xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* The start value to grow halt_poll_ns from */
85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
86 module_param(halt_poll_ns_grow_start, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
88 
89 /* Default resets per-vcpu halt_poll_ns . */
90 unsigned int halt_poll_ns_shrink;
91 module_param(halt_poll_ns_shrink, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
93 
94 /*
95  * Ordering of locks:
96  *
97  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
98  */
99 
100 DEFINE_SPINLOCK(kvm_lock);
101 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
102 LIST_HEAD(vm_list);
103 
104 static cpumask_var_t cpus_hardware_enabled;
105 static int kvm_usage_count;
106 static atomic_t hardware_enable_failed;
107 
108 struct kmem_cache *kvm_vcpu_cache;
109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
110 
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115 
116 static int kvm_debugfs_num_entries;
117 static const struct file_operations *stat_fops_per_vm[];
118 
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 			   unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 				  unsigned long arg);
124 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
125 #else
126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
127 				unsigned long arg) { return -EINVAL; }
128 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
129 #endif
130 static int hardware_enable_all(void);
131 static void hardware_disable_all(void);
132 
133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
134 
135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
136 
137 __visible bool kvm_rebooting;
138 EXPORT_SYMBOL_GPL(kvm_rebooting);
139 
140 static bool largepages_enabled = true;
141 
142 #define KVM_EVENT_CREATE_VM 0
143 #define KVM_EVENT_DESTROY_VM 1
144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
145 static unsigned long long kvm_createvm_count;
146 static unsigned long long kvm_active_vms;
147 
148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
149 		unsigned long start, unsigned long end, bool blockable)
150 {
151 	return 0;
152 }
153 
154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
155 {
156 	if (pfn_valid(pfn))
157 		return PageReserved(pfn_to_page(pfn));
158 
159 	return true;
160 }
161 
162 /*
163  * Switches to specified vcpu, until a matching vcpu_put()
164  */
165 void vcpu_load(struct kvm_vcpu *vcpu)
166 {
167 	int cpu = get_cpu();
168 	preempt_notifier_register(&vcpu->preempt_notifier);
169 	kvm_arch_vcpu_load(vcpu, cpu);
170 	put_cpu();
171 }
172 EXPORT_SYMBOL_GPL(vcpu_load);
173 
174 void vcpu_put(struct kvm_vcpu *vcpu)
175 {
176 	preempt_disable();
177 	kvm_arch_vcpu_put(vcpu);
178 	preempt_notifier_unregister(&vcpu->preempt_notifier);
179 	preempt_enable();
180 }
181 EXPORT_SYMBOL_GPL(vcpu_put);
182 
183 /* TODO: merge with kvm_arch_vcpu_should_kick */
184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
185 {
186 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
187 
188 	/*
189 	 * We need to wait for the VCPU to reenable interrupts and get out of
190 	 * READING_SHADOW_PAGE_TABLES mode.
191 	 */
192 	if (req & KVM_REQUEST_WAIT)
193 		return mode != OUTSIDE_GUEST_MODE;
194 
195 	/*
196 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
197 	 */
198 	return mode == IN_GUEST_MODE;
199 }
200 
201 static void ack_flush(void *_completed)
202 {
203 }
204 
205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
206 {
207 	if (unlikely(!cpus))
208 		cpus = cpu_online_mask;
209 
210 	if (cpumask_empty(cpus))
211 		return false;
212 
213 	smp_call_function_many(cpus, ack_flush, NULL, wait);
214 	return true;
215 }
216 
217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
218 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
219 {
220 	int i, cpu, me;
221 	struct kvm_vcpu *vcpu;
222 	bool called;
223 
224 	me = get_cpu();
225 
226 	kvm_for_each_vcpu(i, vcpu, kvm) {
227 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
228 			continue;
229 
230 		kvm_make_request(req, vcpu);
231 		cpu = vcpu->cpu;
232 
233 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
234 			continue;
235 
236 		if (tmp != NULL && cpu != -1 && cpu != me &&
237 		    kvm_request_needs_ipi(vcpu, req))
238 			__cpumask_set_cpu(cpu, tmp);
239 	}
240 
241 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242 	put_cpu();
243 
244 	return called;
245 }
246 
247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
248 {
249 	cpumask_var_t cpus;
250 	bool called;
251 
252 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
253 
254 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
255 
256 	free_cpumask_var(cpus);
257 	return called;
258 }
259 
260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
261 void kvm_flush_remote_tlbs(struct kvm *kvm)
262 {
263 	/*
264 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
265 	 * kvm_make_all_cpus_request.
266 	 */
267 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
268 
269 	/*
270 	 * We want to publish modifications to the page tables before reading
271 	 * mode. Pairs with a memory barrier in arch-specific code.
272 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
273 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
274 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
275 	 *
276 	 * There is already an smp_mb__after_atomic() before
277 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
278 	 * barrier here.
279 	 */
280 	if (!kvm_arch_flush_remote_tlb(kvm)
281 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
282 		++kvm->stat.remote_tlb_flush;
283 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
284 }
285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
286 #endif
287 
288 void kvm_reload_remote_mmus(struct kvm *kvm)
289 {
290 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
291 }
292 
293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
294 {
295 	struct page *page;
296 	int r;
297 
298 	mutex_init(&vcpu->mutex);
299 	vcpu->cpu = -1;
300 	vcpu->kvm = kvm;
301 	vcpu->vcpu_id = id;
302 	vcpu->pid = NULL;
303 	init_swait_queue_head(&vcpu->wq);
304 	kvm_async_pf_vcpu_init(vcpu);
305 
306 	vcpu->pre_pcpu = -1;
307 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
308 
309 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
310 	if (!page) {
311 		r = -ENOMEM;
312 		goto fail;
313 	}
314 	vcpu->run = page_address(page);
315 
316 	kvm_vcpu_set_in_spin_loop(vcpu, false);
317 	kvm_vcpu_set_dy_eligible(vcpu, false);
318 	vcpu->preempted = false;
319 
320 	r = kvm_arch_vcpu_init(vcpu);
321 	if (r < 0)
322 		goto fail_free_run;
323 	return 0;
324 
325 fail_free_run:
326 	free_page((unsigned long)vcpu->run);
327 fail:
328 	return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331 
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334 	/*
335 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
336 	 * will change the vcpu->pid pointer and on uninit all file
337 	 * descriptors are already gone.
338 	 */
339 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
340 	kvm_arch_vcpu_uninit(vcpu);
341 	free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344 
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348 	return container_of(mn, struct kvm, mmu_notifier);
349 }
350 
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352 					struct mm_struct *mm,
353 					unsigned long address,
354 					pte_t pte)
355 {
356 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
357 	int idx;
358 
359 	idx = srcu_read_lock(&kvm->srcu);
360 	spin_lock(&kvm->mmu_lock);
361 	kvm->mmu_notifier_seq++;
362 
363 	if (kvm_set_spte_hva(kvm, address, pte))
364 		kvm_flush_remote_tlbs(kvm);
365 
366 	spin_unlock(&kvm->mmu_lock);
367 	srcu_read_unlock(&kvm->srcu, idx);
368 }
369 
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371 					const struct mmu_notifier_range *range)
372 {
373 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 	int need_tlb_flush = 0, idx;
375 	int ret;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 	/*
380 	 * The count increase must become visible at unlock time as no
381 	 * spte can be established without taking the mmu_lock and
382 	 * count is also read inside the mmu_lock critical section.
383 	 */
384 	kvm->mmu_notifier_count++;
385 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386 	need_tlb_flush |= kvm->tlbs_dirty;
387 	/* we've to flush the tlb before the pages can be freed */
388 	if (need_tlb_flush)
389 		kvm_flush_remote_tlbs(kvm);
390 
391 	spin_unlock(&kvm->mmu_lock);
392 
393 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394 					range->end, range->blockable);
395 
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return ret;
399 }
400 
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402 					const struct mmu_notifier_range *range)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 
406 	spin_lock(&kvm->mmu_lock);
407 	/*
408 	 * This sequence increase will notify the kvm page fault that
409 	 * the page that is going to be mapped in the spte could have
410 	 * been freed.
411 	 */
412 	kvm->mmu_notifier_seq++;
413 	smp_wmb();
414 	/*
415 	 * The above sequence increase must be visible before the
416 	 * below count decrease, which is ensured by the smp_wmb above
417 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
418 	 */
419 	kvm->mmu_notifier_count--;
420 	spin_unlock(&kvm->mmu_lock);
421 
422 	BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424 
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426 					      struct mm_struct *mm,
427 					      unsigned long start,
428 					      unsigned long end)
429 {
430 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
431 	int young, idx;
432 
433 	idx = srcu_read_lock(&kvm->srcu);
434 	spin_lock(&kvm->mmu_lock);
435 
436 	young = kvm_age_hva(kvm, start, end);
437 	if (young)
438 		kvm_flush_remote_tlbs(kvm);
439 
440 	spin_unlock(&kvm->mmu_lock);
441 	srcu_read_unlock(&kvm->srcu, idx);
442 
443 	return young;
444 }
445 
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447 					struct mm_struct *mm,
448 					unsigned long start,
449 					unsigned long end)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	/*
457 	 * Even though we do not flush TLB, this will still adversely
458 	 * affect performance on pre-Haswell Intel EPT, where there is
459 	 * no EPT Access Bit to clear so that we have to tear down EPT
460 	 * tables instead. If we find this unacceptable, we can always
461 	 * add a parameter to kvm_age_hva so that it effectively doesn't
462 	 * do anything on clear_young.
463 	 *
464 	 * Also note that currently we never issue secondary TLB flushes
465 	 * from clear_young, leaving this job up to the regular system
466 	 * cadence. If we find this inaccurate, we might come up with a
467 	 * more sophisticated heuristic later.
468 	 */
469 	young = kvm_age_hva(kvm, start, end);
470 	spin_unlock(&kvm->mmu_lock);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 
473 	return young;
474 }
475 
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477 				       struct mm_struct *mm,
478 				       unsigned long address)
479 {
480 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 	int young, idx;
482 
483 	idx = srcu_read_lock(&kvm->srcu);
484 	spin_lock(&kvm->mmu_lock);
485 	young = kvm_test_age_hva(kvm, address);
486 	spin_unlock(&kvm->mmu_lock);
487 	srcu_read_unlock(&kvm->srcu, idx);
488 
489 	return young;
490 }
491 
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493 				     struct mm_struct *mm)
494 {
495 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
496 	int idx;
497 
498 	idx = srcu_read_lock(&kvm->srcu);
499 	kvm_arch_flush_shadow_all(kvm);
500 	srcu_read_unlock(&kvm->srcu, idx);
501 }
502 
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
505 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
506 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
507 	.clear_young		= kvm_mmu_notifier_clear_young,
508 	.test_young		= kvm_mmu_notifier_test_young,
509 	.change_pte		= kvm_mmu_notifier_change_pte,
510 	.release		= kvm_mmu_notifier_release,
511 };
512 
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518 
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523 	return 0;
524 }
525 
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530 	int i;
531 	struct kvm_memslots *slots;
532 
533 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534 	if (!slots)
535 		return NULL;
536 
537 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538 		slots->id_to_index[i] = slots->memslots[i].id = i;
539 
540 	return slots;
541 }
542 
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 	if (!memslot->dirty_bitmap)
546 		return;
547 
548 	kvfree(memslot->dirty_bitmap);
549 	memslot->dirty_bitmap = NULL;
550 }
551 
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556 			      struct kvm_memory_slot *dont)
557 {
558 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 		kvm_destroy_dirty_bitmap(free);
560 
561 	kvm_arch_free_memslot(kvm, free, dont);
562 
563 	free->npages = 0;
564 }
565 
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568 	struct kvm_memory_slot *memslot;
569 
570 	if (!slots)
571 		return;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_memslot(kvm, memslot, NULL);
575 
576 	kvfree(slots);
577 }
578 
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581 	int i;
582 
583 	if (!kvm->debugfs_dentry)
584 		return;
585 
586 	debugfs_remove_recursive(kvm->debugfs_dentry);
587 
588 	if (kvm->debugfs_stat_data) {
589 		for (i = 0; i < kvm_debugfs_num_entries; i++)
590 			kfree(kvm->debugfs_stat_data[i]);
591 		kfree(kvm->debugfs_stat_data);
592 	}
593 }
594 
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597 	char dir_name[ITOA_MAX_LEN * 2];
598 	struct kvm_stat_data *stat_data;
599 	struct kvm_stats_debugfs_item *p;
600 
601 	if (!debugfs_initialized())
602 		return 0;
603 
604 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606 
607 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608 					 sizeof(*kvm->debugfs_stat_data),
609 					 GFP_KERNEL_ACCOUNT);
610 	if (!kvm->debugfs_stat_data)
611 		return -ENOMEM;
612 
613 	for (p = debugfs_entries; p->name; p++) {
614 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615 		if (!stat_data)
616 			return -ENOMEM;
617 
618 		stat_data->kvm = kvm;
619 		stat_data->offset = p->offset;
620 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
621 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
622 				    stat_data, stat_fops_per_vm[p->kind]);
623 	}
624 	return 0;
625 }
626 
627 static struct kvm *kvm_create_vm(unsigned long type)
628 {
629 	int r, i;
630 	struct kvm *kvm = kvm_arch_alloc_vm();
631 
632 	if (!kvm)
633 		return ERR_PTR(-ENOMEM);
634 
635 	spin_lock_init(&kvm->mmu_lock);
636 	mmgrab(current->mm);
637 	kvm->mm = current->mm;
638 	kvm_eventfd_init(kvm);
639 	mutex_init(&kvm->lock);
640 	mutex_init(&kvm->irq_lock);
641 	mutex_init(&kvm->slots_lock);
642 	refcount_set(&kvm->users_count, 1);
643 	INIT_LIST_HEAD(&kvm->devices);
644 
645 	r = kvm_arch_init_vm(kvm, type);
646 	if (r)
647 		goto out_err_no_disable;
648 
649 	r = hardware_enable_all();
650 	if (r)
651 		goto out_err_no_disable;
652 
653 #ifdef CONFIG_HAVE_KVM_IRQFD
654 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
655 #endif
656 
657 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658 
659 	r = -ENOMEM;
660 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
661 		struct kvm_memslots *slots = kvm_alloc_memslots();
662 		if (!slots)
663 			goto out_err_no_srcu;
664 		/* Generations must be different for each address space. */
665 		slots->generation = i;
666 		rcu_assign_pointer(kvm->memslots[i], slots);
667 	}
668 
669 	if (init_srcu_struct(&kvm->srcu))
670 		goto out_err_no_srcu;
671 	if (init_srcu_struct(&kvm->irq_srcu))
672 		goto out_err_no_irq_srcu;
673 	for (i = 0; i < KVM_NR_BUSES; i++) {
674 		rcu_assign_pointer(kvm->buses[i],
675 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
676 		if (!kvm->buses[i])
677 			goto out_err;
678 	}
679 
680 	r = kvm_init_mmu_notifier(kvm);
681 	if (r)
682 		goto out_err;
683 
684 	spin_lock(&kvm_lock);
685 	list_add(&kvm->vm_list, &vm_list);
686 	spin_unlock(&kvm_lock);
687 
688 	preempt_notifier_inc();
689 
690 	return kvm;
691 
692 out_err:
693 	cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695 	cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697 	hardware_disable_all();
698 out_err_no_disable:
699 	refcount_set(&kvm->users_count, 0);
700 	for (i = 0; i < KVM_NR_BUSES; i++)
701 		kfree(kvm_get_bus(kvm, i));
702 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704 	kvm_arch_free_vm(kvm);
705 	mmdrop(current->mm);
706 	return ERR_PTR(r);
707 }
708 
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711 	struct kvm_device *dev, *tmp;
712 
713 	/*
714 	 * We do not need to take the kvm->lock here, because nobody else
715 	 * has a reference to the struct kvm at this point and therefore
716 	 * cannot access the devices list anyhow.
