xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 8cb5d216)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "mmu_lock.h"
62 #include "vfio.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66 
67 #include <linux/kvm_dirty_ring.h>
68 
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71 
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74 
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89 
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94 
95 /*
96  * Ordering of locks:
97  *
98  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100 
101 DEFINE_MUTEX(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104 
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108 
109 static struct kmem_cache *kvm_vcpu_cache;
110 
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113 
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations stat_fops_per_vm;
119 
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 			   unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 				  unsigned long arg);
125 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 				unsigned long arg) { return -EINVAL; }
136 
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 	return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142 			.open		= kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146 
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148 
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151 
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157 
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 						   unsigned long start, unsigned long end)
160 {
161 }
162 
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 	/*
166 	 * The metadata used by is_zone_device_page() to determine whether or
167 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
169 	 * page_count() is zero to help detect bad usage of this helper.
170 	 */
171 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 		return false;
173 
174 	return is_zone_device_page(pfn_to_page(pfn));
175 }
176 
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 	/*
180 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 	 * perspective they are "normal" pages, albeit with slightly different
182 	 * usage rules.
183 	 */
184 	if (pfn_valid(pfn))
185 		return PageReserved(pfn_to_page(pfn)) &&
186 		       !is_zero_pfn(pfn) &&
187 		       !kvm_is_zone_device_pfn(pfn);
188 
189 	return true;
190 }
191 
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194 	struct page *page = pfn_to_page(pfn);
195 
196 	if (!PageTransCompoundMap(page))
197 		return false;
198 
199 	return is_transparent_hugepage(compound_head(page));
200 }
201 
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 	int cpu = get_cpu();
208 
209 	__this_cpu_write(kvm_running_vcpu, vcpu);
210 	preempt_notifier_register(&vcpu->preempt_notifier);
211 	kvm_arch_vcpu_load(vcpu, cpu);
212 	put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215 
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 	preempt_disable();
219 	kvm_arch_vcpu_put(vcpu);
220 	preempt_notifier_unregister(&vcpu->preempt_notifier);
221 	__this_cpu_write(kvm_running_vcpu, NULL);
222 	preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225 
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230 
231 	/*
232 	 * We need to wait for the VCPU to reenable interrupts and get out of
233 	 * READING_SHADOW_PAGE_TABLES mode.
234 	 */
235 	if (req & KVM_REQUEST_WAIT)
236 		return mode != OUTSIDE_GUEST_MODE;
237 
238 	/*
239 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 	 */
241 	return mode == IN_GUEST_MODE;
242 }
243 
244 static void ack_flush(void *_completed)
245 {
246 }
247 
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250 	if (unlikely(!cpus))
251 		cpus = cpu_online_mask;
252 
253 	if (cpumask_empty(cpus))
254 		return false;
255 
256 	smp_call_function_many(cpus, ack_flush, NULL, wait);
257 	return true;
258 }
259 
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 				 struct kvm_vcpu *except,
262 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 	int i, cpu, me;
265 	struct kvm_vcpu *vcpu;
266 	bool called;
267 
268 	me = get_cpu();
269 
270 	kvm_for_each_vcpu(i, vcpu, kvm) {
271 		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 		    vcpu == except)
273 			continue;
274 
275 		kvm_make_request(req, vcpu);
276 		cpu = vcpu->cpu;
277 
278 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 			continue;
280 
281 		if (tmp != NULL && cpu != -1 && cpu != me &&
282 		    kvm_request_needs_ipi(vcpu, req))
283 			__cpumask_set_cpu(cpu, tmp);
284 	}
285 
286 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 	put_cpu();
288 
289 	return called;
290 }
291 
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 				      struct kvm_vcpu *except)
294 {
295 	cpumask_var_t cpus;
296 	bool called;
297 
298 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299 
300 	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301 
302 	free_cpumask_var(cpus);
303 	return called;
304 }
305 
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm *kvm)
313 {
314 	/*
315 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316 	 * kvm_make_all_cpus_request.
317 	 */
318 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319 
320 	/*
321 	 * We want to publish modifications to the page tables before reading
322 	 * mode. Pairs with a memory barrier in arch-specific code.
323 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
325 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326 	 *
327 	 * There is already an smp_mb__after_atomic() before
328 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329 	 * barrier here.
330 	 */
331 	if (!kvm_arch_flush_remote_tlb(kvm)
332 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
333 		++kvm->stat.remote_tlb_flush;
334 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
337 #endif
338 
339 void kvm_reload_remote_mmus(struct kvm *kvm)
340 {
341 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
342 }
343 
344 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
345 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
346 					       gfp_t gfp_flags)
347 {
348 	gfp_flags |= mc->gfp_zero;
349 
350 	if (mc->kmem_cache)
351 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352 	else
353 		return (void *)__get_free_page(gfp_flags);
354 }
355 
356 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
357 {
358 	void *obj;
359 
360 	if (mc->nobjs >= min)
361 		return 0;
362 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
363 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364 		if (!obj)
365 			return mc->nobjs >= min ? 0 : -ENOMEM;
366 		mc->objects[mc->nobjs++] = obj;
367 	}
368 	return 0;
369 }
370 
371 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
372 {
373 	return mc->nobjs;
374 }
375 
376 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
377 {
378 	while (mc->nobjs) {
379 		if (mc->kmem_cache)
380 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381 		else
382 			free_page((unsigned long)mc->objects[--mc->nobjs]);
383 	}
384 }
385 
386 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
387 {
388 	void *p;
389 
390 	if (WARN_ON(!mc->nobjs))
391 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392 	else
393 		p = mc->objects[--mc->nobjs];
394 	BUG_ON(!p);
395 	return p;
396 }
397 #endif
398 
399 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
400 {
401 	mutex_init(&vcpu->mutex);
402 	vcpu->cpu = -1;
403 	vcpu->kvm = kvm;
404 	vcpu->vcpu_id = id;
405 	vcpu->pid = NULL;
406 	rcuwait_init(&vcpu->wait);
407 	kvm_async_pf_vcpu_init(vcpu);
408 
409 	vcpu->pre_pcpu = -1;
410 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411 
412 	kvm_vcpu_set_in_spin_loop(vcpu, false);
413 	kvm_vcpu_set_dy_eligible(vcpu, false);
414 	vcpu->preempted = false;
415 	vcpu->ready = false;
416 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
417 }
418 
419 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420 {
421 	kvm_dirty_ring_free(&vcpu->dirty_ring);
422 	kvm_arch_vcpu_destroy(vcpu);
423 
424 	/*
425 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
426 	 * the vcpu->pid pointer, and at destruction time all file descriptors
427 	 * are already gone.
428 	 */
429 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
430 
431 	free_page((unsigned long)vcpu->run);
432 	kmem_cache_free(kvm_vcpu_cache, vcpu);
433 }
434 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
435 
436 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
437 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
438 {
439 	return container_of(mn, struct kvm, mmu_notifier);
440 }
441 
442 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
443 					      struct mm_struct *mm,
444 					      unsigned long start, unsigned long end)
445 {
446 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 	int idx;
448 
449 	idx = srcu_read_lock(&kvm->srcu);
450 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
451 	srcu_read_unlock(&kvm->srcu, idx);
452 }
453 
454 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
455 
456 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
457 			     unsigned long end);
458 
459 struct kvm_hva_range {
460 	unsigned long start;
461 	unsigned long end;
462 	pte_t pte;
463 	hva_handler_t handler;
464 	on_lock_fn_t on_lock;
465 	bool flush_on_ret;
466 	bool may_block;
467 };
468 
469 /*
470  * Use a dedicated stub instead of NULL to indicate that there is no callback
471  * function/handler.  The compiler technically can't guarantee that a real
472  * function will have a non-zero address, and so it will generate code to
473  * check for !NULL, whereas comparing against a stub will be elided at compile
474  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
475  */
476 static void kvm_null_fn(void)
477 {
478 
479 }
480 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
481 
482 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
483 						  const struct kvm_hva_range *range)
484 {
485 	bool ret = false, locked = false;
486 	struct kvm_gfn_range gfn_range;
487 	struct kvm_memory_slot *slot;
488 	struct kvm_memslots *slots;
489 	int i, idx;
490 
491 	/* A null handler is allowed if and only if on_lock() is provided. */
492 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
493 			 IS_KVM_NULL_FN(range->handler)))
494 		return 0;
495 
496 	idx = srcu_read_lock(&kvm->srcu);
497 
498 	/* The on_lock() path does not yet support lock elision. */
499 	if (!IS_KVM_NULL_FN(range->on_lock)) {
500 		locked = true;
501 		KVM_MMU_LOCK(kvm);
502 
503 		range->on_lock(kvm, range->start, range->end);
504 
505 		if (IS_KVM_NULL_FN(range->handler))
506 			goto out_unlock;
507 	}
508 
509 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
510 		slots = __kvm_memslots(kvm, i);
511 		kvm_for_each_memslot(slot, slots) {
512 			unsigned long hva_start, hva_end;
513 
514 			hva_start = max(range->start, slot->userspace_addr);
515 			hva_end = min(range->end, slot->userspace_addr +
516 						  (slot->npages << PAGE_SHIFT));
517 			if (hva_start >= hva_end)
518 				continue;
519 
520 			/*
521 			 * To optimize for the likely case where the address
522 			 * range is covered by zero or one memslots, don't
523 			 * bother making these conditional (to avoid writes on
524 			 * the second or later invocation of the handler).
525 			 */
526 			gfn_range.pte = range->pte;
527 			gfn_range.may_block = range->may_block;
528 
529 			/*
530 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
531 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
532 			 */
533 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
534 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
535 			gfn_range.slot = slot;
536 
537 			if (!locked) {
538 				locked = true;
539 				KVM_MMU_LOCK(kvm);
540 			}
541 			ret |= range->handler(kvm, &gfn_range);
542 		}
543 	}
544 
545 	if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
546 		kvm_flush_remote_tlbs(kvm);
547 
548 out_unlock:
549 	if (locked)
550 		KVM_MMU_UNLOCK(kvm);
551 
552 	srcu_read_unlock(&kvm->srcu, idx);
553 
554 	/* The notifiers are averse to booleans. :-( */
555 	return (int)ret;
556 }
557 
558 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
559 						unsigned long start,
560 						unsigned long end,
561 						pte_t pte,
562 						hva_handler_t handler)
563 {
564 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
565 	const struct kvm_hva_range range = {
566 		.start		= start,
567 		.end		= end,
568 		.pte		= pte,
569 		.handler	= handler,
570 		.on_lock	= (void *)kvm_null_fn,
571 		.flush_on_ret	= true,
572 		.may_block	= false,
573 	};
574 
575 	return __kvm_handle_hva_range(kvm, &range);
576 }
577 
578 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
579 							 unsigned long start,
580 							 unsigned long end,
581 							 hva_handler_t handler)
582 {
583 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
584 	const struct kvm_hva_range range = {
585 		.start		= start,
586 		.end		= end,
587 		.pte		= __pte(0),
588 		.handler	= handler,
589 		.on_lock	= (void *)kvm_null_fn,
590 		.flush_on_ret	= false,
591 		.may_block	= false,
592 	};
593 
594 	return __kvm_handle_hva_range(kvm, &range);
595 }
596 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
597 					struct mm_struct *mm,
598 					unsigned long address,
599 					pte_t pte)
600 {
601 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
602 
603 	trace_kvm_set_spte_hva(address);
604 
605 	/*
606 	 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
607 	 * and so always runs with an elevated notifier count.  This obviates
608 	 * the need to bump the sequence count.
609 	 */
610 	WARN_ON_ONCE(!kvm->mmu_notifier_count);
611 
612 	kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
613 }
614 
615 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
616 				   unsigned long end)
617 {
618 	/*
619 	 * The count increase must become visible at unlock time as no
620 	 * spte can be established without taking the mmu_lock and
621 	 * count is also read inside the mmu_lock critical section.
622 	 */
623 	kvm->mmu_notifier_count++;
624 	if (likely(kvm->mmu_notifier_count == 1)) {
625 		kvm->mmu_notifier_range_start = start;
626 		kvm->mmu_notifier_range_end = end;
627 	} else {
628 		/*
629 		 * Fully tracking multiple concurrent ranges has dimishing
630 		 * returns. Keep things simple and just find the minimal range
631 		 * which includes the current and new ranges. As there won't be
632 		 * enough information to subtract a range after its invalidate
633 		 * completes, any ranges invalidated concurrently will
634 		 * accumulate and persist until all outstanding invalidates
635 		 * complete.
636 		 */
637 		kvm->mmu_notifier_range_start =
638 			min(kvm->mmu_notifier_range_start, start);
639 		kvm->mmu_notifier_range_end =
640 			max(kvm->mmu_notifier_range_end, end);
641 	}
642 }
643 
644 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
645 					const struct mmu_notifier_range *range)
646 {
647 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
648 	const struct kvm_hva_range hva_range = {
649 		.start		= range->start,
650 		.end		= range->end,
651 		.pte		= __pte(0),
652 		.handler	= kvm_unmap_gfn_range,
653 		.on_lock	= kvm_inc_notifier_count,
654 		.flush_on_ret	= true,
655 		.may_block	= mmu_notifier_range_blockable(range),
656 	};
657 
658 	trace_kvm_unmap_hva_range(range->start, range->end);
659 
660 	__kvm_handle_hva_range(kvm, &hva_range);
661 
662 	return 0;
663 }
664 
665 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
666 				   unsigned long end)
667 {
668 	/*
669 	 * This sequence increase will notify the kvm page fault that
670 	 * the page that is going to be mapped in the spte could have
671 	 * been freed.
672 	 */
673 	kvm->mmu_notifier_seq++;
674 	smp_wmb();
675 	/*
676 	 * The above sequence increase must be visible before the
677 	 * below count decrease, which is ensured by the smp_wmb above
678 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
679 	 */
680 	kvm->mmu_notifier_count--;
681 }
682 
683 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
684 					const struct mmu_notifier_range *range)
685 {
686 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
687 	const struct kvm_hva_range hva_range = {
688 		.start		= range->start,
689 		.end		= range->end,
690 		.pte		= __pte(0),
691 		.handler	= (void *)kvm_null_fn,
692 		.on_lock	= kvm_dec_notifier_count,
693 		.flush_on_ret	= false,
694 		.may_block	= mmu_notifier_range_blockable(range),
695 	};
696 
697 	__kvm_handle_hva_range(kvm, &hva_range);
698 
699 	BUG_ON(kvm->mmu_notifier_count < 0);
700 }
701 
702 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
703 					      struct mm_struct *mm,
704 					      unsigned long start,
705 					      unsigned long end)
706 {
707 	trace_kvm_age_hva(start, end);
708 
709 	return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
710 }
711 
712 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
713 					struct mm_struct *mm,
714 					unsigned long start,
715 					unsigned long end)
716 {
717 	trace_kvm_age_hva(start, end);
718 
719 	/*
720 	 * Even though we do not flush TLB, this will still adversely
721 	 * affect performance on pre-Haswell Intel EPT, where there is
722 	 * no EPT Access Bit to clear so that we have to tear down EPT
723 	 * tables instead. If we find this unacceptable, we can always
724 	 * add a parameter to kvm_age_hva so that it effectively doesn't
725 	 * do anything on clear_young.
726 	 *
727 	 * Also note that currently we never issue secondary TLB flushes
728 	 * from clear_young, leaving this job up to the regular system
729 	 * cadence. If we find this inaccurate, we might come up with a
730 	 * more sophisticated heuristic later.
731 	 */
732 	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
733 }
734 
735 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
736 				       struct mm_struct *mm,
737 				       unsigned long address)
738 {
739 	trace_kvm_test_age_hva(address);
740 
741 	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
742 					     kvm_test_age_gfn);
743 }
744 
745 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
746 				     struct mm_struct *mm)
747 {
748 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
749 	int idx;
750 
751 	idx = srcu_read_lock(&kvm->srcu);
752 	kvm_arch_flush_shadow_all(kvm);
753 	srcu_read_unlock(&kvm->srcu, idx);
754 }
755 
756 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
757 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
758 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
759 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
760 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
761 	.clear_young		= kvm_mmu_notifier_clear_young,
762 	.test_young		= kvm_mmu_notifier_test_young,
763 	.change_pte		= kvm_mmu_notifier_change_pte,
764 	.release		= kvm_mmu_notifier_release,
765 };
766 
767 static int kvm_init_mmu_notifier(struct kvm *kvm)
768 {
769 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
770 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
771 }
772 
773 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
774 
775 static int kvm_init_mmu_notifier(struct kvm *kvm)
776 {
777 	return 0;
778 }
779 
780 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
781 
782 static struct kvm_memslots *kvm_alloc_memslots(void)
783 {
784 	int i;
785 	struct kvm_memslots *slots;
786 
787 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
788 	if (!slots)
789 		return NULL;
790 
791 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
792 		slots->id_to_index[i] = -1;
793 
794 	return slots;
795 }
796 
797 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
798 {
799 	if (!memslot->dirty_bitmap)
800 		return;
801 
802 	kvfree(memslot->dirty_bitmap);
803 	memslot->dirty_bitmap = NULL;
804 }
805 
806 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
807 {
808 	kvm_destroy_dirty_bitmap(slot);
809 
810 	kvm_arch_free_memslot(kvm, slot);
811 
812 	slot->flags = 0;
813 	slot->npages = 0;
814 }
815 
816 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
817 {
818 	struct kvm_memory_slot *memslot;
819 
820 	if (!slots)
821 		return;
822 
823 	kvm_for_each_memslot(memslot, slots)
824 		kvm_free_memslot(kvm, memslot);
825 
826 	kvfree(slots);
827 }
828 
829 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
830 {
831 	int i;
832 
833 	if (!kvm->debugfs_dentry)
834 		return;
835 
836 	debugfs_remove_recursive(kvm->debugfs_dentry);
837 
838 	if (kvm->debugfs_stat_data) {
839 		for (i = 0; i < kvm_debugfs_num_entries; i++)
840 			kfree(kvm->debugfs_stat_data[i]);
841 		kfree(kvm->debugfs_stat_data);
842 	}
843 }
844 
845 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
846 {
847 	char dir_name[ITOA_MAX_LEN * 2];
848 	struct kvm_stat_data *stat_data;
849 	struct kvm_stats_debugfs_item *p;
850 
851 	if (!debugfs_initialized())
852 		return 0;
853 
854 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
855 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
856 
857 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
858 					 sizeof(*kvm->debugfs_stat_data),
859 					 GFP_KERNEL_ACCOUNT);
860 	if (!kvm->debugfs_stat_data)
861 		return -ENOMEM;
862 
863 	for (p = debugfs_entries; p->name; p++) {
864 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
865 		if (!stat_data)
866 			return -ENOMEM;
867 
868 		stat_data->kvm = kvm;
869 		stat_data->dbgfs_item = p;
870 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
871 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
872 				    kvm->debugfs_dentry, stat_data,
873 				    &stat_fops_per_vm);
874 	}
875 	return 0;
876 }
877 
878 /*
879  * Called after the VM is otherwise initialized, but just before adding it to
880  * the vm_list.
