1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* The start value to grow halt_poll_ns from */ 85 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 86 module_param(halt_poll_ns_grow_start, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 88 89 /* Default resets per-vcpu halt_poll_ns . */ 90 unsigned int halt_poll_ns_shrink; 91 module_param(halt_poll_ns_shrink, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 93 94 /* 95 * Ordering of locks: 96 * 97 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 98 */ 99 100 DEFINE_SPINLOCK(kvm_lock); 101 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 102 LIST_HEAD(vm_list); 103 104 static cpumask_var_t cpus_hardware_enabled; 105 static int kvm_usage_count; 106 static atomic_t hardware_enable_failed; 107 108 struct kmem_cache *kvm_vcpu_cache; 109 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 110 111 static __read_mostly struct preempt_ops kvm_preempt_ops; 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static int kvm_debugfs_num_entries; 117 static const struct file_operations *stat_fops_per_vm[]; 118 119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 120 unsigned long arg); 121 #ifdef CONFIG_KVM_COMPAT 122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 123 unsigned long arg); 124 #define KVM_COMPAT(c) .compat_ioctl = (c) 125 #else 126 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 127 unsigned long arg) { return -EINVAL; } 128 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 129 #endif 130 static int hardware_enable_all(void); 131 static void hardware_disable_all(void); 132 133 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 134 135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 136 137 __visible bool kvm_rebooting; 138 EXPORT_SYMBOL_GPL(kvm_rebooting); 139 140 static bool largepages_enabled = true; 141 142 #define KVM_EVENT_CREATE_VM 0 143 #define KVM_EVENT_DESTROY_VM 1 144 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 145 static unsigned long long kvm_createvm_count; 146 static unsigned long long kvm_active_vms; 147 148 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 149 unsigned long start, unsigned long end, bool blockable) 150 { 151 return 0; 152 } 153 154 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 155 { 156 if (pfn_valid(pfn)) 157 return PageReserved(pfn_to_page(pfn)); 158 159 return true; 160 } 161 162 /* 163 * Switches to specified vcpu, until a matching vcpu_put() 164 */ 165 void vcpu_load(struct kvm_vcpu *vcpu) 166 { 167 int cpu = get_cpu(); 168 preempt_notifier_register(&vcpu->preempt_notifier); 169 kvm_arch_vcpu_load(vcpu, cpu); 170 put_cpu(); 171 } 172 EXPORT_SYMBOL_GPL(vcpu_load); 173 174 void vcpu_put(struct kvm_vcpu *vcpu) 175 { 176 preempt_disable(); 177 kvm_arch_vcpu_put(vcpu); 178 preempt_notifier_unregister(&vcpu->preempt_notifier); 179 preempt_enable(); 180 } 181 EXPORT_SYMBOL_GPL(vcpu_put); 182 183 /* TODO: merge with kvm_arch_vcpu_should_kick */ 184 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 185 { 186 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 187 188 /* 189 * We need to wait for the VCPU to reenable interrupts and get out of 190 * READING_SHADOW_PAGE_TABLES mode. 191 */ 192 if (req & KVM_REQUEST_WAIT) 193 return mode != OUTSIDE_GUEST_MODE; 194 195 /* 196 * Need to kick a running VCPU, but otherwise there is nothing to do. 197 */ 198 return mode == IN_GUEST_MODE; 199 } 200 201 static void ack_flush(void *_completed) 202 { 203 } 204 205 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 206 { 207 if (unlikely(!cpus)) 208 cpus = cpu_online_mask; 209 210 if (cpumask_empty(cpus)) 211 return false; 212 213 smp_call_function_many(cpus, ack_flush, NULL, wait); 214 return true; 215 } 216 217 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 218 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 219 { 220 int i, cpu, me; 221 struct kvm_vcpu *vcpu; 222 bool called; 223 224 me = get_cpu(); 225 226 kvm_for_each_vcpu(i, vcpu, kvm) { 227 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 228 continue; 229 230 kvm_make_request(req, vcpu); 231 cpu = vcpu->cpu; 232 233 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 234 continue; 235 236 if (tmp != NULL && cpu != -1 && cpu != me && 237 kvm_request_needs_ipi(vcpu, req)) 238 __cpumask_set_cpu(cpu, tmp); 239 } 240 241 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 242 put_cpu(); 243 244 return called; 245 } 246 247 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 248 { 249 cpumask_var_t cpus; 250 bool called; 251 252 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 253 254 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 255 256 free_cpumask_var(cpus); 257 return called; 258 } 259 260 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 261 void kvm_flush_remote_tlbs(struct kvm *kvm) 262 { 263 /* 264 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 265 * kvm_make_all_cpus_request. 266 */ 267 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 268 269 /* 270 * We want to publish modifications to the page tables before reading 271 * mode. Pairs with a memory barrier in arch-specific code. 272 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 273 * and smp_mb in walk_shadow_page_lockless_begin/end. 274 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 275 * 276 * There is already an smp_mb__after_atomic() before 277 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 278 * barrier here. 279 */ 280 if (!kvm_arch_flush_remote_tlb(kvm) 281 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 282 ++kvm->stat.remote_tlb_flush; 283 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 284 } 285 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 286 #endif 287 288 void kvm_reload_remote_mmus(struct kvm *kvm) 289 { 290 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 291 } 292 293 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 294 { 295 struct page *page; 296 int r; 297 298 mutex_init(&vcpu->mutex); 299 vcpu->cpu = -1; 300 vcpu->kvm = kvm; 301 vcpu->vcpu_id = id; 302 vcpu->pid = NULL; 303 init_swait_queue_head(&vcpu->wq); 304 kvm_async_pf_vcpu_init(vcpu); 305 306 vcpu->pre_pcpu = -1; 307 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 308 309 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 310 if (!page) { 311 r = -ENOMEM; 312 goto fail; 313 } 314 vcpu->run = page_address(page); 315 316 kvm_vcpu_set_in_spin_loop(vcpu, false); 317 kvm_vcpu_set_dy_eligible(vcpu, false); 318 vcpu->preempted = false; 319 320 r = kvm_arch_vcpu_init(vcpu); 321 if (r < 0) 322 goto fail_free_run; 323 return 0; 324 325 fail_free_run: 326 free_page((unsigned long)vcpu->run); 327 fail: 328 return r; 329 } 330 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 331 332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 333 { 334 /* 335 * no need for rcu_read_lock as VCPU_RUN is the only place that 336 * will change the vcpu->pid pointer and on uninit all file 337 * descriptors are already gone. 338 */ 339 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 340 kvm_arch_vcpu_uninit(vcpu); 341 free_page((unsigned long)vcpu->run); 342 } 343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 344 345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 347 { 348 return container_of(mn, struct kvm, mmu_notifier); 349 } 350 351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 352 struct mm_struct *mm, 353 unsigned long address, 354 pte_t pte) 355 { 356 struct kvm *kvm = mmu_notifier_to_kvm(mn); 357 int idx; 358 359 idx = srcu_read_lock(&kvm->srcu); 360 spin_lock(&kvm->mmu_lock); 361 kvm->mmu_notifier_seq++; 362 363 if (kvm_set_spte_hva(kvm, address, pte)) 364 kvm_flush_remote_tlbs(kvm); 365 366 spin_unlock(&kvm->mmu_lock); 367 srcu_read_unlock(&kvm->srcu, idx); 368 } 369 370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 371 const struct mmu_notifier_range *range) 372 { 373 struct kvm *kvm = mmu_notifier_to_kvm(mn); 374 int need_tlb_flush = 0, idx; 375 int ret; 376 377 idx = srcu_read_lock(&kvm->srcu); 378 spin_lock(&kvm->mmu_lock); 379 /* 380 * The count increase must become visible at unlock time as no 381 * spte can be established without taking the mmu_lock and 382 * count is also read inside the mmu_lock critical section. 383 */ 384 kvm->mmu_notifier_count++; 385 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 386 need_tlb_flush |= kvm->tlbs_dirty; 387 /* we've to flush the tlb before the pages can be freed */ 388 if (need_tlb_flush) 389 kvm_flush_remote_tlbs(kvm); 390 391 spin_unlock(&kvm->mmu_lock); 392 393 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 394 range->end, range->blockable); 395 396 srcu_read_unlock(&kvm->srcu, idx); 397 398 return ret; 399 } 400 401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 402 const struct mmu_notifier_range *range) 403 { 404 struct kvm *kvm = mmu_notifier_to_kvm(mn); 405 406 spin_lock(&kvm->mmu_lock); 407 /* 408 * This sequence increase will notify the kvm page fault that 409 * the page that is going to be mapped in the spte could have 410 * been freed. 411 */ 412 kvm->mmu_notifier_seq++; 413 smp_wmb(); 414 /* 415 * The above sequence increase must be visible before the 416 * below count decrease, which is ensured by the smp_wmb above 417 * in conjunction with the smp_rmb in mmu_notifier_retry(). 418 */ 419 kvm->mmu_notifier_count--; 420 spin_unlock(&kvm->mmu_lock); 421 422 BUG_ON(kvm->mmu_notifier_count < 0); 423 } 424 425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 426 struct mm_struct *mm, 427 unsigned long start, 428 unsigned long end) 429 { 430 struct kvm *kvm = mmu_notifier_to_kvm(mn); 431 int young, idx; 432 433 idx = srcu_read_lock(&kvm->srcu); 434 spin_lock(&kvm->mmu_lock); 435 436 young = kvm_age_hva(kvm, start, end); 437 if (young) 438 kvm_flush_remote_tlbs(kvm); 439 440 spin_unlock(&kvm->mmu_lock); 441 srcu_read_unlock(&kvm->srcu, idx); 442 443 return young; 444 } 445 446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 447 struct mm_struct *mm, 448 unsigned long start, 449 unsigned long end) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 /* 457 * Even though we do not flush TLB, this will still adversely 458 * affect performance on pre-Haswell Intel EPT, where there is 459 * no EPT Access Bit to clear so that we have to tear down EPT 460 * tables instead. If we find this unacceptable, we can always 461 * add a parameter to kvm_age_hva so that it effectively doesn't 462 * do anything on clear_young. 463 * 464 * Also note that currently we never issue secondary TLB flushes 465 * from clear_young, leaving this job up to the regular system 466 * cadence. If we find this inaccurate, we might come up with a 467 * more sophisticated heuristic later. 468 */ 469 young = kvm_age_hva(kvm, start, end); 470 spin_unlock(&kvm->mmu_lock); 471 srcu_read_unlock(&kvm->srcu, idx); 472 473 return young; 474 } 475 476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 477 struct mm_struct *mm, 478 unsigned long address) 479 { 480 struct kvm *kvm = mmu_notifier_to_kvm(mn); 481 int young, idx; 482 483 idx = srcu_read_lock(&kvm->srcu); 484 spin_lock(&kvm->mmu_lock); 485 young = kvm_test_age_hva(kvm, address); 486 spin_unlock(&kvm->mmu_lock); 487 srcu_read_unlock(&kvm->srcu, idx); 488 489 return young; 490 } 491 492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 493 struct mm_struct *mm) 494 { 495 struct kvm *kvm = mmu_notifier_to_kvm(mn); 496 int idx; 497 498 idx = srcu_read_lock(&kvm->srcu); 499 kvm_arch_flush_shadow_all(kvm); 500 srcu_read_unlock(&kvm->srcu, idx); 501 } 502 503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 504 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 505 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 506 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 507 .clear_young = kvm_mmu_notifier_clear_young, 508 .test_young = kvm_mmu_notifier_test_young, 509 .change_pte = kvm_mmu_notifier_change_pte, 510 .release = kvm_mmu_notifier_release, 511 }; 512 513 static int kvm_init_mmu_notifier(struct kvm *kvm) 514 { 515 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 516 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 517 } 518 519 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 520 521 static int kvm_init_mmu_notifier(struct kvm *kvm) 522 { 523 return 0; 524 } 525 526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 527 528 static struct kvm_memslots *kvm_alloc_memslots(void) 529 { 530 int i; 531 struct kvm_memslots *slots; 532 533 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 534 if (!slots) 535 return NULL; 536 537 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 538 slots->id_to_index[i] = slots->memslots[i].id = i; 539 540 return slots; 541 } 542 543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 544 { 545 if (!memslot->dirty_bitmap) 546 return; 547 548 kvfree(memslot->dirty_bitmap); 549 memslot->dirty_bitmap = NULL; 550 } 551 552 /* 553 * Free any memory in @free but not in @dont. 554 */ 555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 556 struct kvm_memory_slot *dont) 557 { 558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 559 kvm_destroy_dirty_bitmap(free); 560 561 kvm_arch_free_memslot(kvm, free, dont); 562 563 free->npages = 0; 564 } 565 566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 567 { 568 struct kvm_memory_slot *memslot; 569 570 if (!slots) 571 return; 572 573 kvm_for_each_memslot(memslot, slots) 574 kvm_free_memslot(kvm, memslot, NULL); 575 576 kvfree(slots); 577 } 578 579 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 580 { 581 int i; 582 583 if (!kvm->debugfs_dentry) 584 return; 585 586 debugfs_remove_recursive(kvm->debugfs_dentry); 587 588 if (kvm->debugfs_stat_data) { 589 for (i = 0; i < kvm_debugfs_num_entries; i++) 590 kfree(kvm->debugfs_stat_data[i]); 591 kfree(kvm->debugfs_stat_data); 592 } 593 } 594 595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 596 { 597 char dir_name[ITOA_MAX_LEN * 2]; 598 struct kvm_stat_data *stat_data; 