1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 55 #include <asm/processor.h> 56 #include <asm/ioctl.h> 57 #include <linux/uaccess.h> 58 #include <asm/pgtable.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "vfio.h" 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 /* Worst case buffer size needed for holding an integer. */ 68 #define ITOA_MAX_LEN 12 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 /* Architectures should define their poll value according to the halt latency */ 74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 75 module_param(halt_poll_ns, uint, 0644); 76 EXPORT_SYMBOL_GPL(halt_poll_ns); 77 78 /* Default doubles per-vcpu halt_poll_ns. */ 79 unsigned int halt_poll_ns_grow = 2; 80 module_param(halt_poll_ns_grow, uint, 0644); 81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 82 83 /* The start value to grow halt_poll_ns from */ 84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 85 module_param(halt_poll_ns_grow_start, uint, 0644); 86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 87 88 /* Default resets per-vcpu halt_poll_ns . */ 89 unsigned int halt_poll_ns_shrink; 90 module_param(halt_poll_ns_shrink, uint, 0644); 91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 92 93 /* 94 * Ordering of locks: 95 * 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 97 */ 98 99 DEFINE_MUTEX(kvm_lock); 100 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 101 LIST_HEAD(vm_list); 102 103 static cpumask_var_t cpus_hardware_enabled; 104 static int kvm_usage_count; 105 static atomic_t hardware_enable_failed; 106 107 static struct kmem_cache *kvm_vcpu_cache; 108 109 static __read_mostly struct preempt_ops kvm_preempt_ops; 110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 111 112 struct dentry *kvm_debugfs_dir; 113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 114 115 static int kvm_debugfs_num_entries; 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 159 unsigned long start, unsigned long end, bool blockable) 160 { 161 return 0; 162 } 163 164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 165 { 166 /* 167 * The metadata used by is_zone_device_page() to determine whether or 168 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 169 * the device has been pinned, e.g. by get_user_pages(). WARN if the 170 * page_count() is zero to help detect bad usage of this helper. 171 */ 172 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 173 return false; 174 175 return is_zone_device_page(pfn_to_page(pfn)); 176 } 177 178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 179 { 180 /* 181 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 182 * perspective they are "normal" pages, albeit with slightly different 183 * usage rules. 184 */ 185 if (pfn_valid(pfn)) 186 return PageReserved(pfn_to_page(pfn)) && 187 !is_zero_pfn(pfn) && 188 !kvm_is_zone_device_pfn(pfn); 189 190 return true; 191 } 192 193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 194 { 195 struct page *page = pfn_to_page(pfn); 196 197 if (!PageTransCompoundMap(page)) 198 return false; 199 200 return is_transparent_hugepage(compound_head(page)); 201 } 202 203 /* 204 * Switches to specified vcpu, until a matching vcpu_put() 205 */ 206 void vcpu_load(struct kvm_vcpu *vcpu) 207 { 208 int cpu = get_cpu(); 209 210 __this_cpu_write(kvm_running_vcpu, vcpu); 211 preempt_notifier_register(&vcpu->preempt_notifier); 212 kvm_arch_vcpu_load(vcpu, cpu); 213 put_cpu(); 214 } 215 EXPORT_SYMBOL_GPL(vcpu_load); 216 217 void vcpu_put(struct kvm_vcpu *vcpu) 218 { 219 preempt_disable(); 220 kvm_arch_vcpu_put(vcpu); 221 preempt_notifier_unregister(&vcpu->preempt_notifier); 222 __this_cpu_write(kvm_running_vcpu, NULL); 223 preempt_enable(); 224 } 225 EXPORT_SYMBOL_GPL(vcpu_put); 226 227 /* TODO: merge with kvm_arch_vcpu_should_kick */ 228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 229 { 230 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 231 232 /* 233 * We need to wait for the VCPU to reenable interrupts and get out of 234 * READING_SHADOW_PAGE_TABLES mode. 235 */ 236 if (req & KVM_REQUEST_WAIT) 237 return mode != OUTSIDE_GUEST_MODE; 238 239 /* 240 * Need to kick a running VCPU, but otherwise there is nothing to do. 241 */ 242 return mode == IN_GUEST_MODE; 243 } 244 245 static void ack_flush(void *_completed) 246 { 247 } 248 249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 250 { 251 if (unlikely(!cpus)) 252 cpus = cpu_online_mask; 253 254 if (cpumask_empty(cpus)) 255 return false; 256 257 smp_call_function_many(cpus, ack_flush, NULL, wait); 258 return true; 259 } 260 261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 262 struct kvm_vcpu *except, 263 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 264 { 265 int i, cpu, me; 266 struct kvm_vcpu *vcpu; 267 bool called; 268 269 me = get_cpu(); 270 271 kvm_for_each_vcpu(i, vcpu, kvm) { 272 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) || 273 vcpu == except) 274 continue; 275 276 kvm_make_request(req, vcpu); 277 cpu = vcpu->cpu; 278 279 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 280 continue; 281 282 if (tmp != NULL && cpu != -1 && cpu != me && 283 kvm_request_needs_ipi(vcpu, req)) 284 __cpumask_set_cpu(cpu, tmp); 285 } 286 287 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 288 put_cpu(); 289 290 return called; 291 } 292 293 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 294 struct kvm_vcpu *except) 295 { 296 cpumask_var_t cpus; 297 bool called; 298 299 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 300 301 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus); 302 303 free_cpumask_var(cpus); 304 return called; 305 } 306 307 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 308 { 309 return kvm_make_all_cpus_request_except(kvm, req, NULL); 310 } 311 312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 313 void kvm_flush_remote_tlbs(struct kvm *kvm) 314 { 315 /* 316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 317 * kvm_make_all_cpus_request. 318 */ 319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 320 321 /* 322 * We want to publish modifications to the page tables before reading 323 * mode. Pairs with a memory barrier in arch-specific code. 324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 325 * and smp_mb in walk_shadow_page_lockless_begin/end. 326 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 327 * 328 * There is already an smp_mb__after_atomic() before 329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 330 * barrier here. 331 */ 332 if (!kvm_arch_flush_remote_tlb(kvm) 333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 334 ++kvm->stat.remote_tlb_flush; 335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 336 } 337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 338 #endif 339 340 void kvm_reload_remote_mmus(struct kvm *kvm) 341 { 342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 343 } 344 345 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 346 { 347 mutex_init(&vcpu->mutex); 348 vcpu->cpu = -1; 349 vcpu->kvm = kvm; 350 vcpu->vcpu_id = id; 351 vcpu->pid = NULL; 352 rcuwait_init(&vcpu->wait); 353 kvm_async_pf_vcpu_init(vcpu); 354 355 vcpu->pre_pcpu = -1; 356 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 357 358 kvm_vcpu_set_in_spin_loop(vcpu, false); 359 kvm_vcpu_set_dy_eligible(vcpu, false); 360 vcpu->preempted = false; 361 vcpu->ready = false; 362 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 363 } 364 365 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 366 { 367 kvm_arch_vcpu_destroy(vcpu); 368 369 /* 370 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 371 * the vcpu->pid pointer, and at destruction time all file descriptors 372 * are already gone. 373 */ 374 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 375 376 free_page((unsigned long)vcpu->run); 377 kmem_cache_free(kvm_vcpu_cache, vcpu); 378 } 379 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 380 381 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 382 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 383 { 384 return container_of(mn, struct kvm, mmu_notifier); 385 } 386 387 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 388 struct mm_struct *mm, 389 unsigned long address, 390 pte_t pte) 391 { 392 struct kvm *kvm = mmu_notifier_to_kvm(mn); 393 int idx; 394 395 idx = srcu_read_lock(&kvm->srcu); 396 spin_lock(&kvm->mmu_lock); 397 kvm->mmu_notifier_seq++; 398 399 if (kvm_set_spte_hva(kvm, address, pte)) 400 kvm_flush_remote_tlbs(kvm); 401 402 spin_unlock(&kvm->mmu_lock); 403 srcu_read_unlock(&kvm->srcu, idx); 404 } 405 406 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 407 const struct mmu_notifier_range *range) 408 { 409 struct kvm *kvm = mmu_notifier_to_kvm(mn); 410 int need_tlb_flush = 0, idx; 411 int ret; 412 413 idx = srcu_read_lock(&kvm->srcu); 414 spin_lock(&kvm->mmu_lock); 415 /* 416 * The count increase must become visible at unlock time as no 417 * spte can be established without taking the mmu_lock and 418 * count is also read inside the mmu_lock critical section. 419 */ 420 kvm->mmu_notifier_count++; 421 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 422 need_tlb_flush |= kvm->tlbs_dirty; 423 /* we've to flush the tlb before the pages can be freed */ 424 if (need_tlb_flush) 425 kvm_flush_remote_tlbs(kvm); 426 427 spin_unlock(&kvm->mmu_lock); 428 429 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 430 range->end, 431 mmu_notifier_range_blockable(range)); 432 433 srcu_read_unlock(&kvm->srcu, idx); 434 435 return ret; 436 } 437 438 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 439 const struct mmu_notifier_range *range) 440 { 441 struct kvm *kvm = mmu_notifier_to_kvm(mn); 442 443 spin_lock(&kvm->mmu_lock); 444 /* 445 * This sequence increase will notify the kvm page fault that 446 * the page that is going to be mapped in the spte could have 447 * been freed. 448 */ 449 kvm->mmu_notifier_seq++; 450 smp_wmb(); 451 /* 452 * The above sequence increase must be visible before the 453 * below count decrease, which is ensured by the smp_wmb above 454 * in conjunction with the smp_rmb in mmu_notifier_retry(). 455 */ 456 kvm->mmu_notifier_count--; 457 spin_unlock(&kvm->mmu_lock); 458 459 BUG_ON(kvm->mmu_notifier_count < 0); 460 } 461 462 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 463 struct mm_struct *mm, 464 unsigned long start, 465 unsigned long end) 466 { 467 struct kvm *kvm = mmu_notifier_to_kvm(mn); 468 int young, idx; 469 470 idx = srcu_read_lock(&kvm->srcu); 471 spin_lock(&kvm->mmu_lock); 472 473 young = kvm_age_hva(kvm, start, end); 474 if (young) 475 kvm_flush_remote_tlbs(kvm); 476 477 spin_unlock(&kvm->mmu_lock); 478 srcu_read_unlock(&kvm->srcu, idx); 479 480 return young; 481 } 482 483 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 484 struct mm_struct *mm, 485 unsigned long start, 486 unsigned long end) 487 { 488 struct kvm *kvm = mmu_notifier_to_kvm(mn); 489 int young, idx; 490 491 idx = srcu_read_lock(&kvm->srcu); 492 spin_lock(&kvm->mmu_lock); 493 /* 494 * Even though we do not flush TLB, this will still adversely 495 * affect performance on pre-Haswell Intel EPT, where there is 496 * no EPT Access Bit to clear so that we have to tear down EPT 497 * tables instead. If we find this unacceptable, we can always 498 * add a parameter to kvm_age_hva so that it effectively doesn't 499 * do anything on clear_young. 500 * 501 * Also note that currently we never issue secondary TLB flushes 502 * from clear_young, leaving this job up to the regular system 503 * cadence. If we find this inaccurate, we might come up with a 504 * more sophisticated heuristic later. 505 */ 506 young = kvm_age_hva(kvm, start, end); 507 spin_unlock(&kvm->mmu_lock); 508 srcu_read_unlock(&kvm->srcu, idx); 509 510 return young; 511 } 512 513 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 514 struct mm_struct *mm, 515 unsigned long address) 516 { 517 struct kvm *kvm = mmu_notifier_to_kvm(mn); 518 int young, idx; 519 520 idx = srcu_read_lock(&kvm->srcu); 521 spin_lock(&kvm->mmu_lock); 522 young = kvm_test_age_hva(kvm, address); 523 spin_unlock(&kvm->mmu_lock); 524 srcu_read_unlock(&kvm->srcu, idx); 525 526 return young; 527 } 528 529 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 530 struct mm_struct *mm) 531 { 532 struct kvm *kvm = mmu_notifier_to_kvm(mn); 533 int idx; 534 535 idx = srcu_read_lock(&kvm->srcu); 536 kvm_arch_flush_shadow_all(kvm); 537 srcu_read_unlock(&kvm->srcu, idx); 538 } 539 540 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 541 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 542 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 543 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 544 .clear_young = kvm_mmu_notifier_clear_young, 545 .test_young = kvm_mmu_notifier_test_young, 546 .change_pte = kvm_mmu_notifier_change_pte, 547 .release = kvm_mmu_notifier_release, 548 }; 549 550 static int kvm_init_mmu_notifier(struct kvm *kvm) 551 { 552 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 553 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 554 } 555 556 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 557 558 static int kvm_init_mmu_notifier(struct kvm *kvm) 559 { 560 return 0; 561 } 562 563 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 564 565 static struct kvm_memslots *kvm_alloc_memslots(void) 566 { 567 int i; 568 struct kvm_memslots *slots; 569 570 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 571 if (!slots) 572 return NULL; 573 574 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 575 slots->id_to_index[i] = -1; 576 577 return slots; 578 } 579 580 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 581 { 582 if (!memslot->dirty_bitmap) 583 return; 584 585 kvfree(memslot->dirty_bitmap); 586 memslot->dirty_bitmap = NULL; 587 } 588 589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 590 { 591 kvm_destroy_dirty_bitmap(slot); 592 593 kvm_arch_free_memslot(kvm, slot); 594 595 slot->flags = 0; 596 slot->npages = 0; 597 } 598 599 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 600 { 601 struct kvm_memory_slot *memslot; 602 603 if (!slots) 604 return; 605 606 kvm_for_each_memslot(memslot, slots) 607 kvm_free_memslot(kvm, memslot); 608 609 kvfree(slots); 610 } 611 612 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 613 { 614 int i; 615 616 if (!kvm->debugfs_dentry) 617 return; 618 619 debugfs_remove_recursive(kvm->debugfs_dentry); 620 621 if (kvm->debugfs_stat_data) { 622 for (i = 0; i < kvm_debugfs_num_entries; i++) 623 kfree(kvm->debugfs_stat_data[i]); 624 kfree(kvm->debugfs_stat_data); 625 } 626 } 627 628 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 629 { 630 char dir_name[ITOA_MAX_LEN * 2]; 631 struct kvm_stat_data *stat_data; 632 struct kvm_stats_debugfs_item *p; 633 634 if (!debugfs_initialized()) 635 return 0; 636 637 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 638 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 639 640 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 641 sizeof(*kvm->debugfs_stat_data), 642 GFP_KERNEL_ACCOUNT); 643 if (!kvm->debugfs_stat_data) 644 return -ENOMEM; 645 646 for (p = debugfs_entries; p->name; p++) { 647 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 648 if (!stat_data) 649 return -ENOMEM; 650 651 stat_data->kvm = kvm; 652 stat_data->dbgfs_item = p; 653 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 654 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 655 kvm->debugfs_dentry, stat_data, 656 &stat_fops_per_vm); 657 } 658 return 0; 659 } 660 661 /* 662 * Called after the VM is otherwise initialized, but just before adding it to 663 * the vm_list. 664 */ 665 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 666 { 667 return 0; 668 } 669 670 /* 671 * Called just after removing the VM from the vm_list, but before doing any 672 * other destruction. 