1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #define KVM_COMPAT(c) .compat_ioctl = (c) 120 #else 121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg) { return -EINVAL; } 123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 124 #endif 125 static int hardware_enable_all(void); 126 static void hardware_disable_all(void); 127 128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 129 130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 131 132 __visible bool kvm_rebooting; 133 EXPORT_SYMBOL_GPL(kvm_rebooting); 134 135 static bool largepages_enabled = true; 136 137 #define KVM_EVENT_CREATE_VM 0 138 #define KVM_EVENT_DESTROY_VM 1 139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 140 static unsigned long long kvm_createvm_count; 141 static unsigned long long kvm_active_vms; 142 143 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 144 unsigned long start, unsigned long end) 145 { 146 } 147 148 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 149 { 150 if (pfn_valid(pfn)) 151 return PageReserved(pfn_to_page(pfn)); 152 153 return true; 154 } 155 156 /* 157 * Switches to specified vcpu, until a matching vcpu_put() 158 */ 159 void vcpu_load(struct kvm_vcpu *vcpu) 160 { 161 int cpu = get_cpu(); 162 preempt_notifier_register(&vcpu->preempt_notifier); 163 kvm_arch_vcpu_load(vcpu, cpu); 164 put_cpu(); 165 } 166 EXPORT_SYMBOL_GPL(vcpu_load); 167 168 void vcpu_put(struct kvm_vcpu *vcpu) 169 { 170 preempt_disable(); 171 kvm_arch_vcpu_put(vcpu); 172 preempt_notifier_unregister(&vcpu->preempt_notifier); 173 preempt_enable(); 174 } 175 EXPORT_SYMBOL_GPL(vcpu_put); 176 177 /* TODO: merge with kvm_arch_vcpu_should_kick */ 178 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 179 { 180 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 181 182 /* 183 * We need to wait for the VCPU to reenable interrupts and get out of 184 * READING_SHADOW_PAGE_TABLES mode. 185 */ 186 if (req & KVM_REQUEST_WAIT) 187 return mode != OUTSIDE_GUEST_MODE; 188 189 /* 190 * Need to kick a running VCPU, but otherwise there is nothing to do. 191 */ 192 return mode == IN_GUEST_MODE; 193 } 194 195 static void ack_flush(void *_completed) 196 { 197 } 198 199 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 200 { 201 if (unlikely(!cpus)) 202 cpus = cpu_online_mask; 203 204 if (cpumask_empty(cpus)) 205 return false; 206 207 smp_call_function_many(cpus, ack_flush, NULL, wait); 208 return true; 209 } 210 211 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 212 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 213 { 214 int i, cpu, me; 215 struct kvm_vcpu *vcpu; 216 bool called; 217 218 me = get_cpu(); 219 220 kvm_for_each_vcpu(i, vcpu, kvm) { 221 if (!test_bit(i, vcpu_bitmap)) 222 continue; 223 224 kvm_make_request(req, vcpu); 225 cpu = vcpu->cpu; 226 227 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 228 continue; 229 230 if (tmp != NULL && cpu != -1 && cpu != me && 231 kvm_request_needs_ipi(vcpu, req)) 232 __cpumask_set_cpu(cpu, tmp); 233 } 234 235 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 236 put_cpu(); 237 238 return called; 239 } 240 241 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 242 { 243 cpumask_var_t cpus; 244 bool called; 245 static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)] 246 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX}; 247 248 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 249 250 called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus); 251 252 free_cpumask_var(cpus); 253 return called; 254 } 255 256 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 257 void kvm_flush_remote_tlbs(struct kvm *kvm) 258 { 259 /* 260 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 261 * kvm_make_all_cpus_request. 262 */ 263 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 264 265 /* 266 * We want to publish modifications to the page tables before reading 267 * mode. Pairs with a memory barrier in arch-specific code. 268 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 269 * and smp_mb in walk_shadow_page_lockless_begin/end. 270 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 271 * 272 * There is already an smp_mb__after_atomic() before 273 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 274 * barrier here. 275 */ 276 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 277 ++kvm->stat.remote_tlb_flush; 278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 279 } 280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 281 #endif 282 283 void kvm_reload_remote_mmus(struct kvm *kvm) 284 { 285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 286 } 287 288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 289 { 290 struct page *page; 291 int r; 292 293 mutex_init(&vcpu->mutex); 294 vcpu->cpu = -1; 295 vcpu->kvm = kvm; 296 vcpu->vcpu_id = id; 297 vcpu->pid = NULL; 298 init_swait_queue_head(&vcpu->wq); 299 kvm_async_pf_vcpu_init(vcpu); 300 301 vcpu->pre_pcpu = -1; 302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 303 304 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 305 if (!page) { 306 r = -ENOMEM; 307 goto fail; 308 } 309 vcpu->run = page_address(page); 310 311 kvm_vcpu_set_in_spin_loop(vcpu, false); 312 kvm_vcpu_set_dy_eligible(vcpu, false); 313 vcpu->preempted = false; 314 315 r = kvm_arch_vcpu_init(vcpu); 316 if (r < 0) 317 goto fail_free_run; 318 return 0; 319 320 fail_free_run: 321 free_page((unsigned long)vcpu->run); 322 fail: 323 return r; 324 } 325 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 326 327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 328 { 329 /* 330 * no need for rcu_read_lock as VCPU_RUN is the only place that 331 * will change the vcpu->pid pointer and on uninit all file 332 * descriptors are already gone. 333 */ 334 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 335 kvm_arch_vcpu_uninit(vcpu); 336 free_page((unsigned long)vcpu->run); 337 } 338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 339 340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 342 { 343 return container_of(mn, struct kvm, mmu_notifier); 344 } 345 346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long address, 349 pte_t pte) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 int idx; 353 354 idx = srcu_read_lock(&kvm->srcu); 355 spin_lock(&kvm->mmu_lock); 356 kvm->mmu_notifier_seq++; 357 kvm_set_spte_hva(kvm, address, pte); 358 spin_unlock(&kvm->mmu_lock); 359 srcu_read_unlock(&kvm->srcu, idx); 360 } 361 362 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 363 struct mm_struct *mm, 364 unsigned long start, 365 unsigned long end) 366 { 367 struct kvm *kvm = mmu_notifier_to_kvm(mn); 368 int need_tlb_flush = 0, idx; 369 370 idx = srcu_read_lock(&kvm->srcu); 371 spin_lock(&kvm->mmu_lock); 372 /* 373 * The count increase must become visible at unlock time as no 374 * spte can be established without taking the mmu_lock and 375 * count is also read inside the mmu_lock critical section. 376 */ 377 kvm->mmu_notifier_count++; 378 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 379 need_tlb_flush |= kvm->tlbs_dirty; 380 /* we've to flush the tlb before the pages can be freed */ 381 if (need_tlb_flush) 382 kvm_flush_remote_tlbs(kvm); 383 384 spin_unlock(&kvm->mmu_lock); 385 386 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 387 388 srcu_read_unlock(&kvm->srcu, idx); 389 } 390 391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 392 struct mm_struct *mm, 393 unsigned long start, 394 unsigned long end) 395 { 396 struct kvm *kvm = mmu_notifier_to_kvm(mn); 397 398 spin_lock(&kvm->mmu_lock); 399 /* 400 * This sequence increase will notify the kvm page fault that 401 * the page that is going to be mapped in the spte could have 402 * been freed. 403 */ 404 kvm->mmu_notifier_seq++; 405 smp_wmb(); 406 /* 407 * The above sequence increase must be visible before the 408 * below count decrease, which is ensured by the smp_wmb above 409 * in conjunction with the smp_rmb in mmu_notifier_retry(). 410 */ 411 kvm->mmu_notifier_count--; 412 spin_unlock(&kvm->mmu_lock); 413 414 BUG_ON(kvm->mmu_notifier_count < 0); 415 } 416 417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 418 struct mm_struct *mm, 419 unsigned long start, 420 unsigned long end) 421 { 422 struct kvm *kvm = mmu_notifier_to_kvm(mn); 423 int young, idx; 424 425 idx = srcu_read_lock(&kvm->srcu); 426 spin_lock(&kvm->mmu_lock); 427 428 young = kvm_age_hva(kvm, start, end); 429 if (young) 430 kvm_flush_remote_tlbs(kvm); 431 432 spin_unlock(&kvm->mmu_lock); 433 srcu_read_unlock(&kvm->srcu, idx); 434 435 return young; 436 } 437 438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 439 struct mm_struct *mm, 440 unsigned long start, 441 unsigned long end) 442 { 443 struct kvm *kvm = mmu_notifier_to_kvm(mn); 444 int young, idx; 445 446 idx = srcu_read_lock(&kvm->srcu); 447 spin_lock(&kvm->mmu_lock); 448 /* 449 * Even though we do not flush TLB, this will still adversely 450 * affect performance on pre-Haswell Intel EPT, where there is 451 * no EPT Access Bit to clear so that we have to tear down EPT 452 * tables instead. If we find this unacceptable, we can always 453 * add a parameter to kvm_age_hva so that it effectively doesn't 454 * do anything on clear_young. 455 * 456 * Also note that currently we never issue secondary TLB flushes 457 * from clear_young, leaving this job up to the regular system 458 * cadence. If we find this inaccurate, we might come up with a 459 * more sophisticated heuristic later. 460 */ 461 young = kvm_age_hva(kvm, start, end); 462 spin_unlock(&kvm->mmu_lock); 463 srcu_read_unlock(&kvm->srcu, idx); 464 465 return young; 466 } 467 468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 469 struct mm_struct *mm, 470 unsigned long address) 471 { 472 struct kvm *kvm = mmu_notifier_to_kvm(mn); 473 int young, idx; 474 475 idx = srcu_read_lock(&kvm->srcu); 476 spin_lock(&kvm->mmu_lock); 477 young = kvm_test_age_hva(kvm, address); 478 spin_unlock(&kvm->mmu_lock); 479 srcu_read_unlock(&kvm->srcu, idx); 480 481 return young; 482 } 483 484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 485 struct mm_struct *mm) 486 { 487 struct kvm *kvm = mmu_notifier_to_kvm(mn); 488 int idx; 489 490 idx = srcu_read_lock(&kvm->srcu); 491 kvm_arch_flush_shadow_all(kvm); 492 srcu_read_unlock(&kvm->srcu, idx); 493 } 494 495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 496 .flags = MMU_INVALIDATE_DOES_NOT_BLOCK, 497 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 498 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 499 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 500 .clear_young = kvm_mmu_notifier_clear_young, 501 .test_young = kvm_mmu_notifier_test_young, 502 .change_pte = kvm_mmu_notifier_change_pte, 503 .release = kvm_mmu_notifier_release, 504 }; 505 506 static int kvm_init_mmu_notifier(struct kvm *kvm) 507 { 508 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 509 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 510 } 511 512 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 513 514 static int kvm_init_mmu_notifier(struct kvm *kvm) 515 { 516 return 0; 517 } 518 519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 520 521 static struct kvm_memslots *kvm_alloc_memslots(void) 522 { 523 int i; 524 struct kvm_memslots *slots; 525 526 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 527 if (!slots) 528 return NULL; 529 530 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 531 slots->id_to_index[i] = slots->memslots[i].id = i; 532 533 return slots; 534 } 535 536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 537 { 538 if (!memslot->dirty_bitmap) 539 return; 540 541 kvfree(memslot->dirty_bitmap); 542 memslot->dirty_bitmap = NULL; 543 } 544 545 /* 546 * Free any memory in @free but not in @dont. 547 */ 548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 549 struct kvm_memory_slot *dont) 550 { 551 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 552 kvm_destroy_dirty_bitmap(free); 553 554 kvm_arch_free_memslot(kvm, free, dont); 555 556 free->npages = 0; 557 } 558 559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 560 { 561 struct kvm_memory_slot *memslot; 562 563 if (!slots) 564 return; 565 566 kvm_for_each_memslot(memslot, slots) 567 kvm_free_memslot(kvm, memslot, NULL); 568 569 kvfree(slots); 570 } 571 572 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 573 { 574 int i; 575 576 if (!kvm->debugfs_dentry) 577 return; 578 579 debugfs_remove_recursive(kvm->debugfs_dentry); 580 581 if (kvm->debugfs_stat_data) { 582 for (i = 0; i < kvm_debugfs_num_entries; i++) 583 kfree(kvm->debugfs_stat_data[i]); 584 kfree(kvm->debugfs_stat_data); 585 } 586 } 587 588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 589 { 590 char dir_name[ITOA_MAX_LEN * 2]; 591 struct kvm_stat_data *stat_data; 592 struct kvm_stats_debugfs_item *p; 593 594 if (!debugfs_initialized()) 595 return 0; 596 597 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 598 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 599 600 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 601 sizeof(*kvm->debugfs_stat_data), 602 GFP_KERNEL); 603 if (!kvm->debugfs_stat_data) 604 return -ENOMEM; 605 606 for (p = debugfs_entries; p->name; p++) { 607 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 608 if (!stat_data) 609 return -ENOMEM; 610 611 stat_data->kvm = kvm; 612 stat_data->offset = p->offset; 613 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 614 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 615 stat_data, stat_fops_per_vm[p->kind]); 616 } 617 return 0; 618 } 619 620 static struct kvm *kvm_create_vm(unsigned long type) 621 { 622 int r, i; 623 struct kvm *kvm = kvm_arch_alloc_vm(); 624 625 if (!kvm) 626 return ERR_PTR(-ENOMEM); 627 628 spin_lock_init(&kvm->mmu_lock); 629 mmgrab(current->mm); 630 kvm->mm = current->mm; 631 kvm_eventfd_init(kvm); 632 mutex_init(&kvm->lock); 633 mutex_init(&kvm->irq_lock); 634 mutex_init(&kvm->slots_lock); 635 refcount_set(&kvm->users_count, 1); 636 INIT_LIST_HEAD(&kvm->devices); 637 638 r = kvm_arch_init_vm(kvm, type); 639 if (r) 640 goto out_err_no_disable; 641 642 r = hardware_enable_all(); 643 if (r) 644 goto out_err_no_disable; 645 646 #ifdef CONFIG_HAVE_KVM_IRQFD 647 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 648 #endif 649 650 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 651 652 r = -ENOMEM; 653 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 654 struct kvm_memslots *slots = kvm_alloc_memslots(); 655 if (!slots) 656 goto out_err_no_srcu; 657 /* 658 * Generations must be different for each address space. 