1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 #include <linux/io.h> 55 #include <linux/lockdep.h> 56 57 #include <asm/processor.h> 58 #include <asm/ioctl.h> 59 #include <linux/uaccess.h> 60 #include <asm/pgtable.h> 61 62 #include "coalesced_mmio.h" 63 #include "async_pf.h" 64 #include "vfio.h" 65 66 #define CREATE_TRACE_POINTS 67 #include <trace/events/kvm.h> 68 69 /* Worst case buffer size needed for holding an integer. */ 70 #define ITOA_MAX_LEN 12 71 72 MODULE_AUTHOR("Qumranet"); 73 MODULE_LICENSE("GPL"); 74 75 /* Architectures should define their poll value according to the halt latency */ 76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 77 module_param(halt_poll_ns, uint, 0644); 78 EXPORT_SYMBOL_GPL(halt_poll_ns); 79 80 /* Default doubles per-vcpu halt_poll_ns. */ 81 unsigned int halt_poll_ns_grow = 2; 82 module_param(halt_poll_ns_grow, uint, 0644); 83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 84 85 /* The start value to grow halt_poll_ns from */ 86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 87 module_param(halt_poll_ns_grow_start, uint, 0644); 88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 89 90 /* Default resets per-vcpu halt_poll_ns . */ 91 unsigned int halt_poll_ns_shrink; 92 module_param(halt_poll_ns_shrink, uint, 0644); 93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 94 95 /* 96 * Ordering of locks: 97 * 98 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 99 */ 100 101 DEFINE_SPINLOCK(kvm_lock); 102 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 103 LIST_HEAD(vm_list); 104 105 static cpumask_var_t cpus_hardware_enabled; 106 static int kvm_usage_count; 107 static atomic_t hardware_enable_failed; 108 109 struct kmem_cache *kvm_vcpu_cache; 110 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 111 112 static __read_mostly struct preempt_ops kvm_preempt_ops; 113 114 struct dentry *kvm_debugfs_dir; 115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 116 117 static int kvm_debugfs_num_entries; 118 static const struct file_operations *stat_fops_per_vm[]; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 128 unsigned long arg) { return -EINVAL; } 129 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 130 #endif 131 static int hardware_enable_all(void); 132 static void hardware_disable_all(void); 133 134 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 135 136 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 137 138 __visible bool kvm_rebooting; 139 EXPORT_SYMBOL_GPL(kvm_rebooting); 140 141 static bool largepages_enabled = true; 142 143 #define KVM_EVENT_CREATE_VM 0 144 #define KVM_EVENT_DESTROY_VM 1 145 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 146 static unsigned long long kvm_createvm_count; 147 static unsigned long long kvm_active_vms; 148 149 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 150 unsigned long start, unsigned long end, bool blockable) 151 { 152 return 0; 153 } 154 155 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 156 { 157 if (pfn_valid(pfn)) 158 return PageReserved(pfn_to_page(pfn)); 159 160 return true; 161 } 162 163 /* 164 * Switches to specified vcpu, until a matching vcpu_put() 165 */ 166 void vcpu_load(struct kvm_vcpu *vcpu) 167 { 168 int cpu = get_cpu(); 169 preempt_notifier_register(&vcpu->preempt_notifier); 170 kvm_arch_vcpu_load(vcpu, cpu); 171 put_cpu(); 172 } 173 EXPORT_SYMBOL_GPL(vcpu_load); 174 175 void vcpu_put(struct kvm_vcpu *vcpu) 176 { 177 preempt_disable(); 178 kvm_arch_vcpu_put(vcpu); 179 preempt_notifier_unregister(&vcpu->preempt_notifier); 180 preempt_enable(); 181 } 182 EXPORT_SYMBOL_GPL(vcpu_put); 183 184 /* TODO: merge with kvm_arch_vcpu_should_kick */ 185 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 186 { 187 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 188 189 /* 190 * We need to wait for the VCPU to reenable interrupts and get out of 191 * READING_SHADOW_PAGE_TABLES mode. 192 */ 193 if (req & KVM_REQUEST_WAIT) 194 return mode != OUTSIDE_GUEST_MODE; 195 196 /* 197 * Need to kick a running VCPU, but otherwise there is nothing to do. 198 */ 199 return mode == IN_GUEST_MODE; 200 } 201 202 static void ack_flush(void *_completed) 203 { 204 } 205 206 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 207 { 208 if (unlikely(!cpus)) 209 cpus = cpu_online_mask; 210 211 if (cpumask_empty(cpus)) 212 return false; 213 214 smp_call_function_many(cpus, ack_flush, NULL, wait); 215 return true; 216 } 217 218 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 219 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 220 { 221 int i, cpu, me; 222 struct kvm_vcpu *vcpu; 223 bool called; 224 225 me = get_cpu(); 226 227 kvm_for_each_vcpu(i, vcpu, kvm) { 228 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 229 continue; 230 231 kvm_make_request(req, vcpu); 232 cpu = vcpu->cpu; 233 234 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 235 continue; 236 237 if (tmp != NULL && cpu != -1 && cpu != me && 238 kvm_request_needs_ipi(vcpu, req)) 239 __cpumask_set_cpu(cpu, tmp); 240 } 241 242 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 243 put_cpu(); 244 245 return called; 246 } 247 248 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 249 { 250 cpumask_var_t cpus; 251 bool called; 252 253 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 254 255 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 256 257 free_cpumask_var(cpus); 258 return called; 259 } 260 261 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 262 void kvm_flush_remote_tlbs(struct kvm *kvm) 263 { 264 /* 265 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 266 * kvm_make_all_cpus_request. 267 */ 268 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 269 270 /* 271 * We want to publish modifications to the page tables before reading 272 * mode. Pairs with a memory barrier in arch-specific code. 273 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 274 * and smp_mb in walk_shadow_page_lockless_begin/end. 275 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 276 * 277 * There is already an smp_mb__after_atomic() before 278 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 279 * barrier here. 280 */ 281 if (!kvm_arch_flush_remote_tlb(kvm) 282 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 283 ++kvm->stat.remote_tlb_flush; 284 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 285 } 286 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 287 #endif 288 289 void kvm_reload_remote_mmus(struct kvm *kvm) 290 { 291 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 292 } 293 294 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 295 { 296 struct page *page; 297 int r; 298 299 mutex_init(&vcpu->mutex); 300 vcpu->cpu = -1; 301 vcpu->kvm = kvm; 302 vcpu->vcpu_id = id; 303 vcpu->pid = NULL; 304 init_swait_queue_head(&vcpu->wq); 305 kvm_async_pf_vcpu_init(vcpu); 306 307 vcpu->pre_pcpu = -1; 308 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 309 310 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 311 if (!page) { 312 r = -ENOMEM; 313 goto fail; 314 } 315 vcpu->run = page_address(page); 316 317 kvm_vcpu_set_in_spin_loop(vcpu, false); 318 kvm_vcpu_set_dy_eligible(vcpu, false); 319 vcpu->preempted = false; 320 321 r = kvm_arch_vcpu_init(vcpu); 322 if (r < 0) 323 goto fail_free_run; 324 return 0; 325 326 fail_free_run: 327 free_page((unsigned long)vcpu->run); 328 fail: 329 return r; 330 } 331 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 332 333 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 334 { 335 /* 336 * no need for rcu_read_lock as VCPU_RUN is the only place that 337 * will change the vcpu->pid pointer and on uninit all file 338 * descriptors are already gone. 339 */ 340 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 341 kvm_arch_vcpu_uninit(vcpu); 342 free_page((unsigned long)vcpu->run); 343 } 344 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 345 346 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 347 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 348 { 349 return container_of(mn, struct kvm, mmu_notifier); 350 } 351 352 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 353 struct mm_struct *mm, 354 unsigned long address, 355 pte_t pte) 356 { 357 struct kvm *kvm = mmu_notifier_to_kvm(mn); 358 int idx; 359 360 idx = srcu_read_lock(&kvm->srcu); 361 spin_lock(&kvm->mmu_lock); 362 kvm->mmu_notifier_seq++; 363 364 if (kvm_set_spte_hva(kvm, address, pte)) 365 kvm_flush_remote_tlbs(kvm); 366 367 spin_unlock(&kvm->mmu_lock); 368 srcu_read_unlock(&kvm->srcu, idx); 369 } 370 371 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 372 const struct mmu_notifier_range *range) 373 { 374 struct kvm *kvm = mmu_notifier_to_kvm(mn); 375 int need_tlb_flush = 0, idx; 376 int ret; 377 378 idx = srcu_read_lock(&kvm->srcu); 379 spin_lock(&kvm->mmu_lock); 380 /* 381 * The count increase must become visible at unlock time as no 382 * spte can be established without taking the mmu_lock and 383 * count is also read inside the mmu_lock critical section. 384 */ 385 kvm->mmu_notifier_count++; 386 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 387 need_tlb_flush |= kvm->tlbs_dirty; 388 /* we've to flush the tlb before the pages can be freed */ 389 if (need_tlb_flush) 390 kvm_flush_remote_tlbs(kvm); 391 392 spin_unlock(&kvm->mmu_lock); 393 394 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 395 range->end, 396 mmu_notifier_range_blockable(range)); 397 398 srcu_read_unlock(&kvm->srcu, idx); 399 400 return ret; 401 } 402 403 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 404 const struct mmu_notifier_range *range) 405 { 406 struct kvm *kvm = mmu_notifier_to_kvm(mn); 407 408 spin_lock(&kvm->mmu_lock); 409 /* 410 * This sequence increase will notify the kvm page fault that 411 * the page that is going to be mapped in the spte could have 412 * been freed. 413 */ 414 kvm->mmu_notifier_seq++; 415 smp_wmb(); 416 /* 417 * The above sequence increase must be visible before the 418 * below count decrease, which is ensured by the smp_wmb above 419 * in conjunction with the smp_rmb in mmu_notifier_retry(). 420 */ 421 kvm->mmu_notifier_count--; 422 spin_unlock(&kvm->mmu_lock); 423 424 BUG_ON(kvm->mmu_notifier_count < 0); 425 } 426 427 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 428 struct mm_struct *mm, 429 unsigned long start, 430 unsigned long end) 431 { 432 struct kvm *kvm = mmu_notifier_to_kvm(mn); 433 int young, idx; 434 435 idx = srcu_read_lock(&kvm->srcu); 436 spin_lock(&kvm->mmu_lock); 437 438 young = kvm_age_hva(kvm, start, end); 439 if (young) 440 kvm_flush_remote_tlbs(kvm); 441 442 spin_unlock(&kvm->mmu_lock); 443 srcu_read_unlock(&kvm->srcu, idx); 444 445 return young; 446 } 447 448 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 449 struct mm_struct *mm, 450 unsigned long start, 451 unsigned long end) 452 { 453 struct kvm *kvm = mmu_notifier_to_kvm(mn); 454 int young, idx; 455 456 idx = srcu_read_lock(&kvm->srcu); 457 spin_lock(&kvm->mmu_lock); 458 /* 459 * Even though we do not flush TLB, this will still adversely 460 * affect performance on pre-Haswell Intel EPT, where there is 461 * no EPT Access Bit to clear so that we have to tear down EPT 462 * tables instead. If we find this unacceptable, we can always 463 * add a parameter to kvm_age_hva so that it effectively doesn't 464 * do anything on clear_young. 465 * 466 * Also note that currently we never issue secondary TLB flushes 467 * from clear_young, leaving this job up to the regular system 468 * cadence. If we find this inaccurate, we might come up with a 469 * more sophisticated heuristic later. 470 */ 471 young = kvm_age_hva(kvm, start, end); 472 spin_unlock(&kvm->mmu_lock); 473 srcu_read_unlock(&kvm->srcu, idx); 474 475 return young; 476 } 477 478 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 479 struct mm_struct *mm, 480 unsigned long address) 481 { 482 struct kvm *kvm = mmu_notifier_to_kvm(mn); 483 int young, idx; 484 485 idx = srcu_read_lock(&kvm->srcu); 486 spin_lock(&kvm->mmu_lock); 487 young = kvm_test_age_hva(kvm, address); 488 spin_unlock(&kvm->mmu_lock); 489 srcu_read_unlock(&kvm->srcu, idx); 490 491 return young; 492 } 493 494 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 495 struct mm_struct *mm) 496 { 497 struct kvm *kvm = mmu_notifier_to_kvm(mn); 498 int idx; 499 500 idx = srcu_read_lock(&kvm->srcu); 501 kvm_arch_flush_shadow_all(kvm); 502 srcu_read_unlock(&kvm->srcu, idx); 503 } 504 505 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 506 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 507 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 508 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 509 .clear_young = kvm_mmu_notifier_clear_young, 510 .test_young = kvm_mmu_notifier_test_young, 511 .change_pte = kvm_mmu_notifier_change_pte, 512 .release = kvm_mmu_notifier_release, 513 }; 514 515 static int kvm_init_mmu_notifier(struct kvm *kvm) 516 { 517 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 518 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 519 } 520 521 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 522 523 static int kvm_init_mmu_notifier(struct kvm *kvm) 524 { 525 return 0; 526 } 527 528 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 529 530 static struct kvm_memslots *kvm_alloc_memslots(void) 531 { 532 int i; 533 struct kvm_memslots *slots; 534 535 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 536 if (!slots) 537 return NULL; 538 539 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 540 slots->id_to_index[i] = slots->memslots[i].id = i; 541 542 return slots; 543 } 544 545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 546 { 547 if (!memslot->dirty_bitmap) 548 return; 549 550 kvfree(memslot->dirty_bitmap); 551 memslot->dirty_bitmap = NULL; 552 } 553 554 /* 555 * Free any memory in @free but not in @dont. 556 */ 557 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 558 struct kvm_memory_slot *dont) 559 { 560 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 561 kvm_destroy_dirty_bitmap(free); 562 563 kvm_arch_free_memslot(kvm, free, dont); 564 565 free->npages = 0; 566 } 567 568 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 569 { 570 struct kvm_memory_slot *memslot; 571 572 if (!slots) 573 return; 574 575 kvm_for_each_memslot(memslot, slots) 576 