673 */ 674 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 675 { 676 } 677 678 static struct kvm *kvm_create_vm(unsigned long type) 679 { 680 struct kvm *kvm = kvm_arch_alloc_vm(); 681 int r = -ENOMEM; 682 int i; 683 684 if (!kvm) 685 return ERR_PTR(-ENOMEM); 686 687 spin_lock_init(&kvm->mmu_lock); 688 mmgrab(current->mm); 689 kvm->mm = current->mm; 690 kvm_eventfd_init(kvm); 691 mutex_init(&kvm->lock); 692 mutex_init(&kvm->irq_lock); 693 mutex_init(&kvm->slots_lock); 694 INIT_LIST_HEAD(&kvm->devices); 695 696 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 697 698 if (init_srcu_struct(&kvm->srcu)) 699 goto out_err_no_srcu; 700 if (init_srcu_struct(&kvm->irq_srcu)) 701 goto out_err_no_irq_srcu; 702 703 refcount_set(&kvm->users_count, 1); 704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 705 struct kvm_memslots *slots = kvm_alloc_memslots(); 706 707 if (!slots) 708 goto out_err_no_arch_destroy_vm; 709 /* Generations must be different for each address space. */ 710 slots->generation = i; 711 rcu_assign_pointer(kvm->memslots[i], slots); 712 } 713 714 for (i = 0; i < KVM_NR_BUSES; i++) { 715 rcu_assign_pointer(kvm->buses[i], 716 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 717 if (!kvm->buses[i]) 718 goto out_err_no_arch_destroy_vm; 719 } 720 721 kvm->max_halt_poll_ns = halt_poll_ns; 722 723 r = kvm_arch_init_vm(kvm, type); 724 if (r) 725 goto out_err_no_arch_destroy_vm; 726 727 r = hardware_enable_all(); 728 if (r) 729 goto out_err_no_disable; 730 731 #ifdef CONFIG_HAVE_KVM_IRQFD 732 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 733 #endif 734 735 r = kvm_init_mmu_notifier(kvm); 736 if (r) 737 goto out_err_no_mmu_notifier; 738 739 r = kvm_arch_post_init_vm(kvm); 740 if (r) 741 goto out_err; 742 743 mutex_lock(&kvm_lock); 744 list_add(&kvm->vm_list, &vm_list); 745 mutex_unlock(&kvm_lock); 746 747 preempt_notifier_inc(); 748 749 return kvm; 750 751 out_err: 752 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 753 if (kvm->mmu_notifier.ops) 754 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 755 #endif 756 out_err_no_mmu_notifier: 757 hardware_disable_all(); 758 out_err_no_disable: 759 kvm_arch_destroy_vm(kvm); 760 out_err_no_arch_destroy_vm: 761 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 762 for (i = 0; i < KVM_NR_BUSES; i++) 763 kfree(kvm_get_bus(kvm, i)); 764 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 765 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 766 cleanup_srcu_struct(&kvm->irq_srcu); 767 out_err_no_irq_srcu: 768 cleanup_srcu_struct(&kvm->srcu); 769 out_err_no_srcu: 770 kvm_arch_free_vm(kvm); 771 mmdrop(current->mm); 772 return ERR_PTR(r); 773 } 774 775 static void kvm_destroy_devices(struct kvm *kvm) 776 { 777 struct kvm_device *dev, *tmp; 778 779 /* 780 * We do not need to take the kvm->lock here, because nobody else 781 * has a reference to the struct kvm at this point and therefore 782 * cannot access the devices list anyhow. 783 */ 784 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 785 list_del(&dev->vm_node); 786 dev->ops->destroy(dev); 787 } 788 } 789 790 static void kvm_destroy_vm(struct kvm *kvm) 791 { 792 int i; 793 struct mm_struct *mm = kvm->mm; 794 795 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 796 kvm_destroy_vm_debugfs(kvm); 797 kvm_arch_sync_events(kvm); 798 mutex_lock(&kvm_lock); 799 list_del(&kvm->vm_list); 800 mutex_unlock(&kvm_lock); 801 kvm_arch_pre_destroy_vm(kvm); 802 803 kvm_free_irq_routing(kvm); 804 for (i = 0; i < KVM_NR_BUSES; i++) { 805 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 806 807 if (bus) 808 kvm_io_bus_destroy(bus); 809 kvm->buses[i] = NULL; 810 } 811 kvm_coalesced_mmio_free(kvm); 812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 813 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 814 #else 815 kvm_arch_flush_shadow_all(kvm); 816 #endif 817 kvm_arch_destroy_vm(kvm); 818 kvm_destroy_devices(kvm); 819 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 820 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 821 cleanup_srcu_struct(&kvm->irq_srcu); 822 cleanup_srcu_struct(&kvm->srcu); 823 kvm_arch_free_vm(kvm); 824 preempt_notifier_dec(); 825 hardware_disable_all(); 826 mmdrop(mm); 827 } 828 829 void kvm_get_kvm(struct kvm *kvm) 830 { 831 refcount_inc(&kvm->users_count); 832 } 833 EXPORT_SYMBOL_GPL(kvm_get_kvm); 834 835 void kvm_put_kvm(struct kvm *kvm) 836 { 837 if (refcount_dec_and_test(&kvm->users_count)) 838 kvm_destroy_vm(kvm); 839 } 840 EXPORT_SYMBOL_GPL(kvm_put_kvm); 841 842 /* 843 * Used to put a reference that was taken on behalf of an object associated 844 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 845 * of the new file descriptor fails and the reference cannot be transferred to 846 * its final owner. In such cases, the caller is still actively using @kvm and 847 * will fail miserably if the refcount unexpectedly hits zero. 848 */ 849 void kvm_put_kvm_no_destroy(struct kvm *kvm) 850 { 851 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 852 } 853 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 854 855 static int kvm_vm_release(struct inode *inode, struct file *filp) 856 { 857 struct kvm *kvm = filp->private_data; 858 859 kvm_irqfd_release(kvm); 860 861 kvm_put_kvm(kvm); 862 return 0; 863 } 864 865 /* 866 * Allocation size is twice as large as the actual dirty bitmap size. 867 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 868 */ 869 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 870 { 871 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 872 873 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 874 if (!memslot->dirty_bitmap) 875 return -ENOMEM; 876 877 return 0; 878 } 879 880 /* 881 * Delete a memslot by decrementing the number of used slots and shifting all 882 * other entries in the array forward one spot. 883 */ 884 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 885 struct kvm_memory_slot *memslot) 886 { 887 struct kvm_memory_slot *mslots = slots->memslots; 888 int i; 889 890 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 891 return; 892 893 slots->used_slots--; 894 895 if (atomic_read(&slots->lru_slot) >= slots->used_slots) 896 atomic_set(&slots->lru_slot, 0); 897 898 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 899 mslots[i] = mslots[i + 1]; 900 slots->id_to_index[mslots[i].id] = i; 901 } 902 mslots[i] = *memslot; 903 slots->id_to_index[memslot->id] = -1; 904 } 905 906 /* 907 * "Insert" a new memslot by incrementing the number of used slots. Returns 908 * the new slot's initial index into the memslots array. 909 */ 910 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 911 { 912 return slots->used_slots++; 913 } 914 915 /* 916 * Move a changed memslot backwards in the array by shifting existing slots 917 * with a higher GFN toward the front of the array. Note, the changed memslot 918 * itself is not preserved in the array, i.e. not swapped at this time, only 919 * its new index into the array is tracked. Returns the changed memslot's 920 * current index into the memslots array. 921 */ 922 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 923 struct kvm_memory_slot *memslot) 924 { 925 struct kvm_memory_slot *mslots = slots->memslots; 926 int i; 927 928 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 929 WARN_ON_ONCE(!slots->used_slots)) 930 return -1; 931 932 /* 933 * Move the target memslot backward in the array by shifting existing 934 * memslots with a higher GFN (than the target memslot) towards the 935 * front of the array. 936 */ 937 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 938 if (memslot->base_gfn > mslots[i + 1].base_gfn) 939 break; 940 941 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 942 943 /* Shift the next memslot forward one and update its index. */ 944 mslots[i] = mslots[i + 1]; 945 slots->id_to_index[mslots[i].id] = i; 946 } 947 return i; 948 } 949 950 /* 951 * Move a changed memslot forwards in the array by shifting existing slots with 952 * a lower GFN toward the back of the array. Note, the changed memslot itself 953 * is not preserved in the array, i.e. not swapped at this time, only its new 954 * index into the array is tracked. Returns the changed memslot's final index 955 * into the memslots array. 956 */ 957 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 958 struct kvm_memory_slot *memslot, 959 int start) 960 { 961 struct kvm_memory_slot *mslots = slots->memslots; 962 int i; 963 964 for (i = start; i > 0; i--) { 965 if (memslot->base_gfn < mslots[i - 1].base_gfn) 966 break; 967 968 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 969 970 /* Shift the next memslot back one and update its index. */ 971 mslots[i] = mslots[i - 1]; 972 slots->id_to_index[mslots[i].id] = i; 973 } 974 return i; 975 } 976 977 /* 978 * Re-sort memslots based on their GFN to account for an added, deleted, or 979 * moved memslot. Sorting memslots by GFN allows using a binary search during 980 * memslot lookup. 981 * 982 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 983 * at memslots[0] has the highest GFN. 984 * 985 * The sorting algorithm takes advantage of having initially sorted memslots 986 * and knowing the position of the changed memslot. Sorting is also optimized 987 * by not swapping the updated memslot and instead only shifting other memslots 988 * and tracking the new index for the update memslot. Only once its final 989 * index is known is the updated memslot copied into its position in the array. 990 * 991 * - When deleting a memslot, the deleted memslot simply needs to be moved to 992 * the end of the array. 993 * 994 * - When creating a memslot, the algorithm "inserts" the new memslot at the 995 * end of the array and then it forward to its correct location. 996 * 997 * - When moving a memslot, the algorithm first moves the updated memslot 998 * backward to handle the scenario where the memslot's GFN was changed to a 999 * lower value. update_memslots() then falls through and runs the same flow 1000 * as creating a memslot to move the memslot forward to handle the scenario 1001 * where its GFN was changed to a higher value. 1002 * 1003 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1004 * historical reasons. Originally, invalid memslots where denoted by having 1005 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1006 * to the end of the array. The current algorithm uses dedicated logic to 1007 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1008 * 1009 * The other historical motiviation for highest->lowest was to improve the 1010 * performance of memslot lookup. KVM originally used a linear search starting 1011 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1012 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1013 * single memslot above the 4gb boundary. As the largest memslot is also the 1014 * most likely to be referenced, sorting it to the front of the array was 1015 * advantageous. The current binary search starts from the middle of the array 1016 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1017 */ 1018 static void update_memslots(struct kvm_memslots *slots, 1019 struct kvm_memory_slot *memslot, 1020 enum kvm_mr_change change) 1021 { 1022 int i; 1023 1024 if (change == KVM_MR_DELETE) { 1025 kvm_memslot_delete(slots, memslot); 1026 } else { 1027 if (change == KVM_MR_CREATE) 1028 i = kvm_memslot_insert_back(slots); 1029 else 1030 i = kvm_memslot_move_backward(slots, memslot); 1031 i = kvm_memslot_move_forward(slots, memslot, i); 1032 1033 /* 1034 * Copy the memslot to its new position in memslots and update 1035 * its index accordingly. 1036 */ 1037 slots->memslots[i] = *memslot; 1038 slots->id_to_index[memslot->id] = i; 1039 } 1040 } 1041 1042 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1043 { 1044 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1045 1046 #ifdef __KVM_HAVE_READONLY_MEM 1047 valid_flags |= KVM_MEM_READONLY; 1048 #endif 1049 1050 if (mem->flags & ~valid_flags) 1051 return -EINVAL; 1052 1053 return 0; 1054 } 1055 1056 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1057 int as_id, struct kvm_memslots *slots) 1058 { 1059 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1060 u64 gen = old_memslots->generation; 1061 1062 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1063 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1064 1065 rcu_assign_pointer(kvm->memslots[as_id], slots); 1066 synchronize_srcu_expedited(&kvm->srcu); 1067 1068 /* 1069 * Increment the new memslot generation a second time, dropping the 1070 * update in-progress flag and incrementing the generation based on 1071 * the number of address spaces. This provides a unique and easily 1072 * identifiable generation number while the memslots are in flux. 1073 */ 1074 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1075 1076 /* 1077 * Generations must be unique even across address spaces. We do not need 1078 * a global counter for that, instead the generation space is evenly split 1079 * across address spaces. For example, with two address spaces, address 1080 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1081 * use generations 1, 3, 5, ... 1082 */ 1083 gen += KVM_ADDRESS_SPACE_NUM; 1084 1085 kvm_arch_memslots_updated(kvm, gen); 1086 1087 slots->generation = gen; 1088 1089 return old_memslots; 1090 } 1091 1092 /* 1093 * Note, at a minimum, the current number of used slots must be allocated, even 1094 * when deleting a memslot, as we need a complete duplicate of the memslots for 1095 * use when invalidating a memslot prior to deleting/moving the memslot. 1096 */ 1097 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1098 enum kvm_mr_change change) 1099 { 1100 struct kvm_memslots *slots; 1101 size_t old_size, new_size; 1102 1103 old_size = sizeof(struct kvm_memslots) + 1104 (sizeof(struct kvm_memory_slot) * old->used_slots); 1105 1106 if (change == KVM_MR_CREATE) 1107 new_size = old_size + sizeof(struct kvm_memory_slot); 1108 else 1109 new_size = old_size; 1110 1111 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1112 if (likely(slots)) 1113 memcpy(slots, old, old_size); 1114 1115 return slots; 1116 } 1117 1118 static int kvm_set_memslot(struct kvm *kvm, 1119 const struct kvm_userspace_memory_region *mem, 1120 struct kvm_memory_slot *old, 1121 struct kvm_memory_slot *new, int as_id, 1122 enum kvm_mr_change change) 1123 { 1124 struct kvm_memory_slot *slot; 1125 struct kvm_memslots *slots; 1126 int r; 1127 1128 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1129 if (!slots) 1130 return -ENOMEM; 1131 1132 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1133 /* 1134 * Note, the INVALID flag needs to be in the appropriate entry 1135 * in the freshly allocated memslots, not in @old or @new. 1136 */ 1137 slot = id_to_memslot(slots, old->id); 1138 slot->flags |= KVM_MEMSLOT_INVALID; 1139 1140 /* 1141 * We can re-use the old memslots, the only difference from the 1142 * newly installed memslots is the invalid flag, which will get 1143 * dropped by update_memslots anyway. We'll also revert to the 1144 * old memslots if preparing the new memory region fails. 1145 */ 1146 slots = install_new_memslots(kvm, as_id, slots); 1147 1148 /* From this point no new shadow pages pointing to a deleted, 1149 * or moved, memslot will be created. 1150 * 1151 * validation of sp->gfn happens in: 1152 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1153 * - kvm_is_visible_gfn (mmu_check_root) 1154 */ 1155 kvm_arch_flush_shadow_memslot(kvm, slot); 1156 } 1157 1158 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1159 if (r) 1160 goto out_slots; 1161 1162 update_memslots(slots, new, change); 1163 slots = install_new_memslots(kvm, as_id, slots); 1164 1165 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1166 1167 kvfree(slots); 1168 return 0; 1169 1170 out_slots: 1171 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1172 slots = install_new_memslots(kvm, as_id, slots); 1173 kvfree(slots); 1174 return r; 1175 } 1176 1177 static int kvm_delete_memslot(struct kvm *kvm, 1178 const struct kvm_userspace_memory_region *mem, 1179 struct kvm_memory_slot *old, int as_id) 1180 { 1181 struct kvm_memory_slot new; 1182 int r; 1183 1184 if (!old->npages) 1185 return -EINVAL; 1186 1187 memset(&new, 0, sizeof(new)); 1188 new.id = old->id; 1189 1190 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1191 if (r) 1192 return r; 1193 1194 kvm_free_memslot(kvm, old); 1195 return 0; 1196 } 1197 1198 /* 1199 * Allocate some memory and give it an address in the guest physical address 1200 * space. 1201 * 1202 * Discontiguous memory is allowed, mostly for framebuffers. 1203 * 1204 * Must be called holding kvm->slots_lock for write. 