881  */
882 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
883 {
884 	return 0;
885 }
886 
887 /*
888  * Called just after removing the VM from the vm_list, but before doing any
889  * other destruction.
890  */
891 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
892 {
893 }
894 
895 static struct kvm *kvm_create_vm(unsigned long type)
896 {
897 	struct kvm *kvm = kvm_arch_alloc_vm();
898 	int r = -ENOMEM;
899 	int i;
900 
901 	if (!kvm)
902 		return ERR_PTR(-ENOMEM);
903 
904 	KVM_MMU_LOCK_INIT(kvm);
905 	mmgrab(current->mm);
906 	kvm->mm = current->mm;
907 	kvm_eventfd_init(kvm);
908 	mutex_init(&kvm->lock);
909 	mutex_init(&kvm->irq_lock);
910 	mutex_init(&kvm->slots_lock);
911 	INIT_LIST_HEAD(&kvm->devices);
912 
913 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
914 
915 	if (init_srcu_struct(&kvm->srcu))
916 		goto out_err_no_srcu;
917 	if (init_srcu_struct(&kvm->irq_srcu))
918 		goto out_err_no_irq_srcu;
919 
920 	refcount_set(&kvm->users_count, 1);
921 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
922 		struct kvm_memslots *slots = kvm_alloc_memslots();
923 
924 		if (!slots)
925 			goto out_err_no_arch_destroy_vm;
926 		/* Generations must be different for each address space. */
927 		slots->generation = i;
928 		rcu_assign_pointer(kvm->memslots[i], slots);
929 	}
930 
931 	for (i = 0; i < KVM_NR_BUSES; i++) {
932 		rcu_assign_pointer(kvm->buses[i],
933 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
934 		if (!kvm->buses[i])
935 			goto out_err_no_arch_destroy_vm;
936 	}
937 
938 	kvm->max_halt_poll_ns = halt_poll_ns;
939 
940 	r = kvm_arch_init_vm(kvm, type);
941 	if (r)
942 		goto out_err_no_arch_destroy_vm;
943 
944 	r = hardware_enable_all();
945 	if (r)
946 		goto out_err_no_disable;
947 
948 #ifdef CONFIG_HAVE_KVM_IRQFD
949 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
950 #endif
951 
952 	r = kvm_init_mmu_notifier(kvm);
953 	if (r)
954 		goto out_err_no_mmu_notifier;
955 
956 	r = kvm_arch_post_init_vm(kvm);
957 	if (r)
958 		goto out_err;
959 
960 	mutex_lock(&kvm_lock);
961 	list_add(&kvm->vm_list, &vm_list);
962 	mutex_unlock(&kvm_lock);
963 
964 	preempt_notifier_inc();
965 
966 	return kvm;
967 
968 out_err:
969 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
970 	if (kvm->mmu_notifier.ops)
971 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
972 #endif
973 out_err_no_mmu_notifier:
974 	hardware_disable_all();
975 out_err_no_disable:
976 	kvm_arch_destroy_vm(kvm);
977 out_err_no_arch_destroy_vm:
978 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
979 	for (i = 0; i < KVM_NR_BUSES; i++)
980 		kfree(kvm_get_bus(kvm, i));
981 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
982 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
983 	cleanup_srcu_struct(&kvm->irq_srcu);
984 out_err_no_irq_srcu:
985 	cleanup_srcu_struct(&kvm->srcu);
986 out_err_no_srcu:
987 	kvm_arch_free_vm(kvm);
988 	mmdrop(current->mm);
989 	return ERR_PTR(r);
990 }
991 
992 static void kvm_destroy_devices(struct kvm *kvm)
993 {
994 	struct kvm_device *dev, *tmp;
995 
996 	/*
997 	 * We do not need to take the kvm->lock here, because nobody else
998 	 * has a reference to the struct kvm at this point and therefore
999 	 * cannot access the devices list anyhow.
1000 	 */
1001 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1002 		list_del(&dev->vm_node);
1003 		dev->ops->destroy(dev);
1004 	}
1005 }
1006 
1007 static void kvm_destroy_vm(struct kvm *kvm)
1008 {
1009 	int i;
1010 	struct mm_struct *mm = kvm->mm;
1011 
1012 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1013 	kvm_destroy_vm_debugfs(kvm);
1014 	kvm_arch_sync_events(kvm);
1015 	mutex_lock(&kvm_lock);
1016 	list_del(&kvm->vm_list);
1017 	mutex_unlock(&kvm_lock);
1018 	kvm_arch_pre_destroy_vm(kvm);
1019 
1020 	kvm_free_irq_routing(kvm);
1021 	for (i = 0; i < KVM_NR_BUSES; i++) {
1022 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1023 
1024 		if (bus)
1025 			kvm_io_bus_destroy(bus);
1026 		kvm->buses[i] = NULL;
1027 	}
1028 	kvm_coalesced_mmio_free(kvm);
1029 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1030 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1031 #else
1032 	kvm_arch_flush_shadow_all(kvm);
1033 #endif
1034 	kvm_arch_destroy_vm(kvm);
1035 	kvm_destroy_devices(kvm);
1036 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1037 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1038 	cleanup_srcu_struct(&kvm->irq_srcu);
1039 	cleanup_srcu_struct(&kvm->srcu);
1040 	kvm_arch_free_vm(kvm);
1041 	preempt_notifier_dec();
1042 	hardware_disable_all();
1043 	mmdrop(mm);
1044 }
1045 
1046 void kvm_get_kvm(struct kvm *kvm)
1047 {
1048 	refcount_inc(&kvm->users_count);
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1051 
1052 void kvm_put_kvm(struct kvm *kvm)
1053 {
1054 	if (refcount_dec_and_test(&kvm->users_count))
1055 		kvm_destroy_vm(kvm);
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1058 
1059 /*
1060  * Used to put a reference that was taken on behalf of an object associated
1061  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1062  * of the new file descriptor fails and the reference cannot be transferred to
1063  * its final owner.  In such cases, the caller is still actively using @kvm and
1064  * will fail miserably if the refcount unexpectedly hits zero.
1065  */
1066 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1067 {
1068 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1071 
1072 static int kvm_vm_release(struct inode *inode, struct file *filp)
1073 {
1074 	struct kvm *kvm = filp->private_data;
1075 
1076 	kvm_irqfd_release(kvm);
1077 
1078 	kvm_put_kvm(kvm);
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Allocation size is twice as large as the actual dirty bitmap size.
1084  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1085  */
1086 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1087 {
1088 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1089 
1090 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1091 	if (!memslot->dirty_bitmap)
1092 		return -ENOMEM;
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Delete a memslot by decrementing the number of used slots and shifting all
1099  * other entries in the array forward one spot.
1100  */
1101 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1102 				      struct kvm_memory_slot *memslot)
1103 {
1104 	struct kvm_memory_slot *mslots = slots->memslots;
1105 	int i;
1106 
1107 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1108 		return;
1109 
1110 	slots->used_slots--;
1111 
1112 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1113 		atomic_set(&slots->lru_slot, 0);
1114 
1115 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1116 		mslots[i] = mslots[i + 1];
1117 		slots->id_to_index[mslots[i].id] = i;
1118 	}
1119 	mslots[i] = *memslot;
1120 	slots->id_to_index[memslot->id] = -1;
1121 }
1122 
1123 /*
1124  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1125  * the new slot's initial index into the memslots array.
1126  */
1127 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1128 {
1129 	return slots->used_slots++;
1130 }
1131 
1132 /*
1133  * Move a changed memslot backwards in the array by shifting existing slots
1134  * with a higher GFN toward the front of the array.  Note, the changed memslot
1135  * itself is not preserved in the array, i.e. not swapped at this time, only
1136  * its new index into the array is tracked.  Returns the changed memslot's
1137  * current index into the memslots array.
1138  */
1139 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1140 					    struct kvm_memory_slot *memslot)
1141 {
1142 	struct kvm_memory_slot *mslots = slots->memslots;
1143 	int i;
1144 
1145 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1146 	    WARN_ON_ONCE(!slots->used_slots))
1147 		return -1;
1148 
1149 	/*
1150 	 * Move the target memslot backward in the array by shifting existing
1151 	 * memslots with a higher GFN (than the target memslot) towards the
1152 	 * front of the array.
1153 	 */
1154 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1155 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1156 			break;
1157 
1158 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1159 
1160 		/* Shift the next memslot forward one and update its index. */
1161 		mslots[i] = mslots[i + 1];
1162 		slots->id_to_index[mslots[i].id] = i;
1163 	}
1164 	return i;
1165 }
1166 
1167 /*
1168  * Move a changed memslot forwards in the array by shifting existing slots with
1169  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1170  * is not preserved in the array, i.e. not swapped at this time, only its new
1171  * index into the array is tracked.  Returns the changed memslot's final index
1172  * into the memslots array.
1173  */
1174 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1175 					   struct kvm_memory_slot *memslot,
1176 					   int start)
1177 {
1178 	struct kvm_memory_slot *mslots = slots->memslots;
1179 	int i;
1180 
1181 	for (i = start; i > 0; i--) {
1182 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1183 			break;
1184 
1185 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1186 
1187 		/* Shift the next memslot back one and update its index. */
1188 		mslots[i] = mslots[i - 1];
1189 		slots->id_to_index[mslots[i].id] = i;
1190 	}
1191 	return i;
1192 }
1193 
1194 /*
1195  * Re-sort memslots based on their GFN to account for an added, deleted, or
1196  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1197  * memslot lookup.
1198  *
1199  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1200  * at memslots[0] has the highest GFN.
1201  *
1202  * The sorting algorithm takes advantage of having initially sorted memslots
1203  * and knowing the position of the changed memslot.  Sorting is also optimized
1204  * by not swapping the updated memslot and instead only shifting other memslots
1205  * and tracking the new index for the update memslot.  Only once its final
1206  * index is known is the updated memslot copied into its position in the array.
1207  *
1208  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1209  *    the end of the array.
1210  *
1211  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1212  *    end of the array and then it forward to its correct location.
1213  *
1214  *  - When moving a memslot, the algorithm first moves the updated memslot
1215  *    backward to handle the scenario where the memslot's GFN was changed to a
1216  *    lower value.  update_memslots() then falls through and runs the same flow
1217  *    as creating a memslot to move the memslot forward to handle the scenario
1218  *    where its GFN was changed to a higher value.
1219  *
1220  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1221  * historical reasons.  Originally, invalid memslots where denoted by having
1222  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1223  * to the end of the array.  The current algorithm uses dedicated logic to
1224  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1225  *
1226  * The other historical motiviation for highest->lowest was to improve the
1227  * performance of memslot lookup.  KVM originally used a linear search starting
1228  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1229  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1230  * single memslot above the 4gb boundary.  As the largest memslot is also the
1231  * most likely to be referenced, sorting it to the front of the array was
1232  * advantageous.  The current binary search starts from the middle of the array
1233  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1234  */
1235 static void update_memslots(struct kvm_memslots *slots,
1236 			    struct kvm_memory_slot *memslot,
1237 			    enum kvm_mr_change change)
1238 {
1239 	int i;
1240 
1241 	if (change == KVM_MR_DELETE) {
1242 		kvm_memslot_delete(slots, memslot);
1243 	} else {
1244 		if (change == KVM_MR_CREATE)
1245 			i = kvm_memslot_insert_back(slots);
1246 		else
1247 			i = kvm_memslot_move_backward(slots, memslot);
1248 		i = kvm_memslot_move_forward(slots, memslot, i);
1249 
1250 		/*
1251 		 * Copy the memslot to its new position in memslots and update
1252 		 * its index accordingly.
1253 		 */
1254 		slots->memslots[i] = *memslot;
1255 		slots->id_to_index[memslot->id] = i;
1256 	}
1257 }
1258 
1259 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1260 {
1261 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1262 
1263 #ifdef __KVM_HAVE_READONLY_MEM
1264 	valid_flags |= KVM_MEM_READONLY;
1265 #endif
1266 
1267 	if (mem->flags & ~valid_flags)
1268 		return -EINVAL;
1269 
1270 	return 0;
1271 }
1272 
1273 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1274 		int as_id, struct kvm_memslots *slots)
1275 {
1276 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1277 	u64 gen = old_memslots->generation;
1278 
1279 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1280 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1281 
1282 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1283 	synchronize_srcu_expedited(&kvm->srcu);
1284 
1285 	/*
1286 	 * Increment the new memslot generation a second time, dropping the
1287 	 * update in-progress flag and incrementing the generation based on
1288 	 * the number of address spaces.  This provides a unique and easily
1289 	 * identifiable generation number while the memslots are in flux.
1290 	 */
1291 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1292 
1293 	/*
1294 	 * Generations must be unique even across address spaces.  We do not need
1295 	 * a global counter for that, instead the generation space is evenly split
1296 	 * across address spaces.  For example, with two address spaces, address
1297 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1298 	 * use generations 1, 3, 5, ...
1299 	 */
1300 	gen += KVM_ADDRESS_SPACE_NUM;
1301 
1302 	kvm_arch_memslots_updated(kvm, gen);
1303 
1304 	slots->generation = gen;
1305 
1306 	return old_memslots;
1307 }
1308 
1309 /*
1310  * Note, at a minimum, the current number of used slots must be allocated, even
1311  * when deleting a memslot, as we need a complete duplicate of the memslots for
1312  * use when invalidating a memslot prior to deleting/moving the memslot.
1313  */
1314 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1315 					     enum kvm_mr_change change)
1316 {
1317 	struct kvm_memslots *slots;
1318 	size_t old_size, new_size;
1319 
1320 	old_size = sizeof(struct kvm_memslots) +
1321 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1322 
1323 	if (change == KVM_MR_CREATE)
1324 		new_size = old_size + sizeof(struct kvm_memory_slot);
1325 	else
1326 		new_size = old_size;
1327 
1328 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1329 	if (likely(slots))
1330 		memcpy(slots, old, old_size);
1331 
1332 	return slots;
1333 }
1334 
1335 static int kvm_set_memslot(struct kvm *kvm,
1336 			   const struct kvm_userspace_memory_region *mem,
1337 			   struct kvm_memory_slot *old,
1338 			   struct kvm_memory_slot *new, int as_id,
1339 			   enum kvm_mr_change change)
1340 {
1341 	struct kvm_memory_slot *slot;
1342 	struct kvm_memslots *slots;
1343 	int r;
1344 
1345 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1346 	if (!slots)
1347 		return -ENOMEM;
1348 
1349 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1350 		/*
1351 		 * Note, the INVALID flag needs to be in the appropriate entry
1352 		 * in the freshly allocated memslots, not in @old or @new.
1353 		 */
1354 		slot = id_to_memslot(slots, old->id);
1355 		slot->flags |= KVM_MEMSLOT_INVALID;
1356 
1357 		/*
1358 		 * We can re-use the old memslots, the only difference from the
1359 		 * newly installed memslots is the invalid flag, which will get
1360 		 * dropped by update_memslots anyway.  We'll also revert to the
1361 		 * old memslots if preparing the new memory region fails.
1362 		 */
1363 		slots = install_new_memslots(kvm, as_id, slots);
1364 
1365 		/* From this point no new shadow pages pointing to a deleted,
1366 		 * or moved, memslot will be created.
1367 		 *
1368 		 * validation of sp->gfn happens in:
1369 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1370 		 *	- kvm_is_visible_gfn (mmu_check_root)
1371 		 */
1372 		kvm_arch_flush_shadow_memslot(kvm, slot);
1373 	}
1374 
1375 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1376 	if (r)
1377 		goto out_slots;
1378 
1379 	update_memslots(slots, new, change);
1380 	slots = install_new_memslots(kvm, as_id, slots);
1381 
1382 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1383 
1384 	kvfree(slots);
1385 	return 0;
1386 
1387 out_slots:
1388 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1389 		slots = install_new_memslots(kvm, as_id, slots);
1390 	kvfree(slots);
1391 	return r;
1392 }
1393 
1394 static int kvm_delete_memslot(struct kvm *kvm,
1395 			      const struct kvm_userspace_memory_region *mem,
1396 			      struct kvm_memory_slot *old, int as_id)
1397 {
1398 	struct kvm_memory_slot new;
1399 	int r;
1400 
1401 	if (!old->npages)
1402 		return -EINVAL;
1403 
1404 	memset(&new, 0, sizeof(new));
1405 	new.id = old->id;
1406 	/*
1407 	 * This is only for debugging purpose; it should never be referenced
1408 	 * for a removed memslot.
1409 	 */
1410 	new.as_id = as_id;
1411 
1412 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1413 	if (r)
1414 		return r;
1415 
1416 	kvm_free_memslot(kvm, old);
1417 	return 0;
1418 }
1419 
1420 /*
1421  * Allocate some memory and give it an address in the guest physical address
1422  * space.
1423  *
1424  * Discontiguous memory is allowed, mostly for framebuffers.
1425  *
1426  * Must be called holding kvm->slots_lock for write.
