xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 91c76340)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55 
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 #include <linux/kvm_dirty_ring.h>
69 
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72 
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75 
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80 
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85 
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90 
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95 
96 /*
97  * Ordering of locks:
98  *
99  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101 
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105 
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109 
110 static struct kmem_cache *kvm_vcpu_cache;
111 
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114 
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117 
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 						   unsigned long start, unsigned long end)
160 {
161 }
162 
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 		return false;
173 
174 	return is_zone_device_page(pfn_to_page(pfn));
175 }
176 
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 	/*
180 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 	 * perspective they are "normal" pages, albeit with slightly different
182 	 * usage rules.
183 	 */
184 	if (pfn_valid(pfn))
185 		return PageReserved(pfn_to_page(pfn)) &&
186 		       !is_zero_pfn(pfn) &&
187 		       !kvm_is_zone_device_pfn(pfn);
188 
189 	return true;
190 }
191 
192 /*
193  * Switches to specified vcpu, until a matching vcpu_put()
194  */
195 void vcpu_load(struct kvm_vcpu *vcpu)
196 {
197 	int cpu = get_cpu();
198 
199 	__this_cpu_write(kvm_running_vcpu, vcpu);
200 	preempt_notifier_register(&vcpu->preempt_notifier);
201 	kvm_arch_vcpu_load(vcpu, cpu);
202 	put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205 
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208 	preempt_disable();
209 	kvm_arch_vcpu_put(vcpu);
210 	preempt_notifier_unregister(&vcpu->preempt_notifier);
211 	__this_cpu_write(kvm_running_vcpu, NULL);
212 	preempt_enable();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_put);
215 
216 /* TODO: merge with kvm_arch_vcpu_should_kick */
217 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
218 {
219 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
220 
221 	/*
222 	 * We need to wait for the VCPU to reenable interrupts and get out of
223 	 * READING_SHADOW_PAGE_TABLES mode.
224 	 */
225 	if (req & KVM_REQUEST_WAIT)
226 		return mode != OUTSIDE_GUEST_MODE;
227 
228 	/*
229 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
230 	 */
231 	return mode == IN_GUEST_MODE;
232 }
233 
234 static void ack_flush(void *_completed)
235 {
236 }
237 
238 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
239 {
240 	const struct cpumask *cpus;
241 
242 	if (likely(cpumask_available(tmp)))
243 		cpus = tmp;
244 	else
245 		cpus = cpu_online_mask;
246 
247 	if (cpumask_empty(cpus))
248 		return false;
249 
250 	smp_call_function_many(cpus, ack_flush, NULL, wait);
251 	return true;
252 }
253 
254 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
255 				 struct kvm_vcpu *except,
256 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
257 {
258 	int i, cpu, me;
259 	struct kvm_vcpu *vcpu;
260 	bool called;
261 
262 	me = get_cpu();
263 
264 	kvm_for_each_vcpu(i, vcpu, kvm) {
265 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
266 		    vcpu == except)
267 			continue;
268 
269 		kvm_make_request(req, vcpu);
270 
271 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
272 			continue;
273 
274 		/*
275 		 * tmp can be "unavailable" if cpumasks are allocated off stack
276 		 * as allocation of the mask is deliberately not fatal and is
277 		 * handled by falling back to kicking all online CPUs.
278 		 */
279 		if (!cpumask_available(tmp))
280 			continue;
281 
282 		/*
283 		 * Note, the vCPU could get migrated to a different pCPU at any
284 		 * point after kvm_request_needs_ipi(), which could result in
285 		 * sending an IPI to the previous pCPU.  But, that's ok because
286 		 * the purpose of the IPI is to ensure the vCPU returns to
287 		 * OUTSIDE_GUEST_MODE, which is satisfied if the vCPU migrates.
288 		 * Entering READING_SHADOW_PAGE_TABLES after this point is also
289 		 * ok, as the requirement is only that KVM wait for vCPUs that
290 		 * were reading SPTEs _before_ any changes were finalized.  See
291 		 * kvm_vcpu_kick() for more details on handling requests.
292 		 */
293 		if (kvm_request_needs_ipi(vcpu, req)) {
294 			cpu = READ_ONCE(vcpu->cpu);
295 			if (cpu != -1 && cpu != me)
296 				__cpumask_set_cpu(cpu, tmp);
297 		}
298 	}
299 
300 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
301 	put_cpu();
302 
303 	return called;
304 }
305 
306 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
307 				      struct kvm_vcpu *except)
308 {
309 	cpumask_var_t cpus;
310 	bool called;
311 
312 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
313 
314 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
315 
316 	free_cpumask_var(cpus);
317 	return called;
318 }
319 
320 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
321 {
322 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
323 }
324 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
325 
326 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
327 void kvm_flush_remote_tlbs(struct kvm *kvm)
328 {
329 	++kvm->stat.generic.remote_tlb_flush_requests;
330 
331 	/*
332 	 * We want to publish modifications to the page tables before reading
333 	 * mode. Pairs with a memory barrier in arch-specific code.
334 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
335 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
336 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
337 	 *
338 	 * There is already an smp_mb__after_atomic() before
339 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
340 	 * barrier here.
341 	 */
342 	if (!kvm_arch_flush_remote_tlb(kvm)
343 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
344 		++kvm->stat.generic.remote_tlb_flush;
345 }
346 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
347 #endif
348 
349 void kvm_reload_remote_mmus(struct kvm *kvm)
350 {
351 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
352 }
353 
354 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
355 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
356 					       gfp_t gfp_flags)
357 {
358 	gfp_flags |= mc->gfp_zero;
359 
360 	if (mc->kmem_cache)
361 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
362 	else
363 		return (void *)__get_free_page(gfp_flags);
364 }
365 
366 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
367 {
368 	void *obj;
369 
370 	if (mc->nobjs >= min)
371 		return 0;
372 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
373 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
374 		if (!obj)
375 			return mc->nobjs >= min ? 0 : -ENOMEM;
376 		mc->objects[mc->nobjs++] = obj;
377 	}
378 	return 0;
379 }
380 
381 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
382 {
383 	return mc->nobjs;
384 }
385 
386 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
387 {
388 	while (mc->nobjs) {
389 		if (mc->kmem_cache)
390 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
391 		else
392 			free_page((unsigned long)mc->objects[--mc->nobjs]);
393 	}
394 }
395 
396 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
397 {
398 	void *p;
399 
400 	if (WARN_ON(!mc->nobjs))
401 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
402 	else
403 		p = mc->objects[--mc->nobjs];
404 	BUG_ON(!p);
405 	return p;
406 }
407 #endif
408 
409 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
410 {
411 	mutex_init(&vcpu->mutex);
412 	vcpu->cpu = -1;
413 	vcpu->kvm = kvm;
414 	vcpu->vcpu_id = id;
415 	vcpu->pid = NULL;
416 	rcuwait_init(&vcpu->wait);
417 	kvm_async_pf_vcpu_init(vcpu);
418 
419 	vcpu->pre_pcpu = -1;
420 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
421 
422 	kvm_vcpu_set_in_spin_loop(vcpu, false);
423 	kvm_vcpu_set_dy_eligible(vcpu, false);
424 	vcpu->preempted = false;
425 	vcpu->ready = false;
426 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
427 	vcpu->last_used_slot = 0;
428 }
429 
430 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
431 {
432 	kvm_dirty_ring_free(&vcpu->dirty_ring);
433 	kvm_arch_vcpu_destroy(vcpu);
434 
435 	/*
436 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
437 	 * the vcpu->pid pointer, and at destruction time all file descriptors
438 	 * are already gone.
439 	 */
440 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
441 
442 	free_page((unsigned long)vcpu->run);
443 	kmem_cache_free(kvm_vcpu_cache, vcpu);
444 }
445 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
446 
447 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
448 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
449 {
450 	return container_of(mn, struct kvm, mmu_notifier);
451 }
452 
453 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
454 					      struct mm_struct *mm,
455 					      unsigned long start, unsigned long end)
456 {
457 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
458 	int idx;
459 
460 	idx = srcu_read_lock(&kvm->srcu);
461 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
462 	srcu_read_unlock(&kvm->srcu, idx);
463 }
464 
465 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
466 
467 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
468 			     unsigned long end);
469 
470 struct kvm_hva_range {
471 	unsigned long start;
472 	unsigned long end;
473 	pte_t pte;
474 	hva_handler_t handler;
475 	on_lock_fn_t on_lock;
476 	bool flush_on_ret;
477 	bool may_block;
478 };
479 
480 /*
481  * Use a dedicated stub instead of NULL to indicate that there is no callback
482  * function/handler.  The compiler technically can't guarantee that a real
483  * function will have a non-zero address, and so it will generate code to
484  * check for !NULL, whereas comparing against a stub will be elided at compile
485  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
486  */
487 static void kvm_null_fn(void)
488 {
489 
490 }
491 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
492 
493 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
494 						  const struct kvm_hva_range *range)
495 {
496 	bool ret = false, locked = false;
497 	struct kvm_gfn_range gfn_range;
498 	struct kvm_memory_slot *slot;
499 	struct kvm_memslots *slots;
500 	int i, idx;
501 
502 	/* A null handler is allowed if and only if on_lock() is provided. */
503 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
504 			 IS_KVM_NULL_FN(range->handler)))
505 		return 0;
506 
507 	idx = srcu_read_lock(&kvm->srcu);
508 
509 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
510 		slots = __kvm_memslots(kvm, i);
511 		kvm_for_each_memslot(slot, slots) {
512 			unsigned long hva_start, hva_end;
513 
514 			hva_start = max(range->start, slot->userspace_addr);
515 			hva_end = min(range->end, slot->userspace_addr +
516 						  (slot->npages << PAGE_SHIFT));
517 			if (hva_start >= hva_end)
518 				continue;
519 
520 			/*
521 			 * To optimize for the likely case where the address
522 			 * range is covered by zero or one memslots, don't
523 			 * bother making these conditional (to avoid writes on
524 			 * the second or later invocation of the handler).
525 			 */
526 			gfn_range.pte = range->pte;
527 			gfn_range.may_block = range->may_block;
528 
529 			/*
530 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
531 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
532 			 */
533 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
534 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
535 			gfn_range.slot = slot;
536 
537 			if (!locked) {
538 				locked = true;
539 				KVM_MMU_LOCK(kvm);
540 				if (!IS_KVM_NULL_FN(range->on_lock))
541 					range->on_lock(kvm, range->start, range->end);
542 				if (IS_KVM_NULL_FN(range->handler))
543 					break;
544 			}
545 			ret |= range->handler(kvm, &gfn_range);
546 		}
547 	}
548 
549 	if (range->flush_on_ret && ret)
550 		kvm_flush_remote_tlbs(kvm);
551 
552 	if (locked)
553 		KVM_MMU_UNLOCK(kvm);
554 
555 	srcu_read_unlock(&kvm->srcu, idx);
556 
557 	/* The notifiers are averse to booleans. :-( */
558 	return (int)ret;
559 }
560 
561 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
562 						unsigned long start,
563 						unsigned long end,
564 						pte_t pte,
565 						hva_handler_t handler)
566 {
567 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
568 	const struct kvm_hva_range range = {
569 		.start		= start,
570 		.end		= end,
571 		.pte		= pte,
572 		.handler	= handler,
573 		.on_lock	= (void *)kvm_null_fn,
574 		.flush_on_ret	= true,
575 		.may_block	= false,
576 	};
577 
578 	return __kvm_handle_hva_range(kvm, &range);
579 }
580 
581 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
582 							 unsigned long start,
583 							 unsigned long end,
584 							 hva_handler_t handler)
585 {
586 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
587 	const struct kvm_hva_range range = {
588 		.start		= start,
589 		.end		= end,
590 		.pte		= __pte(0),
591 		.handler	= handler,
592 		.on_lock	= (void *)kvm_null_fn,
593 		.flush_on_ret	= false,
594 		.may_block	= false,
595 	};
596 
597 	return __kvm_handle_hva_range(kvm, &range);
598 }
599 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
600 					struct mm_struct *mm,
601 					unsigned long address,
602 					pte_t pte)
603 {
604 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
605 
606 	trace_kvm_set_spte_hva(address);
607 
608 	/*
609 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
610 	 * If mmu_notifier_count is zero, then no in-progress invalidations,
611 	 * including this one, found a relevant memslot at start(); rechecking
612 	 * memslots here is unnecessary.  Note, a false positive (count elevated
613 	 * by a different invalidation) is sub-optimal but functionally ok.
614 	 */
615 	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
616 	if (!READ_ONCE(kvm->mmu_notifier_count))
617 		return;
618 
619 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
620 }
621 
622 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
623 				   unsigned long end)
624 {
625 	/*
626 	 * The count increase must become visible at unlock time as no
627 	 * spte can be established without taking the mmu_lock and
628 	 * count is also read inside the mmu_lock critical section.
629 	 */
630 	kvm->mmu_notifier_count++;
631 	if (likely(kvm->mmu_notifier_count == 1)) {
632 		kvm->mmu_notifier_range_start = start;
633 		kvm->mmu_notifier_range_end = end;
634 	} else {
635 		/*
636 		 * Fully tracking multiple concurrent ranges has dimishing
637 		 * returns. Keep things simple and just find the minimal range
638 		 * which includes the current and new ranges. As there won't be
639 		 * enough information to subtract a range after its invalidate
640 		 * completes, any ranges invalidated concurrently will
641 		 * accumulate and persist until all outstanding invalidates
642 		 * complete.
643 		 */
644 		kvm->mmu_notifier_range_start =
645 			min(kvm->mmu_notifier_range_start, start);
646 		kvm->mmu_notifier_range_end =
647 			max(kvm->mmu_notifier_range_end, end);
648 	}
649 }
650 
651 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
652 					const struct mmu_notifier_range *range)
653 {
654 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
655 	const struct kvm_hva_range hva_range = {
656 		.start		= range->start,
657 		.end		= range->end,
658 		.pte		= __pte(0),
659 		.handler	= kvm_unmap_gfn_range,
660 		.on_lock	= kvm_inc_notifier_count,
661 		.flush_on_ret	= true,
662 		.may_block	= mmu_notifier_range_blockable(range),
663 	};
664 
665 	trace_kvm_unmap_hva_range(range->start, range->end);
666 
667 	/*
668 	 * Prevent memslot modification between range_start() and range_end()
669 	 * so that conditionally locking provides the same result in both
670 	 * functions.  Without that guarantee, the mmu_notifier_count
671 	 * adjustments will be imbalanced.
672 	 *
673 	 * Pairs with the decrement in range_end().
674 	 */
675 	spin_lock(&kvm->mn_invalidate_lock);
676 	kvm->mn_active_invalidate_count++;
677 	spin_unlock(&kvm->mn_invalidate_lock);
678 
679 	__kvm_handle_hva_range(kvm, &hva_range);
680 
681 	return 0;
682 }
683 
684 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
685 				   unsigned long end)
686 {
687 	/*
688 	 * This sequence increase will notify the kvm page fault that
689 	 * the page that is going to be mapped in the spte could have
690 	 * been freed.
691 	 */
692 	kvm->mmu_notifier_seq++;
693 	smp_wmb();
694 	/*
695 	 * The above sequence increase must be visible before the
696 	 * below count decrease, which is ensured by the smp_wmb above
697 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
698 	 */
699 	kvm->mmu_notifier_count--;
700 }
701 
702 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
703 					const struct mmu_notifier_range *range)
704 {
705 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
706 	const struct kvm_hva_range hva_range = {
707 		.start		= range->start,
708 		.end		= range->end,
709 		.pte		= __pte(0),
710 		.handler	= (void *)kvm_null_fn,
711 		.on_lock	= kvm_dec_notifier_count,
712 		.flush_on_ret	= false,
713 		.may_block	= mmu_notifier_range_blockable(range),
714 	};
715 	bool wake;
716 
717 	__kvm_handle_hva_range(kvm, &hva_range);
718 
719 	/* Pairs with the increment in range_start(). */
720 	spin_lock(&kvm->mn_invalidate_lock);
721 	wake = (--kvm->mn_active_invalidate_count == 0);
722 	spin_unlock(&kvm->mn_invalidate_lock);
723 
724 	/*
725 	 * There can only be one waiter, since the wait happens under
726 	 * slots_lock.
727 	 */
728 	if (wake)
729 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
730 
731 	BUG_ON(kvm->mmu_notifier_count < 0);
732 }
733 
734 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
735 					      struct mm_struct *mm,
736 					      unsigned long start,
737 					      unsigned long end)
738 {
739 	trace_kvm_age_hva(start, end);
740 
741 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
742 }
743 
744 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
745 					struct mm_struct *mm,
746 					unsigned long start,
747 					unsigned long end)
748 {
749 	trace_kvm_age_hva(start, end);
750 
751 	/*
752 	 * Even though we do not flush TLB, this will still adversely
753 	 * affect performance on pre-Haswell Intel EPT, where there is
754 	 * no EPT Access Bit to clear so that we have to tear down EPT
755 	 * tables instead. If we find this unacceptable, we can always
756 	 * add a parameter to kvm_age_hva so that it effectively doesn't
757 	 * do anything on clear_young.
758 	 *
759 	 * Also note that currently we never issue secondary TLB flushes
760 	 * from clear_young, leaving this job up to the regular system
761 	 * cadence. If we find this inaccurate, we might come up with a
762 	 * more sophisticated heuristic later.
