xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 99b75eb7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132 				unsigned long arg) { return -EINVAL; }
133 
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136 	return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
139 			.open		= kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143 
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145 
146 __visible bool kvm_rebooting;
147 EXPORT_SYMBOL_GPL(kvm_rebooting);
148 
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154 
155 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
156 						   unsigned long start, unsigned long end)
157 {
158 }
159 
160 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
161 {
162 	/*
163 	 * The metadata used by is_zone_device_page() to determine whether or
164 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
165 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
166 	 * page_count() is zero to help detect bad usage of this helper.
167 	 */
168 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
169 		return false;
170 
171 	return is_zone_device_page(pfn_to_page(pfn));
172 }
173 
174 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
175 {
176 	/*
177 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
178 	 * perspective they are "normal" pages, albeit with slightly different
179 	 * usage rules.
180 	 */
181 	if (pfn_valid(pfn))
182 		return PageReserved(pfn_to_page(pfn)) &&
183 		       !is_zero_pfn(pfn) &&
184 		       !kvm_is_zone_device_pfn(pfn);
185 
186 	return true;
187 }
188 
189 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
190 {
191 	struct page *page = pfn_to_page(pfn);
192 
193 	if (!PageTransCompoundMap(page))
194 		return false;
195 
196 	return is_transparent_hugepage(compound_head(page));
197 }
198 
199 /*
200  * Switches to specified vcpu, until a matching vcpu_put()
201  */
202 void vcpu_load(struct kvm_vcpu *vcpu)
203 {
204 	int cpu = get_cpu();
205 
206 	__this_cpu_write(kvm_running_vcpu, vcpu);
207 	preempt_notifier_register(&vcpu->preempt_notifier);
208 	kvm_arch_vcpu_load(vcpu, cpu);
209 	put_cpu();
210 }
211 EXPORT_SYMBOL_GPL(vcpu_load);
212 
213 void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215 	preempt_disable();
216 	kvm_arch_vcpu_put(vcpu);
217 	preempt_notifier_unregister(&vcpu->preempt_notifier);
218 	__this_cpu_write(kvm_running_vcpu, NULL);
219 	preempt_enable();
220 }
221 EXPORT_SYMBOL_GPL(vcpu_put);
222 
223 /* TODO: merge with kvm_arch_vcpu_should_kick */
224 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
225 {
226 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
227 
228 	/*
229 	 * We need to wait for the VCPU to reenable interrupts and get out of
230 	 * READING_SHADOW_PAGE_TABLES mode.
231 	 */
232 	if (req & KVM_REQUEST_WAIT)
233 		return mode != OUTSIDE_GUEST_MODE;
234 
235 	/*
236 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
237 	 */
238 	return mode == IN_GUEST_MODE;
239 }
240 
241 static void ack_flush(void *_completed)
242 {
243 }
244 
245 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
246 {
247 	if (unlikely(!cpus))
248 		cpus = cpu_online_mask;
249 
250 	if (cpumask_empty(cpus))
251 		return false;
252 
253 	smp_call_function_many(cpus, ack_flush, NULL, wait);
254 	return true;
255 }
256 
257 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
258 				 struct kvm_vcpu *except,
259 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
260 {
261 	int i, cpu, me;
262 	struct kvm_vcpu *vcpu;
263 	bool called;
264 
265 	me = get_cpu();
266 
267 	kvm_for_each_vcpu(i, vcpu, kvm) {
268 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
269 		    vcpu == except)
270 			continue;
271 
272 		kvm_make_request(req, vcpu);
273 		cpu = vcpu->cpu;
274 
275 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276 			continue;
277 
278 		if (tmp != NULL && cpu != -1 && cpu != me &&
279 		    kvm_request_needs_ipi(vcpu, req))
280 			__cpumask_set_cpu(cpu, tmp);
281 	}
282 
283 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
284 	put_cpu();
285 
286 	return called;
287 }
288 
289 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
290 				      struct kvm_vcpu *except)
291 {
292 	cpumask_var_t cpus;
293 	bool called;
294 
295 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
296 
297 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
298 
299 	free_cpumask_var(cpus);
300 	return called;
301 }
302 
303 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
304 {
305 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
306 }
307 
308 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
309 void kvm_flush_remote_tlbs(struct kvm *kvm)
310 {
311 	/*
312 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
313 	 * kvm_make_all_cpus_request.
314 	 */
315 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
316 
317 	/*
318 	 * We want to publish modifications to the page tables before reading
319 	 * mode. Pairs with a memory barrier in arch-specific code.
320 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
321 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
322 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
323 	 *
324 	 * There is already an smp_mb__after_atomic() before
325 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
326 	 * barrier here.
327 	 */
328 	if (!kvm_arch_flush_remote_tlb(kvm)
329 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
330 		++kvm->stat.remote_tlb_flush;
331 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
332 }
333 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
334 #endif
335 
336 void kvm_reload_remote_mmus(struct kvm *kvm)
337 {
338 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
339 }
340 
341 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
342 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
343 					       gfp_t gfp_flags)
344 {
345 	gfp_flags |= mc->gfp_zero;
346 
347 	if (mc->kmem_cache)
348 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
349 	else
350 		return (void *)__get_free_page(gfp_flags);
351 }
352 
353 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
354 {
355 	void *obj;
356 
357 	if (mc->nobjs >= min)
358 		return 0;
359 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
360 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
361 		if (!obj)
362 			return mc->nobjs >= min ? 0 : -ENOMEM;
363 		mc->objects[mc->nobjs++] = obj;
364 	}
365 	return 0;
366 }
367 
368 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
369 {
370 	return mc->nobjs;
371 }
372 
373 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
374 {
375 	while (mc->nobjs) {
376 		if (mc->kmem_cache)
377 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
378 		else
379 			free_page((unsigned long)mc->objects[--mc->nobjs]);
380 	}
381 }
382 
383 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
384 {
385 	void *p;
386 
387 	if (WARN_ON(!mc->nobjs))
388 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
389 	else
390 		p = mc->objects[--mc->nobjs];
391 	BUG_ON(!p);
392 	return p;
393 }
394 #endif
395 
396 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
397 {
398 	mutex_init(&vcpu->mutex);
399 	vcpu->cpu = -1;
400 	vcpu->kvm = kvm;
401 	vcpu->vcpu_id = id;
402 	vcpu->pid = NULL;
403 	rcuwait_init(&vcpu->wait);
404 	kvm_async_pf_vcpu_init(vcpu);
405 
406 	vcpu->pre_pcpu = -1;
407 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
408 
409 	kvm_vcpu_set_in_spin_loop(vcpu, false);
410 	kvm_vcpu_set_dy_eligible(vcpu, false);
411 	vcpu->preempted = false;
412 	vcpu->ready = false;
413 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
414 }
415 
416 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
417 {
418 	kvm_arch_vcpu_destroy(vcpu);
419 
420 	/*
421 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
422 	 * the vcpu->pid pointer, and at destruction time all file descriptors
423 	 * are already gone.
424 	 */
425 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
426 
427 	free_page((unsigned long)vcpu->run);
428 	kmem_cache_free(kvm_vcpu_cache, vcpu);
429 }
430 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
431 
432 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
433 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
434 {
435 	return container_of(mn, struct kvm, mmu_notifier);
436 }
437 
438 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
439 					      struct mm_struct *mm,
440 					      unsigned long start, unsigned long end)
441 {
442 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
443 	int idx;
444 
445 	idx = srcu_read_lock(&kvm->srcu);
446 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
447 	srcu_read_unlock(&kvm->srcu, idx);
448 }
449 
450 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
451 					struct mm_struct *mm,
452 					unsigned long address,
453 					pte_t pte)
454 {
455 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 	int idx;
457 
458 	idx = srcu_read_lock(&kvm->srcu);
459 	spin_lock(&kvm->mmu_lock);
460 	kvm->mmu_notifier_seq++;
461 
462 	if (kvm_set_spte_hva(kvm, address, pte))
463 		kvm_flush_remote_tlbs(kvm);
464 
465 	spin_unlock(&kvm->mmu_lock);
466 	srcu_read_unlock(&kvm->srcu, idx);
467 }
468 
469 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
470 					const struct mmu_notifier_range *range)
471 {
472 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 	int need_tlb_flush = 0, idx;
474 
475 	idx = srcu_read_lock(&kvm->srcu);
476 	spin_lock(&kvm->mmu_lock);
477 	/*
478 	 * The count increase must become visible at unlock time as no
479 	 * spte can be established without taking the mmu_lock and
480 	 * count is also read inside the mmu_lock critical section.
481 	 */
482 	kvm->mmu_notifier_count++;
483 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
484 					     range->flags);
485 	need_tlb_flush |= kvm->tlbs_dirty;
486 	/* we've to flush the tlb before the pages can be freed */
487 	if (need_tlb_flush)
488 		kvm_flush_remote_tlbs(kvm);
489 
490 	spin_unlock(&kvm->mmu_lock);
491 	srcu_read_unlock(&kvm->srcu, idx);
492 
493 	return 0;
494 }
495 
496 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
497 					const struct mmu_notifier_range *range)
498 {
499 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
500 
501 	spin_lock(&kvm->mmu_lock);
502 	/*
503 	 * This sequence increase will notify the kvm page fault that
504 	 * the page that is going to be mapped in the spte could have
505 	 * been freed.
506 	 */
507 	kvm->mmu_notifier_seq++;
508 	smp_wmb();
509 	/*
510 	 * The above sequence increase must be visible before the
511 	 * below count decrease, which is ensured by the smp_wmb above
512 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
513 	 */
514 	kvm->mmu_notifier_count--;
515 	spin_unlock(&kvm->mmu_lock);
516 
517 	BUG_ON(kvm->mmu_notifier_count < 0);
518 }
519 
520 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
521 					      struct mm_struct *mm,
522 					      unsigned long start,
523 					      unsigned long end)
524 {
525 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
526 	int young, idx;
527 
528 	idx = srcu_read_lock(&kvm->srcu);
529 	spin_lock(&kvm->mmu_lock);
530 
531 	young = kvm_age_hva(kvm, start, end);
532 	if (young)
533 		kvm_flush_remote_tlbs(kvm);
534 
535 	spin_unlock(&kvm->mmu_lock);
536 	srcu_read_unlock(&kvm->srcu, idx);
537 
538 	return young;
539 }
540 
541 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
542 					struct mm_struct *mm,
543 					unsigned long start,
544 					unsigned long end)
545 {
546 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
547 	int young, idx;
548 
549 	idx = srcu_read_lock(&kvm->srcu);
550 	spin_lock(&kvm->mmu_lock);
551 	/*
552 	 * Even though we do not flush TLB, this will still adversely
553 	 * affect performance on pre-Haswell Intel EPT, where there is
554 	 * no EPT Access Bit to clear so that we have to tear down EPT
555 	 * tables instead. If we find this unacceptable, we can always
556 	 * add a parameter to kvm_age_hva so that it effectively doesn't
557 	 * do anything on clear_young.
558 	 *
559 	 * Also note that currently we never issue secondary TLB flushes
560 	 * from clear_young, leaving this job up to the regular system
561 	 * cadence. If we find this inaccurate, we might come up with a
562 	 * more sophisticated heuristic later.
563 	 */
564 	young = kvm_age_hva(kvm, start, end);
565 	spin_unlock(&kvm->mmu_lock);
566 	srcu_read_unlock(&kvm->srcu, idx);
567 
568 	return young;
569 }
570 
571 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
572 				       struct mm_struct *mm,
573 				       unsigned long address)
574 {
575 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
576 	int young, idx;
577 
578 	idx = srcu_read_lock(&kvm->srcu);
579 	spin_lock(&kvm->mmu_lock);
580 	young = kvm_test_age_hva(kvm, address);
581 	spin_unlock(&kvm->mmu_lock);
582 	srcu_read_unlock(&kvm->srcu, idx);
583 
584 	return young;
585 }
586 
587 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
588 				     struct mm_struct *mm)
589 {
590 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
591 	int idx;
592 
593 	idx = srcu_read_lock(&kvm->srcu);
594 	kvm_arch_flush_shadow_all(kvm);
595 	srcu_read_unlock(&kvm->srcu, idx);
596 }
597 
598 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
599 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
600 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
601 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
602 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
603 	.clear_young		= kvm_mmu_notifier_clear_young,
604 	.test_young		= kvm_mmu_notifier_test_young,
605 	.change_pte		= kvm_mmu_notifier_change_pte,
606 	.release		= kvm_mmu_notifier_release,
607 };
608 
609 static int kvm_init_mmu_notifier(struct kvm *kvm)
610 {
611 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
612 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
613 }
614 
615 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
616 
617 static int kvm_init_mmu_notifier(struct kvm *kvm)
618 {
619 	return 0;
620 }
621 
622 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
623 
624 static struct kvm_memslots *kvm_alloc_memslots(void)
625 {
626 	int i;
627 	struct kvm_memslots *slots;
628 
629 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
630 	if (!slots)
631 		return NULL;
632 
633 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
634 		slots->id_to_index[i] = -1;
635 
636 	return slots;
637 }
638 
639 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
640 {
641 	if (!memslot->dirty_bitmap)
642 		return;
643 
644 	kvfree(memslot->dirty_bitmap);
645 	memslot->dirty_bitmap = NULL;
646 }
647 
648 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
649 {
650 	kvm_destroy_dirty_bitmap(slot);
651 
652 	kvm_arch_free_memslot(kvm, slot);
653 
654 	slot->flags = 0;
655 	slot->npages = 0;
656 }
657 
658 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
659 {
660 	struct kvm_memory_slot *memslot;
661 
662 	if (!slots)
663 		return;
664 
665 	kvm_for_each_memslot(memslot, slots)
666 		kvm_free_memslot(kvm, memslot);
667 
668 	kvfree(slots);
669 }
670 
671 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
672 {
673 	int i;
674 
675 	if (!kvm->debugfs_dentry)
676 		return;
677 
678 	debugfs_remove_recursive(kvm->debugfs_dentry);
679 
680 	if (kvm->debugfs_stat_data) {
681 		for (i = 0; i < kvm_debugfs_num_entries; i++)
682 			kfree(kvm->debugfs_stat_data[i]);
683 		kfree(kvm->debugfs_stat_data);
684 	}
685 }
686 
687 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
688 {
689 	char dir_name[ITOA_MAX_LEN * 2];
690 	struct kvm_stat_data *stat_data;
691 	struct kvm_stats_debugfs_item *p;
692 
693 	if (!debugfs_initialized())
694 		return 0;
695 
696 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
697 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
698 
699 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
700 					 sizeof(*kvm->debugfs_stat_data),
701 					 GFP_KERNEL_ACCOUNT);
702 	if (!kvm->debugfs_stat_data)
703 		return -ENOMEM;
704 
705 	for (p = debugfs_entries; p->name; p++) {
706 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
707 		if (!stat_data)
708 			return -ENOMEM;
709 
710 		stat_data->kvm = kvm;
711 		stat_data->dbgfs_item = p;
712 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
713 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
714 				    kvm->debugfs_dentry, stat_data,
715 				    &stat_fops_per_vm);
716 	}
717 	return 0;
718 }
719 
720 /*
721  * Called after the VM is otherwise initialized, but just before adding it to
722  * the vm_list.
723  */
724 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
725 {
726 	return 0;
727 }
728 
729 /*
730  * Called just after removing the VM from the vm_list, but before doing any
731  * other destruction.