kvm_free_memslot(kvm, memslot, NULL); 577 578 kvfree(slots); 579 } 580 581 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 582 { 583 int i; 584 585 if (!kvm->debugfs_dentry) 586 return; 587 588 debugfs_remove_recursive(kvm->debugfs_dentry); 589 590 if (kvm->debugfs_stat_data) { 591 for (i = 0; i < kvm_debugfs_num_entries; i++) 592 kfree(kvm->debugfs_stat_data[i]); 593 kfree(kvm->debugfs_stat_data); 594 } 595 } 596 597 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 598 { 599 char dir_name[ITOA_MAX_LEN * 2]; 600 struct kvm_stat_data *stat_data; 601 struct kvm_stats_debugfs_item *p; 602 603 if (!debugfs_initialized()) 604 return 0; 605 606 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 607 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 608 609 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 610 sizeof(*kvm->debugfs_stat_data), 611 GFP_KERNEL_ACCOUNT); 612 if (!kvm->debugfs_stat_data) 613 return -ENOMEM; 614 615 for (p = debugfs_entries; p->name; p++) { 616 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 617 if (!stat_data) 618 return -ENOMEM; 619 620 stat_data->kvm = kvm; 621 stat_data->offset = p->offset; 622 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 623 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 624 stat_data, stat_fops_per_vm[p->kind]); 625 } 626 return 0; 627 } 628 629 static struct kvm *kvm_create_vm(unsigned long type) 630 { 631 int r, i; 632 struct kvm *kvm = kvm_arch_alloc_vm(); 633 634 if (!kvm) 635 return ERR_PTR(-ENOMEM); 636 637 spin_lock_init(&kvm->mmu_lock); 638 mmgrab(current->mm); 639 kvm->mm = current->mm; 640 kvm_eventfd_init(kvm); 641 mutex_init(&kvm->lock); 642 mutex_init(&kvm->irq_lock); 643 mutex_init(&kvm->slots_lock); 644 refcount_set(&kvm->users_count, 1); 645 INIT_LIST_HEAD(&kvm->devices); 646 647 r = kvm_arch_init_vm(kvm, type); 648 if (r) 649 goto out_err_no_disable; 650 651 r = hardware_enable_all(); 652 if (r) 653 goto out_err_no_disable; 654 655 #ifdef CONFIG_HAVE_KVM_IRQFD 656 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 657 #endif 658 659 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 660 661 r = -ENOMEM; 662 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 663 struct kvm_memslots *slots = kvm_alloc_memslots(); 664 if (!slots) 665 goto out_err_no_srcu; 666 /* Generations must be different for each address space. */ 667 slots->generation = i; 668 rcu_assign_pointer(kvm->memslots[i], slots); 669 } 670 671 if (init_srcu_struct(&kvm->srcu)) 672 goto out_err_no_srcu; 673 if (init_srcu_struct(&kvm->irq_srcu)) 674 goto out_err_no_irq_srcu; 675 for (i = 0; i < KVM_NR_BUSES; i++) { 676 rcu_assign_pointer(kvm->buses[i], 677 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 678 if (!kvm->buses[i]) 679 goto out_err; 680 } 681 682 r = kvm_init_mmu_notifier(kvm); 683 if (r) 684 goto out_err; 685 686 spin_lock(&kvm_lock); 687 list_add(&kvm->vm_list, &vm_list); 688 spin_unlock(&kvm_lock); 689 690 preempt_notifier_inc(); 691 692 return kvm; 693 694 out_err: 695 cleanup_srcu_struct(&kvm->irq_srcu); 696 out_err_no_irq_srcu: 697 cleanup_srcu_struct(&kvm->srcu); 698 out_err_no_srcu: 699 hardware_disable_all(); 700 out_err_no_disable: 701 refcount_set(&kvm->users_count, 0); 702 for (i = 0; i < KVM_NR_BUSES; i++) 703 kfree(kvm_get_bus(kvm, i)); 704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 705 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 706 kvm_arch_free_vm(kvm); 707 mmdrop(current->mm); 708 return ERR_PTR(r); 709 } 710 711 static void kvm_destroy_devices(struct kvm *kvm) 712 { 713 struct kvm_device *dev, *tmp; 714 715 /* 716 * We do not need to take the kvm->lock here, because nobody else 717 * has a reference to the struct kvm at this point and therefore 718 * cannot access the devices list anyhow. 719 */ 720 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 721 list_del(&dev->vm_node); 722 dev->ops->destroy(dev); 723 } 724 } 725 726 static void kvm_destroy_vm(struct kvm *kvm) 727 { 728 int i; 729 struct mm_struct *mm = kvm->mm; 730 731 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 732 kvm_destroy_vm_debugfs(kvm); 733 kvm_arch_sync_events(kvm); 734 spin_lock(&kvm_lock); 735 list_del(&kvm->vm_list); 736 spin_unlock(&kvm_lock); 737 kvm_free_irq_routing(kvm); 738 for (i = 0; i < KVM_NR_BUSES; i++) { 739 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 740 741 if (bus) 742 kvm_io_bus_destroy(bus); 743 kvm->buses[i] = NULL; 744 } 745 kvm_coalesced_mmio_free(kvm); 746 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 747 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 748 #else 749 kvm_arch_flush_shadow_all(kvm); 750 #endif 751 kvm_arch_destroy_vm(kvm); 752 kvm_destroy_devices(kvm); 753 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 754 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 755 cleanup_srcu_struct(&kvm->irq_srcu); 756 cleanup_srcu_struct(&kvm->srcu); 757 kvm_arch_free_vm(kvm); 758 preempt_notifier_dec(); 759 hardware_disable_all(); 760 mmdrop(mm); 761 } 762 763 void kvm_get_kvm(struct kvm *kvm) 764 { 765 refcount_inc(&kvm->users_count); 766 } 767 EXPORT_SYMBOL_GPL(kvm_get_kvm); 768 769 void kvm_put_kvm(struct kvm *kvm) 770 { 771 if (refcount_dec_and_test(&kvm->users_count)) 772 kvm_destroy_vm(kvm); 773 } 774 EXPORT_SYMBOL_GPL(kvm_put_kvm); 775 776 777 static int kvm_vm_release(struct inode *inode, struct file *filp) 778 { 779 struct kvm *kvm = filp->private_data; 780 781 kvm_irqfd_release(kvm); 782 783 kvm_put_kvm(kvm); 784 return 0; 785 } 786 787 /* 788 * Allocation size is twice as large as the actual dirty bitmap size. 789 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 790 */ 791 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 792 { 793 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 794 795 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 796 if (!memslot->dirty_bitmap) 797 return -ENOMEM; 798 799 return 0; 800 } 801 802 /* 803 * Insert memslot and re-sort memslots based on their GFN, 804 * so binary search could be used to lookup GFN. 805 * Sorting algorithm takes advantage of having initially 806 * sorted array and known changed memslot position. 807 */ 808 static void update_memslots(struct kvm_memslots *slots, 809 struct kvm_memory_slot *new, 810 enum kvm_mr_change change) 811 { 812 int id = new->id; 813 int i = slots->id_to_index[id]; 814 struct kvm_memory_slot *mslots = slots->memslots; 815 816 WARN_ON(mslots[i].id != id); 817 switch (change) { 818 case KVM_MR_CREATE: 819 slots->used_slots++; 820 WARN_ON(mslots[i].npages || !new->npages); 821 break; 822 case KVM_MR_DELETE: 823 slots->used_slots--; 824 WARN_ON(new->npages || !mslots[i].npages); 825 break; 826 default: 827 break; 828 } 829 830 while (i < KVM_MEM_SLOTS_NUM - 1 && 831 new->base_gfn <= mslots[i + 1].base_gfn) { 832 if (!mslots[i + 1].npages) 833 break; 834 mslots[i] = mslots[i + 1]; 835 slots->id_to_index[mslots[i].id] = i; 836 i++; 837 } 838 839 /* 840 * The ">=" is needed when creating a slot with base_gfn == 0, 841 * so that it moves before all those with base_gfn == npages == 0. 842 * 843 * On the other hand, if new->npages is zero, the above loop has 844 * already left i pointing to the beginning of the empty part of 845 * mslots, and the ">=" would move the hole backwards in this 846 * case---which is wrong. So skip the loop when deleting a slot. 847 */ 848 if (new->npages) { 849 while (i > 0 && 850 new->base_gfn >= mslots[i - 1].base_gfn) { 851 mslots[i] = mslots[i - 1]; 852 slots->id_to_index[mslots[i].id] = i; 853 i--; 854 } 855 } else 856 WARN_ON_ONCE(i != slots->used_slots); 857 858 mslots[i] = *new; 859 slots->id_to_index[mslots[i].id] = i; 860 } 861 862 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 863 { 864 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 865 866 #ifdef __KVM_HAVE_READONLY_MEM 867 valid_flags |= KVM_MEM_READONLY; 868 #endif 869 870 if (mem->flags & ~valid_flags) 871 return -EINVAL; 872 873 return 0; 874 } 875 876 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 877 int as_id, struct kvm_memslots *slots) 878 { 879 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 880 u64 gen = old_memslots->generation; 881 882 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 883 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 884 885 rcu_assign_pointer(kvm->memslots[as_id], slots); 886 synchronize_srcu_expedited(&kvm->srcu); 887 888 /* 889 * Increment the new memslot generation a second time, dropping the 890 * update in-progress flag and incrementing then generation based on 891 * the number of address spaces. This provides a unique and easily 892 * identifiable generation number while the memslots are in flux. 893 */ 894 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 895 896 /* 897 * Generations must be unique even across address spaces. We do not need 898 * a global counter for that, instead the generation space is evenly split 899 * across address spaces. For example, with two address spaces, address 900 * space 0 will use generations 0, 2, 4, ... while address space 1 will 901 * use generations 1, 3, 5, ... 902 */ 903 gen += KVM_ADDRESS_SPACE_NUM; 904 905 kvm_arch_memslots_updated(kvm, gen); 906 907 slots->generation = gen; 908 909 return old_memslots; 910 } 911 912 /* 913 * Allocate some memory and give it an address in the guest physical address 914 * space. 915 * 916 * Discontiguous memory is allowed, mostly for framebuffers. 917 * 918 * Must be called holding kvm->slots_lock for write. 919 */ 920 int __kvm_set_memory_region(struct kvm *kvm, 921 const struct kvm_userspace_memory_region *mem) 922 { 923 int r; 924 gfn_t base_gfn; 925 unsigned long npages; 926 struct kvm_memory_slot *slot; 927 struct kvm_memory_slot old, new; 928 struct kvm_memslots *slots = NULL, *old_memslots; 929 int as_id, id; 930 enum kvm_mr_change change; 931 932 r = check_memory_region_flags(mem); 933 if (r) 934 goto out; 935 936 r = -EINVAL; 937 as_id = mem->slot >> 16; 938 id = (u16)mem->slot; 939 940 /* General sanity checks */ 941 if (mem->memory_size & (PAGE_SIZE - 1)) 942 goto out; 943 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 944 goto out; 945 /* We can read the guest memory with __xxx_user() later on. */ 946 if ((id < KVM_USER_MEM_SLOTS) && 947 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 948 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 949 mem->memory_size))) 950 goto out; 951 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 952 goto out; 953 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 954 goto out; 955 956 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 957 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 958 npages = mem->memory_size >> PAGE_SHIFT; 959 960 if (npages > KVM_MEM_MAX_NR_PAGES) 961 goto out; 962 963 new = old = *slot; 964 965 new.id = id; 966 new.base_gfn = base_gfn; 967 new.npages = npages; 968 new.flags = mem->flags; 969 970 if (npages) { 971 if (!old.npages) 972 change = KVM_MR_CREATE; 973 else { /* Modify an existing slot. */ 974 if ((mem->userspace_addr != old.userspace_addr) || 975 (npages != old.npages) || 976 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 977 goto out; 978 979 if (base_gfn != old.base_gfn) 980 change = KVM_MR_MOVE; 981 else if (new.flags != old.flags) 982 change = KVM_MR_FLAGS_ONLY; 983 else { /* Nothing to change. */ 984 r = 0; 985 goto out; 986 } 987 } 988 } else { 989 if (!old.npages) 990 goto out; 991 992 change = KVM_MR_DELETE; 993 new.base_gfn = 0; 994 new.flags = 0; 995 } 996 997 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 998 /* Check for overlaps */ 999 r = -EEXIST; 1000 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1001 if (slot->id == id) 1002 continue; 1003 if (!((base_gfn + npages <= slot->base_gfn) || 1004 (base_gfn >= slot->base_gfn + slot->npages))) 1005 goto out; 1006 } 1007 } 1008 1009 /* Free page dirty bitmap if unneeded */ 1010 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1011 new.dirty_bitmap = NULL; 1012 1013 r = -ENOMEM; 1014 if (change == KVM_MR_CREATE) { 1015 new.userspace_addr = mem->userspace_addr; 1016 1017 if (kvm_arch_create_memslot(kvm, &new, npages)) 1018 goto out_free; 1019 } 1020 1021 /* Allocate page dirty bitmap if needed */ 1022 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1023 if (kvm_create_dirty_bitmap(&new) < 0) 1024 goto out_free; 1025 } 1026 1027 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1028 if (!slots) 1029 goto out_free; 1030 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1031 1032 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1033 slot = id_to_memslot(slots, id); 1034 slot->flags |= KVM_MEMSLOT_INVALID; 1035 1036 old_memslots = install_new_memslots(kvm, as_id, slots); 1037 1038 /* From this point no new shadow pages pointing to a deleted, 1039 * or moved, memslot will be created. 1040 * 1041 * validation of sp->gfn happens in: 1042 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1043 * - kvm_is_visible_gfn (mmu_check_roots) 1044 */ 1045 kvm_arch_flush_shadow_memslot(kvm, slot); 1046 1047 /* 1048 * We can re-use the old_memslots from above, the only difference 1049 * from the currently installed memslots is the invalid flag. This 1050 * will get overwritten by update_memslots anyway. 