1205 */ 1206 int __kvm_set_memory_region(struct kvm *kvm, 1207 const struct kvm_userspace_memory_region *mem) 1208 { 1209 struct kvm_memory_slot old, new; 1210 struct kvm_memory_slot *tmp; 1211 enum kvm_mr_change change; 1212 int as_id, id; 1213 int r; 1214 1215 r = check_memory_region_flags(mem); 1216 if (r) 1217 return r; 1218 1219 as_id = mem->slot >> 16; 1220 id = (u16)mem->slot; 1221 1222 /* General sanity checks */ 1223 if (mem->memory_size & (PAGE_SIZE - 1)) 1224 return -EINVAL; 1225 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1226 return -EINVAL; 1227 /* We can read the guest memory with __xxx_user() later on. */ 1228 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1229 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1230 mem->memory_size)) 1231 return -EINVAL; 1232 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1233 return -EINVAL; 1234 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1235 return -EINVAL; 1236 1237 /* 1238 * Make a full copy of the old memslot, the pointer will become stale 1239 * when the memslots are re-sorted by update_memslots(), and the old 1240 * memslot needs to be referenced after calling update_memslots(), e.g. 1241 * to free its resources and for arch specific behavior. 1242 */ 1243 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1244 if (tmp) { 1245 old = *tmp; 1246 tmp = NULL; 1247 } else { 1248 memset(&old, 0, sizeof(old)); 1249 old.id = id; 1250 } 1251 1252 if (!mem->memory_size) 1253 return kvm_delete_memslot(kvm, mem, &old, as_id); 1254 1255 new.id = id; 1256 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1257 new.npages = mem->memory_size >> PAGE_SHIFT; 1258 new.flags = mem->flags; 1259 new.userspace_addr = mem->userspace_addr; 1260 1261 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1262 return -EINVAL; 1263 1264 if (!old.npages) { 1265 change = KVM_MR_CREATE; 1266 new.dirty_bitmap = NULL; 1267 memset(&new.arch, 0, sizeof(new.arch)); 1268 } else { /* Modify an existing slot. */ 1269 if ((new.userspace_addr != old.userspace_addr) || 1270 (new.npages != old.npages) || 1271 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1272 return -EINVAL; 1273 1274 if (new.base_gfn != old.base_gfn) 1275 change = KVM_MR_MOVE; 1276 else if (new.flags != old.flags) 1277 change = KVM_MR_FLAGS_ONLY; 1278 else /* Nothing to change. */ 1279 return 0; 1280 1281 /* Copy dirty_bitmap and arch from the current memslot. */ 1282 new.dirty_bitmap = old.dirty_bitmap; 1283 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1284 } 1285 1286 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1287 /* Check for overlaps */ 1288 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1289 if (tmp->id == id) 1290 continue; 1291 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1292 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1293 return -EEXIST; 1294 } 1295 } 1296 1297 /* Allocate/free page dirty bitmap as needed */ 1298 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1299 new.dirty_bitmap = NULL; 1300 else if (!new.dirty_bitmap) { 1301 r = kvm_alloc_dirty_bitmap(&new); 1302 if (r) 1303 return r; 1304 1305 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1306 bitmap_set(new.dirty_bitmap, 0, new.npages); 1307 } 1308 1309 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1310 if (r) 1311 goto out_bitmap; 1312 1313 if (old.dirty_bitmap && !new.dirty_bitmap) 1314 kvm_destroy_dirty_bitmap(&old); 1315 return 0; 1316 1317 out_bitmap: 1318 if (new.dirty_bitmap && !old.dirty_bitmap) 1319 kvm_destroy_dirty_bitmap(&new); 1320 return r; 1321 } 1322 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1323 1324 int kvm_set_memory_region(struct kvm *kvm, 1325 const struct kvm_userspace_memory_region *mem) 1326 { 1327 int r; 1328 1329 mutex_lock(&kvm->slots_lock); 1330 r = __kvm_set_memory_region(kvm, mem); 1331 mutex_unlock(&kvm->slots_lock); 1332 return r; 1333 } 1334 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1335 1336 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1337 struct kvm_userspace_memory_region *mem) 1338 { 1339 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1340 return -EINVAL; 1341 1342 return kvm_set_memory_region(kvm, mem); 1343 } 1344 1345 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1346 /** 1347 * kvm_get_dirty_log - get a snapshot of dirty pages 1348 * @kvm: pointer to kvm instance 1349 * @log: slot id and address to which we copy the log 1350 * @is_dirty: set to '1' if any dirty pages were found 1351 * @memslot: set to the associated memslot, always valid on success 1352 */ 1353 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1354 int *is_dirty, struct kvm_memory_slot **memslot) 1355 { 1356 struct kvm_memslots *slots; 1357 int i, as_id, id; 1358 unsigned long n; 1359 unsigned long any = 0; 1360 1361 *memslot = NULL; 1362 *is_dirty = 0; 1363 1364 as_id = log->slot >> 16; 1365 id = (u16)log->slot; 1366 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1367 return -EINVAL; 1368 1369 slots = __kvm_memslots(kvm, as_id); 1370 *memslot = id_to_memslot(slots, id); 1371 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1372 return -ENOENT; 1373 1374 kvm_arch_sync_dirty_log(kvm, *memslot); 1375 1376 n = kvm_dirty_bitmap_bytes(*memslot); 1377 1378 for (i = 0; !any && i < n/sizeof(long); ++i) 1379 any = (*memslot)->dirty_bitmap[i]; 1380 1381 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1382 return -EFAULT; 1383 1384 if (any) 1385 *is_dirty = 1; 1386 return 0; 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1389 1390 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1391 /** 1392 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1393 * and reenable dirty page tracking for the corresponding pages. 1394 * @kvm: pointer to kvm instance 1395 * @log: slot id and address to which we copy the log 1396 * 1397 * We need to keep it in mind that VCPU threads can write to the bitmap 1398 * concurrently. So, to avoid losing track of dirty pages we keep the 1399 * following order: 1400 * 1401 * 1. Take a snapshot of the bit and clear it if needed. 1402 * 2. Write protect the corresponding page. 1403 * 3. Copy the snapshot to the userspace. 1404 * 4. Upon return caller flushes TLB's if needed. 1405 * 1406 * Between 2 and 4, the guest may write to the page using the remaining TLB 1407 * entry. This is not a problem because the page is reported dirty using 1408 * the snapshot taken before and step 4 ensures that writes done after 1409 * exiting to userspace will be logged for the next call. 1410 * 1411 */ 1412 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1413 { 1414 struct kvm_memslots *slots; 1415 struct kvm_memory_slot *memslot; 1416 int i, as_id, id; 1417 unsigned long n; 1418 unsigned long *dirty_bitmap; 1419 unsigned long *dirty_bitmap_buffer; 1420 bool flush; 1421 1422 as_id = log->slot >> 16; 1423 id = (u16)log->slot; 1424 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1425 return -EINVAL; 1426 1427 slots = __kvm_memslots(kvm, as_id); 1428 memslot = id_to_memslot(slots, id); 1429 if (!memslot || !memslot->dirty_bitmap) 1430 return -ENOENT; 1431 1432 dirty_bitmap = memslot->dirty_bitmap; 1433 1434 kvm_arch_sync_dirty_log(kvm, memslot); 1435 1436 n = kvm_dirty_bitmap_bytes(memslot); 1437 flush = false; 1438 if (kvm->manual_dirty_log_protect) { 1439 /* 1440 * Unlike kvm_get_dirty_log, we always return false in *flush, 1441 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1442 * is some code duplication between this function and 1443 * kvm_get_dirty_log, but hopefully all architecture 1444 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1445 * can be eliminated. 1446 */ 1447 dirty_bitmap_buffer = dirty_bitmap; 1448 } else { 1449 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1450 memset(dirty_bitmap_buffer, 0, n); 1451 1452 spin_lock(&kvm->mmu_lock); 1453 for (i = 0; i < n / sizeof(long); i++) { 1454 unsigned long mask; 1455 gfn_t offset; 1456 1457 if (!dirty_bitmap[i]) 1458 continue; 1459 1460 flush = true; 1461 mask = xchg(&dirty_bitmap[i], 0); 1462 dirty_bitmap_buffer[i] = mask; 1463 1464 offset = i * BITS_PER_LONG; 1465 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1466 offset, mask); 1467 } 1468 spin_unlock(&kvm->mmu_lock); 1469 } 1470 1471 if (flush) 1472 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1473 1474 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1475 return -EFAULT; 1476 return 0; 1477 } 1478 1479 1480 /** 1481 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1482 * @kvm: kvm instance 1483 * @log: slot id and address to which we copy the log 1484 * 1485 * Steps 1-4 below provide general overview of dirty page logging. See 1486 * kvm_get_dirty_log_protect() function description for additional details. 1487 * 1488 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1489 * always flush the TLB (step 4) even if previous step failed and the dirty 1490 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1491 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1492 * writes will be marked dirty for next log read. 1493 * 1494 * 1. Take a snapshot of the bit and clear it if needed. 1495 * 2. Write protect the corresponding page. 1496 * 3. Copy the snapshot to the userspace. 1497 * 4. Flush TLB's if needed. 1498 */ 1499 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1500 struct kvm_dirty_log *log) 1501 { 1502 int r; 1503 1504 mutex_lock(&kvm->slots_lock); 1505 1506 r = kvm_get_dirty_log_protect(kvm, log); 1507 1508 mutex_unlock(&kvm->slots_lock); 1509 return r; 1510 } 1511 1512 /** 1513 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1514 * and reenable dirty page tracking for the corresponding pages. 1515 * @kvm: pointer to kvm instance 1516 * @log: slot id and address from which to fetch the bitmap of dirty pages 1517 */ 1518 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1519 struct kvm_clear_dirty_log *log) 1520 { 1521 struct kvm_memslots *slots; 1522 struct kvm_memory_slot *memslot; 1523 int as_id, id; 1524 gfn_t offset; 1525 unsigned long i, n; 1526 unsigned long *dirty_bitmap; 1527 unsigned long *dirty_bitmap_buffer; 1528 bool flush; 1529 1530 as_id = log->slot >> 16; 1531 id = (u16)log->slot; 1532 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1533 return -EINVAL; 1534 1535 if (log->first_page & 63) 1536 return -EINVAL; 1537 1538 slots = __kvm_memslots(kvm, as_id); 1539 memslot = id_to_memslot(slots, id); 1540 if (!memslot || !memslot->dirty_bitmap) 1541 return -ENOENT; 1542 1543 dirty_bitmap = memslot->dirty_bitmap; 1544 1545 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1546 1547 if (log->first_page > memslot->npages || 1548 log->num_pages > memslot->npages - log->first_page || 1549 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1550 return -EINVAL; 1551 1552 kvm_arch_sync_dirty_log(kvm, memslot); 1553 1554 flush = false; 1555 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1556 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1557 return -EFAULT; 1558 1559 spin_lock(&kvm->mmu_lock); 1560 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1561 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1562 i++, offset += BITS_PER_LONG) { 1563 unsigned long mask = *dirty_bitmap_buffer++; 1564 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1565 if (!mask) 1566 continue; 1567 1568 mask &= atomic_long_fetch_andnot(mask, p); 1569 1570 /* 1571 * mask contains the bits that really have been cleared. This 1572 * never includes any bits beyond the length of the memslot (if 1573 * the length is not aligned to 64 pages), therefore it is not 1574 * a problem if userspace sets them in log->dirty_bitmap. 1575 */ 1576 if (mask) { 1577 flush = true; 1578 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1579 offset, mask); 1580 } 1581 } 1582 spin_unlock(&kvm->mmu_lock); 1583 1584 if (flush) 1585 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1586 1587 return 0; 1588 } 1589 1590 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 1591 struct kvm_clear_dirty_log *log) 1592 { 1593 int r; 1594 1595 mutex_lock(&kvm->slots_lock); 1596 1597 r = kvm_clear_dirty_log_protect(kvm, log); 1598 1599 mutex_unlock(&kvm->slots_lock); 1600 return r; 1601 } 1602 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1603 1604 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1605 { 1606 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1607 } 1608 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1609 1610 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1611 { 1612 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1613 } 1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 1615 1616 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1617 { 1618 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1619 1620 return kvm_is_visible_memslot(memslot); 1621 } 1622 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1623 1624 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 1625 { 1626 struct vm_area_struct *vma; 1627 unsigned long addr, size; 1628 1629 size = PAGE_SIZE; 1630 1631 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 1632 if (kvm_is_error_hva(addr)) 1633 return PAGE_SIZE; 1634 1635 down_read(¤t->mm->mmap_sem); 1636 vma = find_vma(current->mm, addr); 1637 if (!vma) 1638 goto out; 1639 1640 size = vma_kernel_pagesize(vma); 1641 1642 out: 1643 up_read(¤t->mm->mmap_sem); 1644 1645 return size; 1646 } 1647 1648 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1649 { 1650 return slot->flags & KVM_MEM_READONLY; 1651 } 1652 1653 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1654 gfn_t *nr_pages, bool write) 1655 { 1656 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1657 return KVM_HVA_ERR_BAD; 1658 1659 if (memslot_is_readonly(slot) && write) 1660 return KVM_HVA_ERR_RO_BAD; 1661 1662 if (nr_pages) 1663 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1664 1665 return __gfn_to_hva_memslot(slot, gfn); 1666 } 1667 1668 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1669 gfn_t *nr_pages) 1670 { 1671 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1672 } 1673 1674 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1675 gfn_t gfn) 1676 { 1677 return gfn_to_hva_many(slot, gfn, NULL); 1678 } 1679 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1680 1681 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1682 { 1683 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1684 } 1685 EXPORT_SYMBOL_GPL(gfn_to_hva); 1686 1687 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1688 { 1689 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1690 } 1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1692 1693 /* 1694 * Return the hva of a @gfn and the R/W attribute if possible. 1695 * 1696 * @slot: the kvm_memory_slot which contains @gfn 1697 * @gfn: the gfn to be translated 1698 * @writable: used to return the read/write attribute of the @slot if the hva 1699 * is valid and @writable is not NULL 1700 */ 1701 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1702 gfn_t gfn, bool *writable) 1703 { 1704 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1705 1706 if (!kvm_is_error_hva(hva) && writable) 1707 *writable = !memslot_is_readonly(slot); 1708 1709 return hva; 1710 } 1711 1712 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1713 { 1714 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1715 1716 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1717 } 1718 1719 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1720 { 1721 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1722 1723 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1724 } 1725 1726 static inline int check_user_page_hwpoison(unsigned long addr) 1727 { 1728 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1729 1730 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1731 return rc == -EHWPOISON; 1732 } 1733 1734 /* 1735 * The fast path to get the writable pfn which will be stored in @pfn, 1736 * true indicates success, otherwise false is returned. It's also the 1737 * only part that runs if we can in atomic context. 1738 */ 1739 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1740 bool *writable, kvm_pfn_t *pfn) 1741 { 1742 struct page *page[1]; 1743 int npages; 1744 1745 /* 1746 * Fast pin a writable pfn only if it is a write fault request 1747 * or the caller allows to map a writable pfn for a read fault 1748 * request. 1749 */ 1750 if (!(write_fault || writable)) 1751 return false; 1752 1753 npages = __get_user_pages_fast(addr, 1, 1, page); 1754 if (npages == 1) { 1755 *pfn = page_to_pfn(page[0]); 1756 1757 if (writable) 1758 *writable = true; 1759 return true; 1760 } 1761 1762 return false; 1763 } 1764 1765 /* 1766 * The slow path to get the pfn of the specified host virtual address, 1767 * 1 indicates success, -errno is returned if error is detected. 