalesced_mmio_init(kvm);
3432 	if (r < 0)
3433 		goto put_kvm;
3434 #endif
3435 	r = get_unused_fd_flags(O_CLOEXEC);
3436 	if (r < 0)
3437 		goto put_kvm;
3438 
3439 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3440 	if (IS_ERR(file)) {
3441 		put_unused_fd(r);
3442 		r = PTR_ERR(file);
3443 		goto put_kvm;
3444 	}
3445 
3446 	/*
3447 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3448 	 * already set, with ->release() being kvm_vm_release().  In error
3449 	 * cases it will be called by the final fput(file) and will take
3450 	 * care of doing kvm_put_kvm(kvm).
3451 	 */
3452 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3453 		put_unused_fd(r);
3454 		fput(file);
3455 		return -ENOMEM;
3456 	}
3457 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3458 
3459 	fd_install(r, file);
3460 	return r;
3461 
3462 put_kvm:
3463 	kvm_put_kvm(kvm);
3464 	return r;
3465 }
3466 
3467 static long kvm_dev_ioctl(struct file *filp,
3468 			  unsigned int ioctl, unsigned long arg)
3469 {
3470 	long r = -EINVAL;
3471 
3472 	switch (ioctl) {
3473 	case KVM_GET_API_VERSION:
3474 		if (arg)
3475 			goto out;
3476 		r = KVM_API_VERSION;
3477 		break;
3478 	case KVM_CREATE_VM:
3479 		r = kvm_dev_ioctl_create_vm(arg);
3480 		break;
3481 	case KVM_CHECK_EXTENSION:
3482 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3483 		break;
3484 	case KVM_GET_VCPU_MMAP_SIZE:
3485 		if (arg)
3486 			goto out;
3487 		r = PAGE_SIZE;     /* struct kvm_run */
3488 #ifdef CONFIG_X86
3489 		r += PAGE_SIZE;    /* pio data page */
3490 #endif
3491 #ifdef CONFIG_KVM_MMIO
3492 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3493 #endif
3494 		break;
3495 	case KVM_TRACE_ENABLE:
3496 	case KVM_TRACE_PAUSE:
3497 	case KVM_TRACE_DISABLE:
3498 		r = -EOPNOTSUPP;
3499 		break;
3500 	default:
3501 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3502 	}
3503 out:
3504 	return r;
3505 }
3506 
3507 static struct file_operations kvm_chardev_ops = {
3508 	.unlocked_ioctl = kvm_dev_ioctl,
3509 	.llseek		= noop_llseek,
3510 	KVM_COMPAT(kvm_dev_ioctl),
3511 };
3512 
3513 static struct miscdevice kvm_dev = {
3514 	KVM_MINOR,
3515 	"kvm",
3516 	&kvm_chardev_ops,
3517 };
3518 
3519 static void hardware_enable_nolock(void *junk)
3520 {
3521 	int cpu = raw_smp_processor_id();
3522 	int r;
3523 
3524 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3525 		return;
3526 
3527 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3528 
3529 	r = kvm_arch_hardware_enable();
3530 
3531 	if (r) {
3532 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3533 		atomic_inc(&hardware_enable_failed);
3534 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3535 	}
3536 }
3537 
3538 static int kvm_starting_cpu(unsigned int cpu)
3539 {
3540 	raw_spin_lock(&kvm_count_lock);
3541 	if (kvm_usage_count)
3542 		hardware_enable_nolock(NULL);
3543 	raw_spin_unlock(&kvm_count_lock);
3544 	return 0;
3545 }
3546 
3547 static void hardware_disable_nolock(void *junk)
3548 {
3549 	int cpu = raw_smp_processor_id();
3550 
3551 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3552 		return;
3553 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3554 	kvm_arch_hardware_disable();
3555 }
3556 
3557 static int kvm_dying_cpu(unsigned int cpu)
3558 {
3559 	raw_spin_lock(&kvm_count_lock);
3560 	if (kvm_usage_count)
3561 		hardware_disable_nolock(NULL);
3562 	raw_spin_unlock(&kvm_count_lock);
3563 	return 0;
3564 }
3565 
3566 static void hardware_disable_all_nolock(void)
3567 {
3568 	BUG_ON(!kvm_usage_count);
3569 
3570 	kvm_usage_count--;
3571 	if (!kvm_usage_count)
3572 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3573 }
3574 
3575 static void hardware_disable_all(void)
3576 {
3577 	raw_spin_lock(&kvm_count_lock);
3578 	hardware_disable_all_nolock();
3579 	raw_spin_unlock(&kvm_count_lock);
3580 }
3581 
3582 static int hardware_enable_all(void)
3583 {
3584 	int r = 0;
3585 
3586 	raw_spin_lock(&kvm_count_lock);
3587 
3588 	kvm_usage_count++;
3589 	if (kvm_usage_count == 1) {
3590 		atomic_set(&hardware_enable_failed, 0);
3591 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3592 
3593 		if (atomic_read(&hardware_enable_failed)) {
3594 			hardware_disable_all_nolock();
3595 			r = -EBUSY;
3596 		}
3597 	}
3598 
3599 	raw_spin_unlock(&kvm_count_lock);
3600 
3601 	return r;
3602 }
3603 
3604 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3605 		      void *v)
3606 {
3607 	/*
3608 	 * Some (well, at least mine) BIOSes hang on reboot if
3609 	 * in vmx root mode.
