xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 95e9fd10)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105 
106 struct page *fault_page;
107 pfn_t fault_pfn;
108 
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 	if (pfn_valid(pfn)) {
112 		int reserved;
113 		struct page *tail = pfn_to_page(pfn);
114 		struct page *head = compound_trans_head(tail);
115 		reserved = PageReserved(head);
116 		if (head != tail) {
117 			/*
118 			 * "head" is not a dangling pointer
119 			 * (compound_trans_head takes care of that)
120 			 * but the hugepage may have been splitted
121 			 * from under us (and we may not hold a
122 			 * reference count on the head page so it can
123 			 * be reused before we run PageReferenced), so
124 			 * we've to check PageTail before returning
125 			 * what we just read.
126 			 */
127 			smp_rmb();
128 			if (PageTail(tail))
129 				return reserved;
130 		}
131 		return PageReserved(tail);
132 	}
133 
134 	return true;
135 }
136 
137 /*
138  * Switches to specified vcpu, until a matching vcpu_put()
139  */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 	int cpu;
143 
144 	mutex_lock(&vcpu->mutex);
145 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 		/* The thread running this VCPU changed. */
147 		struct pid *oldpid = vcpu->pid;
148 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 		rcu_assign_pointer(vcpu->pid, newpid);
150 		synchronize_rcu();
151 		put_pid(oldpid);
152 	}
153 	cpu = get_cpu();
154 	preempt_notifier_register(&vcpu->preempt_notifier);
155 	kvm_arch_vcpu_load(vcpu, cpu);
156 	put_cpu();
157 }
158 
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 	preempt_disable();
162 	kvm_arch_vcpu_put(vcpu);
163 	preempt_notifier_unregister(&vcpu->preempt_notifier);
164 	preempt_enable();
165 	mutex_unlock(&vcpu->mutex);
166 }
167 
168 static void ack_flush(void *_completed)
169 {
170 }
171 
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 	int i, cpu, me;
175 	cpumask_var_t cpus;
176 	bool called = true;
177 	struct kvm_vcpu *vcpu;
178 
179 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180 
181 	me = get_cpu();
182 	kvm_for_each_vcpu(i, vcpu, kvm) {
183 		kvm_make_request(req, vcpu);
184 		cpu = vcpu->cpu;
185 
186 		/* Set ->requests bit before we read ->mode */
187 		smp_mb();
188 
189 		if (cpus != NULL && cpu != -1 && cpu != me &&
190 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 			cpumask_set_cpu(cpu, cpus);
192 	}
193 	if (unlikely(cpus == NULL))
194 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 	else if (!cpumask_empty(cpus))
196 		smp_call_function_many(cpus, ack_flush, NULL, 1);
197 	else
198 		called = false;
199 	put_cpu();
200 	free_cpumask_var(cpus);
201 	return called;
202 }
203 
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 	long dirty_count = kvm->tlbs_dirty;
207 
208 	smp_mb();
209 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 		++kvm->stat.remote_tlb_flush;
211 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213 
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218 
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 	struct page *page;
222 	int r;
223 
224 	mutex_init(&vcpu->mutex);
225 	vcpu->cpu = -1;
226 	vcpu->kvm = kvm;
227 	vcpu->vcpu_id = id;
228 	vcpu->pid = NULL;
229 	init_waitqueue_head(&vcpu->wq);
230 	kvm_async_pf_vcpu_init(vcpu);
231 
232 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 	if (!page) {
234 		r = -ENOMEM;
235 		goto fail;
236 	}
237 	vcpu->run = page_address(page);
238 
239 	r = kvm_arch_vcpu_init(vcpu);
240 	if (r < 0)
241 		goto fail_free_run;
242 	return 0;
243 
244 fail_free_run:
245 	free_page((unsigned long)vcpu->run);
246 fail:
247 	return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250 
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 	put_pid(vcpu->pid);
254 	kvm_arch_vcpu_uninit(vcpu);
255 	free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258 
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 	return container_of(mn, struct kvm, mmu_notifier);
263 }
264 
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 					     struct mm_struct *mm,
267 					     unsigned long address)
268 {
269 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 	int need_tlb_flush, idx;
271 
272 	/*
273 	 * When ->invalidate_page runs, the linux pte has been zapped
274 	 * already but the page is still allocated until
275 	 * ->invalidate_page returns. So if we increase the sequence
276 	 * here the kvm page fault will notice if the spte can't be
277 	 * established because the page is going to be freed. If
278 	 * instead the kvm page fault establishes the spte before
279 	 * ->invalidate_page runs, kvm_unmap_hva will release it
280 	 * before returning.
281 	 *
282 	 * The sequence increase only need to be seen at spin_unlock
283 	 * time, and not at spin_lock time.
284 	 *
285 	 * Increasing the sequence after the spin_unlock would be
286 	 * unsafe because the kvm page fault could then establish the
287 	 * pte after kvm_unmap_hva returned, without noticing the page
288 	 * is going to be freed.
289 	 */
290 	idx = srcu_read_lock(&kvm->srcu);
291 	spin_lock(&kvm->mmu_lock);
292 
293 	kvm->mmu_notifier_seq++;
294 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
295 	/* we've to flush the tlb before the pages can be freed */
296 	if (need_tlb_flush)
297 		kvm_flush_remote_tlbs(kvm);
298 
299 	spin_unlock(&kvm->mmu_lock);
300 	srcu_read_unlock(&kvm->srcu, idx);
301 }
302 
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 					struct mm_struct *mm,
305 					unsigned long address,
306 					pte_t pte)
307 {
308 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 	int idx;
310 
311 	idx = srcu_read_lock(&kvm->srcu);
312 	spin_lock(&kvm->mmu_lock);
313 	kvm->mmu_notifier_seq++;
314 	kvm_set_spte_hva(kvm, address, pte);
315 	spin_unlock(&kvm->mmu_lock);
316 	srcu_read_unlock(&kvm->srcu, idx);
317 }
318 
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 						    struct mm_struct *mm,
321 						    unsigned long start,
322 						    unsigned long end)
323 {
324 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 	int need_tlb_flush = 0, idx;
326 
327 	idx = srcu_read_lock(&kvm->srcu);
328 	spin_lock(&kvm->mmu_lock);
329 	/*
330 	 * The count increase must become visible at unlock time as no
331 	 * spte can be established without taking the mmu_lock and
332 	 * count is also read inside the mmu_lock critical section.
333 	 */
334 	kvm->mmu_notifier_count++;
335 	for (; start < end; start += PAGE_SIZE)
336 		need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 	need_tlb_flush |= kvm->tlbs_dirty;
338 	/* we've to flush the tlb before the pages can be freed */
339 	if (need_tlb_flush)
340 		kvm_flush_remote_tlbs(kvm);
341 
342 	spin_unlock(&kvm->mmu_lock);
343 	srcu_read_unlock(&kvm->srcu, idx);
344 }
345 
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 						  struct mm_struct *mm,
348 						  unsigned long start,
349 						  unsigned long end)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 
353 	spin_lock(&kvm->mmu_lock);
354 	/*
355 	 * This sequence increase will notify the kvm page fault that
356 	 * the page that is going to be mapped in the spte could have
357 	 * been freed.
358 	 */
359 	kvm->mmu_notifier_seq++;
360 	smp_wmb();
361 	/*
362 	 * The above sequence increase must be visible before the
363 	 * below count decrease, which is ensured by the smp_wmb above
364 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 	 */
366 	kvm->mmu_notifier_count--;
367 	spin_unlock(&kvm->mmu_lock);
368 
369 	BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371 
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 					      struct mm_struct *mm,
374 					      unsigned long address)
375 {
376 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 	int young, idx;
378 
379 	idx = srcu_read_lock(&kvm->srcu);
380 	spin_lock(&kvm->mmu_lock);
381 
382 	young = kvm_age_hva(kvm, address);
383 	if (young)
384 		kvm_flush_remote_tlbs(kvm);
385 
386 	spin_unlock(&kvm->mmu_lock);
387 	srcu_read_unlock(&kvm->srcu, idx);
388 
389 	return young;
390 }
391 
392 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
393 				       struct mm_struct *mm,
394 				       unsigned long address)
395 {
396 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 	int young, idx;
398 
399 	idx = srcu_read_lock(&kvm->srcu);
400 	spin_lock(&kvm->mmu_lock);
401 	young = kvm_test_age_hva(kvm, address);
402 	spin_unlock(&kvm->mmu_lock);
403 	srcu_read_unlock(&kvm->srcu, idx);
404 
405 	return young;
406 }
407 
408 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
409 				     struct mm_struct *mm)
410 {
411 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 	int idx;
413 
414 	idx = srcu_read_lock(&kvm->srcu);
415 	kvm_arch_flush_shadow(kvm);
416 	srcu_read_unlock(&kvm->srcu, idx);
417 }
418 
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
420 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
421 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
422 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
423 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
424 	.test_young		= kvm_mmu_notifier_test_young,
425 	.change_pte		= kvm_mmu_notifier_change_pte,
426 	.release		= kvm_mmu_notifier_release,
427 };
428 
429 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 {
431 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
432 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
433 }
434 
435 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436 
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439 	return 0;
440 }
441 
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443 
444 static void kvm_init_memslots_id(struct kvm *kvm)
445 {
446 	int i;
447 	struct kvm_memslots *slots = kvm->memslots;
448 
449 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
450 		slots->id_to_index[i] = slots->memslots[i].id = i;
451 }
452 
453 static struct kvm *kvm_create_vm(unsigned long type)
454 {
455 	int r, i;
456 	struct kvm *kvm = kvm_arch_alloc_vm();
457 
458 	if (!kvm)
459 		return ERR_PTR(-ENOMEM);
460 
461 	r = kvm_arch_init_vm(kvm, type);
462 	if (r)
463 		goto out_err_nodisable;
464 
465 	r = hardware_enable_all();
466 	if (r)
467 		goto out_err_nodisable;
468 
469 #ifdef CONFIG_HAVE_KVM_IRQCHIP
470 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
471 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
472 #endif
473 
474 	r = -ENOMEM;
475 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
476 	if (!kvm->memslots)
477 		goto out_err_nosrcu;
478 	kvm_init_memslots_id(kvm);
479 	if (init_srcu_struct(&kvm->srcu))
480 		goto out_err_nosrcu;
481 	for (i = 0; i < KVM_NR_BUSES; i++) {
482 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
483 					GFP_KERNEL);
484 		if (!kvm->buses[i])
485 			goto out_err;
486 	}
487 
488 	spin_lock_init(&kvm->mmu_lock);
489 	kvm->mm = current->mm;
490 	atomic_inc(&kvm->mm->mm_count);
491 	kvm_eventfd_init(kvm);
492 	mutex_init(&kvm->lock);
493 	mutex_init(&kvm->irq_lock);
494 	mutex_init(&kvm->slots_lock);
495 	atomic_set(&kvm->users_count, 1);
496 
497 	r = kvm_init_mmu_notifier(kvm);
498 	if (r)
499 		goto out_err;
500 
501 	raw_spin_lock(&kvm_lock);
502 	list_add(&kvm->vm_list, &vm_list);
503 	raw_spin_unlock(&kvm_lock);
504 
505 	return kvm;
506 
507 out_err:
508 	cleanup_srcu_struct(&kvm->srcu);
509 out_err_nosrcu:
510 	hardware_disable_all();
511 out_err_nodisable:
512 	for (i = 0; i < KVM_NR_BUSES; i++)
513 		kfree(kvm->buses[i]);
514 	kfree(kvm->memslots);
515 	kvm_arch_free_vm(kvm);
516 	return ERR_PTR(r);
517 }
518 
519 /*
520  * Avoid using vmalloc for a small buffer.