1768 */ 1769 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1770 bool *writable, kvm_pfn_t *pfn) 1771 { 1772 unsigned int flags = FOLL_HWPOISON; 1773 struct page *page; 1774 int npages = 0; 1775 1776 might_sleep(); 1777 1778 if (writable) 1779 *writable = write_fault; 1780 1781 if (write_fault) 1782 flags |= FOLL_WRITE; 1783 if (async) 1784 flags |= FOLL_NOWAIT; 1785 1786 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1787 if (npages != 1) 1788 return npages; 1789 1790 /* map read fault as writable if possible */ 1791 if (unlikely(!write_fault) && writable) { 1792 struct page *wpage; 1793 1794 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1795 *writable = true; 1796 put_page(page); 1797 page = wpage; 1798 } 1799 } 1800 *pfn = page_to_pfn(page); 1801 return npages; 1802 } 1803 1804 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1805 { 1806 if (unlikely(!(vma->vm_flags & VM_READ))) 1807 return false; 1808 1809 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1810 return false; 1811 1812 return true; 1813 } 1814 1815 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1816 unsigned long addr, bool *async, 1817 bool write_fault, bool *writable, 1818 kvm_pfn_t *p_pfn) 1819 { 1820 unsigned long pfn; 1821 int r; 1822 1823 r = follow_pfn(vma, addr, &pfn); 1824 if (r) { 1825 /* 1826 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1827 * not call the fault handler, so do it here. 1828 */ 1829 bool unlocked = false; 1830 r = fixup_user_fault(current, current->mm, addr, 1831 (write_fault ? FAULT_FLAG_WRITE : 0), 1832 &unlocked); 1833 if (unlocked) 1834 return -EAGAIN; 1835 if (r) 1836 return r; 1837 1838 r = follow_pfn(vma, addr, &pfn); 1839 if (r) 1840 return r; 1841 1842 } 1843 1844 if (writable) 1845 *writable = true; 1846 1847 /* 1848 * Get a reference here because callers of *hva_to_pfn* and 1849 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1850 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1851 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1852 * simply do nothing for reserved pfns. 1853 * 1854 * Whoever called remap_pfn_range is also going to call e.g. 1855 * unmap_mapping_range before the underlying pages are freed, 1856 * causing a call to our MMU notifier. 1857 */ 1858 kvm_get_pfn(pfn); 1859 1860 *p_pfn = pfn; 1861 return 0; 1862 } 1863 1864 /* 1865 * Pin guest page in memory and return its pfn. 1866 * @addr: host virtual address which maps memory to the guest 1867 * @atomic: whether this function can sleep 1868 * @async: whether this function need to wait IO complete if the 1869 * host page is not in the memory 1870 * @write_fault: whether we should get a writable host page 1871 * @writable: whether it allows to map a writable host page for !@write_fault 1872 * 1873 * The function will map a writable host page for these two cases: 1874 * 1): @write_fault = true 1875 * 2): @write_fault = false && @writable, @writable will tell the caller 1876 * whether the mapping is writable. 1877 */ 1878 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1879 bool write_fault, bool *writable) 1880 { 1881 struct vm_area_struct *vma; 1882 kvm_pfn_t pfn = 0; 1883 int npages, r; 1884 1885 /* we can do it either atomically or asynchronously, not both */ 1886 BUG_ON(atomic && async); 1887 1888 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1889 return pfn; 1890 1891 if (atomic) 1892 return KVM_PFN_ERR_FAULT; 1893 1894 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1895 if (npages == 1) 1896 return pfn; 1897 1898 down_read(¤t->mm->mmap_sem); 1899 if (npages == -EHWPOISON || 1900 (!async && check_user_page_hwpoison(addr))) { 1901 pfn = KVM_PFN_ERR_HWPOISON; 1902 goto exit; 1903 } 1904 1905 retry: 1906 vma = find_vma_intersection(current->mm, addr, addr + 1); 1907 1908 if (vma == NULL) 1909 pfn = KVM_PFN_ERR_FAULT; 1910 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1911 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1912 if (r == -EAGAIN) 1913 goto retry; 1914 if (r < 0) 1915 pfn = KVM_PFN_ERR_FAULT; 1916 } else { 1917 if (async && vma_is_valid(vma, write_fault)) 1918 *async = true; 1919 pfn = KVM_PFN_ERR_FAULT; 1920 } 1921 exit: 1922 up_read(¤t->mm->mmap_sem); 1923 return pfn; 1924 } 1925 1926 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1927 bool atomic, bool *async, bool write_fault, 1928 bool *writable) 1929 { 1930 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1931 1932 if (addr == KVM_HVA_ERR_RO_BAD) { 1933 if (writable) 1934 *writable = false; 1935 return KVM_PFN_ERR_RO_FAULT; 1936 } 1937 1938 if (kvm_is_error_hva(addr)) { 1939 if (writable) 1940 *writable = false; 1941 return KVM_PFN_NOSLOT; 1942 } 1943 1944 /* Do not map writable pfn in the readonly memslot. */ 1945 if (writable && memslot_is_readonly(slot)) { 1946 *writable = false; 1947 writable = NULL; 1948 } 1949 1950 return hva_to_pfn(addr, atomic, async, write_fault, 1951 writable); 1952 } 1953 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1954 1955 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1956 bool *writable) 1957 { 1958 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1959 write_fault, writable); 1960 } 1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1962 1963 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1964 { 1965 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1966 } 1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1968 1969 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1970 { 1971 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1972 } 1973 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1974 1975 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1976 { 1977 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1978 } 1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1980 1981 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1982 { 1983 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1984 } 1985 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1986 1987 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1988 { 1989 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1990 } 1991 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1992 1993 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1994 struct page **pages, int nr_pages) 1995 { 1996 unsigned long addr; 1997 gfn_t entry = 0; 1998 1999 addr = gfn_to_hva_many(slot, gfn, &entry); 2000 if (kvm_is_error_hva(addr)) 2001 return -1; 2002 2003 if (entry < nr_pages) 2004 return 0; 2005 2006 return __get_user_pages_fast(addr, nr_pages, 1, pages); 2007 } 2008 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2009 2010 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2011 { 2012 if (is_error_noslot_pfn(pfn)) 2013 return KVM_ERR_PTR_BAD_PAGE; 2014 2015 if (kvm_is_reserved_pfn(pfn)) { 2016 WARN_ON(1); 2017 return KVM_ERR_PTR_BAD_PAGE; 2018 } 2019 2020 return pfn_to_page(pfn); 2021 } 2022 2023 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2024 { 2025 kvm_pfn_t pfn; 2026 2027 pfn = gfn_to_pfn(kvm, gfn); 2028 2029 return kvm_pfn_to_page(pfn); 2030 } 2031 EXPORT_SYMBOL_GPL(gfn_to_page); 2032 2033 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2034 { 2035 if (pfn == 0) 2036 return; 2037 2038 if (cache) 2039 cache->pfn = cache->gfn = 0; 2040 2041 if (dirty) 2042 kvm_release_pfn_dirty(pfn); 2043 else 2044 kvm_release_pfn_clean(pfn); 2045 } 2046 2047 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2048 struct gfn_to_pfn_cache *cache, u64 gen) 2049 { 2050 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2051 2052 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2053 cache->gfn = gfn; 2054 cache->dirty = false; 2055 cache->generation = gen; 2056 } 2057 2058 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2059 struct kvm_host_map *map, 2060 struct gfn_to_pfn_cache *cache, 2061 bool atomic) 2062 { 2063 kvm_pfn_t pfn; 2064 void *hva = NULL; 2065 struct page *page = KVM_UNMAPPED_PAGE; 2066 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2067 u64 gen = slots->generation; 2068 2069 if (!map) 2070 return -EINVAL; 2071 2072 if (cache) { 2073 if (!cache->pfn || cache->gfn != gfn || 2074 cache->generation != gen) { 2075 if (atomic) 2076 return -EAGAIN; 2077 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2078 } 2079 pfn = cache->pfn; 2080 } else { 2081 if (atomic) 2082 return -EAGAIN; 2083 pfn = gfn_to_pfn_memslot(slot, gfn); 2084 } 2085 if (is_error_noslot_pfn(pfn)) 2086 return -EINVAL; 2087 2088 if (pfn_valid(pfn)) { 2089 page = pfn_to_page(pfn); 2090 if (atomic) 2091 hva = kmap_atomic(page); 2092 else 2093 hva = kmap(page); 2094 #ifdef CONFIG_HAS_IOMEM 2095 } else if (!atomic) { 2096 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2097 } else { 2098 return -EINVAL; 2099 #endif 2100 } 2101 2102 if (!hva) 2103 return -EFAULT; 2104 2105 map->page = page; 2106 map->hva = hva; 2107 map->pfn = pfn; 2108 map->gfn = gfn; 2109 2110 return 0; 2111 } 2112 2113 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2114 struct gfn_to_pfn_cache *cache, bool atomic) 2115 { 2116 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2117 cache, atomic); 2118 } 2119 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2120 2121 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2122 { 2123 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2124 NULL, false); 2125 } 2126 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2127 2128 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot, 2129 struct kvm_host_map *map, 2130 struct gfn_to_pfn_cache *cache, 2131 bool dirty, bool atomic) 2132 { 2133 if (!map) 2134 return; 2135 2136 if (!map->hva) 2137 return; 2138 2139 if (map->page != KVM_UNMAPPED_PAGE) { 2140 if (atomic) 2141 kunmap_atomic(map->hva); 2142 else 2143 kunmap(map->page); 2144 } 2145 #ifdef CONFIG_HAS_IOMEM 2146 else if (!atomic) 2147 memunmap(map->hva); 2148 else 2149 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2150 #endif 2151 2152 if (dirty) 2153 mark_page_dirty_in_slot(memslot, map->gfn); 2154 2155 if (cache) 2156 cache->dirty |= dirty; 2157 else 2158 kvm_release_pfn(map->pfn, dirty, NULL); 2159 2160 map->hva = NULL; 2161 map->page = NULL; 2162 } 2163 2164 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2165 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2166 { 2167 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, 2168 cache, dirty, atomic); 2169 return 0; 2170 } 2171 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2172 2173 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2174 { 2175 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL, 2176 dirty, false); 2177 } 2178 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2179 2180 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2181 { 2182 kvm_pfn_t pfn; 2183 2184 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2185 2186 return kvm_pfn_to_page(pfn); 2187 } 2188 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2189 2190 void kvm_release_page_clean(struct page *page) 2191 { 2192 WARN_ON(is_error_page(page)); 2193 2194 kvm_release_pfn_clean(page_to_pfn(page)); 2195 } 2196 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2197 2198 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2199 { 2200 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2201 put_page(pfn_to_page(pfn)); 2202 } 2203 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2204 2205 void kvm_release_page_dirty(struct page *page) 2206 { 2207 WARN_ON(is_error_page(page)); 2208 2209 kvm_release_pfn_dirty(page_to_pfn(page)); 2210 } 2211 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2212 2213 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2214 { 2215 kvm_set_pfn_dirty(pfn); 2216 kvm_release_pfn_clean(pfn); 2217 } 2218 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2219 2220 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2221 { 2222 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2223 SetPageDirty(pfn_to_page(pfn)); 2224 } 2225 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2226 2227 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2228 { 2229 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2230 mark_page_accessed(pfn_to_page(pfn)); 2231 } 2232 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2233 2234 void kvm_get_pfn(kvm_pfn_t pfn) 2235 { 2236 if (!kvm_is_reserved_pfn(pfn)) 2237 get_page(pfn_to_page(pfn)); 2238 } 2239 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2240 2241 static int next_segment(unsigned long len, int offset) 2242 { 2243 if (len > PAGE_SIZE - offset) 2244 return PAGE_SIZE - offset; 2245 else 2246 return len; 2247 } 2248 2249 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2250 void *data, int offset, int len) 2251 { 2252 int r; 2253 unsigned long addr; 2254 2255 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2256 if (kvm_is_error_hva(addr)) 2257 return -EFAULT; 2258 r = __copy_from_user(data, (void __user *)addr + offset, len); 2259 if (r) 2260 return -EFAULT; 2261 return 0; 2262 } 2263 2264 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2265 int len) 2266 { 2267 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2268 2269 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2270 } 2271 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2272 2273 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2274 int offset, int len) 2275 { 2276 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2277 2278 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2279 } 2280 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2281 2282 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2283 { 2284 gfn_t gfn = gpa >> PAGE_SHIFT; 2285 int seg; 2286 int offset = offset_in_page(gpa); 2287 int ret; 2288 2289 while ((seg = next_segment(len, offset)) != 0) { 2290 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2291 if (ret < 0) 2292 return ret; 2293 offset = 0; 2294 len -= seg; 2295 data += seg; 2296 ++gfn; 2297 } 2298 return 0; 2299 } 2300 EXPORT_SYMBOL_GPL(kvm_read_guest); 2301 2302 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2303 { 2304 gfn_t gfn = gpa >> PAGE_SHIFT; 2305 int seg; 2306 int offset = offset_in_page(gpa); 2307 int ret; 2308 2309 while ((seg = next_segment(len, offset)) != 0) { 2310 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2311 if (ret < 0) 2312 return ret; 2313 offset = 0; 2314 len -= seg; 2315 data += seg; 2316 ++gfn; 2317 } 2318 return 0; 2319 } 2320 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2321 2322 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2323 void *data, int offset, unsigned long len) 2324 { 2325 int r; 2326 unsigned long addr; 2327 2328 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2329 if (kvm_is_error_hva(addr)) 2330 return -EFAULT; 2331 pagefault_disable(); 2332 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2333 pagefault_enable(); 2334 if (r) 2335 return -EFAULT; 2336 return 0; 2337 } 2338 2339 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2340 void *data, unsigned long len) 2341 { 2342 gfn_t gfn = gpa >> PAGE_SHIFT; 2343 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2344 int offset = offset_in_page(gpa); 2345 2346 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2347 } 2348 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2349 2350 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2351 const void *data, int offset, int len) 2352 { 2353 int r; 2354 unsigned long addr; 2355 2356 addr = gfn_to_hva_memslot(memslot, gfn); 2357 if (kvm_is_error_hva(addr)) 2358 return -EFAULT; 2359 r = __copy_to_user((void __user *)addr + offset, data, len); 2360 if (r) 2361 return -EFAULT; 2362 mark_page_dirty_in_slot(memslot, gfn); 2363 return 0; 2364 } 2365 2366 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2367 const void *data, int offset, int len) 2368 { 2369 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2370 2371 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2372 } 2373 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2374 2375 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2376 const void *data, int offset, int len) 2377 { 2378 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2379 2380 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2381 } 2382 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2383 2384 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2385 