599 struct kvm_stats_debugfs_item *p; 600 601 if (!debugfs_initialized()) 602 return 0; 603 604 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 605 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 606 607 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 608 sizeof(*kvm->debugfs_stat_data), 609 GFP_KERNEL_ACCOUNT); 610 if (!kvm->debugfs_stat_data) 611 return -ENOMEM; 612 613 for (p = debugfs_entries; p->name; p++) { 614 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 615 if (!stat_data) 616 return -ENOMEM; 617 618 stat_data->kvm = kvm; 619 stat_data->offset = p->offset; 620 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 621 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 622 stat_data, stat_fops_per_vm[p->kind]); 623 } 624 return 0; 625 } 626 627 static struct kvm *kvm_create_vm(unsigned long type) 628 { 629 int r, i; 630 struct kvm *kvm = kvm_arch_alloc_vm(); 631 632 if (!kvm) 633 return ERR_PTR(-ENOMEM); 634 635 spin_lock_init(&kvm->mmu_lock); 636 mmgrab(current->mm); 637 kvm->mm = current->mm; 638 kvm_eventfd_init(kvm); 639 mutex_init(&kvm->lock); 640 mutex_init(&kvm->irq_lock); 641 mutex_init(&kvm->slots_lock); 642 refcount_set(&kvm->users_count, 1); 643 INIT_LIST_HEAD(&kvm->devices); 644 645 r = kvm_arch_init_vm(kvm, type); 646 if (r) 647 goto out_err_no_disable; 648 649 r = hardware_enable_all(); 650 if (r) 651 goto out_err_no_disable; 652 653 #ifdef CONFIG_HAVE_KVM_IRQFD 654 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 655 #endif 656 657 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 658 659 r = -ENOMEM; 660 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 661 struct kvm_memslots *slots = kvm_alloc_memslots(); 662 if (!slots) 663 goto out_err_no_srcu; 664 /* Generations must be different for each address space. */ 665 slots->generation = i; 666 rcu_assign_pointer(kvm->memslots[i], slots); 667 } 668 669 if (init_srcu_struct(&kvm->srcu)) 670 goto out_err_no_srcu; 671 if (init_srcu_struct(&kvm->irq_srcu)) 672 goto out_err_no_irq_srcu; 673 for (i = 0; i < KVM_NR_BUSES; i++) { 674 rcu_assign_pointer(kvm->buses[i], 675 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 676 if (!kvm->buses[i]) 677 goto out_err; 678 } 679 680 r = kvm_init_mmu_notifier(kvm); 681 if (r) 682 goto out_err; 683 684 spin_lock(&kvm_lock); 685 list_add(&kvm->vm_list, &vm_list); 686 spin_unlock(&kvm_lock); 687 688 preempt_notifier_inc(); 689 690 return kvm; 691 692 out_err: 693 cleanup_srcu_struct(&kvm->irq_srcu); 694 out_err_no_irq_srcu: 695 cleanup_srcu_struct(&kvm->srcu); 696 out_err_no_srcu: 697 hardware_disable_all(); 698 out_err_no_disable: 699 refcount_set(&kvm->users_count, 0); 700 for (i = 0; i < KVM_NR_BUSES; i++) 701 kfree(kvm_get_bus(kvm, i)); 702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 703 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 704 kvm_arch_free_vm(kvm); 705 mmdrop(current->mm); 706 return ERR_PTR(r); 707 } 708 709 static void kvm_destroy_devices(struct kvm *kvm) 710 { 711 struct kvm_device *dev, *tmp; 712 713 /* 714 * We do not need to take the kvm->lock here, because nobody else 715 * has a reference to the struct kvm at this point and therefore 716 * cannot access the devices list anyhow. 717 */ 718 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 719 list_del(&dev->vm_node); 720 dev->ops->destroy(dev); 721 } 722 } 723 724 static void kvm_destroy_vm(struct kvm *kvm) 725 { 726 int i; 727 struct mm_struct *mm = kvm->mm; 728 729 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 730 kvm_destroy_vm_debugfs(kvm); 731 kvm_arch_sync_events(kvm); 732 spin_lock(&kvm_lock); 733 list_del(&kvm->vm_list); 734 spin_unlock(&kvm_lock); 735 kvm_free_irq_routing(kvm); 736 for (i = 0; i < KVM_NR_BUSES; i++) { 737 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 738 739 if (bus) 740 kvm_io_bus_destroy(bus); 741 kvm->buses[i] = NULL; 742 } 743 kvm_coalesced_mmio_free(kvm); 744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 745 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 746 #else 747 kvm_arch_flush_shadow_all(kvm); 748 #endif 749 kvm_arch_destroy_vm(kvm); 750 kvm_destroy_devices(kvm); 751 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 752 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 753 cleanup_srcu_struct(&kvm->irq_srcu); 754 cleanup_srcu_struct(&kvm->srcu); 755 kvm_arch_free_vm(kvm); 756 preempt_notifier_dec(); 757 hardware_disable_all(); 758 mmdrop(mm); 759 } 760 761 void kvm_get_kvm(struct kvm *kvm) 762 { 763 refcount_inc(&kvm->users_count); 764 } 765 EXPORT_SYMBOL_GPL(kvm_get_kvm); 766 767 void kvm_put_kvm(struct kvm *kvm) 768 { 769 if (refcount_dec_and_test(&kvm->users_count)) 770 kvm_destroy_vm(kvm); 771 } 772 EXPORT_SYMBOL_GPL(kvm_put_kvm); 773 774 775 static int kvm_vm_release(struct inode *inode, struct file *filp) 776 { 777 struct kvm *kvm = filp->private_data; 778 779 kvm_irqfd_release(kvm); 780 781 kvm_put_kvm(kvm); 782 return 0; 783 } 784 785 /* 786 * Allocation size is twice as large as the actual dirty bitmap size. 787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 788 */ 789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 790 { 791 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 792 793 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 794 if (!memslot->dirty_bitmap) 795 return -ENOMEM; 796 797 return 0; 798 } 799 800 /* 801 * Insert memslot and re-sort memslots based on their GFN, 802 * so binary search could be used to lookup GFN. 803 * Sorting algorithm takes advantage of having initially 804 * sorted array and known changed memslot position. 805 */ 806 static void update_memslots(struct kvm_memslots *slots, 807 struct kvm_memory_slot *new, 808 enum kvm_mr_change change) 809 { 810 int id = new->id; 811 int i = slots->id_to_index[id]; 812 struct kvm_memory_slot *mslots = slots->memslots; 813 814 WARN_ON(mslots[i].id != id); 815 switch (change) { 816 case KVM_MR_CREATE: 817 slots->used_slots++; 818 WARN_ON(mslots[i].npages || !new->npages); 819 break; 820 case KVM_MR_DELETE: 821 slots->used_slots--; 822 WARN_ON(new->npages || !mslots[i].npages); 823 break; 824 default: 825 break; 826 } 827 828 while (i < KVM_MEM_SLOTS_NUM - 1 && 829 new->base_gfn <= mslots[i + 1].base_gfn) { 830 if (!mslots[i + 1].npages) 831 break; 832 mslots[i] = mslots[i + 1]; 833 slots->id_to_index[mslots[i].id] = i; 834 i++; 835 } 836 837 /* 838 * The ">=" is needed when creating a slot with base_gfn == 0, 839 * so that it moves before all those with base_gfn == npages == 0. 840 * 841 * On the other hand, if new->npages is zero, the above loop has 842 * already left i pointing to the beginning of the empty part of 843 * mslots, and the ">=" would move the hole backwards in this 844 * case---which is wrong. So skip the loop when deleting a slot. 845 */ 846 if (new->npages) { 847 while (i > 0 && 848 new->base_gfn >= mslots[i - 1].base_gfn) { 849 mslots[i] = mslots[i - 1]; 850 slots->id_to_index[mslots[i].id] = i; 851 i--; 852 } 853 } else 854 WARN_ON_ONCE(i != slots->used_slots); 855 856 mslots[i] = *new; 857 slots->id_to_index[mslots[i].id] = i; 858 } 859 860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 861 { 862 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 863 864 #ifdef __KVM_HAVE_READONLY_MEM 865 valid_flags |= KVM_MEM_READONLY; 866 #endif 867 868 if (mem->flags & ~valid_flags) 869 return -EINVAL; 870 871 return 0; 872 } 873 874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 875 int as_id, struct kvm_memslots *slots) 876 { 877 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 878 u64 gen = old_memslots->generation; 879 880 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 881 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 882 883 rcu_assign_pointer(kvm->memslots[as_id], slots); 884 synchronize_srcu_expedited(&kvm->srcu); 885 886 /* 887 * Increment the new memslot generation a second time, dropping the 888 * update in-progress flag and incrementing then generation based on 889 * the number of address spaces. This provides a unique and easily 890 * identifiable generation number while the memslots are in flux. 891 */ 892 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 893 894 /* 895 * Generations must be unique even across address spaces. We do not need 896 * a global counter for that, instead the generation space is evenly split 897 * across address spaces. For example, with two address spaces, address 898 * space 0 will use generations 0, 2, 4, ... while address space 1 will 899 * use generations 1, 3, 5, ... 900 */ 901 gen += KVM_ADDRESS_SPACE_NUM; 902 903 kvm_arch_memslots_updated(kvm, gen); 904 905 slots->generation = gen; 906 907 return old_memslots; 908 } 909 910 /* 911 * Allocate some memory and give it an address in the guest physical address 912 * space. 913 * 914 * Discontiguous memory is allowed, mostly for framebuffers. 915 * 916 * Must be called holding kvm->slots_lock for write. 917 */ 918 int __kvm_set_memory_region(struct kvm *kvm, 919 const struct kvm_userspace_memory_region *mem) 920 { 921 int r; 922 gfn_t base_gfn; 923 unsigned long npages; 924 struct kvm_memory_slot *slot; 925 struct kvm_memory_slot old, new; 926 struct kvm_memslots *slots = NULL, *old_memslots; 927 int as_id, id; 928 enum kvm_mr_change change; 929 930 r = check_memory_region_flags(mem); 931 if (r) 932 goto out; 933 934 r = -EINVAL; 935 as_id = mem->slot >> 16; 936 id = (u16)mem->slot; 937 938 /* General sanity checks */ 939 if (mem->memory_size & (PAGE_SIZE - 1)) 940 goto out; 941 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 942 goto out; 943 /* We can read the guest memory with __xxx_user() later on. */ 944 if ((id < KVM_USER_MEM_SLOTS) && 945 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 946 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 947 mem->memory_size))) 948 goto out; 949 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 950 goto out; 951 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 952 goto out; 953 954 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 955 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 956 npages = mem->memory_size >> PAGE_SHIFT; 957 958 if (npages > KVM_MEM_MAX_NR_PAGES) 959 goto out; 960 961 new = old = *slot; 962 963 new.id = id; 964 new.base_gfn = base_gfn; 965 new.npages = npages; 966 new.flags = mem->flags; 967 968 if (npages) { 969 if (!old.npages) 970 change = KVM_MR_CREATE; 971 else { /* Modify an existing slot. */ 972 if ((mem->userspace_addr != old.userspace_addr) || 973 (npages != old.npages) || 974 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 975 goto out; 976 977 if (base_gfn != old.base_gfn) 978 change = KVM_MR_MOVE; 979 else if (new.flags != old.flags) 980 change = KVM_MR_FLAGS_ONLY; 981 else { /* Nothing to change. */ 982 r = 0; 983 goto out; 984 } 985 } 986 } else { 987 if (!old.npages) 988 goto out; 989 990 change = KVM_MR_DELETE; 991 new.base_gfn = 0; 992 new.flags = 0; 993 } 994 995 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 996 /* Check for overlaps */ 997 r = -EEXIST; 998 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 999 if (slot->id == id) 1000 continue; 1001 if (!((base_gfn + npages <= slot->base_gfn) || 1002 (base_gfn >= slot->base_gfn + slot->npages))) 1003 goto out; 1004 } 1005 } 1006 1007 /* Free page dirty bitmap if unneeded */ 1008 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1009 new.dirty_bitmap = NULL; 1010 1011 r = -ENOMEM; 1012 if (change == KVM_MR_CREATE) { 1013 new.userspace_addr = mem->userspace_addr; 1014 1015 if (kvm_arch_create_memslot(kvm, &new, npages)) 1016 goto out_free; 1017 } 1018 1019 /* Allocate page dirty bitmap if needed */ 1020 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1021 if (kvm_create_dirty_bitmap(&new) < 0) 1022 goto out_free; 1023 } 1024 1025 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1026 if (!slots) 1027 goto out_free; 1028 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1029 1030 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1031 slot = id_to_memslot(slots, id); 1032 slot->flags |= KVM_MEMSLOT_INVALID; 1033 1034 old_memslots = install_new_memslots(kvm, as_id, slots); 1035 1036 /* From this point no new shadow pages pointing to a deleted, 1037 * or moved, memslot will be created. 1038 * 1039 * validation of sp->gfn happens in: 1040 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1041 * - kvm_is_visible_gfn (mmu_check_roots) 1042 */ 1043 kvm_arch_flush_shadow_memslot(kvm, slot); 1044 1045 /* 1046 * We can re-use the old_memslots from above, the only difference 1047 * from the currently installed memslots is the invalid flag. This 1048 * will get overwritten by update_memslots anyway. 1049 */ 1050 slots = old_memslots; 1051 } 1052 1053 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1054 if (r) 1055 goto out_slots; 1056 1057 /* actual memory is freed via old in kvm_free_memslot below */ 1058 if (change == KVM_MR_DELETE) { 1059 new.dirty_bitmap = NULL; 1060 memset(&new.arch, 0, sizeof(new.arch)); 1061 } 1062 1063 update_memslots(slots, &new, change); 1064 old_memslots = install_new_memslots(kvm, as_id, slots); 1065 1066 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1067 1068 kvm_free_memslot(kvm, &old, &new); 1069 kvfree(old_memslots); 1070 return 0; 1071 1072 out_slots: 1073 kvfree(slots); 1074 out_free: 1075 kvm_free_memslot(kvm, &new, &old); 1076 out: 1077 return r; 1078 } 1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1080 1081 int kvm_set_memory_region(struct kvm *kvm, 1082 const struct kvm_userspace_memory_region *mem) 1083 { 1084 int r; 1085 1086 mutex_lock(&kvm->slots_lock); 1087 r = __kvm_set_memory_region(kvm, mem); 1088 mutex_unlock(&kvm->slots_lock); 1089 return r; 1090 } 1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1092 1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1094 struct kvm_userspace_memory_region *mem) 1095 { 1096 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1097 return -EINVAL; 1098 1099 return kvm_set_memory_region(kvm, mem); 1100 } 1101 1102 int kvm_get_dirty_log(struct kvm *kvm, 1103 struct kvm_dirty_log *log, int *is_dirty) 1104 { 1105 struct kvm_memslots *slots; 1106 struct kvm_memory_slot *memslot; 1107 int i, as_id, id; 1108 unsigned long n; 1109 unsigned long any = 0; 1110 1111 as_id = log->slot >> 16; 1112 id = (u16)log->slot; 1113 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1114 return -EINVAL; 1115 1116 slots = __kvm_memslots(kvm, as_id); 1117 memslot = id_to_memslot(slots, id); 1118 if (!memslot->dirty_bitmap) 1119 return -ENOENT; 1120 1121 n = kvm_dirty_bitmap_bytes(memslot); 1122 1123 for (i = 0; !any && i < n/sizeof(long); ++i) 1124 any = memslot->dirty_bitmap[i]; 1125 1126 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1127 return -EFAULT; 1128 1129 if (any) 1130 *is_dirty = 1; 1131 return 0; 1132 } 1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1134 1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1136 /** 1137 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1138 * and reenable dirty page tracking for the corresponding pages. 