xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 94c7b6fc)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76 
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80 
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 
86 struct dentry *kvm_debugfs_dir;
87 
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 			   unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 				  unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96 
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 			    struct kvm_memory_slot *new, u64 last_generation);
100 
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 				    struct kvm_memory_slot *memslot, gfn_t gfn);
104 
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107 
108 static bool largepages_enabled = true;
109 
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return PageReserved(pfn_to_page(pfn));
114 
115 	return true;
116 }
117 
118 /*
119  * Switches to specified vcpu, until a matching vcpu_put()
120  */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 	int cpu;
124 
125 	if (mutex_lock_killable(&vcpu->mutex))
126 		return -EINTR;
127 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 		/* The thread running this VCPU changed. */
129 		struct pid *oldpid = vcpu->pid;
130 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 		rcu_assign_pointer(vcpu->pid, newpid);
132 		synchronize_rcu();
133 		put_pid(oldpid);
134 	}
135 	cpu = get_cpu();
136 	preempt_notifier_register(&vcpu->preempt_notifier);
137 	kvm_arch_vcpu_load(vcpu, cpu);
138 	put_cpu();
139 	return 0;
140 }
141 
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144 	preempt_disable();
145 	kvm_arch_vcpu_put(vcpu);
146 	preempt_notifier_unregister(&vcpu->preempt_notifier);
147 	preempt_enable();
148 	mutex_unlock(&vcpu->mutex);
149 }
150 
151 static void ack_flush(void *_completed)
152 {
153 }
154 
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157 	int i, cpu, me;
158 	cpumask_var_t cpus;
159 	bool called = true;
160 	struct kvm_vcpu *vcpu;
161 
162 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163 
164 	me = get_cpu();
165 	kvm_for_each_vcpu(i, vcpu, kvm) {
166 		kvm_make_request(req, vcpu);
167 		cpu = vcpu->cpu;
168 
169 		/* Set ->requests bit before we read ->mode */
170 		smp_mb();
171 
172 		if (cpus != NULL && cpu != -1 && cpu != me &&
173 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 			cpumask_set_cpu(cpu, cpus);
175 	}
176 	if (unlikely(cpus == NULL))
177 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 	else if (!cpumask_empty(cpus))
179 		smp_call_function_many(cpus, ack_flush, NULL, 1);
180 	else
181 		called = false;
182 	put_cpu();
183 	free_cpumask_var(cpus);
184 	return called;
185 }
186 
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189 	long dirty_count = kvm->tlbs_dirty;
190 
191 	smp_mb();
192 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193 		++kvm->stat.remote_tlb_flush;
194 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 }
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
197 
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202 
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
204 {
205 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 }
207 
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
209 {
210 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 }
212 
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 	struct page *page;
216 	int r;
217 
218 	mutex_init(&vcpu->mutex);
219 	vcpu->cpu = -1;
220 	vcpu->kvm = kvm;
221 	vcpu->vcpu_id = id;
222 	vcpu->pid = NULL;
223 	init_waitqueue_head(&vcpu->wq);
224 	kvm_async_pf_vcpu_init(vcpu);
225 
226 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 	if (!page) {
228 		r = -ENOMEM;
229 		goto fail;
230 	}
231 	vcpu->run = page_address(page);
232 
233 	kvm_vcpu_set_in_spin_loop(vcpu, false);
234 	kvm_vcpu_set_dy_eligible(vcpu, false);
235 	vcpu->preempted = false;
236 
237 	r = kvm_arch_vcpu_init(vcpu);
238 	if (r < 0)
239 		goto fail_free_run;
240 	return 0;
241 
242 fail_free_run:
243 	free_page((unsigned long)vcpu->run);
244 fail:
245 	return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248 
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 	put_pid(vcpu->pid);
252 	kvm_arch_vcpu_uninit(vcpu);
253 	free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256 
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 	return container_of(mn, struct kvm, mmu_notifier);
261 }
262 
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 					     struct mm_struct *mm,
265 					     unsigned long address)
266 {
267 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 	int need_tlb_flush, idx;
269 
270 	/*
271 	 * When ->invalidate_page runs, the linux pte has been zapped
272 	 * already but the page is still allocated until
273 	 * ->invalidate_page returns. So if we increase the sequence
274 	 * here the kvm page fault will notice if the spte can't be
275 	 * established because the page is going to be freed. If
276 	 * instead the kvm page fault establishes the spte before
277 	 * ->invalidate_page runs, kvm_unmap_hva will release it
278 	 * before returning.
279 	 *
280 	 * The sequence increase only need to be seen at spin_unlock
281 	 * time, and not at spin_lock time.
282 	 *
283 	 * Increasing the sequence after the spin_unlock would be
284 	 * unsafe because the kvm page fault could then establish the
285 	 * pte after kvm_unmap_hva returned, without noticing the page
286 	 * is going to be freed.
287 	 */
288 	idx = srcu_read_lock(&kvm->srcu);
289 	spin_lock(&kvm->mmu_lock);
290 
291 	kvm->mmu_notifier_seq++;
292 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 	/* we've to flush the tlb before the pages can be freed */
294 	if (need_tlb_flush)
295 		kvm_flush_remote_tlbs(kvm);
296 
297 	spin_unlock(&kvm->mmu_lock);
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 	need_tlb_flush |= kvm->tlbs_dirty;
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 
339 	spin_unlock(&kvm->mmu_lock);
340 	srcu_read_unlock(&kvm->srcu, idx);
341 }
342 
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 						  struct mm_struct *mm,
345 						  unsigned long start,
346 						  unsigned long end)
347 {
348 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
349 
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * This sequence increase will notify the kvm page fault that
353 	 * the page that is going to be mapped in the spte could have
354 	 * been freed.
355 	 */
356 	kvm->mmu_notifier_seq++;
357 	smp_wmb();
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease, which is ensured by the smp_wmb above
361 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 	 */
363 	kvm->mmu_notifier_count--;
364 	spin_unlock(&kvm->mmu_lock);
365 
366 	BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368 
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 					      struct mm_struct *mm,
371 					      unsigned long address)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int young, idx;
375 
376 	idx = srcu_read_lock(&kvm->srcu);
377 	spin_lock(&kvm->mmu_lock);
378 
379 	young = kvm_age_hva(kvm, address);
380 	if (young)
381 		kvm_flush_remote_tlbs(kvm);
382 
383 	spin_unlock(&kvm->mmu_lock);
384 	srcu_read_unlock(&kvm->srcu, idx);
385 
386 	return young;
387 }
388 
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 				       struct mm_struct *mm,
391 				       unsigned long address)
392 {
393 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 	int young, idx;
395 
396 	idx = srcu_read_lock(&kvm->srcu);
397 	spin_lock(&kvm->mmu_lock);
398 	young = kvm_test_age_hva(kvm, address);
399 	spin_unlock(&kvm->mmu_lock);
400 	srcu_read_unlock(&kvm->srcu, idx);
401 
402 	return young;
403 }
404 
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 				     struct mm_struct *mm)
407 {
408 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 	int idx;
410 
411 	idx = srcu_read_lock(&kvm->srcu);
412 	kvm_arch_flush_shadow_all(kvm);
413 	srcu_read_unlock(&kvm->srcu, idx);
414 }
415 
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
418 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
419 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
420 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
421 	.test_young		= kvm_mmu_notifier_test_young,
422 	.change_pte		= kvm_mmu_notifier_change_pte,
423 	.release		= kvm_mmu_notifier_release,
424 };
425 
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431 
432 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433 
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436 	return 0;
437 }
438 
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440 
441 static void kvm_init_memslots_id(struct kvm *kvm)
442 {
443 	int i;
444 	struct kvm_memslots *slots = kvm->memslots;
445 
446 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447 		slots->id_to_index[i] = slots->memslots[i].id = i;
448 }
449 
450 static struct kvm *kvm_create_vm(unsigned long type)
451 {
452 	int r, i;
453 	struct kvm *kvm = kvm_arch_alloc_vm();
454 
455 	if (!kvm)
456 		return ERR_PTR(-ENOMEM);
457 
458 	r = kvm_arch_init_vm(kvm, type);
459 	if (r)
460 		goto out_err_no_disable;
461 
462 	r = hardware_enable_all();
463 	if (r)
464 		goto out_err_no_disable;
465 
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470 
471 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472 
473 	r = -ENOMEM;
474 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475 	if (!kvm->memslots)
476 		goto out_err_no_srcu;
477 	kvm_init_memslots_id(kvm);
478 	if (init_srcu_struct(&kvm->srcu))
479 		goto out_err_no_srcu;
480 	if (init_srcu_struct(&kvm->irq_srcu))
481 		goto out_err_no_irq_srcu;
482 	for (i = 0; i < KVM_NR_BUSES; i++) {
483 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
484 					GFP_KERNEL);
485 		if (!kvm->buses[i])
486 			goto out_err;
487 	}
488 
489 	spin_lock_init(&kvm->mmu_lock);
490 	kvm->mm = current->mm;
491 	atomic_inc(&kvm->mm->mm_count);
492 	kvm_eventfd_init(kvm);
493 	mutex_init(&kvm->lock);
494 	mutex_init(&kvm->irq_lock);
495 	mutex_init(&kvm->slots_lock);
496 	atomic_set(&kvm->users_count, 1);
497 	INIT_LIST_HEAD(&kvm->devices);
498 
499 	r = kvm_init_mmu_notifier(kvm);
500 	if (r)
501 		goto out_err;
502 
503 	spin_lock(&kvm_lock);
504 	list_add(&kvm->vm_list, &vm_list);
505 	spin_unlock(&kvm_lock);
506 
507 	return kvm;
508 
509 out_err:
510 	cleanup_srcu_struct(&kvm->irq_srcu);
511 out_err_no_irq_srcu:
512 	cleanup_srcu_struct(&kvm->srcu);
513 out_err_no_srcu:
514 	hardware_disable_all();
515 out_err_no_disable:
516 	for (i = 0; i < KVM_NR_BUSES; i++)
517 		kfree(kvm->buses[i]);
518 	kfree(kvm->memslots);
519 	kvm_arch_free_vm(kvm);
520 	return ERR_PTR(r);
521 }
522 
523 /*
524  * Avoid using vmalloc for a small buffer.
525  * Should not be used when the size is statically known.