unsigned long len) 2386 { 2387 gfn_t gfn = gpa >> PAGE_SHIFT; 2388 int seg; 2389 int offset = offset_in_page(gpa); 2390 int ret; 2391 2392 while ((seg = next_segment(len, offset)) != 0) { 2393 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2394 if (ret < 0) 2395 return ret; 2396 offset = 0; 2397 len -= seg; 2398 data += seg; 2399 ++gfn; 2400 } 2401 return 0; 2402 } 2403 EXPORT_SYMBOL_GPL(kvm_write_guest); 2404 2405 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2406 unsigned long len) 2407 { 2408 gfn_t gfn = gpa >> PAGE_SHIFT; 2409 int seg; 2410 int offset = offset_in_page(gpa); 2411 int ret; 2412 2413 while ((seg = next_segment(len, offset)) != 0) { 2414 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2415 if (ret < 0) 2416 return ret; 2417 offset = 0; 2418 len -= seg; 2419 data += seg; 2420 ++gfn; 2421 } 2422 return 0; 2423 } 2424 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2425 2426 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2427 struct gfn_to_hva_cache *ghc, 2428 gpa_t gpa, unsigned long len) 2429 { 2430 int offset = offset_in_page(gpa); 2431 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2432 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2433 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2434 gfn_t nr_pages_avail; 2435 2436 /* Update ghc->generation before performing any error checks. */ 2437 ghc->generation = slots->generation; 2438 2439 if (start_gfn > end_gfn) { 2440 ghc->hva = KVM_HVA_ERR_BAD; 2441 return -EINVAL; 2442 } 2443 2444 /* 2445 * If the requested region crosses two memslots, we still 2446 * verify that the entire region is valid here. 2447 */ 2448 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2449 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2450 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2451 &nr_pages_avail); 2452 if (kvm_is_error_hva(ghc->hva)) 2453 return -EFAULT; 2454 } 2455 2456 /* Use the slow path for cross page reads and writes. */ 2457 if (nr_pages_needed == 1) 2458 ghc->hva += offset; 2459 else 2460 ghc->memslot = NULL; 2461 2462 ghc->gpa = gpa; 2463 ghc->len = len; 2464 return 0; 2465 } 2466 2467 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2468 gpa_t gpa, unsigned long len) 2469 { 2470 struct kvm_memslots *slots = kvm_memslots(kvm); 2471 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2472 } 2473 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2474 2475 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2476 void *data, unsigned int offset, 2477 unsigned long len) 2478 { 2479 struct kvm_memslots *slots = kvm_memslots(kvm); 2480 int r; 2481 gpa_t gpa = ghc->gpa + offset; 2482 2483 BUG_ON(len + offset > ghc->len); 2484 2485 if (slots->generation != ghc->generation) { 2486 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2487 return -EFAULT; 2488 } 2489 2490 if (kvm_is_error_hva(ghc->hva)) 2491 return -EFAULT; 2492 2493 if (unlikely(!ghc->memslot)) 2494 return kvm_write_guest(kvm, gpa, data, len); 2495 2496 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2497 if (r) 2498 return -EFAULT; 2499 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2500 2501 return 0; 2502 } 2503 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2504 2505 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2506 void *data, unsigned long len) 2507 { 2508 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2509 } 2510 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2511 2512 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2513 void *data, unsigned int offset, 2514 unsigned long len) 2515 { 2516 struct kvm_memslots *slots = kvm_memslots(kvm); 2517 int r; 2518 gpa_t gpa = ghc->gpa + offset; 2519 2520 BUG_ON(len + offset > ghc->len); 2521 2522 if (slots->generation != ghc->generation) { 2523 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2524 return -EFAULT; 2525 } 2526 2527 if (kvm_is_error_hva(ghc->hva)) 2528 return -EFAULT; 2529 2530 if (unlikely(!ghc->memslot)) 2531 return kvm_read_guest(kvm, gpa, data, len); 2532 2533 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2534 if (r) 2535 return -EFAULT; 2536 2537 return 0; 2538 } 2539 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2540 2541 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2542 void *data, unsigned long len) 2543 { 2544 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2545 } 2546 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2547 2548 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2549 { 2550 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2551 2552 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2553 } 2554 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2555 2556 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2557 { 2558 gfn_t gfn = gpa >> PAGE_SHIFT; 2559 int seg; 2560 int offset = offset_in_page(gpa); 2561 int ret; 2562 2563 while ((seg = next_segment(len, offset)) != 0) { 2564 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2565 if (ret < 0) 2566 return ret; 2567 offset = 0; 2568 len -= seg; 2569 ++gfn; 2570 } 2571 return 0; 2572 } 2573 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2574 2575 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2576 gfn_t gfn) 2577 { 2578 if (memslot && memslot->dirty_bitmap) { 2579 unsigned long rel_gfn = gfn - memslot->base_gfn; 2580 2581 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2582 } 2583 } 2584 2585 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2586 { 2587 struct kvm_memory_slot *memslot; 2588 2589 memslot = gfn_to_memslot(kvm, gfn); 2590 mark_page_dirty_in_slot(memslot, gfn); 2591 } 2592 EXPORT_SYMBOL_GPL(mark_page_dirty); 2593 2594 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2595 { 2596 struct kvm_memory_slot *memslot; 2597 2598 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2599 mark_page_dirty_in_slot(memslot, gfn); 2600 } 2601 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2602 2603 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2604 { 2605 if (!vcpu->sigset_active) 2606 return; 2607 2608 /* 2609 * This does a lockless modification of ->real_blocked, which is fine 2610 * because, only current can change ->real_blocked and all readers of 2611 * ->real_blocked don't care as long ->real_blocked is always a subset 2612 * of ->blocked. 2613 */ 2614 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2615 } 2616 2617 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2618 { 2619 if (!vcpu->sigset_active) 2620 return; 2621 2622 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2623 sigemptyset(¤t->real_blocked); 2624 } 2625 2626 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2627 { 2628 unsigned int old, val, grow, grow_start; 2629 2630 old = val = vcpu->halt_poll_ns; 2631 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2632 grow = READ_ONCE(halt_poll_ns_grow); 2633 if (!grow) 2634 goto out; 2635 2636 val *= grow; 2637 if (val < grow_start) 2638 val = grow_start; 2639 2640 if (val > halt_poll_ns) 2641 val = halt_poll_ns; 2642 2643 vcpu->halt_poll_ns = val; 2644 out: 2645 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2646 } 2647 2648 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2649 { 2650 unsigned int old, val, shrink; 2651 2652 old = val = vcpu->halt_poll_ns; 2653 shrink = READ_ONCE(halt_poll_ns_shrink); 2654 if (shrink == 0) 2655 val = 0; 2656 else 2657 val /= shrink; 2658 2659 vcpu->halt_poll_ns = val; 2660 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2661 } 2662 2663 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2664 { 2665 int ret = -EINTR; 2666 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2667 2668 if (kvm_arch_vcpu_runnable(vcpu)) { 2669 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2670 goto out; 2671 } 2672 if (kvm_cpu_has_pending_timer(vcpu)) 2673 goto out; 2674 if (signal_pending(current)) 2675 goto out; 2676 2677 ret = 0; 2678 out: 2679 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2680 return ret; 2681 } 2682 2683 static inline void 2684 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 2685 { 2686 if (waited) 2687 vcpu->stat.halt_poll_fail_ns += poll_ns; 2688 else 2689 vcpu->stat.halt_poll_success_ns += poll_ns; 2690 } 2691 2692 /* 2693 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2694 */ 2695 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2696 { 2697 ktime_t start, cur, poll_end; 2698 bool waited = false; 2699 u64 block_ns; 2700 2701 kvm_arch_vcpu_blocking(vcpu); 2702 2703 start = cur = poll_end = ktime_get(); 2704 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2705 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2706 2707 ++vcpu->stat.halt_attempted_poll; 2708 do { 2709 /* 2710 * This sets KVM_REQ_UNHALT if an interrupt 2711 * arrives. 2712 */ 2713 if (kvm_vcpu_check_block(vcpu) < 0) { 2714 ++vcpu->stat.halt_successful_poll; 2715 if (!vcpu_valid_wakeup(vcpu)) 2716 ++vcpu->stat.halt_poll_invalid; 2717 goto out; 2718 } 2719 poll_end = cur = ktime_get(); 2720 } while (single_task_running() && ktime_before(cur, stop)); 2721 } 2722 2723 prepare_to_rcuwait(&vcpu->wait); 2724 for (;;) { 2725 set_current_state(TASK_INTERRUPTIBLE); 2726 2727 if (kvm_vcpu_check_block(vcpu) < 0) 2728 break; 2729 2730 waited = true; 2731 schedule(); 2732 } 2733 finish_rcuwait(&vcpu->wait); 2734 cur = ktime_get(); 2735 out: 2736 kvm_arch_vcpu_unblocking(vcpu); 2737 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2738 2739 update_halt_poll_stats( 2740 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 2741 2742 if (!kvm_arch_no_poll(vcpu)) { 2743 if (!vcpu_valid_wakeup(vcpu)) { 2744 shrink_halt_poll_ns(vcpu); 2745 } else if (vcpu->kvm->max_halt_poll_ns) { 2746 if (block_ns <= vcpu->halt_poll_ns) 2747 ; 2748 /* we had a long block, shrink polling */ 2749 else if (vcpu->halt_poll_ns && 2750 block_ns > vcpu->kvm->max_halt_poll_ns) 2751 shrink_halt_poll_ns(vcpu); 2752 /* we had a short halt and our poll time is too small */ 2753 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 2754 block_ns < vcpu->kvm->max_halt_poll_ns) 2755 grow_halt_poll_ns(vcpu); 2756 } else { 2757 vcpu->halt_poll_ns = 0; 2758 } 2759 } 2760 2761 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2762 kvm_arch_vcpu_block_finish(vcpu); 2763 } 2764 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2765 2766 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2767 { 2768 struct rcuwait *waitp; 2769 2770 waitp = kvm_arch_vcpu_get_wait(vcpu); 2771 if (rcuwait_wake_up(waitp)) { 2772 WRITE_ONCE(vcpu->ready, true); 2773 ++vcpu->stat.halt_wakeup; 2774 return true; 2775 } 2776 2777 return false; 2778 } 2779 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2780 2781 #ifndef CONFIG_S390 2782 /* 2783 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2784 */ 2785 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2786 { 2787 int me; 2788 int cpu = vcpu->cpu; 2789 2790 if (kvm_vcpu_wake_up(vcpu)) 2791 return; 2792 2793 me = get_cpu(); 2794 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2795 if (kvm_arch_vcpu_should_kick(vcpu)) 2796 smp_send_reschedule(cpu); 2797 put_cpu(); 2798 } 2799 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2800 #endif /* !CONFIG_S390 */ 2801 2802 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2803 { 2804 struct pid *pid; 2805 struct task_struct *task = NULL; 2806 int ret = 0; 2807 2808 rcu_read_lock(); 2809 pid = rcu_dereference(target->pid); 2810 if (pid) 2811 task = get_pid_task(pid, PIDTYPE_PID); 2812 rcu_read_unlock(); 2813 if (!task) 2814 return ret; 2815 ret = yield_to(task, 1); 2816 put_task_struct(task); 2817 2818 return ret; 2819 } 2820 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2821 2822 /* 2823 * Helper that checks whether a VCPU is eligible for directed yield. 2824 * Most eligible candidate to yield is decided by following heuristics: 2825 * 2826 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2827 * (preempted lock holder), indicated by @in_spin_loop. 2828 * Set at the beginning and cleared at the end of interception/PLE handler. 2829 * 2830 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2831 * chance last time (mostly it has become eligible now since we have probably 2832 * yielded to lockholder in last iteration. This is done by toggling 2833 * @dy_eligible each time a VCPU checked for eligibility.) 2834 * 2835 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2836 * to preempted lock-holder could result in wrong VCPU selection and CPU 2837 * burning. Giving priority for a potential lock-holder increases lock 2838 * progress. 2839 * 2840 * Since algorithm is based on heuristics, accessing another VCPU data without 2841 * locking does not harm. It may result in trying to yield to same VCPU, fail 2842 * and continue with next VCPU and so on. 2843 */ 2844 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2845 { 2846 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2847 bool eligible; 2848 2849 eligible = !vcpu->spin_loop.in_spin_loop || 2850 vcpu->spin_loop.dy_eligible; 2851 2852 if (vcpu->spin_loop.in_spin_loop) 2853 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2854 2855 return eligible; 2856 #else 2857 return true; 2858 #endif 2859 } 2860 2861 /* 2862 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2863 * a vcpu_load/vcpu_put pair. However, for most architectures 2864 * kvm_arch_vcpu_runnable does not require vcpu_load. 2865 */ 2866 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2867 { 2868 return kvm_arch_vcpu_runnable(vcpu); 2869 } 2870 2871 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2872 { 2873 if (kvm_arch_dy_runnable(vcpu)) 2874 return true; 2875 2876 #ifdef CONFIG_KVM_ASYNC_PF 2877 if (!list_empty_careful(&vcpu->async_pf.done)) 2878 return true; 2879 #endif 2880 2881 return false; 2882 } 2883 2884 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2885 { 2886 struct kvm *kvm = me->kvm; 2887 struct kvm_vcpu *vcpu; 2888 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2889 int yielded = 0; 2890 int try = 3; 2891 int pass; 2892 int i; 2893 2894 kvm_vcpu_set_in_spin_loop(me, true); 2895 /* 2896 * We boost the priority of a VCPU that is runnable but not 2897 * currently running, because it got preempted by something 2898 * else and called schedule in __vcpu_run. Hopefully that 2899 * VCPU is holding the lock that we need and will release it. 2900 * We approximate round-robin by starting at the last boosted VCPU. 2901 */ 2902 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2903 kvm_for_each_vcpu(i, vcpu, kvm) { 2904 if (!pass && i <= last_boosted_vcpu) { 2905 i = last_boosted_vcpu; 2906 continue; 2907 } else if (pass && i > last_boosted_vcpu) 2908 break; 2909 if (!READ_ONCE(vcpu->ready)) 2910 continue; 2911 if (vcpu == me) 2912 continue; 2913 if (rcuwait_active(&vcpu->wait) && 2914 !vcpu_dy_runnable(vcpu)) 2915 continue; 2916 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2917 !kvm_arch_vcpu_in_kernel(vcpu)) 2918 continue; 2919 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2920 continue; 2921 2922 yielded = kvm_vcpu_yield_to(vcpu); 2923 if (yielded > 0) { 2924 kvm->last_boosted_vcpu = i; 2925 break; 2926 } else if (yielded < 0) { 2927 try--; 2928 if (!try) 2929 break; 2930 } 2931 } 2932 } 2933 kvm_vcpu_set_in_spin_loop(me, false); 2934 2935 /* Ensure vcpu is not eligible during next spinloop */ 2936 kvm_vcpu_set_dy_eligible(me, false); 2937 } 2938 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2939 2940 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2941 { 2942 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2943 struct page *page; 2944 2945 if (vmf->pgoff == 0) 2946 page = virt_to_page(vcpu->run); 2947 #ifdef CONFIG_X86 2948 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2949 page = virt_to_page(vcpu->arch.pio_data); 2950 #endif 2951 #ifdef CONFIG_KVM_MMIO 2952 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2953 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2954 #endif 2955 else 2956 return kvm_arch_vcpu_fault(vcpu, vmf); 2957 get_page(page); 2958 vmf->page = page; 2959 return 0; 2960 } 2961 2962 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2963 .fault = kvm_vcpu_fault, 2964 }; 2965 2966 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2967 { 2968 vma->vm_ops = &kvm_vcpu_vm_ops; 2969 return 0; 2970 } 2971 2972 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2973 { 2974 struct kvm_vcpu *vcpu = filp->private_data; 2975 2976 