1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 55 #include <asm/processor.h> 56 #include <asm/ioctl.h> 57 #include <linux/uaccess.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, 0644); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* The start value to grow halt_poll_ns from */ 83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 84 module_param(halt_poll_ns_grow_start, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 86 87 /* Default resets per-vcpu halt_poll_ns . */ 88 unsigned int halt_poll_ns_shrink; 89 module_param(halt_poll_ns_shrink, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 91 92 /* 93 * Ordering of locks: 94 * 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 96 */ 97 98 DEFINE_MUTEX(kvm_lock); 99 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 100 LIST_HEAD(vm_list); 101 102 static cpumask_var_t cpus_hardware_enabled; 103 static int kvm_usage_count; 104 static atomic_t hardware_enable_failed; 105 106 static struct kmem_cache *kvm_vcpu_cache; 107 108 static __read_mostly struct preempt_ops kvm_preempt_ops; 109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 110 111 struct dentry *kvm_debugfs_dir; 112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 113 114 static int kvm_debugfs_num_entries; 115 static const struct file_operations stat_fops_per_vm; 116 117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #ifdef CONFIG_KVM_COMPAT 120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #define KVM_COMPAT(c) .compat_ioctl = (c) 123 #else 124 /* 125 * For architectures that don't implement a compat infrastructure, 126 * adopt a double line of defense: 127 * - Prevent a compat task from opening /dev/kvm 128 * - If the open has been done by a 64bit task, and the KVM fd 129 * passed to a compat task, let the ioctls fail. 130 */ 131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 132 unsigned long arg) { return -EINVAL; } 133 134 static int kvm_no_compat_open(struct inode *inode, struct file *file) 135 { 136 return is_compat_task() ? -ENODEV : 0; 137 } 138 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 139 .open = kvm_no_compat_open 140 #endif 141 static int hardware_enable_all(void); 142 static void hardware_disable_all(void); 143 144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 145 146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 147 148 __visible bool kvm_rebooting; 149 EXPORT_SYMBOL_GPL(kvm_rebooting); 150 151 #define KVM_EVENT_CREATE_VM 0 152 #define KVM_EVENT_DESTROY_VM 1 153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 154 static unsigned long long kvm_createvm_count; 155 static unsigned long long kvm_active_vms; 156 157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 158 unsigned long start, unsigned long end) 159 { 160 } 161 162 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 163 { 164 /* 165 * The metadata used by is_zone_device_page() to determine whether or 166 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 167 * the device has been pinned, e.g. by get_user_pages(). WARN if the 168 * page_count() is zero to help detect bad usage of this helper. 169 */ 170 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 171 return false; 172 173 return is_zone_device_page(pfn_to_page(pfn)); 174 } 175 176 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 177 { 178 /* 179 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 180 * perspective they are "normal" pages, albeit with slightly different 181 * usage rules. 182 */ 183 if (pfn_valid(pfn)) 184 return PageReserved(pfn_to_page(pfn)) && 185 !is_zero_pfn(pfn) && 186 !kvm_is_zone_device_pfn(pfn); 187 188 return true; 189 } 190 191 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 192 { 193 struct page *page = pfn_to_page(pfn); 194 195 if (!PageTransCompoundMap(page)) 196 return false; 197 198 return is_transparent_hugepage(compound_head(page)); 199 } 200 201 /* 202 * Switches to specified vcpu, until a matching vcpu_put() 203 */ 204 void vcpu_load(struct kvm_vcpu *vcpu) 205 { 206 int cpu = get_cpu(); 207 208 __this_cpu_write(kvm_running_vcpu, vcpu); 209 preempt_notifier_register(&vcpu->preempt_notifier); 210 kvm_arch_vcpu_load(vcpu, cpu); 211 put_cpu(); 212 } 213 EXPORT_SYMBOL_GPL(vcpu_load); 214 215 void vcpu_put(struct kvm_vcpu *vcpu) 216 { 217 preempt_disable(); 218 kvm_arch_vcpu_put(vcpu); 219 preempt_notifier_unregister(&vcpu->preempt_notifier); 220 __this_cpu_write(kvm_running_vcpu, NULL); 221 preempt_enable(); 222 } 223 EXPORT_SYMBOL_GPL(vcpu_put); 224 225 /* TODO: merge with kvm_arch_vcpu_should_kick */ 226 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 227 { 228 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 229 230 /* 231 * We need to wait for the VCPU to reenable interrupts and get out of 232 * READING_SHADOW_PAGE_TABLES mode. 233 */ 234 if (req & KVM_REQUEST_WAIT) 235 return mode != OUTSIDE_GUEST_MODE; 236 237 /* 238 * Need to kick a running VCPU, but otherwise there is nothing to do. 239 */ 240 return mode == IN_GUEST_MODE; 241 } 242 243 static void ack_flush(void *_completed) 244 { 245 } 246 247 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 248 { 249 if (unlikely(!cpus)) 250 cpus = cpu_online_mask; 251 252 if (cpumask_empty(cpus)) 253 return false; 254 255 smp_call_function_many(cpus, ack_flush, NULL, wait); 256 return true; 257 } 258 259 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 260 struct kvm_vcpu *except, 261 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 262 { 263 int i, cpu, me; 264 struct kvm_vcpu *vcpu; 265 bool called; 266 267 me = get_cpu(); 268 269 kvm_for_each_vcpu(i, vcpu, kvm) { 270 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) || 271 vcpu == except) 272 continue; 273 274 kvm_make_request(req, vcpu); 275 cpu = vcpu->cpu; 276 277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 278 continue; 279 280 if (tmp != NULL && cpu != -1 && cpu != me && 281 kvm_request_needs_ipi(vcpu, req)) 282 __cpumask_set_cpu(cpu, tmp); 283 } 284 285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 286 put_cpu(); 287 288 return called; 289 } 290 291 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 292 struct kvm_vcpu *except) 293 { 294 cpumask_var_t cpus; 295 bool called; 296 297 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 298 299 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus); 300 301 free_cpumask_var(cpus); 302 return called; 303 } 304 305 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 306 { 307 return kvm_make_all_cpus_request_except(kvm, req, NULL); 308 } 309 310 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 311 void kvm_flush_remote_tlbs(struct kvm *kvm) 312 { 313 /* 314 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 315 * kvm_make_all_cpus_request. 316 */ 317 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 318 319 /* 320 * We want to publish modifications to the page tables before reading 321 * mode. Pairs with a memory barrier in arch-specific code. 322 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 323 * and smp_mb in walk_shadow_page_lockless_begin/end. 324 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 325 * 326 * There is already an smp_mb__after_atomic() before 327 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 328 * barrier here. 329 */ 330 if (!kvm_arch_flush_remote_tlb(kvm) 331 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 332 ++kvm->stat.remote_tlb_flush; 333 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 334 } 335 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 336 #endif 337 338 void kvm_reload_remote_mmus(struct kvm *kvm) 339 { 340 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 341 } 342 343 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 344 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 345 gfp_t gfp_flags) 346 { 347 gfp_flags |= mc->gfp_zero; 348 349 if (mc->kmem_cache) 350 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 351 else 352 return (void *)__get_free_page(gfp_flags); 353 } 354 355 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 356 { 357 void *obj; 358 359 if (mc->nobjs >= min) 360 return 0; 361 while (mc->nobjs < ARRAY_SIZE(mc->objects)) { 362 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT); 363 if (!obj) 364 return mc->nobjs >= min ? 0 : -ENOMEM; 365 mc->objects[mc->nobjs++] = obj; 366 } 367 return 0; 368 } 369 370 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 371 { 372 return mc->nobjs; 373 } 374 375 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 376 { 377 while (mc->nobjs) { 378 if (mc->kmem_cache) 379 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 380 else 381 free_page((unsigned long)mc->objects[--mc->nobjs]); 382 } 383 } 384 385 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 386 { 387 void *p; 388 389 if (WARN_ON(!mc->nobjs)) 390 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 391 else 392 p = mc->objects[--mc->nobjs]; 393 BUG_ON(!p); 394 return p; 395 } 396 #endif 397 398 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 399 { 400 mutex_init(&vcpu->mutex); 401 vcpu->cpu = -1; 402 vcpu->kvm = kvm; 403 vcpu->vcpu_id = id; 404 vcpu->pid = NULL; 405 rcuwait_init(&vcpu->wait); 406 kvm_async_pf_vcpu_init(vcpu); 407 408 vcpu->pre_pcpu = -1; 409 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 410 411 kvm_vcpu_set_in_spin_loop(vcpu, false); 412 kvm_vcpu_set_dy_eligible(vcpu, false); 413 vcpu->preempted = false; 414 vcpu->ready = false; 415 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 416 } 417 418 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 419 { 420 kvm_arch_vcpu_destroy(vcpu); 421 422 /* 423 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 424 * the vcpu->pid pointer, and at destruction time all file descriptors 425 * are already gone. 426 */ 427 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 428 429 free_page((unsigned long)vcpu->run); 430 kmem_cache_free(kvm_vcpu_cache, vcpu); 431 } 432 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 433 434 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 435 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 436 { 437 return container_of(mn, struct kvm, mmu_notifier); 438 } 439 440 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 441 struct mm_struct *mm, 442 unsigned long start, unsigned long end) 443 { 444 struct kvm *kvm = mmu_notifier_to_kvm(mn); 445 int idx; 446 447 idx = srcu_read_lock(&kvm->srcu); 448 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 449 srcu_read_unlock(&kvm->srcu, idx); 450 } 451 452 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 453 struct mm_struct *mm, 454 unsigned long address, 455 pte_t pte) 456 { 457 struct kvm *kvm = mmu_notifier_to_kvm(mn); 458 int idx; 459 460 idx = srcu_read_lock(&kvm->srcu); 461 spin_lock(&kvm->mmu_lock); 462 kvm->mmu_notifier_seq++; 463 464 if (kvm_set_spte_hva(kvm, address, pte)) 465 kvm_flush_remote_tlbs(kvm); 466 467 spin_unlock(&kvm->mmu_lock); 468 srcu_read_unlock(&kvm->srcu, idx); 469 } 470 471 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 472 const struct mmu_notifier_range *range) 473 { 474 struct kvm *kvm = mmu_notifier_to_kvm(mn); 475 int need_tlb_flush = 0, idx; 476 477 idx = srcu_read_lock(&kvm->srcu); 478 spin_lock(&kvm->mmu_lock); 479 /* 480 * The count increase must become visible at unlock time as no 481 * spte can be established without taking the mmu_lock and 482 * count is also read inside the mmu_lock critical section. 483 */ 484 kvm->mmu_notifier_count++; 485 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 486 need_tlb_flush |= kvm->tlbs_dirty; 487 /* we've to flush the tlb before the pages can be freed */ 488 if (need_tlb_flush) 489 kvm_flush_remote_tlbs(kvm); 490 491 spin_unlock(&kvm->mmu_lock); 492 srcu_read_unlock(&kvm->srcu, idx); 493 494 return 0; 495 } 496 497 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 498 const struct mmu_notifier_range *range) 499 { 500 struct kvm *kvm = mmu_notifier_to_kvm(mn); 501 502 spin_lock(&kvm->mmu_lock); 503 /* 504 * This sequence increase will notify the kvm page fault that 505 * the page that is going to be mapped in the spte could have 506 * been freed. 507 */ 508 kvm->mmu_notifier_seq++; 509 smp_wmb(); 510 /* 511 * The above sequence increase must be visible before the 512 * below count decrease, which is ensured by the smp_wmb above 513 * in conjunction with the smp_rmb in mmu_notifier_retry(). 514 */ 515 kvm->mmu_notifier_count--; 516 spin_unlock(&kvm->mmu_lock); 517 518 BUG_ON(kvm->mmu_notifier_count < 0); 519 } 520 521 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 522 struct mm_struct *mm, 523 unsigned long start, 524 unsigned long end) 525 { 526 struct kvm *kvm = mmu_notifier_to_kvm(mn); 527 int young, idx; 528 529 idx = srcu_read_lock(&kvm->srcu); 530 spin_lock(&kvm->mmu_lock); 531 532 young = kvm_age_hva(kvm, start, end); 533 if (young) 534 kvm_flush_remote_tlbs(kvm); 535 536 spin_unlock(&kvm->mmu_lock); 537 srcu_read_unlock(&kvm->srcu, idx); 538 539 return young; 540 } 541 542 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 543 struct mm_struct *mm, 544 unsigned long start, 545 unsigned long end) 546 { 547 struct kvm *kvm = mmu_notifier_to_kvm(mn); 548 int young, idx; 549 550 idx = srcu_read_lock(&kvm->srcu); 551 spin_lock(&kvm->mmu_lock); 552 /* 553 * Even though we do not flush TLB, this will still adversely 554 * affect performance on pre-Haswell Intel EPT, where there is 555 * no EPT Access Bit to clear so that we have to tear down EPT 556 * tables instead. If we find this unacceptable, we can always 557 * add a parameter to kvm_age_hva so that it effectively doesn't 558 * do anything on clear_young. 559 * 560 * Also note that currently we never issue secondary TLB flushes 561 * from clear_young, leaving this job up to the regular system 562 * cadence. If we find this inaccurate, we might come up with a 563 * more sophisticated heuristic later. 564 */ 565 young = kvm_age_hva(kvm, start, end); 566 spin_unlock(&kvm->mmu_lock); 567 srcu_read_unlock(&kvm->srcu, idx); 568 569 return young; 570 } 571 572 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 573 struct mm_struct *mm, 574 unsigned long address) 575 { 576 struct kvm *kvm = mmu_notifier_to_kvm(mn); 577 int young, idx; 578 579 idx = srcu_read_lock(&kvm->srcu); 580 spin_lock(&kvm->mmu_lock); 581 young = kvm_test_age_hva(kvm, address); 582 spin_unlock(&kvm->mmu_lock); 583 srcu_read_unlock(&kvm->srcu, idx); 584 585 return young; 586 } 587 588 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 589 struct mm_struct *mm) 590 { 591 struct kvm *kvm = mmu_notifier_to_kvm(mn); 592 int idx; 593 594 idx = srcu_read_lock(&kvm->srcu); 595 kvm_arch_flush_shadow_all(kvm); 596 srcu_read_unlock(&kvm->srcu, idx); 597 } 598 599 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 600 .invalidate_range = kvm_mmu_notifier_invalidate_range, 601 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 602 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 603 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 604 .clear_young = kvm_mmu_notifier_clear_young, 605 .test_young = kvm_mmu_notifier_test_young, 606 .change_pte = kvm_mmu_notifier_change_pte, 607 .release = kvm_mmu_notifier_release, 608 }; 609 610 static int kvm_init_mmu_notifier(struct kvm *kvm) 611 { 612 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 613 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 614 } 615 616 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 617 618 static int kvm_init_mmu_notifier(struct kvm *kvm) 619 { 620 return 0; 621 } 622 623 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 624 625 static struct kvm_memslots *kvm_alloc_memslots(void) 626 { 627 int i; 628 struct kvm_memslots *slots; 629 630 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 631 if (!slots) 632 return NULL; 633 634 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 635 slots->id_to_index[i] = -1; 636 637 return slots; 638 } 639 640 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 641 { 642 if (!memslot->dirty_bitmap) 643 return; 644 645 kvfree(memslot->dirty_bitmap); 646 memslot->dirty_bitmap = NULL; 647 } 648 649 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 650 { 651 kvm_destroy_dirty_bitmap(slot); 652 653 kvm_arch_free_memslot(kvm, slot); 654 655 slot->flags = 0; 656 slot->npages = 0; 657 } 658 659 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 660 { 661 struct kvm_memory_slot *memslot; 662 663 if (!slots) 664 return; 665 666 kvm_for_each_memslot(memslot, slots) 667 kvm_free_memslot(kvm, memslot); 668 669 kvfree(slots); 670 } 671 672 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 673 { 674 int i; 675 676 if (!kvm->debugfs_dentry) 677 return; 678 679 debugfs_remove_recursive(kvm->debugfs_dentry); 680 681 if (kvm->debugfs_stat_data) { 682 for (i = 0; i < kvm_debugfs_num_entries; i++) 683 kfree(kvm->debugfs_stat_data[i]); 684 kfree(kvm->debugfs_stat_data); 685 } 686 } 687 688 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 689 { 690 char dir_name[ITOA_MAX_LEN * 2]; 691 struct kvm_stat_data *stat_data; 692 struct kvm_stats_debugfs_item *p; 693 694 if (!debugfs_initialized()) 695 return 0; 696 697 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 698 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 699 700 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 701 sizeof(*kvm->debugfs_stat_data), 702 GFP_KERNEL_ACCOUNT); 703 if (!kvm->debugfs_stat_data) 704 return -ENOMEM; 705 706 for (p = debugfs_entries; p->name; p++) { 707 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 708 if (!stat_data) 709 return -ENOMEM; 710 711 stat_data->kvm = kvm; 712 stat_data->dbgfs_item = p; 713 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 714 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 715 kvm->debugfs_dentry, stat_data, 716 &stat_fops_per_vm); 717 } 718 return 0; 719 } 720 721 /* 722 * Called after the VM is otherwise initialized, but just before adding it to 723 * the vm_list. 724 */ 725 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 726 { 727 return 0; 728 } 729 730 /* 731 * Called just after removing the VM from the vm_list, but before doing any 732 * other destruction. 