1139 * @kvm: pointer to kvm instance 1140 * @log: slot id and address to which we copy the log 1141 * @is_dirty: flag set if any page is dirty 1142 * 1143 * We need to keep it in mind that VCPU threads can write to the bitmap 1144 * concurrently. So, to avoid losing track of dirty pages we keep the 1145 * following order: 1146 * 1147 * 1. Take a snapshot of the bit and clear it if needed. 1148 * 2. Write protect the corresponding page. 1149 * 3. Copy the snapshot to the userspace. 1150 * 4. Upon return caller flushes TLB's if needed. 1151 * 1152 * Between 2 and 4, the guest may write to the page using the remaining TLB 1153 * entry. This is not a problem because the page is reported dirty using 1154 * the snapshot taken before and step 4 ensures that writes done after 1155 * exiting to userspace will be logged for the next call. 1156 * 1157 */ 1158 int kvm_get_dirty_log_protect(struct kvm *kvm, 1159 struct kvm_dirty_log *log, bool *flush) 1160 { 1161 struct kvm_memslots *slots; 1162 struct kvm_memory_slot *memslot; 1163 int i, as_id, id; 1164 unsigned long n; 1165 unsigned long *dirty_bitmap; 1166 unsigned long *dirty_bitmap_buffer; 1167 1168 as_id = log->slot >> 16; 1169 id = (u16)log->slot; 1170 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1171 return -EINVAL; 1172 1173 slots = __kvm_memslots(kvm, as_id); 1174 memslot = id_to_memslot(slots, id); 1175 1176 dirty_bitmap = memslot->dirty_bitmap; 1177 if (!dirty_bitmap) 1178 return -ENOENT; 1179 1180 n = kvm_dirty_bitmap_bytes(memslot); 1181 *flush = false; 1182 if (kvm->manual_dirty_log_protect) { 1183 /* 1184 * Unlike kvm_get_dirty_log, we always return false in *flush, 1185 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1186 * is some code duplication between this function and 1187 * kvm_get_dirty_log, but hopefully all architecture 1188 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1189 * can be eliminated. 1190 */ 1191 dirty_bitmap_buffer = dirty_bitmap; 1192 } else { 1193 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1194 memset(dirty_bitmap_buffer, 0, n); 1195 1196 spin_lock(&kvm->mmu_lock); 1197 for (i = 0; i < n / sizeof(long); i++) { 1198 unsigned long mask; 1199 gfn_t offset; 1200 1201 if (!dirty_bitmap[i]) 1202 continue; 1203 1204 *flush = true; 1205 mask = xchg(&dirty_bitmap[i], 0); 1206 dirty_bitmap_buffer[i] = mask; 1207 1208 offset = i * BITS_PER_LONG; 1209 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1210 offset, mask); 1211 } 1212 spin_unlock(&kvm->mmu_lock); 1213 } 1214 1215 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1216 return -EFAULT; 1217 return 0; 1218 } 1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1220 1221 /** 1222 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1223 * and reenable dirty page tracking for the corresponding pages. 1224 * @kvm: pointer to kvm instance 1225 * @log: slot id and address from which to fetch the bitmap of dirty pages 1226 */ 1227 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1228 struct kvm_clear_dirty_log *log, bool *flush) 1229 { 1230 struct kvm_memslots *slots; 1231 struct kvm_memory_slot *memslot; 1232 int as_id, id; 1233 gfn_t offset; 1234 unsigned long i, n; 1235 unsigned long *dirty_bitmap; 1236 unsigned long *dirty_bitmap_buffer; 1237 1238 as_id = log->slot >> 16; 1239 id = (u16)log->slot; 1240 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1241 return -EINVAL; 1242 1243 if (log->first_page & 63) 1244 return -EINVAL; 1245 1246 slots = __kvm_memslots(kvm, as_id); 1247 memslot = id_to_memslot(slots, id); 1248 1249 dirty_bitmap = memslot->dirty_bitmap; 1250 if (!dirty_bitmap) 1251 return -ENOENT; 1252 1253 n = kvm_dirty_bitmap_bytes(memslot); 1254 1255 if (log->first_page > memslot->npages || 1256 log->num_pages > memslot->npages - log->first_page || 1257 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1258 return -EINVAL; 1259 1260 *flush = false; 1261 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1262 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1263 return -EFAULT; 1264 1265 spin_lock(&kvm->mmu_lock); 1266 for (offset = log->first_page, 1267 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--; 1268 i++, offset += BITS_PER_LONG) { 1269 unsigned long mask = *dirty_bitmap_buffer++; 1270 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1271 if (!mask) 1272 continue; 1273 1274 mask &= atomic_long_fetch_andnot(mask, p); 1275 1276 /* 1277 * mask contains the bits that really have been cleared. This 1278 * never includes any bits beyond the length of the memslot (if 1279 * the length is not aligned to 64 pages), therefore it is not 1280 * a problem if userspace sets them in log->dirty_bitmap. 1281 */ 1282 if (mask) { 1283 *flush = true; 1284 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1285 offset, mask); 1286 } 1287 } 1288 spin_unlock(&kvm->mmu_lock); 1289 1290 return 0; 1291 } 1292 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1293 #endif 1294 1295 bool kvm_largepages_enabled(void) 1296 { 1297 return largepages_enabled; 1298 } 1299 1300 void kvm_disable_largepages(void) 1301 { 1302 largepages_enabled = false; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1305 1306 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1307 { 1308 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1309 } 1310 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1311 1312 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1313 { 1314 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1315 } 1316 1317 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1318 { 1319 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1320 1321 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1322 memslot->flags & KVM_MEMSLOT_INVALID) 1323 return false; 1324 1325 return true; 1326 } 1327 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1328 1329 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1330 { 1331 struct vm_area_struct *vma; 1332 unsigned long addr, size; 1333 1334 size = PAGE_SIZE; 1335 1336 addr = gfn_to_hva(kvm, gfn); 1337 if (kvm_is_error_hva(addr)) 1338 return PAGE_SIZE; 1339 1340 down_read(¤t->mm->mmap_sem); 1341 vma = find_vma(current->mm, addr); 1342 if (!vma) 1343 goto out; 1344 1345 size = vma_kernel_pagesize(vma); 1346 1347 out: 1348 up_read(¤t->mm->mmap_sem); 1349 1350 return size; 1351 } 1352 1353 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1354 { 1355 return slot->flags & KVM_MEM_READONLY; 1356 } 1357 1358 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1359 gfn_t *nr_pages, bool write) 1360 { 1361 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1362 return KVM_HVA_ERR_BAD; 1363 1364 if (memslot_is_readonly(slot) && write) 1365 return KVM_HVA_ERR_RO_BAD; 1366 1367 if (nr_pages) 1368 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1369 1370 return __gfn_to_hva_memslot(slot, gfn); 1371 } 1372 1373 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1374 gfn_t *nr_pages) 1375 { 1376 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1377 } 1378 1379 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1380 gfn_t gfn) 1381 { 1382 return gfn_to_hva_many(slot, gfn, NULL); 1383 } 1384 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1385 1386 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1387 { 1388 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1389 } 1390 EXPORT_SYMBOL_GPL(gfn_to_hva); 1391 1392 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1393 { 1394 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1395 } 1396 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1397 1398 /* 1399 * Return the hva of a @gfn and the R/W attribute if possible. 1400 * 1401 * @slot: the kvm_memory_slot which contains @gfn 1402 * @gfn: the gfn to be translated 1403 * @writable: used to return the read/write attribute of the @slot if the hva 1404 * is valid and @writable is not NULL 1405 */ 1406 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1407 gfn_t gfn, bool *writable) 1408 { 1409 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1410 1411 if (!kvm_is_error_hva(hva) && writable) 1412 *writable = !memslot_is_readonly(slot); 1413 1414 return hva; 1415 } 1416 1417 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1418 { 1419 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1420 1421 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1422 } 1423 1424 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1425 { 1426 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1427 1428 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1429 } 1430 1431 static inline int check_user_page_hwpoison(unsigned long addr) 1432 { 1433 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1434 1435 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1436 return rc == -EHWPOISON; 1437 } 1438 1439 /* 1440 * The fast path to get the writable pfn which will be stored in @pfn, 1441 * true indicates success, otherwise false is returned. It's also the 1442 * only part that runs if we can are in atomic context. 1443 */ 1444 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1445 bool *writable, kvm_pfn_t *pfn) 1446 { 1447 struct page *page[1]; 1448 int npages; 1449 1450 /* 1451 * Fast pin a writable pfn only if it is a write fault request 1452 * or the caller allows to map a writable pfn for a read fault 1453 * request. 1454 */ 1455 if (!(write_fault || writable)) 1456 return false; 1457 1458 npages = __get_user_pages_fast(addr, 1, 1, page); 1459 if (npages == 1) { 1460 *pfn = page_to_pfn(page[0]); 1461 1462 if (writable) 1463 *writable = true; 1464 return true; 1465 } 1466 1467 return false; 1468 } 1469 1470 /* 1471 * The slow path to get the pfn of the specified host virtual address, 1472 * 1 indicates success, -errno is returned if error is detected. 1473 */ 1474 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1475 bool *writable, kvm_pfn_t *pfn) 1476 { 1477 unsigned int flags = FOLL_HWPOISON; 1478 struct page *page; 1479 int npages = 0; 1480 1481 might_sleep(); 1482 1483 if (writable) 1484 *writable = write_fault; 1485 1486 if (write_fault) 1487 flags |= FOLL_WRITE; 1488 if (async) 1489 flags |= FOLL_NOWAIT; 1490 1491 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1492 if (npages != 1) 1493 return npages; 1494 1495 /* map read fault as writable if possible */ 1496 if (unlikely(!write_fault) && writable) { 1497 struct page *wpage; 1498 1499 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1500 *writable = true; 1501 put_page(page); 1502 page = wpage; 1503 } 1504 } 1505 *pfn = page_to_pfn(page); 1506 return npages; 1507 } 1508 1509 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1510 { 1511 if (unlikely(!(vma->vm_flags & VM_READ))) 1512 return false; 1513 1514 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1515 return false; 1516 1517 return true; 1518 } 1519 1520 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1521 unsigned long addr, bool *async, 1522 bool write_fault, bool *writable, 1523 kvm_pfn_t *p_pfn) 1524 { 1525 unsigned long pfn; 1526 int r; 1527 1528 r = follow_pfn(vma, addr, &pfn); 1529 if (r) { 1530 /* 1531 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1532 * not call the fault handler, so do it here. 1533 */ 1534 bool unlocked = false; 1535 r = fixup_user_fault(current, current->mm, addr, 1536 (write_fault ? FAULT_FLAG_WRITE : 0), 1537 &unlocked); 1538 if (unlocked) 1539 return -EAGAIN; 1540 if (r) 1541 return r; 1542 1543 r = follow_pfn(vma, addr, &pfn); 1544 if (r) 1545 return r; 1546 1547 } 1548 1549 if (writable) 1550 *writable = true; 1551 1552 /* 1553 * Get a reference here because callers of *hva_to_pfn* and 1554 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1555 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1556 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1557 * simply do nothing for reserved pfns. 1558 * 1559 * Whoever called remap_pfn_range is also going to call e.g. 1560 * unmap_mapping_range before the underlying pages are freed, 1561 * causing a call to our MMU notifier. 1562 */ 1563 kvm_get_pfn(pfn); 1564 1565 *p_pfn = pfn; 1566 return 0; 1567 } 1568 1569 /* 1570 * Pin guest page in memory and return its pfn. 1571 * @addr: host virtual address which maps memory to the guest 1572 * @atomic: whether this function can sleep 1573 * @async: whether this function need to wait IO complete if the 1574 * host page is not in the memory 1575 * @write_fault: whether we should get a writable host page 1576 * @writable: whether it allows to map a writable host page for !@write_fault 1577 * 1578 * The function will map a writable host page for these two cases: 1579 * 1): @write_fault = true 1580 * 2): @write_fault = false && @writable, @writable will tell the caller 1581 * whether the mapping is writable. 