debugfs_remove_recursive(vcpu->debugfs_dentry); 2977 kvm_put_kvm(vcpu->kvm); 2978 return 0; 2979 } 2980 2981 static struct file_operations kvm_vcpu_fops = { 2982 .release = kvm_vcpu_release, 2983 .unlocked_ioctl = kvm_vcpu_ioctl, 2984 .mmap = kvm_vcpu_mmap, 2985 .llseek = noop_llseek, 2986 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2987 }; 2988 2989 /* 2990 * Allocates an inode for the vcpu. 2991 */ 2992 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2993 { 2994 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2995 2996 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2997 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2998 } 2999 3000 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3001 { 3002 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3003 char dir_name[ITOA_MAX_LEN * 2]; 3004 3005 if (!debugfs_initialized()) 3006 return; 3007 3008 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3009 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 3010 vcpu->kvm->debugfs_dentry); 3011 3012 kvm_arch_create_vcpu_debugfs(vcpu); 3013 #endif 3014 } 3015 3016 /* 3017 * Creates some virtual cpus. Good luck creating more than one. 3018 */ 3019 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3020 { 3021 int r; 3022 struct kvm_vcpu *vcpu; 3023 struct page *page; 3024 3025 if (id >= KVM_MAX_VCPU_ID) 3026 return -EINVAL; 3027 3028 mutex_lock(&kvm->lock); 3029 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3030 mutex_unlock(&kvm->lock); 3031 return -EINVAL; 3032 } 3033 3034 kvm->created_vcpus++; 3035 mutex_unlock(&kvm->lock); 3036 3037 r = kvm_arch_vcpu_precreate(kvm, id); 3038 if (r) 3039 goto vcpu_decrement; 3040 3041 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 3042 if (!vcpu) { 3043 r = -ENOMEM; 3044 goto vcpu_decrement; 3045 } 3046 3047 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3048 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 3049 if (!page) { 3050 r = -ENOMEM; 3051 goto vcpu_free; 3052 } 3053 vcpu->run = page_address(page); 3054 3055 kvm_vcpu_init(vcpu, kvm, id); 3056 3057 r = kvm_arch_vcpu_create(vcpu); 3058 if (r) 3059 goto vcpu_free_run_page; 3060 3061 mutex_lock(&kvm->lock); 3062 if (kvm_get_vcpu_by_id(kvm, id)) { 3063 r = -EEXIST; 3064 goto unlock_vcpu_destroy; 3065 } 3066 3067 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3068 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3069 3070 /* Now it's all set up, let userspace reach it */ 3071 kvm_get_kvm(kvm); 3072 r = create_vcpu_fd(vcpu); 3073 if (r < 0) { 3074 kvm_put_kvm_no_destroy(kvm); 3075 goto unlock_vcpu_destroy; 3076 } 3077 3078 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3079 3080 /* 3081 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3082 * before kvm->online_vcpu's incremented value. 3083 */ 3084 smp_wmb(); 3085 atomic_inc(&kvm->online_vcpus); 3086 3087 mutex_unlock(&kvm->lock); 3088 kvm_arch_vcpu_postcreate(vcpu); 3089 kvm_create_vcpu_debugfs(vcpu); 3090 return r; 3091 3092 unlock_vcpu_destroy: 3093 mutex_unlock(&kvm->lock); 3094 kvm_arch_vcpu_destroy(vcpu); 3095 vcpu_free_run_page: 3096 free_page((unsigned long)vcpu->run); 3097 vcpu_free: 3098 kmem_cache_free(kvm_vcpu_cache, vcpu); 3099 vcpu_decrement: 3100 mutex_lock(&kvm->lock); 3101 kvm->created_vcpus--; 3102 mutex_unlock(&kvm->lock); 3103 return r; 3104 } 3105 3106 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3107 { 3108 if (sigset) { 3109 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3110 vcpu->sigset_active = 1; 3111 vcpu->sigset = *sigset; 3112 } else 3113 vcpu->sigset_active = 0; 3114 return 0; 3115 } 3116 3117 static long kvm_vcpu_ioctl(struct file *filp, 3118 unsigned int ioctl, unsigned long arg) 3119 { 3120 struct kvm_vcpu *vcpu = filp->private_data; 3121 void __user *argp = (void __user *)arg; 3122 int r; 3123 struct kvm_fpu *fpu = NULL; 3124 struct kvm_sregs *kvm_sregs = NULL; 3125 3126 if (vcpu->kvm->mm != current->mm) 3127 return -EIO; 3128 3129 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3130 return -EINVAL; 3131 3132 /* 3133 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3134 * execution; mutex_lock() would break them. 3135 */ 3136 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3137 if (r != -ENOIOCTLCMD) 3138 return r; 3139 3140 if (mutex_lock_killable(&vcpu->mutex)) 3141 return -EINTR; 3142 switch (ioctl) { 3143 case KVM_RUN: { 3144 struct pid *oldpid; 3145 r = -EINVAL; 3146 if (arg) 3147 goto out; 3148 oldpid = rcu_access_pointer(vcpu->pid); 3149 if (unlikely(oldpid != task_pid(current))) { 3150 /* The thread running this VCPU changed. */ 3151 struct pid *newpid; 3152 3153 r = kvm_arch_vcpu_run_pid_change(vcpu); 3154 if (r) 3155 break; 3156 3157 newpid = get_task_pid(current, PIDTYPE_PID); 3158 rcu_assign_pointer(vcpu->pid, newpid); 3159 if (oldpid) 3160 synchronize_rcu(); 3161 put_pid(oldpid); 3162 } 3163 r = kvm_arch_vcpu_ioctl_run(vcpu); 3164 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3165 break; 3166 } 3167 case KVM_GET_REGS: { 3168 struct kvm_regs *kvm_regs; 3169 3170 r = -ENOMEM; 3171 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3172 if (!kvm_regs) 3173 goto out; 3174 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3175 if (r) 3176 goto out_free1; 3177 r = -EFAULT; 3178 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3179 goto out_free1; 3180 r = 0; 3181 out_free1: 3182 kfree(kvm_regs); 3183 break; 3184 } 3185 case KVM_SET_REGS: { 3186 struct kvm_regs *kvm_regs; 3187 3188 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3189 if (IS_ERR(kvm_regs)) { 3190 r = PTR_ERR(kvm_regs); 3191 goto out; 3192 } 3193 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3194 kfree(kvm_regs); 3195 break; 3196 } 3197 case KVM_GET_SREGS: { 3198 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3199 GFP_KERNEL_ACCOUNT); 3200 r = -ENOMEM; 3201 if (!kvm_sregs) 3202 goto out; 3203 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3204 if (r) 3205 goto out; 3206 r = -EFAULT; 3207 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3208 goto out; 3209 r = 0; 3210 break; 3211 } 3212 case KVM_SET_SREGS: { 3213 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3214 if (IS_ERR(kvm_sregs)) { 3215 r = PTR_ERR(kvm_sregs); 3216 kvm_sregs = NULL; 3217 goto out; 3218 } 3219 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3220 break; 3221 } 3222 case KVM_GET_MP_STATE: { 3223 struct kvm_mp_state mp_state; 3224 3225 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3226 if (r) 3227 goto out; 3228 r = -EFAULT; 3229 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3230 goto out; 3231 r = 0; 3232 break; 3233 } 3234 case KVM_SET_MP_STATE: { 3235 struct kvm_mp_state mp_state; 3236 3237 r = -EFAULT; 3238 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3239 goto out; 3240 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3241 break; 3242 } 3243 case KVM_TRANSLATE: { 3244 struct kvm_translation tr; 3245 3246 r = -EFAULT; 3247 if (copy_from_user(&tr, argp, sizeof(tr))) 3248 goto out; 3249 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3250 if (r) 3251 goto out; 3252 r = -EFAULT; 3253 if (copy_to_user(argp, &tr, sizeof(tr))) 3254 goto out; 3255 r = 0; 3256 break; 3257 } 3258 case KVM_SET_GUEST_DEBUG: { 3259 struct kvm_guest_debug dbg; 3260 3261 r = -EFAULT; 3262 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3263 goto out; 3264 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3265 break; 3266 } 3267 case KVM_SET_SIGNAL_MASK: { 3268 struct kvm_signal_mask __user *sigmask_arg = argp; 3269 struct kvm_signal_mask kvm_sigmask; 3270 sigset_t sigset, *p; 3271 3272 p = NULL; 3273 if (argp) { 3274 r = -EFAULT; 3275 if (copy_from_user(&kvm_sigmask, argp, 3276 sizeof(kvm_sigmask))) 3277 goto out; 3278 r = -EINVAL; 3279 if (kvm_sigmask.len != sizeof(sigset)) 3280 goto out; 3281 r = -EFAULT; 3282 if (copy_from_user(&sigset, sigmask_arg->sigset, 3283 sizeof(sigset))) 3284 goto out; 3285 p = &sigset; 3286 } 3287 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3288 break; 3289 } 3290 case KVM_GET_FPU: { 3291 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3292 r = -ENOMEM; 3293 if (!fpu) 3294 goto out; 3295 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3296 if (r) 3297 goto out; 3298 r = -EFAULT; 3299 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3300 goto out; 3301 r = 0; 3302 break; 3303 } 3304 case KVM_SET_FPU: { 3305 fpu = memdup_user(argp, sizeof(*fpu)); 3306 if (IS_ERR(fpu)) { 3307 r = PTR_ERR(fpu); 3308 fpu = NULL; 3309 goto out; 3310 } 3311 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3312 break; 3313 } 3314 default: 3315 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3316 } 3317 out: 3318 mutex_unlock(&vcpu->mutex); 3319 kfree(fpu); 3320 kfree(kvm_sregs); 3321 return r; 3322 } 3323 3324 #ifdef CONFIG_KVM_COMPAT 3325 static long kvm_vcpu_compat_ioctl(struct file *filp, 3326 unsigned int ioctl, unsigned long arg) 3327 { 3328 struct kvm_vcpu *vcpu = filp->private_data; 3329 void __user *argp = compat_ptr(arg); 3330 int r; 3331 3332 if (vcpu->kvm->mm != current->mm) 3333 return -EIO; 3334 3335 switch (ioctl) { 3336 case KVM_SET_SIGNAL_MASK: { 3337 struct kvm_signal_mask __user *sigmask_arg = argp; 3338 struct kvm_signal_mask kvm_sigmask; 3339 sigset_t sigset; 3340 3341 if (argp) { 3342 r = -EFAULT; 3343 if (copy_from_user(&kvm_sigmask, argp, 3344 sizeof(kvm_sigmask))) 3345 goto out; 3346 r = -EINVAL; 3347 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3348 goto out; 3349 r = -EFAULT; 3350 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 3351 goto out; 3352 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3353 } else 3354 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3355 break; 3356 } 3357 default: 3358 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3359 } 3360 3361 out: 3362 return r; 3363 } 3364 #endif 3365 3366 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3367 { 3368 struct kvm_device *dev = filp->private_data; 3369 3370 if (dev->ops->mmap) 3371 return dev->ops->mmap(dev, vma); 3372 3373 return -ENODEV; 3374 } 3375 3376 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3377 int (*accessor)(struct kvm_device *dev, 3378 struct kvm_device_attr *attr), 3379 unsigned long arg) 3380 { 3381 struct kvm_device_attr attr; 3382 3383 if (!accessor) 3384 return -EPERM; 3385 3386 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3387 return -EFAULT; 3388 3389 return accessor(dev, &attr); 3390 } 3391 3392 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3393 unsigned long arg) 3394 { 3395 struct kvm_device *dev = filp->private_data; 3396 3397 if (dev->kvm->mm != current->mm) 3398 return -EIO; 3399 3400 switch (ioctl) { 3401 case KVM_SET_DEVICE_ATTR: 3402 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3403 case KVM_GET_DEVICE_ATTR: 3404 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3405 case KVM_HAS_DEVICE_ATTR: 3406 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3407 default: 3408 if (dev->ops->ioctl) 3409 return dev->ops->ioctl(dev, ioctl, arg); 3410 3411 return -ENOTTY; 3412 } 3413 } 3414 3415 static int kvm_device_release(struct inode *inode, struct file *filp) 3416 { 3417 struct kvm_device *dev = filp->private_data; 3418 struct kvm *kvm = dev->kvm; 3419 3420 if (dev->ops->release) { 3421 mutex_lock(&kvm->lock); 3422 list_del(&dev->vm_node); 3423 dev->ops->release(dev); 3424 mutex_unlock(&kvm->lock); 3425 } 3426 3427 kvm_put_kvm(kvm); 3428 return 0; 3429 } 3430 3431 static const struct file_operations kvm_device_fops = { 3432 .unlocked_ioctl = kvm_device_ioctl, 3433 .release = kvm_device_release, 3434 KVM_COMPAT(kvm_device_ioctl), 3435 .mmap = kvm_device_mmap, 3436 }; 3437 3438 struct kvm_device *kvm_device_from_filp(struct file *filp) 3439 { 3440 if (filp->f_op != &kvm_device_fops) 3441 return NULL; 3442 3443 return filp->private_data; 3444 } 3445 3446 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3447 #ifdef CONFIG_KVM_MPIC 3448 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3449 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3450 #endif 3451 }; 3452 3453 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3454 { 3455 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3456 return -ENOSPC; 3457 3458 if (kvm_device_ops_table[type] != NULL) 3459 return -EEXIST; 3460 3461 kvm_device_ops_table[type] = ops; 3462 return 0; 3463 } 3464 3465 void kvm_unregister_device_ops(u32 type) 3466 { 3467 if (kvm_device_ops_table[type] != NULL) 3468 kvm_device_ops_table[type] = NULL; 3469 } 3470 3471 static int kvm_ioctl_create_device(struct kvm *kvm, 3472 struct kvm_create_device *cd) 3473 { 3474 const struct kvm_device_ops *ops = NULL; 3475 struct kvm_device *dev; 3476 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3477 int type; 3478 int ret; 3479 3480 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3481 return -ENODEV; 3482 3483 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3484 ops = kvm_device_ops_table[type]; 3485 if (ops == NULL) 3486 return -ENODEV; 3487 3488 if (test) 3489 return 0; 3490 3491 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3492 if (!dev) 3493 return -ENOMEM; 3494 3495 dev->ops = ops; 3496 dev->kvm = kvm; 3497 3498 mutex_lock(&kvm->lock); 3499 ret = ops->create(dev, type); 3500 if (ret < 0) { 3501 mutex_unlock(&kvm->lock); 3502 kfree(dev); 3503 return ret; 3504 } 3505 list_add(&dev->vm_node, &kvm->devices); 3506 mutex_unlock(&kvm->lock); 3507 3508 if (ops->init) 3509 ops->init(dev); 3510 3511 kvm_get_kvm(kvm); 3512 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3513 if (ret < 0) { 3514 kvm_put_kvm_no_destroy(kvm); 3515 mutex_lock(&kvm->lock); 3516 list_del(&dev->vm_node); 3517 mutex_unlock(&kvm->lock); 3518 ops->destroy(dev); 3519 return ret; 3520 } 3521 3522 cd->fd = ret; 3523 return 0; 3524 } 3525 3526 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3527 { 3528 switch (arg) { 3529 case KVM_CAP_USER_MEMORY: 3530 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3531 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3532 case KVM_CAP_INTERNAL_ERROR_DATA: 3533 #ifdef CONFIG_HAVE_KVM_MSI 3534 case KVM_CAP_SIGNAL_MSI: 3535 #endif 3536 #ifdef CONFIG_HAVE_KVM_IRQFD 3537 case KVM_CAP_IRQFD: 3538 case KVM_CAP_IRQFD_RESAMPLE: 3539 #endif 3540 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3541 case KVM_CAP_CHECK_EXTENSION_VM: 3542 case KVM_CAP_ENABLE_CAP_VM: 3543 case KVM_CAP_HALT_POLL: 3544 return 1; 3545 #ifdef CONFIG_KVM_MMIO 3546 case KVM_CAP_COALESCED_MMIO: 3547 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3548 case KVM_CAP_COALESCED_PIO: 3549 return 1; 3550 #endif 3551 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3552 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3553 return KVM_DIRTY_LOG_MANUAL_CAPS; 3554 #endif 3555 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3556 case KVM_CAP_IRQ_ROUTING: 3557 return KVM_MAX_IRQ_ROUTES; 3558 #endif 3559 #if KVM_ADDRESS_SPACE_NUM > 1 3560 case KVM_CAP_MULTI_ADDRESS_SPACE: 3561 return KVM_ADDRESS_SPACE_NUM; 3562 #endif 3563 case KVM_CAP_NR_MEMSLOTS: 3564 return KVM_USER_MEM_SLOTS; 3565 default: 3566 break; 3567 } 3568 return kvm_vm_ioctl_check_extension(kvm, arg); 3569 } 3570 3571 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3572 struct kvm_enable_cap *cap) 3573 { 3574 return -EINVAL; 3575 } 3576 3577 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3578 struct kvm_enable_cap *cap) 3579 { 3580 switch (cap->cap) { 3581 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3582 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 3583 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 3584 3585 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 3586 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 3587 3588 if (cap->flags || (cap->args[0] & ~allowed_options)) 3589 return -EINVAL; 3590 kvm->manual_dirty_log_protect = cap->args[0]; 3591 return 0; 3592 } 3593 #endif 3594 case KVM_CAP_HALT_POLL: { 3595 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 3596 return -EINVAL; 3597 3598 kvm->max_halt_poll_ns = cap->args[0]; 3599 return 0; 3600 } 3601 default: 3602 return kvm_vm_ioctl_enable_cap(kvm, cap); 3603 } 3604 } 3605 3606 static long kvm_vm_ioctl(struct file *filp, 3607 unsigned int ioctl, unsigned long arg) 3608 { 3609 struct kvm *kvm = filp->private_data; 3610 void __user *argp = (void __user *)arg; 3611 int r; 3612 3613 if (kvm->mm != current->mm) 3614 return -EIO; 3615 switch (ioctl) { 3616 case KVM_CREATE_VCPU: 3617 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3618 break; 3619 case KVM_ENABLE_CAP: { 3620 struct kvm_enable_cap cap; 3621 3622 r = -EFAULT; 3623 if (copy_from_user(&cap, argp, sizeof(cap))) 3624 goto out; 3625 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3626 break; 3627 } 3628 case KVM_SET_USER_MEMORY_REGION: { 3629 struct kvm_userspace_memory_region kvm_userspace_mem; 3630 3631 r = -EFAULT; 3632 if (copy_from_user(&kvm_userspace_mem, argp, 3633 sizeof(kvm_userspace_mem))) 3634 goto out; 3635 3636 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3637 break; 3638 } 3639 case KVM_GET_DIRTY_LOG: { 3640 struct kvm_dirty_log log; 3641 3642 r = -EFAULT; 3643 if (copy_from_user(&log, argp, sizeof(log))) 3644 goto out; 3645 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3646 break; 3647 } 3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3649 case KVM_CLEAR_DIRTY_LOG: { 3650 struct kvm_clear_dirty_log log; 3651 3652 r = -EFAULT; 3653 if (copy_from_user(&log, argp, sizeof(log))) 3654 goto out; 3655 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3656 break; 3657 } 3658 #endif 3659 #ifdef CONFIG_KVM_MMIO 3660 case KVM_REGISTER_COALESCED_MMIO: { 3661 struct kvm_coalesced_mmio_zone zone; 3662 3663 r = -EFAULT; 3664 if (copy_from_user(&zone, argp, sizeof(zone))) 3665 goto out; 3666 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3667 break; 3668 } 3669 case KVM_UNREGISTER_COALESCED_MMIO: { 3670 struct kvm_coalesced_mmio_zone zone; 3671 3672 r = -EFAULT; 3673 if (copy_from_user(&zone, argp, sizeof(zone))) 3674 goto out; 3675 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3676 break; 3677 } 3678 #endif 3679 case KVM_IRQFD: { 3680 struct kvm_irqfd data; 3681 3682 r = -EFAULT; 3683 if (copy_from_user(&data, argp, sizeof(data))) 3684 goto out; 3685 r = kvm_irqfd(kvm, &data); 3686 break; 3687 } 3688 case KVM_IOEVENTFD: { 3689 struct kvm_ioeventfd data; 3690 3691 r = -EFAULT; 3692 if (copy_from_user(&data, argp, sizeof(data))) 3693 goto out; 3694 r = kvm_ioeventfd(kvm, &data); 3695 break; 3696 } 3697 #ifdef CONFIG_HAVE_KVM_MSI 3698 case KVM_SIGNAL_MSI: { 3699 struct kvm_msi msi; 3700 3701 r = -EFAULT; 3702 if (copy_from_user(&msi, argp, sizeof(msi))) 3703 goto out; 3704 r = kvm_send_userspace_msi(kvm, &msi); 3705 break; 3706 } 3707 #endif 3708 #ifdef __KVM_HAVE_IRQ_LINE 3709 case KVM_IRQ_LINE_STATUS: 3710 case KVM_IRQ_LINE: { 3711 struct kvm_irq_level irq_event; 3712 3713 r = -EFAULT; 3714 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3715 goto out; 3716 3717 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3718 ioctl == KVM_IRQ_LINE_STATUS); 3719 if (r) 3720 goto out; 3721 3722 r = -EFAULT; 3723 if (ioctl == KVM_IRQ_LINE_STATUS) { 3724 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3725 goto out; 3726 } 3727 3728 r = 0; 3729 break; 3730 } 3731 #endif 3732 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3733 case KVM_SET_GSI_ROUTING: { 3734 struct kvm_irq_routing routing; 3735 struct kvm_irq_routing __user *urouting; 3736 struct kvm_irq_routing_entry *entries = NULL; 3737 3738 r = -EFAULT; 3739 if (copy_from_user(&routing, argp, sizeof(routing))) 3740 goto out; 3741 r = -EINVAL; 3742 if (!kvm_arch_can_set_irq_routing(kvm)) 3743 goto out; 3744 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3745 goto out; 3746 if (routing.flags) 3747 goto out; 3748 if (routing.nr) { 3749 r = -ENOMEM; 3750 entries = vmalloc(array_size(sizeof(*entries), 3751 routing.nr)); 3752 if (!entries) 3753 goto out; 3754 r = -EFAULT; 3755 urouting = argp; 3756 if (copy_from_user(entries, urouting->entries, 3757 routing.nr * sizeof(*entries))) 3758 goto out_free_irq_routing; 3759 } 3760 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3761 routing.flags); 3762 out_free_irq_routing: 3763 vfree(entries); 3764 break; 3765 } 3766 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3767 case KVM_CREATE_DEVICE: { 3768 struct kvm_create_device cd; 3769 3770 r = -EFAULT; 3771 if (copy_from_user(&cd, argp, sizeof(cd))) 3772 goto out; 3773 3774 r = kvm_ioctl_create_device(kvm, &cd); 3775 if (r) 3776 goto out; 3777 3778 r = -EFAULT; 3779 if (copy_to_user(argp, &cd, sizeof(cd))) 3780 goto out; 3781 3782 r = 0; 3783 break; 3784 } 3785 case KVM_CHECK_EXTENSION: 3786 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3787 break; 3788 default: 3789 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3790 } 3791 out: 3792 return r; 3793 } 3794 3795 #ifdef CONFIG_KVM_COMPAT 3796 struct compat_kvm_dirty_log { 3797 __u32 slot; 3798 __u32 padding1; 3799 union { 3800 compat_uptr_t dirty_bitmap; /* one bit per page */ 3801 __u64 padding2; 3802 }; 3803 }; 3804 3805 static long kvm_vm_compat_ioctl(struct file *filp, 3806 unsigned int ioctl, unsigned long arg) 3807 { 3808 struct kvm *kvm = filp->private_data; 3809 int r; 3810 3811 if (kvm->mm != current->mm) 3812 return -EIO; 3813 switch (ioctl) { 3814 case KVM_GET_DIRTY_LOG: { 3815 struct compat_kvm_dirty_log compat_log; 3816 struct kvm_dirty_log log; 3817 3818 if (copy_from_user(&compat_log, (void __user *)arg, 3819 sizeof(compat_log))) 3820 return -EFAULT; 3821 log.slot = compat_log.slot; 3822 log.padding1 = compat_log.padding1; 3823 log.padding2 = compat_log.padding2; 3824 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3825 3826 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3827 break; 3828 } 3829 default: 3830 r = kvm_vm_ioctl(filp, ioctl, arg); 3831 } 3832 return r; 3833 } 3834 #endif 3835 3836 static struct file_operations kvm_vm_fops = { 3837 .release = kvm_vm_release, 3838 .unlocked_ioctl = kvm_vm_ioctl, 3839 .llseek = noop_llseek, 3840 KVM_COMPAT(kvm_vm_compat_ioctl), 3841 }; 3842 3843 static int kvm_dev_ioctl_create_vm(unsigned long type) 3844 { 3845 int r; 3846 struct kvm *kvm; 3847 struct file *file; 3848 3849 kvm = kvm_create_vm(type); 3850 if (IS_ERR(kvm)) 3851 return PTR_ERR(kvm); 3852 #ifdef CONFIG_KVM_MMIO 3853 r = kvm_coalesced_mmio_init(kvm); 3854 if (r < 0) 3855 goto put_kvm; 3856 #endif 3857 r = get_unused_fd_flags(O_CLOEXEC); 3858 if (r < 0) 3859 goto put_kvm; 3860 3861 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3862 if (IS_ERR(file)) { 3863 put_unused_fd(r); 3864 r = PTR_ERR(file); 3865 goto put_kvm; 3866 } 3867 3868 /* 3869 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3870 * already set, with ->release() being kvm_vm_release(). In error 3871 * cases it will be called by the final fput(file) and will take 3872 * care of doing kvm_put_kvm(kvm). 3873 */ 3874 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3875 put_unused_fd(r); 3876 fput(file); 3877 return -ENOMEM; 3878 } 3879 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3880 3881 fd_install(r, file); 3882 return r; 3883 3884 put_kvm: 3885 kvm_put_kvm(kvm); 3886 return r; 3887 } 3888 3889 static long kvm_dev_ioctl(struct file *filp, 3890 unsigned int ioctl, unsigned long arg) 3891 { 3892 long r = -EINVAL; 3893 3894 switch (ioctl) { 3895 case KVM_GET_API_VERSION: 3896 if (arg) 3897 goto out; 3898 r = KVM_API_VERSION; 3899 break; 3900 case KVM_CREATE_VM: 3901 r = kvm_dev_ioctl_create_vm(arg); 3902 break; 3903 case KVM_CHECK_EXTENSION: 3904 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3905 break; 3906 case KVM_GET_VCPU_MMAP_SIZE: 3907 if (arg) 3908 goto out; 3909 r = PAGE_SIZE; /* struct kvm_run */ 3910 #ifdef CONFIG_X86 3911 r += PAGE_SIZE; /* pio data page */ 3912 #endif 3913 #ifdef CONFIG_KVM_MMIO 3914 r += PAGE_SIZE; /* coalesced mmio ring page */ 3915 #endif 3916 break; 3917 case KVM_TRACE_ENABLE: 3918 case KVM_TRACE_PAUSE: 3919 case KVM_TRACE_DISABLE: 3920 r = -EOPNOTSUPP; 3921 break; 3922 default: 3923 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3924 } 3925 out: 3926 return r; 3927 } 3928 3929 static struct file_operations kvm_chardev_ops = { 3930 .unlocked_ioctl = kvm_dev_ioctl, 3931 .llseek = noop_llseek, 3932 KVM_COMPAT(kvm_dev_ioctl), 3933 }; 3934 3935 static struct miscdevice kvm_dev = { 3936 KVM_MINOR, 3937 "kvm", 3938 &kvm_chardev_ops, 3939 }; 3940 3941 static void hardware_enable_nolock(void *junk) 3942 { 3943 int cpu = raw_smp_processor_id(); 3944 int r; 3945 3946 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3947 return; 3948 3949 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3950 3951 r = kvm_arch_hardware_enable(); 3952 3953 if (r) { 3954 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3955 atomic_inc(&hardware_enable_failed); 3956 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3957 } 3958 } 3959 3960 static int kvm_starting_cpu(unsigned int cpu) 3961 { 3962 raw_spin_lock(&kvm_count_lock); 3963 if (kvm_usage_count) 3964 hardware_enable_nolock(NULL); 3965 raw_spin_unlock(&kvm_count_lock); 3966 return 0; 3967 } 3968 3969 static void hardware_disable_nolock(void *junk) 3970 { 3971 int cpu = raw_smp_processor_id(); 3972 3973 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3974 return; 3975 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3976 kvm_arch_hardware_disable(); 3977 } 3978 3979 static int kvm_dying_cpu(unsigned int cpu) 3980 { 3981 raw_spin_lock(&kvm_count_lock); 3982 if (kvm_usage_count) 3983 hardware_disable_nolock(NULL); 3984 raw_spin_unlock(&kvm_count_lock); 3985 return 0; 3986 } 3987 3988 static void hardware_disable_all_nolock(void) 3989 { 3990 BUG_ON(!kvm_usage_count); 3991 3992 kvm_usage_count--; 3993 if (!kvm_usage_count) 3994 on_each_cpu(hardware_disable_nolock, NULL, 1); 3995 } 3996 3997 static void hardware_disable_all(void) 3998 { 3999 raw_spin_lock(&kvm_count_lock); 4000 hardware_disable_all_nolock(); 4001 raw_spin_unlock(&kvm_count_lock); 4002 } 4003 4004 static int hardware_enable_all(void) 4005 { 4006 int r = 0; 4007 4008 raw_spin_lock(&kvm_count_lock); 4009 4010 kvm_usage_count++; 4011 if (kvm_usage_count == 1) { 4012 atomic_set(&hardware_enable_failed, 0); 4013 on_each_cpu(hardware_enable_nolock, NULL, 1); 4014 4015 if (atomic_read(&hardware_enable_failed)) { 4016 hardware_disable_all_nolock(); 4017 r = -EBUSY; 4018 } 4019 } 4020 4021 raw_spin_unlock(&kvm_count_lock); 4022 4023 return r; 4024 } 4025 4026 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4027 void *v) 4028 { 4029 /* 4030 * Some (well, at least mine) BIOSes hang on reboot if 4031 * in vmx root mode. 4032 * 4033 * And Intel TXT required VMX off for all cpu when system shutdown. 4034 */ 4035 pr_info("kvm: exiting hardware virtualization\n"); 4036 kvm_rebooting = true; 4037 on_each_cpu(hardware_disable_nolock, NULL, 1); 4038 return NOTIFY_OK; 4039 } 4040 4041 static struct notifier_block kvm_reboot_notifier = { 4042 .notifier_call = kvm_reboot, 4043 .priority = 0, 4044 }; 4045 4046 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4047 { 4048 int i; 4049 4050 for (i = 0; i < bus->dev_count; i++) { 4051 struct kvm_io_device *pos = bus->range[i].dev; 4052 4053 kvm_iodevice_destructor(pos); 4054 } 4055 kfree(bus); 4056 } 4057 4058 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4059 const struct kvm_io_range *r2) 4060 { 4061 gpa_t addr1 = r1->addr; 4062 gpa_t addr2 = r2->addr; 4063 4064 if (addr1 < addr2) 4065 return -1; 4066 4067 /* If r2->len == 0, match the exact address. If r2->len != 0, 4068 * accept any overlapping write. Any order is acceptable for 4069 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4070 * we process all of them. 4071 */ 4072 if (r2->len) { 4073 addr1 += r1->len; 4074 addr2 += r2->len; 4075 } 4076 4077 if (addr1 > addr2) 4078 return 1; 4079 4080 return 0; 4081 } 4082 4083 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4084 { 4085 return kvm_io_bus_cmp(p1, p2); 4086 } 4087 4088 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4089 gpa_t addr, int len) 4090 { 4091 struct kvm_io_range *range, key; 4092 int off; 4093 4094 key = (struct kvm_io_range) { 4095 .addr = addr, 4096 .len = len, 4097 }; 4098 4099 range = bsearch(&key, bus->range, bus->dev_count, 4100 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4101 if (range == NULL) 4102 return -ENOENT; 4103 4104 off = range - bus->range; 4105 4106 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4107 off--; 4108 4109 return off; 4110 } 4111 4112 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4113 struct kvm_io_range *range, const void *val) 4114 { 4115 int idx; 4116 4117 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4118 if (idx < 0) 4119 return -EOPNOTSUPP; 4120 4121 while (idx < bus->dev_count && 4122 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4123 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4124 range->len, val)) 4125 return idx; 4126 idx++; 4127 } 4128 4129 return -EOPNOTSUPP; 4130 } 4131 4132 /* kvm_io_bus_write - called under kvm->slots_lock */ 4133 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4134 int len, const void *val) 4135 { 4136 struct kvm_io_bus *bus; 4137 struct kvm_io_range range; 4138 int r; 4139 4140 range = (struct kvm_io_range) { 4141 .addr = addr, 4142 .len = len, 4143 }; 4144 4145 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4146 if (!bus) 4147 return -ENOMEM; 4148 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4149 return r < 0 ? r : 0; 4150 } 4151 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4152 4153 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4154 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4155 gpa_t addr, int len, const void *val, long cookie) 4156 { 4157 struct kvm_io_bus *bus; 4158 struct kvm_io_range range; 4159 4160 range = (struct kvm_io_range) { 4161 .addr = addr, 4162 .len = len, 4163 }; 4164 4165 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4166 if (!bus) 4167 return -ENOMEM; 4168 4169 /* First try the device referenced by cookie. */ 4170 if ((cookie >= 0) && (cookie < bus->dev_count) && 4171 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4172 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4173 val)) 4174 return cookie; 4175 4176 /* 4177 * cookie contained garbage; fall back to search and return the 4178 * correct cookie value. 4179 */ 4180 return __kvm_io_bus_write(vcpu, bus, &range, val); 4181 } 4182 4183 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4184 struct kvm_io_range *range, void *val) 4185 { 4186 int idx; 4187 4188 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4189 if (idx < 0) 4190 return -EOPNOTSUPP; 4191 4192 while (idx < bus->dev_count && 4193 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4194 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4195 range->len, val)) 4196 return idx; 4197 idx++; 4198 } 4199 4200 return -EOPNOTSUPP; 4201 } 4202 4203 /* kvm_io_bus_read - called under kvm->slots_lock */ 4204 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4205 int len, void *val) 4206 { 4207 struct kvm_io_bus *bus; 4208 struct kvm_io_range range; 4209 int r; 4210 4211 range = (struct kvm_io_range) { 4212 .addr = addr, 4213 .len = len, 4214 }; 4215 4216 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4217 if (!bus) 4218 return -ENOMEM; 4219 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4220 return r < 0 ? r : 0; 4221 } 4222 4223 /* Caller must hold slots_lock. */ 4224 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4225 int len, struct kvm_io_device *dev) 4226 { 4227 int i; 4228 struct kvm_io_bus *new_bus, *bus; 4229 struct kvm_io_range range; 4230 4231 bus = kvm_get_bus(kvm, bus_idx); 4232 if (!bus) 4233 return -ENOMEM; 4234 4235 /* exclude ioeventfd which is limited by maximum fd */ 4236 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4237 return -ENOSPC; 4238 4239 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4240 GFP_KERNEL_ACCOUNT); 4241 if (!new_bus) 4242 return -ENOMEM; 4243 4244 range = (struct kvm_io_range) { 4245 .addr = addr, 4246 .len = len, 4247 .dev = dev, 4248 }; 4249 4250 for (i = 0; i < bus->dev_count; i++) 4251 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4252 break; 4253 4254 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4255 new_bus->dev_count++; 4256 new_bus->range[i] = range; 4257 memcpy(new_bus->range + i + 1, bus->range + i, 4258 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4259 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4260 synchronize_srcu_expedited(&kvm->srcu); 4261 kfree(bus); 4262 4263 return 0; 4264 } 4265 4266 /* Caller must hold slots_lock. */ 4267 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4268 struct kvm_io_device *dev) 4269 { 4270 int i; 4271 struct kvm_io_bus *new_bus, *bus; 4272 4273 bus = kvm_get_bus(kvm, bus_idx); 4274 if (!bus) 4275 return; 4276 4277 for (i = 0; i < bus->dev_count; i++) 4278 if (bus->range[i].dev == dev) { 4279 break; 4280 } 4281 4282 if (i == bus->dev_count) 4283 return; 4284 4285 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4286 GFP_KERNEL_ACCOUNT); 4287 if (!new_bus) { 4288 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4289 goto broken; 4290 } 4291 4292 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4293 new_bus->dev_count--; 4294 memcpy(new_bus->range + i, bus->range + i + 1, 4295 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 4296 4297 broken: 4298 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4299 synchronize_srcu_expedited(&kvm->srcu); 4300 kfree(bus); 4301 return; 4302 } 4303 4304 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4305 gpa_t addr) 4306 { 4307 struct kvm_io_bus *bus; 4308 int dev_idx, srcu_idx; 4309 struct kvm_io_device *iodev = NULL; 4310 4311 srcu_idx = srcu_read_lock(&kvm->srcu); 4312 4313 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4314 if (!bus) 4315 goto out_unlock; 4316 4317 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4318 if (dev_idx < 0) 4319 goto out_unlock; 4320 4321 iodev = bus->range[dev_idx].dev; 4322 4323 out_unlock: 4324 srcu_read_unlock(&kvm->srcu, srcu_idx); 4325 4326 return iodev; 4327 } 4328 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4329 4330 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4331 int (*get)(void *, u64 *), int (*set)(void *, u64), 4332 const char *fmt) 4333 { 4334 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4335 inode->i_private; 4336 4337 /* The debugfs files are a reference to the kvm struct which 4338 * is still valid when kvm_destroy_vm is called. 