526  */
527 void *kvm_kvzalloc(unsigned long size)
528 {
529 	if (size > PAGE_SIZE)
530 		return vzalloc(size);
531 	else
532 		return kzalloc(size, GFP_KERNEL);
533 }
534 
535 void kvm_kvfree(const void *addr)
536 {
537 	if (is_vmalloc_addr(addr))
538 		vfree(addr);
539 	else
540 		kfree(addr);
541 }
542 
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 	if (!memslot->dirty_bitmap)
546 		return;
547 
548 	kvm_kvfree(memslot->dirty_bitmap);
549 	memslot->dirty_bitmap = NULL;
550 }
551 
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
556 				  struct kvm_memory_slot *dont)
557 {
558 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 		kvm_destroy_dirty_bitmap(free);
560 
561 	kvm_arch_free_memslot(kvm, free, dont);
562 
563 	free->npages = 0;
564 }
565 
566 static void kvm_free_physmem(struct kvm *kvm)
567 {
568 	struct kvm_memslots *slots = kvm->memslots;
569 	struct kvm_memory_slot *memslot;
570 
571 	kvm_for_each_memslot(memslot, slots)
572 		kvm_free_physmem_slot(kvm, memslot, NULL);
573 
574 	kfree(kvm->memslots);
575 }
576 
577 static void kvm_destroy_devices(struct kvm *kvm)
578 {
579 	struct list_head *node, *tmp;
580 
581 	list_for_each_safe(node, tmp, &kvm->devices) {
582 		struct kvm_device *dev =
583 			list_entry(node, struct kvm_device, vm_node);
584 
585 		list_del(node);
586 		dev->ops->destroy(dev);
587 	}
588 }
589 
590 static void kvm_destroy_vm(struct kvm *kvm)
591 {
592 	int i;
593 	struct mm_struct *mm = kvm->mm;
594 
595 	kvm_arch_sync_events(kvm);
596 	spin_lock(&kvm_lock);
597 	list_del(&kvm->vm_list);
598 	spin_unlock(&kvm_lock);
599 	kvm_free_irq_routing(kvm);
600 	for (i = 0; i < KVM_NR_BUSES; i++)
601 		kvm_io_bus_destroy(kvm->buses[i]);
602 	kvm_coalesced_mmio_free(kvm);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
605 #else
606 	kvm_arch_flush_shadow_all(kvm);
607 #endif
608 	kvm_arch_destroy_vm(kvm);
609 	kvm_destroy_devices(kvm);
610 	kvm_free_physmem(kvm);
611 	cleanup_srcu_struct(&kvm->irq_srcu);
612 	cleanup_srcu_struct(&kvm->srcu);
613 	kvm_arch_free_vm(kvm);
614 	hardware_disable_all();
615 	mmdrop(mm);
616 }
617 
618 void kvm_get_kvm(struct kvm *kvm)
619 {
620 	atomic_inc(&kvm->users_count);
621 }
622 EXPORT_SYMBOL_GPL(kvm_get_kvm);
623 
624 void kvm_put_kvm(struct kvm *kvm)
625 {
626 	if (atomic_dec_and_test(&kvm->users_count))
627 		kvm_destroy_vm(kvm);
628 }
629 EXPORT_SYMBOL_GPL(kvm_put_kvm);
630 
631 
632 static int kvm_vm_release(struct inode *inode, struct file *filp)
633 {
634 	struct kvm *kvm = filp->private_data;
635 
636 	kvm_irqfd_release(kvm);
637 
638 	kvm_put_kvm(kvm);
639 	return 0;
640 }
641 
642 /*
643  * Allocation size is twice as large as the actual dirty bitmap size.
644  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
645  */
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
647 {
648 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
649 
650 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
651 	if (!memslot->dirty_bitmap)
652 		return -ENOMEM;
653 
654 	return 0;
655 }
656 
657 static int cmp_memslot(const void *slot1, const void *slot2)
658 {
659 	struct kvm_memory_slot *s1, *s2;
660 
661 	s1 = (struct kvm_memory_slot *)slot1;
662 	s2 = (struct kvm_memory_slot *)slot2;
663 
664 	if (s1->npages < s2->npages)
665 		return 1;
666 	if (s1->npages > s2->npages)
667 		return -1;
668 
669 	return 0;
670 }
671 
672 /*
673  * Sort the memslots base on its size, so the larger slots
674  * will get better fit.
675  */
676 static void sort_memslots(struct kvm_memslots *slots)
677 {
678 	int i;
679 
680 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
681 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
682 
683 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
684 		slots->id_to_index[slots->memslots[i].id] = i;
685 }
686 
687 static void update_memslots(struct kvm_memslots *slots,
688 			    struct kvm_memory_slot *new,
689 			    u64 last_generation)
690 {
691 	if (new) {
692 		int id = new->id;
693 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
694 		unsigned long npages = old->npages;
695 
696 		*old = *new;
697 		if (new->npages != npages)
698 			sort_memslots(slots);
699 	}
700 
701 	slots->generation = last_generation + 1;
702 }
703 
704 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
705 {
706 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
707 
708 #ifdef KVM_CAP_READONLY_MEM
709 	valid_flags |= KVM_MEM_READONLY;
710 #endif
711 
712 	if (mem->flags & ~valid_flags)
713 		return -EINVAL;
714 
715 	return 0;
716 }
717 
718 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
719 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
720 {
721 	struct kvm_memslots *old_memslots = kvm->memslots;
722 
723 	update_memslots(slots, new, kvm->memslots->generation);
724 	rcu_assign_pointer(kvm->memslots, slots);
725 	synchronize_srcu_expedited(&kvm->srcu);
726 
727 	kvm_arch_memslots_updated(kvm);
728 
729 	return old_memslots;
730 }
731 
732 /*
733  * Allocate some memory and give it an address in the guest physical address
734  * space.
735  *
736  * Discontiguous memory is allowed, mostly for framebuffers.
737  *
738  * Must be called holding mmap_sem for write.
739  */
740 int __kvm_set_memory_region(struct kvm *kvm,
741 			    struct kvm_userspace_memory_region *mem)
742 {
743 	int r;
744 	gfn_t base_gfn;
745 	unsigned long npages;
746 	struct kvm_memory_slot *slot;
747 	struct kvm_memory_slot old, new;
748 	struct kvm_memslots *slots = NULL, *old_memslots;
749 	enum kvm_mr_change change;
750 
751 	r = check_memory_region_flags(mem);
752 	if (r)
753 		goto out;
754 
755 	r = -EINVAL;
756 	/* General sanity checks */
757 	if (mem->memory_size & (PAGE_SIZE - 1))
758 		goto out;
759 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
760 		goto out;
761 	/* We can read the guest memory with __xxx_user() later on. */
762 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
763 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
764 	     !access_ok(VERIFY_WRITE,
765 			(void __user *)(unsigned long)mem->userspace_addr,
766 			mem->memory_size)))
767 		goto out;
768 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
769 		goto out;
770 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
771 		goto out;
772 
773 	slot = id_to_memslot(kvm->memslots, mem->slot);
774 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
775 	npages = mem->memory_size >> PAGE_SHIFT;
776 
777 	r = -EINVAL;
778 	if (npages > KVM_MEM_MAX_NR_PAGES)
779 		goto out;
780 
781 	if (!npages)
782 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
783 
784 	new = old = *slot;
785 
786 	new.id = mem->slot;
787 	new.base_gfn = base_gfn;
788 	new.npages = npages;
789 	new.flags = mem->flags;
790 
791 	r = -EINVAL;
792 	if (npages) {
793 		if (!old.npages)
794 			change = KVM_MR_CREATE;
795 		else { /* Modify an existing slot. */
796 			if ((mem->userspace_addr != old.userspace_addr) ||
797 			    (npages != old.npages) ||
798 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
799 				goto out;
800 
801 			if (base_gfn != old.base_gfn)
802 				change = KVM_MR_MOVE;
803 			else if (new.flags != old.flags)
804 				change = KVM_MR_FLAGS_ONLY;
805 			else { /* Nothing to change. */
806 				r = 0;
807 				goto out;
808 			}
809 		}
810 	} else if (old.npages) {
811 		change = KVM_MR_DELETE;
812 	} else /* Modify a non-existent slot: disallowed. */
813 		goto out;
814 
815 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
816 		/* Check for overlaps */
817 		r = -EEXIST;
818 		kvm_for_each_memslot(slot, kvm->memslots) {
819 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
820 			    (slot->id == mem->slot))
821 				continue;
822 			if (!((base_gfn + npages <= slot->base_gfn) ||
823 			      (base_gfn >= slot->base_gfn + slot->npages)))
824 				goto out;
825 		}
826 	}
827 
828 	/* Free page dirty bitmap if unneeded */
829 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
830 		new.dirty_bitmap = NULL;
831 
832 	r = -ENOMEM;
833 	if (change == KVM_MR_CREATE) {
834 		new.userspace_addr = mem->userspace_addr;
835 
836 		if (kvm_arch_create_memslot(kvm, &new, npages))
837 			goto out_free;
838 	}
839 
840 	/* Allocate page dirty bitmap if needed */
841 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
842 		if (kvm_create_dirty_bitmap(&new) < 0)
843 			goto out_free;
844 	}
845 
846 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
847 		r = -ENOMEM;
848 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
849 				GFP_KERNEL);
850 		if (!slots)
851 			goto out_free;
852 		slot = id_to_memslot(slots, mem->slot);
853 		slot->flags |= KVM_MEMSLOT_INVALID;
854 
855 		old_memslots = install_new_memslots(kvm, slots, NULL);
856 
857 		/* slot was deleted or moved, clear iommu mapping */
858 		kvm_iommu_unmap_pages(kvm, &old);
859 		/* From this point no new shadow pages pointing to a deleted,
860 		 * or moved, memslot will be created.
861 		 *
862 		 * validation of sp->gfn happens in:
863 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
864 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
865 		 */
866 		kvm_arch_flush_shadow_memslot(kvm, slot);
867 		slots = old_memslots;
868 	}
869 
870 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
871 	if (r)
872 		goto out_slots;
873 
874 	r = -ENOMEM;
875 	/*
876 	 * We can re-use the old_memslots from above, the only difference
877 	 * from the currently installed memslots is the invalid flag.  This
878 	 * will get overwritten by update_memslots anyway.
879 	 */
880 	if (!slots) {
881 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
882 				GFP_KERNEL);
883 		if (!slots)
884 			goto out_free;
885 	}
886 
887 	/* actual memory is freed via old in kvm_free_physmem_slot below */
888 	if (change == KVM_MR_DELETE) {
889 		new.dirty_bitmap = NULL;
890 		memset(&new.arch, 0, sizeof(new.arch));
891 	}
892 
893 	old_memslots = install_new_memslots(kvm, slots, &new);
894 
895 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
896 
897 	kvm_free_physmem_slot(kvm, &old, &new);
898 	kfree(old_memslots);
899 
900 	/*
901 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
902 	 * un-mapped and re-mapped if their base changes.  Since base change
903 	 * unmapping is handled above with slot deletion, mapping alone is
904 	 * needed here.  Anything else the iommu might care about for existing
905 	 * slots (size changes, userspace addr changes and read-only flag
906 	 * changes) is disallowed above, so any other attribute changes getting
907 	 * here can be skipped.