732  */
733 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
734 {
735 }
736 
737 static struct kvm *kvm_create_vm(unsigned long type)
738 {
739 	struct kvm *kvm = kvm_arch_alloc_vm();
740 	int r = -ENOMEM;
741 	int i;
742 
743 	if (!kvm)
744 		return ERR_PTR(-ENOMEM);
745 
746 	spin_lock_init(&kvm->mmu_lock);
747 	mmgrab(current->mm);
748 	kvm->mm = current->mm;
749 	kvm_eventfd_init(kvm);
750 	mutex_init(&kvm->lock);
751 	mutex_init(&kvm->irq_lock);
752 	mutex_init(&kvm->slots_lock);
753 	INIT_LIST_HEAD(&kvm->devices);
754 
755 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
756 
757 	if (init_srcu_struct(&kvm->srcu))
758 		goto out_err_no_srcu;
759 	if (init_srcu_struct(&kvm->irq_srcu))
760 		goto out_err_no_irq_srcu;
761 
762 	refcount_set(&kvm->users_count, 1);
763 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
764 		struct kvm_memslots *slots = kvm_alloc_memslots();
765 
766 		if (!slots)
767 			goto out_err_no_arch_destroy_vm;
768 		/* Generations must be different for each address space. */
769 		slots->generation = i;
770 		rcu_assign_pointer(kvm->memslots[i], slots);
771 	}
772 
773 	for (i = 0; i < KVM_NR_BUSES; i++) {
774 		rcu_assign_pointer(kvm->buses[i],
775 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
776 		if (!kvm->buses[i])
777 			goto out_err_no_arch_destroy_vm;
778 	}
779 
780 	kvm->max_halt_poll_ns = halt_poll_ns;
781 
782 	r = kvm_arch_init_vm(kvm, type);
783 	if (r)
784 		goto out_err_no_arch_destroy_vm;
785 
786 	r = hardware_enable_all();
787 	if (r)
788 		goto out_err_no_disable;
789 
790 #ifdef CONFIG_HAVE_KVM_IRQFD
791 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
792 #endif
793 
794 	r = kvm_init_mmu_notifier(kvm);
795 	if (r)
796 		goto out_err_no_mmu_notifier;
797 
798 	r = kvm_arch_post_init_vm(kvm);
799 	if (r)
800 		goto out_err;
801 
802 	mutex_lock(&kvm_lock);
803 	list_add(&kvm->vm_list, &vm_list);
804 	mutex_unlock(&kvm_lock);
805 
806 	preempt_notifier_inc();
807 
808 	return kvm;
809 
810 out_err:
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 	if (kvm->mmu_notifier.ops)
813 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
814 #endif
815 out_err_no_mmu_notifier:
816 	hardware_disable_all();
817 out_err_no_disable:
818 	kvm_arch_destroy_vm(kvm);
819 out_err_no_arch_destroy_vm:
820 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
821 	for (i = 0; i < KVM_NR_BUSES; i++)
822 		kfree(kvm_get_bus(kvm, i));
823 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
824 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
825 	cleanup_srcu_struct(&kvm->irq_srcu);
826 out_err_no_irq_srcu:
827 	cleanup_srcu_struct(&kvm->srcu);
828 out_err_no_srcu:
829 	kvm_arch_free_vm(kvm);
830 	mmdrop(current->mm);
831 	return ERR_PTR(r);
832 }
833 
834 static void kvm_destroy_devices(struct kvm *kvm)
835 {
836 	struct kvm_device *dev, *tmp;
837 
838 	/*
839 	 * We do not need to take the kvm->lock here, because nobody else
840 	 * has a reference to the struct kvm at this point and therefore
841 	 * cannot access the devices list anyhow.
842 	 */
843 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
844 		list_del(&dev->vm_node);
845 		dev->ops->destroy(dev);
846 	}
847 }
848 
849 static void kvm_destroy_vm(struct kvm *kvm)
850 {
851 	int i;
852 	struct mm_struct *mm = kvm->mm;
853 
854 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
855 	kvm_destroy_vm_debugfs(kvm);
856 	kvm_arch_sync_events(kvm);
857 	mutex_lock(&kvm_lock);
858 	list_del(&kvm->vm_list);
859 	mutex_unlock(&kvm_lock);
860 	kvm_arch_pre_destroy_vm(kvm);
861 
862 	kvm_free_irq_routing(kvm);
863 	for (i = 0; i < KVM_NR_BUSES; i++) {
864 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
865 
866 		if (bus)
867 			kvm_io_bus_destroy(bus);
868 		kvm->buses[i] = NULL;
869 	}
870 	kvm_coalesced_mmio_free(kvm);
871 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
872 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
873 #else
874 	kvm_arch_flush_shadow_all(kvm);
875 #endif
876 	kvm_arch_destroy_vm(kvm);
877 	kvm_destroy_devices(kvm);
878 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
879 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
880 	cleanup_srcu_struct(&kvm->irq_srcu);
881 	cleanup_srcu_struct(&kvm->srcu);
882 	kvm_arch_free_vm(kvm);
883 	preempt_notifier_dec();
884 	hardware_disable_all();
885 	mmdrop(mm);
886 }
887 
888 void kvm_get_kvm(struct kvm *kvm)
889 {
890 	refcount_inc(&kvm->users_count);
891 }
892 EXPORT_SYMBOL_GPL(kvm_get_kvm);
893 
894 void kvm_put_kvm(struct kvm *kvm)
895 {
896 	if (refcount_dec_and_test(&kvm->users_count))
897 		kvm_destroy_vm(kvm);
898 }
899 EXPORT_SYMBOL_GPL(kvm_put_kvm);
900 
901 /*
902  * Used to put a reference that was taken on behalf of an object associated
903  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
904  * of the new file descriptor fails and the reference cannot be transferred to
905  * its final owner.  In such cases, the caller is still actively using @kvm and
906  * will fail miserably if the refcount unexpectedly hits zero.
907  */
908 void kvm_put_kvm_no_destroy(struct kvm *kvm)
909 {
910 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
911 }
912 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
913 
914 static int kvm_vm_release(struct inode *inode, struct file *filp)
915 {
916 	struct kvm *kvm = filp->private_data;
917 
918 	kvm_irqfd_release(kvm);
919 
920 	kvm_put_kvm(kvm);
921 	return 0;
922 }
923 
924 /*
925  * Allocation size is twice as large as the actual dirty bitmap size.
926  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
927  */
928 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
929 {
930 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
931 
932 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
933 	if (!memslot->dirty_bitmap)
934 		return -ENOMEM;
935 
936 	return 0;
937 }
938 
939 /*
940  * Delete a memslot by decrementing the number of used slots and shifting all
941  * other entries in the array forward one spot.
942  */
943 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
944 				      struct kvm_memory_slot *memslot)
945 {
946 	struct kvm_memory_slot *mslots = slots->memslots;
947 	int i;
948 
949 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
950 		return;
951 
952 	slots->used_slots--;
953 
954 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
955 		atomic_set(&slots->lru_slot, 0);
956 
957 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
958 		mslots[i] = mslots[i + 1];
959 		slots->id_to_index[mslots[i].id] = i;
960 	}
961 	mslots[i] = *memslot;
962 	slots->id_to_index[memslot->id] = -1;
963 }
964 
965 /*
966  * "Insert" a new memslot by incrementing the number of used slots.  Returns
967  * the new slot's initial index into the memslots array.
968  */
969 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
970 {
971 	return slots->used_slots++;
972 }
973 
974 /*
975  * Move a changed memslot backwards in the array by shifting existing slots
976  * with a higher GFN toward the front of the array.  Note, the changed memslot
977  * itself is not preserved in the array, i.e. not swapped at this time, only
978  * its new index into the array is tracked.  Returns the changed memslot's
979  * current index into the memslots array.
980  */
981 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
982 					    struct kvm_memory_slot *memslot)
983 {
984 	struct kvm_memory_slot *mslots = slots->memslots;
985 	int i;
986 
987 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
988 	    WARN_ON_ONCE(!slots->used_slots))
989 		return -1;
990 
991 	/*
992 	 * Move the target memslot backward in the array by shifting existing
993 	 * memslots with a higher GFN (than the target memslot) towards the
994 	 * front of the array.
995 	 */
996 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
997 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
998 			break;
999 
1000 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1001 
1002 		/* Shift the next memslot forward one and update its index. */
1003 		mslots[i] = mslots[i + 1];
1004 		slots->id_to_index[mslots[i].id] = i;
1005 	}
1006 	return i;
1007 }
1008 
1009 /*
1010  * Move a changed memslot forwards in the array by shifting existing slots with
1011  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1012  * is not preserved in the array, i.e. not swapped at this time, only its new
1013  * index into the array is tracked.  Returns the changed memslot's final index
1014  * into the memslots array.
1015  */
1016 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1017 					   struct kvm_memory_slot *memslot,
1018 					   int start)
1019 {
1020 	struct kvm_memory_slot *mslots = slots->memslots;
1021 	int i;
1022 
1023 	for (i = start; i > 0; i--) {
1024 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1025 			break;
1026 
1027 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1028 
1029 		/* Shift the next memslot back one and update its index. */
1030 		mslots[i] = mslots[i - 1];
1031 		slots->id_to_index[mslots[i].id] = i;
1032 	}
1033 	return i;
1034 }
1035 
1036 /*
1037  * Re-sort memslots based on their GFN to account for an added, deleted, or
1038  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1039  * memslot lookup.
1040  *
1041  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1042  * at memslots[0] has the highest GFN.
1043  *
1044  * The sorting algorithm takes advantage of having initially sorted memslots
1045  * and knowing the position of the changed memslot.  Sorting is also optimized
1046  * by not swapping the updated memslot and instead only shifting other memslots
1047  * and tracking the new index for the update memslot.  Only once its final
1048  * index is known is the updated memslot copied into its position in the array.
1049  *
1050  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1051  *    the end of the array.
1052  *
1053  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1054  *    end of the array and then it forward to its correct location.
1055  *
1056  *  - When moving a memslot, the algorithm first moves the updated memslot
1057  *    backward to handle the scenario where the memslot's GFN was changed to a
1058  *    lower value.  update_memslots() then falls through and runs the same flow
1059  *    as creating a memslot to move the memslot forward to handle the scenario
1060  *    where its GFN was changed to a higher value.
1061  *
1062  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1063  * historical reasons.  Originally, invalid memslots where denoted by having
1064  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1065  * to the end of the array.  The current algorithm uses dedicated logic to
1066  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1067  *
1068  * The other historical motiviation for highest->lowest was to improve the
1069  * performance of memslot lookup.  KVM originally used a linear search starting
1070  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1071  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1072  * single memslot above the 4gb boundary.  As the largest memslot is also the
1073  * most likely to be referenced, sorting it to the front of the array was
1074  * advantageous.  The current binary search starts from the middle of the array
1075  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1076  */
1077 static void update_memslots(struct kvm_memslots *slots,
1078 			    struct kvm_memory_slot *memslot,
1079 			    enum kvm_mr_change change)
1080 {
1081 	int i;
1082 
1083 	if (change == KVM_MR_DELETE) {
1084 		kvm_memslot_delete(slots, memslot);
1085 	} else {
1086 		if (change == KVM_MR_CREATE)
1087 			i = kvm_memslot_insert_back(slots);
1088 		else
1089 			i = kvm_memslot_move_backward(slots, memslot);
1090 		i = kvm_memslot_move_forward(slots, memslot, i);
1091 
1092 		/*
1093 		 * Copy the memslot to its new position in memslots and update
1094 		 * its index accordingly.
1095 		 */
1096 		slots->memslots[i] = *memslot;
1097 		slots->id_to_index[memslot->id] = i;
1098 	}
1099 }
1100 
1101 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1102 {
1103 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1104 
1105 #ifdef __KVM_HAVE_READONLY_MEM
1106 	valid_flags |= KVM_MEM_READONLY;
1107 #endif
1108 
1109 	if (mem->flags & ~valid_flags)
1110 		return -EINVAL;
1111 
1112 	return 0;
1113 }
1114 
1115 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1116 		int as_id, struct kvm_memslots *slots)
1117 {
1118 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1119 	u64 gen = old_memslots->generation;
1120 
1121 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1122 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1123 
1124 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1125 	synchronize_srcu_expedited(&kvm->srcu);
1126 
1127 	/*
1128 	 * Increment the new memslot generation a second time, dropping the
1129 	 * update in-progress flag and incrementing the generation based on
1130 	 * the number of address spaces.  This provides a unique and easily
1131 	 * identifiable generation number while the memslots are in flux.
1132 	 */
1133 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1134 
1135 	/*
1136 	 * Generations must be unique even across address spaces.  We do not need
1137 	 * a global counter for that, instead the generation space is evenly split
1138 	 * across address spaces.  For example, with two address spaces, address
1139 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1140 	 * use generations 1, 3, 5, ...
1141 	 */
1142 	gen += KVM_ADDRESS_SPACE_NUM;
1143 
1144 	kvm_arch_memslots_updated(kvm, gen);
1145 
1146 	slots->generation = gen;
1147 
1148 	return old_memslots;
1149 }
1150 
1151 /*
1152  * Note, at a minimum, the current number of used slots must be allocated, even
1153  * when deleting a memslot, as we need a complete duplicate of the memslots for
1154  * use when invalidating a memslot prior to deleting/moving the memslot.
1155  */
1156 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1157 					     enum kvm_mr_change change)
1158 {
1159 	struct kvm_memslots *slots;
1160 	size_t old_size, new_size;
1161 
1162 	old_size = sizeof(struct kvm_memslots) +
1163 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1164 
1165 	if (change == KVM_MR_CREATE)
1166 		new_size = old_size + sizeof(struct kvm_memory_slot);
1167 	else
1168 		new_size = old_size;
1169 
1170 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1171 	if (likely(slots))
1172 		memcpy(slots, old, old_size);
1173 
1174 	return slots;
1175 }
1176 
1177 static int kvm_set_memslot(struct kvm *kvm,
1178 			   const struct kvm_userspace_memory_region *mem,
1179 			   struct kvm_memory_slot *old,
1180 			   struct kvm_memory_slot *new, int as_id,
1181 			   enum kvm_mr_change change)
1182 {
1183 	struct kvm_memory_slot *slot;
1184 	struct kvm_memslots *slots;
1185 	int r;
1186 
1187 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1188 	if (!slots)
1189 		return -ENOMEM;
1190 
1191 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1192 		/*
1193 		 * Note, the INVALID flag needs to be in the appropriate entry
1194 		 * in the freshly allocated memslots, not in @old or @new.
1195 		 */
1196 		slot = id_to_memslot(slots, old->id);
1197 		slot->flags |= KVM_MEMSLOT_INVALID;
1198 
1199 		/*
1200 		 * We can re-use the old memslots, the only difference from the
1201 		 * newly installed memslots is the invalid flag, which will get
1202 		 * dropped by update_memslots anyway.  We'll also revert to the
1203 		 * old memslots if preparing the new memory region fails.
1204 		 */
1205 		slots = install_new_memslots(kvm, as_id, slots);
1206 
1207 		/* From this point no new shadow pages pointing to a deleted,
1208 		 * or moved, memslot will be created.
1209 		 *
1210 		 * validation of sp->gfn happens in:
1211 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1212 		 *	- kvm_is_visible_gfn (mmu_check_root)
1213 		 */
1214 		kvm_arch_flush_shadow_memslot(kvm, slot);
1215 	}
1216 
1217 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1218 	if (r)
1219 		goto out_slots;
1220 
1221 	update_memslots(slots, new, change);
1222 	slots = install_new_memslots(kvm, as_id, slots);
1223 
1224 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1225 
1226 	kvfree(slots);
1227 	return 0;
1228 
1229 out_slots:
1230 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1231 		slots = install_new_memslots(kvm, as_id, slots);
1232 	kvfree(slots);
1233 	return r;
1234 }
1235 
1236 static int kvm_delete_memslot(struct kvm *kvm,
1237 			      const struct kvm_userspace_memory_region *mem,
1238 			      struct kvm_memory_slot *old, int as_id)
1239 {
1240 	struct kvm_memory_slot new;
1241 	int r;
1242 
1243 	if (!old->npages)
1244 		return -EINVAL;
1245 
1246 	memset(&new, 0, sizeof(new));
1247 	new.id = old->id;
1248 	/*
1249 	 * This is only for debugging purpose; it should never be referenced
1250 	 * for a removed memslot.
1251 	 */
1252 	new.as_id = as_id;
1253 
1254 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1255 	if (r)
1256 		return r;
1257 
1258 	kvm_free_memslot(kvm, old);
1259 	return 0;
1260 }
1261 
1262 /*
1263  * Allocate some memory and give it an address in the guest physical address
1264  * space.
1265  *
1266  * Discontiguous memory is allowed, mostly for framebuffers.
1267  *
1268  * Must be called holding kvm->slots_lock for write.
1269  */
1270 int __kvm_set_memory_region(struct kvm *kvm,
1271 			    const struct kvm_userspace_memory_region *mem)
1272 {
1273 	struct kvm_memory_slot old, new;
1274 	struct kvm_memory_slot *tmp;
1275 	enum kvm_mr_change change;
1276 	int as_id, id;
1277 	int r;
1278 
1279 	r = check_memory_region_flags(mem);
1280 	if (r)
1281 		return r;
1282 
1283 	as_id = mem->slot >> 16;
1284 	id = (u16)mem->slot;
1285 
1286 	/* General sanity checks */
1287 	if (mem->memory_size & (PAGE_SIZE - 1))
1288 		return -EINVAL;
1289 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1290 		return -EINVAL;
1291 	/* We can read the guest memory with __xxx_user() later on. */
1292 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1293 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1294 			mem->memory_size))
1295 		return -EINVAL;
1296 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1297 		return -EINVAL;
1298 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1299 		return -EINVAL;
1300 
1301 	/*
1302 	 * Make a full copy of the old memslot, the pointer will become stale
1303 	 * when the memslots are re-sorted by update_memslots(), and the old
1304 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1305 	 * to free its resources and for arch specific behavior.