763 	 */
764 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
765 }
766 
767 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
768 				       struct mm_struct *mm,
769 				       unsigned long address)
770 {
771 	trace_kvm_test_age_hva(address);
772 
773 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
774 					     kvm_test_age_gfn);
775 }
776 
777 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
778 				     struct mm_struct *mm)
779 {
780 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
781 	int idx;
782 
783 	idx = srcu_read_lock(&kvm->srcu);
784 	kvm_arch_flush_shadow_all(kvm);
785 	srcu_read_unlock(&kvm->srcu, idx);
786 }
787 
788 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
789 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
790 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
791 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
792 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
793 	.clear_young		= kvm_mmu_notifier_clear_young,
794 	.test_young		= kvm_mmu_notifier_test_young,
795 	.change_pte		= kvm_mmu_notifier_change_pte,
796 	.release		= kvm_mmu_notifier_release,
797 };
798 
799 static int kvm_init_mmu_notifier(struct kvm *kvm)
800 {
801 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
802 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
803 }
804 
805 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
806 
807 static int kvm_init_mmu_notifier(struct kvm *kvm)
808 {
809 	return 0;
810 }
811 
812 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
813 
814 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
815 static int kvm_pm_notifier_call(struct notifier_block *bl,
816 				unsigned long state,
817 				void *unused)
818 {
819 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
820 
821 	return kvm_arch_pm_notifier(kvm, state);
822 }
823 
824 static void kvm_init_pm_notifier(struct kvm *kvm)
825 {
826 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
827 	/* Suspend KVM before we suspend ftrace, RCU, etc. */
828 	kvm->pm_notifier.priority = INT_MAX;
829 	register_pm_notifier(&kvm->pm_notifier);
830 }
831 
832 static void kvm_destroy_pm_notifier(struct kvm *kvm)
833 {
834 	unregister_pm_notifier(&kvm->pm_notifier);
835 }
836 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
837 static void kvm_init_pm_notifier(struct kvm *kvm)
838 {
839 }
840 
841 static void kvm_destroy_pm_notifier(struct kvm *kvm)
842 {
843 }
844 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
845 
846 static struct kvm_memslots *kvm_alloc_memslots(void)
847 {
848 	int i;
849 	struct kvm_memslots *slots;
850 
851 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
852 	if (!slots)
853 		return NULL;
854 
855 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
856 		slots->id_to_index[i] = -1;
857 
858 	return slots;
859 }
860 
861 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
862 {
863 	if (!memslot->dirty_bitmap)
864 		return;
865 
866 	kvfree(memslot->dirty_bitmap);
867 	memslot->dirty_bitmap = NULL;
868 }
869 
870 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
871 {
872 	kvm_destroy_dirty_bitmap(slot);
873 
874 	kvm_arch_free_memslot(kvm, slot);
875 
876 	slot->flags = 0;
877 	slot->npages = 0;
878 }
879 
880 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
881 {
882 	struct kvm_memory_slot *memslot;
883 
884 	if (!slots)
885 		return;
886 
887 	kvm_for_each_memslot(memslot, slots)
888 		kvm_free_memslot(kvm, memslot);
889 
890 	kvfree(slots);
891 }
892 
893 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
894 {
895 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
896 	case KVM_STATS_TYPE_INSTANT:
897 		return 0444;
898 	case KVM_STATS_TYPE_CUMULATIVE:
899 	case KVM_STATS_TYPE_PEAK:
900 	default:
901 		return 0644;
902 	}
903 }
904 
905 
906 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
907 {
908 	int i;
909 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
910 				      kvm_vcpu_stats_header.num_desc;
911 
912 	if (!kvm->debugfs_dentry)
913 		return;
914 
915 	debugfs_remove_recursive(kvm->debugfs_dentry);
916 
917 	if (kvm->debugfs_stat_data) {
918 		for (i = 0; i < kvm_debugfs_num_entries; i++)
919 			kfree(kvm->debugfs_stat_data[i]);
920 		kfree(kvm->debugfs_stat_data);
921 	}
922 }
923 
924 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
925 {
926 	static DEFINE_MUTEX(kvm_debugfs_lock);
927 	struct dentry *dent;
928 	char dir_name[ITOA_MAX_LEN * 2];
929 	struct kvm_stat_data *stat_data;
930 	const struct _kvm_stats_desc *pdesc;
931 	int i, ret;
932 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
933 				      kvm_vcpu_stats_header.num_desc;
934 
935 	if (!debugfs_initialized())
936 		return 0;
937 
938 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
939 	mutex_lock(&kvm_debugfs_lock);
940 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
941 	if (dent) {
942 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
943 		dput(dent);
944 		mutex_unlock(&kvm_debugfs_lock);
945 		return 0;
946 	}
947 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
948 	mutex_unlock(&kvm_debugfs_lock);
949 	if (IS_ERR(dent))
950 		return 0;
951 
952 	kvm->debugfs_dentry = dent;
953 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
954 					 sizeof(*kvm->debugfs_stat_data),
955 					 GFP_KERNEL_ACCOUNT);
956 	if (!kvm->debugfs_stat_data)
957 		return -ENOMEM;
958 
959 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
960 		pdesc = &kvm_vm_stats_desc[i];
961 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
962 		if (!stat_data)
963 			return -ENOMEM;
964 
965 		stat_data->kvm = kvm;
966 		stat_data->desc = pdesc;
967 		stat_data->kind = KVM_STAT_VM;
968 		kvm->debugfs_stat_data[i] = stat_data;
969 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
970 				    kvm->debugfs_dentry, stat_data,
971 				    &stat_fops_per_vm);
972 	}
973 
974 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
975 		pdesc = &kvm_vcpu_stats_desc[i];
976 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
977 		if (!stat_data)
978 			return -ENOMEM;
979 
980 		stat_data->kvm = kvm;
981 		stat_data->desc = pdesc;
982 		stat_data->kind = KVM_STAT_VCPU;
983 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
984 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
985 				    kvm->debugfs_dentry, stat_data,
986 				    &stat_fops_per_vm);
987 	}
988 
989 	ret = kvm_arch_create_vm_debugfs(kvm);
990 	if (ret) {
991 		kvm_destroy_vm_debugfs(kvm);
992 		return i;
993 	}
994 
995 	return 0;
996 }
997 
998 /*
999  * Called after the VM is otherwise initialized, but just before adding it to
1000  * the vm_list.
1001  */
1002 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1003 {
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Called just after removing the VM from the vm_list, but before doing any
1009  * other destruction.
1010  */
1011 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1012 {
1013 }
1014 
1015 /*
1016  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1017  * be setup already, so we can create arch-specific debugfs entries under it.
1018  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1019  * a per-arch destroy interface is not needed.
1020  */
1021 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1022 {
1023 	return 0;
1024 }
1025 
1026 static struct kvm *kvm_create_vm(unsigned long type)
1027 {
1028 	struct kvm *kvm = kvm_arch_alloc_vm();
1029 	int r = -ENOMEM;
1030 	int i;
1031 
1032 	if (!kvm)
1033 		return ERR_PTR(-ENOMEM);
1034 
1035 	KVM_MMU_LOCK_INIT(kvm);
1036 	mmgrab(current->mm);
1037 	kvm->mm = current->mm;
1038 	kvm_eventfd_init(kvm);
1039 	mutex_init(&kvm->lock);
1040 	mutex_init(&kvm->irq_lock);
1041 	mutex_init(&kvm->slots_lock);
1042 	mutex_init(&kvm->slots_arch_lock);
1043 	spin_lock_init(&kvm->mn_invalidate_lock);
1044 	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1045 
1046 	INIT_LIST_HEAD(&kvm->devices);
1047 
1048 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1049 
1050 	if (init_srcu_struct(&kvm->srcu))
1051 		goto out_err_no_srcu;
1052 	if (init_srcu_struct(&kvm->irq_srcu))
1053 		goto out_err_no_irq_srcu;
1054 
1055 	refcount_set(&kvm->users_count, 1);
1056 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1057 		struct kvm_memslots *slots = kvm_alloc_memslots();
1058 
1059 		if (!slots)
1060 			goto out_err_no_arch_destroy_vm;
1061 		/* Generations must be different for each address space. */
1062 		slots->generation = i;
1063 		rcu_assign_pointer(kvm->memslots[i], slots);
1064 	}
1065 
1066 	for (i = 0; i < KVM_NR_BUSES; i++) {
1067 		rcu_assign_pointer(kvm->buses[i],
1068 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1069 		if (!kvm->buses[i])
1070 			goto out_err_no_arch_destroy_vm;
1071 	}
1072 
1073 	kvm->max_halt_poll_ns = halt_poll_ns;
1074 
1075 	r = kvm_arch_init_vm(kvm, type);
1076 	if (r)
1077 		goto out_err_no_arch_destroy_vm;
1078 
1079 	r = hardware_enable_all();
1080 	if (r)
1081 		goto out_err_no_disable;
1082 
1083 #ifdef CONFIG_HAVE_KVM_IRQFD
1084 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1085 #endif
1086 
1087 	r = kvm_init_mmu_notifier(kvm);
1088 	if (r)
1089 		goto out_err_no_mmu_notifier;
1090 
1091 	r = kvm_arch_post_init_vm(kvm);
1092 	if (r)
1093 		goto out_err;
1094 
1095 	mutex_lock(&kvm_lock);
1096 	list_add(&kvm->vm_list, &vm_list);
1097 	mutex_unlock(&kvm_lock);
1098 
1099 	preempt_notifier_inc();
1100 	kvm_init_pm_notifier(kvm);
1101 
1102 	return kvm;
1103 
1104 out_err:
1105 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1106 	if (kvm->mmu_notifier.ops)
1107 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1108 #endif
1109 out_err_no_mmu_notifier:
1110 	hardware_disable_all();
1111 out_err_no_disable:
1112 	kvm_arch_destroy_vm(kvm);
1113 out_err_no_arch_destroy_vm:
1114 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1115 	for (i = 0; i < KVM_NR_BUSES; i++)
1116 		kfree(kvm_get_bus(kvm, i));
1117 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1118 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1119 	cleanup_srcu_struct(&kvm->irq_srcu);
1120 out_err_no_irq_srcu:
1121 	cleanup_srcu_struct(&kvm->srcu);
1122 out_err_no_srcu:
1123 	kvm_arch_free_vm(kvm);
1124 	mmdrop(current->mm);
1125 	return ERR_PTR(r);
1126 }
1127 
1128 static void kvm_destroy_devices(struct kvm *kvm)
1129 {
1130 	struct kvm_device *dev, *tmp;
1131 
1132 	/*
1133 	 * We do not need to take the kvm->lock here, because nobody else
1134 	 * has a reference to the struct kvm at this point and therefore
1135 	 * cannot access the devices list anyhow.
1136 	 */
1137 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1138 		list_del(&dev->vm_node);
1139 		dev->ops->destroy(dev);
1140 	}
1141 }
1142 
1143 static void kvm_destroy_vm(struct kvm *kvm)
1144 {
1145 	int i;
1146 	struct mm_struct *mm = kvm->mm;
1147 
1148 	kvm_destroy_pm_notifier(kvm);
1149 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1150 	kvm_destroy_vm_debugfs(kvm);
1151 	kvm_arch_sync_events(kvm);
1152 	mutex_lock(&kvm_lock);
1153 	list_del(&kvm->vm_list);
1154 	mutex_unlock(&kvm_lock);
1155 	kvm_arch_pre_destroy_vm(kvm);
1156 
1157 	kvm_free_irq_routing(kvm);
1158 	for (i = 0; i < KVM_NR_BUSES; i++) {
1159 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1160 
1161 		if (bus)
1162 			kvm_io_bus_destroy(bus);
1163 		kvm->buses[i] = NULL;
1164 	}
1165 	kvm_coalesced_mmio_free(kvm);
1166 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1167 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1168 	/*
1169 	 * At this point, pending calls to invalidate_range_start()
1170 	 * have completed but no more MMU notifiers will run, so
1171 	 * mn_active_invalidate_count may remain unbalanced.
1172 	 * No threads can be waiting in install_new_memslots as the
1173 	 * last reference on KVM has been dropped, but freeing
1174 	 * memslots would deadlock without this manual intervention.
1175 	 */
1176 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1177 	kvm->mn_active_invalidate_count = 0;
1178 #else
1179 	kvm_arch_flush_shadow_all(kvm);
1180 #endif
1181 	kvm_arch_destroy_vm(kvm);
1182 	kvm_destroy_devices(kvm);
1183 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1184 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1185 	cleanup_srcu_struct(&kvm->irq_srcu);
1186 	cleanup_srcu_struct(&kvm->srcu);
1187 	kvm_arch_free_vm(kvm);
1188 	preempt_notifier_dec();
1189 	hardware_disable_all();
1190 	mmdrop(mm);
1191 }
1192 
1193 void kvm_get_kvm(struct kvm *kvm)
1194 {
1195 	refcount_inc(&kvm->users_count);
1196 }
1197 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1198 
1199 /*
1200  * Make sure the vm is not during destruction, which is a safe version of
1201  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1202  */
1203 bool kvm_get_kvm_safe(struct kvm *kvm)
1204 {
1205 	return refcount_inc_not_zero(&kvm->users_count);
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1208 
1209 void kvm_put_kvm(struct kvm *kvm)
1210 {
1211 	if (refcount_dec_and_test(&kvm->users_count))
1212 		kvm_destroy_vm(kvm);
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1215 
1216 /*
1217  * Used to put a reference that was taken on behalf of an object associated
1218  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1219  * of the new file descriptor fails and the reference cannot be transferred to
1220  * its final owner.  In such cases, the caller is still actively using @kvm and
1221  * will fail miserably if the refcount unexpectedly hits zero.
1222  */
1223 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1224 {
1225 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1228 
1229 static int kvm_vm_release(struct inode *inode, struct file *filp)
1230 {
1231 	struct kvm *kvm = filp->private_data;
1232 
1233 	kvm_irqfd_release(kvm);
1234 
1235 	kvm_put_kvm(kvm);
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Allocation size is twice as large as the actual dirty bitmap size.
1241  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1242  */
1243 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1244 {
1245 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1246 
1247 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1248 	if (!memslot->dirty_bitmap)
1249 		return -ENOMEM;
1250 
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Delete a memslot by decrementing the number of used slots and shifting all
1256  * other entries in the array forward one spot.
1257  */
1258 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1259 				      struct kvm_memory_slot *memslot)
1260 {
1261 	struct kvm_memory_slot *mslots = slots->memslots;
1262 	int i;
1263 
1264 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1265 		return;
1266 
1267 	slots->used_slots--;
1268 
1269 	if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1270 		atomic_set(&slots->last_used_slot, 0);
1271 
1272 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1273 		mslots[i] = mslots[i + 1];
1274 		slots->id_to_index[mslots[i].id] = i;
1275 	}
1276 	mslots[i] = *memslot;
1277 	slots->id_to_index[memslot->id] = -1;
1278 }
1279 
1280 /*
1281  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1282  * the new slot's initial index into the memslots array.
1283  */
1284 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1285 {
1286 	return slots->used_slots++;
1287 }
1288 
1289 /*
1290  * Move a changed memslot backwards in the array by shifting existing slots
1291  * with a higher GFN toward the front of the array.  Note, the changed memslot
1292  * itself is not preserved in the array, i.e. not swapped at this time, only
1293  * its new index into the array is tracked.  Returns the changed memslot's
1294  * current index into the memslots array.
1295  */
1296 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1297 					    struct kvm_memory_slot *memslot)
1298 {
1299 	struct kvm_memory_slot *mslots = slots->memslots;
1300 	int i;
1301 
1302 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1303 	    WARN_ON_ONCE(!slots->used_slots))
1304 		return -1;
1305 
1306 	/*
1307 	 * Move the target memslot backward in the array by shifting existing
1308 	 * memslots with a higher GFN (than the target memslot) towards the
1309 	 * front of the array.
1310 	 */
1311 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1312 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1313 			break;
1314 
1315 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1316 
1317 		/* Shift the next memslot forward one and update its index. */
1318 		mslots[i] = mslots[i + 1];
1319 		slots->id_to_index[mslots[i].id] = i;
1320 	}
1321 	return i;
1322 }
1323 
1324 /*
1325  * Move a changed memslot forwards in the array by shifting existing slots with
1326  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1327  * is not preserved in the array, i.e. not swapped at this time, only its new
1328  * index into the array is tracked.  Returns the changed memslot's final index
1329  * into the memslots array.
1330  */
1331 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1332 					   struct kvm_memory_slot *memslot,
1333 					   int start)
1334 {
1335 	struct kvm_memory_slot *mslots = slots->memslots;
1336 	int i;
1337 
1338 	for (i = start; i > 0; i--) {
1339 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1340 			break;
1341 
1342 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1343 
1344 		/* Shift the next memslot back one and update its index. */
1345 		mslots[i] = mslots[i - 1];
1346 		slots->id_to_index[mslots[i].id] = i;
1347 	}
1348 	return i;
1349 }
1350 
1351 /*
1352  * Re-sort memslots based on their GFN to account for an added, deleted, or
1353  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1354  * memslot lookup.
1355  *
1356  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1357  * at memslots[0] has the highest GFN.
1358  *
1359  * The sorting algorithm takes advantage of having initially sorted memslots
1360  * and knowing the position of the changed memslot.  Sorting is also optimized
1361  * by not swapping the updated memslot and instead only shifting other memslots
1362  * and tracking the new index for the update memslot.  Only once its final
1363  * index is known is the updated memslot copied into its position in the array.
1364  *
1365  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1366  *    the end of the array.
1367  *
1368  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1369  *    end of the array and then it forward to its correct location.
1370  *
1371  *  - When moving a memslot, the algorithm first moves the updated memslot
1372  *    backward to handle the scenario where the memslot's GFN was changed to a
1373  *    lower value.  update_memslots() then falls through and runs the same flow
1374  *    as creating a memslot to move the memslot forward to handle the scenario
1375  *    where its GFN was changed to a higher value.
1376  *
1377  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1378  * historical reasons.  Originally, invalid memslots where denoted by having
1379  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1380  * to the end of the array.  The current algorithm uses dedicated logic to
1381  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1382  *
1383  * The other historical motiviation for highest->lowest was to improve the
1384  * performance of memslot lookup.  KVM originally used a linear search starting
1385  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1386  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1387  * single memslot above the 4gb boundary.  As the largest memslot is also the
1388  * most likely to be referenced, sorting it to the front of the array was
1389  * advantageous.  The current binary search starts from the middle of the array
1390  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1391  */
1392 static void update_memslots(struct kvm_memslots *slots,
1393 			    struct kvm_memory_slot *memslot,
1394 			    enum kvm_mr_change change)
1395 {
1396 	int i;
1397 
1398 	if (change == KVM_MR_DELETE) {
1399 		kvm_memslot_delete(slots, memslot);
1400 	} else {
1401 		if (change == KVM_MR_CREATE)
1402 			i = kvm_memslot_insert_back(slots);
1403 		else
1404 			i = kvm_memslot_move_backward(slots, memslot);
1405 		i = kvm_memslot_move_forward(slots, memslot, i);
1406 
1407 		/*
1408 		 * Copy the memslot to its new position in memslots and update
1409 		 * its index accordingly.
1410 		 */
1411 		slots->memslots[i] = *memslot;
1412 		slots->id_to_index[memslot->id] = i;
1413 	}
1414 }
1415 
1416 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1417 {
1418 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1419 
1420 #ifdef __KVM_HAVE_READONLY_MEM
1421 	valid_flags |= KVM_MEM_READONLY;
1422 #endif
1423 
1424 	if (mem->flags & ~valid_flags)
1425 		return -EINVAL;
1426 
1427 	return 0;
1428 }
1429 
1430 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1431 		int as_id, struct kvm_memslots *slots)
1432 {
1433 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1434 	u64 gen = old_memslots->generation;
1435 
1436 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1437 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1438 
1439 	/*
1440 	 * Do not store the new memslots while there are invalidations in
1441 	 * progress, otherwise the locking in invalidate_range_start and
1442 	 * invalidate_range_end will be unbalanced.
1443 	 */
1444 	spin_lock(&kvm->mn_invalidate_lock);
1445 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1446 	while (kvm->mn_active_invalidate_count) {
1447 		set_current_state(TASK_UNINTERRUPTIBLE);
1448 		spin_unlock(&kvm->mn_invalidate_lock);
1449 		schedule();
1450 		spin_lock(&kvm->mn_invalidate_lock);
1451 	}
1452 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1453 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1454 	spin_unlock(&kvm->mn_invalidate_lock);
1455 
1456 	/*
1457 	 * Acquired in kvm_set_memslot. Must be released before synchronize
1458 	 * SRCU below in order to avoid deadlock with another thread
1459 	 * acquiring the slots_arch_lock in an srcu critical section.
1460 	 */
1461 	mutex_unlock(&kvm->slots_arch_lock);
1462 
1463 	synchronize_srcu_expedited(&kvm->srcu);
1464 
1465 	/*
1466 	 * Increment the new memslot generation a second time, dropping the
1467 	 * update in-progress flag and incrementing the generation based on
1468 	 * the number of address spaces.  This provides a unique and easily
1469 	 * identifiable generation number while the memslots are in flux.
1470 	 */
1471 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1472 
1473 	/*
1474 	 * Generations must be unique even across address spaces.  We do not need
1475 	 * a global counter for that, instead the generation space is evenly split
1476 	 * across address spaces.  For example, with two address spaces, address
1477 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1478 	 * use generations 1, 3, 5, ...
1479 	 */
1480 	gen += KVM_ADDRESS_SPACE_NUM;
1481 
1482 	kvm_arch_memslots_updated(kvm, gen);
1483 
1484 	slots->generation = gen;
1485 
1486 	return old_memslots;
1487 }
1488 
1489 static size_t kvm_memslots_size(int slots)
1490 {
1491 	return sizeof(struct kvm_memslots) +
1492 	       (sizeof(struct kvm_memory_slot) * slots);
1493 }
1494 
1495 static void kvm_copy_memslots(struct kvm_memslots *to,
1496 			      struct kvm_memslots *from)
1497 {
1498 	memcpy(to, from, kvm_memslots_size(from->used_slots));
1499 }
1500 
1501 /*
1502  * Note, at a minimum, the current number of used slots must be allocated, even
1503  * when deleting a memslot, as we need a complete duplicate of the memslots for
1504  * use when invalidating a memslot prior to deleting/moving the memslot.
