1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 static struct page *hwpoison_page; 104 static pfn_t hwpoison_pfn; 105 106 struct page *fault_page; 107 pfn_t fault_pfn; 108 109 inline int kvm_is_mmio_pfn(pfn_t pfn) 110 { 111 if (pfn_valid(pfn)) { 112 int reserved; 113 struct page *tail = pfn_to_page(pfn); 114 struct page *head = compound_trans_head(tail); 115 reserved = PageReserved(head); 116 if (head != tail) { 117 /* 118 * "head" is not a dangling pointer 119 * (compound_trans_head takes care of that) 120 * but the hugepage may have been splitted 121 * from under us (and we may not hold a 122 * reference count on the head page so it can 123 * be reused before we run PageReferenced), so 124 * we've to check PageTail before returning 125 * what we just read. 126 */ 127 smp_rmb(); 128 if (PageTail(tail)) 129 return reserved; 130 } 131 return PageReserved(tail); 132 } 133 134 return true; 135 } 136 137 /* 138 * Switches to specified vcpu, until a matching vcpu_put() 139 */ 140 void vcpu_load(struct kvm_vcpu *vcpu) 141 { 142 int cpu; 143 144 mutex_lock(&vcpu->mutex); 145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 146 /* The thread running this VCPU changed. */ 147 struct pid *oldpid = vcpu->pid; 148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 149 rcu_assign_pointer(vcpu->pid, newpid); 150 synchronize_rcu(); 151 put_pid(oldpid); 152 } 153 cpu = get_cpu(); 154 preempt_notifier_register(&vcpu->preempt_notifier); 155 kvm_arch_vcpu_load(vcpu, cpu); 156 put_cpu(); 157 } 158 159 void vcpu_put(struct kvm_vcpu *vcpu) 160 { 161 preempt_disable(); 162 kvm_arch_vcpu_put(vcpu); 163 preempt_notifier_unregister(&vcpu->preempt_notifier); 164 preempt_enable(); 165 mutex_unlock(&vcpu->mutex); 166 } 167 168 static void ack_flush(void *_completed) 169 { 170 } 171 172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 173 { 174 int i, cpu, me; 175 cpumask_var_t cpus; 176 bool called = true; 177 struct kvm_vcpu *vcpu; 178 179 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 180 181 me = get_cpu(); 182 kvm_for_each_vcpu(i, vcpu, kvm) { 183 kvm_make_request(req, vcpu); 184 cpu = vcpu->cpu; 185 186 /* Set ->requests bit before we read ->mode */ 187 smp_mb(); 188 189 if (cpus != NULL && cpu != -1 && cpu != me && 190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 191 cpumask_set_cpu(cpu, cpus); 192 } 193 if (unlikely(cpus == NULL)) 194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 195 else if (!cpumask_empty(cpus)) 196 smp_call_function_many(cpus, ack_flush, NULL, 1); 197 else 198 called = false; 199 put_cpu(); 200 free_cpumask_var(cpus); 201 return called; 202 } 203 204 void kvm_flush_remote_tlbs(struct kvm *kvm) 205 { 206 long dirty_count = kvm->tlbs_dirty; 207 208 smp_mb(); 209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 210 ++kvm->stat.remote_tlb_flush; 211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 212 } 213 214 void kvm_reload_remote_mmus(struct kvm *kvm) 215 { 216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 217 } 218 219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 220 { 221 struct page *page; 222 int r; 223 224 mutex_init(&vcpu->mutex); 225 vcpu->cpu = -1; 226 vcpu->kvm = kvm; 227 vcpu->vcpu_id = id; 228 vcpu->pid = NULL; 229 init_waitqueue_head(&vcpu->wq); 230 kvm_async_pf_vcpu_init(vcpu); 231 232 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 233 if (!page) { 234 r = -ENOMEM; 235 goto fail; 236 } 237 vcpu->run = page_address(page); 238 239 r = kvm_arch_vcpu_init(vcpu); 240 if (r < 0) 241 goto fail_free_run; 242 return 0; 243 244 fail_free_run: 245 free_page((unsigned long)vcpu->run); 246 fail: 247 return r; 248 } 249 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 250 251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 252 { 253 put_pid(vcpu->pid); 254 kvm_arch_vcpu_uninit(vcpu); 255 free_page((unsigned long)vcpu->run); 256 } 257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 258 259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 261 { 262 return container_of(mn, struct kvm, mmu_notifier); 263 } 264 265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 266 struct mm_struct *mm, 267 unsigned long address) 268 { 269 struct kvm *kvm = mmu_notifier_to_kvm(mn); 270 int need_tlb_flush, idx; 271 272 /* 273 * When ->invalidate_page runs, the linux pte has been zapped 274 * already but the page is still allocated until 275 * ->invalidate_page returns. So if we increase the sequence 276 * here the kvm page fault will notice if the spte can't be 277 * established because the page is going to be freed. If 278 * instead the kvm page fault establishes the spte before 279 * ->invalidate_page runs, kvm_unmap_hva will release it 280 * before returning. 281 * 282 * The sequence increase only need to be seen at spin_unlock 283 * time, and not at spin_lock time. 284 * 285 * Increasing the sequence after the spin_unlock would be 286 * unsafe because the kvm page fault could then establish the 287 * pte after kvm_unmap_hva returned, without noticing the page 288 * is going to be freed. 289 */ 290 idx = srcu_read_lock(&kvm->srcu); 291 spin_lock(&kvm->mmu_lock); 292 293 kvm->mmu_notifier_seq++; 294 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 295 /* we've to flush the tlb before the pages can be freed */ 296 if (need_tlb_flush) 297 kvm_flush_remote_tlbs(kvm); 298 299 spin_unlock(&kvm->mmu_lock); 300 srcu_read_unlock(&kvm->srcu, idx); 301 } 302 303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 304 struct mm_struct *mm, 305 unsigned long address, 306 pte_t pte) 307 { 308 struct kvm *kvm = mmu_notifier_to_kvm(mn); 309 int idx; 310 311 idx = srcu_read_lock(&kvm->srcu); 312 spin_lock(&kvm->mmu_lock); 313 kvm->mmu_notifier_seq++; 314 kvm_set_spte_hva(kvm, address, pte); 315 spin_unlock(&kvm->mmu_lock); 316 srcu_read_unlock(&kvm->srcu, idx); 317 } 318 319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 320 struct mm_struct *mm, 321 unsigned long start, 322 unsigned long end) 323 { 324 struct kvm *kvm = mmu_notifier_to_kvm(mn); 325 int need_tlb_flush = 0, idx; 326 327 idx = srcu_read_lock(&kvm->srcu); 328 spin_lock(&kvm->mmu_lock); 329 /* 330 * The count increase must become visible at unlock time as no 331 * spte can be established without taking the mmu_lock and 332 * count is also read inside the mmu_lock critical section. 333 */ 334 kvm->mmu_notifier_count++; 335 for (; start < end; start += PAGE_SIZE) 336 need_tlb_flush |= kvm_unmap_hva(kvm, start); 337 need_tlb_flush |= kvm->tlbs_dirty; 338 /* we've to flush the tlb before the pages can be freed */ 339 if (need_tlb_flush) 340 kvm_flush_remote_tlbs(kvm); 341 342 spin_unlock(&kvm->mmu_lock); 343 srcu_read_unlock(&kvm->srcu, idx); 344 } 345 346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long start, 349 unsigned long end) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 353 spin_lock(&kvm->mmu_lock); 354 /* 355 * This sequence increase will notify the kvm page fault that 356 * the page that is going to be mapped in the spte could have 357 * been freed. 358 */ 359 kvm->mmu_notifier_seq++; 360 smp_wmb(); 361 /* 362 * The above sequence increase must be visible before the 363 * below count decrease, which is ensured by the smp_wmb above 364 * in conjunction with the smp_rmb in mmu_notifier_retry(). 365 */ 366 kvm->mmu_notifier_count--; 367 spin_unlock(&kvm->mmu_lock); 368 369 BUG_ON(kvm->mmu_notifier_count < 0); 370 } 371 372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 373 struct mm_struct *mm, 374 unsigned long address) 375 { 376 struct kvm *kvm = mmu_notifier_to_kvm(mn); 377 int young, idx; 378 379 idx = srcu_read_lock(&kvm->srcu); 380 spin_lock(&kvm->mmu_lock); 381 382 young = kvm_age_hva(kvm, address); 383 if (young) 384 kvm_flush_remote_tlbs(kvm); 385 386 spin_unlock(&kvm->mmu_lock); 387 srcu_read_unlock(&kvm->srcu, idx); 388 389 return young; 390 } 391 392 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 393 struct mm_struct *mm, 394 unsigned long address) 395 { 396 struct kvm *kvm = mmu_notifier_to_kvm(mn); 397 int young, idx; 398 399 idx = srcu_read_lock(&kvm->srcu); 400 spin_lock(&kvm->mmu_lock); 401 young = kvm_test_age_hva(kvm, address); 402 spin_unlock(&kvm->mmu_lock); 403 srcu_read_unlock(&kvm->srcu, idx); 404 405 return young; 406 } 407 408 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 409 struct mm_struct *mm) 410 { 411 struct kvm *kvm = mmu_notifier_to_kvm(mn); 412 int idx; 413 414 idx = srcu_read_lock(&kvm->srcu); 415 kvm_arch_flush_shadow(kvm); 416 srcu_read_unlock(&kvm->srcu, idx); 417 } 418 419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 420 .invalidate_page = kvm_mmu_notifier_invalidate_page, 421 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 