1306 	 */
1307 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1308 	if (tmp) {
1309 		old = *tmp;
1310 		tmp = NULL;
1311 	} else {
1312 		memset(&old, 0, sizeof(old));
1313 		old.id = id;
1314 	}
1315 
1316 	if (!mem->memory_size)
1317 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1318 
1319 	new.as_id = as_id;
1320 	new.id = id;
1321 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1322 	new.npages = mem->memory_size >> PAGE_SHIFT;
1323 	new.flags = mem->flags;
1324 	new.userspace_addr = mem->userspace_addr;
1325 
1326 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1327 		return -EINVAL;
1328 
1329 	if (!old.npages) {
1330 		change = KVM_MR_CREATE;
1331 		new.dirty_bitmap = NULL;
1332 		memset(&new.arch, 0, sizeof(new.arch));
1333 	} else { /* Modify an existing slot. */
1334 		if ((new.userspace_addr != old.userspace_addr) ||
1335 		    (new.npages != old.npages) ||
1336 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1337 			return -EINVAL;
1338 
1339 		if (new.base_gfn != old.base_gfn)
1340 			change = KVM_MR_MOVE;
1341 		else if (new.flags != old.flags)
1342 			change = KVM_MR_FLAGS_ONLY;
1343 		else /* Nothing to change. */
1344 			return 0;
1345 
1346 		/* Copy dirty_bitmap and arch from the current memslot. */
1347 		new.dirty_bitmap = old.dirty_bitmap;
1348 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1349 	}
1350 
1351 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1352 		/* Check for overlaps */
1353 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1354 			if (tmp->id == id)
1355 				continue;
1356 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1357 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1358 				return -EEXIST;
1359 		}
1360 	}
1361 
1362 	/* Allocate/free page dirty bitmap as needed */
1363 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1364 		new.dirty_bitmap = NULL;
1365 	else if (!new.dirty_bitmap) {
1366 		r = kvm_alloc_dirty_bitmap(&new);
1367 		if (r)
1368 			return r;
1369 
1370 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1371 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1372 	}
1373 
1374 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1375 	if (r)
1376 		goto out_bitmap;
1377 
1378 	if (old.dirty_bitmap && !new.dirty_bitmap)
1379 		kvm_destroy_dirty_bitmap(&old);
1380 	return 0;
1381 
1382 out_bitmap:
1383 	if (new.dirty_bitmap && !old.dirty_bitmap)
1384 		kvm_destroy_dirty_bitmap(&new);
1385 	return r;
1386 }
1387 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1388 
1389 int kvm_set_memory_region(struct kvm *kvm,
1390 			  const struct kvm_userspace_memory_region *mem)
1391 {
1392 	int r;
1393 
1394 	mutex_lock(&kvm->slots_lock);
1395 	r = __kvm_set_memory_region(kvm, mem);
1396 	mutex_unlock(&kvm->slots_lock);
1397 	return r;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1400 
1401 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1402 					  struct kvm_userspace_memory_region *mem)
1403 {
1404 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1405 		return -EINVAL;
1406 
1407 	return kvm_set_memory_region(kvm, mem);
1408 }
1409 
1410 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1411 /**
1412  * kvm_get_dirty_log - get a snapshot of dirty pages
1413  * @kvm:	pointer to kvm instance
1414  * @log:	slot id and address to which we copy the log
1415  * @is_dirty:	set to '1' if any dirty pages were found
1416  * @memslot:	set to the associated memslot, always valid on success
1417  */
1418 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1419 		      int *is_dirty, struct kvm_memory_slot **memslot)
1420 {
1421 	struct kvm_memslots *slots;
1422 	int i, as_id, id;
1423 	unsigned long n;
1424 	unsigned long any = 0;
1425 
1426 	*memslot = NULL;
1427 	*is_dirty = 0;
1428 
1429 	as_id = log->slot >> 16;
1430 	id = (u16)log->slot;
1431 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1432 		return -EINVAL;
1433 
1434 	slots = __kvm_memslots(kvm, as_id);
1435 	*memslot = id_to_memslot(slots, id);
1436 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1437 		return -ENOENT;
1438 
1439 	kvm_arch_sync_dirty_log(kvm, *memslot);
1440 
1441 	n = kvm_dirty_bitmap_bytes(*memslot);
1442 
1443 	for (i = 0; !any && i < n/sizeof(long); ++i)
1444 		any = (*memslot)->dirty_bitmap[i];
1445 
1446 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1447 		return -EFAULT;
1448 
1449 	if (any)
1450 		*is_dirty = 1;
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1454 
1455 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1456 /**
1457  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1458  *	and reenable dirty page tracking for the corresponding pages.
1459  * @kvm:	pointer to kvm instance
1460  * @log:	slot id and address to which we copy the log
1461  *
1462  * We need to keep it in mind that VCPU threads can write to the bitmap
1463  * concurrently. So, to avoid losing track of dirty pages we keep the
1464  * following order:
1465  *
1466  *    1. Take a snapshot of the bit and clear it if needed.
1467  *    2. Write protect the corresponding page.
1468  *    3. Copy the snapshot to the userspace.
1469  *    4. Upon return caller flushes TLB's if needed.
1470  *
1471  * Between 2 and 4, the guest may write to the page using the remaining TLB
1472  * entry.  This is not a problem because the page is reported dirty using
1473  * the snapshot taken before and step 4 ensures that writes done after
1474  * exiting to userspace will be logged for the next call.
1475  *
1476  */
1477 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1478 {
1479 	struct kvm_memslots *slots;
1480 	struct kvm_memory_slot *memslot;
1481 	int i, as_id, id;
1482 	unsigned long n;
1483 	unsigned long *dirty_bitmap;
1484 	unsigned long *dirty_bitmap_buffer;
1485 	bool flush;
1486 
1487 	as_id = log->slot >> 16;
1488 	id = (u16)log->slot;
1489 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1490 		return -EINVAL;
1491 
1492 	slots = __kvm_memslots(kvm, as_id);
1493 	memslot = id_to_memslot(slots, id);
1494 	if (!memslot || !memslot->dirty_bitmap)
1495 		return -ENOENT;
1496 
1497 	dirty_bitmap = memslot->dirty_bitmap;
1498 
1499 	kvm_arch_sync_dirty_log(kvm, memslot);
1500 
1501 	n = kvm_dirty_bitmap_bytes(memslot);
1502 	flush = false;
1503 	if (kvm->manual_dirty_log_protect) {
1504 		/*
1505 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1506 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1507 		 * is some code duplication between this function and
1508 		 * kvm_get_dirty_log, but hopefully all architecture
1509 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1510 		 * can be eliminated.
1511 		 */
1512 		dirty_bitmap_buffer = dirty_bitmap;
1513 	} else {
1514 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1515 		memset(dirty_bitmap_buffer, 0, n);
1516 
1517 		spin_lock(&kvm->mmu_lock);
1518 		for (i = 0; i < n / sizeof(long); i++) {
1519 			unsigned long mask;
1520 			gfn_t offset;
1521 
1522 			if (!dirty_bitmap[i])
1523 				continue;
1524 
1525 			flush = true;
1526 			mask = xchg(&dirty_bitmap[i], 0);
1527 			dirty_bitmap_buffer[i] = mask;
1528 
1529 			offset = i * BITS_PER_LONG;
1530 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1531 								offset, mask);
1532 		}
1533 		spin_unlock(&kvm->mmu_lock);
1534 	}
1535 
1536 	if (flush)
1537 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1538 
1539 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1540 		return -EFAULT;
1541 	return 0;
1542 }
1543 
1544 
1545 /**
1546  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1547  * @kvm: kvm instance
1548  * @log: slot id and address to which we copy the log
1549  *
1550  * Steps 1-4 below provide general overview of dirty page logging. See
1551  * kvm_get_dirty_log_protect() function description for additional details.
1552  *
1553  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1554  * always flush the TLB (step 4) even if previous step failed  and the dirty
1555  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1556  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1557  * writes will be marked dirty for next log read.
1558  *
1559  *   1. Take a snapshot of the bit and clear it if needed.
1560  *   2. Write protect the corresponding page.
1561  *   3. Copy the snapshot to the userspace.
1562  *   4. Flush TLB's if needed.
1563  */
1564 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1565 				      struct kvm_dirty_log *log)
1566 {
1567 	int r;
1568 
1569 	mutex_lock(&kvm->slots_lock);
1570 
1571 	r = kvm_get_dirty_log_protect(kvm, log);
1572 
1573 	mutex_unlock(&kvm->slots_lock);
1574 	return r;
1575 }
1576 
1577 /**
1578  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1579  *	and reenable dirty page tracking for the corresponding pages.
1580  * @kvm:	pointer to kvm instance
1581  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1582  */
1583 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1584 				       struct kvm_clear_dirty_log *log)
1585 {
1586 	struct kvm_memslots *slots;
1587 	struct kvm_memory_slot *memslot;
1588 	int as_id, id;
1589 	gfn_t offset;
1590 	unsigned long i, n;
1591 	unsigned long *dirty_bitmap;
1592 	unsigned long *dirty_bitmap_buffer;
1593 	bool flush;
1594 
1595 	as_id = log->slot >> 16;
1596 	id = (u16)log->slot;
1597 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1598 		return -EINVAL;
1599 
1600 	if (log->first_page & 63)
1601 		return -EINVAL;
1602 
1603 	slots = __kvm_memslots(kvm, as_id);
1604 	memslot = id_to_memslot(slots, id);
1605 	if (!memslot || !memslot->dirty_bitmap)
1606 		return -ENOENT;
1607 
1608 	dirty_bitmap = memslot->dirty_bitmap;
1609 
1610 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1611 
1612 	if (log->first_page > memslot->npages ||
1613 	    log->num_pages > memslot->npages - log->first_page ||
1614 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1615 	    return -EINVAL;
1616 
1617 	kvm_arch_sync_dirty_log(kvm, memslot);
1618 
1619 	flush = false;
1620 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1621 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1622 		return -EFAULT;
1623 
1624 	spin_lock(&kvm->mmu_lock);
1625 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1626 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1627 	     i++, offset += BITS_PER_LONG) {
1628 		unsigned long mask = *dirty_bitmap_buffer++;
1629 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1630 		if (!mask)
1631 			continue;
1632 
1633 		mask &= atomic_long_fetch_andnot(mask, p);
1634 
1635 		/*
1636 		 * mask contains the bits that really have been cleared.  This
1637 		 * never includes any bits beyond the length of the memslot (if
1638 		 * the length is not aligned to 64 pages), therefore it is not
1639 		 * a problem if userspace sets them in log->dirty_bitmap.
1640 		*/
1641 		if (mask) {
1642 			flush = true;
1643 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1644 								offset, mask);
1645 		}
1646 	}
1647 	spin_unlock(&kvm->mmu_lock);
1648 
1649 	if (flush)
1650 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1651 
1652 	return 0;
1653 }
1654 
1655 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1656 					struct kvm_clear_dirty_log *log)
1657 {
1658 	int r;
1659 
1660 	mutex_lock(&kvm->slots_lock);
1661 
1662 	r = kvm_clear_dirty_log_protect(kvm, log);
1663 
1664 	mutex_unlock(&kvm->slots_lock);
1665 	return r;
1666 }
1667 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1668 
1669 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1670 {
1671 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1674 
1675 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1676 {
1677 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1680 
1681 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1682 {
1683 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1684 
1685 	return kvm_is_visible_memslot(memslot);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1688 
1689 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1690 {
1691 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1692 
1693 	return kvm_is_visible_memslot(memslot);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1696 
1697 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1698 {
1699 	struct vm_area_struct *vma;
1700 	unsigned long addr, size;
1701 
1702 	size = PAGE_SIZE;
1703 
1704 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1705 	if (kvm_is_error_hva(addr))
1706 		return PAGE_SIZE;
1707 
1708 	mmap_read_lock(current->mm);
1709 	vma = find_vma(current->mm, addr);
1710 	if (!vma)
1711 		goto out;
1712 
1713 	size = vma_kernel_pagesize(vma);
1714 
1715 out:
1716 	mmap_read_unlock(current->mm);
1717 
1718 	return size;
1719 }
1720 
1721 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1722 {
1723 	return slot->flags & KVM_MEM_READONLY;
1724 }
1725 
1726 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1727 				       gfn_t *nr_pages, bool write)
1728 {
1729 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1730 		return KVM_HVA_ERR_BAD;
1731 
1732 	if (memslot_is_readonly(slot) && write)
1733 		return KVM_HVA_ERR_RO_BAD;
1734 
1735 	if (nr_pages)
1736 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1737 
1738 	return __gfn_to_hva_memslot(slot, gfn);
1739 }
1740 
1741 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1742 				     gfn_t *nr_pages)
1743 {
1744 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1745 }
1746 
1747 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1748 					gfn_t gfn)
1749 {
1750 	return gfn_to_hva_many(slot, gfn, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1753 
1754 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1755 {
1756 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_hva);
1759 
1760 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1761 {
1762 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1765 
1766 /*
1767  * Return the hva of a @gfn and the R/W attribute if possible.
1768  *
1769  * @slot: the kvm_memory_slot which contains @gfn
1770  * @gfn: the gfn to be translated
1771  * @writable: used to return the read/write attribute of the @slot if the hva
1772  * is valid and @writable is not NULL
1773  */
1774 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1775 				      gfn_t gfn, bool *writable)
1776 {
1777 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1778 
1779 	if (!kvm_is_error_hva(hva) && writable)
1780 		*writable = !memslot_is_readonly(slot);
1781 
1782 	return hva;
1783 }
1784 
1785 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1786 {
1787 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1788 
1789 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1790 }
1791 
1792 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1793 {
1794 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1795 
1796 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1797 }
1798 
1799 static inline int check_user_page_hwpoison(unsigned long addr)
1800 {
1801 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1802 
1803 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1804 	return rc == -EHWPOISON;
1805 }
1806 
1807 /*
1808  * The fast path to get the writable pfn which will be stored in @pfn,
1809  * true indicates success, otherwise false is returned.  It's also the
1810  * only part that runs if we can in atomic context.
1811  */
1812 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1813 			    bool *writable, kvm_pfn_t *pfn)
1814 {
1815 	struct page *page[1];
1816 
1817 	/*
1818 	 * Fast pin a writable pfn only if it is a write fault request
1819 	 * or the caller allows to map a writable pfn for a read fault
1820 	 * request.
1821 	 */
1822 	if (!(write_fault || writable))
1823 		return false;
1824 
1825 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1826 		*pfn = page_to_pfn(page[0]);
1827 
1828 		if (writable)
1829 			*writable = true;
1830 		return true;
1831 	}
1832 
1833 	return false;
1834 }
1835 
1836 /*
1837  * The slow path to get the pfn of the specified host virtual address,
1838  * 1 indicates success, -errno is returned if error is detected.
1839  */
1840 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1841 			   bool *writable, kvm_pfn_t *pfn)
1842 {
1843 	unsigned int flags = FOLL_HWPOISON;
1844 	struct page *page;
1845 	int npages = 0;
1846 
1847 	might_sleep();
1848 
1849 	if (writable)
1850 		*writable = write_fault;
1851 
1852 	if (write_fault)
1853 		flags |= FOLL_WRITE;
1854 	if (async)
1855 		flags |= FOLL_NOWAIT;
1856 
1857 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1858 	if (npages != 1)
1859 		return npages;
1860 
1861 	/* map read fault as writable if possible */
1862 	if (unlikely(!write_fault) && writable) {
1863 		struct page *wpage;
1864 
1865 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1866 			*writable = true;
1867 			put_page(page);
1868 			page = wpage;
1869 		}
1870 	}
1871 	*pfn = page_to_pfn(page);
1872 	return npages;
1873 }
1874 
1875 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1876 {
1877 	if (unlikely(!(vma->vm_flags & VM_READ)))
1878 		return false;
1879 
1880 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1881 		return false;
1882 
1883 	return true;
1884 }
1885 
1886 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1887 			       unsigned long addr, bool *async,
1888 			       bool write_fault, bool *writable,
1889 			       kvm_pfn_t *p_pfn)
1890 {
1891 	unsigned long pfn;
1892 	int r;
1893 
1894 	r = follow_pfn(vma, addr, &pfn);
1895 	if (r) {
1896 		/*
1897 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1898 		 * not call the fault handler, so do it here.
1899 		 */
1900 		bool unlocked = false;
1901 		r = fixup_user_fault(current->mm, addr,
1902 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1903 				     &unlocked);
1904 		if (unlocked)
1905 			return -EAGAIN;
1906 		if (r)
1907 			return r;
1908 
1909 		r = follow_pfn(vma, addr, &pfn);
1910 		if (r)
1911 			return r;
1912 
1913 	}
1914 
1915 	if (writable)
1916 		*writable = true;
1917 
1918 	/*
1919 	 * Get a reference here because callers of *hva_to_pfn* and
1920 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1921 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1922 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1923 	 * simply do nothing for reserved pfns.
1924 	 *
1925 	 * Whoever called remap_pfn_range is also going to call e.g.
1926 	 * unmap_mapping_range before the underlying pages are freed,
1927 	 * causing a call to our MMU notifier.
1928 	 */
1929 	kvm_get_pfn(pfn);
1930 
1931 	*p_pfn = pfn;
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Pin guest page in memory and return its pfn.