1051 */ 1052 slots = old_memslots; 1053 } 1054 1055 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1056 if (r) 1057 goto out_slots; 1058 1059 /* actual memory is freed via old in kvm_free_memslot below */ 1060 if (change == KVM_MR_DELETE) { 1061 new.dirty_bitmap = NULL; 1062 memset(&new.arch, 0, sizeof(new.arch)); 1063 } 1064 1065 update_memslots(slots, &new, change); 1066 old_memslots = install_new_memslots(kvm, as_id, slots); 1067 1068 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1069 1070 kvm_free_memslot(kvm, &old, &new); 1071 kvfree(old_memslots); 1072 return 0; 1073 1074 out_slots: 1075 kvfree(slots); 1076 out_free: 1077 kvm_free_memslot(kvm, &new, &old); 1078 out: 1079 return r; 1080 } 1081 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1082 1083 int kvm_set_memory_region(struct kvm *kvm, 1084 const struct kvm_userspace_memory_region *mem) 1085 { 1086 int r; 1087 1088 mutex_lock(&kvm->slots_lock); 1089 r = __kvm_set_memory_region(kvm, mem); 1090 mutex_unlock(&kvm->slots_lock); 1091 return r; 1092 } 1093 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1094 1095 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1096 struct kvm_userspace_memory_region *mem) 1097 { 1098 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1099 return -EINVAL; 1100 1101 return kvm_set_memory_region(kvm, mem); 1102 } 1103 1104 int kvm_get_dirty_log(struct kvm *kvm, 1105 struct kvm_dirty_log *log, int *is_dirty) 1106 { 1107 struct kvm_memslots *slots; 1108 struct kvm_memory_slot *memslot; 1109 int i, as_id, id; 1110 unsigned long n; 1111 unsigned long any = 0; 1112 1113 as_id = log->slot >> 16; 1114 id = (u16)log->slot; 1115 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1116 return -EINVAL; 1117 1118 slots = __kvm_memslots(kvm, as_id); 1119 memslot = id_to_memslot(slots, id); 1120 if (!memslot->dirty_bitmap) 1121 return -ENOENT; 1122 1123 n = kvm_dirty_bitmap_bytes(memslot); 1124 1125 for (i = 0; !any && i < n/sizeof(long); ++i) 1126 any = memslot->dirty_bitmap[i]; 1127 1128 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1129 return -EFAULT; 1130 1131 if (any) 1132 *is_dirty = 1; 1133 return 0; 1134 } 1135 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1136 1137 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1138 /** 1139 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1140 * and reenable dirty page tracking for the corresponding pages. 1141 * @kvm: pointer to kvm instance 1142 * @log: slot id and address to which we copy the log 1143 * @flush: true if TLB flush is needed by caller 1144 * 1145 * We need to keep it in mind that VCPU threads can write to the bitmap 1146 * concurrently. So, to avoid losing track of dirty pages we keep the 1147 * following order: 1148 * 1149 * 1. Take a snapshot of the bit and clear it if needed. 1150 * 2. Write protect the corresponding page. 1151 * 3. Copy the snapshot to the userspace. 1152 * 4. Upon return caller flushes TLB's if needed. 1153 * 1154 * Between 2 and 4, the guest may write to the page using the remaining TLB 1155 * entry. This is not a problem because the page is reported dirty using 1156 * the snapshot taken before and step 4 ensures that writes done after 1157 * exiting to userspace will be logged for the next call. 1158 * 1159 */ 1160 int kvm_get_dirty_log_protect(struct kvm *kvm, 1161 struct kvm_dirty_log *log, bool *flush) 1162 { 1163 struct kvm_memslots *slots; 1164 struct kvm_memory_slot *memslot; 1165 int i, as_id, id; 1166 unsigned long n; 1167 unsigned long *dirty_bitmap; 1168 unsigned long *dirty_bitmap_buffer; 1169 1170 as_id = log->slot >> 16; 1171 id = (u16)log->slot; 1172 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1173 return -EINVAL; 1174 1175 slots = __kvm_memslots(kvm, as_id); 1176 memslot = id_to_memslot(slots, id); 1177 1178 dirty_bitmap = memslot->dirty_bitmap; 1179 if (!dirty_bitmap) 1180 return -ENOENT; 1181 1182 n = kvm_dirty_bitmap_bytes(memslot); 1183 *flush = false; 1184 if (kvm->manual_dirty_log_protect) { 1185 /* 1186 * Unlike kvm_get_dirty_log, we always return false in *flush, 1187 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1188 * is some code duplication between this function and 1189 * kvm_get_dirty_log, but hopefully all architecture 1190 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1191 * can be eliminated. 1192 */ 1193 dirty_bitmap_buffer = dirty_bitmap; 1194 } else { 1195 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1196 memset(dirty_bitmap_buffer, 0, n); 1197 1198 spin_lock(&kvm->mmu_lock); 1199 for (i = 0; i < n / sizeof(long); i++) { 1200 unsigned long mask; 1201 gfn_t offset; 1202 1203 if (!dirty_bitmap[i]) 1204 continue; 1205 1206 *flush = true; 1207 mask = xchg(&dirty_bitmap[i], 0); 1208 dirty_bitmap_buffer[i] = mask; 1209 1210 offset = i * BITS_PER_LONG; 1211 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1212 offset, mask); 1213 } 1214 spin_unlock(&kvm->mmu_lock); 1215 } 1216 1217 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1218 return -EFAULT; 1219 return 0; 1220 } 1221 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1222 1223 /** 1224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1225 * and reenable dirty page tracking for the corresponding pages. 1226 * @kvm: pointer to kvm instance 1227 * @log: slot id and address from which to fetch the bitmap of dirty pages 1228 * @flush: true if TLB flush is needed by caller 1229 */ 1230 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1231 struct kvm_clear_dirty_log *log, bool *flush) 1232 { 1233 struct kvm_memslots *slots; 1234 struct kvm_memory_slot *memslot; 1235 int as_id, id; 1236 gfn_t offset; 1237 unsigned long i, n; 1238 unsigned long *dirty_bitmap; 1239 unsigned long *dirty_bitmap_buffer; 1240 1241 as_id = log->slot >> 16; 1242 id = (u16)log->slot; 1243 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1244 return -EINVAL; 1245 1246 if (log->first_page & 63) 1247 return -EINVAL; 1248 1249 slots = __kvm_memslots(kvm, as_id); 1250 memslot = id_to_memslot(slots, id); 1251 1252 dirty_bitmap = memslot->dirty_bitmap; 1253 if (!dirty_bitmap) 1254 return -ENOENT; 1255 1256 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1257 1258 if (log->first_page > memslot->npages || 1259 log->num_pages > memslot->npages - log->first_page || 1260 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1261 return -EINVAL; 1262 1263 *flush = false; 1264 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1265 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1266 return -EFAULT; 1267 1268 spin_lock(&kvm->mmu_lock); 1269 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1270 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1271 i++, offset += BITS_PER_LONG) { 1272 unsigned long mask = *dirty_bitmap_buffer++; 1273 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1274 if (!mask) 1275 continue; 1276 1277 mask &= atomic_long_fetch_andnot(mask, p); 1278 1279 /* 1280 * mask contains the bits that really have been cleared. This 1281 * never includes any bits beyond the length of the memslot (if 1282 * the length is not aligned to 64 pages), therefore it is not 1283 * a problem if userspace sets them in log->dirty_bitmap. 1284 */ 1285 if (mask) { 1286 *flush = true; 1287 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1288 offset, mask); 1289 } 1290 } 1291 spin_unlock(&kvm->mmu_lock); 1292 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1296 #endif 1297 1298 bool kvm_largepages_enabled(void) 1299 { 1300 return largepages_enabled; 1301 } 1302 1303 void kvm_disable_largepages(void) 1304 { 1305 largepages_enabled = false; 1306 } 1307 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1308 1309 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1310 { 1311 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1312 } 1313 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1314 1315 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1316 { 1317 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1318 } 1319 1320 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1321 { 1322 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1323 1324 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1325 memslot->flags & KVM_MEMSLOT_INVALID) 1326 return false; 1327 1328 return true; 1329 } 1330 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1331 1332 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1333 { 1334 struct vm_area_struct *vma; 1335 unsigned long addr, size; 1336 1337 size = PAGE_SIZE; 1338 1339 addr = gfn_to_hva(kvm, gfn); 1340 if (kvm_is_error_hva(addr)) 1341 return PAGE_SIZE; 1342 1343 down_read(¤t->mm->mmap_sem); 1344 vma = find_vma(current->mm, addr); 1345 if (!vma) 1346 goto out; 1347 1348 size = vma_kernel_pagesize(vma); 1349 1350 out: 1351 up_read(¤t->mm->mmap_sem); 1352 1353 return size; 1354 } 1355 1356 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1357 { 1358 return slot->flags & KVM_MEM_READONLY; 1359 } 1360 1361 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1362 gfn_t *nr_pages, bool write) 1363 { 1364 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1365 return KVM_HVA_ERR_BAD; 1366 1367 if (memslot_is_readonly(slot) && write) 1368 return KVM_HVA_ERR_RO_BAD; 1369 1370 if (nr_pages) 1371 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1372 1373 return __gfn_to_hva_memslot(slot, gfn); 1374 } 1375 1376 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1377 gfn_t *nr_pages) 1378 { 1379 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1380 } 1381 1382 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1383 gfn_t gfn) 1384 { 1385 return gfn_to_hva_many(slot, gfn, NULL); 1386 } 1387 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1388 1389 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1390 { 1391 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1392 } 1393 EXPORT_SYMBOL_GPL(gfn_to_hva); 1394 1395 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1396 { 1397 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1398 } 1399 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1400 1401 /* 1402 * Return the hva of a @gfn and the R/W attribute if possible. 1403 * 1404 * @slot: the kvm_memory_slot which contains @gfn 1405 * @gfn: the gfn to be translated 1406 * @writable: used to return the read/write attribute of the @slot if the hva 1407 * is valid and @writable is not NULL 1408 */ 1409 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1410 gfn_t gfn, bool *writable) 1411 { 1412 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1413 1414 if (!kvm_is_error_hva(hva) && writable) 1415 *writable = !memslot_is_readonly(slot); 1416 1417 return hva; 1418 } 1419 1420 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1421 { 1422 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1423 1424 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1425 } 1426 1427 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1428 { 1429 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1430 1431 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1432 } 1433 1434 static inline int check_user_page_hwpoison(unsigned long addr) 1435 { 1436 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1437 1438 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1439 return rc == -EHWPOISON; 1440 } 1441 1442 /* 1443 * The fast path to get the writable pfn which will be stored in @pfn, 1444 * true indicates success, otherwise false is returned. It's also the 1445 * only part that runs if we can are in atomic context. 1446 */ 1447 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1448 bool *writable, kvm_pfn_t *pfn) 1449 { 1450 struct page *page[1]; 1451 int npages; 1452 1453 /* 1454 * Fast pin a writable pfn only if it is a write fault request 1455 * or the caller allows to map a writable pfn for a read fault 1456 * request. 1457 */ 1458 if (!(write_fault || writable)) 1459 return false; 1460 1461 npages = __get_user_pages_fast(addr, 1, 1, page); 1462 if (npages == 1) { 1463 *pfn = page_to_pfn(page[0]); 1464 1465 if (writable) 1466 *writable = true; 1467 return true; 1468 } 1469 1470 return false; 1471 } 1472 1473 /* 1474 * The slow path to get the pfn of the specified host virtual address, 1475 * 1 indicates success, -errno is returned if error is detected. 1476 */ 1477 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1478 bool *writable, kvm_pfn_t *pfn) 1479 { 1480 unsigned int flags = FOLL_HWPOISON; 1481 struct page *page; 1482 int npages = 0; 1483 1484 might_sleep(); 1485 1486 if (writable) 1487 *writable = write_fault; 1488 1489 if (write_fault) 1490 flags |= FOLL_WRITE; 1491 if (async) 1492 flags |= FOLL_NOWAIT; 1493 1494 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1495 if (npages != 1) 1496 return npages; 1497 1498 /* map read fault as writable if possible */ 1499 if (unlikely(!write_fault) && writable) { 1500 struct page *wpage; 1501 1502 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1503 *writable = true; 1504 put_page(page); 1505 page = wpage; 1506 } 1507 } 1508 *pfn = page_to_pfn(page); 1509 return npages; 1510 } 1511 1512 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1513 { 1514 if (unlikely(!(vma->vm_flags & VM_READ))) 1515 return false; 1516 1517 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1518 return false; 1519 1520 return true; 1521 } 1522 1523 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1524 unsigned long addr, bool *async, 1525 bool write_fault, bool *writable, 1526 kvm_pfn_t *p_pfn) 1527 { 1528 unsigned long pfn; 1529 int r; 1530 1531 r = follow_pfn(vma, addr, &pfn); 1532 if (r) { 1533 /* 1534 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1535 * not call the fault handler, so do it here. 1536 */ 1537 bool unlocked = false; 1538 r = fixup_user_fault(current, current->mm, addr, 1539 (write_fault ? FAULT_FLAG_WRITE : 0), 1540 &unlocked); 1541 if (unlocked) 1542 return -EAGAIN; 1543 if (r) 1544 return r; 1545 1546 r = follow_pfn(vma, addr, &pfn); 1547 if (r) 1548 return r; 1549 1550 } 1551 1552 if (writable) 1553 *writable = true; 1554 1555 /* 1556 * Get a reference here because callers of *hva_to_pfn* and 1557 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1558 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1559 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1560 * simply do nothing for reserved pfns. 1561 * 1562 * Whoever called remap_pfn_range is also going to call e.g. 1563 * unmap_mapping_range before the underlying pages are freed, 1564 * causing a call to our MMU notifier. 1565 */ 1566 kvm_get_pfn(pfn); 1567 1568 *p_pfn = pfn; 1569 return 0; 1570 } 1571 1572 /* 1573 * Pin guest page in memory and return its pfn. 1574 * @addr: host virtual address which maps memory to the guest 1575 * @atomic: whether this function can sleep 1576 * @async: whether this function need to wait IO complete if the 1577 * host page is not in the memory 1578 * @write_fault: whether we should get a writable host page 1579 * @writable: whether it allows to map a writable host page for !@write_fault 1580 * 1581 * The function will map a writable host page for these two cases: 1582 * 1): @write_fault = true 1583 * 2): @write_fault = false && @writable, @writable will tell the caller 1584 * whether the mapping is writable. 