3610 	 *
3611 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3612 	 */
3613 	pr_info("kvm: exiting hardware virtualization\n");
3614 	kvm_rebooting = true;
3615 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3616 	return NOTIFY_OK;
3617 }
3618 
3619 static struct notifier_block kvm_reboot_notifier = {
3620 	.notifier_call = kvm_reboot,
3621 	.priority = 0,
3622 };
3623 
3624 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3625 {
3626 	int i;
3627 
3628 	for (i = 0; i < bus->dev_count; i++) {
3629 		struct kvm_io_device *pos = bus->range[i].dev;
3630 
3631 		kvm_iodevice_destructor(pos);
3632 	}
3633 	kfree(bus);
3634 }
3635 
3636 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3637 				 const struct kvm_io_range *r2)
3638 {
3639 	gpa_t addr1 = r1->addr;
3640 	gpa_t addr2 = r2->addr;
3641 
3642 	if (addr1 < addr2)
3643 		return -1;
3644 
3645 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3646 	 * accept any overlapping write.  Any order is acceptable for
3647 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3648 	 * we process all of them.
3649 	 */
3650 	if (r2->len) {
3651 		addr1 += r1->len;
3652 		addr2 += r2->len;
3653 	}
3654 
3655 	if (addr1 > addr2)
3656 		return 1;
3657 
3658 	return 0;
3659 }
3660 
3661 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3662 {
3663 	return kvm_io_bus_cmp(p1, p2);
3664 }
3665 
3666 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3667 			     gpa_t addr, int len)
3668 {
3669 	struct kvm_io_range *range, key;
3670 	int off;
3671 
3672 	key = (struct kvm_io_range) {
3673 		.addr = addr,
3674 		.len = len,
3675 	};
3676 
3677 	range = bsearch(&key, bus->range, bus->dev_count,
3678 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3679 	if (range == NULL)
3680 		return -ENOENT;
3681 
3682 	off = range - bus->range;
3683 
3684 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3685 		off--;
3686 
3687 	return off;
3688 }
3689 
3690 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3691 			      struct kvm_io_range *range, const void *val)
3692 {
3693 	int idx;
3694 
3695 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3696 	if (idx < 0)
3697 		return -EOPNOTSUPP;
3698 
3699 	while (idx < bus->dev_count &&
3700 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3701 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3702 					range->len, val))
3703 			return idx;
3704 		idx++;
3705 	}
3706 
3707 	return -EOPNOTSUPP;
3708 }
3709 
3710 /* kvm_io_bus_write - called under kvm->slots_lock */
3711 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3712 		     int len, const void *val)
3713 {
3714 	struct kvm_io_bus *bus;
3715 	struct kvm_io_range range;
3716 	int r;
3717 
3718 	range = (struct kvm_io_range) {
3719 		.addr = addr,
3720 		.len = len,
3721 	};
3722 
3723 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3724 	if (!bus)
3725 		return -ENOMEM;
3726 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3727 	return r < 0 ? r : 0;
3728 }
3729 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3730 
3731 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3732 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3733 			    gpa_t addr, int len, const void *val, long cookie)
3734 {
3735 	struct kvm_io_bus *bus;
3736 	struct kvm_io_range range;
3737 
3738 	range = (struct kvm_io_range) {
3739 		.addr = addr,
3740 		.len = len,
3741 	};
3742 
3743 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3744 	if (!bus)
3745 		return -ENOMEM;
3746 
3747 	/* First try the device referenced by cookie. */
3748 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3749 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3750 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3751 					val))
3752 			return cookie;
3753 
3754 	/*
3755 	 * cookie contained garbage; fall back to search and return the
3756 	 * correct cookie value.