717 	 */
718 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 		list_del(&dev->vm_node);
720 		dev->ops->destroy(dev);
721 	}
722 }
723 
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726 	int i;
727 	struct mm_struct *mm = kvm->mm;
728 
729 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730 	kvm_destroy_vm_debugfs(kvm);
731 	kvm_arch_sync_events(kvm);
732 	spin_lock(&kvm_lock);
733 	list_del(&kvm->vm_list);
734 	spin_unlock(&kvm_lock);
735 	kvm_free_irq_routing(kvm);
736 	for (i = 0; i < KVM_NR_BUSES; i++) {
737 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738 
739 		if (bus)
740 			kvm_io_bus_destroy(bus);
741 		kvm->buses[i] = NULL;
742 	}
743 	kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747 	kvm_arch_flush_shadow_all(kvm);
748 #endif
749 	kvm_arch_destroy_vm(kvm);
750 	kvm_destroy_devices(kvm);
751 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753 	cleanup_srcu_struct(&kvm->irq_srcu);
754 	cleanup_srcu_struct(&kvm->srcu);
755 	kvm_arch_free_vm(kvm);
756 	preempt_notifier_dec();
757 	hardware_disable_all();
758 	mmdrop(mm);
759 }
760 
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763 	refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766 
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769 	if (refcount_dec_and_test(&kvm->users_count))
770 		kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773 
774 
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777 	struct kvm *kvm = filp->private_data;
778 
779 	kvm_irqfd_release(kvm);
780 
781 	kvm_put_kvm(kvm);
782 	return 0;
783 }
784 
785 /*
786  * Allocation size is twice as large as the actual dirty bitmap size.
787  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788  */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792 
793 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
794 	if (!memslot->dirty_bitmap)
795 		return -ENOMEM;
796 
797 	return 0;
798 }
799 
800 /*
801  * Insert memslot and re-sort memslots based on their GFN,
802  * so binary search could be used to lookup GFN.
803  * Sorting algorithm takes advantage of having initially
804  * sorted array and known changed memslot position.
805  */
806 static void update_memslots(struct kvm_memslots *slots,
807 			    struct kvm_memory_slot *new,
808 			    enum kvm_mr_change change)
809 {
810 	int id = new->id;
811 	int i = slots->id_to_index[id];
812 	struct kvm_memory_slot *mslots = slots->memslots;
813 
814 	WARN_ON(mslots[i].id != id);
815 	switch (change) {
816 	case KVM_MR_CREATE:
817 		slots->used_slots++;
818 		WARN_ON(mslots[i].npages || !new->npages);
819 		break;
820 	case KVM_MR_DELETE:
821 		slots->used_slots--;
822 		WARN_ON(new->npages || !mslots[i].npages);
823 		break;
824 	default:
825 		break;
826 	}
827 
828 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
829 	       new->base_gfn <= mslots[i + 1].base_gfn) {
830 		if (!mslots[i + 1].npages)
831 			break;
832 		mslots[i] = mslots[i + 1];
833 		slots->id_to_index[mslots[i].id] = i;
834 		i++;
835 	}
836 
837 	/*
838 	 * The ">=" is needed when creating a slot with base_gfn == 0,
839 	 * so that it moves before all those with base_gfn == npages == 0.
840 	 *
841 	 * On the other hand, if new->npages is zero, the above loop has
842 	 * already left i pointing to the beginning of the empty part of
843 	 * mslots, and the ">=" would move the hole backwards in this
844 	 * case---which is wrong.  So skip the loop when deleting a slot.
845 	 */
846 	if (new->npages) {
847 		while (i > 0 &&
848 		       new->base_gfn >= mslots[i - 1].base_gfn) {
849 			mslots[i] = mslots[i - 1];
850 			slots->id_to_index[mslots[i].id] = i;
851 			i--;
852 		}
853 	} else
854 		WARN_ON_ONCE(i != slots->used_slots);
855 
856 	mslots[i] = *new;
857 	slots->id_to_index[mslots[i].id] = i;
858 }
859 
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863 
864 #ifdef __KVM_HAVE_READONLY_MEM
865 	valid_flags |= KVM_MEM_READONLY;
866 #endif
867 
868 	if (mem->flags & ~valid_flags)
869 		return -EINVAL;
870 
871 	return 0;
872 }
873 
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875 		int as_id, struct kvm_memslots *slots)
876 {
877 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878 	u64 gen = old_memslots->generation;
879 
880 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
881 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
882 
883 	rcu_assign_pointer(kvm->memslots[as_id], slots);
884 	synchronize_srcu_expedited(&kvm->srcu);
885 
886 	/*
887 	 * Increment the new memslot generation a second time, dropping the
888 	 * update in-progress flag and incrementing then generation based on
889 	 * the number of address spaces.  This provides a unique and easily
890 	 * identifiable generation number while the memslots are in flux.
891 	 */
892 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
893 
894 	/*
895 	 * Generations must be unique even across address spaces.  We do not need
896 	 * a global counter for that, instead the generation space is evenly split
897 	 * across address spaces.  For example, with two address spaces, address
898 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
899 	 * use generations 1, 3, 5, ...
900 	 */
901 	gen += KVM_ADDRESS_SPACE_NUM;
902 
903 	kvm_arch_memslots_updated(kvm, gen);
904 
905 	slots->generation = gen;
906 
907 	return old_memslots;
908 }
909 
910 /*
911  * Allocate some memory and give it an address in the guest physical address
912  * space.
913  *
914  * Discontiguous memory is allowed, mostly for framebuffers.
915  *
916  * Must be called holding kvm->slots_lock for write.
917  */
918 int __kvm_set_memory_region(struct kvm *kvm,
919 			    const struct kvm_userspace_memory_region *mem)
920 {
921 	int r;
922 	gfn_t base_gfn;
923 	unsigned long npages;
924 	struct kvm_memory_slot *slot;
925 	struct kvm_memory_slot old, new;
926 	struct kvm_memslots *slots = NULL, *old_memslots;
927 	int as_id, id;
928 	enum kvm_mr_change change;
929 
930 	r = check_memory_region_flags(mem);
931 	if (r)
932 		goto out;
933 
934 	r = -EINVAL;
935 	as_id = mem->slot >> 16;
936 	id = (u16)mem->slot;
937 
938 	/* General sanity checks */
939 	if (mem->memory_size & (PAGE_SIZE - 1))
940 		goto out;
941 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
942 		goto out;
943 	/* We can read the guest memory with __xxx_user() later on. */
944 	if ((id < KVM_USER_MEM_SLOTS) &&
945 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
946 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
947 			mem->memory_size)))
948 		goto out;
949 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
950 		goto out;
951 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952 		goto out;
953 
954 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
955 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
956 	npages = mem->memory_size >> PAGE_SHIFT;
957 
958 	if (npages > KVM_MEM_MAX_NR_PAGES)
959 		goto out;
960 
961 	new = old = *slot;
962 
963 	new.id = id;
964 	new.base_gfn = base_gfn;
965 	new.npages = npages;
966 	new.flags = mem->flags;
967 
968 	if (npages) {
969 		if (!old.npages)
970 			change = KVM_MR_CREATE;
971 		else { /* Modify an existing slot. */
972 			if ((mem->userspace_addr != old.userspace_addr) ||
973 			    (npages != old.npages) ||
974 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
975 				goto out;
976 
977 			if (base_gfn != old.base_gfn)
978 				change = KVM_MR_MOVE;
979 			else if (new.flags != old.flags)
980 				change = KVM_MR_FLAGS_ONLY;
981 			else { /* Nothing to change. */
982 				r = 0;
983 				goto out;
984 			}
985 		}
986 	} else {
987 		if (!old.npages)
988 			goto out;
989 
990 		change = KVM_MR_DELETE;
991 		new.base_gfn = 0;
992 		new.flags = 0;
993 	}
994 
995 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
996 		/* Check for overlaps */
997 		r = -EEXIST;
998 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
999 			if (slot->id == id)
1000 				continue;
1001 			if (!((base_gfn + npages <= slot->base_gfn) ||
1002 			      (base_gfn >= slot->base_gfn + slot->npages)))
1003 				goto out;
1004 		}
1005 	}
1006 
1007 	/* Free page dirty bitmap if unneeded */
1008 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1009 		new.dirty_bitmap = NULL;
1010 
1011 	r = -ENOMEM;
1012 	if (change == KVM_MR_CREATE) {
1013 		new.userspace_addr = mem->userspace_addr;
1014 
1015 		if (kvm_arch_create_memslot(kvm, &new, npages))
1016 			goto out_free;
1017 	}
1018 
1019 	/* Allocate page dirty bitmap if needed */
1020 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1021 		if (kvm_create_dirty_bitmap(&new) < 0)
1022 			goto out_free;
1023 	}
1024 
1025 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1026 	if (!slots)
1027 		goto out_free;
1028 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029 
1030 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1031 		slot = id_to_memslot(slots, id);
1032 		slot->flags |= KVM_MEMSLOT_INVALID;
1033 
1034 		old_memslots = install_new_memslots(kvm, as_id, slots);
1035 
1036 		/* From this point no new shadow pages pointing to a deleted,
1037 		 * or moved, memslot will be created.
1038 		 *
1039 		 * validation of sp->gfn happens in:
1040 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1042 		 */
1043 		kvm_arch_flush_shadow_memslot(kvm, slot);
1044 
1045 		/*
1046 		 * We can re-use the old_memslots from above, the only difference
1047 		 * from the currently installed memslots is the invalid flag.  This
1048 		 * will get overwritten by update_memslots anyway.
1049 		 */
1050 		slots = old_memslots;
1051 	}
1052 
1053 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1054 	if (r)
1055 		goto out_slots;
1056 
1057 	/* actual memory is freed via old in kvm_free_memslot below */
1058 	if (change == KVM_MR_DELETE) {
1059 		new.dirty_bitmap = NULL;
1060 		memset(&new.arch, 0, sizeof(new.arch));
1061 	}
1062 
1063 	update_memslots(slots, &new, change);
1064 	old_memslots = install_new_memslots(kvm, as_id, slots);
1065 
1066 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067 
1068 	kvm_free_memslot(kvm, &old, &new);
1069 	kvfree(old_memslots);
1070 	return 0;
1071 
1072 out_slots:
1073 	kvfree(slots);
1074 out_free:
1075 	kvm_free_memslot(kvm, &new, &old);
1076 out:
1077 	return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080 
1081 int kvm_set_memory_region(struct kvm *kvm,
1082 			  const struct kvm_userspace_memory_region *mem)
1083 {
1084 	int r;
1085 
1086 	mutex_lock(&kvm->slots_lock);
1087 	r = __kvm_set_memory_region(kvm, mem);
1088 	mutex_unlock(&kvm->slots_lock);
1089 	return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092 
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094 					  struct kvm_userspace_memory_region *mem)
1095 {
1096 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097 		return -EINVAL;
1098 
1099 	return kvm_set_memory_region(kvm, mem);
1100 }
1101 
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103 			struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105 	struct kvm_memslots *slots;
1106 	struct kvm_memory_slot *memslot;
1107 	int i, as_id, id;
1108 	unsigned long n;
1109 	unsigned long any = 0;
1110 
1111 	as_id = log->slot >> 16;
1112 	id = (u16)log->slot;
1113 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114 		return -EINVAL;
1115 
1116 	slots = __kvm_memslots(kvm, as_id);
1117 	memslot = id_to_memslot(slots, id);
1118 	if (!memslot->dirty_bitmap)
1119 		return -ENOENT;
1120 
1121 	n = kvm_dirty_bitmap_bytes(memslot);
1122 
1123 	for (i = 0; !any && i < n/sizeof(long); ++i)
1124 		any = memslot->dirty_bitmap[i];
1125 
1126 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127 		return -EFAULT;
1128 
1129 	if (any)
1130 		*is_dirty = 1;
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134 
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1138  *	and reenable dirty page tracking for the corresponding pages.