1937  * @addr: host virtual address which maps memory to the guest
1938  * @atomic: whether this function can sleep
1939  * @async: whether this function need to wait IO complete if the
1940  *         host page is not in the memory
1941  * @write_fault: whether we should get a writable host page
1942  * @writable: whether it allows to map a writable host page for !@write_fault
1943  *
1944  * The function will map a writable host page for these two cases:
1945  * 1): @write_fault = true
1946  * 2): @write_fault = false && @writable, @writable will tell the caller
1947  *     whether the mapping is writable.
1948  */
1949 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1950 			bool write_fault, bool *writable)
1951 {
1952 	struct vm_area_struct *vma;
1953 	kvm_pfn_t pfn = 0;
1954 	int npages, r;
1955 
1956 	/* we can do it either atomically or asynchronously, not both */
1957 	BUG_ON(atomic && async);
1958 
1959 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1960 		return pfn;
1961 
1962 	if (atomic)
1963 		return KVM_PFN_ERR_FAULT;
1964 
1965 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1966 	if (npages == 1)
1967 		return pfn;
1968 
1969 	mmap_read_lock(current->mm);
1970 	if (npages == -EHWPOISON ||
1971 	      (!async && check_user_page_hwpoison(addr))) {
1972 		pfn = KVM_PFN_ERR_HWPOISON;
1973 		goto exit;
1974 	}
1975 
1976 retry:
1977 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1978 
1979 	if (vma == NULL)
1980 		pfn = KVM_PFN_ERR_FAULT;
1981 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1982 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1983 		if (r == -EAGAIN)
1984 			goto retry;
1985 		if (r < 0)
1986 			pfn = KVM_PFN_ERR_FAULT;
1987 	} else {
1988 		if (async && vma_is_valid(vma, write_fault))
1989 			*async = true;
1990 		pfn = KVM_PFN_ERR_FAULT;
1991 	}
1992 exit:
1993 	mmap_read_unlock(current->mm);
1994 	return pfn;
1995 }
1996 
1997 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1998 			       bool atomic, bool *async, bool write_fault,
1999 			       bool *writable)
2000 {
2001 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2002 
2003 	if (addr == KVM_HVA_ERR_RO_BAD) {
2004 		if (writable)
2005 			*writable = false;
2006 		return KVM_PFN_ERR_RO_FAULT;
2007 	}
2008 
2009 	if (kvm_is_error_hva(addr)) {
2010 		if (writable)
2011 			*writable = false;
2012 		return KVM_PFN_NOSLOT;
2013 	}
2014 
2015 	/* Do not map writable pfn in the readonly memslot. */
2016 	if (writable && memslot_is_readonly(slot)) {
2017 		*writable = false;
2018 		writable = NULL;
2019 	}
2020 
2021 	return hva_to_pfn(addr, atomic, async, write_fault,
2022 			  writable);
2023 }
2024 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2025 
2026 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2027 		      bool *writable)
2028 {
2029 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2030 				    write_fault, writable);
2031 }
2032 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2033 
2034 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2035 {
2036 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2037 }
2038 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2039 
2040 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2041 {
2042 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2043 }
2044 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2045 
2046 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2047 {
2048 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2051 
2052 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2053 {
2054 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2055 }
2056 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2057 
2058 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2059 {
2060 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2063 
2064 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2065 			    struct page **pages, int nr_pages)
2066 {
2067 	unsigned long addr;
2068 	gfn_t entry = 0;
2069 
2070 	addr = gfn_to_hva_many(slot, gfn, &entry);
2071 	if (kvm_is_error_hva(addr))
2072 		return -1;
2073 
2074 	if (entry < nr_pages)
2075 		return 0;
2076 
2077 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2078 }
2079 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2080 
2081 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2082 {
2083 	if (is_error_noslot_pfn(pfn))
2084 		return KVM_ERR_PTR_BAD_PAGE;
2085 
2086 	if (kvm_is_reserved_pfn(pfn)) {
2087 		WARN_ON(1);
2088 		return KVM_ERR_PTR_BAD_PAGE;
2089 	}
2090 
2091 	return pfn_to_page(pfn);
2092 }
2093 
2094 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2095 {
2096 	kvm_pfn_t pfn;
2097 
2098 	pfn = gfn_to_pfn(kvm, gfn);
2099 
2100 	return kvm_pfn_to_page(pfn);
2101 }
2102 EXPORT_SYMBOL_GPL(gfn_to_page);
2103 
2104 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2105 {
2106 	if (pfn == 0)
2107 		return;
2108 
2109 	if (cache)
2110 		cache->pfn = cache->gfn = 0;
2111 
2112 	if (dirty)
2113 		kvm_release_pfn_dirty(pfn);
2114 	else
2115 		kvm_release_pfn_clean(pfn);
2116 }
2117 
2118 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2119 				 struct gfn_to_pfn_cache *cache, u64 gen)
2120 {
2121 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2122 
2123 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2124 	cache->gfn = gfn;
2125 	cache->dirty = false;
2126 	cache->generation = gen;
2127 }
2128 
2129 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2130 			 struct kvm_host_map *map,
2131 			 struct gfn_to_pfn_cache *cache,
2132 			 bool atomic)
2133 {
2134 	kvm_pfn_t pfn;
2135 	void *hva = NULL;
2136 	struct page *page = KVM_UNMAPPED_PAGE;
2137 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2138 	u64 gen = slots->generation;
2139 
2140 	if (!map)
2141 		return -EINVAL;
2142 
2143 	if (cache) {
2144 		if (!cache->pfn || cache->gfn != gfn ||
2145 			cache->generation != gen) {
2146 			if (atomic)
2147 				return -EAGAIN;
2148 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2149 		}
2150 		pfn = cache->pfn;
2151 	} else {
2152 		if (atomic)
2153 			return -EAGAIN;
2154 		pfn = gfn_to_pfn_memslot(slot, gfn);
2155 	}
2156 	if (is_error_noslot_pfn(pfn))
2157 		return -EINVAL;
2158 
2159 	if (pfn_valid(pfn)) {
2160 		page = pfn_to_page(pfn);
2161 		if (atomic)
2162 			hva = kmap_atomic(page);
2163 		else
2164 			hva = kmap(page);
2165 #ifdef CONFIG_HAS_IOMEM
2166 	} else if (!atomic) {
2167 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2168 	} else {
2169 		return -EINVAL;
2170 #endif
2171 	}
2172 
2173 	if (!hva)
2174 		return -EFAULT;
2175 
2176 	map->page = page;
2177 	map->hva = hva;
2178 	map->pfn = pfn;
2179 	map->gfn = gfn;
2180 
2181 	return 0;
2182 }
2183 
2184 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2185 		struct gfn_to_pfn_cache *cache, bool atomic)
2186 {
2187 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2188 			cache, atomic);
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2191 
2192 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2193 {
2194 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2195 		NULL, false);
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2198 
2199 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2200 			struct kvm_host_map *map,
2201 			struct gfn_to_pfn_cache *cache,
2202 			bool dirty, bool atomic)
2203 {
2204 	if (!map)
2205 		return;
2206 
2207 	if (!map->hva)
2208 		return;
2209 
2210 	if (map->page != KVM_UNMAPPED_PAGE) {
2211 		if (atomic)
2212 			kunmap_atomic(map->hva);
2213 		else
2214 			kunmap(map->page);
2215 	}
2216 #ifdef CONFIG_HAS_IOMEM
2217 	else if (!atomic)
2218 		memunmap(map->hva);
2219 	else
2220 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2221 #endif
2222 
2223 	if (dirty)
2224 		mark_page_dirty_in_slot(memslot, map->gfn);
2225 
2226 	if (cache)
2227 		cache->dirty |= dirty;
2228 	else
2229 		kvm_release_pfn(map->pfn, dirty, NULL);
2230 
2231 	map->hva = NULL;
2232 	map->page = NULL;
2233 }
2234 
2235 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2236 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2237 {
2238 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2239 			cache, dirty, atomic);
2240 	return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2243 
2244 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2245 {
2246 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2247 			dirty, false);
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2250 
2251 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2252 {
2253 	kvm_pfn_t pfn;
2254 
2255 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2256 
2257 	return kvm_pfn_to_page(pfn);
2258 }
2259 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2260 
2261 void kvm_release_page_clean(struct page *page)
2262 {
2263 	WARN_ON(is_error_page(page));
2264 
2265 	kvm_release_pfn_clean(page_to_pfn(page));
2266 }
2267 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2268 
2269 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2270 {
2271 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2272 		put_page(pfn_to_page(pfn));
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2275 
2276 void kvm_release_page_dirty(struct page *page)
2277 {
2278 	WARN_ON(is_error_page(page));
2279 
2280 	kvm_release_pfn_dirty(page_to_pfn(page));
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2283 
2284 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2285 {
2286 	kvm_set_pfn_dirty(pfn);
2287 	kvm_release_pfn_clean(pfn);
2288 }
2289 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2290 
2291 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2292 {
2293 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2294 		SetPageDirty(pfn_to_page(pfn));
2295 }
2296 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2297 
2298 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2299 {
2300 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2301 		mark_page_accessed(pfn_to_page(pfn));
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2304 
2305 void kvm_get_pfn(kvm_pfn_t pfn)
2306 {
2307 	if (!kvm_is_reserved_pfn(pfn))
2308 		get_page(pfn_to_page(pfn));
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2311 
2312 static int next_segment(unsigned long len, int offset)
2313 {
2314 	if (len > PAGE_SIZE - offset)
2315 		return PAGE_SIZE - offset;
2316 	else
2317 		return len;
2318 }
2319 
2320 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2321 				 void *data, int offset, int len)
2322 {
2323 	int r;
2324 	unsigned long addr;
2325 
2326 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2327 	if (kvm_is_error_hva(addr))
2328 		return -EFAULT;
2329 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2330 	if (r)
2331 		return -EFAULT;
2332 	return 0;
2333 }
2334 
2335 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2336 			int len)
2337 {
2338 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2339 
2340 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2343 
2344 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2345 			     int offset, int len)
2346 {
2347 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2348 
2349 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2352 
2353 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2354 {
2355 	gfn_t gfn = gpa >> PAGE_SHIFT;
2356 	int seg;
2357 	int offset = offset_in_page(gpa);
2358 	int ret;
2359 
2360 	while ((seg = next_segment(len, offset)) != 0) {
2361 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2362 		if (ret < 0)
2363 			return ret;
2364 		offset = 0;
2365 		len -= seg;
2366 		data += seg;
2367 		++gfn;
2368 	}
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_read_guest);
2372 
2373 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2374 {
2375 	gfn_t gfn = gpa >> PAGE_SHIFT;
2376 	int seg;
2377 	int offset = offset_in_page(gpa);
2378 	int ret;
2379 
2380 	while ((seg = next_segment(len, offset)) != 0) {
2381 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2382 		if (ret < 0)
2383 			return ret;
2384 		offset = 0;
2385 		len -= seg;
2386 		data += seg;
2387 		++gfn;
2388 	}
2389 	return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2392 
2393 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2394 			           void *data, int offset, unsigned long len)
2395 {
2396 	int r;
2397 	unsigned long addr;
2398 
2399 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2400 	if (kvm_is_error_hva(addr))
2401 		return -EFAULT;
2402 	pagefault_disable();
2403 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2404 	pagefault_enable();
2405 	if (r)
2406 		return -EFAULT;
2407 	return 0;
2408 }
2409 
2410 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2411 			       void *data, unsigned long len)
2412 {
2413 	gfn_t gfn = gpa >> PAGE_SHIFT;
2414 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2415 	int offset = offset_in_page(gpa);
2416 
2417 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2418 }
2419 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2420 
2421 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2422 			          const void *data, int offset, int len)
2423 {
2424 	int r;
2425 	unsigned long addr;
2426 
2427 	addr = gfn_to_hva_memslot(memslot, gfn);
2428 	if (kvm_is_error_hva(addr))
2429 		return -EFAULT;
2430 	r = __copy_to_user((void __user *)addr + offset, data, len);
2431 	if (r)
2432 		return -EFAULT;
2433 	mark_page_dirty_in_slot(memslot, gfn);
2434 	return 0;
2435 }
2436 
2437 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2438 			 const void *data, int offset, int len)
2439 {
2440 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2441 
2442 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2445 
2446 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2447 			      const void *data, int offset, int len)
2448 {
2449 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2450 
2451 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2454 
2455 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2456 		    unsigned long len)
2457 {
2458 	gfn_t gfn = gpa >> PAGE_SHIFT;
2459 	int seg;
2460 	int offset = offset_in_page(gpa);
2461 	int ret;
2462 
2463 	while ((seg = next_segment(len, offset)) != 0) {
2464 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2465 		if (ret < 0)
2466 			return ret;
2467 		offset = 0;
2468 		len -= seg;
2469 		data += seg;
2470 		++gfn;
2471 	}
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_write_guest);
2475 
2476 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2477 		         unsigned long len)
2478 {
2479 	gfn_t gfn = gpa >> PAGE_SHIFT;
2480 	int seg;
2481 	int offset = offset_in_page(gpa);
2482 	int ret;
2483 
2484 	while ((seg = next_segment(len, offset)) != 0) {
2485 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2486 		if (ret < 0)
2487 			return ret;
2488 		offset = 0;
2489 		len -= seg;
2490 		data += seg;
2491 		++gfn;
2492 	}
2493 	return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2496 
2497 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2498 				       struct gfn_to_hva_cache *ghc,
2499 				       gpa_t gpa, unsigned long len)
2500 {
2501 	int offset = offset_in_page(gpa);
2502 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2503 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2504 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2505 	gfn_t nr_pages_avail;
2506 
2507 	/* Update ghc->generation before performing any error checks. */
2508 	ghc->generation = slots->generation;
2509 
2510 	if (start_gfn > end_gfn) {
2511 		ghc->hva = KVM_HVA_ERR_BAD;
2512 		return -EINVAL;
2513 	}
2514 
2515 	/*
2516 	 * If the requested region crosses two memslots, we still
2517 	 * verify that the entire region is valid here.
2518 	 */
2519 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2520 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2521 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2522 					   &nr_pages_avail);
2523 		if (kvm_is_error_hva(ghc->hva))
2524 			return -EFAULT;
2525 	}
2526 
2527 	/* Use the slow path for cross page reads and writes. */
2528 	if (nr_pages_needed == 1)
2529 		ghc->hva += offset;
2530 	else
2531 		ghc->memslot = NULL;
2532 
2533 	ghc->gpa = gpa;
2534 	ghc->len = len;
2535 	return 0;
2536 }
2537 
2538 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2539 			      gpa_t gpa, unsigned long len)
2540 {
2541 	struct kvm_memslots *slots = kvm_memslots(kvm);
2542 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2545 
2546 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2547 				  void *data, unsigned int offset,
2548 				  unsigned long len)
2549 {
2550 	struct kvm_memslots *slots = kvm_memslots(kvm);
2551 	int r;
2552 	gpa_t gpa = ghc->gpa + offset;
2553 
2554 	BUG_ON(len + offset > ghc->len);
2555 
2556 	if (slots->generation != ghc->generation) {
2557 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2558 			return -EFAULT;
2559 	}
2560 
2561 	if (kvm_is_error_hva(ghc->hva))
2562 		return -EFAULT;
2563 
2564 	if (unlikely(!ghc->memslot))
2565 		return kvm_write_guest(kvm, gpa, data, len);
2566 
2567 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2568 	if (r)
2569 		return -EFAULT;
2570 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2571 
2572 	return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2575 
2576 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2577 			   void *data, unsigned long len)
2578 {
2579 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2580 }
2581 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2582 
2583 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2584 				 void *data, unsigned int offset,
2585 				 unsigned long len)
2586 {
2587 	struct kvm_memslots *slots = kvm_memslots(kvm);
2588 	int r;
2589 	gpa_t gpa = ghc->gpa + offset;
2590 
2591 	BUG_ON(len + offset > ghc->len);
2592 
2593 	if (slots->generation != ghc->generation) {
2594 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2595 			return -EFAULT;
2596 	}
2597 
2598 	if (kvm_is_error_hva(ghc->hva))
2599 		return -EFAULT;
2600 
2601 	if (unlikely(!ghc->memslot))
2602 		return kvm_read_guest(kvm, gpa, data, len);
2603 
2604 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2605 	if (r)
2606 		return -EFAULT;
2607 
2608 	return 0;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2611 
2612 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2613 			  void *data, unsigned long len)
2614 {
2615 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2616 }
2617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2618 
2619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2620 {
2621 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2622 
2623 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2624 }
2625 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2626 
2627 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2628 {
2629 	gfn_t gfn = gpa >> PAGE_SHIFT;
2630 	int seg;
2631 	int offset = offset_in_page(gpa);
2632 	int ret;
2633 
2634 	while ((seg = next_segment(len, offset)) != 0) {
2635 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2636 		if (ret < 0)
2637 			return ret;
2638 		offset = 0;
2639 		len -= seg;
2640 		++gfn;
2641 	}
2642 	return 0;
2643 }
2644 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2645 
2646 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
2647 {
2648 	if (memslot && memslot->dirty_bitmap) {
2649 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2650 
2651 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2652 	}
2653 }
2654 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2655 
2656 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2657 {
2658 	struct kvm_memory_slot *memslot;
2659 
2660 	memslot = gfn_to_memslot(kvm, gfn);
2661 	mark_page_dirty_in_slot(memslot, gfn);
2662 }
2663 EXPORT_SYMBOL_GPL(mark_page_dirty);
2664 
2665 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2666 {
2667 	struct kvm_memory_slot *memslot;
2668 
2669 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2670 	mark_page_dirty_in_slot(memslot, gfn);
2671 }
2672 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2673 
2674 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2675 {
2676 	if (!vcpu->sigset_active)
2677 		return;
2678 
2679 	/*
2680 	 * This does a lockless modification of ->real_blocked, which is fine
2681 	 * because, only current can change ->real_blocked and all readers of
2682 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2683 	 * of ->blocked.
