xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 9ac17575)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77 
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82 
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87 
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 
93 /*
94  * Ordering of locks:
95  *
96  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98 
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102 
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106 
107 static struct kmem_cache *kvm_vcpu_cache;
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111 
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114 
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117 
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 			   unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 				  unsigned long arg);
123 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 				unsigned long arg) { return -EINVAL; }
134 
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 	return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
140 			.open		= kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144 
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146 
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 		unsigned long start, unsigned long end, bool blockable)
160 {
161 	return 0;
162 }
163 
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166 	/*
167 	 * The metadata used by is_zone_device_page() to determine whether or
168 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
170 	 * page_count() is zero to help detect bad usage of this helper.
171 	 */
172 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 		return false;
174 
175 	return is_zone_device_page(pfn_to_page(pfn));
176 }
177 
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180 	/*
181 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 	 * perspective they are "normal" pages, albeit with slightly different
183 	 * usage rules.
184 	 */
185 	if (pfn_valid(pfn))
186 		return PageReserved(pfn_to_page(pfn)) &&
187 		       !is_zero_pfn(pfn) &&
188 		       !kvm_is_zone_device_pfn(pfn);
189 
190 	return true;
191 }
192 
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195 	struct page *page = pfn_to_page(pfn);
196 
197 	if (!PageTransCompoundMap(page))
198 		return false;
199 
200 	return is_transparent_hugepage(compound_head(page));
201 }
202 
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208 	int cpu = get_cpu();
209 
210 	__this_cpu_write(kvm_running_vcpu, vcpu);
211 	preempt_notifier_register(&vcpu->preempt_notifier);
212 	kvm_arch_vcpu_load(vcpu, cpu);
213 	put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216 
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219 	preempt_disable();
220 	kvm_arch_vcpu_put(vcpu);
221 	preempt_notifier_unregister(&vcpu->preempt_notifier);
222 	__this_cpu_write(kvm_running_vcpu, NULL);
223 	preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226 
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231 
232 	/*
233 	 * We need to wait for the VCPU to reenable interrupts and get out of
234 	 * READING_SHADOW_PAGE_TABLES mode.
235 	 */
236 	if (req & KVM_REQUEST_WAIT)
237 		return mode != OUTSIDE_GUEST_MODE;
238 
239 	/*
240 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 	 */
242 	return mode == IN_GUEST_MODE;
243 }
244 
245 static void ack_flush(void *_completed)
246 {
247 }
248 
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251 	if (unlikely(!cpus))
252 		cpus = cpu_online_mask;
253 
254 	if (cpumask_empty(cpus))
255 		return false;
256 
257 	smp_call_function_many(cpus, ack_flush, NULL, wait);
258 	return true;
259 }
260 
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262 				 struct kvm_vcpu *except,
263 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 {
265 	int i, cpu, me;
266 	struct kvm_vcpu *vcpu;
267 	bool called;
268 
269 	me = get_cpu();
270 
271 	kvm_for_each_vcpu(i, vcpu, kvm) {
272 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
273 		    vcpu == except)
274 			continue;
275 
276 		kvm_make_request(req, vcpu);
277 		cpu = vcpu->cpu;
278 
279 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 			continue;
281 
282 		if (tmp != NULL && cpu != -1 && cpu != me &&
283 		    kvm_request_needs_ipi(vcpu, req))
284 			__cpumask_set_cpu(cpu, tmp);
285 	}
286 
287 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288 	put_cpu();
289 
290 	return called;
291 }
292 
293 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
294 				      struct kvm_vcpu *except)
295 {
296 	cpumask_var_t cpus;
297 	bool called;
298 
299 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300 
301 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
302 
303 	free_cpumask_var(cpus);
304 	return called;
305 }
306 
307 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308 {
309 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 }
311 
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315 	/*
316 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 	 * kvm_make_all_cpus_request.
318 	 */
319 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320 
321 	/*
322 	 * We want to publish modifications to the page tables before reading
323 	 * mode. Pairs with a memory barrier in arch-specific code.
324 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 	 *
328 	 * There is already an smp_mb__after_atomic() before
329 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 	 * barrier here.
331 	 */
332 	if (!kvm_arch_flush_remote_tlb(kvm)
333 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 		++kvm->stat.remote_tlb_flush;
335 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339 
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344 
345 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
346 {
347 	mutex_init(&vcpu->mutex);
348 	vcpu->cpu = -1;
349 	vcpu->kvm = kvm;
350 	vcpu->vcpu_id = id;
351 	vcpu->pid = NULL;
352 	rcuwait_init(&vcpu->wait);
353 	kvm_async_pf_vcpu_init(vcpu);
354 
355 	vcpu->pre_pcpu = -1;
356 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
357 
358 	kvm_vcpu_set_in_spin_loop(vcpu, false);
359 	kvm_vcpu_set_dy_eligible(vcpu, false);
360 	vcpu->preempted = false;
361 	vcpu->ready = false;
362 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
363 }
364 
365 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367 	kvm_arch_vcpu_destroy(vcpu);
368 
369 	/*
370 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
371 	 * the vcpu->pid pointer, and at destruction time all file descriptors
372 	 * are already gone.
373 	 */
374 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
375 
376 	free_page((unsigned long)vcpu->run);
377 	kmem_cache_free(kvm_vcpu_cache, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
380 
381 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
382 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
383 {
384 	return container_of(mn, struct kvm, mmu_notifier);
385 }
386 
387 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
388 					struct mm_struct *mm,
389 					unsigned long address,
390 					pte_t pte)
391 {
392 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 	int idx;
394 
395 	idx = srcu_read_lock(&kvm->srcu);
396 	spin_lock(&kvm->mmu_lock);
397 	kvm->mmu_notifier_seq++;
398 
399 	if (kvm_set_spte_hva(kvm, address, pte))
400 		kvm_flush_remote_tlbs(kvm);
401 
402 	spin_unlock(&kvm->mmu_lock);
403 	srcu_read_unlock(&kvm->srcu, idx);
404 }
405 
406 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
407 					const struct mmu_notifier_range *range)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int need_tlb_flush = 0, idx;
411 	int ret;
412 
413 	idx = srcu_read_lock(&kvm->srcu);
414 	spin_lock(&kvm->mmu_lock);
415 	/*
416 	 * The count increase must become visible at unlock time as no
417 	 * spte can be established without taking the mmu_lock and
418 	 * count is also read inside the mmu_lock critical section.
419 	 */
420 	kvm->mmu_notifier_count++;
421 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
422 	need_tlb_flush |= kvm->tlbs_dirty;
423 	/* we've to flush the tlb before the pages can be freed */
424 	if (need_tlb_flush)
425 		kvm_flush_remote_tlbs(kvm);
426 
427 	spin_unlock(&kvm->mmu_lock);
428 
429 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
430 					range->end,
431 					mmu_notifier_range_blockable(range));
432 
433 	srcu_read_unlock(&kvm->srcu, idx);
434 
435 	return ret;
436 }
437 
438 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
439 					const struct mmu_notifier_range *range)
440 {
441 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
442 
443 	spin_lock(&kvm->mmu_lock);
444 	/*
445 	 * This sequence increase will notify the kvm page fault that
446 	 * the page that is going to be mapped in the spte could have
447 	 * been freed.
448 	 */
449 	kvm->mmu_notifier_seq++;
450 	smp_wmb();
451 	/*
452 	 * The above sequence increase must be visible before the
453 	 * below count decrease, which is ensured by the smp_wmb above
454 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
455 	 */
456 	kvm->mmu_notifier_count--;
457 	spin_unlock(&kvm->mmu_lock);
458 
459 	BUG_ON(kvm->mmu_notifier_count < 0);
460 }
461 
462 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
463 					      struct mm_struct *mm,
464 					      unsigned long start,
465 					      unsigned long end)
466 {
467 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
468 	int young, idx;
469 
470 	idx = srcu_read_lock(&kvm->srcu);
471 	spin_lock(&kvm->mmu_lock);
472 
473 	young = kvm_age_hva(kvm, start, end);
474 	if (young)
475 		kvm_flush_remote_tlbs(kvm);
476 
477 	spin_unlock(&kvm->mmu_lock);
478 	srcu_read_unlock(&kvm->srcu, idx);
479 
480 	return young;
481 }
482 
483 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
484 					struct mm_struct *mm,
485 					unsigned long start,
486 					unsigned long end)
487 {
488 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
489 	int young, idx;
490 
491 	idx = srcu_read_lock(&kvm->srcu);
492 	spin_lock(&kvm->mmu_lock);
493 	/*
494 	 * Even though we do not flush TLB, this will still adversely
495 	 * affect performance on pre-Haswell Intel EPT, where there is
496 	 * no EPT Access Bit to clear so that we have to tear down EPT
497 	 * tables instead. If we find this unacceptable, we can always
498 	 * add a parameter to kvm_age_hva so that it effectively doesn't
499 	 * do anything on clear_young.
500 	 *
501 	 * Also note that currently we never issue secondary TLB flushes
502 	 * from clear_young, leaving this job up to the regular system
503 	 * cadence. If we find this inaccurate, we might come up with a
504 	 * more sophisticated heuristic later.
505 	 */
506 	young = kvm_age_hva(kvm, start, end);
507 	spin_unlock(&kvm->mmu_lock);
508 	srcu_read_unlock(&kvm->srcu, idx);
509 
510 	return young;
511 }
512 
513 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
514 				       struct mm_struct *mm,
515 				       unsigned long address)
516 {
517 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
518 	int young, idx;
519 
520 	idx = srcu_read_lock(&kvm->srcu);
521 	spin_lock(&kvm->mmu_lock);
522 	young = kvm_test_age_hva(kvm, address);
523 	spin_unlock(&kvm->mmu_lock);
524 	srcu_read_unlock(&kvm->srcu, idx);
525 
526 	return young;
527 }
528 
529 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
530 				     struct mm_struct *mm)
531 {
532 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
533 	int idx;
534 
535 	idx = srcu_read_lock(&kvm->srcu);
536 	kvm_arch_flush_shadow_all(kvm);
537 	srcu_read_unlock(&kvm->srcu, idx);
538 }
539 
540 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
541 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
542 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
543 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
544 	.clear_young		= kvm_mmu_notifier_clear_young,
545 	.test_young		= kvm_mmu_notifier_test_young,
546 	.change_pte		= kvm_mmu_notifier_change_pte,
547 	.release		= kvm_mmu_notifier_release,
548 };
549 
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
553 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
554 }
555 
556 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
557 
558 static int kvm_init_mmu_notifier(struct kvm *kvm)
559 {
560 	return 0;
561 }
562 
563 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564 
565 static struct kvm_memslots *kvm_alloc_memslots(void)
566 {
567 	int i;
568 	struct kvm_memslots *slots;
569 
570 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
571 	if (!slots)
572 		return NULL;
573 
574 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
575 		slots->id_to_index[i] = -1;
576 
577 	return slots;
578 }
579 
580 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
581 {
582 	if (!memslot->dirty_bitmap)
583 		return;
584 
585 	kvfree(memslot->dirty_bitmap);
586 	memslot->dirty_bitmap = NULL;
587 }
588 
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
590 {
591 	kvm_destroy_dirty_bitmap(slot);
592 
593 	kvm_arch_free_memslot(kvm, slot);
594 
595 	slot->flags = 0;
596 	slot->npages = 0;
597 }
598 
599 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
600 {
601 	struct kvm_memory_slot *memslot;
602 
603 	if (!slots)
604 		return;
605 
606 	kvm_for_each_memslot(memslot, slots)
607 		kvm_free_memslot(kvm, memslot);
608 
609 	kvfree(slots);
610 }
611 
612 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
613 {
614 	int i;
615 
616 	if (!kvm->debugfs_dentry)
617 		return;
618 
619 	debugfs_remove_recursive(kvm->debugfs_dentry);
620 
621 	if (kvm->debugfs_stat_data) {
622 		for (i = 0; i < kvm_debugfs_num_entries; i++)
623 			kfree(kvm->debugfs_stat_data[i]);
624 		kfree(kvm->debugfs_stat_data);
625 	}
626 }
627 
628 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
629 {
630 	char dir_name[ITOA_MAX_LEN * 2];
631 	struct kvm_stat_data *stat_data;
632 	struct kvm_stats_debugfs_item *p;
633 
634 	if (!debugfs_initialized())
635 		return 0;
636 
637 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
638 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
639 
640 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
641 					 sizeof(*kvm->debugfs_stat_data),
642 					 GFP_KERNEL_ACCOUNT);
643 	if (!kvm->debugfs_stat_data)
644 		return -ENOMEM;
645 
646 	for (p = debugfs_entries; p->name; p++) {
647 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
648 		if (!stat_data)
649 			return -ENOMEM;
650 
651 		stat_data->kvm = kvm;
652 		stat_data->dbgfs_item = p;
653 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
654 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
655 				    kvm->debugfs_dentry, stat_data,
656 				    &stat_fops_per_vm);
657 	}
658 	return 0;
659 }
660 
661 /*
662  * Called after the VM is otherwise initialized, but just before adding it to
663  * the vm_list.
664  */
665 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
666 {
667 	return 0;
668 }
669 
670 /*
671  * Called just after removing the VM from the vm_list, but before doing any
672  * other destruction.
673  */
674 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
675 {
676 }
677 
678 static struct kvm *kvm_create_vm(unsigned long type)
679 {
680 	struct kvm *kvm = kvm_arch_alloc_vm();
681 	int r = -ENOMEM;
682 	int i;
683 
684 	if (!kvm)
685 		return ERR_PTR(-ENOMEM);
686 
687 	spin_lock_init(&kvm->mmu_lock);
688 	mmgrab(current->mm);
689 	kvm->mm = current->mm;
690 	kvm_eventfd_init(kvm);
691 	mutex_init(&kvm->lock);
692 	mutex_init(&kvm->irq_lock);
693 	mutex_init(&kvm->slots_lock);
694 	INIT_LIST_HEAD(&kvm->devices);
695 
696 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697 
698 	if (init_srcu_struct(&kvm->srcu))
699 		goto out_err_no_srcu;
700 	if (init_srcu_struct(&kvm->irq_srcu))
701 		goto out_err_no_irq_srcu;
702 
703 	refcount_set(&kvm->users_count, 1);
704 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
705 		struct kvm_memslots *slots = kvm_alloc_memslots();
706 
707 		if (!slots)
708 			goto out_err_no_arch_destroy_vm;
709 		/* Generations must be different for each address space. */
710 		slots->generation = i;
711 		rcu_assign_pointer(kvm->memslots[i], slots);
712 	}
713 
714 	for (i = 0; i < KVM_NR_BUSES; i++) {
715 		rcu_assign_pointer(kvm->buses[i],
716 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
717 		if (!kvm->buses[i])
718 			goto out_err_no_arch_destroy_vm;
719 	}
720 
721 	kvm->max_halt_poll_ns = halt_poll_ns;
722 
723 	r = kvm_arch_init_vm(kvm, type);
724 	if (r)
725 		goto out_err_no_arch_destroy_vm;
726 
727 	r = hardware_enable_all();
728 	if (r)
729 		goto out_err_no_disable;
730 
731 #ifdef CONFIG_HAVE_KVM_IRQFD
732 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
733 #endif
734 
735 	r = kvm_init_mmu_notifier(kvm);
736 	if (r)
737 		goto out_err_no_mmu_notifier;
738 
739 	r = kvm_arch_post_init_vm(kvm);
740 	if (r)
741 		goto out_err;
742 
743 	mutex_lock(&kvm_lock);
744 	list_add(&kvm->vm_list, &vm_list);
745 	mutex_unlock(&kvm_lock);
746 
747 	preempt_notifier_inc();
748 
749 	return kvm;
750 
751 out_err:
752 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
753 	if (kvm->mmu_notifier.ops)
754 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
755 #endif
756 out_err_no_mmu_notifier:
757 	hardware_disable_all();
758 out_err_no_disable:
759 	kvm_arch_destroy_vm(kvm);
760 out_err_no_arch_destroy_vm:
761 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
762 	for (i = 0; i < KVM_NR_BUSES; i++)
763 		kfree(kvm_get_bus(kvm, i));
764 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
765 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
766 	cleanup_srcu_struct(&kvm->irq_srcu);
767 out_err_no_irq_srcu:
768 	cleanup_srcu_struct(&kvm->srcu);
769 out_err_no_srcu:
770 	kvm_arch_free_vm(kvm);
771 	mmdrop(current->mm);
772 	return ERR_PTR(r);
773 }
774 
775 static void kvm_destroy_devices(struct kvm *kvm)
776 {
777 	struct kvm_device *dev, *tmp;
778 
779 	/*
780 	 * We do not need to take the kvm->lock here, because nobody else
781 	 * has a reference to the struct kvm at this point and therefore
782 	 * cannot access the devices list anyhow.