908 	 */
909 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
910 		r = kvm_iommu_map_pages(kvm, &new);
911 		return r;
912 	}
913 
914 	return 0;
915 
916 out_slots:
917 	kfree(slots);
918 out_free:
919 	kvm_free_physmem_slot(kvm, &new, &old);
920 out:
921 	return r;
922 }
923 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
924 
925 int kvm_set_memory_region(struct kvm *kvm,
926 			  struct kvm_userspace_memory_region *mem)
927 {
928 	int r;
929 
930 	mutex_lock(&kvm->slots_lock);
931 	r = __kvm_set_memory_region(kvm, mem);
932 	mutex_unlock(&kvm->slots_lock);
933 	return r;
934 }
935 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
936 
937 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
938 					  struct kvm_userspace_memory_region *mem)
939 {
940 	if (mem->slot >= KVM_USER_MEM_SLOTS)
941 		return -EINVAL;
942 	return kvm_set_memory_region(kvm, mem);
943 }
944 
945 int kvm_get_dirty_log(struct kvm *kvm,
946 			struct kvm_dirty_log *log, int *is_dirty)
947 {
948 	struct kvm_memory_slot *memslot;
949 	int r, i;
950 	unsigned long n;
951 	unsigned long any = 0;
952 
953 	r = -EINVAL;
954 	if (log->slot >= KVM_USER_MEM_SLOTS)
955 		goto out;
956 
957 	memslot = id_to_memslot(kvm->memslots, log->slot);
958 	r = -ENOENT;
959 	if (!memslot->dirty_bitmap)
960 		goto out;
961 
962 	n = kvm_dirty_bitmap_bytes(memslot);
963 
964 	for (i = 0; !any && i < n/sizeof(long); ++i)
965 		any = memslot->dirty_bitmap[i];
966 
967 	r = -EFAULT;
968 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
969 		goto out;
970 
971 	if (any)
972 		*is_dirty = 1;
973 
974 	r = 0;
975 out:
976 	return r;
977 }
978 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
979 
980 bool kvm_largepages_enabled(void)
981 {
982 	return largepages_enabled;
983 }
984 
985 void kvm_disable_largepages(void)
986 {
987 	largepages_enabled = false;
988 }
989 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
990 
991 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
992 {
993 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
994 }
995 EXPORT_SYMBOL_GPL(gfn_to_memslot);
996 
997 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
998 {
999 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1000 
1001 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1002 	      memslot->flags & KVM_MEMSLOT_INVALID)
1003 		return 0;
1004 
1005 	return 1;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1008 
1009 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1010 {
1011 	struct vm_area_struct *vma;
1012 	unsigned long addr, size;
1013 
1014 	size = PAGE_SIZE;
1015 
1016 	addr = gfn_to_hva(kvm, gfn);
1017 	if (kvm_is_error_hva(addr))
1018 		return PAGE_SIZE;
1019 
1020 	down_read(&current->mm->mmap_sem);
1021 	vma = find_vma(current->mm, addr);
1022 	if (!vma)
1023 		goto out;
1024 
1025 	size = vma_kernel_pagesize(vma);
1026 
1027 out:
1028 	up_read(&current->mm->mmap_sem);
1029 
1030 	return size;
1031 }
1032 
1033 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1034 {
1035 	return slot->flags & KVM_MEM_READONLY;
1036 }
1037 
1038 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1039 				       gfn_t *nr_pages, bool write)
1040 {
1041 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1042 		return KVM_HVA_ERR_BAD;
1043 
1044 	if (memslot_is_readonly(slot) && write)
1045 		return KVM_HVA_ERR_RO_BAD;
1046 
1047 	if (nr_pages)
1048 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1049 
1050 	return __gfn_to_hva_memslot(slot, gfn);
1051 }
1052 
1053 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1054 				     gfn_t *nr_pages)
1055 {
1056 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1057 }
1058 
1059 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1060 					gfn_t gfn)
1061 {
1062 	return gfn_to_hva_many(slot, gfn, NULL);
1063 }
1064 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1065 
1066 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1067 {
1068 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1069 }
1070 EXPORT_SYMBOL_GPL(gfn_to_hva);
1071 
1072 /*
1073  * If writable is set to false, the hva returned by this function is only
1074  * allowed to be read.
1075  */
1076 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1077 {
1078 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1079 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1080 
1081 	if (!kvm_is_error_hva(hva) && writable)
1082 		*writable = !memslot_is_readonly(slot);
1083 
1084 	return hva;
1085 }
1086 
1087 static int kvm_read_hva(void *data, void __user *hva, int len)
1088 {
1089 	return __copy_from_user(data, hva, len);
1090 }
1091 
1092 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1093 {
1094 	return __copy_from_user_inatomic(data, hva, len);
1095 }
1096 
1097 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1098 	unsigned long start, int write, struct page **page)
1099 {
1100 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1101 
1102 	if (write)
1103 		flags |= FOLL_WRITE;
1104 
1105 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1106 }
1107 
1108 static inline int check_user_page_hwpoison(unsigned long addr)
1109 {
1110 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1111 
1112 	rc = __get_user_pages(current, current->mm, addr, 1,
1113 			      flags, NULL, NULL, NULL);
1114 	return rc == -EHWPOISON;
1115 }
1116 
1117 /*
1118  * The atomic path to get the writable pfn which will be stored in @pfn,
1119  * true indicates success, otherwise false is returned.
1120  */
1121 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1122 			    bool write_fault, bool *writable, pfn_t *pfn)
1123 {
1124 	struct page *page[1];
1125 	int npages;
1126 
1127 	if (!(async || atomic))
1128 		return false;
1129 
1130 	/*
1131 	 * Fast pin a writable pfn only if it is a write fault request
1132 	 * or the caller allows to map a writable pfn for a read fault
1133 	 * request.
1134 	 */
1135 	if (!(write_fault || writable))
1136 		return false;
1137 
1138 	npages = __get_user_pages_fast(addr, 1, 1, page);
1139 	if (npages == 1) {
1140 		*pfn = page_to_pfn(page[0]);
1141 
1142 		if (writable)
1143 			*writable = true;
1144 		return true;
1145 	}
1146 
1147 	return false;
1148 }
1149 
1150 /*
1151  * The slow path to get the pfn of the specified host virtual address,
1152  * 1 indicates success, -errno is returned if error is detected.
1153  */
1154 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1155 			   bool *writable, pfn_t *pfn)
1156 {
1157 	struct page *page[1];
1158 	int npages = 0;
1159 
1160 	might_sleep();
1161 
1162 	if (writable)
1163 		*writable = write_fault;
1164 
1165 	if (async) {
1166 		down_read(&current->mm->mmap_sem);
1167 		npages = get_user_page_nowait(current, current->mm,
1168 					      addr, write_fault, page);
1169 		up_read(&current->mm->mmap_sem);
1170 	} else
1171 		npages = get_user_pages_fast(addr, 1, write_fault,
1172 					     page);
1173 	if (npages != 1)
1174 		return npages;
1175 
1176 	/* map read fault as writable if possible */
1177 	if (unlikely(!write_fault) && writable) {
1178 		struct page *wpage[1];
1179 
1180 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1181 		if (npages == 1) {
1182 			*writable = true;
1183 			put_page(page[0]);
1184 			page[0] = wpage[0];
1185 		}
1186 
1187 		npages = 1;
1188 	}
1189 	*pfn = page_to_pfn(page[0]);
1190 	return npages;
1191 }
1192 
1193 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1194 {
1195 	if (unlikely(!(vma->vm_flags & VM_READ)))
1196 		return false;
1197 
1198 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1199 		return false;
1200 
1201 	return true;
1202 }
1203 
1204 /*
1205  * Pin guest page in memory and return its pfn.
1206  * @addr: host virtual address which maps memory to the guest
1207  * @atomic: whether this function can sleep
1208  * @async: whether this function need to wait IO complete if the
1209  *         host page is not in the memory
1210  * @write_fault: whether we should get a writable host page
1211  * @writable: whether it allows to map a writable host page for !@write_fault
1212  *
1213  * The function will map a writable host page for these two cases:
1214  * 1): @write_fault = true
1215  * 2): @write_fault = false && @writable, @writable will tell the caller
1216  *     whether the mapping is writable.