1427  */
1428 int __kvm_set_memory_region(struct kvm *kvm,
1429 			    const struct kvm_userspace_memory_region *mem)
1430 {
1431 	struct kvm_memory_slot old, new;
1432 	struct kvm_memory_slot *tmp;
1433 	enum kvm_mr_change change;
1434 	int as_id, id;
1435 	int r;
1436 
1437 	r = check_memory_region_flags(mem);
1438 	if (r)
1439 		return r;
1440 
1441 	as_id = mem->slot >> 16;
1442 	id = (u16)mem->slot;
1443 
1444 	/* General sanity checks */
1445 	if (mem->memory_size & (PAGE_SIZE - 1))
1446 		return -EINVAL;
1447 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1448 		return -EINVAL;
1449 	/* We can read the guest memory with __xxx_user() later on. */
1450 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1451 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1452 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1453 			mem->memory_size))
1454 		return -EINVAL;
1455 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1456 		return -EINVAL;
1457 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1458 		return -EINVAL;
1459 
1460 	/*
1461 	 * Make a full copy of the old memslot, the pointer will become stale
1462 	 * when the memslots are re-sorted by update_memslots(), and the old
1463 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1464 	 * to free its resources and for arch specific behavior.
1465 	 */
1466 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1467 	if (tmp) {
1468 		old = *tmp;
1469 		tmp = NULL;
1470 	} else {
1471 		memset(&old, 0, sizeof(old));
1472 		old.id = id;
1473 	}
1474 
1475 	if (!mem->memory_size)
1476 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1477 
1478 	new.as_id = as_id;
1479 	new.id = id;
1480 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1481 	new.npages = mem->memory_size >> PAGE_SHIFT;
1482 	new.flags = mem->flags;
1483 	new.userspace_addr = mem->userspace_addr;
1484 
1485 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1486 		return -EINVAL;
1487 
1488 	if (!old.npages) {
1489 		change = KVM_MR_CREATE;
1490 		new.dirty_bitmap = NULL;
1491 		memset(&new.arch, 0, sizeof(new.arch));
1492 	} else { /* Modify an existing slot. */
1493 		if ((new.userspace_addr != old.userspace_addr) ||
1494 		    (new.npages != old.npages) ||
1495 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1496 			return -EINVAL;
1497 
1498 		if (new.base_gfn != old.base_gfn)
1499 			change = KVM_MR_MOVE;
1500 		else if (new.flags != old.flags)
1501 			change = KVM_MR_FLAGS_ONLY;
1502 		else /* Nothing to change. */
1503 			return 0;
1504 
1505 		/* Copy dirty_bitmap and arch from the current memslot. */
1506 		new.dirty_bitmap = old.dirty_bitmap;
1507 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1508 	}
1509 
1510 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1511 		/* Check for overlaps */
1512 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1513 			if (tmp->id == id)
1514 				continue;
1515 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1516 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1517 				return -EEXIST;
1518 		}
1519 	}
1520 
1521 	/* Allocate/free page dirty bitmap as needed */
1522 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1523 		new.dirty_bitmap = NULL;
1524 	else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1525 		r = kvm_alloc_dirty_bitmap(&new);
1526 		if (r)
1527 			return r;
1528 
1529 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1530 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1531 	}
1532 
1533 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1534 	if (r)
1535 		goto out_bitmap;
1536 
1537 	if (old.dirty_bitmap && !new.dirty_bitmap)
1538 		kvm_destroy_dirty_bitmap(&old);
1539 	return 0;
1540 
1541 out_bitmap:
1542 	if (new.dirty_bitmap && !old.dirty_bitmap)
1543 		kvm_destroy_dirty_bitmap(&new);
1544 	return r;
1545 }
1546 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1547 
1548 int kvm_set_memory_region(struct kvm *kvm,
1549 			  const struct kvm_userspace_memory_region *mem)
1550 {
1551 	int r;
1552 
1553 	mutex_lock(&kvm->slots_lock);
1554 	r = __kvm_set_memory_region(kvm, mem);
1555 	mutex_unlock(&kvm->slots_lock);
1556 	return r;
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1559 
1560 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1561 					  struct kvm_userspace_memory_region *mem)
1562 {
1563 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1564 		return -EINVAL;
1565 
1566 	return kvm_set_memory_region(kvm, mem);
1567 }
1568 
1569 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1570 /**
1571  * kvm_get_dirty_log - get a snapshot of dirty pages
1572  * @kvm:	pointer to kvm instance
1573  * @log:	slot id and address to which we copy the log
1574  * @is_dirty:	set to '1' if any dirty pages were found
1575  * @memslot:	set to the associated memslot, always valid on success
1576  */
1577 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1578 		      int *is_dirty, struct kvm_memory_slot **memslot)
1579 {
1580 	struct kvm_memslots *slots;
1581 	int i, as_id, id;
1582 	unsigned long n;
1583 	unsigned long any = 0;
1584 
1585 	/* Dirty ring tracking is exclusive to dirty log tracking */
1586 	if (kvm->dirty_ring_size)
1587 		return -ENXIO;
1588 
1589 	*memslot = NULL;
1590 	*is_dirty = 0;
1591 
1592 	as_id = log->slot >> 16;
1593 	id = (u16)log->slot;
1594 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1595 		return -EINVAL;
1596 
1597 	slots = __kvm_memslots(kvm, as_id);
1598 	*memslot = id_to_memslot(slots, id);
1599 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1600 		return -ENOENT;
1601 
1602 	kvm_arch_sync_dirty_log(kvm, *memslot);
1603 
1604 	n = kvm_dirty_bitmap_bytes(*memslot);
1605 
1606 	for (i = 0; !any && i < n/sizeof(long); ++i)
1607 		any = (*memslot)->dirty_bitmap[i];
1608 
1609 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1610 		return -EFAULT;
1611 
1612 	if (any)
1613 		*is_dirty = 1;
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1617 
1618 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1619 /**
1620  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1621  *	and reenable dirty page tracking for the corresponding pages.
1622  * @kvm:	pointer to kvm instance
1623  * @log:	slot id and address to which we copy the log
1624  *
1625  * We need to keep it in mind that VCPU threads can write to the bitmap
1626  * concurrently. So, to avoid losing track of dirty pages we keep the
1627  * following order:
1628  *
1629  *    1. Take a snapshot of the bit and clear it if needed.
1630  *    2. Write protect the corresponding page.
1631  *    3. Copy the snapshot to the userspace.
1632  *    4. Upon return caller flushes TLB's if needed.
1633  *
1634  * Between 2 and 4, the guest may write to the page using the remaining TLB
1635  * entry.  This is not a problem because the page is reported dirty using
1636  * the snapshot taken before and step 4 ensures that writes done after
1637  * exiting to userspace will be logged for the next call.
1638  *
1639  */
1640 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1641 {
1642 	struct kvm_memslots *slots;
1643 	struct kvm_memory_slot *memslot;
1644 	int i, as_id, id;
1645 	unsigned long n;
1646 	unsigned long *dirty_bitmap;
1647 	unsigned long *dirty_bitmap_buffer;
1648 	bool flush;
1649 
1650 	/* Dirty ring tracking is exclusive to dirty log tracking */
1651 	if (kvm->dirty_ring_size)
1652 		return -ENXIO;
1653 
1654 	as_id = log->slot >> 16;
1655 	id = (u16)log->slot;
1656 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1657 		return -EINVAL;
1658 
1659 	slots = __kvm_memslots(kvm, as_id);
1660 	memslot = id_to_memslot(slots, id);
1661 	if (!memslot || !memslot->dirty_bitmap)
1662 		return -ENOENT;
1663 
1664 	dirty_bitmap = memslot->dirty_bitmap;
1665 
1666 	kvm_arch_sync_dirty_log(kvm, memslot);
1667 
1668 	n = kvm_dirty_bitmap_bytes(memslot);
1669 	flush = false;
1670 	if (kvm->manual_dirty_log_protect) {
1671 		/*
1672 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1673 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1674 		 * is some code duplication between this function and
1675 		 * kvm_get_dirty_log, but hopefully all architecture
1676 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1677 		 * can be eliminated.
1678 		 */
1679 		dirty_bitmap_buffer = dirty_bitmap;
1680 	} else {
1681 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1682 		memset(dirty_bitmap_buffer, 0, n);
1683 
1684 		KVM_MMU_LOCK(kvm);
1685 		for (i = 0; i < n / sizeof(long); i++) {
1686 			unsigned long mask;
1687 			gfn_t offset;
1688 
1689 			if (!dirty_bitmap[i])
1690 				continue;
1691 
1692 			flush = true;
1693 			mask = xchg(&dirty_bitmap[i], 0);
1694 			dirty_bitmap_buffer[i] = mask;
1695 
1696 			offset = i * BITS_PER_LONG;
1697 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1698 								offset, mask);
1699 		}
1700 		KVM_MMU_UNLOCK(kvm);
1701 	}
1702 
1703 	if (flush)
1704 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1705 
1706 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1707 		return -EFAULT;
1708 	return 0;
1709 }
1710 
1711 
1712 /**
1713  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1714  * @kvm: kvm instance
1715  * @log: slot id and address to which we copy the log
1716  *
1717  * Steps 1-4 below provide general overview of dirty page logging. See
1718  * kvm_get_dirty_log_protect() function description for additional details.
1719  *
1720  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1721  * always flush the TLB (step 4) even if previous step failed  and the dirty
1722  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1723  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1724  * writes will be marked dirty for next log read.
1725  *
1726  *   1. Take a snapshot of the bit and clear it if needed.
1727  *   2. Write protect the corresponding page.
1728  *   3. Copy the snapshot to the userspace.
1729  *   4. Flush TLB's if needed.
1730  */
1731 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1732 				      struct kvm_dirty_log *log)
1733 {
1734 	int r;
1735 
1736 	mutex_lock(&kvm->slots_lock);
1737 
1738 	r = kvm_get_dirty_log_protect(kvm, log);
1739 
1740 	mutex_unlock(&kvm->slots_lock);
1741 	return r;
1742 }
1743 
1744 /**
1745  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1746  *	and reenable dirty page tracking for the corresponding pages.
1747  * @kvm:	pointer to kvm instance
1748  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1749  */
1750 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1751 				       struct kvm_clear_dirty_log *log)
1752 {
1753 	struct kvm_memslots *slots;
1754 	struct kvm_memory_slot *memslot;
1755 	int as_id, id;
1756 	gfn_t offset;
1757 	unsigned long i, n;
1758 	unsigned long *dirty_bitmap;
1759 	unsigned long *dirty_bitmap_buffer;
1760 	bool flush;
1761 
1762 	/* Dirty ring tracking is exclusive to dirty log tracking */
1763 	if (kvm->dirty_ring_size)
1764 		return -ENXIO;
1765 
1766 	as_id = log->slot >> 16;
1767 	id = (u16)log->slot;
1768 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1769 		return -EINVAL;
1770 
1771 	if (log->first_page & 63)
1772 		return -EINVAL;
1773 
1774 	slots = __kvm_memslots(kvm, as_id);
1775 	memslot = id_to_memslot(slots, id);
1776 	if (!memslot || !memslot->dirty_bitmap)
1777 		return -ENOENT;
1778 
1779 	dirty_bitmap = memslot->dirty_bitmap;
1780 
1781 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1782 
1783 	if (log->first_page > memslot->npages ||
1784 	    log->num_pages > memslot->npages - log->first_page ||
1785 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1786 	    return -EINVAL;
1787 
1788 	kvm_arch_sync_dirty_log(kvm, memslot);
1789 
1790 	flush = false;
1791 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1792 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1793 		return -EFAULT;
1794 
1795 	KVM_MMU_LOCK(kvm);
1796 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1797 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1798 	     i++, offset += BITS_PER_LONG) {
1799 		unsigned long mask = *dirty_bitmap_buffer++;
1800 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1801 		if (!mask)
1802 			continue;
1803 
1804 		mask &= atomic_long_fetch_andnot(mask, p);
1805 
1806 		/*
1807 		 * mask contains the bits that really have been cleared.  This
1808 		 * never includes any bits beyond the length of the memslot (if
1809 		 * the length is not aligned to 64 pages), therefore it is not
1810 		 * a problem if userspace sets them in log->dirty_bitmap.
1811 		*/
1812 		if (mask) {
1813 			flush = true;
1814 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1815 								offset, mask);
1816 		}
1817 	}
1818 	KVM_MMU_UNLOCK(kvm);
1819 
1820 	if (flush)
1821 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1822 
1823 	return 0;
1824 }
1825 
1826 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1827 					struct kvm_clear_dirty_log *log)
1828 {
1829 	int r;
1830 
1831 	mutex_lock(&kvm->slots_lock);
1832 
1833 	r = kvm_clear_dirty_log_protect(kvm, log);
1834 
1835 	mutex_unlock(&kvm->slots_lock);
1836 	return r;
1837 }
1838 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1839 
1840 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1841 {
1842 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1843 }
1844 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1845 
1846 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1847 {
1848 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1851 
1852 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1853 {
1854 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1855 
1856 	return kvm_is_visible_memslot(memslot);
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1859 
1860 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1861 {
1862 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1863 
1864 	return kvm_is_visible_memslot(memslot);
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1867 
1868 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1869 {
1870 	struct vm_area_struct *vma;
1871 	unsigned long addr, size;
1872 
1873 	size = PAGE_SIZE;
1874 
1875 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1876 	if (kvm_is_error_hva(addr))
1877 		return PAGE_SIZE;
1878 
1879 	mmap_read_lock(current->mm);
1880 	vma = find_vma(current->mm, addr);
1881 	if (!vma)
1882 		goto out;
1883 
1884 	size = vma_kernel_pagesize(vma);
1885 
1886 out:
1887 	mmap_read_unlock(current->mm);
1888 
1889 	return size;
1890 }
1891 
1892 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1893 {
1894 	return slot->flags & KVM_MEM_READONLY;
1895 }
1896 
1897 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1898 				       gfn_t *nr_pages, bool write)
1899 {
1900 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1901 		return KVM_HVA_ERR_BAD;
1902 
1903 	if (memslot_is_readonly(slot) && write)
1904 		return KVM_HVA_ERR_RO_BAD;
1905 
1906 	if (nr_pages)
1907 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1908 
1909 	return __gfn_to_hva_memslot(slot, gfn);
1910 }
1911 
1912 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1913 				     gfn_t *nr_pages)
1914 {
1915 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1916 }
1917 
1918 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1919 					gfn_t gfn)
1920 {
1921 	return gfn_to_hva_many(slot, gfn, NULL);
1922 }
1923 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1924 
1925 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1926 {
1927 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1928 }
1929 EXPORT_SYMBOL_GPL(gfn_to_hva);
1930 
1931 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1932 {
1933 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1936 
1937 /*
1938  * Return the hva of a @gfn and the R/W attribute if possible.
1939  *
1940  * @slot: the kvm_memory_slot which contains @gfn
1941  * @gfn: the gfn to be translated
1942  * @writable: used to return the read/write attribute of the @slot if the hva
1943  * is valid and @writable is not NULL
1944  */
1945 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1946 				      gfn_t gfn, bool *writable)
1947 {
1948 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1949 
1950 	if (!kvm_is_error_hva(hva) && writable)
1951 		*writable = !memslot_is_readonly(slot);
1952 
1953 	return hva;
1954 }
1955 
1956 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1957 {
1958 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1959 
1960 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1961 }
1962 
1963 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1964 {
1965 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1966 
1967 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1968 }
1969 
1970 static inline int check_user_page_hwpoison(unsigned long addr)
1971 {
1972 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1973 
1974 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1975 	return rc == -EHWPOISON;
1976 }
1977 
1978 /*
1979  * The fast path to get the writable pfn which will be stored in @pfn,
1980  * true indicates success, otherwise false is returned.  It's also the
1981  * only part that runs if we can in atomic context.
1982  */
1983 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1984 			    bool *writable, kvm_pfn_t *pfn)
1985 {
1986 	struct page *page[1];
1987 
1988 	/*
1989 	 * Fast pin a writable pfn only if it is a write fault request
1990 	 * or the caller allows to map a writable pfn for a read fault
1991 	 * request.
1992 	 */
1993 	if (!(write_fault || writable))
1994 		return false;
1995 
1996 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1997 		*pfn = page_to_pfn(page[0]);
1998 
1999 		if (writable)
2000 			*writable = true;
2001 		return true;
2002 	}
2003 
2004 	return false;
2005 }
2006 
2007 /*
2008  * The slow path to get the pfn of the specified host virtual address,
2009  * 1 indicates success, -errno is returned if error is detected.
2010  */
2011 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2012 			   bool *writable, kvm_pfn_t *pfn)
2013 {
2014 	unsigned int flags = FOLL_HWPOISON;
2015 	struct page *page;
2016 	int npages = 0;
2017 
2018 	might_sleep();
2019 
2020 	if (writable)
2021 		*writable = write_fault;
2022 
2023 	if (write_fault)
2024 		flags |= FOLL_WRITE;
2025 	if (async)
2026 		flags |= FOLL_NOWAIT;
2027 
2028 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2029 	if (npages != 1)
2030 		return npages;
2031 
2032 	/* map read fault as writable if possible */
2033 	if (unlikely(!write_fault) && writable) {
2034 		struct page *wpage;
2035 
2036 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2037 			*writable = true;
2038 			put_page(page);
2039 			page = wpage;
2040 		}
2041 	}
2042 	*pfn = page_to_pfn(page);
2043 	return npages;
2044 }
2045 
2046 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2047 {
2048 	if (unlikely(!(vma->vm_flags & VM_READ)))
2049 		return false;
2050 
2051 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2052 		return false;
2053 
2054 	return true;
2055 }
2056 
2057 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2058 			       unsigned long addr, bool *async,
2059 			       bool write_fault, bool *writable,
2060 			       kvm_pfn_t *p_pfn)
2061 {
2062 	kvm_pfn_t pfn;
2063 	pte_t *ptep;
2064 	spinlock_t *ptl;
2065 	int r;
2066 
2067 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2068 	if (r) {
2069 		/*
2070 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2071 		 * not call the fault handler, so do it here.