422 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 423 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 424 .test_young = kvm_mmu_notifier_test_young, 425 .change_pte = kvm_mmu_notifier_change_pte, 426 .release = kvm_mmu_notifier_release, 427 }; 428 429 static int kvm_init_mmu_notifier(struct kvm *kvm) 430 { 431 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 432 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 433 } 434 435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 436 437 static int kvm_init_mmu_notifier(struct kvm *kvm) 438 { 439 return 0; 440 } 441 442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 443 444 static void kvm_init_memslots_id(struct kvm *kvm) 445 { 446 int i; 447 struct kvm_memslots *slots = kvm->memslots; 448 449 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 450 slots->id_to_index[i] = slots->memslots[i].id = i; 451 } 452 453 static struct kvm *kvm_create_vm(unsigned long type) 454 { 455 int r, i; 456 struct kvm *kvm = kvm_arch_alloc_vm(); 457 458 if (!kvm) 459 return ERR_PTR(-ENOMEM); 460 461 r = kvm_arch_init_vm(kvm, type); 462 if (r) 463 goto out_err_nodisable; 464 465 r = hardware_enable_all(); 466 if (r) 467 goto out_err_nodisable; 468 469 #ifdef CONFIG_HAVE_KVM_IRQCHIP 470 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 471 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 472 #endif 473 474 r = -ENOMEM; 475 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 476 if (!kvm->memslots) 477 goto out_err_nosrcu; 478 kvm_init_memslots_id(kvm); 479 if (init_srcu_struct(&kvm->srcu)) 480 goto out_err_nosrcu; 481 for (i = 0; i < KVM_NR_BUSES; i++) { 482 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 483 GFP_KERNEL); 484 if (!kvm->buses[i]) 485 goto out_err; 486 } 487 488 spin_lock_init(&kvm->mmu_lock); 489 kvm->mm = current->mm; 490 atomic_inc(&kvm->mm->mm_count); 491 kvm_eventfd_init(kvm); 492 mutex_init(&kvm->lock); 493 mutex_init(&kvm->irq_lock); 494 mutex_init(&kvm->slots_lock); 495 atomic_set(&kvm->users_count, 1); 496 497 r = kvm_init_mmu_notifier(kvm); 498 if (r) 499 goto out_err; 500 501 raw_spin_lock(&kvm_lock); 502 list_add(&kvm->vm_list, &vm_list); 503 raw_spin_unlock(&kvm_lock); 504 505 return kvm; 506 507 out_err: 508 cleanup_srcu_struct(&kvm->srcu); 509 out_err_nosrcu: 510 hardware_disable_all(); 511 out_err_nodisable: 512 for (i = 0; i < KVM_NR_BUSES; i++) 513 kfree(kvm->buses[i]); 514 kfree(kvm->memslots); 515 kvm_arch_free_vm(kvm); 516 return ERR_PTR(r); 517 } 518 519 /* 520 * Avoid using vmalloc for a small buffer. 521 * Should not be used when the size is statically known. 522 */ 523 void *kvm_kvzalloc(unsigned long size) 524 { 525 if (size > PAGE_SIZE) 526 return vzalloc(size); 527 else 528 return kzalloc(size, GFP_KERNEL); 529 } 530 531 void kvm_kvfree(const void *addr) 532 { 533 if (is_vmalloc_addr(addr)) 534 vfree(addr); 535 else 536 kfree(addr); 537 } 538 539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 540 { 541 if (!memslot->dirty_bitmap) 542 return; 543 544 kvm_kvfree(memslot->dirty_bitmap); 545 memslot->dirty_bitmap = NULL; 546 } 547 548 /* 549 * Free any memory in @free but not in @dont. 550 */ 551 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 552 struct kvm_memory_slot *dont) 553 { 554 if (!dont || free->rmap != dont->rmap) 555 vfree(free->rmap); 556 557 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 558 kvm_destroy_dirty_bitmap(free); 559 560 kvm_arch_free_memslot(free, dont); 561 562 free->npages = 0; 563 free->rmap = NULL; 564 } 565 566 void kvm_free_physmem(struct kvm *kvm) 567 { 568 struct kvm_memslots *slots = kvm->memslots; 569 struct kvm_memory_slot *memslot; 570 571 kvm_for_each_memslot(memslot, slots) 572 kvm_free_physmem_slot(memslot, NULL); 573 574 kfree(kvm->memslots); 575 } 576 577 static void kvm_destroy_vm(struct kvm *kvm) 578 { 579 int i; 580 struct mm_struct *mm = kvm->mm; 581 582 kvm_arch_sync_events(kvm); 583 raw_spin_lock(&kvm_lock); 584 list_del(&kvm->vm_list); 585 raw_spin_unlock(&kvm_lock); 586 kvm_free_irq_routing(kvm); 587 for (i = 0; i < KVM_NR_BUSES; i++) 588 kvm_io_bus_destroy(kvm->buses[i]); 589 kvm_coalesced_mmio_free(kvm); 590 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 591 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 592 #else 593 kvm_arch_flush_shadow(kvm); 594 #endif 595 kvm_arch_destroy_vm(kvm); 596 kvm_free_physmem(kvm); 597 cleanup_srcu_struct(&kvm->srcu); 598 kvm_arch_free_vm(kvm); 599 hardware_disable_all(); 600 mmdrop(mm); 601 } 602 603 void kvm_get_kvm(struct kvm *kvm) 604 { 605 atomic_inc(&kvm->users_count); 606 } 607 EXPORT_SYMBOL_GPL(kvm_get_kvm); 608 609 void kvm_put_kvm(struct kvm *kvm) 610 { 611 if (atomic_dec_and_test(&kvm->users_count)) 612 kvm_destroy_vm(kvm); 613 } 614 EXPORT_SYMBOL_GPL(kvm_put_kvm); 615 616 617 static int kvm_vm_release(struct inode *inode, struct file *filp) 618 { 619 struct kvm *kvm = filp->private_data; 620 621 kvm_irqfd_release(kvm); 622 623 kvm_put_kvm(kvm); 624 return 0; 625 } 626 627 /* 628 * Allocation size is twice as large as the actual dirty bitmap size. 629 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 630 */ 631 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 632 { 633 #ifndef CONFIG_S390 634 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 635 636 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 637 if (!memslot->dirty_bitmap) 638 return -ENOMEM; 639 640 #endif /* !CONFIG_S390 */ 641 return 0; 642 } 643 644 static int cmp_memslot(const void *slot1, const void *slot2) 645 { 646 struct kvm_memory_slot *s1, *s2; 647 648 s1 = (struct kvm_memory_slot *)slot1; 649 s2 = (struct kvm_memory_slot *)slot2; 650 651 if (s1->npages < s2->npages) 652 return 1; 653 if (s1->npages > s2->npages) 654 return -1; 655 656 return 0; 657 } 658 659 /* 660 * Sort the memslots base on its size, so the larger slots 661 * will get better fit. 662 */ 663 static void sort_memslots(struct kvm_memslots *slots) 664 { 665 int i; 666 667 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 668 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 669 670 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 671 slots->id_to_index[slots->memslots[i].id] = i; 672 } 673 674 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new) 675 { 676 if (new) { 677 int id = new->id; 678 struct kvm_memory_slot *old = id_to_memslot(slots, id); 679 unsigned long npages = old->npages; 680 681 *old = *new; 682 if (new->npages != npages) 683 sort_memslots(slots); 684 } 685 686 slots->generation++; 687 } 688 689 /* 690 * Allocate some memory and give it an address in the guest physical address 691 * space. 692 * 693 * Discontiguous memory is allowed, mostly for framebuffers. 694 * 695 * Must be called holding mmap_sem for write. 696 */ 697 int __kvm_set_memory_region(struct kvm *kvm, 698 struct kvm_userspace_memory_region *mem, 699 int user_alloc) 700 { 701 int r; 702 gfn_t base_gfn; 703 unsigned long npages; 704 unsigned long i; 705 struct kvm_memory_slot *memslot; 706 struct kvm_memory_slot old, new; 707 struct kvm_memslots *slots, *old_memslots; 708 709 r = -EINVAL; 710 /* General sanity checks */ 711 if (mem->memory_size & (PAGE_SIZE - 1)) 712 goto out; 713 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 714 goto out; 715 /* We can read the guest memory with __xxx_user() later on. */ 716 if (user_alloc && 717 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 718 !access_ok(VERIFY_WRITE, 719 (void __user *)(unsigned long)mem->userspace_addr, 720 mem->memory_size))) 721 goto out; 722 if (mem->slot >= KVM_MEM_SLOTS_NUM) 723 goto out; 724 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 725 goto out; 726 727 memslot = id_to_memslot(kvm->memslots, mem->slot); 728 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 729 npages = mem->memory_size >> PAGE_SHIFT; 730 731 r = -EINVAL; 732 if (npages > KVM_MEM_MAX_NR_PAGES) 733 goto out; 734 735 if (!npages) 736 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 737 738 new = old = *memslot; 739 740 new.id = mem->slot; 741 new.base_gfn = base_gfn; 742 new.npages = npages; 743 new.flags = mem->flags; 744 745 /* Disallow changing a memory slot's size. */ 746 r = -EINVAL; 747 if (npages && old.npages && npages != old.npages) 748 goto out_free; 749 750 /* Check for overlaps */ 751 r = -EEXIST; 752 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 753 struct kvm_memory_slot *s = &kvm->memslots->memslots[i]; 754 755 if (s == memslot || !s->npages) 756 continue; 757 if (!