733 */ 734 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 735 { 736 } 737 738 static struct kvm *kvm_create_vm(unsigned long type) 739 { 740 struct kvm *kvm = kvm_arch_alloc_vm(); 741 int r = -ENOMEM; 742 int i; 743 744 if (!kvm) 745 return ERR_PTR(-ENOMEM); 746 747 spin_lock_init(&kvm->mmu_lock); 748 mmgrab(current->mm); 749 kvm->mm = current->mm; 750 kvm_eventfd_init(kvm); 751 mutex_init(&kvm->lock); 752 mutex_init(&kvm->irq_lock); 753 mutex_init(&kvm->slots_lock); 754 INIT_LIST_HEAD(&kvm->devices); 755 756 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 757 758 if (init_srcu_struct(&kvm->srcu)) 759 goto out_err_no_srcu; 760 if (init_srcu_struct(&kvm->irq_srcu)) 761 goto out_err_no_irq_srcu; 762 763 refcount_set(&kvm->users_count, 1); 764 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 765 struct kvm_memslots *slots = kvm_alloc_memslots(); 766 767 if (!slots) 768 goto out_err_no_arch_destroy_vm; 769 /* Generations must be different for each address space. */ 770 slots->generation = i; 771 rcu_assign_pointer(kvm->memslots[i], slots); 772 } 773 774 for (i = 0; i < KVM_NR_BUSES; i++) { 775 rcu_assign_pointer(kvm->buses[i], 776 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 777 if (!kvm->buses[i]) 778 goto out_err_no_arch_destroy_vm; 779 } 780 781 kvm->max_halt_poll_ns = halt_poll_ns; 782 783 r = kvm_arch_init_vm(kvm, type); 784 if (r) 785 goto out_err_no_arch_destroy_vm; 786 787 r = hardware_enable_all(); 788 if (r) 789 goto out_err_no_disable; 790 791 #ifdef CONFIG_HAVE_KVM_IRQFD 792 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 793 #endif 794 795 r = kvm_init_mmu_notifier(kvm); 796 if (r) 797 goto out_err_no_mmu_notifier; 798 799 r = kvm_arch_post_init_vm(kvm); 800 if (r) 801 goto out_err; 802 803 mutex_lock(&kvm_lock); 804 list_add(&kvm->vm_list, &vm_list); 805 mutex_unlock(&kvm_lock); 806 807 preempt_notifier_inc(); 808 809 return kvm; 810 811 out_err: 812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 813 if (kvm->mmu_notifier.ops) 814 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 815 #endif 816 out_err_no_mmu_notifier: 817 hardware_disable_all(); 818 out_err_no_disable: 819 kvm_arch_destroy_vm(kvm); 820 out_err_no_arch_destroy_vm: 821 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 822 for (i = 0; i < KVM_NR_BUSES; i++) 823 kfree(kvm_get_bus(kvm, i)); 824 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 825 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 826 cleanup_srcu_struct(&kvm->irq_srcu); 827 out_err_no_irq_srcu: 828 cleanup_srcu_struct(&kvm->srcu); 829 out_err_no_srcu: 830 kvm_arch_free_vm(kvm); 831 mmdrop(current->mm); 832 return ERR_PTR(r); 833 } 834 835 static void kvm_destroy_devices(struct kvm *kvm) 836 { 837 struct kvm_device *dev, *tmp; 838 839 /* 840 * We do not need to take the kvm->lock here, because nobody else 841 * has a reference to the struct kvm at this point and therefore 842 * cannot access the devices list anyhow. 843 */ 844 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 845 list_del(&dev->vm_node); 846 dev->ops->destroy(dev); 847 } 848 } 849 850 static void kvm_destroy_vm(struct kvm *kvm) 851 { 852 int i; 853 struct mm_struct *mm = kvm->mm; 854 855 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 856 kvm_destroy_vm_debugfs(kvm); 857 kvm_arch_sync_events(kvm); 858 mutex_lock(&kvm_lock); 859 list_del(&kvm->vm_list); 860 mutex_unlock(&kvm_lock); 861 kvm_arch_pre_destroy_vm(kvm); 862 863 kvm_free_irq_routing(kvm); 864 for (i = 0; i < KVM_NR_BUSES; i++) { 865 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 866 867 if (bus) 868 kvm_io_bus_destroy(bus); 869 kvm->buses[i] = NULL; 870 } 871 kvm_coalesced_mmio_free(kvm); 872 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 873 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 874 #else 875 kvm_arch_flush_shadow_all(kvm); 876 #endif 877 kvm_arch_destroy_vm(kvm); 878 kvm_destroy_devices(kvm); 879 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 880 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 881 cleanup_srcu_struct(&kvm->irq_srcu); 882 cleanup_srcu_struct(&kvm->srcu); 883 kvm_arch_free_vm(kvm); 884 preempt_notifier_dec(); 885 hardware_disable_all(); 886 mmdrop(mm); 887 } 888 889 void kvm_get_kvm(struct kvm *kvm) 890 { 891 refcount_inc(&kvm->users_count); 892 } 893 EXPORT_SYMBOL_GPL(kvm_get_kvm); 894 895 void kvm_put_kvm(struct kvm *kvm) 896 { 897 if (refcount_dec_and_test(&kvm->users_count)) 898 kvm_destroy_vm(kvm); 899 } 900 EXPORT_SYMBOL_GPL(kvm_put_kvm); 901 902 /* 903 * Used to put a reference that was taken on behalf of an object associated 904 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 905 * of the new file descriptor fails and the reference cannot be transferred to 906 * its final owner. In such cases, the caller is still actively using @kvm and 907 * will fail miserably if the refcount unexpectedly hits zero. 908 */ 909 void kvm_put_kvm_no_destroy(struct kvm *kvm) 910 { 911 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 912 } 913 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 914 915 static int kvm_vm_release(struct inode *inode, struct file *filp) 916 { 917 struct kvm *kvm = filp->private_data; 918 919 kvm_irqfd_release(kvm); 920 921 kvm_put_kvm(kvm); 922 return 0; 923 } 924 925 /* 926 * Allocation size is twice as large as the actual dirty bitmap size. 927 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 928 */ 929 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 930 { 931 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 932 933 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 934 if (!memslot->dirty_bitmap) 935 return -ENOMEM; 936 937 return 0; 938 } 939 940 /* 941 * Delete a memslot by decrementing the number of used slots and shifting all 942 * other entries in the array forward one spot. 943 */ 944 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 945 struct kvm_memory_slot *memslot) 946 { 947 struct kvm_memory_slot *mslots = slots->memslots; 948 int i; 949 950 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 951 return; 952 953 slots->used_slots--; 954 955 if (atomic_read(&slots->lru_slot) >= slots->used_slots) 956 atomic_set(&slots->lru_slot, 0); 957 958 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 959 mslots[i] = mslots[i + 1]; 960 slots->id_to_index[mslots[i].id] = i; 961 } 962 mslots[i] = *memslot; 963 slots->id_to_index[memslot->id] = -1; 964 } 965 966 /* 967 * "Insert" a new memslot by incrementing the number of used slots. Returns 968 * the new slot's initial index into the memslots array. 969 */ 970 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 971 { 972 return slots->used_slots++; 973 } 974 975 /* 976 * Move a changed memslot backwards in the array by shifting existing slots 977 * with a higher GFN toward the front of the array. Note, the changed memslot 978 * itself is not preserved in the array, i.e. not swapped at this time, only 979 * its new index into the array is tracked. Returns the changed memslot's 980 * current index into the memslots array. 981 */ 982 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 983 struct kvm_memory_slot *memslot) 984 { 985 struct kvm_memory_slot *mslots = slots->memslots; 986 int i; 987 988 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 989 WARN_ON_ONCE(!slots->used_slots)) 990 return -1; 991 992 /* 993 * Move the target memslot backward in the array by shifting existing 994 * memslots with a higher GFN (than the target memslot) towards the 995 * front of the array. 996 */ 997 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 998 if (memslot->base_gfn > mslots[i + 1].base_gfn) 999 break; 1000 1001 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 1002 1003 /* Shift the next memslot forward one and update its index. */ 1004 mslots[i] = mslots[i + 1]; 1005 slots->id_to_index[mslots[i].id] = i; 1006 } 1007 return i; 1008 } 1009 1010 /* 1011 * Move a changed memslot forwards in the array by shifting existing slots with 1012 * a lower GFN toward the back of the array. Note, the changed memslot itself 1013 * is not preserved in the array, i.e. not swapped at this time, only its new 1014 * index into the array is tracked. Returns the changed memslot's final index 1015 * into the memslots array. 1016 */ 1017 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 1018 struct kvm_memory_slot *memslot, 1019 int start) 1020 { 1021 struct kvm_memory_slot *mslots = slots->memslots; 1022 int i; 1023 1024 for (i = start; i > 0; i--) { 1025 if (memslot->base_gfn < mslots[i - 1].base_gfn) 1026 break; 1027 1028 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 1029 1030 /* Shift the next memslot back one and update its index. */ 1031 mslots[i] = mslots[i - 1]; 1032 slots->id_to_index[mslots[i].id] = i; 1033 } 1034 return i; 1035 } 1036 1037 /* 1038 * Re-sort memslots based on their GFN to account for an added, deleted, or 1039 * moved memslot. Sorting memslots by GFN allows using a binary search during 1040 * memslot lookup. 1041 * 1042 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 1043 * at memslots[0] has the highest GFN. 1044 * 1045 * The sorting algorithm takes advantage of having initially sorted memslots 1046 * and knowing the position of the changed memslot. Sorting is also optimized 1047 * by not swapping the updated memslot and instead only shifting other memslots 1048 * and tracking the new index for the update memslot. Only once its final 1049 * index is known is the updated memslot copied into its position in the array. 1050 * 1051 * - When deleting a memslot, the deleted memslot simply needs to be moved to 1052 * the end of the array. 1053 * 1054 * - When creating a memslot, the algorithm "inserts" the new memslot at the 1055 * end of the array and then it forward to its correct location. 1056 * 1057 * - When moving a memslot, the algorithm first moves the updated memslot 1058 * backward to handle the scenario where the memslot's GFN was changed to a 1059 * lower value. update_memslots() then falls through and runs the same flow 1060 * as creating a memslot to move the memslot forward to handle the scenario 1061 * where its GFN was changed to a higher value. 1062 * 1063 * Note, slots are sorted from highest->lowest instead of lowest->highest for 1064 * historical reasons. Originally, invalid memslots where denoted by having 1065 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 1066 * to the end of the array. The current algorithm uses dedicated logic to 1067 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 1068 * 1069 * The other historical motiviation for highest->lowest was to improve the 1070 * performance of memslot lookup. KVM originally used a linear search starting 1071 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1072 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1073 * single memslot above the 4gb boundary. As the largest memslot is also the 1074 * most likely to be referenced, sorting it to the front of the array was 1075 * advantageous. The current binary search starts from the middle of the array 1076 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1077 */ 1078 static void update_memslots(struct kvm_memslots *slots, 1079 struct kvm_memory_slot *memslot, 1080 enum kvm_mr_change change) 1081 { 1082 int i; 1083 1084 if (change == KVM_MR_DELETE) { 1085 kvm_memslot_delete(slots, memslot); 1086 } else { 1087 if (change == KVM_MR_CREATE) 1088 i = kvm_memslot_insert_back(slots); 1089 else 1090 i = kvm_memslot_move_backward(slots, memslot); 1091 i = kvm_memslot_move_forward(slots, memslot, i); 1092 1093 /* 1094 * Copy the memslot to its new position in memslots and update 1095 * its index accordingly. 1096 */ 1097 slots->memslots[i] = *memslot; 1098 slots->id_to_index[memslot->id] = i; 1099 } 1100 } 1101 1102 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1103 { 1104 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1105 1106 #ifdef __KVM_HAVE_READONLY_MEM 1107 valid_flags |= KVM_MEM_READONLY; 1108 #endif 1109 1110 if (mem->flags & ~valid_flags) 1111 return -EINVAL; 1112 1113 return 0; 1114 } 1115 1116 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1117 int as_id, struct kvm_memslots *slots) 1118 { 1119 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1120 u64 gen = old_memslots->generation; 1121 1122 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1123 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1124 1125 rcu_assign_pointer(kvm->memslots[as_id], slots); 1126 synchronize_srcu_expedited(&kvm->srcu); 1127 1128 /* 1129 * Increment the new memslot generation a second time, dropping the 1130 * update in-progress flag and incrementing the generation based on 1131 * the number of address spaces. This provides a unique and easily 1132 * identifiable generation number while the memslots are in flux. 1133 */ 1134 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1135 1136 /* 1137 * Generations must be unique even across address spaces. We do not need 1138 * a global counter for that, instead the generation space is evenly split 1139 * across address spaces. For example, with two address spaces, address 1140 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1141 * use generations 1, 3, 5, ... 1142 */ 1143 gen += KVM_ADDRESS_SPACE_NUM; 1144 1145 kvm_arch_memslots_updated(kvm, gen); 1146 1147 slots->generation = gen; 1148 1149 return old_memslots; 1150 } 1151 1152 /* 1153 * Note, at a minimum, the current number of used slots must be allocated, even 1154 * when deleting a memslot, as we need a complete duplicate of the memslots for 1155 * use when invalidating a memslot prior to deleting/moving the memslot. 1156 */ 1157 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1158 enum kvm_mr_change change) 1159 { 1160 struct kvm_memslots *slots; 1161 size_t old_size, new_size; 1162 1163 old_size = sizeof(struct kvm_memslots) + 1164 (sizeof(struct kvm_memory_slot) * old->used_slots); 1165 1166 if (change == KVM_MR_CREATE) 1167 new_size = old_size + sizeof(struct kvm_memory_slot); 1168 else 1169 new_size = old_size; 1170 1171 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1172 if (likely(slots)) 1173 memcpy(slots, old, old_size); 1174 1175 return slots; 1176 } 1177 1178 static int kvm_set_memslot(struct kvm *kvm, 1179 const struct kvm_userspace_memory_region *mem, 1180 struct kvm_memory_slot *old, 1181 struct kvm_memory_slot *new, int as_id, 1182 enum kvm_mr_change change) 1183 { 1184 struct kvm_memory_slot *slot; 1185 struct kvm_memslots *slots; 1186 int r; 1187 1188 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1189 if (!slots) 1190 return -ENOMEM; 1191 1192 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1193 /* 1194 * Note, the INVALID flag needs to be in the appropriate entry 1195 * in the freshly allocated memslots, not in @old or @new. 1196 */ 1197 slot = id_to_memslot(slots, old->id); 1198 slot->flags |= KVM_MEMSLOT_INVALID; 1199 1200 /* 1201 * We can re-use the old memslots, the only difference from the 1202 * newly installed memslots is the invalid flag, which will get 1203 * dropped by update_memslots anyway. We'll also revert to the 1204 * old memslots if preparing the new memory region fails. 1205 */ 1206 slots = install_new_memslots(kvm, as_id, slots); 1207 1208 /* From this point no new shadow pages pointing to a deleted, 1209 * or moved, memslot will be created. 