659 * Init kvm generation close to the maximum to easily test the 660 * code of handling generation number wrap-around. 661 */ 662 slots->generation = i * 2 - 150; 663 rcu_assign_pointer(kvm->memslots[i], slots); 664 } 665 666 if (init_srcu_struct(&kvm->srcu)) 667 goto out_err_no_srcu; 668 if (init_srcu_struct(&kvm->irq_srcu)) 669 goto out_err_no_irq_srcu; 670 for (i = 0; i < KVM_NR_BUSES; i++) { 671 rcu_assign_pointer(kvm->buses[i], 672 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 673 if (!kvm->buses[i]) 674 goto out_err; 675 } 676 677 r = kvm_init_mmu_notifier(kvm); 678 if (r) 679 goto out_err; 680 681 spin_lock(&kvm_lock); 682 list_add(&kvm->vm_list, &vm_list); 683 spin_unlock(&kvm_lock); 684 685 preempt_notifier_inc(); 686 687 return kvm; 688 689 out_err: 690 cleanup_srcu_struct(&kvm->irq_srcu); 691 out_err_no_irq_srcu: 692 cleanup_srcu_struct(&kvm->srcu); 693 out_err_no_srcu: 694 hardware_disable_all(); 695 out_err_no_disable: 696 refcount_set(&kvm->users_count, 0); 697 for (i = 0; i < KVM_NR_BUSES; i++) 698 kfree(kvm_get_bus(kvm, i)); 699 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 700 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 701 kvm_arch_free_vm(kvm); 702 mmdrop(current->mm); 703 return ERR_PTR(r); 704 } 705 706 static void kvm_destroy_devices(struct kvm *kvm) 707 { 708 struct kvm_device *dev, *tmp; 709 710 /* 711 * We do not need to take the kvm->lock here, because nobody else 712 * has a reference to the struct kvm at this point and therefore 713 * cannot access the devices list anyhow. 714 */ 715 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 716 list_del(&dev->vm_node); 717 dev->ops->destroy(dev); 718 } 719 } 720 721 static void kvm_destroy_vm(struct kvm *kvm) 722 { 723 int i; 724 struct mm_struct *mm = kvm->mm; 725 726 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 727 kvm_destroy_vm_debugfs(kvm); 728 kvm_arch_sync_events(kvm); 729 spin_lock(&kvm_lock); 730 list_del(&kvm->vm_list); 731 spin_unlock(&kvm_lock); 732 kvm_free_irq_routing(kvm); 733 for (i = 0; i < KVM_NR_BUSES; i++) { 734 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 735 736 if (bus) 737 kvm_io_bus_destroy(bus); 738 kvm->buses[i] = NULL; 739 } 740 kvm_coalesced_mmio_free(kvm); 741 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 742 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 743 #else 744 kvm_arch_flush_shadow_all(kvm); 745 #endif 746 kvm_arch_destroy_vm(kvm); 747 kvm_destroy_devices(kvm); 748 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 749 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 750 cleanup_srcu_struct(&kvm->irq_srcu); 751 cleanup_srcu_struct(&kvm->srcu); 752 kvm_arch_free_vm(kvm); 753 preempt_notifier_dec(); 754 hardware_disable_all(); 755 mmdrop(mm); 756 } 757 758 void kvm_get_kvm(struct kvm *kvm) 759 { 760 refcount_inc(&kvm->users_count); 761 } 762 EXPORT_SYMBOL_GPL(kvm_get_kvm); 763 764 void kvm_put_kvm(struct kvm *kvm) 765 { 766 if (refcount_dec_and_test(&kvm->users_count)) 767 kvm_destroy_vm(kvm); 768 } 769 EXPORT_SYMBOL_GPL(kvm_put_kvm); 770 771 772 static int kvm_vm_release(struct inode *inode, struct file *filp) 773 { 774 struct kvm *kvm = filp->private_data; 775 776 kvm_irqfd_release(kvm); 777 778 kvm_put_kvm(kvm); 779 return 0; 780 } 781 782 /* 783 * Allocation size is twice as large as the actual dirty bitmap size. 784 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 785 */ 786 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 787 { 788 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 789 790 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 791 if (!memslot->dirty_bitmap) 792 return -ENOMEM; 793 794 return 0; 795 } 796 797 /* 798 * Insert memslot and re-sort memslots based on their GFN, 799 * so binary search could be used to lookup GFN. 800 * Sorting algorithm takes advantage of having initially 801 * sorted array and known changed memslot position. 802 */ 803 static void update_memslots(struct kvm_memslots *slots, 804 struct kvm_memory_slot *new) 805 { 806 int id = new->id; 807 int i = slots->id_to_index[id]; 808 struct kvm_memory_slot *mslots = slots->memslots; 809 810 WARN_ON(mslots[i].id != id); 811 if (!new->npages) { 812 WARN_ON(!mslots[i].npages); 813 if (mslots[i].npages) 814 slots->used_slots--; 815 } else { 816 if (!mslots[i].npages) 817 slots->used_slots++; 818 } 819 820 while (i < KVM_MEM_SLOTS_NUM - 1 && 821 new->base_gfn <= mslots[i + 1].base_gfn) { 822 if (!mslots[i + 1].npages) 823 break; 824 mslots[i] = mslots[i + 1]; 825 slots->id_to_index[mslots[i].id] = i; 826 i++; 827 } 828 829 /* 830 * The ">=" is needed when creating a slot with base_gfn == 0, 831 * so that it moves before all those with base_gfn == npages == 0. 832 * 833 * On the other hand, if new->npages is zero, the above loop has 834 * already left i pointing to the beginning of the empty part of 835 * mslots, and the ">=" would move the hole backwards in this 836 * case---which is wrong. So skip the loop when deleting a slot. 837 */ 838 if (new->npages) { 839 while (i > 0 && 840 new->base_gfn >= mslots[i - 1].base_gfn) { 841 mslots[i] = mslots[i - 1]; 842 slots->id_to_index[mslots[i].id] = i; 843 i--; 844 } 845 } else 846 WARN_ON_ONCE(i != slots->used_slots); 847 848 mslots[i] = *new; 849 slots->id_to_index[mslots[i].id] = i; 850 } 851 852 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 853 { 854 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 855 856 #ifdef __KVM_HAVE_READONLY_MEM 857 valid_flags |= KVM_MEM_READONLY; 858 #endif 859 860 if (mem->flags & ~valid_flags) 861 return -EINVAL; 862 863 return 0; 864 } 865 866 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 867 int as_id, struct kvm_memslots *slots) 868 { 869 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 870 871 /* 872 * Set the low bit in the generation, which disables SPTE caching 873 * until the end of synchronize_srcu_expedited. 874 */ 875 WARN_ON(old_memslots->generation & 1); 876 slots->generation = old_memslots->generation + 1; 877 878 rcu_assign_pointer(kvm->memslots[as_id], slots); 879 synchronize_srcu_expedited(&kvm->srcu); 880 881 /* 882 * Increment the new memslot generation a second time. This prevents 883 * vm exits that race with memslot updates from caching a memslot 884 * generation that will (potentially) be valid forever. 885 * 886 * Generations must be unique even across address spaces. We do not need 887 * a global counter for that, instead the generation space is evenly split 888 * across address spaces. For example, with two address spaces, address 889 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 890 * use generations 2, 6, 10, 14, ... 891 */ 892 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 893 894 kvm_arch_memslots_updated(kvm, slots); 895 896 return old_memslots; 897 } 898 899 /* 900 * Allocate some memory and give it an address in the guest physical address 901 * space. 902 * 903 * Discontiguous memory is allowed, mostly for framebuffers. 904 * 905 * Must be called holding kvm->slots_lock for write. 906 */ 907 int __kvm_set_memory_region(struct kvm *kvm, 908 const struct kvm_userspace_memory_region *mem) 909 { 910 int r; 911 gfn_t base_gfn; 912 unsigned long npages; 913 struct kvm_memory_slot *slot; 914 struct kvm_memory_slot old, new; 915 struct kvm_memslots *slots = NULL, *old_memslots; 916 int as_id, id; 917 enum kvm_mr_change change; 918 919 r = check_memory_region_flags(mem); 920 if (r) 921 goto out; 922 923 r = -EINVAL; 924 as_id = mem->slot >> 16; 925 id = (u16)mem->slot; 926 927 /* General sanity checks */ 928 if (mem->memory_size & (PAGE_SIZE - 1)) 929 goto out; 930 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 931 goto out; 932 /* We can read the guest memory with __xxx_user() later on. */ 933 if ((id < KVM_USER_MEM_SLOTS) && 934 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 935 !access_ok(VERIFY_WRITE, 936 (void __user *)(unsigned long)mem->userspace_addr, 937 mem->memory_size))) 938 goto out; 939 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 940 goto out; 941 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 942 goto out; 943 944 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 945 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 946 npages = mem->memory_size >> PAGE_SHIFT; 947 948 if (npages > KVM_MEM_MAX_NR_PAGES) 949 goto out; 950 951 new = old = *slot; 952 953 new.id = id; 954 new.base_gfn = base_gfn; 955 new.npages = npages; 956 new.flags = mem->flags; 957 958 if (npages) { 959 if (!old.npages) 960 change = KVM_MR_CREATE; 961 else { /* Modify an existing slot. */ 962 if ((mem->userspace_addr != old.userspace_addr) || 963 (npages != old.npages) || 964 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 965 goto out; 966 967 if (base_gfn != old.base_gfn) 968 change = KVM_MR_MOVE; 969 else if (new.flags != old.flags) 970 change = KVM_MR_FLAGS_ONLY; 971 else { /* Nothing to change. */ 972 r = 0; 973 goto out; 974 } 975 } 976 } else { 977 if (!old.npages) 978 goto out; 979 980 change = KVM_MR_DELETE; 981 new.base_gfn = 0; 982 new.flags = 0; 983 } 984 985 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 986 /* Check for overlaps */ 987 r = -EEXIST; 988 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 989 if (slot->id == id) 990 continue; 991 if (!((base_gfn + npages <= slot->base_gfn) || 992 (base_gfn >= slot->base_gfn + slot->npages))) 993 goto out; 994 } 995 } 996 997 /* Free page dirty bitmap if unneeded */ 998 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 999 new.dirty_bitmap = NULL; 1000 1001 r = -ENOMEM; 1002 if (change == KVM_MR_CREATE) { 1003 new.userspace_addr = mem->userspace_addr; 1004 1005 if (kvm_arch_create_memslot(kvm, &new, npages)) 1006 goto out_free; 1007 } 1008 1009 /* Allocate page dirty bitmap if needed */ 1010 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1011 if (kvm_create_dirty_bitmap(&new) < 0) 1012 goto out_free; 1013 } 1014 1015 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1016 if (!slots) 1017 goto out_free; 1018 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1019 1020 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1021 slot = id_to_memslot(slots, id); 1022 slot->flags |= KVM_MEMSLOT_INVALID; 1023 1024 old_memslots = install_new_memslots(kvm, as_id, slots); 1025 1026 /* From this point no new shadow pages pointing to a deleted, 1027 * or moved, memslot will be created. 1028 * 1029 * validation of sp->gfn happens in: 1030 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1031 * - kvm_is_visible_gfn (mmu_check_roots) 1032 */ 1033 kvm_arch_flush_shadow_memslot(kvm, slot); 1034 1035 /* 1036 * We can re-use the old_memslots from above, the only difference 1037 * from the currently installed memslots is the invalid flag. This 1038 * will get overwritten by update_memslots anyway. 