783 	 */
784 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
785 		list_del(&dev->vm_node);
786 		dev->ops->destroy(dev);
787 	}
788 }
789 
790 static void kvm_destroy_vm(struct kvm *kvm)
791 {
792 	int i;
793 	struct mm_struct *mm = kvm->mm;
794 
795 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
796 	kvm_destroy_vm_debugfs(kvm);
797 	kvm_arch_sync_events(kvm);
798 	mutex_lock(&kvm_lock);
799 	list_del(&kvm->vm_list);
800 	mutex_unlock(&kvm_lock);
801 	kvm_arch_pre_destroy_vm(kvm);
802 
803 	kvm_free_irq_routing(kvm);
804 	for (i = 0; i < KVM_NR_BUSES; i++) {
805 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
806 
807 		if (bus)
808 			kvm_io_bus_destroy(bus);
809 		kvm->buses[i] = NULL;
810 	}
811 	kvm_coalesced_mmio_free(kvm);
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
814 #else
815 	kvm_arch_flush_shadow_all(kvm);
816 #endif
817 	kvm_arch_destroy_vm(kvm);
818 	kvm_destroy_devices(kvm);
819 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
820 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
821 	cleanup_srcu_struct(&kvm->irq_srcu);
822 	cleanup_srcu_struct(&kvm->srcu);
823 	kvm_arch_free_vm(kvm);
824 	preempt_notifier_dec();
825 	hardware_disable_all();
826 	mmdrop(mm);
827 }
828 
829 void kvm_get_kvm(struct kvm *kvm)
830 {
831 	refcount_inc(&kvm->users_count);
832 }
833 EXPORT_SYMBOL_GPL(kvm_get_kvm);
834 
835 void kvm_put_kvm(struct kvm *kvm)
836 {
837 	if (refcount_dec_and_test(&kvm->users_count))
838 		kvm_destroy_vm(kvm);
839 }
840 EXPORT_SYMBOL_GPL(kvm_put_kvm);
841 
842 /*
843  * Used to put a reference that was taken on behalf of an object associated
844  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
845  * of the new file descriptor fails and the reference cannot be transferred to
846  * its final owner.  In such cases, the caller is still actively using @kvm and
847  * will fail miserably if the refcount unexpectedly hits zero.
848  */
849 void kvm_put_kvm_no_destroy(struct kvm *kvm)
850 {
851 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
852 }
853 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
854 
855 static int kvm_vm_release(struct inode *inode, struct file *filp)
856 {
857 	struct kvm *kvm = filp->private_data;
858 
859 	kvm_irqfd_release(kvm);
860 
861 	kvm_put_kvm(kvm);
862 	return 0;
863 }
864 
865 /*
866  * Allocation size is twice as large as the actual dirty bitmap size.
867  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
868  */
869 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
872 
873 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
874 	if (!memslot->dirty_bitmap)
875 		return -ENOMEM;
876 
877 	return 0;
878 }
879 
880 /*
881  * Delete a memslot by decrementing the number of used slots and shifting all
882  * other entries in the array forward one spot.
883  */
884 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
885 				      struct kvm_memory_slot *memslot)
886 {
887 	struct kvm_memory_slot *mslots = slots->memslots;
888 	int i;
889 
890 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
891 		return;
892 
893 	slots->used_slots--;
894 
895 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
896 		atomic_set(&slots->lru_slot, 0);
897 
898 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
899 		mslots[i] = mslots[i + 1];
900 		slots->id_to_index[mslots[i].id] = i;
901 	}
902 	mslots[i] = *memslot;
903 	slots->id_to_index[memslot->id] = -1;
904 }
905 
906 /*
907  * "Insert" a new memslot by incrementing the number of used slots.  Returns
908  * the new slot's initial index into the memslots array.
909  */
910 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
911 {
912 	return slots->used_slots++;
913 }
914 
915 /*
916  * Move a changed memslot backwards in the array by shifting existing slots
917  * with a higher GFN toward the front of the array.  Note, the changed memslot
918  * itself is not preserved in the array, i.e. not swapped at this time, only
919  * its new index into the array is tracked.  Returns the changed memslot's
920  * current index into the memslots array.
921  */
922 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
923 					    struct kvm_memory_slot *memslot)
924 {
925 	struct kvm_memory_slot *mslots = slots->memslots;
926 	int i;
927 
928 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
929 	    WARN_ON_ONCE(!slots->used_slots))
930 		return -1;
931 
932 	/*
933 	 * Move the target memslot backward in the array by shifting existing
934 	 * memslots with a higher GFN (than the target memslot) towards the
935 	 * front of the array.
936 	 */
937 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
938 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
939 			break;
940 
941 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
942 
943 		/* Shift the next memslot forward one and update its index. */
944 		mslots[i] = mslots[i + 1];
945 		slots->id_to_index[mslots[i].id] = i;
946 	}
947 	return i;
948 }
949 
950 /*
951  * Move a changed memslot forwards in the array by shifting existing slots with
952  * a lower GFN toward the back of the array.  Note, the changed memslot itself
953  * is not preserved in the array, i.e. not swapped at this time, only its new
954  * index into the array is tracked.  Returns the changed memslot's final index
955  * into the memslots array.
956  */
957 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
958 					   struct kvm_memory_slot *memslot,
959 					   int start)
960 {
961 	struct kvm_memory_slot *mslots = slots->memslots;
962 	int i;
963 
964 	for (i = start; i > 0; i--) {
965 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
966 			break;
967 
968 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
969 
970 		/* Shift the next memslot back one and update its index. */
971 		mslots[i] = mslots[i - 1];
972 		slots->id_to_index[mslots[i].id] = i;
973 	}
974 	return i;
975 }
976 
977 /*
978  * Re-sort memslots based on their GFN to account for an added, deleted, or
979  * moved memslot.  Sorting memslots by GFN allows using a binary search during
980  * memslot lookup.
981  *
982  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
983  * at memslots[0] has the highest GFN.
984  *
985  * The sorting algorithm takes advantage of having initially sorted memslots
986  * and knowing the position of the changed memslot.  Sorting is also optimized
987  * by not swapping the updated memslot and instead only shifting other memslots
988  * and tracking the new index for the update memslot.  Only once its final
989  * index is known is the updated memslot copied into its position in the array.
990  *
991  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
992  *    the end of the array.
993  *
994  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
995  *    end of the array and then it forward to its correct location.
996  *
997  *  - When moving a memslot, the algorithm first moves the updated memslot
998  *    backward to handle the scenario where the memslot's GFN was changed to a
999  *    lower value.  update_memslots() then falls through and runs the same flow
1000  *    as creating a memslot to move the memslot forward to handle the scenario
1001  *    where its GFN was changed to a higher value.
1002  *
1003  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1004  * historical reasons.  Originally, invalid memslots where denoted by having
1005  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1006  * to the end of the array.  The current algorithm uses dedicated logic to
1007  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1008  *
1009  * The other historical motiviation for highest->lowest was to improve the
1010  * performance of memslot lookup.  KVM originally used a linear search starting
1011  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1012  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1013  * single memslot above the 4gb boundary.  As the largest memslot is also the
1014  * most likely to be referenced, sorting it to the front of the array was
1015  * advantageous.  The current binary search starts from the middle of the array
1016  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1017  */
1018 static void update_memslots(struct kvm_memslots *slots,
1019 			    struct kvm_memory_slot *memslot,
1020 			    enum kvm_mr_change change)
1021 {
1022 	int i;
1023 
1024 	if (change == KVM_MR_DELETE) {
1025 		kvm_memslot_delete(slots, memslot);
1026 	} else {
1027 		if (change == KVM_MR_CREATE)
1028 			i = kvm_memslot_insert_back(slots);
1029 		else
1030 			i = kvm_memslot_move_backward(slots, memslot);
1031 		i = kvm_memslot_move_forward(slots, memslot, i);
1032 
1033 		/*
1034 		 * Copy the memslot to its new position in memslots and update
1035 		 * its index accordingly.
1036 		 */
1037 		slots->memslots[i] = *memslot;
1038 		slots->id_to_index[memslot->id] = i;
1039 	}
1040 }
1041 
1042 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1043 {
1044 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1045 
1046 #ifdef __KVM_HAVE_READONLY_MEM
1047 	valid_flags |= KVM_MEM_READONLY;
1048 #endif
1049 
1050 	if (mem->flags & ~valid_flags)
1051 		return -EINVAL;
1052 
1053 	return 0;
1054 }
1055 
1056 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1057 		int as_id, struct kvm_memslots *slots)
1058 {
1059 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1060 	u64 gen = old_memslots->generation;
1061 
1062 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1063 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1064 
1065 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1066 	synchronize_srcu_expedited(&kvm->srcu);
1067 
1068 	/*
1069 	 * Increment the new memslot generation a second time, dropping the
1070 	 * update in-progress flag and incrementing the generation based on
1071 	 * the number of address spaces.  This provides a unique and easily
1072 	 * identifiable generation number while the memslots are in flux.
1073 	 */
1074 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1075 
1076 	/*
1077 	 * Generations must be unique even across address spaces.  We do not need
1078 	 * a global counter for that, instead the generation space is evenly split
1079 	 * across address spaces.  For example, with two address spaces, address
1080 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1081 	 * use generations 1, 3, 5, ...
1082 	 */
1083 	gen += KVM_ADDRESS_SPACE_NUM;
1084 
1085 	kvm_arch_memslots_updated(kvm, gen);
1086 
1087 	slots->generation = gen;
1088 
1089 	return old_memslots;
1090 }
1091 
1092 /*
1093  * Note, at a minimum, the current number of used slots must be allocated, even
1094  * when deleting a memslot, as we need a complete duplicate of the memslots for
1095  * use when invalidating a memslot prior to deleting/moving the memslot.
1096  */
1097 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1098 					     enum kvm_mr_change change)
1099 {
1100 	struct kvm_memslots *slots;
1101 	size_t old_size, new_size;
1102 
1103 	old_size = sizeof(struct kvm_memslots) +
1104 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1105 
1106 	if (change == KVM_MR_CREATE)
1107 		new_size = old_size + sizeof(struct kvm_memory_slot);
1108 	else
1109 		new_size = old_size;
1110 
1111 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1112 	if (likely(slots))
1113 		memcpy(slots, old, old_size);
1114 
1115 	return slots;
1116 }
1117 
1118 static int kvm_set_memslot(struct kvm *kvm,
1119 			   const struct kvm_userspace_memory_region *mem,
1120 			   struct kvm_memory_slot *old,
1121 			   struct kvm_memory_slot *new, int as_id,
1122 			   enum kvm_mr_change change)
1123 {
1124 	struct kvm_memory_slot *slot;
1125 	struct kvm_memslots *slots;
1126 	int r;
1127 
1128 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1129 	if (!slots)
1130 		return -ENOMEM;
1131 
1132 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1133 		/*
1134 		 * Note, the INVALID flag needs to be in the appropriate entry
1135 		 * in the freshly allocated memslots, not in @old or @new.
1136 		 */
1137 		slot = id_to_memslot(slots, old->id);
1138 		slot->flags |= KVM_MEMSLOT_INVALID;
1139 
1140 		/*
1141 		 * We can re-use the old memslots, the only difference from the
1142 		 * newly installed memslots is the invalid flag, which will get
1143 		 * dropped by update_memslots anyway.  We'll also revert to the
1144 		 * old memslots if preparing the new memory region fails.
1145 		 */
1146 		slots = install_new_memslots(kvm, as_id, slots);
1147 
1148 		/* From this point no new shadow pages pointing to a deleted,
1149 		 * or moved, memslot will be created.
1150 		 *
1151 		 * validation of sp->gfn happens in:
1152 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1153 		 *	- kvm_is_visible_gfn (mmu_check_root)
1154 		 */
1155 		kvm_arch_flush_shadow_memslot(kvm, slot);
1156 	}
1157 
1158 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1159 	if (r)
1160 		goto out_slots;
1161 
1162 	update_memslots(slots, new, change);
1163 	slots = install_new_memslots(kvm, as_id, slots);
1164 
1165 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1166 
1167 	kvfree(slots);
1168 	return 0;
1169 
1170 out_slots:
1171 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1172 		slots = install_new_memslots(kvm, as_id, slots);
1173 	kvfree(slots);
1174 	return r;
1175 }
1176 
1177 static int kvm_delete_memslot(struct kvm *kvm,
1178 			      const struct kvm_userspace_memory_region *mem,
1179 			      struct kvm_memory_slot *old, int as_id)
1180 {
1181 	struct kvm_memory_slot new;
1182 	int r;
1183 
1184 	if (!old->npages)
1185 		return -EINVAL;
1186 
1187 	memset(&new, 0, sizeof(new));
1188 	new.id = old->id;
1189 
1190 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1191 	if (r)
1192 		return r;
1193 
1194 	kvm_free_memslot(kvm, old);
1195 	return 0;
1196 }
1197 
1198 /*
1199  * Allocate some memory and give it an address in the guest physical address
1200  * space.
1201  *
1202  * Discontiguous memory is allowed, mostly for framebuffers.
1203  *
1204  * Must be called holding kvm->slots_lock for write.
1205  */
1206 int __kvm_set_memory_region(struct kvm *kvm,
1207 			    const struct kvm_userspace_memory_region *mem)
1208 {
1209 	struct kvm_memory_slot old, new;
1210 	struct kvm_memory_slot *tmp;
1211 	enum kvm_mr_change change;
1212 	int as_id, id;
1213 	int r;
1214 
1215 	r = check_memory_region_flags(mem);
1216 	if (r)
1217 		return r;
1218 
1219 	as_id = mem->slot >> 16;
1220 	id = (u16)mem->slot;
1221 
1222 	/* General sanity checks */
1223 	if (mem->memory_size & (PAGE_SIZE - 1))
1224 		return -EINVAL;
1225 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1226 		return -EINVAL;
1227 	/* We can read the guest memory with __xxx_user() later on. */
1228 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1229 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1230 			mem->memory_size))
1231 		return -EINVAL;
1232 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1233 		return -EINVAL;
1234 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1235 		return -EINVAL;
1236 
1237 	/*
1238 	 * Make a full copy of the old memslot, the pointer will become stale
1239 	 * when the memslots are re-sorted by update_memslots(), and the old
1240 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1241 	 * to free its resources and for arch specific behavior.