1585 */ 1586 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1587 bool write_fault, bool *writable) 1588 { 1589 struct vm_area_struct *vma; 1590 kvm_pfn_t pfn = 0; 1591 int npages, r; 1592 1593 /* we can do it either atomically or asynchronously, not both */ 1594 BUG_ON(atomic && async); 1595 1596 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1597 return pfn; 1598 1599 if (atomic) 1600 return KVM_PFN_ERR_FAULT; 1601 1602 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1603 if (npages == 1) 1604 return pfn; 1605 1606 down_read(¤t->mm->mmap_sem); 1607 if (npages == -EHWPOISON || 1608 (!async && check_user_page_hwpoison(addr))) { 1609 pfn = KVM_PFN_ERR_HWPOISON; 1610 goto exit; 1611 } 1612 1613 retry: 1614 vma = find_vma_intersection(current->mm, addr, addr + 1); 1615 1616 if (vma == NULL) 1617 pfn = KVM_PFN_ERR_FAULT; 1618 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1619 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1620 if (r == -EAGAIN) 1621 goto retry; 1622 if (r < 0) 1623 pfn = KVM_PFN_ERR_FAULT; 1624 } else { 1625 if (async && vma_is_valid(vma, write_fault)) 1626 *async = true; 1627 pfn = KVM_PFN_ERR_FAULT; 1628 } 1629 exit: 1630 up_read(¤t->mm->mmap_sem); 1631 return pfn; 1632 } 1633 1634 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1635 bool atomic, bool *async, bool write_fault, 1636 bool *writable) 1637 { 1638 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1639 1640 if (addr == KVM_HVA_ERR_RO_BAD) { 1641 if (writable) 1642 *writable = false; 1643 return KVM_PFN_ERR_RO_FAULT; 1644 } 1645 1646 if (kvm_is_error_hva(addr)) { 1647 if (writable) 1648 *writable = false; 1649 return KVM_PFN_NOSLOT; 1650 } 1651 1652 /* Do not map writable pfn in the readonly memslot. */ 1653 if (writable && memslot_is_readonly(slot)) { 1654 *writable = false; 1655 writable = NULL; 1656 } 1657 1658 return hva_to_pfn(addr, atomic, async, write_fault, 1659 writable); 1660 } 1661 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1662 1663 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1664 bool *writable) 1665 { 1666 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1667 write_fault, writable); 1668 } 1669 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1670 1671 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1672 { 1673 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1674 } 1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1676 1677 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1678 { 1679 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1680 } 1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1682 1683 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1684 { 1685 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1686 } 1687 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1688 1689 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1690 { 1691 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1692 } 1693 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1694 1695 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1696 { 1697 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1698 } 1699 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1700 1701 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1702 { 1703 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1704 } 1705 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1706 1707 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1708 struct page **pages, int nr_pages) 1709 { 1710 unsigned long addr; 1711 gfn_t entry = 0; 1712 1713 addr = gfn_to_hva_many(slot, gfn, &entry); 1714 if (kvm_is_error_hva(addr)) 1715 return -1; 1716 1717 if (entry < nr_pages) 1718 return 0; 1719 1720 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1721 } 1722 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1723 1724 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1725 { 1726 if (is_error_noslot_pfn(pfn)) 1727 return KVM_ERR_PTR_BAD_PAGE; 1728 1729 if (kvm_is_reserved_pfn(pfn)) { 1730 WARN_ON(1); 1731 return KVM_ERR_PTR_BAD_PAGE; 1732 } 1733 1734 return pfn_to_page(pfn); 1735 } 1736 1737 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1738 { 1739 kvm_pfn_t pfn; 1740 1741 pfn = gfn_to_pfn(kvm, gfn); 1742 1743 return kvm_pfn_to_page(pfn); 1744 } 1745 EXPORT_SYMBOL_GPL(gfn_to_page); 1746 1747 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1748 struct kvm_host_map *map) 1749 { 1750 kvm_pfn_t pfn; 1751 void *hva = NULL; 1752 struct page *page = KVM_UNMAPPED_PAGE; 1753 1754 if (!map) 1755 return -EINVAL; 1756 1757 pfn = gfn_to_pfn_memslot(slot, gfn); 1758 if (is_error_noslot_pfn(pfn)) 1759 return -EINVAL; 1760 1761 if (pfn_valid(pfn)) { 1762 page = pfn_to_page(pfn); 1763 hva = kmap(page); 1764 #ifdef CONFIG_HAS_IOMEM 1765 } else { 1766 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1767 #endif 1768 } 1769 1770 if (!hva) 1771 return -EFAULT; 1772 1773 map->page = page; 1774 map->hva = hva; 1775 map->pfn = pfn; 1776 map->gfn = gfn; 1777 1778 return 0; 1779 } 1780 1781 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1782 { 1783 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1784 } 1785 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1786 1787 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1788 bool dirty) 1789 { 1790 if (!map) 1791 return; 1792 1793 if (!map->hva) 1794 return; 1795 1796 if (map->page) 1797 kunmap(map->page); 1798 else 1799 memunmap(map->hva); 1800 1801 if (dirty) { 1802 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1803 kvm_release_pfn_dirty(map->pfn); 1804 } else { 1805 kvm_release_pfn_clean(map->pfn); 1806 } 1807 1808 map->hva = NULL; 1809 map->page = NULL; 1810 } 1811 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1812 1813 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1814 { 1815 kvm_pfn_t pfn; 1816 1817 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1818 1819 return kvm_pfn_to_page(pfn); 1820 } 1821 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1822 1823 void kvm_release_page_clean(struct page *page) 1824 { 1825 WARN_ON(is_error_page(page)); 1826 1827 kvm_release_pfn_clean(page_to_pfn(page)); 1828 } 1829 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1830 1831 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1832 { 1833 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1834 put_page(pfn_to_page(pfn)); 1835 } 1836 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1837 1838 void kvm_release_page_dirty(struct page *page) 1839 { 1840 WARN_ON(is_error_page(page)); 1841 1842 kvm_release_pfn_dirty(page_to_pfn(page)); 1843 } 1844 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1845 1846 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1847 { 1848 kvm_set_pfn_dirty(pfn); 1849 kvm_release_pfn_clean(pfn); 1850 } 1851 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1852 1853 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1854 { 1855 if (!kvm_is_reserved_pfn(pfn)) { 1856 struct page *page = pfn_to_page(pfn); 1857 1858 if (!PageReserved(page)) 1859 SetPageDirty(page); 1860 } 1861 } 1862 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1863 1864 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1865 { 1866 if (!kvm_is_reserved_pfn(pfn)) 1867 mark_page_accessed(pfn_to_page(pfn)); 1868 } 1869 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1870 1871 void kvm_get_pfn(kvm_pfn_t pfn) 1872 { 1873 if (!kvm_is_reserved_pfn(pfn)) 1874 get_page(pfn_to_page(pfn)); 1875 } 1876 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1877 1878 static int next_segment(unsigned long len, int offset) 1879 { 1880 if (len > PAGE_SIZE - offset) 1881 return PAGE_SIZE - offset; 1882 else 1883 return len; 1884 } 1885 1886 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1887 void *data, int offset, int len) 1888 { 1889 int r; 1890 unsigned long addr; 1891 1892 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1893 if (kvm_is_error_hva(addr)) 1894 return -EFAULT; 1895 r = __copy_from_user(data, (void __user *)addr + offset, len); 1896 if (r) 1897 return -EFAULT; 1898 return 0; 1899 } 1900 1901 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1902 int len) 1903 { 1904 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1905 1906 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1907 } 1908 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1909 1910 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1911 int offset, int len) 1912 { 1913 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1914 1915 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1918 1919 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1920 { 1921 gfn_t gfn = gpa >> PAGE_SHIFT; 1922 int seg; 1923 int offset = offset_in_page(gpa); 1924 int ret; 1925 1926 while ((seg = next_segment(len, offset)) != 0) { 1927 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1928 if (ret < 0) 1929 return ret; 1930 offset = 0; 1931 len -= seg; 1932 data += seg; 1933 ++gfn; 1934 } 1935 return 0; 1936 } 1937 EXPORT_SYMBOL_GPL(kvm_read_guest); 1938 1939 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1940 { 1941 gfn_t gfn = gpa >> PAGE_SHIFT; 1942 int seg; 1943 int offset = offset_in_page(gpa); 1944 int ret; 1945 1946 while ((seg = next_segment(len, offset)) != 0) { 1947 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1948 if (ret < 0) 1949 return ret; 1950 offset = 0; 1951 len -= seg; 1952 data += seg; 1953 ++gfn; 1954 } 1955 return 0; 1956 } 1957 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1958 1959 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1960 void *data, int offset, unsigned long len) 1961 { 1962 int r; 1963 unsigned long addr; 1964 1965 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1966 if (kvm_is_error_hva(addr)) 1967 return -EFAULT; 1968 pagefault_disable(); 1969 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1970 pagefault_enable(); 1971 if (r) 1972 return -EFAULT; 1973 return 0; 1974 } 1975 1976 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1977 unsigned long len) 1978 { 1979 gfn_t gfn = gpa >> PAGE_SHIFT; 1980 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1981 int offset = offset_in_page(gpa); 1982 1983 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1986 1987 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1988 void *data, unsigned long len) 1989 { 1990 gfn_t gfn = gpa >> PAGE_SHIFT; 1991 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1992 int offset = offset_in_page(gpa); 1993 1994 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1995 } 1996 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1997 1998 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1999 const void *data, int offset, int len) 2000 { 2001 int r; 2002 unsigned long addr; 2003 2004 addr = gfn_to_hva_memslot(memslot, gfn); 2005 if (kvm_is_error_hva(addr)) 2006 return -EFAULT; 2007 r = __copy_to_user((void __user *)addr + offset, data, len); 2008 if (r) 2009 return -EFAULT; 2010 mark_page_dirty_in_slot(memslot, gfn); 2011 return 0; 2012 } 2013 2014 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2015 const void *data, int offset, int len) 2016 { 2017 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2018 2019 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2020 } 2021 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2022 2023 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2024 const void *data, int offset, int len) 2025 { 2026 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2027 2028 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2029 } 2030 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2031 2032 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2033 unsigned long len) 2034 { 2035 gfn_t gfn = gpa >> PAGE_SHIFT; 2036 int seg; 2037 int offset = offset_in_page(gpa); 2038 int ret; 2039 2040 while ((seg = next_segment(len, offset)) != 0) { 2041 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2042 if (ret < 0) 2043 return ret; 2044 offset = 0; 2045 len -= seg; 2046 data += seg; 2047 ++gfn; 2048 } 2049 return 0; 2050 } 2051 EXPORT_SYMBOL_GPL(kvm_write_guest); 2052 2053 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2054 unsigned long len) 2055 { 2056 gfn_t gfn = gpa >> PAGE_SHIFT; 2057 int seg; 2058 int offset = offset_in_page(gpa); 2059 int ret; 2060 2061 while ((seg = next_segment(len, offset)) != 0) { 2062 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2063 if (ret < 0) 2064 return ret; 2065 offset = 0; 2066 len -= seg; 2067 data += seg; 2068 ++gfn; 2069 } 2070 return 0; 2071 } 2072 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2073 2074 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2075 struct gfn_to_hva_cache *ghc, 2076 gpa_t gpa, unsigned long len) 2077 { 2078 int offset = offset_in_page(gpa); 2079 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2080 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2081 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2082 gfn_t nr_pages_avail; 2083 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2084 2085 ghc->gpa = gpa; 2086 ghc->generation = slots->generation; 2087 ghc->len = len; 2088 ghc->hva = KVM_HVA_ERR_BAD; 2089 2090 /* 2091 * If the requested region crosses two memslots, we still 2092 * verify that the entire region is valid here. 2093 */ 2094 while (!r && start_gfn <= end_gfn) { 2095 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2096 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2097 &nr_pages_avail); 2098 if (kvm_is_error_hva(ghc->hva)) 2099 r = -EFAULT; 2100 start_gfn += nr_pages_avail; 2101 } 2102 2103 /* Use the slow path for cross page reads and writes. */ 2104 if (!r && nr_pages_needed == 1) 2105 ghc->hva += offset; 2106 else 2107 ghc->memslot = NULL; 2108 2109 return r; 2110 } 2111 2112 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2113 gpa_t gpa, unsigned long len) 2114 { 2115 struct kvm_memslots *slots = kvm_memslots(kvm); 2116 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2117 } 2118 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2119 2120 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2121 void *data, unsigned int offset, 2122 unsigned long len) 2123 { 2124 struct kvm_memslots *slots = kvm_memslots(kvm); 2125 int r; 2126 gpa_t gpa = ghc->gpa + offset; 2127 2128 BUG_ON(len + offset > ghc->len); 2129 2130 if (slots->generation != ghc->generation) 2131 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2132 2133 if (unlikely(!ghc->memslot)) 2134 return kvm_write_guest(kvm, gpa, data, len); 2135 2136 if (kvm_is_error_hva(ghc->hva)) 2137 