1210 * 1211 * validation of sp->gfn happens in: 1212 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1213 * - kvm_is_visible_gfn (mmu_check_root) 1214 */ 1215 kvm_arch_flush_shadow_memslot(kvm, slot); 1216 } 1217 1218 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1219 if (r) 1220 goto out_slots; 1221 1222 update_memslots(slots, new, change); 1223 slots = install_new_memslots(kvm, as_id, slots); 1224 1225 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1226 1227 kvfree(slots); 1228 return 0; 1229 1230 out_slots: 1231 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1232 slots = install_new_memslots(kvm, as_id, slots); 1233 kvfree(slots); 1234 return r; 1235 } 1236 1237 static int kvm_delete_memslot(struct kvm *kvm, 1238 const struct kvm_userspace_memory_region *mem, 1239 struct kvm_memory_slot *old, int as_id) 1240 { 1241 struct kvm_memory_slot new; 1242 int r; 1243 1244 if (!old->npages) 1245 return -EINVAL; 1246 1247 memset(&new, 0, sizeof(new)); 1248 new.id = old->id; 1249 1250 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1251 if (r) 1252 return r; 1253 1254 kvm_free_memslot(kvm, old); 1255 return 0; 1256 } 1257 1258 /* 1259 * Allocate some memory and give it an address in the guest physical address 1260 * space. 1261 * 1262 * Discontiguous memory is allowed, mostly for framebuffers. 1263 * 1264 * Must be called holding kvm->slots_lock for write. 1265 */ 1266 int __kvm_set_memory_region(struct kvm *kvm, 1267 const struct kvm_userspace_memory_region *mem) 1268 { 1269 struct kvm_memory_slot old, new; 1270 struct kvm_memory_slot *tmp; 1271 enum kvm_mr_change change; 1272 int as_id, id; 1273 int r; 1274 1275 r = check_memory_region_flags(mem); 1276 if (r) 1277 return r; 1278 1279 as_id = mem->slot >> 16; 1280 id = (u16)mem->slot; 1281 1282 /* General sanity checks */ 1283 if (mem->memory_size & (PAGE_SIZE - 1)) 1284 return -EINVAL; 1285 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1286 return -EINVAL; 1287 /* We can read the guest memory with __xxx_user() later on. */ 1288 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1289 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1290 mem->memory_size)) 1291 return -EINVAL; 1292 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1293 return -EINVAL; 1294 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1295 return -EINVAL; 1296 1297 /* 1298 * Make a full copy of the old memslot, the pointer will become stale 1299 * when the memslots are re-sorted by update_memslots(), and the old 1300 * memslot needs to be referenced after calling update_memslots(), e.g. 1301 * to free its resources and for arch specific behavior. 1302 */ 1303 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1304 if (tmp) { 1305 old = *tmp; 1306 tmp = NULL; 1307 } else { 1308 memset(&old, 0, sizeof(old)); 1309 old.id = id; 1310 } 1311 1312 if (!mem->memory_size) 1313 return kvm_delete_memslot(kvm, mem, &old, as_id); 1314 1315 new.id = id; 1316 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1317 new.npages = mem->memory_size >> PAGE_SHIFT; 1318 new.flags = mem->flags; 1319 new.userspace_addr = mem->userspace_addr; 1320 1321 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1322 return -EINVAL; 1323 1324 if (!old.npages) { 1325 change = KVM_MR_CREATE; 1326 new.dirty_bitmap = NULL; 1327 memset(&new.arch, 0, sizeof(new.arch)); 1328 } else { /* Modify an existing slot. */ 1329 if ((new.userspace_addr != old.userspace_addr) || 1330 (new.npages != old.npages) || 1331 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1332 return -EINVAL; 1333 1334 if (new.base_gfn != old.base_gfn) 1335 change = KVM_MR_MOVE; 1336 else if (new.flags != old.flags) 1337 change = KVM_MR_FLAGS_ONLY; 1338 else /* Nothing to change. */ 1339 return 0; 1340 1341 /* Copy dirty_bitmap and arch from the current memslot. */ 1342 new.dirty_bitmap = old.dirty_bitmap; 1343 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1344 } 1345 1346 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1347 /* Check for overlaps */ 1348 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1349 if (tmp->id == id) 1350 continue; 1351 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1352 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1353 return -EEXIST; 1354 } 1355 } 1356 1357 /* Allocate/free page dirty bitmap as needed */ 1358 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1359 new.dirty_bitmap = NULL; 1360 else if (!new.dirty_bitmap) { 1361 r = kvm_alloc_dirty_bitmap(&new); 1362 if (r) 1363 return r; 1364 1365 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1366 bitmap_set(new.dirty_bitmap, 0, new.npages); 1367 } 1368 1369 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1370 if (r) 1371 goto out_bitmap; 1372 1373 if (old.dirty_bitmap && !new.dirty_bitmap) 1374 kvm_destroy_dirty_bitmap(&old); 1375 return 0; 1376 1377 out_bitmap: 1378 if (new.dirty_bitmap && !old.dirty_bitmap) 1379 kvm_destroy_dirty_bitmap(&new); 1380 return r; 1381 } 1382 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1383 1384 int kvm_set_memory_region(struct kvm *kvm, 1385 const struct kvm_userspace_memory_region *mem) 1386 { 1387 int r; 1388 1389 mutex_lock(&kvm->slots_lock); 1390 r = __kvm_set_memory_region(kvm, mem); 1391 mutex_unlock(&kvm->slots_lock); 1392 return r; 1393 } 1394 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1395 1396 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1397 struct kvm_userspace_memory_region *mem) 1398 { 1399 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1400 return -EINVAL; 1401 1402 return kvm_set_memory_region(kvm, mem); 1403 } 1404 1405 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1406 /** 1407 * kvm_get_dirty_log - get a snapshot of dirty pages 1408 * @kvm: pointer to kvm instance 1409 * @log: slot id and address to which we copy the log 1410 * @is_dirty: set to '1' if any dirty pages were found 1411 * @memslot: set to the associated memslot, always valid on success 1412 */ 1413 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1414 int *is_dirty, struct kvm_memory_slot **memslot) 1415 { 1416 struct kvm_memslots *slots; 1417 int i, as_id, id; 1418 unsigned long n; 1419 unsigned long any = 0; 1420 1421 *memslot = NULL; 1422 *is_dirty = 0; 1423 1424 as_id = log->slot >> 16; 1425 id = (u16)log->slot; 1426 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1427 return -EINVAL; 1428 1429 slots = __kvm_memslots(kvm, as_id); 1430 *memslot = id_to_memslot(slots, id); 1431 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1432 return -ENOENT; 1433 1434 kvm_arch_sync_dirty_log(kvm, *memslot); 1435 1436 n = kvm_dirty_bitmap_bytes(*memslot); 1437 1438 for (i = 0; !any && i < n/sizeof(long); ++i) 1439 any = (*memslot)->dirty_bitmap[i]; 1440 1441 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1442 return -EFAULT; 1443 1444 if (any) 1445 *is_dirty = 1; 1446 return 0; 1447 } 1448 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1449 1450 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1451 /** 1452 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1453 * and reenable dirty page tracking for the corresponding pages. 1454 * @kvm: pointer to kvm instance 1455 * @log: slot id and address to which we copy the log 1456 * 1457 * We need to keep it in mind that VCPU threads can write to the bitmap 1458 * concurrently. So, to avoid losing track of dirty pages we keep the 1459 * following order: 1460 * 1461 * 1. Take a snapshot of the bit and clear it if needed. 1462 * 2. Write protect the corresponding page. 1463 * 3. Copy the snapshot to the userspace. 1464 * 4. Upon return caller flushes TLB's if needed. 1465 * 1466 * Between 2 and 4, the guest may write to the page using the remaining TLB 1467 * entry. This is not a problem because the page is reported dirty using 1468 * the snapshot taken before and step 4 ensures that writes done after 1469 * exiting to userspace will be logged for the next call. 1470 * 1471 */ 1472 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1473 { 1474 struct kvm_memslots *slots; 1475 struct kvm_memory_slot *memslot; 1476 int i, as_id, id; 1477 unsigned long n; 1478 unsigned long *dirty_bitmap; 1479 unsigned long *dirty_bitmap_buffer; 1480 bool flush; 1481 1482 as_id = log->slot >> 16; 1483 id = (u16)log->slot; 1484 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1485 return -EINVAL; 1486 1487 slots = __kvm_memslots(kvm, as_id); 1488 memslot = id_to_memslot(slots, id); 1489 if (!memslot || !memslot->dirty_bitmap) 1490 return -ENOENT; 1491 1492 dirty_bitmap = memslot->dirty_bitmap; 1493 1494 kvm_arch_sync_dirty_log(kvm, memslot); 1495 1496 n = kvm_dirty_bitmap_bytes(memslot); 1497 flush = false; 1498 if (kvm->manual_dirty_log_protect) { 1499 /* 1500 * Unlike kvm_get_dirty_log, we always return false in *flush, 1501 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1502 * is some code duplication between this function and 1503 * kvm_get_dirty_log, but hopefully all architecture 1504 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1505 * can be eliminated. 1506 */ 1507 dirty_bitmap_buffer = dirty_bitmap; 1508 } else { 1509 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1510 memset(dirty_bitmap_buffer, 0, n); 1511 1512 spin_lock(&kvm->mmu_lock); 1513 for (i = 0; i < n / sizeof(long); i++) { 1514 unsigned long mask; 1515 gfn_t offset; 1516 1517 if (!dirty_bitmap[i]) 1518 continue; 1519 1520 flush = true; 1521 mask = xchg(&dirty_bitmap[i], 0); 1522 dirty_bitmap_buffer[i] = mask; 1523 1524 offset = i * BITS_PER_LONG; 1525 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1526 offset, mask); 1527 } 1528 spin_unlock(&kvm->mmu_lock); 1529 } 1530 1531 if (flush) 1532 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1533 1534 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1535 return -EFAULT; 1536 return 0; 1537 } 1538 1539 1540 /** 1541 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1542 * @kvm: kvm instance 1543 * @log: slot id and address to which we copy the log 1544 * 1545 * Steps 1-4 below provide general overview of dirty page logging. See 1546 * kvm_get_dirty_log_protect() function description for additional details. 1547 * 1548 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1549 * always flush the TLB (step 4) even if previous step failed and the dirty 1550 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1551 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1552 * writes will be marked dirty for next log read. 1553 * 1554 * 1. Take a snapshot of the bit and clear it if needed. 1555 * 2. Write protect the corresponding page. 1556 * 3. Copy the snapshot to the userspace. 1557 * 4. Flush TLB's if needed. 1558 */ 1559 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1560 struct kvm_dirty_log *log) 1561 { 1562 int r; 1563 1564 mutex_lock(&kvm->slots_lock); 1565 1566 r = kvm_get_dirty_log_protect(kvm, log); 1567 1568 mutex_unlock(&kvm->slots_lock); 1569 return r; 1570 } 1571 1572 /** 1573 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1574 * and reenable dirty page tracking for the corresponding pages. 1575 * @kvm: pointer to kvm instance 1576 * @log: slot id and address from which to fetch the bitmap of dirty pages 1577 */ 1578 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1579 struct kvm_clear_dirty_log *log) 1580 { 1581 struct kvm_memslots *slots; 1582 struct kvm_memory_slot *memslot; 1583 int as_id, id; 1584 gfn_t offset; 1585 unsigned long i, n; 1586 unsigned long *dirty_bitmap; 1587 unsigned long *dirty_bitmap_buffer; 1588 bool flush; 1589 1590 as_id = log->slot >> 16; 1591 id = (u16)log->slot; 1592 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1593 return -EINVAL; 1594 1595 if (log->first_page & 63) 1596 return -EINVAL; 1597 1598 slots = __kvm_memslots(kvm, as_id); 1599 memslot = id_to_memslot(slots, id); 1600 if (!memslot || !memslot->dirty_bitmap) 1601 return -ENOENT; 1602 1603 dirty_bitmap = memslot->dirty_bitmap; 1604 1605 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1606 1607 if (log->first_page > memslot->npages || 1608 log->num_pages > memslot->npages - log->first_page || 1609 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1610 return -EINVAL; 1611 1612 kvm_arch_sync_dirty_log(kvm, memslot); 1613 1614 flush = false; 1615 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1616 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1617 return -EFAULT; 1618 1619 spin_lock(&kvm->mmu_lock); 1620 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1621 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1622 i++, offset += BITS_PER_LONG) { 1623 unsigned long mask = *dirty_bitmap_buffer++; 1624 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1625 if (!mask) 1626 continue; 1627 1628 mask &= atomic_long_fetch_andnot(mask, p); 1629 1630 /* 1631 * mask contains the bits that really have been cleared. This 1632 * never includes any bits beyond the length of the memslot (if 1633 * the length is not aligned to 64 pages), therefore it is not 1634 * a problem if userspace sets them in log->dirty_bitmap. 1635 */ 1636 if (mask) { 1637 flush = true; 1638 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1639 offset, mask); 1640 } 1641 } 1642 spin_unlock(&kvm->mmu_lock); 1643 1644 if (flush) 1645 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1646 1647 return 0; 1648 } 1649 1650 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 1651 struct kvm_clear_dirty_log *log) 1652 { 1653 int r; 1654 1655 mutex_lock(&kvm->slots_lock); 1656 1657 r = kvm_clear_dirty_log_protect(kvm, log); 1658 1659 mutex_unlock(&kvm->slots_lock); 1660 return r; 1661 } 1662 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1663 1664 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1665 { 1666 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1667 } 1668 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1669 1670 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1671 { 1672 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1673 } 1674 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot); 1675 1676 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1677 { 1678 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1679 1680 return kvm_is_visible_memslot(memslot); 1681 } 1682 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1683 1684 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1685 { 1686 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1687 1688 return kvm_is_visible_memslot(memslot); 1689 } 1690 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 1691 1692 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 1693 { 1694 struct vm_area_struct *vma; 1695 unsigned long addr, size; 1696 1697 size = PAGE_SIZE; 1698 1699 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 1700 if (kvm_is_error_hva(addr)) 1701 return PAGE_SIZE; 1702 1703 mmap_read_lock(current->mm); 1704 vma = find_vma(current->mm, addr); 1705 if (!vma) 1706 goto out; 1707 1708 size = vma_kernel_pagesize(vma); 1709 1710 out: 1711 mmap_read_unlock(current->mm); 1712 1713 return size; 1714 } 1715 1716 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1717 { 1718 return slot->flags & KVM_MEM_READONLY; 1719 } 1720 1721 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1722 gfn_t *nr_pages, bool write) 1723 { 1724 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1725 return KVM_HVA_ERR_BAD; 1726 1727 if (memslot_is_readonly(slot) && write) 1728 return KVM_HVA_ERR_RO_BAD; 1729 1730 if (nr_pages) 1731 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1732 1733 return __gfn_to_hva_memslot(slot, gfn); 1734 } 1735 1736 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1737 gfn_t *nr_pages) 1738 { 1739 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1740 } 1741 1742 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1743 gfn_t gfn) 1744 { 1745 return gfn_to_hva_many(slot, gfn, NULL); 1746 } 1747 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1748 1749 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1750 { 1751 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1752 } 1753 EXPORT_SYMBOL_GPL(gfn_to_hva); 1754 1755 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1756 { 1757 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1758 } 1759 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1760 1761 /* 1762 * Return the hva of a @gfn and the R/W attribute if possible. 