1217  */
1218 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1219 			bool write_fault, bool *writable)
1220 {
1221 	struct vm_area_struct *vma;
1222 	pfn_t pfn = 0;
1223 	int npages;
1224 
1225 	/* we can do it either atomically or asynchronously, not both */
1226 	BUG_ON(atomic && async);
1227 
1228 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1229 		return pfn;
1230 
1231 	if (atomic)
1232 		return KVM_PFN_ERR_FAULT;
1233 
1234 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1235 	if (npages == 1)
1236 		return pfn;
1237 
1238 	down_read(&current->mm->mmap_sem);
1239 	if (npages == -EHWPOISON ||
1240 	      (!async && check_user_page_hwpoison(addr))) {
1241 		pfn = KVM_PFN_ERR_HWPOISON;
1242 		goto exit;
1243 	}
1244 
1245 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1246 
1247 	if (vma == NULL)
1248 		pfn = KVM_PFN_ERR_FAULT;
1249 	else if ((vma->vm_flags & VM_PFNMAP)) {
1250 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1251 			vma->vm_pgoff;
1252 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1253 	} else {
1254 		if (async && vma_is_valid(vma, write_fault))
1255 			*async = true;
1256 		pfn = KVM_PFN_ERR_FAULT;
1257 	}
1258 exit:
1259 	up_read(&current->mm->mmap_sem);
1260 	return pfn;
1261 }
1262 
1263 static pfn_t
1264 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1265 		     bool *async, bool write_fault, bool *writable)
1266 {
1267 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1268 
1269 	if (addr == KVM_HVA_ERR_RO_BAD)
1270 		return KVM_PFN_ERR_RO_FAULT;
1271 
1272 	if (kvm_is_error_hva(addr))
1273 		return KVM_PFN_NOSLOT;
1274 
1275 	/* Do not map writable pfn in the readonly memslot. */
1276 	if (writable && memslot_is_readonly(slot)) {
1277 		*writable = false;
1278 		writable = NULL;
1279 	}
1280 
1281 	return hva_to_pfn(addr, atomic, async, write_fault,
1282 			  writable);
1283 }
1284 
1285 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1286 			  bool write_fault, bool *writable)
1287 {
1288 	struct kvm_memory_slot *slot;
1289 
1290 	if (async)
1291 		*async = false;
1292 
1293 	slot = gfn_to_memslot(kvm, gfn);
1294 
1295 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1296 				    writable);
1297 }
1298 
1299 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1300 {
1301 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1304 
1305 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1306 		       bool write_fault, bool *writable)
1307 {
1308 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1309 }
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1311 
1312 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1313 {
1314 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1317 
1318 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1319 		      bool *writable)
1320 {
1321 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1322 }
1323 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1324 
1325 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1326 {
1327 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1328 }
1329 
1330 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1331 {
1332 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1333 }
1334 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1335 
1336 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1337 								  int nr_pages)
1338 {
1339 	unsigned long addr;
1340 	gfn_t entry;
1341 
1342 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1343 	if (kvm_is_error_hva(addr))
1344 		return -1;
1345 
1346 	if (entry < nr_pages)
1347 		return 0;
1348 
1349 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1350 }
1351 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1352 
1353 static struct page *kvm_pfn_to_page(pfn_t pfn)
1354 {
1355 	if (is_error_noslot_pfn(pfn))
1356 		return KVM_ERR_PTR_BAD_PAGE;
1357 
1358 	if (kvm_is_mmio_pfn(pfn)) {
1359 		WARN_ON(1);
1360 		return KVM_ERR_PTR_BAD_PAGE;
1361 	}
1362 
1363 	return pfn_to_page(pfn);
1364 }
1365 
1366 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1367 {
1368 	pfn_t pfn;
1369 
1370 	pfn = gfn_to_pfn(kvm, gfn);
1371 
1372 	return kvm_pfn_to_page(pfn);
1373 }
1374 
1375 EXPORT_SYMBOL_GPL(gfn_to_page);
1376 
1377 void kvm_release_page_clean(struct page *page)
1378 {
1379 	WARN_ON(is_error_page(page));
1380 
1381 	kvm_release_pfn_clean(page_to_pfn(page));
1382 }
1383 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1384 
1385 void kvm_release_pfn_clean(pfn_t pfn)
1386 {
1387 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1388 		put_page(pfn_to_page(pfn));
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1391 
1392 void kvm_release_page_dirty(struct page *page)
1393 {
1394 	WARN_ON(is_error_page(page));
1395 
1396 	kvm_release_pfn_dirty(page_to_pfn(page));
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1399 
1400 static void kvm_release_pfn_dirty(pfn_t pfn)
1401 {
1402 	kvm_set_pfn_dirty(pfn);
1403 	kvm_release_pfn_clean(pfn);
1404 }
1405 
1406 void kvm_set_pfn_dirty(pfn_t pfn)
1407 {
1408 	if (!kvm_is_mmio_pfn(pfn)) {
1409 		struct page *page = pfn_to_page(pfn);
1410 		if (!PageReserved(page))
1411 			SetPageDirty(page);
1412 	}
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1415 
1416 void kvm_set_pfn_accessed(pfn_t pfn)
1417 {
1418 	if (!kvm_is_mmio_pfn(pfn))
1419 		mark_page_accessed(pfn_to_page(pfn));
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1422 
1423 void kvm_get_pfn(pfn_t pfn)
1424 {
1425 	if (!kvm_is_mmio_pfn(pfn))
1426 		get_page(pfn_to_page(pfn));
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1429 
1430 static int next_segment(unsigned long len, int offset)
1431 {
1432 	if (len > PAGE_SIZE - offset)
1433 		return PAGE_SIZE - offset;
1434 	else
1435 		return len;
1436 }
1437 
1438 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1439 			int len)
1440 {
1441 	int r;
1442 	unsigned long addr;
1443 
1444 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1445 	if (kvm_is_error_hva(addr))
1446 		return -EFAULT;
1447 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1448 	if (r)
1449 		return -EFAULT;
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1453 
1454 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1455 {
1456 	gfn_t gfn = gpa >> PAGE_SHIFT;
1457 	int seg;
1458 	int offset = offset_in_page(gpa);
1459 	int ret;
1460 
1461 	while ((seg = next_segment(len, offset)) != 0) {
1462 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1463 		if (ret < 0)
1464 			return ret;
1465 		offset = 0;
1466 		len -= seg;
1467 		data += seg;
1468 		++gfn;
1469 	}
1470 	return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_read_guest);
1473 
1474 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1475 			  unsigned long len)
1476 {
1477 	int r;
1478 	unsigned long addr;
1479 	gfn_t gfn = gpa >> PAGE_SHIFT;
1480 	int offset = offset_in_page(gpa);
1481 
1482 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1483 	if (kvm_is_error_hva(addr))
1484 		return -EFAULT;
1485 	pagefault_disable();
1486 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1487 	pagefault_enable();
1488 	if (r)
1489 		return -EFAULT;
1490 	return 0;
1491 }
1492 EXPORT_SYMBOL(kvm_read_guest_atomic);
1493 
1494 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1495 			 int offset, int len)
1496 {
1497 	int r;
1498 	unsigned long addr;
1499 
1500 	addr = gfn_to_hva(kvm, gfn);
1501 	if (kvm_is_error_hva(addr))
1502 		return -EFAULT;
1503 	r = __copy_to_user((void __user *)addr + offset, data, len);
1504 	if (r)
1505 		return -EFAULT;
1506 	mark_page_dirty(kvm, gfn);
1507 	return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1510 
1511 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1512 		    unsigned long len)
1513 {
1514 	gfn_t gfn = gpa >> PAGE_SHIFT;
1515 	int seg;
1516 	int offset = offset_in_page(gpa);
1517 	int ret;
1518 
1519 	while ((seg = next_segment(len, offset)) != 0) {
1520 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1521 		if (ret < 0)
1522 			return ret;
1523 		offset = 0;
1524 		len -= seg;
1525 		data += seg;
1526 		++gfn;
1527 	}
1528 	return 0;
1529 }
1530 
1531 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1532 			      gpa_t gpa, unsigned long len)
1533 {
1534 	struct kvm_memslots *slots = kvm_memslots(kvm);
1535 	int offset = offset_in_page(gpa);
1536 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1537 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1538 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1539 	gfn_t nr_pages_avail;
1540 
1541 	ghc->gpa = gpa;
1542 	ghc->generation = slots->generation;
1543 	ghc->len = len;
1544 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1545 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1546 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1547 		ghc->hva += offset;
1548 	} else {
1549 		/*
1550 		 * If the requested region crosses two memslots, we still
1551 		 * verify that the entire region is valid here.
1552 		 */
1553 		while (start_gfn <= end_gfn) {
1554 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1555 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1556 						   &nr_pages_avail);
1557 			if (kvm_is_error_hva(ghc->hva))
1558 				return -EFAULT;
1559 			start_gfn += nr_pages_avail;
1560 		}
1561 		/* Use the slow path for cross page reads and writes. */
1562 		ghc->memslot = NULL;
1563 	}
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1567 
1568 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1569 			   void *data, unsigned long len)
1570 {
1571 	struct kvm_memslots *slots = kvm_memslots(kvm);
1572 	int r;
1573 
1574 	BUG_ON(len > ghc->len);
1575 
1576 	if (slots->generation != ghc->generation)
1577 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1578 
1579 	if (unlikely(!ghc->memslot))
1580 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1581 
1582 	if (kvm_is_error_hva(ghc->hva))
1583 		return -EFAULT;
1584 
1585 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1586 	if (r)
1587 		return -EFAULT;
1588 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1589 
1590 	return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1593 
1594 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1595 			   void *data, unsigned long len)
1596 {
1597 	struct kvm_memslots *slots = kvm_memslots(kvm);
1598 	int r;
1599 
1600 	BUG_ON(len > ghc->len);
1601 
1602 	if (slots->generation != ghc->generation)
1603 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1604 
1605 	if (unlikely(!ghc->memslot))
1606 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1607 
1608 	if (kvm_is_error_hva(ghc->hva))
1609 		return -EFAULT;
1610 
1611 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1612 	if (r)
1613 		return -EFAULT;
1614 
1615 	return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1618 
1619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1620 {
1621 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1622 
1623 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1626 
1627 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1628 {
1629 	gfn_t gfn = gpa >> PAGE_SHIFT;
1630 	int seg;
1631 	int offset = offset_in_page(gpa);
1632 	int ret;
1633 
1634         while ((seg = next_segment(len, offset)) != 0) {
1635 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1636 		if (ret < 0)
1637 			return ret;
1638 		offset = 0;
1639 		len -= seg;
1640 		++gfn;
1641 	}
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1645 
1646 static void mark_page_dirty_in_slot(struct kvm *kvm,
1647 				    struct kvm_memory_slot *memslot,
1648 				    gfn_t gfn)
1649 {
1650 	if (memslot && memslot->dirty_bitmap) {
1651 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1652 
1653 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1654 	}
1655 }
1656 
1657 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1658 {
1659 	struct kvm_memory_slot *memslot;
1660 
1661 	memslot = gfn_to_memslot(kvm, gfn);
1662 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1663 }
1664 EXPORT_SYMBOL_GPL(mark_page_dirty);
1665 
1666 /*
1667  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1668  */
1669 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1670 {
1671 	DEFINE_WAIT(wait);
1672 
1673 	for (;;) {
1674 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1675 
1676 		if (kvm_arch_vcpu_runnable(vcpu)) {
1677 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1678 			break;
1679 		}
1680 		if (kvm_cpu_has_pending_timer(vcpu))
1681 			break;
1682 		if (signal_pending(current))
1683 			break;
1684 
1685 		schedule();
1686 	}
1687 
1688 	finish_wait(&vcpu->wq, &wait);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1691 
1692 #ifndef CONFIG_S390
1693 /*
1694  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1695  */
1696 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1697 {
1698 	int me;
1699 	int cpu = vcpu->cpu;
1700 	wait_queue_head_t *wqp;
1701 
1702 	wqp = kvm_arch_vcpu_wq(vcpu);
1703 	if (waitqueue_active(wqp)) {
1704 		wake_up_interruptible(wqp);
1705 		++vcpu->stat.halt_wakeup;
1706 	}
1707 
1708 	me = get_cpu();
1709 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1710 		if (kvm_arch_vcpu_should_kick(vcpu))
1711 			smp_send_reschedule(cpu);
1712 	put_cpu();
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1715 #endif /* !CONFIG_S390 */
1716 
1717 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1718 {
1719 	struct pid *pid;
1720 	struct task_struct *task = NULL;
1721 	int ret = 0;
1722 
1723 	rcu_read_lock();
1724 	pid = rcu_dereference(target->pid);
1725 	if (pid)
1726 		task = get_pid_task(target->pid, PIDTYPE_PID);
1727 	rcu_read_unlock();
1728 	if (!task)
1729 		return ret;
1730 	if (task->flags & PF_VCPU) {
1731 		put_task_struct(task);
1732 		return ret;
1733 	}
1734 	ret = yield_to(task, 1);
1735 	put_task_struct(task);
1736 
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1740 
1741 /*
1742  * Helper that checks whether a VCPU is eligible for directed yield.
1743  * Most eligible candidate to yield is decided by following heuristics:
1744  *
1745  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1746  *  (preempted lock holder), indicated by @in_spin_loop.
1747  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1748  *
1749  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1750  *  chance last time (mostly it has become eligible now since we have probably
1751  *  yielded to lockholder in last iteration. This is done by toggling
1752  *  @dy_eligible each time a VCPU checked for eligibility.)
1753  *
1754  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1755  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1756  *  burning. Giving priority for a potential lock-holder increases lock
1757  *  progress.
1758  *
1759  *  Since algorithm is based on heuristics, accessing another VCPU data without
1760  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1761  *  and continue with next VCPU and so on.