2684 	 */
2685 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2686 }
2687 
2688 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2689 {
2690 	if (!vcpu->sigset_active)
2691 		return;
2692 
2693 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2694 	sigemptyset(&current->real_blocked);
2695 }
2696 
2697 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2698 {
2699 	unsigned int old, val, grow, grow_start;
2700 
2701 	old = val = vcpu->halt_poll_ns;
2702 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2703 	grow = READ_ONCE(halt_poll_ns_grow);
2704 	if (!grow)
2705 		goto out;
2706 
2707 	val *= grow;
2708 	if (val < grow_start)
2709 		val = grow_start;
2710 
2711 	if (val > halt_poll_ns)
2712 		val = halt_poll_ns;
2713 
2714 	vcpu->halt_poll_ns = val;
2715 out:
2716 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2717 }
2718 
2719 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2720 {
2721 	unsigned int old, val, shrink;
2722 
2723 	old = val = vcpu->halt_poll_ns;
2724 	shrink = READ_ONCE(halt_poll_ns_shrink);
2725 	if (shrink == 0)
2726 		val = 0;
2727 	else
2728 		val /= shrink;
2729 
2730 	vcpu->halt_poll_ns = val;
2731 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2732 }
2733 
2734 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2735 {
2736 	int ret = -EINTR;
2737 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2738 
2739 	if (kvm_arch_vcpu_runnable(vcpu)) {
2740 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2741 		goto out;
2742 	}
2743 	if (kvm_cpu_has_pending_timer(vcpu))
2744 		goto out;
2745 	if (signal_pending(current))
2746 		goto out;
2747 
2748 	ret = 0;
2749 out:
2750 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2751 	return ret;
2752 }
2753 
2754 static inline void
2755 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2756 {
2757 	if (waited)
2758 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2759 	else
2760 		vcpu->stat.halt_poll_success_ns += poll_ns;
2761 }
2762 
2763 /*
2764  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2765  */
2766 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2767 {
2768 	ktime_t start, cur, poll_end;
2769 	bool waited = false;
2770 	u64 block_ns;
2771 
2772 	kvm_arch_vcpu_blocking(vcpu);
2773 
2774 	start = cur = poll_end = ktime_get();
2775 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2776 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2777 
2778 		++vcpu->stat.halt_attempted_poll;
2779 		do {
2780 			/*
2781 			 * This sets KVM_REQ_UNHALT if an interrupt
2782 			 * arrives.
2783 			 */
2784 			if (kvm_vcpu_check_block(vcpu) < 0) {
2785 				++vcpu->stat.halt_successful_poll;
2786 				if (!vcpu_valid_wakeup(vcpu))
2787 					++vcpu->stat.halt_poll_invalid;
2788 				goto out;
2789 			}
2790 			poll_end = cur = ktime_get();
2791 		} while (single_task_running() && ktime_before(cur, stop));
2792 	}
2793 
2794 	prepare_to_rcuwait(&vcpu->wait);
2795 	for (;;) {
2796 		set_current_state(TASK_INTERRUPTIBLE);
2797 
2798 		if (kvm_vcpu_check_block(vcpu) < 0)
2799 			break;
2800 
2801 		waited = true;
2802 		schedule();
2803 	}
2804 	finish_rcuwait(&vcpu->wait);
2805 	cur = ktime_get();
2806 out:
2807 	kvm_arch_vcpu_unblocking(vcpu);
2808 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2809 
2810 	update_halt_poll_stats(
2811 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2812 
2813 	if (!kvm_arch_no_poll(vcpu)) {
2814 		if (!vcpu_valid_wakeup(vcpu)) {
2815 			shrink_halt_poll_ns(vcpu);
2816 		} else if (vcpu->kvm->max_halt_poll_ns) {
2817 			if (block_ns <= vcpu->halt_poll_ns)
2818 				;
2819 			/* we had a long block, shrink polling */
2820 			else if (vcpu->halt_poll_ns &&
2821 					block_ns > vcpu->kvm->max_halt_poll_ns)
2822 				shrink_halt_poll_ns(vcpu);
2823 			/* we had a short halt and our poll time is too small */
2824 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2825 					block_ns < vcpu->kvm->max_halt_poll_ns)
2826 				grow_halt_poll_ns(vcpu);
2827 		} else {
2828 			vcpu->halt_poll_ns = 0;
2829 		}
2830 	}
2831 
2832 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2833 	kvm_arch_vcpu_block_finish(vcpu);
2834 }
2835 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2836 
2837 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2838 {
2839 	struct rcuwait *waitp;
2840 
2841 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2842 	if (rcuwait_wake_up(waitp)) {
2843 		WRITE_ONCE(vcpu->ready, true);
2844 		++vcpu->stat.halt_wakeup;
2845 		return true;
2846 	}
2847 
2848 	return false;
2849 }
2850 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2851 
2852 #ifndef CONFIG_S390
2853 /*
2854  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2855  */
2856 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2857 {
2858 	int me;
2859 	int cpu = vcpu->cpu;
2860 
2861 	if (kvm_vcpu_wake_up(vcpu))
2862 		return;
2863 
2864 	me = get_cpu();
2865 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2866 		if (kvm_arch_vcpu_should_kick(vcpu))
2867 			smp_send_reschedule(cpu);
2868 	put_cpu();
2869 }
2870 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2871 #endif /* !CONFIG_S390 */
2872 
2873 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2874 {
2875 	struct pid *pid;
2876 	struct task_struct *task = NULL;
2877 	int ret = 0;
2878 
2879 	rcu_read_lock();
2880 	pid = rcu_dereference(target->pid);
2881 	if (pid)
2882 		task = get_pid_task(pid, PIDTYPE_PID);
2883 	rcu_read_unlock();
2884 	if (!task)
2885 		return ret;
2886 	ret = yield_to(task, 1);
2887 	put_task_struct(task);
2888 
2889 	return ret;
2890 }
2891 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2892 
2893 /*
2894  * Helper that checks whether a VCPU is eligible for directed yield.
2895  * Most eligible candidate to yield is decided by following heuristics:
2896  *
2897  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2898  *  (preempted lock holder), indicated by @in_spin_loop.
2899  *  Set at the beginning and cleared at the end of interception/PLE handler.
2900  *
2901  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2902  *  chance last time (mostly it has become eligible now since we have probably
2903  *  yielded to lockholder in last iteration. This is done by toggling
2904  *  @dy_eligible each time a VCPU checked for eligibility.)
2905  *
2906  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2907  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2908  *  burning. Giving priority for a potential lock-holder increases lock
2909  *  progress.
2910  *
2911  *  Since algorithm is based on heuristics, accessing another VCPU data without
2912  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2913  *  and continue with next VCPU and so on.
2914  */
2915 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2916 {
2917 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2918 	bool eligible;
2919 
2920 	eligible = !vcpu->spin_loop.in_spin_loop ||
2921 		    vcpu->spin_loop.dy_eligible;
2922 
2923 	if (vcpu->spin_loop.in_spin_loop)
2924 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2925 
2926 	return eligible;
2927 #else
2928 	return true;
2929 #endif
2930 }
2931 
2932 /*
2933  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2934  * a vcpu_load/vcpu_put pair.  However, for most architectures
2935  * kvm_arch_vcpu_runnable does not require vcpu_load.
2936  */
2937 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2938 {
2939 	return kvm_arch_vcpu_runnable(vcpu);
2940 }
2941 
2942 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2943 {
2944 	if (kvm_arch_dy_runnable(vcpu))
2945 		return true;
2946 
2947 #ifdef CONFIG_KVM_ASYNC_PF
2948 	if (!list_empty_careful(&vcpu->async_pf.done))
2949 		return true;
2950 #endif
2951 
2952 	return false;
2953 }
2954 
2955 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2956 {
2957 	struct kvm *kvm = me->kvm;
2958 	struct kvm_vcpu *vcpu;
2959 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2960 	int yielded = 0;
2961 	int try = 3;
2962 	int pass;
2963 	int i;
2964 
2965 	kvm_vcpu_set_in_spin_loop(me, true);
2966 	/*
2967 	 * We boost the priority of a VCPU that is runnable but not
2968 	 * currently running, because it got preempted by something
2969 	 * else and called schedule in __vcpu_run.  Hopefully that
2970 	 * VCPU is holding the lock that we need and will release it.
2971 	 * We approximate round-robin by starting at the last boosted VCPU.
2972 	 */
2973 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2974 		kvm_for_each_vcpu(i, vcpu, kvm) {
2975 			if (!pass && i <= last_boosted_vcpu) {
2976 				i = last_boosted_vcpu;
2977 				continue;
2978 			} else if (pass && i > last_boosted_vcpu)
2979 				break;
2980 			if (!READ_ONCE(vcpu->ready))
2981 				continue;
2982 			if (vcpu == me)
2983 				continue;
2984 			if (rcuwait_active(&vcpu->wait) &&
2985 			    !vcpu_dy_runnable(vcpu))
2986 				continue;
2987 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2988 				!kvm_arch_vcpu_in_kernel(vcpu))
2989 				continue;
2990 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2991 				continue;
2992 
2993 			yielded = kvm_vcpu_yield_to(vcpu);
2994 			if (yielded > 0) {
2995 				kvm->last_boosted_vcpu = i;
2996 				break;
2997 			} else if (yielded < 0) {
2998 				try--;
2999 				if (!try)
3000 					break;
3001 			}
3002 		}
3003 	}
3004 	kvm_vcpu_set_in_spin_loop(me, false);
3005 
3006 	/* Ensure vcpu is not eligible during next spinloop */
3007 	kvm_vcpu_set_dy_eligible(me, false);
3008 }
3009 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3010 
3011 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3012 {
3013 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3014 	struct page *page;
3015 
3016 	if (vmf->pgoff == 0)
3017 		page = virt_to_page(vcpu->run);
3018 #ifdef CONFIG_X86
3019 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3020 		page = virt_to_page(vcpu->arch.pio_data);
3021 #endif
3022 #ifdef CONFIG_KVM_MMIO
3023 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3024 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3025 #endif
3026 	else
3027 		return kvm_arch_vcpu_fault(vcpu, vmf);
3028 	get_page(page);
3029 	vmf->page = page;
3030 	return 0;
3031 }
3032 
3033 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3034 	.fault = kvm_vcpu_fault,
3035 };
3036 
3037 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3038 {
3039 	vma->vm_ops = &kvm_vcpu_vm_ops;
3040 	return 0;
3041 }
3042 
3043 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3044 {
3045 	struct kvm_vcpu *vcpu = filp->private_data;
3046 
3047 	kvm_put_kvm(vcpu->kvm);
3048 	return 0;
3049 }
3050 
3051 static struct file_operations kvm_vcpu_fops = {
3052 	.release        = kvm_vcpu_release,
3053 	.unlocked_ioctl = kvm_vcpu_ioctl,
3054 	.mmap           = kvm_vcpu_mmap,
3055 	.llseek		= noop_llseek,
3056 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3057 };
3058 
3059 /*
3060  * Allocates an inode for the vcpu.
3061  */
3062 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3063 {
3064 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3065 
3066 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3067 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3068 }
3069 
3070 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3071 {
3072 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3073 	struct dentry *debugfs_dentry;
3074 	char dir_name[ITOA_MAX_LEN * 2];
3075 
3076 	if (!debugfs_initialized())
3077 		return;
3078 
3079 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3080 	debugfs_dentry = debugfs_create_dir(dir_name,
3081 					    vcpu->kvm->debugfs_dentry);
3082 
3083 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3084 #endif
3085 }
3086 
3087 /*
3088  * Creates some virtual cpus.  Good luck creating more than one.
3089  */
3090 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3091 {
3092 	int r;
3093 	struct kvm_vcpu *vcpu;
3094 	struct page *page;
3095 
3096 	if (id >= KVM_MAX_VCPU_ID)
3097 		return -EINVAL;
3098 
3099 	mutex_lock(&kvm->lock);
3100 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3101 		mutex_unlock(&kvm->lock);
3102 		return -EINVAL;
3103 	}
3104 
3105 	kvm->created_vcpus++;
3106 	mutex_unlock(&kvm->lock);
3107 
3108 	r = kvm_arch_vcpu_precreate(kvm, id);
3109 	if (r)
3110 		goto vcpu_decrement;
3111 
3112 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3113 	if (!vcpu) {
3114 		r = -ENOMEM;
3115 		goto vcpu_decrement;
3116 	}
3117 
3118 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3119 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3120 	if (!page) {
3121 		r = -ENOMEM;
3122 		goto vcpu_free;
3123 	}
3124 	vcpu->run = page_address(page);
3125 
3126 	kvm_vcpu_init(vcpu, kvm, id);
3127 
3128 	r = kvm_arch_vcpu_create(vcpu);
3129 	if (r)
3130 		goto vcpu_free_run_page;
3131 
3132 	mutex_lock(&kvm->lock);
3133 	if (kvm_get_vcpu_by_id(kvm, id)) {
3134 		r = -EEXIST;
3135 		goto unlock_vcpu_destroy;
3136 	}
3137 
3138 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3139 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3140 
3141 	/* Now it's all set up, let userspace reach it */
3142 	kvm_get_kvm(kvm);
3143 	r = create_vcpu_fd(vcpu);
3144 	if (r < 0) {
3145 		kvm_put_kvm_no_destroy(kvm);
3146 		goto unlock_vcpu_destroy;
3147 	}
3148 
3149 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3150 
3151 	/*
3152 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3153 	 * before kvm->online_vcpu's incremented value.
3154 	 */
3155 	smp_wmb();
3156 	atomic_inc(&kvm->online_vcpus);
3157 
3158 	mutex_unlock(&kvm->lock);
3159 	kvm_arch_vcpu_postcreate(vcpu);
3160 	kvm_create_vcpu_debugfs(vcpu);
3161 	return r;
3162 
3163 unlock_vcpu_destroy:
3164 	mutex_unlock(&kvm->lock);
3165 	kvm_arch_vcpu_destroy(vcpu);
3166 vcpu_free_run_page:
3167 	free_page((unsigned long)vcpu->run);
3168 vcpu_free:
3169 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3170 vcpu_decrement:
3171 	mutex_lock(&kvm->lock);
3172 	kvm->created_vcpus--;
3173 	mutex_unlock(&kvm->lock);
3174 	return r;
3175 }
3176 
3177 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3178 {
3179 	if (sigset) {
3180 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3181 		vcpu->sigset_active = 1;
3182 		vcpu->sigset = *sigset;
3183 	} else
3184 		vcpu->sigset_active = 0;
3185 	return 0;
3186 }
3187 
3188 static long kvm_vcpu_ioctl(struct file *filp,
3189 			   unsigned int ioctl, unsigned long arg)
3190 {
3191 	struct kvm_vcpu *vcpu = filp->private_data;
3192 	void __user *argp = (void __user *)arg;
3193 	int r;
3194 	struct kvm_fpu *fpu = NULL;
3195 	struct kvm_sregs *kvm_sregs = NULL;
3196 
3197 	if (vcpu->kvm->mm != current->mm)
3198 		return -EIO;
3199 
3200 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3201 		return -EINVAL;
3202 
3203 	/*
3204 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3205 	 * execution; mutex_lock() would break them.