1139  * @kvm:	pointer to kvm instance
1140  * @log:	slot id and address to which we copy the log
1141  * @is_dirty:	flag set if any page is dirty
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159 			struct kvm_dirty_log *log, bool *flush)
1160 {
1161 	struct kvm_memslots *slots;
1162 	struct kvm_memory_slot *memslot;
1163 	int i, as_id, id;
1164 	unsigned long n;
1165 	unsigned long *dirty_bitmap;
1166 	unsigned long *dirty_bitmap_buffer;
1167 
1168 	as_id = log->slot >> 16;
1169 	id = (u16)log->slot;
1170 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171 		return -EINVAL;
1172 
1173 	slots = __kvm_memslots(kvm, as_id);
1174 	memslot = id_to_memslot(slots, id);
1175 
1176 	dirty_bitmap = memslot->dirty_bitmap;
1177 	if (!dirty_bitmap)
1178 		return -ENOENT;
1179 
1180 	n = kvm_dirty_bitmap_bytes(memslot);
1181 	*flush = false;
1182 	if (kvm->manual_dirty_log_protect) {
1183 		/*
1184 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1185 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1186 		 * is some code duplication between this function and
1187 		 * kvm_get_dirty_log, but hopefully all architecture
1188 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189 		 * can be eliminated.
1190 		 */
1191 		dirty_bitmap_buffer = dirty_bitmap;
1192 	} else {
1193 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194 		memset(dirty_bitmap_buffer, 0, n);
1195 
1196 		spin_lock(&kvm->mmu_lock);
1197 		for (i = 0; i < n / sizeof(long); i++) {
1198 			unsigned long mask;
1199 			gfn_t offset;
1200 
1201 			if (!dirty_bitmap[i])
1202 				continue;
1203 
1204 			*flush = true;
1205 			mask = xchg(&dirty_bitmap[i], 0);
1206 			dirty_bitmap_buffer[i] = mask;
1207 
1208 			offset = i * BITS_PER_LONG;
1209 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210 								offset, mask);
1211 		}
1212 		spin_unlock(&kvm->mmu_lock);
1213 	}
1214 
1215 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216 		return -EFAULT;
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220 
1221 /**
1222  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223  *	and reenable dirty page tracking for the corresponding pages.
1224  * @kvm:	pointer to kvm instance
1225  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1226  */
1227 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1228 				struct kvm_clear_dirty_log *log, bool *flush)
1229 {
1230 	struct kvm_memslots *slots;
1231 	struct kvm_memory_slot *memslot;
1232 	int as_id, id;
1233 	gfn_t offset;
1234 	unsigned long i, n;
1235 	unsigned long *dirty_bitmap;
1236 	unsigned long *dirty_bitmap_buffer;
1237 
1238 	as_id = log->slot >> 16;
1239 	id = (u16)log->slot;
1240 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1241 		return -EINVAL;
1242 
1243 	if (log->first_page & 63)
1244 		return -EINVAL;
1245 
1246 	slots = __kvm_memslots(kvm, as_id);
1247 	memslot = id_to_memslot(slots, id);
1248 
1249 	dirty_bitmap = memslot->dirty_bitmap;
1250 	if (!dirty_bitmap)
1251 		return -ENOENT;
1252 
1253 	n = kvm_dirty_bitmap_bytes(memslot);
1254 
1255 	if (log->first_page > memslot->npages ||
1256 	    log->num_pages > memslot->npages - log->first_page ||
1257 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1258 	    return -EINVAL;
1259 
1260 	*flush = false;
1261 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1262 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1263 		return -EFAULT;
1264 
1265 	spin_lock(&kvm->mmu_lock);
1266 	for (offset = log->first_page,
1267 	     i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1268 	     i++, offset += BITS_PER_LONG) {
1269 		unsigned long mask = *dirty_bitmap_buffer++;
1270 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1271 		if (!mask)
1272 			continue;
1273 
1274 		mask &= atomic_long_fetch_andnot(mask, p);
1275 
1276 		/*
1277 		 * mask contains the bits that really have been cleared.  This
1278 		 * never includes any bits beyond the length of the memslot (if
1279 		 * the length is not aligned to 64 pages), therefore it is not
1280 		 * a problem if userspace sets them in log->dirty_bitmap.
1281 		*/
1282 		if (mask) {
1283 			*flush = true;
1284 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1285 								offset, mask);
1286 		}
1287 	}
1288 	spin_unlock(&kvm->mmu_lock);
1289 
1290 	return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1293 #endif
1294 
1295 bool kvm_largepages_enabled(void)
1296 {
1297 	return largepages_enabled;
1298 }
1299 
1300 void kvm_disable_largepages(void)
1301 {
1302 	largepages_enabled = false;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1305 
1306 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1307 {
1308 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1309 }
1310 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1311 
1312 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1313 {
1314 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1315 }
1316 
1317 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1318 {
1319 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1320 
1321 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1322 	      memslot->flags & KVM_MEMSLOT_INVALID)
1323 		return false;
1324 
1325 	return true;
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1328 
1329 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1330 {
1331 	struct vm_area_struct *vma;
1332 	unsigned long addr, size;
1333 
1334 	size = PAGE_SIZE;
1335 
1336 	addr = gfn_to_hva(kvm, gfn);
1337 	if (kvm_is_error_hva(addr))
1338 		return PAGE_SIZE;
1339 
1340 	down_read(&current->mm->mmap_sem);
1341 	vma = find_vma(current->mm, addr);
1342 	if (!vma)
1343 		goto out;
1344 
1345 	size = vma_kernel_pagesize(vma);
1346 
1347 out:
1348 	up_read(&current->mm->mmap_sem);
1349 
1350 	return size;
1351 }
1352 
1353 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1354 {
1355 	return slot->flags & KVM_MEM_READONLY;
1356 }
1357 
1358 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1359 				       gfn_t *nr_pages, bool write)
1360 {
1361 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1362 		return KVM_HVA_ERR_BAD;
1363 
1364 	if (memslot_is_readonly(slot) && write)
1365 		return KVM_HVA_ERR_RO_BAD;
1366 
1367 	if (nr_pages)
1368 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1369 
1370 	return __gfn_to_hva_memslot(slot, gfn);
1371 }
1372 
1373 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1374 				     gfn_t *nr_pages)
1375 {
1376 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1377 }
1378 
1379 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1380 					gfn_t gfn)
1381 {
1382 	return gfn_to_hva_many(slot, gfn, NULL);
1383 }
1384 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1385 
1386 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1387 {
1388 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_hva);
1391 
1392 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1397 
1398 /*
1399  * Return the hva of a @gfn and the R/W attribute if possible.
1400  *
1401  * @slot: the kvm_memory_slot which contains @gfn
1402  * @gfn: the gfn to be translated
1403  * @writable: used to return the read/write attribute of the @slot if the hva
1404  * is valid and @writable is not NULL
1405  */
1406 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1407 				      gfn_t gfn, bool *writable)
1408 {
1409 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1410 
1411 	if (!kvm_is_error_hva(hva) && writable)
1412 		*writable = !memslot_is_readonly(slot);
1413 
1414 	return hva;
1415 }
1416 
1417 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1418 {
1419 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1420 
1421 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1422 }
1423 
1424 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1425 {
1426 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1427 
1428 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1429 }
1430 
1431 static inline int check_user_page_hwpoison(unsigned long addr)
1432 {
1433 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1434 
1435 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1436 	return rc == -EHWPOISON;
1437 }
1438 
1439 /*
1440  * The fast path to get the writable pfn which will be stored in @pfn,
1441  * true indicates success, otherwise false is returned.  It's also the
1442  * only part that runs if we can are in atomic context.
1443  */
1444 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1445 			    bool *writable, kvm_pfn_t *pfn)
1446 {
1447 	struct page *page[1];
1448 	int npages;
1449 
1450 	/*
1451 	 * Fast pin a writable pfn only if it is a write fault request
1452 	 * or the caller allows to map a writable pfn for a read fault
1453 	 * request.
1454 	 */
1455 	if (!(write_fault || writable))
1456 		return false;
1457 
1458 	npages = __get_user_pages_fast(addr, 1, 1, page);
1459 	if (npages == 1) {
1460 		*pfn = page_to_pfn(page[0]);
1461 
1462 		if (writable)
1463 			*writable = true;
1464 		return true;
1465 	}
1466 
1467 	return false;
1468 }
1469 
1470 /*
1471  * The slow path to get the pfn of the specified host virtual address,
1472  * 1 indicates success, -errno is returned if error is detected.
1473  */
1474 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1475 			   bool *writable, kvm_pfn_t *pfn)
1476 {
1477 	unsigned int flags = FOLL_HWPOISON;
1478 	struct page *page;
1479 	int npages = 0;
1480 
1481 	might_sleep();
1482 
1483 	if (writable)
1484 		*writable = write_fault;
1485 
1486 	if (write_fault)
1487 		flags |= FOLL_WRITE;
1488 	if (async)
1489 		flags |= FOLL_NOWAIT;
1490 
1491 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1492 	if (npages != 1)
1493 		return npages;
1494 
1495 	/* map read fault as writable if possible */
1496 	if (unlikely(!write_fault) && writable) {
1497 		struct page *wpage;
1498 
1499 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1500 			*writable = true;
1501 			put_page(page);
1502 			page = wpage;
1503 		}
1504 	}
1505 	*pfn = page_to_pfn(page);
1506 	return npages;
1507 }
1508 
1509 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1510 {
1511 	if (unlikely(!(vma->vm_flags & VM_READ)))
1512 		return false;
1513 
1514 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1515 		return false;
1516 
1517 	return true;
1518 }
1519 
1520 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1521 			       unsigned long addr, bool *async,
1522 			       bool write_fault, bool *writable,
1523 			       kvm_pfn_t *p_pfn)
1524 {
1525 	unsigned long pfn;
1526 	int r;
1527 
1528 	r = follow_pfn(vma, addr, &pfn);
1529 	if (r) {
1530 		/*
1531 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1532 		 * not call the fault handler, so do it here.
1533 		 */
1534 		bool unlocked = false;
1535 		r = fixup_user_fault(current, current->mm, addr,
1536 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1537 				     &unlocked);
1538 		if (unlocked)
1539 			return -EAGAIN;
1540 		if (r)
1541 			return r;
1542 
1543 		r = follow_pfn(vma, addr, &pfn);
1544 		if (r)
1545 			return r;
1546 
1547 	}
1548 
1549 	if (writable)
1550 		*writable = true;
1551 
1552 	/*
1553 	 * Get a reference here because callers of *hva_to_pfn* and
1554 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1555 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1556 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1557 	 * simply do nothing for reserved pfns.
1558 	 *
1559 	 * Whoever called remap_pfn_range is also going to call e.g.
1560 	 * unmap_mapping_range before the underlying pages are freed,
1561 	 * causing a call to our MMU notifier.
1562 	 */
1563 	kvm_get_pfn(pfn);
1564 
1565 	*p_pfn = pfn;
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Pin guest page in memory and return its pfn.
1571  * @addr: host virtual address which maps memory to the guest
1572  * @atomic: whether this function can sleep
1573  * @async: whether this function need to wait IO complete if the
1574  *         host page is not in the memory
1575  * @write_fault: whether we should get a writable host page
1576  * @writable: whether it allows to map a writable host page for !@write_fault
1577  *
1578  * The function will map a writable host page for these two cases:
1579  * 1): @write_fault = true
1580  * 2): @write_fault = false && @writable, @writable will tell the caller
1581  *     whether the mapping is writable.