1242 	 */
1243 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1244 	if (tmp) {
1245 		old = *tmp;
1246 		tmp = NULL;
1247 	} else {
1248 		memset(&old, 0, sizeof(old));
1249 		old.id = id;
1250 	}
1251 
1252 	if (!mem->memory_size)
1253 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1254 
1255 	new.id = id;
1256 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1257 	new.npages = mem->memory_size >> PAGE_SHIFT;
1258 	new.flags = mem->flags;
1259 	new.userspace_addr = mem->userspace_addr;
1260 
1261 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1262 		return -EINVAL;
1263 
1264 	if (!old.npages) {
1265 		change = KVM_MR_CREATE;
1266 		new.dirty_bitmap = NULL;
1267 		memset(&new.arch, 0, sizeof(new.arch));
1268 	} else { /* Modify an existing slot. */
1269 		if ((new.userspace_addr != old.userspace_addr) ||
1270 		    (new.npages != old.npages) ||
1271 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1272 			return -EINVAL;
1273 
1274 		if (new.base_gfn != old.base_gfn)
1275 			change = KVM_MR_MOVE;
1276 		else if (new.flags != old.flags)
1277 			change = KVM_MR_FLAGS_ONLY;
1278 		else /* Nothing to change. */
1279 			return 0;
1280 
1281 		/* Copy dirty_bitmap and arch from the current memslot. */
1282 		new.dirty_bitmap = old.dirty_bitmap;
1283 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1284 	}
1285 
1286 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1287 		/* Check for overlaps */
1288 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1289 			if (tmp->id == id)
1290 				continue;
1291 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1292 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1293 				return -EEXIST;
1294 		}
1295 	}
1296 
1297 	/* Allocate/free page dirty bitmap as needed */
1298 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1299 		new.dirty_bitmap = NULL;
1300 	else if (!new.dirty_bitmap) {
1301 		r = kvm_alloc_dirty_bitmap(&new);
1302 		if (r)
1303 			return r;
1304 
1305 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1306 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1307 	}
1308 
1309 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1310 	if (r)
1311 		goto out_bitmap;
1312 
1313 	if (old.dirty_bitmap && !new.dirty_bitmap)
1314 		kvm_destroy_dirty_bitmap(&old);
1315 	return 0;
1316 
1317 out_bitmap:
1318 	if (new.dirty_bitmap && !old.dirty_bitmap)
1319 		kvm_destroy_dirty_bitmap(&new);
1320 	return r;
1321 }
1322 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1323 
1324 int kvm_set_memory_region(struct kvm *kvm,
1325 			  const struct kvm_userspace_memory_region *mem)
1326 {
1327 	int r;
1328 
1329 	mutex_lock(&kvm->slots_lock);
1330 	r = __kvm_set_memory_region(kvm, mem);
1331 	mutex_unlock(&kvm->slots_lock);
1332 	return r;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1335 
1336 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1337 					  struct kvm_userspace_memory_region *mem)
1338 {
1339 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1340 		return -EINVAL;
1341 
1342 	return kvm_set_memory_region(kvm, mem);
1343 }
1344 
1345 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1346 /**
1347  * kvm_get_dirty_log - get a snapshot of dirty pages
1348  * @kvm:	pointer to kvm instance
1349  * @log:	slot id and address to which we copy the log
1350  * @is_dirty:	set to '1' if any dirty pages were found
1351  * @memslot:	set to the associated memslot, always valid on success
1352  */
1353 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1354 		      int *is_dirty, struct kvm_memory_slot **memslot)
1355 {
1356 	struct kvm_memslots *slots;
1357 	int i, as_id, id;
1358 	unsigned long n;
1359 	unsigned long any = 0;
1360 
1361 	*memslot = NULL;
1362 	*is_dirty = 0;
1363 
1364 	as_id = log->slot >> 16;
1365 	id = (u16)log->slot;
1366 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1367 		return -EINVAL;
1368 
1369 	slots = __kvm_memslots(kvm, as_id);
1370 	*memslot = id_to_memslot(slots, id);
1371 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1372 		return -ENOENT;
1373 
1374 	kvm_arch_sync_dirty_log(kvm, *memslot);
1375 
1376 	n = kvm_dirty_bitmap_bytes(*memslot);
1377 
1378 	for (i = 0; !any && i < n/sizeof(long); ++i)
1379 		any = (*memslot)->dirty_bitmap[i];
1380 
1381 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1382 		return -EFAULT;
1383 
1384 	if (any)
1385 		*is_dirty = 1;
1386 	return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1389 
1390 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1391 /**
1392  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1393  *	and reenable dirty page tracking for the corresponding pages.
1394  * @kvm:	pointer to kvm instance
1395  * @log:	slot id and address to which we copy the log
1396  *
1397  * We need to keep it in mind that VCPU threads can write to the bitmap
1398  * concurrently. So, to avoid losing track of dirty pages we keep the
1399  * following order:
1400  *
1401  *    1. Take a snapshot of the bit and clear it if needed.
1402  *    2. Write protect the corresponding page.
1403  *    3. Copy the snapshot to the userspace.
1404  *    4. Upon return caller flushes TLB's if needed.
1405  *
1406  * Between 2 and 4, the guest may write to the page using the remaining TLB
1407  * entry.  This is not a problem because the page is reported dirty using
1408  * the snapshot taken before and step 4 ensures that writes done after
1409  * exiting to userspace will be logged for the next call.
1410  *
1411  */
1412 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1413 {
1414 	struct kvm_memslots *slots;
1415 	struct kvm_memory_slot *memslot;
1416 	int i, as_id, id;
1417 	unsigned long n;
1418 	unsigned long *dirty_bitmap;
1419 	unsigned long *dirty_bitmap_buffer;
1420 	bool flush;
1421 
1422 	as_id = log->slot >> 16;
1423 	id = (u16)log->slot;
1424 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1425 		return -EINVAL;
1426 
1427 	slots = __kvm_memslots(kvm, as_id);
1428 	memslot = id_to_memslot(slots, id);
1429 	if (!memslot || !memslot->dirty_bitmap)
1430 		return -ENOENT;
1431 
1432 	dirty_bitmap = memslot->dirty_bitmap;
1433 
1434 	kvm_arch_sync_dirty_log(kvm, memslot);
1435 
1436 	n = kvm_dirty_bitmap_bytes(memslot);
1437 	flush = false;
1438 	if (kvm->manual_dirty_log_protect) {
1439 		/*
1440 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1441 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1442 		 * is some code duplication between this function and
1443 		 * kvm_get_dirty_log, but hopefully all architecture
1444 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1445 		 * can be eliminated.
1446 		 */
1447 		dirty_bitmap_buffer = dirty_bitmap;
1448 	} else {
1449 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1450 		memset(dirty_bitmap_buffer, 0, n);
1451 
1452 		spin_lock(&kvm->mmu_lock);
1453 		for (i = 0; i < n / sizeof(long); i++) {
1454 			unsigned long mask;
1455 			gfn_t offset;
1456 
1457 			if (!dirty_bitmap[i])
1458 				continue;
1459 
1460 			flush = true;
1461 			mask = xchg(&dirty_bitmap[i], 0);
1462 			dirty_bitmap_buffer[i] = mask;
1463 
1464 			offset = i * BITS_PER_LONG;
1465 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1466 								offset, mask);
1467 		}
1468 		spin_unlock(&kvm->mmu_lock);
1469 	}
1470 
1471 	if (flush)
1472 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1473 
1474 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1475 		return -EFAULT;
1476 	return 0;
1477 }
1478 
1479 
1480 /**
1481  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1482  * @kvm: kvm instance
1483  * @log: slot id and address to which we copy the log
1484  *
1485  * Steps 1-4 below provide general overview of dirty page logging. See
1486  * kvm_get_dirty_log_protect() function description for additional details.
1487  *
1488  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1489  * always flush the TLB (step 4) even if previous step failed  and the dirty
1490  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1491  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1492  * writes will be marked dirty for next log read.
1493  *
1494  *   1. Take a snapshot of the bit and clear it if needed.
1495  *   2. Write protect the corresponding page.
1496  *   3. Copy the snapshot to the userspace.
1497  *   4. Flush TLB's if needed.
1498  */
1499 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1500 				      struct kvm_dirty_log *log)
1501 {
1502 	int r;
1503 
1504 	mutex_lock(&kvm->slots_lock);
1505 
1506 	r = kvm_get_dirty_log_protect(kvm, log);
1507 
1508 	mutex_unlock(&kvm->slots_lock);
1509 	return r;
1510 }
1511 
1512 /**
1513  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1514  *	and reenable dirty page tracking for the corresponding pages.
1515  * @kvm:	pointer to kvm instance
1516  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1517  */
1518 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1519 				       struct kvm_clear_dirty_log *log)
1520 {
1521 	struct kvm_memslots *slots;
1522 	struct kvm_memory_slot *memslot;
1523 	int as_id, id;
1524 	gfn_t offset;
1525 	unsigned long i, n;
1526 	unsigned long *dirty_bitmap;
1527 	unsigned long *dirty_bitmap_buffer;
1528 	bool flush;
1529 
1530 	as_id = log->slot >> 16;
1531 	id = (u16)log->slot;
1532 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1533 		return -EINVAL;
1534 
1535 	if (log->first_page & 63)
1536 		return -EINVAL;
1537 
1538 	slots = __kvm_memslots(kvm, as_id);
1539 	memslot = id_to_memslot(slots, id);
1540 	if (!memslot || !memslot->dirty_bitmap)
1541 		return -ENOENT;
1542 
1543 	dirty_bitmap = memslot->dirty_bitmap;
1544 
1545 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1546 
1547 	if (log->first_page > memslot->npages ||
1548 	    log->num_pages > memslot->npages - log->first_page ||
1549 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1550 	    return -EINVAL;
1551 
1552 	kvm_arch_sync_dirty_log(kvm, memslot);
1553 
1554 	flush = false;
1555 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1556 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1557 		return -EFAULT;
1558 
1559 	spin_lock(&kvm->mmu_lock);
1560 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1561 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1562 	     i++, offset += BITS_PER_LONG) {
1563 		unsigned long mask = *dirty_bitmap_buffer++;
1564 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1565 		if (!mask)
1566 			continue;
1567 
1568 		mask &= atomic_long_fetch_andnot(mask, p);
1569 
1570 		/*
1571 		 * mask contains the bits that really have been cleared.  This
1572 		 * never includes any bits beyond the length of the memslot (if
1573 		 * the length is not aligned to 64 pages), therefore it is not
1574 		 * a problem if userspace sets them in log->dirty_bitmap.
1575 		*/
1576 		if (mask) {
1577 			flush = true;
1578 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1579 								offset, mask);
1580 		}
1581 	}
1582 	spin_unlock(&kvm->mmu_lock);
1583 
1584 	if (flush)
1585 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1586 
1587 	return 0;
1588 }
1589 
1590 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1591 					struct kvm_clear_dirty_log *log)
1592 {
1593 	int r;
1594 
1595 	mutex_lock(&kvm->slots_lock);
1596 
1597 	r = kvm_clear_dirty_log_protect(kvm, log);
1598 
1599 	mutex_unlock(&kvm->slots_lock);
1600 	return r;
1601 }
1602 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1603 
1604 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1605 {
1606 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1609 
1610 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1615 
1616 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1619 
1620 	return kvm_is_visible_memslot(memslot);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1623 
1624 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626 	struct vm_area_struct *vma;
1627 	unsigned long addr, size;
1628 
1629 	size = PAGE_SIZE;
1630 
1631 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1632 	if (kvm_is_error_hva(addr))
1633 		return PAGE_SIZE;
1634 
1635 	down_read(&current->mm->mmap_sem);
1636 	vma = find_vma(current->mm, addr);
1637 	if (!vma)
1638 		goto out;
1639 
1640 	size = vma_kernel_pagesize(vma);
1641 
1642 out:
1643 	up_read(&current->mm->mmap_sem);
1644 
1645 	return size;
1646 }
1647 
1648 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1649 {
1650 	return slot->flags & KVM_MEM_READONLY;
1651 }
1652 
1653 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1654 				       gfn_t *nr_pages, bool write)
1655 {
1656 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1657 		return KVM_HVA_ERR_BAD;
1658 
1659 	if (memslot_is_readonly(slot) && write)
1660 		return KVM_HVA_ERR_RO_BAD;
1661 
1662 	if (nr_pages)
1663 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1664 
1665 	return __gfn_to_hva_memslot(slot, gfn);
1666 }
1667 
1668 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1669 				     gfn_t *nr_pages)
1670 {
1671 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1672 }
1673 
1674 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1675 					gfn_t gfn)
1676 {
1677 	return gfn_to_hva_many(slot, gfn, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1680 
1681 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1682 {
1683 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_hva);
1686 
1687 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1692 
1693 /*
1694  * Return the hva of a @gfn and the R/W attribute if possible.
1695  *
1696  * @slot: the kvm_memory_slot which contains @gfn
1697  * @gfn: the gfn to be translated
1698  * @writable: used to return the read/write attribute of the @slot if the hva
1699  * is valid and @writable is not NULL
1700  */
1701 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1702 				      gfn_t gfn, bool *writable)
1703 {
1704 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1705 
1706 	if (!kvm_is_error_hva(hva) && writable)
1707 		*writable = !memslot_is_readonly(slot);
1708 
1709 	return hva;
1710 }
1711 
1712 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1713 {
1714 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1715 
1716 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1717 }
1718 
1719 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1720 {
1721 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1722 
1723 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1724 }
1725 
1726 static inline int check_user_page_hwpoison(unsigned long addr)
1727 {
1728 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1729 
1730 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1731 	return rc == -EHWPOISON;
1732 }
1733 
1734 /*
1735  * The fast path to get the writable pfn which will be stored in @pfn,
1736  * true indicates success, otherwise false is returned.  It's also the
1737  * only part that runs if we can in atomic context.
1738  */
1739 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1740 			    bool *writable, kvm_pfn_t *pfn)
1741 {
1742 	struct page *page[1];
1743 	int npages;
1744 
1745 	/*
1746 	 * Fast pin a writable pfn only if it is a write fault request
1747 	 * or the caller allows to map a writable pfn for a read fault
1748 	 * request.
1749 	 */
1750 	if (!(write_fault || writable))
1751 		return false;
1752 
1753 	npages = __get_user_pages_fast(addr, 1, 1, page);
1754 	if (npages == 1) {
1755 		*pfn = page_to_pfn(page[0]);
1756 
1757 		if (writable)
1758 			*writable = true;
1759 		return true;
1760 	}
1761 
1762 	return false;
1763 }
1764 
1765 /*
1766  * The slow path to get the pfn of the specified host virtual address,
1767  * 1 indicates success, -errno is returned if error is detected.
1768  */
1769 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1770 			   bool *writable, kvm_pfn_t *pfn)
1771 {
1772 	unsigned int flags = FOLL_HWPOISON;
1773 	struct page *page;
1774 	int npages = 0;
1775 
1776 	might_sleep();
1777 
1778 	if (writable)
1779 		*writable = write_fault;
1780 
1781 	if (write_fault)
1782 		flags |= FOLL_WRITE;
1783 	if (async)
1784 		flags |= FOLL_NOWAIT;
1785 
1786 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1787 	if (npages != 1)
1788 		return npages;
1789 
1790 	/* map read fault as writable if possible */
1791 	if (unlikely(!write_fault) && writable) {
1792 		struct page *wpage;
1793 
1794 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1795 			*writable = true;
1796 			put_page(page);
1797 			page = wpage;
1798 		}
1799 	}
1800 	*pfn = page_to_pfn(page);
1801 	return npages;
1802 }
1803 
1804 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1805 {
1806 	if (unlikely(!(vma->vm_flags & VM_READ)))
1807 		return false;
1808 
1809 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1810 		return false;
1811 
1812 	return true;
1813 }
1814 
1815 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1816 			       unsigned long addr, bool *async,
1817 			       bool write_fault, bool *writable,
1818 			       kvm_pfn_t *p_pfn)
1819 {
1820 	unsigned long pfn;
1821 	int r;
1822 
1823 	r = follow_pfn(vma, addr, &pfn);
1824 	if (r) {
1825 		/*
1826 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1827 		 * not call the fault handler, so do it here.
1828 		 */
1829 		bool unlocked = false;
1830 		r = fixup_user_fault(current, current->mm, addr,
1831 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1832 				     &unlocked);
1833 		if (unlocked)
1834 			return -EAGAIN;
1835 		if (r)
1836 			return r;
1837 
1838 		r = follow_pfn(vma, addr, &pfn);
1839 		if (r)
1840 			return r;
1841 
1842 	}
1843 
1844 	if (writable)
1845 		*writable = true;
1846 
1847 	/*
1848 	 * Get a reference here because callers of *hva_to_pfn* and
1849 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1850 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1851 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1852 	 * simply do nothing for reserved pfns.
1853 	 *
1854 	 * Whoever called remap_pfn_range is also going to call e.g.
1855 	 * unmap_mapping_range before the underlying pages are freed,
1856 	 * causing a call to our MMU notifier.
1857 	 */
1858 	kvm_get_pfn(pfn);
1859 
1860 	*p_pfn = pfn;
1861 	return 0;
1862 }
1863 
1864 /*
1865  * Pin guest page in memory and return its pfn.
1866  * @addr: host virtual address which maps memory to the guest
1867  * @atomic: whether this function can sleep
1868  * @async: whether this function need to wait IO complete if the
1869  *         host page is not in the memory
1870  * @write_fault: whether we should get a writable host page
1871  * @writable: whether it allows to map a writable host page for !@write_fault
1872  *
1873  * The function will map a writable host page for these two cases:
1874  * 1): @write_fault = true
1875  * 2): @write_fault = false && @writable, @writable will tell the caller
1876  *     whether the mapping is writable.