521  * Should not be used when the size is statically known.
522  */
523 void *kvm_kvzalloc(unsigned long size)
524 {
525 	if (size > PAGE_SIZE)
526 		return vzalloc(size);
527 	else
528 		return kzalloc(size, GFP_KERNEL);
529 }
530 
531 void kvm_kvfree(const void *addr)
532 {
533 	if (is_vmalloc_addr(addr))
534 		vfree(addr);
535 	else
536 		kfree(addr);
537 }
538 
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540 {
541 	if (!memslot->dirty_bitmap)
542 		return;
543 
544 	kvm_kvfree(memslot->dirty_bitmap);
545 	memslot->dirty_bitmap = NULL;
546 }
547 
548 /*
549  * Free any memory in @free but not in @dont.
550  */
551 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
552 				  struct kvm_memory_slot *dont)
553 {
554 	if (!dont || free->rmap != dont->rmap)
555 		vfree(free->rmap);
556 
557 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 		kvm_destroy_dirty_bitmap(free);
559 
560 	kvm_arch_free_memslot(free, dont);
561 
562 	free->npages = 0;
563 	free->rmap = NULL;
564 }
565 
566 void kvm_free_physmem(struct kvm *kvm)
567 {
568 	struct kvm_memslots *slots = kvm->memslots;
569 	struct kvm_memory_slot *memslot;
570 
571 	kvm_for_each_memslot(memslot, slots)
572 		kvm_free_physmem_slot(memslot, NULL);
573 
574 	kfree(kvm->memslots);
575 }
576 
577 static void kvm_destroy_vm(struct kvm *kvm)
578 {
579 	int i;
580 	struct mm_struct *mm = kvm->mm;
581 
582 	kvm_arch_sync_events(kvm);
583 	raw_spin_lock(&kvm_lock);
584 	list_del(&kvm->vm_list);
585 	raw_spin_unlock(&kvm_lock);
586 	kvm_free_irq_routing(kvm);
587 	for (i = 0; i < KVM_NR_BUSES; i++)
588 		kvm_io_bus_destroy(kvm->buses[i]);
589 	kvm_coalesced_mmio_free(kvm);
590 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
591 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
592 #else
593 	kvm_arch_flush_shadow(kvm);
594 #endif
595 	kvm_arch_destroy_vm(kvm);
596 	kvm_free_physmem(kvm);
597 	cleanup_srcu_struct(&kvm->srcu);
598 	kvm_arch_free_vm(kvm);
599 	hardware_disable_all();
600 	mmdrop(mm);
601 }
602 
603 void kvm_get_kvm(struct kvm *kvm)
604 {
605 	atomic_inc(&kvm->users_count);
606 }
607 EXPORT_SYMBOL_GPL(kvm_get_kvm);
608 
609 void kvm_put_kvm(struct kvm *kvm)
610 {
611 	if (atomic_dec_and_test(&kvm->users_count))
612 		kvm_destroy_vm(kvm);
613 }
614 EXPORT_SYMBOL_GPL(kvm_put_kvm);
615 
616 
617 static int kvm_vm_release(struct inode *inode, struct file *filp)
618 {
619 	struct kvm *kvm = filp->private_data;
620 
621 	kvm_irqfd_release(kvm);
622 
623 	kvm_put_kvm(kvm);
624 	return 0;
625 }
626 
627 /*
628  * Allocation size is twice as large as the actual dirty bitmap size.
629  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
630  */
631 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
632 {
633 #ifndef CONFIG_S390
634 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
635 
636 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
637 	if (!memslot->dirty_bitmap)
638 		return -ENOMEM;
639 
640 #endif /* !CONFIG_S390 */
641 	return 0;
642 }
643 
644 static int cmp_memslot(const void *slot1, const void *slot2)
645 {
646 	struct kvm_memory_slot *s1, *s2;
647 
648 	s1 = (struct kvm_memory_slot *)slot1;
649 	s2 = (struct kvm_memory_slot *)slot2;
650 
651 	if (s1->npages < s2->npages)
652 		return 1;
653 	if (s1->npages > s2->npages)
654 		return -1;
655 
656 	return 0;
657 }
658 
659 /*
660  * Sort the memslots base on its size, so the larger slots
661  * will get better fit.
662  */
663 static void sort_memslots(struct kvm_memslots *slots)
664 {
665 	int i;
666 
667 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
668 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
669 
670 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
671 		slots->id_to_index[slots->memslots[i].id] = i;
672 }
673 
674 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
675 {
676 	if (new) {
677 		int id = new->id;
678 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
679 		unsigned long npages = old->npages;
680 
681 		*old = *new;
682 		if (new->npages != npages)
683 			sort_memslots(slots);
684 	}
685 
686 	slots->generation++;
687 }
688 
689 /*
690  * Allocate some memory and give it an address in the guest physical address
691  * space.
692  *
693  * Discontiguous memory is allowed, mostly for framebuffers.
694  *
695  * Must be called holding mmap_sem for write.
696  */
697 int __kvm_set_memory_region(struct kvm *kvm,
698 			    struct kvm_userspace_memory_region *mem,
699 			    int user_alloc)
700 {
701 	int r;
702 	gfn_t base_gfn;
703 	unsigned long npages;
704 	unsigned long i;
705 	struct kvm_memory_slot *memslot;
706 	struct kvm_memory_slot old, new;
707 	struct kvm_memslots *slots, *old_memslots;
708 
709 	r = -EINVAL;
710 	/* General sanity checks */
711 	if (mem->memory_size & (PAGE_SIZE - 1))
712 		goto out;
713 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
714 		goto out;
715 	/* We can read the guest memory with __xxx_user() later on. */
716 	if (user_alloc &&
717 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
718 	     !access_ok(VERIFY_WRITE,
719 			(void __user *)(unsigned long)mem->userspace_addr,
720 			mem->memory_size)))
721 		goto out;
722 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
723 		goto out;
724 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
725 		goto out;
726 
727 	memslot = id_to_memslot(kvm->memslots, mem->slot);
728 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
729 	npages = mem->memory_size >> PAGE_SHIFT;
730 
731 	r = -EINVAL;
732 	if (npages > KVM_MEM_MAX_NR_PAGES)
733 		goto out;
734 
735 	if (!npages)
736 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
737 
738 	new = old = *memslot;
739 
740 	new.id = mem->slot;
741 	new.base_gfn = base_gfn;
742 	new.npages = npages;
743 	new.flags = mem->flags;
744 
745 	/* Disallow changing a memory slot's size. */
746 	r = -EINVAL;
747 	if (npages && old.npages && npages != old.npages)
748 		goto out_free;
749 
750 	/* Check for overlaps */
751 	r = -EEXIST;
752 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
753 		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
754 
755 		if (s == memslot || !s->npages)
756 			continue;
757 		if (!((base_gfn + npages <= s->base_gfn) ||
758 		      (base_gfn >= s->base_gfn + s->npages)))
759 			goto out_free;
760 	}
761 
762 	/* Free page dirty bitmap if unneeded */
763 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
764 		new.dirty_bitmap = NULL;
765 
766 	r = -ENOMEM;
767 
768 	/* Allocate if a slot is being created */
769 	if (npages && !old.npages) {
770 		new.user_alloc = user_alloc;
771 		new.userspace_addr = mem->userspace_addr;
772 #ifndef CONFIG_S390
773 		new.rmap = vzalloc(npages * sizeof(*new.rmap));
774 		if (!new.rmap)
775 			goto out_free;
776 #endif /* not defined CONFIG_S390 */
777 		if (kvm_arch_create_memslot(&new, npages))
778 			goto out_free;
779 	}
780 
781 	/* Allocate page dirty bitmap if needed */
782 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
783 		if (kvm_create_dirty_bitmap(&new) < 0)
784 			goto out_free;
785 		/* destroy any largepage mappings for dirty tracking */
786 	}
787 
788 	if (!npages) {
789 		struct kvm_memory_slot *slot;
790 
791 		r = -ENOMEM;
792 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
793 				GFP_KERNEL);
794 		if (!slots)
795 			goto out_free;
796 		slot = id_to_memslot(slots, mem->slot);
797 		slot->flags |= KVM_MEMSLOT_INVALID;
798 
799 		update_memslots(slots, NULL);
800 
801 		old_memslots = kvm->memslots;
802 		rcu_assign_pointer(kvm->memslots, slots);
803 		synchronize_srcu_expedited(&kvm->srcu);
804 		/* From this point no new shadow pages pointing to a deleted
805 		 * memslot will be created.