1505  */
1506 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1507 					     enum kvm_mr_change change)
1508 {
1509 	struct kvm_memslots *slots;
1510 	size_t new_size;
1511 
1512 	if (change == KVM_MR_CREATE)
1513 		new_size = kvm_memslots_size(old->used_slots + 1);
1514 	else
1515 		new_size = kvm_memslots_size(old->used_slots);
1516 
1517 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1518 	if (likely(slots))
1519 		kvm_copy_memslots(slots, old);
1520 
1521 	return slots;
1522 }
1523 
1524 static int kvm_set_memslot(struct kvm *kvm,
1525 			   const struct kvm_userspace_memory_region *mem,
1526 			   struct kvm_memory_slot *old,
1527 			   struct kvm_memory_slot *new, int as_id,
1528 			   enum kvm_mr_change change)
1529 {
1530 	struct kvm_memory_slot *slot;
1531 	struct kvm_memslots *slots;
1532 	int r;
1533 
1534 	/*
1535 	 * Released in install_new_memslots.
1536 	 *
1537 	 * Must be held from before the current memslots are copied until
1538 	 * after the new memslots are installed with rcu_assign_pointer,
1539 	 * then released before the synchronize srcu in install_new_memslots.
1540 	 *
1541 	 * When modifying memslots outside of the slots_lock, must be held
1542 	 * before reading the pointer to the current memslots until after all
1543 	 * changes to those memslots are complete.
1544 	 *
1545 	 * These rules ensure that installing new memslots does not lose
1546 	 * changes made to the previous memslots.
1547 	 */
1548 	mutex_lock(&kvm->slots_arch_lock);
1549 
1550 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1551 	if (!slots) {
1552 		mutex_unlock(&kvm->slots_arch_lock);
1553 		return -ENOMEM;
1554 	}
1555 
1556 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1557 		/*
1558 		 * Note, the INVALID flag needs to be in the appropriate entry
1559 		 * in the freshly allocated memslots, not in @old or @new.
1560 		 */
1561 		slot = id_to_memslot(slots, old->id);
1562 		slot->flags |= KVM_MEMSLOT_INVALID;
1563 
1564 		/*
1565 		 * We can re-use the memory from the old memslots.
1566 		 * It will be overwritten with a copy of the new memslots
1567 		 * after reacquiring the slots_arch_lock below.
1568 		 */
1569 		slots = install_new_memslots(kvm, as_id, slots);
1570 
1571 		/* From this point no new shadow pages pointing to a deleted,
1572 		 * or moved, memslot will be created.
1573 		 *
1574 		 * validation of sp->gfn happens in:
1575 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1576 		 *	- kvm_is_visible_gfn (mmu_check_root)
1577 		 */
1578 		kvm_arch_flush_shadow_memslot(kvm, slot);
1579 
1580 		/* Released in install_new_memslots. */
1581 		mutex_lock(&kvm->slots_arch_lock);
1582 
1583 		/*
1584 		 * The arch-specific fields of the memslots could have changed
1585 		 * between releasing the slots_arch_lock in
1586 		 * install_new_memslots and here, so get a fresh copy of the
1587 		 * slots.
1588 		 */
1589 		kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1590 	}
1591 
1592 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1593 	if (r)
1594 		goto out_slots;
1595 
1596 	update_memslots(slots, new, change);
1597 	slots = install_new_memslots(kvm, as_id, slots);
1598 
1599 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1600 
1601 	kvfree(slots);
1602 	return 0;
1603 
1604 out_slots:
1605 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1606 		slot = id_to_memslot(slots, old->id);
1607 		slot->flags &= ~KVM_MEMSLOT_INVALID;
1608 		slots = install_new_memslots(kvm, as_id, slots);
1609 	} else {
1610 		mutex_unlock(&kvm->slots_arch_lock);
1611 	}
1612 	kvfree(slots);
1613 	return r;
1614 }
1615 
1616 static int kvm_delete_memslot(struct kvm *kvm,
1617 			      const struct kvm_userspace_memory_region *mem,
1618 			      struct kvm_memory_slot *old, int as_id)
1619 {
1620 	struct kvm_memory_slot new;
1621 	int r;
1622 
1623 	if (!old->npages)
1624 		return -EINVAL;
1625 
1626 	memset(&new, 0, sizeof(new));
1627 	new.id = old->id;
1628 	/*
1629 	 * This is only for debugging purpose; it should never be referenced
1630 	 * for a removed memslot.
1631 	 */
1632 	new.as_id = as_id;
1633 
1634 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1635 	if (r)
1636 		return r;
1637 
1638 	kvm_free_memslot(kvm, old);
1639 	return 0;
1640 }
1641 
1642 /*
1643  * Allocate some memory and give it an address in the guest physical address
1644  * space.
1645  *
1646  * Discontiguous memory is allowed, mostly for framebuffers.
1647  *
1648  * Must be called holding kvm->slots_lock for write.
1649  */
1650 int __kvm_set_memory_region(struct kvm *kvm,
1651 			    const struct kvm_userspace_memory_region *mem)
1652 {
1653 	struct kvm_memory_slot old, new;
1654 	struct kvm_memory_slot *tmp;
1655 	enum kvm_mr_change change;
1656 	int as_id, id;
1657 	int r;
1658 
1659 	r = check_memory_region_flags(mem);
1660 	if (r)
1661 		return r;
1662 
1663 	as_id = mem->slot >> 16;
1664 	id = (u16)mem->slot;
1665 
1666 	/* General sanity checks */
1667 	if (mem->memory_size & (PAGE_SIZE - 1))
1668 		return -EINVAL;
1669 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1670 		return -EINVAL;
1671 	/* We can read the guest memory with __xxx_user() later on. */
1672 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1673 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1674 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1675 			mem->memory_size))
1676 		return -EINVAL;
1677 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1678 		return -EINVAL;
1679 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1680 		return -EINVAL;
1681 
1682 	/*
1683 	 * Make a full copy of the old memslot, the pointer will become stale
1684 	 * when the memslots are re-sorted by update_memslots(), and the old
1685 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1686 	 * to free its resources and for arch specific behavior.
1687 	 */
1688 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1689 	if (tmp) {
1690 		old = *tmp;
1691 		tmp = NULL;
1692 	} else {
1693 		memset(&old, 0, sizeof(old));
1694 		old.id = id;
1695 	}
1696 
1697 	if (!mem->memory_size)
1698 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1699 
1700 	new.as_id = as_id;
1701 	new.id = id;
1702 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1703 	new.npages = mem->memory_size >> PAGE_SHIFT;
1704 	new.flags = mem->flags;
1705 	new.userspace_addr = mem->userspace_addr;
1706 
1707 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1708 		return -EINVAL;
1709 
1710 	if (!old.npages) {
1711 		change = KVM_MR_CREATE;
1712 		new.dirty_bitmap = NULL;
1713 		memset(&new.arch, 0, sizeof(new.arch));
1714 	} else { /* Modify an existing slot. */
1715 		if ((new.userspace_addr != old.userspace_addr) ||
1716 		    (new.npages != old.npages) ||
1717 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1718 			return -EINVAL;
1719 
1720 		if (new.base_gfn != old.base_gfn)
1721 			change = KVM_MR_MOVE;
1722 		else if (new.flags != old.flags)
1723 			change = KVM_MR_FLAGS_ONLY;
1724 		else /* Nothing to change. */
1725 			return 0;
1726 
1727 		/* Copy dirty_bitmap and arch from the current memslot. */
1728 		new.dirty_bitmap = old.dirty_bitmap;
1729 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1730 	}
1731 
1732 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1733 		/* Check for overlaps */
1734 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1735 			if (tmp->id == id)
1736 				continue;
1737 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1738 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1739 				return -EEXIST;
1740 		}
1741 	}
1742 
1743 	/* Allocate/free page dirty bitmap as needed */
1744 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1745 		new.dirty_bitmap = NULL;
1746 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1747 		r = kvm_alloc_dirty_bitmap(&new);
1748 		if (r)
1749 			return r;
1750 
1751 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1752 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1753 	}
1754 
1755 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1756 	if (r)
1757 		goto out_bitmap;
1758 
1759 	if (old.dirty_bitmap && !new.dirty_bitmap)
1760 		kvm_destroy_dirty_bitmap(&old);
1761 	return 0;
1762 
1763 out_bitmap:
1764 	if (new.dirty_bitmap && !old.dirty_bitmap)
1765 		kvm_destroy_dirty_bitmap(&new);
1766 	return r;
1767 }
1768 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1769 
1770 int kvm_set_memory_region(struct kvm *kvm,
1771 			  const struct kvm_userspace_memory_region *mem)
1772 {
1773 	int r;
1774 
1775 	mutex_lock(&kvm->slots_lock);
1776 	r = __kvm_set_memory_region(kvm, mem);
1777 	mutex_unlock(&kvm->slots_lock);
1778 	return r;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1781 
1782 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1783 					  struct kvm_userspace_memory_region *mem)
1784 {
1785 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1786 		return -EINVAL;
1787 
1788 	return kvm_set_memory_region(kvm, mem);
1789 }
1790 
1791 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1792 /**
1793  * kvm_get_dirty_log - get a snapshot of dirty pages
1794  * @kvm:	pointer to kvm instance
1795  * @log:	slot id and address to which we copy the log
1796  * @is_dirty:	set to '1' if any dirty pages were found
1797  * @memslot:	set to the associated memslot, always valid on success
1798  */
1799 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1800 		      int *is_dirty, struct kvm_memory_slot **memslot)
1801 {
1802 	struct kvm_memslots *slots;
1803 	int i, as_id, id;
1804 	unsigned long n;
1805 	unsigned long any = 0;
1806 
1807 	/* Dirty ring tracking is exclusive to dirty log tracking */
1808 	if (kvm->dirty_ring_size)
1809 		return -ENXIO;
1810 
1811 	*memslot = NULL;
1812 	*is_dirty = 0;
1813 
1814 	as_id = log->slot >> 16;
1815 	id = (u16)log->slot;
1816 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1817 		return -EINVAL;
1818 
1819 	slots = __kvm_memslots(kvm, as_id);
1820 	*memslot = id_to_memslot(slots, id);
1821 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1822 		return -ENOENT;
1823 
1824 	kvm_arch_sync_dirty_log(kvm, *memslot);
1825 
1826 	n = kvm_dirty_bitmap_bytes(*memslot);
1827 
1828 	for (i = 0; !any && i < n/sizeof(long); ++i)
1829 		any = (*memslot)->dirty_bitmap[i];
1830 
1831 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1832 		return -EFAULT;
1833 
1834 	if (any)
1835 		*is_dirty = 1;
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1839 
1840 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1841 /**
1842  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1843  *	and reenable dirty page tracking for the corresponding pages.
1844  * @kvm:	pointer to kvm instance
1845  * @log:	slot id and address to which we copy the log
1846  *
1847  * We need to keep it in mind that VCPU threads can write to the bitmap
1848  * concurrently. So, to avoid losing track of dirty pages we keep the
1849  * following order:
1850  *
1851  *    1. Take a snapshot of the bit and clear it if needed.
1852  *    2. Write protect the corresponding page.
1853  *    3. Copy the snapshot to the userspace.
1854  *    4. Upon return caller flushes TLB's if needed.
1855  *
1856  * Between 2 and 4, the guest may write to the page using the remaining TLB
1857  * entry.  This is not a problem because the page is reported dirty using
1858  * the snapshot taken before and step 4 ensures that writes done after
1859  * exiting to userspace will be logged for the next call.
1860  *
1861  */
1862 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1863 {
1864 	struct kvm_memslots *slots;
1865 	struct kvm_memory_slot *memslot;
1866 	int i, as_id, id;
1867 	unsigned long n;
1868 	unsigned long *dirty_bitmap;
1869 	unsigned long *dirty_bitmap_buffer;
1870 	bool flush;
1871 
1872 	/* Dirty ring tracking is exclusive to dirty log tracking */
1873 	if (kvm->dirty_ring_size)
1874 		return -ENXIO;
1875 
1876 	as_id = log->slot >> 16;
1877 	id = (u16)log->slot;
1878 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1879 		return -EINVAL;
1880 
1881 	slots = __kvm_memslots(kvm, as_id);
1882 	memslot = id_to_memslot(slots, id);
1883 	if (!memslot || !memslot->dirty_bitmap)
1884 		return -ENOENT;
1885 
1886 	dirty_bitmap = memslot->dirty_bitmap;
1887 
1888 	kvm_arch_sync_dirty_log(kvm, memslot);
1889 
1890 	n = kvm_dirty_bitmap_bytes(memslot);
1891 	flush = false;
1892 	if (kvm->manual_dirty_log_protect) {
1893 		/*
1894 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1895 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1896 		 * is some code duplication between this function and
1897 		 * kvm_get_dirty_log, but hopefully all architecture
1898 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1899 		 * can be eliminated.
1900 		 */
1901 		dirty_bitmap_buffer = dirty_bitmap;
1902 	} else {
1903 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1904 		memset(dirty_bitmap_buffer, 0, n);
1905 
1906 		KVM_MMU_LOCK(kvm);
1907 		for (i = 0; i < n / sizeof(long); i++) {
1908 			unsigned long mask;
1909 			gfn_t offset;
1910 
1911 			if (!dirty_bitmap[i])
1912 				continue;
1913 
1914 			flush = true;
1915 			mask = xchg(&dirty_bitmap[i], 0);
1916 			dirty_bitmap_buffer[i] = mask;
1917 
1918 			offset = i * BITS_PER_LONG;
1919 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1920 								offset, mask);
1921 		}
1922 		KVM_MMU_UNLOCK(kvm);
1923 	}
1924 
1925 	if (flush)
1926 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1927 
1928 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1929 		return -EFAULT;
1930 	return 0;
1931 }
1932 
1933 
1934 /**
1935  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1936  * @kvm: kvm instance
1937  * @log: slot id and address to which we copy the log
1938  *
1939  * Steps 1-4 below provide general overview of dirty page logging. See
1940  * kvm_get_dirty_log_protect() function description for additional details.
1941  *
1942  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1943  * always flush the TLB (step 4) even if previous step failed  and the dirty
1944  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1945  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1946  * writes will be marked dirty for next log read.
1947  *
1948  *   1. Take a snapshot of the bit and clear it if needed.
1949  *   2. Write protect the corresponding page.
1950  *   3. Copy the snapshot to the userspace.
1951  *   4. Flush TLB's if needed.
1952  */
1953 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1954 				      struct kvm_dirty_log *log)
1955 {
1956 	int r;
1957 
1958 	mutex_lock(&kvm->slots_lock);
1959 
1960 	r = kvm_get_dirty_log_protect(kvm, log);
1961 
1962 	mutex_unlock(&kvm->slots_lock);
1963 	return r;
1964 }
1965 
1966 /**
1967  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1968  *	and reenable dirty page tracking for the corresponding pages.
1969  * @kvm:	pointer to kvm instance
1970  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1971  */
1972 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1973 				       struct kvm_clear_dirty_log *log)
1974 {
1975 	struct kvm_memslots *slots;
1976 	struct kvm_memory_slot *memslot;
1977 	int as_id, id;
1978 	gfn_t offset;
1979 	unsigned long i, n;
1980 	unsigned long *dirty_bitmap;
1981 	unsigned long *dirty_bitmap_buffer;
1982 	bool flush;
1983 
1984 	/* Dirty ring tracking is exclusive to dirty log tracking */
1985 	if (kvm->dirty_ring_size)
1986 		return -ENXIO;
1987 
1988 	as_id = log->slot >> 16;
1989 	id = (u16)log->slot;
1990 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1991 		return -EINVAL;
1992 
1993 	if (log->first_page & 63)
1994 		return -EINVAL;
1995 
1996 	slots = __kvm_memslots(kvm, as_id);
1997 	memslot = id_to_memslot(slots, id);
1998 	if (!memslot || !memslot->dirty_bitmap)
1999 		return -ENOENT;
2000 
2001 	dirty_bitmap = memslot->dirty_bitmap;
2002 
2003 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2004 
2005 	if (log->first_page > memslot->npages ||
2006 	    log->num_pages > memslot->npages - log->first_page ||
2007 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2008 	    return -EINVAL;
2009 
2010 	kvm_arch_sync_dirty_log(kvm, memslot);
2011 
2012 	flush = false;
2013 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2014 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2015 		return -EFAULT;
2016 
2017 	KVM_MMU_LOCK(kvm);
2018 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2019 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2020 	     i++, offset += BITS_PER_LONG) {
2021 		unsigned long mask = *dirty_bitmap_buffer++;
2022 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2023 		if (!mask)
2024 			continue;
2025 
2026 		mask &= atomic_long_fetch_andnot(mask, p);
2027 
2028 		/*
2029 		 * mask contains the bits that really have been cleared.  This
2030 		 * never includes any bits beyond the length of the memslot (if
2031 		 * the length is not aligned to 64 pages), therefore it is not
2032 		 * a problem if userspace sets them in log->dirty_bitmap.
2033 		*/
2034 		if (mask) {
2035 			flush = true;
2036 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2037 								offset, mask);
2038 		}
2039 	}
2040 	KVM_MMU_UNLOCK(kvm);
2041 
2042 	if (flush)
2043 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2044 
2045 	return 0;
2046 }
2047 
2048 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2049 					struct kvm_clear_dirty_log *log)
2050 {
2051 	int r;
2052 
2053 	mutex_lock(&kvm->slots_lock);
2054 
2055 	r = kvm_clear_dirty_log_protect(kvm, log);
2056 
2057 	mutex_unlock(&kvm->slots_lock);
2058 	return r;
2059 }
2060 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2061 
2062 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2063 {
2064 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2067 
2068 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2069 {
2070 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2071 	struct kvm_memory_slot *slot;
2072 	int slot_index;
2073 
2074 	slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2075 	if (slot)
2076 		return slot;
2077 
2078 	/*
2079 	 * Fall back to searching all memslots. We purposely use
2080 	 * search_memslots() instead of __gfn_to_memslot() to avoid
2081 	 * thrashing the VM-wide last_used_index in kvm_memslots.
2082 	 */
2083 	slot = search_memslots(slots, gfn, &slot_index);
2084 	if (slot) {
2085 		vcpu->last_used_slot = slot_index;
2086 		return slot;
2087 	}
2088 
2089 	return NULL;
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2092 
2093 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2094 {
2095 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2096 
2097 	return kvm_is_visible_memslot(memslot);
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2100 
2101 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2102 {
2103 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2104 
2105 	return kvm_is_visible_memslot(memslot);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2108 
2109 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2110 {
2111 	struct vm_area_struct *vma;
2112 	unsigned long addr, size;
2113 
2114 	size = PAGE_SIZE;
2115 
2116 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2117 	if (kvm_is_error_hva(addr))
2118 		return PAGE_SIZE;
2119 
2120 	mmap_read_lock(current->mm);
2121 	vma = find_vma(current->mm, addr);
2122 	if (!vma)
2123 		goto out;
2124 
2125 	size = vma_kernel_pagesize(vma);
2126 
2127 out:
2128 	mmap_read_unlock(current->mm);
2129 
2130 	return size;
2131 }
2132 
2133 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2134 {
2135 	return slot->flags & KVM_MEM_READONLY;
2136 }
2137 
2138 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2139 				       gfn_t *nr_pages, bool write)
2140 {
2141 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2142 		return KVM_HVA_ERR_BAD;
2143 
2144 	if (memslot_is_readonly(slot) && write)
2145 		return KVM_HVA_ERR_RO_BAD;
2146 
2147 	if (nr_pages)
2148 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2149 
2150 	return __gfn_to_hva_memslot(slot, gfn);
2151 }
2152 
2153 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2154 				     gfn_t *nr_pages)
2155 {
2156 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2157 }
2158 
2159 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2160 					gfn_t gfn)
2161 {
2162 	return gfn_to_hva_many(slot, gfn, NULL);
2163 }
2164 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2165 
2166 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2167 {
2168 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2169 }
2170 EXPORT_SYMBOL_GPL(gfn_to_hva);
2171 
2172 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2173 {
2174 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2177 
2178 /*
2179  * Return the hva of a @gfn and the R/W attribute if possible.