3206 	 */
3207 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3208 	if (r != -ENOIOCTLCMD)
3209 		return r;
3210 
3211 	if (mutex_lock_killable(&vcpu->mutex))
3212 		return -EINTR;
3213 	switch (ioctl) {
3214 	case KVM_RUN: {
3215 		struct pid *oldpid;
3216 		r = -EINVAL;
3217 		if (arg)
3218 			goto out;
3219 		oldpid = rcu_access_pointer(vcpu->pid);
3220 		if (unlikely(oldpid != task_pid(current))) {
3221 			/* The thread running this VCPU changed. */
3222 			struct pid *newpid;
3223 
3224 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3225 			if (r)
3226 				break;
3227 
3228 			newpid = get_task_pid(current, PIDTYPE_PID);
3229 			rcu_assign_pointer(vcpu->pid, newpid);
3230 			if (oldpid)
3231 				synchronize_rcu();
3232 			put_pid(oldpid);
3233 		}
3234 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3235 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3236 		break;
3237 	}
3238 	case KVM_GET_REGS: {
3239 		struct kvm_regs *kvm_regs;
3240 
3241 		r = -ENOMEM;
3242 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3243 		if (!kvm_regs)
3244 			goto out;
3245 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3246 		if (r)
3247 			goto out_free1;
3248 		r = -EFAULT;
3249 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3250 			goto out_free1;
3251 		r = 0;
3252 out_free1:
3253 		kfree(kvm_regs);
3254 		break;
3255 	}
3256 	case KVM_SET_REGS: {
3257 		struct kvm_regs *kvm_regs;
3258 
3259 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3260 		if (IS_ERR(kvm_regs)) {
3261 			r = PTR_ERR(kvm_regs);
3262 			goto out;
3263 		}
3264 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3265 		kfree(kvm_regs);
3266 		break;
3267 	}
3268 	case KVM_GET_SREGS: {
3269 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3270 				    GFP_KERNEL_ACCOUNT);
3271 		r = -ENOMEM;
3272 		if (!kvm_sregs)
3273 			goto out;
3274 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3275 		if (r)
3276 			goto out;
3277 		r = -EFAULT;
3278 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3279 			goto out;
3280 		r = 0;
3281 		break;
3282 	}
3283 	case KVM_SET_SREGS: {
3284 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3285 		if (IS_ERR(kvm_sregs)) {
3286 			r = PTR_ERR(kvm_sregs);
3287 			kvm_sregs = NULL;
3288 			goto out;
3289 		}
3290 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3291 		break;
3292 	}
3293 	case KVM_GET_MP_STATE: {
3294 		struct kvm_mp_state mp_state;
3295 
3296 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3297 		if (r)
3298 			goto out;
3299 		r = -EFAULT;
3300 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3301 			goto out;
3302 		r = 0;
3303 		break;
3304 	}
3305 	case KVM_SET_MP_STATE: {
3306 		struct kvm_mp_state mp_state;
3307 
3308 		r = -EFAULT;
3309 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3310 			goto out;
3311 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3312 		break;
3313 	}
3314 	case KVM_TRANSLATE: {
3315 		struct kvm_translation tr;
3316 
3317 		r = -EFAULT;
3318 		if (copy_from_user(&tr, argp, sizeof(tr)))
3319 			goto out;
3320 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3321 		if (r)
3322 			goto out;
3323 		r = -EFAULT;
3324 		if (copy_to_user(argp, &tr, sizeof(tr)))
3325 			goto out;
3326 		r = 0;
3327 		break;
3328 	}
3329 	case KVM_SET_GUEST_DEBUG: {
3330 		struct kvm_guest_debug dbg;
3331 
3332 		r = -EFAULT;
3333 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3334 			goto out;
3335 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3336 		break;
3337 	}
3338 	case KVM_SET_SIGNAL_MASK: {
3339 		struct kvm_signal_mask __user *sigmask_arg = argp;
3340 		struct kvm_signal_mask kvm_sigmask;
3341 		sigset_t sigset, *p;
3342 
3343 		p = NULL;
3344 		if (argp) {
3345 			r = -EFAULT;
3346 			if (copy_from_user(&kvm_sigmask, argp,
3347 					   sizeof(kvm_sigmask)))
3348 				goto out;
3349 			r = -EINVAL;
3350 			if (kvm_sigmask.len != sizeof(sigset))
3351 				goto out;
3352 			r = -EFAULT;
3353 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3354 					   sizeof(sigset)))
3355 				goto out;
3356 			p = &sigset;
3357 		}
3358 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3359 		break;
3360 	}
3361 	case KVM_GET_FPU: {
3362 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3363 		r = -ENOMEM;
3364 		if (!fpu)
3365 			goto out;
3366 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3367 		if (r)
3368 			goto out;
3369 		r = -EFAULT;
3370 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3371 			goto out;
3372 		r = 0;
3373 		break;
3374 	}
3375 	case KVM_SET_FPU: {
3376 		fpu = memdup_user(argp, sizeof(*fpu));
3377 		if (IS_ERR(fpu)) {
3378 			r = PTR_ERR(fpu);
3379 			fpu = NULL;
3380 			goto out;
3381 		}
3382 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3383 		break;
3384 	}
3385 	default:
3386 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3387 	}
3388 out:
3389 	mutex_unlock(&vcpu->mutex);
3390 	kfree(fpu);
3391 	kfree(kvm_sregs);
3392 	return r;
3393 }
3394 
3395 #ifdef CONFIG_KVM_COMPAT
3396 static long kvm_vcpu_compat_ioctl(struct file *filp,
3397 				  unsigned int ioctl, unsigned long arg)
3398 {
3399 	struct kvm_vcpu *vcpu = filp->private_data;
3400 	void __user *argp = compat_ptr(arg);
3401 	int r;
3402 
3403 	if (vcpu->kvm->mm != current->mm)
3404 		return -EIO;
3405 
3406 	switch (ioctl) {
3407 	case KVM_SET_SIGNAL_MASK: {
3408 		struct kvm_signal_mask __user *sigmask_arg = argp;
3409 		struct kvm_signal_mask kvm_sigmask;
3410 		sigset_t sigset;
3411 
3412 		if (argp) {
3413 			r = -EFAULT;
3414 			if (copy_from_user(&kvm_sigmask, argp,
3415 					   sizeof(kvm_sigmask)))
3416 				goto out;
3417 			r = -EINVAL;
3418 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3419 				goto out;
3420 			r = -EFAULT;
3421 			if (get_compat_sigset(&sigset,
3422 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3423 				goto out;
3424 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3425 		} else
3426 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3427 		break;
3428 	}
3429 	default:
3430 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3431 	}
3432 
3433 out:
3434 	return r;
3435 }
3436 #endif
3437 
3438 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3439 {
3440 	struct kvm_device *dev = filp->private_data;
3441 
3442 	if (dev->ops->mmap)
3443 		return dev->ops->mmap(dev, vma);
3444 
3445 	return -ENODEV;
3446 }
3447 
3448 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3449 				 int (*accessor)(struct kvm_device *dev,
3450 						 struct kvm_device_attr *attr),
3451 				 unsigned long arg)
3452 {
3453 	struct kvm_device_attr attr;
3454 
3455 	if (!accessor)
3456 		return -EPERM;
3457 
3458 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3459 		return -EFAULT;
3460 
3461 	return accessor(dev, &attr);
3462 }
3463 
3464 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3465 			     unsigned long arg)
3466 {
3467 	struct kvm_device *dev = filp->private_data;
3468 
3469 	if (dev->kvm->mm != current->mm)
3470 		return -EIO;
3471 
3472 	switch (ioctl) {
3473 	case KVM_SET_DEVICE_ATTR:
3474 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3475 	case KVM_GET_DEVICE_ATTR:
3476 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3477 	case KVM_HAS_DEVICE_ATTR:
3478 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3479 	default:
3480 		if (dev->ops->ioctl)
3481 			return dev->ops->ioctl(dev, ioctl, arg);
3482 
3483 		return -ENOTTY;
3484 	}
3485 }
3486 
3487 static int kvm_device_release(struct inode *inode, struct file *filp)
3488 {
3489 	struct kvm_device *dev = filp->private_data;
3490 	struct kvm *kvm = dev->kvm;
3491 
3492 	if (dev->ops->release) {
3493 		mutex_lock(&kvm->lock);
3494 		list_del(&dev->vm_node);
3495 		dev->ops->release(dev);
3496 		mutex_unlock(&kvm->lock);
3497 	}
3498 
3499 	kvm_put_kvm(kvm);
3500 	return 0;
3501 }
3502 
3503 static const struct file_operations kvm_device_fops = {
3504 	.unlocked_ioctl = kvm_device_ioctl,
3505 	.release = kvm_device_release,
3506 	KVM_COMPAT(kvm_device_ioctl),
3507 	.mmap = kvm_device_mmap,
3508 };
3509 
3510 struct kvm_device *kvm_device_from_filp(struct file *filp)
3511 {
3512 	if (filp->f_op != &kvm_device_fops)
3513 		return NULL;
3514 
3515 	return filp->private_data;
3516 }
3517 
3518 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3519 #ifdef CONFIG_KVM_MPIC
3520 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3521 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3522 #endif
3523 };
3524 
3525 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3526 {
3527 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3528 		return -ENOSPC;
3529 
3530 	if (kvm_device_ops_table[type] != NULL)
3531 		return -EEXIST;
3532 
3533 	kvm_device_ops_table[type] = ops;
3534 	return 0;
3535 }
3536 
3537 void kvm_unregister_device_ops(u32 type)
3538 {
3539 	if (kvm_device_ops_table[type] != NULL)
3540 		kvm_device_ops_table[type] = NULL;
3541 }
3542 
3543 static int kvm_ioctl_create_device(struct kvm *kvm,
3544 				   struct kvm_create_device *cd)
3545 {
3546 	const struct kvm_device_ops *ops = NULL;
3547 	struct kvm_device *dev;
3548 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3549 	int type;
3550 	int ret;
3551 
3552 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3553 		return -ENODEV;
3554 
3555 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3556 	ops = kvm_device_ops_table[type];
3557 	if (ops == NULL)
3558 		return -ENODEV;
3559 
3560 	if (test)
3561 		return 0;
3562 
3563 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3564 	if (!dev)
3565 		return -ENOMEM;
3566 
3567 	dev->ops = ops;
3568 	dev->kvm = kvm;
3569 
3570 	mutex_lock(&kvm->lock);
3571 	ret = ops->create(dev, type);
3572 	if (ret < 0) {
3573 		mutex_unlock(&kvm->lock);
3574 		kfree(dev);
3575 		return ret;
3576 	}
3577 	list_add(&dev->vm_node, &kvm->devices);
3578 	mutex_unlock(&kvm->lock);
3579 
3580 	if (ops->init)
3581 		ops->init(dev);
3582 
3583 	kvm_get_kvm(kvm);
3584 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3585 	if (ret < 0) {
3586 		kvm_put_kvm_no_destroy(kvm);
3587 		mutex_lock(&kvm->lock);
3588 		list_del(&dev->vm_node);
3589 		mutex_unlock(&kvm->lock);
3590 		ops->destroy(dev);
3591 		return ret;
3592 	}
3593 
3594 	cd->fd = ret;
3595 	return 0;
3596 }
3597 
3598 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3599 {
3600 	switch (arg) {
3601 	case KVM_CAP_USER_MEMORY:
3602 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3603 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3604 	case KVM_CAP_INTERNAL_ERROR_DATA:
3605 #ifdef CONFIG_HAVE_KVM_MSI
3606 	case KVM_CAP_SIGNAL_MSI:
3607 #endif
3608 #ifdef CONFIG_HAVE_KVM_IRQFD
3609 	case KVM_CAP_IRQFD:
3610 	case KVM_CAP_IRQFD_RESAMPLE:
3611 #endif
3612 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3613 	case KVM_CAP_CHECK_EXTENSION_VM:
3614 	case KVM_CAP_ENABLE_CAP_VM:
3615 	case KVM_CAP_HALT_POLL:
3616 		return 1;
3617 #ifdef CONFIG_KVM_MMIO
3618 	case KVM_CAP_COALESCED_MMIO:
3619 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3620 	case KVM_CAP_COALESCED_PIO:
3621 		return 1;
3622 #endif
3623 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3624 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3625 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3626 #endif
3627 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3628 	case KVM_CAP_IRQ_ROUTING:
3629 		return KVM_MAX_IRQ_ROUTES;
3630 #endif
3631 #if KVM_ADDRESS_SPACE_NUM > 1
3632 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3633 		return KVM_ADDRESS_SPACE_NUM;
3634 #endif
3635 	case KVM_CAP_NR_MEMSLOTS:
3636 		return KVM_USER_MEM_SLOTS;
3637 	default:
3638 		break;
3639 	}
3640 	return kvm_vm_ioctl_check_extension(kvm, arg);
3641 }
3642 
3643 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3644 						  struct kvm_enable_cap *cap)
3645 {
3646 	return -EINVAL;
3647 }
3648 
3649 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3650 					   struct kvm_enable_cap *cap)
3651 {
3652 	switch (cap->cap) {
3653 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3654 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3655 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3656 
3657 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3658 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3659 
3660 		if (cap->flags || (cap->args[0] & ~allowed_options))
3661 			return -EINVAL;
3662 		kvm->manual_dirty_log_protect = cap->args[0];
3663 		return 0;
3664 	}
3665 #endif
3666 	case KVM_CAP_HALT_POLL: {
3667 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3668 			return -EINVAL;
3669 
3670 		kvm->max_halt_poll_ns = cap->args[0];
3671 		return 0;
3672 	}
3673 	default:
3674 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3675 	}
3676 }
3677 
3678 static long kvm_vm_ioctl(struct file *filp,
3679 			   unsigned int ioctl, unsigned long arg)
3680 {
3681 	struct kvm *kvm = filp->private_data;
3682 	void __user *argp = (void __user *)arg;
3683 	int r;
3684 
3685 	if (kvm->mm != current->mm)
3686 		return -EIO;
3687 	switch (ioctl) {
3688 	case KVM_CREATE_VCPU:
3689 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3690 		break;
3691 	case KVM_ENABLE_CAP: {
3692 		struct kvm_enable_cap cap;
3693 
3694 		r = -EFAULT;
3695 		if (copy_from_user(&cap, argp, sizeof(cap)))
3696 			goto out;
3697 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3698 		break;
3699 	}
3700 	case KVM_SET_USER_MEMORY_REGION: {
3701 		struct kvm_userspace_memory_region kvm_userspace_mem;
3702 
3703 		r = -EFAULT;
3704 		if (copy_from_user(&kvm_userspace_mem, argp,
3705 						sizeof(kvm_userspace_mem)))
3706 			goto out;
3707 
3708 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3709 		break;
3710 	}
3711 	case KVM_GET_DIRTY_LOG: {
3712 		struct kvm_dirty_log log;
3713 
3714 		r = -EFAULT;
3715 		if (copy_from_user(&log, argp, sizeof(log)))
3716 			goto out;
3717 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3718 		break;
3719 	}
3720 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3721 	case KVM_CLEAR_DIRTY_LOG: {
3722 		struct kvm_clear_dirty_log log;
3723 
3724 		r = -EFAULT;
3725 		if (copy_from_user(&log, argp, sizeof(log)))
3726 			goto out;
3727 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3728 		break;
3729 	}
3730 #endif
3731 #ifdef CONFIG_KVM_MMIO
3732 	case KVM_REGISTER_COALESCED_MMIO: {
3733 		struct kvm_coalesced_mmio_zone zone;
3734 
3735 		r = -EFAULT;
3736 		if (copy_from_user(&zone, argp, sizeof(zone)))
3737 			goto out;
3738 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3739 		break;
3740 	}
3741 	case KVM_UNREGISTER_COALESCED_MMIO: {
3742 		struct kvm_coalesced_mmio_zone zone;
3743 
3744 		r = -EFAULT;
3745 		if (copy_from_user(&zone, argp, sizeof(zone)))
3746 			goto out;
3747 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3748 		break;
3749 	}
3750 #endif
3751 	case KVM_IRQFD: {
3752 		struct kvm_irqfd data;
3753 
3754 		r = -EFAULT;
3755 		if (copy_from_user(&data, argp, sizeof(data)))
3756 			goto out;
3757 		r = kvm_irqfd(kvm, &data);
3758 		break;
3759 	}
3760 	case KVM_IOEVENTFD: {
3761 		struct kvm_ioeventfd data;
3762 
3763 		r = -EFAULT;
3764 		if (copy_from_user(&data, argp, sizeof(data)))
3765 			goto out;
3766 		r = kvm_ioeventfd(kvm, &data);
3767 		break;
3768 	}
3769 #ifdef CONFIG_HAVE_KVM_MSI
3770 	case KVM_SIGNAL_MSI: {
3771 		struct kvm_msi msi;
3772 
3773 		r = -EFAULT;
3774 		if (copy_from_user(&msi, argp, sizeof(msi)))
3775 			goto out;
3776 		r = kvm_send_userspace_msi(kvm, &msi);
3777 		break;
3778 	}
3779 #endif
3780 #ifdef __KVM_HAVE_IRQ_LINE
3781 	case KVM_IRQ_LINE_STATUS:
3782 	case KVM_IRQ_LINE: {
3783 		struct kvm_irq_level irq_event;
3784 
3785 		r = -EFAULT;
3786 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3787 			goto out;
3788 
3789 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3790 					ioctl == KVM_IRQ_LINE_STATUS);
3791 		if (r)
3792 			goto out;
3793 
3794 		r = -EFAULT;
3795 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3796 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3797 				goto out;
3798 		}
3799 
3800 		r = 0;
3801 		break;
3802 	}
3803 #endif
3804 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3805 	case KVM_SET_GSI_ROUTING: {
3806 		struct kvm_irq_routing routing;
3807 		struct kvm_irq_routing __user *urouting;
3808 		struct kvm_irq_routing_entry *entries = NULL;
3809 
3810 		r = -EFAULT;
3811 		if (copy_from_user(&routing, argp, sizeof(routing)))
3812 			goto out;
3813 		r = -EINVAL;
3814 		if (!kvm_arch_can_set_irq_routing(kvm))
3815 			goto out;
3816 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3817 			goto out;
3818 		if (routing.flags)
3819 			goto out;
3820 		if (routing.nr) {
3821 			urouting = argp;
3822 			entries = vmemdup_user(urouting->entries,
3823 					       array_size(sizeof(*entries),
3824 							  routing.nr));
3825 			if (IS_ERR(entries)) {
3826 				r = PTR_ERR(entries);
3827 				goto out;
3828 			}
3829 		}
3830 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3831 					routing.flags);
3832 		kvfree(entries);
3833 		break;
3834 	}
3835 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3836 	case KVM_CREATE_DEVICE: {
3837 		struct kvm_create_device cd;
3838 
3839 		r = -EFAULT;
3840 		if (copy_from_user(&cd, argp, sizeof(cd)))
3841 			goto out;
3842 
3843 		r = kvm_ioctl_create_device(kvm, &cd);
3844 		if (r)
3845 			goto out;
3846 
3847 		r = -EFAULT;
3848 		if (copy_to_user(argp, &cd, sizeof(cd)))
3849 			goto out;
3850 
3851 		r = 0;
3852 		break;
3853 	}
3854 	case KVM_CHECK_EXTENSION:
3855 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3856 		break;
3857 	default:
3858 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3859 	}
3860 out:
3861 	return r;
3862 }
3863 
3864 #ifdef CONFIG_KVM_COMPAT
3865 struct compat_kvm_dirty_log {
3866 	__u32 slot;
3867 	__u32 padding1;
3868 	union {
3869 		compat_uptr_t dirty_bitmap; /* one bit per page */
3870 		__u64 padding2;
3871 	};
3872 };
3873 
3874 static long kvm_vm_compat_ioctl(struct file *filp,
3875 			   unsigned int ioctl, unsigned long arg)
3876 {
3877 	struct kvm *kvm = filp->private_data;
3878 	int r;
3879 
3880 	if (kvm->mm != current->mm)
3881 		return -EIO;
3882 	switch (ioctl) {
3883 	case KVM_GET_DIRTY_LOG: {
3884 		struct compat_kvm_dirty_log compat_log;
3885 		struct kvm_dirty_log log;
3886 
3887 		if (copy_from_user(&compat_log, (void __user *)arg,
3888 				   sizeof(compat_log)))
3889 			return -EFAULT;
3890 		log.slot	 = compat_log.slot;
3891 		log.padding1	 = compat_log.padding1;
3892 		log.padding2	 = compat_log.padding2;
3893 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3894 
3895 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3896 		break;
3897 	}
3898 	default:
3899 		r = kvm_vm_ioctl(filp, ioctl, arg);
3900 	}
3901 	return r;
3902 }
3903 #endif
3904 
3905 static struct file_operations kvm_vm_fops = {
3906 	.release        = kvm_vm_release,
3907 	.unlocked_ioctl = kvm_vm_ioctl,
3908 	.llseek		= noop_llseek,
3909 	KVM_COMPAT(kvm_vm_compat_ioctl),
3910 };
3911 
3912 static int kvm_dev_ioctl_create_vm(unsigned long type)
3913 {
3914 	int r;
3915 	struct kvm *kvm;
3916 	struct file *file;
3917 
3918 	kvm = kvm_create_vm(type);
3919 	if (IS_ERR(kvm))
3920 		return PTR_ERR(kvm);
3921 #ifdef CONFIG_KVM_MMIO
3922 	r = kvm_coalesced_mmio_init(kvm);
3923 	if (r < 0)
3924 		goto put_kvm;
3925 #endif
3926 	r = get_unused_fd_flags(O_CLOEXEC);
3927 	if (r < 0)
3928 		goto put_kvm;
3929 
3930 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3931 	if (IS_ERR(file)) {
3932 		put_unused_fd(r);
3933 		r = PTR_ERR(file);
3934 		goto put_kvm;
3935 	}
3936 
3937 	/*
3938 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3939 	 * already set, with ->release() being kvm_vm_release().  In error
3940 	 * cases it will be called by the final fput(file) and will take
3941 	 * care of doing kvm_put_kvm(kvm).