1763 * 1764 * @slot: the kvm_memory_slot which contains @gfn 1765 * @gfn: the gfn to be translated 1766 * @writable: used to return the read/write attribute of the @slot if the hva 1767 * is valid and @writable is not NULL 1768 */ 1769 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1770 gfn_t gfn, bool *writable) 1771 { 1772 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1773 1774 if (!kvm_is_error_hva(hva) && writable) 1775 *writable = !memslot_is_readonly(slot); 1776 1777 return hva; 1778 } 1779 1780 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1781 { 1782 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1783 1784 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1785 } 1786 1787 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1788 { 1789 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1790 1791 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1792 } 1793 1794 static inline int check_user_page_hwpoison(unsigned long addr) 1795 { 1796 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1797 1798 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1799 return rc == -EHWPOISON; 1800 } 1801 1802 /* 1803 * The fast path to get the writable pfn which will be stored in @pfn, 1804 * true indicates success, otherwise false is returned. It's also the 1805 * only part that runs if we can in atomic context. 1806 */ 1807 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1808 bool *writable, kvm_pfn_t *pfn) 1809 { 1810 struct page *page[1]; 1811 1812 /* 1813 * Fast pin a writable pfn only if it is a write fault request 1814 * or the caller allows to map a writable pfn for a read fault 1815 * request. 1816 */ 1817 if (!(write_fault || writable)) 1818 return false; 1819 1820 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 1821 *pfn = page_to_pfn(page[0]); 1822 1823 if (writable) 1824 *writable = true; 1825 return true; 1826 } 1827 1828 return false; 1829 } 1830 1831 /* 1832 * The slow path to get the pfn of the specified host virtual address, 1833 * 1 indicates success, -errno is returned if error is detected. 1834 */ 1835 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1836 bool *writable, kvm_pfn_t *pfn) 1837 { 1838 unsigned int flags = FOLL_HWPOISON; 1839 struct page *page; 1840 int npages = 0; 1841 1842 might_sleep(); 1843 1844 if (writable) 1845 *writable = write_fault; 1846 1847 if (write_fault) 1848 flags |= FOLL_WRITE; 1849 if (async) 1850 flags |= FOLL_NOWAIT; 1851 1852 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1853 if (npages != 1) 1854 return npages; 1855 1856 /* map read fault as writable if possible */ 1857 if (unlikely(!write_fault) && writable) { 1858 struct page *wpage; 1859 1860 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 1861 *writable = true; 1862 put_page(page); 1863 page = wpage; 1864 } 1865 } 1866 *pfn = page_to_pfn(page); 1867 return npages; 1868 } 1869 1870 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1871 { 1872 if (unlikely(!(vma->vm_flags & VM_READ))) 1873 return false; 1874 1875 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1876 return false; 1877 1878 return true; 1879 } 1880 1881 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1882 unsigned long addr, bool *async, 1883 bool write_fault, bool *writable, 1884 kvm_pfn_t *p_pfn) 1885 { 1886 unsigned long pfn; 1887 int r; 1888 1889 r = follow_pfn(vma, addr, &pfn); 1890 if (r) { 1891 /* 1892 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1893 * not call the fault handler, so do it here. 1894 */ 1895 bool unlocked = false; 1896 r = fixup_user_fault(current->mm, addr, 1897 (write_fault ? FAULT_FLAG_WRITE : 0), 1898 &unlocked); 1899 if (unlocked) 1900 return -EAGAIN; 1901 if (r) 1902 return r; 1903 1904 r = follow_pfn(vma, addr, &pfn); 1905 if (r) 1906 return r; 1907 1908 } 1909 1910 if (writable) 1911 *writable = true; 1912 1913 /* 1914 * Get a reference here because callers of *hva_to_pfn* and 1915 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1916 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1917 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1918 * simply do nothing for reserved pfns. 1919 * 1920 * Whoever called remap_pfn_range is also going to call e.g. 1921 * unmap_mapping_range before the underlying pages are freed, 1922 * causing a call to our MMU notifier. 1923 */ 1924 kvm_get_pfn(pfn); 1925 1926 *p_pfn = pfn; 1927 return 0; 1928 } 1929 1930 /* 1931 * Pin guest page in memory and return its pfn. 1932 * @addr: host virtual address which maps memory to the guest 1933 * @atomic: whether this function can sleep 1934 * @async: whether this function need to wait IO complete if the 1935 * host page is not in the memory 1936 * @write_fault: whether we should get a writable host page 1937 * @writable: whether it allows to map a writable host page for !@write_fault 1938 * 1939 * The function will map a writable host page for these two cases: 1940 * 1): @write_fault = true 1941 * 2): @write_fault = false && @writable, @writable will tell the caller 1942 * whether the mapping is writable. 1943 */ 1944 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1945 bool write_fault, bool *writable) 1946 { 1947 struct vm_area_struct *vma; 1948 kvm_pfn_t pfn = 0; 1949 int npages, r; 1950 1951 /* we can do it either atomically or asynchronously, not both */ 1952 BUG_ON(atomic && async); 1953 1954 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1955 return pfn; 1956 1957 if (atomic) 1958 return KVM_PFN_ERR_FAULT; 1959 1960 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1961 if (npages == 1) 1962 return pfn; 1963 1964 mmap_read_lock(current->mm); 1965 if (npages == -EHWPOISON || 1966 (!async && check_user_page_hwpoison(addr))) { 1967 pfn = KVM_PFN_ERR_HWPOISON; 1968 goto exit; 1969 } 1970 1971 retry: 1972 vma = find_vma_intersection(current->mm, addr, addr + 1); 1973 1974 if (vma == NULL) 1975 pfn = KVM_PFN_ERR_FAULT; 1976 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1977 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1978 if (r == -EAGAIN) 1979 goto retry; 1980 if (r < 0) 1981 pfn = KVM_PFN_ERR_FAULT; 1982 } else { 1983 if (async && vma_is_valid(vma, write_fault)) 1984 *async = true; 1985 pfn = KVM_PFN_ERR_FAULT; 1986 } 1987 exit: 1988 mmap_read_unlock(current->mm); 1989 return pfn; 1990 } 1991 1992 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1993 bool atomic, bool *async, bool write_fault, 1994 bool *writable) 1995 { 1996 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1997 1998 if (addr == KVM_HVA_ERR_RO_BAD) { 1999 if (writable) 2000 *writable = false; 2001 return KVM_PFN_ERR_RO_FAULT; 2002 } 2003 2004 if (kvm_is_error_hva(addr)) { 2005 if (writable) 2006 *writable = false; 2007 return KVM_PFN_NOSLOT; 2008 } 2009 2010 /* Do not map writable pfn in the readonly memslot. */ 2011 if (writable && memslot_is_readonly(slot)) { 2012 *writable = false; 2013 writable = NULL; 2014 } 2015 2016 return hva_to_pfn(addr, atomic, async, write_fault, 2017 writable); 2018 } 2019 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2020 2021 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2022 bool *writable) 2023 { 2024 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 2025 write_fault, writable); 2026 } 2027 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2028 2029 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 2030 { 2031 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 2032 } 2033 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2034 2035 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 2036 { 2037 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 2038 } 2039 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2040 2041 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2042 { 2043 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2044 } 2045 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2046 2047 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2048 { 2049 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2050 } 2051 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2052 2053 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2054 { 2055 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2056 } 2057 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2058 2059 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2060 struct page **pages, int nr_pages) 2061 { 2062 unsigned long addr; 2063 gfn_t entry = 0; 2064 2065 addr = gfn_to_hva_many(slot, gfn, &entry); 2066 if (kvm_is_error_hva(addr)) 2067 return -1; 2068 2069 if (entry < nr_pages) 2070 return 0; 2071 2072 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2073 } 2074 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2075 2076 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2077 { 2078 if (is_error_noslot_pfn(pfn)) 2079 return KVM_ERR_PTR_BAD_PAGE; 2080 2081 if (kvm_is_reserved_pfn(pfn)) { 2082 WARN_ON(1); 2083 return KVM_ERR_PTR_BAD_PAGE; 2084 } 2085 2086 return pfn_to_page(pfn); 2087 } 2088 2089 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2090 { 2091 kvm_pfn_t pfn; 2092 2093 pfn = gfn_to_pfn(kvm, gfn); 2094 2095 return kvm_pfn_to_page(pfn); 2096 } 2097 EXPORT_SYMBOL_GPL(gfn_to_page); 2098 2099 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2100 { 2101 if (pfn == 0) 2102 return; 2103 2104 if (cache) 2105 cache->pfn = cache->gfn = 0; 2106 2107 if (dirty) 2108 kvm_release_pfn_dirty(pfn); 2109 else 2110 kvm_release_pfn_clean(pfn); 2111 } 2112 2113 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2114 struct gfn_to_pfn_cache *cache, u64 gen) 2115 { 2116 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2117 2118 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2119 cache->gfn = gfn; 2120 cache->dirty = false; 2121 cache->generation = gen; 2122 } 2123 2124 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2125 struct kvm_host_map *map, 2126 struct gfn_to_pfn_cache *cache, 2127 bool atomic) 2128 { 2129 kvm_pfn_t pfn; 2130 void *hva = NULL; 2131 struct page *page = KVM_UNMAPPED_PAGE; 2132 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2133 u64 gen = slots->generation; 2134 2135 if (!map) 2136 return -EINVAL; 2137 2138 if (cache) { 2139 if (!cache->pfn || cache->gfn != gfn || 2140 cache->generation != gen) { 2141 if (atomic) 2142 return -EAGAIN; 2143 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2144 } 2145 pfn = cache->pfn; 2146 } else { 2147 if (atomic) 2148 return -EAGAIN; 2149 pfn = gfn_to_pfn_memslot(slot, gfn); 2150 } 2151 if (is_error_noslot_pfn(pfn)) 2152 return -EINVAL; 2153 2154 if (pfn_valid(pfn)) { 2155 page = pfn_to_page(pfn); 2156 if (atomic) 2157 hva = kmap_atomic(page); 2158 else 2159 hva = kmap(page); 2160 #ifdef CONFIG_HAS_IOMEM 2161 } else if (!atomic) { 2162 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2163 } else { 2164 return -EINVAL; 2165 #endif 2166 } 2167 2168 if (!hva) 2169 return -EFAULT; 2170 2171 map->page = page; 2172 map->hva = hva; 2173 map->pfn = pfn; 2174 map->gfn = gfn; 2175 2176 return 0; 2177 } 2178 2179 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2180 struct gfn_to_pfn_cache *cache, bool atomic) 2181 { 2182 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2183 cache, atomic); 2184 } 2185 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2186 2187 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2188 { 2189 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2190 NULL, false); 2191 } 2192 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2193 2194 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot, 2195 struct kvm_host_map *map, 2196 struct gfn_to_pfn_cache *cache, 2197 bool dirty, bool atomic) 2198 { 2199 if (!map) 2200 return; 2201 2202 if (!map->hva) 2203 return; 2204 2205 if (map->page != KVM_UNMAPPED_PAGE) { 2206 if (atomic) 2207 kunmap_atomic(map->hva); 2208 else 2209 kunmap(map->page); 2210 } 2211 #ifdef CONFIG_HAS_IOMEM 2212 else if (!atomic) 2213 memunmap(map->hva); 2214 else 2215 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2216 #endif 2217 2218 if (dirty) 2219 mark_page_dirty_in_slot(memslot, map->gfn); 2220 2221 if (cache) 2222 cache->dirty |= dirty; 2223 else 2224 kvm_release_pfn(map->pfn, dirty, NULL); 2225 2226 map->hva = NULL; 2227 map->page = NULL; 2228 } 2229 2230 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2231 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2232 { 2233 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, 2234 cache, dirty, atomic); 2235 return 0; 2236 } 2237 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2238 2239 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2240 { 2241 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL, 2242 dirty, false); 2243 } 2244 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2245 2246 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2247 { 2248 kvm_pfn_t pfn; 2249 2250 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2251 2252 return kvm_pfn_to_page(pfn); 2253 } 2254 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2255 2256 void kvm_release_page_clean(struct page *page) 2257 { 2258 WARN_ON(is_error_page(page)); 2259 2260 kvm_release_pfn_clean(page_to_pfn(page)); 2261 } 2262 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2263 2264 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2265 { 2266 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2267 put_page(pfn_to_page(pfn)); 2268 } 2269 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2270 2271 void kvm_release_page_dirty(struct page *page) 2272 { 2273 WARN_ON(is_error_page(page)); 2274 2275 kvm_release_pfn_dirty(page_to_pfn(page)); 2276 } 2277 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2278 2279 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2280 { 2281 kvm_set_pfn_dirty(pfn); 2282 kvm_release_pfn_clean(pfn); 2283 } 2284 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2285 2286 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2287 { 2288 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2289 SetPageDirty(pfn_to_page(pfn)); 2290 } 2291 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2292 2293 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2294 { 2295 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2296 mark_page_accessed(pfn_to_page(pfn)); 2297 } 2298 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2299 2300 void kvm_get_pfn(kvm_pfn_t pfn) 2301 { 2302 if (!kvm_is_reserved_pfn(pfn)) 2303 get_page(pfn_to_page(pfn)); 2304 } 2305 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2306 2307 static int next_segment(unsigned long len, int offset) 2308 { 2309 if (len > PAGE_SIZE - offset) 2310 return PAGE_SIZE - offset; 2311 else 2312 return len; 2313 } 2314 2315 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2316 void *data, int offset, int len) 2317 { 2318 int r; 2319 unsigned long addr; 2320 2321 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2322 if (kvm_is_error_hva(addr)) 2323 return -EFAULT; 2324 r = __copy_from_user(data, (void __user *)addr + offset, len); 2325 if (r) 2326 return -EFAULT; 2327 return 0; 2328 } 2329 2330 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2331 int len) 2332 { 2333 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2334 2335 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2336 } 2337 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2338 2339 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2340 int offset, int len) 2341 { 2342 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2343 2344 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2345 } 2346 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2347 2348 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2349 { 2350 gfn_t gfn = gpa >> PAGE_SHIFT; 2351 int seg; 2352 int offset = offset_in_page(gpa); 2353 int ret; 2354 2355 while ((seg = next_segment(len, offset)) != 0) { 2356 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2357 if (ret < 0) 2358 return ret; 2359 offset = 0; 2360 len -= seg; 2361 data += seg; 2362 ++gfn; 2363 } 2364 return 0; 2365 } 2366 EXPORT_SYMBOL_GPL(kvm_read_guest); 2367 2368 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2369 { 2370 gfn_t gfn = gpa >> PAGE_SHIFT; 2371 int seg; 2372 int offset = offset_in_page(gpa); 2373 int ret; 2374 2375 while ((seg = next_segment(len, offset)) != 0) { 2376 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2377 if (ret < 0) 2378 return ret; 2379 offset = 0; 2380 len -= seg; 2381 data += seg; 2382 ++gfn; 2383 } 2384 return 0; 2385 } 2386 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2387 2388 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2389 void *data, int offset, unsigned long len) 2390 { 2391 int r; 2392 unsigned long addr; 2393 2394 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2395 if (kvm_is_error_hva(addr)) 2396 return -EFAULT; 2397 pagefault_disable(); 2398 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2399 pagefault_enable(); 2400 if (r) 2401 return -EFAULT; 2402 return 0; 2403 } 2404 2405 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2406 void *data, unsigned long