2180  *
2181  * @slot: the kvm_memory_slot which contains @gfn
2182  * @gfn: the gfn to be translated
2183  * @writable: used to return the read/write attribute of the @slot if the hva
2184  * is valid and @writable is not NULL
2185  */
2186 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2187 				      gfn_t gfn, bool *writable)
2188 {
2189 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2190 
2191 	if (!kvm_is_error_hva(hva) && writable)
2192 		*writable = !memslot_is_readonly(slot);
2193 
2194 	return hva;
2195 }
2196 
2197 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2198 {
2199 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2200 
2201 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2202 }
2203 
2204 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2205 {
2206 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2207 
2208 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2209 }
2210 
2211 static inline int check_user_page_hwpoison(unsigned long addr)
2212 {
2213 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2214 
2215 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
2216 	return rc == -EHWPOISON;
2217 }
2218 
2219 /*
2220  * The fast path to get the writable pfn which will be stored in @pfn,
2221  * true indicates success, otherwise false is returned.  It's also the
2222  * only part that runs if we can in atomic context.
2223  */
2224 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2225 			    bool *writable, kvm_pfn_t *pfn)
2226 {
2227 	struct page *page[1];
2228 
2229 	/*
2230 	 * Fast pin a writable pfn only if it is a write fault request
2231 	 * or the caller allows to map a writable pfn for a read fault
2232 	 * request.
2233 	 */
2234 	if (!(write_fault || writable))
2235 		return false;
2236 
2237 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2238 		*pfn = page_to_pfn(page[0]);
2239 
2240 		if (writable)
2241 			*writable = true;
2242 		return true;
2243 	}
2244 
2245 	return false;
2246 }
2247 
2248 /*
2249  * The slow path to get the pfn of the specified host virtual address,
2250  * 1 indicates success, -errno is returned if error is detected.
2251  */
2252 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2253 			   bool *writable, kvm_pfn_t *pfn)
2254 {
2255 	unsigned int flags = FOLL_HWPOISON;
2256 	struct page *page;
2257 	int npages = 0;
2258 
2259 	might_sleep();
2260 
2261 	if (writable)
2262 		*writable = write_fault;
2263 
2264 	if (write_fault)
2265 		flags |= FOLL_WRITE;
2266 	if (async)
2267 		flags |= FOLL_NOWAIT;
2268 
2269 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2270 	if (npages != 1)
2271 		return npages;
2272 
2273 	/* map read fault as writable if possible */
2274 	if (unlikely(!write_fault) && writable) {
2275 		struct page *wpage;
2276 
2277 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2278 			*writable = true;
2279 			put_page(page);
2280 			page = wpage;
2281 		}
2282 	}
2283 	*pfn = page_to_pfn(page);
2284 	return npages;
2285 }
2286 
2287 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2288 {
2289 	if (unlikely(!(vma->vm_flags & VM_READ)))
2290 		return false;
2291 
2292 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2293 		return false;
2294 
2295 	return true;
2296 }
2297 
2298 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2299 {
2300 	if (kvm_is_reserved_pfn(pfn))
2301 		return 1;
2302 	return get_page_unless_zero(pfn_to_page(pfn));
2303 }
2304 
2305 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2306 			       unsigned long addr, bool *async,
2307 			       bool write_fault, bool *writable,
2308 			       kvm_pfn_t *p_pfn)
2309 {
2310 	kvm_pfn_t pfn;
2311 	pte_t *ptep;
2312 	spinlock_t *ptl;
2313 	int r;
2314 
2315 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2316 	if (r) {
2317 		/*
2318 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2319 		 * not call the fault handler, so do it here.
2320 		 */
2321 		bool unlocked = false;
2322 		r = fixup_user_fault(current->mm, addr,
2323 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2324 				     &unlocked);
2325 		if (unlocked)
2326 			return -EAGAIN;
2327 		if (r)
2328 			return r;
2329 
2330 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2331 		if (r)
2332 			return r;
2333 	}
2334 
2335 	if (write_fault && !pte_write(*ptep)) {
2336 		pfn = KVM_PFN_ERR_RO_FAULT;
2337 		goto out;
2338 	}
2339 
2340 	if (writable)
2341 		*writable = pte_write(*ptep);
2342 	pfn = pte_pfn(*ptep);
2343 
2344 	/*
2345 	 * Get a reference here because callers of *hva_to_pfn* and
2346 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2347 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2348 	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2349 	 * simply do nothing for reserved pfns.
2350 	 *
2351 	 * Whoever called remap_pfn_range is also going to call e.g.
2352 	 * unmap_mapping_range before the underlying pages are freed,
2353 	 * causing a call to our MMU notifier.
2354 	 *
2355 	 * Certain IO or PFNMAP mappings can be backed with valid
2356 	 * struct pages, but be allocated without refcounting e.g.,
2357 	 * tail pages of non-compound higher order allocations, which
2358 	 * would then underflow the refcount when the caller does the
2359 	 * required put_page. Don't allow those pages here.
2360 	 */
2361 	if (!kvm_try_get_pfn(pfn))
2362 		r = -EFAULT;
2363 
2364 out:
2365 	pte_unmap_unlock(ptep, ptl);
2366 	*p_pfn = pfn;
2367 
2368 	return r;
2369 }
2370 
2371 /*
2372  * Pin guest page in memory and return its pfn.
2373  * @addr: host virtual address which maps memory to the guest
2374  * @atomic: whether this function can sleep
2375  * @async: whether this function need to wait IO complete if the
2376  *         host page is not in the memory
2377  * @write_fault: whether we should get a writable host page
2378  * @writable: whether it allows to map a writable host page for !@write_fault
2379  *
2380  * The function will map a writable host page for these two cases:
2381  * 1): @write_fault = true
2382  * 2): @write_fault = false && @writable, @writable will tell the caller
2383  *     whether the mapping is writable.
2384  */
2385 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2386 			bool write_fault, bool *writable)
2387 {
2388 	struct vm_area_struct *vma;
2389 	kvm_pfn_t pfn = 0;
2390 	int npages, r;
2391 
2392 	/* we can do it either atomically or asynchronously, not both */
2393 	BUG_ON(atomic && async);
2394 
2395 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2396 		return pfn;
2397 
2398 	if (atomic)
2399 		return KVM_PFN_ERR_FAULT;
2400 
2401 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2402 	if (npages == 1)
2403 		return pfn;
2404 
2405 	mmap_read_lock(current->mm);
2406 	if (npages == -EHWPOISON ||
2407 	      (!async && check_user_page_hwpoison(addr))) {
2408 		pfn = KVM_PFN_ERR_HWPOISON;
2409 		goto exit;
2410 	}
2411 
2412 retry:
2413 	vma = vma_lookup(current->mm, addr);
2414 
2415 	if (vma == NULL)
2416 		pfn = KVM_PFN_ERR_FAULT;
2417 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2418 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2419 		if (r == -EAGAIN)
2420 			goto retry;
2421 		if (r < 0)
2422 			pfn = KVM_PFN_ERR_FAULT;
2423 	} else {
2424 		if (async && vma_is_valid(vma, write_fault))
2425 			*async = true;
2426 		pfn = KVM_PFN_ERR_FAULT;
2427 	}
2428 exit:
2429 	mmap_read_unlock(current->mm);
2430 	return pfn;
2431 }
2432 
2433 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2434 			       bool atomic, bool *async, bool write_fault,
2435 			       bool *writable, hva_t *hva)
2436 {
2437 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2438 
2439 	if (hva)
2440 		*hva = addr;
2441 
2442 	if (addr == KVM_HVA_ERR_RO_BAD) {
2443 		if (writable)
2444 			*writable = false;
2445 		return KVM_PFN_ERR_RO_FAULT;
2446 	}
2447 
2448 	if (kvm_is_error_hva(addr)) {
2449 		if (writable)
2450 			*writable = false;
2451 		return KVM_PFN_NOSLOT;
2452 	}
2453 
2454 	/* Do not map writable pfn in the readonly memslot. */
2455 	if (writable && memslot_is_readonly(slot)) {
2456 		*writable = false;
2457 		writable = NULL;
2458 	}
2459 
2460 	return hva_to_pfn(addr, atomic, async, write_fault,
2461 			  writable);
2462 }
2463 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2464 
2465 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2466 		      bool *writable)
2467 {
2468 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2469 				    write_fault, writable, NULL);
2470 }
2471 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2472 
2473 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2474 {
2475 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2476 }
2477 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2478 
2479 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2480 {
2481 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2482 }
2483 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2484 
2485 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2486 {
2487 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2488 }
2489 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2490 
2491 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2492 {
2493 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2494 }
2495 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2496 
2497 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2498 {
2499 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2502 
2503 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2504 			    struct page **pages, int nr_pages)
2505 {
2506 	unsigned long addr;
2507 	gfn_t entry = 0;
2508 
2509 	addr = gfn_to_hva_many(slot, gfn, &entry);
2510 	if (kvm_is_error_hva(addr))
2511 		return -1;
2512 
2513 	if (entry < nr_pages)
2514 		return 0;
2515 
2516 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2517 }
2518 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2519 
2520 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2521 {
2522 	if (is_error_noslot_pfn(pfn))
2523 		return KVM_ERR_PTR_BAD_PAGE;
2524 
2525 	if (kvm_is_reserved_pfn(pfn)) {
2526 		WARN_ON(1);
2527 		return KVM_ERR_PTR_BAD_PAGE;
2528 	}
2529 
2530 	return pfn_to_page(pfn);
2531 }
2532 
2533 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2534 {
2535 	kvm_pfn_t pfn;
2536 
2537 	pfn = gfn_to_pfn(kvm, gfn);
2538 
2539 	return kvm_pfn_to_page(pfn);
2540 }
2541 EXPORT_SYMBOL_GPL(gfn_to_page);
2542 
2543 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2544 {
2545 	if (pfn == 0)
2546 		return;
2547 
2548 	if (cache)
2549 		cache->pfn = cache->gfn = 0;
2550 
2551 	if (dirty)
2552 		kvm_release_pfn_dirty(pfn);
2553 	else
2554 		kvm_release_pfn_clean(pfn);
2555 }
2556 
2557 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2558 				 struct gfn_to_pfn_cache *cache, u64 gen)
2559 {
2560 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2561 
2562 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2563 	cache->gfn = gfn;
2564 	cache->dirty = false;
2565 	cache->generation = gen;
2566 }
2567 
2568 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2569 			 struct kvm_host_map *map,
2570 			 struct gfn_to_pfn_cache *cache,
2571 			 bool atomic)
2572 {
2573 	kvm_pfn_t pfn;
2574 	void *hva = NULL;
2575 	struct page *page = KVM_UNMAPPED_PAGE;
2576 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2577 	u64 gen = slots->generation;
2578 
2579 	if (!map)
2580 		return -EINVAL;
2581 
2582 	if (cache) {
2583 		if (!cache->pfn || cache->gfn != gfn ||
2584 			cache->generation != gen) {
2585 			if (atomic)
2586 				return -EAGAIN;
2587 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2588 		}
2589 		pfn = cache->pfn;
2590 	} else {
2591 		if (atomic)
2592 			return -EAGAIN;
2593 		pfn = gfn_to_pfn_memslot(slot, gfn);
2594 	}
2595 	if (is_error_noslot_pfn(pfn))
2596 		return -EINVAL;
2597 
2598 	if (pfn_valid(pfn)) {
2599 		page = pfn_to_page(pfn);
2600 		if (atomic)
2601 			hva = kmap_atomic(page);
2602 		else
2603 			hva = kmap(page);
2604 #ifdef CONFIG_HAS_IOMEM
2605 	} else if (!atomic) {
2606 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2607 	} else {
2608 		return -EINVAL;
2609 #endif
2610 	}
2611 
2612 	if (!hva)
2613 		return -EFAULT;
2614 
2615 	map->page = page;
2616 	map->hva = hva;
2617 	map->pfn = pfn;
2618 	map->gfn = gfn;
2619 
2620 	return 0;
2621 }
2622 
2623 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2624 		struct gfn_to_pfn_cache *cache, bool atomic)
2625 {
2626 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2627 			cache, atomic);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2630 
2631 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2632 {
2633 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2634 		NULL, false);
2635 }
2636 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2637 
2638 static void __kvm_unmap_gfn(struct kvm *kvm,
2639 			struct kvm_memory_slot *memslot,
2640 			struct kvm_host_map *map,
2641 			struct gfn_to_pfn_cache *cache,
2642 			bool dirty, bool atomic)
2643 {
2644 	if (!map)
2645 		return;
2646 
2647 	if (!map->hva)
2648 		return;
2649 
2650 	if (map->page != KVM_UNMAPPED_PAGE) {
2651 		if (atomic)
2652 			kunmap_atomic(map->hva);
2653 		else
2654 			kunmap(map->page);
2655 	}
2656 #ifdef CONFIG_HAS_IOMEM
2657 	else if (!atomic)
2658 		memunmap(map->hva);
2659 	else
2660 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2661 #endif
2662 
2663 	if (dirty)
2664 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2665 
2666 	if (cache)
2667 		cache->dirty |= dirty;
2668 	else
2669 		kvm_release_pfn(map->pfn, dirty, NULL);
2670 
2671 	map->hva = NULL;
2672 	map->page = NULL;
2673 }
2674 
2675 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2676 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2677 {
2678 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2679 			cache, dirty, atomic);
2680 	return 0;
2681 }
2682 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2683 
2684 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2685 {
2686 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2687 			map, NULL, dirty, false);
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2690 
2691 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2692 {
2693 	kvm_pfn_t pfn;
2694 
2695 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2696 
2697 	return kvm_pfn_to_page(pfn);
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2700 
2701 void kvm_release_page_clean(struct page *page)
2702 {
2703 	WARN_ON(is_error_page(page));
2704 
2705 	kvm_release_pfn_clean(page_to_pfn(page));
2706 }
2707 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2708 
2709 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2710 {
2711 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2712 		put_page(pfn_to_page(pfn));
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2715 
2716 void kvm_release_page_dirty(struct page *page)
2717 {
2718 	WARN_ON(is_error_page(page));
2719 
2720 	kvm_release_pfn_dirty(page_to_pfn(page));
2721 }
2722 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2723 
2724 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2725 {
2726 	kvm_set_pfn_dirty(pfn);
2727 	kvm_release_pfn_clean(pfn);
2728 }
2729 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2730 
2731 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2732 {
2733 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2734 		SetPageDirty(pfn_to_page(pfn));
2735 }
2736 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2737 
2738 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2739 {
2740 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2741 		mark_page_accessed(pfn_to_page(pfn));
2742 }
2743 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2744 
2745 static int next_segment(unsigned long len, int offset)
2746 {
2747 	if (len > PAGE_SIZE - offset)
2748 		return PAGE_SIZE - offset;
2749 	else
2750 		return len;
2751 }
2752 
2753 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2754 				 void *data, int offset, int len)
2755 {
2756 	int r;
2757 	unsigned long addr;
2758 
2759 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2760 	if (kvm_is_error_hva(addr))
2761 		return -EFAULT;
2762 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2763 	if (r)
2764 		return -EFAULT;
2765 	return 0;
2766 }
2767 
2768 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2769 			int len)
2770 {
2771 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2772 
2773 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2774 }
2775 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2776 
2777 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2778 			     int offset, int len)
2779 {
2780 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2781 
2782 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2783 }
2784 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2785 
2786 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2787 {
2788 	gfn_t gfn = gpa >> PAGE_SHIFT;
2789 	int seg;
2790 	int offset = offset_in_page(gpa);
2791 	int ret;
2792 
2793 	while ((seg = next_segment(len, offset)) != 0) {
2794 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2795 		if (ret < 0)
2796 			return ret;
2797 		offset = 0;
2798 		len -= seg;
2799 		data += seg;
2800 		++gfn;
2801 	}
2802 	return 0;
2803 }
2804 EXPORT_SYMBOL_GPL(kvm_read_guest);
2805 
2806 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2807 {
2808 	gfn_t gfn = gpa >> PAGE_SHIFT;
2809 	int seg;
2810 	int offset = offset_in_page(gpa);
2811 	int ret;
2812 
2813 	while ((seg = next_segment(len, offset)) != 0) {
2814 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2815 		if (ret < 0)
2816 			return ret;
2817 		offset = 0;
2818 		len -= seg;
2819 		data += seg;
2820 		++gfn;
2821 	}
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2825 
2826 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2827 			           void *data, int offset, unsigned long len)
2828 {
2829 	int r;
2830 	unsigned long addr;
2831 
2832 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2833 	if (kvm_is_error_hva(addr))
2834 		return -EFAULT;
2835 	pagefault_disable();
2836 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2837 	pagefault_enable();
2838 	if (r)
2839 		return -EFAULT;
2840 	return 0;
2841 }
2842 
2843 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2844 			       void *data, unsigned long len)
2845 {
2846 	gfn_t gfn = gpa >> PAGE_SHIFT;
2847 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2848 	int offset = offset_in_page(gpa);
2849 
2850 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2851 }
2852 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2853 
2854 static int __kvm_write_guest_page(struct kvm *kvm,
2855 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2856 			          const void *data, int offset, int len)
2857 {
2858 	int r;
2859 	unsigned long addr;
2860 
2861 	addr = gfn_to_hva_memslot(memslot, gfn);
2862 	if (kvm_is_error_hva(addr))
2863 		return -EFAULT;
2864 	r = __copy_to_user((void __user *)addr + offset, data, len);
2865 	if (r)
2866 		return -EFAULT;
2867 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2868 	return 0;
2869 }
2870 
2871 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2872 			 const void *data, int offset, int len)
2873 {
2874 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2875 
2876 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2877 }
2878 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2879 
2880 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2881 			      const void *data, int offset, int len)
2882 {
2883 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2884 
2885 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2888 
2889 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2890 		    unsigned long len)
2891 {
2892 	gfn_t gfn = gpa >> PAGE_SHIFT;
2893 	int seg;
2894 	int offset = offset_in_page(gpa);
2895 	int ret;
2896 
2897 	while ((seg = next_segment(len, offset)) != 0) {
2898 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2899 		if (ret < 0)
2900 			return ret;
2901 		offset = 0;
2902 		len -= seg;
2903 		data += seg;
2904 		++gfn;
2905 	}
2906 	return 0;
2907 }
2908 EXPORT_SYMBOL_GPL(kvm_write_guest);
2909 
2910 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2911 		         unsigned long len)
2912 {
2913 	gfn_t gfn = gpa >> PAGE_SHIFT;
2914 	int seg;
2915 	int offset = offset_in_page(gpa);
2916 	int ret;
2917 
2918 	while ((seg = next_segment(len, offset)) != 0) {
2919 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2920 		if (ret < 0)
2921 			return ret;
2922 		offset = 0;
2923 		len -= seg;
2924 		data += seg;
2925 		++gfn;
2926 	}
2927 	return 0;
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2930 
2931 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2932 				       struct gfn_to_hva_cache *ghc,
2933 				       gpa_t gpa, unsigned long len)
2934 {
2935 	int offset = offset_in_page(gpa);
2936 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2937 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2938 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2939 	gfn_t nr_pages_avail;
2940 
2941 	/* Update ghc->generation before performing any error checks. */
2942 	ghc->generation = slots->generation;
2943 
2944 	if (start_gfn > end_gfn) {
2945 		ghc->hva = KVM_HVA_ERR_BAD;
2946 		return -EINVAL;
2947 	}
2948 
2949 	/*
2950 	 * If the requested region crosses two memslots, we still
2951 	 * verify that the entire region is valid here.