1877  */
1878 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1879 			bool write_fault, bool *writable)
1880 {
1881 	struct vm_area_struct *vma;
1882 	kvm_pfn_t pfn = 0;
1883 	int npages, r;
1884 
1885 	/* we can do it either atomically or asynchronously, not both */
1886 	BUG_ON(atomic && async);
1887 
1888 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1889 		return pfn;
1890 
1891 	if (atomic)
1892 		return KVM_PFN_ERR_FAULT;
1893 
1894 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1895 	if (npages == 1)
1896 		return pfn;
1897 
1898 	down_read(&current->mm->mmap_sem);
1899 	if (npages == -EHWPOISON ||
1900 	      (!async && check_user_page_hwpoison(addr))) {
1901 		pfn = KVM_PFN_ERR_HWPOISON;
1902 		goto exit;
1903 	}
1904 
1905 retry:
1906 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1907 
1908 	if (vma == NULL)
1909 		pfn = KVM_PFN_ERR_FAULT;
1910 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1911 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1912 		if (r == -EAGAIN)
1913 			goto retry;
1914 		if (r < 0)
1915 			pfn = KVM_PFN_ERR_FAULT;
1916 	} else {
1917 		if (async && vma_is_valid(vma, write_fault))
1918 			*async = true;
1919 		pfn = KVM_PFN_ERR_FAULT;
1920 	}
1921 exit:
1922 	up_read(&current->mm->mmap_sem);
1923 	return pfn;
1924 }
1925 
1926 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1927 			       bool atomic, bool *async, bool write_fault,
1928 			       bool *writable)
1929 {
1930 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1931 
1932 	if (addr == KVM_HVA_ERR_RO_BAD) {
1933 		if (writable)
1934 			*writable = false;
1935 		return KVM_PFN_ERR_RO_FAULT;
1936 	}
1937 
1938 	if (kvm_is_error_hva(addr)) {
1939 		if (writable)
1940 			*writable = false;
1941 		return KVM_PFN_NOSLOT;
1942 	}
1943 
1944 	/* Do not map writable pfn in the readonly memslot. */
1945 	if (writable && memslot_is_readonly(slot)) {
1946 		*writable = false;
1947 		writable = NULL;
1948 	}
1949 
1950 	return hva_to_pfn(addr, atomic, async, write_fault,
1951 			  writable);
1952 }
1953 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1954 
1955 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1956 		      bool *writable)
1957 {
1958 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1959 				    write_fault, writable);
1960 }
1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1962 
1963 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1964 {
1965 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1968 
1969 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1970 {
1971 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1972 }
1973 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1974 
1975 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1976 {
1977 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1980 
1981 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1982 {
1983 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1986 
1987 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1988 {
1989 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1992 
1993 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1994 			    struct page **pages, int nr_pages)
1995 {
1996 	unsigned long addr;
1997 	gfn_t entry = 0;
1998 
1999 	addr = gfn_to_hva_many(slot, gfn, &entry);
2000 	if (kvm_is_error_hva(addr))
2001 		return -1;
2002 
2003 	if (entry < nr_pages)
2004 		return 0;
2005 
2006 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
2007 }
2008 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2009 
2010 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2011 {
2012 	if (is_error_noslot_pfn(pfn))
2013 		return KVM_ERR_PTR_BAD_PAGE;
2014 
2015 	if (kvm_is_reserved_pfn(pfn)) {
2016 		WARN_ON(1);
2017 		return KVM_ERR_PTR_BAD_PAGE;
2018 	}
2019 
2020 	return pfn_to_page(pfn);
2021 }
2022 
2023 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2024 {
2025 	kvm_pfn_t pfn;
2026 
2027 	pfn = gfn_to_pfn(kvm, gfn);
2028 
2029 	return kvm_pfn_to_page(pfn);
2030 }
2031 EXPORT_SYMBOL_GPL(gfn_to_page);
2032 
2033 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2034 {
2035 	if (pfn == 0)
2036 		return;
2037 
2038 	if (cache)
2039 		cache->pfn = cache->gfn = 0;
2040 
2041 	if (dirty)
2042 		kvm_release_pfn_dirty(pfn);
2043 	else
2044 		kvm_release_pfn_clean(pfn);
2045 }
2046 
2047 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2048 				 struct gfn_to_pfn_cache *cache, u64 gen)
2049 {
2050 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2051 
2052 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2053 	cache->gfn = gfn;
2054 	cache->dirty = false;
2055 	cache->generation = gen;
2056 }
2057 
2058 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2059 			 struct kvm_host_map *map,
2060 			 struct gfn_to_pfn_cache *cache,
2061 			 bool atomic)
2062 {
2063 	kvm_pfn_t pfn;
2064 	void *hva = NULL;
2065 	struct page *page = KVM_UNMAPPED_PAGE;
2066 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2067 	u64 gen = slots->generation;
2068 
2069 	if (!map)
2070 		return -EINVAL;
2071 
2072 	if (cache) {
2073 		if (!cache->pfn || cache->gfn != gfn ||
2074 			cache->generation != gen) {
2075 			if (atomic)
2076 				return -EAGAIN;
2077 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2078 		}
2079 		pfn = cache->pfn;
2080 	} else {
2081 		if (atomic)
2082 			return -EAGAIN;
2083 		pfn = gfn_to_pfn_memslot(slot, gfn);
2084 	}
2085 	if (is_error_noslot_pfn(pfn))
2086 		return -EINVAL;
2087 
2088 	if (pfn_valid(pfn)) {
2089 		page = pfn_to_page(pfn);
2090 		if (atomic)
2091 			hva = kmap_atomic(page);
2092 		else
2093 			hva = kmap(page);
2094 #ifdef CONFIG_HAS_IOMEM
2095 	} else if (!atomic) {
2096 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2097 	} else {
2098 		return -EINVAL;
2099 #endif
2100 	}
2101 
2102 	if (!hva)
2103 		return -EFAULT;
2104 
2105 	map->page = page;
2106 	map->hva = hva;
2107 	map->pfn = pfn;
2108 	map->gfn = gfn;
2109 
2110 	return 0;
2111 }
2112 
2113 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2114 		struct gfn_to_pfn_cache *cache, bool atomic)
2115 {
2116 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2117 			cache, atomic);
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2120 
2121 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2122 {
2123 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2124 		NULL, false);
2125 }
2126 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2127 
2128 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2129 			struct kvm_host_map *map,
2130 			struct gfn_to_pfn_cache *cache,
2131 			bool dirty, bool atomic)
2132 {
2133 	if (!map)
2134 		return;
2135 
2136 	if (!map->hva)
2137 		return;
2138 
2139 	if (map->page != KVM_UNMAPPED_PAGE) {
2140 		if (atomic)
2141 			kunmap_atomic(map->hva);
2142 		else
2143 			kunmap(map->page);
2144 	}
2145 #ifdef CONFIG_HAS_IOMEM
2146 	else if (!atomic)
2147 		memunmap(map->hva);
2148 	else
2149 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2150 #endif
2151 
2152 	if (dirty)
2153 		mark_page_dirty_in_slot(memslot, map->gfn);
2154 
2155 	if (cache)
2156 		cache->dirty |= dirty;
2157 	else
2158 		kvm_release_pfn(map->pfn, dirty, NULL);
2159 
2160 	map->hva = NULL;
2161 	map->page = NULL;
2162 }
2163 
2164 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2165 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2166 {
2167 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2168 			cache, dirty, atomic);
2169 	return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2172 
2173 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2174 {
2175 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2176 			dirty, false);
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2179 
2180 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2181 {
2182 	kvm_pfn_t pfn;
2183 
2184 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2185 
2186 	return kvm_pfn_to_page(pfn);
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2189 
2190 void kvm_release_page_clean(struct page *page)
2191 {
2192 	WARN_ON(is_error_page(page));
2193 
2194 	kvm_release_pfn_clean(page_to_pfn(page));
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2197 
2198 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2199 {
2200 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2201 		put_page(pfn_to_page(pfn));
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2204 
2205 void kvm_release_page_dirty(struct page *page)
2206 {
2207 	WARN_ON(is_error_page(page));
2208 
2209 	kvm_release_pfn_dirty(page_to_pfn(page));
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2212 
2213 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2214 {
2215 	kvm_set_pfn_dirty(pfn);
2216 	kvm_release_pfn_clean(pfn);
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2219 
2220 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2221 {
2222 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2223 		SetPageDirty(pfn_to_page(pfn));
2224 }
2225 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2226 
2227 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2228 {
2229 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2230 		mark_page_accessed(pfn_to_page(pfn));
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2233 
2234 void kvm_get_pfn(kvm_pfn_t pfn)
2235 {
2236 	if (!kvm_is_reserved_pfn(pfn))
2237 		get_page(pfn_to_page(pfn));
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2240 
2241 static int next_segment(unsigned long len, int offset)
2242 {
2243 	if (len > PAGE_SIZE - offset)
2244 		return PAGE_SIZE - offset;
2245 	else
2246 		return len;
2247 }
2248 
2249 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2250 				 void *data, int offset, int len)
2251 {
2252 	int r;
2253 	unsigned long addr;
2254 
2255 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2256 	if (kvm_is_error_hva(addr))
2257 		return -EFAULT;
2258 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2259 	if (r)
2260 		return -EFAULT;
2261 	return 0;
2262 }
2263 
2264 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2265 			int len)
2266 {
2267 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2268 
2269 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2270 }
2271 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2272 
2273 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2274 			     int offset, int len)
2275 {
2276 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2277 
2278 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2279 }
2280 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2281 
2282 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2283 {
2284 	gfn_t gfn = gpa >> PAGE_SHIFT;
2285 	int seg;
2286 	int offset = offset_in_page(gpa);
2287 	int ret;
2288 
2289 	while ((seg = next_segment(len, offset)) != 0) {
2290 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2291 		if (ret < 0)
2292 			return ret;
2293 		offset = 0;
2294 		len -= seg;
2295 		data += seg;
2296 		++gfn;
2297 	}
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(kvm_read_guest);
2301 
2302 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2303 {
2304 	gfn_t gfn = gpa >> PAGE_SHIFT;
2305 	int seg;
2306 	int offset = offset_in_page(gpa);
2307 	int ret;
2308 
2309 	while ((seg = next_segment(len, offset)) != 0) {
2310 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2311 		if (ret < 0)
2312 			return ret;
2313 		offset = 0;
2314 		len -= seg;
2315 		data += seg;
2316 		++gfn;
2317 	}
2318 	return 0;
2319 }
2320 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2321 
2322 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2323 			           void *data, int offset, unsigned long len)
2324 {
2325 	int r;
2326 	unsigned long addr;
2327 
2328 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2329 	if (kvm_is_error_hva(addr))
2330 		return -EFAULT;
2331 	pagefault_disable();
2332 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2333 	pagefault_enable();
2334 	if (r)
2335 		return -EFAULT;
2336 	return 0;
2337 }
2338 
2339 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2340 			       void *data, unsigned long len)
2341 {
2342 	gfn_t gfn = gpa >> PAGE_SHIFT;
2343 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344 	int offset = offset_in_page(gpa);
2345 
2346 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2349 
2350 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2351 			          const void *data, int offset, int len)
2352 {
2353 	int r;
2354 	unsigned long addr;
2355 
2356 	addr = gfn_to_hva_memslot(memslot, gfn);
2357 	if (kvm_is_error_hva(addr))
2358 		return -EFAULT;
2359 	r = __copy_to_user((void __user *)addr + offset, data, len);
2360 	if (r)
2361 		return -EFAULT;
2362 	mark_page_dirty_in_slot(memslot, gfn);
2363 	return 0;
2364 }
2365 
2366 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2367 			 const void *data, int offset, int len)
2368 {
2369 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2370 
2371 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2374 
2375 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2376 			      const void *data, int offset, int len)
2377 {
2378 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2379 
2380 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2383 
2384 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2385 		    unsigned long len)
2386 {
2387 	gfn_t gfn = gpa >> PAGE_SHIFT;
2388 	int seg;
2389 	int offset = offset_in_page(gpa);
2390 	int ret;
2391 
2392 	while ((seg = next_segment(len, offset)) != 0) {
2393 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2394 		if (ret < 0)
2395 			return ret;
2396 		offset = 0;
2397 		len -= seg;
2398 		data += seg;
2399 		++gfn;
2400 	}
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(kvm_write_guest);
2404 
2405 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2406 		         unsigned long len)
2407 {
2408 	gfn_t gfn = gpa >> PAGE_SHIFT;
2409 	int seg;
2410 	int offset = offset_in_page(gpa);
2411 	int ret;
2412 
2413 	while ((seg = next_segment(len, offset)) != 0) {
2414 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2415 		if (ret < 0)
2416 			return ret;
2417 		offset = 0;
2418 		len -= seg;
2419 		data += seg;
2420 		++gfn;
2421 	}
2422 	return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2425 
2426 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2427 				       struct gfn_to_hva_cache *ghc,
2428 				       gpa_t gpa, unsigned long len)
2429 {
2430 	int offset = offset_in_page(gpa);
2431 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2432 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2433 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2434 	gfn_t nr_pages_avail;
2435 
2436 	/* Update ghc->generation before performing any error checks. */
2437 	ghc->generation = slots->generation;
2438 
2439 	if (start_gfn > end_gfn) {
2440 		ghc->hva = KVM_HVA_ERR_BAD;
2441 		return -EINVAL;
2442 	}
2443 
2444 	/*
2445 	 * If the requested region crosses two memslots, we still
2446 	 * verify that the entire region is valid here.
2447 	 */
2448 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2449 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2450 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2451 					   &nr_pages_avail);
2452 		if (kvm_is_error_hva(ghc->hva))
2453 			return -EFAULT;
2454 	}
2455 
2456 	/* Use the slow path for cross page reads and writes. */
2457 	if (nr_pages_needed == 1)
2458 		ghc->hva += offset;
2459 	else
2460 		ghc->memslot = NULL;
2461 
2462 	ghc->gpa = gpa;
2463 	ghc->len = len;
2464 	return 0;
2465 }
2466 
2467 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2468 			      gpa_t gpa, unsigned long len)
2469 {
2470 	struct kvm_memslots *slots = kvm_memslots(kvm);
2471 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2474 
2475 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2476 				  void *data, unsigned int offset,
2477 				  unsigned long len)
2478 {
2479 	struct kvm_memslots *slots = kvm_memslots(kvm);
2480 	int r;
2481 	gpa_t gpa = ghc->gpa + offset;
2482 
2483 	BUG_ON(len + offset > ghc->len);
2484 
2485 	if (slots->generation != ghc->generation) {
2486 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2487 			return -EFAULT;
2488 	}
2489 
2490 	if (kvm_is_error_hva(ghc->hva))
2491 		return -EFAULT;
2492 
2493 	if (unlikely(!ghc->memslot))
2494 		return kvm_write_guest(kvm, gpa, data, len);
2495 
2496 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2497 	if (r)
2498 		return -EFAULT;
2499 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2500 
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2504 
2505 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2506 			   void *data, unsigned long len)
2507 {
2508 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2511 
2512 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2513 				 void *data, unsigned int offset,
2514 				 unsigned long len)
2515 {
2516 	struct kvm_memslots *slots = kvm_memslots(kvm);
2517 	int r;
2518 	gpa_t gpa = ghc->gpa + offset;
2519 
2520 	BUG_ON(len + offset > ghc->len);
2521 
2522 	if (slots->generation != ghc->generation) {
2523 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2524 			return -EFAULT;
2525 	}
2526 
2527 	if (kvm_is_error_hva(ghc->hva))
2528 		return -EFAULT;
2529 
2530 	if (unlikely(!ghc->memslot))
2531 		return kvm_read_guest(kvm, gpa, data, len);
2532 
2533 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2534 	if (r)
2535 		return -EFAULT;
2536 
2537 	return 0;
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2540 
2541 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2542 			  void *data, unsigned long len)
2543 {
2544 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2547 
2548 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2549 {
2550 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2551 
2552 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2555 
2556 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2557 {
2558 	gfn_t gfn = gpa >> PAGE_SHIFT;
2559 	int seg;
2560 	int offset = offset_in_page(gpa);
2561 	int ret;
2562 
2563 	while ((seg = next_segment(len, offset)) != 0) {
2564 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2565 		if (ret < 0)
2566 			return ret;
2567 		offset = 0;
2568 		len -= seg;
2569 		++gfn;
2570 	}
2571 	return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2574 
2575 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2576 				    gfn_t gfn)
2577 {
2578 	if (memslot && memslot->dirty_bitmap) {
2579 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2580 
2581 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2582 	}
2583 }
2584 
2585 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2586 {
2587 	struct kvm_memory_slot *memslot;
2588 
2589 	memslot = gfn_to_memslot(kvm, gfn);
2590 	mark_page_dirty_in_slot(memslot, gfn);
2591 }
2592 EXPORT_SYMBOL_GPL(mark_page_dirty);
2593 
2594 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2595 {
2596 	struct kvm_memory_slot *memslot;
2597 
2598 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2599 	mark_page_dirty_in_slot(memslot, gfn);
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2602 
2603 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2604 {
2605 	if (!vcpu->sigset_active)
2606 		return;
2607 
2608 	/*
2609 	 * This does a lockless modification of ->real_blocked, which is fine
2610 	 * because, only current can change ->real_blocked and all readers of
2611 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2612 	 * of ->blocked.