1582  */
1583 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1584 			bool write_fault, bool *writable)
1585 {
1586 	struct vm_area_struct *vma;
1587 	kvm_pfn_t pfn = 0;
1588 	int npages, r;
1589 
1590 	/* we can do it either atomically or asynchronously, not both */
1591 	BUG_ON(atomic && async);
1592 
1593 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1594 		return pfn;
1595 
1596 	if (atomic)
1597 		return KVM_PFN_ERR_FAULT;
1598 
1599 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1600 	if (npages == 1)
1601 		return pfn;
1602 
1603 	down_read(&current->mm->mmap_sem);
1604 	if (npages == -EHWPOISON ||
1605 	      (!async && check_user_page_hwpoison(addr))) {
1606 		pfn = KVM_PFN_ERR_HWPOISON;
1607 		goto exit;
1608 	}
1609 
1610 retry:
1611 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1612 
1613 	if (vma == NULL)
1614 		pfn = KVM_PFN_ERR_FAULT;
1615 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1616 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1617 		if (r == -EAGAIN)
1618 			goto retry;
1619 		if (r < 0)
1620 			pfn = KVM_PFN_ERR_FAULT;
1621 	} else {
1622 		if (async && vma_is_valid(vma, write_fault))
1623 			*async = true;
1624 		pfn = KVM_PFN_ERR_FAULT;
1625 	}
1626 exit:
1627 	up_read(&current->mm->mmap_sem);
1628 	return pfn;
1629 }
1630 
1631 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1632 			       bool atomic, bool *async, bool write_fault,
1633 			       bool *writable)
1634 {
1635 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1636 
1637 	if (addr == KVM_HVA_ERR_RO_BAD) {
1638 		if (writable)
1639 			*writable = false;
1640 		return KVM_PFN_ERR_RO_FAULT;
1641 	}
1642 
1643 	if (kvm_is_error_hva(addr)) {
1644 		if (writable)
1645 			*writable = false;
1646 		return KVM_PFN_NOSLOT;
1647 	}
1648 
1649 	/* Do not map writable pfn in the readonly memslot. */
1650 	if (writable && memslot_is_readonly(slot)) {
1651 		*writable = false;
1652 		writable = NULL;
1653 	}
1654 
1655 	return hva_to_pfn(addr, atomic, async, write_fault,
1656 			  writable);
1657 }
1658 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1659 
1660 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1661 		      bool *writable)
1662 {
1663 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1664 				    write_fault, writable);
1665 }
1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1667 
1668 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1669 {
1670 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1671 }
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1673 
1674 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1675 {
1676 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1679 
1680 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1681 {
1682 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1685 
1686 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1687 {
1688 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1691 
1692 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1693 {
1694 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1695 }
1696 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1697 
1698 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1699 {
1700 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1703 
1704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1705 			    struct page **pages, int nr_pages)
1706 {
1707 	unsigned long addr;
1708 	gfn_t entry = 0;
1709 
1710 	addr = gfn_to_hva_many(slot, gfn, &entry);
1711 	if (kvm_is_error_hva(addr))
1712 		return -1;
1713 
1714 	if (entry < nr_pages)
1715 		return 0;
1716 
1717 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1718 }
1719 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1720 
1721 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1722 {
1723 	if (is_error_noslot_pfn(pfn))
1724 		return KVM_ERR_PTR_BAD_PAGE;
1725 
1726 	if (kvm_is_reserved_pfn(pfn)) {
1727 		WARN_ON(1);
1728 		return KVM_ERR_PTR_BAD_PAGE;
1729 	}
1730 
1731 	return pfn_to_page(pfn);
1732 }
1733 
1734 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1735 {
1736 	kvm_pfn_t pfn;
1737 
1738 	pfn = gfn_to_pfn(kvm, gfn);
1739 
1740 	return kvm_pfn_to_page(pfn);
1741 }
1742 EXPORT_SYMBOL_GPL(gfn_to_page);
1743 
1744 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1745 {
1746 	kvm_pfn_t pfn;
1747 
1748 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1749 
1750 	return kvm_pfn_to_page(pfn);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1753 
1754 void kvm_release_page_clean(struct page *page)
1755 {
1756 	WARN_ON(is_error_page(page));
1757 
1758 	kvm_release_pfn_clean(page_to_pfn(page));
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1761 
1762 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1763 {
1764 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1765 		put_page(pfn_to_page(pfn));
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1768 
1769 void kvm_release_page_dirty(struct page *page)
1770 {
1771 	WARN_ON(is_error_page(page));
1772 
1773 	kvm_release_pfn_dirty(page_to_pfn(page));
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1776 
1777 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1778 {
1779 	kvm_set_pfn_dirty(pfn);
1780 	kvm_release_pfn_clean(pfn);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1783 
1784 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1785 {
1786 	if (!kvm_is_reserved_pfn(pfn)) {
1787 		struct page *page = pfn_to_page(pfn);
1788 
1789 		if (!PageReserved(page))
1790 			SetPageDirty(page);
1791 	}
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1794 
1795 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1796 {
1797 	if (!kvm_is_reserved_pfn(pfn))
1798 		mark_page_accessed(pfn_to_page(pfn));
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1801 
1802 void kvm_get_pfn(kvm_pfn_t pfn)
1803 {
1804 	if (!kvm_is_reserved_pfn(pfn))
1805 		get_page(pfn_to_page(pfn));
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1808 
1809 static int next_segment(unsigned long len, int offset)
1810 {
1811 	if (len > PAGE_SIZE - offset)
1812 		return PAGE_SIZE - offset;
1813 	else
1814 		return len;
1815 }
1816 
1817 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1818 				 void *data, int offset, int len)
1819 {
1820 	int r;
1821 	unsigned long addr;
1822 
1823 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1824 	if (kvm_is_error_hva(addr))
1825 		return -EFAULT;
1826 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1827 	if (r)
1828 		return -EFAULT;
1829 	return 0;
1830 }
1831 
1832 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1833 			int len)
1834 {
1835 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1836 
1837 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1840 
1841 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1842 			     int offset, int len)
1843 {
1844 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1845 
1846 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1849 
1850 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1851 {
1852 	gfn_t gfn = gpa >> PAGE_SHIFT;
1853 	int seg;
1854 	int offset = offset_in_page(gpa);
1855 	int ret;
1856 
1857 	while ((seg = next_segment(len, offset)) != 0) {
1858 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1859 		if (ret < 0)
1860 			return ret;
1861 		offset = 0;
1862 		len -= seg;
1863 		data += seg;
1864 		++gfn;
1865 	}
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_read_guest);
1869 
1870 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1871 {
1872 	gfn_t gfn = gpa >> PAGE_SHIFT;
1873 	int seg;
1874 	int offset = offset_in_page(gpa);
1875 	int ret;
1876 
1877 	while ((seg = next_segment(len, offset)) != 0) {
1878 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1879 		if (ret < 0)
1880 			return ret;
1881 		offset = 0;
1882 		len -= seg;
1883 		data += seg;
1884 		++gfn;
1885 	}
1886 	return 0;
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1889 
1890 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1891 			           void *data, int offset, unsigned long len)
1892 {
1893 	int r;
1894 	unsigned long addr;
1895 
1896 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1897 	if (kvm_is_error_hva(addr))
1898 		return -EFAULT;
1899 	pagefault_disable();
1900 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1901 	pagefault_enable();
1902 	if (r)
1903 		return -EFAULT;
1904 	return 0;
1905 }
1906 
1907 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1908 			  unsigned long len)
1909 {
1910 	gfn_t gfn = gpa >> PAGE_SHIFT;
1911 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1912 	int offset = offset_in_page(gpa);
1913 
1914 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1917 
1918 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1919 			       void *data, unsigned long len)
1920 {
1921 	gfn_t gfn = gpa >> PAGE_SHIFT;
1922 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1923 	int offset = offset_in_page(gpa);
1924 
1925 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1926 }
1927 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1928 
1929 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1930 			          const void *data, int offset, int len)
1931 {
1932 	int r;
1933 	unsigned long addr;
1934 
1935 	addr = gfn_to_hva_memslot(memslot, gfn);
1936 	if (kvm_is_error_hva(addr))
1937 		return -EFAULT;
1938 	r = __copy_to_user((void __user *)addr + offset, data, len);
1939 	if (r)
1940 		return -EFAULT;
1941 	mark_page_dirty_in_slot(memslot, gfn);
1942 	return 0;
1943 }
1944 
1945 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1946 			 const void *data, int offset, int len)
1947 {
1948 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1949 
1950 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1953 
1954 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1955 			      const void *data, int offset, int len)
1956 {
1957 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1958 
1959 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1962 
1963 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1964 		    unsigned long len)
1965 {
1966 	gfn_t gfn = gpa >> PAGE_SHIFT;
1967 	int seg;
1968 	int offset = offset_in_page(gpa);
1969 	int ret;
1970 
1971 	while ((seg = next_segment(len, offset)) != 0) {
1972 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1973 		if (ret < 0)
1974 			return ret;
1975 		offset = 0;
1976 		len -= seg;
1977 		data += seg;
1978 		++gfn;
1979 	}
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_write_guest);
1983 
1984 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1985 		         unsigned long len)
1986 {
1987 	gfn_t gfn = gpa >> PAGE_SHIFT;
1988 	int seg;
1989 	int offset = offset_in_page(gpa);
1990 	int ret;
1991 
1992 	while ((seg = next_segment(len, offset)) != 0) {
1993 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1994 		if (ret < 0)
1995 			return ret;
1996 		offset = 0;
1997 		len -= seg;
1998 		data += seg;
1999 		++gfn;
2000 	}
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2004 
2005 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2006 				       struct gfn_to_hva_cache *ghc,
2007 				       gpa_t gpa, unsigned long len)
2008 {
2009 	int offset = offset_in_page(gpa);
2010 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2011 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2012 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2013 	gfn_t nr_pages_avail;
2014 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2015 
2016 	ghc->gpa = gpa;
2017 	ghc->generation = slots->generation;
2018 	ghc->len = len;
2019 	ghc->hva = KVM_HVA_ERR_BAD;
2020 
2021 	/*
2022 	 * If the requested region crosses two memslots, we still
2023 	 * verify that the entire region is valid here.
2024 	 */
2025 	while (!r && start_gfn <= end_gfn) {
2026 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2027 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2028 					   &nr_pages_avail);
2029 		if (kvm_is_error_hva(ghc->hva))
2030 			r = -EFAULT;
2031 		start_gfn += nr_pages_avail;
2032 	}
2033 
2034 	/* Use the slow path for cross page reads and writes. */
2035 	if (!r && nr_pages_needed == 1)
2036 		ghc->hva += offset;
2037 	else
2038 		ghc->memslot = NULL;
2039 
2040 	return r;
2041 }
2042 
2043 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2044 			      gpa_t gpa, unsigned long len)
2045 {
2046 	struct kvm_memslots *slots = kvm_memslots(kvm);
2047 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2048 }
2049 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2050 
2051 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2052 				  void *data, unsigned int offset,
2053 				  unsigned long len)
2054 {
2055 	struct kvm_memslots *slots = kvm_memslots(kvm);
2056 	int r;
2057 	gpa_t gpa = ghc->gpa + offset;
2058 
2059 	BUG_ON(len + offset > ghc->len);
2060 
2061 	if (slots->generation != ghc->generation)
2062 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2063 
2064 	if (unlikely(!ghc->memslot))
2065 		return kvm_write_guest(kvm, gpa, data, len);
2066 
2067 	if (kvm_is_error_hva(ghc->hva))
2068 		return -EFAULT;
2069 
2070 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2071 	if (r)
2072 		return -EFAULT;
2073 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2074 
2075 	return 0;
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2078 
2079 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2080 			   void *data, unsigned long len)
2081 {
2082 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2085 
2086 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2087 			   void *data, unsigned long len)
2088 {
2089 	struct kvm_memslots *slots = kvm_memslots(kvm);
2090 	int r;
2091 
2092 	BUG_ON(len > ghc->len);
2093 
2094 	if (slots->generation != ghc->generation)
2095 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2096 
2097 	if (unlikely(!ghc->memslot))
2098 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2099 
2100 	if (kvm_is_error_hva(ghc->hva))
2101 		return -EFAULT;
2102 
2103 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2104 	if (r)
2105 		return -EFAULT;
2106 
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2110 
2111 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2112 {
2113 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2114 
2115 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2118 
2119 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2120 {
2121 	gfn_t gfn = gpa >> PAGE_SHIFT;
2122 	int seg;
2123 	int offset = offset_in_page(gpa);
2124 	int ret;
2125 
2126 	while ((seg = next_segment(len, offset)) != 0) {
2127 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2128 		if (ret < 0)
2129 			return ret;
2130 		offset = 0;
2131 		len -= seg;
2132 		++gfn;
2133 	}
2134 	return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2137 
2138 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2139 				    gfn_t gfn)
2140 {
2141 	if (memslot && memslot->dirty_bitmap) {
2142 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2143 
2144 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2145 	}
2146 }
2147 
2148 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2149 {
2150 	struct kvm_memory_slot *memslot;
2151 
2152 	memslot = gfn_to_memslot(kvm, gfn);
2153 	mark_page_dirty_in_slot(memslot, gfn);
2154 }
2155 EXPORT_SYMBOL_GPL(mark_page_dirty);
2156 
2157 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2158 {
2159 	struct kvm_memory_slot *memslot;
2160 
2161 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2162 	mark_page_dirty_in_slot(memslot, gfn);
2163 }
2164 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2165 
2166 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2167 {
2168 	if (!vcpu->sigset_active)
2169 		return;
2170 
2171 	/*
2172 	 * This does a lockless modification of ->real_blocked, which is fine
2173 	 * because, only current can change ->real_blocked and all readers of
2174 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2175 	 * of ->blocked.
2176 	 */
2177 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2178 }
2179 
2180 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2181 {
2182 	if (!vcpu->sigset_active)
2183 		return;
2184 
2185 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2186 	sigemptyset(&current->real_blocked);
2187 }
2188 
2189 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2190 {
2191 	unsigned int old, val, grow, grow_start;
2192 
2193 	old = val = vcpu->halt_poll_ns;
2194 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2195 	grow = READ_ONCE(halt_poll_ns_grow);
2196 	if (!grow)
2197 		goto out;
2198 
2199 	val *= grow;
2200 	if (val < grow_start)
2201 		val = grow_start;
2202 
2203 	if (val > halt_poll_ns)
2204 		val = halt_poll_ns;
2205 
2206 	vcpu->halt_poll_ns = val;
2207 out:
2208 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2209 }
2210 
2211 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2212 {
2213 	unsigned int old, val, shrink;
2214 
2215 	old = val = vcpu->halt_poll_ns;
2216 	shrink = READ_ONCE(halt_poll_ns_shrink);
2217 	if (shrink == 0)
2218 		val = 0;
2219 	else
2220 		val /= shrink;
2221 
2222 	vcpu->halt_poll_ns = val;
2223 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2224 }
2225 
2226 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2227 {
2228 	int ret = -EINTR;
2229 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2230 
2231 	if (kvm_arch_vcpu_runnable(vcpu)) {
2232 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2233 		goto out;
2234 	}
2235 	if (kvm_cpu_has_pending_timer(vcpu))
2236 		goto out;
2237 	if (signal_pending(current))
2238 		goto out;
2239 
2240 	ret = 0;
2241 out:
2242 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2243 	return ret;
2244 }
2245 
2246 /*
2247  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2248  */
2249 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2250 {
2251 	ktime_t start, cur;
2252 	DECLARE_SWAITQUEUE(wait);
2253 	bool waited = false;
2254 	u64 block_ns;
2255 
2256 	start = cur = ktime_get();
2257 	if (vcpu->halt_poll_ns) {
2258 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2259 
2260 		++vcpu->stat.halt_attempted_poll;
2261 		do {
2262 			/*
2263 			 * This sets KVM_REQ_UNHALT if an interrupt
2264 			 * arrives.