((base_gfn + npages <= s->base_gfn) || 758 (base_gfn >= s->base_gfn + s->npages))) 759 goto out_free; 760 } 761 762 /* Free page dirty bitmap if unneeded */ 763 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 764 new.dirty_bitmap = NULL; 765 766 r = -ENOMEM; 767 768 /* Allocate if a slot is being created */ 769 if (npages && !old.npages) { 770 new.user_alloc = user_alloc; 771 new.userspace_addr = mem->userspace_addr; 772 #ifndef CONFIG_S390 773 new.rmap = vzalloc(npages * sizeof(*new.rmap)); 774 if (!new.rmap) 775 goto out_free; 776 #endif /* not defined CONFIG_S390 */ 777 if (kvm_arch_create_memslot(&new, npages)) 778 goto out_free; 779 } 780 781 /* Allocate page dirty bitmap if needed */ 782 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 783 if (kvm_create_dirty_bitmap(&new) < 0) 784 goto out_free; 785 /* destroy any largepage mappings for dirty tracking */ 786 } 787 788 if (!npages) { 789 struct kvm_memory_slot *slot; 790 791 r = -ENOMEM; 792 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 793 GFP_KERNEL); 794 if (!slots) 795 goto out_free; 796 slot = id_to_memslot(slots, mem->slot); 797 slot->flags |= KVM_MEMSLOT_INVALID; 798 799 update_memslots(slots, NULL); 800 801 old_memslots = kvm->memslots; 802 rcu_assign_pointer(kvm->memslots, slots); 803 synchronize_srcu_expedited(&kvm->srcu); 804 /* From this point no new shadow pages pointing to a deleted 805 * memslot will be created. 806 * 807 * validation of sp->gfn happens in: 808 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 809 * - kvm_is_visible_gfn (mmu_check_roots) 810 */ 811 kvm_arch_flush_shadow(kvm); 812 kfree(old_memslots); 813 } 814 815 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); 816 if (r) 817 goto out_free; 818 819 /* map/unmap the pages in iommu page table */ 820 if (npages) { 821 r = kvm_iommu_map_pages(kvm, &new); 822 if (r) 823 goto out_free; 824 } else 825 kvm_iommu_unmap_pages(kvm, &old); 826 827 r = -ENOMEM; 828 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 829 GFP_KERNEL); 830 if (!slots) 831 goto out_free; 832 833 /* actual memory is freed via old in kvm_free_physmem_slot below */ 834 if (!npages) { 835 new.rmap = NULL; 836 new.dirty_bitmap = NULL; 837 memset(&new.arch, 0, sizeof(new.arch)); 838 } 839 840 update_memslots(slots, &new); 841 old_memslots = kvm->memslots; 842 rcu_assign_pointer(kvm->memslots, slots); 843 synchronize_srcu_expedited(&kvm->srcu); 844 845 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); 846 847 /* 848 * If the new memory slot is created, we need to clear all 849 * mmio sptes. 850 */ 851 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) 852 kvm_arch_flush_shadow(kvm); 853 854 kvm_free_physmem_slot(&old, &new); 855 kfree(old_memslots); 856 857 return 0; 858 859 out_free: 860 kvm_free_physmem_slot(&new, &old); 861 out: 862 return r; 863 864 } 865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 866 867 int kvm_set_memory_region(struct kvm *kvm, 868 struct kvm_userspace_memory_region *mem, 869 int user_alloc) 870 { 871 int r; 872 873 mutex_lock(&kvm->slots_lock); 874 r = __kvm_set_memory_region(kvm, mem, user_alloc); 875 mutex_unlock(&kvm->slots_lock); 876 return r; 877 } 878 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 879 880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 881 struct 882 kvm_userspace_memory_region *mem, 883 int user_alloc) 884 { 885 if (mem->slot >= KVM_MEMORY_SLOTS) 886 return -EINVAL; 887 return kvm_set_memory_region(kvm, mem, user_alloc); 888 } 889 890 int kvm_get_dirty_log(struct kvm *kvm, 891 struct kvm_dirty_log *log, int *is_dirty) 892 { 893 struct kvm_memory_slot *memslot; 894 int r, i; 895 unsigned long n; 896 unsigned long any = 0; 897 898 r = -EINVAL; 899 if (log->slot >= KVM_MEMORY_SLOTS) 900 goto out; 901 902 memslot = id_to_memslot(kvm->memslots, log->slot); 903 r = -ENOENT; 904 if (!memslot->dirty_bitmap) 905 goto out; 906 907 n = kvm_dirty_bitmap_bytes(memslot); 908 909 for (i = 0; !any && i < n/sizeof(long); ++i) 910 any = memslot->dirty_bitmap[i]; 911 912 r = -EFAULT; 913 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 914 goto out; 915 916 if (any) 917 *is_dirty = 1; 918 919 r = 0; 920 out: 921 return r; 922 } 923 924 bool kvm_largepages_enabled(void) 925 { 926 return largepages_enabled; 927 } 928 929 void kvm_disable_largepages(void) 930 { 931 largepages_enabled = false; 932 } 933 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 934 935 int is_error_page(struct page *page) 936 { 937 return page == bad_page || page == hwpoison_page || page == fault_page; 938 } 939 EXPORT_SYMBOL_GPL(is_error_page); 940 941 int is_error_pfn(pfn_t pfn) 942 { 943 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn; 944 } 945 EXPORT_SYMBOL_GPL(is_error_pfn); 946 947 int is_hwpoison_pfn(pfn_t pfn) 948 { 949 return pfn == hwpoison_pfn; 950 } 951 EXPORT_SYMBOL_GPL(is_hwpoison_pfn); 952 953 int is_fault_pfn(pfn_t pfn) 954 { 955 return pfn == fault_pfn; 956 } 957 EXPORT_SYMBOL_GPL(is_fault_pfn); 958 959 int is_noslot_pfn(pfn_t pfn) 960 { 961 return pfn == bad_pfn; 962 } 963 EXPORT_SYMBOL_GPL(is_noslot_pfn); 964 965 int is_invalid_pfn(pfn_t pfn) 966 { 967 return pfn == hwpoison_pfn || pfn == fault_pfn; 968 } 969 EXPORT_SYMBOL_GPL(is_invalid_pfn); 970 971 static inline unsigned long bad_hva(void) 972 { 973 return PAGE_OFFSET; 974 } 975 976 int kvm_is_error_hva(unsigned long addr) 977 { 978 return addr == bad_hva(); 979 } 980 EXPORT_SYMBOL_GPL(kvm_is_error_hva); 981 982 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 983 { 984 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 985 } 986 EXPORT_SYMBOL_GPL(gfn_to_memslot); 987 988 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 989 { 990 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 991 992 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS || 993 memslot->flags & KVM_MEMSLOT_INVALID) 994 return 0; 995 996 return 1; 997 } 998 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 999 1000 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1001 { 1002 struct vm_area_struct *vma; 1003 unsigned long addr, size; 1004 1005 size = PAGE_SIZE; 1006 1007 addr = gfn_to_hva(kvm, gfn); 1008 if (kvm_is_error_hva(addr)) 1009 return PAGE_SIZE; 1010 1011 down_read(¤t->mm->mmap_sem); 1012 vma = find_vma(current->mm, addr); 1013 if (!vma) 1014 goto out; 1015 1016 size = vma_kernel_pagesize(vma); 1017 1018 out: 1019 up_read(¤t->mm->mmap_sem); 1020 1021 return size; 1022 } 1023 1024 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1025 gfn_t *nr_pages) 1026 { 1027 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1028 return bad_hva(); 1029 1030 if (nr_pages) 1031 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1032 1033 return gfn_to_hva_memslot(slot, gfn); 1034 } 1035 1036 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1037 { 1038 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1039 } 1040 EXPORT_SYMBOL_GPL(gfn_to_hva); 1041 1042 static pfn_t get_fault_pfn(void) 1043 { 1044 get_page(fault_page); 1045 return fault_pfn; 1046 } 1047 1048 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1049 unsigned long start, int write, struct page **page) 1050 { 1051 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1052 1053 if (write) 1054 flags |= FOLL_WRITE; 1055 1056 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1057 } 1058 1059 static inline int check_user_page_hwpoison(unsigned long addr) 1060 { 1061 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1062 1063 rc = __get_user_pages(current, current->mm, addr, 1, 1064 flags, NULL, NULL, NULL); 1065 return rc == -EHWPOISON; 1066 } 1067 1068 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic, 1069 bool *async, bool write_fault, bool *writable) 1070 { 1071 struct page *page[1]; 1072 int npages = 0; 1073 pfn_t pfn; 1074 1075 /* we can do it either atomically or asynchronously, not both */ 1076 BUG_ON(atomic && async); 1077 1078 BUG_ON(!write_fault && !writable); 1079 1080 if (writable) 1081 *writable = true; 1082 1083 if (atomic || async) 1084 npages = __get_user_pages_fast(addr, 1, 1, page); 1085 1086 if (unlikely(npages != 1) && !atomic) { 1087 might_sleep(); 1088 1089 if (writable) 1090 *writable = write_fault; 1091 1092 if (async) { 1093 down_read(¤t->mm->mmap_sem); 1094 npages = get_user_page_nowait(current, current->mm, 1095 addr, write_fault, page); 1096 up_read(¤t->mm->mmap_sem); 1097 } else 1098 npages = get_user_pages_fast(addr, 1, write_fault, 1099 page); 1100 1101 /* map read fault as writable if possible */ 1102 if (unlikely(!write_fault) && npages == 1) { 1103 struct page *wpage[1]; 1104 1105 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1106 if (npages == 1) { 1107 *writable = true; 1108 put_page(page[0]); 1109 page[0] = wpage[0]; 1110 } 1111 npages = 1; 1112 } 1113 } 1114 1115 if (unlikely(npages != 1)) { 1116 struct vm_area_struct *vma; 1117 1118 if (atomic) 1119 