2613 	 */
2614 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2615 }
2616 
2617 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2618 {
2619 	if (!vcpu->sigset_active)
2620 		return;
2621 
2622 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2623 	sigemptyset(&current->real_blocked);
2624 }
2625 
2626 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2627 {
2628 	unsigned int old, val, grow, grow_start;
2629 
2630 	old = val = vcpu->halt_poll_ns;
2631 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2632 	grow = READ_ONCE(halt_poll_ns_grow);
2633 	if (!grow)
2634 		goto out;
2635 
2636 	val *= grow;
2637 	if (val < grow_start)
2638 		val = grow_start;
2639 
2640 	if (val > halt_poll_ns)
2641 		val = halt_poll_ns;
2642 
2643 	vcpu->halt_poll_ns = val;
2644 out:
2645 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2646 }
2647 
2648 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2649 {
2650 	unsigned int old, val, shrink;
2651 
2652 	old = val = vcpu->halt_poll_ns;
2653 	shrink = READ_ONCE(halt_poll_ns_shrink);
2654 	if (shrink == 0)
2655 		val = 0;
2656 	else
2657 		val /= shrink;
2658 
2659 	vcpu->halt_poll_ns = val;
2660 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2661 }
2662 
2663 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2664 {
2665 	int ret = -EINTR;
2666 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2667 
2668 	if (kvm_arch_vcpu_runnable(vcpu)) {
2669 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2670 		goto out;
2671 	}
2672 	if (kvm_cpu_has_pending_timer(vcpu))
2673 		goto out;
2674 	if (signal_pending(current))
2675 		goto out;
2676 
2677 	ret = 0;
2678 out:
2679 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2680 	return ret;
2681 }
2682 
2683 static inline void
2684 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2685 {
2686 	if (waited)
2687 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2688 	else
2689 		vcpu->stat.halt_poll_success_ns += poll_ns;
2690 }
2691 
2692 /*
2693  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2694  */
2695 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2696 {
2697 	ktime_t start, cur, poll_end;
2698 	bool waited = false;
2699 	u64 block_ns;
2700 
2701 	kvm_arch_vcpu_blocking(vcpu);
2702 
2703 	start = cur = poll_end = ktime_get();
2704 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2705 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2706 
2707 		++vcpu->stat.halt_attempted_poll;
2708 		do {
2709 			/*
2710 			 * This sets KVM_REQ_UNHALT if an interrupt
2711 			 * arrives.
2712 			 */
2713 			if (kvm_vcpu_check_block(vcpu) < 0) {
2714 				++vcpu->stat.halt_successful_poll;
2715 				if (!vcpu_valid_wakeup(vcpu))
2716 					++vcpu->stat.halt_poll_invalid;
2717 				goto out;
2718 			}
2719 			poll_end = cur = ktime_get();
2720 		} while (single_task_running() && ktime_before(cur, stop));
2721 	}
2722 
2723 	prepare_to_rcuwait(&vcpu->wait);
2724 	for (;;) {
2725 		set_current_state(TASK_INTERRUPTIBLE);
2726 
2727 		if (kvm_vcpu_check_block(vcpu) < 0)
2728 			break;
2729 
2730 		waited = true;
2731 		schedule();
2732 	}
2733 	finish_rcuwait(&vcpu->wait);
2734 	cur = ktime_get();
2735 out:
2736 	kvm_arch_vcpu_unblocking(vcpu);
2737 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2738 
2739 	update_halt_poll_stats(
2740 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2741 
2742 	if (!kvm_arch_no_poll(vcpu)) {
2743 		if (!vcpu_valid_wakeup(vcpu)) {
2744 			shrink_halt_poll_ns(vcpu);
2745 		} else if (vcpu->kvm->max_halt_poll_ns) {
2746 			if (block_ns <= vcpu->halt_poll_ns)
2747 				;
2748 			/* we had a long block, shrink polling */
2749 			else if (vcpu->halt_poll_ns &&
2750 					block_ns > vcpu->kvm->max_halt_poll_ns)
2751 				shrink_halt_poll_ns(vcpu);
2752 			/* we had a short halt and our poll time is too small */
2753 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2754 					block_ns < vcpu->kvm->max_halt_poll_ns)
2755 				grow_halt_poll_ns(vcpu);
2756 		} else {
2757 			vcpu->halt_poll_ns = 0;
2758 		}
2759 	}
2760 
2761 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2762 	kvm_arch_vcpu_block_finish(vcpu);
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2765 
2766 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2767 {
2768 	struct rcuwait *waitp;
2769 
2770 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2771 	if (rcuwait_wake_up(waitp)) {
2772 		WRITE_ONCE(vcpu->ready, true);
2773 		++vcpu->stat.halt_wakeup;
2774 		return true;
2775 	}
2776 
2777 	return false;
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2780 
2781 #ifndef CONFIG_S390
2782 /*
2783  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2784  */
2785 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2786 {
2787 	int me;
2788 	int cpu = vcpu->cpu;
2789 
2790 	if (kvm_vcpu_wake_up(vcpu))
2791 		return;
2792 
2793 	me = get_cpu();
2794 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2795 		if (kvm_arch_vcpu_should_kick(vcpu))
2796 			smp_send_reschedule(cpu);
2797 	put_cpu();
2798 }
2799 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2800 #endif /* !CONFIG_S390 */
2801 
2802 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2803 {
2804 	struct pid *pid;
2805 	struct task_struct *task = NULL;
2806 	int ret = 0;
2807 
2808 	rcu_read_lock();
2809 	pid = rcu_dereference(target->pid);
2810 	if (pid)
2811 		task = get_pid_task(pid, PIDTYPE_PID);
2812 	rcu_read_unlock();
2813 	if (!task)
2814 		return ret;
2815 	ret = yield_to(task, 1);
2816 	put_task_struct(task);
2817 
2818 	return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2821 
2822 /*
2823  * Helper that checks whether a VCPU is eligible for directed yield.
2824  * Most eligible candidate to yield is decided by following heuristics:
2825  *
2826  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2827  *  (preempted lock holder), indicated by @in_spin_loop.
2828  *  Set at the beginning and cleared at the end of interception/PLE handler.
2829  *
2830  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2831  *  chance last time (mostly it has become eligible now since we have probably
2832  *  yielded to lockholder in last iteration. This is done by toggling
2833  *  @dy_eligible each time a VCPU checked for eligibility.)
2834  *
2835  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2836  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2837  *  burning. Giving priority for a potential lock-holder increases lock
2838  *  progress.
2839  *
2840  *  Since algorithm is based on heuristics, accessing another VCPU data without
2841  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2842  *  and continue with next VCPU and so on.
2843  */
2844 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2845 {
2846 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2847 	bool eligible;
2848 
2849 	eligible = !vcpu->spin_loop.in_spin_loop ||
2850 		    vcpu->spin_loop.dy_eligible;
2851 
2852 	if (vcpu->spin_loop.in_spin_loop)
2853 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2854 
2855 	return eligible;
2856 #else
2857 	return true;
2858 #endif
2859 }
2860 
2861 /*
2862  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2863  * a vcpu_load/vcpu_put pair.  However, for most architectures
2864  * kvm_arch_vcpu_runnable does not require vcpu_load.
2865  */
2866 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2867 {
2868 	return kvm_arch_vcpu_runnable(vcpu);
2869 }
2870 
2871 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2872 {
2873 	if (kvm_arch_dy_runnable(vcpu))
2874 		return true;
2875 
2876 #ifdef CONFIG_KVM_ASYNC_PF
2877 	if (!list_empty_careful(&vcpu->async_pf.done))
2878 		return true;
2879 #endif
2880 
2881 	return false;
2882 }
2883 
2884 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2885 {
2886 	struct kvm *kvm = me->kvm;
2887 	struct kvm_vcpu *vcpu;
2888 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2889 	int yielded = 0;
2890 	int try = 3;
2891 	int pass;
2892 	int i;
2893 
2894 	kvm_vcpu_set_in_spin_loop(me, true);
2895 	/*
2896 	 * We boost the priority of a VCPU that is runnable but not
2897 	 * currently running, because it got preempted by something
2898 	 * else and called schedule in __vcpu_run.  Hopefully that
2899 	 * VCPU is holding the lock that we need and will release it.
2900 	 * We approximate round-robin by starting at the last boosted VCPU.
2901 	 */
2902 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2903 		kvm_for_each_vcpu(i, vcpu, kvm) {
2904 			if (!pass && i <= last_boosted_vcpu) {
2905 				i = last_boosted_vcpu;
2906 				continue;
2907 			} else if (pass && i > last_boosted_vcpu)
2908 				break;
2909 			if (!READ_ONCE(vcpu->ready))
2910 				continue;
2911 			if (vcpu == me)
2912 				continue;
2913 			if (rcuwait_active(&vcpu->wait) &&
2914 			    !vcpu_dy_runnable(vcpu))
2915 				continue;
2916 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2917 				!kvm_arch_vcpu_in_kernel(vcpu))
2918 				continue;
2919 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2920 				continue;
2921 
2922 			yielded = kvm_vcpu_yield_to(vcpu);
2923 			if (yielded > 0) {
2924 				kvm->last_boosted_vcpu = i;
2925 				break;
2926 			} else if (yielded < 0) {
2927 				try--;
2928 				if (!try)
2929 					break;
2930 			}
2931 		}
2932 	}
2933 	kvm_vcpu_set_in_spin_loop(me, false);
2934 
2935 	/* Ensure vcpu is not eligible during next spinloop */
2936 	kvm_vcpu_set_dy_eligible(me, false);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2939 
2940 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2941 {
2942 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2943 	struct page *page;
2944 
2945 	if (vmf->pgoff == 0)
2946 		page = virt_to_page(vcpu->run);
2947 #ifdef CONFIG_X86
2948 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2949 		page = virt_to_page(vcpu->arch.pio_data);
2950 #endif
2951 #ifdef CONFIG_KVM_MMIO
2952 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2953 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2954 #endif
2955 	else
2956 		return kvm_arch_vcpu_fault(vcpu, vmf);
2957 	get_page(page);
2958 	vmf->page = page;
2959 	return 0;
2960 }
2961 
2962 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2963 	.fault = kvm_vcpu_fault,
2964 };
2965 
2966 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2967 {
2968 	vma->vm_ops = &kvm_vcpu_vm_ops;
2969 	return 0;
2970 }
2971 
2972 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2973 {
2974 	struct kvm_vcpu *vcpu = filp->private_data;
2975 
2976 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2977 	kvm_put_kvm(vcpu->kvm);
2978 	return 0;
2979 }
2980 
2981 static struct file_operations kvm_vcpu_fops = {
2982 	.release        = kvm_vcpu_release,
2983 	.unlocked_ioctl = kvm_vcpu_ioctl,
2984 	.mmap           = kvm_vcpu_mmap,
2985 	.llseek		= noop_llseek,
2986 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2987 };
2988 
2989 /*
2990  * Allocates an inode for the vcpu.
2991  */
2992 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2993 {
2994 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2995 
2996 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2997 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2998 }
2999 
3000 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3001 {
3002 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3003 	char dir_name[ITOA_MAX_LEN * 2];
3004 
3005 	if (!debugfs_initialized())
3006 		return;
3007 
3008 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3009 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3010 						  vcpu->kvm->debugfs_dentry);
3011 
3012 	kvm_arch_create_vcpu_debugfs(vcpu);
3013 #endif
3014 }
3015 
3016 /*
3017  * Creates some virtual cpus.  Good luck creating more than one.
3018  */
3019 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3020 {
3021 	int r;
3022 	struct kvm_vcpu *vcpu;
3023 	struct page *page;
3024 
3025 	if (id >= KVM_MAX_VCPU_ID)
3026 		return -EINVAL;
3027 
3028 	mutex_lock(&kvm->lock);
3029 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3030 		mutex_unlock(&kvm->lock);
3031 		return -EINVAL;
3032 	}
3033 
3034 	kvm->created_vcpus++;
3035 	mutex_unlock(&kvm->lock);
3036 
3037 	r = kvm_arch_vcpu_precreate(kvm, id);
3038 	if (r)
3039 		goto vcpu_decrement;
3040 
3041 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3042 	if (!vcpu) {
3043 		r = -ENOMEM;
3044 		goto vcpu_decrement;
3045 	}
3046 
3047 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3048 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3049 	if (!page) {
3050 		r = -ENOMEM;
3051 		goto vcpu_free;
3052 	}
3053 	vcpu->run = page_address(page);
3054 
3055 	kvm_vcpu_init(vcpu, kvm, id);
3056 
3057 	r = kvm_arch_vcpu_create(vcpu);
3058 	if (r)
3059 		goto vcpu_free_run_page;
3060 
3061 	mutex_lock(&kvm->lock);
3062 	if (kvm_get_vcpu_by_id(kvm, id)) {
3063 		r = -EEXIST;
3064 		goto unlock_vcpu_destroy;
3065 	}
3066 
3067 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3068 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3069 
3070 	/* Now it's all set up, let userspace reach it */
3071 	kvm_get_kvm(kvm);
3072 	r = create_vcpu_fd(vcpu);
3073 	if (r < 0) {
3074 		kvm_put_kvm_no_destroy(kvm);
3075 		goto unlock_vcpu_destroy;
3076 	}
3077 
3078 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3079 
3080 	/*
3081 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3082 	 * before kvm->online_vcpu's incremented value.
3083 	 */
3084 	smp_wmb();
3085 	atomic_inc(&kvm->online_vcpus);
3086 
3087 	mutex_unlock(&kvm->lock);
3088 	kvm_arch_vcpu_postcreate(vcpu);
3089 	kvm_create_vcpu_debugfs(vcpu);
3090 	return r;
3091 
3092 unlock_vcpu_destroy:
3093 	mutex_unlock(&kvm->lock);
3094 	kvm_arch_vcpu_destroy(vcpu);
3095 vcpu_free_run_page:
3096 	free_page((unsigned long)vcpu->run);
3097 vcpu_free:
3098 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3099 vcpu_decrement:
3100 	mutex_lock(&kvm->lock);
3101 	kvm->created_vcpus--;
3102 	mutex_unlock(&kvm->lock);
3103 	return r;
3104 }
3105 
3106 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3107 {
3108 	if (sigset) {
3109 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3110 		vcpu->sigset_active = 1;
3111 		vcpu->sigset = *sigset;
3112 	} else
3113 		vcpu->sigset_active = 0;
3114 	return 0;
3115 }
3116 
3117 static long kvm_vcpu_ioctl(struct file *filp,
3118 			   unsigned int ioctl, unsigned long arg)
3119 {
3120 	struct kvm_vcpu *vcpu = filp->private_data;
3121 	void __user *argp = (void __user *)arg;
3122 	int r;
3123 	struct kvm_fpu *fpu = NULL;
3124 	struct kvm_sregs *kvm_sregs = NULL;
3125 
3126 	if (vcpu->kvm->mm != current->mm)
3127 		return -EIO;
3128 
3129 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3130 		return -EINVAL;
3131 
3132 	/*
3133 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3134 	 * execution; mutex_lock() would break them.