2265 			 */
2266 			if (kvm_vcpu_check_block(vcpu) < 0) {
2267 				++vcpu->stat.halt_successful_poll;
2268 				if (!vcpu_valid_wakeup(vcpu))
2269 					++vcpu->stat.halt_poll_invalid;
2270 				goto out;
2271 			}
2272 			cur = ktime_get();
2273 		} while (single_task_running() && ktime_before(cur, stop));
2274 	}
2275 
2276 	kvm_arch_vcpu_blocking(vcpu);
2277 
2278 	for (;;) {
2279 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2280 
2281 		if (kvm_vcpu_check_block(vcpu) < 0)
2282 			break;
2283 
2284 		waited = true;
2285 		schedule();
2286 	}
2287 
2288 	finish_swait(&vcpu->wq, &wait);
2289 	cur = ktime_get();
2290 
2291 	kvm_arch_vcpu_unblocking(vcpu);
2292 out:
2293 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2294 
2295 	if (!vcpu_valid_wakeup(vcpu))
2296 		shrink_halt_poll_ns(vcpu);
2297 	else if (halt_poll_ns) {
2298 		if (block_ns <= vcpu->halt_poll_ns)
2299 			;
2300 		/* we had a long block, shrink polling */
2301 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2302 			shrink_halt_poll_ns(vcpu);
2303 		/* we had a short halt and our poll time is too small */
2304 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2305 			block_ns < halt_poll_ns)
2306 			grow_halt_poll_ns(vcpu);
2307 	} else
2308 		vcpu->halt_poll_ns = 0;
2309 
2310 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2311 	kvm_arch_vcpu_block_finish(vcpu);
2312 }
2313 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2314 
2315 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2316 {
2317 	struct swait_queue_head *wqp;
2318 
2319 	wqp = kvm_arch_vcpu_wq(vcpu);
2320 	if (swq_has_sleeper(wqp)) {
2321 		swake_up_one(wqp);
2322 		++vcpu->stat.halt_wakeup;
2323 		return true;
2324 	}
2325 
2326 	return false;
2327 }
2328 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2329 
2330 #ifndef CONFIG_S390
2331 /*
2332  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2333  */
2334 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2335 {
2336 	int me;
2337 	int cpu = vcpu->cpu;
2338 
2339 	if (kvm_vcpu_wake_up(vcpu))
2340 		return;
2341 
2342 	me = get_cpu();
2343 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2344 		if (kvm_arch_vcpu_should_kick(vcpu))
2345 			smp_send_reschedule(cpu);
2346 	put_cpu();
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2349 #endif /* !CONFIG_S390 */
2350 
2351 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2352 {
2353 	struct pid *pid;
2354 	struct task_struct *task = NULL;
2355 	int ret = 0;
2356 
2357 	rcu_read_lock();
2358 	pid = rcu_dereference(target->pid);
2359 	if (pid)
2360 		task = get_pid_task(pid, PIDTYPE_PID);
2361 	rcu_read_unlock();
2362 	if (!task)
2363 		return ret;
2364 	ret = yield_to(task, 1);
2365 	put_task_struct(task);
2366 
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2370 
2371 /*
2372  * Helper that checks whether a VCPU is eligible for directed yield.
2373  * Most eligible candidate to yield is decided by following heuristics:
2374  *
2375  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2376  *  (preempted lock holder), indicated by @in_spin_loop.
2377  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2378  *
2379  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2380  *  chance last time (mostly it has become eligible now since we have probably
2381  *  yielded to lockholder in last iteration. This is done by toggling
2382  *  @dy_eligible each time a VCPU checked for eligibility.)
2383  *
2384  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2385  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2386  *  burning. Giving priority for a potential lock-holder increases lock
2387  *  progress.
2388  *
2389  *  Since algorithm is based on heuristics, accessing another VCPU data without
2390  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2391  *  and continue with next VCPU and so on.
2392  */
2393 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2394 {
2395 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2396 	bool eligible;
2397 
2398 	eligible = !vcpu->spin_loop.in_spin_loop ||
2399 		    vcpu->spin_loop.dy_eligible;
2400 
2401 	if (vcpu->spin_loop.in_spin_loop)
2402 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2403 
2404 	return eligible;
2405 #else
2406 	return true;
2407 #endif
2408 }
2409 
2410 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2411 {
2412 	struct kvm *kvm = me->kvm;
2413 	struct kvm_vcpu *vcpu;
2414 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2415 	int yielded = 0;
2416 	int try = 3;
2417 	int pass;
2418 	int i;
2419 
2420 	kvm_vcpu_set_in_spin_loop(me, true);
2421 	/*
2422 	 * We boost the priority of a VCPU that is runnable but not
2423 	 * currently running, because it got preempted by something
2424 	 * else and called schedule in __vcpu_run.  Hopefully that
2425 	 * VCPU is holding the lock that we need and will release it.
2426 	 * We approximate round-robin by starting at the last boosted VCPU.
2427 	 */
2428 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2429 		kvm_for_each_vcpu(i, vcpu, kvm) {
2430 			if (!pass && i <= last_boosted_vcpu) {
2431 				i = last_boosted_vcpu;
2432 				continue;
2433 			} else if (pass && i > last_boosted_vcpu)
2434 				break;
2435 			if (!READ_ONCE(vcpu->preempted))
2436 				continue;
2437 			if (vcpu == me)
2438 				continue;
2439 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2440 				continue;
2441 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2442 				continue;
2443 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2444 				continue;
2445 
2446 			yielded = kvm_vcpu_yield_to(vcpu);
2447 			if (yielded > 0) {
2448 				kvm->last_boosted_vcpu = i;
2449 				break;
2450 			} else if (yielded < 0) {
2451 				try--;
2452 				if (!try)
2453 					break;
2454 			}
2455 		}
2456 	}
2457 	kvm_vcpu_set_in_spin_loop(me, false);
2458 
2459 	/* Ensure vcpu is not eligible during next spinloop */
2460 	kvm_vcpu_set_dy_eligible(me, false);
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2463 
2464 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2465 {
2466 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2467 	struct page *page;
2468 
2469 	if (vmf->pgoff == 0)
2470 		page = virt_to_page(vcpu->run);
2471 #ifdef CONFIG_X86
2472 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2473 		page = virt_to_page(vcpu->arch.pio_data);
2474 #endif
2475 #ifdef CONFIG_KVM_MMIO
2476 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2477 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2478 #endif
2479 	else
2480 		return kvm_arch_vcpu_fault(vcpu, vmf);
2481 	get_page(page);
2482 	vmf->page = page;
2483 	return 0;
2484 }
2485 
2486 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2487 	.fault = kvm_vcpu_fault,
2488 };
2489 
2490 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2491 {
2492 	vma->vm_ops = &kvm_vcpu_vm_ops;
2493 	return 0;
2494 }
2495 
2496 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2497 {
2498 	struct kvm_vcpu *vcpu = filp->private_data;
2499 
2500 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2501 	kvm_put_kvm(vcpu->kvm);
2502 	return 0;
2503 }
2504 
2505 static struct file_operations kvm_vcpu_fops = {
2506 	.release        = kvm_vcpu_release,
2507 	.unlocked_ioctl = kvm_vcpu_ioctl,
2508 	.mmap           = kvm_vcpu_mmap,
2509 	.llseek		= noop_llseek,
2510 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2511 };
2512 
2513 /*
2514  * Allocates an inode for the vcpu.
2515  */
2516 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2517 {
2518 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2519 
2520 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2521 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2522 }
2523 
2524 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2525 {
2526 	char dir_name[ITOA_MAX_LEN * 2];
2527 	int ret;
2528 
2529 	if (!kvm_arch_has_vcpu_debugfs())
2530 		return 0;
2531 
2532 	if (!debugfs_initialized())
2533 		return 0;
2534 
2535 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2536 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2537 								vcpu->kvm->debugfs_dentry);
2538 	if (!vcpu->debugfs_dentry)
2539 		return -ENOMEM;
2540 
2541 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2542 	if (ret < 0) {
2543 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2544 		return ret;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 /*
2551  * Creates some virtual cpus.  Good luck creating more than one.
2552  */
2553 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2554 {
2555 	int r;
2556 	struct kvm_vcpu *vcpu;
2557 
2558 	if (id >= KVM_MAX_VCPU_ID)
2559 		return -EINVAL;
2560 
2561 	mutex_lock(&kvm->lock);
2562 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2563 		mutex_unlock(&kvm->lock);
2564 		return -EINVAL;
2565 	}
2566 
2567 	kvm->created_vcpus++;
2568 	mutex_unlock(&kvm->lock);
2569 
2570 	vcpu = kvm_arch_vcpu_create(kvm, id);
2571 	if (IS_ERR(vcpu)) {
2572 		r = PTR_ERR(vcpu);
2573 		goto vcpu_decrement;
2574 	}
2575 
2576 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2577 
2578 	r = kvm_arch_vcpu_setup(vcpu);
2579 	if (r)
2580 		goto vcpu_destroy;
2581 
2582 	r = kvm_create_vcpu_debugfs(vcpu);
2583 	if (r)
2584 		goto vcpu_destroy;
2585 
2586 	mutex_lock(&kvm->lock);
2587 	if (kvm_get_vcpu_by_id(kvm, id)) {
2588 		r = -EEXIST;
2589 		goto unlock_vcpu_destroy;
2590 	}
2591 
2592 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2593 
2594 	/* Now it's all set up, let userspace reach it */
2595 	kvm_get_kvm(kvm);
2596 	r = create_vcpu_fd(vcpu);
2597 	if (r < 0) {
2598 		kvm_put_kvm(kvm);
2599 		goto unlock_vcpu_destroy;
2600 	}
2601 
2602 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2603 
2604 	/*
2605 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2606 	 * before kvm->online_vcpu's incremented value.
2607 	 */
2608 	smp_wmb();
2609 	atomic_inc(&kvm->online_vcpus);
2610 
2611 	mutex_unlock(&kvm->lock);
2612 	kvm_arch_vcpu_postcreate(vcpu);
2613 	return r;
2614 
2615 unlock_vcpu_destroy:
2616 	mutex_unlock(&kvm->lock);
2617 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2618 vcpu_destroy:
2619 	kvm_arch_vcpu_destroy(vcpu);
2620 vcpu_decrement:
2621 	mutex_lock(&kvm->lock);
2622 	kvm->created_vcpus--;
2623 	mutex_unlock(&kvm->lock);
2624 	return r;
2625 }
2626 
2627 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2628 {
2629 	if (sigset) {
2630 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2631 		vcpu->sigset_active = 1;
2632 		vcpu->sigset = *sigset;
2633 	} else
2634 		vcpu->sigset_active = 0;
2635 	return 0;
2636 }
2637 
2638 static long kvm_vcpu_ioctl(struct file *filp,
2639 			   unsigned int ioctl, unsigned long arg)
2640 {
2641 	struct kvm_vcpu *vcpu = filp->private_data;
2642 	void __user *argp = (void __user *)arg;
2643 	int r;
2644 	struct kvm_fpu *fpu = NULL;
2645 	struct kvm_sregs *kvm_sregs = NULL;
2646 
2647 	if (vcpu->kvm->mm != current->mm)
2648 		return -EIO;
2649 
2650 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2651 		return -EINVAL;
2652 
2653 	/*
2654 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2655 	 * execution; mutex_lock() would break them.