3757 	 */
3758 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3759 }
3760 
3761 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3762 			     struct kvm_io_range *range, void *val)
3763 {
3764 	int idx;
3765 
3766 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3767 	if (idx < 0)
3768 		return -EOPNOTSUPP;
3769 
3770 	while (idx < bus->dev_count &&
3771 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3772 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3773 				       range->len, val))
3774 			return idx;
3775 		idx++;
3776 	}
3777 
3778 	return -EOPNOTSUPP;
3779 }
3780 
3781 /* kvm_io_bus_read - called under kvm->slots_lock */
3782 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3783 		    int len, void *val)
3784 {
3785 	struct kvm_io_bus *bus;
3786 	struct kvm_io_range range;
3787 	int r;
3788 
3789 	range = (struct kvm_io_range) {
3790 		.addr = addr,
3791 		.len = len,
3792 	};
3793 
3794 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3795 	if (!bus)
3796 		return -ENOMEM;
3797 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3798 	return r < 0 ? r : 0;
3799 }
3800 
3801 /* Caller must hold slots_lock. */
3802 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3803 			    int len, struct kvm_io_device *dev)
3804 {
3805 	int i;
3806 	struct kvm_io_bus *new_bus, *bus;
3807 	struct kvm_io_range range;
3808 
3809 	bus = kvm_get_bus(kvm, bus_idx);
3810 	if (!bus)
3811 		return -ENOMEM;
3812 
3813 	/* exclude ioeventfd which is limited by maximum fd */
3814 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3815 		return -ENOSPC;
3816 
3817 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3818 			  GFP_KERNEL_ACCOUNT);
3819 	if (!new_bus)
3820 		return -ENOMEM;
3821 
3822 	range = (struct kvm_io_range) {
3823 		.addr = addr,
3824 		.len = len,
3825 		.dev = dev,
3826 	};
3827 
3828 	for (i = 0; i < bus->dev_count; i++)
3829 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3830 			break;
3831 
3832 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3833 	new_bus->dev_count++;
3834 	new_bus->range[i] = range;
3835 	memcpy(new_bus->range + i + 1, bus->range + i,
3836 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3837 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3838 	synchronize_srcu_expedited(&kvm->srcu);
3839 	kfree(bus);
3840 
3841 	return 0;
3842 }
3843 
3844 /* Caller must hold slots_lock. */
3845 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3846 			       struct kvm_io_device *dev)
3847 {
3848 	int i;
3849 	struct kvm_io_bus *new_bus, *bus;
3850 
3851 	bus = kvm_get_bus(kvm, bus_idx);
3852 	if (!bus)
3853 		return;
3854 
3855 	for (i = 0; i < bus->dev_count; i++)
3856 		if (bus->range[i].dev == dev) {
3857 			break;
3858 		}
3859 
3860 	if (i == bus->dev_count)
3861 		return;
3862 
3863 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3864 			  GFP_KERNEL_ACCOUNT);
3865 	if (!new_bus)  {
3866 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3867 		goto broken;
3868 	}
3869 
3870 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3871 	new_bus->dev_count--;
3872 	memcpy(new_bus->range + i, bus->range + i + 1,
3873 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3874 
3875 broken:
3876 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3877 	synchronize_srcu_expedited(&kvm->srcu);
3878 	kfree(bus);
3879 	return;
3880 }
3881 
3882 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3883 					 gpa_t addr)
3884 {
3885 	struct kvm_io_bus *bus;
3886 	int dev_idx, srcu_idx;
3887 	struct kvm_io_device *iodev = NULL;
3888 
3889 	srcu_idx = srcu_read_lock(&kvm->srcu);
3890 
3891 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3892 	if (!bus)
3893 		goto out_unlock;
3894 
3895 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3896 	if (dev_idx < 0)
3897 		goto out_unlock;
3898 
3899 	iodev = bus->range[dev_idx].dev;
3900 
3901 out_unlock:
3902 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3903 
3904 	return iodev;
3905 }
3906 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3907 
3908 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3909 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3910 			   const char *fmt)
3911 {
3912 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3913 					  inode->i_private;
3914 
3915 	/* The debugfs files are a reference to the kvm struct which
3916 	 * is still valid when kvm_destroy_vm is called.