2072 		 */
2073 		bool unlocked = false;
2074 		r = fixup_user_fault(current->mm, addr,
2075 				     (write_fault ? FAULT_FLAG_WRITE : 0),
2076 				     &unlocked);
2077 		if (unlocked)
2078 			return -EAGAIN;
2079 		if (r)
2080 			return r;
2081 
2082 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2083 		if (r)
2084 			return r;
2085 	}
2086 
2087 	if (write_fault && !pte_write(*ptep)) {
2088 		pfn = KVM_PFN_ERR_RO_FAULT;
2089 		goto out;
2090 	}
2091 
2092 	if (writable)
2093 		*writable = pte_write(*ptep);
2094 	pfn = pte_pfn(*ptep);
2095 
2096 	/*
2097 	 * Get a reference here because callers of *hva_to_pfn* and
2098 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2099 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2100 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2101 	 * simply do nothing for reserved pfns.
2102 	 *
2103 	 * Whoever called remap_pfn_range is also going to call e.g.
2104 	 * unmap_mapping_range before the underlying pages are freed,
2105 	 * causing a call to our MMU notifier.
2106 	 */
2107 	kvm_get_pfn(pfn);
2108 
2109 out:
2110 	pte_unmap_unlock(ptep, ptl);
2111 	*p_pfn = pfn;
2112 	return 0;
2113 }
2114 
2115 /*
2116  * Pin guest page in memory and return its pfn.
2117  * @addr: host virtual address which maps memory to the guest
2118  * @atomic: whether this function can sleep
2119  * @async: whether this function need to wait IO complete if the
2120  *         host page is not in the memory
2121  * @write_fault: whether we should get a writable host page
2122  * @writable: whether it allows to map a writable host page for !@write_fault
2123  *
2124  * The function will map a writable host page for these two cases:
2125  * 1): @write_fault = true
2126  * 2): @write_fault = false && @writable, @writable will tell the caller
2127  *     whether the mapping is writable.
2128  */
2129 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2130 			bool write_fault, bool *writable)
2131 {
2132 	struct vm_area_struct *vma;
2133 	kvm_pfn_t pfn = 0;
2134 	int npages, r;
2135 
2136 	/* we can do it either atomically or asynchronously, not both */
2137 	BUG_ON(atomic && async);
2138 
2139 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2140 		return pfn;
2141 
2142 	if (atomic)
2143 		return KVM_PFN_ERR_FAULT;
2144 
2145 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2146 	if (npages == 1)
2147 		return pfn;
2148 
2149 	mmap_read_lock(current->mm);
2150 	if (npages == -EHWPOISON ||
2151 	      (!async && check_user_page_hwpoison(addr))) {
2152 		pfn = KVM_PFN_ERR_HWPOISON;
2153 		goto exit;
2154 	}
2155 
2156 retry:
2157 	vma = find_vma_intersection(current->mm, addr, addr + 1);
2158 
2159 	if (vma == NULL)
2160 		pfn = KVM_PFN_ERR_FAULT;
2161 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2162 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2163 		if (r == -EAGAIN)
2164 			goto retry;
2165 		if (r < 0)
2166 			pfn = KVM_PFN_ERR_FAULT;
2167 	} else {
2168 		if (async && vma_is_valid(vma, write_fault))
2169 			*async = true;
2170 		pfn = KVM_PFN_ERR_FAULT;
2171 	}
2172 exit:
2173 	mmap_read_unlock(current->mm);
2174 	return pfn;
2175 }
2176 
2177 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2178 			       bool atomic, bool *async, bool write_fault,
2179 			       bool *writable, hva_t *hva)
2180 {
2181 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2182 
2183 	if (hva)
2184 		*hva = addr;
2185 
2186 	if (addr == KVM_HVA_ERR_RO_BAD) {
2187 		if (writable)
2188 			*writable = false;
2189 		return KVM_PFN_ERR_RO_FAULT;
2190 	}
2191 
2192 	if (kvm_is_error_hva(addr)) {
2193 		if (writable)
2194 			*writable = false;
2195 		return KVM_PFN_NOSLOT;
2196 	}
2197 
2198 	/* Do not map writable pfn in the readonly memslot. */
2199 	if (writable && memslot_is_readonly(slot)) {
2200 		*writable = false;
2201 		writable = NULL;
2202 	}
2203 
2204 	return hva_to_pfn(addr, atomic, async, write_fault,
2205 			  writable);
2206 }
2207 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2208 
2209 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2210 		      bool *writable)
2211 {
2212 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2213 				    write_fault, writable, NULL);
2214 }
2215 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2216 
2217 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2218 {
2219 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2220 }
2221 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2222 
2223 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2224 {
2225 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2226 }
2227 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2228 
2229 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2230 {
2231 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2234 
2235 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2236 {
2237 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2238 }
2239 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2240 
2241 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2242 {
2243 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2246 
2247 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2248 			    struct page **pages, int nr_pages)
2249 {
2250 	unsigned long addr;
2251 	gfn_t entry = 0;
2252 
2253 	addr = gfn_to_hva_many(slot, gfn, &entry);
2254 	if (kvm_is_error_hva(addr))
2255 		return -1;
2256 
2257 	if (entry < nr_pages)
2258 		return 0;
2259 
2260 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2261 }
2262 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2263 
2264 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2265 {
2266 	if (is_error_noslot_pfn(pfn))
2267 		return KVM_ERR_PTR_BAD_PAGE;
2268 
2269 	if (kvm_is_reserved_pfn(pfn)) {
2270 		WARN_ON(1);
2271 		return KVM_ERR_PTR_BAD_PAGE;
2272 	}
2273 
2274 	return pfn_to_page(pfn);
2275 }
2276 
2277 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2278 {
2279 	kvm_pfn_t pfn;
2280 
2281 	pfn = gfn_to_pfn(kvm, gfn);
2282 
2283 	return kvm_pfn_to_page(pfn);
2284 }
2285 EXPORT_SYMBOL_GPL(gfn_to_page);
2286 
2287 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2288 {
2289 	if (pfn == 0)
2290 		return;
2291 
2292 	if (cache)
2293 		cache->pfn = cache->gfn = 0;
2294 
2295 	if (dirty)
2296 		kvm_release_pfn_dirty(pfn);
2297 	else
2298 		kvm_release_pfn_clean(pfn);
2299 }
2300 
2301 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2302 				 struct gfn_to_pfn_cache *cache, u64 gen)
2303 {
2304 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2305 
2306 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2307 	cache->gfn = gfn;
2308 	cache->dirty = false;
2309 	cache->generation = gen;
2310 }
2311 
2312 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2313 			 struct kvm_host_map *map,
2314 			 struct gfn_to_pfn_cache *cache,
2315 			 bool atomic)
2316 {
2317 	kvm_pfn_t pfn;
2318 	void *hva = NULL;
2319 	struct page *page = KVM_UNMAPPED_PAGE;
2320 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2321 	u64 gen = slots->generation;
2322 
2323 	if (!map)
2324 		return -EINVAL;
2325 
2326 	if (cache) {
2327 		if (!cache->pfn || cache->gfn != gfn ||
2328 			cache->generation != gen) {
2329 			if (atomic)
2330 				return -EAGAIN;
2331 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2332 		}
2333 		pfn = cache->pfn;
2334 	} else {
2335 		if (atomic)
2336 			return -EAGAIN;
2337 		pfn = gfn_to_pfn_memslot(slot, gfn);
2338 	}
2339 	if (is_error_noslot_pfn(pfn))
2340 		return -EINVAL;
2341 
2342 	if (pfn_valid(pfn)) {
2343 		page = pfn_to_page(pfn);
2344 		if (atomic)
2345 			hva = kmap_atomic(page);
2346 		else
2347 			hva = kmap(page);
2348 #ifdef CONFIG_HAS_IOMEM
2349 	} else if (!atomic) {
2350 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2351 	} else {
2352 		return -EINVAL;
2353 #endif
2354 	}
2355 
2356 	if (!hva)
2357 		return -EFAULT;
2358 
2359 	map->page = page;
2360 	map->hva = hva;
2361 	map->pfn = pfn;
2362 	map->gfn = gfn;
2363 
2364 	return 0;
2365 }
2366 
2367 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2368 		struct gfn_to_pfn_cache *cache, bool atomic)
2369 {
2370 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2371 			cache, atomic);
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2374 
2375 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2376 {
2377 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2378 		NULL, false);
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2381 
2382 static void __kvm_unmap_gfn(struct kvm *kvm,
2383 			struct kvm_memory_slot *memslot,
2384 			struct kvm_host_map *map,
2385 			struct gfn_to_pfn_cache *cache,
2386 			bool dirty, bool atomic)
2387 {
2388 	if (!map)
2389 		return;
2390 
2391 	if (!map->hva)
2392 		return;
2393 
2394 	if (map->page != KVM_UNMAPPED_PAGE) {
2395 		if (atomic)
2396 			kunmap_atomic(map->hva);
2397 		else
2398 			kunmap(map->page);
2399 	}
2400 #ifdef CONFIG_HAS_IOMEM
2401 	else if (!atomic)
2402 		memunmap(map->hva);
2403 	else
2404 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2405 #endif
2406 
2407 	if (dirty)
2408 		mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2409 
2410 	if (cache)
2411 		cache->dirty |= dirty;
2412 	else
2413 		kvm_release_pfn(map->pfn, dirty, NULL);
2414 
2415 	map->hva = NULL;
2416 	map->page = NULL;
2417 }
2418 
2419 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2420 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2421 {
2422 	__kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2423 			cache, dirty, atomic);
2424 	return 0;
2425 }
2426 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2427 
2428 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2429 {
2430 	__kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2431 			map, NULL, dirty, false);
2432 }
2433 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2434 
2435 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2436 {
2437 	kvm_pfn_t pfn;
2438 
2439 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2440 
2441 	return kvm_pfn_to_page(pfn);
2442 }
2443 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2444 
2445 void kvm_release_page_clean(struct page *page)
2446 {
2447 	WARN_ON(is_error_page(page));
2448 
2449 	kvm_release_pfn_clean(page_to_pfn(page));
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2452 
2453 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2454 {
2455 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2456 		put_page(pfn_to_page(pfn));
2457 }
2458 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2459 
2460 void kvm_release_page_dirty(struct page *page)
2461 {
2462 	WARN_ON(is_error_page(page));
2463 
2464 	kvm_release_pfn_dirty(page_to_pfn(page));
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2467 
2468 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2469 {
2470 	kvm_set_pfn_dirty(pfn);
2471 	kvm_release_pfn_clean(pfn);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2474 
2475 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2476 {
2477 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2478 		SetPageDirty(pfn_to_page(pfn));
2479 }
2480 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2481 
2482 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2483 {
2484 	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2485 		mark_page_accessed(pfn_to_page(pfn));
2486 }
2487 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2488 
2489 void kvm_get_pfn(kvm_pfn_t pfn)
2490 {
2491 	if (!kvm_is_reserved_pfn(pfn))
2492 		get_page(pfn_to_page(pfn));
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2495 
2496 static int next_segment(unsigned long len, int offset)
2497 {
2498 	if (len > PAGE_SIZE - offset)
2499 		return PAGE_SIZE - offset;
2500 	else
2501 		return len;
2502 }
2503 
2504 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2505 				 void *data, int offset, int len)
2506 {
2507 	int r;
2508 	unsigned long addr;
2509 
2510 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2511 	if (kvm_is_error_hva(addr))
2512 		return -EFAULT;
2513 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2514 	if (r)
2515 		return -EFAULT;
2516 	return 0;
2517 }
2518 
2519 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2520 			int len)
2521 {
2522 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2523 
2524 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2525 }
2526 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2527 
2528 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2529 			     int offset, int len)
2530 {
2531 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2532 
2533 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2534 }
2535 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2536 
2537 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2538 {
2539 	gfn_t gfn = gpa >> PAGE_SHIFT;
2540 	int seg;
2541 	int offset = offset_in_page(gpa);
2542 	int ret;
2543 
2544 	while ((seg = next_segment(len, offset)) != 0) {
2545 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2546 		if (ret < 0)
2547 			return ret;
2548 		offset = 0;
2549 		len -= seg;
2550 		data += seg;
2551 		++gfn;
2552 	}
2553 	return 0;
2554 }
2555 EXPORT_SYMBOL_GPL(kvm_read_guest);
2556 
2557 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2558 {
2559 	gfn_t gfn = gpa >> PAGE_SHIFT;
2560 	int seg;
2561 	int offset = offset_in_page(gpa);
2562 	int ret;
2563 
2564 	while ((seg = next_segment(len, offset)) != 0) {
2565 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2566 		if (ret < 0)
2567 			return ret;
2568 		offset = 0;
2569 		len -= seg;
2570 		data += seg;
2571 		++gfn;
2572 	}
2573 	return 0;
2574 }
2575 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2576 
2577 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2578 			           void *data, int offset, unsigned long len)
2579 {
2580 	int r;
2581 	unsigned long addr;
2582 
2583 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2584 	if (kvm_is_error_hva(addr))
2585 		return -EFAULT;
2586 	pagefault_disable();
2587 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2588 	pagefault_enable();
2589 	if (r)
2590 		return -EFAULT;
2591 	return 0;
2592 }
2593 
2594 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2595 			       void *data, unsigned long len)
2596 {
2597 	gfn_t gfn = gpa >> PAGE_SHIFT;
2598 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2599 	int offset = offset_in_page(gpa);
2600 
2601 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2604 
2605 static int __kvm_write_guest_page(struct kvm *kvm,
2606 				  struct kvm_memory_slot *memslot, gfn_t gfn,
2607 			          const void *data, int offset, int len)
2608 {
2609 	int r;
2610 	unsigned long addr;
2611 
2612 	addr = gfn_to_hva_memslot(memslot, gfn);
2613 	if (kvm_is_error_hva(addr))
2614 		return -EFAULT;
2615 	r = __copy_to_user((void __user *)addr + offset, data, len);
2616 	if (r)
2617 		return -EFAULT;
2618 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2619 	return 0;
2620 }
2621 
2622 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2623 			 const void *data, int offset, int len)
2624 {
2625 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2626 
2627 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2630 
2631 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2632 			      const void *data, int offset, int len)
2633 {
2634 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2635 
2636 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2637 }
2638 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2639 
2640 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2641 		    unsigned long len)
2642 {
2643 	gfn_t gfn = gpa >> PAGE_SHIFT;
2644 	int seg;
2645 	int offset = offset_in_page(gpa);
2646 	int ret;
2647 
2648 	while ((seg = next_segment(len, offset)) != 0) {
2649 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2650 		if (ret < 0)
2651 			return ret;
2652 		offset = 0;
2653 		len -= seg;
2654 		data += seg;
2655 		++gfn;
2656 	}
2657 	return 0;
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_write_guest);
2660 
2661 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2662 		         unsigned long len)
2663 {
2664 	gfn_t gfn = gpa >> PAGE_SHIFT;
2665 	int seg;
2666 	int offset = offset_in_page(gpa);
2667 	int ret;
2668 
2669 	while ((seg = next_segment(len, offset)) != 0) {
2670 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2671 		if (ret < 0)
2672 			return ret;
2673 		offset = 0;
2674 		len -= seg;
2675 		data += seg;
2676 		++gfn;
2677 	}
2678 	return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2681 
2682 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2683 				       struct gfn_to_hva_cache *ghc,
2684 				       gpa_t gpa, unsigned long len)
2685 {
2686 	int offset = offset_in_page(gpa);
2687 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2688 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2689 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2690 	gfn_t nr_pages_avail;
2691 
2692 	/* Update ghc->generation before performing any error checks. */
2693 	ghc->generation = slots->generation;
2694 
2695 	if (start_gfn > end_gfn) {
2696 		ghc->hva = KVM_HVA_ERR_BAD;
2697 		return -EINVAL;
2698 	}
2699 
2700 	/*
2701 	 * If the requested region crosses two memslots, we still
2702 	 * verify that the entire region is valid here.
2703 	 */
2704 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2705 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2706 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2707 					   &nr_pages_avail);
2708 		if (kvm_is_error_hva(ghc->hva))
2709 			return -EFAULT;
2710 	}
2711 
2712 	/* Use the slow path for cross page reads and writes. */
2713 	if (nr_pages_needed == 1)
2714 		ghc->hva += offset;
2715 	else
2716 		ghc->memslot = NULL;
2717 
2718 	ghc->gpa = gpa;
2719 	ghc->len = len;
2720 	return 0;
2721 }
2722 
2723 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2724 			      gpa_t gpa, unsigned long len)
2725 {
2726 	struct kvm_memslots *slots = kvm_memslots(kvm);
2727 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2728 }
2729 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2730 
2731 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2732 				  void *data, unsigned int offset,
2733 				  unsigned long len)
2734 {
2735 	struct kvm_memslots *slots = kvm_memslots(kvm);
2736 	int r;
2737 	gpa_t gpa = ghc->gpa + offset;
2738 
2739 	BUG_ON(len + offset > ghc->len);
2740 
2741 	if (slots->generation != ghc->generation) {
2742 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2743 			return -EFAULT;
2744 	}
2745 
2746 	if (kvm_is_error_hva(ghc->hva))
2747 		return -EFAULT;
2748 
2749 	if (unlikely(!ghc->memslot))
2750 		return kvm_write_guest(kvm, gpa, data, len);
2751 
2752 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2753 	if (r)
2754 		return -EFAULT;
2755 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2756 
2757 	return 0;
2758 }
2759 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2760 
2761 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2762 			   void *data, unsigned long len)
2763 {
2764 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2765 }
2766 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2767 
2768 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2769 				 void *data, unsigned int offset,
2770 				 unsigned long len)
2771 {
2772 	struct kvm_memslots *slots = kvm_memslots(kvm);
2773 	int r;
2774 	gpa_t gpa = ghc->gpa + offset;
2775 
2776 	BUG_ON(len + offset > ghc->len);
2777 
2778 	if (slots->generation != ghc->generation) {
2779 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2780 			return -EFAULT;
2781 	}
2782 
2783 	if (kvm_is_error_hva(ghc->hva))
2784 		return -EFAULT;
2785 
2786 	if (unlikely(!ghc->memslot))
2787 		return kvm_read_guest(kvm, gpa, data, len);
2788 
2789 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2790 	if (r)
2791 		return -EFAULT;
2792 
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2796 
2797 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2798 			  void *data, unsigned long len)
2799 {
2800 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2803 
2804 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2805 {
2806 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2807 	gfn_t gfn = gpa >> PAGE_SHIFT;
2808 	int seg;
2809 	int offset = offset_in_page(gpa);
2810 	int ret;
2811 
2812 	while ((seg = next_segment(len, offset)) != 0) {
2813 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2814 		if (ret < 0)
2815 			return ret;
2816 		offset = 0;
2817 		len -= seg;
2818 		++gfn;
2819 	}
2820 	return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2823 
2824 void mark_page_dirty_in_slot(struct kvm *kvm,
2825 			     struct kvm_memory_slot *memslot,
2826 		 	     gfn_t gfn)
2827 {
2828 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2829 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2830 		u32 slot = (memslot->as_id << 16) | memslot->id;
2831 
2832 		if (kvm->dirty_ring_size)
2833 			kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2834 					    slot, rel_gfn);
2835 		else
2836 			set_bit_le(rel_gfn, memslot->dirty_bitmap);
2837 	}
2838 }
2839 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2840 
2841 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2842 {
2843 	struct kvm_memory_slot *memslot;
2844 
2845 	memslot = gfn_to_memslot(kvm, gfn);
2846 	mark_page_dirty_in_slot(kvm, memslot, gfn);
2847 }
2848 EXPORT_SYMBOL_GPL(mark_page_dirty);
2849 
2850 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2851 {
2852 	struct kvm_memory_slot *memslot;
2853 
2854 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2855 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2856 }
2857 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2858 
2859 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2860 {
2861 	if (!vcpu->sigset_active)
2862 		return;
2863 
2864 	/*
2865 	 * This does a lockless modification of ->real_blocked, which is fine
2866 	 * because, only current can change ->real_blocked and all readers of
2867 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2868 	 * of ->blocked.