1039 */ 1040 slots = old_memslots; 1041 } 1042 1043 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1044 if (r) 1045 goto out_slots; 1046 1047 /* actual memory is freed via old in kvm_free_memslot below */ 1048 if (change == KVM_MR_DELETE) { 1049 new.dirty_bitmap = NULL; 1050 memset(&new.arch, 0, sizeof(new.arch)); 1051 } 1052 1053 update_memslots(slots, &new); 1054 old_memslots = install_new_memslots(kvm, as_id, slots); 1055 1056 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1057 1058 kvm_free_memslot(kvm, &old, &new); 1059 kvfree(old_memslots); 1060 return 0; 1061 1062 out_slots: 1063 kvfree(slots); 1064 out_free: 1065 kvm_free_memslot(kvm, &new, &old); 1066 out: 1067 return r; 1068 } 1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1070 1071 int kvm_set_memory_region(struct kvm *kvm, 1072 const struct kvm_userspace_memory_region *mem) 1073 { 1074 int r; 1075 1076 mutex_lock(&kvm->slots_lock); 1077 r = __kvm_set_memory_region(kvm, mem); 1078 mutex_unlock(&kvm->slots_lock); 1079 return r; 1080 } 1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1082 1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1084 struct kvm_userspace_memory_region *mem) 1085 { 1086 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1087 return -EINVAL; 1088 1089 return kvm_set_memory_region(kvm, mem); 1090 } 1091 1092 int kvm_get_dirty_log(struct kvm *kvm, 1093 struct kvm_dirty_log *log, int *is_dirty) 1094 { 1095 struct kvm_memslots *slots; 1096 struct kvm_memory_slot *memslot; 1097 int i, as_id, id; 1098 unsigned long n; 1099 unsigned long any = 0; 1100 1101 as_id = log->slot >> 16; 1102 id = (u16)log->slot; 1103 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1104 return -EINVAL; 1105 1106 slots = __kvm_memslots(kvm, as_id); 1107 memslot = id_to_memslot(slots, id); 1108 if (!memslot->dirty_bitmap) 1109 return -ENOENT; 1110 1111 n = kvm_dirty_bitmap_bytes(memslot); 1112 1113 for (i = 0; !any && i < n/sizeof(long); ++i) 1114 any = memslot->dirty_bitmap[i]; 1115 1116 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1117 return -EFAULT; 1118 1119 if (any) 1120 *is_dirty = 1; 1121 return 0; 1122 } 1123 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1124 1125 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1126 /** 1127 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1128 * are dirty write protect them for next write. 1129 * @kvm: pointer to kvm instance 1130 * @log: slot id and address to which we copy the log 1131 * @is_dirty: flag set if any page is dirty 1132 * 1133 * We need to keep it in mind that VCPU threads can write to the bitmap 1134 * concurrently. So, to avoid losing track of dirty pages we keep the 1135 * following order: 1136 * 1137 * 1. Take a snapshot of the bit and clear it if needed. 1138 * 2. Write protect the corresponding page. 1139 * 3. Copy the snapshot to the userspace. 1140 * 4. Upon return caller flushes TLB's if needed. 1141 * 1142 * Between 2 and 4, the guest may write to the page using the remaining TLB 1143 * entry. This is not a problem because the page is reported dirty using 1144 * the snapshot taken before and step 4 ensures that writes done after 1145 * exiting to userspace will be logged for the next call. 1146 * 1147 */ 1148 int kvm_get_dirty_log_protect(struct kvm *kvm, 1149 struct kvm_dirty_log *log, bool *is_dirty) 1150 { 1151 struct kvm_memslots *slots; 1152 struct kvm_memory_slot *memslot; 1153 int i, as_id, id; 1154 unsigned long n; 1155 unsigned long *dirty_bitmap; 1156 unsigned long *dirty_bitmap_buffer; 1157 1158 as_id = log->slot >> 16; 1159 id = (u16)log->slot; 1160 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1161 return -EINVAL; 1162 1163 slots = __kvm_memslots(kvm, as_id); 1164 memslot = id_to_memslot(slots, id); 1165 1166 dirty_bitmap = memslot->dirty_bitmap; 1167 if (!dirty_bitmap) 1168 return -ENOENT; 1169 1170 n = kvm_dirty_bitmap_bytes(memslot); 1171 1172 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 1173 memset(dirty_bitmap_buffer, 0, n); 1174 1175 spin_lock(&kvm->mmu_lock); 1176 *is_dirty = false; 1177 for (i = 0; i < n / sizeof(long); i++) { 1178 unsigned long mask; 1179 gfn_t offset; 1180 1181 if (!dirty_bitmap[i]) 1182 continue; 1183 1184 *is_dirty = true; 1185 1186 mask = xchg(&dirty_bitmap[i], 0); 1187 dirty_bitmap_buffer[i] = mask; 1188 1189 if (mask) { 1190 offset = i * BITS_PER_LONG; 1191 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1192 offset, mask); 1193 } 1194 } 1195 1196 spin_unlock(&kvm->mmu_lock); 1197 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1198 return -EFAULT; 1199 return 0; 1200 } 1201 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1202 #endif 1203 1204 bool kvm_largepages_enabled(void) 1205 { 1206 return largepages_enabled; 1207 } 1208 1209 void kvm_disable_largepages(void) 1210 { 1211 largepages_enabled = false; 1212 } 1213 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1214 1215 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1216 { 1217 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1218 } 1219 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1220 1221 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1222 { 1223 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1224 } 1225 1226 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1227 { 1228 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1229 1230 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1231 memslot->flags & KVM_MEMSLOT_INVALID) 1232 return false; 1233 1234 return true; 1235 } 1236 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1237 1238 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1239 { 1240 struct vm_area_struct *vma; 1241 unsigned long addr, size; 1242 1243 size = PAGE_SIZE; 1244 1245 addr = gfn_to_hva(kvm, gfn); 1246 if (kvm_is_error_hva(addr)) 1247 return PAGE_SIZE; 1248 1249 down_read(¤t->mm->mmap_sem); 1250 vma = find_vma(current->mm, addr); 1251 if (!vma) 1252 goto out; 1253 1254 size = vma_kernel_pagesize(vma); 1255 1256 out: 1257 up_read(¤t->mm->mmap_sem); 1258 1259 return size; 1260 } 1261 1262 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1263 { 1264 return slot->flags & KVM_MEM_READONLY; 1265 } 1266 1267 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1268 gfn_t *nr_pages, bool write) 1269 { 1270 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1271 return KVM_HVA_ERR_BAD; 1272 1273 if (memslot_is_readonly(slot) && write) 1274 return KVM_HVA_ERR_RO_BAD; 1275 1276 if (nr_pages) 1277 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1278 1279 return __gfn_to_hva_memslot(slot, gfn); 1280 } 1281 1282 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1283 gfn_t *nr_pages) 1284 { 1285 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1286 } 1287 1288 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1289 gfn_t gfn) 1290 { 1291 return gfn_to_hva_many(slot, gfn, NULL); 1292 } 1293 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1294 1295 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1296 { 1297 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1298 } 1299 EXPORT_SYMBOL_GPL(gfn_to_hva); 1300 1301 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1302 { 1303 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1304 } 1305 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1306 1307 /* 1308 * If writable is set to false, the hva returned by this function is only 1309 * allowed to be read. 1310 */ 1311 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1312 gfn_t gfn, bool *writable) 1313 { 1314 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1315 1316 if (!kvm_is_error_hva(hva) && writable) 1317 *writable = !memslot_is_readonly(slot); 1318 1319 return hva; 1320 } 1321 1322 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1323 { 1324 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1325 1326 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1327 } 1328 1329 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1330 { 1331 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1332 1333 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1334 } 1335 1336 static inline int check_user_page_hwpoison(unsigned long addr) 1337 { 1338 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1339 1340 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1341 return rc == -EHWPOISON; 1342 } 1343 1344 /* 1345 * The atomic path to get the writable pfn which will be stored in @pfn, 1346 * true indicates success, otherwise false is returned. 1347 */ 1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1349 bool write_fault, bool *writable, kvm_pfn_t *pfn) 1350 { 1351 struct page *page[1]; 1352 int npages; 1353 1354 if (!(async || atomic)) 1355 return false; 1356 1357 /* 1358 * Fast pin a writable pfn only if it is a write fault request 1359 * or the caller allows to map a writable pfn for a read fault 1360 * request. 1361 */ 1362 if (!(write_fault || writable)) 1363 return false; 1364 1365 npages = __get_user_pages_fast(addr, 1, 1, page); 1366 if (npages == 1) { 1367 *pfn = page_to_pfn(page[0]); 1368 1369 if (writable) 1370 *writable = true; 1371 return true; 1372 } 1373 1374 return false; 1375 } 1376 1377 /* 1378 * The slow path to get the pfn of the specified host virtual address, 1379 * 1 indicates success, -errno is returned if error is detected. 1380 */ 1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1382 bool *writable, kvm_pfn_t *pfn) 1383 { 1384 unsigned int flags = FOLL_HWPOISON; 1385 struct page *page; 1386 int npages = 0; 1387 1388 might_sleep(); 1389 1390 if (writable) 1391 *writable = write_fault; 1392 1393 if (write_fault) 1394 flags |= FOLL_WRITE; 1395 if (async) 1396 flags |= FOLL_NOWAIT; 1397 1398 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1399 if (npages != 1) 1400 return npages; 1401 1402 /* map read fault as writable if possible */ 1403 if (unlikely(!write_fault) && writable) { 1404 struct page *wpage; 1405 1406 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1407 *writable = true; 1408 put_page(page); 1409 page = wpage; 1410 } 1411 } 1412 *pfn = page_to_pfn(page); 1413 return npages; 1414 } 1415 1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1417 { 1418 if (unlikely(!(vma->vm_flags & VM_READ))) 1419 return false; 1420 1421 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1422 return false; 1423 1424 return true; 1425 } 1426 1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1428 unsigned long addr, bool *async, 1429 bool write_fault, bool *writable, 1430 kvm_pfn_t *p_pfn) 1431 { 1432 unsigned long pfn; 1433 int r; 1434 1435 r = follow_pfn(vma, addr, &pfn); 1436 if (r) { 1437 /* 1438 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1439 * not call the fault handler, so do it here. 1440 */ 1441 bool unlocked = false; 1442 r = fixup_user_fault(current, current->mm, addr, 1443 (write_fault ? FAULT_FLAG_WRITE : 0), 1444 &unlocked); 1445 if (unlocked) 1446 return -EAGAIN; 1447 if (r) 1448 return r; 1449 1450 r = follow_pfn(vma, addr, &pfn); 1451 if (r) 1452 return r; 1453 1454 } 1455 1456 if (writable) 1457 *writable = true; 1458 1459 /* 1460 * Get a reference here because callers of *hva_to_pfn* and 1461 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1462 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1463 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1464 * simply do nothing for reserved pfns. 1465 * 1466 * Whoever called remap_pfn_range is also going to call e.g. 1467 * unmap_mapping_range before the underlying pages are freed, 1468 * causing a call to our MMU notifier. 1469 */ 1470 kvm_get_pfn(pfn); 1471 1472 *p_pfn = pfn; 1473 return 0; 1474 } 1475 1476 /* 1477 * Pin guest page in memory and return its pfn. 1478 * @addr: host virtual address which maps memory to the guest 1479 * @atomic: whether this function can sleep 1480 * @async: whether this function need to wait IO complete if the 1481 * host page is not in the memory 1482 * @write_fault: whether we should get a writable host page 1483 * @writable: whether it allows to map a writable host page for !@write_fault 1484 * 1485 * The function will map a writable host page for these two cases: 1486 * 1): @write_fault = true 1487 * 2): @write_fault = false && @writable, @writable will tell the caller 1488 * whether the mapping is writable. 1489 */ 1490 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1491 bool write_fault, bool *writable) 1492 { 1493 struct vm_area_struct *vma; 1494 kvm_pfn_t pfn = 0; 1495 int npages, r; 1496 1497 /* we can do it either atomically or asynchronously, not both */ 1498 BUG_ON(atomic && async); 1499 1500 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1501 return pfn; 1502 1503 if (atomic) 1504 return KVM_PFN_ERR_FAULT; 1505 1506 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1507 if (npages == 1) 1508 return pfn; 1509 1510 down_read(¤t->mm->mmap_sem); 1511 if (npages == -EHWPOISON || 1512 (!async && check_user_page_hwpoison(addr))) { 1513 pfn = KVM_PFN_ERR_HWPOISON; 1514 goto exit; 1515 } 1516 1517 retry: 1518 vma = find_vma_intersection(current->mm, addr, addr + 1); 1519 1520 if (vma == NULL) 1521 pfn = KVM_PFN_ERR_FAULT; 1522 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1523 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1524 if (r == -EAGAIN) 1525 goto retry; 1526 if (r < 0) 1527 pfn = KVM_PFN_ERR_FAULT; 1528 } else { 1529 if (async && vma_is_valid(vma, write_fault)) 1530 *async = true; 1531 pfn = KVM_PFN_ERR_FAULT; 1532 } 1533 exit: 1534 up_read(¤t->mm->mmap_sem); 1535 return pfn; 1536 } 1537 1538 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1539 bool atomic, bool *async, bool write_fault, 1540 bool *writable) 1541 { 1542 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1543 1544 if (addr == KVM_HVA_ERR_RO_BAD) { 1545 if (writable) 1546 *writable = false; 1547 return KVM_PFN_ERR_RO_FAULT; 1548 } 1549 1550 if (kvm_is_error_hva(addr)) { 1551 if (writable) 1552 *writable = false; 1553 return KVM_PFN_NOSLOT; 1554 } 1555 1556 /* Do not map writable pfn in the readonly memslot. */ 1557 if (writable && memslot_is_readonly(slot)) { 1558 *writable = false; 1559 writable = NULL; 1560 } 1561 1562 return hva_to_pfn(addr, atomic, async, write_fault, 1563 writable); 1564 } 1565 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1566 1567 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1568 