3135 	 */
3136 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3137 	if (r != -ENOIOCTLCMD)
3138 		return r;
3139 
3140 	if (mutex_lock_killable(&vcpu->mutex))
3141 		return -EINTR;
3142 	switch (ioctl) {
3143 	case KVM_RUN: {
3144 		struct pid *oldpid;
3145 		r = -EINVAL;
3146 		if (arg)
3147 			goto out;
3148 		oldpid = rcu_access_pointer(vcpu->pid);
3149 		if (unlikely(oldpid != task_pid(current))) {
3150 			/* The thread running this VCPU changed. */
3151 			struct pid *newpid;
3152 
3153 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3154 			if (r)
3155 				break;
3156 
3157 			newpid = get_task_pid(current, PIDTYPE_PID);
3158 			rcu_assign_pointer(vcpu->pid, newpid);
3159 			if (oldpid)
3160 				synchronize_rcu();
3161 			put_pid(oldpid);
3162 		}
3163 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3164 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3165 		break;
3166 	}
3167 	case KVM_GET_REGS: {
3168 		struct kvm_regs *kvm_regs;
3169 
3170 		r = -ENOMEM;
3171 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3172 		if (!kvm_regs)
3173 			goto out;
3174 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3175 		if (r)
3176 			goto out_free1;
3177 		r = -EFAULT;
3178 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3179 			goto out_free1;
3180 		r = 0;
3181 out_free1:
3182 		kfree(kvm_regs);
3183 		break;
3184 	}
3185 	case KVM_SET_REGS: {
3186 		struct kvm_regs *kvm_regs;
3187 
3188 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3189 		if (IS_ERR(kvm_regs)) {
3190 			r = PTR_ERR(kvm_regs);
3191 			goto out;
3192 		}
3193 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3194 		kfree(kvm_regs);
3195 		break;
3196 	}
3197 	case KVM_GET_SREGS: {
3198 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3199 				    GFP_KERNEL_ACCOUNT);
3200 		r = -ENOMEM;
3201 		if (!kvm_sregs)
3202 			goto out;
3203 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3204 		if (r)
3205 			goto out;
3206 		r = -EFAULT;
3207 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3208 			goto out;
3209 		r = 0;
3210 		break;
3211 	}
3212 	case KVM_SET_SREGS: {
3213 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3214 		if (IS_ERR(kvm_sregs)) {
3215 			r = PTR_ERR(kvm_sregs);
3216 			kvm_sregs = NULL;
3217 			goto out;
3218 		}
3219 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3220 		break;
3221 	}
3222 	case KVM_GET_MP_STATE: {
3223 		struct kvm_mp_state mp_state;
3224 
3225 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3226 		if (r)
3227 			goto out;
3228 		r = -EFAULT;
3229 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3230 			goto out;
3231 		r = 0;
3232 		break;
3233 	}
3234 	case KVM_SET_MP_STATE: {
3235 		struct kvm_mp_state mp_state;
3236 
3237 		r = -EFAULT;
3238 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3239 			goto out;
3240 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3241 		break;
3242 	}
3243 	case KVM_TRANSLATE: {
3244 		struct kvm_translation tr;
3245 
3246 		r = -EFAULT;
3247 		if (copy_from_user(&tr, argp, sizeof(tr)))
3248 			goto out;
3249 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3250 		if (r)
3251 			goto out;
3252 		r = -EFAULT;
3253 		if (copy_to_user(argp, &tr, sizeof(tr)))
3254 			goto out;
3255 		r = 0;
3256 		break;
3257 	}
3258 	case KVM_SET_GUEST_DEBUG: {
3259 		struct kvm_guest_debug dbg;
3260 
3261 		r = -EFAULT;
3262 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3263 			goto out;
3264 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3265 		break;
3266 	}
3267 	case KVM_SET_SIGNAL_MASK: {
3268 		struct kvm_signal_mask __user *sigmask_arg = argp;
3269 		struct kvm_signal_mask kvm_sigmask;
3270 		sigset_t sigset, *p;
3271 
3272 		p = NULL;
3273 		if (argp) {
3274 			r = -EFAULT;
3275 			if (copy_from_user(&kvm_sigmask, argp,
3276 					   sizeof(kvm_sigmask)))
3277 				goto out;
3278 			r = -EINVAL;
3279 			if (kvm_sigmask.len != sizeof(sigset))
3280 				goto out;
3281 			r = -EFAULT;
3282 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3283 					   sizeof(sigset)))
3284 				goto out;
3285 			p = &sigset;
3286 		}
3287 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3288 		break;
3289 	}
3290 	case KVM_GET_FPU: {
3291 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3292 		r = -ENOMEM;
3293 		if (!fpu)
3294 			goto out;
3295 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3296 		if (r)
3297 			goto out;
3298 		r = -EFAULT;
3299 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3300 			goto out;
3301 		r = 0;
3302 		break;
3303 	}
3304 	case KVM_SET_FPU: {
3305 		fpu = memdup_user(argp, sizeof(*fpu));
3306 		if (IS_ERR(fpu)) {
3307 			r = PTR_ERR(fpu);
3308 			fpu = NULL;
3309 			goto out;
3310 		}
3311 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3312 		break;
3313 	}
3314 	default:
3315 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3316 	}
3317 out:
3318 	mutex_unlock(&vcpu->mutex);
3319 	kfree(fpu);
3320 	kfree(kvm_sregs);
3321 	return r;
3322 }
3323 
3324 #ifdef CONFIG_KVM_COMPAT
3325 static long kvm_vcpu_compat_ioctl(struct file *filp,
3326 				  unsigned int ioctl, unsigned long arg)
3327 {
3328 	struct kvm_vcpu *vcpu = filp->private_data;
3329 	void __user *argp = compat_ptr(arg);
3330 	int r;
3331 
3332 	if (vcpu->kvm->mm != current->mm)
3333 		return -EIO;
3334 
3335 	switch (ioctl) {
3336 	case KVM_SET_SIGNAL_MASK: {
3337 		struct kvm_signal_mask __user *sigmask_arg = argp;
3338 		struct kvm_signal_mask kvm_sigmask;
3339 		sigset_t sigset;
3340 
3341 		if (argp) {
3342 			r = -EFAULT;
3343 			if (copy_from_user(&kvm_sigmask, argp,
3344 					   sizeof(kvm_sigmask)))
3345 				goto out;
3346 			r = -EINVAL;
3347 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3348 				goto out;
3349 			r = -EFAULT;
3350 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3351 				goto out;
3352 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3353 		} else
3354 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3355 		break;
3356 	}
3357 	default:
3358 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3359 	}
3360 
3361 out:
3362 	return r;
3363 }
3364 #endif
3365 
3366 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3367 {
3368 	struct kvm_device *dev = filp->private_data;
3369 
3370 	if (dev->ops->mmap)
3371 		return dev->ops->mmap(dev, vma);
3372 
3373 	return -ENODEV;
3374 }
3375 
3376 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3377 				 int (*accessor)(struct kvm_device *dev,
3378 						 struct kvm_device_attr *attr),
3379 				 unsigned long arg)
3380 {
3381 	struct kvm_device_attr attr;
3382 
3383 	if (!accessor)
3384 		return -EPERM;
3385 
3386 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3387 		return -EFAULT;
3388 
3389 	return accessor(dev, &attr);
3390 }
3391 
3392 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3393 			     unsigned long arg)
3394 {
3395 	struct kvm_device *dev = filp->private_data;
3396 
3397 	if (dev->kvm->mm != current->mm)
3398 		return -EIO;
3399 
3400 	switch (ioctl) {
3401 	case KVM_SET_DEVICE_ATTR:
3402 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3403 	case KVM_GET_DEVICE_ATTR:
3404 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3405 	case KVM_HAS_DEVICE_ATTR:
3406 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3407 	default:
3408 		if (dev->ops->ioctl)
3409 			return dev->ops->ioctl(dev, ioctl, arg);
3410 
3411 		return -ENOTTY;
3412 	}
3413 }
3414 
3415 static int kvm_device_release(struct inode *inode, struct file *filp)
3416 {
3417 	struct kvm_device *dev = filp->private_data;
3418 	struct kvm *kvm = dev->kvm;
3419 
3420 	if (dev->ops->release) {
3421 		mutex_lock(&kvm->lock);
3422 		list_del(&dev->vm_node);
3423 		dev->ops->release(dev);
3424 		mutex_unlock(&kvm->lock);
3425 	}
3426 
3427 	kvm_put_kvm(kvm);
3428 	return 0;
3429 }
3430 
3431 static const struct file_operations kvm_device_fops = {
3432 	.unlocked_ioctl = kvm_device_ioctl,
3433 	.release = kvm_device_release,
3434 	KVM_COMPAT(kvm_device_ioctl),
3435 	.mmap = kvm_device_mmap,
3436 };
3437 
3438 struct kvm_device *kvm_device_from_filp(struct file *filp)
3439 {
3440 	if (filp->f_op != &kvm_device_fops)
3441 		return NULL;
3442 
3443 	return filp->private_data;
3444 }
3445 
3446 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3447 #ifdef CONFIG_KVM_MPIC
3448 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3449 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3450 #endif
3451 };
3452 
3453 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3454 {
3455 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3456 		return -ENOSPC;
3457 
3458 	if (kvm_device_ops_table[type] != NULL)
3459 		return -EEXIST;
3460 
3461 	kvm_device_ops_table[type] = ops;
3462 	return 0;
3463 }
3464 
3465 void kvm_unregister_device_ops(u32 type)
3466 {
3467 	if (kvm_device_ops_table[type] != NULL)
3468 		kvm_device_ops_table[type] = NULL;
3469 }
3470 
3471 static int kvm_ioctl_create_device(struct kvm *kvm,
3472 				   struct kvm_create_device *cd)
3473 {
3474 	const struct kvm_device_ops *ops = NULL;
3475 	struct kvm_device *dev;
3476 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3477 	int type;
3478 	int ret;
3479 
3480 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3481 		return -ENODEV;
3482 
3483 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3484 	ops = kvm_device_ops_table[type];
3485 	if (ops == NULL)
3486 		return -ENODEV;
3487 
3488 	if (test)
3489 		return 0;
3490 
3491 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3492 	if (!dev)
3493 		return -ENOMEM;
3494 
3495 	dev->ops = ops;
3496 	dev->kvm = kvm;
3497 
3498 	mutex_lock(&kvm->lock);
3499 	ret = ops->create(dev, type);
3500 	if (ret < 0) {
3501 		mutex_unlock(&kvm->lock);
3502 		kfree(dev);
3503 		return ret;
3504 	}
3505 	list_add(&dev->vm_node, &kvm->devices);
3506 	mutex_unlock(&kvm->lock);
3507 
3508 	if (ops->init)
3509 		ops->init(dev);
3510 
3511 	kvm_get_kvm(kvm);
3512 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3513 	if (ret < 0) {
3514 		kvm_put_kvm_no_destroy(kvm);
3515 		mutex_lock(&kvm->lock);
3516 		list_del(&dev->vm_node);
3517 		mutex_unlock(&kvm->lock);
3518 		ops->destroy(dev);
3519 		return ret;
3520 	}
3521 
3522 	cd->fd = ret;
3523 	return 0;
3524 }
3525 
3526 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3527 {
3528 	switch (arg) {
3529 	case KVM_CAP_USER_MEMORY:
3530 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3531 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3532 	case KVM_CAP_INTERNAL_ERROR_DATA:
3533 #ifdef CONFIG_HAVE_KVM_MSI
3534 	case KVM_CAP_SIGNAL_MSI:
3535 #endif
3536 #ifdef CONFIG_HAVE_KVM_IRQFD
3537 	case KVM_CAP_IRQFD:
3538 	case KVM_CAP_IRQFD_RESAMPLE:
3539 #endif
3540 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3541 	case KVM_CAP_CHECK_EXTENSION_VM:
3542 	case KVM_CAP_ENABLE_CAP_VM:
3543 	case KVM_CAP_HALT_POLL:
3544 		return 1;
3545 #ifdef CONFIG_KVM_MMIO
3546 	case KVM_CAP_COALESCED_MMIO:
3547 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3548 	case KVM_CAP_COALESCED_PIO:
3549 		return 1;
3550 #endif
3551 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3552 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3553 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3554 #endif
3555 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3556 	case KVM_CAP_IRQ_ROUTING:
3557 		return KVM_MAX_IRQ_ROUTES;
3558 #endif
3559 #if KVM_ADDRESS_SPACE_NUM > 1
3560 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3561 		return KVM_ADDRESS_SPACE_NUM;
3562 #endif
3563 	case KVM_CAP_NR_MEMSLOTS:
3564 		return KVM_USER_MEM_SLOTS;
3565 	default:
3566 		break;
3567 	}
3568 	return kvm_vm_ioctl_check_extension(kvm, arg);
3569 }
3570 
3571 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3572 						  struct kvm_enable_cap *cap)
3573 {
3574 	return -EINVAL;
3575 }
3576 
3577 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3578 					   struct kvm_enable_cap *cap)
3579 {
3580 	switch (cap->cap) {
3581 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3582 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3583 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3584 
3585 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3586 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3587 
3588 		if (cap->flags || (cap->args[0] & ~allowed_options))
3589 			return -EINVAL;
3590 		kvm->manual_dirty_log_protect = cap->args[0];
3591 		return 0;
3592 	}
3593 #endif
3594 	case KVM_CAP_HALT_POLL: {
3595 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3596 			return -EINVAL;
3597 
3598 		kvm->max_halt_poll_ns = cap->args[0];
3599 		return 0;
3600 	}
3601 	default:
3602 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3603 	}
3604 }
3605 
3606 static long kvm_vm_ioctl(struct file *filp,
3607 			   unsigned int ioctl, unsigned long arg)
3608 {
3609 	struct kvm *kvm = filp->private_data;
3610 	void __user *argp = (void __user *)arg;
3611 	int r;
3612 
3613 	if (kvm->mm != current->mm)
3614 		return -EIO;
3615 	switch (ioctl) {
3616 	case KVM_CREATE_VCPU:
3617 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3618 		break;
3619 	case KVM_ENABLE_CAP: {
3620 		struct kvm_enable_cap cap;
3621 
3622 		r = -EFAULT;
3623 		if (copy_from_user(&cap, argp, sizeof(cap)))
3624 			goto out;
3625 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3626 		break;
3627 	}
3628 	case KVM_SET_USER_MEMORY_REGION: {
3629 		struct kvm_userspace_memory_region kvm_userspace_mem;
3630 
3631 		r = -EFAULT;
3632 		if (copy_from_user(&kvm_userspace_mem, argp,
3633 						sizeof(kvm_userspace_mem)))
3634 			goto out;
3635 
3636 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3637 		break;
3638 	}
3639 	case KVM_GET_DIRTY_LOG: {
3640 		struct kvm_dirty_log log;
3641 
3642 		r = -EFAULT;
3643 		if (copy_from_user(&log, argp, sizeof(log)))
3644 			goto out;
3645 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3646 		break;
3647 	}
3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3649 	case KVM_CLEAR_DIRTY_LOG: {
3650 		struct kvm_clear_dirty_log log;
3651 
3652 		r = -EFAULT;
3653 		if (copy_from_user(&log, argp, sizeof(log)))
3654 			goto out;
3655 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3656 		break;
3657 	}
3658 #endif
3659 #ifdef CONFIG_KVM_MMIO
3660 	case KVM_REGISTER_COALESCED_MMIO: {
3661 		struct kvm_coalesced_mmio_zone zone;
3662 
3663 		r = -EFAULT;
3664 		if (copy_from_user(&zone, argp, sizeof(zone)))
3665 			goto out;
3666 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3667 		break;
3668 	}
3669 	case KVM_UNREGISTER_COALESCED_MMIO: {
3670 		struct kvm_coalesced_mmio_zone zone;
3671 
3672 		r = -EFAULT;
3673 		if (copy_from_user(&zone, argp, sizeof(zone)))
3674 			goto out;
3675 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3676 		break;
3677 	}
3678 #endif
3679 	case KVM_IRQFD: {
3680 		struct kvm_irqfd data;
3681 
3682 		r = -EFAULT;
3683 		if (copy_from_user(&data, argp, sizeof(data)))
3684 			goto out;
3685 		r = kvm_irqfd(kvm, &data);
3686 		break;
3687 	}
3688 	case KVM_IOEVENTFD: {
3689 		struct kvm_ioeventfd data;
3690 
3691 		r = -EFAULT;
3692 		if (copy_from_user(&data, argp, sizeof(data)))
3693 			goto out;
3694 		r = kvm_ioeventfd(kvm, &data);
3695 		break;
3696 	}
3697 #ifdef CONFIG_HAVE_KVM_MSI
3698 	case KVM_SIGNAL_MSI: {
3699 		struct kvm_msi msi;
3700 
3701 		r = -EFAULT;
3702 		if (copy_from_user(&msi, argp, sizeof(msi)))
3703 			goto out;
3704 		r = kvm_send_userspace_msi(kvm, &msi);
3705 		break;
3706 	}
3707 #endif
3708 #ifdef __KVM_HAVE_IRQ_LINE
3709 	case KVM_IRQ_LINE_STATUS:
3710 	case KVM_IRQ_LINE: {
3711 		struct kvm_irq_level irq_event;
3712 
3713 		r = -EFAULT;
3714 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3715 			goto out;
3716 
3717 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3718 					ioctl == KVM_IRQ_LINE_STATUS);
3719 		if (r)
3720 			goto out;
3721 
3722 		r = -EFAULT;
3723 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3724 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3725 				goto out;
3726 		}
3727 
3728 		r = 0;
3729 		break;
3730 	}
3731 #endif
3732 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3733 	case KVM_SET_GSI_ROUTING: {
3734 		struct kvm_irq_routing routing;
3735 		struct kvm_irq_routing __user *urouting;
3736 		struct kvm_irq_routing_entry *entries = NULL;
3737 
3738 		r = -EFAULT;
3739 		if (copy_from_user(&routing, argp, sizeof(routing)))
3740 			goto out;
3741 		r = -EINVAL;
3742 		if (!kvm_arch_can_set_irq_routing(kvm))
3743 			goto out;
3744 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3745 			goto out;
3746 		if (routing.flags)
3747 			goto out;
3748 		if (routing.nr) {
3749 			r = -ENOMEM;
3750 			entries = vmalloc(array_size(sizeof(*entries),
3751 						     routing.nr));
3752 			if (!entries)
3753 				goto out;
3754 			r = -EFAULT;
3755 			urouting = argp;
3756 			if (copy_from_user(entries, urouting->entries,
3757 					   routing.nr * sizeof(*entries)))
3758 				goto out_free_irq_routing;
3759 		}
3760 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3761 					routing.flags);
3762 out_free_irq_routing:
3763 		vfree(entries);
3764 		break;
3765 	}
3766 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3767 	case KVM_CREATE_DEVICE: {
3768 		struct kvm_create_device cd;
3769 
3770 		r = -EFAULT;
3771 		if (copy_from_user(&cd, argp, sizeof(cd)))
3772 			goto out;
3773 
3774 		r = kvm_ioctl_create_device(kvm, &cd);
3775 		if (r)
3776 			goto out;
3777 
3778 		r = -EFAULT;
3779 		if (copy_to_user(argp, &cd, sizeof(cd)))
3780 			goto out;
3781 
3782 		r = 0;
3783 		break;
3784 	}
3785 	case KVM_CHECK_EXTENSION:
3786 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3787 		break;
3788 	default:
3789 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3790 	}
3791 out:
3792 	return r;
3793 }
3794 
3795 #ifdef CONFIG_KVM_COMPAT
3796 struct compat_kvm_dirty_log {
3797 	__u32 slot;
3798 	__u32 padding1;
3799 	union {
3800 		compat_uptr_t dirty_bitmap; /* one bit per page */
3801 		__u64 padding2;
3802 	};
3803 };
3804 
3805 static long kvm_vm_compat_ioctl(struct file *filp,
3806 			   unsigned int ioctl, unsigned long arg)
3807 {
3808 	struct kvm *kvm = filp->private_data;
3809 	int r;
3810 
3811 	if (kvm->mm != current->mm)
3812 		return -EIO;
3813 	switch (ioctl) {
3814 	case KVM_GET_DIRTY_LOG: {
3815 		struct compat_kvm_dirty_log compat_log;
3816 		struct kvm_dirty_log log;
3817 
3818 		if (copy_from_user(&compat_log, (void __user *)arg,
3819 				   sizeof(compat_log)))
3820 			return -EFAULT;
3821 		log.slot	 = compat_log.slot;
3822 		log.padding1	 = compat_log.padding1;
3823 		log.padding2	 = compat_log.padding2;
3824 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3825 
3826 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3827 		break;
3828 	}
3829 	default:
3830 		r = kvm_vm_ioctl(filp, ioctl, arg);
3831 	}
3832 	return r;
3833 }
3834 #endif
3835 
3836 static struct file_operations kvm_vm_fops = {
3837 	.release        = kvm_vm_release,
3838 	.unlocked_ioctl = kvm_vm_ioctl,
3839 	.llseek		= noop_llseek,
3840 	KVM_COMPAT(kvm_vm_compat_ioctl),
3841 };
3842 
3843 static int kvm_dev_ioctl_create_vm(unsigned long type)
3844 {
3845 	int r;
3846 	struct kvm *kvm;
3847 	struct file *file;
3848 
3849 	kvm = kvm_create_vm(type);
3850 	if (IS_ERR(kvm))
3851 		return PTR_ERR(kvm);
3852 #ifdef CONFIG_KVM_MMIO
3853 	r = kvm_coalesced_mmio_init(kvm);
3854 	if (r < 0)
3855 		goto put_kvm;
3856 #endif
3857 	r = get_unused_fd_flags(O_CLOEXEC);
3858 	if (r < 0)
3859 		goto put_kvm;
3860 
3861 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3862 	if (IS_ERR(file)) {
3863 		put_unused_fd(r);
3864 		r = PTR_ERR(file);
3865 		goto put_kvm;
3866 	}
3867 
3868 	/*
3869 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3870 	 * already set, with ->release() being kvm_vm_release().  In error
3871 	 * cases it will be called by the final fput(file) and will take
3872 	 * care of doing kvm_put_kvm(kvm).