2869 	 */
2870 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2871 }
2872 
2873 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2874 {
2875 	if (!vcpu->sigset_active)
2876 		return;
2877 
2878 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2879 	sigemptyset(&current->real_blocked);
2880 }
2881 
2882 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2883 {
2884 	unsigned int old, val, grow, grow_start;
2885 
2886 	old = val = vcpu->halt_poll_ns;
2887 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2888 	grow = READ_ONCE(halt_poll_ns_grow);
2889 	if (!grow)
2890 		goto out;
2891 
2892 	val *= grow;
2893 	if (val < grow_start)
2894 		val = grow_start;
2895 
2896 	if (val > vcpu->kvm->max_halt_poll_ns)
2897 		val = vcpu->kvm->max_halt_poll_ns;
2898 
2899 	vcpu->halt_poll_ns = val;
2900 out:
2901 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2902 }
2903 
2904 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2905 {
2906 	unsigned int old, val, shrink;
2907 
2908 	old = val = vcpu->halt_poll_ns;
2909 	shrink = READ_ONCE(halt_poll_ns_shrink);
2910 	if (shrink == 0)
2911 		val = 0;
2912 	else
2913 		val /= shrink;
2914 
2915 	vcpu->halt_poll_ns = val;
2916 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2917 }
2918 
2919 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2920 {
2921 	int ret = -EINTR;
2922 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2923 
2924 	if (kvm_arch_vcpu_runnable(vcpu)) {
2925 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2926 		goto out;
2927 	}
2928 	if (kvm_cpu_has_pending_timer(vcpu))
2929 		goto out;
2930 	if (signal_pending(current))
2931 		goto out;
2932 
2933 	ret = 0;
2934 out:
2935 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2936 	return ret;
2937 }
2938 
2939 static inline void
2940 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2941 {
2942 	if (waited)
2943 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2944 	else
2945 		vcpu->stat.halt_poll_success_ns += poll_ns;
2946 }
2947 
2948 /*
2949  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2950  */
2951 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2952 {
2953 	ktime_t start, cur, poll_end;
2954 	bool waited = false;
2955 	u64 block_ns;
2956 
2957 	kvm_arch_vcpu_blocking(vcpu);
2958 
2959 	start = cur = poll_end = ktime_get();
2960 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2961 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2962 
2963 		++vcpu->stat.halt_attempted_poll;
2964 		do {
2965 			/*
2966 			 * This sets KVM_REQ_UNHALT if an interrupt
2967 			 * arrives.
2968 			 */
2969 			if (kvm_vcpu_check_block(vcpu) < 0) {
2970 				++vcpu->stat.halt_successful_poll;
2971 				if (!vcpu_valid_wakeup(vcpu))
2972 					++vcpu->stat.halt_poll_invalid;
2973 				goto out;
2974 			}
2975 			poll_end = cur = ktime_get();
2976 		} while (single_task_running() && !need_resched() &&
2977 			 ktime_before(cur, stop));
2978 	}
2979 
2980 	prepare_to_rcuwait(&vcpu->wait);
2981 	for (;;) {
2982 		set_current_state(TASK_INTERRUPTIBLE);
2983 
2984 		if (kvm_vcpu_check_block(vcpu) < 0)
2985 			break;
2986 
2987 		waited = true;
2988 		schedule();
2989 	}
2990 	finish_rcuwait(&vcpu->wait);
2991 	cur = ktime_get();
2992 out:
2993 	kvm_arch_vcpu_unblocking(vcpu);
2994 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2995 
2996 	update_halt_poll_stats(
2997 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2998 
2999 	if (!kvm_arch_no_poll(vcpu)) {
3000 		if (!vcpu_valid_wakeup(vcpu)) {
3001 			shrink_halt_poll_ns(vcpu);
3002 		} else if (vcpu->kvm->max_halt_poll_ns) {
3003 			if (block_ns <= vcpu->halt_poll_ns)
3004 				;
3005 			/* we had a long block, shrink polling */
3006 			else if (vcpu->halt_poll_ns &&
3007 					block_ns > vcpu->kvm->max_halt_poll_ns)
3008 				shrink_halt_poll_ns(vcpu);
3009 			/* we had a short halt and our poll time is too small */
3010 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3011 					block_ns < vcpu->kvm->max_halt_poll_ns)
3012 				grow_halt_poll_ns(vcpu);
3013 		} else {
3014 			vcpu->halt_poll_ns = 0;
3015 		}
3016 	}
3017 
3018 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3019 	kvm_arch_vcpu_block_finish(vcpu);
3020 }
3021 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3022 
3023 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3024 {
3025 	struct rcuwait *waitp;
3026 
3027 	waitp = kvm_arch_vcpu_get_wait(vcpu);
3028 	if (rcuwait_wake_up(waitp)) {
3029 		WRITE_ONCE(vcpu->ready, true);
3030 		++vcpu->stat.halt_wakeup;
3031 		return true;
3032 	}
3033 
3034 	return false;
3035 }
3036 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3037 
3038 #ifndef CONFIG_S390
3039 /*
3040  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3041  */
3042 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3043 {
3044 	int me;
3045 	int cpu = vcpu->cpu;
3046 
3047 	if (kvm_vcpu_wake_up(vcpu))
3048 		return;
3049 
3050 	me = get_cpu();
3051 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3052 		if (kvm_arch_vcpu_should_kick(vcpu))
3053 			smp_send_reschedule(cpu);
3054 	put_cpu();
3055 }
3056 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3057 #endif /* !CONFIG_S390 */
3058 
3059 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3060 {
3061 	struct pid *pid;
3062 	struct task_struct *task = NULL;
3063 	int ret = 0;
3064 
3065 	rcu_read_lock();
3066 	pid = rcu_dereference(target->pid);
3067 	if (pid)
3068 		task = get_pid_task(pid, PIDTYPE_PID);
3069 	rcu_read_unlock();
3070 	if (!task)
3071 		return ret;
3072 	ret = yield_to(task, 1);
3073 	put_task_struct(task);
3074 
3075 	return ret;
3076 }
3077 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3078 
3079 /*
3080  * Helper that checks whether a VCPU is eligible for directed yield.
3081  * Most eligible candidate to yield is decided by following heuristics:
3082  *
3083  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3084  *  (preempted lock holder), indicated by @in_spin_loop.
3085  *  Set at the beginning and cleared at the end of interception/PLE handler.
3086  *
3087  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3088  *  chance last time (mostly it has become eligible now since we have probably
3089  *  yielded to lockholder in last iteration. This is done by toggling
3090  *  @dy_eligible each time a VCPU checked for eligibility.)
3091  *
3092  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3093  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3094  *  burning. Giving priority for a potential lock-holder increases lock
3095  *  progress.
3096  *
3097  *  Since algorithm is based on heuristics, accessing another VCPU data without
3098  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3099  *  and continue with next VCPU and so on.
3100  */
3101 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3102 {
3103 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3104 	bool eligible;
3105 
3106 	eligible = !vcpu->spin_loop.in_spin_loop ||
3107 		    vcpu->spin_loop.dy_eligible;
3108 
3109 	if (vcpu->spin_loop.in_spin_loop)
3110 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3111 
3112 	return eligible;
3113 #else
3114 	return true;
3115 #endif
3116 }
3117 
3118 /*
3119  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3120  * a vcpu_load/vcpu_put pair.  However, for most architectures
3121  * kvm_arch_vcpu_runnable does not require vcpu_load.
3122  */
3123 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3124 {
3125 	return kvm_arch_vcpu_runnable(vcpu);
3126 }
3127 
3128 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3129 {
3130 	if (kvm_arch_dy_runnable(vcpu))
3131 		return true;
3132 
3133 #ifdef CONFIG_KVM_ASYNC_PF
3134 	if (!list_empty_careful(&vcpu->async_pf.done))
3135 		return true;
3136 #endif
3137 
3138 	return false;
3139 }
3140 
3141 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3142 {
3143 	return false;
3144 }
3145 
3146 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3147 {
3148 	struct kvm *kvm = me->kvm;
3149 	struct kvm_vcpu *vcpu;
3150 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3151 	int yielded = 0;
3152 	int try = 3;
3153 	int pass;
3154 	int i;
3155 
3156 	kvm_vcpu_set_in_spin_loop(me, true);
3157 	/*
3158 	 * We boost the priority of a VCPU that is runnable but not
3159 	 * currently running, because it got preempted by something
3160 	 * else and called schedule in __vcpu_run.  Hopefully that
3161 	 * VCPU is holding the lock that we need and will release it.
3162 	 * We approximate round-robin by starting at the last boosted VCPU.
3163 	 */
3164 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3165 		kvm_for_each_vcpu(i, vcpu, kvm) {
3166 			if (!pass && i <= last_boosted_vcpu) {
3167 				i = last_boosted_vcpu;
3168 				continue;
3169 			} else if (pass && i > last_boosted_vcpu)
3170 				break;
3171 			if (!READ_ONCE(vcpu->ready))
3172 				continue;
3173 			if (vcpu == me)
3174 				continue;
3175 			if (rcuwait_active(&vcpu->wait) &&
3176 			    !vcpu_dy_runnable(vcpu))
3177 				continue;
3178 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3179 			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3180 			    !kvm_arch_vcpu_in_kernel(vcpu))
3181 				continue;
3182 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3183 				continue;
3184 
3185 			yielded = kvm_vcpu_yield_to(vcpu);
3186 			if (yielded > 0) {
3187 				kvm->last_boosted_vcpu = i;
3188 				break;
3189 			} else if (yielded < 0) {
3190 				try--;
3191 				if (!try)
3192 					break;
3193 			}
3194 		}
3195 	}
3196 	kvm_vcpu_set_in_spin_loop(me, false);
3197 
3198 	/* Ensure vcpu is not eligible during next spinloop */
3199 	kvm_vcpu_set_dy_eligible(me, false);
3200 }
3201 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3202 
3203 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3204 {
3205 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3206 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3207 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3208 	     kvm->dirty_ring_size / PAGE_SIZE);
3209 #else
3210 	return false;
3211 #endif
3212 }
3213 
3214 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3215 {
3216 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3217 	struct page *page;
3218 
3219 	if (vmf->pgoff == 0)
3220 		page = virt_to_page(vcpu->run);
3221 #ifdef CONFIG_X86
3222 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3223 		page = virt_to_page(vcpu->arch.pio_data);
3224 #endif
3225 #ifdef CONFIG_KVM_MMIO
3226 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3227 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3228 #endif
3229 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3230 		page = kvm_dirty_ring_get_page(
3231 		    &vcpu->dirty_ring,
3232 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3233 	else
3234 		return kvm_arch_vcpu_fault(vcpu, vmf);
3235 	get_page(page);
3236 	vmf->page = page;
3237 	return 0;
3238 }
3239 
3240 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3241 	.fault = kvm_vcpu_fault,
3242 };
3243 
3244 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3245 {
3246 	struct kvm_vcpu *vcpu = file->private_data;
3247 	unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3248 
3249 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3250 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3251 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3252 		return -EINVAL;
3253 
3254 	vma->vm_ops = &kvm_vcpu_vm_ops;
3255 	return 0;
3256 }
3257 
3258 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3259 {
3260 	struct kvm_vcpu *vcpu = filp->private_data;
3261 
3262 	kvm_put_kvm(vcpu->kvm);
3263 	return 0;
3264 }
3265 
3266 static struct file_operations kvm_vcpu_fops = {
3267 	.release        = kvm_vcpu_release,
3268 	.unlocked_ioctl = kvm_vcpu_ioctl,
3269 	.mmap           = kvm_vcpu_mmap,
3270 	.llseek		= noop_llseek,
3271 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3272 };
3273 
3274 /*
3275  * Allocates an inode for the vcpu.
3276  */
3277 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3278 {
3279 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3280 
3281 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3282 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3283 }
3284 
3285 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3286 {
3287 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3288 	struct dentry *debugfs_dentry;
3289 	char dir_name[ITOA_MAX_LEN * 2];
3290 
3291 	if (!debugfs_initialized())
3292 		return;
3293 
3294 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3295 	debugfs_dentry = debugfs_create_dir(dir_name,
3296 					    vcpu->kvm->debugfs_dentry);
3297 
3298 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3299 #endif
3300 }
3301 
3302 /*
3303  * Creates some virtual cpus.  Good luck creating more than one.
3304  */
3305 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3306 {
3307 	int r;
3308 	struct kvm_vcpu *vcpu;
3309 	struct page *page;
3310 
3311 	if (id >= KVM_MAX_VCPU_ID)
3312 		return -EINVAL;
3313 
3314 	mutex_lock(&kvm->lock);
3315 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3316 		mutex_unlock(&kvm->lock);
3317 		return -EINVAL;
3318 	}
3319 
3320 	kvm->created_vcpus++;
3321 	mutex_unlock(&kvm->lock);
3322 
3323 	r = kvm_arch_vcpu_precreate(kvm, id);
3324 	if (r)
3325 		goto vcpu_decrement;
3326 
3327 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3328 	if (!vcpu) {
3329 		r = -ENOMEM;
3330 		goto vcpu_decrement;
3331 	}
3332 
3333 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3334 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3335 	if (!page) {
3336 		r = -ENOMEM;
3337 		goto vcpu_free;
3338 	}
3339 	vcpu->run = page_address(page);
3340 
3341 	kvm_vcpu_init(vcpu, kvm, id);
3342 
3343 	r = kvm_arch_vcpu_create(vcpu);
3344 	if (r)
3345 		goto vcpu_free_run_page;
3346 
3347 	if (kvm->dirty_ring_size) {
3348 		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3349 					 id, kvm->dirty_ring_size);
3350 		if (r)
3351 			goto arch_vcpu_destroy;
3352 	}
3353 
3354 	mutex_lock(&kvm->lock);
3355 	if (kvm_get_vcpu_by_id(kvm, id)) {
3356 		r = -EEXIST;
3357 		goto unlock_vcpu_destroy;
3358 	}
3359 
3360 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3361 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3362 
3363 	/* Now it's all set up, let userspace reach it */
3364 	kvm_get_kvm(kvm);
3365 	r = create_vcpu_fd(vcpu);
3366 	if (r < 0) {
3367 		kvm_put_kvm_no_destroy(kvm);
3368 		goto unlock_vcpu_destroy;
3369 	}
3370 
3371 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3372 
3373 	/*
3374 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3375 	 * before kvm->online_vcpu's incremented value.
3376 	 */
3377 	smp_wmb();
3378 	atomic_inc(&kvm->online_vcpus);
3379 
3380 	mutex_unlock(&kvm->lock);
3381 	kvm_arch_vcpu_postcreate(vcpu);
3382 	kvm_create_vcpu_debugfs(vcpu);
3383 	return r;
3384 
3385 unlock_vcpu_destroy:
3386 	mutex_unlock(&kvm->lock);
3387 	kvm_dirty_ring_free(&vcpu->dirty_ring);
3388 arch_vcpu_destroy:
3389 	kvm_arch_vcpu_destroy(vcpu);
3390 vcpu_free_run_page:
3391 	free_page((unsigned long)vcpu->run);
3392 vcpu_free:
3393 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3394 vcpu_decrement:
3395 	mutex_lock(&kvm->lock);
3396 	kvm->created_vcpus--;
3397 	mutex_unlock(&kvm->lock);
3398 	return r;
3399 }
3400 
3401 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3402 {
3403 	if (sigset) {
3404 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3405 		vcpu->sigset_active = 1;
3406 		vcpu->sigset = *sigset;
3407 	} else
3408 		vcpu->sigset_active = 0;
3409 	return 0;
3410 }
3411 
3412 static long kvm_vcpu_ioctl(struct file *filp,
3413 			   unsigned int ioctl, unsigned long arg)
3414 {
3415 	struct kvm_vcpu *vcpu = filp->private_data;
3416 	void __user *argp = (void __user *)arg;
3417 	int r;
3418 	struct kvm_fpu *fpu = NULL;
3419 	struct kvm_sregs *kvm_sregs = NULL;
3420 
3421 	if (vcpu->kvm->mm != current->mm)
3422 		return -EIO;
3423 
3424 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3425 		return -EINVAL;
3426 
3427 	/*
3428 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3429 	 * execution; mutex_lock() would break them.