2952 	 */
2953 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2954 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2955 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2956 					   &nr_pages_avail);
2957 		if (kvm_is_error_hva(ghc->hva))
2958 			return -EFAULT;
2959 	}
2960 
2961 	/* Use the slow path for cross page reads and writes. */
2962 	if (nr_pages_needed == 1)
2963 		ghc->hva += offset;
2964 	else
2965 		ghc->memslot = NULL;
2966 
2967 	ghc->gpa = gpa;
2968 	ghc->len = len;
2969 	return 0;
2970 }
2971 
2972 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2973 			      gpa_t gpa, unsigned long len)
2974 {
2975 	struct kvm_memslots *slots = kvm_memslots(kvm);
2976 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2977 }
2978 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2979 
2980 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2981 				  void *data, unsigned int offset,
2982 				  unsigned long len)
2983 {
2984 	struct kvm_memslots *slots = kvm_memslots(kvm);
2985 	int r;
2986 	gpa_t gpa = ghc->gpa + offset;
2987 
2988 	BUG_ON(len + offset > ghc->len);
2989 
2990 	if (slots->generation != ghc->generation) {
2991 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2992 			return -EFAULT;
2993 	}
2994 
2995 	if (kvm_is_error_hva(ghc->hva))
2996 		return -EFAULT;
2997 
2998 	if (unlikely(!ghc->memslot))
2999 		return kvm_write_guest(kvm, gpa, data, len);
3000 
3001 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3002 	if (r)
3003 		return -EFAULT;
3004 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3005 
3006 	return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3009 
3010 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3011 			   void *data, unsigned long len)
3012 {
3013 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3014 }
3015 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3016 
3017 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3018 				 void *data, unsigned int offset,
3019 				 unsigned long len)
3020 {
3021 	struct kvm_memslots *slots = kvm_memslots(kvm);
3022 	int r;
3023 	gpa_t gpa = ghc->gpa + offset;
3024 
3025 	BUG_ON(len + offset > ghc->len);
3026 
3027 	if (slots->generation != ghc->generation) {
3028 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3029 			return -EFAULT;
3030 	}
3031 
3032 	if (kvm_is_error_hva(ghc->hva))
3033 		return -EFAULT;
3034 
3035 	if (unlikely(!ghc->memslot))
3036 		return kvm_read_guest(kvm, gpa, data, len);
3037 
3038 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3039 	if (r)
3040 		return -EFAULT;
3041 
3042 	return 0;
3043 }
3044 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3045 
3046 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3047 			  void *data, unsigned long len)
3048 {
3049 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3050 }
3051 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3052 
3053 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3054 {
3055 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3056 	gfn_t gfn = gpa >> PAGE_SHIFT;
3057 	int seg;
3058 	int offset = offset_in_page(gpa);
3059 	int ret;
3060 
3061 	while ((seg = next_segment(len, offset)) != 0) {
3062 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3063 		if (ret < 0)
3064 			return ret;
3065 		offset = 0;
3066 		len -= seg;
3067 		++gfn;
3068 	}
3069 	return 0;
3070 }
3071 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3072 
3073 void mark_page_dirty_in_slot(struct kvm *kvm,
3074 			     struct kvm_memory_slot *memslot,
3075 		 	     gfn_t gfn)
3076 {
3077 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3078 		unsigned long rel_gfn = gfn - memslot->base_gfn;
3079 		u32 slot = (memslot->as_id << 16) | memslot->id;
3080 
3081 		if (kvm->dirty_ring_size)
3082 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3083 					    slot, rel_gfn);
3084 		else
3085 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3086 	}
3087 }
3088 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3089 
3090 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3091 {
3092 	struct kvm_memory_slot *memslot;
3093 
3094 	memslot = gfn_to_memslot(kvm, gfn);
3095 	mark_page_dirty_in_slot(kvm, memslot, gfn);
3096 }
3097 EXPORT_SYMBOL_GPL(mark_page_dirty);
3098 
3099 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3100 {
3101 	struct kvm_memory_slot *memslot;
3102 
3103 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3104 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3105 }
3106 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3107 
3108 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3109 {
3110 	if (!vcpu->sigset_active)
3111 		return;
3112 
3113 	/*
3114 	 * This does a lockless modification of ->real_blocked, which is fine
3115 	 * because, only current can change ->real_blocked and all readers of
3116 	 * ->real_blocked don't care as long ->real_blocked is always a subset
3117 	 * of ->blocked.
3118 	 */
3119 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3120 }
3121 
3122 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3123 {
3124 	if (!vcpu->sigset_active)
3125 		return;
3126 
3127 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3128 	sigemptyset(&current->real_blocked);
3129 }
3130 
3131 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3132 {
3133 	unsigned int old, val, grow, grow_start;
3134 
3135 	old = val = vcpu->halt_poll_ns;
3136 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3137 	grow = READ_ONCE(halt_poll_ns_grow);
3138 	if (!grow)
3139 		goto out;
3140 
3141 	val *= grow;
3142 	if (val < grow_start)
3143 		val = grow_start;
3144 
3145 	if (val > vcpu->kvm->max_halt_poll_ns)
3146 		val = vcpu->kvm->max_halt_poll_ns;
3147 
3148 	vcpu->halt_poll_ns = val;
3149 out:
3150 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3151 }
3152 
3153 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3154 {
3155 	unsigned int old, val, shrink, grow_start;
3156 
3157 	old = val = vcpu->halt_poll_ns;
3158 	shrink = READ_ONCE(halt_poll_ns_shrink);
3159 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3160 	if (shrink == 0)
3161 		val = 0;
3162 	else
3163 		val /= shrink;
3164 
3165 	if (val < grow_start)
3166 		val = 0;
3167 
3168 	vcpu->halt_poll_ns = val;
3169 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3170 }
3171 
3172 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3173 {
3174 	int ret = -EINTR;
3175 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3176 
3177 	if (kvm_arch_vcpu_runnable(vcpu)) {
3178 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
3179 		goto out;
3180 	}
3181 	if (kvm_cpu_has_pending_timer(vcpu))
3182 		goto out;
3183 	if (signal_pending(current))
3184 		goto out;
3185 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3186 		goto out;
3187 
3188 	ret = 0;
3189 out:
3190 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3191 	return ret;
3192 }
3193 
3194 static inline void
3195 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3196 {
3197 	if (waited)
3198 		vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3199 	else
3200 		vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3201 }
3202 
3203 /*
3204  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3205  */
3206 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3207 {
3208 	ktime_t start, cur, poll_end;
3209 	bool waited = false;
3210 	u64 block_ns;
3211 
3212 	kvm_arch_vcpu_blocking(vcpu);
3213 
3214 	start = cur = poll_end = ktime_get();
3215 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3216 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3217 
3218 		++vcpu->stat.generic.halt_attempted_poll;
3219 		do {
3220 			/*
3221 			 * This sets KVM_REQ_UNHALT if an interrupt
3222 			 * arrives.
3223 			 */
3224 			if (kvm_vcpu_check_block(vcpu) < 0) {
3225 				++vcpu->stat.generic.halt_successful_poll;
3226 				if (!vcpu_valid_wakeup(vcpu))
3227 					++vcpu->stat.generic.halt_poll_invalid;
3228 
3229 				KVM_STATS_LOG_HIST_UPDATE(
3230 				      vcpu->stat.generic.halt_poll_success_hist,
3231 				      ktime_to_ns(ktime_get()) -
3232 				      ktime_to_ns(start));
3233 				goto out;
3234 			}
3235 			cpu_relax();
3236 			poll_end = cur = ktime_get();
3237 		} while (kvm_vcpu_can_poll(cur, stop));
3238 
3239 		KVM_STATS_LOG_HIST_UPDATE(
3240 				vcpu->stat.generic.halt_poll_fail_hist,
3241 				ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3242 	}
3243 
3244 
3245 	prepare_to_rcuwait(&vcpu->wait);
3246 	for (;;) {
3247 		set_current_state(TASK_INTERRUPTIBLE);
3248 
3249 		if (kvm_vcpu_check_block(vcpu) < 0)
3250 			break;
3251 
3252 		waited = true;
3253 		schedule();
3254 	}
3255 	finish_rcuwait(&vcpu->wait);
3256 	cur = ktime_get();
3257 	if (waited) {
3258 		vcpu->stat.generic.halt_wait_ns +=
3259 			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3260 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3261 				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3262 	}
3263 out:
3264 	kvm_arch_vcpu_unblocking(vcpu);
3265 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3266 
3267 	update_halt_poll_stats(
3268 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3269 
3270 	if (!kvm_arch_no_poll(vcpu)) {
3271 		if (!vcpu_valid_wakeup(vcpu)) {
3272 			shrink_halt_poll_ns(vcpu);
3273 		} else if (vcpu->kvm->max_halt_poll_ns) {
3274 			if (block_ns <= vcpu->halt_poll_ns)
3275 				;
3276 			/* we had a long block, shrink polling */
3277 			else if (vcpu->halt_poll_ns &&
3278 					block_ns > vcpu->kvm->max_halt_poll_ns)
3279 				shrink_halt_poll_ns(vcpu);
3280 			/* we had a short halt and our poll time is too small */
3281 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3282 					block_ns < vcpu->kvm->max_halt_poll_ns)
3283 				grow_halt_poll_ns(vcpu);
3284 		} else {
3285 			vcpu->halt_poll_ns = 0;
3286 		}
3287 	}
3288 
3289 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3290 	kvm_arch_vcpu_block_finish(vcpu);
3291 }
3292 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3293 
3294 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3295 {
3296 	struct rcuwait *waitp;
3297 
3298 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3299 	if (rcuwait_wake_up(waitp)) {
3300 		WRITE_ONCE(vcpu->ready, true);
3301 		++vcpu->stat.generic.halt_wakeup;
3302 		return true;
3303 	}
3304 
3305 	return false;
3306 }
3307 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3308 
3309 #ifndef CONFIG_S390
3310 /*
3311  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3312  */
3313 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3314 {
3315 	int me, cpu;
3316 
3317 	if (kvm_vcpu_wake_up(vcpu))
3318 		return;
3319 
3320 	/*
3321 	 * Note, the vCPU could get migrated to a different pCPU at any point
3322 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3323 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3324 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3325 	 * vCPU also requires it to leave IN_GUEST_MODE.
3326 	 */
3327 	me = get_cpu();
3328 	if (kvm_arch_vcpu_should_kick(vcpu)) {
3329 		cpu = READ_ONCE(vcpu->cpu);
3330 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3331 			smp_send_reschedule(cpu);
3332 	}
3333 	put_cpu();
3334 }
3335 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3336 #endif /* !CONFIG_S390 */
3337 
3338 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3339 {
3340 	struct pid *pid;
3341 	struct task_struct *task = NULL;
3342 	int ret = 0;
3343 
3344 	rcu_read_lock();
3345 	pid = rcu_dereference(target->pid);
3346 	if (pid)
3347 		task = get_pid_task(pid, PIDTYPE_PID);
3348 	rcu_read_unlock();
3349 	if (!task)
3350 		return ret;
3351 	ret = yield_to(task, 1);
3352 	put_task_struct(task);
3353 
3354 	return ret;
3355 }
3356 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3357 
3358 /*
3359  * Helper that checks whether a VCPU is eligible for directed yield.
3360  * Most eligible candidate to yield is decided by following heuristics:
3361  *
3362  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3363  *  (preempted lock holder), indicated by @in_spin_loop.
3364  *  Set at the beginning and cleared at the end of interception/PLE handler.
3365  *
3366  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3367  *  chance last time (mostly it has become eligible now since we have probably
3368  *  yielded to lockholder in last iteration. This is done by toggling
3369  *  @dy_eligible each time a VCPU checked for eligibility.)
3370  *
3371  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3372  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3373  *  burning. Giving priority for a potential lock-holder increases lock
3374  *  progress.
3375  *
3376  *  Since algorithm is based on heuristics, accessing another VCPU data without
3377  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3378  *  and continue with next VCPU and so on.
3379  */
3380 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3381 {
3382 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3383 	bool eligible;
3384 
3385 	eligible = !vcpu->spin_loop.in_spin_loop ||
3386 		    vcpu->spin_loop.dy_eligible;
3387 
3388 	if (vcpu->spin_loop.in_spin_loop)
3389 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3390 
3391 	return eligible;
3392 #else
3393 	return true;
3394 #endif
3395 }
3396 
3397 /*
3398  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3399  * a vcpu_load/vcpu_put pair.  However, for most architectures
3400  * kvm_arch_vcpu_runnable does not require vcpu_load.
3401  */
3402 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3403 {
3404 	return kvm_arch_vcpu_runnable(vcpu);
3405 }
3406 
3407 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3408 {
3409 	if (kvm_arch_dy_runnable(vcpu))
3410 		return true;
3411 
3412 #ifdef CONFIG_KVM_ASYNC_PF
3413 	if (!list_empty_careful(&vcpu->async_pf.done))
3414 		return true;
3415 #endif
3416 
3417 	return false;
3418 }
3419 
3420 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3421 {
3422 	return false;
3423 }
3424 
3425 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3426 {
3427 	struct kvm *kvm = me->kvm;
3428 	struct kvm_vcpu *vcpu;
3429 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3430 	int yielded = 0;
3431 	int try = 3;
3432 	int pass;
3433 	int i;
3434 
3435 	kvm_vcpu_set_in_spin_loop(me, true);
3436 	/*
3437 	 * We boost the priority of a VCPU that is runnable but not
3438 	 * currently running, because it got preempted by something
3439 	 * else and called schedule in __vcpu_run.  Hopefully that
3440 	 * VCPU is holding the lock that we need and will release it.
3441 	 * We approximate round-robin by starting at the last boosted VCPU.
3442 	 */
3443 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3444 		kvm_for_each_vcpu(i, vcpu, kvm) {
3445 			if (!pass && i <= last_boosted_vcpu) {
3446 				i = last_boosted_vcpu;
3447 				continue;
3448 			} else if (pass && i > last_boosted_vcpu)
3449 				break;
3450 			if (!READ_ONCE(vcpu->ready))
3451 				continue;
3452 			if (vcpu == me)
3453 				continue;
3454 			if (rcuwait_active(&vcpu->wait) &&
3455 			    !vcpu_dy_runnable(vcpu))
3456 				continue;
3457 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3458 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3459 			    !kvm_arch_vcpu_in_kernel(vcpu))
3460 				continue;
3461 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3462 				continue;
3463 
3464 			yielded = kvm_vcpu_yield_to(vcpu);
3465 			if (yielded > 0) {
3466 				kvm->last_boosted_vcpu = i;
3467 				break;
3468 			} else if (yielded < 0) {
3469 				try--;
3470 				if (!try)
3471 					break;
3472 			}
3473 		}
3474 	}
3475 	kvm_vcpu_set_in_spin_loop(me, false);
3476 
3477 	/* Ensure vcpu is not eligible during next spinloop */
3478 	kvm_vcpu_set_dy_eligible(me, false);
3479 }
3480 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3481 
3482 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3483 {
3484 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3485 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3486 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3487 	     kvm->dirty_ring_size / PAGE_SIZE);
3488 #else
3489 	return false;
3490 #endif
3491 }
3492 
3493 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3494 {
3495 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3496 	struct page *page;
3497 
3498 	if (vmf->pgoff == 0)
3499 		page = virt_to_page(vcpu->run);
3500 #ifdef CONFIG_X86
3501 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3502 		page = virt_to_page(vcpu->arch.pio_data);
3503 #endif
3504 #ifdef CONFIG_KVM_MMIO
3505 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3506 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3507 #endif
3508 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3509 		page = kvm_dirty_ring_get_page(
3510 		    &vcpu->dirty_ring,
3511 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3512 	else
3513 		return kvm_arch_vcpu_fault(vcpu, vmf);
3514 	get_page(page);
3515 	vmf->page = page;
3516 	return 0;
3517 }
3518 
3519 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3520 	.fault = kvm_vcpu_fault,
3521 };
3522 
3523 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3524 {
3525 	struct kvm_vcpu *vcpu = file->private_data;
3526 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3527 
3528 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3529 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3530 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3531 		return -EINVAL;
3532 
3533 	vma->vm_ops = &kvm_vcpu_vm_ops;
3534 	return 0;
3535 }
3536 
3537 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3538 {
3539 	struct kvm_vcpu *vcpu = filp->private_data;
3540 
3541 	kvm_put_kvm(vcpu->kvm);
3542 	return 0;
3543 }
3544 
3545 static struct file_operations kvm_vcpu_fops = {
3546 	.release        = kvm_vcpu_release,
3547 	.unlocked_ioctl = kvm_vcpu_ioctl,
3548 	.mmap           = kvm_vcpu_mmap,
3549 	.llseek		= noop_llseek,
3550 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3551 };
3552 
3553 /*
3554  * Allocates an inode for the vcpu.
3555  */
3556 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3557 {
3558 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3559 
3560 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3561 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3562 }
3563 
3564 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3565 {
3566 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3567 	struct dentry *debugfs_dentry;
3568 	char dir_name[ITOA_MAX_LEN * 2];
3569 
3570 	if (!debugfs_initialized())
3571 		return;
3572 
3573 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3574 	debugfs_dentry = debugfs_create_dir(dir_name,
3575 					    vcpu->kvm->debugfs_dentry);
3576 
3577 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3578 #endif
3579 }
3580 
3581 /*
3582  * Creates some virtual cpus.  Good luck creating more than one.
3583  */
3584 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3585 {
3586 	int r;
3587 	struct kvm_vcpu *vcpu;
3588 	struct page *page;
3589 
3590 	if (id >= KVM_MAX_VCPU_ID)
3591 		return -EINVAL;
3592 
3593 	mutex_lock(&kvm->lock);
3594 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3595 		mutex_unlock(&kvm->lock);
3596 		return -EINVAL;
3597 	}
3598 
3599 	kvm->created_vcpus++;
3600 	mutex_unlock(&kvm->lock);
3601 
3602 	r = kvm_arch_vcpu_precreate(kvm, id);
3603 	if (r)
3604 		goto vcpu_decrement;
3605 
3606 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3607 	if (!vcpu) {
3608 		r = -ENOMEM;
3609 		goto vcpu_decrement;
3610 	}
3611 
3612 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3613 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3614 	if (!page) {
3615 		r = -ENOMEM;
3616 		goto vcpu_free;
3617 	}
3618 	vcpu->run = page_address(page);
3619 
3620 	kvm_vcpu_init(vcpu, kvm, id);
3621 
3622 	r = kvm_arch_vcpu_create(vcpu);
3623 	if (r)
3624 		goto vcpu_free_run_page;
3625 
3626 	if (kvm->dirty_ring_size) {
3627 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3628 					 id, kvm->dirty_ring_size);
3629 		if (r)
3630 			goto arch_vcpu_destroy;
3631 	}
3632 
3633 	mutex_lock(&kvm->lock);
3634 	if (kvm_get_vcpu_by_id(kvm, id)) {
3635 		r = -EEXIST;
3636 		goto unlock_vcpu_destroy;
3637 	}
3638 
3639 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3640 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3641 
3642 	/* Fill the stats id string for the vcpu */
3643 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3644 		 task_pid_nr(current), id);
3645 
3646 	/* Now it's all set up, let userspace reach it */
3647 	kvm_get_kvm(kvm);
3648 	r = create_vcpu_fd(vcpu);
3649 	if (r < 0) {
3650 		kvm_put_kvm_no_destroy(kvm);
3651 		goto unlock_vcpu_destroy;
3652 	}
3653 
3654 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3655 
3656 	/*
3657 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3658 	 * before kvm->online_vcpu's incremented value.