return -EFAULT; 2138 2139 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2140 if (r) 2141 return -EFAULT; 2142 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2143 2144 return 0; 2145 } 2146 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2147 2148 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2149 void *data, unsigned long len) 2150 { 2151 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2152 } 2153 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2154 2155 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2156 void *data, unsigned long len) 2157 { 2158 struct kvm_memslots *slots = kvm_memslots(kvm); 2159 int r; 2160 2161 BUG_ON(len > ghc->len); 2162 2163 if (slots->generation != ghc->generation) 2164 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2165 2166 if (unlikely(!ghc->memslot)) 2167 return kvm_read_guest(kvm, ghc->gpa, data, len); 2168 2169 if (kvm_is_error_hva(ghc->hva)) 2170 return -EFAULT; 2171 2172 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2173 if (r) 2174 return -EFAULT; 2175 2176 return 0; 2177 } 2178 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2179 2180 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2181 { 2182 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2183 2184 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2185 } 2186 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2187 2188 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2189 { 2190 gfn_t gfn = gpa >> PAGE_SHIFT; 2191 int seg; 2192 int offset = offset_in_page(gpa); 2193 int ret; 2194 2195 while ((seg = next_segment(len, offset)) != 0) { 2196 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2197 if (ret < 0) 2198 return ret; 2199 offset = 0; 2200 len -= seg; 2201 ++gfn; 2202 } 2203 return 0; 2204 } 2205 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2206 2207 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2208 gfn_t gfn) 2209 { 2210 if (memslot && memslot->dirty_bitmap) { 2211 unsigned long rel_gfn = gfn - memslot->base_gfn; 2212 2213 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2214 } 2215 } 2216 2217 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2218 { 2219 struct kvm_memory_slot *memslot; 2220 2221 memslot = gfn_to_memslot(kvm, gfn); 2222 mark_page_dirty_in_slot(memslot, gfn); 2223 } 2224 EXPORT_SYMBOL_GPL(mark_page_dirty); 2225 2226 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2227 { 2228 struct kvm_memory_slot *memslot; 2229 2230 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2231 mark_page_dirty_in_slot(memslot, gfn); 2232 } 2233 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2234 2235 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2236 { 2237 if (!vcpu->sigset_active) 2238 return; 2239 2240 /* 2241 * This does a lockless modification of ->real_blocked, which is fine 2242 * because, only current can change ->real_blocked and all readers of 2243 * ->real_blocked don't care as long ->real_blocked is always a subset 2244 * of ->blocked. 2245 */ 2246 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2247 } 2248 2249 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2250 { 2251 if (!vcpu->sigset_active) 2252 return; 2253 2254 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2255 sigemptyset(¤t->real_blocked); 2256 } 2257 2258 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2259 { 2260 unsigned int old, val, grow, grow_start; 2261 2262 old = val = vcpu->halt_poll_ns; 2263 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2264 grow = READ_ONCE(halt_poll_ns_grow); 2265 if (!grow) 2266 goto out; 2267 2268 val *= grow; 2269 if (val < grow_start) 2270 val = grow_start; 2271 2272 if (val > halt_poll_ns) 2273 val = halt_poll_ns; 2274 2275 vcpu->halt_poll_ns = val; 2276 out: 2277 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2278 } 2279 2280 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2281 { 2282 unsigned int old, val, shrink; 2283 2284 old = val = vcpu->halt_poll_ns; 2285 shrink = READ_ONCE(halt_poll_ns_shrink); 2286 if (shrink == 0) 2287 val = 0; 2288 else 2289 val /= shrink; 2290 2291 vcpu->halt_poll_ns = val; 2292 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2293 } 2294 2295 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2296 { 2297 int ret = -EINTR; 2298 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2299 2300 if (kvm_arch_vcpu_runnable(vcpu)) { 2301 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2302 goto out; 2303 } 2304 if (kvm_cpu_has_pending_timer(vcpu)) 2305 goto out; 2306 if (signal_pending(current)) 2307 goto out; 2308 2309 ret = 0; 2310 out: 2311 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2312 return ret; 2313 } 2314 2315 /* 2316 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2317 */ 2318 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2319 { 2320 ktime_t start, cur; 2321 DECLARE_SWAITQUEUE(wait); 2322 bool waited = false; 2323 u64 block_ns; 2324 2325 start = cur = ktime_get(); 2326 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2327 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2328 2329 ++vcpu->stat.halt_attempted_poll; 2330 do { 2331 /* 2332 * This sets KVM_REQ_UNHALT if an interrupt 2333 * arrives. 2334 */ 2335 if (kvm_vcpu_check_block(vcpu) < 0) { 2336 ++vcpu->stat.halt_successful_poll; 2337 if (!vcpu_valid_wakeup(vcpu)) 2338 ++vcpu->stat.halt_poll_invalid; 2339 goto out; 2340 } 2341 cur = ktime_get(); 2342 } while (single_task_running() && ktime_before(cur, stop)); 2343 } 2344 2345 kvm_arch_vcpu_blocking(vcpu); 2346 2347 for (;;) { 2348 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2349 2350 if (kvm_vcpu_check_block(vcpu) < 0) 2351 break; 2352 2353 waited = true; 2354 schedule(); 2355 } 2356 2357 finish_swait(&vcpu->wq, &wait); 2358 cur = ktime_get(); 2359 2360 kvm_arch_vcpu_unblocking(vcpu); 2361 out: 2362 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2363 2364 if (!vcpu_valid_wakeup(vcpu)) 2365 shrink_halt_poll_ns(vcpu); 2366 else if (halt_poll_ns) { 2367 if (block_ns <= vcpu->halt_poll_ns) 2368 ; 2369 /* we had a long block, shrink polling */ 2370 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2371 shrink_halt_poll_ns(vcpu); 2372 /* we had a short halt and our poll time is too small */ 2373 else if (vcpu->halt_poll_ns < halt_poll_ns && 2374 block_ns < halt_poll_ns) 2375 grow_halt_poll_ns(vcpu); 2376 } else 2377 vcpu->halt_poll_ns = 0; 2378 2379 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2380 kvm_arch_vcpu_block_finish(vcpu); 2381 } 2382 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2383 2384 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2385 { 2386 struct swait_queue_head *wqp; 2387 2388 wqp = kvm_arch_vcpu_wq(vcpu); 2389 if (swq_has_sleeper(wqp)) { 2390 swake_up_one(wqp); 2391 ++vcpu->stat.halt_wakeup; 2392 return true; 2393 } 2394 2395 return false; 2396 } 2397 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2398 2399 #ifndef CONFIG_S390 2400 /* 2401 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2402 */ 2403 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2404 { 2405 int me; 2406 int cpu = vcpu->cpu; 2407 2408 if (kvm_vcpu_wake_up(vcpu)) 2409 return; 2410 2411 me = get_cpu(); 2412 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2413 if (kvm_arch_vcpu_should_kick(vcpu)) 2414 smp_send_reschedule(cpu); 2415 put_cpu(); 2416 } 2417 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2418 #endif /* !CONFIG_S390 */ 2419 2420 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2421 { 2422 struct pid *pid; 2423 struct task_struct *task = NULL; 2424 int ret = 0; 2425 2426 rcu_read_lock(); 2427 pid = rcu_dereference(target->pid); 2428 if (pid) 2429 task = get_pid_task(pid, PIDTYPE_PID); 2430 rcu_read_unlock(); 2431 if (!task) 2432 return ret; 2433 ret = yield_to(task, 1); 2434 put_task_struct(task); 2435 2436 return ret; 2437 } 2438 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2439 2440 /* 2441 * Helper that checks whether a VCPU is eligible for directed yield. 2442 * Most eligible candidate to yield is decided by following heuristics: 2443 * 2444 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2445 * (preempted lock holder), indicated by @in_spin_loop. 2446 * Set at the beiginning and cleared at the end of interception/PLE handler. 2447 * 2448 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2449 * chance last time (mostly it has become eligible now since we have probably 2450 * yielded to lockholder in last iteration. This is done by toggling 2451 * @dy_eligible each time a VCPU checked for eligibility.) 2452 * 2453 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2454 * to preempted lock-holder could result in wrong VCPU selection and CPU 2455 * burning. Giving priority for a potential lock-holder increases lock 2456 * progress. 2457 * 2458 * Since algorithm is based on heuristics, accessing another VCPU data without 2459 * locking does not harm. It may result in trying to yield to same VCPU, fail 2460 * and continue with next VCPU and so on. 2461 */ 2462 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2463 { 2464 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2465 bool eligible; 2466 2467 eligible = !vcpu->spin_loop.in_spin_loop || 2468 vcpu->spin_loop.dy_eligible; 2469 2470 if (vcpu->spin_loop.in_spin_loop) 2471 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2472 2473 return eligible; 2474 #else 2475 return true; 2476 #endif 2477 } 2478 2479 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2480 { 2481 struct kvm *kvm = me->kvm; 2482 struct kvm_vcpu *vcpu; 2483 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2484 int yielded = 0; 2485 int try = 3; 2486 int pass; 2487 int i; 2488 2489 kvm_vcpu_set_in_spin_loop(me, true); 2490 /* 2491 * We boost the priority of a VCPU that is runnable but not 2492 * currently running, because it got preempted by something 2493 * else and called schedule in __vcpu_run. Hopefully that 2494 * VCPU is holding the lock that we need and will release it. 2495 * We approximate round-robin by starting at the last boosted VCPU. 2496 */ 2497 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2498 kvm_for_each_vcpu(i, vcpu, kvm) { 2499 if (!pass && i <= last_boosted_vcpu) { 2500 i = last_boosted_vcpu; 2501 continue; 2502 } else if (pass && i > last_boosted_vcpu) 2503 break; 2504 if (!READ_ONCE(vcpu->preempted)) 2505 continue; 2506 if (vcpu == me) 2507 continue; 2508 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2509 continue; 2510 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2511 continue; 2512 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2513 continue; 2514 2515 yielded = kvm_vcpu_yield_to(vcpu); 2516 if (yielded > 0) { 2517 kvm->last_boosted_vcpu = i; 2518 break; 2519 } else if (yielded < 0) { 2520 try--; 2521 if (!try) 2522 break; 2523 } 2524 } 2525 } 2526 kvm_vcpu_set_in_spin_loop(me, false); 2527 2528 /* Ensure vcpu is not eligible during next spinloop */ 2529 kvm_vcpu_set_dy_eligible(me, false); 2530 } 2531 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2532 2533 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2534 { 2535 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2536 struct page *page; 2537 2538 if (vmf->pgoff == 0) 2539 page = virt_to_page(vcpu->run); 2540 #ifdef CONFIG_X86 2541 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2542 page = virt_to_page(vcpu->arch.pio_data); 2543 #endif 2544 #ifdef CONFIG_KVM_MMIO 2545 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2546 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2547 #endif 2548 else 2549 return kvm_arch_vcpu_fault(vcpu, vmf); 2550 get_page(page); 2551 vmf->page = page; 2552 return 0; 2553 } 2554 2555 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2556 .fault = kvm_vcpu_fault, 2557 }; 2558 2559 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2560 { 2561 vma->vm_ops = &kvm_vcpu_vm_ops; 2562 return 0; 2563 } 2564 2565 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2566 { 2567 struct kvm_vcpu *vcpu = filp->private_data; 2568 2569 debugfs_remove_recursive(vcpu->debugfs_dentry); 2570 kvm_put_kvm(vcpu->kvm); 2571 return 0; 2572 } 2573 2574 static struct file_operations kvm_vcpu_fops = { 2575 .release = kvm_vcpu_release, 2576 .unlocked_ioctl = kvm_vcpu_ioctl, 2577 .mmap = kvm_vcpu_mmap, 2578 .llseek = noop_llseek, 2579 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2580 }; 2581 2582 /* 2583 * Allocates an inode for the vcpu. 2584 */ 2585 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2586 { 2587 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2588 2589 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2590 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2591 } 2592 2593 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2594 { 2595 char dir_name[ITOA_MAX_LEN * 2]; 2596 int ret; 2597 2598 if (!kvm_arch_has_vcpu_debugfs()) 2599 return 0; 2600 2601 if (!debugfs_initialized()) 2602 return 0; 2603 2604 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2605 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2606 vcpu->kvm->debugfs_dentry); 2607 if (!vcpu->debugfs_dentry) 2608 return -ENOMEM; 2609 2610 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2611 if (ret < 0) { 2612 debugfs_remove_recursive(vcpu->debugfs_dentry); 2613 return ret; 2614 } 2615 2616 return 0; 2617 } 2618 2619 /* 2620 * Creates some virtual cpus. Good luck creating more than one. 2621 */ 2622 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2623 { 2624 int r; 2625 struct kvm_vcpu *vcpu; 2626 2627 if (id >= KVM_MAX_VCPU_ID) 2628 return -EINVAL; 2629 2630 mutex_lock(&kvm->lock); 2631 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2632 mutex_unlock(&kvm->lock); 2633 return -EINVAL; 2634 } 2635 2636 kvm->created_vcpus++; 2637 mutex_unlock(&kvm->lock); 2638 2639 vcpu = kvm_arch_vcpu_create(kvm, id); 2640 if (IS_ERR(vcpu)) { 2641 r = PTR_ERR(vcpu); 2642 goto vcpu_decrement; 2643 } 2644 2645 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2646 2647 r = kvm_arch_vcpu_setup(vcpu); 2648 if (r) 2649 goto vcpu_destroy; 2650 2651 r = kvm_create_vcpu_debugfs(vcpu); 2652 if (r) 2653 goto vcpu_destroy; 2654 2655 mutex_lock(&kvm->lock); 2656 if (kvm_get_vcpu_by_id(kvm, id)) { 2657 r = -EEXIST; 2658 goto unlock_vcpu_destroy; 2659 } 2660 2661 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2662 2663 /* Now it's all set up, let userspace reach it */ 2664 kvm_get_kvm(kvm); 2665 r = create_vcpu_fd(vcpu); 2666 if (r < 0) { 2667 kvm_put_kvm(kvm); 2668 goto unlock_vcpu_destroy; 2669 } 2670 2671 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2672 2673 /* 2674 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2675 * before kvm->online_vcpu's incremented value. 