1582 */ 1583 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1584 bool write_fault, bool *writable) 1585 { 1586 struct vm_area_struct *vma; 1587 kvm_pfn_t pfn = 0; 1588 int npages, r; 1589 1590 /* we can do it either atomically or asynchronously, not both */ 1591 BUG_ON(atomic && async); 1592 1593 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1594 return pfn; 1595 1596 if (atomic) 1597 return KVM_PFN_ERR_FAULT; 1598 1599 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1600 if (npages == 1) 1601 return pfn; 1602 1603 down_read(¤t->mm->mmap_sem); 1604 if (npages == -EHWPOISON || 1605 (!async && check_user_page_hwpoison(addr))) { 1606 pfn = KVM_PFN_ERR_HWPOISON; 1607 goto exit; 1608 } 1609 1610 retry: 1611 vma = find_vma_intersection(current->mm, addr, addr + 1); 1612 1613 if (vma == NULL) 1614 pfn = KVM_PFN_ERR_FAULT; 1615 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1616 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1617 if (r == -EAGAIN) 1618 goto retry; 1619 if (r < 0) 1620 pfn = KVM_PFN_ERR_FAULT; 1621 } else { 1622 if (async && vma_is_valid(vma, write_fault)) 1623 *async = true; 1624 pfn = KVM_PFN_ERR_FAULT; 1625 } 1626 exit: 1627 up_read(¤t->mm->mmap_sem); 1628 return pfn; 1629 } 1630 1631 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1632 bool atomic, bool *async, bool write_fault, 1633 bool *writable) 1634 { 1635 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1636 1637 if (addr == KVM_HVA_ERR_RO_BAD) { 1638 if (writable) 1639 *writable = false; 1640 return KVM_PFN_ERR_RO_FAULT; 1641 } 1642 1643 if (kvm_is_error_hva(addr)) { 1644 if (writable) 1645 *writable = false; 1646 return KVM_PFN_NOSLOT; 1647 } 1648 1649 /* Do not map writable pfn in the readonly memslot. */ 1650 if (writable && memslot_is_readonly(slot)) { 1651 *writable = false; 1652 writable = NULL; 1653 } 1654 1655 return hva_to_pfn(addr, atomic, async, write_fault, 1656 writable); 1657 } 1658 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1659 1660 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1661 bool *writable) 1662 { 1663 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1664 write_fault, writable); 1665 } 1666 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1667 1668 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1669 { 1670 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1671 } 1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1673 1674 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1675 { 1676 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1677 } 1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1679 1680 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1681 { 1682 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1683 } 1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1685 1686 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1687 { 1688 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1689 } 1690 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1691 1692 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1693 { 1694 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1695 } 1696 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1697 1698 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1699 { 1700 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1701 } 1702 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1703 1704 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1705 struct page **pages, int nr_pages) 1706 { 1707 unsigned long addr; 1708 gfn_t entry = 0; 1709 1710 addr = gfn_to_hva_many(slot, gfn, &entry); 1711 if (kvm_is_error_hva(addr)) 1712 return -1; 1713 1714 if (entry < nr_pages) 1715 return 0; 1716 1717 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1718 } 1719 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1720 1721 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1722 { 1723 if (is_error_noslot_pfn(pfn)) 1724 return KVM_ERR_PTR_BAD_PAGE; 1725 1726 if (kvm_is_reserved_pfn(pfn)) { 1727 WARN_ON(1); 1728 return KVM_ERR_PTR_BAD_PAGE; 1729 } 1730 1731 return pfn_to_page(pfn); 1732 } 1733 1734 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1735 { 1736 kvm_pfn_t pfn; 1737 1738 pfn = gfn_to_pfn(kvm, gfn); 1739 1740 return kvm_pfn_to_page(pfn); 1741 } 1742 EXPORT_SYMBOL_GPL(gfn_to_page); 1743 1744 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1745 { 1746 kvm_pfn_t pfn; 1747 1748 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1749 1750 return kvm_pfn_to_page(pfn); 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1753 1754 void kvm_release_page_clean(struct page *page) 1755 { 1756 WARN_ON(is_error_page(page)); 1757 1758 kvm_release_pfn_clean(page_to_pfn(page)); 1759 } 1760 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1761 1762 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1763 { 1764 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1765 put_page(pfn_to_page(pfn)); 1766 } 1767 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1768 1769 void kvm_release_page_dirty(struct page *page) 1770 { 1771 WARN_ON(is_error_page(page)); 1772 1773 kvm_release_pfn_dirty(page_to_pfn(page)); 1774 } 1775 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1776 1777 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1778 { 1779 kvm_set_pfn_dirty(pfn); 1780 kvm_release_pfn_clean(pfn); 1781 } 1782 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1783 1784 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1785 { 1786 if (!kvm_is_reserved_pfn(pfn)) { 1787 struct page *page = pfn_to_page(pfn); 1788 1789 if (!PageReserved(page)) 1790 SetPageDirty(page); 1791 } 1792 } 1793 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1794 1795 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1796 { 1797 if (!kvm_is_reserved_pfn(pfn)) 1798 mark_page_accessed(pfn_to_page(pfn)); 1799 } 1800 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1801 1802 void kvm_get_pfn(kvm_pfn_t pfn) 1803 { 1804 if (!kvm_is_reserved_pfn(pfn)) 1805 get_page(pfn_to_page(pfn)); 1806 } 1807 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1808 1809 static int next_segment(unsigned long len, int offset) 1810 { 1811 if (len > PAGE_SIZE - offset) 1812 return PAGE_SIZE - offset; 1813 else 1814 return len; 1815 } 1816 1817 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1818 void *data, int offset, int len) 1819 { 1820 int r; 1821 unsigned long addr; 1822 1823 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1824 if (kvm_is_error_hva(addr)) 1825 return -EFAULT; 1826 r = __copy_from_user(data, (void __user *)addr + offset, len); 1827 if (r) 1828 return -EFAULT; 1829 return 0; 1830 } 1831 1832 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1833 int len) 1834 { 1835 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1836 1837 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1838 } 1839 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1840 1841 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1842 int offset, int len) 1843 { 1844 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1845 1846 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1847 } 1848 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1849 1850 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1851 { 1852 gfn_t gfn = gpa >> PAGE_SHIFT; 1853 int seg; 1854 int offset = offset_in_page(gpa); 1855 int ret; 1856 1857 while ((seg = next_segment(len, offset)) != 0) { 1858 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1859 if (ret < 0) 1860 return ret; 1861 offset = 0; 1862 len -= seg; 1863 data += seg; 1864 ++gfn; 1865 } 1866 return 0; 1867 } 1868 EXPORT_SYMBOL_GPL(kvm_read_guest); 1869 1870 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1871 { 1872 gfn_t gfn = gpa >> PAGE_SHIFT; 1873 int seg; 1874 int offset = offset_in_page(gpa); 1875 int ret; 1876 1877 while ((seg = next_segment(len, offset)) != 0) { 1878 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1879 if (ret < 0) 1880 return ret; 1881 offset = 0; 1882 len -= seg; 1883 data += seg; 1884 ++gfn; 1885 } 1886 return 0; 1887 } 1888 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1889 1890 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1891 void *data, int offset, unsigned long len) 1892 { 1893 int r; 1894 unsigned long addr; 1895 1896 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1897 if (kvm_is_error_hva(addr)) 1898 return -EFAULT; 1899 pagefault_disable(); 1900 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1901 pagefault_enable(); 1902 if (r) 1903 return -EFAULT; 1904 return 0; 1905 } 1906 1907 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1908 unsigned long len) 1909 { 1910 gfn_t gfn = gpa >> PAGE_SHIFT; 1911 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1912 int offset = offset_in_page(gpa); 1913 1914 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1915 } 1916 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1917 1918 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1919 void *data, unsigned long len) 1920 { 1921 gfn_t gfn = gpa >> PAGE_SHIFT; 1922 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1923 int offset = offset_in_page(gpa); 1924 1925 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1926 } 1927 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1928 1929 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1930 const void *data, int offset, int len) 1931 { 1932 int r; 1933 unsigned long addr; 1934 1935 addr = gfn_to_hva_memslot(memslot, gfn); 1936 if (kvm_is_error_hva(addr)) 1937 return -EFAULT; 1938 r = __copy_to_user((void __user *)addr + offset, data, len); 1939 if (r) 1940 return -EFAULT; 1941 mark_page_dirty_in_slot(memslot, gfn); 1942 return 0; 1943 } 1944 1945 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1946 const void *data, int offset, int len) 1947 { 1948 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1949 1950 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1951 } 1952 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1953 1954 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1955 const void *data, int offset, int len) 1956 { 1957 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1958 1959 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1960 } 1961 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1962 1963 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1964 unsigned long len) 1965 { 1966 gfn_t gfn = gpa >> PAGE_SHIFT; 1967 int seg; 1968 int offset = offset_in_page(gpa); 1969 int ret; 1970 1971 while ((seg = next_segment(len, offset)) != 0) { 1972 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1973 if (ret < 0) 1974 return ret; 1975 offset = 0; 1976 len -= seg; 1977 data += seg; 1978 ++gfn; 1979 } 1980 return 0; 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_write_guest); 1983 1984 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1985 unsigned long len) 1986 { 1987 gfn_t gfn = gpa >> PAGE_SHIFT; 1988 int seg; 1989 int offset = offset_in_page(gpa); 1990 int ret; 1991 1992 while ((seg = next_segment(len, offset)) != 0) { 1993 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1994 if (ret < 0) 1995 return ret; 1996 offset = 0; 1997 len -= seg; 1998 data += seg; 1999 ++gfn; 2000 } 2001 return 0; 2002 } 2003 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2004 2005 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2006 struct gfn_to_hva_cache *ghc, 2007 gpa_t gpa, unsigned long len) 2008 { 2009 int offset = offset_in_page(gpa); 2010 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2011 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2012 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2013 gfn_t nr_pages_avail; 2014 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2015 2016 ghc->gpa = gpa; 2017 ghc->generation = slots->generation; 2018 ghc->len = len; 2019 ghc->hva = KVM_HVA_ERR_BAD; 2020 2021 /* 2022 * If the requested region crosses two memslots, we still 2023 * verify that the entire region is valid here. 2024 */ 2025 while (!r && start_gfn <= end_gfn) { 2026 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2027 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2028 &nr_pages_avail); 2029 if (kvm_is_error_hva(ghc->hva)) 2030 r = -EFAULT; 2031 start_gfn += nr_pages_avail; 2032 } 2033 2034 /* Use the slow path for cross page reads and writes. */ 2035 if (!r && nr_pages_needed == 1) 2036 ghc->hva += offset; 2037 else 2038 ghc->memslot = NULL; 2039 2040 return r; 2041 } 2042 2043 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2044 gpa_t gpa, unsigned long len) 2045 { 2046 struct kvm_memslots *slots = kvm_memslots(kvm); 2047 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2048 } 2049 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2050 2051 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2052 void *data, unsigned int offset, 2053 unsigned long len) 2054 { 2055 struct kvm_memslots *slots = kvm_memslots(kvm); 2056 int r; 2057 gpa_t gpa = ghc->gpa + offset; 2058 2059 BUG_ON(len + offset > ghc->len); 2060 2061 if (slots->generation != ghc->generation) 2062 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2063 2064 if (unlikely(!ghc->memslot)) 2065 return kvm_write_guest(kvm, gpa, data, len); 2066 2067 if (kvm_is_error_hva(ghc->hva)) 2068 return -EFAULT; 2069 2070 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2071 if (r) 2072 return -EFAULT; 2073 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2074 2075 return 0; 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2078 2079 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2080 void *data, unsigned long len) 2081 { 2082 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2083 } 2084 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2085 2086 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2087 void *data, unsigned long len) 2088 { 2089 struct kvm_memslots *slots = kvm_memslots(kvm); 2090 int r; 2091 2092 BUG_ON(len > ghc->len); 2093 2094 if (slots->generation != ghc->generation) 2095 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2096 2097 if (unlikely(!ghc->memslot)) 2098 return kvm_read_guest(kvm, ghc->gpa, data, len); 2099 2100 if (kvm_is_error_hva(ghc->hva)) 2101 return -EFAULT; 2102 2103 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2104 if (r) 2105 return -EFAULT; 2106 2107 return 0; 2108 } 2109 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2110 2111 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2112 { 2113 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2114 2115 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2118 2119 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2120 { 2121 gfn_t gfn = gpa >> PAGE_SHIFT; 2122 int seg; 2123 int offset = offset_in_page(gpa); 2124 int ret; 2125 2126 while ((seg = next_segment(len, offset)) != 0) { 2127 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2128 if (ret < 0) 2129 return ret; 2130 offset = 0; 2131 len -= seg; 2132 ++gfn; 2133 } 2134 return 0; 2135 } 2136 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2137 2138 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2139 gfn_t gfn) 2140 { 2141 if (memslot && memslot->dirty_bitmap) { 2142 unsigned long rel_gfn = gfn - memslot->base_gfn; 2143 2144 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2145 } 2146 } 2147 2148 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2149 { 2150 struct kvm_memory_slot *memslot; 2151 2152 memslot = gfn_to_memslot(kvm, gfn); 2153 mark_page_dirty_in_slot(memslot, gfn); 2154 } 2155 EXPORT_SYMBOL_GPL(mark_page_dirty); 2156 2157 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2158 { 2159 struct kvm_memory_slot *memslot; 2160 2161 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2162 mark_page_dirty_in_slot(memslot, gfn); 2163 } 2164 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2165 2166 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2167 { 2168 if (!vcpu->sigset_active) 2169 return; 2170 2171 /* 2172 * This does a lockless modification of ->real_blocked, which is fine 2173 * because, only current can change ->real_blocked and all readers of 2174 * ->real_blocked don't care as long ->real_blocked is always a subset 2175 * of ->blocked. 