len) 2407 { 2408 gfn_t gfn = gpa >> PAGE_SHIFT; 2409 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2410 int offset = offset_in_page(gpa); 2411 2412 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2413 } 2414 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2415 2416 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2417 const void *data, int offset, int len) 2418 { 2419 int r; 2420 unsigned long addr; 2421 2422 addr = gfn_to_hva_memslot(memslot, gfn); 2423 if (kvm_is_error_hva(addr)) 2424 return -EFAULT; 2425 r = __copy_to_user((void __user *)addr + offset, data, len); 2426 if (r) 2427 return -EFAULT; 2428 mark_page_dirty_in_slot(memslot, gfn); 2429 return 0; 2430 } 2431 2432 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2433 const void *data, int offset, int len) 2434 { 2435 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2436 2437 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2438 } 2439 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2440 2441 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2442 const void *data, int offset, int len) 2443 { 2444 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2445 2446 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2447 } 2448 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2449 2450 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2451 unsigned long len) 2452 { 2453 gfn_t gfn = gpa >> PAGE_SHIFT; 2454 int seg; 2455 int offset = offset_in_page(gpa); 2456 int ret; 2457 2458 while ((seg = next_segment(len, offset)) != 0) { 2459 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2460 if (ret < 0) 2461 return ret; 2462 offset = 0; 2463 len -= seg; 2464 data += seg; 2465 ++gfn; 2466 } 2467 return 0; 2468 } 2469 EXPORT_SYMBOL_GPL(kvm_write_guest); 2470 2471 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2472 unsigned long len) 2473 { 2474 gfn_t gfn = gpa >> PAGE_SHIFT; 2475 int seg; 2476 int offset = offset_in_page(gpa); 2477 int ret; 2478 2479 while ((seg = next_segment(len, offset)) != 0) { 2480 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2481 if (ret < 0) 2482 return ret; 2483 offset = 0; 2484 len -= seg; 2485 data += seg; 2486 ++gfn; 2487 } 2488 return 0; 2489 } 2490 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2491 2492 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2493 struct gfn_to_hva_cache *ghc, 2494 gpa_t gpa, unsigned long len) 2495 { 2496 int offset = offset_in_page(gpa); 2497 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2498 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2499 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2500 gfn_t nr_pages_avail; 2501 2502 /* Update ghc->generation before performing any error checks. */ 2503 ghc->generation = slots->generation; 2504 2505 if (start_gfn > end_gfn) { 2506 ghc->hva = KVM_HVA_ERR_BAD; 2507 return -EINVAL; 2508 } 2509 2510 /* 2511 * If the requested region crosses two memslots, we still 2512 * verify that the entire region is valid here. 2513 */ 2514 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2515 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2516 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2517 &nr_pages_avail); 2518 if (kvm_is_error_hva(ghc->hva)) 2519 return -EFAULT; 2520 } 2521 2522 /* Use the slow path for cross page reads and writes. */ 2523 if (nr_pages_needed == 1) 2524 ghc->hva += offset; 2525 else 2526 ghc->memslot = NULL; 2527 2528 ghc->gpa = gpa; 2529 ghc->len = len; 2530 return 0; 2531 } 2532 2533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2534 gpa_t gpa, unsigned long len) 2535 { 2536 struct kvm_memslots *slots = kvm_memslots(kvm); 2537 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2538 } 2539 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2540 2541 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2542 void *data, unsigned int offset, 2543 unsigned long len) 2544 { 2545 struct kvm_memslots *slots = kvm_memslots(kvm); 2546 int r; 2547 gpa_t gpa = ghc->gpa + offset; 2548 2549 BUG_ON(len + offset > ghc->len); 2550 2551 if (slots->generation != ghc->generation) { 2552 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2553 return -EFAULT; 2554 } 2555 2556 if (kvm_is_error_hva(ghc->hva)) 2557 return -EFAULT; 2558 2559 if (unlikely(!ghc->memslot)) 2560 return kvm_write_guest(kvm, gpa, data, len); 2561 2562 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2563 if (r) 2564 return -EFAULT; 2565 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2566 2567 return 0; 2568 } 2569 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2570 2571 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2572 void *data, unsigned long len) 2573 { 2574 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2575 } 2576 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2577 2578 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2579 void *data, unsigned int offset, 2580 unsigned long len) 2581 { 2582 struct kvm_memslots *slots = kvm_memslots(kvm); 2583 int r; 2584 gpa_t gpa = ghc->gpa + offset; 2585 2586 BUG_ON(len + offset > ghc->len); 2587 2588 if (slots->generation != ghc->generation) { 2589 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2590 return -EFAULT; 2591 } 2592 2593 if (kvm_is_error_hva(ghc->hva)) 2594 return -EFAULT; 2595 2596 if (unlikely(!ghc->memslot)) 2597 return kvm_read_guest(kvm, gpa, data, len); 2598 2599 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 2600 if (r) 2601 return -EFAULT; 2602 2603 return 0; 2604 } 2605 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 2606 2607 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2608 void *data, unsigned long len) 2609 { 2610 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 2611 } 2612 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2613 2614 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2615 { 2616 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2617 2618 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2619 } 2620 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2621 2622 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2623 { 2624 gfn_t gfn = gpa >> PAGE_SHIFT; 2625 int seg; 2626 int offset = offset_in_page(gpa); 2627 int ret; 2628 2629 while ((seg = next_segment(len, offset)) != 0) { 2630 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2631 if (ret < 0) 2632 return ret; 2633 offset = 0; 2634 len -= seg; 2635 ++gfn; 2636 } 2637 return 0; 2638 } 2639 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2640 2641 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2642 gfn_t gfn) 2643 { 2644 if (memslot && memslot->dirty_bitmap) { 2645 unsigned long rel_gfn = gfn - memslot->base_gfn; 2646 2647 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2648 } 2649 } 2650 2651 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2652 { 2653 struct kvm_memory_slot *memslot; 2654 2655 memslot = gfn_to_memslot(kvm, gfn); 2656 mark_page_dirty_in_slot(memslot, gfn); 2657 } 2658 EXPORT_SYMBOL_GPL(mark_page_dirty); 2659 2660 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2661 { 2662 struct kvm_memory_slot *memslot; 2663 2664 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2665 mark_page_dirty_in_slot(memslot, gfn); 2666 } 2667 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2668 2669 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2670 { 2671 if (!vcpu->sigset_active) 2672 return; 2673 2674 /* 2675 * This does a lockless modification of ->real_blocked, which is fine 2676 * because, only current can change ->real_blocked and all readers of 2677 * ->real_blocked don't care as long ->real_blocked is always a subset 2678 * of ->blocked. 2679 */ 2680 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2681 } 2682 2683 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2684 { 2685 if (!vcpu->sigset_active) 2686 return; 2687 2688 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2689 sigemptyset(¤t->real_blocked); 2690 } 2691 2692 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2693 { 2694 unsigned int old, val, grow, grow_start; 2695 2696 old = val = vcpu->halt_poll_ns; 2697 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2698 grow = READ_ONCE(halt_poll_ns_grow); 2699 if (!grow) 2700 goto out; 2701 2702 val *= grow; 2703 if (val < grow_start) 2704 val = grow_start; 2705 2706 if (val > halt_poll_ns) 2707 val = halt_poll_ns; 2708 2709 vcpu->halt_poll_ns = val; 2710 out: 2711 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2712 } 2713 2714 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2715 { 2716 unsigned int old, val, shrink; 2717 2718 old = val = vcpu->halt_poll_ns; 2719 shrink = READ_ONCE(halt_poll_ns_shrink); 2720 if (shrink == 0) 2721 val = 0; 2722 else 2723 val /= shrink; 2724 2725 vcpu->halt_poll_ns = val; 2726 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2727 } 2728 2729 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2730 { 2731 int ret = -EINTR; 2732 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2733 2734 if (kvm_arch_vcpu_runnable(vcpu)) { 2735 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2736 goto out; 2737 } 2738 if (kvm_cpu_has_pending_timer(vcpu)) 2739 goto out; 2740 if (signal_pending(current)) 2741 goto out; 2742 2743 ret = 0; 2744 out: 2745 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2746 return ret; 2747 } 2748 2749 static inline void 2750 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited) 2751 { 2752 if (waited) 2753 vcpu->stat.halt_poll_fail_ns += poll_ns; 2754 else 2755 vcpu->stat.halt_poll_success_ns += poll_ns; 2756 } 2757 2758 /* 2759 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2760 */ 2761 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2762 { 2763 ktime_t start, cur, poll_end; 2764 bool waited = false; 2765 u64 block_ns; 2766 2767 kvm_arch_vcpu_blocking(vcpu); 2768 2769 start = cur = poll_end = ktime_get(); 2770 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2771 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2772 2773 ++vcpu->stat.halt_attempted_poll; 2774 do { 2775 /* 2776 * This sets KVM_REQ_UNHALT if an interrupt 2777 * arrives. 2778 */ 2779 if (kvm_vcpu_check_block(vcpu) < 0) { 2780 ++vcpu->stat.halt_successful_poll; 2781 if (!vcpu_valid_wakeup(vcpu)) 2782 ++vcpu->stat.halt_poll_invalid; 2783 goto out; 2784 } 2785 poll_end = cur = ktime_get(); 2786 } while (single_task_running() && ktime_before(cur, stop)); 2787 } 2788 2789 prepare_to_rcuwait(&vcpu->wait); 2790 for (;;) { 2791 set_current_state(TASK_INTERRUPTIBLE); 2792 2793 if (kvm_vcpu_check_block(vcpu) < 0) 2794 break; 2795 2796 waited = true; 2797 schedule(); 2798 } 2799 finish_rcuwait(&vcpu->wait); 2800 cur = ktime_get(); 2801 out: 2802 kvm_arch_vcpu_unblocking(vcpu); 2803 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2804 2805 update_halt_poll_stats( 2806 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited); 2807 2808 if (!kvm_arch_no_poll(vcpu)) { 2809 if (!vcpu_valid_wakeup(vcpu)) { 2810 shrink_halt_poll_ns(vcpu); 2811 } else if (vcpu->kvm->max_halt_poll_ns) { 2812 if (block_ns <= vcpu->halt_poll_ns) 2813 ; 2814 /* we had a long block, shrink polling */ 2815 else if (vcpu->halt_poll_ns && 2816 block_ns > vcpu->kvm->max_halt_poll_ns) 2817 shrink_halt_poll_ns(vcpu); 2818 /* we had a short halt and our poll time is too small */ 2819 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns && 2820 block_ns < vcpu->kvm->max_halt_poll_ns) 2821 grow_halt_poll_ns(vcpu); 2822 } else { 2823 vcpu->halt_poll_ns = 0; 2824 } 2825 } 2826 2827 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2828 kvm_arch_vcpu_block_finish(vcpu); 2829 } 2830 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2831 2832 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2833 { 2834 struct rcuwait *waitp; 2835 2836 waitp = kvm_arch_vcpu_get_wait(vcpu); 2837 if (rcuwait_wake_up(waitp)) { 2838 WRITE_ONCE(vcpu->ready, true); 2839 ++vcpu->stat.halt_wakeup; 2840 return true; 2841 } 2842 2843 return false; 2844 } 2845 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2846 2847 #ifndef CONFIG_S390 2848 /* 2849 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2850 */ 2851 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2852 { 2853 int me; 2854 int cpu = vcpu->cpu; 2855 2856 if (kvm_vcpu_wake_up(vcpu)) 2857 return; 2858 2859 me = get_cpu(); 2860 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2861 if (kvm_arch_vcpu_should_kick(vcpu)) 2862 smp_send_reschedule(cpu); 2863 put_cpu(); 2864 } 2865 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2866 #endif /* !CONFIG_S390 */ 2867 2868 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2869 { 2870 struct pid *pid; 2871 struct task_struct *task = NULL; 2872 int ret = 0; 2873 2874 rcu_read_lock(); 2875 pid = rcu_dereference(target->pid); 2876 if (pid) 2877 task = get_pid_task(pid, PIDTYPE_PID); 2878 rcu_read_unlock(); 2879 if (!task) 2880 return ret; 2881 ret = yield_to(task, 1); 2882 put_task_struct(task); 2883 2884 return ret; 2885 } 2886 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2887 2888 /* 2889 * Helper that checks whether a VCPU is eligible for directed yield. 2890 * Most eligible candidate to yield is decided by following heuristics: 2891 * 2892 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2893 * (preempted lock holder), indicated by @in_spin_loop. 2894 * Set at the beginning and cleared at the end of interception/PLE handler. 2895 * 2896 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2897 * chance last time (mostly it has become eligible now since we have probably 2898 * yielded to lockholder in last iteration. This is done by toggling 2899 * @dy_eligible each time a VCPU checked for eligibility.) 2900 * 2901 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2902 * to preempted lock-holder could result in wrong VCPU selection and CPU 2903 * burning. Giving priority for a potential lock-holder increases lock 2904 * progress. 2905 * 2906 * Since algorithm is based on heuristics, accessing another VCPU data without 2907 * locking does not harm. It may result in trying to yield to same VCPU, fail 2908 * and continue with next VCPU and so on. 2909 */ 2910 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2911 { 2912 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2913 bool eligible; 2914 2915 eligible = !vcpu->spin_loop.in_spin_loop || 2916 vcpu->spin_loop.dy_eligible; 2917 2918 if (vcpu->spin_loop.in_spin_loop) 2919 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2920 2921 return eligible; 2922 #else 2923 return true; 2924 #endif 2925 } 2926 2927 /* 2928 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2929 * a vcpu_load/vcpu_put pair. However, for most architectures 2930 * kvm_arch_vcpu_runnable does not require vcpu_load. 2931 */ 2932 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2933 { 2934 return kvm_arch_vcpu_runnable(vcpu); 2935 } 2936 2937 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2938 { 2939 if (kvm_arch_dy_runnable(vcpu)) 2940 return true; 2941 2942 #ifdef CONFIG_KVM_ASYNC_PF 2943 if (!list_empty_careful(&vcpu->async_pf.done)) 2944 return true; 2945 #endif 2946 2947 return false; 2948 } 2949 2950 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2951 { 2952 struct kvm *kvm = me->kvm; 2953 struct kvm_vcpu *vcpu; 2954 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2955 int yielded = 0; 2956 int try = 3; 2957 int pass; 2958 int i; 2959 2960 kvm_vcpu_set_in_spin_loop(me, true); 2961 /* 2962 * We boost the priority of a VCPU that is runnable but not 2963 * currently running, because it got preempted by something 2964 * else and called schedule in __vcpu_run. Hopefully that 2965 * VCPU is holding the lock that we need and will release it. 2966 * We approximate round-robin by starting at the last boosted VCPU. 2967 */ 2968 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2969 kvm_for_each_vcpu(i, vcpu, kvm) { 2970 if (!pass && i <= last_boosted_vcpu) { 2971 i = last_boosted_vcpu; 2972 continue; 2973 } else if (pass && i > last_boosted_vcpu) 2974 break; 2975 if (!READ_ONCE(vcpu->ready)) 2976 continue; 2977 if (vcpu == me) 2978 continue; 2979 if (rcuwait_active(&vcpu->wait) && 2980 !vcpu_dy_runnable(vcpu)) 2981 continue; 2982 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2983 !kvm_arch_vcpu_in_kernel(vcpu)) 2984 continue; 2985 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2986 continue; 2987 2988 yielded = kvm_vcpu_yield_to(vcpu); 2989 if (yielded > 0) { 2990 kvm->last_boosted_vcpu = i; 2991 break; 2992 } else if (yielded < 0) { 2993 try--; 2994 if (!try) 2995 break; 2996 } 2997 } 2998 } 2999 kvm_vcpu_set_in_spin_loop(me, false); 3000 3001 /* Ensure vcpu is not eligible during next spinloop */ 3002 kvm_vcpu_set_dy_eligible(me, false); 3003 } 