3659 	 */
3660 	smp_wmb();
3661 	atomic_inc(&kvm->online_vcpus);
3662 
3663 	mutex_unlock(&kvm->lock);
3664 	kvm_arch_vcpu_postcreate(vcpu);
3665 	kvm_create_vcpu_debugfs(vcpu);
3666 	return r;
3667 
3668 unlock_vcpu_destroy:
3669 	mutex_unlock(&kvm->lock);
3670 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3671 arch_vcpu_destroy:
3672 	kvm_arch_vcpu_destroy(vcpu);
3673 vcpu_free_run_page:
3674 	free_page((unsigned long)vcpu->run);
3675 vcpu_free:
3676 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3677 vcpu_decrement:
3678 	mutex_lock(&kvm->lock);
3679 	kvm->created_vcpus--;
3680 	mutex_unlock(&kvm->lock);
3681 	return r;
3682 }
3683 
3684 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3685 {
3686 	if (sigset) {
3687 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3688 		vcpu->sigset_active = 1;
3689 		vcpu->sigset = *sigset;
3690 	} else
3691 		vcpu->sigset_active = 0;
3692 	return 0;
3693 }
3694 
3695 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3696 			      size_t size, loff_t *offset)
3697 {
3698 	struct kvm_vcpu *vcpu = file->private_data;
3699 
3700 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3701 			&kvm_vcpu_stats_desc[0], &vcpu->stat,
3702 			sizeof(vcpu->stat), user_buffer, size, offset);
3703 }
3704 
3705 static const struct file_operations kvm_vcpu_stats_fops = {
3706 	.read = kvm_vcpu_stats_read,
3707 	.llseek = noop_llseek,
3708 };
3709 
3710 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3711 {
3712 	int fd;
3713 	struct file *file;
3714 	char name[15 + ITOA_MAX_LEN + 1];
3715 
3716 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3717 
3718 	fd = get_unused_fd_flags(O_CLOEXEC);
3719 	if (fd < 0)
3720 		return fd;
3721 
3722 	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3723 	if (IS_ERR(file)) {
3724 		put_unused_fd(fd);
3725 		return PTR_ERR(file);
3726 	}
3727 	file->f_mode |= FMODE_PREAD;
3728 	fd_install(fd, file);
3729 
3730 	return fd;
3731 }
3732 
3733 static long kvm_vcpu_ioctl(struct file *filp,
3734 			   unsigned int ioctl, unsigned long arg)
3735 {
3736 	struct kvm_vcpu *vcpu = filp->private_data;
3737 	void __user *argp = (void __user *)arg;
3738 	int r;
3739 	struct kvm_fpu *fpu = NULL;
3740 	struct kvm_sregs *kvm_sregs = NULL;
3741 
3742 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3743 		return -EIO;
3744 
3745 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3746 		return -EINVAL;
3747 
3748 	/*
3749 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3750 	 * execution; mutex_lock() would break them.
3751 	 */
3752 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3753 	if (r != -ENOIOCTLCMD)
3754 		return r;
3755 
3756 	if (mutex_lock_killable(&vcpu->mutex))
3757 		return -EINTR;
3758 	switch (ioctl) {
3759 	case KVM_RUN: {
3760 		struct pid *oldpid;
3761 		r = -EINVAL;
3762 		if (arg)
3763 			goto out;
3764 		oldpid = rcu_access_pointer(vcpu->pid);
3765 		if (unlikely(oldpid != task_pid(current))) {
3766 			/* The thread running this VCPU changed. */
3767 			struct pid *newpid;
3768 
3769 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3770 			if (r)
3771 				break;
3772 
3773 			newpid = get_task_pid(current, PIDTYPE_PID);
3774 			rcu_assign_pointer(vcpu->pid, newpid);
3775 			if (oldpid)
3776 				synchronize_rcu();
3777 			put_pid(oldpid);
3778 		}
3779 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3780 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3781 		break;
3782 	}
3783 	case KVM_GET_REGS: {
3784 		struct kvm_regs *kvm_regs;
3785 
3786 		r = -ENOMEM;
3787 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3788 		if (!kvm_regs)
3789 			goto out;
3790 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3791 		if (r)
3792 			goto out_free1;
3793 		r = -EFAULT;
3794 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3795 			goto out_free1;
3796 		r = 0;
3797 out_free1:
3798 		kfree(kvm_regs);
3799 		break;
3800 	}
3801 	case KVM_SET_REGS: {
3802 		struct kvm_regs *kvm_regs;
3803 
3804 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3805 		if (IS_ERR(kvm_regs)) {
3806 			r = PTR_ERR(kvm_regs);
3807 			goto out;
3808 		}
3809 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3810 		kfree(kvm_regs);
3811 		break;
3812 	}
3813 	case KVM_GET_SREGS: {
3814 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3815 				    GFP_KERNEL_ACCOUNT);
3816 		r = -ENOMEM;
3817 		if (!kvm_sregs)
3818 			goto out;
3819 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3820 		if (r)
3821 			goto out;
3822 		r = -EFAULT;
3823 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3824 			goto out;
3825 		r = 0;
3826 		break;
3827 	}
3828 	case KVM_SET_SREGS: {
3829 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3830 		if (IS_ERR(kvm_sregs)) {
3831 			r = PTR_ERR(kvm_sregs);
3832 			kvm_sregs = NULL;
3833 			goto out;
3834 		}
3835 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3836 		break;
3837 	}
3838 	case KVM_GET_MP_STATE: {
3839 		struct kvm_mp_state mp_state;
3840 
3841 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3842 		if (r)
3843 			goto out;
3844 		r = -EFAULT;
3845 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3846 			goto out;
3847 		r = 0;
3848 		break;
3849 	}
3850 	case KVM_SET_MP_STATE: {
3851 		struct kvm_mp_state mp_state;
3852 
3853 		r = -EFAULT;
3854 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3855 			goto out;
3856 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3857 		break;
3858 	}
3859 	case KVM_TRANSLATE: {
3860 		struct kvm_translation tr;
3861 
3862 		r = -EFAULT;
3863 		if (copy_from_user(&tr, argp, sizeof(tr)))
3864 			goto out;
3865 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3866 		if (r)
3867 			goto out;
3868 		r = -EFAULT;
3869 		if (copy_to_user(argp, &tr, sizeof(tr)))
3870 			goto out;
3871 		r = 0;
3872 		break;
3873 	}
3874 	case KVM_SET_GUEST_DEBUG: {
3875 		struct kvm_guest_debug dbg;
3876 
3877 		r = -EFAULT;
3878 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3879 			goto out;
3880 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3881 		break;
3882 	}
3883 	case KVM_SET_SIGNAL_MASK: {
3884 		struct kvm_signal_mask __user *sigmask_arg = argp;
3885 		struct kvm_signal_mask kvm_sigmask;
3886 		sigset_t sigset, *p;
3887 
3888 		p = NULL;
3889 		if (argp) {
3890 			r = -EFAULT;
3891 			if (copy_from_user(&kvm_sigmask, argp,
3892 					   sizeof(kvm_sigmask)))
3893 				goto out;
3894 			r = -EINVAL;
3895 			if (kvm_sigmask.len != sizeof(sigset))
3896 				goto out;
3897 			r = -EFAULT;
3898 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3899 					   sizeof(sigset)))
3900 				goto out;
3901 			p = &sigset;
3902 		}
3903 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3904 		break;
3905 	}
3906 	case KVM_GET_FPU: {
3907 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3908 		r = -ENOMEM;
3909 		if (!fpu)
3910 			goto out;
3911 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3912 		if (r)
3913 			goto out;
3914 		r = -EFAULT;
3915 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3916 			goto out;
3917 		r = 0;
3918 		break;
3919 	}
3920 	case KVM_SET_FPU: {
3921 		fpu = memdup_user(argp, sizeof(*fpu));
3922 		if (IS_ERR(fpu)) {
3923 			r = PTR_ERR(fpu);
3924 			fpu = NULL;
3925 			goto out;
3926 		}
3927 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3928 		break;
3929 	}
3930 	case KVM_GET_STATS_FD: {
3931 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3932 		break;
3933 	}
3934 	default:
3935 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3936 	}
3937 out:
3938 	mutex_unlock(&vcpu->mutex);
3939 	kfree(fpu);
3940 	kfree(kvm_sregs);
3941 	return r;
3942 }
3943 
3944 #ifdef CONFIG_KVM_COMPAT
3945 static long kvm_vcpu_compat_ioctl(struct file *filp,
3946 				  unsigned int ioctl, unsigned long arg)
3947 {
3948 	struct kvm_vcpu *vcpu = filp->private_data;
3949 	void __user *argp = compat_ptr(arg);
3950 	int r;
3951 
3952 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3953 		return -EIO;
3954 
3955 	switch (ioctl) {
3956 	case KVM_SET_SIGNAL_MASK: {
3957 		struct kvm_signal_mask __user *sigmask_arg = argp;
3958 		struct kvm_signal_mask kvm_sigmask;
3959 		sigset_t sigset;
3960 
3961 		if (argp) {
3962 			r = -EFAULT;
3963 			if (copy_from_user(&kvm_sigmask, argp,
3964 					   sizeof(kvm_sigmask)))
3965 				goto out;
3966 			r = -EINVAL;
3967 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3968 				goto out;
3969 			r = -EFAULT;
3970 			if (get_compat_sigset(&sigset,
3971 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3972 				goto out;
3973 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3974 		} else
3975 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3976 		break;
3977 	}
3978 	default:
3979 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3980 	}
3981 
3982 out:
3983 	return r;
3984 }
3985 #endif
3986 
3987 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3988 {
3989 	struct kvm_device *dev = filp->private_data;
3990 
3991 	if (dev->ops->mmap)
3992 		return dev->ops->mmap(dev, vma);
3993 
3994 	return -ENODEV;
3995 }
3996 
3997 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3998 				 int (*accessor)(struct kvm_device *dev,
3999 						 struct kvm_device_attr *attr),
4000 				 unsigned long arg)
4001 {
4002 	struct kvm_device_attr attr;
4003 
4004 	if (!accessor)
4005 		return -EPERM;
4006 
4007 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4008 		return -EFAULT;
4009 
4010 	return accessor(dev, &attr);
4011 }
4012 
4013 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4014 			     unsigned long arg)
4015 {
4016 	struct kvm_device *dev = filp->private_data;
4017 
4018 	if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
4019 		return -EIO;
4020 
4021 	switch (ioctl) {
4022 	case KVM_SET_DEVICE_ATTR:
4023 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4024 	case KVM_GET_DEVICE_ATTR:
4025 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4026 	case KVM_HAS_DEVICE_ATTR:
4027 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4028 	default:
4029 		if (dev->ops->ioctl)
4030 			return dev->ops->ioctl(dev, ioctl, arg);
4031 
4032 		return -ENOTTY;
4033 	}
4034 }
4035 
4036 static int kvm_device_release(struct inode *inode, struct file *filp)
4037 {
4038 	struct kvm_device *dev = filp->private_data;
4039 	struct kvm *kvm = dev->kvm;
4040 
4041 	if (dev->ops->release) {
4042 		mutex_lock(&kvm->lock);
4043 		list_del(&dev->vm_node);
4044 		dev->ops->release(dev);
4045 		mutex_unlock(&kvm->lock);
4046 	}
4047 
4048 	kvm_put_kvm(kvm);
4049 	return 0;
4050 }
4051 
4052 static const struct file_operations kvm_device_fops = {
4053 	.unlocked_ioctl = kvm_device_ioctl,
4054 	.release = kvm_device_release,
4055 	KVM_COMPAT(kvm_device_ioctl),
4056 	.mmap = kvm_device_mmap,
4057 };
4058 
4059 struct kvm_device *kvm_device_from_filp(struct file *filp)
4060 {
4061 	if (filp->f_op != &kvm_device_fops)
4062 		return NULL;
4063 
4064 	return filp->private_data;
4065 }
4066 
4067 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4068 #ifdef CONFIG_KVM_MPIC
4069 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4070 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4071 #endif
4072 };
4073 
4074 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4075 {
4076 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4077 		return -ENOSPC;
4078 
4079 	if (kvm_device_ops_table[type] != NULL)
4080 		return -EEXIST;
4081 
4082 	kvm_device_ops_table[type] = ops;
4083 	return 0;
4084 }
4085 
4086 void kvm_unregister_device_ops(u32 type)
4087 {
4088 	if (kvm_device_ops_table[type] != NULL)
4089 		kvm_device_ops_table[type] = NULL;
4090 }
4091 
4092 static int kvm_ioctl_create_device(struct kvm *kvm,
4093 				   struct kvm_create_device *cd)
4094 {
4095 	const struct kvm_device_ops *ops = NULL;
4096 	struct kvm_device *dev;
4097 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4098 	int type;
4099 	int ret;
4100 
4101 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4102 		return -ENODEV;
4103 
4104 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4105 	ops = kvm_device_ops_table[type];
4106 	if (ops == NULL)
4107 		return -ENODEV;
4108 
4109 	if (test)
4110 		return 0;
4111 
4112 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4113 	if (!dev)
4114 		return -ENOMEM;
4115 
4116 	dev->ops = ops;
4117 	dev->kvm = kvm;
4118 
4119 	mutex_lock(&kvm->lock);
4120 	ret = ops->create(dev, type);
4121 	if (ret < 0) {
4122 		mutex_unlock(&kvm->lock);
4123 		kfree(dev);
4124 		return ret;
4125 	}
4126 	list_add(&dev->vm_node, &kvm->devices);
4127 	mutex_unlock(&kvm->lock);
4128 
4129 	if (ops->init)
4130 		ops->init(dev);
4131 
4132 	kvm_get_kvm(kvm);
4133 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4134 	if (ret < 0) {
4135 		kvm_put_kvm_no_destroy(kvm);
4136 		mutex_lock(&kvm->lock);
4137 		list_del(&dev->vm_node);
4138 		mutex_unlock(&kvm->lock);
4139 		ops->destroy(dev);
4140 		return ret;
4141 	}
4142 
4143 	cd->fd = ret;
4144 	return 0;
4145 }
4146 
4147 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4148 {
4149 	switch (arg) {
4150 	case KVM_CAP_USER_MEMORY:
4151 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4152 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4153 	case KVM_CAP_INTERNAL_ERROR_DATA:
4154 #ifdef CONFIG_HAVE_KVM_MSI
4155 	case KVM_CAP_SIGNAL_MSI:
4156 #endif
4157 #ifdef CONFIG_HAVE_KVM_IRQFD
4158 	case KVM_CAP_IRQFD:
4159 	case KVM_CAP_IRQFD_RESAMPLE:
4160 #endif
4161 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4162 	case KVM_CAP_CHECK_EXTENSION_VM:
4163 	case KVM_CAP_ENABLE_CAP_VM:
4164 	case KVM_CAP_HALT_POLL:
4165 		return 1;
4166 #ifdef CONFIG_KVM_MMIO
4167 	case KVM_CAP_COALESCED_MMIO:
4168 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4169 	case KVM_CAP_COALESCED_PIO:
4170 		return 1;
4171 #endif
4172 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4173 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4174 		return KVM_DIRTY_LOG_MANUAL_CAPS;
4175 #endif
4176 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4177 	case KVM_CAP_IRQ_ROUTING:
4178 		return KVM_MAX_IRQ_ROUTES;
4179 #endif
4180 #if KVM_ADDRESS_SPACE_NUM > 1
4181 	case KVM_CAP_MULTI_ADDRESS_SPACE:
4182 		return KVM_ADDRESS_SPACE_NUM;
4183 #endif
4184 	case KVM_CAP_NR_MEMSLOTS:
4185 		return KVM_USER_MEM_SLOTS;
4186 	case KVM_CAP_DIRTY_LOG_RING:
4187 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4188 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4189 #else
4190 		return 0;
4191 #endif
4192 	case KVM_CAP_BINARY_STATS_FD:
4193 		return 1;
4194 	default:
4195 		break;
4196 	}
4197 	return kvm_vm_ioctl_check_extension(kvm, arg);
4198 }
4199 
4200 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4201 {
4202 	int r;
4203 
4204 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4205 		return -EINVAL;
4206 
4207 	/* the size should be power of 2 */
4208 	if (!size || (size & (size - 1)))
4209 		return -EINVAL;
4210 
4211 	/* Should be bigger to keep the reserved entries, or a page */
4212 	if (size < kvm_dirty_ring_get_rsvd_entries() *
4213 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4214 		return -EINVAL;
4215 
4216 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4217 	    sizeof(struct kvm_dirty_gfn))
4218 		return -E2BIG;
4219 
4220 	/* We only allow it to set once */
4221 	if (kvm->dirty_ring_size)
4222 		return -EINVAL;
4223 
4224 	mutex_lock(&kvm->lock);
4225 
4226 	if (kvm->created_vcpus) {
4227 		/* We don't allow to change this value after vcpu created */
4228 		r = -EINVAL;
4229 	} else {
4230 		kvm->dirty_ring_size = size;
4231 		r = 0;
4232 	}
4233 
4234 	mutex_unlock(&kvm->lock);
4235 	return r;
4236 }
4237 
4238 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4239 {
4240 	int i;
4241 	struct kvm_vcpu *vcpu;
4242 	int cleared = 0;
4243 
4244 	if (!kvm->dirty_ring_size)
4245 		return -EINVAL;
4246 
4247 	mutex_lock(&kvm->slots_lock);
4248 
4249 	kvm_for_each_vcpu(i, vcpu, kvm)
4250 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4251 
4252 	mutex_unlock(&kvm->slots_lock);
4253 
4254 	if (cleared)
4255 		kvm_flush_remote_tlbs(kvm);
4256 
4257 	return cleared;
4258 }
4259 
4260 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4261 						  struct kvm_enable_cap *cap)
4262 {
4263 	return -EINVAL;
4264 }
4265 
4266 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4267 					   struct kvm_enable_cap *cap)
4268 {
4269 	switch (cap->cap) {
4270 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4271 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4272 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4273 
4274 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4275 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4276 
4277 		if (cap->flags || (cap->args[0] & ~allowed_options))
4278 			return -EINVAL;
4279 		kvm->manual_dirty_log_protect = cap->args[0];
4280 		return 0;
4281 	}
4282 #endif
4283 	case KVM_CAP_HALT_POLL: {
4284 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4285 			return -EINVAL;
4286 
4287 		kvm->max_halt_poll_ns = cap->args[0];
4288 		return 0;
4289 	}
4290 	case KVM_CAP_DIRTY_LOG_RING:
4291 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4292 	default:
4293 		return kvm_vm_ioctl_enable_cap(kvm, cap);