3873 	 */
3874 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3875 		put_unused_fd(r);
3876 		fput(file);
3877 		return -ENOMEM;
3878 	}
3879 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3880 
3881 	fd_install(r, file);
3882 	return r;
3883 
3884 put_kvm:
3885 	kvm_put_kvm(kvm);
3886 	return r;
3887 }
3888 
3889 static long kvm_dev_ioctl(struct file *filp,
3890 			  unsigned int ioctl, unsigned long arg)
3891 {
3892 	long r = -EINVAL;
3893 
3894 	switch (ioctl) {
3895 	case KVM_GET_API_VERSION:
3896 		if (arg)
3897 			goto out;
3898 		r = KVM_API_VERSION;
3899 		break;
3900 	case KVM_CREATE_VM:
3901 		r = kvm_dev_ioctl_create_vm(arg);
3902 		break;
3903 	case KVM_CHECK_EXTENSION:
3904 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3905 		break;
3906 	case KVM_GET_VCPU_MMAP_SIZE:
3907 		if (arg)
3908 			goto out;
3909 		r = PAGE_SIZE;     /* struct kvm_run */
3910 #ifdef CONFIG_X86
3911 		r += PAGE_SIZE;    /* pio data page */
3912 #endif
3913 #ifdef CONFIG_KVM_MMIO
3914 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3915 #endif
3916 		break;
3917 	case KVM_TRACE_ENABLE:
3918 	case KVM_TRACE_PAUSE:
3919 	case KVM_TRACE_DISABLE:
3920 		r = -EOPNOTSUPP;
3921 		break;
3922 	default:
3923 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3924 	}
3925 out:
3926 	return r;
3927 }
3928 
3929 static struct file_operations kvm_chardev_ops = {
3930 	.unlocked_ioctl = kvm_dev_ioctl,
3931 	.llseek		= noop_llseek,
3932 	KVM_COMPAT(kvm_dev_ioctl),
3933 };
3934 
3935 static struct miscdevice kvm_dev = {
3936 	KVM_MINOR,
3937 	"kvm",
3938 	&kvm_chardev_ops,
3939 };
3940 
3941 static void hardware_enable_nolock(void *junk)
3942 {
3943 	int cpu = raw_smp_processor_id();
3944 	int r;
3945 
3946 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3947 		return;
3948 
3949 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3950 
3951 	r = kvm_arch_hardware_enable();
3952 
3953 	if (r) {
3954 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3955 		atomic_inc(&hardware_enable_failed);
3956 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3957 	}
3958 }
3959 
3960 static int kvm_starting_cpu(unsigned int cpu)
3961 {
3962 	raw_spin_lock(&kvm_count_lock);
3963 	if (kvm_usage_count)
3964 		hardware_enable_nolock(NULL);
3965 	raw_spin_unlock(&kvm_count_lock);
3966 	return 0;
3967 }
3968 
3969 static void hardware_disable_nolock(void *junk)
3970 {
3971 	int cpu = raw_smp_processor_id();
3972 
3973 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3974 		return;
3975 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3976 	kvm_arch_hardware_disable();
3977 }
3978 
3979 static int kvm_dying_cpu(unsigned int cpu)
3980 {
3981 	raw_spin_lock(&kvm_count_lock);
3982 	if (kvm_usage_count)
3983 		hardware_disable_nolock(NULL);
3984 	raw_spin_unlock(&kvm_count_lock);
3985 	return 0;
3986 }
3987 
3988 static void hardware_disable_all_nolock(void)
3989 {
3990 	BUG_ON(!kvm_usage_count);
3991 
3992 	kvm_usage_count--;
3993 	if (!kvm_usage_count)
3994 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3995 }
3996 
3997 static void hardware_disable_all(void)
3998 {
3999 	raw_spin_lock(&kvm_count_lock);
4000 	hardware_disable_all_nolock();
4001 	raw_spin_unlock(&kvm_count_lock);
4002 }
4003 
4004 static int hardware_enable_all(void)
4005 {
4006 	int r = 0;
4007 
4008 	raw_spin_lock(&kvm_count_lock);
4009 
4010 	kvm_usage_count++;
4011 	if (kvm_usage_count == 1) {
4012 		atomic_set(&hardware_enable_failed, 0);
4013 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4014 
4015 		if (atomic_read(&hardware_enable_failed)) {
4016 			hardware_disable_all_nolock();
4017 			r = -EBUSY;
4018 		}
4019 	}
4020 
4021 	raw_spin_unlock(&kvm_count_lock);
4022 
4023 	return r;
4024 }
4025 
4026 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4027 		      void *v)
4028 {
4029 	/*
4030 	 * Some (well, at least mine) BIOSes hang on reboot if
4031 	 * in vmx root mode.
4032 	 *
4033 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4034 	 */
4035 	pr_info("kvm: exiting hardware virtualization\n");
4036 	kvm_rebooting = true;
4037 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4038 	return NOTIFY_OK;
4039 }
4040 
4041 static struct notifier_block kvm_reboot_notifier = {
4042 	.notifier_call = kvm_reboot,
4043 	.priority = 0,
4044 };
4045 
4046 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4047 {
4048 	int i;
4049 
4050 	for (i = 0; i < bus->dev_count; i++) {
4051 		struct kvm_io_device *pos = bus->range[i].dev;
4052 
4053 		kvm_iodevice_destructor(pos);
4054 	}
4055 	kfree(bus);
4056 }
4057 
4058 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4059 				 const struct kvm_io_range *r2)
4060 {
4061 	gpa_t addr1 = r1->addr;
4062 	gpa_t addr2 = r2->addr;
4063 
4064 	if (addr1 < addr2)
4065 		return -1;
4066 
4067 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4068 	 * accept any overlapping write.  Any order is acceptable for
4069 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4070 	 * we process all of them.
4071 	 */
4072 	if (r2->len) {
4073 		addr1 += r1->len;
4074 		addr2 += r2->len;
4075 	}
4076 
4077 	if (addr1 > addr2)
4078 		return 1;
4079 
4080 	return 0;
4081 }
4082 
4083 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4084 {
4085 	return kvm_io_bus_cmp(p1, p2);
4086 }
4087 
4088 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4089 			     gpa_t addr, int len)
4090 {
4091 	struct kvm_io_range *range, key;
4092 	int off;
4093 
4094 	key = (struct kvm_io_range) {
4095 		.addr = addr,
4096 		.len = len,
4097 	};
4098 
4099 	range = bsearch(&key, bus->range, bus->dev_count,
4100 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4101 	if (range == NULL)
4102 		return -ENOENT;
4103 
4104 	off = range - bus->range;
4105 
4106 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4107 		off--;
4108 
4109 	return off;
4110 }
4111 
4112 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4113 			      struct kvm_io_range *range, const void *val)
4114 {
4115 	int idx;
4116 
4117 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4118 	if (idx < 0)
4119 		return -EOPNOTSUPP;
4120 
4121 	while (idx < bus->dev_count &&
4122 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4123 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4124 					range->len, val))
4125 			return idx;
4126 		idx++;
4127 	}
4128 
4129 	return -EOPNOTSUPP;
4130 }
4131 
4132 /* kvm_io_bus_write - called under kvm->slots_lock */
4133 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4134 		     int len, const void *val)
4135 {
4136 	struct kvm_io_bus *bus;
4137 	struct kvm_io_range range;
4138 	int r;
4139 
4140 	range = (struct kvm_io_range) {
4141 		.addr = addr,
4142 		.len = len,
4143 	};
4144 
4145 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4146 	if (!bus)
4147 		return -ENOMEM;
4148 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4149 	return r < 0 ? r : 0;
4150 }
4151 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4152 
4153 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4154 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4155 			    gpa_t addr, int len, const void *val, long cookie)
4156 {
4157 	struct kvm_io_bus *bus;
4158 	struct kvm_io_range range;
4159 
4160 	range = (struct kvm_io_range) {
4161 		.addr = addr,
4162 		.len = len,
4163 	};
4164 
4165 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4166 	if (!bus)
4167 		return -ENOMEM;
4168 
4169 	/* First try the device referenced by cookie. */
4170 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4171 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4172 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4173 					val))
4174 			return cookie;
4175 
4176 	/*
4177 	 * cookie contained garbage; fall back to search and return the
4178 	 * correct cookie value.
4179 	 */
4180 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4181 }
4182 
4183 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4184 			     struct kvm_io_range *range, void *val)
4185 {
4186 	int idx;
4187 
4188 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4189 	if (idx < 0)
4190 		return -EOPNOTSUPP;
4191 
4192 	while (idx < bus->dev_count &&
4193 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4194 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4195 				       range->len, val))
4196 			return idx;
4197 		idx++;
4198 	}
4199 
4200 	return -EOPNOTSUPP;
4201 }
4202 
4203 /* kvm_io_bus_read - called under kvm->slots_lock */
4204 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4205 		    int len, void *val)
4206 {
4207 	struct kvm_io_bus *bus;
4208 	struct kvm_io_range range;
4209 	int r;
4210 
4211 	range = (struct kvm_io_range) {
4212 		.addr = addr,
4213 		.len = len,
4214 	};
4215 
4216 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4217 	if (!bus)
4218 		return -ENOMEM;
4219 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4220 	return r < 0 ? r : 0;
4221 }
4222 
4223 /* Caller must hold slots_lock. */
4224 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4225 			    int len, struct kvm_io_device *dev)
4226 {
4227 	int i;
4228 	struct kvm_io_bus *new_bus, *bus;
4229 	struct kvm_io_range range;
4230 
4231 	bus = kvm_get_bus(kvm, bus_idx);
4232 	if (!bus)
4233 		return -ENOMEM;
4234 
4235 	/* exclude ioeventfd which is limited by maximum fd */
4236 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4237 		return -ENOSPC;
4238 
4239 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4240 			  GFP_KERNEL_ACCOUNT);
4241 	if (!new_bus)
4242 		return -ENOMEM;
4243 
4244 	range = (struct kvm_io_range) {
4245 		.addr = addr,
4246 		.len = len,
4247 		.dev = dev,
4248 	};
4249 
4250 	for (i = 0; i < bus->dev_count; i++)
4251 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4252 			break;
4253 
4254 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4255 	new_bus->dev_count++;
4256 	new_bus->range[i] = range;
4257 	memcpy(new_bus->range + i + 1, bus->range + i,
4258 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4259 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4260 	synchronize_srcu_expedited(&kvm->srcu);
4261 	kfree(bus);
4262 
4263 	return 0;
4264 }
4265 
4266 /* Caller must hold slots_lock. */
4267 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4268 			       struct kvm_io_device *dev)
4269 {
4270 	int i;
4271 	struct kvm_io_bus *new_bus, *bus;
4272 
4273 	bus = kvm_get_bus(kvm, bus_idx);
4274 	if (!bus)
4275 		return;
4276 
4277 	for (i = 0; i < bus->dev_count; i++)
4278 		if (bus->range[i].dev == dev) {
4279 			break;
4280 		}
4281 
4282 	if (i == bus->dev_count)
4283 		return;
4284 
4285 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4286 			  GFP_KERNEL_ACCOUNT);
4287 	if (!new_bus)  {
4288 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4289 		goto broken;
4290 	}
4291 
4292 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4293 	new_bus->dev_count--;
4294 	memcpy(new_bus->range + i, bus->range + i + 1,
4295 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4296 
4297 broken:
4298 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4299 	synchronize_srcu_expedited(&kvm->srcu);
4300 	kfree(bus);
4301 	return;
4302 }
4303 
4304 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4305 					 gpa_t addr)
4306 {
4307 	struct kvm_io_bus *bus;
4308 	int dev_idx, srcu_idx;
4309 	struct kvm_io_device *iodev = NULL;
4310 
4311 	srcu_idx = srcu_read_lock(&kvm->srcu);
4312 
4313 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4314 	if (!bus)
4315 		goto out_unlock;
4316 
4317 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4318 	if (dev_idx < 0)
4319 		goto out_unlock;
4320 
4321 	iodev = bus->range[dev_idx].dev;
4322 
4323 out_unlock:
4324 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4325 
4326 	return iodev;
4327 }
4328 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4329 
4330 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4331 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4332 			   const char *fmt)
4333 {
4334 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4335 					  inode->i_private;
4336 
4337 	/* The debugfs files are a reference to the kvm struct which
4338 	 * is still valid when kvm_destroy_vm is called.
4339 	 * To avoid the race between open and the removal of the debugfs
4340 	 * directory we test against the users count.