3004 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3005 3006 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3007 { 3008 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3009 struct page *page; 3010 3011 if (vmf->pgoff == 0) 3012 page = virt_to_page(vcpu->run); 3013 #ifdef CONFIG_X86 3014 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3015 page = virt_to_page(vcpu->arch.pio_data); 3016 #endif 3017 #ifdef CONFIG_KVM_MMIO 3018 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3019 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3020 #endif 3021 else 3022 return kvm_arch_vcpu_fault(vcpu, vmf); 3023 get_page(page); 3024 vmf->page = page; 3025 return 0; 3026 } 3027 3028 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3029 .fault = kvm_vcpu_fault, 3030 }; 3031 3032 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3033 { 3034 vma->vm_ops = &kvm_vcpu_vm_ops; 3035 return 0; 3036 } 3037 3038 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3039 { 3040 struct kvm_vcpu *vcpu = filp->private_data; 3041 3042 kvm_put_kvm(vcpu->kvm); 3043 return 0; 3044 } 3045 3046 static struct file_operations kvm_vcpu_fops = { 3047 .release = kvm_vcpu_release, 3048 .unlocked_ioctl = kvm_vcpu_ioctl, 3049 .mmap = kvm_vcpu_mmap, 3050 .llseek = noop_llseek, 3051 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3052 }; 3053 3054 /* 3055 * Allocates an inode for the vcpu. 3056 */ 3057 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3058 { 3059 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3060 3061 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3062 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3063 } 3064 3065 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3066 { 3067 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3068 struct dentry *debugfs_dentry; 3069 char dir_name[ITOA_MAX_LEN * 2]; 3070 3071 if (!debugfs_initialized()) 3072 return; 3073 3074 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3075 debugfs_dentry = debugfs_create_dir(dir_name, 3076 vcpu->kvm->debugfs_dentry); 3077 3078 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3079 #endif 3080 } 3081 3082 /* 3083 * Creates some virtual cpus. Good luck creating more than one. 3084 */ 3085 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3086 { 3087 int r; 3088 struct kvm_vcpu *vcpu; 3089 struct page *page; 3090 3091 if (id >= KVM_MAX_VCPU_ID) 3092 return -EINVAL; 3093 3094 mutex_lock(&kvm->lock); 3095 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3096 mutex_unlock(&kvm->lock); 3097 return -EINVAL; 3098 } 3099 3100 kvm->created_vcpus++; 3101 mutex_unlock(&kvm->lock); 3102 3103 r = kvm_arch_vcpu_precreate(kvm, id); 3104 if (r) 3105 goto vcpu_decrement; 3106 3107 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 3108 if (!vcpu) { 3109 r = -ENOMEM; 3110 goto vcpu_decrement; 3111 } 3112 3113 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3114 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 3115 if (!page) { 3116 r = -ENOMEM; 3117 goto vcpu_free; 3118 } 3119 vcpu->run = page_address(page); 3120 3121 kvm_vcpu_init(vcpu, kvm, id); 3122 3123 r = kvm_arch_vcpu_create(vcpu); 3124 if (r) 3125 goto vcpu_free_run_page; 3126 3127 mutex_lock(&kvm->lock); 3128 if (kvm_get_vcpu_by_id(kvm, id)) { 3129 r = -EEXIST; 3130 goto unlock_vcpu_destroy; 3131 } 3132 3133 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3134 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3135 3136 /* Now it's all set up, let userspace reach it */ 3137 kvm_get_kvm(kvm); 3138 r = create_vcpu_fd(vcpu); 3139 if (r < 0) { 3140 kvm_put_kvm_no_destroy(kvm); 3141 goto unlock_vcpu_destroy; 3142 } 3143 3144 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3145 3146 /* 3147 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3148 * before kvm->online_vcpu's incremented value. 3149 */ 3150 smp_wmb(); 3151 atomic_inc(&kvm->online_vcpus); 3152 3153 mutex_unlock(&kvm->lock); 3154 kvm_arch_vcpu_postcreate(vcpu); 3155 kvm_create_vcpu_debugfs(vcpu); 3156 return r; 3157 3158 unlock_vcpu_destroy: 3159 mutex_unlock(&kvm->lock); 3160 kvm_arch_vcpu_destroy(vcpu); 3161 vcpu_free_run_page: 3162 free_page((unsigned long)vcpu->run); 3163 vcpu_free: 3164 kmem_cache_free(kvm_vcpu_cache, vcpu); 3165 vcpu_decrement: 3166 mutex_lock(&kvm->lock); 3167 kvm->created_vcpus--; 3168 mutex_unlock(&kvm->lock); 3169 return r; 3170 } 3171 3172 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3173 { 3174 if (sigset) { 3175 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3176 vcpu->sigset_active = 1; 3177 vcpu->sigset = *sigset; 3178 } else 3179 vcpu->sigset_active = 0; 3180 return 0; 3181 } 3182 3183 static long kvm_vcpu_ioctl(struct file *filp, 3184 unsigned int ioctl, unsigned long arg) 3185 { 3186 struct kvm_vcpu *vcpu = filp->private_data; 3187 void __user *argp = (void __user *)arg; 3188 int r; 3189 struct kvm_fpu *fpu = NULL; 3190 struct kvm_sregs *kvm_sregs = NULL; 3191 3192 if (vcpu->kvm->mm != current->mm) 3193 return -EIO; 3194 3195 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3196 return -EINVAL; 3197 3198 /* 3199 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3200 * execution; mutex_lock() would break them. 3201 */ 3202 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3203 if (r != -ENOIOCTLCMD) 3204 return r; 3205 3206 if (mutex_lock_killable(&vcpu->mutex)) 3207 return -EINTR; 3208 switch (ioctl) { 3209 case KVM_RUN: { 3210 struct pid *oldpid; 3211 r = -EINVAL; 3212 if (arg) 3213 goto out; 3214 oldpid = rcu_access_pointer(vcpu->pid); 3215 if (unlikely(oldpid != task_pid(current))) { 3216 /* The thread running this VCPU changed. */ 3217 struct pid *newpid; 3218 3219 r = kvm_arch_vcpu_run_pid_change(vcpu); 3220 if (r) 3221 break; 3222 3223 newpid = get_task_pid(current, PIDTYPE_PID); 3224 rcu_assign_pointer(vcpu->pid, newpid); 3225 if (oldpid) 3226 synchronize_rcu(); 3227 put_pid(oldpid); 3228 } 3229 r = kvm_arch_vcpu_ioctl_run(vcpu); 3230 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3231 break; 3232 } 3233 case KVM_GET_REGS: { 3234 struct kvm_regs *kvm_regs; 3235 3236 r = -ENOMEM; 3237 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3238 if (!kvm_regs) 3239 goto out; 3240 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3241 if (r) 3242 goto out_free1; 3243 r = -EFAULT; 3244 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3245 goto out_free1; 3246 r = 0; 3247 out_free1: 3248 kfree(kvm_regs); 3249 break; 3250 } 3251 case KVM_SET_REGS: { 3252 struct kvm_regs *kvm_regs; 3253 3254 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3255 if (IS_ERR(kvm_regs)) { 3256 r = PTR_ERR(kvm_regs); 3257 goto out; 3258 } 3259 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3260 kfree(kvm_regs); 3261 break; 3262 } 3263 case KVM_GET_SREGS: { 3264 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3265 GFP_KERNEL_ACCOUNT); 3266 r = -ENOMEM; 3267 if (!kvm_sregs) 3268 goto out; 3269 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3270 if (r) 3271 goto out; 3272 r = -EFAULT; 3273 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3274 goto out; 3275 r = 0; 3276 break; 3277 } 3278 case KVM_SET_SREGS: { 3279 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3280 if (IS_ERR(kvm_sregs)) { 3281 r = PTR_ERR(kvm_sregs); 3282 kvm_sregs = NULL; 3283 goto out; 3284 } 3285 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3286 break; 3287 } 3288 case KVM_GET_MP_STATE: { 3289 struct kvm_mp_state mp_state; 3290 3291 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3292 if (r) 3293 goto out; 3294 r = -EFAULT; 3295 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3296 goto out; 3297 r = 0; 3298 break; 3299 } 3300 case KVM_SET_MP_STATE: { 3301 struct kvm_mp_state mp_state; 3302 3303 r = -EFAULT; 3304 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3305 goto out; 3306 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3307 break; 3308 } 3309 case KVM_TRANSLATE: { 3310 struct kvm_translation tr; 3311 3312 r = -EFAULT; 3313 if (copy_from_user(&tr, argp, sizeof(tr))) 3314 goto out; 3315 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3316 if (r) 3317 goto out; 3318 r = -EFAULT; 3319 if (copy_to_user(argp, &tr, sizeof(tr))) 3320 goto out; 3321 r = 0; 3322 break; 3323 } 3324 case KVM_SET_GUEST_DEBUG: { 3325 struct kvm_guest_debug dbg; 3326 3327 r = -EFAULT; 3328 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3329 goto out; 3330 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3331 break; 3332 } 3333 case KVM_SET_SIGNAL_MASK: { 3334 struct kvm_signal_mask __user *sigmask_arg = argp; 3335 struct kvm_signal_mask kvm_sigmask; 3336 sigset_t sigset, *p; 3337 3338 p = NULL; 3339 if (argp) { 3340 r = -EFAULT; 3341 if (copy_from_user(&kvm_sigmask, argp, 3342 sizeof(kvm_sigmask))) 3343 goto out; 3344 r = -EINVAL; 3345 if (kvm_sigmask.len != sizeof(sigset)) 3346 goto out; 3347 r = -EFAULT; 3348 if (copy_from_user(&sigset, sigmask_arg->sigset, 3349 sizeof(sigset))) 3350 goto out; 3351 p = &sigset; 3352 } 3353 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3354 break; 3355 } 3356 case KVM_GET_FPU: { 3357 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3358 r = -ENOMEM; 3359 if (!fpu) 3360 goto out; 3361 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3362 if (r) 3363 goto out; 3364 r = -EFAULT; 3365 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3366 goto out; 3367 r = 0; 3368 break; 3369 } 3370 case KVM_SET_FPU: { 3371 fpu = memdup_user(argp, sizeof(*fpu)); 3372 if (IS_ERR(fpu)) { 3373 r = PTR_ERR(fpu); 3374 fpu = NULL; 3375 goto out; 3376 } 3377 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3378 break; 3379 } 3380 default: 3381 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3382 } 3383 out: 3384 mutex_unlock(&vcpu->mutex); 3385 kfree(fpu); 3386 kfree(kvm_sregs); 3387 return r; 3388 } 3389 3390 #ifdef CONFIG_KVM_COMPAT 3391 static long kvm_vcpu_compat_ioctl(struct file *filp, 3392 unsigned int ioctl, unsigned long arg) 3393 { 3394 struct kvm_vcpu *vcpu = filp->private_data; 3395 void __user *argp = compat_ptr(arg); 3396 int r; 3397 3398 if (vcpu->kvm->mm != current->mm) 3399 return -EIO; 3400 3401 switch (ioctl) { 3402 case KVM_SET_SIGNAL_MASK: { 3403 struct kvm_signal_mask __user *sigmask_arg = argp; 3404 struct kvm_signal_mask kvm_sigmask; 3405 sigset_t sigset; 3406 3407 if (argp) { 3408 r = -EFAULT; 3409 if (copy_from_user(&kvm_sigmask, argp, 3410 sizeof(kvm_sigmask))) 3411 goto out; 3412 r = -EINVAL; 3413 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3414 goto out; 3415 r = -EFAULT; 3416 if (get_compat_sigset(&sigset, 3417 (compat_sigset_t __user *)sigmask_arg->sigset)) 3418 goto out; 3419 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3420 } else 3421 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3422 break; 3423 } 3424 default: 3425 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3426 } 3427 3428 out: 3429 return r; 3430 } 3431 #endif 3432 3433 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3434 { 3435 struct kvm_device *dev = filp->private_data; 3436 3437 if (dev->ops->mmap) 3438 return dev->ops->mmap(dev, vma); 3439 3440 return -ENODEV; 3441 } 3442 3443 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3444 int (*accessor)(struct kvm_device *dev, 3445 struct kvm_device_attr *attr), 3446 unsigned long arg) 3447 { 3448 struct kvm_device_attr attr; 3449 3450 if (!accessor) 3451 return -EPERM; 3452 3453 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3454 return -EFAULT; 3455 3456 return accessor(dev, &attr); 3457 } 3458 3459 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3460 unsigned long arg) 3461 { 3462 struct kvm_device *dev = filp->private_data; 3463 3464 if (dev->kvm->mm != current->mm) 3465 return -EIO; 3466 3467 switch (ioctl) { 3468 case KVM_SET_DEVICE_ATTR: 3469 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3470 case KVM_GET_DEVICE_ATTR: 3471 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3472 case KVM_HAS_DEVICE_ATTR: 3473 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3474 default: 3475 if (dev->ops->ioctl) 3476 return dev->ops->ioctl(dev, ioctl, arg); 3477 3478 return -ENOTTY; 3479 } 3480 } 3481 3482 static int kvm_device_release(struct inode *inode, struct file *filp) 3483 { 3484 struct kvm_device *dev = filp->private_data; 3485 struct kvm *kvm = dev->kvm; 3486 3487 if (dev->ops->release) { 3488 mutex_lock(&kvm->lock); 3489 list_del(&dev->vm_node); 3490 dev->ops->release(dev); 3491 mutex_unlock(&kvm->lock); 3492 } 3493 3494 kvm_put_kvm(kvm); 3495 return 0; 3496 } 3497 3498 static const struct file_operations kvm_device_fops = { 3499 .unlocked_ioctl = kvm_device_ioctl, 3500 .release = kvm_device_release, 3501 KVM_COMPAT(kvm_device_ioctl), 3502 .mmap = kvm_device_mmap, 3503 }; 3504 3505 struct kvm_device *kvm_device_from_filp(struct file *filp) 3506 { 3507 if (filp->f_op != &kvm_device_fops) 3508 return NULL; 3509 3510 return filp->private_data; 3511 } 3512 3513 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3514 #ifdef CONFIG_KVM_MPIC 3515 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3516 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3517 #endif 3518 }; 3519 3520 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3521 { 3522 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3523 return -ENOSPC; 3524 3525 if (kvm_device_ops_table[type] != NULL) 3526 return -EEXIST; 3527 3528 kvm_device_ops_table[type] = ops; 3529 return 0; 3530 } 3531 3532 void kvm_unregister_device_ops(u32 type) 3533 { 3534 if (kvm_device_ops_table[type] != NULL) 3535 kvm_device_ops_table[type] = NULL; 3536 } 3537 3538 static int kvm_ioctl_create_device(struct kvm *kvm, 3539 struct kvm_create_device *cd) 3540 { 3541 const struct kvm_device_ops *ops = NULL; 3542 struct kvm_device *dev; 3543 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3544 int type; 3545 int ret; 3546 3547 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3548 return -ENODEV; 3549 3550 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3551 ops = kvm_device_ops_table[type]; 3552 if (ops == NULL) 3553 return -ENODEV; 3554 3555 if (test) 3556 return 0; 3557 3558 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3559 if (!dev) 3560 return -ENOMEM; 3561 3562 dev->ops = ops; 3563 dev->kvm = kvm; 3564 3565 mutex_lock(&kvm->lock); 3566 ret = ops->create(dev, type); 3567 if (ret < 0) { 3568 mutex_unlock(&kvm->lock); 3569 kfree(dev); 3570 return ret; 3571 } 3572 list_add(&dev->vm_node, &kvm->devices); 3573 mutex_unlock(&kvm->lock); 3574 3575 if (ops->init) 3576 ops->init(dev); 3577 3578 kvm_get_kvm(kvm); 3579 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3580 if (ret < 0) { 3581 kvm_put_kvm_no_destroy(kvm); 3582 mutex_lock(&kvm->lock); 3583 list_del(&dev->vm_node); 3584 mutex_unlock(&kvm->lock); 3585 ops->destroy(dev); 3586 return ret; 3587 } 3588 3589 cd->fd = ret; 3590 return 0; 3591 } 3592 3593 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3594 { 3595 switch (arg) { 3596 case KVM_CAP_USER_MEMORY: 3597 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3598 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3599 case KVM_CAP_INTERNAL_ERROR_DATA: 3600 #ifdef CONFIG_HAVE_KVM_MSI 3601 case KVM_CAP_SIGNAL_MSI: 3602 #endif 3603 #ifdef CONFIG_HAVE_KVM_IRQFD 3604 case KVM_CAP_IRQFD: 3605 case KVM_CAP_IRQFD_RESAMPLE: 3606 #endif 3607 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3608 case KVM_CAP_CHECK_EXTENSION_VM: 3609 case KVM_CAP_ENABLE_CAP_VM: 3610 case KVM_CAP_HALT_POLL: 3611 return 1; 3612 #ifdef CONFIG_KVM_MMIO 3613 case KVM_CAP_COALESCED_MMIO: 3614 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3615 case KVM_CAP_COALESCED_PIO: 3616 return 1; 3617 #endif 3618 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3619 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3620 return KVM_DIRTY_LOG_MANUAL_CAPS; 3621 #endif 3622 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3623 case KVM_CAP_IRQ_ROUTING: 3624 return KVM_MAX_IRQ_ROUTES; 3625 #endif 3626 #if KVM_ADDRESS_SPACE_NUM > 1 3627 case KVM_CAP_MULTI_ADDRESS_SPACE: 3628 return KVM_ADDRESS_SPACE_NUM; 3629 #endif 3630 case KVM_CAP_NR_MEMSLOTS: 3631 return KVM_USER_MEM_SLOTS; 3632 default: 3633 break; 3634 } 3635 return kvm_vm_ioctl_check_extension(kvm, arg); 3636 } 3637 3638 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3639 struct kvm_enable_cap *cap) 3640 { 3641 return -EINVAL; 3642 } 3643 3644 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3645 struct kvm_enable_cap *cap) 3646 { 3647 switch (cap->cap) { 3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3649 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 3650 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 3651 3652 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 3653 