return get_fault_pfn(); 1120 1121 down_read(¤t->mm->mmap_sem); 1122 if (npages == -EHWPOISON || 1123 (!async && check_user_page_hwpoison(addr))) { 1124 up_read(¤t->mm->mmap_sem); 1125 get_page(hwpoison_page); 1126 return page_to_pfn(hwpoison_page); 1127 } 1128 1129 vma = find_vma_intersection(current->mm, addr, addr+1); 1130 1131 if (vma == NULL) 1132 pfn = get_fault_pfn(); 1133 else if ((vma->vm_flags & VM_PFNMAP)) { 1134 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1135 vma->vm_pgoff; 1136 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1137 } else { 1138 if (async && (vma->vm_flags & VM_WRITE)) 1139 *async = true; 1140 pfn = get_fault_pfn(); 1141 } 1142 up_read(¤t->mm->mmap_sem); 1143 } else 1144 pfn = page_to_pfn(page[0]); 1145 1146 return pfn; 1147 } 1148 1149 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr) 1150 { 1151 return hva_to_pfn(kvm, addr, true, NULL, true, NULL); 1152 } 1153 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic); 1154 1155 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1156 bool write_fault, bool *writable) 1157 { 1158 unsigned long addr; 1159 1160 if (async) 1161 *async = false; 1162 1163 addr = gfn_to_hva(kvm, gfn); 1164 if (kvm_is_error_hva(addr)) { 1165 get_page(bad_page); 1166 return page_to_pfn(bad_page); 1167 } 1168 1169 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable); 1170 } 1171 1172 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1173 { 1174 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1175 } 1176 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1177 1178 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1179 bool write_fault, bool *writable) 1180 { 1181 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1182 } 1183 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1184 1185 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1186 { 1187 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1188 } 1189 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1190 1191 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1192 bool *writable) 1193 { 1194 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1195 } 1196 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1197 1198 pfn_t gfn_to_pfn_memslot(struct kvm *kvm, 1199 struct kvm_memory_slot *slot, gfn_t gfn) 1200 { 1201 unsigned long addr = gfn_to_hva_memslot(slot, gfn); 1202 return hva_to_pfn(kvm, addr, false, NULL, true, NULL); 1203 } 1204 1205 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1206 int nr_pages) 1207 { 1208 unsigned long addr; 1209 gfn_t entry; 1210 1211 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1212 if (kvm_is_error_hva(addr)) 1213 return -1; 1214 1215 if (entry < nr_pages) 1216 return 0; 1217 1218 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1219 } 1220 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1221 1222 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1223 { 1224 pfn_t pfn; 1225 1226 pfn = gfn_to_pfn(kvm, gfn); 1227 if (!kvm_is_mmio_pfn(pfn)) 1228 return pfn_to_page(pfn); 1229 1230 WARN_ON(kvm_is_mmio_pfn(pfn)); 1231 1232 get_page(bad_page); 1233 return bad_page; 1234 } 1235 1236 EXPORT_SYMBOL_GPL(gfn_to_page); 1237 1238 void kvm_release_page_clean(struct page *page) 1239 { 1240 kvm_release_pfn_clean(page_to_pfn(page)); 1241 } 1242 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1243 1244 void kvm_release_pfn_clean(pfn_t pfn) 1245 { 1246 if (!kvm_is_mmio_pfn(pfn)) 1247 put_page(pfn_to_page(pfn)); 1248 } 1249 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1250 1251 void kvm_release_page_dirty(struct page *page) 1252 { 1253 kvm_release_pfn_dirty(page_to_pfn(page)); 1254 } 1255 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1256 1257 void kvm_release_pfn_dirty(pfn_t pfn) 1258 { 1259 kvm_set_pfn_dirty(pfn); 1260 kvm_release_pfn_clean(pfn); 1261 } 1262 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1263 1264 void kvm_set_page_dirty(struct page *page) 1265 { 1266 kvm_set_pfn_dirty(page_to_pfn(page)); 1267 } 1268 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1269 1270 void kvm_set_pfn_dirty(pfn_t pfn) 1271 { 1272 if (!kvm_is_mmio_pfn(pfn)) { 1273 struct page *page = pfn_to_page(pfn); 1274 if (!PageReserved(page)) 1275 SetPageDirty(page); 1276 } 1277 } 1278 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1279 1280 void kvm_set_pfn_accessed(pfn_t pfn) 1281 { 1282 if (!kvm_is_mmio_pfn(pfn)) 1283 mark_page_accessed(pfn_to_page(pfn)); 1284 } 1285 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1286 1287 void kvm_get_pfn(pfn_t pfn) 1288 { 1289 if (!kvm_is_mmio_pfn(pfn)) 1290 get_page(pfn_to_page(pfn)); 1291 } 1292 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1293 1294 static int next_segment(unsigned long len, int offset) 1295 { 1296 if (len > PAGE_SIZE - offset) 1297 return PAGE_SIZE - offset; 1298 else 1299 return len; 1300 } 1301 1302 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1303 int len) 1304 { 1305 int r; 1306 unsigned long addr; 1307 1308 addr = gfn_to_hva(kvm, gfn); 1309 if (kvm_is_error_hva(addr)) 1310 return -EFAULT; 1311 r = __copy_from_user(data, (void __user *)addr + offset, len); 1312 if (r) 1313 return -EFAULT; 1314 return 0; 1315 } 1316 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1317 1318 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1319 { 1320 gfn_t gfn = gpa >> PAGE_SHIFT; 1321 int seg; 1322 int offset = offset_in_page(gpa); 1323 int ret; 1324 1325 while ((seg = next_segment(len, offset)) != 0) { 1326 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1327 if (ret < 0) 1328 return ret; 1329 offset = 0; 1330 len -= seg; 1331 data += seg; 1332 ++gfn; 1333 } 1334 return 0; 1335 } 1336 EXPORT_SYMBOL_GPL(kvm_read_guest); 1337 1338 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1339 unsigned long len) 1340 { 1341 int r; 1342 unsigned long addr; 1343 gfn_t gfn = gpa >> PAGE_SHIFT; 1344 int offset = offset_in_page(gpa); 1345 1346 addr = gfn_to_hva(kvm, gfn); 1347 if (kvm_is_error_hva(addr)) 1348 return -EFAULT; 1349 pagefault_disable(); 1350 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1351 pagefault_enable(); 1352 if (r) 1353 return -EFAULT; 1354 return 0; 1355 } 1356 EXPORT_SYMBOL(kvm_read_guest_atomic); 1357 1358 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1359 int offset, int len) 1360 { 1361 int r; 1362 unsigned long addr; 1363 1364 addr = gfn_to_hva(kvm, gfn); 1365 if (kvm_is_error_hva(addr)) 1366 return -EFAULT; 1367 r = __copy_to_user((void __user *)addr + offset, data, len); 1368 if (r) 1369 return -EFAULT; 1370 mark_page_dirty(kvm, gfn); 1371 return 0; 1372 } 1373 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1374 1375 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1376 unsigned long len) 1377 { 1378 gfn_t gfn = gpa >> PAGE_SHIFT; 1379 int seg; 1380 int offset = offset_in_page(gpa); 1381 int ret; 1382 1383 while ((seg = next_segment(len, offset)) != 0) { 1384 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1385 if (ret < 0) 1386 return ret; 1387 offset = 0; 1388 len -= seg; 1389 data += seg; 1390 ++gfn; 1391 } 1392 return 0; 1393 } 1394 1395 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1396 gpa_t gpa) 1397 { 1398 struct kvm_memslots *slots = kvm_memslots(kvm); 1399 int offset = offset_in_page(gpa); 1400 gfn_t gfn = gpa >> PAGE_SHIFT; 1401 1402 ghc->gpa = gpa; 1403 ghc->generation = slots->generation; 1404 ghc->memslot = gfn_to_memslot(kvm, gfn); 1405 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL); 1406 if (!kvm_is_error_hva(ghc->hva)) 1407 ghc->hva += offset; 1408 else 1409 return -EFAULT; 1410 1411 return 0; 1412 } 1413 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1414 1415 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1416 void *data, unsigned long len) 1417 { 1418 struct kvm_memslots *slots = kvm_memslots(kvm); 1419 int r; 1420 1421 if (slots->generation != ghc->generation) 1422 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1423 1424 if (kvm_is_error_hva(ghc->hva)) 1425 return -EFAULT; 1426 1427 r = __copy_to_user((void __user *)ghc->hva, data, len); 1428 if (r) 1429 return -EFAULT; 1430 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1431 1432 return 0; 1433 } 1434 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1435 1436 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1437 void *data, unsigned long len) 1438 { 1439 struct kvm_memslots *slots = kvm_memslots(kvm); 1440 int r; 1441 1442 if (slots->generation != ghc->generation) 1443 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1444 1445 if (kvm_is_error_hva(ghc->hva)) 1446 return -EFAULT; 1447 1448 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1449 if (r) 1450 return -EFAULT; 