3917 	 * To avoid the race between open and the removal of the debugfs
3918 	 * directory we test against the users count.
3919 	 */
3920 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3921 		return -ENOENT;
3922 
3923 	if (simple_attr_open(inode, file, get, set, fmt)) {
3924 		kvm_put_kvm(stat_data->kvm);
3925 		return -ENOMEM;
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3932 {
3933 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3934 					  inode->i_private;
3935 
3936 	simple_attr_release(inode, file);
3937 	kvm_put_kvm(stat_data->kvm);
3938 
3939 	return 0;
3940 }
3941 
3942 static int vm_stat_get_per_vm(void *data, u64 *val)
3943 {
3944 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3945 
3946 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3947 
3948 	return 0;
3949 }
3950 
3951 static int vm_stat_clear_per_vm(void *data, u64 val)
3952 {
3953 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3954 
3955 	if (val)
3956 		return -EINVAL;
3957 
3958 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3959 
3960 	return 0;
3961 }
3962 
3963 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3964 {
3965 	__simple_attr_check_format("%llu\n", 0ull);
3966 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3967 				vm_stat_clear_per_vm, "%llu\n");
3968 }
3969 
3970 static const struct file_operations vm_stat_get_per_vm_fops = {
3971 	.owner   = THIS_MODULE,
3972 	.open    = vm_stat_get_per_vm_open,
3973 	.release = kvm_debugfs_release,
3974 	.read    = simple_attr_read,
3975 	.write   = simple_attr_write,
3976 	.llseek  = no_llseek,
3977 };
3978 
3979 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3980 {
3981 	int i;
3982 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3983 	struct kvm_vcpu *vcpu;
3984 
3985 	*val = 0;
3986 
3987 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3988 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3989 
3990 	return 0;
3991 }
3992 
3993 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3994 {
3995 	int i;
3996 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3997 	struct kvm_vcpu *vcpu;
3998 
3999 	if (val)
4000 		return -EINVAL;
4001 
4002 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4003 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4004 
4005 	return 0;
4006 }
4007 
4008 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4009 {
4010 	__simple_attr_check_format("%llu\n", 0ull);
4011 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4012 				 vcpu_stat_clear_per_vm, "%llu\n");
4013 }
4014 
4015 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4016 	.owner   = THIS_MODULE,
4017 	.open    = vcpu_stat_get_per_vm_open,
4018 	.release = kvm_debugfs_release,
4019 	.read    = simple_attr_read,
4020 	.write   = simple_attr_write,
4021 	.llseek  = no_llseek,
4022 };
4023 
4024 static const struct file_operations *stat_fops_per_vm[] = {
4025 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4026 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4027 };
4028 
4029 static int vm_stat_get(void *_offset, u64 *val)
4030 {
4031 	unsigned offset = (long)_offset;
4032 	struct kvm *kvm;
4033 	struct kvm_stat_data stat_tmp = {.offset = offset};
4034 	u64 tmp_val;
4035 
4036 	*val = 0;
4037 	spin_lock(&kvm_lock);
4038 	list_for_each_entry(kvm, &vm_list, vm_list) {
4039 		stat_tmp.kvm = kvm;
4040 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4041 		*val += tmp_val;
4042 	}
4043 	spin_unlock(&kvm_lock);
4044 	return 0;
4045 }
4046 
4047 static int vm_stat_clear(void *_offset, u64 val)
4048 {
4049 	unsigned offset = (long)_offset;
4050 	struct kvm *kvm;
4051 	struct kvm_stat_data stat_tmp = {.offset = offset};
4052 
4053 	if (val)
4054 		return -EINVAL;
4055 
4056 	spin_lock(&kvm_lock);
4057 	list_for_each_entry(kvm, &vm_list, vm_list) {
4058 		stat_tmp.kvm = kvm;
4059 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4060 	}
4061 	spin_unlock(&kvm_lock);
4062 
4063 	return 0;
4064 }
4065 
4066 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4067 
4068 static int vcpu_stat_get(void *_offset, u64 *val)
4069 {
4070 	unsigned offset = (long)_offset;
4071 	struct kvm *kvm;
4072 	struct kvm_stat_data stat_tmp = {.offset = offset};
4073 	u64 tmp_val;
4074 
4075 	*val = 0;
4076 	spin_lock(&kvm_lock);
4077 	list_for_each_entry(kvm, &vm_list, vm_list) {
4078 		stat_tmp.kvm = kvm;