4294 	}
4295 }
4296 
4297 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4298 			      size_t size, loff_t *offset)
4299 {
4300 	struct kvm *kvm = file->private_data;
4301 
4302 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4303 				&kvm_vm_stats_desc[0], &kvm->stat,
4304 				sizeof(kvm->stat), user_buffer, size, offset);
4305 }
4306 
4307 static const struct file_operations kvm_vm_stats_fops = {
4308 	.read = kvm_vm_stats_read,
4309 	.llseek = noop_llseek,
4310 };
4311 
4312 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4313 {
4314 	int fd;
4315 	struct file *file;
4316 
4317 	fd = get_unused_fd_flags(O_CLOEXEC);
4318 	if (fd < 0)
4319 		return fd;
4320 
4321 	file = anon_inode_getfile("kvm-vm-stats",
4322 			&kvm_vm_stats_fops, kvm, O_RDONLY);
4323 	if (IS_ERR(file)) {
4324 		put_unused_fd(fd);
4325 		return PTR_ERR(file);
4326 	}
4327 	file->f_mode |= FMODE_PREAD;
4328 	fd_install(fd, file);
4329 
4330 	return fd;
4331 }
4332 
4333 static long kvm_vm_ioctl(struct file *filp,
4334 			   unsigned int ioctl, unsigned long arg)
4335 {
4336 	struct kvm *kvm = filp->private_data;
4337 	void __user *argp = (void __user *)arg;
4338 	int r;
4339 
4340 	if (kvm->mm != current->mm || kvm->vm_bugged)
4341 		return -EIO;
4342 	switch (ioctl) {
4343 	case KVM_CREATE_VCPU:
4344 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4345 		break;
4346 	case KVM_ENABLE_CAP: {
4347 		struct kvm_enable_cap cap;
4348 
4349 		r = -EFAULT;
4350 		if (copy_from_user(&cap, argp, sizeof(cap)))
4351 			goto out;
4352 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4353 		break;
4354 	}
4355 	case KVM_SET_USER_MEMORY_REGION: {
4356 		struct kvm_userspace_memory_region kvm_userspace_mem;
4357 
4358 		r = -EFAULT;
4359 		if (copy_from_user(&kvm_userspace_mem, argp,
4360 						sizeof(kvm_userspace_mem)))
4361 			goto out;
4362 
4363 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4364 		break;
4365 	}
4366 	case KVM_GET_DIRTY_LOG: {
4367 		struct kvm_dirty_log log;
4368 
4369 		r = -EFAULT;
4370 		if (copy_from_user(&log, argp, sizeof(log)))
4371 			goto out;
4372 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4373 		break;
4374 	}
4375 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4376 	case KVM_CLEAR_DIRTY_LOG: {
4377 		struct kvm_clear_dirty_log log;
4378 
4379 		r = -EFAULT;
4380 		if (copy_from_user(&log, argp, sizeof(log)))
4381 			goto out;
4382 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4383 		break;
4384 	}
4385 #endif
4386 #ifdef CONFIG_KVM_MMIO
4387 	case KVM_REGISTER_COALESCED_MMIO: {
4388 		struct kvm_coalesced_mmio_zone zone;
4389 
4390 		r = -EFAULT;
4391 		if (copy_from_user(&zone, argp, sizeof(zone)))
4392 			goto out;
4393 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4394 		break;
4395 	}
4396 	case KVM_UNREGISTER_COALESCED_MMIO: {
4397 		struct kvm_coalesced_mmio_zone zone;
4398 
4399 		r = -EFAULT;
4400 		if (copy_from_user(&zone, argp, sizeof(zone)))
4401 			goto out;
4402 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4403 		break;
4404 	}
4405 #endif
4406 	case KVM_IRQFD: {
4407 		struct kvm_irqfd data;
4408 
4409 		r = -EFAULT;
4410 		if (copy_from_user(&data, argp, sizeof(data)))
4411 			goto out;
4412 		r = kvm_irqfd(kvm, &data);
4413 		break;
4414 	}
4415 	case KVM_IOEVENTFD: {
4416 		struct kvm_ioeventfd data;
4417 
4418 		r = -EFAULT;
4419 		if (copy_from_user(&data, argp, sizeof(data)))
4420 			goto out;
4421 		r = kvm_ioeventfd(kvm, &data);
4422 		break;
4423 	}
4424 #ifdef CONFIG_HAVE_KVM_MSI
4425 	case KVM_SIGNAL_MSI: {
4426 		struct kvm_msi msi;
4427 
4428 		r = -EFAULT;
4429 		if (copy_from_user(&msi, argp, sizeof(msi)))
4430 			goto out;
4431 		r = kvm_send_userspace_msi(kvm, &msi);
4432 		break;
4433 	}
4434 #endif
4435 #ifdef __KVM_HAVE_IRQ_LINE
4436 	case KVM_IRQ_LINE_STATUS:
4437 	case KVM_IRQ_LINE: {
4438 		struct kvm_irq_level irq_event;
4439 
4440 		r = -EFAULT;
4441 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4442 			goto out;
4443 
4444 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4445 					ioctl == KVM_IRQ_LINE_STATUS);
4446 		if (r)
4447 			goto out;
4448 
4449 		r = -EFAULT;
4450 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4451 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4452 				goto out;
4453 		}
4454 
4455 		r = 0;
4456 		break;
4457 	}
4458 #endif
4459 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4460 	case KVM_SET_GSI_ROUTING: {
4461 		struct kvm_irq_routing routing;
4462 		struct kvm_irq_routing __user *urouting;
4463 		struct kvm_irq_routing_entry *entries = NULL;
4464 
4465 		r = -EFAULT;
4466 		if (copy_from_user(&routing, argp, sizeof(routing)))
4467 			goto out;
4468 		r = -EINVAL;
4469 		if (!kvm_arch_can_set_irq_routing(kvm))
4470 			goto out;
4471 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4472 			goto out;
4473 		if (routing.flags)
4474 			goto out;
4475 		if (routing.nr) {
4476 			urouting = argp;
4477 			entries = vmemdup_user(urouting->entries,
4478 					       array_size(sizeof(*entries),
4479 							  routing.nr));
4480 			if (IS_ERR(entries)) {
4481 				r = PTR_ERR(entries);
4482 				goto out;
4483 			}
4484 		}
4485 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4486 					routing.flags);
4487 		kvfree(entries);
4488 		break;
4489 	}
4490 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4491 	case KVM_CREATE_DEVICE: {
4492 		struct kvm_create_device cd;
4493 
4494 		r = -EFAULT;
4495 		if (copy_from_user(&cd, argp, sizeof(cd)))
4496 			goto out;
4497 
4498 		r = kvm_ioctl_create_device(kvm, &cd);
4499 		if (r)
4500 			goto out;
4501 
4502 		r = -EFAULT;
4503 		if (copy_to_user(argp, &cd, sizeof(cd)))
4504 			goto out;
4505 
4506 		r = 0;
4507 		break;
4508 	}
4509 	case KVM_CHECK_EXTENSION:
4510 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4511 		break;
4512 	case KVM_RESET_DIRTY_RINGS:
4513 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4514 		break;
4515 	case KVM_GET_STATS_FD:
4516 		r = kvm_vm_ioctl_get_stats_fd(kvm);
4517 		break;
4518 	default:
4519 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4520 	}
4521 out:
4522 	return r;
4523 }
4524 
4525 #ifdef CONFIG_KVM_COMPAT
4526 struct compat_kvm_dirty_log {
4527 	__u32 slot;
4528 	__u32 padding1;
4529 	union {
4530 		compat_uptr_t dirty_bitmap; /* one bit per page */
4531 		__u64 padding2;
4532 	};
4533 };
4534 
4535 struct compat_kvm_clear_dirty_log {
4536 	__u32 slot;
4537 	__u32 num_pages;
4538 	__u64 first_page;
4539 	union {
4540 		compat_uptr_t dirty_bitmap; /* one bit per page */
4541 		__u64 padding2;
4542 	};
4543 };
4544 
4545 static long kvm_vm_compat_ioctl(struct file *filp,
4546 			   unsigned int ioctl, unsigned long arg)
4547 {
4548 	struct kvm *kvm = filp->private_data;
4549 	int r;
4550 
4551 	if (kvm->mm != current->mm || kvm->vm_bugged)
4552 		return -EIO;
4553 	switch (ioctl) {
4554 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4555 	case KVM_CLEAR_DIRTY_LOG: {
4556 		struct compat_kvm_clear_dirty_log compat_log;
4557 		struct kvm_clear_dirty_log log;
4558 
4559 		if (copy_from_user(&compat_log, (void __user *)arg,
4560 				   sizeof(compat_log)))
4561 			return -EFAULT;
4562 		log.slot	 = compat_log.slot;
4563 		log.num_pages	 = compat_log.num_pages;
4564 		log.first_page	 = compat_log.first_page;
4565 		log.padding2	 = compat_log.padding2;
4566 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4567 
4568 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4569 		break;
4570 	}
4571 #endif
4572 	case KVM_GET_DIRTY_LOG: {
4573 		struct compat_kvm_dirty_log compat_log;
4574 		struct kvm_dirty_log log;
4575 
4576 		if (copy_from_user(&compat_log, (void __user *)arg,
4577 				   sizeof(compat_log)))
4578 			return -EFAULT;
4579 		log.slot	 = compat_log.slot;
4580 		log.padding1	 = compat_log.padding1;
4581 		log.padding2	 = compat_log.padding2;
4582 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4583 
4584 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4585 		break;
4586 	}
4587 	default:
4588 		r = kvm_vm_ioctl(filp, ioctl, arg);
4589 	}
4590 	return r;
4591 }
4592 #endif
4593 
4594 static struct file_operations kvm_vm_fops = {
4595 	.release        = kvm_vm_release,
4596 	.unlocked_ioctl = kvm_vm_ioctl,
4597 	.llseek		= noop_llseek,
4598 	KVM_COMPAT(kvm_vm_compat_ioctl),
4599 };
4600 
4601 bool file_is_kvm(struct file *file)
4602 {
4603 	return file && file->f_op == &kvm_vm_fops;
4604 }
4605 EXPORT_SYMBOL_GPL(file_is_kvm);
4606 
4607 static int kvm_dev_ioctl_create_vm(unsigned long type)
4608 {
4609 	int r;
4610 	struct kvm *kvm;
4611 	struct file *file;
4612 
4613 	kvm = kvm_create_vm(type);
4614 	if (IS_ERR(kvm))
4615 		return PTR_ERR(kvm);
4616 #ifdef CONFIG_KVM_MMIO
4617 	r = kvm_coalesced_mmio_init(kvm);
4618 	if (r < 0)
4619 		goto put_kvm;
4620 #endif
4621 	r = get_unused_fd_flags(O_CLOEXEC);
4622 	if (r < 0)
4623 		goto put_kvm;
4624 
4625 	snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4626 			"kvm-%d", task_pid_nr(current));
4627 
4628 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4629 	if (IS_ERR(file)) {
4630 		put_unused_fd(r);
4631 		r = PTR_ERR(file);
4632 		goto put_kvm;
4633 	}
4634 
4635 	/*
4636 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4637 	 * already set, with ->release() being kvm_vm_release().  In error
4638 	 * cases it will be called by the final fput(file) and will take
4639 	 * care of doing kvm_put_kvm(kvm).
4640 	 */
4641 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4642 		put_unused_fd(r);
4643 		fput(file);
4644 		return -ENOMEM;
4645 	}
4646 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4647 
4648 	fd_install(r, file);
4649 	return r;
4650 
4651 put_kvm:
4652 	kvm_put_kvm(kvm);
4653 	return r;
4654 }
4655 
4656 static long kvm_dev_ioctl(struct file *filp,
4657 			  unsigned int ioctl, unsigned long arg)
4658 {
4659 	long r = -EINVAL;
4660 
4661 	switch (ioctl) {
4662 	case KVM_GET_API_VERSION:
4663 		if (arg)
4664 			goto out;
4665 		r = KVM_API_VERSION;
4666 		break;
4667 	case KVM_CREATE_VM:
4668 		r = kvm_dev_ioctl_create_vm(arg);
4669 		break;
4670 	case KVM_CHECK_EXTENSION:
4671 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4672 		break;
4673 	case KVM_GET_VCPU_MMAP_SIZE:
4674 		if (arg)
4675 			goto out;
4676 		r = PAGE_SIZE;     /* struct kvm_run */
4677 #ifdef CONFIG_X86
4678 		r += PAGE_SIZE;    /* pio data page */
4679 #endif
4680 #ifdef CONFIG_KVM_MMIO
4681 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4682 #endif
4683 		break;
4684 	case KVM_TRACE_ENABLE:
4685 	case KVM_TRACE_PAUSE:
4686 	case KVM_TRACE_DISABLE:
4687 		r = -EOPNOTSUPP;
4688 		break;
4689 	default:
4690 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4691 	}
4692 out:
4693 	return r;
4694 }
4695 
4696 static struct file_operations kvm_chardev_ops = {
4697 	.unlocked_ioctl = kvm_dev_ioctl,
4698 	.llseek		= noop_llseek,
4699 	KVM_COMPAT(kvm_dev_ioctl),
4700 };
4701 
4702 static struct miscdevice kvm_dev = {
4703 	KVM_MINOR,
4704 	"kvm",
4705 	&kvm_chardev_ops,
4706 };
4707 
4708 static void hardware_enable_nolock(void *junk)
4709 {
4710 	int cpu = raw_smp_processor_id();
4711 	int r;
4712 
4713 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4714 		return;
4715 
4716 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4717 
4718 	r = kvm_arch_hardware_enable();
4719 
4720 	if (r) {
4721 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4722 		atomic_inc(&hardware_enable_failed);
4723 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4724 	}
4725 }
4726 
4727 static int kvm_starting_cpu(unsigned int cpu)
4728 {
4729 	raw_spin_lock(&kvm_count_lock);
4730 	if (kvm_usage_count)
4731 		hardware_enable_nolock(NULL);
4732 	raw_spin_unlock(&kvm_count_lock);
4733 	return 0;
4734 }
4735 
4736 static void hardware_disable_nolock(void *junk)
4737 {
4738 	int cpu = raw_smp_processor_id();
4739 
4740 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4741 		return;
4742 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4743 	kvm_arch_hardware_disable();
4744 }
4745 
4746 static int kvm_dying_cpu(unsigned int cpu)
4747 {
4748 	raw_spin_lock(&kvm_count_lock);
4749 	if (kvm_usage_count)
4750 		hardware_disable_nolock(NULL);
4751 	raw_spin_unlock(&kvm_count_lock);
4752 	return 0;
4753 }
4754 
4755 static void hardware_disable_all_nolock(void)
4756 {
4757 	BUG_ON(!kvm_usage_count);
4758 
4759 	kvm_usage_count--;
4760 	if (!kvm_usage_count)
4761 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4762 }
4763 
4764 static void hardware_disable_all(void)
4765 {
4766 	raw_spin_lock(&kvm_count_lock);
4767 	hardware_disable_all_nolock();
4768 	raw_spin_unlock(&kvm_count_lock);
4769 }
4770 
4771 static int hardware_enable_all(void)
4772 {
4773 	int r = 0;
4774 
4775 	raw_spin_lock(&kvm_count_lock);
4776 
4777 	kvm_usage_count++;
4778 	if (kvm_usage_count == 1) {
4779 		atomic_set(&hardware_enable_failed, 0);
4780 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4781 
4782 		if (atomic_read(&hardware_enable_failed)) {
4783 			hardware_disable_all_nolock();
4784 			r = -EBUSY;
4785 		}
4786 	}
4787 
4788 	raw_spin_unlock(&kvm_count_lock);
4789 
4790 	return r;
4791 }
4792 
4793 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4794 		      void *v)
4795 {
4796 	/*
4797 	 * Some (well, at least mine) BIOSes hang on reboot if
4798 	 * in vmx root mode.
4799 	 *
4800 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4801 	 */
4802 	pr_info("kvm: exiting hardware virtualization\n");
4803 	kvm_rebooting = true;
4804 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4805 	return NOTIFY_OK;
4806 }
4807 
4808 static struct notifier_block kvm_reboot_notifier = {
4809 	.notifier_call = kvm_reboot,
4810 	.priority = 0,
4811 };
4812 
4813 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4814 {
4815 	int i;
4816 
4817 	for (i = 0; i < bus->dev_count; i++) {
4818 		struct kvm_io_device *pos = bus->range[i].dev;
4819 
4820 		kvm_iodevice_destructor(pos);
4821 	}
4822 	kfree(bus);
4823 }
4824 
4825 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4826 				 const struct kvm_io_range *r2)
4827 {
4828 	gpa_t addr1 = r1->addr;
4829 	gpa_t addr2 = r2->addr;
4830 
4831 	if (addr1 < addr2)
4832 		return -1;
4833 
4834 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4835 	 * accept any overlapping write.  Any order is acceptable for
4836 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4837 	 * we process all of them.
4838 	 */
4839 	if (r2->len) {
4840 		addr1 += r1->len;
4841 		addr2 += r2->len;
4842 	}
4843 
4844 	if (addr1 > addr2)
4845 		return 1;
4846 
4847 	return 0;
4848 }
4849 
4850 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4851 {
4852 	return kvm_io_bus_cmp(p1, p2);
4853 }
4854 
4855 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4856 			     gpa_t addr, int len)
4857 {
4858 	struct kvm_io_range *range, key;
4859 	int off;
4860 
4861 	key = (struct kvm_io_range) {
4862 		.addr = addr,
4863 		.len = len,
4864 	};
4865 
4866 	range = bsearch(&key, bus->range, bus->dev_count,
4867 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4868 	if (range == NULL)
4869 		return -ENOENT;
4870 
4871 	off = range - bus->range;
4872 
4873 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4874 		off--;
4875 
4876 	return off;
4877 }
4878 
4879 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4880 			      struct kvm_io_range *range, const void *val)
4881 {
4882 	int idx;
4883 
4884 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4885 	if (idx < 0)
4886 		return -EOPNOTSUPP;
4887 
4888 	while (idx < bus->dev_count &&
4889 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4890 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4891 					range->len, val))
4892 			return idx;
4893 		idx++;
4894 	}
4895 
4896 	return -EOPNOTSUPP;
4897 }
4898 
4899 /* kvm_io_bus_write - called under kvm->slots_lock */
4900 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4901 		     int len, const void *val)
4902 {
4903 	struct kvm_io_bus *bus;
4904 	struct kvm_io_range range;
4905 	int r;
4906 
4907 	range = (struct kvm_io_range) {
4908 		.addr = addr,
4909 		.len = len,
4910 	};
4911 
4912 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4913 	if (!bus)
4914 		return -ENOMEM;
4915 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4916 	return r < 0 ? r : 0;
4917 }
4918 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4919 
4920 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4921 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4922 			    gpa_t addr, int len, const void *val, long cookie)
4923 {
4924 	struct kvm_io_bus *bus;
4925 	struct kvm_io_range range;
4926 
4927 	range = (struct kvm_io_range) {
4928 		.addr = addr,
4929 		.len = len,
4930 	};
4931 
4932 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4933 	if (!bus)
4934 		return -ENOMEM;
4935 
4936 	/* First try the device referenced by cookie. */
4937 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4938 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4939 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4940 					val))
4941 			return cookie;
4942 
4943 	/*
4944 	 * cookie contained garbage; fall back to search and return the
4945 	 * correct cookie value.