2676 */ 2677 smp_wmb(); 2678 atomic_inc(&kvm->online_vcpus); 2679 2680 mutex_unlock(&kvm->lock); 2681 kvm_arch_vcpu_postcreate(vcpu); 2682 return r; 2683 2684 unlock_vcpu_destroy: 2685 mutex_unlock(&kvm->lock); 2686 debugfs_remove_recursive(vcpu->debugfs_dentry); 2687 vcpu_destroy: 2688 kvm_arch_vcpu_destroy(vcpu); 2689 vcpu_decrement: 2690 mutex_lock(&kvm->lock); 2691 kvm->created_vcpus--; 2692 mutex_unlock(&kvm->lock); 2693 return r; 2694 } 2695 2696 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2697 { 2698 if (sigset) { 2699 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2700 vcpu->sigset_active = 1; 2701 vcpu->sigset = *sigset; 2702 } else 2703 vcpu->sigset_active = 0; 2704 return 0; 2705 } 2706 2707 static long kvm_vcpu_ioctl(struct file *filp, 2708 unsigned int ioctl, unsigned long arg) 2709 { 2710 struct kvm_vcpu *vcpu = filp->private_data; 2711 void __user *argp = (void __user *)arg; 2712 int r; 2713 struct kvm_fpu *fpu = NULL; 2714 struct kvm_sregs *kvm_sregs = NULL; 2715 2716 if (vcpu->kvm->mm != current->mm) 2717 return -EIO; 2718 2719 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2720 return -EINVAL; 2721 2722 /* 2723 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2724 * execution; mutex_lock() would break them. 2725 */ 2726 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2727 if (r != -ENOIOCTLCMD) 2728 return r; 2729 2730 if (mutex_lock_killable(&vcpu->mutex)) 2731 return -EINTR; 2732 switch (ioctl) { 2733 case KVM_RUN: { 2734 struct pid *oldpid; 2735 r = -EINVAL; 2736 if (arg) 2737 goto out; 2738 oldpid = rcu_access_pointer(vcpu->pid); 2739 if (unlikely(oldpid != task_pid(current))) { 2740 /* The thread running this VCPU changed. */ 2741 struct pid *newpid; 2742 2743 r = kvm_arch_vcpu_run_pid_change(vcpu); 2744 if (r) 2745 break; 2746 2747 newpid = get_task_pid(current, PIDTYPE_PID); 2748 rcu_assign_pointer(vcpu->pid, newpid); 2749 if (oldpid) 2750 synchronize_rcu(); 2751 put_pid(oldpid); 2752 } 2753 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2754 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2755 break; 2756 } 2757 case KVM_GET_REGS: { 2758 struct kvm_regs *kvm_regs; 2759 2760 r = -ENOMEM; 2761 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2762 if (!kvm_regs) 2763 goto out; 2764 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2765 if (r) 2766 goto out_free1; 2767 r = -EFAULT; 2768 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2769 goto out_free1; 2770 r = 0; 2771 out_free1: 2772 kfree(kvm_regs); 2773 break; 2774 } 2775 case KVM_SET_REGS: { 2776 struct kvm_regs *kvm_regs; 2777 2778 r = -ENOMEM; 2779 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2780 if (IS_ERR(kvm_regs)) { 2781 r = PTR_ERR(kvm_regs); 2782 goto out; 2783 } 2784 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2785 kfree(kvm_regs); 2786 break; 2787 } 2788 case KVM_GET_SREGS: { 2789 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2790 GFP_KERNEL_ACCOUNT); 2791 r = -ENOMEM; 2792 if (!kvm_sregs) 2793 goto out; 2794 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2795 if (r) 2796 goto out; 2797 r = -EFAULT; 2798 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2799 goto out; 2800 r = 0; 2801 break; 2802 } 2803 case KVM_SET_SREGS: { 2804 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2805 if (IS_ERR(kvm_sregs)) { 2806 r = PTR_ERR(kvm_sregs); 2807 kvm_sregs = NULL; 2808 goto out; 2809 } 2810 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2811 break; 2812 } 2813 case KVM_GET_MP_STATE: { 2814 struct kvm_mp_state mp_state; 2815 2816 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2817 if (r) 2818 goto out; 2819 r = -EFAULT; 2820 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2821 goto out; 2822 r = 0; 2823 break; 2824 } 2825 case KVM_SET_MP_STATE: { 2826 struct kvm_mp_state mp_state; 2827 2828 r = -EFAULT; 2829 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2830 goto out; 2831 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2832 break; 2833 } 2834 case KVM_TRANSLATE: { 2835 struct kvm_translation tr; 2836 2837 r = -EFAULT; 2838 if (copy_from_user(&tr, argp, sizeof(tr))) 2839 goto out; 2840 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2841 if (r) 2842 goto out; 2843 r = -EFAULT; 2844 if (copy_to_user(argp, &tr, sizeof(tr))) 2845 goto out; 2846 r = 0; 2847 break; 2848 } 2849 case KVM_SET_GUEST_DEBUG: { 2850 struct kvm_guest_debug dbg; 2851 2852 r = -EFAULT; 2853 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2854 goto out; 2855 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2856 break; 2857 } 2858 case KVM_SET_SIGNAL_MASK: { 2859 struct kvm_signal_mask __user *sigmask_arg = argp; 2860 struct kvm_signal_mask kvm_sigmask; 2861 sigset_t sigset, *p; 2862 2863 p = NULL; 2864 if (argp) { 2865 r = -EFAULT; 2866 if (copy_from_user(&kvm_sigmask, argp, 2867 sizeof(kvm_sigmask))) 2868 goto out; 2869 r = -EINVAL; 2870 if (kvm_sigmask.len != sizeof(sigset)) 2871 goto out; 2872 r = -EFAULT; 2873 if (copy_from_user(&sigset, sigmask_arg->sigset, 2874 sizeof(sigset))) 2875 goto out; 2876 p = &sigset; 2877 } 2878 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2879 break; 2880 } 2881 case KVM_GET_FPU: { 2882 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2883 r = -ENOMEM; 2884 if (!fpu) 2885 goto out; 2886 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2887 if (r) 2888 goto out; 2889 r = -EFAULT; 2890 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2891 goto out; 2892 r = 0; 2893 break; 2894 } 2895 case KVM_SET_FPU: { 2896 fpu = memdup_user(argp, sizeof(*fpu)); 2897 if (IS_ERR(fpu)) { 2898 r = PTR_ERR(fpu); 2899 fpu = NULL; 2900 goto out; 2901 } 2902 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2903 break; 2904 } 2905 default: 2906 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2907 } 2908 out: 2909 mutex_unlock(&vcpu->mutex); 2910 kfree(fpu); 2911 kfree(kvm_sregs); 2912 return r; 2913 } 2914 2915 #ifdef CONFIG_KVM_COMPAT 2916 static long kvm_vcpu_compat_ioctl(struct file *filp, 2917 unsigned int ioctl, unsigned long arg) 2918 { 2919 struct kvm_vcpu *vcpu = filp->private_data; 2920 void __user *argp = compat_ptr(arg); 2921 int r; 2922 2923 if (vcpu->kvm->mm != current->mm) 2924 return -EIO; 2925 2926 switch (ioctl) { 2927 case KVM_SET_SIGNAL_MASK: { 2928 struct kvm_signal_mask __user *sigmask_arg = argp; 2929 struct kvm_signal_mask kvm_sigmask; 2930 sigset_t sigset; 2931 2932 if (argp) { 2933 r = -EFAULT; 2934 if (copy_from_user(&kvm_sigmask, argp, 2935 sizeof(kvm_sigmask))) 2936 goto out; 2937 r = -EINVAL; 2938 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2939 goto out; 2940 r = -EFAULT; 2941 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2942 goto out; 2943 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2944 } else 2945 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2946 break; 2947 } 2948 default: 2949 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2950 } 2951 2952 out: 2953 return r; 2954 } 2955 #endif 2956 2957 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 2958 { 2959 struct kvm_device *dev = filp->private_data; 2960 2961 if (dev->ops->mmap) 2962 return dev->ops->mmap(dev, vma); 2963 2964 return -ENODEV; 2965 } 2966 2967 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2968 int (*accessor)(struct kvm_device *dev, 2969 struct kvm_device_attr *attr), 2970 unsigned long arg) 2971 { 2972 struct kvm_device_attr attr; 2973 2974 if (!accessor) 2975 return -EPERM; 2976 2977 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2978 return -EFAULT; 2979 2980 return accessor(dev, &attr); 2981 } 2982 2983 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2984 unsigned long arg) 2985 { 2986 struct kvm_device *dev = filp->private_data; 2987 2988 if (dev->kvm->mm != current->mm) 2989 return -EIO; 2990 2991 switch (ioctl) { 2992 case KVM_SET_DEVICE_ATTR: 2993 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2994 case KVM_GET_DEVICE_ATTR: 2995 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2996 case KVM_HAS_DEVICE_ATTR: 2997 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2998 default: 2999 if (dev->ops->ioctl) 3000 return dev->ops->ioctl(dev, ioctl, arg); 3001 3002 return -ENOTTY; 3003 } 3004 } 3005 3006 static int kvm_device_release(struct inode *inode, struct file *filp) 3007 { 3008 struct kvm_device *dev = filp->private_data; 3009 struct kvm *kvm = dev->kvm; 3010 3011 if (dev->ops->release) { 3012 mutex_lock(&kvm->lock); 3013 list_del(&dev->vm_node); 3014 dev->ops->release(dev); 3015 mutex_unlock(&kvm->lock); 3016 } 3017 3018 kvm_put_kvm(kvm); 3019 return 0; 3020 } 3021 3022 static const struct file_operations kvm_device_fops = { 3023 .unlocked_ioctl = kvm_device_ioctl, 3024 .release = kvm_device_release, 3025 KVM_COMPAT(kvm_device_ioctl), 3026 .mmap = kvm_device_mmap, 3027 }; 3028 3029 struct kvm_device *kvm_device_from_filp(struct file *filp) 3030 { 3031 if (filp->f_op != &kvm_device_fops) 3032 return NULL; 3033 3034 return filp->private_data; 3035 } 3036 3037 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3038 #ifdef CONFIG_KVM_MPIC 3039 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3040 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3041 #endif 3042 }; 3043 3044 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 3045 { 3046 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3047 return -ENOSPC; 3048 3049 if (kvm_device_ops_table[type] != NULL) 3050 return -EEXIST; 3051 3052 kvm_device_ops_table[type] = ops; 3053 return 0; 3054 } 3055 3056 void kvm_unregister_device_ops(u32 type) 3057 { 3058 if (kvm_device_ops_table[type] != NULL) 3059 kvm_device_ops_table[type] = NULL; 3060 } 3061 3062 static int kvm_ioctl_create_device(struct kvm *kvm, 3063 struct kvm_create_device *cd) 3064 { 3065 struct kvm_device_ops *ops = NULL; 3066 struct kvm_device *dev; 3067 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3068 int type; 3069 int ret; 3070 3071 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3072 return -ENODEV; 3073 3074 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3075 ops = kvm_device_ops_table[type]; 3076 if (ops == NULL) 3077 return -ENODEV; 3078 3079 if (test) 3080 return 0; 3081 3082 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3083 if (!dev) 3084 return -ENOMEM; 3085 3086 dev->ops = ops; 3087 dev->kvm = kvm; 3088 3089 mutex_lock(&kvm->lock); 3090 ret = ops->create(dev, type); 3091 if (ret < 0) { 3092 mutex_unlock(&kvm->lock); 3093 kfree(dev); 3094 return ret; 3095 } 3096 list_add(&dev->vm_node, &kvm->devices); 3097 mutex_unlock(&kvm->lock); 3098 3099 if (ops->init) 3100 ops->init(dev); 3101 3102 kvm_get_kvm(kvm); 3103 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3104 if (ret < 0) { 3105 kvm_put_kvm(kvm); 3106 mutex_lock(&kvm->lock); 3107 list_del(&dev->vm_node); 3108 mutex_unlock(&kvm->lock); 3109 ops->destroy(dev); 3110 return ret; 3111 } 3112 3113 cd->fd = ret; 3114 return 0; 3115 } 3116 3117 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3118 { 3119 switch (arg) { 3120 case KVM_CAP_USER_MEMORY: 3121 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3122 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3123 case KVM_CAP_INTERNAL_ERROR_DATA: 3124 #ifdef CONFIG_HAVE_KVM_MSI 3125 case KVM_CAP_SIGNAL_MSI: 3126 #endif 3127 #ifdef CONFIG_HAVE_KVM_IRQFD 3128 case KVM_CAP_IRQFD: 3129 case KVM_CAP_IRQFD_RESAMPLE: 3130 #endif 3131 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3132 case KVM_CAP_CHECK_EXTENSION_VM: 3133 case KVM_CAP_ENABLE_CAP_VM: 3134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3135 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3136 #endif 3137 return 1; 3138 #ifdef CONFIG_KVM_MMIO 3139 case KVM_CAP_COALESCED_MMIO: 3140 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3141 case KVM_CAP_COALESCED_PIO: 3142 return 1; 3143 #endif 3144 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3145 case KVM_CAP_IRQ_ROUTING: 3146 return KVM_MAX_IRQ_ROUTES; 3147 #endif 3148 #if KVM_ADDRESS_SPACE_NUM > 1 3149 case KVM_CAP_MULTI_ADDRESS_SPACE: 3150 return KVM_ADDRESS_SPACE_NUM; 3151 #endif 3152 case KVM_CAP_MAX_VCPU_ID: 3153 return KVM_MAX_VCPU_ID; 3154 case KVM_CAP_NR_MEMSLOTS: 3155 return KVM_USER_MEM_SLOTS; 3156 default: 3157 break; 3158 } 3159 return kvm_vm_ioctl_check_extension(kvm, arg); 3160 } 3161 3162 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3163 struct kvm_enable_cap *cap) 3164 { 3165 return -EINVAL; 3166 } 3167 3168 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3169 struct kvm_enable_cap *cap) 3170 { 3171 switch (cap->cap) { 3172 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3173 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3174 if (cap->flags || (cap->args[0] & ~1)) 3175 return -EINVAL; 3176 kvm->manual_dirty_log_protect = cap->args[0]; 3177 return 0; 3178 #endif 3179 default: 3180 return kvm_vm_ioctl_enable_cap(kvm, cap); 3181 } 3182 } 3183 3184 static long kvm_vm_ioctl(struct file *filp, 3185 unsigned int ioctl, unsigned long arg) 3186 { 3187 struct kvm *kvm = filp->private_data; 3188 void __user *argp = (void __user *)arg; 3189 int r; 3190 3191 if (kvm->mm != current->mm) 3192 return -EIO; 3193 switch (ioctl) { 3194 case KVM_CREATE_VCPU: 3195 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3196 break; 3197 case KVM_ENABLE_CAP: { 3198 struct kvm_enable_cap cap; 3199 3200 r = -EFAULT; 3201 if (copy_from_user(&cap, argp, sizeof(cap))) 3202 goto out; 3203 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3204 break; 3205 } 3206 case KVM_SET_USER_MEMORY_REGION: { 3207 struct kvm_userspace_memory_region kvm_userspace_mem; 3208 3209 r = -EFAULT; 3210 if (copy_from_user(&kvm_userspace_mem, argp, 3211 sizeof(kvm_userspace_mem))) 3212 goto out; 3213 3214 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3215 break; 3216 } 3217 case KVM_GET_DIRTY_LOG: { 3218 struct kvm_dirty_log log; 3219 3220 r = -EFAULT; 3221 if (copy_from_user(&log, argp, sizeof(log))) 3222 goto out; 3223 