bool *writable) 1569 { 1570 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1571 write_fault, writable); 1572 } 1573 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1574 1575 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1576 { 1577 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1578 } 1579 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1580 1581 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1582 { 1583 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1584 } 1585 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1586 1587 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1588 { 1589 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1590 } 1591 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1592 1593 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1594 { 1595 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1596 } 1597 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1598 1599 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1600 { 1601 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1602 } 1603 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1604 1605 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1606 { 1607 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1608 } 1609 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1610 1611 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1612 struct page **pages, int nr_pages) 1613 { 1614 unsigned long addr; 1615 gfn_t entry = 0; 1616 1617 addr = gfn_to_hva_many(slot, gfn, &entry); 1618 if (kvm_is_error_hva(addr)) 1619 return -1; 1620 1621 if (entry < nr_pages) 1622 return 0; 1623 1624 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1625 } 1626 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1627 1628 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1629 { 1630 if (is_error_noslot_pfn(pfn)) 1631 return KVM_ERR_PTR_BAD_PAGE; 1632 1633 if (kvm_is_reserved_pfn(pfn)) { 1634 WARN_ON(1); 1635 return KVM_ERR_PTR_BAD_PAGE; 1636 } 1637 1638 return pfn_to_page(pfn); 1639 } 1640 1641 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1642 { 1643 kvm_pfn_t pfn; 1644 1645 pfn = gfn_to_pfn(kvm, gfn); 1646 1647 return kvm_pfn_to_page(pfn); 1648 } 1649 EXPORT_SYMBOL_GPL(gfn_to_page); 1650 1651 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1652 { 1653 kvm_pfn_t pfn; 1654 1655 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1656 1657 return kvm_pfn_to_page(pfn); 1658 } 1659 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1660 1661 void kvm_release_page_clean(struct page *page) 1662 { 1663 WARN_ON(is_error_page(page)); 1664 1665 kvm_release_pfn_clean(page_to_pfn(page)); 1666 } 1667 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1668 1669 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1670 { 1671 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1672 put_page(pfn_to_page(pfn)); 1673 } 1674 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1675 1676 void kvm_release_page_dirty(struct page *page) 1677 { 1678 WARN_ON(is_error_page(page)); 1679 1680 kvm_release_pfn_dirty(page_to_pfn(page)); 1681 } 1682 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1683 1684 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1685 { 1686 kvm_set_pfn_dirty(pfn); 1687 kvm_release_pfn_clean(pfn); 1688 } 1689 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1690 1691 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1692 { 1693 if (!kvm_is_reserved_pfn(pfn)) { 1694 struct page *page = pfn_to_page(pfn); 1695 1696 if (!PageReserved(page)) 1697 SetPageDirty(page); 1698 } 1699 } 1700 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1701 1702 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1703 { 1704 if (!kvm_is_reserved_pfn(pfn)) 1705 mark_page_accessed(pfn_to_page(pfn)); 1706 } 1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1708 1709 void kvm_get_pfn(kvm_pfn_t pfn) 1710 { 1711 if (!kvm_is_reserved_pfn(pfn)) 1712 get_page(pfn_to_page(pfn)); 1713 } 1714 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1715 1716 static int next_segment(unsigned long len, int offset) 1717 { 1718 if (len > PAGE_SIZE - offset) 1719 return PAGE_SIZE - offset; 1720 else 1721 return len; 1722 } 1723 1724 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1725 void *data, int offset, int len) 1726 { 1727 int r; 1728 unsigned long addr; 1729 1730 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1731 if (kvm_is_error_hva(addr)) 1732 return -EFAULT; 1733 r = __copy_from_user(data, (void __user *)addr + offset, len); 1734 if (r) 1735 return -EFAULT; 1736 return 0; 1737 } 1738 1739 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1740 int len) 1741 { 1742 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1743 1744 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1745 } 1746 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1747 1748 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1749 int offset, int len) 1750 { 1751 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1752 1753 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1754 } 1755 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1756 1757 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1758 { 1759 gfn_t gfn = gpa >> PAGE_SHIFT; 1760 int seg; 1761 int offset = offset_in_page(gpa); 1762 int ret; 1763 1764 while ((seg = next_segment(len, offset)) != 0) { 1765 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1766 if (ret < 0) 1767 return ret; 1768 offset = 0; 1769 len -= seg; 1770 data += seg; 1771 ++gfn; 1772 } 1773 return 0; 1774 } 1775 EXPORT_SYMBOL_GPL(kvm_read_guest); 1776 1777 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1778 { 1779 gfn_t gfn = gpa >> PAGE_SHIFT; 1780 int seg; 1781 int offset = offset_in_page(gpa); 1782 int ret; 1783 1784 while ((seg = next_segment(len, offset)) != 0) { 1785 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1786 if (ret < 0) 1787 return ret; 1788 offset = 0; 1789 len -= seg; 1790 data += seg; 1791 ++gfn; 1792 } 1793 return 0; 1794 } 1795 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1796 1797 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1798 void *data, int offset, unsigned long len) 1799 { 1800 int r; 1801 unsigned long addr; 1802 1803 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1804 if (kvm_is_error_hva(addr)) 1805 return -EFAULT; 1806 pagefault_disable(); 1807 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1808 pagefault_enable(); 1809 if (r) 1810 return -EFAULT; 1811 return 0; 1812 } 1813 1814 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1815 unsigned long len) 1816 { 1817 gfn_t gfn = gpa >> PAGE_SHIFT; 1818 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1819 int offset = offset_in_page(gpa); 1820 1821 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1822 } 1823 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1824 1825 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1826 void *data, unsigned long len) 1827 { 1828 gfn_t gfn = gpa >> PAGE_SHIFT; 1829 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1830 int offset = offset_in_page(gpa); 1831 1832 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1833 } 1834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1835 1836 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1837 const void *data, int offset, int len) 1838 { 1839 int r; 1840 unsigned long addr; 1841 1842 addr = gfn_to_hva_memslot(memslot, gfn); 1843 if (kvm_is_error_hva(addr)) 1844 return -EFAULT; 1845 r = __copy_to_user((void __user *)addr + offset, data, len); 1846 if (r) 1847 return -EFAULT; 1848 mark_page_dirty_in_slot(memslot, gfn); 1849 return 0; 1850 } 1851 1852 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1853 const void *data, int offset, int len) 1854 { 1855 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1856 1857 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1858 } 1859 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1860 1861 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1862 const void *data, int offset, int len) 1863 { 1864 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1865 1866 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1867 } 1868 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1869 1870 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1871 unsigned long len) 1872 { 1873 gfn_t gfn = gpa >> PAGE_SHIFT; 1874 int seg; 1875 int offset = offset_in_page(gpa); 1876 int ret; 1877 1878 while ((seg = next_segment(len, offset)) != 0) { 1879 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1880 if (ret < 0) 1881 return ret; 1882 offset = 0; 1883 len -= seg; 1884 data += seg; 1885 ++gfn; 1886 } 1887 return 0; 1888 } 1889 EXPORT_SYMBOL_GPL(kvm_write_guest); 1890 1891 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1892 unsigned long len) 1893 { 1894 gfn_t gfn = gpa >> PAGE_SHIFT; 1895 int seg; 1896 int offset = offset_in_page(gpa); 1897 int ret; 1898 1899 while ((seg = next_segment(len, offset)) != 0) { 1900 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1901 if (ret < 0) 1902 return ret; 1903 offset = 0; 1904 len -= seg; 1905 data += seg; 1906 ++gfn; 1907 } 1908 return 0; 1909 } 1910 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1911 1912 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1913 struct gfn_to_hva_cache *ghc, 1914 gpa_t gpa, unsigned long len) 1915 { 1916 int offset = offset_in_page(gpa); 1917 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1918 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1919 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1920 gfn_t nr_pages_avail; 1921 1922 ghc->gpa = gpa; 1923 ghc->generation = slots->generation; 1924 ghc->len = len; 1925 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1926 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL); 1927 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) { 1928 ghc->hva += offset; 1929 } else { 1930 /* 1931 * If the requested region crosses two memslots, we still 1932 * verify that the entire region is valid here. 1933 */ 1934 while (start_gfn <= end_gfn) { 1935 nr_pages_avail = 0; 1936 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 1937 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1938 &nr_pages_avail); 1939 if (kvm_is_error_hva(ghc->hva)) 1940 return -EFAULT; 1941 start_gfn += nr_pages_avail; 1942 } 1943 /* Use the slow path for cross page reads and writes. */ 1944 ghc->memslot = NULL; 1945 } 1946 return 0; 1947 } 1948 1949 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1950 gpa_t gpa, unsigned long len) 1951 { 1952 struct kvm_memslots *slots = kvm_memslots(kvm); 1953 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 1954 } 1955 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1956 1957 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1958 void *data, int offset, unsigned long len) 1959 { 1960 struct kvm_memslots *slots = kvm_memslots(kvm); 1961 int r; 1962 gpa_t gpa = ghc->gpa + offset; 1963 1964 BUG_ON(len + offset > ghc->len); 1965 1966 if (slots->generation != ghc->generation) 1967 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 1968 1969 if (unlikely(!ghc->memslot)) 1970 return kvm_write_guest(kvm, gpa, data, len); 1971 1972 if (kvm_is_error_hva(ghc->hva)) 1973 return -EFAULT; 1974 1975 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 1976 if (r) 1977 return -EFAULT; 1978 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 1979 1980 return 0; 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 1983 1984 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1985 void *data, unsigned long len) 1986 { 1987 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 1988 } 1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1990 1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1992 void *data, unsigned long len) 1993 { 1994 struct kvm_memslots *slots = kvm_memslots(kvm); 1995 int r; 1996 1997 BUG_ON(len > ghc->len); 1998 1999 if (slots->generation != ghc->generation) 2000 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2001 2002 if (unlikely(!ghc->memslot)) 2003 return kvm_read_guest(kvm, ghc->gpa, data, len); 2004 2005 if (kvm_is_error_hva(ghc->hva)) 2006 return -EFAULT; 2007 2008 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2009 if (r) 2010 return -EFAULT; 2011 2012 return 0; 2013 } 2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2015 2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2017 { 2018 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2019 2020 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2021 } 2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2023 2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2025 { 2026 gfn_t gfn = gpa >> PAGE_SHIFT; 2027 int seg; 2028 int offset = offset_in_page(gpa); 2029 int ret; 2030 2031 while ((seg = next_segment(len, offset)) != 0) { 2032 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2033 if (ret < 0) 2034 return ret; 2035 offset = 0; 2036 len -= seg; 2037 ++gfn; 2038 } 2039 return 0; 2040 } 2041 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2042 2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2044 gfn_t gfn) 2045 { 2046 if (memslot && memslot->dirty_bitmap) { 2047 unsigned long rel_gfn = gfn - memslot->base_gfn; 2048 2049 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2050 } 2051 } 2052 2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2054 { 2055 struct kvm_memory_slot *memslot; 2056 2057 memslot = gfn_to_memslot(kvm, gfn); 2058 mark_page_dirty_in_slot(memslot, gfn); 2059 } 2060 EXPORT_SYMBOL_GPL(mark_page_dirty); 2061 2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2063 { 2064 struct kvm_memory_slot *memslot; 2065 2066 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2067 mark_page_dirty_in_slot(memslot, gfn); 2068 } 2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2070 2071 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2072 { 2073 if (!vcpu->sigset_active) 2074 return; 2075 2076 /* 2077 * This does a lockless modification of ->real_blocked, which is fine 2078 * because, only current can change ->real_blocked and all readers of 2079 * ->real_blocked don't care as long ->real_blocked is always a subset 2080 * of ->blocked. 