806 		 *
807 		 * validation of sp->gfn happens in:
808 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
809 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
810 		 */
811 		kvm_arch_flush_shadow(kvm);
812 		kfree(old_memslots);
813 	}
814 
815 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
816 	if (r)
817 		goto out_free;
818 
819 	/* map/unmap the pages in iommu page table */
820 	if (npages) {
821 		r = kvm_iommu_map_pages(kvm, &new);
822 		if (r)
823 			goto out_free;
824 	} else
825 		kvm_iommu_unmap_pages(kvm, &old);
826 
827 	r = -ENOMEM;
828 	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
829 			GFP_KERNEL);
830 	if (!slots)
831 		goto out_free;
832 
833 	/* actual memory is freed via old in kvm_free_physmem_slot below */
834 	if (!npages) {
835 		new.rmap = NULL;
836 		new.dirty_bitmap = NULL;
837 		memset(&new.arch, 0, sizeof(new.arch));
838 	}
839 
840 	update_memslots(slots, &new);
841 	old_memslots = kvm->memslots;
842 	rcu_assign_pointer(kvm->memslots, slots);
843 	synchronize_srcu_expedited(&kvm->srcu);
844 
845 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
846 
847 	/*
848 	 * If the new memory slot is created, we need to clear all
849 	 * mmio sptes.
850 	 */
851 	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
852 		kvm_arch_flush_shadow(kvm);
853 
854 	kvm_free_physmem_slot(&old, &new);
855 	kfree(old_memslots);
856 
857 	return 0;
858 
859 out_free:
860 	kvm_free_physmem_slot(&new, &old);
861 out:
862 	return r;
863 
864 }
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866 
867 int kvm_set_memory_region(struct kvm *kvm,
868 			  struct kvm_userspace_memory_region *mem,
869 			  int user_alloc)
870 {
871 	int r;
872 
873 	mutex_lock(&kvm->slots_lock);
874 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
875 	mutex_unlock(&kvm->slots_lock);
876 	return r;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879 
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881 				   struct
882 				   kvm_userspace_memory_region *mem,
883 				   int user_alloc)
884 {
885 	if (mem->slot >= KVM_MEMORY_SLOTS)
886 		return -EINVAL;
887 	return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889 
890 int kvm_get_dirty_log(struct kvm *kvm,
891 			struct kvm_dirty_log *log, int *is_dirty)
892 {
893 	struct kvm_memory_slot *memslot;
894 	int r, i;
895 	unsigned long n;
896 	unsigned long any = 0;
897 
898 	r = -EINVAL;
899 	if (log->slot >= KVM_MEMORY_SLOTS)
900 		goto out;
901 
902 	memslot = id_to_memslot(kvm->memslots, log->slot);
903 	r = -ENOENT;
904 	if (!memslot->dirty_bitmap)
905 		goto out;
906 
907 	n = kvm_dirty_bitmap_bytes(memslot);
908 
909 	for (i = 0; !any && i < n/sizeof(long); ++i)
910 		any = memslot->dirty_bitmap[i];
911 
912 	r = -EFAULT;
913 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914 		goto out;
915 
916 	if (any)
917 		*is_dirty = 1;
918 
919 	r = 0;
920 out:
921 	return r;
922 }
923 
924 bool kvm_largepages_enabled(void)
925 {
926 	return largepages_enabled;
927 }
928 
929 void kvm_disable_largepages(void)
930 {
931 	largepages_enabled = false;
932 }
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934 
935 int is_error_page(struct page *page)
936 {
937 	return page == bad_page || page == hwpoison_page || page == fault_page;
938 }
939 EXPORT_SYMBOL_GPL(is_error_page);
940 
941 int is_error_pfn(pfn_t pfn)
942 {
943 	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
944 }
945 EXPORT_SYMBOL_GPL(is_error_pfn);
946 
947 int is_hwpoison_pfn(pfn_t pfn)
948 {
949 	return pfn == hwpoison_pfn;
950 }
951 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
952 
953 int is_fault_pfn(pfn_t pfn)
954 {
955 	return pfn == fault_pfn;
956 }
957 EXPORT_SYMBOL_GPL(is_fault_pfn);
958 
959 int is_noslot_pfn(pfn_t pfn)
960 {
961 	return pfn == bad_pfn;
962 }
963 EXPORT_SYMBOL_GPL(is_noslot_pfn);
964 
965 int is_invalid_pfn(pfn_t pfn)
966 {
967 	return pfn == hwpoison_pfn || pfn == fault_pfn;
968 }
969 EXPORT_SYMBOL_GPL(is_invalid_pfn);
970 
971 static inline unsigned long bad_hva(void)
972 {
973 	return PAGE_OFFSET;
974 }
975 
976 int kvm_is_error_hva(unsigned long addr)
977 {
978 	return addr == bad_hva();
979 }
980 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
981 
982 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
983 {
984 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
985 }
986 EXPORT_SYMBOL_GPL(gfn_to_memslot);
987 
988 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
989 {
990 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
991 
992 	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
993 	      memslot->flags & KVM_MEMSLOT_INVALID)
994 		return 0;
995 
996 	return 1;
997 }
998 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
999 
1000 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1001 {
1002 	struct vm_area_struct *vma;
1003 	unsigned long addr, size;
1004 
1005 	size = PAGE_SIZE;
1006 
1007 	addr = gfn_to_hva(kvm, gfn);
1008 	if (kvm_is_error_hva(addr))
1009 		return PAGE_SIZE;
1010 
1011 	down_read(&current->mm->mmap_sem);
1012 	vma = find_vma(current->mm, addr);
1013 	if (!vma)
1014 		goto out;
1015 
1016 	size = vma_kernel_pagesize(vma);
1017 
1018 out:
1019 	up_read(&current->mm->mmap_sem);
1020 
1021 	return size;
1022 }
1023 
1024 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1025 				     gfn_t *nr_pages)
1026 {
1027 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1028 		return bad_hva();
1029 
1030 	if (nr_pages)
1031 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1032 
1033 	return gfn_to_hva_memslot(slot, gfn);
1034 }
1035 
1036 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1037 {
1038 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1039 }
1040 EXPORT_SYMBOL_GPL(gfn_to_hva);
1041 
1042 static pfn_t get_fault_pfn(void)
1043 {
1044 	get_page(fault_page);
1045 	return fault_pfn;
1046 }
1047 
1048 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1049 	unsigned long start, int write, struct page **page)
1050 {
1051 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1052 
1053 	if (write)
1054 		flags |= FOLL_WRITE;
1055 
1056 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1057 }
1058 
1059 static inline int check_user_page_hwpoison(unsigned long addr)
1060 {
1061 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1062 
1063 	rc = __get_user_pages(current, current->mm, addr, 1,
1064 			      flags, NULL, NULL, NULL);
1065 	return rc == -EHWPOISON;
1066 }
1067 
1068 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1069 			bool *async, bool write_fault, bool *writable)
1070 {
1071 	struct page *page[1];
1072 	int npages = 0;
1073 	pfn_t pfn;
1074 
1075 	/* we can do it either atomically or asynchronously, not both */
1076 	BUG_ON(atomic && async);
1077 
1078 	BUG_ON(!write_fault && !writable);
1079 
1080 	if (writable)
1081 		*writable = true;
1082 
1083 	if (atomic || async)
1084 		npages = __get_user_pages_fast(addr, 1, 1, page);
1085 
1086 	if (unlikely(npages != 1) && !atomic) {
1087 		might_sleep();
1088 
1089 		if (writable)
1090 			*writable = write_fault;
1091 
1092 		if (async) {
1093 			down_read(&current->mm->mmap_sem);
1094 			npages = get_user_page_nowait(current, current->mm,
1095 						     addr, write_fault, page);
1096 			up_read(&current->mm->mmap_sem);
1097 		} else
1098 			npages = get_user_pages_fast(addr, 1, write_fault,
1099 						     page);
1100 
1101 		/* map read fault as writable if possible */
1102 		if (unlikely(!write_fault) && npages == 1) {
1103 			struct page *wpage[1];
1104 
1105 			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1106 			if (npages == 1) {
1107 				*writable = true;
1108 				put_page(page[0]);
1109 				page[0] = wpage[0];
1110 			}
1111 			npages = 1;
1112 		}
1113 	}
1114 
1115 	if (unlikely(npages != 1)) {
1116 		struct vm_area_struct *vma;
1117 
1118 		if (atomic)
1119 			return get_fault_pfn();
1120 
1121 		down_read(&current->mm->mmap_sem);
1122 		if (npages == -EHWPOISON ||
1123 			(!async && check_user_page_hwpoison(addr))) {
1124 			up_read(&current->mm->mmap_sem);
1125 			get_page(hwpoison_page);
1126 			return page_to_pfn(hwpoison_page);
1127 		}
1128 
1129 		vma = find_vma_intersection(current->mm, addr, addr+1);
1130 
1131 		if (vma == NULL)
1132 			pfn = get_fault_pfn();
1133 		else if ((vma->vm_flags & VM_PFNMAP)) {
1134 			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1135 				vma->vm_pgoff;
1136 			BUG_ON(!kvm_is_mmio_pfn(pfn));
1137 		} else {
1138 			if (async && (vma->vm_flags & VM_WRITE))
1139 				*async = true;
1140 			pfn = get_fault_pfn();
1141 		}
1142 		up_read(&current->mm->mmap_sem);
1143 	} else
1144 		pfn = page_to_pfn(page[0]);
1145 
1146 	return pfn;
1147 }
1148 
1149 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1150 {
1151 	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1152 }
1153 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1154 
1155 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1156 			  bool write_fault, bool *writable)
1157 {
1158 	unsigned long addr;
1159 
1160 	if (async)
1161 		*async = false;
1162 
1163 	addr = gfn_to_hva(kvm, gfn);
1164 	if (kvm_is_error_hva(addr)) {
1165 		get_page(bad_page);
1166 		return page_to_pfn(bad_page);
1167 	}
1168 
1169 	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1170 }
1171 
1172 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1173 {
1174 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1175 }
1176 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1177 
1178 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1179 		       bool write_fault, bool *writable)
1180 {
1181 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1182 }
1183 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1184 
1185 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1186 {
1187 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1188 }
1189 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1190 
1191 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1192 		      bool *writable)
1193 {
1194 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1195 }
1196 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1197 
1198 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1199 			 struct kvm_memory_slot *slot, gfn_t gfn)