3942 	 */
3943 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3944 		put_unused_fd(r);
3945 		fput(file);
3946 		return -ENOMEM;
3947 	}
3948 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3949 
3950 	fd_install(r, file);
3951 	return r;
3952 
3953 put_kvm:
3954 	kvm_put_kvm(kvm);
3955 	return r;
3956 }
3957 
3958 static long kvm_dev_ioctl(struct file *filp,
3959 			  unsigned int ioctl, unsigned long arg)
3960 {
3961 	long r = -EINVAL;
3962 
3963 	switch (ioctl) {
3964 	case KVM_GET_API_VERSION:
3965 		if (arg)
3966 			goto out;
3967 		r = KVM_API_VERSION;
3968 		break;
3969 	case KVM_CREATE_VM:
3970 		r = kvm_dev_ioctl_create_vm(arg);
3971 		break;
3972 	case KVM_CHECK_EXTENSION:
3973 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3974 		break;
3975 	case KVM_GET_VCPU_MMAP_SIZE:
3976 		if (arg)
3977 			goto out;
3978 		r = PAGE_SIZE;     /* struct kvm_run */
3979 #ifdef CONFIG_X86
3980 		r += PAGE_SIZE;    /* pio data page */
3981 #endif
3982 #ifdef CONFIG_KVM_MMIO
3983 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3984 #endif
3985 		break;
3986 	case KVM_TRACE_ENABLE:
3987 	case KVM_TRACE_PAUSE:
3988 	case KVM_TRACE_DISABLE:
3989 		r = -EOPNOTSUPP;
3990 		break;
3991 	default:
3992 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3993 	}
3994 out:
3995 	return r;
3996 }
3997 
3998 static struct file_operations kvm_chardev_ops = {
3999 	.unlocked_ioctl = kvm_dev_ioctl,
4000 	.llseek		= noop_llseek,
4001 	KVM_COMPAT(kvm_dev_ioctl),
4002 };
4003 
4004 static struct miscdevice kvm_dev = {
4005 	KVM_MINOR,
4006 	"kvm",
4007 	&kvm_chardev_ops,
4008 };
4009 
4010 static void hardware_enable_nolock(void *junk)
4011 {
4012 	int cpu = raw_smp_processor_id();
4013 	int r;
4014 
4015 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4016 		return;
4017 
4018 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4019 
4020 	r = kvm_arch_hardware_enable();
4021 
4022 	if (r) {
4023 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4024 		atomic_inc(&hardware_enable_failed);
4025 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4026 	}
4027 }
4028 
4029 static int kvm_starting_cpu(unsigned int cpu)
4030 {
4031 	raw_spin_lock(&kvm_count_lock);
4032 	if (kvm_usage_count)
4033 		hardware_enable_nolock(NULL);
4034 	raw_spin_unlock(&kvm_count_lock);
4035 	return 0;
4036 }
4037 
4038 static void hardware_disable_nolock(void *junk)
4039 {
4040 	int cpu = raw_smp_processor_id();
4041 
4042 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4043 		return;
4044 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4045 	kvm_arch_hardware_disable();
4046 }
4047 
4048 static int kvm_dying_cpu(unsigned int cpu)
4049 {
4050 	raw_spin_lock(&kvm_count_lock);
4051 	if (kvm_usage_count)
4052 		hardware_disable_nolock(NULL);
4053 	raw_spin_unlock(&kvm_count_lock);
4054 	return 0;
4055 }
4056 
4057 static void hardware_disable_all_nolock(void)
4058 {
4059 	BUG_ON(!kvm_usage_count);
4060 
4061 	kvm_usage_count--;
4062 	if (!kvm_usage_count)
4063 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4064 }
4065 
4066 static void hardware_disable_all(void)
4067 {
4068 	raw_spin_lock(&kvm_count_lock);
4069 	hardware_disable_all_nolock();
4070 	raw_spin_unlock(&kvm_count_lock);
4071 }
4072 
4073 static int hardware_enable_all(void)
4074 {
4075 	int r = 0;
4076 
4077 	raw_spin_lock(&kvm_count_lock);
4078 
4079 	kvm_usage_count++;
4080 	if (kvm_usage_count == 1) {
4081 		atomic_set(&hardware_enable_failed, 0);
4082 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4083 
4084 		if (atomic_read(&hardware_enable_failed)) {
4085 			hardware_disable_all_nolock();
4086 			r = -EBUSY;
4087 		}
4088 	}
4089 
4090 	raw_spin_unlock(&kvm_count_lock);
4091 
4092 	return r;
4093 }
4094 
4095 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4096 		      void *v)
4097 {
4098 	/*
4099 	 * Some (well, at least mine) BIOSes hang on reboot if
4100 	 * in vmx root mode.
4101 	 *
4102 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4103 	 */
4104 	pr_info("kvm: exiting hardware virtualization\n");
4105 	kvm_rebooting = true;
4106 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4107 	return NOTIFY_OK;
4108 }
4109 
4110 static struct notifier_block kvm_reboot_notifier = {
4111 	.notifier_call = kvm_reboot,
4112 	.priority = 0,
4113 };
4114 
4115 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4116 {
4117 	int i;
4118 
4119 	for (i = 0; i < bus->dev_count; i++) {
4120 		struct kvm_io_device *pos = bus->range[i].dev;
4121 
4122 		kvm_iodevice_destructor(pos);
4123 	}
4124 	kfree(bus);
4125 }
4126 
4127 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4128 				 const struct kvm_io_range *r2)
4129 {
4130 	gpa_t addr1 = r1->addr;
4131 	gpa_t addr2 = r2->addr;
4132 
4133 	if (addr1 < addr2)
4134 		return -1;
4135 
4136 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4137 	 * accept any overlapping write.  Any order is acceptable for
4138 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4139 	 * we process all of them.
4140 	 */
4141 	if (r2->len) {
4142 		addr1 += r1->len;
4143 		addr2 += r2->len;
4144 	}
4145 
4146 	if (addr1 > addr2)
4147 		return 1;
4148 
4149 	return 0;
4150 }
4151 
4152 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4153 {
4154 	return kvm_io_bus_cmp(p1, p2);
4155 }
4156 
4157 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4158 			     gpa_t addr, int len)
4159 {
4160 	struct kvm_io_range *range, key;
4161 	int off;
4162 
4163 	key = (struct kvm_io_range) {
4164 		.addr = addr,
4165 		.len = len,
4166 	};
4167 
4168 	range = bsearch(&key, bus->range, bus->dev_count,
4169 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4170 	if (range == NULL)
4171 		return -ENOENT;
4172 
4173 	off = range - bus->range;
4174 
4175 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4176 		off--;
4177 
4178 	return off;
4179 }
4180 
4181 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4182 			      struct kvm_io_range *range, const void *val)
4183 {
4184 	int idx;
4185 
4186 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4187 	if (idx < 0)
4188 		return -EOPNOTSUPP;
4189 
4190 	while (idx < bus->dev_count &&
4191 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4192 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4193 					range->len, val))
4194 			return idx;
4195 		idx++;
4196 	}
4197 
4198 	return -EOPNOTSUPP;
4199 }
4200 
4201 /* kvm_io_bus_write - called under kvm->slots_lock */
4202 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4203 		     int len, const void *val)
4204 {
4205 	struct kvm_io_bus *bus;
4206 	struct kvm_io_range range;
4207 	int r;
4208 
4209 	range = (struct kvm_io_range) {
4210 		.addr = addr,
4211 		.len = len,
4212 	};
4213 
4214 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4215 	if (!bus)
4216 		return -ENOMEM;
4217 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4218 	return r < 0 ? r : 0;
4219 }
4220 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4221 
4222 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4223 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4224 			    gpa_t addr, int len, const void *val, long cookie)
4225 {
4226 	struct kvm_io_bus *bus;
4227 	struct kvm_io_range range;
4228 
4229 	range = (struct kvm_io_range) {
4230 		.addr = addr,
4231 		.len = len,
4232 	};
4233 
4234 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4235 	if (!bus)
4236 		return -ENOMEM;
4237 
4238 	/* First try the device referenced by cookie. */
4239 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4240 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4241 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4242 					val))
4243 			return cookie;
4244 
4245 	/*
4246 	 * cookie contained garbage; fall back to search and return the
4247 	 * correct cookie value.
4248 	 */
4249 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4250 }
4251 
4252 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4253 			     struct kvm_io_range *range, void *val)
4254 {
4255 	int idx;
4256 
4257 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4258 	if (idx < 0)
4259 		return -EOPNOTSUPP;
4260 
4261 	while (idx < bus->dev_count &&
4262 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4263 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4264 				       range->len, val))
4265 			return idx;
4266 		idx++;
4267 	}
4268 
4269 	return -EOPNOTSUPP;
4270 }
4271 
4272 /* kvm_io_bus_read - called under kvm->slots_lock */
4273 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4274 		    int len, void *val)
4275 {
4276 	struct kvm_io_bus *bus;
4277 	struct kvm_io_range range;
4278 	int r;
4279 
4280 	range = (struct kvm_io_range) {
4281 		.addr = addr,
4282 		.len = len,
4283 	};
4284 
4285 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4286 	if (!bus)
4287 		return -ENOMEM;
4288 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4289 	return r < 0 ? r : 0;
4290 }
4291 
4292 /* Caller must hold slots_lock. */
4293 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4294 			    int len, struct kvm_io_device *dev)
4295 {
4296 	int i;
4297 	struct kvm_io_bus *new_bus, *bus;
4298 	struct kvm_io_range range;
4299 
4300 	bus = kvm_get_bus(kvm, bus_idx);
4301 	if (!bus)
4302 		return -ENOMEM;
4303 
4304 	/* exclude ioeventfd which is limited by maximum fd */
4305 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4306 		return -ENOSPC;
4307 
4308 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4309 			  GFP_KERNEL_ACCOUNT);
4310 	if (!new_bus)
4311 		return -ENOMEM;
4312 
4313 	range = (struct kvm_io_range) {
4314 		.addr = addr,
4315 		.len = len,
4316 		.dev = dev,
4317 	};
4318 
4319 	for (i = 0; i < bus->dev_count; i++)
4320 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4321 			break;
4322 
4323 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4324 	new_bus->dev_count++;
4325 	new_bus->range[i] = range;
4326 	memcpy(new_bus->range + i + 1, bus->range + i,
4327 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4328 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4329 	synchronize_srcu_expedited(&kvm->srcu);
4330 	kfree(bus);
4331 
4332 	return 0;
4333 }
4334 
4335 /* Caller must hold slots_lock. */
4336 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4337 			       struct kvm_io_device *dev)
4338 {
4339 	int i, j;
4340 	struct kvm_io_bus *new_bus, *bus;
4341 
4342 	bus = kvm_get_bus(kvm, bus_idx);
4343 	if (!bus)
4344 		return;
4345 
4346 	for (i = 0; i < bus->dev_count; i++)
4347 		if (bus->range[i].dev == dev) {
4348 			break;
4349 		}
4350 
4351 	if (i == bus->dev_count)
4352 		return;
4353 
4354 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4355 			  GFP_KERNEL_ACCOUNT);
4356 	if (new_bus) {
4357 		memcpy(new_bus, bus, struct_size(bus, range, i));
4358 		new_bus->dev_count--;
4359 		memcpy(new_bus->range + i, bus->range + i + 1,
4360 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4361 	} else {
4362 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4363 		for (j = 0; j < bus->dev_count; j++) {
4364 			if (j == i)
4365 				continue;
4366 			kvm_iodevice_destructor(bus->range[j].dev);
4367 		}
4368 	}
4369 
4370 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4371 	synchronize_srcu_expedited(&kvm->srcu);
4372 	kfree(bus);
4373 	return;
4374 }
4375 
4376 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4377 					 gpa_t addr)
4378 {
4379 	struct kvm_io_bus *bus;
4380 	int dev_idx, srcu_idx;
4381 	struct kvm_io_device *iodev = NULL;
4382 
4383 	srcu_idx = srcu_read_lock(&kvm->srcu);
4384 
4385 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4386 	if (!bus)
4387 		goto out_unlock;
4388 
4389 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4390 	if (dev_idx < 0)
4391 		goto out_unlock;
4392 
4393 	iodev = bus->range[dev_idx].dev;
4394 
4395 out_unlock:
4396 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4397 
4398 	return iodev;
4399 }
4400 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4401 
4402 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4403 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4404 			   const char *fmt)
4405 {
4406 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4407 					  inode->i_private;
4408 
4409 	/* The debugfs files are a reference to the kvm struct which
4410 	 * is still valid when kvm_destroy_vm is called.