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3224 break; 3225 } 3226 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3227 case KVM_CLEAR_DIRTY_LOG: { 3228 struct kvm_clear_dirty_log log; 3229 3230 r = -EFAULT; 3231 if (copy_from_user(&log, argp, sizeof(log))) 3232 goto out; 3233 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3234 break; 3235 } 3236 #endif 3237 #ifdef CONFIG_KVM_MMIO 3238 case KVM_REGISTER_COALESCED_MMIO: { 3239 struct kvm_coalesced_mmio_zone zone; 3240 3241 r = -EFAULT; 3242 if (copy_from_user(&zone, argp, sizeof(zone))) 3243 goto out; 3244 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3245 break; 3246 } 3247 case KVM_UNREGISTER_COALESCED_MMIO: { 3248 struct kvm_coalesced_mmio_zone zone; 3249 3250 r = -EFAULT; 3251 if (copy_from_user(&zone, argp, sizeof(zone))) 3252 goto out; 3253 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3254 break; 3255 } 3256 #endif 3257 case KVM_IRQFD: { 3258 struct kvm_irqfd data; 3259 3260 r = -EFAULT; 3261 if (copy_from_user(&data, argp, sizeof(data))) 3262 goto out; 3263 r = kvm_irqfd(kvm, &data); 3264 break; 3265 } 3266 case KVM_IOEVENTFD: { 3267 struct kvm_ioeventfd data; 3268 3269 r = -EFAULT; 3270 if (copy_from_user(&data, argp, sizeof(data))) 3271 goto out; 3272 r = kvm_ioeventfd(kvm, &data); 3273 break; 3274 } 3275 #ifdef CONFIG_HAVE_KVM_MSI 3276 case KVM_SIGNAL_MSI: { 3277 struct kvm_msi msi; 3278 3279 r = -EFAULT; 3280 if (copy_from_user(&msi, argp, sizeof(msi))) 3281 goto out; 3282 r = kvm_send_userspace_msi(kvm, &msi); 3283 break; 3284 } 3285 #endif 3286 #ifdef __KVM_HAVE_IRQ_LINE 3287 case KVM_IRQ_LINE_STATUS: 3288 case KVM_IRQ_LINE: { 3289 struct kvm_irq_level irq_event; 3290 3291 r = -EFAULT; 3292 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3293 goto out; 3294 3295 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3296 ioctl == KVM_IRQ_LINE_STATUS); 3297 if (r) 3298 goto out; 3299 3300 r = -EFAULT; 3301 if (ioctl == KVM_IRQ_LINE_STATUS) { 3302 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3303 goto out; 3304 } 3305 3306 r = 0; 3307 break; 3308 } 3309 #endif 3310 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3311 case KVM_SET_GSI_ROUTING: { 3312 struct kvm_irq_routing routing; 3313 struct kvm_irq_routing __user *urouting; 3314 struct kvm_irq_routing_entry *entries = NULL; 3315 3316 r = -EFAULT; 3317 if (copy_from_user(&routing, argp, sizeof(routing))) 3318 goto out; 3319 r = -EINVAL; 3320 if (!kvm_arch_can_set_irq_routing(kvm)) 3321 goto out; 3322 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3323 goto out; 3324 if (routing.flags) 3325 goto out; 3326 if (routing.nr) { 3327 r = -ENOMEM; 3328 entries = vmalloc(array_size(sizeof(*entries), 3329 routing.nr)); 3330 if (!entries) 3331 goto out; 3332 r = -EFAULT; 3333 urouting = argp; 3334 if (copy_from_user(entries, urouting->entries, 3335 routing.nr * sizeof(*entries))) 3336 goto out_free_irq_routing; 3337 } 3338 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3339 routing.flags); 3340 out_free_irq_routing: 3341 vfree(entries); 3342 break; 3343 } 3344 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3345 case KVM_CREATE_DEVICE: { 3346 struct kvm_create_device cd; 3347 3348 r = -EFAULT; 3349 if (copy_from_user(&cd, argp, sizeof(cd))) 3350 goto out; 3351 3352 r = kvm_ioctl_create_device(kvm, &cd); 3353 if (r) 3354 goto out; 3355 3356 r = -EFAULT; 3357 if (copy_to_user(argp, &cd, sizeof(cd))) 3358 goto out; 3359 3360 r = 0; 3361 break; 3362 } 3363 case KVM_CHECK_EXTENSION: 3364 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3365 break; 3366 default: 3367 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3368 } 3369 out: 3370 return r; 3371 } 3372 3373 #ifdef CONFIG_KVM_COMPAT 3374 struct compat_kvm_dirty_log { 3375 __u32 slot; 3376 __u32 padding1; 3377 union { 3378 compat_uptr_t dirty_bitmap; /* one bit per page */ 3379 __u64 padding2; 3380 }; 3381 }; 3382 3383 static long kvm_vm_compat_ioctl(struct file *filp, 3384 unsigned int ioctl, unsigned long arg) 3385 { 3386 struct kvm *kvm = filp->private_data; 3387 int r; 3388 3389 if (kvm->mm != current->mm) 3390 return -EIO; 3391 switch (ioctl) { 3392 case KVM_GET_DIRTY_LOG: { 3393 struct compat_kvm_dirty_log compat_log; 3394 struct kvm_dirty_log log; 3395 3396 if (copy_from_user(&compat_log, (void __user *)arg, 3397 sizeof(compat_log))) 3398 return -EFAULT; 3399 log.slot = compat_log.slot; 3400 log.padding1 = compat_log.padding1; 3401 log.padding2 = compat_log.padding2; 3402 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3403 3404 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3405 break; 3406 } 3407 default: 3408 r = kvm_vm_ioctl(filp, ioctl, arg); 3409 } 3410 return r; 3411 } 3412 #endif 3413 3414 static struct file_operations kvm_vm_fops = { 3415 .release = kvm_vm_release, 3416 .unlocked_ioctl = kvm_vm_ioctl, 3417 .llseek = noop_llseek, 3418 KVM_COMPAT(kvm_vm_compat_ioctl), 3419 }; 3420 3421 static int kvm_dev_ioctl_create_vm(unsigned long type) 3422 { 3423 int r; 3424 struct kvm *kvm; 3425 struct file *file; 3426 3427 kvm = kvm_create_vm(type); 3428 if (IS_ERR(kvm)) 3429 return PTR_ERR(kvm); 3430 #ifdef CONFIG_KVM_MMIO 3431 r = kvm_coalesced_mmio_init(kvm); 3432 if (r < 0) 3433 goto put_kvm; 3434 #endif 3435 r = get_unused_fd_flags(O_CLOEXEC); 3436 if (r < 0) 3437 goto put_kvm; 3438 3439 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3440 if (IS_ERR(file)) { 3441 put_unused_fd(r); 3442 r = PTR_ERR(file); 3443 goto put_kvm; 3444 } 3445 3446 /* 3447 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3448 * already set, with ->release() being kvm_vm_release(). In error 3449 * cases it will be called by the final fput(file) and will take 3450 * care of doing kvm_put_kvm(kvm). 3451 */ 3452 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3453 put_unused_fd(r); 3454 fput(file); 3455 return -ENOMEM; 3456 } 3457 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3458 3459 fd_install(r, file); 3460 return r; 3461 3462 put_kvm: 3463 kvm_put_kvm(kvm); 3464 return r; 3465 } 3466 3467 static long kvm_dev_ioctl(struct file *filp, 3468 unsigned int ioctl, unsigned long arg) 3469 { 3470 long r = -EINVAL; 3471 3472 switch (ioctl) { 3473 case KVM_GET_API_VERSION: 3474 if (arg) 3475 goto out; 3476 r = KVM_API_VERSION; 3477 break; 3478 case KVM_CREATE_VM: 3479 r = kvm_dev_ioctl_create_vm(arg); 3480 break; 3481 case KVM_CHECK_EXTENSION: 3482 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3483 break; 3484 case KVM_GET_VCPU_MMAP_SIZE: 3485 if (arg) 3486 goto out; 3487 r = PAGE_SIZE; /* struct kvm_run */ 3488 #ifdef CONFIG_X86 3489 r += PAGE_SIZE; /* pio data page */ 3490 #endif 3491 #ifdef CONFIG_KVM_MMIO 3492 r += PAGE_SIZE; /* coalesced mmio ring page */ 3493 #endif 3494 break; 3495 case KVM_TRACE_ENABLE: 3496 case KVM_TRACE_PAUSE: 3497 case KVM_TRACE_DISABLE: 3498 r = -EOPNOTSUPP; 3499 break; 3500 default: 3501 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3502 } 3503 out: 3504 return r; 3505 } 3506 3507 static struct file_operations kvm_chardev_ops = { 3508 .unlocked_ioctl = kvm_dev_ioctl, 3509 .llseek = noop_llseek, 3510 KVM_COMPAT(kvm_dev_ioctl), 3511 }; 3512 3513 static struct miscdevice kvm_dev = { 3514 KVM_MINOR, 3515 "kvm", 3516 &kvm_chardev_ops, 3517 }; 3518 3519 static void hardware_enable_nolock(void *junk) 3520 { 3521 int cpu = raw_smp_processor_id(); 3522 int r; 3523 3524 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3525 return; 3526 3527 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3528 3529 r = kvm_arch_hardware_enable(); 3530 3531 if (r) { 3532 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3533 atomic_inc(&hardware_enable_failed); 3534 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3535 } 3536 } 3537 3538 static int kvm_starting_cpu(unsigned int cpu) 3539 { 3540 raw_spin_lock(&kvm_count_lock); 3541 if (kvm_usage_count) 3542 hardware_enable_nolock(NULL); 3543 raw_spin_unlock(&kvm_count_lock); 3544 return 0; 3545 } 3546 3547 static void hardware_disable_nolock(void *junk) 3548 { 3549 int cpu = raw_smp_processor_id(); 3550 3551 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3552 return; 3553 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3554 kvm_arch_hardware_disable(); 3555 } 3556 3557 static int kvm_dying_cpu(unsigned int cpu) 3558 { 3559 raw_spin_lock(&kvm_count_lock); 3560 if (kvm_usage_count) 3561 hardware_disable_nolock(NULL); 3562 raw_spin_unlock(&kvm_count_lock); 3563 return 0; 3564 } 3565 3566 static void hardware_disable_all_nolock(void) 3567 { 3568 BUG_ON(!kvm_usage_count); 3569 3570 kvm_usage_count--; 3571 if (!kvm_usage_count) 3572 on_each_cpu(hardware_disable_nolock, NULL, 1); 3573 } 3574 3575 static void hardware_disable_all(void) 3576 { 3577 raw_spin_lock(&kvm_count_lock); 3578 hardware_disable_all_nolock(); 3579 raw_spin_unlock(&kvm_count_lock); 3580 } 3581 3582 static int hardware_enable_all(void) 3583 { 3584 int r = 0; 3585 3586 raw_spin_lock(&kvm_count_lock); 3587 3588 kvm_usage_count++; 3589 if (kvm_usage_count == 1) { 3590 atomic_set(&hardware_enable_failed, 0); 3591 on_each_cpu(hardware_enable_nolock, NULL, 1); 3592 3593 if (atomic_read(&hardware_enable_failed)) { 3594 hardware_disable_all_nolock(); 3595 r = -EBUSY; 3596 } 3597 } 3598 3599 raw_spin_unlock(&kvm_count_lock); 3600 3601 return r; 3602 } 3603 3604 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3605 void *v) 3606 { 3607 /* 3608 * Some (well, at least mine) BIOSes hang on reboot if 3609 * in vmx root mode. 3610 * 3611 * And Intel TXT required VMX off for all cpu when system shutdown. 3612 */ 3613 pr_info("kvm: exiting hardware virtualization\n"); 3614 kvm_rebooting = true; 3615 on_each_cpu(hardware_disable_nolock, NULL, 1); 3616 return NOTIFY_OK; 3617 } 3618 3619 static struct notifier_block kvm_reboot_notifier = { 3620 .notifier_call = kvm_reboot, 3621 .priority = 0, 3622 }; 3623 3624 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3625 { 3626 int i; 3627 3628 for (i = 0; i < bus->dev_count; i++) { 3629 struct kvm_io_device *pos = bus->range[i].dev; 3630 3631 kvm_iodevice_destructor(pos); 3632 } 3633 kfree(bus); 3634 } 3635 3636 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3637 const struct kvm_io_range *r2) 3638 { 3639 gpa_t addr1 = r1->addr; 3640 gpa_t addr2 = r2->addr; 3641 3642 if (addr1 < addr2) 3643 return -1; 3644 3645 /* If r2->len == 0, match the exact address. If r2->len != 0, 3646 * accept any overlapping write. Any order is acceptable for 3647 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3648 * we process all of them. 3649 */ 3650 if (r2->len) { 3651 addr1 += r1->len; 3652 addr2 += r2->len; 3653 } 3654 3655 if (addr1 > addr2) 3656 return 1; 3657 3658 return 0; 3659 } 3660 3661 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3662 { 3663 return kvm_io_bus_cmp(p1, p2); 3664 } 3665 3666 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3667 gpa_t addr, int len) 3668 { 3669 struct kvm_io_range *range, key; 3670 int off; 3671 3672 key = (struct kvm_io_range) { 3673 .addr = addr, 3674 .len = len, 3675 }; 3676 3677 range = bsearch(&key, bus->range, bus->dev_count, 3678 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3679 if (range == NULL) 3680 return -ENOENT; 3681 3682 off = range - bus->range; 3683 3684 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3685 off--; 3686 3687 return off; 3688 } 3689 3690 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3691 struct kvm_io_range *range, const void *val) 3692 { 3693 int idx; 3694 3695 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3696 if (idx < 0) 3697 return -EOPNOTSUPP; 3698 3699 while (idx < bus->dev_count && 3700 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3701 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3702 range->len, val)) 3703 return idx; 3704 idx++; 3705 } 3706 3707 return -EOPNOTSUPP; 3708 } 3709 3710 /* kvm_io_bus_write - called under kvm->slots_lock */ 3711 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3712 int len, const void *val) 3713 { 3714 struct kvm_io_bus *bus; 3715 struct kvm_io_range range; 3716 int r; 3717 3718 range = (struct kvm_io_range) { 3719 .addr = addr, 3720 .len = len, 3721 }; 3722 3723 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3724 if (!bus) 3725 return -ENOMEM; 3726 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3727 return r < 0 ? r : 0; 3728 } 3729 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3730 3731 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3732 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3733 gpa_t addr, int len, const void *val, long cookie) 3734 { 3735 struct kvm_io_bus *bus; 3736 struct kvm_io_range range; 3737 3738 range = (struct kvm_io_range) { 3739 .addr = addr, 3740 .len = len, 3741 }; 3742 3743 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3744 if (!bus) 3745 return -ENOMEM; 3746 3747 /* First try the device referenced by cookie. */ 3748 if ((cookie >= 0) && (cookie < bus->dev_count) && 3749 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3750 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3751 val)) 3752 return cookie; 3753 3754 /* 3755 * cookie contained garbage; fall back to search and return the 3756 * correct cookie value. 