1200 {
1201 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1202 	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1203 }
1204 
1205 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1206 								  int nr_pages)
1207 {
1208 	unsigned long addr;
1209 	gfn_t entry;
1210 
1211 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1212 	if (kvm_is_error_hva(addr))
1213 		return -1;
1214 
1215 	if (entry < nr_pages)
1216 		return 0;
1217 
1218 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1221 
1222 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1223 {
1224 	pfn_t pfn;
1225 
1226 	pfn = gfn_to_pfn(kvm, gfn);
1227 	if (!kvm_is_mmio_pfn(pfn))
1228 		return pfn_to_page(pfn);
1229 
1230 	WARN_ON(kvm_is_mmio_pfn(pfn));
1231 
1232 	get_page(bad_page);
1233 	return bad_page;
1234 }
1235 
1236 EXPORT_SYMBOL_GPL(gfn_to_page);
1237 
1238 void kvm_release_page_clean(struct page *page)
1239 {
1240 	kvm_release_pfn_clean(page_to_pfn(page));
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1243 
1244 void kvm_release_pfn_clean(pfn_t pfn)
1245 {
1246 	if (!kvm_is_mmio_pfn(pfn))
1247 		put_page(pfn_to_page(pfn));
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1250 
1251 void kvm_release_page_dirty(struct page *page)
1252 {
1253 	kvm_release_pfn_dirty(page_to_pfn(page));
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1256 
1257 void kvm_release_pfn_dirty(pfn_t pfn)
1258 {
1259 	kvm_set_pfn_dirty(pfn);
1260 	kvm_release_pfn_clean(pfn);
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1263 
1264 void kvm_set_page_dirty(struct page *page)
1265 {
1266 	kvm_set_pfn_dirty(page_to_pfn(page));
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1269 
1270 void kvm_set_pfn_dirty(pfn_t pfn)
1271 {
1272 	if (!kvm_is_mmio_pfn(pfn)) {
1273 		struct page *page = pfn_to_page(pfn);
1274 		if (!PageReserved(page))
1275 			SetPageDirty(page);
1276 	}
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1279 
1280 void kvm_set_pfn_accessed(pfn_t pfn)
1281 {
1282 	if (!kvm_is_mmio_pfn(pfn))
1283 		mark_page_accessed(pfn_to_page(pfn));
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1286 
1287 void kvm_get_pfn(pfn_t pfn)
1288 {
1289 	if (!kvm_is_mmio_pfn(pfn))
1290 		get_page(pfn_to_page(pfn));
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1293 
1294 static int next_segment(unsigned long len, int offset)
1295 {
1296 	if (len > PAGE_SIZE - offset)
1297 		return PAGE_SIZE - offset;
1298 	else
1299 		return len;
1300 }
1301 
1302 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1303 			int len)
1304 {
1305 	int r;
1306 	unsigned long addr;
1307 
1308 	addr = gfn_to_hva(kvm, gfn);
1309 	if (kvm_is_error_hva(addr))
1310 		return -EFAULT;
1311 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1312 	if (r)
1313 		return -EFAULT;
1314 	return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1317 
1318 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1319 {
1320 	gfn_t gfn = gpa >> PAGE_SHIFT;
1321 	int seg;
1322 	int offset = offset_in_page(gpa);
1323 	int ret;
1324 
1325 	while ((seg = next_segment(len, offset)) != 0) {
1326 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1327 		if (ret < 0)
1328 			return ret;
1329 		offset = 0;
1330 		len -= seg;
1331 		data += seg;
1332 		++gfn;
1333 	}
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_read_guest);
1337 
1338 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1339 			  unsigned long len)
1340 {
1341 	int r;
1342 	unsigned long addr;
1343 	gfn_t gfn = gpa >> PAGE_SHIFT;
1344 	int offset = offset_in_page(gpa);
1345 
1346 	addr = gfn_to_hva(kvm, gfn);
1347 	if (kvm_is_error_hva(addr))
1348 		return -EFAULT;
1349 	pagefault_disable();
1350 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1351 	pagefault_enable();
1352 	if (r)
1353 		return -EFAULT;
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL(kvm_read_guest_atomic);
1357 
1358 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1359 			 int offset, int len)
1360 {
1361 	int r;
1362 	unsigned long addr;
1363 
1364 	addr = gfn_to_hva(kvm, gfn);
1365 	if (kvm_is_error_hva(addr))
1366 		return -EFAULT;
1367 	r = __copy_to_user((void __user *)addr + offset, data, len);
1368 	if (r)
1369 		return -EFAULT;
1370 	mark_page_dirty(kvm, gfn);
1371 	return 0;
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1374 
1375 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1376 		    unsigned long len)
1377 {
1378 	gfn_t gfn = gpa >> PAGE_SHIFT;
1379 	int seg;
1380 	int offset = offset_in_page(gpa);
1381 	int ret;
1382 
1383 	while ((seg = next_segment(len, offset)) != 0) {
1384 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1385 		if (ret < 0)
1386 			return ret;
1387 		offset = 0;
1388 		len -= seg;
1389 		data += seg;
1390 		++gfn;
1391 	}
1392 	return 0;
1393 }
1394 
1395 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1396 			      gpa_t gpa)
1397 {
1398 	struct kvm_memslots *slots = kvm_memslots(kvm);
1399 	int offset = offset_in_page(gpa);
1400 	gfn_t gfn = gpa >> PAGE_SHIFT;
1401 
1402 	ghc->gpa = gpa;
1403 	ghc->generation = slots->generation;
1404 	ghc->memslot = gfn_to_memslot(kvm, gfn);
1405 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1406 	if (!kvm_is_error_hva(ghc->hva))
1407 		ghc->hva += offset;
1408 	else
1409 		return -EFAULT;
1410 
1411 	return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1414 
1415 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1416 			   void *data, unsigned long len)
1417 {
1418 	struct kvm_memslots *slots = kvm_memslots(kvm);
1419 	int r;
1420 
1421 	if (slots->generation != ghc->generation)
1422 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1423 
1424 	if (kvm_is_error_hva(ghc->hva))
1425 		return -EFAULT;
1426 
1427 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1428 	if (r)
1429 		return -EFAULT;
1430 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1431 
1432 	return 0;
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1435 
1436 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1437 			   void *data, unsigned long len)
1438 {
1439 	struct kvm_memslots *slots = kvm_memslots(kvm);
1440 	int r;
1441 
1442 	if (slots->generation != ghc->generation)
1443 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1444 
1445 	if (kvm_is_error_hva(ghc->hva))
1446 		return -EFAULT;
1447 
1448 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1449 	if (r)
1450 		return -EFAULT;
1451 
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1455 
1456 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1457 {
1458 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1459 				    offset, len);
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1462 
1463 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1464 {
1465 	gfn_t gfn = gpa >> PAGE_SHIFT;
1466 	int seg;
1467 	int offset = offset_in_page(gpa);
1468 	int ret;
1469 
1470         while ((seg = next_segment(len, offset)) != 0) {
1471 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1472 		if (ret < 0)
1473 			return ret;
1474 		offset = 0;
1475 		len -= seg;
1476 		++gfn;
1477 	}
1478 	return 0;
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1481 
1482 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1483 			     gfn_t gfn)
1484 {
1485 	if (memslot && memslot->dirty_bitmap) {
1486 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1487 
1488 		/* TODO: introduce set_bit_le() and use it */
1489 		test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1490 	}
1491 }
1492 
1493 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1494 {
1495 	struct kvm_memory_slot *memslot;
1496 
1497 	memslot = gfn_to_memslot(kvm, gfn);
1498 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1499 }
1500 
1501 /*
1502  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1503  */
1504 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1505 {
1506 	DEFINE_WAIT(wait);
1507 
1508 	for (;;) {
1509 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1510 
1511 		if (kvm_arch_vcpu_runnable(vcpu)) {
1512 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1513 			break;
1514 		}
1515 		if (kvm_cpu_has_pending_timer(vcpu))
1516 			break;
1517 		if (signal_pending(current))
1518 			break;
1519 
1520 		schedule();
1521 	}
1522 
1523 	finish_wait(&vcpu->wq, &wait);
1524 }
1525 
1526 #ifndef CONFIG_S390
1527 /*
1528  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1529  */
1530 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1531 {
1532 	int me;
1533 	int cpu = vcpu->cpu;
1534 	wait_queue_head_t *wqp;
1535 
1536 	wqp = kvm_arch_vcpu_wq(vcpu);
1537 	if (waitqueue_active(wqp)) {
1538 		wake_up_interruptible(wqp);
1539 		++vcpu->stat.halt_wakeup;
1540 	}
1541 
1542 	me = get_cpu();
1543 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1544 		if (kvm_arch_vcpu_should_kick(vcpu))
1545 			smp_send_reschedule(cpu);
1546 	put_cpu();
1547 }
1548 #endif /* !CONFIG_S390 */
1549 
1550 void kvm_resched(struct kvm_vcpu *vcpu)
1551 {
1552 	if (!need_resched())
1553 		return;
1554 	cond_resched();
1555 }
1556 EXPORT_SYMBOL_GPL(kvm_resched);
1557 
1558 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1559 {
1560 	struct pid *pid;
1561 	struct task_struct *task = NULL;
1562 
1563 	rcu_read_lock();
1564 	pid = rcu_dereference(target->pid);
1565 	if (pid)
1566 		task = get_pid_task(target->pid, PIDTYPE_PID);
1567 	rcu_read_unlock();
1568 	if (!task)
1569 		return false;
1570 	if (task->flags & PF_VCPU) {
1571 		put_task_struct(task);
1572 		return false;
1573 	}
1574 	if (yield_to(task, 1)) {
1575 		put_task_struct(task);
1576 		return true;
1577 	}
1578 	put_task_struct(task);
1579 	return false;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1582 
1583 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1584 {
1585 	struct kvm *kvm = me->kvm;
1586 	struct kvm_vcpu *vcpu;
1587 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1588 	int yielded = 0;
1589 	int pass;
1590 	int i;
1591 
1592 	/*
1593 	 * We boost the priority of a VCPU that is runnable but not
1594 	 * currently running, because it got preempted by something
1595 	 * else and called schedule in __vcpu_run.  Hopefully that
1596 	 * VCPU is holding the lock that we need and will release it.