4411 	 * To avoid the race between open and the removal of the debugfs
4412 	 * directory we test against the users count.
4413 	 */
4414 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4415 		return -ENOENT;
4416 
4417 	if (simple_attr_open(inode, file, get,
4418 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4419 		    ? set : NULL,
4420 		    fmt)) {
4421 		kvm_put_kvm(stat_data->kvm);
4422 		return -ENOMEM;
4423 	}
4424 
4425 	return 0;
4426 }
4427 
4428 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4429 {
4430 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4431 					  inode->i_private;
4432 
4433 	simple_attr_release(inode, file);
4434 	kvm_put_kvm(stat_data->kvm);
4435 
4436 	return 0;
4437 }
4438 
4439 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4440 {
4441 	*val = *(ulong *)((void *)kvm + offset);
4442 
4443 	return 0;
4444 }
4445 
4446 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4447 {
4448 	*(ulong *)((void *)kvm + offset) = 0;
4449 
4450 	return 0;
4451 }
4452 
4453 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4454 {
4455 	int i;
4456 	struct kvm_vcpu *vcpu;
4457 
4458 	*val = 0;
4459 
4460 	kvm_for_each_vcpu(i, vcpu, kvm)
4461 		*val += *(u64 *)((void *)vcpu + offset);
4462 
4463 	return 0;
4464 }
4465 
4466 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4467 {
4468 	int i;
4469 	struct kvm_vcpu *vcpu;
4470 
4471 	kvm_for_each_vcpu(i, vcpu, kvm)
4472 		*(u64 *)((void *)vcpu + offset) = 0;
4473 
4474 	return 0;
4475 }
4476 
4477 static int kvm_stat_data_get(void *data, u64 *val)
4478 {
4479 	int r = -EFAULT;
4480 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4481 
4482 	switch (stat_data->dbgfs_item->kind) {
4483 	case KVM_STAT_VM:
4484 		r = kvm_get_stat_per_vm(stat_data->kvm,
4485 					stat_data->dbgfs_item->offset, val);
4486 		break;
4487 	case KVM_STAT_VCPU:
4488 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4489 					  stat_data->dbgfs_item->offset, val);
4490 		break;
4491 	}
4492 
4493 	return r;
4494 }
4495 
4496 static int kvm_stat_data_clear(void *data, u64 val)
4497 {
4498 	int r = -EFAULT;
4499 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4500 
4501 	if (val)
4502 		return -EINVAL;
4503 
4504 	switch (stat_data->dbgfs_item->kind) {
4505 	case KVM_STAT_VM:
4506 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4507 					  stat_data->dbgfs_item->offset);
4508 		break;
4509 	case KVM_STAT_VCPU:
4510 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4511 					    stat_data->dbgfs_item->offset);
4512 		break;
4513 	}
4514 
4515 	return r;
4516 }
4517 
4518 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4519 {
4520 	__simple_attr_check_format("%llu\n", 0ull);
4521 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4522 				kvm_stat_data_clear, "%llu\n");
4523 }
4524 
4525 static const struct file_operations stat_fops_per_vm = {
4526 	.owner = THIS_MODULE,
4527 	.open = kvm_stat_data_open,
4528 	.release = kvm_debugfs_release,
4529 	.read = simple_attr_read,
4530 	.write = simple_attr_write,
4531 	.llseek = no_llseek,
4532 };
4533 
4534 static int vm_stat_get(void *_offset, u64 *val)
4535 {
4536 	unsigned offset = (long)_offset;
4537 	struct kvm *kvm;
4538 	u64 tmp_val;
4539 
4540 	*val = 0;
4541 	mutex_lock(&kvm_lock);
4542 	list_for_each_entry(kvm, &vm_list, vm_list) {
4543 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4544 		*val += tmp_val;
4545 	}
4546 	mutex_unlock(&kvm_lock);
4547 	return 0;
4548 }
4549 
4550 static int vm_stat_clear(void *_offset, u64 val)
4551 {
4552 	unsigned offset = (long)_offset;
4553 	struct kvm *kvm;
4554 
4555 	if (val)
4556 		return -EINVAL;
4557 
4558 	mutex_lock(&kvm_lock);
4559 	list_for_each_entry(kvm, &vm_list, vm_list) {
4560 		kvm_clear_stat_per_vm(kvm, offset);
4561 	}
4562 	mutex_unlock(&kvm_lock);
4563 
4564 	return 0;
4565 }
4566 
4567 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4568 
4569 static int vcpu_stat_get(void *_offset, u64 *val)
4570 {
4571 	unsigned offset = (long)_offset;
4572 	struct kvm *kvm;
4573 	u64 tmp_val;
4574 
4575 	*val = 0;
4576 	mutex_lock(&kvm_lock);
4577 	list_for_each_entry(kvm, &vm_list, vm_list) {
4578 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4579 		*val += tmp_val;
4580 	}
4581 	mutex_unlock(&kvm_lock);
4582 	return 0;
4583 }
4584 
4585 static int vcpu_stat_clear(void *_offset, u64 val)
4586 {
4587 	unsigned offset = (long)_offset;
4588 	struct kvm *kvm;
4589 
4590 	if (val)
4591 		return -EINVAL;
4592 
4593 	mutex_lock(&kvm_lock);
4594 	list_for_each_entry(kvm, &vm_list, vm_list) {
4595 		kvm_clear_stat_per_vcpu(kvm, offset);
4596 	}
4597 	mutex_unlock(&kvm_lock);
4598 
4599 	return 0;
4600 }
4601 
4602 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4603 			"%llu\n");
4604 
4605 static const struct file_operations *stat_fops[] = {
4606 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4607 	[KVM_STAT_VM]   = &vm_stat_fops,
4608 };
4609 
4610 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4611 {
4612 	struct kobj_uevent_env *env;
4613 	unsigned long long created, active;
4614 
4615 	if (!kvm_dev.this_device || !kvm)
4616 		return;
4617 
4618 	mutex_lock(&kvm_lock);
4619 	if (type == KVM_EVENT_CREATE_VM) {
4620 		kvm_createvm_count++;
4621 		kvm_active_vms++;
4622 	} else if (type == KVM_EVENT_DESTROY_VM) {
4623 		kvm_active_vms--;
4624 	}
4625 	created = kvm_createvm_count;
4626 	active = kvm_active_vms;
4627 	mutex_unlock(&kvm_lock);
4628 
4629 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4630 	if (!env)
4631 		return;
4632 
4633 	add_uevent_var(env, "CREATED=%llu", created);
4634 	add_uevent_var(env, "COUNT=%llu", active);
4635 
4636 	if (type == KVM_EVENT_CREATE_VM) {
4637 		add_uevent_var(env, "EVENT=create");
4638 		kvm->userspace_pid = task_pid_nr(current);
4639 	} else if (type == KVM_EVENT_DESTROY_VM) {
4640 		add_uevent_var(env, "EVENT=destroy");
4641 	}
4642 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4643 
4644 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4645 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4646 
4647 		if (p) {
4648 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4649 			if (!IS_ERR(tmp))
4650 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4651 			kfree(p);
4652 		}
4653 	}
4654 	/* no need for checks, since we are adding at most only 5 keys */
4655 	env->envp[env->envp_idx++] = NULL;
4656 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4657 	kfree(env);
4658 }
4659 
4660 static void kvm_init_debug(void)
4661 {
4662 	struct kvm_stats_debugfs_item *p;
4663 
4664 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4665 
4666 	kvm_debugfs_num_entries = 0;
4667 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4668 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4669 				    kvm_debugfs_dir, (void *)(long)p->offset,
4670 				    stat_fops[p->kind]);
4671 	}
4672 }
4673 
4674 static int kvm_suspend(void)
4675 {
4676 	if (kvm_usage_count)
4677 		hardware_disable_nolock(NULL);
4678 	return 0;
4679 }
4680 
4681 static void kvm_resume(void)
4682 {
4683 	if (kvm_usage_count) {
4684 #ifdef CONFIG_LOCKDEP
4685 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4686 #endif
4687 		hardware_enable_nolock(NULL);
4688 	}
4689 }
4690 
4691 static struct syscore_ops kvm_syscore_ops = {
4692 	.suspend = kvm_suspend,
4693 	.resume = kvm_resume,
4694 };
4695 
4696 static inline
4697 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4698 {
4699 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4700 }
4701 
4702 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4703 {
4704 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4705 
4706 	WRITE_ONCE(vcpu->preempted, false);
4707 	WRITE_ONCE(vcpu->ready, false);
4708 
4709 	__this_cpu_write(kvm_running_vcpu, vcpu);
4710 	kvm_arch_sched_in(vcpu, cpu);
4711 	kvm_arch_vcpu_load(vcpu, cpu);
4712 }
4713 
4714 static void kvm_sched_out(struct preempt_notifier *pn,
4715 			  struct task_struct *next)
4716 {
4717 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4718 
4719 	if (current->state == TASK_RUNNING) {
4720 		WRITE_ONCE(vcpu->preempted, true);
4721 		WRITE_ONCE(vcpu->ready, true);
4722 	}
4723 	kvm_arch_vcpu_put(vcpu);
4724 	__this_cpu_write(kvm_running_vcpu, NULL);
4725 }
4726 
4727 /**
4728  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4729  *
4730  * We can disable preemption locally around accessing the per-CPU variable,
4731  * and use the resolved vcpu pointer after enabling preemption again,
4732  * because even if the current thread is migrated to another CPU, reading
4733  * the per-CPU value later will give us the same value as we update the
4734  * per-CPU variable in the preempt notifier handlers.
4735  */
4736 struct kvm_vcpu *kvm_get_running_vcpu(void)
4737 {
4738 	struct kvm_vcpu *vcpu;
4739 
4740 	preempt_disable();
4741 	vcpu = __this_cpu_read(kvm_running_vcpu);
4742 	preempt_enable();
4743 
4744 	return vcpu;
4745 }
4746 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4747 
4748 /**
4749  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4750  */
4751 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4752 {
4753         return &kvm_running_vcpu;
4754 }
4755 
4756 struct kvm_cpu_compat_check {
4757 	void *opaque;
4758 	int *ret;
4759 };
4760 
4761 static void check_processor_compat(void *data)
4762 {
4763 	struct kvm_cpu_compat_check *c = data;
4764 
4765 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4766 }
4767 
4768 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4769 		  struct module *module)
4770 {
4771 	struct kvm_cpu_compat_check c;
4772 	int r;
4773 	int cpu;
4774 
4775 	r = kvm_arch_init(opaque);
4776 	if (r)
4777 		goto out_fail;
4778 
4779 	/*
4780 	 * kvm_arch_init makes sure there's at most one caller
4781 	 * for architectures that support multiple implementations,
4782 	 * like intel and amd on x86.
4783 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4784 	 * conflicts in case kvm is already setup for another implementation.
4785 	 */
4786 	r = kvm_irqfd_init();
4787 	if (r)
4788 		goto out_irqfd;
4789 
4790 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4791 		r = -ENOMEM;
4792 		goto out_free_0;
4793 	}
4794 
4795 	r = kvm_arch_hardware_setup(opaque);
4796 	if (r < 0)
4797 		goto out_free_1;
4798 
4799 	c.ret = &r;
4800 	c.opaque = opaque;
4801 	for_each_online_cpu(cpu) {
4802 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4803 		if (r < 0)
4804 			goto out_free_2;
4805 	}
4806 
4807 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4808 				      kvm_starting_cpu, kvm_dying_cpu);
4809 	if (r)
4810 		goto out_free_2;
4811 	register_reboot_notifier(&kvm_reboot_notifier);
4812 
4813 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4814 	if (!vcpu_align)
4815 		vcpu_align = __alignof__(struct kvm_vcpu);
4816 	kvm_vcpu_cache =
4817 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4818 					   SLAB_ACCOUNT,
4819 					   offsetof(struct kvm_vcpu, arch),
4820 					   sizeof_field(struct kvm_vcpu, arch),
4821 					   NULL);
4822 	if (!kvm_vcpu_cache) {
4823 		r = -ENOMEM;
4824 		goto out_free_3;
4825 	}
4826 
4827 	r = kvm_async_pf_init();
4828 	if (r)
4829 		goto out_free;
4830 
4831 	kvm_chardev_ops.owner = module;
4832 	kvm_vm_fops.owner = module;
4833 	kvm_vcpu_fops.owner = module;
4834 
4835 	r = misc_register(&kvm_dev);
4836 	if (r) {
4837 		pr_err("kvm: misc device register failed\n");
4838 		goto out_unreg;
4839 	}
4840 
4841 	register_syscore_ops(&kvm_syscore_ops);
4842 
4843 	kvm_preempt_ops.sched_in = kvm_sched_in;
4844 	kvm_preempt_ops.sched_out = kvm_sched_out;
4845 
4846 	kvm_init_debug();
4847 
4848 	r = kvm_vfio_ops_init();
4849 	WARN_ON(r);
4850 
4851 	return 0;
4852 
4853 out_unreg:
4854 	kvm_async_pf_deinit();
4855 out_free:
4856 	kmem_cache_destroy(kvm_vcpu_cache);
4857 out_free_3:
4858 	unregister_reboot_notifier(&kvm_reboot_notifier);
4859 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4860 out_free_2:
4861 	kvm_arch_hardware_unsetup();
4862 out_free_1:
4863 	free_cpumask_var(cpus_hardware_enabled);
4864 out_free_0:
4865 	kvm_irqfd_exit();
4866 out_irqfd:
4867 	kvm_arch_exit();
4868 out_fail:
4869 	return r;
4870 }
4871 EXPORT_SYMBOL_GPL(kvm_init);
4872 
4873 void kvm_exit(void)
4874 {
4875 	debugfs_remove_recursive(kvm_debugfs_dir);
4876 	misc_deregister(&kvm_dev);
4877 	kmem_cache_destroy(kvm_vcpu_cache);
4878 	kvm_async_pf_deinit();
4879 	unregister_syscore_ops(&kvm_syscore_ops);
4880 	unregister_reboot_notifier(&kvm_reboot_notifier);
4881 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4882 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4883 	kvm_arch_hardware_unsetup();
4884 	kvm_arch_exit();
4885 	kvm_irqfd_exit();
4886 	free_cpumask_var(cpus_hardware_enabled);
4887 	kvm_vfio_ops_exit();
4888 }
4889 EXPORT_SYMBOL_GPL(kvm_exit);
4890 
4891 struct kvm_vm_worker_thread_context {
4892 	struct kvm *kvm;
4893 	struct task_struct *parent;
4894 	struct completion init_done;
4895 	kvm_vm_thread_fn_t thread_fn;
4896 	uintptr_t data;
4897 	int err;
4898 };
4899 
4900 static int kvm_vm_worker_thread(void *context)
4901 {
4902 	/*
4903 	 * The init_context is allocated on the stack of the parent thread, so
4904 	 * we have to locally copy anything that is needed beyond initialization
4905 	 */
4906 	struct kvm_vm_worker_thread_context *init_context = context;
4907 	struct kvm *kvm = init_context->kvm;
4908 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4909 	uintptr_t data = init_context->data;
4910 	int err;
4911 
4912 	err = kthread_park(current);
4913 	/* kthread_park(current) is never supposed to return an error */
4914 	WARN_ON(err != 0);
4915 	if (err)
4916 		goto init_complete;
4917 
4918 	err = cgroup_attach_task_all(init_context->parent, current);
4919 	if (err) {
4920 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4921 			__func__, err);
4922 		goto init_complete;
4923 	}
4924 
4925 	set_user_nice(current, task_nice(init_context->parent));
4926 
4927 init_complete:
4928 	init_context->err = err;
4929 	complete(&init_context->init_done);
4930 	init_context = NULL;
4931 
4932 	if (err)
4933 		return err;
4934 
4935 	/* Wait to be woken up by the spawner before proceeding. */
4936 	kthread_parkme();
4937 
4938 	if (!kthread_should_stop())
4939 		err = thread_fn(kvm, data);
4940 
4941 	return err;
4942 }
4943 
4944 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4945 				uintptr_t data, const char *name,
4946 				struct task_struct **thread_ptr)
4947 {
4948 	struct kvm_vm_worker_thread_context init_context = {};
4949 	struct task_struct *thread;
4950 
4951 	*thread_ptr = NULL;
4952 	init_context.kvm = kvm;
4953 	init_context.parent = current;
4954 	init_context.thread_fn = thread_fn;
4955 	init_context.data = data;
4956 	init_completion(&init_context.init_done);
4957 
4958 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4959 			     "%s-%d", name, task_pid_nr(current));
4960 	if (IS_ERR(thread))
4961 		return PTR_ERR(thread);
4962 
4963 	/* kthread_run is never supposed to return NULL */
4964 	WARN_ON(thread == NULL);
4965 
4966 	wait_for_completion(&init_context.init_done);
4967 
4968 	if (!init_context.err)
4969 		*thread_ptr = thread;
4970 
4971 	return init_context.err;
4972 }
4973