2656 	 */
2657 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2658 	if (r != -ENOIOCTLCMD)
2659 		return r;
2660 
2661 	if (mutex_lock_killable(&vcpu->mutex))
2662 		return -EINTR;
2663 	switch (ioctl) {
2664 	case KVM_RUN: {
2665 		struct pid *oldpid;
2666 		r = -EINVAL;
2667 		if (arg)
2668 			goto out;
2669 		oldpid = rcu_access_pointer(vcpu->pid);
2670 		if (unlikely(oldpid != task_pid(current))) {
2671 			/* The thread running this VCPU changed. */
2672 			struct pid *newpid;
2673 
2674 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2675 			if (r)
2676 				break;
2677 
2678 			newpid = get_task_pid(current, PIDTYPE_PID);
2679 			rcu_assign_pointer(vcpu->pid, newpid);
2680 			if (oldpid)
2681 				synchronize_rcu();
2682 			put_pid(oldpid);
2683 		}
2684 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2685 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2686 		break;
2687 	}
2688 	case KVM_GET_REGS: {
2689 		struct kvm_regs *kvm_regs;
2690 
2691 		r = -ENOMEM;
2692 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2693 		if (!kvm_regs)
2694 			goto out;
2695 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2696 		if (r)
2697 			goto out_free1;
2698 		r = -EFAULT;
2699 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2700 			goto out_free1;
2701 		r = 0;
2702 out_free1:
2703 		kfree(kvm_regs);
2704 		break;
2705 	}
2706 	case KVM_SET_REGS: {
2707 		struct kvm_regs *kvm_regs;
2708 
2709 		r = -ENOMEM;
2710 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2711 		if (IS_ERR(kvm_regs)) {
2712 			r = PTR_ERR(kvm_regs);
2713 			goto out;
2714 		}
2715 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2716 		kfree(kvm_regs);
2717 		break;
2718 	}
2719 	case KVM_GET_SREGS: {
2720 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2721 				    GFP_KERNEL_ACCOUNT);
2722 		r = -ENOMEM;
2723 		if (!kvm_sregs)
2724 			goto out;
2725 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2726 		if (r)
2727 			goto out;
2728 		r = -EFAULT;
2729 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2730 			goto out;
2731 		r = 0;
2732 		break;
2733 	}
2734 	case KVM_SET_SREGS: {
2735 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2736 		if (IS_ERR(kvm_sregs)) {
2737 			r = PTR_ERR(kvm_sregs);
2738 			kvm_sregs = NULL;
2739 			goto out;
2740 		}
2741 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2742 		break;
2743 	}
2744 	case KVM_GET_MP_STATE: {
2745 		struct kvm_mp_state mp_state;
2746 
2747 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2748 		if (r)
2749 			goto out;
2750 		r = -EFAULT;
2751 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2752 			goto out;
2753 		r = 0;
2754 		break;
2755 	}
2756 	case KVM_SET_MP_STATE: {
2757 		struct kvm_mp_state mp_state;
2758 
2759 		r = -EFAULT;
2760 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2761 			goto out;
2762 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2763 		break;
2764 	}
2765 	case KVM_TRANSLATE: {
2766 		struct kvm_translation tr;
2767 
2768 		r = -EFAULT;
2769 		if (copy_from_user(&tr, argp, sizeof(tr)))
2770 			goto out;
2771 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2772 		if (r)
2773 			goto out;
2774 		r = -EFAULT;
2775 		if (copy_to_user(argp, &tr, sizeof(tr)))
2776 			goto out;
2777 		r = 0;
2778 		break;
2779 	}
2780 	case KVM_SET_GUEST_DEBUG: {
2781 		struct kvm_guest_debug dbg;
2782 
2783 		r = -EFAULT;
2784 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2785 			goto out;
2786 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2787 		break;
2788 	}
2789 	case KVM_SET_SIGNAL_MASK: {
2790 		struct kvm_signal_mask __user *sigmask_arg = argp;
2791 		struct kvm_signal_mask kvm_sigmask;
2792 		sigset_t sigset, *p;
2793 
2794 		p = NULL;
2795 		if (argp) {
2796 			r = -EFAULT;
2797 			if (copy_from_user(&kvm_sigmask, argp,
2798 					   sizeof(kvm_sigmask)))
2799 				goto out;
2800 			r = -EINVAL;
2801 			if (kvm_sigmask.len != sizeof(sigset))
2802 				goto out;
2803 			r = -EFAULT;
2804 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2805 					   sizeof(sigset)))
2806 				goto out;
2807 			p = &sigset;
2808 		}
2809 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2810 		break;
2811 	}
2812 	case KVM_GET_FPU: {
2813 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2814 		r = -ENOMEM;
2815 		if (!fpu)
2816 			goto out;
2817 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2818 		if (r)
2819 			goto out;
2820 		r = -EFAULT;
2821 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2822 			goto out;
2823 		r = 0;
2824 		break;
2825 	}
2826 	case KVM_SET_FPU: {
2827 		fpu = memdup_user(argp, sizeof(*fpu));
2828 		if (IS_ERR(fpu)) {
2829 			r = PTR_ERR(fpu);
2830 			fpu = NULL;
2831 			goto out;
2832 		}
2833 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2834 		break;
2835 	}
2836 	default:
2837 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2838 	}
2839 out:
2840 	mutex_unlock(&vcpu->mutex);
2841 	kfree(fpu);
2842 	kfree(kvm_sregs);
2843 	return r;
2844 }
2845 
2846 #ifdef CONFIG_KVM_COMPAT
2847 static long kvm_vcpu_compat_ioctl(struct file *filp,
2848 				  unsigned int ioctl, unsigned long arg)
2849 {
2850 	struct kvm_vcpu *vcpu = filp->private_data;
2851 	void __user *argp = compat_ptr(arg);
2852 	int r;
2853 
2854 	if (vcpu->kvm->mm != current->mm)
2855 		return -EIO;
2856 
2857 	switch (ioctl) {
2858 	case KVM_SET_SIGNAL_MASK: {
2859 		struct kvm_signal_mask __user *sigmask_arg = argp;
2860 		struct kvm_signal_mask kvm_sigmask;
2861 		sigset_t sigset;
2862 
2863 		if (argp) {
2864 			r = -EFAULT;
2865 			if (copy_from_user(&kvm_sigmask, argp,
2866 					   sizeof(kvm_sigmask)))
2867 				goto out;
2868 			r = -EINVAL;
2869 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2870 				goto out;
2871 			r = -EFAULT;
2872 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2873 				goto out;
2874 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2875 		} else
2876 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2877 		break;
2878 	}
2879 	default:
2880 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2881 	}
2882 
2883 out:
2884 	return r;
2885 }
2886 #endif
2887 
2888 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2889 				 int (*accessor)(struct kvm_device *dev,
2890 						 struct kvm_device_attr *attr),
2891 				 unsigned long arg)
2892 {
2893 	struct kvm_device_attr attr;
2894 
2895 	if (!accessor)
2896 		return -EPERM;
2897 
2898 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2899 		return -EFAULT;
2900 
2901 	return accessor(dev, &attr);
2902 }
2903 
2904 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2905 			     unsigned long arg)
2906 {
2907 	struct kvm_device *dev = filp->private_data;
2908 
2909 	if (dev->kvm->mm != current->mm)
2910 		return -EIO;
2911 
2912 	switch (ioctl) {
2913 	case KVM_SET_DEVICE_ATTR:
2914 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2915 	case KVM_GET_DEVICE_ATTR:
2916 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2917 	case KVM_HAS_DEVICE_ATTR:
2918 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2919 	default:
2920 		if (dev->ops->ioctl)
2921 			return dev->ops->ioctl(dev, ioctl, arg);
2922 
2923 		return -ENOTTY;
2924 	}
2925 }
2926 
2927 static int kvm_device_release(struct inode *inode, struct file *filp)
2928 {
2929 	struct kvm_device *dev = filp->private_data;
2930 	struct kvm *kvm = dev->kvm;
2931 
2932 	kvm_put_kvm(kvm);
2933 	return 0;
2934 }
2935 
2936 static const struct file_operations kvm_device_fops = {
2937 	.unlocked_ioctl = kvm_device_ioctl,
2938 	.release = kvm_device_release,
2939 	KVM_COMPAT(kvm_device_ioctl),
2940 };
2941 
2942 struct kvm_device *kvm_device_from_filp(struct file *filp)
2943 {
2944 	if (filp->f_op != &kvm_device_fops)
2945 		return NULL;
2946 
2947 	return filp->private_data;
2948 }
2949 
2950 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2951 #ifdef CONFIG_KVM_MPIC
2952 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2953 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2954 #endif
2955 };
2956 
2957 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2958 {
2959 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2960 		return -ENOSPC;
2961 
2962 	if (kvm_device_ops_table[type] != NULL)
2963 		return -EEXIST;
2964 
2965 	kvm_device_ops_table[type] = ops;
2966 	return 0;
2967 }
2968 
2969 void kvm_unregister_device_ops(u32 type)
2970 {
2971 	if (kvm_device_ops_table[type] != NULL)
2972 		kvm_device_ops_table[type] = NULL;
2973 }
2974 
2975 static int kvm_ioctl_create_device(struct kvm *kvm,
2976 				   struct kvm_create_device *cd)
2977 {
2978 	struct kvm_device_ops *ops = NULL;
2979 	struct kvm_device *dev;
2980 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2981 	int type;
2982 	int ret;
2983 
2984 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2985 		return -ENODEV;
2986 
2987 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2988 	ops = kvm_device_ops_table[type];
2989 	if (ops == NULL)
2990 		return -ENODEV;
2991 
2992 	if (test)
2993 		return 0;
2994 
2995 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
2996 	if (!dev)
2997 		return -ENOMEM;
2998 
2999 	dev->ops = ops;
3000 	dev->kvm = kvm;
3001 
3002 	mutex_lock(&kvm->lock);
3003 	ret = ops->create(dev, type);
3004 	if (ret < 0) {
3005 		mutex_unlock(&kvm->lock);
3006 		kfree(dev);
3007 		return ret;
3008 	}
3009 	list_add(&dev->vm_node, &kvm->devices);
3010 	mutex_unlock(&kvm->lock);
3011 
3012 	if (ops->init)
3013 		ops->init(dev);
3014 
3015 	kvm_get_kvm(kvm);
3016 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3017 	if (ret < 0) {
3018 		kvm_put_kvm(kvm);
3019 		mutex_lock(&kvm->lock);
3020 		list_del(&dev->vm_node);
3021 		mutex_unlock(&kvm->lock);
3022 		ops->destroy(dev);
3023 		return ret;
3024 	}
3025 
3026 	cd->fd = ret;
3027 	return 0;
3028 }
3029 
3030 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3031 {
3032 	switch (arg) {
3033 	case KVM_CAP_USER_MEMORY:
3034 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3035 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3036 	case KVM_CAP_INTERNAL_ERROR_DATA:
3037 #ifdef CONFIG_HAVE_KVM_MSI
3038 	case KVM_CAP_SIGNAL_MSI:
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQFD
3041 	case KVM_CAP_IRQFD:
3042 	case KVM_CAP_IRQFD_RESAMPLE:
3043 #endif
3044 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3045 	case KVM_CAP_CHECK_EXTENSION_VM:
3046 	case KVM_CAP_ENABLE_CAP_VM:
3047 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3048 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3049 #endif
3050 		return 1;
3051 #ifdef CONFIG_KVM_MMIO
3052 	case KVM_CAP_COALESCED_MMIO:
3053 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3054 	case KVM_CAP_COALESCED_PIO:
3055 		return 1;
3056 #endif
3057 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3058 	case KVM_CAP_IRQ_ROUTING:
3059 		return KVM_MAX_IRQ_ROUTES;
3060 #endif
3061 #if KVM_ADDRESS_SPACE_NUM > 1
3062 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3063 		return KVM_ADDRESS_SPACE_NUM;
3064 #endif
3065 	case KVM_CAP_MAX_VCPU_ID:
3066 		return KVM_MAX_VCPU_ID;
3067 	default:
3068 		break;
3069 	}
3070 	return kvm_vm_ioctl_check_extension(kvm, arg);
3071 }
3072 
3073 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3074 						  struct kvm_enable_cap *cap)
3075 {
3076 	return -EINVAL;
3077 }
3078 
3079 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3080 					   struct kvm_enable_cap *cap)
3081 {
3082 	switch (cap->cap) {
3083 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3084 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3085 		if (cap->flags || (cap->args[0] & ~1))
3086 			return -EINVAL;
3087 		kvm->manual_dirty_log_protect = cap->args[0];
3088 		return 0;
3089 #endif
3090 	default:
3091 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3092 	}
3093 }
3094 
3095 static long kvm_vm_ioctl(struct file *filp,
3096 			   unsigned int ioctl, unsigned long arg)
3097 {
3098 	struct kvm *kvm = filp->private_data;
3099 	void __user *argp = (void __user *)arg;
3100 	int r;
3101 
3102 	if (kvm->mm != current->mm)
3103 		return -EIO;
3104 	switch (ioctl) {
3105 	case KVM_CREATE_VCPU:
3106 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3107 		break;
3108 	case KVM_ENABLE_CAP: {
3109 		struct kvm_enable_cap cap;
3110 
3111 		r = -EFAULT;
3112 		if (copy_from_user(&cap, argp, sizeof(cap)))
3113 			goto out;
3114 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3115 		break;
3116 	}
3117 	case KVM_SET_USER_MEMORY_REGION: {
3118 		struct kvm_userspace_memory_region kvm_userspace_mem;
3119 
3120 		r = -EFAULT;
3121 		if (copy_from_user(&kvm_userspace_mem, argp,
3122 						sizeof(kvm_userspace_mem)))
3123 			goto out;
3124 
3125 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3126 		break;
3127 	}
3128 	case KVM_GET_DIRTY_LOG: {
3129 		struct kvm_dirty_log log;
3130 
3131 		r = -EFAULT;
3132 		if (copy_from_user(&log, argp, sizeof(log)))
3133 			goto out;
3134 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3135 		break;
3136 	}
3137 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3138 	case KVM_CLEAR_DIRTY_LOG: {
3139 		struct kvm_clear_dirty_log log;
3140 
3141 		r = -EFAULT;
3142 		if (copy_from_user(&log, argp, sizeof(log)))
3143 			goto out;
3144 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3145 		break;
3146 	}
3147 #endif
3148 #ifdef CONFIG_KVM_MMIO
3149 	case KVM_REGISTER_COALESCED_MMIO: {
3150 		struct kvm_coalesced_mmio_zone zone;
3151 
3152 		r = -EFAULT;
3153 		if (copy_from_user(&zone, argp, sizeof(zone)))
3154 			goto out;
3155 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3156 		break;
3157 	}
3158 	case KVM_UNREGISTER_COALESCED_MMIO: {
3159 		struct kvm_coalesced_mmio_zone zone;
3160 
3161 		r = -EFAULT;
3162 		if (copy_from_user(&zone, argp, sizeof(zone)))
3163 			goto out;
3164 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3165 		break;
3166 	}
3167 #endif
3168 	case KVM_IRQFD: {
3169 		struct kvm_irqfd data;
3170 
3171 		r = -EFAULT;
3172 		if (copy_from_user(&data, argp, sizeof(data)))
3173 			goto out;
3174 		r = kvm_irqfd(kvm, &data);
3175 		break;
3176 	}
3177 	case KVM_IOEVENTFD: {
3178 		struct kvm_ioeventfd data;
3179 
3180 		r = -EFAULT;
3181 		if (copy_from_user(&data, argp, sizeof(data)))
3182 			goto out;
3183 		r = kvm_ioeventfd(kvm, &data);
3184 		break;
3185 	}
3186 #ifdef CONFIG_HAVE_KVM_MSI
3187 	case KVM_SIGNAL_MSI: {
3188 		struct kvm_msi msi;
3189 
3190 		r = -EFAULT;
3191 		if (copy_from_user(&msi, argp, sizeof(msi)))
3192 			goto out;
3193 		r = kvm_send_userspace_msi(kvm, &msi);
3194 		break;
3195 	}
3196 #endif
3197 #ifdef __KVM_HAVE_IRQ_LINE
3198 	case KVM_IRQ_LINE_STATUS:
3199 	case KVM_IRQ_LINE: {
3200 		struct kvm_irq_level irq_event;
3201 
3202 		r = -EFAULT;
3203 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3204 			goto out;
3205 
3206 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3207 					ioctl == KVM_IRQ_LINE_STATUS);
3208 		if (r)
3209 			goto out;
3210 
3211 		r = -EFAULT;
3212 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3213 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3214 				goto out;
3215 		}
3216 
3217 		r = 0;
3218 		break;
3219 	}
3220 #endif
3221 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3222 	case KVM_SET_GSI_ROUTING: {
3223 		struct kvm_irq_routing routing;
3224 		struct kvm_irq_routing __user *urouting;
3225 		struct kvm_irq_routing_entry *entries = NULL;
3226 
3227 		r = -EFAULT;
3228 		if (copy_from_user(&routing, argp, sizeof(routing)))
3229 			goto out;
3230 		r = -EINVAL;
3231 		if (!kvm_arch_can_set_irq_routing(kvm))
3232 			goto out;
3233 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3234 			goto out;
3235 		if (routing.flags)
3236 			goto out;
3237 		if (routing.nr) {
3238 			r = -ENOMEM;
3239 			entries = vmalloc(array_size(sizeof(*entries),
3240 						     routing.nr));
3241 			if (!entries)
3242 				goto out;
3243 			r = -EFAULT;
3244 			urouting = argp;
3245 			if (copy_from_user(entries, urouting->entries,
3246 					   routing.nr * sizeof(*entries)))
3247 				goto out_free_irq_routing;
3248 		}
3249 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3250 					routing.flags);
3251 out_free_irq_routing:
3252 		vfree(entries);
3253 		break;
3254 	}
3255 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3256 	case KVM_CREATE_DEVICE: {
3257 		struct kvm_create_device cd;
3258 
3259 		r = -EFAULT;
3260 		if (copy_from_user(&cd, argp, sizeof(cd)))
3261 			goto out;
3262 
3263 		r = kvm_ioctl_create_device(kvm, &cd);
3264 		if (r)
3265 			goto out;
3266 
3267 		r = -EFAULT;
3268 		if (copy_to_user(argp, &cd, sizeof(cd)))
3269 			goto out;
3270 
3271 		r = 0;
3272 		break;
3273 	}
3274 	case KVM_CHECK_EXTENSION:
3275 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3276 		break;
3277 	default:
3278 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3279 	}
3280 out:
3281 	return r;
3282 }
3283 
3284 #ifdef CONFIG_KVM_COMPAT
3285 struct compat_kvm_dirty_log {
3286 	__u32 slot;
3287 	__u32 padding1;
3288 	union {
3289 		compat_uptr_t dirty_bitmap; /* one bit per page */
3290 		__u64 padding2;
3291 	};
3292 };
3293 
3294 static long kvm_vm_compat_ioctl(struct file *filp,
3295 			   unsigned int ioctl, unsigned long arg)
3296 {
3297 	struct kvm *kvm = filp->private_data;
3298 	int r;
3299 
3300 	if (kvm->mm != current->mm)
3301 		return -EIO;
3302 	switch (ioctl) {
3303 	case KVM_GET_DIRTY_LOG: {
3304 		struct compat_kvm_dirty_log compat_log;
3305 		struct kvm_dirty_log log;
3306 
3307 		if (copy_from_user(&compat_log, (void __user *)arg,
3308 				   sizeof(compat_log)))
3309 			return -EFAULT;
3310 		log.slot	 = compat_log.slot;
3311 		log.padding1	 = compat_log.padding1;
3312 		log.padding2	 = compat_log.padding2;
3313 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3314 
3315 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3316 		break;
3317 	}
3318 	default:
3319 		r = kvm_vm_ioctl(filp, ioctl, arg);
3320 	}
3321 	return r;
3322 }
3323 #endif
3324 
3325 static struct file_operations kvm_vm_fops = {
3326 	.release        = kvm_vm_release,
3327 	.unlocked_ioctl = kvm_vm_ioctl,
3328 	.llseek		= noop_llseek,
3329 	KVM_COMPAT(kvm_vm_compat_ioctl),
3330 };
3331 
3332 static int kvm_dev_ioctl_create_vm(unsigned long type)
3333 {
3334 	int r;
3335 	struct kvm *kvm;
3336 	struct file *file;
3337 
3338 	kvm = kvm_create_vm(type);
3339 	if (IS_ERR(kvm))
3340 		return PTR_ERR(kvm);
3341 #ifdef CONFIG_KVM_MMIO
3342 	r = kvm_coalesced_mmio_init(kvm);
3343 	if (r < 0)
3344 		goto put_kvm;
3345 #endif
3346 	r = get_unused_fd_flags(O_CLOEXEC);
3347 	if (r < 0)
3348 		goto put_kvm;
3349 
3350 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3351 	if (IS_ERR(file)) {
3352 		put_unused_fd(r);
3353 		r = PTR_ERR(file);
3354 		goto put_kvm;
3355 	}
3356 
3357 	/*
3358 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3359 	 * already set, with ->release() being kvm_vm_release().  In error
3360 	 * cases it will be called by the final fput(file) and will take
3361 	 * care of doing kvm_put_kvm(kvm).