1762  */
1763 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1764 {
1765 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1766 	bool eligible;
1767 
1768 	eligible = !vcpu->spin_loop.in_spin_loop ||
1769 			(vcpu->spin_loop.in_spin_loop &&
1770 			 vcpu->spin_loop.dy_eligible);
1771 
1772 	if (vcpu->spin_loop.in_spin_loop)
1773 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1774 
1775 	return eligible;
1776 #else
1777 	return true;
1778 #endif
1779 }
1780 
1781 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1782 {
1783 	struct kvm *kvm = me->kvm;
1784 	struct kvm_vcpu *vcpu;
1785 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1786 	int yielded = 0;
1787 	int try = 3;
1788 	int pass;
1789 	int i;
1790 
1791 	kvm_vcpu_set_in_spin_loop(me, true);
1792 	/*
1793 	 * We boost the priority of a VCPU that is runnable but not
1794 	 * currently running, because it got preempted by something
1795 	 * else and called schedule in __vcpu_run.  Hopefully that
1796 	 * VCPU is holding the lock that we need and will release it.
1797 	 * We approximate round-robin by starting at the last boosted VCPU.
1798 	 */
1799 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1800 		kvm_for_each_vcpu(i, vcpu, kvm) {
1801 			if (!pass && i <= last_boosted_vcpu) {
1802 				i = last_boosted_vcpu;
1803 				continue;
1804 			} else if (pass && i > last_boosted_vcpu)
1805 				break;
1806 			if (!ACCESS_ONCE(vcpu->preempted))
1807 				continue;
1808 			if (vcpu == me)
1809 				continue;
1810 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1811 				continue;
1812 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1813 				continue;
1814 
1815 			yielded = kvm_vcpu_yield_to(vcpu);
1816 			if (yielded > 0) {
1817 				kvm->last_boosted_vcpu = i;
1818 				break;
1819 			} else if (yielded < 0) {
1820 				try--;
1821 				if (!try)
1822 					break;
1823 			}
1824 		}
1825 	}
1826 	kvm_vcpu_set_in_spin_loop(me, false);
1827 
1828 	/* Ensure vcpu is not eligible during next spinloop */
1829 	kvm_vcpu_set_dy_eligible(me, false);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1832 
1833 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1834 {
1835 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1836 	struct page *page;
1837 
1838 	if (vmf->pgoff == 0)
1839 		page = virt_to_page(vcpu->run);
1840 #ifdef CONFIG_X86
1841 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1842 		page = virt_to_page(vcpu->arch.pio_data);
1843 #endif
1844 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1845 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1846 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1847 #endif
1848 	else
1849 		return kvm_arch_vcpu_fault(vcpu, vmf);
1850 	get_page(page);
1851 	vmf->page = page;
1852 	return 0;
1853 }
1854 
1855 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1856 	.fault = kvm_vcpu_fault,
1857 };
1858 
1859 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1860 {
1861 	vma->vm_ops = &kvm_vcpu_vm_ops;
1862 	return 0;
1863 }
1864 
1865 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1866 {
1867 	struct kvm_vcpu *vcpu = filp->private_data;
1868 
1869 	kvm_put_kvm(vcpu->kvm);
1870 	return 0;
1871 }
1872 
1873 static struct file_operations kvm_vcpu_fops = {
1874 	.release        = kvm_vcpu_release,
1875 	.unlocked_ioctl = kvm_vcpu_ioctl,
1876 #ifdef CONFIG_COMPAT
1877 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1878 #endif
1879 	.mmap           = kvm_vcpu_mmap,
1880 	.llseek		= noop_llseek,
1881 };
1882 
1883 /*
1884  * Allocates an inode for the vcpu.
1885  */
1886 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1887 {
1888 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1889 }
1890 
1891 /*
1892  * Creates some virtual cpus.  Good luck creating more than one.
1893  */
1894 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1895 {
1896 	int r;
1897 	struct kvm_vcpu *vcpu, *v;
1898 
1899 	if (id >= KVM_MAX_VCPUS)
1900 		return -EINVAL;
1901 
1902 	vcpu = kvm_arch_vcpu_create(kvm, id);
1903 	if (IS_ERR(vcpu))
1904 		return PTR_ERR(vcpu);
1905 
1906 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1907 
1908 	r = kvm_arch_vcpu_setup(vcpu);
1909 	if (r)
1910 		goto vcpu_destroy;
1911 
1912 	mutex_lock(&kvm->lock);
1913 	if (!kvm_vcpu_compatible(vcpu)) {
1914 		r = -EINVAL;
1915 		goto unlock_vcpu_destroy;
1916 	}
1917 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1918 		r = -EINVAL;
1919 		goto unlock_vcpu_destroy;
1920 	}
1921 
1922 	kvm_for_each_vcpu(r, v, kvm)
1923 		if (v->vcpu_id == id) {
1924 			r = -EEXIST;
1925 			goto unlock_vcpu_destroy;
1926 		}
1927 
1928 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1929 
1930 	/* Now it's all set up, let userspace reach it */
1931 	kvm_get_kvm(kvm);
1932 	r = create_vcpu_fd(vcpu);
1933 	if (r < 0) {
1934 		kvm_put_kvm(kvm);
1935 		goto unlock_vcpu_destroy;
1936 	}
1937 
1938 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1939 	smp_wmb();
1940 	atomic_inc(&kvm->online_vcpus);
1941 
1942 	mutex_unlock(&kvm->lock);
1943 	kvm_arch_vcpu_postcreate(vcpu);
1944 	return r;
1945 
1946 unlock_vcpu_destroy:
1947 	mutex_unlock(&kvm->lock);
1948 vcpu_destroy:
1949 	kvm_arch_vcpu_destroy(vcpu);
1950 	return r;
1951 }
1952 
1953 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1954 {
1955 	if (sigset) {
1956 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1957 		vcpu->sigset_active = 1;
1958 		vcpu->sigset = *sigset;
1959 	} else
1960 		vcpu->sigset_active = 0;
1961 	return 0;
1962 }
1963 
1964 static long kvm_vcpu_ioctl(struct file *filp,
1965 			   unsigned int ioctl, unsigned long arg)
1966 {
1967 	struct kvm_vcpu *vcpu = filp->private_data;
1968 	void __user *argp = (void __user *)arg;
1969 	int r;
1970 	struct kvm_fpu *fpu = NULL;
1971 	struct kvm_sregs *kvm_sregs = NULL;
1972 
1973 	if (vcpu->kvm->mm != current->mm)
1974 		return -EIO;
1975 
1976 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1977 	/*
1978 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1979 	 * so vcpu_load() would break it.
1980 	 */
1981 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1982 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1983 #endif
1984 
1985 
1986 	r = vcpu_load(vcpu);
1987 	if (r)
1988 		return r;
1989 	switch (ioctl) {
1990 	case KVM_RUN:
1991 		r = -EINVAL;
1992 		if (arg)
1993 			goto out;
1994 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1995 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1996 		break;
1997 	case KVM_GET_REGS: {
1998 		struct kvm_regs *kvm_regs;
1999 
2000 		r = -ENOMEM;
2001 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2002 		if (!kvm_regs)
2003 			goto out;
2004 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2005 		if (r)
2006 			goto out_free1;
2007 		r = -EFAULT;
2008 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2009 			goto out_free1;
2010 		r = 0;
2011 out_free1:
2012 		kfree(kvm_regs);
2013 		break;
2014 	}
2015 	case KVM_SET_REGS: {
2016 		struct kvm_regs *kvm_regs;
2017 
2018 		r = -ENOMEM;
2019 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2020 		if (IS_ERR(kvm_regs)) {
2021 			r = PTR_ERR(kvm_regs);
2022 			goto out;
2023 		}
2024 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2025 		kfree(kvm_regs);
2026 		break;
2027 	}
2028 	case KVM_GET_SREGS: {
2029 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2030 		r = -ENOMEM;
2031 		if (!kvm_sregs)
2032 			goto out;
2033 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2034 		if (r)
2035 			goto out;
2036 		r = -EFAULT;
2037 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2038 			goto out;
2039 		r = 0;
2040 		break;
2041 	}
2042 	case KVM_SET_SREGS: {
2043 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2044 		if (IS_ERR(kvm_sregs)) {
2045 			r = PTR_ERR(kvm_sregs);
2046 			kvm_sregs = NULL;
2047 			goto out;
2048 		}
2049 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2050 		break;
2051 	}
2052 	case KVM_GET_MP_STATE: {
2053 		struct kvm_mp_state mp_state;
2054 
2055 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2056 		if (r)
2057 			goto out;
2058 		r = -EFAULT;
2059 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2060 			goto out;
2061 		r = 0;
2062 		break;
2063 	}
2064 	case KVM_SET_MP_STATE: {
2065 		struct kvm_mp_state mp_state;
2066 
2067 		r = -EFAULT;
2068 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2069 			goto out;
2070 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2071 		break;
2072 	}
2073 	case KVM_TRANSLATE: {
2074 		struct kvm_translation tr;
2075 
2076 		r = -EFAULT;
2077 		if (copy_from_user(&tr, argp, sizeof tr))
2078 			goto out;
2079 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2080 		if (r)
2081 			goto out;
2082 		r = -EFAULT;
2083 		if (copy_to_user(argp, &tr, sizeof tr))
2084 			goto out;
2085 		r = 0;
2086 		break;
2087 	}
2088 	case KVM_SET_GUEST_DEBUG: {
2089 		struct kvm_guest_debug dbg;
2090 
2091 		r = -EFAULT;
2092 		if (copy_from_user(&dbg, argp, sizeof dbg))
2093 			goto out;
2094 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2095 		break;
2096 	}
2097 	case KVM_SET_SIGNAL_MASK: {
2098 		struct kvm_signal_mask __user *sigmask_arg = argp;
2099 		struct kvm_signal_mask kvm_sigmask;
2100 		sigset_t sigset, *p;
2101 
2102 		p = NULL;
2103 		if (argp) {
2104 			r = -EFAULT;
2105 			if (copy_from_user(&kvm_sigmask, argp,
2106 					   sizeof kvm_sigmask))
2107 				goto out;
2108 			r = -EINVAL;
2109 			if (kvm_sigmask.len != sizeof sigset)
2110 				goto out;
2111 			r = -EFAULT;
2112 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2113 					   sizeof sigset))
2114 				goto out;
2115 			p = &sigset;
2116 		}
2117 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2118 		break;
2119 	}
2120 	case KVM_GET_FPU: {
2121 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2122 		r = -ENOMEM;
2123 		if (!fpu)
2124 			goto out;
2125 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2126 		if (r)
2127 			goto out;
2128 		r = -EFAULT;
2129 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2130 			goto out;
2131 		r = 0;