2176 */ 2177 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2178 } 2179 2180 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2181 { 2182 if (!vcpu->sigset_active) 2183 return; 2184 2185 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2186 sigemptyset(¤t->real_blocked); 2187 } 2188 2189 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2190 { 2191 unsigned int old, val, grow, grow_start; 2192 2193 old = val = vcpu->halt_poll_ns; 2194 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2195 grow = READ_ONCE(halt_poll_ns_grow); 2196 if (!grow) 2197 goto out; 2198 2199 val *= grow; 2200 if (val < grow_start) 2201 val = grow_start; 2202 2203 if (val > halt_poll_ns) 2204 val = halt_poll_ns; 2205 2206 vcpu->halt_poll_ns = val; 2207 out: 2208 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2209 } 2210 2211 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2212 { 2213 unsigned int old, val, shrink; 2214 2215 old = val = vcpu->halt_poll_ns; 2216 shrink = READ_ONCE(halt_poll_ns_shrink); 2217 if (shrink == 0) 2218 val = 0; 2219 else 2220 val /= shrink; 2221 2222 vcpu->halt_poll_ns = val; 2223 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2224 } 2225 2226 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2227 { 2228 int ret = -EINTR; 2229 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2230 2231 if (kvm_arch_vcpu_runnable(vcpu)) { 2232 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2233 goto out; 2234 } 2235 if (kvm_cpu_has_pending_timer(vcpu)) 2236 goto out; 2237 if (signal_pending(current)) 2238 goto out; 2239 2240 ret = 0; 2241 out: 2242 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2243 return ret; 2244 } 2245 2246 /* 2247 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2248 */ 2249 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2250 { 2251 ktime_t start, cur; 2252 DECLARE_SWAITQUEUE(wait); 2253 bool waited = false; 2254 u64 block_ns; 2255 2256 start = cur = ktime_get(); 2257 if (vcpu->halt_poll_ns) { 2258 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2259 2260 ++vcpu->stat.halt_attempted_poll; 2261 do { 2262 /* 2263 * This sets KVM_REQ_UNHALT if an interrupt 2264 * arrives. 2265 */ 2266 if (kvm_vcpu_check_block(vcpu) < 0) { 2267 ++vcpu->stat.halt_successful_poll; 2268 if (!vcpu_valid_wakeup(vcpu)) 2269 ++vcpu->stat.halt_poll_invalid; 2270 goto out; 2271 } 2272 cur = ktime_get(); 2273 } while (single_task_running() && ktime_before(cur, stop)); 2274 } 2275 2276 kvm_arch_vcpu_blocking(vcpu); 2277 2278 for (;;) { 2279 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2280 2281 if (kvm_vcpu_check_block(vcpu) < 0) 2282 break; 2283 2284 waited = true; 2285 schedule(); 2286 } 2287 2288 finish_swait(&vcpu->wq, &wait); 2289 cur = ktime_get(); 2290 2291 kvm_arch_vcpu_unblocking(vcpu); 2292 out: 2293 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2294 2295 if (!vcpu_valid_wakeup(vcpu)) 2296 shrink_halt_poll_ns(vcpu); 2297 else if (halt_poll_ns) { 2298 if (block_ns <= vcpu->halt_poll_ns) 2299 ; 2300 /* we had a long block, shrink polling */ 2301 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2302 shrink_halt_poll_ns(vcpu); 2303 /* we had a short halt and our poll time is too small */ 2304 else if (vcpu->halt_poll_ns < halt_poll_ns && 2305 block_ns < halt_poll_ns) 2306 grow_halt_poll_ns(vcpu); 2307 } else 2308 vcpu->halt_poll_ns = 0; 2309 2310 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2311 kvm_arch_vcpu_block_finish(vcpu); 2312 } 2313 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2314 2315 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2316 { 2317 struct swait_queue_head *wqp; 2318 2319 wqp = kvm_arch_vcpu_wq(vcpu); 2320 if (swq_has_sleeper(wqp)) { 2321 swake_up_one(wqp); 2322 ++vcpu->stat.halt_wakeup; 2323 return true; 2324 } 2325 2326 return false; 2327 } 2328 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2329 2330 #ifndef CONFIG_S390 2331 /* 2332 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2333 */ 2334 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2335 { 2336 int me; 2337 int cpu = vcpu->cpu; 2338 2339 if (kvm_vcpu_wake_up(vcpu)) 2340 return; 2341 2342 me = get_cpu(); 2343 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2344 if (kvm_arch_vcpu_should_kick(vcpu)) 2345 smp_send_reschedule(cpu); 2346 put_cpu(); 2347 } 2348 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2349 #endif /* !CONFIG_S390 */ 2350 2351 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2352 { 2353 struct pid *pid; 2354 struct task_struct *task = NULL; 2355 int ret = 0; 2356 2357 rcu_read_lock(); 2358 pid = rcu_dereference(target->pid); 2359 if (pid) 2360 task = get_pid_task(pid, PIDTYPE_PID); 2361 rcu_read_unlock(); 2362 if (!task) 2363 return ret; 2364 ret = yield_to(task, 1); 2365 put_task_struct(task); 2366 2367 return ret; 2368 } 2369 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2370 2371 /* 2372 * Helper that checks whether a VCPU is eligible for directed yield. 2373 * Most eligible candidate to yield is decided by following heuristics: 2374 * 2375 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2376 * (preempted lock holder), indicated by @in_spin_loop. 2377 * Set at the beiginning and cleared at the end of interception/PLE handler. 2378 * 2379 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2380 * chance last time (mostly it has become eligible now since we have probably 2381 * yielded to lockholder in last iteration. This is done by toggling 2382 * @dy_eligible each time a VCPU checked for eligibility.) 2383 * 2384 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2385 * to preempted lock-holder could result in wrong VCPU selection and CPU 2386 * burning. Giving priority for a potential lock-holder increases lock 2387 * progress. 2388 * 2389 * Since algorithm is based on heuristics, accessing another VCPU data without 2390 * locking does not harm. It may result in trying to yield to same VCPU, fail 2391 * and continue with next VCPU and so on. 2392 */ 2393 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2394 { 2395 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2396 bool eligible; 2397 2398 eligible = !vcpu->spin_loop.in_spin_loop || 2399 vcpu->spin_loop.dy_eligible; 2400 2401 if (vcpu->spin_loop.in_spin_loop) 2402 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2403 2404 return eligible; 2405 #else 2406 return true; 2407 #endif 2408 } 2409 2410 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2411 { 2412 struct kvm *kvm = me->kvm; 2413 struct kvm_vcpu *vcpu; 2414 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2415 int yielded = 0; 2416 int try = 3; 2417 int pass; 2418 int i; 2419 2420 kvm_vcpu_set_in_spin_loop(me, true); 2421 /* 2422 * We boost the priority of a VCPU that is runnable but not 2423 * currently running, because it got preempted by something 2424 * else and called schedule in __vcpu_run. Hopefully that 2425 * VCPU is holding the lock that we need and will release it. 2426 * We approximate round-robin by starting at the last boosted VCPU. 2427 */ 2428 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2429 kvm_for_each_vcpu(i, vcpu, kvm) { 2430 if (!pass && i <= last_boosted_vcpu) { 2431 i = last_boosted_vcpu; 2432 continue; 2433 } else if (pass && i > last_boosted_vcpu) 2434 break; 2435 if (!READ_ONCE(vcpu->preempted)) 2436 continue; 2437 if (vcpu == me) 2438 continue; 2439 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2440 continue; 2441 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2442 continue; 2443 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2444 continue; 2445 2446 yielded = kvm_vcpu_yield_to(vcpu); 2447 if (yielded > 0) { 2448 kvm->last_boosted_vcpu = i; 2449 break; 2450 } else if (yielded < 0) { 2451 try--; 2452 if (!try) 2453 break; 2454 } 2455 } 2456 } 2457 kvm_vcpu_set_in_spin_loop(me, false); 2458 2459 /* Ensure vcpu is not eligible during next spinloop */ 2460 kvm_vcpu_set_dy_eligible(me, false); 2461 } 2462 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2463 2464 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2465 { 2466 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2467 struct page *page; 2468 2469 if (vmf->pgoff == 0) 2470 page = virt_to_page(vcpu->run); 2471 #ifdef CONFIG_X86 2472 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2473 page = virt_to_page(vcpu->arch.pio_data); 2474 #endif 2475 #ifdef CONFIG_KVM_MMIO 2476 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2477 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2478 #endif 2479 else 2480 return kvm_arch_vcpu_fault(vcpu, vmf); 2481 get_page(page); 2482 vmf->page = page; 2483 return 0; 2484 } 2485 2486 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2487 .fault = kvm_vcpu_fault, 2488 }; 2489 2490 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2491 { 2492 vma->vm_ops = &kvm_vcpu_vm_ops; 2493 return 0; 2494 } 2495 2496 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2497 { 2498 struct kvm_vcpu *vcpu = filp->private_data; 2499 2500 debugfs_remove_recursive(vcpu->debugfs_dentry); 2501 kvm_put_kvm(vcpu->kvm); 2502 return 0; 2503 } 2504 2505 static struct file_operations kvm_vcpu_fops = { 2506 .release = kvm_vcpu_release, 2507 .unlocked_ioctl = kvm_vcpu_ioctl, 2508 .mmap = kvm_vcpu_mmap, 2509 .llseek = noop_llseek, 2510 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2511 }; 2512 2513 /* 2514 * Allocates an inode for the vcpu. 2515 */ 2516 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2517 { 2518 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2519 2520 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2521 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2522 } 2523 2524 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2525 { 2526 char dir_name[ITOA_MAX_LEN * 2]; 2527 int ret; 2528 2529 if (!kvm_arch_has_vcpu_debugfs()) 2530 return 0; 2531 2532 if (!debugfs_initialized()) 2533 return 0; 2534 2535 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2536 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2537 vcpu->kvm->debugfs_dentry); 2538 if (!vcpu->debugfs_dentry) 2539 return -ENOMEM; 2540 2541 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2542 if (ret < 0) { 2543 debugfs_remove_recursive(vcpu->debugfs_dentry); 2544 return ret; 2545 } 2546 2547 return 0; 2548 } 2549 2550 /* 2551 * Creates some virtual cpus. Good luck creating more than one. 2552 */ 2553 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2554 { 2555 int r; 2556 struct kvm_vcpu *vcpu; 2557 2558 if (id >= KVM_MAX_VCPU_ID) 2559 return -EINVAL; 2560 2561 mutex_lock(&kvm->lock); 2562 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2563 mutex_unlock(&kvm->lock); 2564 return -EINVAL; 2565 } 2566 2567 kvm->created_vcpus++; 2568 mutex_unlock(&kvm->lock); 2569 2570 vcpu = kvm_arch_vcpu_create(kvm, id); 2571 if (IS_ERR(vcpu)) { 2572 r = PTR_ERR(vcpu); 2573 goto vcpu_decrement; 2574 } 2575 2576 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2577 2578 r = kvm_arch_vcpu_setup(vcpu); 2579 if (r) 2580 goto vcpu_destroy; 2581 2582 r = kvm_create_vcpu_debugfs(vcpu); 2583 if (r) 2584 goto vcpu_destroy; 2585 2586 mutex_lock(&kvm->lock); 2587 if (kvm_get_vcpu_by_id(kvm, id)) { 2588 r = -EEXIST; 2589 goto unlock_vcpu_destroy; 2590 } 2591 2592 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2593 2594 /* Now it's all set up, let userspace reach it */ 2595 kvm_get_kvm(kvm); 2596 r = create_vcpu_fd(vcpu); 2597 if (r < 0) { 2598 kvm_put_kvm(kvm); 2599 goto unlock_vcpu_destroy; 2600 } 2601 2602 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2603 2604 /* 2605 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2606 * before kvm->online_vcpu's incremented value. 