3362 	 */
3363 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3364 		put_unused_fd(r);
3365 		fput(file);
3366 		return -ENOMEM;
3367 	}
3368 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3369 
3370 	fd_install(r, file);
3371 	return r;
3372 
3373 put_kvm:
3374 	kvm_put_kvm(kvm);
3375 	return r;
3376 }
3377 
3378 static long kvm_dev_ioctl(struct file *filp,
3379 			  unsigned int ioctl, unsigned long arg)
3380 {
3381 	long r = -EINVAL;
3382 
3383 	switch (ioctl) {
3384 	case KVM_GET_API_VERSION:
3385 		if (arg)
3386 			goto out;
3387 		r = KVM_API_VERSION;
3388 		break;
3389 	case KVM_CREATE_VM:
3390 		r = kvm_dev_ioctl_create_vm(arg);
3391 		break;
3392 	case KVM_CHECK_EXTENSION:
3393 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3394 		break;
3395 	case KVM_GET_VCPU_MMAP_SIZE:
3396 		if (arg)
3397 			goto out;
3398 		r = PAGE_SIZE;     /* struct kvm_run */
3399 #ifdef CONFIG_X86
3400 		r += PAGE_SIZE;    /* pio data page */
3401 #endif
3402 #ifdef CONFIG_KVM_MMIO
3403 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3404 #endif
3405 		break;
3406 	case KVM_TRACE_ENABLE:
3407 	case KVM_TRACE_PAUSE:
3408 	case KVM_TRACE_DISABLE:
3409 		r = -EOPNOTSUPP;
3410 		break;
3411 	default:
3412 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3413 	}
3414 out:
3415 	return r;
3416 }
3417 
3418 static struct file_operations kvm_chardev_ops = {
3419 	.unlocked_ioctl = kvm_dev_ioctl,
3420 	.llseek		= noop_llseek,
3421 	KVM_COMPAT(kvm_dev_ioctl),
3422 };
3423 
3424 static struct miscdevice kvm_dev = {
3425 	KVM_MINOR,
3426 	"kvm",
3427 	&kvm_chardev_ops,
3428 };
3429 
3430 static void hardware_enable_nolock(void *junk)
3431 {
3432 	int cpu = raw_smp_processor_id();
3433 	int r;
3434 
3435 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3436 		return;
3437 
3438 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3439 
3440 	r = kvm_arch_hardware_enable();
3441 
3442 	if (r) {
3443 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3444 		atomic_inc(&hardware_enable_failed);
3445 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3446 	}
3447 }
3448 
3449 static int kvm_starting_cpu(unsigned int cpu)
3450 {
3451 	raw_spin_lock(&kvm_count_lock);
3452 	if (kvm_usage_count)
3453 		hardware_enable_nolock(NULL);
3454 	raw_spin_unlock(&kvm_count_lock);
3455 	return 0;
3456 }
3457 
3458 static void hardware_disable_nolock(void *junk)
3459 {
3460 	int cpu = raw_smp_processor_id();
3461 
3462 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3463 		return;
3464 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3465 	kvm_arch_hardware_disable();
3466 }
3467 
3468 static int kvm_dying_cpu(unsigned int cpu)
3469 {
3470 	raw_spin_lock(&kvm_count_lock);
3471 	if (kvm_usage_count)
3472 		hardware_disable_nolock(NULL);
3473 	raw_spin_unlock(&kvm_count_lock);
3474 	return 0;
3475 }
3476 
3477 static void hardware_disable_all_nolock(void)
3478 {
3479 	BUG_ON(!kvm_usage_count);
3480 
3481 	kvm_usage_count--;
3482 	if (!kvm_usage_count)
3483 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3484 }
3485 
3486 static void hardware_disable_all(void)
3487 {
3488 	raw_spin_lock(&kvm_count_lock);
3489 	hardware_disable_all_nolock();
3490 	raw_spin_unlock(&kvm_count_lock);
3491 }
3492 
3493 static int hardware_enable_all(void)
3494 {
3495 	int r = 0;
3496 
3497 	raw_spin_lock(&kvm_count_lock);
3498 
3499 	kvm_usage_count++;
3500 	if (kvm_usage_count == 1) {
3501 		atomic_set(&hardware_enable_failed, 0);
3502 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3503 
3504 		if (atomic_read(&hardware_enable_failed)) {
3505 			hardware_disable_all_nolock();
3506 			r = -EBUSY;
3507 		}
3508 	}
3509 
3510 	raw_spin_unlock(&kvm_count_lock);
3511 
3512 	return r;
3513 }
3514 
3515 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3516 		      void *v)
3517 {
3518 	/*
3519 	 * Some (well, at least mine) BIOSes hang on reboot if
3520 	 * in vmx root mode.
3521 	 *
3522 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3523 	 */
3524 	pr_info("kvm: exiting hardware virtualization\n");
3525 	kvm_rebooting = true;
3526 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3527 	return NOTIFY_OK;
3528 }
3529 
3530 static struct notifier_block kvm_reboot_notifier = {
3531 	.notifier_call = kvm_reboot,
3532 	.priority = 0,
3533 };
3534 
3535 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3536 {
3537 	int i;
3538 
3539 	for (i = 0; i < bus->dev_count; i++) {
3540 		struct kvm_io_device *pos = bus->range[i].dev;
3541 
3542 		kvm_iodevice_destructor(pos);
3543 	}
3544 	kfree(bus);
3545 }
3546 
3547 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3548 				 const struct kvm_io_range *r2)
3549 {
3550 	gpa_t addr1 = r1->addr;
3551 	gpa_t addr2 = r2->addr;
3552 
3553 	if (addr1 < addr2)
3554 		return -1;
3555 
3556 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3557 	 * accept any overlapping write.  Any order is acceptable for
3558 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3559 	 * we process all of them.
3560 	 */
3561 	if (r2->len) {
3562 		addr1 += r1->len;
3563 		addr2 += r2->len;
3564 	}
3565 
3566 	if (addr1 > addr2)
3567 		return 1;
3568 
3569 	return 0;
3570 }
3571 
3572 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3573 {
3574 	return kvm_io_bus_cmp(p1, p2);
3575 }
3576 
3577 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3578 			     gpa_t addr, int len)
3579 {
3580 	struct kvm_io_range *range, key;
3581 	int off;
3582 
3583 	key = (struct kvm_io_range) {
3584 		.addr = addr,
3585 		.len = len,
3586 	};
3587 
3588 	range = bsearch(&key, bus->range, bus->dev_count,
3589 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3590 	if (range == NULL)
3591 		return -ENOENT;
3592 
3593 	off = range - bus->range;
3594 
3595 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3596 		off--;
3597 
3598 	return off;
3599 }
3600 
3601 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3602 			      struct kvm_io_range *range, const void *val)
3603 {
3604 	int idx;
3605 
3606 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3607 	if (idx < 0)
3608 		return -EOPNOTSUPP;
3609 
3610 	while (idx < bus->dev_count &&
3611 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3612 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3613 					range->len, val))
3614 			return idx;
3615 		idx++;
3616 	}
3617 
3618 	return -EOPNOTSUPP;
3619 }
3620 
3621 /* kvm_io_bus_write - called under kvm->slots_lock */
3622 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3623 		     int len, const void *val)
3624 {
3625 	struct kvm_io_bus *bus;
3626 	struct kvm_io_range range;
3627 	int r;
3628 
3629 	range = (struct kvm_io_range) {
3630 		.addr = addr,
3631 		.len = len,
3632 	};
3633 
3634 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3635 	if (!bus)
3636 		return -ENOMEM;
3637 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3638 	return r < 0 ? r : 0;
3639 }
3640 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3641 
3642 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3643 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3644 			    gpa_t addr, int len, const void *val, long cookie)
3645 {
3646 	struct kvm_io_bus *bus;
3647 	struct kvm_io_range range;
3648 
3649 	range = (struct kvm_io_range) {
3650 		.addr = addr,
3651 		.len = len,
3652 	};
3653 
3654 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3655 	if (!bus)
3656 		return -ENOMEM;
3657 
3658 	/* First try the device referenced by cookie. */
3659 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3660 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3661 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3662 					val))
3663 			return cookie;
3664 
3665 	/*
3666 	 * cookie contained garbage; fall back to search and return the
3667 	 * correct cookie value.
3668 	 */
3669 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3670 }
3671 
3672 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3673 			     struct kvm_io_range *range, void *val)
3674 {
3675 	int idx;
3676 
3677 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3678 	if (idx < 0)
3679 		return -EOPNOTSUPP;
3680 
3681 	while (idx < bus->dev_count &&
3682 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3683 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3684 				       range->len, val))
3685 			return idx;
3686 		idx++;
3687 	}
3688 
3689 	return -EOPNOTSUPP;
3690 }
3691 
3692 /* kvm_io_bus_read - called under kvm->slots_lock */
3693 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3694 		    int len, void *val)
3695 {
3696 	struct kvm_io_bus *bus;
3697 	struct kvm_io_range range;
3698 	int r;
3699 
3700 	range = (struct kvm_io_range) {
3701 		.addr = addr,
3702 		.len = len,
3703 	};
3704 
3705 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3706 	if (!bus)
3707 		return -ENOMEM;
3708 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3709 	return r < 0 ? r : 0;
3710 }
3711 
3712 /* Caller must hold slots_lock. */
3713 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3714 			    int len, struct kvm_io_device *dev)
3715 {
3716 	int i;
3717 	struct kvm_io_bus *new_bus, *bus;
3718 	struct kvm_io_range range;
3719 
3720 	bus = kvm_get_bus(kvm, bus_idx);
3721 	if (!bus)
3722 		return -ENOMEM;
3723 
3724 	/* exclude ioeventfd which is limited by maximum fd */
3725 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3726 		return -ENOSPC;
3727 
3728 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3729 			  GFP_KERNEL_ACCOUNT);
3730 	if (!new_bus)
3731 		return -ENOMEM;
3732 
3733 	range = (struct kvm_io_range) {
3734 		.addr = addr,
3735 		.len = len,
3736 		.dev = dev,
3737 	};
3738 
3739 	for (i = 0; i < bus->dev_count; i++)
3740 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3741 			break;
3742 
3743 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3744 	new_bus->dev_count++;
3745 	new_bus->range[i] = range;
3746 	memcpy(new_bus->range + i + 1, bus->range + i,
3747 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3748 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3749 	synchronize_srcu_expedited(&kvm->srcu);
3750 	kfree(bus);
3751 
3752 	return 0;
3753 }
3754 
3755 /* Caller must hold slots_lock. */
3756 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3757 			       struct kvm_io_device *dev)
3758 {
3759 	int i;
3760 	struct kvm_io_bus *new_bus, *bus;
3761 
3762 	bus = kvm_get_bus(kvm, bus_idx);
3763 	if (!bus)
3764 		return;
3765 
3766 	for (i = 0; i < bus->dev_count; i++)
3767 		if (bus->range[i].dev == dev) {
3768 			break;
3769 		}
3770 
3771 	if (i == bus->dev_count)
3772 		return;
3773 
3774 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3775 			  GFP_KERNEL_ACCOUNT);
3776 	if (!new_bus)  {
3777 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3778 		goto broken;
3779 	}
3780 
3781 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3782 	new_bus->dev_count--;
3783 	memcpy(new_bus->range + i, bus->range + i + 1,
3784 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3785 
3786 broken:
3787 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3788 	synchronize_srcu_expedited(&kvm->srcu);
3789 	kfree(bus);
3790 	return;
3791 }
3792 
3793 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3794 					 gpa_t addr)
3795 {
3796 	struct kvm_io_bus *bus;
3797 	int dev_idx, srcu_idx;
3798 	struct kvm_io_device *iodev = NULL;
3799 
3800 	srcu_idx = srcu_read_lock(&kvm->srcu);
3801 
3802 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3803 	if (!bus)
3804 		goto out_unlock;
3805 
3806 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3807 	if (dev_idx < 0)
3808 		goto out_unlock;
3809 
3810 	iodev = bus->range[dev_idx].dev;
3811 
3812 out_unlock:
3813 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3814 
3815 	return iodev;
3816 }
3817 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3818 
3819 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3820 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3821 			   const char *fmt)
3822 {
3823 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3824 					  inode->i_private;
3825 
3826 	/* The debugfs files are a reference to the kvm struct which
3827 	 * is still valid when kvm_destroy_vm is called.