4079 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4080 		*val += tmp_val;
4081 	}
4082 	spin_unlock(&kvm_lock);
4083 	return 0;
4084 }
4085 
4086 static int vcpu_stat_clear(void *_offset, u64 val)
4087 {
4088 	unsigned offset = (long)_offset;
4089 	struct kvm *kvm;
4090 	struct kvm_stat_data stat_tmp = {.offset = offset};
4091 
4092 	if (val)
4093 		return -EINVAL;
4094 
4095 	spin_lock(&kvm_lock);
4096 	list_for_each_entry(kvm, &vm_list, vm_list) {
4097 		stat_tmp.kvm = kvm;
4098 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4099 	}
4100 	spin_unlock(&kvm_lock);
4101 
4102 	return 0;
4103 }
4104 
4105 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4106 			"%llu\n");
4107 
4108 static const struct file_operations *stat_fops[] = {
4109 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4110 	[KVM_STAT_VM]   = &vm_stat_fops,
4111 };
4112 
4113 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4114 {
4115 	struct kobj_uevent_env *env;
4116 	unsigned long long created, active;
4117 
4118 	if (!kvm_dev.this_device || !kvm)
4119 		return;
4120 
4121 	spin_lock(&kvm_lock);
4122 	if (type == KVM_EVENT_CREATE_VM) {
4123 		kvm_createvm_count++;
4124 		kvm_active_vms++;
4125 	} else if (type == KVM_EVENT_DESTROY_VM) {
4126 		kvm_active_vms--;
4127 	}
4128 	created = kvm_createvm_count;
4129 	active = kvm_active_vms;
4130 	spin_unlock(&kvm_lock);
4131 
4132 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4133 	if (!env)
4134 		return;
4135 
4136 	add_uevent_var(env, "CREATED=%llu", created);
4137 	add_uevent_var(env, "COUNT=%llu", active);
4138 
4139 	if (type == KVM_EVENT_CREATE_VM) {
4140 		add_uevent_var(env, "EVENT=create");
4141 		kvm->userspace_pid = task_pid_nr(current);
4142 	} else if (type == KVM_EVENT_DESTROY_VM) {
4143 		add_uevent_var(env, "EVENT=destroy");
4144 	}
4145 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4146 
4147 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4148 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4149 
4150 		if (p) {
4151 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4152 			if (!IS_ERR(tmp))
4153 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4154 			kfree(p);
4155 		}
4156 	}
4157 	/* no need for checks, since we are adding at most only 5 keys */
4158 	env->envp[env->envp_idx++] = NULL;
4159 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4160 	kfree(env);
4161 }
4162 
4163 static void kvm_init_debug(void)
4164 {
4165 	struct kvm_stats_debugfs_item *p;
4166 
4167 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4168 
4169 	kvm_debugfs_num_entries = 0;
4170 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4171 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4172 				    (void *)(long)p->offset,
4173 				    stat_fops[p->kind]);
4174 	}
4175 }
4176 
4177 static int kvm_suspend(void)
4178 {
4179 	if (kvm_usage_count)
4180 		hardware_disable_nolock(NULL);
4181 	return 0;
4182 }
4183 
4184 static void kvm_resume(void)
4185 {
4186 	if (kvm_usage_count) {
4187 #ifdef CONFIG_LOCKDEP
4188 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4189 #endif
4190 		hardware_enable_nolock(NULL);
4191 	}
4192 }
4193 
4194 static struct syscore_ops kvm_syscore_ops = {
4195 	.suspend = kvm_suspend,
4196 	.resume = kvm_resume,
4197 };
4198 
4199 static inline
4200 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4201 {
4202 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4203 }
4204 
4205 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4206 {
4207 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4208 
4209 	if (vcpu->preempted)
4210 		vcpu->preempted = false;
4211 
4212 	kvm_arch_sched_in(vcpu, cpu);
4213 
4214 	kvm_arch_vcpu_load(vcpu, cpu);
4215 }
4216 
4217 static void kvm_sched_out(struct preempt_notifier *pn,
4218 			  struct task_struct *next)
4219 {
4220 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4221 
4222 	if (current->state == TASK_RUNNING)
4223 		vcpu->preempted = true;
4224 	kvm_arch_vcpu_put(vcpu);
4225 }
4226 
4227 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4228 		  struct module *module)
4229 {
4230 	int r;
4231 	int cpu;
4232 
4233 	r = kvm_arch_init(opaque);
4234 	if (r)
4235 		goto out_fail;
4236 
4237 	/*
4238 	 * kvm_arch_init makes sure there's at most one caller
4239 	 * for architectures that support multiple implementations,
4240 	 * like intel and amd on x86.