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 3654 3655 if (cap->flags || (cap->args[0] & ~allowed_options)) 3656 return -EINVAL; 3657 kvm->manual_dirty_log_protect = cap->args[0]; 3658 return 0; 3659 } 3660 #endif 3661 case KVM_CAP_HALT_POLL: { 3662 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 3663 return -EINVAL; 3664 3665 kvm->max_halt_poll_ns = cap->args[0]; 3666 return 0; 3667 } 3668 default: 3669 return kvm_vm_ioctl_enable_cap(kvm, cap); 3670 } 3671 } 3672 3673 static long kvm_vm_ioctl(struct file *filp, 3674 unsigned int ioctl, unsigned long arg) 3675 { 3676 struct kvm *kvm = filp->private_data; 3677 void __user *argp = (void __user *)arg; 3678 int r; 3679 3680 if (kvm->mm != current->mm) 3681 return -EIO; 3682 switch (ioctl) { 3683 case KVM_CREATE_VCPU: 3684 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3685 break; 3686 case KVM_ENABLE_CAP: { 3687 struct kvm_enable_cap cap; 3688 3689 r = -EFAULT; 3690 if (copy_from_user(&cap, argp, sizeof(cap))) 3691 goto out; 3692 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3693 break; 3694 } 3695 case KVM_SET_USER_MEMORY_REGION: { 3696 struct kvm_userspace_memory_region kvm_userspace_mem; 3697 3698 r = -EFAULT; 3699 if (copy_from_user(&kvm_userspace_mem, argp, 3700 sizeof(kvm_userspace_mem))) 3701 goto out; 3702 3703 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3704 break; 3705 } 3706 case KVM_GET_DIRTY_LOG: { 3707 struct kvm_dirty_log log; 3708 3709 r = -EFAULT; 3710 if (copy_from_user(&log, argp, sizeof(log))) 3711 goto out; 3712 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3713 break; 3714 } 3715 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3716 case KVM_CLEAR_DIRTY_LOG: { 3717 struct kvm_clear_dirty_log log; 3718 3719 r = -EFAULT; 3720 if (copy_from_user(&log, argp, sizeof(log))) 3721 goto out; 3722 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3723 break; 3724 } 3725 #endif 3726 #ifdef CONFIG_KVM_MMIO 3727 case KVM_REGISTER_COALESCED_MMIO: { 3728 struct kvm_coalesced_mmio_zone zone; 3729 3730 r = -EFAULT; 3731 if (copy_from_user(&zone, argp, sizeof(zone))) 3732 goto out; 3733 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3734 break; 3735 } 3736 case KVM_UNREGISTER_COALESCED_MMIO: { 3737 struct kvm_coalesced_mmio_zone zone; 3738 3739 r = -EFAULT; 3740 if (copy_from_user(&zone, argp, sizeof(zone))) 3741 goto out; 3742 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3743 break; 3744 } 3745 #endif 3746 case KVM_IRQFD: { 3747 struct kvm_irqfd data; 3748 3749 r = -EFAULT; 3750 if (copy_from_user(&data, argp, sizeof(data))) 3751 goto out; 3752 r = kvm_irqfd(kvm, &data); 3753 break; 3754 } 3755 case KVM_IOEVENTFD: { 3756 struct kvm_ioeventfd data; 3757 3758 r = -EFAULT; 3759 if (copy_from_user(&data, argp, sizeof(data))) 3760 goto out; 3761 r = kvm_ioeventfd(kvm, &data); 3762 break; 3763 } 3764 #ifdef CONFIG_HAVE_KVM_MSI 3765 case KVM_SIGNAL_MSI: { 3766 struct kvm_msi msi; 3767 3768 r = -EFAULT; 3769 if (copy_from_user(&msi, argp, sizeof(msi))) 3770 goto out; 3771 r = kvm_send_userspace_msi(kvm, &msi); 3772 break; 3773 } 3774 #endif 3775 #ifdef __KVM_HAVE_IRQ_LINE 3776 case KVM_IRQ_LINE_STATUS: 3777 case KVM_IRQ_LINE: { 3778 struct kvm_irq_level irq_event; 3779 3780 r = -EFAULT; 3781 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3782 goto out; 3783 3784 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3785 ioctl == KVM_IRQ_LINE_STATUS); 3786 if (r) 3787 goto out; 3788 3789 r = -EFAULT; 3790 if (ioctl == KVM_IRQ_LINE_STATUS) { 3791 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3792 goto out; 3793 } 3794 3795 r = 0; 3796 break; 3797 } 3798 #endif 3799 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3800 case KVM_SET_GSI_ROUTING: { 3801 struct kvm_irq_routing routing; 3802 struct kvm_irq_routing __user *urouting; 3803 struct kvm_irq_routing_entry *entries = NULL; 3804 3805 r = -EFAULT; 3806 if (copy_from_user(&routing, argp, sizeof(routing))) 3807 goto out; 3808 r = -EINVAL; 3809 if (!kvm_arch_can_set_irq_routing(kvm)) 3810 goto out; 3811 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3812 goto out; 3813 if (routing.flags) 3814 goto out; 3815 if (routing.nr) { 3816 urouting = argp; 3817 entries = vmemdup_user(urouting->entries, 3818 array_size(sizeof(*entries), 3819 routing.nr)); 3820 if (IS_ERR(entries)) { 3821 r = PTR_ERR(entries); 3822 goto out; 3823 } 3824 } 3825 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3826 routing.flags); 3827 kvfree(entries); 3828 break; 3829 } 3830 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3831 case KVM_CREATE_DEVICE: { 3832 struct kvm_create_device cd; 3833 3834 r = -EFAULT; 3835 if (copy_from_user(&cd, argp, sizeof(cd))) 3836 goto out; 3837 3838 r = kvm_ioctl_create_device(kvm, &cd); 3839 if (r) 3840 goto out; 3841 3842 r = -EFAULT; 3843 if (copy_to_user(argp, &cd, sizeof(cd))) 3844 goto out; 3845 3846 r = 0; 3847 break; 3848 } 3849 case KVM_CHECK_EXTENSION: 3850 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3851 break; 3852 default: 3853 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3854 } 3855 out: 3856 return r; 3857 } 3858 3859 #ifdef CONFIG_KVM_COMPAT 3860 struct compat_kvm_dirty_log { 3861 __u32 slot; 3862 __u32 padding1; 3863 union { 3864 compat_uptr_t dirty_bitmap; /* one bit per page */ 3865 __u64 padding2; 3866 }; 3867 }; 3868 3869 static long kvm_vm_compat_ioctl(struct file *filp, 3870 unsigned int ioctl, unsigned long arg) 3871 { 3872 struct kvm *kvm = filp->private_data; 3873 int r; 3874 3875 if (kvm->mm != current->mm) 3876 return -EIO; 3877 switch (ioctl) { 3878 case KVM_GET_DIRTY_LOG: { 3879 struct compat_kvm_dirty_log compat_log; 3880 struct kvm_dirty_log log; 3881 3882 if (copy_from_user(&compat_log, (void __user *)arg, 3883 sizeof(compat_log))) 3884 return -EFAULT; 3885 log.slot = compat_log.slot; 3886 log.padding1 = compat_log.padding1; 3887 log.padding2 = compat_log.padding2; 3888 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3889 3890 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3891 break; 3892 } 3893 default: 3894 r = kvm_vm_ioctl(filp, ioctl, arg); 3895 } 3896 return r; 3897 } 3898 #endif 3899 3900 static struct file_operations kvm_vm_fops = { 3901 .release = kvm_vm_release, 3902 .unlocked_ioctl = kvm_vm_ioctl, 3903 .llseek = noop_llseek, 3904 KVM_COMPAT(kvm_vm_compat_ioctl), 3905 }; 3906 3907 static int kvm_dev_ioctl_create_vm(unsigned long type) 3908 { 3909 int r; 3910 struct kvm *kvm; 3911 struct file *file; 3912 3913 kvm = kvm_create_vm(type); 3914 if (IS_ERR(kvm)) 3915 return PTR_ERR(kvm); 3916 #ifdef CONFIG_KVM_MMIO 3917 r = kvm_coalesced_mmio_init(kvm); 3918 if (r < 0) 3919 goto put_kvm; 3920 #endif 3921 r = get_unused_fd_flags(O_CLOEXEC); 3922 if (r < 0) 3923 goto put_kvm; 3924 3925 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3926 if (IS_ERR(file)) { 3927 put_unused_fd(r); 3928 r = PTR_ERR(file); 3929 goto put_kvm; 3930 } 3931 3932 /* 3933 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3934 * already set, with ->release() being kvm_vm_release(). In error 3935 * cases it will be called by the final fput(file) and will take 3936 * care of doing kvm_put_kvm(kvm). 3937 */ 3938 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3939 put_unused_fd(r); 3940 fput(file); 3941 return -ENOMEM; 3942 } 3943 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3944 3945 fd_install(r, file); 3946 return r; 3947 3948 put_kvm: 3949 kvm_put_kvm(kvm); 3950 return r; 3951 } 3952 3953 static long kvm_dev_ioctl(struct file *filp, 3954 unsigned int ioctl, unsigned long arg) 3955 { 3956 long r = -EINVAL; 3957 3958 switch (ioctl) { 3959 case KVM_GET_API_VERSION: 3960 if (arg) 3961 goto out; 3962 r = KVM_API_VERSION; 3963 break; 3964 case KVM_CREATE_VM: 3965 r = kvm_dev_ioctl_create_vm(arg); 3966 break; 3967 case KVM_CHECK_EXTENSION: 3968 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3969 break; 3970 case KVM_GET_VCPU_MMAP_SIZE: 3971 if (arg) 3972 goto out; 3973 r = PAGE_SIZE; /* struct kvm_run */ 3974 #ifdef CONFIG_X86 3975 r += PAGE_SIZE; /* pio data page */ 3976 #endif 3977 #ifdef CONFIG_KVM_MMIO 3978 r += PAGE_SIZE; /* coalesced mmio ring page */ 3979 #endif 3980 break; 3981 case KVM_TRACE_ENABLE: 3982 case KVM_TRACE_PAUSE: 3983 case KVM_TRACE_DISABLE: 3984 r = -EOPNOTSUPP; 3985 break; 3986 default: 3987 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3988 } 3989 out: 3990 return r; 3991 } 3992 3993 static struct file_operations kvm_chardev_ops = { 3994 .unlocked_ioctl = kvm_dev_ioctl, 3995 .llseek = noop_llseek, 3996 KVM_COMPAT(kvm_dev_ioctl), 3997 }; 3998 3999 static struct miscdevice kvm_dev = { 4000 KVM_MINOR, 4001 "kvm", 4002 &kvm_chardev_ops, 4003 }; 4004 4005 static void hardware_enable_nolock(void *junk) 4006 { 4007 int cpu = raw_smp_processor_id(); 4008 int r; 4009 4010 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4011 return; 4012 4013 cpumask_set_cpu(cpu, cpus_hardware_enabled); 4014 4015 r = kvm_arch_hardware_enable(); 4016 4017 if (r) { 4018 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4019 atomic_inc(&hardware_enable_failed); 4020 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 4021 } 4022 } 4023 4024 static int kvm_starting_cpu(unsigned int cpu) 4025 { 4026 raw_spin_lock(&kvm_count_lock); 4027 if (kvm_usage_count) 4028 hardware_enable_nolock(NULL); 4029 raw_spin_unlock(&kvm_count_lock); 4030 return 0; 4031 } 4032 4033 static void hardware_disable_nolock(void *junk) 4034 { 4035 int cpu = raw_smp_processor_id(); 4036 4037 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 4038 return; 4039 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 4040 kvm_arch_hardware_disable(); 4041 } 4042 4043 static int kvm_dying_cpu(unsigned int cpu) 4044 { 4045 raw_spin_lock(&kvm_count_lock); 4046 if (kvm_usage_count) 4047 hardware_disable_nolock(NULL); 4048 raw_spin_unlock(&kvm_count_lock); 4049 return 0; 4050 } 4051 4052 static void hardware_disable_all_nolock(void) 4053 { 4054 BUG_ON(!kvm_usage_count); 4055 4056 kvm_usage_count--; 4057 if (!kvm_usage_count) 4058 on_each_cpu(hardware_disable_nolock, NULL, 1); 4059 } 4060 4061 static void hardware_disable_all(void) 4062 { 4063 raw_spin_lock(&kvm_count_lock); 4064 hardware_disable_all_nolock(); 4065 raw_spin_unlock(&kvm_count_lock); 4066 } 4067 4068 static int hardware_enable_all(void) 4069 { 4070 int r = 0; 4071 4072 raw_spin_lock(&kvm_count_lock); 4073 4074 kvm_usage_count++; 4075 if (kvm_usage_count == 1) { 4076 atomic_set(&hardware_enable_failed, 0); 4077 on_each_cpu(hardware_enable_nolock, NULL, 1); 4078 4079 if (atomic_read(&hardware_enable_failed)) { 4080 hardware_disable_all_nolock(); 4081 r = -EBUSY; 4082 } 4083 } 4084 4085 raw_spin_unlock(&kvm_count_lock); 4086 4087 return r; 4088 } 4089 4090 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 4091 void *v) 4092 { 4093 /* 4094 * Some (well, at least mine) BIOSes hang on reboot if 4095 * in vmx root mode. 4096 * 4097 * And Intel TXT required VMX off for all cpu when system shutdown. 4098 */ 4099 pr_info("kvm: exiting hardware virtualization\n"); 4100 kvm_rebooting = true; 4101 on_each_cpu(hardware_disable_nolock, NULL, 1); 4102 return NOTIFY_OK; 4103 } 4104 4105 static struct notifier_block kvm_reboot_notifier = { 4106 .notifier_call = kvm_reboot, 4107 .priority = 0, 4108 }; 4109 4110 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4111 { 4112 int i; 4113 4114 for (i = 0; i < bus->dev_count; i++) { 4115 struct kvm_io_device *pos = bus->range[i].dev; 4116 4117 kvm_iodevice_destructor(pos); 4118 } 4119 kfree(bus); 4120 } 4121 4122 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4123 const struct kvm_io_range *r2) 4124 { 4125 gpa_t addr1 = r1->addr; 4126 gpa_t addr2 = r2->addr; 4127 4128 if (addr1 < addr2) 4129 return -1; 4130 4131 /* If r2->len == 0, match the exact address. If r2->len != 0, 4132 * accept any overlapping write. Any order is acceptable for 4133 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4134 * we process all of them. 4135 */ 4136 if (r2->len) { 4137 addr1 += r1->len; 4138 addr2 += r2->len; 4139 } 4140 4141 if (addr1 > addr2) 4142 return 1; 4143 4144 return 0; 4145 } 4146 4147 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4148 { 4149 return kvm_io_bus_cmp(p1, p2); 4150 } 4151 4152 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4153 gpa_t addr, int len) 4154 { 4155 struct kvm_io_range *range, key; 4156 int off; 4157 4158 key = (struct kvm_io_range) { 4159 .addr = addr, 4160 .len = len, 4161 }; 4162 4163 range = bsearch(&key, bus->range, bus->dev_count, 4164 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4165 if (range == NULL) 4166 return -ENOENT; 4167 4168 off = range - bus->range; 4169 4170 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4171 off--; 4172 4173 return off; 4174 } 4175 4176 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4177 struct kvm_io_range *range, const void *val) 4178 { 4179 int idx; 4180 4181 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4182 if (idx < 0) 4183 return -EOPNOTSUPP; 4184 4185 while (idx < bus->dev_count && 4186 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4187 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4188 range->len, val)) 4189 return idx; 4190 idx++; 4191 } 4192 4193 return -EOPNOTSUPP; 4194 } 4195 4196 /* kvm_io_bus_write - called under kvm->slots_lock */ 4197 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4198 int len, const void *val) 4199 { 4200 struct kvm_io_bus *bus; 4201 struct kvm_io_range range; 4202 int r; 4203 4204 range = (struct kvm_io_range) { 4205 .addr = addr, 4206 .len = len, 4207 }; 4208 4209 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4210 if (!bus) 4211 return -ENOMEM; 4212 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4213 return r < 0 ? r : 0; 4214 } 4215 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4216 4217 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4218 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4219 gpa_t addr, int len, const void *val, long cookie) 4220 { 4221 struct kvm_io_bus *bus; 4222 struct kvm_io_range range; 4223 4224 range = (struct kvm_io_range) { 4225 .addr = addr, 4226 .len = len, 4227 }; 4228 4229 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4230 if (!bus) 4231 return -ENOMEM; 4232 4233 /* First try the device referenced by cookie. */ 4234 if ((cookie >= 0) && (cookie < bus->dev_count) && 4235 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4236 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4237 val)) 4238 return cookie; 4239 4240 /* 4241 * cookie contained garbage; fall back to search and return the 4242 * correct cookie value. 4243 */ 4244 return __kvm_io_bus_write(vcpu, bus, &range, val); 4245 } 4246 4247 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4248 struct kvm_io_range *range, void *val) 4249 { 4250 int idx; 4251 4252 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4253 if (idx < 0) 4254 return -EOPNOTSUPP; 4255 4256 while (idx < bus->dev_count && 4257 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4258 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4259 range->len, val)) 4260 return idx; 4261 idx++; 4262 } 4263 4264 return -EOPNOTSUPP; 4265 } 4266 4267 /* kvm_io_bus_read - called under kvm->slots_lock */ 4268 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4269 int len, void *val) 4270 { 4271 struct kvm_io_bus *bus; 4272 struct kvm_io_range range; 4273 int r; 4274 4275 range = (struct kvm_io_range) { 4276 .addr = addr, 4277 .len = len, 4278 }; 4279 4280 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4281 if (!bus) 4282 return -ENOMEM; 4283 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4284 return r < 0 ? r : 0; 4285 } 4286 4287 /* Caller must hold slots_lock. */ 4288 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4289 int len, struct kvm_io_device *dev) 4290 { 4291 int i; 4292 struct kvm_io_bus *new_bus, *bus; 4293 struct kvm_io_range range; 4294 4295 bus = kvm_get_bus(kvm, bus_idx); 4296 if (!bus) 4297 return -ENOMEM; 4298 4299 /* exclude ioeventfd which is limited by maximum fd */ 4300 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4301 return -ENOSPC; 4302 4303 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4304 GFP_KERNEL_ACCOUNT); 4305 if (!new_bus) 4306 return -ENOMEM; 4307 4308 range = (struct kvm_io_range) { 4309 .addr = addr, 4310 .len = len, 4311 .dev = dev, 4312 }; 4313 4314 for (i = 0; i < bus->dev_count; i++) 4315 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4316 break; 4317 4318 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4319 new_bus->dev_count++; 4320 new_bus->range[i] = range; 4321 memcpy(new_bus->range + i + 1, bus->range + i, 4322 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4323 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4324 synchronize_srcu_expedited(&kvm->srcu); 4325 kfree(bus); 4326 4327 return 0; 4328 } 4329 4330 /* Caller must hold slots_lock. */ 4331 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4332 struct kvm_io_device *dev) 4333 { 4334 int i; 4335 struct kvm_io_bus *new_bus, *bus; 4336 4337 bus = kvm_get_bus(kvm, bus_idx); 4338 if (!bus) 4339 return; 4340 4341 for (i = 0; i < bus->dev_count; i++) 4342 if (bus->range[i].dev == dev) { 4343 break; 4344 } 4345 4346 if (i == bus->dev_count) 4347 return; 4348 4349 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4350 GFP_KERNEL_ACCOUNT); 4351 if (!new_bus) { 4352 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4353 goto broken; 4354 } 4355 4356 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4357 new_bus->dev_count--; 4358 memcpy(new_bus->range + i, bus->range + i + 1, 4359 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 4360 4361 broken: 4362 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4363 synchronize_srcu_expedited(&kvm->srcu); 4364 kfree(bus); 4365 return; 4366 } 4367 4368 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4369 gpa_t addr) 4370 { 4371 struct kvm_io_bus *bus; 4372 int dev_idx, srcu_idx; 4373 struct kvm_io_device *iodev = NULL; 4374 4375 srcu_idx = srcu_read_lock(&kvm->srcu); 4376 4377 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4378 if (!bus) 4379 goto out_unlock; 4380 4381 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4382 if (dev_idx < 0) 4383 goto out_unlock; 4384 4385 iodev = bus->range[dev_idx].dev; 4386 4387 out_unlock: 4388 srcu_read_unlock(&kvm->srcu, srcu_idx); 4389 4390 return iodev; 4391 } 4392 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4393 4394 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4395 int (*get)(void *, u64 *), int (*set)(void *, u64), 4396 const char *fmt) 4397 { 4398 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4399 inode->i_private; 4400 4401 /* The debugfs files are a reference to the kvm struct which 4402 * is still valid when kvm_destroy_vm is called. 