1451 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1455 1456 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1457 { 1458 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1459 offset, len); 1460 } 1461 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1462 1463 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1464 { 1465 gfn_t gfn = gpa >> PAGE_SHIFT; 1466 int seg; 1467 int offset = offset_in_page(gpa); 1468 int ret; 1469 1470 while ((seg = next_segment(len, offset)) != 0) { 1471 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1472 if (ret < 0) 1473 return ret; 1474 offset = 0; 1475 len -= seg; 1476 ++gfn; 1477 } 1478 return 0; 1479 } 1480 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1481 1482 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1483 gfn_t gfn) 1484 { 1485 if (memslot && memslot->dirty_bitmap) { 1486 unsigned long rel_gfn = gfn - memslot->base_gfn; 1487 1488 /* TODO: introduce set_bit_le() and use it */ 1489 test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap); 1490 } 1491 } 1492 1493 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1494 { 1495 struct kvm_memory_slot *memslot; 1496 1497 memslot = gfn_to_memslot(kvm, gfn); 1498 mark_page_dirty_in_slot(kvm, memslot, gfn); 1499 } 1500 1501 /* 1502 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1503 */ 1504 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1505 { 1506 DEFINE_WAIT(wait); 1507 1508 for (;;) { 1509 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1510 1511 if (kvm_arch_vcpu_runnable(vcpu)) { 1512 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1513 break; 1514 } 1515 if (kvm_cpu_has_pending_timer(vcpu)) 1516 break; 1517 if (signal_pending(current)) 1518 break; 1519 1520 schedule(); 1521 } 1522 1523 finish_wait(&vcpu->wq, &wait); 1524 } 1525 1526 #ifndef CONFIG_S390 1527 /* 1528 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1529 */ 1530 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1531 { 1532 int me; 1533 int cpu = vcpu->cpu; 1534 wait_queue_head_t *wqp; 1535 1536 wqp = kvm_arch_vcpu_wq(vcpu); 1537 if (waitqueue_active(wqp)) { 1538 wake_up_interruptible(wqp); 1539 ++vcpu->stat.halt_wakeup; 1540 } 1541 1542 me = get_cpu(); 1543 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1544 if (kvm_arch_vcpu_should_kick(vcpu)) 1545 smp_send_reschedule(cpu); 1546 put_cpu(); 1547 } 1548 #endif /* !CONFIG_S390 */ 1549 1550 void kvm_resched(struct kvm_vcpu *vcpu) 1551 { 1552 if (!need_resched()) 1553 return; 1554 cond_resched(); 1555 } 1556 EXPORT_SYMBOL_GPL(kvm_resched); 1557 1558 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1559 { 1560 struct pid *pid; 1561 struct task_struct *task = NULL; 1562 1563 rcu_read_lock(); 1564 pid = rcu_dereference(target->pid); 1565 if (pid) 1566 task = get_pid_task(target->pid, PIDTYPE_PID); 1567 rcu_read_unlock(); 1568 if (!task) 1569 return false; 1570 if (task->flags & PF_VCPU) { 1571 put_task_struct(task); 1572 return false; 1573 } 1574 if (yield_to(task, 1)) { 1575 put_task_struct(task); 1576 return true; 1577 } 1578 put_task_struct(task); 1579 return false; 1580 } 1581 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1582 1583 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1584 { 1585 struct kvm *kvm = me->kvm; 1586 struct kvm_vcpu *vcpu; 1587 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1588 int yielded = 0; 1589 int pass; 1590 int i; 1591 1592 /* 1593 * We boost the priority of a VCPU that is runnable but not 1594 * currently running, because it got preempted by something 1595 * else and called schedule in __vcpu_run. Hopefully that 1596 * VCPU is holding the lock that we need and will release it. 1597 * We approximate round-robin by starting at the last boosted VCPU. 1598 */ 1599 for (pass = 0; pass < 2 && !yielded; pass++) { 1600 kvm_for_each_vcpu(i, vcpu, kvm) { 1601 if (!pass && i <= last_boosted_vcpu) { 1602 i = last_boosted_vcpu; 1603 continue; 1604 } else if (pass && i > last_boosted_vcpu) 1605 break; 1606 if (vcpu == me) 1607 continue; 1608 if (waitqueue_active(&vcpu->wq)) 1609 continue; 1610 if (kvm_vcpu_yield_to(vcpu)) { 1611 kvm->last_boosted_vcpu = i; 1612 yielded = 1; 1613 break; 1614 } 1615 } 1616 } 1617 } 1618 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1619 1620 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1621 { 1622 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1623 struct page *page; 1624 1625 if (vmf->pgoff == 0) 1626 page = virt_to_page(vcpu->run); 1627 #ifdef CONFIG_X86 1628 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1629 page = virt_to_page(vcpu->arch.pio_data); 1630 #endif 1631 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1632 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1633 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1634 #endif 1635 else 1636 return kvm_arch_vcpu_fault(vcpu, vmf); 1637 get_page(page); 1638 vmf->page = page; 1639 return 0; 1640 } 1641 1642 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1643 .fault = kvm_vcpu_fault, 1644 }; 1645 1646 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1647 { 1648 vma->vm_ops = &kvm_vcpu_vm_ops; 1649 return 0; 1650 } 1651 1652 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1653 { 1654 struct kvm_vcpu *vcpu = filp->private_data; 1655 1656 kvm_put_kvm(vcpu->kvm); 1657 return 0; 1658 } 1659 1660 static struct file_operations kvm_vcpu_fops = { 1661 .release = kvm_vcpu_release, 1662 .unlocked_ioctl = kvm_vcpu_ioctl, 1663 #ifdef CONFIG_COMPAT 1664 .compat_ioctl = kvm_vcpu_compat_ioctl, 1665 #endif 1666 .mmap = kvm_vcpu_mmap, 1667 .llseek = noop_llseek, 1668 }; 1669 1670 /* 1671 * Allocates an inode for the vcpu. 1672 */ 1673 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1674 { 1675 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); 1676 } 1677 1678 /* 1679 * Creates some virtual cpus. Good luck creating more than one. 1680 */ 1681 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1682 { 1683 int r; 1684 struct kvm_vcpu *vcpu, *v; 1685 1686 vcpu = kvm_arch_vcpu_create(kvm, id); 1687 if (IS_ERR(vcpu)) 1688 return PTR_ERR(vcpu); 1689 1690 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1691 1692 r = kvm_arch_vcpu_setup(vcpu); 1693 if (r) 1694 goto vcpu_destroy; 1695 1696 mutex_lock(&kvm->lock); 1697 if (!kvm_vcpu_compatible(vcpu)) { 1698 r = -EINVAL; 1699 goto unlock_vcpu_destroy; 1700 } 1701 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1702 r = -EINVAL; 1703 goto unlock_vcpu_destroy; 1704 } 1705 1706 kvm_for_each_vcpu(r, v, kvm) 1707 if (v->vcpu_id == id) { 1708 r = -EEXIST; 1709 goto unlock_vcpu_destroy; 1710 } 1711 1712 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1713 1714 /* Now it's all set up, let userspace reach it */ 1715 kvm_get_kvm(kvm); 1716 r = create_vcpu_fd(vcpu); 1717 if (r < 0) { 1718 kvm_put_kvm(kvm); 1719 goto unlock_vcpu_destroy; 1720 } 1721 1722 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1723 smp_wmb(); 1724 atomic_inc(&kvm->online_vcpus); 1725 1726 mutex_unlock(&kvm->lock); 1727 return r; 1728 1729 unlock_vcpu_destroy: 1730 mutex_unlock(&kvm->lock); 1731 vcpu_destroy: 1732 kvm_arch_vcpu_destroy(vcpu); 1733 return r; 1734 } 1735 1736 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1737 { 1738 if (sigset) { 1739 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1740 vcpu->sigset_active = 1; 1741 vcpu->sigset = *sigset; 1742 } else 1743 vcpu->sigset_active = 0; 1744 return 0; 1745 } 1746 1747 static long kvm_vcpu_ioctl(struct file *filp, 1748 unsigned int ioctl, unsigned long arg) 1749 { 1750 struct kvm_vcpu *vcpu = filp->private_data; 1751 void __user *argp = (void __user *)arg; 1752 int r; 1753 struct kvm_fpu *fpu = NULL; 1754 struct kvm_sregs *kvm_sregs = NULL; 1755 1756 if (vcpu->kvm->mm != current->mm) 1757 return -EIO; 1758 1759 #if defined(CONFIG_S390) || defined(CONFIG_PPC) 1760 /* 1761 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1762 * so vcpu_load() would break it. 1763 */ 1764 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1765 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1766 #endif 1767 1768 1769 vcpu_load(vcpu); 1770 switch (ioctl) { 1771 case KVM_RUN: 1772 r = -EINVAL; 1773 if (arg) 1774 goto out; 1775 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1776 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1777 break; 1778 case KVM_GET_REGS: { 1779 struct kvm_regs *kvm_regs; 1780 1781 r = -ENOMEM; 1782 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1783 if (!kvm_regs) 1784 goto out; 1785 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1786 if (r) 1787 goto out_free1; 1788 r = -EFAULT; 1789 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 1790 goto out_free1; 