3430 	 */
3431 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3432 	if (r != -ENOIOCTLCMD)
3433 		return r;
3434 
3435 	if (mutex_lock_killable(&vcpu->mutex))
3436 		return -EINTR;
3437 	switch (ioctl) {
3438 	case KVM_RUN: {
3439 		struct pid *oldpid;
3440 		r = -EINVAL;
3441 		if (arg)
3442 			goto out;
3443 		oldpid = rcu_access_pointer(vcpu->pid);
3444 		if (unlikely(oldpid != task_pid(current))) {
3445 			/* The thread running this VCPU changed. */
3446 			struct pid *newpid;
3447 
3448 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3449 			if (r)
3450 				break;
3451 
3452 			newpid = get_task_pid(current, PIDTYPE_PID);
3453 			rcu_assign_pointer(vcpu->pid, newpid);
3454 			if (oldpid)
3455 				synchronize_rcu();
3456 			put_pid(oldpid);
3457 		}
3458 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3459 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3460 		break;
3461 	}
3462 	case KVM_GET_REGS: {
3463 		struct kvm_regs *kvm_regs;
3464 
3465 		r = -ENOMEM;
3466 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3467 		if (!kvm_regs)
3468 			goto out;
3469 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3470 		if (r)
3471 			goto out_free1;
3472 		r = -EFAULT;
3473 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3474 			goto out_free1;
3475 		r = 0;
3476 out_free1:
3477 		kfree(kvm_regs);
3478 		break;
3479 	}
3480 	case KVM_SET_REGS: {
3481 		struct kvm_regs *kvm_regs;
3482 
3483 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3484 		if (IS_ERR(kvm_regs)) {
3485 			r = PTR_ERR(kvm_regs);
3486 			goto out;
3487 		}
3488 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3489 		kfree(kvm_regs);
3490 		break;
3491 	}
3492 	case KVM_GET_SREGS: {
3493 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3494 				    GFP_KERNEL_ACCOUNT);
3495 		r = -ENOMEM;
3496 		if (!kvm_sregs)
3497 			goto out;
3498 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3499 		if (r)
3500 			goto out;
3501 		r = -EFAULT;
3502 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3503 			goto out;
3504 		r = 0;
3505 		break;
3506 	}
3507 	case KVM_SET_SREGS: {
3508 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3509 		if (IS_ERR(kvm_sregs)) {
3510 			r = PTR_ERR(kvm_sregs);
3511 			kvm_sregs = NULL;
3512 			goto out;
3513 		}
3514 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3515 		break;
3516 	}
3517 	case KVM_GET_MP_STATE: {
3518 		struct kvm_mp_state mp_state;
3519 
3520 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3521 		if (r)
3522 			goto out;
3523 		r = -EFAULT;
3524 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3525 			goto out;
3526 		r = 0;
3527 		break;
3528 	}
3529 	case KVM_SET_MP_STATE: {
3530 		struct kvm_mp_state mp_state;
3531 
3532 		r = -EFAULT;
3533 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3534 			goto out;
3535 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3536 		break;
3537 	}
3538 	case KVM_TRANSLATE: {
3539 		struct kvm_translation tr;
3540 
3541 		r = -EFAULT;
3542 		if (copy_from_user(&tr, argp, sizeof(tr)))
3543 			goto out;
3544 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3545 		if (r)
3546 			goto out;
3547 		r = -EFAULT;
3548 		if (copy_to_user(argp, &tr, sizeof(tr)))
3549 			goto out;
3550 		r = 0;
3551 		break;
3552 	}
3553 	case KVM_SET_GUEST_DEBUG: {
3554 		struct kvm_guest_debug dbg;
3555 
3556 		r = -EFAULT;
3557 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3558 			goto out;
3559 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3560 		break;
3561 	}
3562 	case KVM_SET_SIGNAL_MASK: {
3563 		struct kvm_signal_mask __user *sigmask_arg = argp;
3564 		struct kvm_signal_mask kvm_sigmask;
3565 		sigset_t sigset, *p;
3566 
3567 		p = NULL;
3568 		if (argp) {
3569 			r = -EFAULT;
3570 			if (copy_from_user(&kvm_sigmask, argp,
3571 					   sizeof(kvm_sigmask)))
3572 				goto out;
3573 			r = -EINVAL;
3574 			if (kvm_sigmask.len != sizeof(sigset))
3575 				goto out;
3576 			r = -EFAULT;
3577 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3578 					   sizeof(sigset)))
3579 				goto out;
3580 			p = &sigset;
3581 		}
3582 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3583 		break;
3584 	}
3585 	case KVM_GET_FPU: {
3586 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3587 		r = -ENOMEM;
3588 		if (!fpu)
3589 			goto out;
3590 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3591 		if (r)
3592 			goto out;
3593 		r = -EFAULT;
3594 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3595 			goto out;
3596 		r = 0;
3597 		break;
3598 	}
3599 	case KVM_SET_FPU: {
3600 		fpu = memdup_user(argp, sizeof(*fpu));
3601 		if (IS_ERR(fpu)) {
3602 			r = PTR_ERR(fpu);
3603 			fpu = NULL;
3604 			goto out;
3605 		}
3606 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3607 		break;
3608 	}
3609 	default:
3610 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3611 	}
3612 out:
3613 	mutex_unlock(&vcpu->mutex);
3614 	kfree(fpu);
3615 	kfree(kvm_sregs);
3616 	return r;
3617 }
3618 
3619 #ifdef CONFIG_KVM_COMPAT
3620 static long kvm_vcpu_compat_ioctl(struct file *filp,
3621 				  unsigned int ioctl, unsigned long arg)
3622 {
3623 	struct kvm_vcpu *vcpu = filp->private_data;
3624 	void __user *argp = compat_ptr(arg);
3625 	int r;
3626 
3627 	if (vcpu->kvm->mm != current->mm)
3628 		return -EIO;
3629 
3630 	switch (ioctl) {
3631 	case KVM_SET_SIGNAL_MASK: {
3632 		struct kvm_signal_mask __user *sigmask_arg = argp;
3633 		struct kvm_signal_mask kvm_sigmask;
3634 		sigset_t sigset;
3635 
3636 		if (argp) {
3637 			r = -EFAULT;
3638 			if (copy_from_user(&kvm_sigmask, argp,
3639 					   sizeof(kvm_sigmask)))
3640 				goto out;
3641 			r = -EINVAL;
3642 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3643 				goto out;
3644 			r = -EFAULT;
3645 			if (get_compat_sigset(&sigset,
3646 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3647 				goto out;
3648 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3649 		} else
3650 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3651 		break;
3652 	}
3653 	default:
3654 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3655 	}
3656 
3657 out:
3658 	return r;
3659 }
3660 #endif
3661 
3662 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3663 {
3664 	struct kvm_device *dev = filp->private_data;
3665 
3666 	if (dev->ops->mmap)
3667 		return dev->ops->mmap(dev, vma);
3668 
3669 	return -ENODEV;
3670 }
3671 
3672 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3673 				 int (*accessor)(struct kvm_device *dev,
3674 						 struct kvm_device_attr *attr),
3675 				 unsigned long arg)
3676 {
3677 	struct kvm_device_attr attr;
3678 
3679 	if (!accessor)
3680 		return -EPERM;
3681 
3682 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3683 		return -EFAULT;
3684 
3685 	return accessor(dev, &attr);
3686 }
3687 
3688 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3689 			     unsigned long arg)
3690 {
3691 	struct kvm_device *dev = filp->private_data;
3692 
3693 	if (dev->kvm->mm != current->mm)
3694 		return -EIO;
3695 
3696 	switch (ioctl) {
3697 	case KVM_SET_DEVICE_ATTR:
3698 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3699 	case KVM_GET_DEVICE_ATTR:
3700 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3701 	case KVM_HAS_DEVICE_ATTR:
3702 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3703 	default:
3704 		if (dev->ops->ioctl)
3705 			return dev->ops->ioctl(dev, ioctl, arg);
3706 
3707 		return -ENOTTY;
3708 	}
3709 }
3710 
3711 static int kvm_device_release(struct inode *inode, struct file *filp)
3712 {
3713 	struct kvm_device *dev = filp->private_data;
3714 	struct kvm *kvm = dev->kvm;
3715 
3716 	if (dev->ops->release) {
3717 		mutex_lock(&kvm->lock);
3718 		list_del(&dev->vm_node);
3719 		dev->ops->release(dev);
3720 		mutex_unlock(&kvm->lock);
3721 	}
3722 
3723 	kvm_put_kvm(kvm);
3724 	return 0;
3725 }
3726 
3727 static const struct file_operations kvm_device_fops = {
3728 	.unlocked_ioctl = kvm_device_ioctl,
3729 	.release = kvm_device_release,
3730 	KVM_COMPAT(kvm_device_ioctl),
3731 	.mmap = kvm_device_mmap,
3732 };
3733 
3734 struct kvm_device *kvm_device_from_filp(struct file *filp)
3735 {
3736 	if (filp->f_op != &kvm_device_fops)
3737 		return NULL;
3738 
3739 	return filp->private_data;
3740 }
3741 
3742 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3743 #ifdef CONFIG_KVM_MPIC
3744 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3745 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3746 #endif
3747 };
3748 
3749 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3750 {
3751 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3752 		return -ENOSPC;
3753 
3754 	if (kvm_device_ops_table[type] != NULL)
3755 		return -EEXIST;
3756 
3757 	kvm_device_ops_table[type] = ops;
3758 	return 0;
3759 }
3760 
3761 void kvm_unregister_device_ops(u32 type)
3762 {
3763 	if (kvm_device_ops_table[type] != NULL)
3764 		kvm_device_ops_table[type] = NULL;
3765 }
3766 
3767 static int kvm_ioctl_create_device(struct kvm *kvm,
3768 				   struct kvm_create_device *cd)
3769 {
3770 	const struct kvm_device_ops *ops = NULL;
3771 	struct kvm_device *dev;
3772 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3773 	int type;
3774 	int ret;
3775 
3776 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3777 		return -ENODEV;
3778 
3779 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3780 	ops = kvm_device_ops_table[type];
3781 	if (ops == NULL)
3782 		return -ENODEV;
3783 
3784 	if (test)
3785 		return 0;
3786 
3787 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3788 	if (!dev)
3789 		return -ENOMEM;
3790 
3791 	dev->ops = ops;
3792 	dev->kvm = kvm;
3793 
3794 	mutex_lock(&kvm->lock);
3795 	ret = ops->create(dev, type);
3796 	if (ret < 0) {
3797 		mutex_unlock(&kvm->lock);
3798 		kfree(dev);
3799 		return ret;
3800 	}
3801 	list_add(&dev->vm_node, &kvm->devices);
3802 	mutex_unlock(&kvm->lock);
3803 
3804 	if (ops->init)
3805 		ops->init(dev);
3806 
3807 	kvm_get_kvm(kvm);
3808 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3809 	if (ret < 0) {
3810 		kvm_put_kvm_no_destroy(kvm);
3811 		mutex_lock(&kvm->lock);
3812 		list_del(&dev->vm_node);
3813 		mutex_unlock(&kvm->lock);
3814 		ops->destroy(dev);
3815 		return ret;
3816 	}
3817 
3818 	cd->fd = ret;
3819 	return 0;
3820 }
3821 
3822 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3823 {
3824 	switch (arg) {
3825 	case KVM_CAP_USER_MEMORY:
3826 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3827 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3828 	case KVM_CAP_INTERNAL_ERROR_DATA:
3829 #ifdef CONFIG_HAVE_KVM_MSI
3830 	case KVM_CAP_SIGNAL_MSI:
3831 #endif
3832 #ifdef CONFIG_HAVE_KVM_IRQFD
3833 	case KVM_CAP_IRQFD:
3834 	case KVM_CAP_IRQFD_RESAMPLE:
3835 #endif
3836 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3837 	case KVM_CAP_CHECK_EXTENSION_VM:
3838 	case KVM_CAP_ENABLE_CAP_VM:
3839 	case KVM_CAP_HALT_POLL:
3840 		return 1;
3841 #ifdef CONFIG_KVM_MMIO
3842 	case KVM_CAP_COALESCED_MMIO:
3843 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3844 	case KVM_CAP_COALESCED_PIO:
3845 		return 1;
3846 #endif
3847 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3848 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3849 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3850 #endif
3851 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3852 	case KVM_CAP_IRQ_ROUTING:
3853 		return KVM_MAX_IRQ_ROUTES;
3854 #endif
3855 #if KVM_ADDRESS_SPACE_NUM > 1
3856 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3857 		return KVM_ADDRESS_SPACE_NUM;
3858 #endif
3859 	case KVM_CAP_NR_MEMSLOTS:
3860 		return KVM_USER_MEM_SLOTS;
3861 	case KVM_CAP_DIRTY_LOG_RING:
3862 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3863 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3864 #else
3865 		return 0;
3866 #endif
3867 	default:
3868 		break;
3869 	}
3870 	return kvm_vm_ioctl_check_extension(kvm, arg);
3871 }
3872 
3873 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3874 {
3875 	int r;
3876 
3877 	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3878 		return -EINVAL;
3879 
3880 	/* the size should be power of 2 */
3881 	if (!size || (size & (size - 1)))
3882 		return -EINVAL;
3883 
3884 	/* Should be bigger to keep the reserved entries, or a page */
3885 	if (size < kvm_dirty_ring_get_rsvd_entries() *
3886 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3887 		return -EINVAL;
3888 
3889 	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3890 	    sizeof(struct kvm_dirty_gfn))
3891 		return -E2BIG;
3892 
3893 	/* We only allow it to set once */
3894 	if (kvm->dirty_ring_size)
3895 		return -EINVAL;
3896 
3897 	mutex_lock(&kvm->lock);
3898 
3899 	if (kvm->created_vcpus) {
3900 		/* We don't allow to change this value after vcpu created */
3901 		r = -EINVAL;
3902 	} else {
3903 		kvm->dirty_ring_size = size;
3904 		r = 0;
3905 	}
3906 
3907 	mutex_unlock(&kvm->lock);
3908 	return r;
3909 }
3910 
3911 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3912 {
3913 	int i;
3914 	struct kvm_vcpu *vcpu;
3915 	int cleared = 0;
3916 
3917 	if (!kvm->dirty_ring_size)
3918 		return -EINVAL;
3919 
3920 	mutex_lock(&kvm->slots_lock);
3921 
3922 	kvm_for_each_vcpu(i, vcpu, kvm)
3923 		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3924 
3925 	mutex_unlock(&kvm->slots_lock);
3926 
3927 	if (cleared)
3928 		kvm_flush_remote_tlbs(kvm);
3929 
3930 	return cleared;
3931 }
3932 
3933 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3934 						  struct kvm_enable_cap *cap)
3935 {
3936 	return -EINVAL;
3937 }
3938 
3939 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3940 					   struct kvm_enable_cap *cap)
3941 {
3942 	switch (cap->cap) {
3943 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3944 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3945 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3946 
3947 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3948 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3949 
3950 		if (cap->flags || (cap->args[0] & ~allowed_options))
3951 			return -EINVAL;
3952 		kvm->manual_dirty_log_protect = cap->args[0];
3953 		return 0;
3954 	}
3955 #endif
3956 	case KVM_CAP_HALT_POLL: {
3957 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3958 			return -EINVAL;
3959 
3960 		kvm->max_halt_poll_ns = cap->args[0];
3961 		return 0;
3962 	}
3963 	case KVM_CAP_DIRTY_LOG_RING:
3964 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3965 	default:
3966 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3967 	}
3968 }
3969 
3970 static long kvm_vm_ioctl(struct file *filp,
3971 			   unsigned int ioctl, unsigned long arg)
3972 {
3973 	struct kvm *kvm = filp->private_data;
3974 	void __user *argp = (void __user *)arg;
3975 	int r;
3976 
3977 	if (kvm->mm != current->mm)
3978 		return -EIO;
3979 	switch (ioctl) {
3980 	case KVM_CREATE_VCPU:
3981 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3982 		break;
3983 	case KVM_ENABLE_CAP: {
3984 		struct kvm_enable_cap cap;
3985 
3986 		r = -EFAULT;
3987 		if (copy_from_user(&cap, argp, sizeof(cap)))
3988 			goto out;
3989 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3990 		break;
3991 	}
3992 	case KVM_SET_USER_MEMORY_REGION: {
3993 		struct kvm_userspace_memory_region kvm_userspace_mem;
3994 
3995 		r = -EFAULT;
3996 		if (copy_from_user(&kvm_userspace_mem, argp,
3997 						sizeof(kvm_userspace_mem)))
3998 			goto out;
3999 
4000 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4001 		break;
4002 	}
4003 	case KVM_GET_DIRTY_LOG: {
4004 		struct kvm_dirty_log log;
4005 
4006 		r = -EFAULT;
4007 		if (copy_from_user(&log, argp, sizeof(log)))
4008 			goto out;
4009 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4010 		break;
4011 	}
4012 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4013 	case KVM_CLEAR_DIRTY_LOG: {
4014 		struct kvm_clear_dirty_log log;
4015 
4016 		r = -EFAULT;
4017 		if (copy_from_user(&log, argp, sizeof(log)))
4018 			goto out;
4019 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4020 		break;
4021 	}
4022 #endif
4023 #ifdef CONFIG_KVM_MMIO
4024 	case KVM_REGISTER_COALESCED_MMIO: {
4025 		struct kvm_coalesced_mmio_zone zone;
4026 
4027 		r = -EFAULT;
4028 		if (copy_from_user(&zone, argp, sizeof(zone)))
4029 			goto out;
4030 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4031 		break;
4032 	}
4033 	case KVM_UNREGISTER_COALESCED_MMIO: {
4034 		struct kvm_coalesced_mmio_zone zone;
4035 
4036 		r = -EFAULT;
4037 		if (copy_from_user(&zone, argp, sizeof(zone)))
4038 			goto out;
4039 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4040 		break;
4041 	}
4042 #endif
4043 	case KVM_IRQFD: {
4044 		struct kvm_irqfd data;
4045 
4046 		r = -EFAULT;
4047 		if (copy_from_user(&data, argp, sizeof(data)))
4048 			goto out;
4049 		r = kvm_irqfd(kvm, &data);
4050 		break;
4051 	}
4052 	case KVM_IOEVENTFD: {
4053 		struct kvm_ioeventfd data;
4054 
4055 		r = -EFAULT;
4056 		if (copy_from_user(&data, argp, sizeof(data)))
4057 			goto out;
4058 		r = kvm_ioeventfd(kvm, &data);
4059 		break;
4060 	}
4061 #ifdef CONFIG_HAVE_KVM_MSI
4062 	case KVM_SIGNAL_MSI: {
4063 		struct kvm_msi msi;
4064 
4065 		r = -EFAULT;