4403 * To avoid the race between open and the removal of the debugfs 4404 * directory we test against the users count. 4405 */ 4406 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4407 return -ENOENT; 4408 4409 if (simple_attr_open(inode, file, get, 4410 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222 4411 ? set : NULL, 4412 fmt)) { 4413 kvm_put_kvm(stat_data->kvm); 4414 return -ENOMEM; 4415 } 4416 4417 return 0; 4418 } 4419 4420 static int kvm_debugfs_release(struct inode *inode, struct file *file) 4421 { 4422 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4423 inode->i_private; 4424 4425 simple_attr_release(inode, file); 4426 kvm_put_kvm(stat_data->kvm); 4427 4428 return 0; 4429 } 4430 4431 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 4432 { 4433 *val = *(ulong *)((void *)kvm + offset); 4434 4435 return 0; 4436 } 4437 4438 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 4439 { 4440 *(ulong *)((void *)kvm + offset) = 0; 4441 4442 return 0; 4443 } 4444 4445 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 4446 { 4447 int i; 4448 struct kvm_vcpu *vcpu; 4449 4450 *val = 0; 4451 4452 kvm_for_each_vcpu(i, vcpu, kvm) 4453 *val += *(u64 *)((void *)vcpu + offset); 4454 4455 return 0; 4456 } 4457 4458 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 4459 { 4460 int i; 4461 struct kvm_vcpu *vcpu; 4462 4463 kvm_for_each_vcpu(i, vcpu, kvm) 4464 *(u64 *)((void *)vcpu + offset) = 0; 4465 4466 return 0; 4467 } 4468 4469 static int kvm_stat_data_get(void *data, u64 *val) 4470 { 4471 int r = -EFAULT; 4472 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4473 4474 switch (stat_data->dbgfs_item->kind) { 4475 case KVM_STAT_VM: 4476 r = kvm_get_stat_per_vm(stat_data->kvm, 4477 stat_data->dbgfs_item->offset, val); 4478 break; 4479 case KVM_STAT_VCPU: 4480 r = kvm_get_stat_per_vcpu(stat_data->kvm, 4481 stat_data->dbgfs_item->offset, val); 4482 break; 4483 } 4484 4485 return r; 4486 } 4487 4488 static int kvm_stat_data_clear(void *data, u64 val) 4489 { 4490 int r = -EFAULT; 4491 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4492 4493 if (val) 4494 return -EINVAL; 4495 4496 switch (stat_data->dbgfs_item->kind) { 4497 case KVM_STAT_VM: 4498 r = kvm_clear_stat_per_vm(stat_data->kvm, 4499 stat_data->dbgfs_item->offset); 4500 break; 4501 case KVM_STAT_VCPU: 4502 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 4503 stat_data->dbgfs_item->offset); 4504 break; 4505 } 4506 4507 return r; 4508 } 4509 4510 static int kvm_stat_data_open(struct inode *inode, struct file *file) 4511 { 4512 __simple_attr_check_format("%llu\n", 0ull); 4513 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 4514 kvm_stat_data_clear, "%llu\n"); 4515 } 4516 4517 static const struct file_operations stat_fops_per_vm = { 4518 .owner = THIS_MODULE, 4519 .open = kvm_stat_data_open, 4520 .release = kvm_debugfs_release, 4521 .read = simple_attr_read, 4522 .write = simple_attr_write, 4523 .llseek = no_llseek, 4524 }; 4525 4526 static int vm_stat_get(void *_offset, u64 *val) 4527 { 4528 unsigned offset = (long)_offset; 4529 struct kvm *kvm; 4530 u64 tmp_val; 4531 4532 *val = 0; 4533 mutex_lock(&kvm_lock); 4534 list_for_each_entry(kvm, &vm_list, vm_list) { 4535 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 4536 *val += tmp_val; 4537 } 4538 mutex_unlock(&kvm_lock); 4539 return 0; 4540 } 4541 4542 static int vm_stat_clear(void *_offset, u64 val) 4543 { 4544 unsigned offset = (long)_offset; 4545 struct kvm *kvm; 4546 4547 if (val) 4548 return -EINVAL; 4549 4550 mutex_lock(&kvm_lock); 4551 list_for_each_entry(kvm, &vm_list, vm_list) { 4552 kvm_clear_stat_per_vm(kvm, offset); 4553 } 4554 mutex_unlock(&kvm_lock); 4555 4556 return 0; 4557 } 4558 4559 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4560 4561 static int vcpu_stat_get(void *_offset, u64 *val) 4562 { 4563 unsigned offset = (long)_offset; 4564 struct kvm *kvm; 4565 u64 tmp_val; 4566 4567 *val = 0; 4568 mutex_lock(&kvm_lock); 4569 list_for_each_entry(kvm, &vm_list, vm_list) { 4570 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 4571 *val += tmp_val; 4572 } 4573 mutex_unlock(&kvm_lock); 4574 return 0; 4575 } 4576 4577 static int vcpu_stat_clear(void *_offset, u64 val) 4578 { 4579 unsigned offset = (long)_offset; 4580 struct kvm *kvm; 4581 4582 if (val) 4583 return -EINVAL; 4584 4585 mutex_lock(&kvm_lock); 4586 list_for_each_entry(kvm, &vm_list, vm_list) { 4587 kvm_clear_stat_per_vcpu(kvm, offset); 4588 } 4589 mutex_unlock(&kvm_lock); 4590 4591 return 0; 4592 } 4593 4594 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4595 "%llu\n"); 4596 4597 static const struct file_operations *stat_fops[] = { 4598 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4599 [KVM_STAT_VM] = &vm_stat_fops, 4600 }; 4601 4602 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4603 { 4604 struct kobj_uevent_env *env; 4605 unsigned long long created, active; 4606 4607 if (!kvm_dev.this_device || !kvm) 4608 return; 4609 4610 mutex_lock(&kvm_lock); 4611 if (type == KVM_EVENT_CREATE_VM) { 4612 kvm_createvm_count++; 4613 kvm_active_vms++; 4614 } else if (type == KVM_EVENT_DESTROY_VM) { 4615 kvm_active_vms--; 4616 } 4617 created = kvm_createvm_count; 4618 active = kvm_active_vms; 4619 mutex_unlock(&kvm_lock); 4620 4621 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4622 if (!env) 4623 return; 4624 4625 add_uevent_var(env, "CREATED=%llu", created); 4626 add_uevent_var(env, "COUNT=%llu", active); 4627 4628 if (type == KVM_EVENT_CREATE_VM) { 4629 add_uevent_var(env, "EVENT=create"); 4630 kvm->userspace_pid = task_pid_nr(current); 4631 } else if (type == KVM_EVENT_DESTROY_VM) { 4632 add_uevent_var(env, "EVENT=destroy"); 4633 } 4634 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4635 4636 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4637 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4638 4639 if (p) { 4640 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4641 if (!IS_ERR(tmp)) 4642 add_uevent_var(env, "STATS_PATH=%s", tmp); 4643 kfree(p); 4644 } 4645 } 4646 /* no need for checks, since we are adding at most only 5 keys */ 4647 env->envp[env->envp_idx++] = NULL; 4648 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4649 kfree(env); 4650 } 4651 4652 static void kvm_init_debug(void) 4653 { 4654 struct kvm_stats_debugfs_item *p; 4655 4656 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4657 4658 kvm_debugfs_num_entries = 0; 4659 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4660 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 4661 kvm_debugfs_dir, (void *)(long)p->offset, 4662 stat_fops[p->kind]); 4663 } 4664 } 4665 4666 static int kvm_suspend(void) 4667 { 4668 if (kvm_usage_count) 4669 hardware_disable_nolock(NULL); 4670 return 0; 4671 } 4672 4673 static void kvm_resume(void) 4674 { 4675 if (kvm_usage_count) { 4676 #ifdef CONFIG_LOCKDEP 4677 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4678 #endif 4679 hardware_enable_nolock(NULL); 4680 } 4681 } 4682 4683 static struct syscore_ops kvm_syscore_ops = { 4684 .suspend = kvm_suspend, 4685 .resume = kvm_resume, 4686 }; 4687 4688 static inline 4689 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4690 { 4691 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4692 } 4693 4694 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4695 { 4696 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4697 4698 WRITE_ONCE(vcpu->preempted, false); 4699 WRITE_ONCE(vcpu->ready, false); 4700 4701 __this_cpu_write(kvm_running_vcpu, vcpu); 4702 kvm_arch_sched_in(vcpu, cpu); 4703 kvm_arch_vcpu_load(vcpu, cpu); 4704 } 4705 4706 static void kvm_sched_out(struct preempt_notifier *pn, 4707 struct task_struct *next) 4708 { 4709 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4710 4711 if (current->state == TASK_RUNNING) { 4712 WRITE_ONCE(vcpu->preempted, true); 4713 WRITE_ONCE(vcpu->ready, true); 4714 } 4715 kvm_arch_vcpu_put(vcpu); 4716 __this_cpu_write(kvm_running_vcpu, NULL); 4717 } 4718 4719 /** 4720 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 4721 * 4722 * We can disable preemption locally around accessing the per-CPU variable, 4723 * and use the resolved vcpu pointer after enabling preemption again, 4724 * because even if the current thread is migrated to another CPU, reading 4725 * the per-CPU value later will give us the same value as we update the 4726 * per-CPU variable in the preempt notifier handlers. 4727 */ 4728 struct kvm_vcpu *kvm_get_running_vcpu(void) 4729 { 4730 struct kvm_vcpu *vcpu; 4731 4732 preempt_disable(); 4733 vcpu = __this_cpu_read(kvm_running_vcpu); 4734 preempt_enable(); 4735 4736 return vcpu; 4737 } 4738 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 4739 4740 /** 4741 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 4742 */ 4743 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 4744 { 4745 return &kvm_running_vcpu; 4746 } 4747 4748 struct kvm_cpu_compat_check { 4749 void *opaque; 4750 int *ret; 4751 }; 4752 4753 static void check_processor_compat(void *data) 4754 { 4755 struct kvm_cpu_compat_check *c = data; 4756 4757 *c->ret = kvm_arch_check_processor_compat(c->opaque); 4758 } 4759 4760 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4761 struct module *module) 4762 { 4763 struct kvm_cpu_compat_check c; 4764 int r; 4765 int cpu; 4766 4767 r = kvm_arch_init(opaque); 4768 if (r) 4769 goto out_fail; 4770 4771 /* 4772 * kvm_arch_init makes sure there's at most one caller 4773 * for architectures that support multiple implementations, 4774 * like intel and amd on x86. 4775 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4776 * conflicts in case kvm is already setup for another implementation. 4777 */ 4778 r = kvm_irqfd_init(); 4779 if (r) 4780 goto out_irqfd; 4781 4782 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4783 r = -ENOMEM; 4784 goto out_free_0; 4785 } 4786 4787 r = kvm_arch_hardware_setup(opaque); 4788 if (r < 0) 4789 goto out_free_1; 4790 4791 c.ret = &r; 4792 c.opaque = opaque; 4793 for_each_online_cpu(cpu) { 4794 smp_call_function_single(cpu, check_processor_compat, &c, 1); 4795 if (r < 0) 4796 goto out_free_2; 4797 } 4798 4799 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4800 kvm_starting_cpu, kvm_dying_cpu); 4801 if (r) 4802 goto out_free_2; 4803 register_reboot_notifier(&kvm_reboot_notifier); 4804 4805 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4806 if (!vcpu_align) 4807 vcpu_align = __alignof__(struct kvm_vcpu); 4808 kvm_vcpu_cache = 4809 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4810 SLAB_ACCOUNT, 4811 offsetof(struct kvm_vcpu, arch), 4812 sizeof_field(struct kvm_vcpu, arch), 4813 NULL); 4814 if (!kvm_vcpu_cache) { 4815 r = -ENOMEM; 4816 goto out_free_3; 4817 } 4818 4819 r = kvm_async_pf_init(); 4820 if (r) 4821 goto out_free; 4822 4823 kvm_chardev_ops.owner = module; 4824 kvm_vm_fops.owner = module; 4825 kvm_vcpu_fops.owner = module; 4826 4827 r = misc_register(&kvm_dev); 4828 if (r) { 4829 pr_err("kvm: misc device register failed\n"); 4830 goto out_unreg; 4831 } 4832 4833 register_syscore_ops(&kvm_syscore_ops); 4834 4835 kvm_preempt_ops.sched_in = kvm_sched_in; 4836 kvm_preempt_ops.sched_out = kvm_sched_out; 4837 4838 kvm_init_debug(); 4839 4840 r = kvm_vfio_ops_init(); 4841 WARN_ON(r); 4842 4843 return 0; 4844 4845 out_unreg: 4846 kvm_async_pf_deinit(); 4847 out_free: 4848 kmem_cache_destroy(kvm_vcpu_cache); 4849 out_free_3: 4850 unregister_reboot_notifier(&kvm_reboot_notifier); 4851 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4852 out_free_2: 4853 kvm_arch_hardware_unsetup(); 4854 out_free_1: 4855 free_cpumask_var(cpus_hardware_enabled); 4856 out_free_0: 4857 kvm_irqfd_exit(); 4858 out_irqfd: 4859 kvm_arch_exit(); 4860 out_fail: 4861 return r; 4862 } 4863 EXPORT_SYMBOL_GPL(kvm_init); 4864 4865 void kvm_exit(void) 4866 { 4867 debugfs_remove_recursive(kvm_debugfs_dir); 4868 misc_deregister(&kvm_dev); 4869 kmem_cache_destroy(kvm_vcpu_cache); 4870 kvm_async_pf_deinit(); 4871 unregister_syscore_ops(&kvm_syscore_ops); 4872 unregister_reboot_notifier(&kvm_reboot_notifier); 4873 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4874 on_each_cpu(hardware_disable_nolock, NULL, 1); 4875 kvm_arch_hardware_unsetup(); 4876 kvm_arch_exit(); 4877 kvm_irqfd_exit(); 4878 free_cpumask_var(cpus_hardware_enabled); 4879 kvm_vfio_ops_exit(); 4880 } 4881 EXPORT_SYMBOL_GPL(kvm_exit); 4882 4883 struct kvm_vm_worker_thread_context { 4884 struct kvm *kvm; 4885 struct task_struct *parent; 4886 struct completion init_done; 4887 kvm_vm_thread_fn_t thread_fn; 4888 uintptr_t data; 4889 int err; 4890 }; 4891 4892 static int kvm_vm_worker_thread(void *context) 4893 { 4894 /* 4895 * The init_context is allocated on the stack of the parent thread, so 4896 * we have to locally copy anything that is needed beyond initialization 4897 */ 4898 struct kvm_vm_worker_thread_context *init_context = context; 4899 struct kvm *kvm = init_context->kvm; 4900 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 4901 uintptr_t data = init_context->data; 4902 int err; 4903 4904 err = kthread_park(current); 4905 /* kthread_park(current) is never supposed to return an error */ 4906 WARN_ON(err != 0); 4907 if (err) 4908 goto init_complete; 4909 4910 err = cgroup_attach_task_all(init_context->parent, current); 4911 if (err) { 4912 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 4913 __func__, err); 4914 goto init_complete; 4915 } 4916 4917 set_user_nice(current, task_nice(init_context->parent)); 4918 4919 init_complete: 4920 init_context->err = err; 4921 complete(&init_context->init_done); 4922 init_context = NULL; 4923 4924 if (err) 4925 return err; 4926 4927 /* Wait to be woken up by the spawner before proceeding. */ 4928 kthread_parkme(); 4929 4930 if (!kthread_should_stop()) 4931 err = thread_fn(kvm, data); 4932 4933 return err; 4934 } 4935 4936 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 4937 uintptr_t data, const char *name, 4938 struct task_struct **thread_ptr) 4939 { 4940 struct kvm_vm_worker_thread_context init_context = {}; 4941 struct task_struct *thread; 4942 4943 *thread_ptr = NULL; 4944 init_context.kvm = kvm; 4945 init_context.parent = current; 4946 init_context.thread_fn = thread_fn; 4947 init_context.data = data; 4948 init_completion(&init_context.init_done); 4949 4950 thread = kthread_run(kvm_vm_worker_thread, &init_context, 4951 "%s-%d", name, task_pid_nr(current)); 4952 if (IS_ERR(thread)) 4953 return PTR_ERR(thread); 4954 4955 /* kthread_run is never supposed to return NULL */ 4956 WARN_ON(thread == NULL); 4957 4958 wait_for_completion(&init_context.init_done); 4959 4960 if (!init_context.err) 4961 *thread_ptr = thread; 4962 4963 return init_context.err; 4964 } 4965