1597 	 * We approximate round-robin by starting at the last boosted VCPU.
1598 	 */
1599 	for (pass = 0; pass < 2 && !yielded; pass++) {
1600 		kvm_for_each_vcpu(i, vcpu, kvm) {
1601 			if (!pass && i <= last_boosted_vcpu) {
1602 				i = last_boosted_vcpu;
1603 				continue;
1604 			} else if (pass && i > last_boosted_vcpu)
1605 				break;
1606 			if (vcpu == me)
1607 				continue;
1608 			if (waitqueue_active(&vcpu->wq))
1609 				continue;
1610 			if (kvm_vcpu_yield_to(vcpu)) {
1611 				kvm->last_boosted_vcpu = i;
1612 				yielded = 1;
1613 				break;
1614 			}
1615 		}
1616 	}
1617 }
1618 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1619 
1620 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1621 {
1622 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1623 	struct page *page;
1624 
1625 	if (vmf->pgoff == 0)
1626 		page = virt_to_page(vcpu->run);
1627 #ifdef CONFIG_X86
1628 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1629 		page = virt_to_page(vcpu->arch.pio_data);
1630 #endif
1631 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1632 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1633 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1634 #endif
1635 	else
1636 		return kvm_arch_vcpu_fault(vcpu, vmf);
1637 	get_page(page);
1638 	vmf->page = page;
1639 	return 0;
1640 }
1641 
1642 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1643 	.fault = kvm_vcpu_fault,
1644 };
1645 
1646 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1647 {
1648 	vma->vm_ops = &kvm_vcpu_vm_ops;
1649 	return 0;
1650 }
1651 
1652 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1653 {
1654 	struct kvm_vcpu *vcpu = filp->private_data;
1655 
1656 	kvm_put_kvm(vcpu->kvm);
1657 	return 0;
1658 }
1659 
1660 static struct file_operations kvm_vcpu_fops = {
1661 	.release        = kvm_vcpu_release,
1662 	.unlocked_ioctl = kvm_vcpu_ioctl,
1663 #ifdef CONFIG_COMPAT
1664 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1665 #endif
1666 	.mmap           = kvm_vcpu_mmap,
1667 	.llseek		= noop_llseek,
1668 };
1669 
1670 /*
1671  * Allocates an inode for the vcpu.
1672  */
1673 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1674 {
1675 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1676 }
1677 
1678 /*
1679  * Creates some virtual cpus.  Good luck creating more than one.
1680  */
1681 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1682 {
1683 	int r;
1684 	struct kvm_vcpu *vcpu, *v;
1685 
1686 	vcpu = kvm_arch_vcpu_create(kvm, id);
1687 	if (IS_ERR(vcpu))
1688 		return PTR_ERR(vcpu);
1689 
1690 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1691 
1692 	r = kvm_arch_vcpu_setup(vcpu);
1693 	if (r)
1694 		goto vcpu_destroy;
1695 
1696 	mutex_lock(&kvm->lock);
1697 	if (!kvm_vcpu_compatible(vcpu)) {
1698 		r = -EINVAL;
1699 		goto unlock_vcpu_destroy;
1700 	}
1701 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1702 		r = -EINVAL;
1703 		goto unlock_vcpu_destroy;
1704 	}
1705 
1706 	kvm_for_each_vcpu(r, v, kvm)
1707 		if (v->vcpu_id == id) {
1708 			r = -EEXIST;
1709 			goto unlock_vcpu_destroy;
1710 		}
1711 
1712 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1713 
1714 	/* Now it's all set up, let userspace reach it */
1715 	kvm_get_kvm(kvm);
1716 	r = create_vcpu_fd(vcpu);
1717 	if (r < 0) {
1718 		kvm_put_kvm(kvm);
1719 		goto unlock_vcpu_destroy;
1720 	}
1721 
1722 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1723 	smp_wmb();
1724 	atomic_inc(&kvm->online_vcpus);
1725 
1726 	mutex_unlock(&kvm->lock);
1727 	return r;
1728 
1729 unlock_vcpu_destroy:
1730 	mutex_unlock(&kvm->lock);
1731 vcpu_destroy:
1732 	kvm_arch_vcpu_destroy(vcpu);
1733 	return r;
1734 }
1735 
1736 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1737 {
1738 	if (sigset) {
1739 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1740 		vcpu->sigset_active = 1;
1741 		vcpu->sigset = *sigset;
1742 	} else
1743 		vcpu->sigset_active = 0;
1744 	return 0;
1745 }
1746 
1747 static long kvm_vcpu_ioctl(struct file *filp,
1748 			   unsigned int ioctl, unsigned long arg)
1749 {
1750 	struct kvm_vcpu *vcpu = filp->private_data;
1751 	void __user *argp = (void __user *)arg;
1752 	int r;
1753 	struct kvm_fpu *fpu = NULL;
1754 	struct kvm_sregs *kvm_sregs = NULL;
1755 
1756 	if (vcpu->kvm->mm != current->mm)
1757 		return -EIO;
1758 
1759 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1760 	/*
1761 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1762 	 * so vcpu_load() would break it.
1763 	 */
1764 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1765 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1766 #endif
1767 
1768 
1769 	vcpu_load(vcpu);
1770 	switch (ioctl) {
1771 	case KVM_RUN:
1772 		r = -EINVAL;
1773 		if (arg)
1774 			goto out;
1775 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1776 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1777 		break;
1778 	case KVM_GET_REGS: {
1779 		struct kvm_regs *kvm_regs;
1780 
1781 		r = -ENOMEM;
1782 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1783 		if (!kvm_regs)
1784 			goto out;
1785 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1786 		if (r)
1787 			goto out_free1;
1788 		r = -EFAULT;
1789 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1790 			goto out_free1;
1791 		r = 0;
1792 out_free1:
1793 		kfree(kvm_regs);
1794 		break;
1795 	}
1796 	case KVM_SET_REGS: {
1797 		struct kvm_regs *kvm_regs;
1798 
1799 		r = -ENOMEM;
1800 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1801 		if (IS_ERR(kvm_regs)) {
1802 			r = PTR_ERR(kvm_regs);
1803 			goto out;
1804 		}
1805 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1806 		if (r)
1807 			goto out_free2;
1808 		r = 0;
1809 out_free2:
1810 		kfree(kvm_regs);
1811 		break;
1812 	}
1813 	case KVM_GET_SREGS: {
1814 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1815 		r = -ENOMEM;
1816 		if (!kvm_sregs)
1817 			goto out;
1818 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1819 		if (r)
1820 			goto out;
1821 		r = -EFAULT;
1822 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1823 			goto out;
1824 		r = 0;
1825 		break;
1826 	}
1827 	case KVM_SET_SREGS: {
1828 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1829 		if (IS_ERR(kvm_sregs)) {
1830 			r = PTR_ERR(kvm_sregs);
1831 			goto out;
1832 		}
1833 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1834 		if (r)
1835 			goto out;
1836 		r = 0;
1837 		break;
1838 	}
1839 	case KVM_GET_MP_STATE: {
1840 		struct kvm_mp_state mp_state;
1841 
1842 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1843 		if (r)
1844 			goto out;
1845 		r = -EFAULT;
1846 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1847 			goto out;
1848 		r = 0;
1849 		break;
1850 	}
1851 	case KVM_SET_MP_STATE: {
1852 		struct kvm_mp_state mp_state;
1853 
1854 		r = -EFAULT;
1855 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1856 			goto out;
1857 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1858 		if (r)
1859 			goto out;
1860 		r = 0;
1861 		break;
1862 	}
1863 	case KVM_TRANSLATE: {
1864 		struct kvm_translation tr;
1865 
1866 		r = -EFAULT;
1867 		if (copy_from_user(&tr, argp, sizeof tr))
1868 			goto out;
1869 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1870 		if (r)
1871 			goto out;
1872 		r = -EFAULT;
1873 		if (copy_to_user(argp, &tr, sizeof tr))
1874 			goto out;
1875 		r = 0;
1876 		break;
1877 	}
1878 	case KVM_SET_GUEST_DEBUG: {
1879 		struct kvm_guest_debug dbg;
1880 
1881 		r = -EFAULT;
1882 		if (copy_from_user(&dbg, argp, sizeof dbg))
1883 			goto out;
1884 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1885 		if (r)
1886 			goto out;
1887 		r = 0;
1888 		break;
1889 	}
1890 	case KVM_SET_SIGNAL_MASK: {
1891 		struct kvm_signal_mask __user *sigmask_arg = argp;
1892 		struct kvm_signal_mask kvm_sigmask;
1893 		sigset_t sigset, *p;
1894 
1895 		p = NULL;
1896 		if (argp) {
1897 			r = -EFAULT;
1898 			if (copy_from_user(&kvm_sigmask, argp,
1899 					   sizeof kvm_sigmask))
1900 				goto out;
1901 			r = -EINVAL;
1902 			if (kvm_sigmask.len != sizeof sigset)
1903 				goto out;
1904 			r = -EFAULT;
1905 			if (copy_from_user(&sigset, sigmask_arg->sigset,
1906 					   sizeof sigset))