2132 		break;
2133 	}
2134 	case KVM_SET_FPU: {
2135 		fpu = memdup_user(argp, sizeof(*fpu));
2136 		if (IS_ERR(fpu)) {
2137 			r = PTR_ERR(fpu);
2138 			fpu = NULL;
2139 			goto out;
2140 		}
2141 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2142 		break;
2143 	}
2144 	default:
2145 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2146 	}
2147 out:
2148 	vcpu_put(vcpu);
2149 	kfree(fpu);
2150 	kfree(kvm_sregs);
2151 	return r;
2152 }
2153 
2154 #ifdef CONFIG_COMPAT
2155 static long kvm_vcpu_compat_ioctl(struct file *filp,
2156 				  unsigned int ioctl, unsigned long arg)
2157 {
2158 	struct kvm_vcpu *vcpu = filp->private_data;
2159 	void __user *argp = compat_ptr(arg);
2160 	int r;
2161 
2162 	if (vcpu->kvm->mm != current->mm)
2163 		return -EIO;
2164 
2165 	switch (ioctl) {
2166 	case KVM_SET_SIGNAL_MASK: {
2167 		struct kvm_signal_mask __user *sigmask_arg = argp;
2168 		struct kvm_signal_mask kvm_sigmask;
2169 		compat_sigset_t csigset;
2170 		sigset_t sigset;
2171 
2172 		if (argp) {
2173 			r = -EFAULT;
2174 			if (copy_from_user(&kvm_sigmask, argp,
2175 					   sizeof kvm_sigmask))
2176 				goto out;
2177 			r = -EINVAL;
2178 			if (kvm_sigmask.len != sizeof csigset)
2179 				goto out;
2180 			r = -EFAULT;
2181 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2182 					   sizeof csigset))
2183 				goto out;
2184 			sigset_from_compat(&sigset, &csigset);
2185 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2186 		} else
2187 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2188 		break;
2189 	}
2190 	default:
2191 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2192 	}
2193 
2194 out:
2195 	return r;
2196 }
2197 #endif
2198 
2199 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2200 				 int (*accessor)(struct kvm_device *dev,
2201 						 struct kvm_device_attr *attr),
2202 				 unsigned long arg)
2203 {
2204 	struct kvm_device_attr attr;
2205 
2206 	if (!accessor)
2207 		return -EPERM;
2208 
2209 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2210 		return -EFAULT;
2211 
2212 	return accessor(dev, &attr);
2213 }
2214 
2215 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2216 			     unsigned long arg)
2217 {
2218 	struct kvm_device *dev = filp->private_data;
2219 
2220 	switch (ioctl) {
2221 	case KVM_SET_DEVICE_ATTR:
2222 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2223 	case KVM_GET_DEVICE_ATTR:
2224 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2225 	case KVM_HAS_DEVICE_ATTR:
2226 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2227 	default:
2228 		if (dev->ops->ioctl)
2229 			return dev->ops->ioctl(dev, ioctl, arg);
2230 
2231 		return -ENOTTY;
2232 	}
2233 }
2234 
2235 static int kvm_device_release(struct inode *inode, struct file *filp)
2236 {
2237 	struct kvm_device *dev = filp->private_data;
2238 	struct kvm *kvm = dev->kvm;
2239 
2240 	kvm_put_kvm(kvm);
2241 	return 0;
2242 }
2243 
2244 static const struct file_operations kvm_device_fops = {
2245 	.unlocked_ioctl = kvm_device_ioctl,
2246 #ifdef CONFIG_COMPAT
2247 	.compat_ioctl = kvm_device_ioctl,
2248 #endif
2249 	.release = kvm_device_release,
2250 };
2251 
2252 struct kvm_device *kvm_device_from_filp(struct file *filp)
2253 {
2254 	if (filp->f_op != &kvm_device_fops)
2255 		return NULL;
2256 
2257 	return filp->private_data;
2258 }
2259 
2260 static int kvm_ioctl_create_device(struct kvm *kvm,
2261 				   struct kvm_create_device *cd)
2262 {
2263 	struct kvm_device_ops *ops = NULL;
2264 	struct kvm_device *dev;
2265 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2266 	int ret;
2267 
2268 	switch (cd->type) {
2269 #ifdef CONFIG_KVM_MPIC
2270 	case KVM_DEV_TYPE_FSL_MPIC_20:
2271 	case KVM_DEV_TYPE_FSL_MPIC_42:
2272 		ops = &kvm_mpic_ops;
2273 		break;
2274 #endif
2275 #ifdef CONFIG_KVM_XICS
2276 	case KVM_DEV_TYPE_XICS:
2277 		ops = &kvm_xics_ops;
2278 		break;
2279 #endif
2280 #ifdef CONFIG_KVM_VFIO
2281 	case KVM_DEV_TYPE_VFIO:
2282 		ops = &kvm_vfio_ops;
2283 		break;
2284 #endif
2285 #ifdef CONFIG_KVM_ARM_VGIC
2286 	case KVM_DEV_TYPE_ARM_VGIC_V2:
2287 		ops = &kvm_arm_vgic_v2_ops;
2288 		break;
2289 #endif
2290 #ifdef CONFIG_S390
2291 	case KVM_DEV_TYPE_FLIC:
2292 		ops = &kvm_flic_ops;
2293 		break;
2294 #endif
2295 	default:
2296 		return -ENODEV;
2297 	}
2298 
2299 	if (test)
2300 		return 0;
2301 
2302 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2303 	if (!dev)
2304 		return -ENOMEM;
2305 
2306 	dev->ops = ops;
2307 	dev->kvm = kvm;
2308 
2309 	ret = ops->create(dev, cd->type);
2310 	if (ret < 0) {
2311 		kfree(dev);
2312 		return ret;
2313 	}
2314 
2315 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2316 	if (ret < 0) {
2317 		ops->destroy(dev);
2318 		return ret;
2319 	}
2320 
2321 	list_add(&dev->vm_node, &kvm->devices);
2322 	kvm_get_kvm(kvm);
2323 	cd->fd = ret;
2324 	return 0;
2325 }
2326 
2327 static long kvm_vm_ioctl(struct file *filp,
2328 			   unsigned int ioctl, unsigned long arg)
2329 {
2330 	struct kvm *kvm = filp->private_data;
2331 	void __user *argp = (void __user *)arg;
2332 	int r;
2333 
2334 	if (kvm->mm != current->mm)
2335 		return -EIO;
2336 	switch (ioctl) {
2337 	case KVM_CREATE_VCPU:
2338 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2339 		break;
2340 	case KVM_SET_USER_MEMORY_REGION: {
2341 		struct kvm_userspace_memory_region kvm_userspace_mem;
2342 
2343 		r = -EFAULT;
2344 		if (copy_from_user(&kvm_userspace_mem, argp,
2345 						sizeof kvm_userspace_mem))
2346 			goto out;
2347 
2348 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2349 		break;
2350 	}
2351 	case KVM_GET_DIRTY_LOG: {
2352 		struct kvm_dirty_log log;
2353 
2354 		r = -EFAULT;
2355 		if (copy_from_user(&log, argp, sizeof log))
2356 			goto out;
2357 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2358 		break;
2359 	}
2360 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2361 	case KVM_REGISTER_COALESCED_MMIO: {
2362 		struct kvm_coalesced_mmio_zone zone;
2363 		r = -EFAULT;
2364 		if (copy_from_user(&zone, argp, sizeof zone))
2365 			goto out;
2366 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2367 		break;
2368 	}
2369 	case KVM_UNREGISTER_COALESCED_MMIO: {
2370 		struct kvm_coalesced_mmio_zone zone;
2371 		r = -EFAULT;
2372 		if (copy_from_user(&zone, argp, sizeof zone))
2373 			goto out;
2374 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2375 		break;
2376 	}
2377 #endif
2378 	case KVM_IRQFD: {
2379 		struct kvm_irqfd data;
2380 
2381 		r = -EFAULT;
2382 		if (copy_from_user(&data, argp, sizeof data))
2383 			goto out;
2384 		r = kvm_irqfd(kvm, &data);
2385 		break;
2386 	}
2387 	case KVM_IOEVENTFD: {
2388 		struct kvm_ioeventfd data;
2389 
2390 		r = -EFAULT;
2391 		if (copy_from_user(&data, argp, sizeof data))
2392 			goto out;
2393 		r = kvm_ioeventfd(kvm, &data);
2394 		break;
2395 	}
2396 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2397 	case KVM_SET_BOOT_CPU_ID:
2398 		r = 0;
2399 		mutex_lock(&kvm->lock);
2400 		if (atomic_read(&kvm->online_vcpus) != 0)
2401 			r = -EBUSY;
2402 		else
2403 			kvm->bsp_vcpu_id = arg;
2404 		mutex_unlock(&kvm->lock);
2405 		break;
2406 #endif
2407 #ifdef CONFIG_HAVE_KVM_MSI
2408 	case KVM_SIGNAL_MSI: {
2409 		struct kvm_msi msi;
2410 
2411 		r = -EFAULT;
2412 		if (copy_from_user(&msi, argp, sizeof msi))
2413 			goto out;
2414 		r = kvm_send_userspace_msi(kvm, &msi);
2415 		break;
2416 	}
2417 #endif
2418 #ifdef __KVM_HAVE_IRQ_LINE
2419 	case KVM_IRQ_LINE_STATUS:
2420 	case KVM_IRQ_LINE: {
2421 		struct kvm_irq_level irq_event;
2422 
2423 		r = -EFAULT;
2424 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2425 			goto out;
2426 
2427 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2428 					ioctl == KVM_IRQ_LINE_STATUS);
2429 		if (r)
2430 			goto out;
2431 
2432 		r = -EFAULT;
2433 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2434 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2435 				goto out;
2436 		}
2437 
2438 		r = 0;
2439 		break;
2440 	}
2441 #endif
2442 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2443 	case KVM_SET_GSI_ROUTING: {
2444 		struct kvm_irq_routing routing;
2445 		struct kvm_irq_routing __user *urouting;
2446 		struct kvm_irq_routing_entry *entries;
2447 
2448 		r = -EFAULT;
2449 		if (copy_from_user(&routing, argp, sizeof(routing)))
2450 			goto out;
2451 		r = -EINVAL;
2452 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2453 			goto out;
2454 		if (routing.flags)
2455 			goto out;
2456 		r = -ENOMEM;
2457 		entries = vmalloc(routing.nr * sizeof(*entries));
2458 		if (!entries)
2459 			goto out;
2460 		r = -EFAULT;
2461 		urouting = argp;
2462 		if (copy_from_user(entries, urouting->entries,
2463 				   routing.nr * sizeof(*entries)))
2464 			goto out_free_irq_routing;
2465 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2466 					routing.flags);
2467 	out_free_irq_routing:
2468 		vfree(entries);
2469 		break;
2470 	}
2471 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2472 	case KVM_CREATE_DEVICE: {
2473 		struct kvm_create_device cd;
2474 
2475 		r = -EFAULT;
2476 		if (copy_from_user(&cd, argp, sizeof(cd)))
2477 			goto out;
2478 
2479 		r = kvm_ioctl_create_device(kvm, &cd);
2480 		if (r)
2481 			goto out;
2482 
2483 		r = -EFAULT;
2484 		if (copy_to_user(argp, &cd, sizeof(cd)))
2485 			goto out;
2486 
2487 		r = 0;
2488 		break;
2489 	}
2490 	default:
2491 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2492 		if (r == -ENOTTY)
2493 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2494 	}
2495 out:
2496 	return r;
2497 }
2498 
2499 #ifdef CONFIG_COMPAT
2500 struct compat_kvm_dirty_log {
2501 	__u32 slot;
2502 	__u32 padding1;
2503 	union {
2504 		compat_uptr_t dirty_bitmap; /* one bit per page */
2505 		__u64 padding2;
2506 	};
2507 };
2508 
2509 static long kvm_vm_compat_ioctl(struct file *filp,
2510 			   unsigned int ioctl, unsigned long arg)
2511 {
2512 	struct kvm *kvm = filp->private_data;
2513 	int r;
2514 
2515 	if (kvm->mm != current->mm)
2516 		return -EIO;
2517 	switch (ioctl) {
2518 	case KVM_GET_DIRTY_LOG: {
2519 		struct compat_kvm_dirty_log compat_log;