2081 */ 2082 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2083 } 2084 2085 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2086 { 2087 if (!vcpu->sigset_active) 2088 return; 2089 2090 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2091 sigemptyset(¤t->real_blocked); 2092 } 2093 2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2095 { 2096 unsigned int old, val, grow; 2097 2098 old = val = vcpu->halt_poll_ns; 2099 grow = READ_ONCE(halt_poll_ns_grow); 2100 /* 10us base */ 2101 if (val == 0 && grow) 2102 val = 10000; 2103 else 2104 val *= grow; 2105 2106 if (val > halt_poll_ns) 2107 val = halt_poll_ns; 2108 2109 vcpu->halt_poll_ns = val; 2110 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2111 } 2112 2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2114 { 2115 unsigned int old, val, shrink; 2116 2117 old = val = vcpu->halt_poll_ns; 2118 shrink = READ_ONCE(halt_poll_ns_shrink); 2119 if (shrink == 0) 2120 val = 0; 2121 else 2122 val /= shrink; 2123 2124 vcpu->halt_poll_ns = val; 2125 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2126 } 2127 2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2129 { 2130 if (kvm_arch_vcpu_runnable(vcpu)) { 2131 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2132 return -EINTR; 2133 } 2134 if (kvm_cpu_has_pending_timer(vcpu)) 2135 return -EINTR; 2136 if (signal_pending(current)) 2137 return -EINTR; 2138 2139 return 0; 2140 } 2141 2142 /* 2143 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2144 */ 2145 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2146 { 2147 ktime_t start, cur; 2148 DECLARE_SWAITQUEUE(wait); 2149 bool waited = false; 2150 u64 block_ns; 2151 2152 start = cur = ktime_get(); 2153 if (vcpu->halt_poll_ns) { 2154 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2155 2156 ++vcpu->stat.halt_attempted_poll; 2157 do { 2158 /* 2159 * This sets KVM_REQ_UNHALT if an interrupt 2160 * arrives. 2161 */ 2162 if (kvm_vcpu_check_block(vcpu) < 0) { 2163 ++vcpu->stat.halt_successful_poll; 2164 if (!vcpu_valid_wakeup(vcpu)) 2165 ++vcpu->stat.halt_poll_invalid; 2166 goto out; 2167 } 2168 cur = ktime_get(); 2169 } while (single_task_running() && ktime_before(cur, stop)); 2170 } 2171 2172 kvm_arch_vcpu_blocking(vcpu); 2173 2174 for (;;) { 2175 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2176 2177 if (kvm_vcpu_check_block(vcpu) < 0) 2178 break; 2179 2180 waited = true; 2181 schedule(); 2182 } 2183 2184 finish_swait(&vcpu->wq, &wait); 2185 cur = ktime_get(); 2186 2187 kvm_arch_vcpu_unblocking(vcpu); 2188 out: 2189 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2190 2191 if (!vcpu_valid_wakeup(vcpu)) 2192 shrink_halt_poll_ns(vcpu); 2193 else if (halt_poll_ns) { 2194 if (block_ns <= vcpu->halt_poll_ns) 2195 ; 2196 /* we had a long block, shrink polling */ 2197 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2198 shrink_halt_poll_ns(vcpu); 2199 /* we had a short halt and our poll time is too small */ 2200 else if (vcpu->halt_poll_ns < halt_poll_ns && 2201 block_ns < halt_poll_ns) 2202 grow_halt_poll_ns(vcpu); 2203 } else 2204 vcpu->halt_poll_ns = 0; 2205 2206 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2207 kvm_arch_vcpu_block_finish(vcpu); 2208 } 2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2210 2211 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2212 { 2213 struct swait_queue_head *wqp; 2214 2215 wqp = kvm_arch_vcpu_wq(vcpu); 2216 if (swq_has_sleeper(wqp)) { 2217 swake_up(wqp); 2218 ++vcpu->stat.halt_wakeup; 2219 return true; 2220 } 2221 2222 return false; 2223 } 2224 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2225 2226 #ifndef CONFIG_S390 2227 /* 2228 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2229 */ 2230 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2231 { 2232 int me; 2233 int cpu = vcpu->cpu; 2234 2235 if (kvm_vcpu_wake_up(vcpu)) 2236 return; 2237 2238 me = get_cpu(); 2239 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2240 if (kvm_arch_vcpu_should_kick(vcpu)) 2241 smp_send_reschedule(cpu); 2242 put_cpu(); 2243 } 2244 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2245 #endif /* !CONFIG_S390 */ 2246 2247 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2248 { 2249 struct pid *pid; 2250 struct task_struct *task = NULL; 2251 int ret = 0; 2252 2253 rcu_read_lock(); 2254 pid = rcu_dereference(target->pid); 2255 if (pid) 2256 task = get_pid_task(pid, PIDTYPE_PID); 2257 rcu_read_unlock(); 2258 if (!task) 2259 return ret; 2260 ret = yield_to(task, 1); 2261 put_task_struct(task); 2262 2263 return ret; 2264 } 2265 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2266 2267 /* 2268 * Helper that checks whether a VCPU is eligible for directed yield. 2269 * Most eligible candidate to yield is decided by following heuristics: 2270 * 2271 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2272 * (preempted lock holder), indicated by @in_spin_loop. 2273 * Set at the beiginning and cleared at the end of interception/PLE handler. 2274 * 2275 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2276 * chance last time (mostly it has become eligible now since we have probably 2277 * yielded to lockholder in last iteration. This is done by toggling 2278 * @dy_eligible each time a VCPU checked for eligibility.) 2279 * 2280 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2281 * to preempted lock-holder could result in wrong VCPU selection and CPU 2282 * burning. Giving priority for a potential lock-holder increases lock 2283 * progress. 2284 * 2285 * Since algorithm is based on heuristics, accessing another VCPU data without 2286 * locking does not harm. It may result in trying to yield to same VCPU, fail 2287 * and continue with next VCPU and so on. 2288 */ 2289 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2290 { 2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2292 bool eligible; 2293 2294 eligible = !vcpu->spin_loop.in_spin_loop || 2295 vcpu->spin_loop.dy_eligible; 2296 2297 if (vcpu->spin_loop.in_spin_loop) 2298 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2299 2300 return eligible; 2301 #else 2302 return true; 2303 #endif 2304 } 2305 2306 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2307 { 2308 struct kvm *kvm = me->kvm; 2309 struct kvm_vcpu *vcpu; 2310 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2311 int yielded = 0; 2312 int try = 3; 2313 int pass; 2314 int i; 2315 2316 kvm_vcpu_set_in_spin_loop(me, true); 2317 /* 2318 * We boost the priority of a VCPU that is runnable but not 2319 * currently running, because it got preempted by something 2320 * else and called schedule in __vcpu_run. Hopefully that 2321 * VCPU is holding the lock that we need and will release it. 2322 * We approximate round-robin by starting at the last boosted VCPU. 2323 */ 2324 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2325 kvm_for_each_vcpu(i, vcpu, kvm) { 2326 if (!pass && i <= last_boosted_vcpu) { 2327 i = last_boosted_vcpu; 2328 continue; 2329 } else if (pass && i > last_boosted_vcpu) 2330 break; 2331 if (!READ_ONCE(vcpu->preempted)) 2332 continue; 2333 if (vcpu == me) 2334 continue; 2335 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2336 continue; 2337 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2338 continue; 2339 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2340 continue; 2341 2342 yielded = kvm_vcpu_yield_to(vcpu); 2343 if (yielded > 0) { 2344 kvm->last_boosted_vcpu = i; 2345 break; 2346 } else if (yielded < 0) { 2347 try--; 2348 if (!try) 2349 break; 2350 } 2351 } 2352 } 2353 kvm_vcpu_set_in_spin_loop(me, false); 2354 2355 /* Ensure vcpu is not eligible during next spinloop */ 2356 kvm_vcpu_set_dy_eligible(me, false); 2357 } 2358 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2359 2360 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2361 { 2362 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2363 struct page *page; 2364 2365 if (vmf->pgoff == 0) 2366 page = virt_to_page(vcpu->run); 2367 #ifdef CONFIG_X86 2368 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2369 page = virt_to_page(vcpu->arch.pio_data); 2370 #endif 2371 #ifdef CONFIG_KVM_MMIO 2372 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2373 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2374 #endif 2375 else 2376 return kvm_arch_vcpu_fault(vcpu, vmf); 2377 get_page(page); 2378 vmf->page = page; 2379 return 0; 2380 } 2381 2382 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2383 .fault = kvm_vcpu_fault, 2384 }; 2385 2386 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2387 { 2388 vma->vm_ops = &kvm_vcpu_vm_ops; 2389 return 0; 2390 } 2391 2392 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2393 { 2394 struct kvm_vcpu *vcpu = filp->private_data; 2395 2396 debugfs_remove_recursive(vcpu->debugfs_dentry); 2397 kvm_put_kvm(vcpu->kvm); 2398 return 0; 2399 } 2400 2401 static struct file_operations kvm_vcpu_fops = { 2402 .release = kvm_vcpu_release, 2403 .unlocked_ioctl = kvm_vcpu_ioctl, 2404 .mmap = kvm_vcpu_mmap, 2405 .llseek = noop_llseek, 2406 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2407 }; 2408 2409 /* 2410 * Allocates an inode for the vcpu. 2411 */ 2412 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2413 { 2414 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2415 2416 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2417 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2418 } 2419 2420 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2421 { 2422 char dir_name[ITOA_MAX_LEN * 2]; 2423 int ret; 2424 2425 if (!kvm_arch_has_vcpu_debugfs()) 2426 return 0; 2427 2428 if (!debugfs_initialized()) 2429 return 0; 2430 2431 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2432 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2433 vcpu->kvm->debugfs_dentry); 2434 if (!vcpu->debugfs_dentry) 2435 return -ENOMEM; 2436 2437 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2438 if (ret < 0) { 2439 debugfs_remove_recursive(vcpu->debugfs_dentry); 2440 return ret; 2441 } 2442 2443 return 0; 2444 } 2445 2446 /* 2447 * Creates some virtual cpus. Good luck creating more than one. 2448 */ 2449 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2450 { 2451 int r; 2452 struct kvm_vcpu *vcpu; 2453 2454 if (id >= KVM_MAX_VCPU_ID) 2455 return -EINVAL; 2456 2457 mutex_lock(&kvm->lock); 2458 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2459 mutex_unlock(&kvm->lock); 2460 return -EINVAL; 2461 } 2462 2463 kvm->created_vcpus++; 2464 mutex_unlock(&kvm->lock); 2465 2466 vcpu = kvm_arch_vcpu_create(kvm, id); 2467 if (IS_ERR(vcpu)) { 2468 r = PTR_ERR(vcpu); 2469 goto vcpu_decrement; 2470 } 2471 2472 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2473 2474 r = kvm_arch_vcpu_setup(vcpu); 2475 if (r) 2476 goto vcpu_destroy; 2477 2478 r = kvm_create_vcpu_debugfs(vcpu); 2479 if (r) 2480 goto vcpu_destroy; 2481 2482 mutex_lock(&kvm->lock); 2483 if (kvm_get_vcpu_by_id(kvm, id)) { 2484 r = -EEXIST; 2485 goto unlock_vcpu_destroy; 2486 } 2487 2488 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2489 2490 /* Now it's all set up, let userspace reach it */ 2491 kvm_get_kvm(kvm); 2492 r = create_vcpu_fd(vcpu); 2493 if (r < 0) { 2494 kvm_put_kvm(kvm); 2495 goto unlock_vcpu_destroy; 2496 } 2497 2498 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2499 2500 /* 2501 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2502 * before kvm->online_vcpu's incremented value. 