3757 */ 3758 return __kvm_io_bus_write(vcpu, bus, &range, val); 3759 } 3760 3761 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3762 struct kvm_io_range *range, void *val) 3763 { 3764 int idx; 3765 3766 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3767 if (idx < 0) 3768 return -EOPNOTSUPP; 3769 3770 while (idx < bus->dev_count && 3771 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3772 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3773 range->len, val)) 3774 return idx; 3775 idx++; 3776 } 3777 3778 return -EOPNOTSUPP; 3779 } 3780 3781 /* kvm_io_bus_read - called under kvm->slots_lock */ 3782 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3783 int len, void *val) 3784 { 3785 struct kvm_io_bus *bus; 3786 struct kvm_io_range range; 3787 int r; 3788 3789 range = (struct kvm_io_range) { 3790 .addr = addr, 3791 .len = len, 3792 }; 3793 3794 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3795 if (!bus) 3796 return -ENOMEM; 3797 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3798 return r < 0 ? r : 0; 3799 } 3800 3801 /* Caller must hold slots_lock. */ 3802 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3803 int len, struct kvm_io_device *dev) 3804 { 3805 int i; 3806 struct kvm_io_bus *new_bus, *bus; 3807 struct kvm_io_range range; 3808 3809 bus = kvm_get_bus(kvm, bus_idx); 3810 if (!bus) 3811 return -ENOMEM; 3812 3813 /* exclude ioeventfd which is limited by maximum fd */ 3814 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3815 return -ENOSPC; 3816 3817 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3818 GFP_KERNEL_ACCOUNT); 3819 if (!new_bus) 3820 return -ENOMEM; 3821 3822 range = (struct kvm_io_range) { 3823 .addr = addr, 3824 .len = len, 3825 .dev = dev, 3826 }; 3827 3828 for (i = 0; i < bus->dev_count; i++) 3829 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3830 break; 3831 3832 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3833 new_bus->dev_count++; 3834 new_bus->range[i] = range; 3835 memcpy(new_bus->range + i + 1, bus->range + i, 3836 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3837 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3838 synchronize_srcu_expedited(&kvm->srcu); 3839 kfree(bus); 3840 3841 return 0; 3842 } 3843 3844 /* Caller must hold slots_lock. */ 3845 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3846 struct kvm_io_device *dev) 3847 { 3848 int i; 3849 struct kvm_io_bus *new_bus, *bus; 3850 3851 bus = kvm_get_bus(kvm, bus_idx); 3852 if (!bus) 3853 return; 3854 3855 for (i = 0; i < bus->dev_count; i++) 3856 if (bus->range[i].dev == dev) { 3857 break; 3858 } 3859 3860 if (i == bus->dev_count) 3861 return; 3862 3863 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3864 GFP_KERNEL_ACCOUNT); 3865 if (!new_bus) { 3866 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3867 goto broken; 3868 } 3869 3870 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3871 new_bus->dev_count--; 3872 memcpy(new_bus->range + i, bus->range + i + 1, 3873 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3874 3875 broken: 3876 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3877 synchronize_srcu_expedited(&kvm->srcu); 3878 kfree(bus); 3879 return; 3880 } 3881 3882 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3883 gpa_t addr) 3884 { 3885 struct kvm_io_bus *bus; 3886 int dev_idx, srcu_idx; 3887 struct kvm_io_device *iodev = NULL; 3888 3889 srcu_idx = srcu_read_lock(&kvm->srcu); 3890 3891 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3892 if (!bus) 3893 goto out_unlock; 3894 3895 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3896 if (dev_idx < 0) 3897 goto out_unlock; 3898 3899 iodev = bus->range[dev_idx].dev; 3900 3901 out_unlock: 3902 srcu_read_unlock(&kvm->srcu, srcu_idx); 3903 3904 return iodev; 3905 } 3906 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3907 3908 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3909 int (*get)(void *, u64 *), int (*set)(void *, u64), 3910 const char *fmt) 3911 { 3912 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3913 inode->i_private; 3914 3915 /* The debugfs files are a reference to the kvm struct which 3916 * is still valid when kvm_destroy_vm is called. 3917 * To avoid the race between open and the removal of the debugfs 3918 * directory we test against the users count. 3919 */ 3920 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3921 return -ENOENT; 3922 3923 if (simple_attr_open(inode, file, get, set, fmt)) { 3924 kvm_put_kvm(stat_data->kvm); 3925 return -ENOMEM; 3926 } 3927 3928 return 0; 3929 } 3930 3931 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3932 { 3933 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3934 inode->i_private; 3935 3936 simple_attr_release(inode, file); 3937 kvm_put_kvm(stat_data->kvm); 3938 3939 return 0; 3940 } 3941 3942 static int vm_stat_get_per_vm(void *data, u64 *val) 3943 { 3944 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3945 3946 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3947 3948 return 0; 3949 } 3950 3951 static int vm_stat_clear_per_vm(void *data, u64 val) 3952 { 3953 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3954 3955 if (val) 3956 return -EINVAL; 3957 3958 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3959 3960 return 0; 3961 } 3962 3963 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3964 { 3965 __simple_attr_check_format("%llu\n", 0ull); 3966 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3967 vm_stat_clear_per_vm, "%llu\n"); 3968 } 3969 3970 static const struct file_operations vm_stat_get_per_vm_fops = { 3971 .owner = THIS_MODULE, 3972 .open = vm_stat_get_per_vm_open, 3973 .release = kvm_debugfs_release, 3974 .read = simple_attr_read, 3975 .write = simple_attr_write, 3976 .llseek = no_llseek, 3977 }; 3978 3979 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3980 { 3981 int i; 3982 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3983 struct kvm_vcpu *vcpu; 3984 3985 *val = 0; 3986 3987 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3988 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3989 3990 return 0; 3991 } 3992 3993 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3994 { 3995 int i; 3996 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3997 struct kvm_vcpu *vcpu; 3998 3999 if (val) 4000 return -EINVAL; 4001 4002 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4003 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4004 4005 return 0; 4006 } 4007 4008 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4009 { 4010 __simple_attr_check_format("%llu\n", 0ull); 4011 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4012 vcpu_stat_clear_per_vm, "%llu\n"); 4013 } 4014 4015 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4016 .owner = THIS_MODULE, 4017 .open = vcpu_stat_get_per_vm_open, 4018 .release = kvm_debugfs_release, 4019 .read = simple_attr_read, 4020 .write = simple_attr_write, 4021 .llseek = no_llseek, 4022 }; 4023 4024 static const struct file_operations *stat_fops_per_vm[] = { 4025 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4026 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4027 }; 4028 4029 static int vm_stat_get(void *_offset, u64 *val) 4030 { 4031 unsigned offset = (long)_offset; 4032 struct kvm *kvm; 4033 struct kvm_stat_data stat_tmp = {.offset = offset}; 4034 u64 tmp_val; 4035 4036 *val = 0; 4037 spin_lock(&kvm_lock); 4038 list_for_each_entry(kvm, &vm_list, vm_list) { 4039 stat_tmp.kvm = kvm; 4040 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4041 *val += tmp_val; 4042 } 4043 spin_unlock(&kvm_lock); 4044 return 0; 4045 } 4046 4047 static int vm_stat_clear(void *_offset, u64 val) 4048 { 4049 unsigned offset = (long)_offset; 4050 struct kvm *kvm; 4051 struct kvm_stat_data stat_tmp = {.offset = offset}; 4052 4053 if (val) 4054 return -EINVAL; 4055 4056 spin_lock(&kvm_lock); 4057 list_for_each_entry(kvm, &vm_list, vm_list) { 4058 stat_tmp.kvm = kvm; 4059 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4060 } 4061 spin_unlock(&kvm_lock); 4062 4063 return 0; 4064 } 4065 4066 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4067 4068 static int vcpu_stat_get(void *_offset, u64 *val) 4069 { 4070 unsigned offset = (long)_offset; 4071 struct kvm *kvm; 4072 struct kvm_stat_data stat_tmp = {.offset = offset}; 4073 u64 tmp_val; 4074 4075 *val = 0; 4076 spin_lock(&kvm_lock); 4077 list_for_each_entry(kvm, &vm_list, vm_list) { 4078 stat_tmp.kvm = kvm; 4079 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4080 *val += tmp_val; 4081 } 4082 spin_unlock(&kvm_lock); 4083 return 0; 4084 } 4085 4086 static int vcpu_stat_clear(void *_offset, u64 val) 4087 { 4088 unsigned offset = (long)_offset; 4089 struct kvm *kvm; 4090 struct kvm_stat_data stat_tmp = {.offset = offset}; 4091 4092 if (val) 4093 return -EINVAL; 4094 4095 spin_lock(&kvm_lock); 4096 list_for_each_entry(kvm, &vm_list, vm_list) { 4097 stat_tmp.kvm = kvm; 4098 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4099 } 4100 spin_unlock(&kvm_lock); 4101 4102 return 0; 4103 } 4104 4105 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4106 "%llu\n"); 4107 4108 static const struct file_operations *stat_fops[] = { 4109 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4110 [KVM_STAT_VM] = &vm_stat_fops, 4111 }; 4112 4113 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4114 { 4115 struct kobj_uevent_env *env; 4116 unsigned long long created, active; 4117 4118 if (!kvm_dev.this_device || !kvm) 4119 return; 4120 4121 spin_lock(&kvm_lock); 4122 if (type == KVM_EVENT_CREATE_VM) { 4123 kvm_createvm_count++; 4124 kvm_active_vms++; 4125 } else if (type == KVM_EVENT_DESTROY_VM) { 4126 kvm_active_vms--; 4127 } 4128 created = kvm_createvm_count; 4129 active = kvm_active_vms; 4130 spin_unlock(&kvm_lock); 4131 4132 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4133 if (!env) 4134 return; 4135 4136 add_uevent_var(env, "CREATED=%llu", created); 4137 add_uevent_var(env, "COUNT=%llu", active); 4138 4139 if (type == KVM_EVENT_CREATE_VM) { 4140 add_uevent_var(env, "EVENT=create"); 4141 kvm->userspace_pid = task_pid_nr(current); 4142 } else if (type == KVM_EVENT_DESTROY_VM) { 4143 add_uevent_var(env, "EVENT=destroy"); 4144 } 4145 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4146 4147 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4148 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4149 4150 if (p) { 4151 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4152 if (!IS_ERR(tmp)) 4153 add_uevent_var(env, "STATS_PATH=%s", tmp); 4154 kfree(p); 4155 } 4156 } 4157 /* no need for checks, since we are adding at most only 5 keys */ 4158 env->envp[env->envp_idx++] = NULL; 4159 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4160 kfree(env); 4161 } 4162 4163 static void kvm_init_debug(void) 4164 { 4165 struct kvm_stats_debugfs_item *p; 4166 4167 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4168 4169 kvm_debugfs_num_entries = 0; 4170 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4171 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4172 (void *)(long)p->offset, 4173 stat_fops[p->kind]); 4174 } 4175 } 4176 4177 static int kvm_suspend(void) 4178 { 4179 if (kvm_usage_count) 4180 hardware_disable_nolock(NULL); 4181 return 0; 4182 } 4183 4184 static void kvm_resume(void) 4185 { 4186 if (kvm_usage_count) { 4187 #ifdef CONFIG_LOCKDEP 4188 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4189 #endif 4190 hardware_enable_nolock(NULL); 4191 } 4192 } 4193 4194 static struct syscore_ops kvm_syscore_ops = { 4195 .suspend = kvm_suspend, 4196 .resume = kvm_resume, 4197 }; 4198 4199 static inline 4200 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4201 { 4202 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4203 } 4204 4205 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4206 { 4207 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4208 4209 if (vcpu->preempted) 4210 vcpu->preempted = false; 4211 4212 kvm_arch_sched_in(vcpu, cpu); 4213 4214 kvm_arch_vcpu_load(vcpu, cpu); 4215 } 4216 4217 static void kvm_sched_out(struct preempt_notifier *pn, 4218 struct task_struct *next) 4219 { 4220 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4221 4222 if (current->state == TASK_RUNNING) 4223 vcpu->preempted = true; 4224 kvm_arch_vcpu_put(vcpu); 4225 } 4226 4227 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4228 struct module *module) 4229 { 4230 int r; 4231 int cpu; 4232 4233 r = kvm_arch_init(opaque); 4234 if (r) 4235 goto out_fail; 4236 4237 /* 4238 * kvm_arch_init makes sure there's at most one caller 4239 * for architectures that support multiple implementations, 4240 * like intel and amd on x86. 4241 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4242 * conflicts in case kvm is already setup for another implementation. 4243 */ 4244 r = kvm_irqfd_init(); 4245 if (r) 4246 goto out_irqfd; 4247 4248 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4249 r = -ENOMEM; 4250 goto out_free_0; 4251 } 4252 4253 r = kvm_arch_hardware_setup(); 4254 if (r < 0) 4255 goto out_free_0a; 4256 4257 for_each_online_cpu(cpu) { 4258 smp_call_function_single(cpu, 4259 kvm_arch_check_processor_compat, 4260 &r, 1); 4261 if (r < 0) 4262 goto out_free_1; 4263 } 4264 4265 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4266 kvm_starting_cpu, kvm_dying_cpu); 4267 if (r) 4268 goto out_free_2; 4269 register_reboot_notifier(&kvm_reboot_notifier); 4270 4271 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4272 if (!vcpu_align) 4273 vcpu_align = __alignof__(struct kvm_vcpu); 4274 kvm_vcpu_cache = 4275 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4276 SLAB_ACCOUNT, 4277 offsetof(struct kvm_vcpu, arch), 4278 sizeof_field(struct kvm_vcpu, arch), 4279 NULL); 4280 if (!kvm_vcpu_cache) { 4281 r = -ENOMEM; 4282 goto out_free_3; 4283 } 4284 4285 r = kvm_async_pf_init(); 4286 if (r) 4287 goto out_free; 4288 4289 kvm_chardev_ops.owner = module; 4290 kvm_vm_fops.owner = module; 4291 kvm_vcpu_fops.owner = module; 4292 4293 r = misc_register(&kvm_dev); 4294 if (r) { 4295 pr_err("kvm: misc device register failed\n"); 4296 goto out_unreg; 4297 } 4298 4299 register_syscore_ops(&kvm_syscore_ops); 4300 4301 kvm_preempt_ops.sched_in = kvm_sched_in; 4302 kvm_preempt_ops.sched_out = kvm_sched_out; 4303 4304 kvm_init_debug(); 4305 4306 r = kvm_vfio_ops_init(); 4307 WARN_ON(r); 4308 4309 return 0; 4310 4311 out_unreg: 4312 kvm_async_pf_deinit(); 4313 out_free: 4314 kmem_cache_destroy(kvm_vcpu_cache); 4315 out_free_3: 4316 unregister_reboot_notifier(&kvm_reboot_notifier); 4317 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4318 out_free_2: 4319 out_free_1: 4320 kvm_arch_hardware_unsetup(); 4321 out_free_0a: 4322 free_cpumask_var(cpus_hardware_enabled); 4323 out_free_0: 4324 kvm_irqfd_exit(); 4325 out_irqfd: 4326 kvm_arch_exit(); 4327 out_fail: 4328 return r; 4329 } 4330 EXPORT_SYMBOL_GPL(kvm_init); 4331 4332 void kvm_exit(void) 4333 { 4334 debugfs_remove_recursive(kvm_debugfs_dir); 4335 misc_deregister(&kvm_dev); 4336 kmem_cache_destroy(kvm_vcpu_cache); 4337 kvm_async_pf_deinit(); 4338 unregister_syscore_ops(&kvm_syscore_ops); 4339 unregister_reboot_notifier(&kvm_reboot_notifier); 4340 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4341 on_each_cpu(hardware_disable_nolock, NULL, 1); 4342 kvm_arch_hardware_unsetup(); 4343 kvm_arch_exit(); 4344 kvm_irqfd_exit(); 4345 free_cpumask_var(cpus_hardware_enabled); 4346 kvm_vfio_ops_exit(); 4347 } 4348 EXPORT_SYMBOL_GPL(kvm_exit); 4349