4066 		if (copy_from_user(&msi, argp, sizeof(msi)))
4067 			goto out;
4068 		r = kvm_send_userspace_msi(kvm, &msi);
4069 		break;
4070 	}
4071 #endif
4072 #ifdef __KVM_HAVE_IRQ_LINE
4073 	case KVM_IRQ_LINE_STATUS:
4074 	case KVM_IRQ_LINE: {
4075 		struct kvm_irq_level irq_event;
4076 
4077 		r = -EFAULT;
4078 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4079 			goto out;
4080 
4081 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4082 					ioctl == KVM_IRQ_LINE_STATUS);
4083 		if (r)
4084 			goto out;
4085 
4086 		r = -EFAULT;
4087 		if (ioctl == KVM_IRQ_LINE_STATUS) {
4088 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4089 				goto out;
4090 		}
4091 
4092 		r = 0;
4093 		break;
4094 	}
4095 #endif
4096 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4097 	case KVM_SET_GSI_ROUTING: {
4098 		struct kvm_irq_routing routing;
4099 		struct kvm_irq_routing __user *urouting;
4100 		struct kvm_irq_routing_entry *entries = NULL;
4101 
4102 		r = -EFAULT;
4103 		if (copy_from_user(&routing, argp, sizeof(routing)))
4104 			goto out;
4105 		r = -EINVAL;
4106 		if (!kvm_arch_can_set_irq_routing(kvm))
4107 			goto out;
4108 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4109 			goto out;
4110 		if (routing.flags)
4111 			goto out;
4112 		if (routing.nr) {
4113 			urouting = argp;
4114 			entries = vmemdup_user(urouting->entries,
4115 					       array_size(sizeof(*entries),
4116 							  routing.nr));
4117 			if (IS_ERR(entries)) {
4118 				r = PTR_ERR(entries);
4119 				goto out;
4120 			}
4121 		}
4122 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4123 					routing.flags);
4124 		kvfree(entries);
4125 		break;
4126 	}
4127 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4128 	case KVM_CREATE_DEVICE: {
4129 		struct kvm_create_device cd;
4130 
4131 		r = -EFAULT;
4132 		if (copy_from_user(&cd, argp, sizeof(cd)))
4133 			goto out;
4134 
4135 		r = kvm_ioctl_create_device(kvm, &cd);
4136 		if (r)
4137 			goto out;
4138 
4139 		r = -EFAULT;
4140 		if (copy_to_user(argp, &cd, sizeof(cd)))
4141 			goto out;
4142 
4143 		r = 0;
4144 		break;
4145 	}
4146 	case KVM_CHECK_EXTENSION:
4147 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4148 		break;
4149 	case KVM_RESET_DIRTY_RINGS:
4150 		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4151 		break;
4152 	default:
4153 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4154 	}
4155 out:
4156 	return r;
4157 }
4158 
4159 #ifdef CONFIG_KVM_COMPAT
4160 struct compat_kvm_dirty_log {
4161 	__u32 slot;
4162 	__u32 padding1;
4163 	union {
4164 		compat_uptr_t dirty_bitmap; /* one bit per page */
4165 		__u64 padding2;
4166 	};
4167 };
4168 
4169 static long kvm_vm_compat_ioctl(struct file *filp,
4170 			   unsigned int ioctl, unsigned long arg)
4171 {
4172 	struct kvm *kvm = filp->private_data;
4173 	int r;
4174 
4175 	if (kvm->mm != current->mm)
4176 		return -EIO;
4177 	switch (ioctl) {
4178 	case KVM_GET_DIRTY_LOG: {
4179 		struct compat_kvm_dirty_log compat_log;
4180 		struct kvm_dirty_log log;
4181 
4182 		if (copy_from_user(&compat_log, (void __user *)arg,
4183 				   sizeof(compat_log)))
4184 			return -EFAULT;
4185 		log.slot	 = compat_log.slot;
4186 		log.padding1	 = compat_log.padding1;
4187 		log.padding2	 = compat_log.padding2;
4188 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4189 
4190 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4191 		break;
4192 	}
4193 	default:
4194 		r = kvm_vm_ioctl(filp, ioctl, arg);
4195 	}
4196 	return r;
4197 }
4198 #endif
4199 
4200 static struct file_operations kvm_vm_fops = {
4201 	.release        = kvm_vm_release,
4202 	.unlocked_ioctl = kvm_vm_ioctl,
4203 	.llseek		= noop_llseek,
4204 	KVM_COMPAT(kvm_vm_compat_ioctl),
4205 };
4206 
4207 bool file_is_kvm(struct file *file)
4208 {
4209 	return file && file->f_op == &kvm_vm_fops;
4210 }
4211 EXPORT_SYMBOL_GPL(file_is_kvm);
4212 
4213 static int kvm_dev_ioctl_create_vm(unsigned long type)
4214 {
4215 	int r;
4216 	struct kvm *kvm;
4217 	struct file *file;
4218 
4219 	kvm = kvm_create_vm(type);
4220 	if (IS_ERR(kvm))
4221 		return PTR_ERR(kvm);
4222 #ifdef CONFIG_KVM_MMIO
4223 	r = kvm_coalesced_mmio_init(kvm);
4224 	if (r < 0)
4225 		goto put_kvm;
4226 #endif
4227 	r = get_unused_fd_flags(O_CLOEXEC);
4228 	if (r < 0)
4229 		goto put_kvm;
4230 
4231 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4232 	if (IS_ERR(file)) {
4233 		put_unused_fd(r);
4234 		r = PTR_ERR(file);
4235 		goto put_kvm;
4236 	}
4237 
4238 	/*
4239 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4240 	 * already set, with ->release() being kvm_vm_release().  In error
4241 	 * cases it will be called by the final fput(file) and will take
4242 	 * care of doing kvm_put_kvm(kvm).
4243 	 */
4244 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4245 		put_unused_fd(r);
4246 		fput(file);
4247 		return -ENOMEM;
4248 	}
4249 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4250 
4251 	fd_install(r, file);
4252 	return r;
4253 
4254 put_kvm:
4255 	kvm_put_kvm(kvm);
4256 	return r;
4257 }
4258 
4259 static long kvm_dev_ioctl(struct file *filp,
4260 			  unsigned int ioctl, unsigned long arg)
4261 {
4262 	long r = -EINVAL;
4263 
4264 	switch (ioctl) {
4265 	case KVM_GET_API_VERSION:
4266 		if (arg)
4267 			goto out;
4268 		r = KVM_API_VERSION;
4269 		break;
4270 	case KVM_CREATE_VM:
4271 		r = kvm_dev_ioctl_create_vm(arg);
4272 		break;
4273 	case KVM_CHECK_EXTENSION:
4274 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4275 		break;
4276 	case KVM_GET_VCPU_MMAP_SIZE:
4277 		if (arg)
4278 			goto out;
4279 		r = PAGE_SIZE;     /* struct kvm_run */
4280 #ifdef CONFIG_X86
4281 		r += PAGE_SIZE;    /* pio data page */
4282 #endif
4283 #ifdef CONFIG_KVM_MMIO
4284 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4285 #endif
4286 		break;
4287 	case KVM_TRACE_ENABLE:
4288 	case KVM_TRACE_PAUSE:
4289 	case KVM_TRACE_DISABLE:
4290 		r = -EOPNOTSUPP;
4291 		break;
4292 	default:
4293 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4294 	}
4295 out:
4296 	return r;
4297 }
4298 
4299 static struct file_operations kvm_chardev_ops = {
4300 	.unlocked_ioctl = kvm_dev_ioctl,
4301 	.llseek		= noop_llseek,
4302 	KVM_COMPAT(kvm_dev_ioctl),
4303 };
4304 
4305 static struct miscdevice kvm_dev = {
4306 	KVM_MINOR,
4307 	"kvm",
4308 	&kvm_chardev_ops,
4309 };
4310 
4311 static void hardware_enable_nolock(void *junk)
4312 {
4313 	int cpu = raw_smp_processor_id();
4314 	int r;
4315 
4316 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4317 		return;
4318 
4319 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4320 
4321 	r = kvm_arch_hardware_enable();
4322 
4323 	if (r) {
4324 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4325 		atomic_inc(&hardware_enable_failed);
4326 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4327 	}
4328 }
4329 
4330 static int kvm_starting_cpu(unsigned int cpu)
4331 {
4332 	raw_spin_lock(&kvm_count_lock);
4333 	if (kvm_usage_count)
4334 		hardware_enable_nolock(NULL);
4335 	raw_spin_unlock(&kvm_count_lock);
4336 	return 0;
4337 }
4338 
4339 static void hardware_disable_nolock(void *junk)
4340 {
4341 	int cpu = raw_smp_processor_id();
4342 
4343 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4344 		return;
4345 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4346 	kvm_arch_hardware_disable();
4347 }
4348 
4349 static int kvm_dying_cpu(unsigned int cpu)
4350 {
4351 	raw_spin_lock(&kvm_count_lock);
4352 	if (kvm_usage_count)
4353 		hardware_disable_nolock(NULL);
4354 	raw_spin_unlock(&kvm_count_lock);
4355 	return 0;
4356 }
4357 
4358 static void hardware_disable_all_nolock(void)
4359 {
4360 	BUG_ON(!kvm_usage_count);
4361 
4362 	kvm_usage_count--;
4363 	if (!kvm_usage_count)
4364 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4365 }
4366 
4367 static void hardware_disable_all(void)
4368 {
4369 	raw_spin_lock(&kvm_count_lock);
4370 	hardware_disable_all_nolock();
4371 	raw_spin_unlock(&kvm_count_lock);
4372 }
4373 
4374 static int hardware_enable_all(void)
4375 {
4376 	int r = 0;
4377 
4378 	raw_spin_lock(&kvm_count_lock);
4379 
4380 	kvm_usage_count++;
4381 	if (kvm_usage_count == 1) {
4382 		atomic_set(&hardware_enable_failed, 0);
4383 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4384 
4385 		if (atomic_read(&hardware_enable_failed)) {
4386 			hardware_disable_all_nolock();
4387 			r = -EBUSY;
4388 		}
4389 	}
4390 
4391 	raw_spin_unlock(&kvm_count_lock);
4392 
4393 	return r;
4394 }
4395 
4396 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4397 		      void *v)
4398 {
4399 	/*
4400 	 * Some (well, at least mine) BIOSes hang on reboot if
4401 	 * in vmx root mode.
4402 	 *
4403 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4404 	 */
4405 	pr_info("kvm: exiting hardware virtualization\n");
4406 	kvm_rebooting = true;
4407 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4408 	return NOTIFY_OK;
4409 }
4410 
4411 static struct notifier_block kvm_reboot_notifier = {
4412 	.notifier_call = kvm_reboot,
4413 	.priority = 0,
4414 };
4415 
4416 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4417 {
4418 	int i;
4419 
4420 	for (i = 0; i < bus->dev_count; i++) {
4421 		struct kvm_io_device *pos = bus->range[i].dev;
4422 
4423 		kvm_iodevice_destructor(pos);
4424 	}
4425 	kfree(bus);
4426 }
4427 
4428 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4429 				 const struct kvm_io_range *r2)
4430 {
4431 	gpa_t addr1 = r1->addr;
4432 	gpa_t addr2 = r2->addr;
4433 
4434 	if (addr1 < addr2)
4435 		return -1;
4436 
4437 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4438 	 * accept any overlapping write.  Any order is acceptable for
4439 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4440 	 * we process all of them.
4441 	 */
4442 	if (r2->len) {
4443 		addr1 += r1->len;
4444 		addr2 += r2->len;
4445 	}
4446 
4447 	if (addr1 > addr2)
4448 		return 1;
4449 
4450 	return 0;
4451 }
4452 
4453 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4454 {
4455 	return kvm_io_bus_cmp(p1, p2);
4456 }
4457 
4458 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4459 			     gpa_t addr, int len)
4460 {
4461 	struct kvm_io_range *range, key;
4462 	int off;
4463 
4464 	key = (struct kvm_io_range) {
4465 		.addr = addr,
4466 		.len = len,
4467 	};
4468 
4469 	range = bsearch(&key, bus->range, bus->dev_count,
4470 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4471 	if (range == NULL)
4472 		return -ENOENT;
4473 
4474 	off = range - bus->range;
4475 
4476 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4477 		off--;
4478 
4479 	return off;
4480 }
4481 
4482 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4483 			      struct kvm_io_range *range, const void *val)
4484 {
4485 	int idx;
4486 
4487 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4488 	if (idx < 0)
4489 		return -EOPNOTSUPP;
4490 
4491 	while (idx < bus->dev_count &&
4492 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4493 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4494 					range->len, val))
4495 			return idx;
4496 		idx++;
4497 	}
4498 
4499 	return -EOPNOTSUPP;
4500 }
4501 
4502 /* kvm_io_bus_write - called under kvm->slots_lock */
4503 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4504 		     int len, const void *val)
4505 {
4506 	struct kvm_io_bus *bus;
4507 	struct kvm_io_range range;
4508 	int r;
4509 
4510 	range = (struct kvm_io_range) {
4511 		.addr = addr,
4512 		.len = len,
4513 	};
4514 
4515 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4516 	if (!bus)
4517 		return -ENOMEM;
4518 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4519 	return r < 0 ? r : 0;
4520 }
4521 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4522 
4523 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4524 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4525 			    gpa_t addr, int len, const void *val, long cookie)
4526 {
4527 	struct kvm_io_bus *bus;
4528 	struct kvm_io_range range;
4529 
4530 	range = (struct kvm_io_range) {
4531 		.addr = addr,
4532 		.len = len,
4533 	};
4534 
4535 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4536 	if (!bus)
4537 		return -ENOMEM;
4538 
4539 	/* First try the device referenced by cookie. */
4540 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4541 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4542 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4543 					val))
4544 			return cookie;
4545 
4546 	/*
4547 	 * cookie contained garbage; fall back to search and return the
4548 	 * correct cookie value.
4549 	 */
4550 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4551 }
4552 
4553 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4554 			     struct kvm_io_range *range, void *val)
4555 {
4556 	int idx;
4557 
4558 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4559 	if (idx < 0)
4560 		return -EOPNOTSUPP;
4561 
4562 	while (idx < bus->dev_count &&
4563 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4564 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4565 				       range->len, val))
4566 			return idx;
4567 		idx++;
4568 	}
4569 
4570 	return -EOPNOTSUPP;
4571 }
4572 
4573 /* kvm_io_bus_read - called under kvm->slots_lock */
4574 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4575 		    int len, void *val)
4576 {
4577 	struct kvm_io_bus *bus;
4578 	struct kvm_io_range range;
4579 	int r;
4580 
4581 	range = (struct kvm_io_range) {
4582 		.addr = addr,
4583 		.len = len,
4584 	};
4585 
4586 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4587 	if (!bus)
4588 		return -ENOMEM;
4589 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4590 	return r < 0 ? r : 0;
4591 }
4592 
4593 /* Caller must hold slots_lock. */
4594 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4595 			    int len, struct kvm_io_device *dev)
4596 {
4597 	int i;
4598 	struct kvm_io_bus *new_bus, *bus;
4599 	struct kvm_io_range range;
4600 
4601 	bus = kvm_get_bus(kvm, bus_idx);
4602 	if (!bus)
4603 		return -ENOMEM;
4604 
4605 	/* exclude ioeventfd which is limited by maximum fd */
4606 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4607 		return -ENOSPC;
4608 
4609 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4610 			  GFP_KERNEL_ACCOUNT);
4611 	if (!new_bus)
4612 		return -ENOMEM;
4613 
4614 	range = (struct kvm_io_range) {
4615 		.addr = addr,
4616 		.len = len,
4617 		.dev = dev,
4618 	};
4619 
4620 	for (i = 0; i < bus->dev_count; i++)
4621 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4622 			break;
4623 
4624 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4625 	new_bus->dev_count++;
4626 	new_bus->range[i] = range;
4627 	memcpy(new_bus->range + i + 1, bus->range + i,
4628 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4629 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4630 	synchronize_srcu_expedited(&kvm->srcu);
4631 	kfree(bus);
4632 
4633 	return 0;
4634 }
4635 
4636 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4637 			      struct kvm_io_device *dev)
4638 {
4639 	int i, j;
4640 	struct kvm_io_bus *new_bus, *bus;
4641 
4642 	lockdep_assert_held(&kvm->slots_lock);
4643 
4644 	bus = kvm_get_bus(kvm, bus_idx);
4645 	if (!bus)
4646 		return 0;
4647 
4648 	for (i = 0; i < bus->dev_count; i++) {
4649 		if (bus->range[i].dev == dev) {
4650 			break;
4651 		}
4652 	}
4653 
4654 	if (i == bus->dev_count)
4655 		return 0;
4656 
4657 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4658 			  GFP_KERNEL_ACCOUNT);
4659 	if (new_bus) {
4660 		memcpy(new_bus, bus, struct_size(bus, range, i));
4661 		new_bus->dev_count--;
4662 		memcpy(new_bus->range + i, bus->range + i + 1,
4663 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4664 	}
4665 
4666 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4667 	synchronize_srcu_expedited(&kvm->srcu);
4668 
4669 	/* Destroy the old bus _after_ installing the (null) bus. */
4670 	if (!new_bus) {
4671 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4672 		for (j = 0; j < bus->dev_count; j++) {
4673 			if (j == i)
4674 				continue;
4675 			kvm_iodevice_destructor(bus->range[j].dev);
4676 		}
4677 	}
4678 
4679 	kfree(bus);
4680 	return new_bus ? 0 : -ENOMEM;
4681 }
4682 
4683 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4684 					 gpa_t addr)
4685 {
4686 	struct kvm_io_bus *bus;
4687 	int dev_idx, srcu_idx;
4688 	struct kvm_io_device *iodev = NULL;
4689 
4690 	srcu_idx = srcu_read_lock(&kvm->srcu);
4691 
4692 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4693 	if (!bus)
4694 		goto out_unlock;
4695 
4696 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4697 	if (dev_idx < 0)
4698 		goto out_unlock;
4699 
4700 	iodev = bus->range[dev_idx].dev;
4701 
4702 out_unlock:
4703 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4704 
4705 	return iodev;
4706 }
4707 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4708 
4709 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4710 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4711 			   const char *fmt)
4712 {
4713 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4714 					  inode->i_private;
4715 
4716 	/* The debugfs files are a reference to the kvm struct which
4717 	 * is still valid when kvm_destroy_vm is called.