2607 */ 2608 smp_wmb(); 2609 atomic_inc(&kvm->online_vcpus); 2610 2611 mutex_unlock(&kvm->lock); 2612 kvm_arch_vcpu_postcreate(vcpu); 2613 return r; 2614 2615 unlock_vcpu_destroy: 2616 mutex_unlock(&kvm->lock); 2617 debugfs_remove_recursive(vcpu->debugfs_dentry); 2618 vcpu_destroy: 2619 kvm_arch_vcpu_destroy(vcpu); 2620 vcpu_decrement: 2621 mutex_lock(&kvm->lock); 2622 kvm->created_vcpus--; 2623 mutex_unlock(&kvm->lock); 2624 return r; 2625 } 2626 2627 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2628 { 2629 if (sigset) { 2630 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2631 vcpu->sigset_active = 1; 2632 vcpu->sigset = *sigset; 2633 } else 2634 vcpu->sigset_active = 0; 2635 return 0; 2636 } 2637 2638 static long kvm_vcpu_ioctl(struct file *filp, 2639 unsigned int ioctl, unsigned long arg) 2640 { 2641 struct kvm_vcpu *vcpu = filp->private_data; 2642 void __user *argp = (void __user *)arg; 2643 int r; 2644 struct kvm_fpu *fpu = NULL; 2645 struct kvm_sregs *kvm_sregs = NULL; 2646 2647 if (vcpu->kvm->mm != current->mm) 2648 return -EIO; 2649 2650 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2651 return -EINVAL; 2652 2653 /* 2654 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2655 * execution; mutex_lock() would break them. 2656 */ 2657 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2658 if (r != -ENOIOCTLCMD) 2659 return r; 2660 2661 if (mutex_lock_killable(&vcpu->mutex)) 2662 return -EINTR; 2663 switch (ioctl) { 2664 case KVM_RUN: { 2665 struct pid *oldpid; 2666 r = -EINVAL; 2667 if (arg) 2668 goto out; 2669 oldpid = rcu_access_pointer(vcpu->pid); 2670 if (unlikely(oldpid != task_pid(current))) { 2671 /* The thread running this VCPU changed. */ 2672 struct pid *newpid; 2673 2674 r = kvm_arch_vcpu_run_pid_change(vcpu); 2675 if (r) 2676 break; 2677 2678 newpid = get_task_pid(current, PIDTYPE_PID); 2679 rcu_assign_pointer(vcpu->pid, newpid); 2680 if (oldpid) 2681 synchronize_rcu(); 2682 put_pid(oldpid); 2683 } 2684 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2685 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2686 break; 2687 } 2688 case KVM_GET_REGS: { 2689 struct kvm_regs *kvm_regs; 2690 2691 r = -ENOMEM; 2692 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2693 if (!kvm_regs) 2694 goto out; 2695 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2696 if (r) 2697 goto out_free1; 2698 r = -EFAULT; 2699 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2700 goto out_free1; 2701 r = 0; 2702 out_free1: 2703 kfree(kvm_regs); 2704 break; 2705 } 2706 case KVM_SET_REGS: { 2707 struct kvm_regs *kvm_regs; 2708 2709 r = -ENOMEM; 2710 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2711 if (IS_ERR(kvm_regs)) { 2712 r = PTR_ERR(kvm_regs); 2713 goto out; 2714 } 2715 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2716 kfree(kvm_regs); 2717 break; 2718 } 2719 case KVM_GET_SREGS: { 2720 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2721 GFP_KERNEL_ACCOUNT); 2722 r = -ENOMEM; 2723 if (!kvm_sregs) 2724 goto out; 2725 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2726 if (r) 2727 goto out; 2728 r = -EFAULT; 2729 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2730 goto out; 2731 r = 0; 2732 break; 2733 } 2734 case KVM_SET_SREGS: { 2735 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2736 if (IS_ERR(kvm_sregs)) { 2737 r = PTR_ERR(kvm_sregs); 2738 kvm_sregs = NULL; 2739 goto out; 2740 } 2741 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2742 break; 2743 } 2744 case KVM_GET_MP_STATE: { 2745 struct kvm_mp_state mp_state; 2746 2747 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2748 if (r) 2749 goto out; 2750 r = -EFAULT; 2751 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2752 goto out; 2753 r = 0; 2754 break; 2755 } 2756 case KVM_SET_MP_STATE: { 2757 struct kvm_mp_state mp_state; 2758 2759 r = -EFAULT; 2760 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2761 goto out; 2762 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2763 break; 2764 } 2765 case KVM_TRANSLATE: { 2766 struct kvm_translation tr; 2767 2768 r = -EFAULT; 2769 if (copy_from_user(&tr, argp, sizeof(tr))) 2770 goto out; 2771 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2772 if (r) 2773 goto out; 2774 r = -EFAULT; 2775 if (copy_to_user(argp, &tr, sizeof(tr))) 2776 goto out; 2777 r = 0; 2778 break; 2779 } 2780 case KVM_SET_GUEST_DEBUG: { 2781 struct kvm_guest_debug dbg; 2782 2783 r = -EFAULT; 2784 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2785 goto out; 2786 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2787 break; 2788 } 2789 case KVM_SET_SIGNAL_MASK: { 2790 struct kvm_signal_mask __user *sigmask_arg = argp; 2791 struct kvm_signal_mask kvm_sigmask; 2792 sigset_t sigset, *p; 2793 2794 p = NULL; 2795 if (argp) { 2796 r = -EFAULT; 2797 if (copy_from_user(&kvm_sigmask, argp, 2798 sizeof(kvm_sigmask))) 2799 goto out; 2800 r = -EINVAL; 2801 if (kvm_sigmask.len != sizeof(sigset)) 2802 goto out; 2803 r = -EFAULT; 2804 if (copy_from_user(&sigset, sigmask_arg->sigset, 2805 sizeof(sigset))) 2806 goto out; 2807 p = &sigset; 2808 } 2809 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2810 break; 2811 } 2812 case KVM_GET_FPU: { 2813 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2814 r = -ENOMEM; 2815 if (!fpu) 2816 goto out; 2817 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2818 if (r) 2819 goto out; 2820 r = -EFAULT; 2821 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2822 goto out; 2823 r = 0; 2824 break; 2825 } 2826 case KVM_SET_FPU: { 2827 fpu = memdup_user(argp, sizeof(*fpu)); 2828 if (IS_ERR(fpu)) { 2829 r = PTR_ERR(fpu); 2830 fpu = NULL; 2831 goto out; 2832 } 2833 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2834 break; 2835 } 2836 default: 2837 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2838 } 2839 out: 2840 mutex_unlock(&vcpu->mutex); 2841 kfree(fpu); 2842 kfree(kvm_sregs); 2843 return r; 2844 } 2845 2846 #ifdef CONFIG_KVM_COMPAT 2847 static long kvm_vcpu_compat_ioctl(struct file *filp, 2848 unsigned int ioctl, unsigned long arg) 2849 { 2850 struct kvm_vcpu *vcpu = filp->private_data; 2851 void __user *argp = compat_ptr(arg); 2852 int r; 2853 2854 if (vcpu->kvm->mm != current->mm) 2855 return -EIO; 2856 2857 switch (ioctl) { 2858 case KVM_SET_SIGNAL_MASK: { 2859 struct kvm_signal_mask __user *sigmask_arg = argp; 2860 struct kvm_signal_mask kvm_sigmask; 2861 sigset_t sigset; 2862 2863 if (argp) { 2864 r = -EFAULT; 2865 if (copy_from_user(&kvm_sigmask, argp, 2866 sizeof(kvm_sigmask))) 2867 goto out; 2868 r = -EINVAL; 2869 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2870 goto out; 2871 r = -EFAULT; 2872 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2873 goto out; 2874 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2875 } else 2876 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2877 break; 2878 } 2879 default: 2880 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2881 } 2882 2883 out: 2884 return r; 2885 } 2886 #endif 2887 2888 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2889 int (*accessor)(struct kvm_device *dev, 2890 struct kvm_device_attr *attr), 2891 unsigned long arg) 2892 { 2893 struct kvm_device_attr attr; 2894 2895 if (!accessor) 2896 return -EPERM; 2897 2898 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2899 return -EFAULT; 2900 2901 return accessor(dev, &attr); 2902 } 2903 2904 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2905 unsigned long arg) 2906 { 2907 struct kvm_device *dev = filp->private_data; 2908 2909 if (dev->kvm->mm != current->mm) 2910 return -EIO; 2911 2912 switch (ioctl) { 2913 case KVM_SET_DEVICE_ATTR: 2914 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2915 case KVM_GET_DEVICE_ATTR: 2916 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2917 case KVM_HAS_DEVICE_ATTR: 2918 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2919 default: 2920 if (dev->ops->ioctl) 2921 return dev->ops->ioctl(dev, ioctl, arg); 2922 2923 return -ENOTTY; 2924 } 2925 } 2926 2927 static int kvm_device_release(struct inode *inode, struct file *filp) 2928 { 2929 struct kvm_device *dev = filp->private_data; 2930 struct kvm *kvm = dev->kvm; 2931 2932 kvm_put_kvm(kvm); 2933 return 0; 2934 } 2935 2936 static const struct file_operations kvm_device_fops = { 2937 .unlocked_ioctl = kvm_device_ioctl, 2938 .release = kvm_device_release, 2939 KVM_COMPAT(kvm_device_ioctl), 2940 }; 2941 2942 struct kvm_device *kvm_device_from_filp(struct file *filp) 2943 { 2944 if (filp->f_op != &kvm_device_fops) 2945 return NULL; 2946 2947 return filp->private_data; 2948 } 2949 2950 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2951 #ifdef CONFIG_KVM_MPIC 2952 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2953 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2954 #endif 2955 }; 2956 2957 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2958 { 2959 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2960 return -ENOSPC; 2961 2962 if (kvm_device_ops_table[type] != NULL) 2963 return -EEXIST; 2964 2965 kvm_device_ops_table[type] = ops; 2966 return 0; 2967 } 2968 2969 void kvm_unregister_device_ops(u32 type) 2970 { 2971 if (kvm_device_ops_table[type] != NULL) 2972 kvm_device_ops_table[type] = NULL; 2973 } 2974 2975 static int kvm_ioctl_create_device(struct kvm *kvm, 2976 struct kvm_create_device *cd) 2977 { 2978 struct kvm_device_ops *ops = NULL; 2979 struct kvm_device *dev; 2980 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2981 int type; 2982 int ret; 2983 2984 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2985 return -ENODEV; 2986 2987 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 2988 ops = kvm_device_ops_table[type]; 2989 if (ops == NULL) 2990 return -ENODEV; 2991 2992 if (test) 2993 return 0; 2994 2995 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 2996 if (!dev) 2997 return -ENOMEM; 2998 2999 dev->ops = ops; 3000 dev->kvm = kvm; 3001 3002 mutex_lock(&kvm->lock); 3003 ret = ops->create(dev, type); 3004 if (ret < 0) { 3005 mutex_unlock(&kvm->lock); 3006 kfree(dev); 3007 return ret; 3008 } 3009 list_add(&dev->vm_node, &kvm->devices); 3010 mutex_unlock(&kvm->lock); 3011 3012 if (ops->init) 3013 ops->init(dev); 3014 3015 kvm_get_kvm(kvm); 3016 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3017 if (ret < 0) { 3018 kvm_put_kvm(kvm); 3019 mutex_lock(&kvm->lock); 3020 list_del(&dev->vm_node); 3021 mutex_unlock(&kvm->lock); 3022 ops->destroy(dev); 3023 return ret; 3024 } 3025 3026 cd->fd = ret; 3027 return 0; 3028 } 3029 3030 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3031 { 3032 switch (arg) { 3033 case KVM_CAP_USER_MEMORY: 3034 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3035 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3036 case KVM_CAP_INTERNAL_ERROR_DATA: 3037 #ifdef CONFIG_HAVE_KVM_MSI 3038 case KVM_CAP_SIGNAL_MSI: 3039 #endif 3040 #ifdef CONFIG_HAVE_KVM_IRQFD 3041 case KVM_CAP_IRQFD: 3042 case KVM_CAP_IRQFD_RESAMPLE: 3043 #endif 3044 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3045 case KVM_CAP_CHECK_EXTENSION_VM: 3046 case KVM_CAP_ENABLE_CAP_VM: 3047 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3048 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3049 #endif 3050 return 1; 3051 #ifdef CONFIG_KVM_MMIO 3052 case KVM_CAP_COALESCED_MMIO: 3053 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3054 case KVM_CAP_COALESCED_PIO: 3055 return 1; 3056 #endif 3057 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3058 case KVM_CAP_IRQ_ROUTING: 3059 return KVM_MAX_IRQ_ROUTES; 3060 #endif 3061 #if KVM_ADDRESS_SPACE_NUM > 1 3062 case KVM_CAP_MULTI_ADDRESS_SPACE: 3063 return KVM_ADDRESS_SPACE_NUM; 3064 #endif 3065 case KVM_CAP_MAX_VCPU_ID: 3066 return KVM_MAX_VCPU_ID; 3067 default: 3068 break; 3069 } 3070 return kvm_vm_ioctl_check_extension(kvm, arg); 3071 } 3072 3073 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3074 struct kvm_enable_cap *cap) 3075 { 3076 return -EINVAL; 3077 } 3078 3079 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3080 struct kvm_enable_cap *cap) 3081 { 3082 switch (cap->cap) { 3083 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3084 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3085 if (cap->flags || (cap->args[0] & ~1)) 3086 return -EINVAL; 3087 kvm->manual_dirty_log_protect = cap->args[0]; 3088 return 0; 3089 #endif 3090 default: 3091 return kvm_vm_ioctl_enable_cap(kvm, cap); 3092 } 3093 } 3094 3095 static long kvm_vm_ioctl(struct file *filp, 3096 unsigned int ioctl, unsigned long arg) 3097 { 3098 struct kvm *kvm = filp->private_data; 3099 void __user *argp = (void __user *)arg; 3100 int r; 3101 3102 if (kvm->mm != current->mm) 3103 return -EIO; 3104 switch (ioctl) { 3105 case KVM_CREATE_VCPU: 3106 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3107 break; 3108 case KVM_ENABLE_CAP: { 3109 struct kvm_enable_cap cap; 3110 3111 r = -EFAULT; 3112 if (copy_from_user(&cap, argp, sizeof(cap))) 3113 goto out; 3114 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3115 break; 3116 } 3117 case KVM_SET_USER_MEMORY_REGION: { 3118 struct kvm_userspace_memory_region kvm_userspace_mem; 3119 3120 r = -EFAULT; 3121 if (copy_from_user(&kvm_userspace_mem, argp, 3122 sizeof(kvm_userspace_mem))) 3123 goto out; 3124 3125 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3126 break; 3127 } 3128 case KVM_GET_DIRTY_LOG: { 3129 struct kvm_dirty_log log; 3130 3131 r = -EFAULT; 3132 if (copy_from_user(&log, argp, sizeof(log))) 3133 goto out; 3134 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3135 break; 3136 } 3137 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3138 case KVM_CLEAR_DIRTY_LOG: { 3139 struct kvm_clear_dirty_log log; 3140 3141 r = -EFAULT; 3142 if (copy_from_user(&log, argp, sizeof(log))) 3143 goto out; 3144 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3145 break; 3146 } 3147 #endif 3148 #ifdef CONFIG_KVM_MMIO 3149 case KVM_REGISTER_COALESCED_MMIO: { 3150 struct kvm_coalesced_mmio_zone zone; 3151 3152 r = -EFAULT; 3153 if (copy_from_user(&zone, argp, sizeof(zone))) 3154 goto out; 3155 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3156 break; 3157 } 3158 case KVM_UNREGISTER_COALESCED_MMIO: { 3159 struct kvm_coalesced_mmio_zone zone; 3160 3161 r = -EFAULT; 3162 if (copy_from_user(&zone, argp, sizeof(zone))) 3163 goto out; 3164 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3165 break; 3166 } 3167 #endif 3168 case KVM_IRQFD: { 3169 struct kvm_irqfd data; 3170 3171 r = -EFAULT; 3172 if (copy_from_user(&data, argp, sizeof(data))) 3173 goto out; 3174 r = kvm_irqfd(kvm, &data); 3175 break; 3176 } 3177 case KVM_IOEVENTFD: { 3178 struct kvm_ioeventfd data; 3179 3180 r = -EFAULT; 3181 if (copy_from_user(&data, argp, sizeof(data))) 3182 goto out; 3183 r = kvm_ioeventfd(kvm, &data); 3184 break; 3185 } 3186 #ifdef CONFIG_HAVE_KVM_MSI 3187 case KVM_SIGNAL_MSI: { 3188 struct kvm_msi msi; 3189 3190 r = -EFAULT; 3191 if (copy_from_user(&msi, argp, sizeof(msi))) 3192 goto out; 3193 r = kvm_send_userspace_msi(kvm, &msi); 3194 break; 3195 } 3196 #endif 3197 #ifdef __KVM_HAVE_IRQ_LINE 3198 case KVM_IRQ_LINE_STATUS: 3199 case KVM_IRQ_LINE: { 3200 struct kvm_irq_level irq_event; 3201 3202 r = -EFAULT; 3203 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3204 goto out; 3205 3206 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3207 ioctl == KVM_IRQ_LINE_STATUS); 3208 if (r) 3209 goto out; 3210 3211 r = -EFAULT; 3212 if (ioctl == KVM_IRQ_LINE_STATUS) { 3213 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3214 goto out; 3215 } 3216 3217 r = 0; 3218 break; 3219 } 3220 #endif 3221 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3222 case KVM_SET_GSI_ROUTING: { 3223 struct kvm_irq_routing routing; 3224 struct kvm_irq_routing __user *urouting; 3225 struct kvm_irq_routing_entry *entries = NULL; 3226 3227 r = -EFAULT; 3228 if (copy_from_user(&routing, argp, sizeof(routing))) 3229 goto out; 3230 r = -EINVAL; 3231 if (!kvm_arch_can_set_irq_routing(kvm)) 3232 goto out; 3233 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3234 goto out; 3235 if (routing.flags) 3236 goto out; 3237 if (routing.nr) { 3238 r = -ENOMEM; 3239 entries = vmalloc(array_size(sizeof(*entries), 3240 routing.nr)); 3241 if (!entries) 3242 goto out; 3243 r = -EFAULT; 3244 urouting = argp; 3245 if (copy_from_user(entries, urouting->entries, 3246 routing.nr * sizeof(*entries))) 3247 goto out_free_irq_routing; 3248 } 3249 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3250 routing.flags); 3251 out_free_irq_routing: 3252 vfree(entries); 3253 break; 3254 } 3255 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3256 case KVM_CREATE_DEVICE: { 3257 struct kvm_create_device cd; 3258 3259 r = -EFAULT; 3260 if (copy_from_user(&cd, argp, sizeof(cd))) 3261 goto out; 3262 3263 r = kvm_ioctl_create_device(kvm, &cd); 3264 if (r) 3265 goto out; 3266 3267 r = -EFAULT; 3268 if (copy_to_user(argp, &cd, sizeof(cd))) 3269 goto out; 3270 3271 r = 0; 3272 break; 3273 } 3274 case KVM_CHECK_EXTENSION: 3275 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3276 break; 3277 default: 3278 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3279 } 3280 out: 3281 return r; 3282 } 3283 3284 #ifdef CONFIG_KVM_COMPAT 3285 struct compat_kvm_dirty_log { 3286 __u32 slot; 3287 __u32 padding1; 3288 union { 3289 compat_uptr_t dirty_bitmap; /* one bit per page */ 3290 __u64 padding2; 3291 }; 3292 }; 3293 3294 static long kvm_vm_compat_ioctl(struct file *filp, 3295 unsigned int ioctl, unsigned long arg) 3296 { 3297 struct kvm *kvm = filp->private_data; 3298 int r; 3299 3300 if (kvm->mm != current->mm) 3301 return -EIO; 3302 switch (ioctl) { 3303 case KVM_GET_DIRTY_LOG: { 3304 struct compat_kvm_dirty_log compat_log; 3305 struct kvm_dirty_log log; 3306 3307 if (copy_from_user(&compat_log, (void __user *)arg, 3308 sizeof(compat_log))) 3309 return -EFAULT; 3310 log.slot = compat_log.slot; 3311 log.padding1 = compat_log.padding1; 3312 log.padding2 = compat_log.padding2; 3313 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3314 3315 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3316 break; 3317 } 3318 default: 3319 r = kvm_vm_ioctl(filp, ioctl, arg); 3320 } 3321 return r; 3322 } 3323 #endif 3324 3325 static struct file_operations kvm_vm_fops = { 3326 .release = kvm_vm_release, 3327 .unlocked_ioctl = kvm_vm_ioctl, 3328 .llseek = noop_llseek, 3329 KVM_COMPAT(kvm_vm_compat_ioctl), 3330 }; 3331 3332 static int kvm_dev_ioctl_create_vm(unsigned long type) 3333 { 3334 int r; 3335 struct kvm *kvm; 3336 struct file *file; 3337 3338 kvm = kvm_create_vm(type); 3339 if (IS_ERR(kvm)) 3340 return PTR_ERR(kvm); 3341 #ifdef CONFIG_KVM_MMIO 3342 r = kvm_coalesced_mmio_init(kvm); 3343 if (r < 0) 3344 goto put_kvm; 3345 #endif 3346 r = get_unused_fd_flags(O_CLOEXEC); 3347 if (r < 0) 3348 goto put_kvm; 3349 3350 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3351 if (IS_ERR(file)) { 3352 put_unused_fd(r); 3353 r = PTR_ERR(file); 3354 goto put_kvm; 3355 } 3356 3357 /* 3358 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3359 * already set, with ->release() being kvm_vm_release(). In error 3360 * cases it will be called by the final fput(file) and will take 3361 * care of doing kvm_put_kvm(kvm). 3362 */ 3363 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3364 put_unused_fd(r); 3365 fput(file); 3366 return -ENOMEM; 3367 } 3368 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3369 3370 fd_install(r, file); 3371 return r; 3372 3373 put_kvm: 3374 kvm_put_kvm(kvm); 3375 return r; 3376 } 3377 3378 static long kvm_dev_ioctl(struct file *filp, 3379 unsigned int ioctl, unsigned long arg) 3380 { 3381 long r = -EINVAL; 3382 3383 switch (ioctl) { 3384 case KVM_GET_API_VERSION: 3385 if (arg) 3386 goto out; 3387 r = KVM_API_VERSION; 3388 break; 3389 case KVM_CREATE_VM: 3390 r = kvm_dev_ioctl_create_vm(arg); 3391 break; 3392 case KVM_CHECK_EXTENSION: 3393 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3394 break; 3395 case KVM_GET_VCPU_MMAP_SIZE: 3396 if (arg) 3397 goto out; 3398 r = PAGE_SIZE; /* struct kvm_run */ 3399 #ifdef CONFIG_X86 3400 r += PAGE_SIZE; /* pio data page */ 3401 #endif 3402 #ifdef CONFIG_KVM_MMIO 3403 r += PAGE_SIZE; /* coalesced mmio ring page */ 3404 #endif 3405 break; 3406 case KVM_TRACE_ENABLE: 3407 case KVM_TRACE_PAUSE: 3408 case KVM_TRACE_DISABLE: 3409 r = -EOPNOTSUPP; 3410 break; 3411 default: 3412 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3413 } 3414 out: 3415 return r; 3416 } 3417 3418 static struct file_operations kvm_chardev_ops = { 3419 .unlocked_ioctl = kvm_dev_ioctl, 3420 .llseek = noop_llseek, 3421 KVM_COMPAT(kvm_dev_ioctl), 3422 }; 3423 3424 static struct miscdevice kvm_dev = { 3425 KVM_MINOR, 3426 "kvm", 3427 &kvm_chardev_ops, 3428 }; 3429 3430 static void hardware_enable_nolock(void *junk) 3431 { 3432 int cpu = raw_smp_processor_id(); 3433 int r; 3434 3435 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3436 return; 3437 3438 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3439 3440 r = kvm_arch_hardware_enable(); 3441 3442 if (r) { 3443 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3444 atomic_inc(&hardware_enable_failed); 3445 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3446 } 3447 } 3448 3449 static int kvm_starting_cpu(unsigned int cpu) 3450 { 3451 raw_spin_lock(&kvm_count_lock); 3452 if (kvm_usage_count) 3453 hardware_enable_nolock(NULL); 3454 raw_spin_unlock(&kvm_count_lock); 3455 return 0; 3456 } 3457 3458 static void hardware_disable_nolock(void *junk) 3459 { 3460 int cpu = raw_smp_processor_id(); 3461 3462 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3463 return; 3464 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3465 kvm_arch_hardware_disable(); 3466 } 3467 3468 static int kvm_dying_cpu(unsigned int cpu) 3469 { 3470 raw_spin_lock(&kvm_count_lock); 3471 if (kvm_usage_count) 3472 hardware_disable_nolock(NULL); 3473 raw_spin_unlock(&kvm_count_lock); 3474 return 0; 3475 } 3476 3477 static void hardware_disable_all_nolock(void) 3478 { 3479 BUG_ON(!kvm_usage_count); 3480 3481 kvm_usage_count--; 3482 if (!kvm_usage_count) 3483 on_each_cpu(hardware_disable_nolock, NULL, 1); 3484 } 3485 3486 static void hardware_disable_all(void) 3487 { 3488 raw_spin_lock(&kvm_count_lock); 3489 hardware_disable_all_nolock(); 3490 raw_spin_unlock(&kvm_count_lock); 3491 } 3492 3493 static int hardware_enable_all(void) 3494 { 3495 int r = 0; 3496 3497 raw_spin_lock(&kvm_count_lock); 3498 3499 kvm_usage_count++; 3500 if (kvm_usage_count == 1) { 3501 atomic_set(&hardware_enable_failed, 0); 3502 on_each_cpu(hardware_enable_nolock, NULL, 1); 3503 3504 if (atomic_read(&hardware_enable_failed)) { 3505 hardware_disable_all_nolock(); 3506 r = -EBUSY; 3507 } 3508 } 3509 3510 raw_spin_unlock(&kvm_count_lock); 3511 3512 return r; 3513 } 3514 3515 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3516 void *v) 3517 { 3518 /* 3519 * Some (well, at least mine) BIOSes hang on reboot if 3520 * in vmx root mode. 3521 * 3522 * And Intel TXT required VMX off for all cpu when system shutdown. 3523 */ 3524 pr_info("kvm: exiting hardware virtualization\n"); 3525 kvm_rebooting = true; 3526 on_each_cpu(hardware_disable_nolock, NULL, 1); 3527 return NOTIFY_OK; 3528 } 3529 3530 static struct notifier_block kvm_reboot_notifier = { 3531 .notifier_call = kvm_reboot, 3532 .priority = 0, 3533 }; 3534 3535 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3536 { 3537 int i; 3538 3539 for (i = 0; i < bus->dev_count; i++) { 3540 struct kvm_io_device *pos = bus->range[i].dev; 3541 3542 kvm_iodevice_destructor(pos); 3543 } 3544 kfree(bus); 3545 } 3546 3547 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3548 const struct kvm_io_range *r2) 3549 { 3550 gpa_t addr1 = r1->addr; 3551 gpa_t addr2 = r2->addr; 3552 3553 if (addr1 < addr2) 3554 return -1; 3555 3556 /* If r2->len == 0, match the exact address. If r2->len != 0, 3557 * accept any overlapping write. Any order is acceptable for 3558 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3559 * we process all of them. 3560 */ 3561 if (r2->len) { 3562 addr1 += r1->len; 3563 addr2 += r2->len; 3564 } 3565 3566 if (addr1 > addr2) 3567 return 1; 3568 3569 return 0; 3570 } 3571 3572 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3573 { 3574 return kvm_io_bus_cmp(p1, p2); 3575 } 3576 3577 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3578 gpa_t addr, int len) 3579 { 3580 struct kvm_io_range *range, key; 3581 int off; 3582 3583 key = (struct kvm_io_range) { 3584 .addr = addr, 3585 .len = len, 3586 }; 3587 3588 range = bsearch(&key, bus->range, bus->dev_count, 3589 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3590 if (range == NULL) 3591 return -ENOENT; 3592 3593 off = range - bus->range; 3594 3595 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3596 off--; 3597 3598 return off; 3599 } 3600 3601 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3602 struct kvm_io_range *range, const void *val) 3603 { 3604 int idx; 3605 3606 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3607 if (idx < 0) 3608 return -EOPNOTSUPP; 3609 3610 while (idx < bus->dev_count && 3611 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3612 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3613 range->len, val)) 3614 return idx; 3615 idx++; 3616 } 3617 3618 return -EOPNOTSUPP; 3619 } 3620 3621 /* kvm_io_bus_write - called under kvm->slots_lock */ 3622 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3623 int len, const void *val) 3624 { 3625 struct kvm_io_bus *bus; 3626 struct kvm_io_range range; 3627 int r; 3628 3629 range = (struct kvm_io_range) { 3630 .addr = addr, 3631 .len = len, 3632 }; 3633 3634 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3635 if (!bus) 3636 return -ENOMEM; 3637 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3638 return r < 0 ? r : 0; 3639 } 3640 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3641 3642 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3643 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3644 gpa_t addr, int len, const void *val, long cookie) 3645 { 3646 struct kvm_io_bus *bus; 3647 struct kvm_io_range range; 3648 3649 range = (struct kvm_io_range) { 3650 .addr = addr, 3651 .len = len, 3652 }; 3653 3654 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3655 if (!bus) 3656 return -ENOMEM; 3657 3658 /* First try the device referenced by cookie. */ 3659 if ((cookie >= 0) && (cookie < bus->dev_count) && 3660 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3661 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3662 val)) 3663 return cookie; 3664 3665 /* 3666 * cookie contained garbage; fall back to search and return the 3667 * correct cookie value. 