4241 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4242 	 * conflicts in case kvm is already setup for another implementation.
4243 	 */
4244 	r = kvm_irqfd_init();
4245 	if (r)
4246 		goto out_irqfd;
4247 
4248 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4249 		r = -ENOMEM;
4250 		goto out_free_0;
4251 	}
4252 
4253 	r = kvm_arch_hardware_setup();
4254 	if (r < 0)
4255 		goto out_free_0a;
4256 
4257 	for_each_online_cpu(cpu) {
4258 		smp_call_function_single(cpu,
4259 				kvm_arch_check_processor_compat,
4260 				&r, 1);
4261 		if (r < 0)
4262 			goto out_free_1;
4263 	}
4264 
4265 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4266 				      kvm_starting_cpu, kvm_dying_cpu);
4267 	if (r)
4268 		goto out_free_2;
4269 	register_reboot_notifier(&kvm_reboot_notifier);
4270 
4271 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4272 	if (!vcpu_align)
4273 		vcpu_align = __alignof__(struct kvm_vcpu);
4274 	kvm_vcpu_cache =
4275 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4276 					   SLAB_ACCOUNT,
4277 					   offsetof(struct kvm_vcpu, arch),
4278 					   sizeof_field(struct kvm_vcpu, arch),
4279 					   NULL);
4280 	if (!kvm_vcpu_cache) {
4281 		r = -ENOMEM;
4282 		goto out_free_3;
4283 	}
4284 
4285 	r = kvm_async_pf_init();
4286 	if (r)
4287 		goto out_free;
4288 
4289 	kvm_chardev_ops.owner = module;
4290 	kvm_vm_fops.owner = module;
4291 	kvm_vcpu_fops.owner = module;
4292 
4293 	r = misc_register(&kvm_dev);
4294 	if (r) {
4295 		pr_err("kvm: misc device register failed\n");
4296 		goto out_unreg;
4297 	}
4298 
4299 	register_syscore_ops(&kvm_syscore_ops);
4300 
4301 	kvm_preempt_ops.sched_in = kvm_sched_in;
4302 	kvm_preempt_ops.sched_out = kvm_sched_out;
4303 
4304 	kvm_init_debug();
4305 
4306 	r = kvm_vfio_ops_init();
4307 	WARN_ON(r);
4308 
4309 	return 0;
4310 
4311 out_unreg:
4312 	kvm_async_pf_deinit();
4313 out_free:
4314 	kmem_cache_destroy(kvm_vcpu_cache);
4315 out_free_3:
4316 	unregister_reboot_notifier(&kvm_reboot_notifier);
4317 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4318 out_free_2:
4319 out_free_1:
4320 	kvm_arch_hardware_unsetup();
4321 out_free_0a:
4322 	free_cpumask_var(cpus_hardware_enabled);
4323 out_free_0:
4324 	kvm_irqfd_exit();
4325 out_irqfd:
4326 	kvm_arch_exit();
4327 out_fail:
4328 	return r;
4329 }
4330 EXPORT_SYMBOL_GPL(kvm_init);
4331 
4332 void kvm_exit(void)
4333 {
4334 	debugfs_remove_recursive(kvm_debugfs_dir);
4335 	misc_deregister(&kvm_dev);
4336 	kmem_cache_destroy(kvm_vcpu_cache);
4337 	kvm_async_pf_deinit();
4338 	unregister_syscore_ops(&kvm_syscore_ops);
4339 	unregister_reboot_notifier(&kvm_reboot_notifier);
4340 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4341 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4342 	kvm_arch_hardware_unsetup();
4343 	kvm_arch_exit();
4344 	kvm_irqfd_exit();
4345 	free_cpumask_var(cpus_hardware_enabled);
4346 	kvm_vfio_ops_exit();
4347 }
4348 EXPORT_SYMBOL_GPL(kvm_exit);
4349