3828 	 * To avoid the race between open and the removal of the debugfs
3829 	 * directory we test against the users count.
3830 	 */
3831 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3832 		return -ENOENT;
3833 
3834 	if (simple_attr_open(inode, file, get, set, fmt)) {
3835 		kvm_put_kvm(stat_data->kvm);
3836 		return -ENOMEM;
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3843 {
3844 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3845 					  inode->i_private;
3846 
3847 	simple_attr_release(inode, file);
3848 	kvm_put_kvm(stat_data->kvm);
3849 
3850 	return 0;
3851 }
3852 
3853 static int vm_stat_get_per_vm(void *data, u64 *val)
3854 {
3855 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3856 
3857 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3858 
3859 	return 0;
3860 }
3861 
3862 static int vm_stat_clear_per_vm(void *data, u64 val)
3863 {
3864 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3865 
3866 	if (val)
3867 		return -EINVAL;
3868 
3869 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3870 
3871 	return 0;
3872 }
3873 
3874 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3875 {
3876 	__simple_attr_check_format("%llu\n", 0ull);
3877 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3878 				vm_stat_clear_per_vm, "%llu\n");
3879 }
3880 
3881 static const struct file_operations vm_stat_get_per_vm_fops = {
3882 	.owner   = THIS_MODULE,
3883 	.open    = vm_stat_get_per_vm_open,
3884 	.release = kvm_debugfs_release,
3885 	.read    = simple_attr_read,
3886 	.write   = simple_attr_write,
3887 	.llseek  = no_llseek,
3888 };
3889 
3890 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3891 {
3892 	int i;
3893 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3894 	struct kvm_vcpu *vcpu;
3895 
3896 	*val = 0;
3897 
3898 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3899 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3900 
3901 	return 0;
3902 }
3903 
3904 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3905 {
3906 	int i;
3907 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3908 	struct kvm_vcpu *vcpu;
3909 
3910 	if (val)
3911 		return -EINVAL;
3912 
3913 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3914 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3915 
3916 	return 0;
3917 }
3918 
3919 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3920 {
3921 	__simple_attr_check_format("%llu\n", 0ull);
3922 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3923 				 vcpu_stat_clear_per_vm, "%llu\n");
3924 }
3925 
3926 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3927 	.owner   = THIS_MODULE,
3928 	.open    = vcpu_stat_get_per_vm_open,
3929 	.release = kvm_debugfs_release,
3930 	.read    = simple_attr_read,
3931 	.write   = simple_attr_write,
3932 	.llseek  = no_llseek,
3933 };
3934 
3935 static const struct file_operations *stat_fops_per_vm[] = {
3936 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3937 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3938 };
3939 
3940 static int vm_stat_get(void *_offset, u64 *val)
3941 {
3942 	unsigned offset = (long)_offset;
3943 	struct kvm *kvm;
3944 	struct kvm_stat_data stat_tmp = {.offset = offset};
3945 	u64 tmp_val;
3946 
3947 	*val = 0;
3948 	spin_lock(&kvm_lock);
3949 	list_for_each_entry(kvm, &vm_list, vm_list) {
3950 		stat_tmp.kvm = kvm;
3951 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3952 		*val += tmp_val;
3953 	}
3954 	spin_unlock(&kvm_lock);
3955 	return 0;
3956 }
3957 
3958 static int vm_stat_clear(void *_offset, u64 val)
3959 {
3960 	unsigned offset = (long)_offset;
3961 	struct kvm *kvm;
3962 	struct kvm_stat_data stat_tmp = {.offset = offset};
3963 
3964 	if (val)
3965 		return -EINVAL;
3966 
3967 	spin_lock(&kvm_lock);
3968 	list_for_each_entry(kvm, &vm_list, vm_list) {
3969 		stat_tmp.kvm = kvm;
3970 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3971 	}
3972 	spin_unlock(&kvm_lock);
3973 
3974 	return 0;
3975 }
3976 
3977 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3978 
3979 static int vcpu_stat_get(void *_offset, u64 *val)
3980 {
3981 	unsigned offset = (long)_offset;
3982 	struct kvm *kvm;
3983 	struct kvm_stat_data stat_tmp = {.offset = offset};
3984 	u64 tmp_val;
3985 
3986 	*val = 0;
3987 	spin_lock(&kvm_lock);
3988 	list_for_each_entry(kvm, &vm_list, vm_list) {
3989 		stat_tmp.kvm = kvm;
3990 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3991 		*val += tmp_val;
3992 	}
3993 	spin_unlock(&kvm_lock);
3994 	return 0;
3995 }
3996 
3997 static int vcpu_stat_clear(void *_offset, u64 val)
3998 {
3999 	unsigned offset = (long)_offset;
4000 	struct kvm *kvm;
4001 	struct kvm_stat_data stat_tmp = {.offset = offset};
4002 
4003 	if (val)
4004 		return -EINVAL;
4005 
4006 	spin_lock(&kvm_lock);
4007 	list_for_each_entry(kvm, &vm_list, vm_list) {
4008 		stat_tmp.kvm = kvm;
4009 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4010 	}
4011 	spin_unlock(&kvm_lock);
4012 
4013 	return 0;
4014 }
4015 
4016 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4017 			"%llu\n");
4018 
4019 static const struct file_operations *stat_fops[] = {
4020 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4021 	[KVM_STAT_VM]   = &vm_stat_fops,
4022 };
4023 
4024 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4025 {
4026 	struct kobj_uevent_env *env;
4027 	unsigned long long created, active;
4028 
4029 	if (!kvm_dev.this_device || !kvm)
4030 		return;
4031 
4032 	spin_lock(&kvm_lock);
4033 	if (type == KVM_EVENT_CREATE_VM) {
4034 		kvm_createvm_count++;
4035 		kvm_active_vms++;
4036 	} else if (type == KVM_EVENT_DESTROY_VM) {
4037 		kvm_active_vms--;
4038 	}
4039 	created = kvm_createvm_count;
4040 	active = kvm_active_vms;
4041 	spin_unlock(&kvm_lock);
4042 
4043 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4044 	if (!env)
4045 		return;
4046 
4047 	add_uevent_var(env, "CREATED=%llu", created);
4048 	add_uevent_var(env, "COUNT=%llu", active);
4049 
4050 	if (type == KVM_EVENT_CREATE_VM) {
4051 		add_uevent_var(env, "EVENT=create");
4052 		kvm->userspace_pid = task_pid_nr(current);
4053 	} else if (type == KVM_EVENT_DESTROY_VM) {
4054 		add_uevent_var(env, "EVENT=destroy");
4055 	}
4056 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4057 
4058 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4059 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4060 
4061 		if (p) {
4062 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4063 			if (!IS_ERR(tmp))
4064 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4065 			kfree(p);
4066 		}
4067 	}
4068 	/* no need for checks, since we are adding at most only 5 keys */
4069 	env->envp[env->envp_idx++] = NULL;
4070 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4071 	kfree(env);
4072 }
4073 
4074 static void kvm_init_debug(void)
4075 {
4076 	struct kvm_stats_debugfs_item *p;
4077 
4078 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4079 
4080 	kvm_debugfs_num_entries = 0;
4081 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4082 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4083 				    (void *)(long)p->offset,
4084 				    stat_fops[p->kind]);
4085 	}
4086 }
4087 
4088 static int kvm_suspend(void)
4089 {
4090 	if (kvm_usage_count)
4091 		hardware_disable_nolock(NULL);
4092 	return 0;
4093 }
4094 
4095 static void kvm_resume(void)
4096 {
4097 	if (kvm_usage_count) {
4098 		lockdep_assert_held(&kvm_count_lock);
4099 		hardware_enable_nolock(NULL);
4100 	}
4101 }
4102 
4103 static struct syscore_ops kvm_syscore_ops = {
4104 	.suspend = kvm_suspend,
4105 	.resume = kvm_resume,
4106 };
4107 
4108 static inline
4109 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4110 {
4111 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4112 }
4113 
4114 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4115 {
4116 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4117 
4118 	if (vcpu->preempted)
4119 		vcpu->preempted = false;
4120 
4121 	kvm_arch_sched_in(vcpu, cpu);
4122 
4123 	kvm_arch_vcpu_load(vcpu, cpu);
4124 }
4125 
4126 static void kvm_sched_out(struct preempt_notifier *pn,
4127 			  struct task_struct *next)
4128 {
4129 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4130 
4131 	if (current->state == TASK_RUNNING)
4132 		vcpu->preempted = true;
4133 	kvm_arch_vcpu_put(vcpu);
4134 }
4135 
4136 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4137 		  struct module *module)
4138 {
4139 	int r;
4140 	int cpu;
4141 
4142 	r = kvm_arch_init(opaque);
4143 	if (r)
4144 		goto out_fail;
4145 
4146 	/*
4147 	 * kvm_arch_init makes sure there's at most one caller
4148 	 * for architectures that support multiple implementations,
4149 	 * like intel and amd on x86.
4150 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4151 	 * conflicts in case kvm is already setup for another implementation.
4152 	 */
4153 	r = kvm_irqfd_init();
4154 	if (r)
4155 		goto out_irqfd;
4156 
4157 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4158 		r = -ENOMEM;
4159 		goto out_free_0;
4160 	}
4161 
4162 	r = kvm_arch_hardware_setup();
4163 	if (r < 0)
4164 		goto out_free_0a;
4165 
4166 	for_each_online_cpu(cpu) {
4167 		smp_call_function_single(cpu,
4168 				kvm_arch_check_processor_compat,
4169 				&r, 1);
4170 		if (r < 0)
4171 			goto out_free_1;
4172 	}
4173 
4174 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4175 				      kvm_starting_cpu, kvm_dying_cpu);
4176 	if (r)
4177 		goto out_free_2;
4178 	register_reboot_notifier(&kvm_reboot_notifier);
4179 
4180 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4181 	if (!vcpu_align)
4182 		vcpu_align = __alignof__(struct kvm_vcpu);
4183 	kvm_vcpu_cache =
4184 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4185 					   SLAB_ACCOUNT,
4186 					   offsetof(struct kvm_vcpu, arch),
4187 					   sizeof_field(struct kvm_vcpu, arch),
4188 					   NULL);
4189 	if (!kvm_vcpu_cache) {
4190 		r = -ENOMEM;
4191 		goto out_free_3;
4192 	}
4193 
4194 	r = kvm_async_pf_init();
4195 	if (r)
4196 		goto out_free;
4197 
4198 	kvm_chardev_ops.owner = module;
4199 	kvm_vm_fops.owner = module;
4200 	kvm_vcpu_fops.owner = module;
4201 
4202 	r = misc_register(&kvm_dev);
4203 	if (r) {
4204 		pr_err("kvm: misc device register failed\n");
4205 		goto out_unreg;
4206 	}
4207 
4208 	register_syscore_ops(&kvm_syscore_ops);
4209 
4210 	kvm_preempt_ops.sched_in = kvm_sched_in;
4211 	kvm_preempt_ops.sched_out = kvm_sched_out;
4212 
4213 	kvm_init_debug();
4214 
4215 	r = kvm_vfio_ops_init();
4216 	WARN_ON(r);
4217 
4218 	return 0;
4219 
4220 out_unreg:
4221 	kvm_async_pf_deinit();
4222 out_free:
4223 	kmem_cache_destroy(kvm_vcpu_cache);
4224 out_free_3:
4225 	unregister_reboot_notifier(&kvm_reboot_notifier);
4226 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4227 out_free_2:
4228 out_free_1:
4229 	kvm_arch_hardware_unsetup();
4230 out_free_0a:
4231 	free_cpumask_var(cpus_hardware_enabled);
4232 out_free_0:
4233 	kvm_irqfd_exit();
4234 out_irqfd:
4235 	kvm_arch_exit();
4236 out_fail:
4237 	return r;
4238 }
4239 EXPORT_SYMBOL_GPL(kvm_init);
4240 
4241 void kvm_exit(void)
4242 {
4243 	debugfs_remove_recursive(kvm_debugfs_dir);
4244 	misc_deregister(&kvm_dev);
4245 	kmem_cache_destroy(kvm_vcpu_cache);
4246 	kvm_async_pf_deinit();
4247 	unregister_syscore_ops(&kvm_syscore_ops);
4248 	unregister_reboot_notifier(&kvm_reboot_notifier);
4249 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4250 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4251 	kvm_arch_hardware_unsetup();
4252 	kvm_arch_exit();
4253 	kvm_irqfd_exit();
4254 	free_cpumask_var(cpus_hardware_enabled);
4255 	kvm_vfio_ops_exit();
4256 }
4257 EXPORT_SYMBOL_GPL(kvm_exit);
4258