4341 	 */
4342 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4343 		return -ENOENT;
4344 
4345 	if (simple_attr_open(inode, file, get,
4346 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4347 		    ? set : NULL,
4348 		    fmt)) {
4349 		kvm_put_kvm(stat_data->kvm);
4350 		return -ENOMEM;
4351 	}
4352 
4353 	return 0;
4354 }
4355 
4356 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4357 {
4358 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4359 					  inode->i_private;
4360 
4361 	simple_attr_release(inode, file);
4362 	kvm_put_kvm(stat_data->kvm);
4363 
4364 	return 0;
4365 }
4366 
4367 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4368 {
4369 	*val = *(ulong *)((void *)kvm + offset);
4370 
4371 	return 0;
4372 }
4373 
4374 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4375 {
4376 	*(ulong *)((void *)kvm + offset) = 0;
4377 
4378 	return 0;
4379 }
4380 
4381 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4382 {
4383 	int i;
4384 	struct kvm_vcpu *vcpu;
4385 
4386 	*val = 0;
4387 
4388 	kvm_for_each_vcpu(i, vcpu, kvm)
4389 		*val += *(u64 *)((void *)vcpu + offset);
4390 
4391 	return 0;
4392 }
4393 
4394 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4395 {
4396 	int i;
4397 	struct kvm_vcpu *vcpu;
4398 
4399 	kvm_for_each_vcpu(i, vcpu, kvm)
4400 		*(u64 *)((void *)vcpu + offset) = 0;
4401 
4402 	return 0;
4403 }
4404 
4405 static int kvm_stat_data_get(void *data, u64 *val)
4406 {
4407 	int r = -EFAULT;
4408 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4409 
4410 	switch (stat_data->dbgfs_item->kind) {
4411 	case KVM_STAT_VM:
4412 		r = kvm_get_stat_per_vm(stat_data->kvm,
4413 					stat_data->dbgfs_item->offset, val);
4414 		break;
4415 	case KVM_STAT_VCPU:
4416 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4417 					  stat_data->dbgfs_item->offset, val);
4418 		break;
4419 	}
4420 
4421 	return r;
4422 }
4423 
4424 static int kvm_stat_data_clear(void *data, u64 val)
4425 {
4426 	int r = -EFAULT;
4427 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4428 
4429 	if (val)
4430 		return -EINVAL;
4431 
4432 	switch (stat_data->dbgfs_item->kind) {
4433 	case KVM_STAT_VM:
4434 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4435 					  stat_data->dbgfs_item->offset);
4436 		break;
4437 	case KVM_STAT_VCPU:
4438 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4439 					    stat_data->dbgfs_item->offset);
4440 		break;
4441 	}
4442 
4443 	return r;
4444 }
4445 
4446 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4447 {
4448 	__simple_attr_check_format("%llu\n", 0ull);
4449 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4450 				kvm_stat_data_clear, "%llu\n");
4451 }
4452 
4453 static const struct file_operations stat_fops_per_vm = {
4454 	.owner = THIS_MODULE,
4455 	.open = kvm_stat_data_open,
4456 	.release = kvm_debugfs_release,
4457 	.read = simple_attr_read,
4458 	.write = simple_attr_write,
4459 	.llseek = no_llseek,
4460 };
4461 
4462 static int vm_stat_get(void *_offset, u64 *val)
4463 {
4464 	unsigned offset = (long)_offset;
4465 	struct kvm *kvm;
4466 	u64 tmp_val;
4467 
4468 	*val = 0;
4469 	mutex_lock(&kvm_lock);
4470 	list_for_each_entry(kvm, &vm_list, vm_list) {
4471 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4472 		*val += tmp_val;
4473 	}
4474 	mutex_unlock(&kvm_lock);
4475 	return 0;
4476 }
4477 
4478 static int vm_stat_clear(void *_offset, u64 val)
4479 {
4480 	unsigned offset = (long)_offset;
4481 	struct kvm *kvm;
4482 
4483 	if (val)
4484 		return -EINVAL;
4485 
4486 	mutex_lock(&kvm_lock);
4487 	list_for_each_entry(kvm, &vm_list, vm_list) {
4488 		kvm_clear_stat_per_vm(kvm, offset);
4489 	}
4490 	mutex_unlock(&kvm_lock);
4491 
4492 	return 0;
4493 }
4494 
4495 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4496 
4497 static int vcpu_stat_get(void *_offset, u64 *val)
4498 {
4499 	unsigned offset = (long)_offset;
4500 	struct kvm *kvm;
4501 	u64 tmp_val;
4502 
4503 	*val = 0;
4504 	mutex_lock(&kvm_lock);
4505 	list_for_each_entry(kvm, &vm_list, vm_list) {
4506 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4507 		*val += tmp_val;
4508 	}
4509 	mutex_unlock(&kvm_lock);
4510 	return 0;
4511 }
4512 
4513 static int vcpu_stat_clear(void *_offset, u64 val)
4514 {
4515 	unsigned offset = (long)_offset;
4516 	struct kvm *kvm;
4517 
4518 	if (val)
4519 		return -EINVAL;
4520 
4521 	mutex_lock(&kvm_lock);
4522 	list_for_each_entry(kvm, &vm_list, vm_list) {
4523 		kvm_clear_stat_per_vcpu(kvm, offset);
4524 	}
4525 	mutex_unlock(&kvm_lock);
4526 
4527 	return 0;
4528 }
4529 
4530 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4531 			"%llu\n");
4532 
4533 static const struct file_operations *stat_fops[] = {
4534 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4535 	[KVM_STAT_VM]   = &vm_stat_fops,
4536 };
4537 
4538 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4539 {
4540 	struct kobj_uevent_env *env;
4541 	unsigned long long created, active;
4542 
4543 	if (!kvm_dev.this_device || !kvm)
4544 		return;
4545 
4546 	mutex_lock(&kvm_lock);
4547 	if (type == KVM_EVENT_CREATE_VM) {
4548 		kvm_createvm_count++;
4549 		kvm_active_vms++;
4550 	} else if (type == KVM_EVENT_DESTROY_VM) {
4551 		kvm_active_vms--;
4552 	}
4553 	created = kvm_createvm_count;
4554 	active = kvm_active_vms;
4555 	mutex_unlock(&kvm_lock);
4556 
4557 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4558 	if (!env)
4559 		return;
4560 
4561 	add_uevent_var(env, "CREATED=%llu", created);
4562 	add_uevent_var(env, "COUNT=%llu", active);
4563 
4564 	if (type == KVM_EVENT_CREATE_VM) {
4565 		add_uevent_var(env, "EVENT=create");
4566 		kvm->userspace_pid = task_pid_nr(current);
4567 	} else if (type == KVM_EVENT_DESTROY_VM) {
4568 		add_uevent_var(env, "EVENT=destroy");
4569 	}
4570 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4571 
4572 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4573 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4574 
4575 		if (p) {
4576 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4577 			if (!IS_ERR(tmp))
4578 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4579 			kfree(p);
4580 		}
4581 	}
4582 	/* no need for checks, since we are adding at most only 5 keys */
4583 	env->envp[env->envp_idx++] = NULL;
4584 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4585 	kfree(env);
4586 }
4587 
4588 static void kvm_init_debug(void)
4589 {
4590 	struct kvm_stats_debugfs_item *p;
4591 
4592 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4593 
4594 	kvm_debugfs_num_entries = 0;
4595 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4596 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4597 				    kvm_debugfs_dir, (void *)(long)p->offset,
4598 				    stat_fops[p->kind]);
4599 	}
4600 }
4601 
4602 static int kvm_suspend(void)
4603 {
4604 	if (kvm_usage_count)
4605 		hardware_disable_nolock(NULL);
4606 	return 0;
4607 }
4608 
4609 static void kvm_resume(void)
4610 {
4611 	if (kvm_usage_count) {
4612 #ifdef CONFIG_LOCKDEP
4613 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4614 #endif
4615 		hardware_enable_nolock(NULL);
4616 	}
4617 }
4618 
4619 static struct syscore_ops kvm_syscore_ops = {
4620 	.suspend = kvm_suspend,
4621 	.resume = kvm_resume,
4622 };
4623 
4624 static inline
4625 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4626 {
4627 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4628 }
4629 
4630 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4631 {
4632 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4633 
4634 	WRITE_ONCE(vcpu->preempted, false);
4635 	WRITE_ONCE(vcpu->ready, false);
4636 
4637 	__this_cpu_write(kvm_running_vcpu, vcpu);
4638 	kvm_arch_sched_in(vcpu, cpu);
4639 	kvm_arch_vcpu_load(vcpu, cpu);
4640 }
4641 
4642 static void kvm_sched_out(struct preempt_notifier *pn,
4643 			  struct task_struct *next)
4644 {
4645 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4646 
4647 	if (current->state == TASK_RUNNING) {
4648 		WRITE_ONCE(vcpu->preempted, true);
4649 		WRITE_ONCE(vcpu->ready, true);
4650 	}
4651 	kvm_arch_vcpu_put(vcpu);
4652 	__this_cpu_write(kvm_running_vcpu, NULL);
4653 }
4654 
4655 /**
4656  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4657  *
4658  * We can disable preemption locally around accessing the per-CPU variable,
4659  * and use the resolved vcpu pointer after enabling preemption again,
4660  * because even if the current thread is migrated to another CPU, reading
4661  * the per-CPU value later will give us the same value as we update the
4662  * per-CPU variable in the preempt notifier handlers.
4663  */
4664 struct kvm_vcpu *kvm_get_running_vcpu(void)
4665 {
4666 	struct kvm_vcpu *vcpu;
4667 
4668 	preempt_disable();
4669 	vcpu = __this_cpu_read(kvm_running_vcpu);
4670 	preempt_enable();
4671 
4672 	return vcpu;
4673 }
4674 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4675 
4676 /**
4677  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4678  */
4679 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4680 {
4681         return &kvm_running_vcpu;
4682 }
4683 
4684 struct kvm_cpu_compat_check {
4685 	void *opaque;
4686 	int *ret;
4687 };
4688 
4689 static void check_processor_compat(void *data)
4690 {
4691 	struct kvm_cpu_compat_check *c = data;
4692 
4693 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4694 }
4695 
4696 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4697 		  struct module *module)
4698 {
4699 	struct kvm_cpu_compat_check c;
4700 	int r;
4701 	int cpu;
4702 
4703 	r = kvm_arch_init(opaque);
4704 	if (r)
4705 		goto out_fail;
4706 
4707 	/*
4708 	 * kvm_arch_init makes sure there's at most one caller
4709 	 * for architectures that support multiple implementations,
4710 	 * like intel and amd on x86.
4711 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4712 	 * conflicts in case kvm is already setup for another implementation.
4713 	 */
4714 	r = kvm_irqfd_init();
4715 	if (r)
4716 		goto out_irqfd;
4717 
4718 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4719 		r = -ENOMEM;
4720 		goto out_free_0;
4721 	}
4722 
4723 	r = kvm_arch_hardware_setup(opaque);
4724 	if (r < 0)
4725 		goto out_free_1;
4726 
4727 	c.ret = &r;
4728 	c.opaque = opaque;
4729 	for_each_online_cpu(cpu) {
4730 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4731 		if (r < 0)
4732 			goto out_free_2;
4733 	}
4734 
4735 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4736 				      kvm_starting_cpu, kvm_dying_cpu);
4737 	if (r)
4738 		goto out_free_2;
4739 	register_reboot_notifier(&kvm_reboot_notifier);
4740 
4741 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4742 	if (!vcpu_align)
4743 		vcpu_align = __alignof__(struct kvm_vcpu);
4744 	kvm_vcpu_cache =
4745 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4746 					   SLAB_ACCOUNT,
4747 					   offsetof(struct kvm_vcpu, arch),
4748 					   sizeof_field(struct kvm_vcpu, arch),
4749 					   NULL);
4750 	if (!kvm_vcpu_cache) {
4751 		r = -ENOMEM;
4752 		goto out_free_3;
4753 	}
4754 
4755 	r = kvm_async_pf_init();
4756 	if (r)
4757 		goto out_free;
4758 
4759 	kvm_chardev_ops.owner = module;
4760 	kvm_vm_fops.owner = module;
4761 	kvm_vcpu_fops.owner = module;
4762 
4763 	r = misc_register(&kvm_dev);
4764 	if (r) {
4765 		pr_err("kvm: misc device register failed\n");
4766 		goto out_unreg;
4767 	}
4768 
4769 	register_syscore_ops(&kvm_syscore_ops);
4770 
4771 	kvm_preempt_ops.sched_in = kvm_sched_in;
4772 	kvm_preempt_ops.sched_out = kvm_sched_out;
4773 
4774 	kvm_init_debug();
4775 
4776 	r = kvm_vfio_ops_init();
4777 	WARN_ON(r);
4778 
4779 	return 0;
4780 
4781 out_unreg:
4782 	kvm_async_pf_deinit();
4783 out_free:
4784 	kmem_cache_destroy(kvm_vcpu_cache);
4785 out_free_3:
4786 	unregister_reboot_notifier(&kvm_reboot_notifier);
4787 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4788 out_free_2:
4789 	kvm_arch_hardware_unsetup();
4790 out_free_1:
4791 	free_cpumask_var(cpus_hardware_enabled);
4792 out_free_0:
4793 	kvm_irqfd_exit();
4794 out_irqfd:
4795 	kvm_arch_exit();
4796 out_fail:
4797 	return r;
4798 }
4799 EXPORT_SYMBOL_GPL(kvm_init);
4800 
4801 void kvm_exit(void)
4802 {
4803 	debugfs_remove_recursive(kvm_debugfs_dir);
4804 	misc_deregister(&kvm_dev);
4805 	kmem_cache_destroy(kvm_vcpu_cache);
4806 	kvm_async_pf_deinit();
4807 	unregister_syscore_ops(&kvm_syscore_ops);
4808 	unregister_reboot_notifier(&kvm_reboot_notifier);
4809 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4810 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4811 	kvm_arch_hardware_unsetup();
4812 	kvm_arch_exit();
4813 	kvm_irqfd_exit();
4814 	free_cpumask_var(cpus_hardware_enabled);
4815 	kvm_vfio_ops_exit();
4816 }
4817 EXPORT_SYMBOL_GPL(kvm_exit);
4818 
4819 struct kvm_vm_worker_thread_context {
4820 	struct kvm *kvm;
4821 	struct task_struct *parent;
4822 	struct completion init_done;
4823 	kvm_vm_thread_fn_t thread_fn;
4824 	uintptr_t data;
4825 	int err;
4826 };
4827 
4828 static int kvm_vm_worker_thread(void *context)
4829 {
4830 	/*
4831 	 * The init_context is allocated on the stack of the parent thread, so
4832 	 * we have to locally copy anything that is needed beyond initialization
4833 	 */
4834 	struct kvm_vm_worker_thread_context *init_context = context;
4835 	struct kvm *kvm = init_context->kvm;
4836 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4837 	uintptr_t data = init_context->data;
4838 	int err;
4839 
4840 	err = kthread_park(current);
4841 	/* kthread_park(current) is never supposed to return an error */
4842 	WARN_ON(err != 0);
4843 	if (err)
4844 		goto init_complete;
4845 
4846 	err = cgroup_attach_task_all(init_context->parent, current);
4847 	if (err) {
4848 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4849 			__func__, err);
4850 		goto init_complete;
4851 	}
4852 
4853 	set_user_nice(current, task_nice(init_context->parent));
4854 
4855 init_complete:
4856 	init_context->err = err;
4857 	complete(&init_context->init_done);
4858 	init_context = NULL;
4859 
4860 	if (err)
4861 		return err;
4862 
4863 	/* Wait to be woken up by the spawner before proceeding. */
4864 	kthread_parkme();
4865 
4866 	if (!kthread_should_stop())
4867 		err = thread_fn(kvm, data);
4868 
4869 	return err;
4870 }
4871 
4872 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4873 				uintptr_t data, const char *name,
4874 				struct task_struct **thread_ptr)
4875 {
4876 	struct kvm_vm_worker_thread_context init_context = {};
4877 	struct task_struct *thread;
4878 
4879 	*thread_ptr = NULL;
4880 	init_context.kvm = kvm;
4881 	init_context.parent = current;
4882 	init_context.thread_fn = thread_fn;
4883 	init_context.data = data;
4884 	init_completion(&init_context.init_done);
4885 
4886 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4887 			     "%s-%d", name, task_pid_nr(current));
4888 	if (IS_ERR(thread))
4889 		return PTR_ERR(thread);
4890 
4891 	/* kthread_run is never supposed to return NULL */
4892 	WARN_ON(thread == NULL);
4893 
4894 	wait_for_completion(&init_context.init_done);
4895 
4896 	if (!init_context.err)
4897 		*thread_ptr = thread;
4898 
4899 	return init_context.err;
4900 }
4901