4339 * To avoid the race between open and the removal of the debugfs 4340 * directory we test against the users count. 4341 */ 4342 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4343 return -ENOENT; 4344 4345 if (simple_attr_open(inode, file, get, 4346 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222 4347 ? set : NULL, 4348 fmt)) { 4349 kvm_put_kvm(stat_data->kvm); 4350 return -ENOMEM; 4351 } 4352 4353 return 0; 4354 } 4355 4356 static int kvm_debugfs_release(struct inode *inode, struct file *file) 4357 { 4358 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4359 inode->i_private; 4360 4361 simple_attr_release(inode, file); 4362 kvm_put_kvm(stat_data->kvm); 4363 4364 return 0; 4365 } 4366 4367 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 4368 { 4369 *val = *(ulong *)((void *)kvm + offset); 4370 4371 return 0; 4372 } 4373 4374 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 4375 { 4376 *(ulong *)((void *)kvm + offset) = 0; 4377 4378 return 0; 4379 } 4380 4381 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 4382 { 4383 int i; 4384 struct kvm_vcpu *vcpu; 4385 4386 *val = 0; 4387 4388 kvm_for_each_vcpu(i, vcpu, kvm) 4389 *val += *(u64 *)((void *)vcpu + offset); 4390 4391 return 0; 4392 } 4393 4394 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 4395 { 4396 int i; 4397 struct kvm_vcpu *vcpu; 4398 4399 kvm_for_each_vcpu(i, vcpu, kvm) 4400 *(u64 *)((void *)vcpu + offset) = 0; 4401 4402 return 0; 4403 } 4404 4405 static int kvm_stat_data_get(void *data, u64 *val) 4406 { 4407 int r = -EFAULT; 4408 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4409 4410 switch (stat_data->dbgfs_item->kind) { 4411 case KVM_STAT_VM: 4412 r = kvm_get_stat_per_vm(stat_data->kvm, 4413 stat_data->dbgfs_item->offset, val); 4414 break; 4415 case KVM_STAT_VCPU: 4416 r = kvm_get_stat_per_vcpu(stat_data->kvm, 4417 stat_data->dbgfs_item->offset, val); 4418 break; 4419 } 4420 4421 return r; 4422 } 4423 4424 static int kvm_stat_data_clear(void *data, u64 val) 4425 { 4426 int r = -EFAULT; 4427 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4428 4429 if (val) 4430 return -EINVAL; 4431 4432 switch (stat_data->dbgfs_item->kind) { 4433 case KVM_STAT_VM: 4434 r = kvm_clear_stat_per_vm(stat_data->kvm, 4435 stat_data->dbgfs_item->offset); 4436 break; 4437 case KVM_STAT_VCPU: 4438 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 4439 stat_data->dbgfs_item->offset); 4440 break; 4441 } 4442 4443 return r; 4444 } 4445 4446 static int kvm_stat_data_open(struct inode *inode, struct file *file) 4447 { 4448 __simple_attr_check_format("%llu\n", 0ull); 4449 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 4450 kvm_stat_data_clear, "%llu\n"); 4451 } 4452 4453 static const struct file_operations stat_fops_per_vm = { 4454 .owner = THIS_MODULE, 4455 .open = kvm_stat_data_open, 4456 .release = kvm_debugfs_release, 4457 .read = simple_attr_read, 4458 .write = simple_attr_write, 4459 .llseek = no_llseek, 4460 }; 4461 4462 static int vm_stat_get(void *_offset, u64 *val) 4463 { 4464 unsigned offset = (long)_offset; 4465 struct kvm *kvm; 4466 u64 tmp_val; 4467 4468 *val = 0; 4469 mutex_lock(&kvm_lock); 4470 list_for_each_entry(kvm, &vm_list, vm_list) { 4471 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 4472 *val += tmp_val; 4473 } 4474 mutex_unlock(&kvm_lock); 4475 return 0; 4476 } 4477 4478 static int vm_stat_clear(void *_offset, u64 val) 4479 { 4480 unsigned offset = (long)_offset; 4481 struct kvm *kvm; 4482 4483 if (val) 4484 return -EINVAL; 4485 4486 mutex_lock(&kvm_lock); 4487 list_for_each_entry(kvm, &vm_list, vm_list) { 4488 kvm_clear_stat_per_vm(kvm, offset); 4489 } 4490 mutex_unlock(&kvm_lock); 4491 4492 return 0; 4493 } 4494 4495 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4496 4497 static int vcpu_stat_get(void *_offset, u64 *val) 4498 { 4499 unsigned offset = (long)_offset; 4500 struct kvm *kvm; 4501 u64 tmp_val; 4502 4503 *val = 0; 4504 mutex_lock(&kvm_lock); 4505 list_for_each_entry(kvm, &vm_list, vm_list) { 4506 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 4507 *val += tmp_val; 4508 } 4509 mutex_unlock(&kvm_lock); 4510 return 0; 4511 } 4512 4513 static int vcpu_stat_clear(void *_offset, u64 val) 4514 { 4515 unsigned offset = (long)_offset; 4516 struct kvm *kvm; 4517 4518 if (val) 4519 return -EINVAL; 4520 4521 mutex_lock(&kvm_lock); 4522 list_for_each_entry(kvm, &vm_list, vm_list) { 4523 kvm_clear_stat_per_vcpu(kvm, offset); 4524 } 4525 mutex_unlock(&kvm_lock); 4526 4527 return 0; 4528 } 4529 4530 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4531 "%llu\n"); 4532 4533 static const struct file_operations *stat_fops[] = { 4534 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4535 [KVM_STAT_VM] = &vm_stat_fops, 4536 }; 4537 4538 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4539 { 4540 struct kobj_uevent_env *env; 4541 unsigned long long created, active; 4542 4543 if (!kvm_dev.this_device || !kvm) 4544 return; 4545 4546 mutex_lock(&kvm_lock); 4547 if (type == KVM_EVENT_CREATE_VM) { 4548 kvm_createvm_count++; 4549 kvm_active_vms++; 4550 } else if (type == KVM_EVENT_DESTROY_VM) { 4551 kvm_active_vms--; 4552 } 4553 created = kvm_createvm_count; 4554 active = kvm_active_vms; 4555 mutex_unlock(&kvm_lock); 4556 4557 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4558 if (!env) 4559 return; 4560 4561 add_uevent_var(env, "CREATED=%llu", created); 4562 add_uevent_var(env, "COUNT=%llu", active); 4563 4564 if (type == KVM_EVENT_CREATE_VM) { 4565 add_uevent_var(env, "EVENT=create"); 4566 kvm->userspace_pid = task_pid_nr(current); 4567 } else if (type == KVM_EVENT_DESTROY_VM) { 4568 add_uevent_var(env, "EVENT=destroy"); 4569 } 4570 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4571 4572 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4573 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4574 4575 if (p) { 4576 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4577 if (!IS_ERR(tmp)) 4578 add_uevent_var(env, "STATS_PATH=%s", tmp); 4579 kfree(p); 4580 } 4581 } 4582 /* no need for checks, since we are adding at most only 5 keys */ 4583 env->envp[env->envp_idx++] = NULL; 4584 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4585 kfree(env); 4586 } 4587 4588 static void kvm_init_debug(void) 4589 { 4590 struct kvm_stats_debugfs_item *p; 4591 4592 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4593 4594 kvm_debugfs_num_entries = 0; 4595 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4596 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 4597 kvm_debugfs_dir, (void *)(long)p->offset, 4598 stat_fops[p->kind]); 4599 } 4600 } 4601 4602 static int kvm_suspend(void) 4603 { 4604 if (kvm_usage_count) 4605 hardware_disable_nolock(NULL); 4606 return 0; 4607 } 4608 4609 static void kvm_resume(void) 4610 { 4611 if (kvm_usage_count) { 4612 #ifdef CONFIG_LOCKDEP 4613 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4614 #endif 4615 hardware_enable_nolock(NULL); 4616 } 4617 } 4618 4619 static struct syscore_ops kvm_syscore_ops = { 4620 .suspend = kvm_suspend, 4621 .resume = kvm_resume, 4622 }; 4623 4624 static inline 4625 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4626 { 4627 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4628 } 4629 4630 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4631 { 4632 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4633 4634 WRITE_ONCE(vcpu->preempted, false); 4635 WRITE_ONCE(vcpu->ready, false); 4636 4637 __this_cpu_write(kvm_running_vcpu, vcpu); 4638 kvm_arch_sched_in(vcpu, cpu); 4639 kvm_arch_vcpu_load(vcpu, cpu); 4640 } 4641 4642 static void kvm_sched_out(struct preempt_notifier *pn, 4643 struct task_struct *next) 4644 { 4645 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4646 4647 if (current->state == TASK_RUNNING) { 4648 WRITE_ONCE(vcpu->preempted, true); 4649 WRITE_ONCE(vcpu->ready, true); 4650 } 4651 kvm_arch_vcpu_put(vcpu); 4652 __this_cpu_write(kvm_running_vcpu, NULL); 4653 } 4654 4655 /** 4656 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 4657 * 4658 * We can disable preemption locally around accessing the per-CPU variable, 4659 * and use the resolved vcpu pointer after enabling preemption again, 4660 * because even if the current thread is migrated to another CPU, reading 4661 * the per-CPU value later will give us the same value as we update the 4662 * per-CPU variable in the preempt notifier handlers. 4663 */ 4664 struct kvm_vcpu *kvm_get_running_vcpu(void) 4665 { 4666 struct kvm_vcpu *vcpu; 4667 4668 preempt_disable(); 4669 vcpu = __this_cpu_read(kvm_running_vcpu); 4670 preempt_enable(); 4671 4672 return vcpu; 4673 } 4674 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 4675 4676 /** 4677 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 4678 */ 4679 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 4680 { 4681 return &kvm_running_vcpu; 4682 } 4683 4684 struct kvm_cpu_compat_check { 4685 void *opaque; 4686 int *ret; 4687 }; 4688 4689 static void check_processor_compat(void *data) 4690 { 4691 struct kvm_cpu_compat_check *c = data; 4692 4693 *c->ret = kvm_arch_check_processor_compat(c->opaque); 4694 } 4695 4696 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4697 struct module *module) 4698 { 4699 struct kvm_cpu_compat_check c; 4700 int r; 4701 int cpu; 4702 4703 r = kvm_arch_init(opaque); 4704 if (r) 4705 goto out_fail; 4706 4707 /* 4708 * kvm_arch_init makes sure there's at most one caller 4709 * for architectures that support multiple implementations, 4710 * like intel and amd on x86. 4711 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4712 * conflicts in case kvm is already setup for another implementation. 4713 */ 4714 r = kvm_irqfd_init(); 4715 if (r) 4716 goto out_irqfd; 4717 4718 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4719 r = -ENOMEM; 4720 goto out_free_0; 4721 } 4722 4723 r = kvm_arch_hardware_setup(opaque); 4724 if (r < 0) 4725 goto out_free_1; 4726 4727 c.ret = &r; 4728 c.opaque = opaque; 4729 for_each_online_cpu(cpu) { 4730 smp_call_function_single(cpu, check_processor_compat, &c, 1); 4731 if (r < 0) 4732 goto out_free_2; 4733 } 4734 4735 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4736 kvm_starting_cpu, kvm_dying_cpu); 4737 if (r) 4738 goto out_free_2; 4739 register_reboot_notifier(&kvm_reboot_notifier); 4740 4741 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4742 if (!vcpu_align) 4743 vcpu_align = __alignof__(struct kvm_vcpu); 4744 kvm_vcpu_cache = 4745 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4746 SLAB_ACCOUNT, 4747 offsetof(struct kvm_vcpu, arch), 4748 sizeof_field(struct kvm_vcpu, arch), 4749 NULL); 4750 if (!kvm_vcpu_cache) { 4751 r = -ENOMEM; 4752 goto out_free_3; 4753 } 4754 4755 r = kvm_async_pf_init(); 4756 if (r) 4757 goto out_free; 4758 4759 kvm_chardev_ops.owner = module; 4760 kvm_vm_fops.owner = module; 4761 kvm_vcpu_fops.owner = module; 4762 4763 r = misc_register(&kvm_dev); 4764 if (r) { 4765 pr_err("kvm: misc device register failed\n"); 4766 goto out_unreg; 4767 } 4768 4769 register_syscore_ops(&kvm_syscore_ops); 4770 4771 kvm_preempt_ops.sched_in = kvm_sched_in; 4772 kvm_preempt_ops.sched_out = kvm_sched_out; 4773 4774 kvm_init_debug(); 4775 4776 r = kvm_vfio_ops_init(); 4777 WARN_ON(r); 4778 4779 return 0; 4780 4781 out_unreg: 4782 kvm_async_pf_deinit(); 4783 out_free: 4784 kmem_cache_destroy(kvm_vcpu_cache); 4785 out_free_3: 4786 unregister_reboot_notifier(&kvm_reboot_notifier); 4787 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4788 out_free_2: 4789 kvm_arch_hardware_unsetup(); 4790 out_free_1: 4791 free_cpumask_var(cpus_hardware_enabled); 4792 out_free_0: 4793 kvm_irqfd_exit(); 4794 out_irqfd: 4795 kvm_arch_exit(); 4796 out_fail: 4797 return r; 4798 } 4799 EXPORT_SYMBOL_GPL(kvm_init); 4800 4801 void kvm_exit(void) 4802 { 4803 debugfs_remove_recursive(kvm_debugfs_dir); 4804 misc_deregister(&kvm_dev); 4805 kmem_cache_destroy(kvm_vcpu_cache); 4806 kvm_async_pf_deinit(); 4807 unregister_syscore_ops(&kvm_syscore_ops); 4808 unregister_reboot_notifier(&kvm_reboot_notifier); 4809 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4810 on_each_cpu(hardware_disable_nolock, NULL, 1); 4811 kvm_arch_hardware_unsetup(); 4812 kvm_arch_exit(); 4813 kvm_irqfd_exit(); 4814 free_cpumask_var(cpus_hardware_enabled); 4815 kvm_vfio_ops_exit(); 4816 } 4817 EXPORT_SYMBOL_GPL(kvm_exit); 4818 4819 struct kvm_vm_worker_thread_context { 4820 struct kvm *kvm; 4821 struct task_struct *parent; 4822 struct completion init_done; 4823 kvm_vm_thread_fn_t thread_fn; 4824 uintptr_t data; 4825 int err; 4826 }; 4827 4828 static int kvm_vm_worker_thread(void *context) 4829 { 4830 /* 4831 * The init_context is allocated on the stack of the parent thread, so 4832 * we have to locally copy anything that is needed beyond initialization 4833 */ 4834 struct kvm_vm_worker_thread_context *init_context = context; 4835 struct kvm *kvm = init_context->kvm; 4836 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 4837 uintptr_t data = init_context->data; 4838 int err; 4839 4840 err = kthread_park(current); 4841 /* kthread_park(current) is never supposed to return an error */ 4842 WARN_ON(err != 0); 4843 if (err) 4844 goto init_complete; 4845 4846 err = cgroup_attach_task_all(init_context->parent, current); 4847 if (err) { 4848 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 4849 __func__, err); 4850 goto init_complete; 4851 } 4852 4853 set_user_nice(current, task_nice(init_context->parent)); 4854 4855 init_complete: 4856 init_context->err = err; 4857 complete(&init_context->init_done); 4858 init_context = NULL; 4859 4860 if (err) 4861 return err; 4862 4863 /* Wait to be woken up by the spawner before proceeding. */ 4864 kthread_parkme(); 4865 4866 if (!kthread_should_stop()) 4867 err = thread_fn(kvm, data); 4868 4869 return err; 4870 } 4871 4872 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 4873 uintptr_t data, const char *name, 4874 struct task_struct **thread_ptr) 4875 { 4876 struct kvm_vm_worker_thread_context init_context = {}; 4877 struct task_struct *thread; 4878 4879 *thread_ptr = NULL; 4880 init_context.kvm = kvm; 4881 init_context.parent = current; 4882 init_context.thread_fn = thread_fn; 4883 init_context.data = data; 4884 init_completion(&init_context.init_done); 4885 4886 thread = kthread_run(kvm_vm_worker_thread, &init_context, 4887 "%s-%d", name, task_pid_nr(current)); 4888 if (IS_ERR(thread)) 4889 return PTR_ERR(thread); 4890 4891 /* kthread_run is never supposed to return NULL */ 4892 WARN_ON(thread == NULL); 4893 4894 wait_for_completion(&init_context.init_done); 4895 4896 if (!init_context.err) 4897 *thread_ptr = thread; 4898 4899 return init_context.err; 4900 } 4901