2520 		struct kvm_dirty_log log;
2521 
2522 		r = -EFAULT;
2523 		if (copy_from_user(&compat_log, (void __user *)arg,
2524 				   sizeof(compat_log)))
2525 			goto out;
2526 		log.slot	 = compat_log.slot;
2527 		log.padding1	 = compat_log.padding1;
2528 		log.padding2	 = compat_log.padding2;
2529 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2530 
2531 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2532 		break;
2533 	}
2534 	default:
2535 		r = kvm_vm_ioctl(filp, ioctl, arg);
2536 	}
2537 
2538 out:
2539 	return r;
2540 }
2541 #endif
2542 
2543 static struct file_operations kvm_vm_fops = {
2544 	.release        = kvm_vm_release,
2545 	.unlocked_ioctl = kvm_vm_ioctl,
2546 #ifdef CONFIG_COMPAT
2547 	.compat_ioctl   = kvm_vm_compat_ioctl,
2548 #endif
2549 	.llseek		= noop_llseek,
2550 };
2551 
2552 static int kvm_dev_ioctl_create_vm(unsigned long type)
2553 {
2554 	int r;
2555 	struct kvm *kvm;
2556 
2557 	kvm = kvm_create_vm(type);
2558 	if (IS_ERR(kvm))
2559 		return PTR_ERR(kvm);
2560 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2561 	r = kvm_coalesced_mmio_init(kvm);
2562 	if (r < 0) {
2563 		kvm_put_kvm(kvm);
2564 		return r;
2565 	}
2566 #endif
2567 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2568 	if (r < 0)
2569 		kvm_put_kvm(kvm);
2570 
2571 	return r;
2572 }
2573 
2574 static long kvm_dev_ioctl_check_extension_generic(long arg)
2575 {
2576 	switch (arg) {
2577 	case KVM_CAP_USER_MEMORY:
2578 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2579 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2580 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2581 	case KVM_CAP_SET_BOOT_CPU_ID:
2582 #endif
2583 	case KVM_CAP_INTERNAL_ERROR_DATA:
2584 #ifdef CONFIG_HAVE_KVM_MSI
2585 	case KVM_CAP_SIGNAL_MSI:
2586 #endif
2587 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2588 	case KVM_CAP_IRQFD_RESAMPLE:
2589 #endif
2590 		return 1;
2591 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2592 	case KVM_CAP_IRQ_ROUTING:
2593 		return KVM_MAX_IRQ_ROUTES;
2594 #endif
2595 	default:
2596 		break;
2597 	}
2598 	return kvm_dev_ioctl_check_extension(arg);
2599 }
2600 
2601 static long kvm_dev_ioctl(struct file *filp,
2602 			  unsigned int ioctl, unsigned long arg)
2603 {
2604 	long r = -EINVAL;
2605 
2606 	switch (ioctl) {
2607 	case KVM_GET_API_VERSION:
2608 		r = -EINVAL;
2609 		if (arg)
2610 			goto out;
2611 		r = KVM_API_VERSION;
2612 		break;
2613 	case KVM_CREATE_VM:
2614 		r = kvm_dev_ioctl_create_vm(arg);
2615 		break;
2616 	case KVM_CHECK_EXTENSION:
2617 		r = kvm_dev_ioctl_check_extension_generic(arg);
2618 		break;
2619 	case KVM_GET_VCPU_MMAP_SIZE:
2620 		r = -EINVAL;
2621 		if (arg)
2622 			goto out;
2623 		r = PAGE_SIZE;     /* struct kvm_run */
2624 #ifdef CONFIG_X86
2625 		r += PAGE_SIZE;    /* pio data page */
2626 #endif
2627 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2628 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2629 #endif
2630 		break;
2631 	case KVM_TRACE_ENABLE:
2632 	case KVM_TRACE_PAUSE:
2633 	case KVM_TRACE_DISABLE:
2634 		r = -EOPNOTSUPP;
2635 		break;
2636 	default:
2637 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2638 	}
2639 out:
2640 	return r;
2641 }
2642 
2643 static struct file_operations kvm_chardev_ops = {
2644 	.unlocked_ioctl = kvm_dev_ioctl,
2645 	.compat_ioctl   = kvm_dev_ioctl,
2646 	.llseek		= noop_llseek,
2647 };
2648 
2649 static struct miscdevice kvm_dev = {
2650 	KVM_MINOR,
2651 	"kvm",
2652 	&kvm_chardev_ops,
2653 };
2654 
2655 static void hardware_enable_nolock(void *junk)
2656 {
2657 	int cpu = raw_smp_processor_id();
2658 	int r;
2659 
2660 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2661 		return;
2662 
2663 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2664 
2665 	r = kvm_arch_hardware_enable(NULL);
2666 
2667 	if (r) {
2668 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2669 		atomic_inc(&hardware_enable_failed);
2670 		printk(KERN_INFO "kvm: enabling virtualization on "
2671 				 "CPU%d failed\n", cpu);
2672 	}
2673 }
2674 
2675 static void hardware_enable(void)
2676 {
2677 	raw_spin_lock(&kvm_count_lock);
2678 	if (kvm_usage_count)
2679 		hardware_enable_nolock(NULL);
2680 	raw_spin_unlock(&kvm_count_lock);
2681 }
2682 
2683 static void hardware_disable_nolock(void *junk)
2684 {
2685 	int cpu = raw_smp_processor_id();
2686 
2687 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2688 		return;
2689 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2690 	kvm_arch_hardware_disable(NULL);
2691 }
2692 
2693 static void hardware_disable(void)
2694 {
2695 	raw_spin_lock(&kvm_count_lock);
2696 	if (kvm_usage_count)
2697 		hardware_disable_nolock(NULL);
2698 	raw_spin_unlock(&kvm_count_lock);
2699 }
2700 
2701 static void hardware_disable_all_nolock(void)
2702 {
2703 	BUG_ON(!kvm_usage_count);
2704 
2705 	kvm_usage_count--;
2706 	if (!kvm_usage_count)
2707 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2708 }
2709 
2710 static void hardware_disable_all(void)
2711 {
2712 	raw_spin_lock(&kvm_count_lock);
2713 	hardware_disable_all_nolock();
2714 	raw_spin_unlock(&kvm_count_lock);
2715 }
2716 
2717 static int hardware_enable_all(void)
2718 {
2719 	int r = 0;
2720 
2721 	raw_spin_lock(&kvm_count_lock);
2722 
2723 	kvm_usage_count++;
2724 	if (kvm_usage_count == 1) {
2725 		atomic_set(&hardware_enable_failed, 0);
2726 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2727 
2728 		if (atomic_read(&hardware_enable_failed)) {
2729 			hardware_disable_all_nolock();
2730 			r = -EBUSY;
2731 		}
2732 	}
2733 
2734 	raw_spin_unlock(&kvm_count_lock);
2735 
2736 	return r;
2737 }
2738 
2739 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2740 			   void *v)
2741 {
2742 	int cpu = (long)v;
2743 
2744 	val &= ~CPU_TASKS_FROZEN;
2745 	switch (val) {
2746 	case CPU_DYING:
2747 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2748 		       cpu);
2749 		hardware_disable();
2750 		break;
2751 	case CPU_STARTING:
2752 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2753 		       cpu);
2754 		hardware_enable();
2755 		break;
2756 	}
2757 	return NOTIFY_OK;
2758 }
2759 
2760 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2761 		      void *v)
2762 {
2763 	/*
2764 	 * Some (well, at least mine) BIOSes hang on reboot if
2765 	 * in vmx root mode.
2766 	 *
2767 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2768 	 */
2769 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2770 	kvm_rebooting = true;
2771 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2772 	return NOTIFY_OK;
2773 }
2774 
2775 static struct notifier_block kvm_reboot_notifier = {
2776 	.notifier_call = kvm_reboot,
2777 	.priority = 0,
2778 };
2779 
2780 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2781 {
2782 	int i;
2783 
2784 	for (i = 0; i < bus->dev_count; i++) {
2785 		struct kvm_io_device *pos = bus->range[i].dev;
2786 
2787 		kvm_iodevice_destructor(pos);
2788 	}
2789 	kfree(bus);
2790 }
2791 
2792 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2793                                  const struct kvm_io_range *r2)
2794 {
2795 	if (r1->addr < r2->addr)
2796 		return -1;
2797 	if (r1->addr + r1->len > r2->addr + r2->len)
2798 		return 1;
2799 	return 0;
2800 }
2801 
2802 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2803 {
2804 	return kvm_io_bus_cmp(p1, p2);
2805 }
2806 
2807 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2808 			  gpa_t addr, int len)
2809 {
2810 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2811 		.addr = addr,
2812 		.len = len,
2813 		.dev = dev,
2814 	};
2815 
2816 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2817 		kvm_io_bus_sort_cmp, NULL);
2818 
2819 	return 0;
2820 }
2821 
2822 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2823 			     gpa_t addr, int len)
2824 {
2825 	struct kvm_io_range *range, key;
2826 	int off;
2827 
2828 	key = (struct kvm_io_range) {
2829 		.addr = addr,
2830 		.len = len,
2831 	};
2832 
2833 	range = bsearch(&key, bus->range, bus->dev_count,
2834 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2835 	if (range == NULL)
2836 		return -ENOENT;
2837 
2838 	off = range - bus->range;
2839 
2840 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2841 		off--;
2842 
2843 	return off;
2844 }
2845 
2846 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2847 			      struct kvm_io_range *range, const void *val)
2848 {
2849 	int idx;
2850 
2851 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2852 	if (idx < 0)
2853 		return -EOPNOTSUPP;
2854 
2855 	while (idx < bus->dev_count &&
2856 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2857 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2858 					range->len, val))
2859 			return idx;
2860 		idx++;
2861 	}
2862 
2863 	return -EOPNOTSUPP;
2864 }
2865 
2866 /* kvm_io_bus_write - called under kvm->slots_lock */
2867 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2868 		     int len, const void *val)
2869 {
2870 	struct kvm_io_bus *bus;
2871 	struct kvm_io_range range;
2872 	int r;
2873 
2874 	range = (struct kvm_io_range) {
2875 		.addr = addr,
2876 		.len = len,
2877 	};
2878 
2879 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2880 	r = __kvm_io_bus_write(bus, &range, val);
2881 	return r < 0 ? r : 0;
2882 }
2883 
2884 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2885 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2886 			    int len, const void *val, long cookie)
2887 {
2888 	struct kvm_io_bus *bus;
2889 	struct kvm_io_range range;
2890 
2891 	range = (struct kvm_io_range) {
2892 		.addr = addr,
2893 		.len = len,
2894 	};
2895 
2896 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2897 
2898 	/* First try the device referenced by cookie. */
2899 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2900 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2901 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2902 					val))
2903 			return cookie;
2904 
2905 	/*
2906 	 * cookie contained garbage; fall back to search and return the
2907 	 * correct cookie value.