4946 	 */
4947 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4948 }
4949 
4950 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4951 			     struct kvm_io_range *range, void *val)
4952 {
4953 	int idx;
4954 
4955 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4956 	if (idx < 0)
4957 		return -EOPNOTSUPP;
4958 
4959 	while (idx < bus->dev_count &&
4960 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4961 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4962 				       range->len, val))
4963 			return idx;
4964 		idx++;
4965 	}
4966 
4967 	return -EOPNOTSUPP;
4968 }
4969 
4970 /* kvm_io_bus_read - called under kvm->slots_lock */
4971 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4972 		    int len, void *val)
4973 {
4974 	struct kvm_io_bus *bus;
4975 	struct kvm_io_range range;
4976 	int r;
4977 
4978 	range = (struct kvm_io_range) {
4979 		.addr = addr,
4980 		.len = len,
4981 	};
4982 
4983 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4984 	if (!bus)
4985 		return -ENOMEM;
4986 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4987 	return r < 0 ? r : 0;
4988 }
4989 
4990 /* Caller must hold slots_lock. */
4991 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4992 			    int len, struct kvm_io_device *dev)
4993 {
4994 	int i;
4995 	struct kvm_io_bus *new_bus, *bus;
4996 	struct kvm_io_range range;
4997 
4998 	bus = kvm_get_bus(kvm, bus_idx);
4999 	if (!bus)
5000 		return -ENOMEM;
5001 
5002 	/* exclude ioeventfd which is limited by maximum fd */
5003 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5004 		return -ENOSPC;
5005 
5006 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5007 			  GFP_KERNEL_ACCOUNT);
5008 	if (!new_bus)
5009 		return -ENOMEM;
5010 
5011 	range = (struct kvm_io_range) {
5012 		.addr = addr,
5013 		.len = len,
5014 		.dev = dev,
5015 	};
5016 
5017 	for (i = 0; i < bus->dev_count; i++)
5018 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5019 			break;
5020 
5021 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5022 	new_bus->dev_count++;
5023 	new_bus->range[i] = range;
5024 	memcpy(new_bus->range + i + 1, bus->range + i,
5025 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5026 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5027 	synchronize_srcu_expedited(&kvm->srcu);
5028 	kfree(bus);
5029 
5030 	return 0;
5031 }
5032 
5033 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5034 			      struct kvm_io_device *dev)
5035 {
5036 	int i, j;
5037 	struct kvm_io_bus *new_bus, *bus;
5038 
5039 	lockdep_assert_held(&kvm->slots_lock);
5040 
5041 	bus = kvm_get_bus(kvm, bus_idx);
5042 	if (!bus)
5043 		return 0;
5044 
5045 	for (i = 0; i < bus->dev_count; i++) {
5046 		if (bus->range[i].dev == dev) {
5047 			break;
5048 		}
5049 	}
5050 
5051 	if (i == bus->dev_count)
5052 		return 0;
5053 
5054 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5055 			  GFP_KERNEL_ACCOUNT);
5056 	if (new_bus) {
5057 		memcpy(new_bus, bus, struct_size(bus, range, i));
5058 		new_bus->dev_count--;
5059 		memcpy(new_bus->range + i, bus->range + i + 1,
5060 				flex_array_size(new_bus, range, new_bus->dev_count - i));
5061 	}
5062 
5063 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5064 	synchronize_srcu_expedited(&kvm->srcu);
5065 
5066 	/* Destroy the old bus _after_ installing the (null) bus. */
5067 	if (!new_bus) {
5068 		pr_err("kvm: failed to shrink bus, removing it completely\n");
5069 		for (j = 0; j < bus->dev_count; j++) {
5070 			if (j == i)
5071 				continue;
5072 			kvm_iodevice_destructor(bus->range[j].dev);
5073 		}
5074 	}
5075 
5076 	kfree(bus);
5077 	return new_bus ? 0 : -ENOMEM;
5078 }
5079 
5080 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5081 					 gpa_t addr)
5082 {
5083 	struct kvm_io_bus *bus;
5084 	int dev_idx, srcu_idx;
5085 	struct kvm_io_device *iodev = NULL;
5086 
5087 	srcu_idx = srcu_read_lock(&kvm->srcu);
5088 
5089 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5090 	if (!bus)
5091 		goto out_unlock;
5092 
5093 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5094 	if (dev_idx < 0)
5095 		goto out_unlock;
5096 
5097 	iodev = bus->range[dev_idx].dev;
5098 
5099 out_unlock:
5100 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5101 
5102 	return iodev;
5103 }
5104 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5105 
5106 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5107 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5108 			   const char *fmt)
5109 {
5110 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5111 					  inode->i_private;
5112 
5113 	/*
5114 	 * The debugfs files are a reference to the kvm struct which
5115         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5116         * avoids the race between open and the removal of the debugfs directory.
5117 	 */
5118 	if (!kvm_get_kvm_safe(stat_data->kvm))
5119 		return -ENOENT;
5120 
5121 	if (simple_attr_open(inode, file, get,
5122 		    kvm_stats_debugfs_mode(stat_data->desc) & 0222
5123 		    ? set : NULL,
5124 		    fmt)) {
5125 		kvm_put_kvm(stat_data->kvm);
5126 		return -ENOMEM;
5127 	}
5128 
5129 	return 0;
5130 }
5131 
5132 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5133 {
5134 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5135 					  inode->i_private;
5136 
5137 	simple_attr_release(inode, file);
5138 	kvm_put_kvm(stat_data->kvm);
5139 
5140 	return 0;
5141 }
5142 
5143 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5144 {
5145 	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5146 
5147 	return 0;
5148 }
5149 
5150 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5151 {
5152 	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5153 
5154 	return 0;
5155 }
5156 
5157 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5158 {
5159 	int i;
5160 	struct kvm_vcpu *vcpu;
5161 
5162 	*val = 0;
5163 
5164 	kvm_for_each_vcpu(i, vcpu, kvm)
5165 		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5166 
5167 	return 0;
5168 }
5169 
5170 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5171 {
5172 	int i;
5173 	struct kvm_vcpu *vcpu;
5174 
5175 	kvm_for_each_vcpu(i, vcpu, kvm)
5176 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5177 
5178 	return 0;
5179 }
5180 
5181 static int kvm_stat_data_get(void *data, u64 *val)
5182 {
5183 	int r = -EFAULT;
5184 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5185 
5186 	switch (stat_data->kind) {
5187 	case KVM_STAT_VM:
5188 		r = kvm_get_stat_per_vm(stat_data->kvm,
5189 					stat_data->desc->desc.offset, val);
5190 		break;
5191 	case KVM_STAT_VCPU:
5192 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5193 					  stat_data->desc->desc.offset, val);
5194 		break;
5195 	}
5196 
5197 	return r;
5198 }
5199 
5200 static int kvm_stat_data_clear(void *data, u64 val)
5201 {
5202 	int r = -EFAULT;
5203 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5204 
5205 	if (val)
5206 		return -EINVAL;
5207 
5208 	switch (stat_data->kind) {
5209 	case KVM_STAT_VM:
5210 		r = kvm_clear_stat_per_vm(stat_data->kvm,
5211 					  stat_data->desc->desc.offset);
5212 		break;
5213 	case KVM_STAT_VCPU:
5214 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5215 					    stat_data->desc->desc.offset);
5216 		break;
5217 	}
5218 
5219 	return r;
5220 }
5221 
5222 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5223 {
5224 	__simple_attr_check_format("%llu\n", 0ull);
5225 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5226 				kvm_stat_data_clear, "%llu\n");
5227 }
5228 
5229 static const struct file_operations stat_fops_per_vm = {
5230 	.owner = THIS_MODULE,
5231 	.open = kvm_stat_data_open,
5232 	.release = kvm_debugfs_release,
5233 	.read = simple_attr_read,
5234 	.write = simple_attr_write,
5235 	.llseek = no_llseek,
5236 };
5237 
5238 static int vm_stat_get(void *_offset, u64 *val)
5239 {
5240 	unsigned offset = (long)_offset;
5241 	struct kvm *kvm;
5242 	u64 tmp_val;
5243 
5244 	*val = 0;
5245 	mutex_lock(&kvm_lock);
5246 	list_for_each_entry(kvm, &vm_list, vm_list) {
5247 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5248 		*val += tmp_val;
5249 	}
5250 	mutex_unlock(&kvm_lock);
5251 	return 0;
5252 }
5253 
5254 static int vm_stat_clear(void *_offset, u64 val)
5255 {
5256 	unsigned offset = (long)_offset;
5257 	struct kvm *kvm;
5258 
5259 	if (val)
5260 		return -EINVAL;
5261 
5262 	mutex_lock(&kvm_lock);
5263 	list_for_each_entry(kvm, &vm_list, vm_list) {
5264 		kvm_clear_stat_per_vm(kvm, offset);
5265 	}
5266 	mutex_unlock(&kvm_lock);
5267 
5268 	return 0;
5269 }
5270 
5271 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5272 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5273 
5274 static int vcpu_stat_get(void *_offset, u64 *val)
5275 {
5276 	unsigned offset = (long)_offset;
5277 	struct kvm *kvm;
5278 	u64 tmp_val;
5279 
5280 	*val = 0;
5281 	mutex_lock(&kvm_lock);
5282 	list_for_each_entry(kvm, &vm_list, vm_list) {
5283 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5284 		*val += tmp_val;
5285 	}
5286 	mutex_unlock(&kvm_lock);
5287 	return 0;
5288 }
5289 
5290 static int vcpu_stat_clear(void *_offset, u64 val)
5291 {
5292 	unsigned offset = (long)_offset;
5293 	struct kvm *kvm;
5294 
5295 	if (val)
5296 		return -EINVAL;
5297 
5298 	mutex_lock(&kvm_lock);
5299 	list_for_each_entry(kvm, &vm_list, vm_list) {
5300 		kvm_clear_stat_per_vcpu(kvm, offset);
5301 	}
5302 	mutex_unlock(&kvm_lock);
5303 
5304 	return 0;
5305 }
5306 
5307 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5308 			"%llu\n");
5309 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5310 
5311 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5312 {
5313 	struct kobj_uevent_env *env;
5314 	unsigned long long created, active;
5315 
5316 	if (!kvm_dev.this_device || !kvm)
5317 		return;
5318 
5319 	mutex_lock(&kvm_lock);
5320 	if (type == KVM_EVENT_CREATE_VM) {
5321 		kvm_createvm_count++;
5322 		kvm_active_vms++;
5323 	} else if (type == KVM_EVENT_DESTROY_VM) {
5324 		kvm_active_vms--;
5325 	}
5326 	created = kvm_createvm_count;
5327 	active = kvm_active_vms;
5328 	mutex_unlock(&kvm_lock);
5329 
5330 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5331 	if (!env)
5332 		return;
5333 
5334 	add_uevent_var(env, "CREATED=%llu", created);
5335 	add_uevent_var(env, "COUNT=%llu", active);
5336 
5337 	if (type == KVM_EVENT_CREATE_VM) {
5338 		add_uevent_var(env, "EVENT=create");
5339 		kvm->userspace_pid = task_pid_nr(current);
5340 	} else if (type == KVM_EVENT_DESTROY_VM) {
5341 		add_uevent_var(env, "EVENT=destroy");
5342 	}
5343 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5344 
5345 	if (kvm->debugfs_dentry) {
5346 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5347 
5348 		if (p) {
5349 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5350 			if (!IS_ERR(tmp))
5351 				add_uevent_var(env, "STATS_PATH=%s", tmp);
5352 			kfree(p);
5353 		}
5354 	}
5355 	/* no need for checks, since we are adding at most only 5 keys */
5356 	env->envp[env->envp_idx++] = NULL;
5357 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5358 	kfree(env);
5359 }
5360 
5361 static void kvm_init_debug(void)
5362 {
5363 	const struct file_operations *fops;
5364 	const struct _kvm_stats_desc *pdesc;
5365 	int i;
5366 
5367 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5368 
5369 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5370 		pdesc = &kvm_vm_stats_desc[i];
5371 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5372 			fops = &vm_stat_fops;
5373 		else
5374 			fops = &vm_stat_readonly_fops;
5375 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5376 				kvm_debugfs_dir,
5377 				(void *)(long)pdesc->desc.offset, fops);
5378 	}
5379 
5380 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5381 		pdesc = &kvm_vcpu_stats_desc[i];
5382 		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5383 			fops = &vcpu_stat_fops;
5384 		else
5385 			fops = &vcpu_stat_readonly_fops;
5386 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5387 				kvm_debugfs_dir,
5388 				(void *)(long)pdesc->desc.offset, fops);
5389 	}
5390 }
5391 
5392 static int kvm_suspend(void)
5393 {
5394 	if (kvm_usage_count)
5395 		hardware_disable_nolock(NULL);
5396 	return 0;
5397 }
5398 
5399 static void kvm_resume(void)
5400 {
5401 	if (kvm_usage_count) {
5402 #ifdef CONFIG_LOCKDEP
5403 		WARN_ON(lockdep_is_held(&kvm_count_lock));
5404 #endif
5405 		hardware_enable_nolock(NULL);
5406 	}
5407 }
5408 
5409 static struct syscore_ops kvm_syscore_ops = {
5410 	.suspend = kvm_suspend,
5411 	.resume = kvm_resume,
5412 };
5413 
5414 static inline
5415 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5416 {
5417 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5418 }
5419 
5420 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5421 {
5422 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5423 
5424 	WRITE_ONCE(vcpu->preempted, false);
5425 	WRITE_ONCE(vcpu->ready, false);
5426 
5427 	__this_cpu_write(kvm_running_vcpu, vcpu);
5428 	kvm_arch_sched_in(vcpu, cpu);
5429 	kvm_arch_vcpu_load(vcpu, cpu);
5430 }
5431 
5432 static void kvm_sched_out(struct preempt_notifier *pn,
5433 			  struct task_struct *next)
5434 {
5435 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5436 
5437 	if (current->on_rq) {
5438 		WRITE_ONCE(vcpu->preempted, true);
5439 		WRITE_ONCE(vcpu->ready, true);
5440 	}
5441 	kvm_arch_vcpu_put(vcpu);
5442 	__this_cpu_write(kvm_running_vcpu, NULL);
5443 }
5444 
5445 /**
5446  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5447  *
5448  * We can disable preemption locally around accessing the per-CPU variable,
5449  * and use the resolved vcpu pointer after enabling preemption again,
5450  * because even if the current thread is migrated to another CPU, reading
5451  * the per-CPU value later will give us the same value as we update the
5452  * per-CPU variable in the preempt notifier handlers.
5453  */
5454 struct kvm_vcpu *kvm_get_running_vcpu(void)
5455 {
5456 	struct kvm_vcpu *vcpu;
5457 
5458 	preempt_disable();
5459 	vcpu = __this_cpu_read(kvm_running_vcpu);
5460 	preempt_enable();
5461 
5462 	return vcpu;
5463 }
5464 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5465 
5466 /**
5467  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5468  */
5469 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5470 {
5471         return &kvm_running_vcpu;
5472 }
5473 
5474 struct kvm_cpu_compat_check {
5475 	void *opaque;
5476 	int *ret;
5477 };
5478 
5479 static void check_processor_compat(void *data)
5480 {
5481 	struct kvm_cpu_compat_check *c = data;
5482 
5483 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5484 }
5485 
5486 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5487 		  struct module *module)
5488 {
5489 	struct kvm_cpu_compat_check c;
5490 	int r;
5491 	int cpu;
5492 
5493 	r = kvm_arch_init(opaque);
5494 	if (r)
5495 		goto out_fail;
5496 
5497 	/*
5498 	 * kvm_arch_init makes sure there's at most one caller
5499 	 * for architectures that support multiple implementations,
5500 	 * like intel and amd on x86.
5501 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5502 	 * conflicts in case kvm is already setup for another implementation.
5503 	 */
5504 	r = kvm_irqfd_init();
5505 	if (r)
5506 		goto out_irqfd;
5507 
5508 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5509 		r = -ENOMEM;
5510 		goto out_free_0;
5511 	}
5512 
5513 	r = kvm_arch_hardware_setup(opaque);
5514 	if (r < 0)
5515 		goto out_free_1;
5516 
5517 	c.ret = &r;
5518 	c.opaque = opaque;
5519 	for_each_online_cpu(cpu) {
5520 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5521 		if (r < 0)
5522 			goto out_free_2;
5523 	}
5524 
5525 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5526 				      kvm_starting_cpu, kvm_dying_cpu);
5527 	if (r)
5528 		goto out_free_2;
5529 	register_reboot_notifier(&kvm_reboot_notifier);
5530 
5531 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5532 	if (!vcpu_align)
5533 		vcpu_align = __alignof__(struct kvm_vcpu);
5534 	kvm_vcpu_cache =
5535 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5536 					   SLAB_ACCOUNT,
5537 					   offsetof(struct kvm_vcpu, arch),
5538 					   offsetofend(struct kvm_vcpu, stats_id)
5539 					   - offsetof(struct kvm_vcpu, arch),
5540 					   NULL);
5541 	if (!kvm_vcpu_cache) {
5542 		r = -ENOMEM;
5543 		goto out_free_3;
5544 	}
5545 
5546 	r = kvm_async_pf_init();
5547 	if (r)
5548 		goto out_free;
5549 
5550 	kvm_chardev_ops.owner = module;
5551 	kvm_vm_fops.owner = module;
5552 	kvm_vcpu_fops.owner = module;
5553 
5554 	r = misc_register(&kvm_dev);
5555 	if (r) {
5556 		pr_err("kvm: misc device register failed\n");
5557 		goto out_unreg;
5558 	}
5559 
5560 	register_syscore_ops(&kvm_syscore_ops);
5561 
5562 	kvm_preempt_ops.sched_in = kvm_sched_in;
5563 	kvm_preempt_ops.sched_out = kvm_sched_out;
5564 
5565 	kvm_init_debug();
5566 
5567 	r = kvm_vfio_ops_init();
5568 	WARN_ON(r);
5569 
5570 	return 0;
5571 
5572 out_unreg:
5573 	kvm_async_pf_deinit();
5574 out_free:
5575 	kmem_cache_destroy(kvm_vcpu_cache);
5576 out_free_3:
5577 	unregister_reboot_notifier(&kvm_reboot_notifier);
5578 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5579 out_free_2:
5580 	kvm_arch_hardware_unsetup();
5581 out_free_1:
5582 	free_cpumask_var(cpus_hardware_enabled);
5583 out_free_0:
5584 	kvm_irqfd_exit();
5585 out_irqfd:
5586 	kvm_arch_exit();
5587 out_fail:
5588 	return r;
5589 }
5590 EXPORT_SYMBOL_GPL(kvm_init);
5591 
5592 void kvm_exit(void)
5593 {
5594 	debugfs_remove_recursive(kvm_debugfs_dir);
5595 	misc_deregister(&kvm_dev);
5596 	kmem_cache_destroy(kvm_vcpu_cache);
5597 	kvm_async_pf_deinit();
5598 	unregister_syscore_ops(&kvm_syscore_ops);
5599 	unregister_reboot_notifier(&kvm_reboot_notifier);
5600 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5601 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5602 	kvm_arch_hardware_unsetup();
5603 	kvm_arch_exit();
5604 	kvm_irqfd_exit();
5605 	free_cpumask_var(cpus_hardware_enabled);
5606 	kvm_vfio_ops_exit();
5607 }
5608 EXPORT_SYMBOL_GPL(kvm_exit);
5609 
5610 struct kvm_vm_worker_thread_context {
5611 	struct kvm *kvm;
5612 	struct task_struct *parent;
5613 	struct completion init_done;
5614 	kvm_vm_thread_fn_t thread_fn;
5615 	uintptr_t data;
5616 	int err;
5617 };
5618 
5619 static int kvm_vm_worker_thread(void *context)
5620 {
5621 	/*
5622 	 * The init_context is allocated on the stack of the parent thread, so
5623 	 * we have to locally copy anything that is needed beyond initialization
5624 	 */
5625 	struct kvm_vm_worker_thread_context *init_context = context;
5626 	struct kvm *kvm = init_context->kvm;
5627 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5628 	uintptr_t data = init_context->data;
5629 	int err;
5630 
5631 	err = kthread_park(current);
5632 	/* kthread_park(current) is never supposed to return an error */
5633 	WARN_ON(err != 0);
5634 	if (err)
5635 		goto init_complete;
5636 
5637 	err = cgroup_attach_task_all(init_context->parent, current);
5638 	if (err) {
5639 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5640 			__func__, err);
5641 		goto init_complete;
5642 	}
5643 
5644 	set_user_nice(current, task_nice(init_context->parent));
5645 
5646 init_complete:
5647 	init_context->err = err;
5648 	complete(&init_context->init_done);
5649 	init_context = NULL;
5650 
5651 	if (err)
5652 		return err;
5653 
5654 	/* Wait to be woken up by the spawner before proceeding. */
5655 	kthread_parkme();
5656 
5657 	if (!kthread_should_stop())
5658 		err = thread_fn(kvm, data);
5659 
5660 	return err;
5661 }
5662 
5663 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5664 				uintptr_t data, const char *name,
5665 				struct task_struct **thread_ptr)
5666 {
5667 	struct kvm_vm_worker_thread_context init_context = {};
5668 	struct task_struct *thread;
5669 
5670 	*thread_ptr = NULL;
5671 	init_context.kvm = kvm;
5672 	init_context.parent = current;
5673 	init_context.thread_fn = thread_fn;
5674 	init_context.data = data;
5675 	init_completion(&init_context.init_done);
5676 
5677 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5678 			     "%s-%d", name, task_pid_nr(current));
5679 	if (IS_ERR(thread))
5680 		return PTR_ERR(thread);
5681 
5682 	/* kthread_run is never supposed to return NULL */
5683 	WARN_ON(thread == NULL);
5684 
5685 	wait_for_completion(&init_context.init_done);
5686 
5687 	if (!init_context.err)
5688 		*thread_ptr = thread;
5689 
5690 	return init_context.err;
5691 }
5692