4718 	 * To avoid the race between open and the removal of the debugfs
4719 	 * directory we test against the users count.
4720 	 */
4721 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4722 		return -ENOENT;
4723 
4724 	if (simple_attr_open(inode, file, get,
4725 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4726 		    ? set : NULL,
4727 		    fmt)) {
4728 		kvm_put_kvm(stat_data->kvm);
4729 		return -ENOMEM;
4730 	}
4731 
4732 	return 0;
4733 }
4734 
4735 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4736 {
4737 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4738 					  inode->i_private;
4739 
4740 	simple_attr_release(inode, file);
4741 	kvm_put_kvm(stat_data->kvm);
4742 
4743 	return 0;
4744 }
4745 
4746 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4747 {
4748 	*val = *(ulong *)((void *)kvm + offset);
4749 
4750 	return 0;
4751 }
4752 
4753 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4754 {
4755 	*(ulong *)((void *)kvm + offset) = 0;
4756 
4757 	return 0;
4758 }
4759 
4760 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4761 {
4762 	int i;
4763 	struct kvm_vcpu *vcpu;
4764 
4765 	*val = 0;
4766 
4767 	kvm_for_each_vcpu(i, vcpu, kvm)
4768 		*val += *(u64 *)((void *)vcpu + offset);
4769 
4770 	return 0;
4771 }
4772 
4773 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4774 {
4775 	int i;
4776 	struct kvm_vcpu *vcpu;
4777 
4778 	kvm_for_each_vcpu(i, vcpu, kvm)
4779 		*(u64 *)((void *)vcpu + offset) = 0;
4780 
4781 	return 0;
4782 }
4783 
4784 static int kvm_stat_data_get(void *data, u64 *val)
4785 {
4786 	int r = -EFAULT;
4787 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4788 
4789 	switch (stat_data->dbgfs_item->kind) {
4790 	case KVM_STAT_VM:
4791 		r = kvm_get_stat_per_vm(stat_data->kvm,
4792 					stat_data->dbgfs_item->offset, val);
4793 		break;
4794 	case KVM_STAT_VCPU:
4795 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4796 					  stat_data->dbgfs_item->offset, val);
4797 		break;
4798 	}
4799 
4800 	return r;
4801 }
4802 
4803 static int kvm_stat_data_clear(void *data, u64 val)
4804 {
4805 	int r = -EFAULT;
4806 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4807 
4808 	if (val)
4809 		return -EINVAL;
4810 
4811 	switch (stat_data->dbgfs_item->kind) {
4812 	case KVM_STAT_VM:
4813 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4814 					  stat_data->dbgfs_item->offset);
4815 		break;
4816 	case KVM_STAT_VCPU:
4817 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4818 					    stat_data->dbgfs_item->offset);
4819 		break;
4820 	}
4821 
4822 	return r;
4823 }
4824 
4825 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4826 {
4827 	__simple_attr_check_format("%llu\n", 0ull);
4828 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4829 				kvm_stat_data_clear, "%llu\n");
4830 }
4831 
4832 static const struct file_operations stat_fops_per_vm = {
4833 	.owner = THIS_MODULE,
4834 	.open = kvm_stat_data_open,
4835 	.release = kvm_debugfs_release,
4836 	.read = simple_attr_read,
4837 	.write = simple_attr_write,
4838 	.llseek = no_llseek,
4839 };
4840 
4841 static int vm_stat_get(void *_offset, u64 *val)
4842 {
4843 	unsigned offset = (long)_offset;
4844 	struct kvm *kvm;
4845 	u64 tmp_val;
4846 
4847 	*val = 0;
4848 	mutex_lock(&kvm_lock);
4849 	list_for_each_entry(kvm, &vm_list, vm_list) {
4850 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4851 		*val += tmp_val;
4852 	}
4853 	mutex_unlock(&kvm_lock);
4854 	return 0;
4855 }
4856 
4857 static int vm_stat_clear(void *_offset, u64 val)
4858 {
4859 	unsigned offset = (long)_offset;
4860 	struct kvm *kvm;
4861 
4862 	if (val)
4863 		return -EINVAL;
4864 
4865 	mutex_lock(&kvm_lock);
4866 	list_for_each_entry(kvm, &vm_list, vm_list) {
4867 		kvm_clear_stat_per_vm(kvm, offset);
4868 	}
4869 	mutex_unlock(&kvm_lock);
4870 
4871 	return 0;
4872 }
4873 
4874 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4875 
4876 static int vcpu_stat_get(void *_offset, u64 *val)
4877 {
4878 	unsigned offset = (long)_offset;
4879 	struct kvm *kvm;
4880 	u64 tmp_val;
4881 
4882 	*val = 0;
4883 	mutex_lock(&kvm_lock);
4884 	list_for_each_entry(kvm, &vm_list, vm_list) {
4885 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4886 		*val += tmp_val;
4887 	}
4888 	mutex_unlock(&kvm_lock);
4889 	return 0;
4890 }
4891 
4892 static int vcpu_stat_clear(void *_offset, u64 val)
4893 {
4894 	unsigned offset = (long)_offset;
4895 	struct kvm *kvm;
4896 
4897 	if (val)
4898 		return -EINVAL;
4899 
4900 	mutex_lock(&kvm_lock);
4901 	list_for_each_entry(kvm, &vm_list, vm_list) {
4902 		kvm_clear_stat_per_vcpu(kvm, offset);
4903 	}
4904 	mutex_unlock(&kvm_lock);
4905 
4906 	return 0;
4907 }
4908 
4909 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4910 			"%llu\n");
4911 
4912 static const struct file_operations *stat_fops[] = {
4913 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4914 	[KVM_STAT_VM]   = &vm_stat_fops,
4915 };
4916 
4917 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4918 {
4919 	struct kobj_uevent_env *env;
4920 	unsigned long long created, active;
4921 
4922 	if (!kvm_dev.this_device || !kvm)
4923 		return;
4924 
4925 	mutex_lock(&kvm_lock);
4926 	if (type == KVM_EVENT_CREATE_VM) {
4927 		kvm_createvm_count++;
4928 		kvm_active_vms++;
4929 	} else if (type == KVM_EVENT_DESTROY_VM) {
4930 		kvm_active_vms--;
4931 	}
4932 	created = kvm_createvm_count;
4933 	active = kvm_active_vms;
4934 	mutex_unlock(&kvm_lock);
4935 
4936 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4937 	if (!env)
4938 		return;
4939 
4940 	add_uevent_var(env, "CREATED=%llu", created);
4941 	add_uevent_var(env, "COUNT=%llu", active);
4942 
4943 	if (type == KVM_EVENT_CREATE_VM) {
4944 		add_uevent_var(env, "EVENT=create");
4945 		kvm->userspace_pid = task_pid_nr(current);
4946 	} else if (type == KVM_EVENT_DESTROY_VM) {
4947 		add_uevent_var(env, "EVENT=destroy");
4948 	}
4949 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4950 
4951 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4952 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4953 
4954 		if (p) {
4955 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4956 			if (!IS_ERR(tmp))
4957 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4958 			kfree(p);
4959 		}
4960 	}
4961 	/* no need for checks, since we are adding at most only 5 keys */
4962 	env->envp[env->envp_idx++] = NULL;
4963 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4964 	kfree(env);
4965 }
4966 
4967 static void kvm_init_debug(void)
4968 {
4969 	struct kvm_stats_debugfs_item *p;
4970 
4971 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4972 
4973 	kvm_debugfs_num_entries = 0;
4974 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4975 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4976 				    kvm_debugfs_dir, (void *)(long)p->offset,
4977 				    stat_fops[p->kind]);
4978 	}
4979 }
4980 
4981 static int kvm_suspend(void)
4982 {
4983 	if (kvm_usage_count)
4984 		hardware_disable_nolock(NULL);
4985 	return 0;
4986 }
4987 
4988 static void kvm_resume(void)
4989 {
4990 	if (kvm_usage_count) {
4991 #ifdef CONFIG_LOCKDEP
4992 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4993 #endif
4994 		hardware_enable_nolock(NULL);
4995 	}
4996 }
4997 
4998 static struct syscore_ops kvm_syscore_ops = {
4999 	.suspend = kvm_suspend,
5000 	.resume = kvm_resume,
5001 };
5002 
5003 static inline
5004 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5005 {
5006 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5007 }
5008 
5009 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5010 {
5011 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5012 
5013 	WRITE_ONCE(vcpu->preempted, false);
5014 	WRITE_ONCE(vcpu->ready, false);
5015 
5016 	__this_cpu_write(kvm_running_vcpu, vcpu);
5017 	kvm_arch_sched_in(vcpu, cpu);
5018 	kvm_arch_vcpu_load(vcpu, cpu);
5019 }
5020 
5021 static void kvm_sched_out(struct preempt_notifier *pn,
5022 			  struct task_struct *next)
5023 {
5024 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5025 
5026 	if (current->state == TASK_RUNNING) {
5027 		WRITE_ONCE(vcpu->preempted, true);
5028 		WRITE_ONCE(vcpu->ready, true);
5029 	}
5030 	kvm_arch_vcpu_put(vcpu);
5031 	__this_cpu_write(kvm_running_vcpu, NULL);
5032 }
5033 
5034 /**
5035  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5036  *
5037  * We can disable preemption locally around accessing the per-CPU variable,
5038  * and use the resolved vcpu pointer after enabling preemption again,
5039  * because even if the current thread is migrated to another CPU, reading
5040  * the per-CPU value later will give us the same value as we update the
5041  * per-CPU variable in the preempt notifier handlers.
5042  */
5043 struct kvm_vcpu *kvm_get_running_vcpu(void)
5044 {
5045 	struct kvm_vcpu *vcpu;
5046 
5047 	preempt_disable();
5048 	vcpu = __this_cpu_read(kvm_running_vcpu);
5049 	preempt_enable();
5050 
5051 	return vcpu;
5052 }
5053 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5054 
5055 /**
5056  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5057  */
5058 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5059 {
5060         return &kvm_running_vcpu;
5061 }
5062 
5063 struct kvm_cpu_compat_check {
5064 	void *opaque;
5065 	int *ret;
5066 };
5067 
5068 static void check_processor_compat(void *data)
5069 {
5070 	struct kvm_cpu_compat_check *c = data;
5071 
5072 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
5073 }
5074 
5075 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5076 		  struct module *module)
5077 {
5078 	struct kvm_cpu_compat_check c;
5079 	int r;
5080 	int cpu;
5081 
5082 	r = kvm_arch_init(opaque);
5083 	if (r)
5084 		goto out_fail;
5085 
5086 	/*
5087 	 * kvm_arch_init makes sure there's at most one caller
5088 	 * for architectures that support multiple implementations,
5089 	 * like intel and amd on x86.
5090 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5091 	 * conflicts in case kvm is already setup for another implementation.
5092 	 */
5093 	r = kvm_irqfd_init();
5094 	if (r)
5095 		goto out_irqfd;
5096 
5097 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5098 		r = -ENOMEM;
5099 		goto out_free_0;
5100 	}
5101 
5102 	r = kvm_arch_hardware_setup(opaque);
5103 	if (r < 0)
5104 		goto out_free_1;
5105 
5106 	c.ret = &r;
5107 	c.opaque = opaque;
5108 	for_each_online_cpu(cpu) {
5109 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
5110 		if (r < 0)
5111 			goto out_free_2;
5112 	}
5113 
5114 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5115 				      kvm_starting_cpu, kvm_dying_cpu);
5116 	if (r)
5117 		goto out_free_2;
5118 	register_reboot_notifier(&kvm_reboot_notifier);
5119 
5120 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
5121 	if (!vcpu_align)
5122 		vcpu_align = __alignof__(struct kvm_vcpu);
5123 	kvm_vcpu_cache =
5124 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5125 					   SLAB_ACCOUNT,
5126 					   offsetof(struct kvm_vcpu, arch),
5127 					   sizeof_field(struct kvm_vcpu, arch),
5128 					   NULL);
5129 	if (!kvm_vcpu_cache) {
5130 		r = -ENOMEM;
5131 		goto out_free_3;
5132 	}
5133 
5134 	r = kvm_async_pf_init();
5135 	if (r)
5136 		goto out_free;
5137 
5138 	kvm_chardev_ops.owner = module;
5139 	kvm_vm_fops.owner = module;
5140 	kvm_vcpu_fops.owner = module;
5141 
5142 	r = misc_register(&kvm_dev);
5143 	if (r) {
5144 		pr_err("kvm: misc device register failed\n");
5145 		goto out_unreg;
5146 	}
5147 
5148 	register_syscore_ops(&kvm_syscore_ops);
5149 
5150 	kvm_preempt_ops.sched_in = kvm_sched_in;
5151 	kvm_preempt_ops.sched_out = kvm_sched_out;
5152 
5153 	kvm_init_debug();
5154 
5155 	r = kvm_vfio_ops_init();
5156 	WARN_ON(r);
5157 
5158 	return 0;
5159 
5160 out_unreg:
5161 	kvm_async_pf_deinit();
5162 out_free:
5163 	kmem_cache_destroy(kvm_vcpu_cache);
5164 out_free_3:
5165 	unregister_reboot_notifier(&kvm_reboot_notifier);
5166 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5167 out_free_2:
5168 	kvm_arch_hardware_unsetup();
5169 out_free_1:
5170 	free_cpumask_var(cpus_hardware_enabled);
5171 out_free_0:
5172 	kvm_irqfd_exit();
5173 out_irqfd:
5174 	kvm_arch_exit();
5175 out_fail:
5176 	return r;
5177 }
5178 EXPORT_SYMBOL_GPL(kvm_init);
5179 
5180 void kvm_exit(void)
5181 {
5182 	debugfs_remove_recursive(kvm_debugfs_dir);
5183 	misc_deregister(&kvm_dev);
5184 	kmem_cache_destroy(kvm_vcpu_cache);
5185 	kvm_async_pf_deinit();
5186 	unregister_syscore_ops(&kvm_syscore_ops);
5187 	unregister_reboot_notifier(&kvm_reboot_notifier);
5188 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5189 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5190 	kvm_arch_hardware_unsetup();
5191 	kvm_arch_exit();
5192 	kvm_irqfd_exit();
5193 	free_cpumask_var(cpus_hardware_enabled);
5194 	kvm_vfio_ops_exit();
5195 }
5196 EXPORT_SYMBOL_GPL(kvm_exit);
5197 
5198 struct kvm_vm_worker_thread_context {
5199 	struct kvm *kvm;
5200 	struct task_struct *parent;
5201 	struct completion init_done;
5202 	kvm_vm_thread_fn_t thread_fn;
5203 	uintptr_t data;
5204 	int err;
5205 };
5206 
5207 static int kvm_vm_worker_thread(void *context)
5208 {
5209 	/*
5210 	 * The init_context is allocated on the stack of the parent thread, so
5211 	 * we have to locally copy anything that is needed beyond initialization
5212 	 */
5213 	struct kvm_vm_worker_thread_context *init_context = context;
5214 	struct kvm *kvm = init_context->kvm;
5215 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5216 	uintptr_t data = init_context->data;
5217 	int err;
5218 
5219 	err = kthread_park(current);
5220 	/* kthread_park(current) is never supposed to return an error */
5221 	WARN_ON(err != 0);
5222 	if (err)
5223 		goto init_complete;
5224 
5225 	err = cgroup_attach_task_all(init_context->parent, current);
5226 	if (err) {
5227 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5228 			__func__, err);
5229 		goto init_complete;
5230 	}
5231 
5232 	set_user_nice(current, task_nice(init_context->parent));
5233 
5234 init_complete:
5235 	init_context->err = err;
5236 	complete(&init_context->init_done);
5237 	init_context = NULL;
5238 
5239 	if (err)
5240 		return err;
5241 
5242 	/* Wait to be woken up by the spawner before proceeding. */
5243 	kthread_parkme();
5244 
5245 	if (!kthread_should_stop())
5246 		err = thread_fn(kvm, data);
5247 
5248 	return err;
5249 }
5250 
5251 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5252 				uintptr_t data, const char *name,
5253 				struct task_struct **thread_ptr)
5254 {
5255 	struct kvm_vm_worker_thread_context init_context = {};
5256 	struct task_struct *thread;
5257 
5258 	*thread_ptr = NULL;
5259 	init_context.kvm = kvm;
5260 	init_context.parent = current;
5261 	init_context.thread_fn = thread_fn;
5262 	init_context.data = data;
5263 	init_completion(&init_context.init_done);
5264 
5265 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5266 			     "%s-%d", name, task_pid_nr(current));
5267 	if (IS_ERR(thread))
5268 		return PTR_ERR(thread);
5269 
5270 	/* kthread_run is never supposed to return NULL */
5271 	WARN_ON(thread == NULL);
5272 
5273 	wait_for_completion(&init_context.init_done);
5274 
5275 	if (!init_context.err)
5276 		*thread_ptr = thread;
5277 
5278 	return init_context.err;
5279 }
5280