2908 	 */
2909 	return __kvm_io_bus_write(bus, &range, val);
2910 }
2911 
2912 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2913 			     void *val)
2914 {
2915 	int idx;
2916 
2917 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2918 	if (idx < 0)
2919 		return -EOPNOTSUPP;
2920 
2921 	while (idx < bus->dev_count &&
2922 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2923 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2924 				       range->len, val))
2925 			return idx;
2926 		idx++;
2927 	}
2928 
2929 	return -EOPNOTSUPP;
2930 }
2931 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2932 
2933 /* kvm_io_bus_read - called under kvm->slots_lock */
2934 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2935 		    int len, void *val)
2936 {
2937 	struct kvm_io_bus *bus;
2938 	struct kvm_io_range range;
2939 	int r;
2940 
2941 	range = (struct kvm_io_range) {
2942 		.addr = addr,
2943 		.len = len,
2944 	};
2945 
2946 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2947 	r = __kvm_io_bus_read(bus, &range, val);
2948 	return r < 0 ? r : 0;
2949 }
2950 
2951 
2952 /* Caller must hold slots_lock. */
2953 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2954 			    int len, struct kvm_io_device *dev)
2955 {
2956 	struct kvm_io_bus *new_bus, *bus;
2957 
2958 	bus = kvm->buses[bus_idx];
2959 	/* exclude ioeventfd which is limited by maximum fd */
2960 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2961 		return -ENOSPC;
2962 
2963 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2964 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2965 	if (!new_bus)
2966 		return -ENOMEM;
2967 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2968 	       sizeof(struct kvm_io_range)));
2969 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2970 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2971 	synchronize_srcu_expedited(&kvm->srcu);
2972 	kfree(bus);
2973 
2974 	return 0;
2975 }
2976 
2977 /* Caller must hold slots_lock. */
2978 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2979 			      struct kvm_io_device *dev)
2980 {
2981 	int i, r;
2982 	struct kvm_io_bus *new_bus, *bus;
2983 
2984 	bus = kvm->buses[bus_idx];
2985 	r = -ENOENT;
2986 	for (i = 0; i < bus->dev_count; i++)
2987 		if (bus->range[i].dev == dev) {
2988 			r = 0;
2989 			break;
2990 		}
2991 
2992 	if (r)
2993 		return r;
2994 
2995 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2996 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2997 	if (!new_bus)
2998 		return -ENOMEM;
2999 
3000 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3001 	new_bus->dev_count--;
3002 	memcpy(new_bus->range + i, bus->range + i + 1,
3003 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3004 
3005 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3006 	synchronize_srcu_expedited(&kvm->srcu);
3007 	kfree(bus);
3008 	return r;
3009 }
3010 
3011 static struct notifier_block kvm_cpu_notifier = {
3012 	.notifier_call = kvm_cpu_hotplug,
3013 };
3014 
3015 static int vm_stat_get(void *_offset, u64 *val)
3016 {
3017 	unsigned offset = (long)_offset;
3018 	struct kvm *kvm;
3019 
3020 	*val = 0;
3021 	spin_lock(&kvm_lock);
3022 	list_for_each_entry(kvm, &vm_list, vm_list)
3023 		*val += *(u32 *)((void *)kvm + offset);
3024 	spin_unlock(&kvm_lock);
3025 	return 0;
3026 }
3027 
3028 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3029 
3030 static int vcpu_stat_get(void *_offset, u64 *val)
3031 {
3032 	unsigned offset = (long)_offset;
3033 	struct kvm *kvm;
3034 	struct kvm_vcpu *vcpu;
3035 	int i;
3036 
3037 	*val = 0;
3038 	spin_lock(&kvm_lock);
3039 	list_for_each_entry(kvm, &vm_list, vm_list)
3040 		kvm_for_each_vcpu(i, vcpu, kvm)
3041 			*val += *(u32 *)((void *)vcpu + offset);
3042 
3043 	spin_unlock(&kvm_lock);
3044 	return 0;
3045 }
3046 
3047 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3048 
3049 static const struct file_operations *stat_fops[] = {
3050 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3051 	[KVM_STAT_VM]   = &vm_stat_fops,
3052 };
3053 
3054 static int kvm_init_debug(void)
3055 {
3056 	int r = -EEXIST;
3057 	struct kvm_stats_debugfs_item *p;
3058 
3059 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3060 	if (kvm_debugfs_dir == NULL)
3061 		goto out;
3062 
3063 	for (p = debugfs_entries; p->name; ++p) {
3064 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3065 						(void *)(long)p->offset,
3066 						stat_fops[p->kind]);
3067 		if (p->dentry == NULL)
3068 			goto out_dir;
3069 	}
3070 
3071 	return 0;
3072 
3073 out_dir:
3074 	debugfs_remove_recursive(kvm_debugfs_dir);
3075 out:
3076 	return r;
3077 }
3078 
3079 static void kvm_exit_debug(void)
3080 {
3081 	struct kvm_stats_debugfs_item *p;
3082 
3083 	for (p = debugfs_entries; p->name; ++p)
3084 		debugfs_remove(p->dentry);
3085 	debugfs_remove(kvm_debugfs_dir);
3086 }
3087 
3088 static int kvm_suspend(void)
3089 {
3090 	if (kvm_usage_count)
3091 		hardware_disable_nolock(NULL);
3092 	return 0;
3093 }
3094 
3095 static void kvm_resume(void)
3096 {
3097 	if (kvm_usage_count) {
3098 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3099 		hardware_enable_nolock(NULL);
3100 	}
3101 }
3102 
3103 static struct syscore_ops kvm_syscore_ops = {
3104 	.suspend = kvm_suspend,
3105 	.resume = kvm_resume,
3106 };
3107 
3108 static inline
3109 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3110 {
3111 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3112 }
3113 
3114 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3115 {
3116 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3117 	if (vcpu->preempted)
3118 		vcpu->preempted = false;
3119 
3120 	kvm_arch_vcpu_load(vcpu, cpu);
3121 }
3122 
3123 static void kvm_sched_out(struct preempt_notifier *pn,
3124 			  struct task_struct *next)
3125 {
3126 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3127 
3128 	if (current->state == TASK_RUNNING)
3129 		vcpu->preempted = true;
3130 	kvm_arch_vcpu_put(vcpu);
3131 }
3132 
3133 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3134 		  struct module *module)
3135 {
3136 	int r;
3137 	int cpu;
3138 
3139 	r = kvm_arch_init(opaque);
3140 	if (r)
3141 		goto out_fail;
3142 
3143 	/*
3144 	 * kvm_arch_init makes sure there's at most one caller
3145 	 * for architectures that support multiple implementations,
3146 	 * like intel and amd on x86.
3147 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3148 	 * conflicts in case kvm is already setup for another implementation.
3149 	 */
3150 	r = kvm_irqfd_init();
3151 	if (r)
3152 		goto out_irqfd;
3153 
3154 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3155 		r = -ENOMEM;
3156 		goto out_free_0;
3157 	}
3158 
3159 	r = kvm_arch_hardware_setup();
3160 	if (r < 0)
3161 		goto out_free_0a;
3162 
3163 	for_each_online_cpu(cpu) {
3164 		smp_call_function_single(cpu,
3165 				kvm_arch_check_processor_compat,
3166 				&r, 1);
3167 		if (r < 0)
3168 			goto out_free_1;
3169 	}
3170 
3171 	r = register_cpu_notifier(&kvm_cpu_notifier);
3172 	if (r)
3173 		goto out_free_2;
3174 	register_reboot_notifier(&kvm_reboot_notifier);
3175 
3176 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3177 	if (!vcpu_align)
3178 		vcpu_align = __alignof__(struct kvm_vcpu);
3179 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3180 					   0, NULL);
3181 	if (!kvm_vcpu_cache) {
3182 		r = -ENOMEM;
3183 		goto out_free_3;
3184 	}
3185 
3186 	r = kvm_async_pf_init();
3187 	if (r)
3188 		goto out_free;
3189 
3190 	kvm_chardev_ops.owner = module;
3191 	kvm_vm_fops.owner = module;
3192 	kvm_vcpu_fops.owner = module;
3193 
3194 	r = misc_register(&kvm_dev);
3195 	if (r) {
3196 		printk(KERN_ERR "kvm: misc device register failed\n");
3197 		goto out_unreg;
3198 	}
3199 
3200 	register_syscore_ops(&kvm_syscore_ops);
3201 
3202 	kvm_preempt_ops.sched_in = kvm_sched_in;
3203 	kvm_preempt_ops.sched_out = kvm_sched_out;
3204 
3205 	r = kvm_init_debug();
3206 	if (r) {
3207 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3208 		goto out_undebugfs;
3209 	}
3210 
3211 	return 0;
3212 
3213 out_undebugfs:
3214 	unregister_syscore_ops(&kvm_syscore_ops);
3215 	misc_deregister(&kvm_dev);
3216 out_unreg:
3217 	kvm_async_pf_deinit();
3218 out_free:
3219 	kmem_cache_destroy(kvm_vcpu_cache);
3220 out_free_3:
3221 	unregister_reboot_notifier(&kvm_reboot_notifier);
3222 	unregister_cpu_notifier(&kvm_cpu_notifier);
3223 out_free_2:
3224 out_free_1:
3225 	kvm_arch_hardware_unsetup();
3226 out_free_0a:
3227 	free_cpumask_var(cpus_hardware_enabled);
3228 out_free_0:
3229 	kvm_irqfd_exit();
3230 out_irqfd:
3231 	kvm_arch_exit();
3232 out_fail:
3233 	return r;
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_init);
3236 
3237 void kvm_exit(void)
3238 {
3239 	kvm_exit_debug();
3240 	misc_deregister(&kvm_dev);
3241 	kmem_cache_destroy(kvm_vcpu_cache);
3242 	kvm_async_pf_deinit();
3243 	unregister_syscore_ops(&kvm_syscore_ops);
3244 	unregister_reboot_notifier(&kvm_reboot_notifier);
3245 	unregister_cpu_notifier(&kvm_cpu_notifier);
3246 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3247 	kvm_arch_hardware_unsetup();
3248 	kvm_arch_exit();
3249 	kvm_irqfd_exit();
3250 	free_cpumask_var(cpus_hardware_enabled);
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_exit);
3253