1907 				goto out;
1908 			p = &sigset;
1909 		}
1910 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1911 		break;
1912 	}
1913 	case KVM_GET_FPU: {
1914 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1915 		r = -ENOMEM;
1916 		if (!fpu)
1917 			goto out;
1918 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1919 		if (r)
1920 			goto out;
1921 		r = -EFAULT;
1922 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1923 			goto out;
1924 		r = 0;
1925 		break;
1926 	}
1927 	case KVM_SET_FPU: {
1928 		fpu = memdup_user(argp, sizeof(*fpu));
1929 		if (IS_ERR(fpu)) {
1930 			r = PTR_ERR(fpu);
1931 			goto out;
1932 		}
1933 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1934 		if (r)
1935 			goto out;
1936 		r = 0;
1937 		break;
1938 	}
1939 	default:
1940 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1941 	}
1942 out:
1943 	vcpu_put(vcpu);
1944 	kfree(fpu);
1945 	kfree(kvm_sregs);
1946 	return r;
1947 }
1948 
1949 #ifdef CONFIG_COMPAT
1950 static long kvm_vcpu_compat_ioctl(struct file *filp,
1951 				  unsigned int ioctl, unsigned long arg)
1952 {
1953 	struct kvm_vcpu *vcpu = filp->private_data;
1954 	void __user *argp = compat_ptr(arg);
1955 	int r;
1956 
1957 	if (vcpu->kvm->mm != current->mm)
1958 		return -EIO;
1959 
1960 	switch (ioctl) {
1961 	case KVM_SET_SIGNAL_MASK: {
1962 		struct kvm_signal_mask __user *sigmask_arg = argp;
1963 		struct kvm_signal_mask kvm_sigmask;
1964 		compat_sigset_t csigset;
1965 		sigset_t sigset;
1966 
1967 		if (argp) {
1968 			r = -EFAULT;
1969 			if (copy_from_user(&kvm_sigmask, argp,
1970 					   sizeof kvm_sigmask))
1971 				goto out;
1972 			r = -EINVAL;
1973 			if (kvm_sigmask.len != sizeof csigset)
1974 				goto out;
1975 			r = -EFAULT;
1976 			if (copy_from_user(&csigset, sigmask_arg->sigset,
1977 					   sizeof csigset))
1978 				goto out;
1979 			sigset_from_compat(&sigset, &csigset);
1980 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1981 		} else
1982 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1983 		break;
1984 	}
1985 	default:
1986 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
1987 	}
1988 
1989 out:
1990 	return r;
1991 }
1992 #endif
1993 
1994 static long kvm_vm_ioctl(struct file *filp,
1995 			   unsigned int ioctl, unsigned long arg)
1996 {
1997 	struct kvm *kvm = filp->private_data;
1998 	void __user *argp = (void __user *)arg;
1999 	int r;
2000 
2001 	if (kvm->mm != current->mm)
2002 		return -EIO;
2003 	switch (ioctl) {
2004 	case KVM_CREATE_VCPU:
2005 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2006 		if (r < 0)
2007 			goto out;
2008 		break;
2009 	case KVM_SET_USER_MEMORY_REGION: {
2010 		struct kvm_userspace_memory_region kvm_userspace_mem;
2011 
2012 		r = -EFAULT;
2013 		if (copy_from_user(&kvm_userspace_mem, argp,
2014 						sizeof kvm_userspace_mem))
2015 			goto out;
2016 
2017 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2018 		if (r)
2019 			goto out;
2020 		break;
2021 	}
2022 	case KVM_GET_DIRTY_LOG: {
2023 		struct kvm_dirty_log log;
2024 
2025 		r = -EFAULT;
2026 		if (copy_from_user(&log, argp, sizeof log))
2027 			goto out;
2028 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2029 		if (r)
2030 			goto out;
2031 		break;
2032 	}
2033 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2034 	case KVM_REGISTER_COALESCED_MMIO: {
2035 		struct kvm_coalesced_mmio_zone zone;
2036 		r = -EFAULT;
2037 		if (copy_from_user(&zone, argp, sizeof zone))
2038 			goto out;
2039 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2040 		if (r)
2041 			goto out;
2042 		r = 0;
2043 		break;
2044 	}
2045 	case KVM_UNREGISTER_COALESCED_MMIO: {
2046 		struct kvm_coalesced_mmio_zone zone;
2047 		r = -EFAULT;
2048 		if (copy_from_user(&zone, argp, sizeof zone))
2049 			goto out;
2050 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2051 		if (r)
2052 			goto out;
2053 		r = 0;
2054 		break;
2055 	}
2056 #endif
2057 	case KVM_IRQFD: {
2058 		struct kvm_irqfd data;
2059 
2060 		r = -EFAULT;
2061 		if (copy_from_user(&data, argp, sizeof data))
2062 			goto out;
2063 		r = kvm_irqfd(kvm, &data);
2064 		break;
2065 	}
2066 	case KVM_IOEVENTFD: {
2067 		struct kvm_ioeventfd data;
2068 
2069 		r = -EFAULT;
2070 		if (copy_from_user(&data, argp, sizeof data))
2071 			goto out;
2072 		r = kvm_ioeventfd(kvm, &data);
2073 		break;
2074 	}
2075 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2076 	case KVM_SET_BOOT_CPU_ID:
2077 		r = 0;
2078 		mutex_lock(&kvm->lock);
2079 		if (atomic_read(&kvm->online_vcpus) != 0)
2080 			r = -EBUSY;
2081 		else
2082 			kvm->bsp_vcpu_id = arg;
2083 		mutex_unlock(&kvm->lock);
2084 		break;
2085 #endif
2086 #ifdef CONFIG_HAVE_KVM_MSI
2087 	case KVM_SIGNAL_MSI: {
2088 		struct kvm_msi msi;
2089 
2090 		r = -EFAULT;
2091 		if (copy_from_user(&msi, argp, sizeof msi))
2092 			goto out;
2093 		r = kvm_send_userspace_msi(kvm, &msi);
2094 		break;
2095 	}
2096 #endif
2097 	default:
2098 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2099 		if (r == -ENOTTY)
2100 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2101 	}
2102 out:
2103 	return r;
2104 }
2105 
2106 #ifdef CONFIG_COMPAT
2107 struct compat_kvm_dirty_log {
2108 	__u32 slot;
2109 	__u32 padding1;
2110 	union {
2111 		compat_uptr_t dirty_bitmap; /* one bit per page */
2112 		__u64 padding2;
2113 	};
2114 };
2115 
2116 static long kvm_vm_compat_ioctl(struct file *filp,
2117 			   unsigned int ioctl, unsigned long arg)
2118 {
2119 	struct kvm *kvm = filp->private_data;
2120 	int r;
2121 
2122 	if (kvm->mm != current->mm)
2123 		return -EIO;
2124 	switch (ioctl) {
2125 	case KVM_GET_DIRTY_LOG: {
2126 		struct compat_kvm_dirty_log compat_log;
2127 		struct kvm_dirty_log log;
2128 
2129 		r = -EFAULT;
2130 		if (copy_from_user(&compat_log, (void __user *)arg,
2131 				   sizeof(compat_log)))
2132 			goto out;
2133 		log.slot	 = compat_log.slot;
2134 		log.padding1	 = compat_log.padding1;
2135 		log.padding2	 = compat_log.padding2;
2136 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2137 
2138 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2139 		if (r)
2140 			goto out;
2141 		break;
2142 	}
2143 	default:
2144 		r = kvm_vm_ioctl(filp, ioctl, arg);
2145 	}
2146 
2147 out:
2148 	return r;
2149 }
2150 #endif
2151 
2152 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2153 {
2154 	struct page *page[1];
2155 	unsigned long addr;
2156 	int npages;
2157 	gfn_t gfn = vmf->pgoff;
2158 	struct kvm *kvm = vma->vm_file->private_data;
2159 
2160 	addr = gfn_to_hva(kvm, gfn);
2161 	if (kvm_is_error_hva(addr))
2162 		return VM_FAULT_SIGBUS;
2163 
2164 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2165 				NULL);
2166 	if (unlikely(npages != 1))
2167 		return VM_FAULT_SIGBUS;
2168 
2169 	vmf->page = page[0];
2170 	return 0;
2171 }
2172 
2173 static const struct vm_operations_struct kvm_vm_vm_ops = {
2174 	.fault = kvm_vm_fault,
2175 };
2176 
2177 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2178 {
2179 	vma->vm_ops = &kvm_vm_vm_ops;
2180 	return 0;
2181 }
2182 
2183 static struct file_operations kvm_vm_fops = {
2184 	.release        = kvm_vm_release,
2185 	.unlocked_ioctl = kvm_vm_ioctl,
2186 #ifdef CONFIG_COMPAT
2187 	.compat_ioctl   = kvm_vm_compat_ioctl,
2188 #endif
2189 	.mmap           = kvm_vm_mmap,
2190 	.llseek		= noop_llseek,
2191 };
2192 
2193 static int kvm_dev_ioctl_create_vm(unsigned long type)
2194 {
2195 	int r;
2196 	struct kvm *kvm;
2197 
2198 	kvm = kvm_create_vm(type);
2199 	if (IS_ERR(kvm))
2200 		return PTR_ERR(kvm);
2201 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2202 	r = kvm_coalesced_mmio_init(kvm);
2203 	if (r < 0) {
2204 		kvm_put_kvm(kvm);
2205 		return r;
2206 	}
2207 #endif
2208 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2209 	if (r < 0)
2210 		kvm_put_kvm(kvm);
2211 
2212 	return r;
2213 }
2214 
2215 static long kvm_dev_ioctl_check_extension_generic(long arg)
2216 {
2217 	switch (arg) {
2218 	case KVM_CAP_USER_MEMORY:
2219 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2220 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2221 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2222 	case KVM_CAP_SET_BOOT_CPU_ID:
2223 #endif
2224 	case KVM_CAP_INTERNAL_ERROR_DATA:
2225 #ifdef CONFIG_HAVE_KVM_MSI
2226 	case KVM_CAP_SIGNAL_MSI:
2227 #endif
2228 		return 1;
2229 #ifdef KVM_CAP_IRQ_ROUTING
2230 	case KVM_CAP_IRQ_ROUTING:
2231 		return KVM_MAX_IRQ_ROUTES;
2232 #endif
2233 	default:
2234 		break;
2235 	}
2236 	return kvm_dev_ioctl_check_extension(arg);
2237 }
2238 
2239 static long kvm_dev_ioctl(struct file *filp,
2240 			  unsigned int ioctl, unsigned long arg)
2241 {
2242 	long r = -EINVAL;
2243 
2244 	switch (ioctl) {
2245 	case KVM_GET_API_VERSION:
2246 		r = -EINVAL;
2247 		if (arg)
2248 			goto out;
2249 		r = KVM_API_VERSION;
2250 		break;
2251 	case KVM_CREATE_VM:
2252 		r = kvm_dev_ioctl_create_vm(arg);
2253 		break;
2254 	case KVM_CHECK_EXTENSION:
2255 		r = kvm_dev_ioctl_check_extension_generic(arg);
2256 		break;
2257 	case KVM_GET_VCPU_MMAP_SIZE:
2258 		r = -EINVAL;
2259 		if (arg)
2260 			goto out;
2261 		r = PAGE_SIZE;     /* struct kvm_run */
2262 #ifdef CONFIG_X86
2263 		r += PAGE_SIZE;    /* pio data page */
2264 #endif
2265 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2266 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2267 #endif
2268 		break;
2269 	case KVM_TRACE_ENABLE:
2270 	case KVM_TRACE_PAUSE:
2271 	case KVM_TRACE_DISABLE:
2272 		r = -EOPNOTSUPP;
2273 		break;
2274 	default:
2275 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2276 	}
2277 out:
2278 	return r;
2279 }
2280 
2281 static struct file_operations kvm_chardev_ops = {
2282 	.unlocked_ioctl = kvm_dev_ioctl,
2283 	.compat_ioctl   = kvm_dev_ioctl,
2284 	.llseek		= noop_llseek,
2285 };
2286 
2287 static struct miscdevice kvm_dev = {
2288 	KVM_MINOR,
2289 	"kvm",
2290 	&kvm_chardev_ops,
2291 };
2292 
2293 static void hardware_enable_nolock(void *junk)
2294 {
2295 	int cpu = raw_smp_processor_id();
2296 	int r;
2297 
2298 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2299 		return;
2300 
2301 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2302 
2303 	r = kvm_arch_hardware_enable(NULL);
2304 
2305 	if (r) {
2306 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2307 		atomic_inc(&hardware_enable_failed);
2308 		printk(KERN_INFO "kvm: enabling virtualization on "
2309 				 "CPU%d failed\n", cpu);
2310 	}
2311 }
2312 
2313 static void hardware_enable(void *junk)
2314 {
2315 	raw_spin_lock(&kvm_lock);
2316 	hardware_enable_nolock(junk);
2317 	raw_spin_unlock(&kvm_lock);
2318 }
2319 
2320 static void hardware_disable_nolock(void *junk)
2321 {
2322 	int cpu = raw_smp_processor_id();
2323 
2324 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2325 		return;
2326 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2327 	kvm_arch_hardware_disable(NULL);
2328 }
2329 
2330 static void hardware_disable(void *junk)
2331 {
2332 	raw_spin_lock(&kvm_lock);
2333 	hardware_disable_nolock(junk);
2334 	raw_spin_unlock(&kvm_lock);
2335 }
2336 
2337 static void hardware_disable_all_nolock(void)
2338 {
2339 	BUG_ON(!kvm_usage_count);
2340 
2341 	kvm_usage_count--;
2342 	if (!kvm_usage_count)
2343 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2344 }
2345 
2346 static void hardware_disable_all(void)
2347 {
2348 	raw_spin_lock(&kvm_lock);
2349 	hardware_disable_all_nolock();
2350 	raw_spin_unlock(&kvm_lock);
2351 }
2352 
2353 static int hardware_enable_all(void)
2354 {
2355 	int r = 0;
2356 
2357 	raw_spin_lock(&kvm_lock);
2358 
2359 	kvm_usage_count++;
2360 	if (kvm_usage_count == 1) {
2361 		atomic_set(&hardware_enable_failed, 0);
2362 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2363 
2364 		if (atomic_read(&hardware_enable_failed)) {
2365 			hardware_disable_all_nolock();
2366 			r = -EBUSY;
2367 		}
2368 	}
2369 
2370 	raw_spin_unlock(&kvm_lock);
2371 
2372 	return r;
2373 }
2374 
2375 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2376 			   void *v)
2377 {
2378 	int cpu = (long)v;
2379 
2380 	if (!kvm_usage_count)
2381 		return NOTIFY_OK;
2382 
2383 	val &= ~CPU_TASKS_FROZEN;
2384 	switch (val) {
2385 	case CPU_DYING:
2386 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2387 		       cpu);
2388 		hardware_disable(NULL);
2389 		break;
2390 	case CPU_STARTING:
2391 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2392 		       cpu);
2393 		hardware_enable(NULL);
2394 		break;
2395 	}
2396 	return NOTIFY_OK;
2397 }
2398 
2399 
2400 asmlinkage void kvm_spurious_fault(void)
2401 {
2402 	/* Fault while not rebooting.  We want the trace. */
2403 	BUG();
2404 }
2405 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2406 
2407 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2408 		      void *v)
2409 {
2410 	/*
2411 	 * Some (well, at least mine) BIOSes hang on reboot if
2412 	 * in vmx root mode.
2413 	 *
2414 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2415 	 */
2416 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2417 	kvm_rebooting = true;
2418 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2419 	return NOTIFY_OK;
2420 }
2421 
2422 static struct notifier_block kvm_reboot_notifier = {
2423 	.notifier_call = kvm_reboot,
2424 	.priority = 0,
2425 };
2426 
2427 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2428 {
2429 	int i;
2430 
2431 	for (i = 0; i < bus->dev_count; i++) {
2432 		struct kvm_io_device *pos = bus->range[i].dev;
2433 
2434 		kvm_iodevice_destructor(pos);
2435 	}
2436 	kfree(bus);
2437 }
2438 
2439 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2440 {
2441 	const struct kvm_io_range *r1 = p1;
2442 	const struct kvm_io_range *r2 = p2;
2443 
2444 	if (r1->addr < r2->addr)
2445 		return -1;
2446 	if (r1->addr + r1->len > r2->addr + r2->len)
2447 		return 1;
2448 	return 0;
2449 }
2450 
2451 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2452 			  gpa_t addr, int len)
2453 {
2454 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2455 		.addr = addr,
2456 		.len = len,
2457 		.dev = dev,
2458 	};
2459 
2460 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2461 		kvm_io_bus_sort_cmp, NULL);
2462 
2463 	return 0;
2464 }
2465 
2466 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2467 			     gpa_t addr, int len)
2468 {
2469 	struct kvm_io_range *range, key;
2470 	int off;
2471 
2472 	key = (struct kvm_io_range) {
2473 		.addr = addr,
2474 		.len = len,
2475 	};
2476 
2477 	range = bsearch(&key, bus->range, bus->dev_count,
2478 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2479 	if (range == NULL)
2480 		return -ENOENT;
2481 
2482 	off = range - bus->range;
2483 
2484 	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2485 		off--;
2486 
2487 	return off;
2488 }
2489 
2490 /* kvm_io_bus_write - called under kvm->slots_lock */
2491 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2492 		     int len, const void *val)
2493 {
2494 	int idx;
2495 	struct kvm_io_bus *bus;
2496 	struct kvm_io_range range;
2497 
2498 	range = (struct kvm_io_range) {
2499 		.addr = addr,
2500 		.len = len,
2501 	};
2502 
2503 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2504 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2505 	if (idx < 0)
2506 		return -EOPNOTSUPP;
2507 
2508 	while (idx < bus->dev_count &&
2509 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2510 		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2511 			return 0;
2512 		idx++;
2513 	}
2514 
2515 	return -EOPNOTSUPP;
2516 }
2517 
2518 /* kvm_io_bus_read - called under kvm->slots_lock */
2519 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2520 		    int len, void *val)
2521 {
2522 	int idx;
2523 	struct kvm_io_bus *bus;
2524 	struct kvm_io_range range;
2525 
2526 	range = (struct kvm_io_range) {
2527 		.addr = addr,
2528 		.len = len,
2529 	};
2530 
2531 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2532 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2533 	if (idx < 0)
2534 		return -EOPNOTSUPP;
2535 
2536 	while (idx < bus->dev_count &&
2537 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2538 		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2539 			return 0;
2540 		idx++;
2541 	}
2542 
2543 	return -EOPNOTSUPP;
2544 }
2545 
2546 /* Caller must hold slots_lock. */
2547 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2548 			    int len, struct kvm_io_device *dev)
2549 {
2550 	struct kvm_io_bus *new_bus, *bus;