1791 r = 0; 1792 out_free1: 1793 kfree(kvm_regs); 1794 break; 1795 } 1796 case KVM_SET_REGS: { 1797 struct kvm_regs *kvm_regs; 1798 1799 r = -ENOMEM; 1800 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 1801 if (IS_ERR(kvm_regs)) { 1802 r = PTR_ERR(kvm_regs); 1803 goto out; 1804 } 1805 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 1806 if (r) 1807 goto out_free2; 1808 r = 0; 1809 out_free2: 1810 kfree(kvm_regs); 1811 break; 1812 } 1813 case KVM_GET_SREGS: { 1814 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1815 r = -ENOMEM; 1816 if (!kvm_sregs) 1817 goto out; 1818 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 1819 if (r) 1820 goto out; 1821 r = -EFAULT; 1822 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 1823 goto out; 1824 r = 0; 1825 break; 1826 } 1827 case KVM_SET_SREGS: { 1828 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 1829 if (IS_ERR(kvm_sregs)) { 1830 r = PTR_ERR(kvm_sregs); 1831 goto out; 1832 } 1833 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 1834 if (r) 1835 goto out; 1836 r = 0; 1837 break; 1838 } 1839 case KVM_GET_MP_STATE: { 1840 struct kvm_mp_state mp_state; 1841 1842 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 1843 if (r) 1844 goto out; 1845 r = -EFAULT; 1846 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 1847 goto out; 1848 r = 0; 1849 break; 1850 } 1851 case KVM_SET_MP_STATE: { 1852 struct kvm_mp_state mp_state; 1853 1854 r = -EFAULT; 1855 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 1856 goto out; 1857 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 1858 if (r) 1859 goto out; 1860 r = 0; 1861 break; 1862 } 1863 case KVM_TRANSLATE: { 1864 struct kvm_translation tr; 1865 1866 r = -EFAULT; 1867 if (copy_from_user(&tr, argp, sizeof tr)) 1868 goto out; 1869 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 1870 if (r) 1871 goto out; 1872 r = -EFAULT; 1873 if (copy_to_user(argp, &tr, sizeof tr)) 1874 goto out; 1875 r = 0; 1876 break; 1877 } 1878 case KVM_SET_GUEST_DEBUG: { 1879 struct kvm_guest_debug dbg; 1880 1881 r = -EFAULT; 1882 if (copy_from_user(&dbg, argp, sizeof dbg)) 1883 goto out; 1884 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 1885 if (r) 1886 goto out; 1887 r = 0; 1888 break; 1889 } 1890 case KVM_SET_SIGNAL_MASK: { 1891 struct kvm_signal_mask __user *sigmask_arg = argp; 1892 struct kvm_signal_mask kvm_sigmask; 1893 sigset_t sigset, *p; 1894 1895 p = NULL; 1896 if (argp) { 1897 r = -EFAULT; 1898 if (copy_from_user(&kvm_sigmask, argp, 1899 sizeof kvm_sigmask)) 1900 goto out; 1901 r = -EINVAL; 1902 if (kvm_sigmask.len != sizeof sigset) 1903 goto out; 1904 r = -EFAULT; 1905 if (copy_from_user(&sigset, sigmask_arg->sigset, 1906 sizeof sigset)) 1907 goto out; 1908 p = &sigset; 1909 } 1910 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 1911 break; 1912 } 1913 case KVM_GET_FPU: { 1914 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 1915 r = -ENOMEM; 1916 if (!fpu) 1917 goto out; 1918 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 1919 if (r) 1920 goto out; 1921 r = -EFAULT; 1922 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 1923 goto out; 1924 r = 0; 1925 break; 1926 } 1927 case KVM_SET_FPU: { 1928 fpu = memdup_user(argp, sizeof(*fpu)); 1929 if (IS_ERR(fpu)) { 1930 r = PTR_ERR(fpu); 1931 goto out; 1932 } 1933 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 1934 if (r) 1935 goto out; 1936 r = 0; 1937 break; 1938 } 1939 default: 1940 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1941 } 1942 out: 1943 vcpu_put(vcpu); 1944 kfree(fpu); 1945 kfree(kvm_sregs); 1946 return r; 1947 } 1948 1949 #ifdef CONFIG_COMPAT 1950 static long kvm_vcpu_compat_ioctl(struct file *filp, 1951 unsigned int ioctl, unsigned long arg) 1952 { 1953 struct kvm_vcpu *vcpu = filp->private_data; 1954 void __user *argp = compat_ptr(arg); 1955 int r; 1956 1957 if (vcpu->kvm->mm != current->mm) 1958 return -EIO; 1959 1960 switch (ioctl) { 1961 case KVM_SET_SIGNAL_MASK: { 1962 struct kvm_signal_mask __user *sigmask_arg = argp; 1963 struct kvm_signal_mask kvm_sigmask; 1964 compat_sigset_t csigset; 1965 sigset_t sigset; 1966 1967 if (argp) { 1968 r = -EFAULT; 1969 if (copy_from_user(&kvm_sigmask, argp, 1970 sizeof kvm_sigmask)) 1971 goto out; 1972 r = -EINVAL; 1973 if (kvm_sigmask.len != sizeof csigset) 1974 goto out; 1975 r = -EFAULT; 1976 if (copy_from_user(&csigset, sigmask_arg->sigset, 1977 sizeof csigset)) 1978 goto out; 1979 sigset_from_compat(&sigset, &csigset); 1980 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 1981 } else 1982 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 1983 break; 1984 } 1985 default: 1986 r = kvm_vcpu_ioctl(filp, ioctl, arg); 1987 } 1988 1989 out: 1990 return r; 1991 } 1992 #endif 1993 1994 static long kvm_vm_ioctl(struct file *filp, 1995 unsigned int ioctl, unsigned long arg) 1996 { 1997 struct kvm *kvm = filp->private_data; 1998 void __user *argp = (void __user *)arg; 1999 int r; 2000 2001 if (kvm->mm != current->mm) 2002 return -EIO; 2003 switch (ioctl) { 2004 case KVM_CREATE_VCPU: 2005 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2006 if (r < 0) 2007 goto out; 2008 break; 2009 case KVM_SET_USER_MEMORY_REGION: { 2010 struct kvm_userspace_memory_region kvm_userspace_mem; 2011 2012 r = -EFAULT; 2013 if (copy_from_user(&kvm_userspace_mem, argp, 2014 sizeof kvm_userspace_mem)) 2015 goto out; 2016 2017 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); 2018 if (r) 2019 goto out; 2020 break; 2021 } 2022 case KVM_GET_DIRTY_LOG: { 2023 struct kvm_dirty_log log; 2024 2025 r = -EFAULT; 2026 if (copy_from_user(&log, argp, sizeof log)) 2027 goto out; 2028 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2029 if (r) 2030 goto out; 2031 break; 2032 } 2033 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2034 case KVM_REGISTER_COALESCED_MMIO: { 2035 struct kvm_coalesced_mmio_zone zone; 2036 r = -EFAULT; 2037 if (copy_from_user(&zone, argp, sizeof zone)) 2038 goto out; 2039 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2040 if (r) 2041 goto out; 2042 r = 0; 2043 break; 2044 } 2045 case KVM_UNREGISTER_COALESCED_MMIO: { 2046 struct kvm_coalesced_mmio_zone zone; 2047 r = -EFAULT; 2048 if (copy_from_user(&zone, argp, sizeof zone)) 2049 goto out; 2050 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2051 if (r) 2052 goto out; 2053 r = 0; 2054 break; 2055 } 2056 #endif 2057 case KVM_IRQFD: { 2058 struct kvm_irqfd data; 2059 2060 r = -EFAULT; 2061 if (copy_from_user(&data, argp, sizeof data)) 2062 goto out; 2063 r = kvm_irqfd(kvm, &data); 2064 break; 2065 } 2066 case KVM_IOEVENTFD: { 2067 struct kvm_ioeventfd data; 2068 2069 r = -EFAULT; 2070 if (copy_from_user(&data, argp, sizeof data)) 2071 goto out; 2072 r = kvm_ioeventfd(kvm, &data); 2073 break; 2074 } 2075 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2076 case KVM_SET_BOOT_CPU_ID: 2077 r = 0; 2078 mutex_lock(&kvm->lock); 2079 if (atomic_read(&kvm->online_vcpus) != 0) 2080 r = -EBUSY; 2081 else 2082 kvm->bsp_vcpu_id = arg; 2083 mutex_unlock(&kvm->lock); 2084 break; 2085 #endif 2086 #ifdef CONFIG_HAVE_KVM_MSI 2087 case KVM_SIGNAL_MSI: { 2088 struct kvm_msi msi; 2089 2090 r = -EFAULT; 2091 if (copy_from_user(&msi, argp, sizeof msi)) 2092 goto out; 2093 r = kvm_send_userspace_msi(kvm, &msi); 2094 break; 2095 } 2096 #endif 2097 default: 2098 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2099 if (r == -ENOTTY) 2100 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2101 } 2102 out: 2103 return r; 2104 } 2105 2106 #ifdef CONFIG_COMPAT 2107 struct compat_kvm_dirty_log { 2108 __u32 slot; 2109 __u32 padding1; 2110 union { 2111 compat_uptr_t dirty_bitmap; /* one bit per page */ 2112 __u64 padding2; 2113 }; 2114 }; 2115 2116 static long kvm_vm_compat_ioctl(struct file *filp, 2117 unsigned int ioctl, unsigned long arg) 2118 { 2119 struct kvm *kvm = filp->private_data; 2120 int r; 2121 2122 if (kvm->mm != current->mm) 2123 return -EIO; 2124 switch (ioctl) { 2125 case KVM_GET_DIRTY_LOG: { 2126 struct compat_kvm_dirty_log compat_log; 2127 struct kvm_dirty_log log; 2128 2129 r = -EFAULT; 2130 if (copy_from_user(&compat_log, (void __user *)arg, 2131 sizeof(compat_log))) 2132 goto out; 2133 log.slot = compat_log.slot; 2134 log.padding1 = compat_log.padding1; 2135 log.padding2 = compat_log.padding2; 2136 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2137 2138 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2139 if (r) 2140 goto out; 2141 break; 2142 } 2143 default: 2144 r = kvm_vm_ioctl(filp, ioctl, arg); 2145 } 2146 2147 out: 2148 return r; 2149 } 2150 #endif 2151 2152 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2153 { 2154 struct page *page[1]; 2155 unsigned long addr; 2156 int