2503 */ 2504 smp_wmb(); 2505 atomic_inc(&kvm->online_vcpus); 2506 2507 mutex_unlock(&kvm->lock); 2508 kvm_arch_vcpu_postcreate(vcpu); 2509 return r; 2510 2511 unlock_vcpu_destroy: 2512 mutex_unlock(&kvm->lock); 2513 debugfs_remove_recursive(vcpu->debugfs_dentry); 2514 vcpu_destroy: 2515 kvm_arch_vcpu_destroy(vcpu); 2516 vcpu_decrement: 2517 mutex_lock(&kvm->lock); 2518 kvm->created_vcpus--; 2519 mutex_unlock(&kvm->lock); 2520 return r; 2521 } 2522 2523 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2524 { 2525 if (sigset) { 2526 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2527 vcpu->sigset_active = 1; 2528 vcpu->sigset = *sigset; 2529 } else 2530 vcpu->sigset_active = 0; 2531 return 0; 2532 } 2533 2534 static long kvm_vcpu_ioctl(struct file *filp, 2535 unsigned int ioctl, unsigned long arg) 2536 { 2537 struct kvm_vcpu *vcpu = filp->private_data; 2538 void __user *argp = (void __user *)arg; 2539 int r; 2540 struct kvm_fpu *fpu = NULL; 2541 struct kvm_sregs *kvm_sregs = NULL; 2542 2543 if (vcpu->kvm->mm != current->mm) 2544 return -EIO; 2545 2546 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2547 return -EINVAL; 2548 2549 /* 2550 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2551 * execution; mutex_lock() would break them. 2552 */ 2553 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2554 if (r != -ENOIOCTLCMD) 2555 return r; 2556 2557 if (mutex_lock_killable(&vcpu->mutex)) 2558 return -EINTR; 2559 switch (ioctl) { 2560 case KVM_RUN: { 2561 struct pid *oldpid; 2562 r = -EINVAL; 2563 if (arg) 2564 goto out; 2565 oldpid = rcu_access_pointer(vcpu->pid); 2566 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) { 2567 /* The thread running this VCPU changed. */ 2568 struct pid *newpid; 2569 2570 r = kvm_arch_vcpu_run_pid_change(vcpu); 2571 if (r) 2572 break; 2573 2574 newpid = get_task_pid(current, PIDTYPE_PID); 2575 rcu_assign_pointer(vcpu->pid, newpid); 2576 if (oldpid) 2577 synchronize_rcu(); 2578 put_pid(oldpid); 2579 } 2580 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2581 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2582 break; 2583 } 2584 case KVM_GET_REGS: { 2585 struct kvm_regs *kvm_regs; 2586 2587 r = -ENOMEM; 2588 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2589 if (!kvm_regs) 2590 goto out; 2591 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2592 if (r) 2593 goto out_free1; 2594 r = -EFAULT; 2595 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2596 goto out_free1; 2597 r = 0; 2598 out_free1: 2599 kfree(kvm_regs); 2600 break; 2601 } 2602 case KVM_SET_REGS: { 2603 struct kvm_regs *kvm_regs; 2604 2605 r = -ENOMEM; 2606 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2607 if (IS_ERR(kvm_regs)) { 2608 r = PTR_ERR(kvm_regs); 2609 goto out; 2610 } 2611 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2612 kfree(kvm_regs); 2613 break; 2614 } 2615 case KVM_GET_SREGS: { 2616 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2617 r = -ENOMEM; 2618 if (!kvm_sregs) 2619 goto out; 2620 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2621 if (r) 2622 goto out; 2623 r = -EFAULT; 2624 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2625 goto out; 2626 r = 0; 2627 break; 2628 } 2629 case KVM_SET_SREGS: { 2630 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2631 if (IS_ERR(kvm_sregs)) { 2632 r = PTR_ERR(kvm_sregs); 2633 kvm_sregs = NULL; 2634 goto out; 2635 } 2636 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2637 break; 2638 } 2639 case KVM_GET_MP_STATE: { 2640 struct kvm_mp_state mp_state; 2641 2642 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2643 if (r) 2644 goto out; 2645 r = -EFAULT; 2646 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2647 goto out; 2648 r = 0; 2649 break; 2650 } 2651 case KVM_SET_MP_STATE: { 2652 struct kvm_mp_state mp_state; 2653 2654 r = -EFAULT; 2655 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2656 goto out; 2657 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2658 break; 2659 } 2660 case KVM_TRANSLATE: { 2661 struct kvm_translation tr; 2662 2663 r = -EFAULT; 2664 if (copy_from_user(&tr, argp, sizeof(tr))) 2665 goto out; 2666 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2667 if (r) 2668 goto out; 2669 r = -EFAULT; 2670 if (copy_to_user(argp, &tr, sizeof(tr))) 2671 goto out; 2672 r = 0; 2673 break; 2674 } 2675 case KVM_SET_GUEST_DEBUG: { 2676 struct kvm_guest_debug dbg; 2677 2678 r = -EFAULT; 2679 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2680 goto out; 2681 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2682 break; 2683 } 2684 case KVM_SET_SIGNAL_MASK: { 2685 struct kvm_signal_mask __user *sigmask_arg = argp; 2686 struct kvm_signal_mask kvm_sigmask; 2687 sigset_t sigset, *p; 2688 2689 p = NULL; 2690 if (argp) { 2691 r = -EFAULT; 2692 if (copy_from_user(&kvm_sigmask, argp, 2693 sizeof(kvm_sigmask))) 2694 goto out; 2695 r = -EINVAL; 2696 if (kvm_sigmask.len != sizeof(sigset)) 2697 goto out; 2698 r = -EFAULT; 2699 if (copy_from_user(&sigset, sigmask_arg->sigset, 2700 sizeof(sigset))) 2701 goto out; 2702 p = &sigset; 2703 } 2704 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2705 break; 2706 } 2707 case KVM_GET_FPU: { 2708 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2709 r = -ENOMEM; 2710 if (!fpu) 2711 goto out; 2712 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2713 if (r) 2714 goto out; 2715 r = -EFAULT; 2716 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2717 goto out; 2718 r = 0; 2719 break; 2720 } 2721 case KVM_SET_FPU: { 2722 fpu = memdup_user(argp, sizeof(*fpu)); 2723 if (IS_ERR(fpu)) { 2724 r = PTR_ERR(fpu); 2725 fpu = NULL; 2726 goto out; 2727 } 2728 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2729 break; 2730 } 2731 default: 2732 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2733 } 2734 out: 2735 mutex_unlock(&vcpu->mutex); 2736 kfree(fpu); 2737 kfree(kvm_sregs); 2738 return r; 2739 } 2740 2741 #ifdef CONFIG_KVM_COMPAT 2742 static long kvm_vcpu_compat_ioctl(struct file *filp, 2743 unsigned int ioctl, unsigned long arg) 2744 { 2745 struct kvm_vcpu *vcpu = filp->private_data; 2746 void __user *argp = compat_ptr(arg); 2747 int r; 2748 2749 if (vcpu->kvm->mm != current->mm) 2750 return -EIO; 2751 2752 switch (ioctl) { 2753 case KVM_SET_SIGNAL_MASK: { 2754 struct kvm_signal_mask __user *sigmask_arg = argp; 2755 struct kvm_signal_mask kvm_sigmask; 2756 sigset_t sigset; 2757 2758 if (argp) { 2759 r = -EFAULT; 2760 if (copy_from_user(&kvm_sigmask, argp, 2761 sizeof(kvm_sigmask))) 2762 goto out; 2763 r = -EINVAL; 2764 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2765 goto out; 2766 r = -EFAULT; 2767 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2768 goto out; 2769 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2770 } else 2771 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2772 break; 2773 } 2774 default: 2775 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2776 } 2777 2778 out: 2779 return r; 2780 } 2781 #endif 2782 2783 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2784 int (*accessor)(struct kvm_device *dev, 2785 struct kvm_device_attr *attr), 2786 unsigned long arg) 2787 { 2788 struct kvm_device_attr attr; 2789 2790 if (!accessor) 2791 return -EPERM; 2792 2793 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2794 return -EFAULT; 2795 2796 return accessor(dev, &attr); 2797 } 2798 2799 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2800 unsigned long arg) 2801 { 2802 struct kvm_device *dev = filp->private_data; 2803 2804 switch (ioctl) { 2805 case KVM_SET_DEVICE_ATTR: 2806 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2807 case KVM_GET_DEVICE_ATTR: 2808 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2809 case KVM_HAS_DEVICE_ATTR: 2810 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2811 default: 2812 if (dev->ops->ioctl) 2813 return dev->ops->ioctl(dev, ioctl, arg); 2814 2815 return -ENOTTY; 2816 } 2817 } 2818 2819 static int kvm_device_release(struct inode *inode, struct file *filp) 2820 { 2821 struct kvm_device *dev = filp->private_data; 2822 struct kvm *kvm = dev->kvm; 2823 2824 kvm_put_kvm(kvm); 2825 return 0; 2826 } 2827 2828 static const struct file_operations kvm_device_fops = { 2829 .unlocked_ioctl = kvm_device_ioctl, 2830 .release = kvm_device_release, 2831 KVM_COMPAT(kvm_device_ioctl), 2832 }; 2833 2834 struct kvm_device *kvm_device_from_filp(struct file *filp) 2835 { 2836 if (filp->f_op != &kvm_device_fops) 2837 return NULL; 2838 2839 return filp->private_data; 2840 } 2841 2842 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2843 #ifdef CONFIG_KVM_MPIC 2844 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2845 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2846 #endif 2847 }; 2848 2849 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2850 { 2851 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2852 return -ENOSPC; 2853 2854 if (kvm_device_ops_table[type] != NULL) 2855 return -EEXIST; 2856 2857 kvm_device_ops_table[type] = ops; 2858 return 0; 2859 } 2860 2861 void kvm_unregister_device_ops(u32 type) 2862 { 2863 if (kvm_device_ops_table[type] != NULL) 2864 kvm_device_ops_table[type] = NULL; 2865 } 2866 2867 static int kvm_ioctl_create_device(struct kvm *kvm, 2868 struct kvm_create_device *cd) 2869 { 2870 struct kvm_device_ops *ops = NULL; 2871 struct kvm_device *dev; 2872 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2873 int ret; 2874 2875 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2876 return -ENODEV; 2877 2878 ops = kvm_device_ops_table[cd->type]; 2879 if (ops == NULL) 2880 return -ENODEV; 2881 2882 if (test) 2883 return 0; 2884 2885 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2886 if (!dev) 2887 return -ENOMEM; 2888 2889 dev->ops = ops; 2890 dev->kvm = kvm; 2891 2892 mutex_lock(&kvm->lock); 2893 ret = ops->create(dev, cd->type); 2894 if (ret < 0) { 2895 mutex_unlock(&kvm->lock); 2896 kfree(dev); 2897 return ret; 2898 } 2899 list_add(&dev->vm_node, &kvm->devices); 2900 mutex_unlock(&kvm->lock); 2901 2902 if (ops->init) 2903 ops->init(dev); 2904 2905 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2906 if (ret < 0) { 2907 mutex_lock(&kvm->lock); 2908 list_del(&dev->vm_node); 2909 mutex_unlock(&kvm->lock); 2910 ops->destroy(dev); 2911 return ret; 2912 } 2913 2914 kvm_get_kvm(kvm); 2915 cd->fd = ret; 2916 return 0; 2917 } 2918 2919 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 2920 { 2921 switch (arg) { 2922 case KVM_CAP_USER_MEMORY: 2923 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2924 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2925 case KVM_CAP_INTERNAL_ERROR_DATA: 2926 #ifdef CONFIG_HAVE_KVM_MSI 2927 case KVM_CAP_SIGNAL_MSI: 2928 #endif 2929 #ifdef CONFIG_HAVE_KVM_IRQFD 2930 case KVM_CAP_IRQFD: 2931 case KVM_CAP_IRQFD_RESAMPLE: 2932 #endif 2933 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 2934 case KVM_CAP_CHECK_EXTENSION_VM: 2935 return 1; 2936 #ifdef CONFIG_KVM_MMIO 2937 case KVM_CAP_COALESCED_MMIO: 2938 return KVM_COALESCED_MMIO_PAGE_OFFSET; 2939 #endif 2940 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2941 case KVM_CAP_IRQ_ROUTING: 2942 return KVM_MAX_IRQ_ROUTES; 2943 #endif 2944 #if KVM_ADDRESS_SPACE_NUM > 1 2945 case KVM_CAP_MULTI_ADDRESS_SPACE: 2946 return KVM_ADDRESS_SPACE_NUM; 2947 #endif 2948 case KVM_CAP_MAX_VCPU_ID: 2949 return KVM_MAX_VCPU_ID; 2950 default: 2951 break; 2952 } 2953 return kvm_vm_ioctl_check_extension(kvm, arg); 2954 } 2955 2956 static long kvm_vm_ioctl(struct file *filp, 2957 unsigned int ioctl, unsigned long arg) 2958 { 2959 struct kvm *kvm = filp->private_data; 2960 void __user *argp = (void __user *)arg; 2961 int r; 2962 2963 if (kvm->mm != current->mm) 2964 return -EIO; 2965 switch (ioctl) { 2966 case KVM_CREATE_VCPU: 2967 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2968 break; 2969 case KVM_SET_USER_MEMORY_REGION: { 2970 struct kvm_userspace_memory_region kvm_userspace_mem; 2971 2972 r = -EFAULT; 2973 if (copy_from_user(&kvm_userspace_mem, argp, 2974 sizeof(kvm_userspace_mem))) 2975 goto out; 2976 2977 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2978 break; 2979 } 2980 case KVM_GET_DIRTY_LOG: { 2981 struct kvm_dirty_log log; 2982 2983 r = -EFAULT; 2984 if (copy_from_user(&log, argp, sizeof(log))) 2985 goto out; 2986 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2987 break; 2988 } 2989 #ifdef CONFIG_KVM_MMIO 2990 case KVM_REGISTER_COALESCED_MMIO: { 2991 struct kvm_coalesced_mmio_zone zone; 2992 2993 r = -EFAULT; 2994 if (copy_from_user(&zone, argp, sizeof(zone))) 2995 goto out; 2996 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2997 break; 2998 } 2999 case KVM_UNREGISTER_COALESCED_MMIO: { 3000 struct kvm_coalesced_mmio_zone zone; 3001 3002 r = -EFAULT; 3003 if (copy_from_user(&zone, argp, sizeof(zone))) 3004 goto out; 3005 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3006 break; 3007 } 3008 #endif 3009 case KVM_IRQFD: { 3010 struct kvm_irqfd data; 3011 3012 r = -EFAULT; 3013 if (copy_from_user(&data, argp, sizeof(data))) 3014 goto out; 3015 r = kvm_irqfd(kvm, &data); 3016 break; 3017 } 3018 case KVM_IOEVENTFD: { 3019 struct kvm_ioeventfd data; 3020 3021 r = -EFAULT; 3022 if (copy_from_user(&data, argp, sizeof(data))) 3023 goto out; 3024 r = kvm_ioeventfd(kvm, &data); 3025 break; 3026 } 3027 #ifdef CONFIG_HAVE_KVM_MSI 3028 case KVM_SIGNAL_MSI: { 3029 struct kvm_msi msi; 3030 3031 r = -EFAULT; 3032 if (copy_from_user(&msi, argp, sizeof(msi))) 3033 goto out; 3034 r = kvm_send_userspace_msi(kvm, &msi); 3035 break; 3036 } 3037 #endif 3038 #ifdef __KVM_HAVE_IRQ_LINE 3039 case KVM_IRQ_LINE_STATUS: 3040 case KVM_IRQ_LINE: { 3041 struct kvm_irq_level irq_event; 3042 3043 r = -EFAULT; 3044 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3045 goto out; 3046 3047 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3048 ioctl == KVM_IRQ_LINE_STATUS); 3049 if (r) 3050 goto out; 3051 3052 r = -EFAULT; 3053 if (ioctl == KVM_IRQ_LINE_STATUS) { 3054 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3055 goto out; 3056 } 3057 3058 r = 0; 3059 break; 3060 } 3061 #endif 3062 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3063 case KVM_SET_GSI_ROUTING: { 3064 struct kvm_irq_routing routing; 3065 struct kvm_irq_routing __user *urouting; 3066 struct kvm_irq_routing_entry *entries = NULL; 3067 3068 r = -EFAULT; 3069 if (copy_from_user(&routing, argp, sizeof(routing))) 3070 goto out; 3071 r = -EINVAL; 3072 if (!kvm_arch_can_set_irq_routing(kvm)) 3073 goto out; 3074 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3075 goto out; 3076 if (routing.flags) 3077 goto out; 3078 if (routing.nr) { 3079 r = -ENOMEM; 3080 entries = vmalloc(array_size(sizeof(*entries), 3081 routing.nr)); 3082 if (!entries) 3083 goto out; 3084 r = -EFAULT; 3085 urouting = argp; 3086 if (copy_from_user(entries, urouting->entries, 3087 routing.nr * sizeof(*entries))) 3088 goto out_free_irq_routing; 3089 } 3090 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3091 routing.flags); 3092 out_free_irq_routing: 3093 vfree(entries); 3094 break; 3095 } 3096 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3097 case KVM_CREATE_DEVICE: { 3098 struct kvm_create_device cd; 3099 3100 r = -EFAULT; 3101 if (copy_from_user(&cd, argp, sizeof(cd))) 3102 goto out; 3103 3104 r = kvm_ioctl_create_device(kvm, &cd); 3105 if (r) 3106 goto out; 3107 3108 r = -EFAULT; 3109 if (copy_to_user(argp, &cd, sizeof(cd))) 3110 goto out; 3111 3112 r = 0; 3113 break; 3114 } 3115 case KVM_CHECK_EXTENSION: 3116 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3117 break; 3118 default: 3119 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3120 } 3121 out: 3122 return r; 3123 } 3124 3125 #ifdef CONFIG_KVM_COMPAT 3126 struct compat_kvm_dirty_log { 3127 __u32 slot; 3128 __u32 padding1; 3129 union { 3130 compat_uptr_t dirty_bitmap; /* one bit per page */ 3131 __u64 padding2; 3132 }; 3133 }; 3134 3135 static long kvm_vm_compat_ioctl(struct file *filp, 3136 unsigned int ioctl, unsigned long arg) 3137 { 3138 struct kvm *kvm = filp->private_data; 3139 int r; 3140 3141 if (kvm->mm != current->mm) 3142 return -EIO; 3143 switch (ioctl) { 3144 case KVM_GET_DIRTY_LOG: { 3145 struct compat_kvm_dirty_log compat_log; 3146 struct kvm_dirty_log log; 3147 3148 if (copy_from_user(&compat_log, (void __user *)arg, 3149 sizeof(compat_log))) 3150 return -EFAULT; 3151 log.slot = compat_log.slot; 3152 log.padding1 = compat_log.padding1; 3153 log.padding2 = compat_log.padding2; 3154 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3155 3156 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3157 break; 3158 } 3159 default: 3160 r = kvm_vm_ioctl(filp, ioctl, arg); 3161 } 3162 return r; 3163 } 3164 #endif 3165 3166 static struct file_operations kvm_vm_fops = { 3167 .release = kvm_vm_release, 3168 .unlocked_ioctl = kvm_vm_ioctl, 3169 .llseek = noop_llseek, 3170 KVM_COMPAT(kvm_vm_compat_ioctl), 3171 }; 3172 3173 static int kvm_dev_ioctl_create_vm(unsigned long type) 3174 { 3175 int r; 3176 struct kvm *kvm; 3177 struct file *file; 3178 3179 kvm = kvm_create_vm(type); 3180 if (IS_ERR(kvm)) 3181 return PTR_ERR(kvm); 3182 #ifdef CONFIG_KVM_MMIO 3183 r = kvm_coalesced_mmio_init(kvm); 3184 if (r < 0) 3185 goto put_kvm; 3186 #endif 3187 r = get_unused_fd_flags(O_CLOEXEC); 3188 if (r < 0) 3189 goto put_kvm; 3190 3191 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3192 if (IS_ERR(file)) { 3193 put_unused_fd(r); 3194 r = PTR_ERR(file); 3195 goto put_kvm; 3196 } 3197 3198 /* 3199 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3200 * already set, with ->release() being kvm_vm_release(). In error 3201 * cases it will be called by the final fput(file) and will take 3202 * care of doing kvm_put_kvm(kvm). 3203 */ 3204 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3205 put_unused_fd(r); 3206 fput(file); 3207 return -ENOMEM; 3208 } 3209 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3210 3211 fd_install(r, file); 3212 return r; 3213 3214 put_kvm: 3215 kvm_put_kvm(kvm); 3216 return r; 3217 } 3218 3219 static long kvm_dev_ioctl(struct file *filp, 3220 unsigned int ioctl, unsigned long arg) 3221 { 3222 long r = -EINVAL; 3223 3224 switch (ioctl) { 3225 case KVM_GET_API_VERSION: 3226 if (arg) 3227 goto out; 3228 r = KVM_API_VERSION; 3229 break; 3230 case KVM_CREATE_VM: 3231 r = kvm_dev_ioctl_create_vm(arg); 3232 break; 3233 case KVM_CHECK_EXTENSION: 3234 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3235 break; 3236 case KVM_GET_VCPU_MMAP_SIZE: 3237 if (arg) 3238 goto out; 3239 r = PAGE_SIZE; /* struct kvm_run */ 3240 #ifdef CONFIG_X86 3241 r += PAGE_SIZE; /* pio data page */ 3242 #endif 3243 #ifdef CONFIG_KVM_MMIO 3244 r += PAGE_SIZE; /* coalesced mmio ring page */ 3245 #endif 3246 break; 3247 case KVM_TRACE_ENABLE: 3248 case KVM_TRACE_PAUSE: 3249 case KVM_TRACE_DISABLE: 3250 r = -EOPNOTSUPP; 3251 break; 3252 default: 3253 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3254 } 3255 out: 3256 return r; 3257 } 3258 3259 static struct file_operations kvm_chardev_ops = { 3260 .unlocked_ioctl = kvm_dev_ioctl, 3261 .llseek = noop_llseek, 3262 KVM_COMPAT(kvm_dev_ioctl), 3263 }; 3264 3265 static struct miscdevice kvm_dev = { 3266 KVM_MINOR, 3267 "kvm", 3268 &kvm_chardev_ops, 3269 }; 3270 3271 static void hardware_enable_nolock(void *junk) 3272 { 3273 int cpu = raw_smp_processor_id(); 3274 int r; 3275 3276 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3277 return; 3278 3279 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3280 3281 r = kvm_arch_hardware_enable(); 3282 3283 if (r) { 3284 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3285 atomic_inc(&hardware_enable_failed); 3286 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3287 } 3288 } 3289 3290 static int kvm_starting_cpu(unsigned int cpu) 3291 { 3292 raw_spin_lock(&kvm_count_lock); 3293 if (kvm_usage_count) 3294 hardware_enable_nolock(NULL); 3295 raw_spin_unlock(&kvm_count_lock); 3296 return 0; 3297 } 3298 3299 static void hardware_disable_nolock(void *junk) 3300 { 3301 int cpu = raw_smp_processor_id(); 3302 3303 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3304 return; 3305 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3306 kvm_arch_hardware_disable(); 3307 } 3308 3309 static int kvm_dying_cpu(unsigned int cpu) 3310 { 3311 raw_spin_lock(&kvm_count_lock); 3312 if (kvm_usage_count) 3313 hardware_disable_nolock(NULL); 3314 raw_spin_unlock(&kvm_count_lock); 3315 return 0; 3316 } 3317 3318 static void hardware_disable_all_nolock(void) 3319 { 3320 BUG_ON(!kvm_usage_count); 3321 3322 kvm_usage_count--; 3323 if (!kvm_usage_count) 3324 on_each_cpu(hardware_disable_nolock, NULL, 1); 3325 } 3326 3327 static void hardware_disable_all(void) 3328 { 3329 raw_spin_lock(&kvm_count_lock); 3330 hardware_disable_all_nolock(); 3331 raw_spin_unlock(&kvm_count_lock); 3332 } 3333 3334 static int hardware_enable_all(void) 3335 { 3336 int r = 0; 3337 3338 raw_spin_lock(&kvm_count_lock); 3339 3340 kvm_usage_count++; 3341 if (kvm_usage_count == 1) { 3342 atomic_set(&hardware_enable_failed, 0); 3343 on_each_cpu(hardware_enable_nolock, NULL, 1); 3344 3345 if (atomic_read(&hardware_enable_failed)) { 3346 hardware_disable_all_nolock(); 3347 r = -EBUSY; 3348 } 3349 } 3350 3351 raw_spin_unlock(&kvm_count_lock); 3352 3353 return r; 3354 } 3355 3356 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3357 void *v) 3358 { 3359 /* 3360 * Some (well, at least mine) BIOSes hang on reboot if 3361 * in vmx root mode. 3362 * 3363 * And Intel TXT required VMX off for all cpu when system shutdown. 3364 */ 3365 pr_info("kvm: exiting hardware virtualization\n"); 3366 kvm_rebooting = true; 3367 on_each_cpu(hardware_disable_nolock, NULL, 1); 3368 return NOTIFY_OK; 3369 } 3370 3371 static struct notifier_block kvm_reboot_notifier = { 3372 .notifier_call = kvm_reboot, 3373 .priority = 0, 3374 }; 3375 3376 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3377 { 3378 int i; 3379 3380 for (i = 0; i < bus->dev_count; i++) { 3381 struct kvm_io_device *pos = bus->range[i].dev; 3382 3383 kvm_iodevice_destructor(pos); 3384 } 3385 kfree(bus); 3386 } 3387 3388 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3389 const struct kvm_io_range *r2) 3390 { 3391 gpa_t addr1 = r1->addr; 3392 gpa_t addr2 = r2->addr; 3393 3394 if (addr1 < addr2) 3395 return -1; 3396 3397 /* If r2->len == 0, match the exact address. If r2->len != 0, 3398 * accept any overlapping write. Any order is acceptable for 3399 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3400 * we process all of them. 3401 */ 3402 if (r2->len) { 3403 addr1 += r1->len; 3404 addr2 += r2->len; 3405 } 3406 3407 if (addr1 > addr2) 3408 return 1; 3409 3410 return 0; 3411 } 3412 3413 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3414 { 3415 return kvm_io_bus_cmp(p1, p2); 3416 } 3417 3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3419 gpa_t addr, int len) 3420 { 3421 struct kvm_io_range *range, key; 3422 int off; 3423 3424 key = (struct kvm_io_range) { 3425 .addr = addr, 3426 .len = len, 3427 }; 3428 3429 range = bsearch(&key, bus->range, bus->dev_count, 3430 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3431 if (range == NULL) 3432 return -ENOENT; 3433 3434 off = range - bus->range; 3435 3436 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3437 off--; 3438 3439 return off; 3440 } 3441 3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3443 struct kvm_io_range *range, const void *val) 3444 { 3445 int idx; 3446 3447 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3448 if (idx < 0) 3449 return -EOPNOTSUPP; 3450 3451 while (idx < bus->dev_count && 3452 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3453 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3454 range->len, val)) 3455 return idx; 3456 idx++; 3457 } 3458 3459 return -EOPNOTSUPP; 3460 } 3461 3462 /* kvm_io_bus_write - called under kvm->slots_lock */ 3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3464 int len, const void *val) 3465 { 3466 struct kvm_io_bus *bus; 3467 struct kvm_io_range range; 3468 int r; 3469 3470 range = (struct kvm_io_range) { 3471 .addr = addr, 3472 .len = len, 3473 }; 3474 3475 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3476 if (!bus) 3477 return -ENOMEM; 3478 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3479 return r < 0 ? r : 0; 3480 } 3481 3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3484 gpa_t addr, int len, const void *val, long cookie) 3485 { 3486 struct kvm_io_bus *bus; 3487 struct kvm_io_range range; 3488 3489 range = (struct kvm_io_range) { 3490 .addr = addr, 3491 .len = len, 3492 }; 3493 3494 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3495 if (!bus) 3496 return -ENOMEM; 3497 3498 /* First try the device referenced by cookie. */ 3499 if ((cookie >= 0) && (cookie < bus->dev_count) && 3500 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3501 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3502 val)) 3503 return cookie; 3504 3505 /* 3506 * cookie contained garbage; fall back to search and return the 3507 * correct cookie value. 3508 */ 3509 return __kvm_io_bus_write(vcpu, bus, &range, val); 3510 } 3511 3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3513 struct kvm_io_range *range, void *val) 3514 { 3515 int idx; 3516 3517 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3518 if (idx < 0) 3519 return -EOPNOTSUPP; 3520 3521 while (idx < bus->dev_count && 3522 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3523 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3524 range->len, val)) 3525 return idx; 3526 idx++; 3527 } 3528 3529 return -EOPNOTSUPP; 3530 } 3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3532 3533 /* kvm_io_bus_read - called under kvm->slots_lock */ 3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3535 int len, void *val) 3536 { 3537 struct kvm_io_bus *bus; 3538 struct kvm_io_range range; 3539 int r; 3540 3541 range = (struct kvm_io_range) { 3542 .addr = addr, 3543 .len = len, 3544 }; 3545 3546 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3547 if (!bus) 3548 return -ENOMEM; 3549 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3550 return r < 0 ? r : 0; 3551 } 3552 3553 3554 /* Caller must hold slots_lock. */ 3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3556 int len, struct kvm_io_device *dev) 3557 { 3558 int i; 3559 struct kvm_io_bus *new_bus, *bus; 3560 struct kvm_io_range range; 3561 3562 bus = kvm_get_bus(kvm, bus_idx); 3563 if (!bus) 3564 return -ENOMEM; 3565 3566 /* exclude ioeventfd which is limited by maximum fd */ 3567 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3568 return -ENOSPC; 3569 3570 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3571 sizeof(struct kvm_io_range)), GFP_KERNEL); 3572 if (!new_bus) 3573 return -ENOMEM; 3574 3575 range = (struct kvm_io_range) { 3576 .addr = addr, 3577 .len = len, 3578 .dev = dev, 3579 }; 3580 3581 for (i = 0; i < bus->dev_count; i++) 3582 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3583 break; 3584 3585 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3586 new_bus->dev_count++; 3587 new_bus->range[i] = range; 3588 memcpy(new_bus->range + i + 1, bus->range + i, 3589 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3590 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3591 synchronize_srcu_expedited(&kvm->srcu); 