2551 
2552 	bus = kvm->buses[bus_idx];
2553 	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2554 		return -ENOSPC;
2555 
2556 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2557 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2558 	if (!new_bus)
2559 		return -ENOMEM;
2560 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2561 	       sizeof(struct kvm_io_range)));
2562 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2563 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2564 	synchronize_srcu_expedited(&kvm->srcu);
2565 	kfree(bus);
2566 
2567 	return 0;
2568 }
2569 
2570 /* Caller must hold slots_lock. */
2571 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2572 			      struct kvm_io_device *dev)
2573 {
2574 	int i, r;
2575 	struct kvm_io_bus *new_bus, *bus;
2576 
2577 	bus = kvm->buses[bus_idx];
2578 	r = -ENOENT;
2579 	for (i = 0; i < bus->dev_count; i++)
2580 		if (bus->range[i].dev == dev) {
2581 			r = 0;
2582 			break;
2583 		}
2584 
2585 	if (r)
2586 		return r;
2587 
2588 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2589 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2590 	if (!new_bus)
2591 		return -ENOMEM;
2592 
2593 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2594 	new_bus->dev_count--;
2595 	memcpy(new_bus->range + i, bus->range + i + 1,
2596 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2597 
2598 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2599 	synchronize_srcu_expedited(&kvm->srcu);
2600 	kfree(bus);
2601 	return r;
2602 }
2603 
2604 static struct notifier_block kvm_cpu_notifier = {
2605 	.notifier_call = kvm_cpu_hotplug,
2606 };
2607 
2608 static int vm_stat_get(void *_offset, u64 *val)
2609 {
2610 	unsigned offset = (long)_offset;
2611 	struct kvm *kvm;
2612 
2613 	*val = 0;
2614 	raw_spin_lock(&kvm_lock);
2615 	list_for_each_entry(kvm, &vm_list, vm_list)
2616 		*val += *(u32 *)((void *)kvm + offset);
2617 	raw_spin_unlock(&kvm_lock);
2618 	return 0;
2619 }
2620 
2621 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2622 
2623 static int vcpu_stat_get(void *_offset, u64 *val)
2624 {
2625 	unsigned offset = (long)_offset;
2626 	struct kvm *kvm;
2627 	struct kvm_vcpu *vcpu;
2628 	int i;
2629 
2630 	*val = 0;
2631 	raw_spin_lock(&kvm_lock);
2632 	list_for_each_entry(kvm, &vm_list, vm_list)
2633 		kvm_for_each_vcpu(i, vcpu, kvm)
2634 			*val += *(u32 *)((void *)vcpu + offset);
2635 
2636 	raw_spin_unlock(&kvm_lock);
2637 	return 0;
2638 }
2639 
2640 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2641 
2642 static const struct file_operations *stat_fops[] = {
2643 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2644 	[KVM_STAT_VM]   = &vm_stat_fops,
2645 };
2646 
2647 static int kvm_init_debug(void)
2648 {
2649 	int r = -EFAULT;
2650 	struct kvm_stats_debugfs_item *p;
2651 
2652 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2653 	if (kvm_debugfs_dir == NULL)
2654 		goto out;
2655 
2656 	for (p = debugfs_entries; p->name; ++p) {
2657 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2658 						(void *)(long)p->offset,
2659 						stat_fops[p->kind]);
2660 		if (p->dentry == NULL)
2661 			goto out_dir;
2662 	}
2663 
2664 	return 0;
2665 
2666 out_dir:
2667 	debugfs_remove_recursive(kvm_debugfs_dir);
2668 out:
2669 	return r;
2670 }
2671 
2672 static void kvm_exit_debug(void)
2673 {
2674 	struct kvm_stats_debugfs_item *p;
2675 
2676 	for (p = debugfs_entries; p->name; ++p)
2677 		debugfs_remove(p->dentry);
2678 	debugfs_remove(kvm_debugfs_dir);
2679 }
2680 
2681 static int kvm_suspend(void)
2682 {
2683 	if (kvm_usage_count)
2684 		hardware_disable_nolock(NULL);
2685 	return 0;
2686 }
2687 
2688 static void kvm_resume(void)
2689 {
2690 	if (kvm_usage_count) {
2691 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2692 		hardware_enable_nolock(NULL);
2693 	}
2694 }
2695 
2696 static struct syscore_ops kvm_syscore_ops = {
2697 	.suspend = kvm_suspend,
2698 	.resume = kvm_resume,
2699 };
2700 
2701 struct page *bad_page;
2702 pfn_t bad_pfn;
2703 
2704 static inline
2705 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2706 {
2707 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2708 }
2709 
2710 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2711 {
2712 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2713 
2714 	kvm_arch_vcpu_load(vcpu, cpu);
2715 }
2716 
2717 static void kvm_sched_out(struct preempt_notifier *pn,
2718 			  struct task_struct *next)
2719 {
2720 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2721 
2722 	kvm_arch_vcpu_put(vcpu);
2723 }
2724 
2725 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2726 		  struct module *module)
2727 {
2728 	int r;
2729 	int cpu;
2730 
2731 	r = kvm_arch_init(opaque);
2732 	if (r)
2733 		goto out_fail;
2734 
2735 	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2736 
2737 	if (bad_page == NULL) {
2738 		r = -ENOMEM;
2739 		goto out;
2740 	}
2741 
2742 	bad_pfn = page_to_pfn(bad_page);
2743 
2744 	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2745 
2746 	if (hwpoison_page == NULL) {
2747 		r = -ENOMEM;
2748 		goto out_free_0;
2749 	}
2750 
2751 	hwpoison_pfn = page_to_pfn(hwpoison_page);
2752 
2753 	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2754 
2755 	if (fault_page == NULL) {
2756 		r = -ENOMEM;
2757 		goto out_free_0;
2758 	}
2759 
2760 	fault_pfn = page_to_pfn(fault_page);
2761 
2762 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2763 		r = -ENOMEM;
2764 		goto out_free_0;
2765 	}
2766 
2767 	r = kvm_arch_hardware_setup();
2768 	if (r < 0)
2769 		goto out_free_0a;
2770 
2771 	for_each_online_cpu(cpu) {
2772 		smp_call_function_single(cpu,
2773 				kvm_arch_check_processor_compat,
2774 				&r, 1);
2775 		if (r < 0)
2776 			goto out_free_1;
2777 	}
2778 
2779 	r = register_cpu_notifier(&kvm_cpu_notifier);
2780 	if (r)
2781 		goto out_free_2;
2782 	register_reboot_notifier(&kvm_reboot_notifier);
2783 
2784 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2785 	if (!vcpu_align)
2786 		vcpu_align = __alignof__(struct kvm_vcpu);
2787 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2788 					   0, NULL);
2789 	if (!kvm_vcpu_cache) {
2790 		r = -ENOMEM;
2791 		goto out_free_3;
2792 	}
2793 
2794 	r = kvm_async_pf_init();
2795 	if (r)
2796 		goto out_free;
2797 
2798 	kvm_chardev_ops.owner = module;
2799 	kvm_vm_fops.owner = module;
2800 	kvm_vcpu_fops.owner = module;
2801 
2802 	r = misc_register(&kvm_dev);
2803 	if (r) {
2804 		printk(KERN_ERR "kvm: misc device register failed\n");
2805 		goto out_unreg;
2806 	}
2807 
2808 	register_syscore_ops(&kvm_syscore_ops);
2809 
2810 	kvm_preempt_ops.sched_in = kvm_sched_in;
2811 	kvm_preempt_ops.sched_out = kvm_sched_out;
2812 
2813 	r = kvm_init_debug();
2814 	if (r) {
2815 		printk(KERN_ERR "kvm: create debugfs files failed\n");
2816 		goto out_undebugfs;
2817 	}
2818 
2819 	return 0;
2820 
2821 out_undebugfs:
2822 	unregister_syscore_ops(&kvm_syscore_ops);
2823 out_unreg:
2824 	kvm_async_pf_deinit();
2825 out_free:
2826 	kmem_cache_destroy(kvm_vcpu_cache);
2827 out_free_3:
2828 	unregister_reboot_notifier(&kvm_reboot_notifier);
2829 	unregister_cpu_notifier(&kvm_cpu_notifier);
2830 out_free_2:
2831 out_free_1:
2832 	kvm_arch_hardware_unsetup();
2833 out_free_0a:
2834 	free_cpumask_var(cpus_hardware_enabled);
2835 out_free_0:
2836 	if (fault_page)
2837 		__free_page(fault_page);
2838 	if (hwpoison_page)
2839 		__free_page(hwpoison_page);
2840 	__free_page(bad_page);
2841 out:
2842 	kvm_arch_exit();
2843 out_fail:
2844 	return r;
2845 }
2846 EXPORT_SYMBOL_GPL(kvm_init);
2847 
2848 void kvm_exit(void)
2849 {
2850 	kvm_exit_debug();
2851 	misc_deregister(&kvm_dev);
2852 	kmem_cache_destroy(kvm_vcpu_cache);
2853 	kvm_async_pf_deinit();
2854 	unregister_syscore_ops(&kvm_syscore_ops);
2855 	unregister_reboot_notifier(&kvm_reboot_notifier);
2856 	unregister_cpu_notifier(&kvm_cpu_notifier);
2857 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2858 	kvm_arch_hardware_unsetup();
2859 	kvm_arch_exit();
2860 	free_cpumask_var(cpus_hardware_enabled);
2861 	__free_page(fault_page);
2862 	__free_page(hwpoison_page);
2863 	__free_page(bad_page);
2864 }
2865 EXPORT_SYMBOL_GPL(kvm_exit);
2866