npages; 2157 gfn_t gfn = vmf->pgoff; 2158 struct kvm *kvm = vma->vm_file->private_data; 2159 2160 addr = gfn_to_hva(kvm, gfn); 2161 if (kvm_is_error_hva(addr)) 2162 return VM_FAULT_SIGBUS; 2163 2164 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2165 NULL); 2166 if (unlikely(npages != 1)) 2167 return VM_FAULT_SIGBUS; 2168 2169 vmf->page = page[0]; 2170 return 0; 2171 } 2172 2173 static const struct vm_operations_struct kvm_vm_vm_ops = { 2174 .fault = kvm_vm_fault, 2175 }; 2176 2177 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2178 { 2179 vma->vm_ops = &kvm_vm_vm_ops; 2180 return 0; 2181 } 2182 2183 static struct file_operations kvm_vm_fops = { 2184 .release = kvm_vm_release, 2185 .unlocked_ioctl = kvm_vm_ioctl, 2186 #ifdef CONFIG_COMPAT 2187 .compat_ioctl = kvm_vm_compat_ioctl, 2188 #endif 2189 .mmap = kvm_vm_mmap, 2190 .llseek = noop_llseek, 2191 }; 2192 2193 static int kvm_dev_ioctl_create_vm(unsigned long type) 2194 { 2195 int r; 2196 struct kvm *kvm; 2197 2198 kvm = kvm_create_vm(type); 2199 if (IS_ERR(kvm)) 2200 return PTR_ERR(kvm); 2201 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2202 r = kvm_coalesced_mmio_init(kvm); 2203 if (r < 0) { 2204 kvm_put_kvm(kvm); 2205 return r; 2206 } 2207 #endif 2208 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 2209 if (r < 0) 2210 kvm_put_kvm(kvm); 2211 2212 return r; 2213 } 2214 2215 static long kvm_dev_ioctl_check_extension_generic(long arg) 2216 { 2217 switch (arg) { 2218 case KVM_CAP_USER_MEMORY: 2219 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2220 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2221 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2222 case KVM_CAP_SET_BOOT_CPU_ID: 2223 #endif 2224 case KVM_CAP_INTERNAL_ERROR_DATA: 2225 #ifdef CONFIG_HAVE_KVM_MSI 2226 case KVM_CAP_SIGNAL_MSI: 2227 #endif 2228 return 1; 2229 #ifdef KVM_CAP_IRQ_ROUTING 2230 case KVM_CAP_IRQ_ROUTING: 2231 return KVM_MAX_IRQ_ROUTES; 2232 #endif 2233 default: 2234 break; 2235 } 2236 return kvm_dev_ioctl_check_extension(arg); 2237 } 2238 2239 static long kvm_dev_ioctl(struct file *filp, 2240 unsigned int ioctl, unsigned long arg) 2241 { 2242 long r = -EINVAL; 2243 2244 switch (ioctl) { 2245 case KVM_GET_API_VERSION: 2246 r = -EINVAL; 2247 if (arg) 2248 goto out; 2249 r = KVM_API_VERSION; 2250 break; 2251 case KVM_CREATE_VM: 2252 r = kvm_dev_ioctl_create_vm(arg); 2253 break; 2254 case KVM_CHECK_EXTENSION: 2255 r = kvm_dev_ioctl_check_extension_generic(arg); 2256 break; 2257 case KVM_GET_VCPU_MMAP_SIZE: 2258 r = -EINVAL; 2259 if (arg) 2260 goto out; 2261 r = PAGE_SIZE; /* struct kvm_run */ 2262 #ifdef CONFIG_X86 2263 r += PAGE_SIZE; /* pio data page */ 2264 #endif 2265 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2266 r += PAGE_SIZE; /* coalesced mmio ring page */ 2267 #endif 2268 break; 2269 case KVM_TRACE_ENABLE: 2270 case KVM_TRACE_PAUSE: 2271 case KVM_TRACE_DISABLE: 2272 r = -EOPNOTSUPP; 2273 break; 2274 default: 2275 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2276 } 2277 out: 2278 return r; 2279 } 2280 2281 static struct file_operations kvm_chardev_ops = { 2282 .unlocked_ioctl = kvm_dev_ioctl, 2283 .compat_ioctl = kvm_dev_ioctl, 2284 .llseek = noop_llseek, 2285 }; 2286 2287 static struct miscdevice kvm_dev = { 2288 KVM_MINOR, 2289 "kvm", 2290 &kvm_chardev_ops, 2291 }; 2292 2293 static void hardware_enable_nolock(void *junk) 2294 { 2295 int cpu = raw_smp_processor_id(); 2296 int r; 2297 2298 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2299 return; 2300 2301 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2302 2303 r = kvm_arch_hardware_enable(NULL); 2304 2305 if (r) { 2306 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2307 atomic_inc(&hardware_enable_failed); 2308 printk(KERN_INFO "kvm: enabling virtualization on " 2309 "CPU%d failed\n", cpu); 2310 } 2311 } 2312 2313 static void hardware_enable(void *junk) 2314 { 2315 raw_spin_lock(&kvm_lock); 2316 hardware_enable_nolock(junk); 2317 raw_spin_unlock(&kvm_lock); 2318 } 2319 2320 static void hardware_disable_nolock(void *junk) 2321 { 2322 int cpu = raw_smp_processor_id(); 2323 2324 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2325 return; 2326 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2327 kvm_arch_hardware_disable(NULL); 2328 } 2329 2330 static void hardware_disable(void *junk) 2331 { 2332 raw_spin_lock(&kvm_lock); 2333 hardware_disable_nolock(junk); 2334 raw_spin_unlock(&kvm_lock); 2335 } 2336 2337 static void hardware_disable_all_nolock(void) 2338 { 2339 BUG_ON(!kvm_usage_count); 2340 2341 kvm_usage_count--; 2342 if (!kvm_usage_count) 2343 on_each_cpu(hardware_disable_nolock, NULL, 1); 2344 } 2345 2346 static void hardware_disable_all(void) 2347 { 2348 raw_spin_lock(&kvm_lock); 2349 hardware_disable_all_nolock(); 2350 raw_spin_unlock(&kvm_lock); 2351 } 2352 2353 static int hardware_enable_all(void) 2354 { 2355 int r = 0; 2356 2357 raw_spin_lock(&kvm_lock); 2358 2359 kvm_usage_count++; 2360 if (kvm_usage_count == 1) { 2361 atomic_set(&hardware_enable_failed, 0); 2362 on_each_cpu(hardware_enable_nolock, NULL, 1); 2363 2364 if (atomic_read(&hardware_enable_failed)) { 2365 hardware_disable_all_nolock(); 2366 r = -EBUSY; 2367 } 2368 } 2369 2370 raw_spin_unlock(&kvm_lock); 2371 2372 return r; 2373 } 2374 2375 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2376 void *v) 2377 { 2378 int cpu = (long)v; 2379 2380 if (!kvm_usage_count) 2381 return NOTIFY_OK; 2382 2383 val &= ~CPU_TASKS_FROZEN; 2384 switch (val) { 2385 case CPU_DYING: 2386 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2387 cpu); 2388 hardware_disable(NULL); 2389 break; 2390 case CPU_STARTING: 2391 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2392 cpu); 2393 hardware_enable(NULL); 2394 break; 2395 } 2396 return NOTIFY_OK; 2397 } 2398 2399 2400 asmlinkage void kvm_spurious_fault(void) 2401 { 2402 /* Fault while not rebooting. We want the trace. */ 2403 BUG(); 2404 } 2405 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 2406 2407 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2408 void *v) 2409 { 2410 /* 2411 * Some (well, at least mine) BIOSes hang on reboot if 2412 * in vmx root mode. 2413 * 2414 * And Intel TXT required VMX off for all cpu when system shutdown. 2415 */ 2416 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2417 kvm_rebooting = true; 2418 on_each_cpu(hardware_disable_nolock, NULL, 1); 2419 return NOTIFY_OK; 2420 } 2421 2422 static struct notifier_block kvm_reboot_notifier = { 2423 .notifier_call = kvm_reboot, 2424 .priority = 0, 2425 }; 2426 2427 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2428 { 2429 int i; 2430 2431 for (i = 0; i < bus->dev_count; i++) { 2432 struct kvm_io_device *pos = bus->range[i].dev; 2433 2434 kvm_iodevice_destructor(pos); 2435 } 2436 kfree(bus); 2437 } 2438 2439 int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2440 { 2441 const struct kvm_io_range *r1 = p1; 2442 const struct kvm_io_range *r2 = p2; 2443 2444 if (r1->addr < r2->addr) 2445 return -1; 2446 if (r1->addr + r1->len > r2->addr + r2->len) 2447 return 1; 2448 return 0; 2449 } 2450 2451 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2452 gpa_t addr, int len) 2453 { 2454 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2455 .addr = addr, 2456 .len = len, 2457 .dev = dev, 2458 }; 2459 2460 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2461 kvm_io_bus_sort_cmp, NULL); 2462 2463 return 0; 2464 } 2465 2466 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2467 gpa_t addr, int len) 2468 { 2469 struct kvm_io_range *range, key; 2470 int off; 2471 2472 key = (struct kvm_io_range) { 2473 .addr = addr, 2474 .len = len, 2475 }; 2476 2477 range = bsearch(&key, bus->range, bus->dev_count, 2478 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2479 if (range == NULL) 2480 return -ENOENT; 2481 2482 off = range - bus->range; 2483 2484 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) 2485 off--; 2486 2487 return off; 2488 } 2489 2490 /* kvm_io_bus_write - called under kvm->slots_lock */ 2491 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2492 int len, const void *val) 2493 { 2494 int idx; 2495 struct kvm_io_bus *bus; 2496 struct kvm_io_range range; 2497 2498 range = (struct kvm_io_range) { 2499 .addr = addr, 2500 .len = len, 2501 }; 2502 2503 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2504 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2505 if (idx < 0) 2506 return -EOPNOTSUPP; 2507 2508 while (idx < bus->dev_count && 2509 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2510 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) 2511 return 0; 2512 idx++; 2513 } 2514 2515 return -EOPNOTSUPP; 2516 } 2517 2518 /* kvm_io_bus_read - called under kvm->slots_lock */ 2519 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2520 int len, void *val) 2521 { 2522 int idx; 2523 struct kvm_io_bus *bus; 2524 struct kvm_io_range range; 2525 2526 range = (struct kvm_io_range) { 2527 .addr = addr, 2528 .len = len, 2529 }; 2530 2531 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2532 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2533 if (idx < 0) 2534 return -EOPNOTSUPP; 2535 2536 while (idx < bus->dev_count && 2537 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2538 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) 2539 return 0; 2540 idx++; 2541 } 2542 2543 return -EOPNOTSUPP; 2544 } 2545 2546 /* Caller must hold slots_lock. */ 2547 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2548 int len, struct kvm_io_device *dev) 2549 { 2550 struct kvm_io_bus *new_bus, *bus; 2551 2552 bus = kvm->buses[bus_idx]; 2553 if (bus->dev_count > NR_IOBUS_DEVS - 1) 2554 return -ENOSPC; 2555 2556 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2557 sizeof(struct kvm_io_range)), GFP_KERNEL); 2558 if (!new_bus) 2559 return -ENOMEM; 2560 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2561 sizeof(struct kvm_io_range))); 2562 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2563 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2564 synchronize_srcu_expedited(&kvm->srcu); 2565 kfree(bus); 2566 2567 return 0; 2568 } 2569 2570 /* Caller must hold slots_lock. */ 2571 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2572 struct kvm_io_device *dev) 2573 { 2574 int i, r; 2575 struct kvm_io_bus *new_bus, *bus; 2576 2577 bus = kvm->buses[bus_idx]; 2578 r = -ENOENT; 2579 for (i = 0; i < bus->dev_count; i++) 2580 if (bus->range[i].dev == dev) { 2581 r = 0; 2582 break; 2583 } 2584 2585 if (r) 2586 return r; 2587 2588 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 2589 sizeof(struct kvm_io_range)), GFP_KERNEL); 2590 if (!new_bus) 2591 return -ENOMEM; 2592 2593 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 2594 new_bus->dev_count--; 2595 memcpy(new_bus->range + i, bus->range + i + 1, 2596 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 2597 2598 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2599 synchronize_srcu_expedited(&kvm->srcu); 2600 kfree(bus); 2601 return r; 2602 } 2603 2604 static struct notifier_block kvm_cpu_notifier = { 2605 .notifier_call = kvm_cpu_hotplug, 2606 }; 2607 2608 static int vm_stat_get(void *_offset, u64 *val) 2609 { 2610 unsigned offset = (long)_offset; 2611 struct kvm *kvm; 2612 2613 *val = 0; 2614 raw_spin_lock(&kvm_lock); 2615 list_for_each_entry(kvm, &vm_list, vm_list) 2616 *val += *(u32 *)((void *)kvm + offset); 2617 raw_spin_unlock(&kvm_lock); 2618 return 0; 2619 } 2620 2621 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 2622 2623 static int vcpu_stat_get(void *_offset, u64 *val) 2624 { 2625 unsigned offset = (long)_offset; 2626 struct kvm *kvm; 2627 struct kvm_vcpu *vcpu; 2628 int i; 2629 2630 *val = 0; 2631 raw_spin_lock(&kvm_lock); 2632 list_for_each_entry(kvm, &vm_list, vm_list) 2633 kvm_for_each_vcpu(i, vcpu, kvm) 2634 *val += *(u32 *)((void *)vcpu + offset); 2635 2636 raw_spin_unlock(&kvm_lock); 2637 return 0; 2638 } 2639 2640 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 2641 2642 static const struct file_operations *stat_fops[] = { 2643 [KVM_STAT_VCPU] = &vcpu_stat_fops, 2644 [KVM_STAT_VM] = &vm_stat_fops, 2645 }; 2646 2647 static int kvm_init_debug(void) 2648 { 2649 int r = -EFAULT; 2650 struct kvm_stats_debugfs_item *p; 2651 2652 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 2653 if (kvm_debugfs_dir == NULL) 2654 goto out; 2655 2656 for (p = debugfs_entries; p->name; ++p) { 2657 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 2658 (void *)(long)p->offset, 2659 stat_fops[p->kind]); 2660 if (p->dentry == NULL) 2661 goto out_dir; 2662 } 2663 2664 return 0; 2665 2666 out_dir: 2667 debugfs_remove_recursive(kvm_debugfs_dir); 2668 out: 2669 return r; 2670 } 2671 2672 static void kvm_exit_debug(void) 2673 { 2674 struct kvm_stats_debugfs_item *p; 2675 2676 for (p = debugfs_entries; p->name; ++p) 2677 debugfs_remove(p->dentry); 2678 debugfs_remove(kvm_debugfs_dir); 2679 } 2680 2681 static int kvm_suspend(void) 2682 { 2683 if (kvm_usage_count) 2684 hardware_disable_nolock(NULL); 2685 return 0; 2686 } 2687 2688 static void kvm_resume(void) 2689 { 2690 if (kvm_usage_count) { 2691 WARN_ON(raw_spin_is_locked(&kvm_lock)); 2692 hardware_enable_nolock(NULL); 2693 } 2694 } 2695 2696 static struct syscore_ops kvm_syscore_ops = { 2697 .suspend = kvm_suspend, 2698 .resume = kvm_resume, 2699 }; 2700 2701 struct page *bad_page; 2702 pfn_t bad_pfn; 2703 2704 static inline 2705 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 2706 { 2707 return container_of(pn, struct kvm_vcpu, preempt_notifier); 2708 } 2709 2710 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 2711 { 2712 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2713 2714 kvm_arch_vcpu_load(vcpu, cpu); 2715 } 2716 2717 static void kvm_sched_out(struct preempt_notifier *pn, 2718 struct task_struct *next) 2719 { 2720 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2721 2722 kvm_arch_vcpu_put(vcpu); 2723 } 2724 2725 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 2726 struct module *module) 2727 { 2728 int r; 2729 int cpu; 2730 2731 r = kvm_arch_init(opaque); 2732 if (r) 2733 goto out_fail; 2734 2735 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2736 2737 if (bad_page == NULL) { 2738 r = -ENOMEM; 2739 goto out; 2740 } 2741 2742 bad_pfn = page_to_pfn(bad_page); 2743 2744 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2745 2746 if (hwpoison_page == NULL) { 2747 r = -ENOMEM; 2748 goto out_free_0; 2749 } 2750 2751 hwpoison_pfn = page_to_pfn(hwpoison_page); 2752 2753 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 2754 2755 if (fault_page == NULL) { 2756 r = -ENOMEM; 2757 goto out_free_0; 2758 } 2759 2760 fault_pfn = page_to_pfn(fault_page); 2761 2762 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 2763 r = -ENOMEM; 2764 goto out_free_0; 2765 } 2766 2767 r = kvm_arch_hardware_setup(); 2768 if (r < 0) 2769 goto out_free_0a; 2770 2771 for_each_online_cpu(cpu) { 2772 smp_call_function_single(cpu, 2773 kvm_arch_check_processor_compat, 2774 &r, 1); 2775 if (r < 0) 2776 goto out_free_1; 2777 } 2778 2779 r = register_cpu_notifier(&kvm_cpu_notifier); 2780 if (r) 2781 goto out_free_2; 2782 register_reboot_notifier(&kvm_reboot_notifier); 2783 2784 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 2785 if (!vcpu_align) 2786 vcpu_align = __alignof__(struct kvm_vcpu); 2787 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 2788 0, NULL); 2789 if (!kvm_vcpu_cache) { 2790 r = -ENOMEM; 2791 goto out_free_3; 2792 } 2793 2794 r = kvm_async_pf_init(); 2795 if (r) 2796 goto out_free; 2797 2798 kvm_chardev_ops.owner = module; 2799 kvm_vm_fops.owner = module; 2800 kvm_vcpu_fops.owner = module; 2801 2802 r = misc_register(&kvm_dev); 2803 if (r) { 2804 printk(KERN_ERR "kvm: misc device register failed\n"); 2805 goto out_unreg; 2806 } 2807 2808 register_syscore_ops(&kvm_syscore_ops); 2809 2810 kvm_preempt_ops.sched_in = kvm_sched_in; 2811 kvm_preempt_ops.sched_out = kvm_sched_out; 2812 2813 r = kvm_init_debug(); 2814 if (r) { 2815 printk(KERN_ERR "kvm: create debugfs files failed\n"); 2816 goto out_undebugfs; 2817 } 2818 2819 return 0; 2820 2821 out_undebugfs: 2822 unregister_syscore_ops(&kvm_syscore_ops); 2823 out_unreg: 2824 kvm_async_pf_deinit(); 2825 out_free: 2826 kmem_cache_destroy(kvm_vcpu_cache); 2827 out_free_3: 2828 unregister_reboot_notifier(&kvm_reboot_notifier); 2829 unregister_cpu_notifier(&kvm_cpu_notifier); 2830 out_free_2: 2831 out_free_1: 2832 kvm_arch_hardware_unsetup(); 2833 out_free_0a: 2834 free_cpumask_var(cpus_hardware_enabled); 2835 out_free_0: 2836 if (fault_page) 2837 __free_page(fault_page); 2838 if (hwpoison_page) 2839 __free_page(hwpoison_page); 2840 __free_page(bad_page); 2841 out: 2842 kvm_arch_exit(); 2843 out_fail: 2844 return r; 2845 } 2846 EXPORT_SYMBOL_GPL(kvm_init); 2847 2848 void kvm_exit(void) 2849 { 2850 kvm_exit_debug(); 2851 misc_deregister(&kvm_dev); 2852 kmem_cache_destroy(kvm_vcpu_cache); 2853 kvm_async_pf_deinit(); 2854 unregister_syscore_ops(&kvm_syscore_ops); 2855 unregister_reboot_notifier(&kvm_reboot_notifier); 2856 unregister_cpu_notifier(&kvm_cpu_notifier); 2857 on_each_cpu(hardware_disable_nolock, NULL, 1); 2858 kvm_arch_hardware_unsetup(); 2859 kvm_arch_exit(); 2860 free_cpumask_var(cpus_hardware_enabled); 2861 __free_page(fault_page); 2862 __free_page(hwpoison_page); 2863 __free_page(bad_page); 2864 } 2865 EXPORT_SYMBOL_GPL(kvm_exit); 2866