3592 kfree(bus); 3593 3594 return 0; 3595 } 3596 3597 /* Caller must hold slots_lock. */ 3598 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3599 struct kvm_io_device *dev) 3600 { 3601 int i; 3602 struct kvm_io_bus *new_bus, *bus; 3603 3604 bus = kvm_get_bus(kvm, bus_idx); 3605 if (!bus) 3606 return; 3607 3608 for (i = 0; i < bus->dev_count; i++) 3609 if (bus->range[i].dev == dev) { 3610 break; 3611 } 3612 3613 if (i == bus->dev_count) 3614 return; 3615 3616 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3617 sizeof(struct kvm_io_range)), GFP_KERNEL); 3618 if (!new_bus) { 3619 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3620 goto broken; 3621 } 3622 3623 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3624 new_bus->dev_count--; 3625 memcpy(new_bus->range + i, bus->range + i + 1, 3626 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3627 3628 broken: 3629 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3630 synchronize_srcu_expedited(&kvm->srcu); 3631 kfree(bus); 3632 return; 3633 } 3634 3635 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3636 gpa_t addr) 3637 { 3638 struct kvm_io_bus *bus; 3639 int dev_idx, srcu_idx; 3640 struct kvm_io_device *iodev = NULL; 3641 3642 srcu_idx = srcu_read_lock(&kvm->srcu); 3643 3644 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3645 if (!bus) 3646 goto out_unlock; 3647 3648 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3649 if (dev_idx < 0) 3650 goto out_unlock; 3651 3652 iodev = bus->range[dev_idx].dev; 3653 3654 out_unlock: 3655 srcu_read_unlock(&kvm->srcu, srcu_idx); 3656 3657 return iodev; 3658 } 3659 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3660 3661 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3662 int (*get)(void *, u64 *), int (*set)(void *, u64), 3663 const char *fmt) 3664 { 3665 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3666 inode->i_private; 3667 3668 /* The debugfs files are a reference to the kvm struct which 3669 * is still valid when kvm_destroy_vm is called. 3670 * To avoid the race between open and the removal of the debugfs 3671 * directory we test against the users count. 3672 */ 3673 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3674 return -ENOENT; 3675 3676 if (simple_attr_open(inode, file, get, set, fmt)) { 3677 kvm_put_kvm(stat_data->kvm); 3678 return -ENOMEM; 3679 } 3680 3681 return 0; 3682 } 3683 3684 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3685 { 3686 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3687 inode->i_private; 3688 3689 simple_attr_release(inode, file); 3690 kvm_put_kvm(stat_data->kvm); 3691 3692 return 0; 3693 } 3694 3695 static int vm_stat_get_per_vm(void *data, u64 *val) 3696 { 3697 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3698 3699 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3700 3701 return 0; 3702 } 3703 3704 static int vm_stat_clear_per_vm(void *data, u64 val) 3705 { 3706 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3707 3708 if (val) 3709 return -EINVAL; 3710 3711 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3712 3713 return 0; 3714 } 3715 3716 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3717 { 3718 __simple_attr_check_format("%llu\n", 0ull); 3719 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3720 vm_stat_clear_per_vm, "%llu\n"); 3721 } 3722 3723 static const struct file_operations vm_stat_get_per_vm_fops = { 3724 .owner = THIS_MODULE, 3725 .open = vm_stat_get_per_vm_open, 3726 .release = kvm_debugfs_release, 3727 .read = simple_attr_read, 3728 .write = simple_attr_write, 3729 .llseek = no_llseek, 3730 }; 3731 3732 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3733 { 3734 int i; 3735 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3736 struct kvm_vcpu *vcpu; 3737 3738 *val = 0; 3739 3740 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3741 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3742 3743 return 0; 3744 } 3745 3746 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3747 { 3748 int i; 3749 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3750 struct kvm_vcpu *vcpu; 3751 3752 if (val) 3753 return -EINVAL; 3754 3755 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3756 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3757 3758 return 0; 3759 } 3760 3761 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3762 { 3763 __simple_attr_check_format("%llu\n", 0ull); 3764 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3765 vcpu_stat_clear_per_vm, "%llu\n"); 3766 } 3767 3768 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3769 .owner = THIS_MODULE, 3770 .open = vcpu_stat_get_per_vm_open, 3771 .release = kvm_debugfs_release, 3772 .read = simple_attr_read, 3773 .write = simple_attr_write, 3774 .llseek = no_llseek, 3775 }; 3776 3777 static const struct file_operations *stat_fops_per_vm[] = { 3778 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3779 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3780 }; 3781 3782 static int vm_stat_get(void *_offset, u64 *val) 3783 { 3784 unsigned offset = (long)_offset; 3785 struct kvm *kvm; 3786 struct kvm_stat_data stat_tmp = {.offset = offset}; 3787 u64 tmp_val; 3788 3789 *val = 0; 3790 spin_lock(&kvm_lock); 3791 list_for_each_entry(kvm, &vm_list, vm_list) { 3792 stat_tmp.kvm = kvm; 3793 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3794 *val += tmp_val; 3795 } 3796 spin_unlock(&kvm_lock); 3797 return 0; 3798 } 3799 3800 static int vm_stat_clear(void *_offset, u64 val) 3801 { 3802 unsigned offset = (long)_offset; 3803 struct kvm *kvm; 3804 struct kvm_stat_data stat_tmp = {.offset = offset}; 3805 3806 if (val) 3807 return -EINVAL; 3808 3809 spin_lock(&kvm_lock); 3810 list_for_each_entry(kvm, &vm_list, vm_list) { 3811 stat_tmp.kvm = kvm; 3812 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3813 } 3814 spin_unlock(&kvm_lock); 3815 3816 return 0; 3817 } 3818 3819 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3820 3821 static int vcpu_stat_get(void *_offset, u64 *val) 3822 { 3823 unsigned offset = (long)_offset; 3824 struct kvm *kvm; 3825 struct kvm_stat_data stat_tmp = {.offset = offset}; 3826 u64 tmp_val; 3827 3828 *val = 0; 3829 spin_lock(&kvm_lock); 3830 list_for_each_entry(kvm, &vm_list, vm_list) { 3831 stat_tmp.kvm = kvm; 3832 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3833 *val += tmp_val; 3834 } 3835 spin_unlock(&kvm_lock); 3836 return 0; 3837 } 3838 3839 static int vcpu_stat_clear(void *_offset, u64 val) 3840 { 3841 unsigned offset = (long)_offset; 3842 struct kvm *kvm; 3843 struct kvm_stat_data stat_tmp = {.offset = offset}; 3844 3845 if (val) 3846 return -EINVAL; 3847 3848 spin_lock(&kvm_lock); 3849 list_for_each_entry(kvm, &vm_list, vm_list) { 3850 stat_tmp.kvm = kvm; 3851 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3852 } 3853 spin_unlock(&kvm_lock); 3854 3855 return 0; 3856 } 3857 3858 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 3859 "%llu\n"); 3860 3861 static const struct file_operations *stat_fops[] = { 3862 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3863 [KVM_STAT_VM] = &vm_stat_fops, 3864 }; 3865 3866 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 3867 { 3868 struct kobj_uevent_env *env; 3869 unsigned long long created, active; 3870 3871 if (!kvm_dev.this_device || !kvm) 3872 return; 3873 3874 spin_lock(&kvm_lock); 3875 if (type == KVM_EVENT_CREATE_VM) { 3876 kvm_createvm_count++; 3877 kvm_active_vms++; 3878 } else if (type == KVM_EVENT_DESTROY_VM) { 3879 kvm_active_vms--; 3880 } 3881 created = kvm_createvm_count; 3882 active = kvm_active_vms; 3883 spin_unlock(&kvm_lock); 3884 3885 env = kzalloc(sizeof(*env), GFP_KERNEL); 3886 if (!env) 3887 return; 3888 3889 add_uevent_var(env, "CREATED=%llu", created); 3890 add_uevent_var(env, "COUNT=%llu", active); 3891 3892 if (type == KVM_EVENT_CREATE_VM) { 3893 add_uevent_var(env, "EVENT=create"); 3894 kvm->userspace_pid = task_pid_nr(current); 3895 } else if (type == KVM_EVENT_DESTROY_VM) { 3896 add_uevent_var(env, "EVENT=destroy"); 3897 } 3898 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 3899 3900 if (kvm->debugfs_dentry) { 3901 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 3902 3903 if (p) { 3904 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 3905 if (!IS_ERR(tmp)) 3906 add_uevent_var(env, "STATS_PATH=%s", tmp); 3907 kfree(p); 3908 } 3909 } 3910 /* no need for checks, since we are adding at most only 5 keys */ 3911 env->envp[env->envp_idx++] = NULL; 3912 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 3913 kfree(env); 3914 } 3915 3916 static void kvm_init_debug(void) 3917 { 3918 struct kvm_stats_debugfs_item *p; 3919 3920 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3921 3922 kvm_debugfs_num_entries = 0; 3923 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 3924 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 3925 (void *)(long)p->offset, 3926 stat_fops[p->kind]); 3927 } 3928 } 3929 3930 static int kvm_suspend(void) 3931 { 3932 if (kvm_usage_count) 3933 hardware_disable_nolock(NULL); 3934 return 0; 3935 } 3936 3937 static void kvm_resume(void) 3938 { 3939 if (kvm_usage_count) { 3940 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 3941 hardware_enable_nolock(NULL); 3942 } 3943 } 3944 3945 static struct syscore_ops kvm_syscore_ops = { 3946 .suspend = kvm_suspend, 3947 .resume = kvm_resume, 3948 }; 3949 3950 static inline 3951 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3952 { 3953 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3954 } 3955 3956 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3957 { 3958 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3959 3960 if (vcpu->preempted) 3961 vcpu->preempted = false; 3962 3963 kvm_arch_sched_in(vcpu, cpu); 3964 3965 kvm_arch_vcpu_load(vcpu, cpu); 3966 } 3967 3968 static void kvm_sched_out(struct preempt_notifier *pn, 3969 struct task_struct *next) 3970 { 3971 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3972 3973 if (current->state == TASK_RUNNING) 3974 vcpu->preempted = true; 3975 kvm_arch_vcpu_put(vcpu); 3976 } 3977 3978 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3979 struct module *module) 3980 { 3981 int r; 3982 int cpu; 3983 3984 r = kvm_arch_init(opaque); 3985 if (r) 3986 goto out_fail; 3987 3988 /* 3989 * kvm_arch_init makes sure there's at most one caller 3990 * for architectures that support multiple implementations, 3991 * like intel and amd on x86. 3992 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3993 * conflicts in case kvm is already setup for another implementation. 3994 */ 3995 r = kvm_irqfd_init(); 3996 if (r) 3997 goto out_irqfd; 3998 3999 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4000 r = -ENOMEM; 4001 goto out_free_0; 4002 } 4003 4004 r = kvm_arch_hardware_setup(); 4005 if (r < 0) 4006 goto out_free_0a; 4007 4008 for_each_online_cpu(cpu) { 4009 smp_call_function_single(cpu, 4010 kvm_arch_check_processor_compat, 4011 &r, 1); 4012 if (r < 0) 4013 goto out_free_1; 4014 } 4015 4016 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4017 kvm_starting_cpu, kvm_dying_cpu); 4018 if (r) 4019 goto out_free_2; 4020 register_reboot_notifier(&kvm_reboot_notifier); 4021 4022 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4023 if (!vcpu_align) 4024 vcpu_align = __alignof__(struct kvm_vcpu); 4025 kvm_vcpu_cache = 4026 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4027 SLAB_ACCOUNT, 4028 offsetof(struct kvm_vcpu, arch), 4029 sizeof_field(struct kvm_vcpu, arch), 4030 NULL); 4031 if (!kvm_vcpu_cache) { 4032 r = -ENOMEM; 4033 goto out_free_3; 4034 } 4035 4036 r = kvm_async_pf_init(); 4037 if (r) 4038 goto out_free; 4039 4040 kvm_chardev_ops.owner = module; 4041 kvm_vm_fops.owner = module; 4042 kvm_vcpu_fops.owner = module; 4043 4044 r = misc_register(&kvm_dev); 4045 if (r) { 4046 pr_err("kvm: misc device register failed\n"); 4047 goto out_unreg; 4048 } 4049 4050 register_syscore_ops(&kvm_syscore_ops); 4051 4052 kvm_preempt_ops.sched_in = kvm_sched_in; 4053 kvm_preempt_ops.sched_out = kvm_sched_out; 4054 4055 kvm_init_debug(); 4056 4057 r = kvm_vfio_ops_init(); 4058 WARN_ON(r); 4059 4060 return 0; 4061 4062 out_unreg: 4063 kvm_async_pf_deinit(); 4064 out_free: 4065 kmem_cache_destroy(kvm_vcpu_cache); 4066 out_free_3: 4067 unregister_reboot_notifier(&kvm_reboot_notifier); 4068 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4069 out_free_2: 4070 out_free_1: 4071 kvm_arch_hardware_unsetup(); 4072 out_free_0a: 4073 free_cpumask_var(cpus_hardware_enabled); 4074 out_free_0: 4075 kvm_irqfd_exit(); 4076 out_irqfd: 4077 kvm_arch_exit(); 4078 out_fail: 4079 return r; 4080 } 4081 EXPORT_SYMBOL_GPL(kvm_init); 4082 4083 void kvm_exit(void) 4084 { 4085 debugfs_remove_recursive(kvm_debugfs_dir); 4086 misc_deregister(&kvm_dev); 4087 kmem_cache_destroy(kvm_vcpu_cache); 4088 kvm_async_pf_deinit(); 4089 unregister_syscore_ops(&kvm_syscore_ops); 4090 unregister_reboot_notifier(&kvm_reboot_notifier); 4091 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4092 on_each_cpu(hardware_disable_nolock, NULL, 1); 4093 kvm_arch_hardware_unsetup(); 4094 kvm_arch_exit(); 4095 kvm_irqfd_exit(); 4096 free_cpumask_var(cpus_hardware_enabled); 4097 kvm_vfio_ops_exit(); 4098 } 4099 EXPORT_SYMBOL_GPL(kvm_exit); 4100