3668 */ 3669 return __kvm_io_bus_write(vcpu, bus, &range, val); 3670 } 3671 3672 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3673 struct kvm_io_range *range, void *val) 3674 { 3675 int idx; 3676 3677 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3678 if (idx < 0) 3679 return -EOPNOTSUPP; 3680 3681 while (idx < bus->dev_count && 3682 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3683 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3684 range->len, val)) 3685 return idx; 3686 idx++; 3687 } 3688 3689 return -EOPNOTSUPP; 3690 } 3691 3692 /* kvm_io_bus_read - called under kvm->slots_lock */ 3693 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3694 int len, void *val) 3695 { 3696 struct kvm_io_bus *bus; 3697 struct kvm_io_range range; 3698 int r; 3699 3700 range = (struct kvm_io_range) { 3701 .addr = addr, 3702 .len = len, 3703 }; 3704 3705 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3706 if (!bus) 3707 return -ENOMEM; 3708 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3709 return r < 0 ? r : 0; 3710 } 3711 3712 /* Caller must hold slots_lock. */ 3713 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3714 int len, struct kvm_io_device *dev) 3715 { 3716 int i; 3717 struct kvm_io_bus *new_bus, *bus; 3718 struct kvm_io_range range; 3719 3720 bus = kvm_get_bus(kvm, bus_idx); 3721 if (!bus) 3722 return -ENOMEM; 3723 3724 /* exclude ioeventfd which is limited by maximum fd */ 3725 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3726 return -ENOSPC; 3727 3728 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3729 GFP_KERNEL_ACCOUNT); 3730 if (!new_bus) 3731 return -ENOMEM; 3732 3733 range = (struct kvm_io_range) { 3734 .addr = addr, 3735 .len = len, 3736 .dev = dev, 3737 }; 3738 3739 for (i = 0; i < bus->dev_count; i++) 3740 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3741 break; 3742 3743 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3744 new_bus->dev_count++; 3745 new_bus->range[i] = range; 3746 memcpy(new_bus->range + i + 1, bus->range + i, 3747 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3748 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3749 synchronize_srcu_expedited(&kvm->srcu); 3750 kfree(bus); 3751 3752 return 0; 3753 } 3754 3755 /* Caller must hold slots_lock. */ 3756 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3757 struct kvm_io_device *dev) 3758 { 3759 int i; 3760 struct kvm_io_bus *new_bus, *bus; 3761 3762 bus = kvm_get_bus(kvm, bus_idx); 3763 if (!bus) 3764 return; 3765 3766 for (i = 0; i < bus->dev_count; i++) 3767 if (bus->range[i].dev == dev) { 3768 break; 3769 } 3770 3771 if (i == bus->dev_count) 3772 return; 3773 3774 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3775 GFP_KERNEL_ACCOUNT); 3776 if (!new_bus) { 3777 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3778 goto broken; 3779 } 3780 3781 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3782 new_bus->dev_count--; 3783 memcpy(new_bus->range + i, bus->range + i + 1, 3784 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3785 3786 broken: 3787 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3788 synchronize_srcu_expedited(&kvm->srcu); 3789 kfree(bus); 3790 return; 3791 } 3792 3793 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3794 gpa_t addr) 3795 { 3796 struct kvm_io_bus *bus; 3797 int dev_idx, srcu_idx; 3798 struct kvm_io_device *iodev = NULL; 3799 3800 srcu_idx = srcu_read_lock(&kvm->srcu); 3801 3802 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3803 if (!bus) 3804 goto out_unlock; 3805 3806 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3807 if (dev_idx < 0) 3808 goto out_unlock; 3809 3810 iodev = bus->range[dev_idx].dev; 3811 3812 out_unlock: 3813 srcu_read_unlock(&kvm->srcu, srcu_idx); 3814 3815 return iodev; 3816 } 3817 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3818 3819 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3820 int (*get)(void *, u64 *), int (*set)(void *, u64), 3821 const char *fmt) 3822 { 3823 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3824 inode->i_private; 3825 3826 /* The debugfs files are a reference to the kvm struct which 3827 * is still valid when kvm_destroy_vm is called. 3828 * To avoid the race between open and the removal of the debugfs 3829 * directory we test against the users count. 3830 */ 3831 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3832 return -ENOENT; 3833 3834 if (simple_attr_open(inode, file, get, set, fmt)) { 3835 kvm_put_kvm(stat_data->kvm); 3836 return -ENOMEM; 3837 } 3838 3839 return 0; 3840 } 3841 3842 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3843 { 3844 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3845 inode->i_private; 3846 3847 simple_attr_release(inode, file); 3848 kvm_put_kvm(stat_data->kvm); 3849 3850 return 0; 3851 } 3852 3853 static int vm_stat_get_per_vm(void *data, u64 *val) 3854 { 3855 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3856 3857 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3858 3859 return 0; 3860 } 3861 3862 static int vm_stat_clear_per_vm(void *data, u64 val) 3863 { 3864 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3865 3866 if (val) 3867 return -EINVAL; 3868 3869 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3870 3871 return 0; 3872 } 3873 3874 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3875 { 3876 __simple_attr_check_format("%llu\n", 0ull); 3877 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3878 vm_stat_clear_per_vm, "%llu\n"); 3879 } 3880 3881 static const struct file_operations vm_stat_get_per_vm_fops = { 3882 .owner = THIS_MODULE, 3883 .open = vm_stat_get_per_vm_open, 3884 .release = kvm_debugfs_release, 3885 .read = simple_attr_read, 3886 .write = simple_attr_write, 3887 .llseek = no_llseek, 3888 }; 3889 3890 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3891 { 3892 int i; 3893 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3894 struct kvm_vcpu *vcpu; 3895 3896 *val = 0; 3897 3898 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3899 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3900 3901 return 0; 3902 } 3903 3904 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3905 { 3906 int i; 3907 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3908 struct kvm_vcpu *vcpu; 3909 3910 if (val) 3911 return -EINVAL; 3912 3913 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3914 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3915 3916 return 0; 3917 } 3918 3919 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3920 { 3921 __simple_attr_check_format("%llu\n", 0ull); 3922 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3923 vcpu_stat_clear_per_vm, "%llu\n"); 3924 } 3925 3926 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3927 .owner = THIS_MODULE, 3928 .open = vcpu_stat_get_per_vm_open, 3929 .release = kvm_debugfs_release, 3930 .read = simple_attr_read, 3931 .write = simple_attr_write, 3932 .llseek = no_llseek, 3933 }; 3934 3935 static const struct file_operations *stat_fops_per_vm[] = { 3936 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3937 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3938 }; 3939 3940 static int vm_stat_get(void *_offset, u64 *val) 3941 { 3942 unsigned offset = (long)_offset; 3943 struct kvm *kvm; 3944 struct kvm_stat_data stat_tmp = {.offset = offset}; 3945 u64 tmp_val; 3946 3947 *val = 0; 3948 spin_lock(&kvm_lock); 3949 list_for_each_entry(kvm, &vm_list, vm_list) { 3950 stat_tmp.kvm = kvm; 3951 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3952 *val += tmp_val; 3953 } 3954 spin_unlock(&kvm_lock); 3955 return 0; 3956 } 3957 3958 static int vm_stat_clear(void *_offset, u64 val) 3959 { 3960 unsigned offset = (long)_offset; 3961 struct kvm *kvm; 3962 struct kvm_stat_data stat_tmp = {.offset = offset}; 3963 3964 if (val) 3965 return -EINVAL; 3966 3967 spin_lock(&kvm_lock); 3968 list_for_each_entry(kvm, &vm_list, vm_list) { 3969 stat_tmp.kvm = kvm; 3970 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3971 } 3972 spin_unlock(&kvm_lock); 3973 3974 return 0; 3975 } 3976 3977 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3978 3979 static int vcpu_stat_get(void *_offset, u64 *val) 3980 { 3981 unsigned offset = (long)_offset; 3982 struct kvm *kvm; 3983 struct kvm_stat_data stat_tmp = {.offset = offset}; 3984 u64 tmp_val; 3985 3986 *val = 0; 3987 spin_lock(&kvm_lock); 3988 list_for_each_entry(kvm, &vm_list, vm_list) { 3989 stat_tmp.kvm = kvm; 3990 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3991 *val += tmp_val; 3992 } 3993 spin_unlock(&kvm_lock); 3994 return 0; 3995 } 3996 3997 static int vcpu_stat_clear(void *_offset, u64 val) 3998 { 3999 unsigned offset = (long)_offset; 4000 struct kvm *kvm; 4001 struct kvm_stat_data stat_tmp = {.offset = offset}; 4002 4003 if (val) 4004 return -EINVAL; 4005 4006 spin_lock(&kvm_lock); 4007 list_for_each_entry(kvm, &vm_list, vm_list) { 4008 stat_tmp.kvm = kvm; 4009 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4010 } 4011 spin_unlock(&kvm_lock); 4012 4013 return 0; 4014 } 4015 4016 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4017 "%llu\n"); 4018 4019 static const struct file_operations *stat_fops[] = { 4020 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4021 [KVM_STAT_VM] = &vm_stat_fops, 4022 }; 4023 4024 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4025 { 4026 struct kobj_uevent_env *env; 4027 unsigned long long created, active; 4028 4029 if (!kvm_dev.this_device || !kvm) 4030 return; 4031 4032 spin_lock(&kvm_lock); 4033 if (type == KVM_EVENT_CREATE_VM) { 4034 kvm_createvm_count++; 4035 kvm_active_vms++; 4036 } else if (type == KVM_EVENT_DESTROY_VM) { 4037 kvm_active_vms--; 4038 } 4039 created = kvm_createvm_count; 4040 active = kvm_active_vms; 4041 spin_unlock(&kvm_lock); 4042 4043 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4044 if (!env) 4045 return; 4046 4047 add_uevent_var(env, "CREATED=%llu", created); 4048 add_uevent_var(env, "COUNT=%llu", active); 4049 4050 if (type == KVM_EVENT_CREATE_VM) { 4051 add_uevent_var(env, "EVENT=create"); 4052 kvm->userspace_pid = task_pid_nr(current); 4053 } else if (type == KVM_EVENT_DESTROY_VM) { 4054 add_uevent_var(env, "EVENT=destroy"); 4055 } 4056 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4057 4058 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4059 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4060 4061 if (p) { 4062 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4063 if (!IS_ERR(tmp)) 4064 add_uevent_var(env, "STATS_PATH=%s", tmp); 4065 kfree(p); 4066 } 4067 } 4068 /* no need for checks, since we are adding at most only 5 keys */ 4069 env->envp[env->envp_idx++] = NULL; 4070 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4071 kfree(env); 4072 } 4073 4074 static void kvm_init_debug(void) 4075 { 4076 struct kvm_stats_debugfs_item *p; 4077 4078 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4079 4080 kvm_debugfs_num_entries = 0; 4081 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4082 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4083 (void *)(long)p->offset, 4084 stat_fops[p->kind]); 4085 } 4086 } 4087 4088 static int kvm_suspend(void) 4089 { 4090 if (kvm_usage_count) 4091 hardware_disable_nolock(NULL); 4092 return 0; 4093 } 4094 4095 static void kvm_resume(void) 4096 { 4097 if (kvm_usage_count) { 4098 lockdep_assert_held(&kvm_count_lock); 4099 hardware_enable_nolock(NULL); 4100 } 4101 } 4102 4103 static struct syscore_ops kvm_syscore_ops = { 4104 .suspend = kvm_suspend, 4105 .resume = kvm_resume, 4106 }; 4107 4108 static inline 4109 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4110 { 4111 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4112 } 4113 4114 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4115 { 4116 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4117 4118 if (vcpu->preempted) 4119 vcpu->preempted = false; 4120 4121 kvm_arch_sched_in(vcpu, cpu); 4122 4123 kvm_arch_vcpu_load(vcpu, cpu); 4124 } 4125 4126 static void kvm_sched_out(struct preempt_notifier *pn, 4127 struct task_struct *next) 4128 { 4129 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4130 4131 if (current->state == TASK_RUNNING) 4132 vcpu->preempted = true; 4133 kvm_arch_vcpu_put(vcpu); 4134 } 4135 4136 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4137 struct module *module) 4138 { 4139 int r; 4140 int cpu; 4141 4142 r = kvm_arch_init(opaque); 4143 if (r) 4144 goto out_fail; 4145 4146 /* 4147 * kvm_arch_init makes sure there's at most one caller 4148 * for architectures that support multiple implementations, 4149 * like intel and amd on x86. 4150 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4151 * conflicts in case kvm is already setup for another implementation. 4152 */ 4153 r = kvm_irqfd_init(); 4154 if (r) 4155 goto out_irqfd; 4156 4157 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4158 r = -ENOMEM; 4159 goto out_free_0; 4160 } 4161 4162 r = kvm_arch_hardware_setup(); 4163 if (r < 0) 4164 goto out_free_0a; 4165 4166 for_each_online_cpu(cpu) { 4167 smp_call_function_single(cpu, 4168 kvm_arch_check_processor_compat, 4169 &r, 1); 4170 if (r < 0) 4171 goto out_free_1; 4172 } 4173 4174 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4175 kvm_starting_cpu, kvm_dying_cpu); 4176 if (r) 4177 goto out_free_2; 4178 register_reboot_notifier(&kvm_reboot_notifier); 4179 4180 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4181 if (!vcpu_align) 4182 vcpu_align = __alignof__(struct kvm_vcpu); 4183 kvm_vcpu_cache = 4184 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4185 SLAB_ACCOUNT, 4186 offsetof(struct kvm_vcpu, arch), 4187 sizeof_field(struct kvm_vcpu, arch), 4188 NULL); 4189 if (!kvm_vcpu_cache) { 4190 r = -ENOMEM; 4191 goto out_free_3; 4192 } 4193 4194 r = kvm_async_pf_init(); 4195 if (r) 4196 goto out_free; 4197 4198 kvm_chardev_ops.owner = module; 4199 kvm_vm_fops.owner = module; 4200 kvm_vcpu_fops.owner = module; 4201 4202 r = misc_register(&kvm_dev); 4203 if (r) { 4204 pr_err("kvm: misc device register failed\n"); 4205 goto out_unreg; 4206 } 4207 4208 register_syscore_ops(&kvm_syscore_ops); 4209 4210 kvm_preempt_ops.sched_in = kvm_sched_in; 4211 kvm_preempt_ops.sched_out = kvm_sched_out; 4212 4213 kvm_init_debug(); 4214 4215 r = kvm_vfio_ops_init(); 4216 WARN_ON(r); 4217 4218 return 0; 4219 4220 out_unreg: 4221 kvm_async_pf_deinit(); 4222 out_free: 4223 kmem_cache_destroy(kvm_vcpu_cache); 4224 out_free_3: 4225 unregister_reboot_notifier(&kvm_reboot_notifier); 4226 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4227 out_free_2: 4228 out_free_1: 4229 kvm_arch_hardware_unsetup(); 4230 out_free_0a: 4231 free_cpumask_var(cpus_hardware_enabled); 4232 out_free_0: 4233 kvm_irqfd_exit(); 4234 out_irqfd: 4235 kvm_arch_exit(); 4236 out_fail: 4237 return r; 4238 } 4239 EXPORT_SYMBOL_GPL(kvm_init); 4240 4241 void kvm_exit(void) 4242 { 4243 debugfs_remove_recursive(kvm_debugfs_dir); 4244 misc_deregister(&kvm_dev); 4245 kmem_cache_destroy(kvm_vcpu_cache); 4246 kvm_async_pf_deinit(); 4247 unregister_syscore_ops(&kvm_syscore_ops); 4248 unregister_reboot_notifier(&kvm_reboot_notifier); 4249 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4250 on_each_cpu(hardware_disable_nolock, NULL, 1); 4251 kvm_arch_hardware_unsetup(); 4252 kvm_arch_exit(); 4253 kvm_irqfd_exit(); 4254 free_cpumask_var(cpus_hardware_enabled); 4255 kvm_vfio_ops_exit(); 4256 } 4257 EXPORT_SYMBOL_GPL(kvm_exit); 4258